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M. Fabien Bruneval
Ingénieur-Chercheur, CEA Saclay (SRMP) Encadrant





Remerciements

Avant de plonger dans un monde merveilleux des électrons, protons et leurs confrères,
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Introduction

The problem of the interaction between an incident ion and a target material occupied the
minds of scientists even before the birth of Quantum Mechanics: The celebrated Rutherford
α-particles on gold scattering experiment [1], that largely contributed to the atomic physics
theory, is one of the first experimental setups directed towards the projectile/matter studies.

Nowadays, one deals with ionic radiation in a large variety of scientific and technological
fields. In some cases, this phenomenon is a valuable tool, in others, the damage caused by
energetic ions is undesirable and one wants to avoid it. Even if the present work is mostly
motivated by the nuclear energy domain (see below in the text), we will mention here some
examples from different fields.

In medicine, the ionic (in particular, protonic) irradiation is widely used to treat the
cancer tumors. It is named“proton therapy”. The profile of the ion energy loss as a function
of the penetration depth is well adapted for this task: The maximum of the deposited
irradiation dose, known as the Bragg peak, is quite sharp in space and is located at some
depth in material (in this case, in tissue). This is a unique property of ion irradiation,
which distinguishes it from, for example, electron or X-ray irradiations (see Fig. I.1).
In addition, changing the energy of the proton beam and the beam collimation, one can
change the depth of the peak and its width. In such a way, using the proton therapy of
cancer in the cases where the tumor is deeply located in tissues (more than 1 cm), one kills
the cancer cells, at the same time, keeping the normal tissues less exposed to radiation [4].

On the other hand, in the space industry, ion irradiation has a negative impact. While
the Earth atmosphere protects us from cosmic radiation, the spacecrafts do not have such
a privilege. There are various sources of cosmic radiations: solar winds, solar flares or
radiations that have origins outside the Solar System. These radiations, in particular,
protons and heavy ions, cause damage to the spacecrafts in different ways: the electronic
circuit damages, the data corruption (memory errors), the degradation of the solar cells
[5]. Hence, in this case, one would like to protect the electronics from the irradiation, to
produce solar cells that better resist the ionic damage and to predict the duration of the
normal operation of a spacecraft.

Furthermore, understanding the ion/matter interactions is highly important to fission
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Figure I.1 : Irradiation dose as a function of the penetration depth in the case of proton, X-ray
and electron irradiations. Data is taken from references [2, 3]. On the inset on the top of the
image, an illustration of tissue with cancer is shown. In the presented case, the tumor is situated
at a depth ≈ 12 cm. The maximum of the deposited dose in the case of the protonic irradiation
coincides with the tumor location. The initial energies of protons, photons, and electrons are
indicated next to the corresponding curves.

applications [6], imaging and processing of materials using the focused beam techniques [7,
8], helium ion microscopy [9], doping of semiconductors and more. The nuclear application
will be described below.

The interaction between the irradiating ion and the target can be described by a stop-
ping power, defined as the energy transfer from projectile to material per penetration
distance

S = −
dEkin

proj

dz
, (1)

where Ekin
proj is the kinetic energy of the projectile and z is the path length. Dimensionally,

the stopping power is a force and is usually presented in units of energy per distance. In this
work, we present S in Ha/bohr (referred to atomic units, a.u.) or in keV/nm. Physically,
the stopping power corresponds to a retarding (or drag) force due to the electrons and the
nuclei of the target.

The mechanism of stopping depends on the ion velocity: At low velocities, the main
projectile energy loss channel is the interaction with the nuclei of the target; At high veloc-
ities, the energy transfer is mediated through the electron excitations of the host material.
In order to consider the stopping power velocity behavior in more details, we have taken
an example of the α-particle irradiation in iron (Fig. I.2). One can see that the electronic
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Figure I.2 : Stopping power of α-particle projectile in iron target. Stopping power is presented
in atomic units (left y-axis) and in keV/nm (right y-axis). The bottom x-axis is the projectile
velocity in atomic units and the top x-axis is the projectile kinetic energy in MeV. The red
region on the left-hand side illustrates the nuclear stopping region, while the violet region on the
right-hand side presents the region where the relativistic effects have a significant impact. The
velocity scale on the graph is naturally limited by the speed of light, equal, in atomic units, to
c = 137.1 a.u. The stopping power data (solid lines) are taken from the ASTAR database [10],
while the dashed lines present a schematic continuation of curves in the “nuclear stopping” and
the “relativistic” regions.

stopping is predominant for the projectile velocities starting from vlim nuc = 0.1 a.u. There
is a maximum of the stopping power. The projectile velocity corresponding to the stop-
ping power peak is, typically, in the same order of magnitude as the Fermi velocity of the
target material. For example, the Fermi velocity of iron is vF = 0.9 a.u., whereas the peak
velocity is v = 2.9 a.u.

In the limit of high projectile velocities, after the minimum (at v ≈ 100 a.u.), the
stopping power starts to increase due to the relativistic effects. One usually defines the
projectile velocity, at which the relativistic effects become important as vlim rel ≈ 0.87 c,
where c is the speed of light [11, 12]. Numerically, this velocity is equal to vlim rel = 118.6
a.u., which, for example, corresponds to the kinetic of proton EH+ = 12.9 MeV and of
α-particle EHe2+ = 51.7 MeV.

While the nuclear stopping power can be accurately modeled by the classical ion-ion
interactions [13], the electronic excitations of the target material can be properly described
only at the quantum-mechanical level. In addition, the electronic stopping power, being
the major contribution to the ion/matter interactions, is central to all above-mentioned
areas, including the nuclear domain.

In the nuclear material science, an accurate knowledge of the interaction between the
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irradiating ion and the material is important for two reasons: First, such kind of interaction
occurs directly during the nuclear reactor operation: Due to the nuclear reactions, the
charged particles (for example, the fission products) interact with various materials (nuclear
fuel, cladding, cables, etc.). Second, one often uses ionic beams in laboratory conditions
in order to mimic the damage caused by neutrons. Indeed, the experiments related to
neutrons are very expensive and difficult: To study the influence of neutron irradiation
on some material, one needs to place a sample directly into the nuclear reactor. Such
kind of experiments lasts for several years and requires extreme caution during the sample
transportation and manipulation since the samples are activated then. On the other hand,
the ionic beams are much less dangerous and easier to manipulate: Using the magnetic
and electric fields, one can precisely select the ionic beam profile and energy, which is not
possible in the case of neutrons. In addition, one can note the following advantages of the
ionic beam approach: The experiments with ions are fast (a few hours), the samples do
not have residual radioactivity, one can study the dose, flux or temperature effects on the
irradiation damage, etc. Even if the interactions of neutrons and ions with matter are quite
different, the experiments based on the ions can bring a lot of useful information at a lower
cost and risk. From this perspective, the Joint Accelerators for Nano-science and Nuclear
Simulation (JANNUS), one part of which is in CEA Saclay, were created [14, 15]. The
main difference between the neutron and ion irradiations is the electronic stopping, which
is completely absent for neutrons and which plays a major contribution to the stopping
for ions. Therefore, the understanding and the description of the electronic excitations for
various types of ionic projectiles and targets are indirectly necessary for the studies of the
neutron-induced effects in nuclear materials using the ionic beams.

In the present work, we are thus interested in the modeling of the electronic stopping
power (Se) of the ionic projectiles. In particular, we will focus on the projectile velocity
range vlim nuc ≤ v ≤ vlim rel.

Since the electronic stopping phenomenon was conceived, a large number of models
has been elaborated. For a historical review of the problem, see, for example, references
[16, 17]. Here we will mention only the most important stages. Using the binary collision
model (BCA) between the target electrons (treated classically) and the projectile, Bethe,
in 1930 [18], derived the electronic stopping power expression of the following form

Se = B

v2 ln
(
C × v2

)
, (2)

where B and C are some constants that depend on the projectile charge Z and the density
of the target electrons n. It turns out that this approximation works very well for high
projectile velocities while giving a wrong position of the stopping power peak and having
even the divergent behavior for small v (see Fig. I.3).

Later, in 1947, Fermi and Teller [19] provided an expression for the low-velocity limit.
The stopping power, within this model, is linear in v (which is correct for metals). Having
these two models in mind, one can already note the general trends of the electronic stop-
ping power velocity dependence (Fig. I.3): It linearly increases with v at small projectile
velocities and decays approximatively as 1/v2 after the peak.
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Figure I.3 : Electronic stopping power of α-particle in iron: Comparison between the experi-
mental data (taken from [10]) and early theoretical models.

Subsequent efforts were aimed at improving the stopping power description at the
whole velocity range, in particular, around the stopping power peak. There exist two main
strategies to do so.

First, one can use the semi-empirical theories that incorporate a lot of parameters
fitted from experiments. The most known example presenting this approach is the code
SRIM [20], which is considered as a reference by experimentalists [21–23]. The SRIM code
provides accurate stopping power values in the case when one has enough experimental
points for a given projectile and target material and for a given projectile velocity. However,
if the experimental data are absent, the SRIM extrapolation can be wrong and using this
approach is then risky.

Another way is to improve the level of the theory, having as a goal, zero adjustable
parameters. From this viewpoint, in 1963, Linhard proposed the first fully ab initio model
of the stopping power in an electron gas within the linear response theory [24]. The
first non-linear response model was developed by Echenique and coworkers in 1986 [25].
Nevertheless, these models do not take the atomic structure of a real material into account,
therefore, they are able to produce acceptable results only for some special classes of
systems. For example, these models failed to take into account the band structure effects
[16].

The electronic structure calculations for a real material is a challenging and computa-
tionally hard task. The invention of density-functional theory (DFT) in 1964 by Hohenberg
and Kohn [26] has opened access to the ab initio calculations of the ground state prop-
erties with a relatively low computational cost. However, the electronic stopping power
phenomenon is related to a strongly excited state of matter. Therefore, DFT description
could only bring some improvements to the existing models [27].
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A proper description of the electronic excitations became possible only after the in-
vention of the time-dependent DFT (TDDFT) [28] in 1984 by Runge and Gross. At that
time the computational facilities did not allow the researchers to perform the all-response
TDDFT and, in 1996, the linear-response approximation to TDDFT (LR-TDDFT) was
elaborated by Petersilka, Gossman, and Gross [29].

The first linear response calculations of the electronic stopping power based on density-
functional theory (LR-TDDFT) were performed by Pitarke and coworkers [30–32]. These
calculations took into account explicitly the atomic structure of the target, but they were
not fully converged. Then, recently, Shukri, Bruneval and Reining [33, 34] improved the LR-
TDDFT stopping power calculations in terms of the converged cutoff energy, the number of
empty states and the inclusion of the semi-core electrons [33, 34]. The calculated stopping
power in this way compared well with experiment, in the case of proton irradiation, for
a wide range of target materials and for the whole velocity range. This method had a
significant limitation though: Being a perturbative approach, it failed in the case of the
projectile charges larger than Z = 1.

With the continuously growing computational power, it has become possible to perform
the all-response real-time TDDFT (RT-TDDFT) calculations. Nowadays, this approach
presents the best compromise between the accuracy and the size of atomic systems one can
deal with for the electronic stopping power simulations. In addition, within this method,
one has direct access to the time-dependent properties, such as the total energy, electronic
level occupations, electronic density, etc. Hence, this approach is expected to be the best
tool to provide the electronic stopping power for any kind of projectile and any type of tar-
get material for the whole range of projectile velocities of interest. We should mention that
while the target electrons are treated in a purely quantum-mechanical level, the projectile
and the target nuclei are treated as classical charged particles.

Hence, in this work, our aim is to develop an ab initio code based on RT-TDDFT for
the electronic stopping power calculations of ionic projectiles. Since simpler models (LR-
TDDFT or even Bethe) work well for high projectile velocities (see, for example, Fig. I.3),
we will mostly focus on this work on the projectile velocity range 0.1 a.u. ≤ v ≤ 8.0 a.u.

Choosing the RT-TDDFT code implementation strategy, we were guided by the follow-
ing considerations.

- First, in order to avoid the development from the scratch of the standard ground-state
DFT part, we were looking at an open-source platform, which could provide not only the
ground-state self-consistent calculations but also the Hamiltonian evaluation on the fly for
the time propagation.

- Second, the ionic stopping power calculations are special in the sense that all the target
electrons can be excited by an energetic projectile, including the core electrons. Usually,
the valence electrons constitute the “interesting physics” of the system. For example, the
chemical reactions - creation and breaking of the chemical bonds, charge transfer, optical
absorption (in the weak field regime), etc. Therefore, most often the pseudopotential
technique, which allows one to treat the core electrons implicitly, is quite accurate and an
effective technique used in the real-space grid or plane-wave codes. However, for stopping
power calculations, one needs to incorporate as many electrons as possible explicitly in the
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simulations, which becomes computationally very expensive in the plane-wave and real-
space grid codes [35]. Hence, we have decided to create our implementation based on an
all-electron localized basis code. By the construction of the localized basis, the cost of the
description of the core electrons is equal to (or, sometimes, even smaller than) the one of
the valence electrons, which could be beneficial for the considered application.

- Third, though the electronic stopping power calculations from RT-TDDFT is an
emergent topic, significant results have been already produced mostly using the plane-wave
[35, 36] and the real-space grid [37, 38] codes (though, localized basis implementations also
exist [39–41]). One of the difficulties of these approaches is an insufferable CPU time
consumption and implementation difficulties related to the hybrid exchange-correlation
functionals. That is why a great part of the stopping power calculations was performed
using the standard LDA functional. Therefore, a possibility to use the modern hybrid
functionals in the stopping power calculations could be a perspective direction for a new
implementation.

- And finally, because of the complexity of the problem (long real-time trajectories,
large simulation boxes, hybrid functionals, etc.), the overall computational cost is a non-
negligible criterion for the choice of the development strategy.

Combining all the mentioned issues, we select the Gaussian localized basis set code
MOLGW [42] as the development platform for a new RT-TDDFT implementation. A
detailed argumentation for such choice is discussed in chapter 2. Thus, our goal is to develop
a code based on RT-TDDFT and to use it for the electronic stopping power calculations
of ions.

The present manuscript is organized as follows:

• In chapter 1 we will discuss the fundamental aspects of RT-TDDFT, starting from
the basic DFT. As well, the general idea of the ab initio stopping power calculation
will be discussed.

• Chapter 2 is dedicated to the details of RT-TDDFT development in the localized
Gaussian basis code. The benchmarking of the code using the optical excitations will
be also presented.

• In chapter 3 we describe the methodology of the electronic stopping power calcula-
tion with our code. In particular, we will consider the convergence of the different
simulation parameters: The simulation box size, the time step, the Gaussian basis
set problem, etc.

• The results of the electronic stopping power calculations using the converged param-
eters are presented in chapter 4.





CHAPTER 1

Theoretical background

This chapter is dedicated to the formulation of the fundamental concepts and practical is-
sues of the Density-Functional Theory (DFT) and the Time-Dependent Density-Functional
Theory (TDDFT). TDDFT has a lot of common points and ideas with the ground-state
DFT on the fundamental level (one-to-one correspondence theorems, Kohn-Sham equa-
tions, exchange-correlation functionals, etc.). In addition, most often, the initial state of
a TDDFT calculation is chosen as the ground-state obtained from DFT.

Therefore, in this chapter we will first consider the basic ground-state DFT: the cele-
brated Hohenberg and Kohn theorem, the Kohn-Sham approach as well as some particular
problems and practical applications: spin-dependent DFT, exchange and correlation func-
tionals approximations. Then we will use the concepts of the ground-state DFT in the
time-dependent case. The similarities and principle differences between DFT and TDDFT
will be also discussed.

Finally, we will discuss the general methodology of the electronic stopping power calcula-
tions from the RT-TDDFT simulations. We will, in particular, consider the fixed projectile
trajectory technique. Then, the principal approaches to obtain the averaged stopping power
will be discussed.

1.1 Ground state density-functional theory (DFT)

Atomic units

Throughout this work Hartree atomic units (a.u.) are employed. Therefore, we would
like first to briefly discuss the conversions between SI and atomic units for the physicals
quantities used in this work. Atomic system of units is obtained by setting the reduced
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Planck’s constant, free-electron mass and charge to 1: ~ = m = e = 1. Table 1.1 lists the
conversion between SI and atomic unit systems. Detailed derivations and the complete list
of constants can be found, for example, in [43].

Physical quantity Interpretation Atomic units SI units

Angular
momentum

Reduced Planck’s constant ~ 1.05457× 10−34 Js

Mass Free-electron mass me 9.10938× 10−31 kg

Charge
Absolute value of
free-electron charge

e 1.60218× 10−19 C

Length
Bohr radius
of the hydrogen atom

a0 = 4πε0~2

me2 5.29177× 10−11 m

Velocity
Electron velocity
in the first Bohr orbit

v0 = e2

4πε0
2.18769× 106 m/s

Time
Time of one revolution
of an electron
in the first Bohr orbit

τ0 = a0

v0
2.41888× 10−17 s

Energy
2× ionization energy
of the hydrogen atom

EH = e2

4πε0a0

4.35974× 10−18 J
(27.21138 eV)

Electric field
Electric field
of the charge e at the
Bohr radius distance

|E0| =
e

4πε0a2
0

5.14221× 1011 V/m

Electric dipole
moment

Dipole moment of
two charges e separated by a0

|d| = ea0
8.47837× 10−30 Cm
(2.54217 D)

Table 1.1 : Atomic system of units.

1.1.1 The many-body framework

The Born–Oppenheimer approximation

Let us consider an atomic system (atom, molecule or solid) with N electrons and M nuclei.
The ground state of the system is given by the stationary Schrödinger equation

Ĥtot(r1, . . ., rN ,R1, . . .,RM)Ψtot(x1, . . .,xN ,R1, . . .,RM) = EtotΨtot(x1, . . .,xN ,R1, . . .,RM),
(1.1)

where Ĥtot is the many-body Hamiltonian of the system, Ψtot is the wave function that
includes both electrons and nuclei, Ra is the coordinate of a nucleus a, xi = (ri, σi) is an i
space-spin electronic coordinate: ri = (xi, yi, zi), σi =↑ or ↓ and Etot is the total energy of
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the system. In the absence of external fields, the complete many-body Hamiltonian in the
non-relativistic approximation reads, in atomic units,

Ĥtot = −1
2

N∑
i=1
∇2
i −

1
2

M∑
a=1

1
Ma

∇2
a −

N∑
i=1

M∑
a=1

Za
|ri −Ra|

+
N∑
i=1

N∑
j>i

1
|ri − rj|

+
M∑
a=1

M∑
b>a

ZaZb
|Ra −Rb|

,

(1.2)
where Ma and Za are the mass and the atomic number of a nucleus a; the Laplacian
operators ∇2

i and ∇2
a are the differential operators with respect to the coordinates of an

electron i and a nucleus a. The first two terms in the expression are the kinetic energies of
the electrons and the nuclei respectively, the third term is the Coulomb attraction between
electrons and nuclei, the fourth and fifth terms describe the electron-electron and nucleus-
nucleus repulsions respectively.

The Born-Oppenheimer (BO) approximation is based on the fact that the nuclear mass
is much larger than the electronic one, therefore the electronic and nuclear degrees of
freedom can be decoupled. This means that we can factorize the total wave function as
follows

Ψtot = Φnucl(R1, . . . ,RM)Ψelec(x1, . . . ,xN ; {Ra}), (1.3)

where Φnucl and Ψelec are the nuclear and electronic wave functions respectively. The
electronic wave function depends explicitly on the electronic space-spin coordinates and
parametrically on the nuclear coordinates.

The electronic problem

In this work, we are interested in the electronic problem and we consider the nuclei of the
system to be fixed. Therefore, the nuclear kinetic energy term in equation 1.2 is zero. The
nucleus-nucleus repulsion term is just a constant in the case of fixed nuclei, therefore it has
to be taken into account only in the total energy expression, but not in the Hamiltonian
expression. Hereafter we omit the index “elec” for the quantities related to the electronic
degrees of freedom but we keep the “nucl” index for nuclear quantities which will be rarely
mentioned in this chapter.

We can write the electronic Schrödinger equation

ĤΨ = EΨ. (1.4)

This equation can be rewritten in the representation independent Dirac formalism

Ĥ|Ψ〉 = E|Ψ〉. (1.5)

The electronic Hamiltonian is

Ĥ = −1
2

N∑
i=1
∇2
i +

N∑
i=1

N∑
j>i

1
|ri − rj|

−
N∑
i=1

M∑
a=1

Za
|ri −Ra|

= T̂ + Ŵee + V̂ne , (1.6)
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where we have defined the kinetic energy operator T̂ , the electron-electron interaction
operator Ŵee and the nuclei-electron interaction operator V̂ne.

One can note from the electronic Hamiltonian expression 1.6 that the only term which
makes the difference between one system (solid, atom or molecule) and another is the
nuclei-electron interaction operator V̂ne, which is a one-particle multiplicative operator.
We denote the corresponding nuclear potential as vne(r) as follows

vne(ri) = −
M∑
a=1

Za
|ri −Ra|

. (1.7)

In this way, the nucleus-electron interaction operator reads

V̂ne =
N∑
i=1

vne(ri). (1.8)

The total energy of the system can be found as the sum of the electronic and nuclear
energy

Etot = E + Enucl = E +
M∑
a=1

M∑
b>a

ZaZb
|Ra −Rb|

. (1.9)

The principal quantity of interest in the electronic structure calculations is the ground-
state energy E0. According to the variational theorem, this quantity can be found from
the minimization of the expectation value 〈Ψ|Ĥ|Ψ〉 over the normalized electronic wave
functions Ψ

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉, 〈Ψ|Ψ〉 = 1. (1.10)

The electronic wave function Ψ(x1,x2, . . . ,xN) is a complex function in the 4N -dimensional
configuration space (3 real-space degrees of freedom and one spin component per electron).
In such a way, |Ψ(x1,x2, . . . ,xN)|2dx1, dx2, . . . , dxN is the probability to find the system
in the 4N -dimensional volume dx1, dx2, . . . , dxN . Because electrons are fermions, the elec-
tronic wave function must be antisymmetric with respect to the exchange of two coordinates
xi and xj

Ψ(x1, . . . ,xi, . . . ,xj . . . ,xN) = −Ψ(x1, . . . ,xj, . . . ,xi . . . ,xN). (1.11)

In order to find the one-electron density from the wave function let us refer to the
electronic density operator, which for the case of N particles is defined as

ρ̂(r) =
N∑
i

ρ̂(ri) =
N∑
i

δ(ri), (1.12)
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where δ(r) is the Dirac delta-function. Then the one-electron density can be found as

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 =
∫
. . .
∫

︸ ︷︷ ︸
N

Ψ∗(x1, . . .xN)
N∑
i

δ(ri − r)Ψ(x1, . . .xN)dx1 . . .xN

=
N∑
i

∫
. . .
∫

︸ ︷︷ ︸
N−1

|Ψ(x1, . . . , r, σi, . . . ,xn)|2dσ1 . . . dσN dr1 . . . dri−1dri+1 . . . drN
. (1.13)

In this expression, the integration over spin degrees of freedom σi means just a summation
over spin up σ↑ and spin down σ↓. Due to the antisymmetric property of the wave function
(equation 1.11) one can see that all the terms under the summation are identical. Therefore,
the final expression of the one-electron density is the following

ρ(r) = N
∫
. . .
∫
|Ψ(r, σ1,x2, . . . ,xN)|2dσ1dx2 . . . dxN , (1.14)

where the integration is performed over all space coordinates except r1 and over all spin
coordinates σi. This density is normalized to the number of electrons∫

ρ(r)dr = N. (1.15)

1.1.2 Hohenberg-Kohn theorem

One-to-one correspondence

In this section, we will consider an arbitrary external potential v(r) instead of the specific
electron-nuclei potential vne(r). For example, this potential v(r) can include vne(r) and
some additional external field. Let us call the corresponding operator to v(r) - V̂ .

From the stationary Schrödinger equation 1.1 and from the one-electron density def-
inition 1.14 it is seen that there is a direct mapping from the external potential to the
ground-state electronic density V̂ −→ ρ(r): Having a given set of nuclei coordinates {Ra},
the Schrödinger equation provides the ground-state wave function corresponding to this

potential V̂
1−−→ Ψ. Then, from the wave function, one can calculate the ground-state

one-electron density Ψ 2−−→ ρ(r). In other words, the map between V̂ and ρ(r) is (at least)
surjective: 1) each wave function Ψ corresponds to at least one potential V̂ and 2) each
density ρ(r) corresponds to at least one wave function Ψ. The Hohenberg-Kohn theorem
(1964, [26]) shows that this mapping is bijective: two different potentials V̂ and V̂ ′ nec-
essarily correspond to two different wave functions Ψ and Ψ′, which correspond to two
different one-electron densities ρ(r) and ρ′(r) and vice versa (see Fig. 1.1). This theorem
can be proven using the variational principle 1.10.

Since the observables are determined by the wave function, the ground-state expectation
value of any observable O is also a unique functional of the ground-state density

〈Ψ[ρ] |Ô |Ψ[ρ]〉 = O[ρ]. (1.16)
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Figure 1.1 : Schematic representation of the bijective mapping between the set of external
potentials v(r), the set of wave functions Ψ(x1, . . . ,xN ) and the set of one-electron densities ρ(r).

In other words, the Hohenberg-Kohn theorem states that the potential v(r) is a unique
functional of the ground-state density. We consider that two potentials are equivalent if
they differ not more than by an additive constant. Though the Hohenberg-Kohn theorem
is valid for any form of potential v(r), let us briefly demonstrate the fact that the potential
is a functional of the ground-state density for the case of Coulombic potentials vne(r)
(which corresponds to the case of any material in the absence of external fields): It is
seen from equation 1.7 that any Coulomic potential can be “reconstructed” having 1) the
set of the nuclei coordinates {Ra} and 2) the nuclear charges Za. Around the nuclei,
the wave function as well as the electronic density have a cusp behavior: a singularity at
which the derivative over r is not continuous and corresponds to the maximal value of the
wave function (or of the electronic density). Therefore, the locations of the maxima of the
density provide information about the nuclei positions. Moreover, it can be shown (Kato’s
theorem [44],[45]) that the derivative of the spherical average of the density, ρ(r), around
a nucleus a is

∂ρ(r)
∂r

∣∣∣∣∣
r=Ra

= −2Zaρ(Ra). (1.17)

Due to this expression, the nuclear charges {Za} can be found from the density cusps
derivatives. In addition, one can find the number of electrons in the system from the
integration of the electronic density (equation 1.15).

Universal functional

Since the electronic kinetic energy T̂ and the electron-electron repulsion term Ŵee (equation
1.6) are the same for any material, and since the wave function is a unique functional of
the electronic density, one can define the universal density functional

FHK [ρ] = 〈Ψ[ρ]|T̂ + Ŵee|Ψ[ρ]〉. (1.18)

The FHK functional is universal in the sense that it does not depend on the external
potential V̂ . Then, adding the electron-nucleus contribution, we can express the total
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energy of any electronic system (here we omit the ion-ion interaction energy)

E[ρ] = FHK [ρ] +
∫
drvne(r)ρ(r). (1.19)

Since all the terms in this equation are functionals of the density, the ground-state energy
E0 of the system can be found from the minimization of the total electronic energy E[ρ]
over the electronic density (and not over the electronic wave function)

E0 = min
ρ

{
FHK [ρ] +

∫
drvne(r)ρ(r)

}
. (1.20)

This equation can be also rewritten in the following form

δE[ρ]
δρ

∣∣∣∣∣
ρ0

= 0, (1.21)

where ρ0 is the electronic density which minimizes the total electronic energy. It is called
the ground-state electronic density.

These three statements - invertibility of the mapping, the existence of the universal
density functional and the variational property constitute the Hohenberg-Kohn theorem.

1.1.3 Kohn-Sham scheme

Even if the FHK [ρ] functional exists, there is no procedure to find it and the direct approx-
imations of the functional are complicated and not accurate enough. Therefore, in 1965
Walter Kohn and Lu Jeu Sham have proposed [46] to represent the problem of interacting
N electrons as a problem of some fictitious independent electron system that yields the
same ground-state density ρ0(r). In this case, all the ground-state properties of such a
system would be similar to the interacting one. Replacing the many-body problem by a
problem of non-interacting particles brings a tremendous simplification. The price to pay
is to hide the complexity of the problem in the external potential. Let us consider this
method in more detail. First, we will consider the non-interacting electron problem with-
out detailing the expression of the external potential. And secondly, we will consider the
way to represent the interacting problem via the non-interacting one.

Non-interacting electron system

Let us consider an auxiliary system of N electrons which do not interact. The Hamiltonian
of this system, Ĥs, reads

Ĥs = T̂ + V̂s, (1.22)
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where T̂ is the kinetic energy operator as introduced before (equation 1.6) and V̂s is some
external potential operator (we do not precise its expression for the moment). This Hamil-

tonian can be represented as a sum of one-particle Hamiltonians ĥs

Ĥs =
N∑
i

ĥs =
N∑
i

(
−1

2∇
2
i

)
+

N∑
i

vs(r). (1.23)

The ground-state electronic wave function of this system Φs(x1, . . . ,xN) can be exactly
represented as a single Slater determinant

Φs(x1, . . . ,xN) = 1√
N !

det [ϕi(xj)] = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) . . . ϕN(x1)
ϕ1(x2) ϕ2(x2) . . . ϕN(x2)

...
...

...
ϕ1(xN) ϕ2(xN) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣
, (1.24)

where {ϕi(xk)}Ni=1 is the set one-electron wave functions, which are orthonormal, namely,

〈ϕi|ϕj〉 =
∫
dxϕ∗i (x)ϕj(x) = δij. (1.25)

One should mention that in the interacting electron case the wave function Ψ(x1, . . . ,xN)
is a linear combination of Slater determinants, also called multi-determinant.

In the spin-restricted case, the single electron wave functions can be factorized in the
following way

ϕi(x) = ϕi(r)χσi(σ), (1.26)

where ϕi(r) is a spatial orbital of ith electron, χσi(σ) = δσi,σ is the spin part and σi is
the spin of an electron i. The case of spin-unrestricted calculations will be considered in
section 1.1.4.

Due to the simple form of the non-interacting Hamiltonian (equation 1.23), the station-
ary Schrödinger equation

ĤsΦs = EΦs, (1.27)

can be divided on N identical one-particle equations (we have integrated here over the spin
variables)

ĥsϕi(r) =
[
−1

2∇
2 + vs(r)

]
ϕi(r) = εiϕi(r), (1.28)

where εi are the one-electron energies. Here we have omitted the index i in the Laplacian
operator ∇2 because there is only one space vector r in an equation i (in contrast to the
complete Schrödinger equation 1.23).

The one-electron density of the non-interacting system has a much simpler form than
in the interacting case. To get this expression in a proper way, one can substitute the total
non-interacting wave function 1.24 into the density expression 1.14, then one has

ρs(r) =
N∑
i=1
|ϕi(r)|2. (1.29)
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Then we can apply the Hohenberg-Kohn theorem for this case and write the unique
energy functional

Es[ρ] = Ts[ρ] +
∫
drvs(r)ρ(r). (1.30)

Ts[ρ] is the non-interacting kinetic energy functional

Ts[ρ] = 〈Φs[ρ]|T̂ |Φs[ρ]〉 =
N∑
i

∫
drϕ∗i (r)

(
−1

2∇
2
)
ϕi(r). (1.31)

The variational equation δEs[ρ] = 0 will provide the ground-state density of this system
ρs0(r).

Connection to the interacting electron case

Unfortunately, in the real electronic system, the presence of the electron-electron interaction
term Ŵee complicates the problem. The gist of the Kohn-Sham method is to find such
external potential for the non-interacting system vs(r) which would lead to exactly the
same ground-state electronic density as in the interacting system (ρs0(r) = ρ0(r)). So,
here we assume the existence of such an external potential, then the uniqueness of this
potential is guaranteed by the Hohenberg-Kohn theorem. In this way, one could treat the
multi-electron problem in the single-electron fashion: The external potential vs(r) would
correspond to the unique single electron wave function Ψs which provides the ground-state
density ρ0(r).

In order to achieve this, the universal functional FHK [ρ] (equation 1.18) must be de-
composed as follows

FHK [ρ] = Ts[ρ] + EHxc[ρ], (1.32)

where Ts[ρ] is the universal kinetic energy functional of non-interacting particles as intro-
duced before (equation 1.31) and the remaining EHxc[ρ] part is called the Hartree-exchange-
correlation functional.

Then, the minimization procedure to find the ground-state energy E0 (equation 1.20)
can be changed from the minimization over the density ρ to the minimization over the
non-interacting wave function Φs

E0 = min
Φs

{
〈Φs|T̂ + V̂ne|Φs〉+ EHxc[ρ]

}
. (1.33)

The Hartree-exchange-correlation functional consists of two parts

EHxc[ρ] = EH [ρ] + Exc[ρ], (1.34)

where EH [ρ] is the Hartree functional, the classical density-density interaction energy,

EH [ρ] = 1
2

∫∫ ρ(r1)ρ(r2)
|r1 − r2|

dr1dr2. (1.35)
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Figure 1.2 : The hierarchy of the Kohn-Sham approach functionals. All functionals definitions
and expressions can be found in equations 1.19, 1.32 - 1.40.

Exc[ρ] is the exchange-correlation energy functional which one needs to approximate. This
functional, in its turn, is usually represented as a sum of the exchange Ex[ρ] and the
correlation Ec[ρ] functionals

Exc[ρ] = Ex[ρ] + Ec[ρ]. (1.36)

The exchange functional is defined as the difference between the electron-electron repul-
sion energy calculated with the non-interacting wave function Φs and the Hartree energy
EH [ρ]

Ex[ρ] = 〈Φs|Ŵee|Φs〉 − EH [ρ]. (1.37)

The correlation functional then reads

Ec[ρ] = 〈Ψ[ρ]|T̂ + Ŵee|Ψ[ρ]〉 = Tc[ρ] + Uc[ρ], (1.38)

where we have defined the kinetic energy contribution as the difference between the kinetic
energy calculated with the complete interacting wave function Ψ[ρ] and the non-interacting
one Φs[ρ]

Tc[ρ] = 〈Ψ[ρ] | T̂ |Ψ[ρ]〉 − 〈Φs[ρ] | T̂ |Φs[ρ]〉. (1.39)

In a similar manner, we have defined the potential contribution

Uc[ρ] = 〈Ψ[ρ] | Ŵee |Ψ[ρ]〉 − 〈Φs[ρ] | Ŵee |Φs[ρ]〉. (1.40)

Because of a large quantity of functionals definitions, we find it pertinent to present all
the functionals definitions and their hierarchy in a schematic way (Fig. 1.2).
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Quality of approximation - example

As seen from the scheme 1.2, the knowledge of the Hartree-exchange correlation functional
EHxc[ρ] allows one to find the total electronic energy exactly. However, as usually happens
in science, the exact expression of this functional, as well as for FHK [ρ], is not known
and the functionals approximations should be applied. Nevertheless, due to its accuracy
and computational cost, DFT is one of the most used theories for the electronic structure
calculations for solids as well as for molecules. In order to demonstrate the reason for
the success of this theory, let us have a look at a numerical application of DFT. Let us
take the Ne atom as an example. Since Ne (10 electrons) is a relatively simple system,
higher accuracy calculations are also possible, namely, configuration-interaction [47], the
method which is used as the reference for the quantum chemical calculations. Using this
technique, we can calculate exactly the kinetic and the electron-electron interaction energies
of interacting electrons and compare them to the Kohn-Sham quantities. Table 1.2 presents
the energy contributions for the Ne atom.

Interacting
system

T Wee V E0
128.9 53.2 -311.1 -129.0

Kohn-Sham
system

Ts EH Exc V E0
128.6 66.1 -12.2 -311.1 -128.6

Table 1.2 : Energy contribution values (in Ha) for Ne atom. Interacting system section
corresponds to a more precise and more time-consuming method - configuration-interaction [48].
Kohn-Sham system section corresponds to the DFT calculation using the PBE functional (in
section 1.2.2 we detail this functional approximation).

The total ground-state energy is calculated in DFT within 0.3% of the error, which
shows a very good quality of DFT calculations (at least for similar systems). It is seen that
the non-interacting kinetic energy contribution Ts (which is calculated exactly) contains
almost the total amount (99.8%) of the interacting kinetic energy T . This means that the
kinetic contribution of the correlation energy Tc (equation 1.39) is very small. Concerning
the electron-electron interaction energy, Hartree part EH (which is also calculated exactly)
has the same order of magnitude as the full Coulombic interaction energy Wee, however,
unlike the kinetic energy, the difference Wee − EH is non-negligible. Finally, in the DFT
calculation one approximates the Exc contribution which is around 10% of the total energy.
The approximations of a much smaller amount of energy (with respect to the total energy)
make the DFT calculations accurate for a large number of different systems. In contrast
to DFT, the semi-classical model of Thomas-Fermi [49], which is the precursor to DFT,
approximates the full kinetic energy T and the electron-electron interaction energy Wee,
therefore it is less accurate.
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Kohn-Sham equations

So far we have discussed the Kohn-Sham concept itself. In this section, we will derive
the equations which allow one to find the total ground-state energy using the Kohn-Sham
scheme.

So, we consider the system of N non-interacting electrons described by the single Slater
determinant wave function Φs(x1, . . . ,xN) (equation 1.24). We can rewrite the total energy
(equation 1.33) in terms of spatial orbitals ϕi(r)

E[{ϕi}] =
N∑
i

∫
drϕ∗i (r)

(
−1

2∇
2 + vne(r)

)
ϕi(r) + EHxc[ρ], (1.41)

where we have integrated over all spin variables. It is possible to switch from the mini-
mization over the non-interacting N particles wave function Φs to the minimization over
the spatial orbitals ϕi(r). To do so, one needs to apply the Lagrange multipliers technique.
We build the Lagrangian using the constraint of the orthonormalization of ϕi(r) functions
(equation 1.25)

L[{ϕi}] = E[{ϕi}]−
N∑
i

εi

(∫
drϕ∗i (r)ϕi(r)− 1

)
, (1.42)

where εi is the Lagrange multiplier corresponding to the spatial orbital ϕi(r). To ensure
the minimum of the energy E[{ϕi}], the necessary conditions on the Lagrangian are

δL
δϕ∗i (r) = 0, δL

δϕi(r) = 0, (1.43)

where δL/δϕi(r) means the functional derivative of the Lagrangian over the spatial orbital
ϕi(r). In this case, the second equation of the functional derivative is just a complex
conjugate of the first one, therefore we will consider only the first equation. Taking the
functional derivative we obtain

(
−1

2∇
2 + vne(r)

)
ϕi(r) + δEHxc[ρ]

δϕ∗i (r) = εiϕi(r). (1.44)

Using the chain rule we can express the functional derivative of EHxc over ϕ∗i (r) through
the derivative over the one-electron density ρ(r)

δEHxc[ρ]
δϕ∗i (r) =

∫
dr′

δEHxc[ρ]
δρ(r′)

δρ(r′)
δϕ∗i (r) . (1.45)

Using the expression 1.29 of the one-electron density, it is possible to show that

δρ(r′)
δϕ∗i (r) = ϕi(r)δ(r− r′), (1.46)
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Then equation 1.45 becomes

δEHxc[ρ]
δϕ∗i (r) = δEHxc[ρ]

δρ(r) ϕi(r). (1.47)

It is seen that the term δEHxc[ρ]/δρ(r) is itself a functional of the density, we define it as the
Hartree-exchange-correlation potential

vHxc([ρ]; r) = δEHxc[ρ]
δρ(r) . (1.48)

Similarly to the Hartree-exchange-correlation energy EHxc, we proceed the same separation
for the potential vHxc

vHxc([ρ]; r) = vH([ρ]; r) + vxc([ρ]; r), (1.49)

where vH([ρ]; r) is the Hartree potential

vH([ρ]; r) = δEH([ρ]; r)
δρ(r) (1.50)

and vxc([ρ]; r) is the exchange-correlation potential, which can be divided on the exchange
potential vx([ρ]; r) and the correlation potential vc([ρ]; r)

vxc([ρ]; r) = δExc([ρ]; r)
δρ(r) = δEx([ρ]; r)

δρ(r) + δEc([ρ]; r)
δρ(r) = vx([ρ]; r) + vc([ρ]; r). (1.51)

One does not have the exact analytic expressions neither for the exchange-correlation en-
ergy nor for the exchange-correlation potential. The approximations of Exc and vxc will be
described in section 1.2.

In contrary, using the exact expression of the Hartree energy EH [ρ] (equation 1.35) and
the definition of the Hartree potential (equation 1.50), we can find the analytical expression
for the vH([ρ]; r) term

vH([ρ]; r) =
∫
dr′

ρ(r′)
|r− r′|

. (1.52)

Then the Hartree energy can be found from the Hartree potential in the following way

EH = 1
2

∫
drvH([ρ]; r)ρ(r). (1.53)

Finally, from equations 1.44 and 1.48, we obtain the Kohn-Sham equations(
−1

2∇
2
i + vs([ρ]; r)

)
ϕi(r) = εiϕi(r), (1.54)

where vs([ρ]; r) is the so-called Kohn-Sham potential

vs([ρ]; r) = vne(r) + vHxc([ρ]; r). (1.55)
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Equation 1.54 is Schrödinger-like

ĥs([ρ]; r)ϕi(r) = εiϕi(r), (1.56)

where ĥs([ρ]; r) is the one-particle Kohn-Sham Hamiltonian

ĥs([ρ]; r) =
(
−1

2∇
2 + vne(r) + vHxc([ρ]; r)

)
. (1.57)

The eigenfunctions of ĥs, ϕi(r), are the solutions of equation 1.54 and are called the
Kohn-Sham orbitals. The eigenvalues εi are one-electron energies. One should note that
vHxc([ρ]; r) depends on the electronic density, therefore it depends on all the occupied
orbitals ϕi(r). This makes the system of equations 1.54 coupled through the density. One
solves these equations in a self-consistent manner:

(1) Start with some guess density ρ(0)(r).

(2) Calculate the Kohn-Sham potential vs([ρ]; r) from the density ρ(r) (equation 1.55).

(3) Solve the Kohn-Sham equations (1.54).

(4) Evaluate the density ρ(i)(r) from the Kohn-Sham orbitals ϕ(i)(r) (equation 1.29).

(5) Repeat the steps (2)-(4) until the convergence of the density ||ρ(i)(r) − ρ(i−1)(r)|| is
reached.

When the convergence of the self-consistent loop is achieved, one can calculate the
exact (provided that vxc is exact) ground-state energy E0 by substituting the Kohn-Sham
orbitals ϕi(r) and the ground-state density ρ0(r) in equation 1.41. One should mention
that, as in the Hartree-Fock approximation [50], in DFT the total ground-state energy E0
is not the sum of the orbital energies εi. To demonstrate this, let us rewrite the total
energy (equation 1.41) in the following way

E0 = Ts +
∫
drvne(r)ρ0(r) + 1

2

∫
drvH([ρ0]; r)ρ0(r) + Exc([ρ0]; r0). (1.58)

The sum of the orbital energies has the following expression

N∑
i

εi =
N∑
i

〈ϕi|ĥs|ϕi〉 = Ts +
∫
drvne(r)ρ0(r) +

∫
drvH([ρ0]; r)ρ0(r) +

∫
drvxc([ρ0], r)ρ0(r).

(1.59)
Comparing equations 1.58 and 1.59 we can express the total energy through the sum of
the orbital energies

E =
N∑
i

εi − EH + Exc −
∫
drvxcρ0(r), (1.60)
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Figure 1.3 : Schematic explanation of the Kohn-Sham method. On the left-hand side, there
is a representation of an interacting system: electrons interact with the nuclei via the electron-
nucleus potential vne(r) and with each other via the Coulombic interaction operator Ŵee. On
the right-hand side, there is a representation of the fictitious Kohn-Sham system. Electrons do
still interact with the nuclei in the same manner as in the interacting case, however, they do not
interact with each other. The absence of the mutual electron-electron interaction is compensated
by the additional Hartree-exchange-correlation potential vHxc(r). Therefore, the electrons in the
Kohn-Sham system are in the external potential vs(r) = vne(r) + vHxc(r). Both systems have the
same ground-state density ρ0(r) and therefore all the ground-state observables.
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where we have used the expression for the Hartree energy EH [ρ] (equation 1.53).
To summarize, in DFT the problem of N interacting electrons is recast as the problem of

N non-interacting electrons in the effective external potential vs([ρ]; r). The non-interacting

system is defined by the one-particle Hamiltonian ĥs([ρ]; r) and the potential vs([ρ]; r). This
system has the same ground-state density ρ0(r) as in the interacting case. This concept is
illustrated in Fig. 1.3.

Similarly to the Hartree-Fock approximation [50] the Hamiltonian ĥs is one-particle,
however the exchange potential vx([ρ]; r) in DFT is local in contrast to the Hartree-Fock
approximation, which makes DFT calculations less computationally expensive. In addition,
ĥs contains the correlation potential vc([ρ]; r) which is not present in the Hartree-Fock
approximation.

1.1.4 Extension to spin-polarized DFT

Previously we have considered the case of paired electrons in double-occupied orbitals. This
type of calculations is called spin-restricted in the sense that different spins are restricted
to have the same spatial part

ϕ↑i (x) = ϕi(r)χσ↑(σ) (1.61a)

ϕ↓i (x) = ϕi(r)χσ↓(σ). (1.61b)

In the case of spin-unrestricted calculations, one may have different spatial orbitals for
different spins

ϕ↑i (x) = ϕ↑i (r)χσ↑(σ) (1.62a)

ϕ↓i (x) = ϕ↓i (r)χσ↓(σ). (1.62b)

Therefore, the single-particle energies may be also different (see Fig. 1.4).

Figure 1.4 : Pictorial representation of the spin-restricted (on the left-hand side) and the
spin-unrestricted (on the right-hand side) calculations. In the first case, the spatial orbitals ϕi(r)
are restricted to be the same for opposite spins, therefore the energies εi are also the same for
both spins. In the second case, different spins are treated separately and have different spatial
orbitals ϕσi (r) and different energies εσi .

Even if the external magnetic field calculations are out of the scope of this work, the
spin-unrestricted DFT calculations are necessary to treat the systems with unpaired elec-
trons or magnetic systems (Fe, for example).
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In order to establish the Kohn-Sham scheme for the spin-unrestricted case, we can
generalize the universal functional expression (equation 1.18) as follows [51], [52]

FHK [ρ↑, ρ↓] = min
Ψ→ρ↑,ρ↓

〈Ψ|T̂ + Ŵee|Ψ〉, (1.63)

where the many-body wave function Ψ(x1, . . . ,xN) must yield the spin densities ρ↑ and ρ↓
defined as

ρ↑(r) = N
∫
. . .
∫
|Ψ(r, ↑,x2, . . . ,xN)|2dx2 . . . dxN ,

∫
drρ↑(r) = N↑ (1.64a)

ρ↓(r) = N
∫
. . .
∫
|Ψ(r, ↓,x2, . . . ,xN)|2dx2 . . . dxN ,

∫
drρ↓(r) = N↓, (1.64b)

where N↑ and N↓ are the total numbers of spin-up and spin-down electrons respectively,
N↑ +N↓ = N .

Then, one can reproduce the same functionals separation as it was done for the spin-
restricted case (equations 1.32 - 1.40) using the spin-unrestricted densities ρ↑(r) and ρ↓(r).
In this way, one obtains the following expression for the universal functional (analogous to
equation 1.32)

FHK [ρ↑, ρ↓] = Ts[ρ↑, ρ↓] + EH [ρ] + Exc[ρ↑, ρ↓]. (1.65)

Since the Hartree term describes the classical density-density interaction (see equation
1.35), it depends only on the total electronic density ρ(r)

ρ(r) = ρ↑(r) + ρ↓(r). (1.66)

The non-interacting kinetic energy is defined in a similar manner as in the spin-restricted
case (equation 1.31), but this time we require the single Slater determinant wave function
Φs(x1, . . . ,xN) to provide given ρ↑(r) and ρ↓(r) densities

Ts[ρ↑, ρ↓] = min
Φs→ρ↑,ρ↓

〈Φs|T̂ |Φs〉. (1.67)

The Exc[ρ↑, ρ↓] term in equation 1.65 is the spin-unrestricted exchange-correlation po-
tential, which can be divided on the exchange Ex[ρ↑, ρ↓] and correlation Ec[ρ↑, ρ↓] parts.
Since there is no exchange interaction between the spin-up and spin-down electrons, one can
directly use the approximations of the exchange functional derived for the spin-restricted
case [53]. However, there is no similar simplicity for the correlation functional and the
spin-dependent expression Ec[ρ↑, ρ↓] has to be derived specifically for the spin-unrestricted
case.

Similarly to the spin-restricted calculations, in order to obtain the Kohn-Sham equa-
tions, we construct the Lagrangian (like equation 1.42), require the Lagrangian to be
stationary over the orbitals ϕ↑i (r) and ϕ↓i (r) (like equation 1.43) and derive the Hartree-
exchange-correlation potential vHxc([ρ↑, ρ↓]; r) using the functional calculus (like equations
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1.45-1.48). Finally, we obtain the Kohn-Sham spin-unrestricted equations(
−1

2∇
2 + vne(r) + vH([ρ]; r) + v↑xc([ρ↑, ρ↓]; r)

)
ϕ↑i (r) = ε↑iϕ

↑
i (r) (1.68a)(

−1
2∇

2 + vne(r) + vH([ρ]; r) + v↓xc([ρ↑, ρ↓]; r)
)
ϕ↓i (r) = ε↓iϕ

↓
i (r). (1.68b)

It is seen that the coupling between equations for different spins is performed through
the total density ρ(r) (equation 1.66). In equations 1.68 only the exchange-correlation
potential expression, vσxc, is spin-dependent. In the spin-unrestricted case, it is defined as
follows

v↑xc = δExc[ρ↑, ρ↓]
δρ↑(r) , v↓xc = δExc[ρ↑, ρ↓]

δρ↓(r) . (1.69)

For the Hartree potential vH([ρ]; r) the same expression as in the spin-restricted case is
applied (equation 1.52). The one-electron spin-densities ρσ(r) can be obtained from the
Kohn-Sham orbitals as

ρ↑(r) =
N↑∑
i=1
|ϕ↑i (r)|2, ρ↓(r) =

N↓∑
i=1
|ϕ↓i (r)|2. (1.70)

1.2 Exchange-correlation functionals approximations

As already mentioned, DFT is an exact theory under the condition that the exact exchange-
correlation functional is known, which is, unfortunately, not the case. In this section, we
will consider approximations to this quantity. Nowadays there is a very large number of
exchange-correlation functionals accessible on the“market”. In this section, we will consider
only some families of exchange-correlation functionals. In particular, we will consider those
approximations that were used in this work.

It should be mentioned that for the time being there is no universal functional ap-
proximation which would be accurate enough for any class of electronic systems. Hence,
for an unknown system, one needs to test different exchange-correlation functionals, com-
pare the DFT results with experimental data and then choose the most appropriate one.
This type of pragmatic approach questions the ab initio nature of DFT [54]. Therefore,
new exchange-correlation functionals development is still a topic of interest at the present
moment [55].

1.2.1 Local density approximation

In the local density approximation (LDA) the exchange-correlation functional is approxi-
mated in the following way [46]

ELDA
xc [ρ] =

∫
drρ(r)εunifxc (ρ(r)), (1.71)
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where εunifxc (ρ(r)) is the function of the exchange-correlation energy per electron of the
infinite uniform electron gas with the density ρ(r).

In order to illustrate this approximation, let us consider a volume element dr, then
drρ(r) is the average number of electrons in this volume. In LDA one assumes that the
exchange-correlation energy for electrons in the volume dr is the same as it would be in a
uniform gas with the constant density ρ at the point r. Therefore, by definition, LDA is
exact for any uniform density and it is accurate for slowly varying densities.

The function εunifxc (ρ(r)) can be divided into the exchange and correlation contributions

εunifxc (ρ(r)) = εunifx (ρ(r)) + εunifc (ρ(r)). (1.72)

The exchange contribution εunifx (ρ(r)) can be calculated exactly

εunifx (ρ(r)) = −3
4

3
π1/3ρ(r)1/3. (1.73)

Then one can show that the LDA exchange potential is

vLDAx (r) = − 3
π1/3ρ(r)1/3. (1.74)

For a finite system, the LDA exchange potential vLDAx decays exponentially for r → ∞,
whereas the exact exchange potential decays as −1/r.

The correlation contribution εunifc (ρ(r)) cannot be obtained analytically. The numer-
ical values of εunifc (ρ(r)) are obtained using the quantum Monte Carlo calculations [56].
These values are then fitted to a parametrized function. The most used parametriza-
tions are VWN (Vosko, Wilk and Nusair [57]) and PW92 (Perdew and Wang [58]). These
parametrizations also include the spin-unrestricted case: εunifc (ρ↑, ρ↓). The spin-unrestricted
LDA is called the local spin density approximation (LSD) [59].

1.2.2 Generalized-gradient approximations

One can consider the generalized gradient approximation (GGA) as a generalization of
LDA. If in LDA the exchange-correlation energy was a functional of the density, in GGA
it is a functional of the density and of the gradient of the density, i.e.,

EGGA
xc [ρ] =

∫
drf(ρ(r),∇ρ(r)). (1.75)

In contrast to LDA, GGA is semi-local because the function f depends also on the gradient
of the density. The spin-independent expression of the exchange-correlation potential has
the following form

vGGAxc ([ρ]; r) = δEGGA
xc [ρ]
δρ(r) = ∂f

∂ρ
(ρ(r),∇ρ(r))−∇ ·

∂f

∂∇ρ
(ρ(r),∇ρ(r)). (1.76)

It is also possible to deduce the analytical expression of the spin-dependent exchange-
correlation potential vGGAxc ([ρ↑, ρ↓]; r).
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B88 exchange functional

This functional developed by Becke in 1988 [60] is constructed as a correction to LDA

EB88
x = ELDA

x +
∫
drf(ρ(r), s(r)), (1.77)

where s(r) is the reduced density gradient

s(r) = ∇ρ(r)
ρ(r)4/3 . (1.78)

The function f is chosen in a way to satisfy the asymptotic behavior of the exact-exchange

energy εx(r) at large distance: εx(r) r→∞−−−→ − 1
2r . This functional contains one empirical

parameter.

LYP correlation functional

This functional was developed by Lee, Yang, and Parr [61]. It has been constructed from
the Colle-Salvetti correlation functional [62] (and not from LDA, which is rare for GGA
functionals). It depends on the density ρ(r), the density gradient ∇ρ(r) and the Laplacian
of the density ∇2ρ(r).

PBE exchange-correlation functional

The functional developed by Perdew, Burke, and Ernzerhof (PBE) [63] uses the functions
of ρ(r) and |∇ρ(r)| to describe the exchange and correlation energies per particle. It does
not contain any empirical parameter. These functions have been chosen to satisfy the
small-gradient and high-gradient limits. The functional is a simplification of the Perdew
Wang functional PW91 [64].

1.2.3 Meta-generalized-gradient approximations

This family of functionals, in its turn, is a generalization of GGA and has the following
form

Emeta−GGA
xc =

∫
drf(ρ(r),∇ρ(r),∇2ρ(r), τ(r)), (1.79)

where τ(r) is the non-interacting kinetic energy density

τ(r) = 1
2

N∑
i=1
|∇ϕi(r)|2. (1.80)

The most used exchange-correlation functionals from this family today are the Tao,
Perdew, Staroverov, and Scuseria functional (TPSS) [65] and recently developed the so-
called strongly constrained appropriately normed functional (SCAN) [55]. As a general
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trend, one can mention that GGA functionals yield a significant gain in accuracy over
LDA, whereas meta-GGAs do not make a large improvement on top of GGA.

1.2.4 Hybrid exchange-correlation functionals

The idea of the hybrid approximations is to include the exchange and correlation “ingre-
dients” from different theories and approximations: exact Hartree-Fock exchange energy
EHF
x , LDA and GGA exchange energies ELDA

x , EGGA
x and LDA and GGA correlation

energies ELDA
c , EGGA

c , namely,

Ehybrid
xc = aEHF

x + bEGGA
x + (1− a− b)ELDA

x + cEGGA
c + (1− c)ELDA

c , (1.81)

where a, b and c are the mixing parameters.
The Hartree-Fock exact-exchange energy is defined as

EHF
x = −1

2
∑
σ=↑,↓

Nσ∑
i=1

Nσ∑
j=1

∫∫
dr1dr2

ϕ∗σi (r1)ϕσj (r1)ϕ∗σj (r2)ϕσi (r2)
|r1 − r2|

. (1.82)

This expression is the same as obtained in the Hartree-Fock approximation, but evaluated
with the Kohn-Sham orbitals ϕσi (r). The Hartree-Fock exchange potential can be found
from the functional derivative of the Hartree-Fock energy EHF

x over the Kohn-Sham orbitals
ϕ∗i (r) (we cannot express this derivative through the derivative over the density, as it was
done in equation 1.47 for the Kohn-Sham potentials)

δEHF
x

δϕ∗σi (r) =
∫
dr′vσHFx (r, r′)ϕσi (r′). (1.83)

Finally, we get the following expression for the Hartree-Fock exchange potential

vσHFx ([ϕ]; r, r′) = −
Nσ∑
j=1

ϕσj (r)ϕ∗σj (r′)
|r− r′|

. (1.84)

Since the exchange interaction occurs between the electrons of the same spin, the exchange
potential is spin-dependent by definition. It is seen that this potential is nonlocal, which
is the principal difference in comparison to the Kohn-Sham potential vs([ρ]; r). The cal-
culations which include the Kohn-Sham potential and the nonlocal Hartree-Fock exchange
potential are called the generalized Kohn-Sham (gKS) [66]. Adding the Hartree-Fock term,
one decreases the electron self-interaction error which is completely absent in the Hartree-
Fock calculations [50].

B3LYP functional

This functional [67] uses the same exchange energy functional as in the B88 approxima-
tion (hence the letter B in the name) and the same correlation functional as in the LYP
approximation (from which the end of the functional name). It uses the parameters (in
equation 1.81), which were fitted to experimental data: a = 0.20; b = 0.72; c = 0.81.



38 1. THEORETICAL BACKGROUND

PBE0 functional

The name comes from the same abbreviation of names as in PBE. The PBE0 hybrid
functional [68] uses only one parameter a = 0.25 (b = c = 0) and has the following form

EPBE0
xc = aEHF

x + (1− a)EPBE
x + EPBE

c , (1.85)

where EPBE
x and EPBE

c are the exchange and correlation functionals of the PBE approx-
imation. The a parameter is usually considered as non-empirical (in contrast to B3LYP
parameters) and its value has a physical explanation [69].

1.3 Time-Dependent DFT (TDDFT)

So far we were interested in the ground-state properties (ground-state density and energy).
In order to go beyond the ground-state, one of the possible methods is the Time-Dependent
DFT. Similarly to the DFT section, we will briefly consider the complete many-body
problem, and then we will apply the Kohn-Sham method in the time-dependent case in
order to make the problem numerically resolvable.

1.3.1 Many-body time-dependent problem

The evolution of the time-dependent many-body electronic wave function is governed by
the time-dependent Schrödinger equation

i
∂Ψ(x1, . . . ,xN , t)

∂t
= Ĥ(r1, . . . , rN ,R1, . . . ,RN , t)Ψ(x1, . . . ,xN , t). (1.86)

This is a first-order differential equation, therefore the initial state condition Ψ0 = Ψ(t =
0) must be specified. The expression of the electronic Hamiltonian Ĥ is similar to one
considered in the stationary Schrödinger equation (1.6),

Ĥ(t) = T̂ + Ŵee + V̂ext. (1.87)

However, now we assume the time dependence of the external potential, which incorporates
the electron-nucleus interaction V̂ne and some time-dependent external perturbation V̂pert

V̂ext =
N∑
i=1

vext(ri, t). (1.88)

The expression of the one-particle density and its normalization condition are the same
as in the stationary case (equations 1.29 and 1.15) but with the time-dependent wave
function

ρ(r, t) = N
∫
. . .
∫
|Ψ(r, σ1,x2, . . . ,xN , t)|2dσ1dx2 . . . dxN , (1.89)

∫
ρ(r, t)dr = N. (1.90)
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As in the stationary case, the many-body problem is very complicated and one would like
to density-functionalize it as well. In order to do so, let us first verify if one can express
any observable through the density ρ(r, t) in the time domain as well.

1.3.2 One-to-one correspondence: time-dependent case

The analog of the Hohenberg-Kohn theorem in TDDFT is the Runge-Gross theorem [28].
This theorem states that the mapping between the external potential vext(r, t) and the
time-dependent density ρ(r, t) is bijective. This means that a situation where two different
potentials vext(r, t) and v′ext(r, t) provide the same density ρ(r, t) is not possible. Here we
assume that two time-dependent potentials vext(r, t) and v′ext(r, t) are equivalent if they
differ not more than by a purely time-dependent function c(t). One should mention that
we consider here the same initial state Ψ0 = Ψ(t = 0) for any density ρ(r, t) (Fig. 1.5).

Figure 1.5 : Schematic illustration of the Runge-Gross theorem. Two densities ρ(r, t) and
ρ′(r, t) which evolve from the same initial state Ψ0 = Ψ(t = 0) under two different potentials
vext1 and vext2 start to deviate immediately after the moment t = 0 (at t+ δt, δt→ 0). Adapted
from [70].

In the ground-state DFT, the corresponding statement was proven using the variational
principle (equation 1.10), however, in the time-dependent case, the variational principle is
not valid [71]. Therefore, the proof of the Runge-Gross theorem is performed in a different
way, through the time-dependent current density, which is defined as

j(r, t) = N
∫
. . .
∫

Im[Ψ(r, σ1,x2, . . . ,xN , t)∇Ψ∗(r, σ1,x2, . . . ,xN , t)]dσ1dx2 . . . dxN .
(1.91)

The link between the density ρ(r, t) and the current density j(r, t) can be established
through the continuity equation

∂ρ(r, t)
∂t

= −∇ · j(r, t). (1.92)

To prove the theorem, one needs to prove consequently the following statements: 1)
two different potentials necessarily lead to two different current densities; 2) two different
current densities necessarily lead to two different densities:
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vext(r, t) 6= v′ext(r, t) + c(t) ⇐⇒ j(r, t) 6= j′(r, t), (1.93a)

j(r, t) 6= j′(r, t) ⇐⇒ ρ(r, t) 6= ρ′(r, t). (1.93b)

It is important to mention that in the Runge-Gross theorem the one-to-one corre-
spondence is proven for vext(r, t), j(r, t) and ρ(r, t), but there is no wave function in this
chain. However, having an external potential vext(r, t) we can (in principle) solve the time-
dependent Schrödinger equation 1.86 and in such way find the wave function Ψ(t) (see Fig.
1.6) - here we omit for clarity the space-spin coordinates in the wave function expression
xi .

Figure 1.6 : Illustration of the mapping in TDDFT. According to the Runge-Gross theorem,
there is a bijective mapping between the external potential vi(r, t), current density ji(r, t) and
the time-dependent density ρ(r, t) (red arrows). Using the time-dependent Schrödinger equation
and the density expression through the wave function Ψi(t), one can build a surjective mapping
from vi(r, t) to Ψi(t) to ρ(r, t) (grey arrows). These two mappings are enough to prove that the
time-dependent electronic density ρ(r, t) determines the external potential vi(r, t) and the wave
function Ψi(t).

So, the electronic density ρ(r, t) determines the external potential vext(r, t) up to a
purely time-dependent function c(t). Then, the external potential determines, via the
Schrödinger equation, the wave function Ψ(t), this time up to a time-dependent phase θ(t)

Ψ(t) = eiθ(t)Ψ([ρ,Ψ0]; t). (1.94)

One can also mention that the wave function is also a functional of the initial state Ψ0.
The phase θ(t) cancels out for the expectation value of any operator

〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ψ([ρ,Ψ0]; t) | e−iθ(t) Ô eiθ(t) |Ψ([ρ,Ψ0]; t)〉 = O([ρ,Ψ0]; t). (1.95)
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1.3.3 Time-Dependent Kohn-Sham system

Van Leeuwen theorem

Let us consider an arbitrary time-dependent system with a density ρ(r, t), some two-particle
interaction ω(|r−r′|) and an external potential vext(r, t). Suppose that at t = 0 the system
is in a state Ψ0. The van Leeuwen theorem [72] stipulates that there exists a different
many-body system with another two-particle interaction ω′(|r− r′|) and a unique external
potential v′ext(r, t) (up to a function c(t)) which reproduces exactly the time-dependent
density of the first system ρ(r, t). The initial state of the second system Ψ′0 must be chosen

in the way to reproduce the density ρ(r, t = 0) and its time derivative
∂ρ(r, t)
∂t

∣∣∣
t=0

at the

initial time.
This theorem is very important in TDDFT. At first, choosing the two-particle inter-

action of the second system exactly the same as in the first system, one can identify the
Runge-Gross theorem, which is just a special case of the van Leeuwen theorem. Second,
selecting the second system as a system of non-interacting particles, namely ω′(|r−r′|) = 0,
one obtains the Kohn-Sham system in the time-dependent case. This theorem ensures the
existence and the uniqueness (up to c(t)) of the external potential of the non-interacting
system vs(r, t). Therefore, we can apply the Kohn-Sham procedure for the time-dependent
case.

Time-Dependent Kohn-Sham equations

Now, when we are sure about the existence of the time-dependent external potential of the
Kohn-Sham system, we define a fictitious system of non-interacting electrons that satisfy
the single-particle time-dependent Kohn-Sham (TDKS) equations

i
∂ϕi(r, t)

∂t
= ĥs

(
[ρ,Ψ0]; r, t

)
ϕi(r, t) =

[
T̂ + vs([ρ,Ψ0]; r, t)

]
ϕi(r, t), (1.96)

where ĥs
(
[ρ,Ψ0]; r, t

)
is the time-dependent single-particle Kohn-Sham Hamiltonian and

vs([ρ,Ψ0]; r, t) is the time-dependent Kohn-Sham potential

vs([ρ,Ψ0]; r, t) = vext(r, t) +
∫
dr′

ρ(r′, t)
|r− r′|

+ vxc([ρ,Ψ0]; r, t). (1.97)

The definition and the separation of the time-dependent functionals is similar to the ground-
state DFT case (equations 1.32 - 1.40). The case of spin-unrestricted Kohn-Sham equations
in TDDFT can be obtained in a similar way as it was done in DFT (see section 1.1.4).

The one-particle density can be then found from the time-dependent Kohn-Sham or-
bitals

ρ(r, t) =
N∑
i=1
|ϕi(r, t)|2. (1.98)
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Having the Kohn-Sham orbitals and the one-electron density at time t, one can calculate
the total electronic energy (from equations 1.9 and 1.58)

E(t) =
N∑
i=1

∫
drϕ∗i (r, t)

(
−1

2∇
2 + V̂ext

)
ϕi(r, t)

+ 1
2

∫∫ ρ(r1, t)ρ(r2, t)
|r1 − r2|

dr1dr2 + Exc([ρ,Ψ0]).
(1.99)

Constant occupation in time

The Kohn-Sham orbitals have the initial conditions

ϕi(r, t = 0) = ϕ
(0)
i (r). (1.100)

Hence, it is seen that only initially occupied states are involved in the time propagation
(in the TDKS equation 1.96). Therefore, we can restrict the index i in equation 1.96 to
run only over the occupied Kohn-Sham states. We define Nst as a number of the highest
occupied state. The system of equations 1.96 is coupled in the sense that the Kohn-
Sham potential vs([ρ,Ψ0]; r, t) is a functional of the time-dependent density ρ(r, t) (and,
depending on the exchange-correlation functional, possibly, of the density gradient∇ρ(r, t),
Kohn-Sham orbitals ϕi(r, t), etc.). However, for a propagation from t to t + dt each state
evolves separately. This fact not only allows an efficient parallelization over the states,
but also indicates a very important concept: in TDDFT one evolves the states while the
occupations of the states remain constant.

To verify this, one can decompose the time-dependent wave function ϕj(r, t) in the

basis of initial states ϕ
(0)
i (r)

ϕj(r, t) =
∞∑
i=1

Qij(t)ϕ(0)
i (r). (1.101)

Because of the time-dependent potential vs([ρ,Ψ0]; t), Qij(t) elements for i > Nst are
different from zero. In such a way the time-dependent orbitals acquire admixtures of
initially unoccupied orbitals.

This fact also emphasizes the importance of the initial state in the TDDFT calculations.
One of the possible and the most standard TDDFT calculation procedures is to begin with
a system in its ground-state, calculated in DFT and then add an external time-dependent
perturbation.

Relation to the Ground State DFT

Even though the idea to represent the many-body system as a single-particle system in
some external potential is the same in both DFT and TDDFT, these two theories have a
number of differences. Let us clearly indicate them.
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• In DFT the principal quantity is the ground-state density ρ0(r), whereas in TDDFT
this principal quantity is the time-dependent density ρ(r, t) which gives access to
excited states of atomic systems.

• In the time-dependent Kohn-Sham equations 1.96 one performs a propagation of the
Kohn-Sham orbitals and not the self-consistent loop.

• In TDDFT the exchange-correlation functional is non-local in space (as in DFT), but
also non-local in time. This means that the states of a system at t < t′ do influence
the system at t′ (because of the causality principle, we do not take into account
t > t′).

• In addition to the exchange-correlation functional nonlocalities, TDDFT is an initial
value problem in contrast to DFT.

• In TDDFT the variational principle does not apply.

• In DFT the one-electron density ρ(r) determines the external potential vext([ρ]; r) up
to a constant, in TDDFT ρ(r, t) determines vext([ρ]; r, t) up to a pure time-dependent
function.

Adiabatic exchange-correlation functionals

As well as DFT, the TDDFT theory is an exact theory provided that the exchange-
correlation potential is exact. Even if in the general case the exchange-correlation functional
should be non-local in time, the development of practical expressions for time-dependent
exchange-correlation functionals is an open question [73],[74]. On the positive side, it was
shown [75] that the memory dependence of the exchange-correlation functional becomes
crucial for small systems (a few atoms) and it seems that the memory dependence is less
important for systems with larger Hilbert space.

Therefore, the adiabatic approximation is currently used in TDDFT calculations. In
this approximation, one assumes the exchange-correlation functional is time-dependent
only through the time-dependent density ρ(t), in such way one does not have the memory
effect in adiabatic vAxc. Within this approximation, we can use any exchange-correlation
functional from the ground-state DFT, plugging in the time-dependent density ρ(r, t)

vAxc([ρ,Ψ0]; r, t) = vDFTxc ([ρ(t)]; r), (1.102)

where vDFTx is the static exchange-correlation functional approximation. The advantage of
such an approach is the possibility to use the extensive variety of the ground-state DFT
exchange-correlation functionals in TDDFT calculations.
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1.4 Real-time TDDFT (RT-TDDFT)

For the present moment, many TDDFT applications are performed within the linear re-
sponse in the frequency domain [29]. However, in this work, we are interested in the
Real-Time (RT) approach. In this approach, we propagate the Kohn-Sham occupied or-
bitals (using the TDKS equation 1.86) in real time. The time dependence of the problem
comes from the time dependence of the Hamiltonian. The Hamiltonian, in its turn, is
time-dependent for two reasons: because of a time-dependent perturbation V̂pert and, once
the perturbation was applied, through the time-dependent charge density ρ(r, t).

1.4.1 Propagator technique

The most common and cost-effective algorithm to solve the time-dependent Schrödinger
equation is the so-called propagator technique. It can be mentioned that we work in the
Schrödinger picture. A propagator operator Û(t, t0), which propagates the wave function
from t0 to t is defined as

ϕ(t) = Û(t, t0)ϕ(t0). (1.103)

Inserting the wave function in this form into the time-dependent Schrödinger equation 1.86,
one obtains the differential equation for the propagator

i
dÛ(t, t0)

dt
= Ĥ(t)Û(t, t0) (1.104)

with the initial condition

Û(t0, t0) = Î , (1.105)

where Î is the identity operator. The equation 1.104 can be formally written as an integral
equation (using the initial condition)

Û(t, t0) = Î − i
∫ t

t0
dτĤ(τ)Û(τ, t0). (1.106)

One can solve this equation iteratively: we suppose that at 0th order approximation the
propagation operator is just equal to the identity

Û (0)(t, t0) = Î . (1.107)

Then, we can find the approximation up to the 1st order by inserting Û (0)(t, t0) in equation
1.106

Û (1)(t, t0) = Î − i
∫ t

t0
dt1Ĥ(t1)Û (0)(t1, t0) = Î − i

∫ t

t0
dt1Ĥ(t1) (1.108)
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Similarly, one finds the propagator expression up to the 2nd order correction as

Û (2)(t, t0) = Î−i
∫ t

t0
dt1Ĥ(t1)Û (1)(t1, t0) = Î−i

∫ t

t0
dt1Ĥ(t1)+(−i)2

∫ t

t0
dt1

∫ t1

t0
dt2Ĥ(t1)Ĥ(t2)

(1.109)
The full expression of the propagator Û(t0, t) is then obtained as Û (n)(t, t0), n → ∞.

This construction is known as the so-called Dyson’s series

Û(t, t0) = Î +
∞∑
n=1

(−i)n
∫ t

t0
dt1

∫ t1

t0
dt2 . . .

∫ tn−1

t0
dtnĤ(t1) . . . Ĥ(tn). (1.110)

In equation 1.110 we have the summation of n-folded integrals, where the limits of
the integral over tn depend on tn−1. In order to avoid this dependence and to bring the
expression into a form of a normal Taylor series, one can use the time-ordering operator T̂
which orders the latest operator most left

T̂
[
Â(t1)B̂(t2)

]
=

Â(t1)B̂(t2), if t1 > t2

B̂(t2)Â(t1), if t2 > t1,
(1.111)

where Â and B̂ are arbitrary operators. Using the time-ordering operator expression,
equation 1.110 becomes

Û(t, t0) = Î +
∞∑
n=1

(−i)n
n!

∫ t

t0
dt1

∫ t

t0
dt2 . . .

∫ t

t0
dtnT̂

[
Ĥ(t1) . . . Ĥ(tn)

]
. (1.112)

This expression is the power series of the exponential

Û(t, t0) = T̂ exp
{
−i
∫ t

t0
dτĤ(τ)

}
. (1.113)

Figure 1.7 : Diagrammatic representation of the Dyson’s series (equation 1.110).
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These derivations are similar to those performed for the full interacting Green’s function
derivation in the many-body theory [76]. Therefore we can illustrate the Dyson series 1.112
using the Feynman diagrams in the same manner as it is done for the Green’s function
(Fig. 1.7).

One should mention that the derivations 1.112 and 1.113 do not simplify the calculation
of the propagator Û(t, t0), but just bring its expression into a compact form. The numerical
approximations of the propagator operator will be discussed in section 2.2.

If the Hamiltonian commutes with itself at different times, the time-ordering opera-
tor in unnecessary and this expression simplifies to Û(t, t0) = exp

{
−i
∫ t
t0
dτĤ(τ)

}
and,

furthermore, if the Hamiltonian is time-independent, the integration can be performed
Û(t, t0) = exp

{
−i(t− t0)Ĥ

}
. However, in a general case of RT-TDDFT simulation, none

of these simplifications applies and one should consider the complete formula 1.113.
The propagator operator has three fundamental properties which can be derived from

its definition 1.103. These properties should be satisfied by any decent propagator approx-
imation.

• Unitarity. This property derives from the fact that the orthonormalization of the
states ϕi(t) must be constant

〈ϕi(t2)|ϕj(t2)〉 = 〈ϕi(t1)|ϕj(t1)〉 = δij. (1.114)

From equation 1.114 we can obtain the unitarity property of the propagator in the
following way: One obtains the state at t2 from the state at t1 using the propagator
operator

|ϕi(t2)〉 = Û(t2, t1) |ϕi(t1)〉, 〈ϕi(t2)| = 〈ϕi(t1)| ÛH(t2, t1). (1.115)

Substituting these expressions into equation 1.114, one obtains

〈ϕi(t1)|ÛH(t2, t1)Û(t2, t1)|ϕi(t1)〉 = 〈ϕi(t1)|ϕi(t1)〉. (1.116)

This equation is satisfied if the Û operator is unitary

ÛH(t2, t1)Û(t2, t1) = Î . (1.117)

• Time-reversal symmetry. If one propagates a state from t1 to t2 and then, in
reverse order, from t2 to t1, one should obtain the same state. From the t1 → t2
propagation, one can express (in the absence of the external magnetic field) the
ϕi(t1) state

ϕi(t2) = Û(t2, t1)ϕi(t1), ϕi(t1) = Û−1(t2, t1)ϕi(t2). (1.118)

On the other hand, the ϕi(t1) state can be obtained from ϕi(t2) as

ϕi(t1) = Û(t1, t2)ϕi(t2). (1.119)
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Equating the expressions of ϕi(t1) from 1.118 and 1.119, one gets the time-reversal
property of the propagator operator

Û(t1, t2) = Û−1(t2, t1). (1.120)

• Composition property. For any three instants t1, t2 and t3, one can write

Û(t1, t2)Û(t2, t3) = T̂
[
exp

{
−i
∫ t2

t1
dτĤ(τ)

}]
T̂
[
exp

{
−i
∫ t3

t2
dτ ′Ĥ(τ ′)

}]
= T̂

[
exp

{
−i
∫ t2

t1
dτĤ(τ)− i

∫ t3

t2
dτ ′Ĥ(τ ′)

}]
= T̂

[
exp

{
−i
∫ t3

t1
dτĤ(τ)

}]
.

(1.121)

And, finally, for this property we have

Û(t1, t3) = Û(t1, t2)Û(t2, t3). (1.122)

It should be noted that it is possible to write the product of exponentials of operators
as one exponential of a sum of these operators only due to the presence of the time-
ordering operator, otherwise, the commutator of operators would have appeared.

The last property allows one to break the overall simulation time interval [t0, tsim] into
small intervals

Û(t0, t) =
t<tsim∏
i=0

Û(ti + ∆ti, ti), (1.123)

where tsim is the simulation time. There are two reasons for doing so: First, one is not
usually interested in knowing only the initial and the final states, but rather the dynamics
of the system, which implies a time step discretization. Second, such a scheme improves
the quality of a propagator operator approximation, since an approximation error depends
on the time step ∆t: the smaller ∆t, the better the propagation accuracy. So, as a final
result, the propagation of the wave function from t to t+ ∆t can be written as

ϕi(t+ ∆t) = T̂ exp
{
−i
∫ t+∆t

t
dτĤ(τ)

}
ϕi(t). (1.124)

RT-TDDFT typical simulation

To summarize, we present an outline of a typical RT-TDDFT simulation scenario, which
was used in this work.

• Set up an atomic system: provide the set of atomic coordinates {Ri}, number of
electrons N in the system.
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• Perform the ground-state DFT calculation: obtain the ground-state density ρ0(r)
and energy E0 as well as the set of the Kohn-Sham orbitals ϕ

(0)
i (r).

• Add a time-dependent perturbation V̂pert(r, ti).

• Evaluate the Kohn-Sham Hamiltonian at ti, ĥs
(
[ρ(ti)]; r, ti

)
using the adiabatic ap-

proximation for the Kohn-Sham potential vxc([ρ(ti)]; r).

• Perform the time-propagation from ti to ti + ∆t using the propagator operator
Û(ti, ti + ∆t).

• Evaluate the time-dependent quantities of interest at time t = ti + ∆t (the total
energy Etot(t), the dipole moment d(t), etc.).

• Continue the propagation until t = tsim.

1.5 Stopping power from RT-TDDFT

In this section, we will discuss how to calculate the stopping power using the RT-TDDFT
approach. First, we will briefly consider the most general case of the TDDFT-Ehrenfest
dynamics. Then we will apply some approximations to simplify it and, therefore, to reduce
the computational cost. Finally, we will discuss different techniques to reproduce the
experimental results.

1.5.1 Single-trajectory stopping power

A straightforward approach to calculate the stopping power from atomistic simulations
is to perform a non-equilibrium ab initio dynamics evolving the electrons as well as the
nuclei positions of a system. One of the possibilities to do so is the coupled electron-nuclei
TDDFT-Ehrenfest dynamics [70]. In this approach, the electron dynamics is covered by
the time-dependent Khon-Sham equations (1.96) and the nuclear motion is treated in a
classical fashion and is given by the following equation

Ma
∂2

∂t2
Ra(t) = −

∑
i

〈ϕi(t)|∇RaĤ|ϕi(t)〉 − ∇Ra

[ M∑
b 6=a

ZaZb
|Ra −Rb|

]
, (1.125)

where the expression of the electronic Hamiltonian H is presented in equation 1.6. The first
term on the right-hand side represents the average time-dependent forces on a nucleus a
from the electrons calculated using the Kohn-Sham time-dependent orbitals and the second
term is the force exerted by all nuclei (except the nucleus a) on the nucleus a.

Within the TDDFT-Ehrenfest framework, the simulation procedure is, first, to perform
the ground state DFT calculation, then assign an initial velocity to the projectile and after
that perform a real-time simulation updating the projectile and atomic positions at each
time step. One can mention that in this case the projectile is treated in the same manner
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like all the other atoms of the system, therefore there is no need to introduce an external
perturbation in the Hamiltonian: V̂pert(r, t) = 0.

The total energy of the system Etot will remain constant during the simulation. It
is convenient to divide the total energy on the following contributions: 1) the electronic
energy E, including the electrons of the projectile (its final expression within the TDDFT
formalism is presented in equation 1.99); 2) the kinetic energy of the target nuclei Ekin

nucl

and 3) the kinetic energy of the projectile nucleus Ekin
proj

Etotal = E + Ekin
nucl + Ekin

proj. (1.126)

Here we neglect the nucleus-nucleus interaction energy, which is usually done for this kind
of problems [77].

Let us call l the coordinate along the projectile path. Then the total stopping power
can be found directly from the energy transfer from the projectile to the target

Stotal = −
dEkin

proj

dl
= dE

dl
+ dEkin

nucl

dl
, Etotal = constant. (1.127)

This is the expression of the instantaneous stopping power: it depends on the projectile
path coordinate l and on a given projectile trajectory. This is not a quantity that one
can measure experimentally. Below in this section, we will discuss how to deduce an
experimentally measurable value from the instantaneous stopping power.

If the nuclear motion can be decoupled from the electronic one, the projectile energy
dissipation can be split into two channels: projectile-nuclei and projectile-electrons inter-
actions. Then, the first term on the right-hand side of equation 1.127 can be defined as
the instantaneous electronic stopping power

Se = dE

dl
(1.128)

and the second term as the instantaneous nuclear stopping power

Sn = dEkin
nucl

dl
. (1.129)

Such separation is not valid when the nuclear motion is fast enough with respect to the
projectile so the exchange between the electronic energy E and the nuclear kinetic energy
Ekin
nucl takes place at time-scales comparable with those of the projectile passage. An exam-

ple of such situations is the ionic irradiation of water at low projectile velocities [78]. In this
work, we mostly consider the irradiation of light energetic projectiles (proton, antiproton,
alpha-particle) in crystalline materials. Therefore the separation Stotal = Se + Sn is valid.
Such separation is sometimes called the adiabatic approximation [79, 80] (not to confuse
with the adiabatic approximation of the exchange-correlation functional).
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The stopping power for a single trajectory Straj (total, nuclear or electronic) can be then
found as an average over the projectile path of the instantaneous transfer rate [35, 81–87]

Strajtotal = −
〈dEkin

proj

dl

〉
= − 1

Lpath

∫ Lpath

0
dl
(dEkin

proj

dl

)
, (1.130)

where Lpath is the length of the projectile path over which one calculates the average. The
expressions for the nuclear and electronic stopping power averaged for a single trajectory
can be obtained in the same manner.

On the other hand, the stopping power can be also found as a time average of the
non-conservative drag force acting on the projectile [88–90]

Strajtotal =
〈

F(t) ·
vproj(t)
|vproj(t)|

〉
, (1.131)

where vproj(t) is the time-dependent velocity of the projectile. These two methods are
completely equivalent [16].

The TDDFT-Ehrenfest dynamics provides the most precise level of ab initio description
of the ion-matter interaction. However, such a description has a large computational cost
and one may want to apply several simplifications to this dynamics.

In this work, we are interested in the electronic stopping power, which is the prevailing
contribution in the range of the projectile velocities, typically, vproj > 0.1 a.u. (Ekin

proj >
250 eV). Therefore, first, assuming that the nuclear and electronic degrees of freedom can
be decoupled, we then can fix the target nuclei positions. Doing so we restrict the energy
deposition from the projectile to the material to be associated only with the electronic
stopping power [91]. One cannot claim though that the instantaneous nuclear stopping
power is zero in the case of the frozen target nuclei: the projectile does still interact with
nuclei and its kinetic energy changes due to these interactions. However, in this work,
we are interested in the stopping power calculations in periodic systems. In this case,
the nuclear contribution averaged over the path length Lpath vanishes due to the crystal
periodicity if Lpath is large enough. Hence, from now, we will consider only the average of
the stopping power over the path length, Straj. Then, the following equations are valid in
the case of the frozen lattice dynamics

Strajn =
〈
dEkin

nucl

dl

〉
= 0, Straje = −

〈dEkin
proj

dl

〉
=
〈
dE

dl

〉
. (1.132)

The second step of the simplification was proposed by Pruneda and coworkers [39].
One can fix the velocity of the projectile and thereby restrict the projectile to rectilinear
motion. This approach corresponds to the experimental measurement of the stopping
power as a function of the projectile velocity : for each projectile velocity, one needs to take
a target thin enough to ensure that the velocity of the projectile remains (almost) constant
during its propagation in the sample. That is why the stopping power measurements are
complicated to perform for small projectile velocities: in this case, one needs to produce
and to manipulate thin film samples and to precisely measure their thickness [92].
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Figure 1.8 : Schematic illustration of different types of dynamics for the ab initio stopping
power calculations. (a) TDDFT-Ehrenfest simulation: positions of the target nuclei (grey spheres)
and of the projectile (red sphere) are updated at each time step, the projectile can undergo deflec-
tions (the projectile path is presented as the red line). Blue arrows represent small displacements
of the nuclei. The stopping power can be calculated from the decay of the kinetic energy of the
projectile. (b) The nuclei positions and the projectile velocity are fixed. The electronic stopping
power can be found from the growth of the total energy of the complete system.

We select z-axis as the axis along the projectile track. Then the position of the projectile
rproj(t) is known for any time t

rproj(t) = (px; py; z0 + vt), (1.133)

where v is the absolute value of the projectile velocity, z0 is the initial projectile position
along z-axis, px and py are the components of the impact parameter vector (p = (px; py)),
which is the vector that designates the projectile position in the plane perpendicular to
the projectile trajectory (XY plane). The impact vector p remains constant during the
projectile movement in this dynamics.

In this case, the atomic system is not closed and therefore the total energy is not
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conserved. The electronic stopping power can be found from the increase of the total
energy of the system (averaged over the path length)

Straje =
〈
dE

dz

〉
=
〈
dEtotal
dz

〉
, Ekin

proj = constant, Ekin
nucl = 0. (1.134)

The conserved quantity in this case is the difference between the total energy and the work
done by the “velocity constrain” force Fvc [16]

Etotal(t)−
∫

Fvc · dl = constant. (1.135)

This technique simplifies a lot the dynamics because one does not need to evaluate the
forces neither on target nuclei nor on the projectile. Therefore, this dynamics can be seen
as an RT-TDDFT simulation with an external perturbation in the form of the projectile
moving with a constant velocity. The comparison between the TDDFT-Ehrenfest and the
fixed projectile trajectory dynamics is illustrated in Fig. 1.8.

This dynamics is valid when the projectile deflection is small and the velocity change
during the simulation is negligible. We will discuss in more detail these assumptions con-
sidering particular projectile/target systems (section 3.5).

1.5.2 Random stopping power

In the previous section we have discussed how to calculate the stopping power for a single
trajectory Straj(v): one needs to specify the initial projectile position and velocity, then per-
form the real-time dynamics (any among the two mentioned, Fig. 1.8) and then deduce the
stopping power as the time average of the instantaneous stopping power. In order to com-
pare the ab initio simulations with the experimental results, one should take into account
the following considerations: 1) most of the experiments are performed with polycrystalline
materials (or intentionally tilted with respect to the projectile path monocrystals) [93]. 2)
the beam of projectiles impinges the target with many different impact points (see Fig. 1.9
(a)). Therefore, the average over different trajectories Straj(v) should be calculated. The
averaged quantity is then called the random stopping power 〈S(v)〉. There exist different
methods to calculate this average from the atomistic simulations.

1. Random trajectory. This method implies a choice of one “quasi”-random fixed
trajectory of the projectile [35]. The trajectory is not completely random because the
choice is restricted to trajectories which are incommensurate with the crystal symmetries.
Once the trajectory is chosen, one performs the fixed-trajectory (Fig. 1.8 (b)) simulation
of the projectile passage for a given velocity v.

The random electronic stopping power, in this method, 〈Se〉rand.traj. is found as the
stopping power of the random trajectory under the conditions that the random trajectory
is incommensurate with the crystal symmetries and the trajectory is long enough

〈Se(v)〉rand. traj. = Straje (v). (1.136)



1.5. STOPPING POWER FROM RT-TDDFT 53

The simulation runs until the random electronic stopping power 〈Se(v)〉rand. traj. is con-
verged. Because of the random trajectory, the energy transfer rate is not periodic, therefore
long trajectories (around 50 Å) are required. Since nowadays the RT-TDDFT simulations
of atomic systems of such size are unrealizable, one is forced to perform these calculations
in a simulation box of smaller size. Then, the projectile will re-enter the simulation box
several times.

The advantage of this method is its similarity with the real experimental conditions.
The disadvantage is the fact that since the projectile re-enters the periodic image of the
simulation cell, it interacts with already perturbed electronic density (by the same projec-
tile). Even if this effect was a posteriori shown to be negligible in the case of the proton
projectile in aluminum target [35], the validity of such an approach has to be proven for
different types of projectiles and materials.

2. Ensemble average. Another approach consists in selecting multiple short trajec-
tories instead of one long. First, one selects a crystalline axis, along which the projectile
will pass (we choose the direction of the passage as z-axis). Then, the impact parameter
vector p = (px; py; 0) and the projectile velocity v must be specified. Since the propaga-
tion of the projectile along a crystalline symmetry axis has a periodic nature due to the
crystal symmetry, one obtains a convergent stopping for a given trajectory Straje (v,p) for
the trajectory lengths much lower than ones used in the previous method (around 10 Å).
However, this time we have many short trajectories.

One obtains the random electronic stopping power corresponding to a given selected
crystal orientation as an average over the impact parameter

〈Se(v)〉ens = 1
A

∫
dpStraje (v,p), (1.137)

where A designates a surface in the plane perpendicular to the projectile track (XY plane)
in which the impact parameter p is averaged out. Due to crystal symmetries, this surface
can be restricted to an elementary surface which is not large (typically, it is in the order
of 0.1 a2

lat, where alat is the lattice constant). Then, the average stopping power calculated
for impact parameters within the elementary surface will completely represent the average
for a given crystal orientation.

In linear-response calculations, one applies a similar approach where the impact param-
eter is explicitly averaged out in the equations for the random stopping power calculations
[30, 33, 34]. In RT-TDDFT simulations this method was applied to the stopping power
studies of several projectiles (H, He, Li, Ne, Na) in graphitic targets (which is the case of
2D materials) [86], of protons in Ge at low velocities [94], of protons and alpha-particles in
SiC [87].

The advantage of this method is the systematic sampling of the impact parameter
p instead of the random behavior of sampling as in the previous method. In addition,
since different short trajectories are independent, this allows one to run these calculations
in parallel, thereby performing a dummy parallelization. The disadvantage consists in
the fact that one should perform this procedure, in principle, for many different crystal
orientations. We will consider this question in more detail in section 3.1.3.
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Figure 1.9 : (a) Simplified pictorial representation of the experimental conditions of the
random stopping power measurement: A polycrystalline material is exposed to a parallel beam of
fast projectiles, the difference between the initial (Eproj i) and the final (Eproj f ) kinetic energies of
projectiles is measured. (b), (c), (d) Schematic illustration of the ab initio methods of the random
electronic stopping power calculations. (b) Random trajectory technique: Since the trajectory
must be long enough the projectile re-enters the simulation box several times. Projectile’s path is
depicted as a red line. (c) Ensemble average method: One performs the calculations of multiple
trajectories parallel to a crystalline axis. The elementary sampled region is depicted as a red
prism (triangle in XY plane). (d) Centroid path approximation: One selects only one short
trajectory along a crystalline axis. The impact parameter of this trajectory is selected as the
geometric center of the elementary surface (the center of the triangle in XY plane).

3. Centroid path. This method is a simplification of the previous one. The idea is to
select among the ensemble of trajectories, a single trajectory that would represent the real
average value (equation 1.137). This trajectory is called the centroid path. The impact
parameter corresponding to the centroid path trajectory, pcentroid, is usually selected as
the geometric center (hence the name of the method) of the elementary surface. It has
been found that this approximation is satisfactory (up to 10%) for SiC [87] and graphitic
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[86] targets. This method, of course, saves a lot of computational time, however, for new
atomic systems, one should verify the validity of this approach.

All the three methods are schematically presented in Fig. 1.9.

1.5.3 Channeling stopping power

Another and much less common type of the stopping experiment is the channeling stopping
power. By a definition, the channeling occurs when the projectiles travel along with the
crystalline directions. This implies the conditions which are difficult to satisfy experimen-
tally: the target must be correctly oriented with respect to the beam of projectiles and the
target must not be polycrystalline. Such type of experiments can be performed with thin
films [95, 96] or, with monocrystals [97].

In channeling conditions (also sometimes called the hyperchanneling [16, 81]), the pro-
jectiles that enter the crystal with an angle smaller than the critical angle continue the
movement along the axis. The projectiles with the trajectory angles larger than the criti-
cal one quit the channel and do not reach the detector. Projectiles that undergo head-on
collisions also quit the trajectory along the axis.

Because of the elastic interactions with the nuclei of the target, after some transient
regime, the projectiles follow the channeling trajectories: the trajectories that are far from
the target nuclei [98, 99].

One observes this behavior for a wide range of velocities (up to relativistic ones), though
the critical angle decreases with the increase of the projectile velocity. One can explain this
behavior in the following manner: when the projectile moves along a high-symmetry chan-
nel, it undergoes the deflections which are small at every time but systematic. Therefore,
finally, the projectile will move with impact parameter pcentroid at which the interaction
with the nuclei is the lowest. The penetration depth under channeling conditions is larger
than in polycrystalline materials.

In the atomistic simulations of the channeling stopping power, one is not interested in
the transient regime but rather by the passage of the projectiles in the bulk. Moreover, the
transient regime occurs during, at least, hundreds of nm and therefore it is not possible to
simulate this process in a straightforward manner on the ab initio level.

Finally, in order to simulate the channeling, one needs to choose one of the high sym-
metry crystalline directions and select the impact parameter pcentroid corresponding to the
most distant projectile position with respect to the nuclei in XY plane (see Fig. 1.10).
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Figure 1.10 : (a) Idealized representation of the channeling experiment. A collimated beam
of projectiles enters along one of the high-symmetry crystalline axes. Due to collisions with
the nuclei, the projectiles either continue their propagation in the center of the channel or quit
the channel because of a head-on collision (depicted as blue lines). In order to demonstrate
different behavior of the projectiles’ motion, the beam of projectiles is presented as dense. In
real experimental conditions, the distance between projectiles is large enough to neglect the
interaction between them. Moreover, the projectiles do not enter the crystal at the same time as
it is presented in the figure. For the sake of simplicity, we represent here only those projectiles
that have initially ideally parallel trajectories to the crystalline axis. (b) Representation of the ab
initio simulation of the irradiation under the channeling conditions. One simulates the projectile
propagation after the transient regime. In the simulation, one uses only one trajectory parallel
to the crystalline axis. The impact parameter of the trajectory is chosen in the way to have the
maximal average distance between the projectile and the nuclei of the target. In the presented
case, this impact parameter corresponds to the corner of the elementary sampling surface.



CHAPTER 2

RT-TDDFT implementation in
Gaussian basis

In this chapter, we describe our implementation of the RT-TDDFT approach. This imple-
mentation is based on MOLGW code, therefore, first we will describe the main features
of the DFT part of this code, then we will describe the implementation itself and finally,
the validation of the implementation.

2.1 The backbone of the implementation

2.1.1 Implementation workflow

MOLGW is an ab initio code dedicated to the many-body perturbation theory (MBPT)
calculations. In particular, it performs the calculations of the many-body self-energy within
the GW approximation and of the solution of the Bethe-Salpeter equation (BSE) [42].
However, these methods are out of the scope of this work and the choice of MOLGW
as the development platform is rather due to the basic generalized Kohn-Sham (gKS)
framework which is also contained in the code. In general, the organization of the code is
the following: 1) produce the wave functions and eigenvalues from the self-consistent gKS
calculation; 2) use these quantities for the GW and the BSE calculations. In the present
work, in a similar fashion, we obtain the ground-state wave function of a system using the
self-consistent loop, but then we perform the propagation of the wave function in time.
Hence, the ground-state DFT part of MOLGW code is used as a starting point for the
time-dependent propagation (Fig. 2.1a).

However, the MOLGW subroutines intervene also all along the propagation (see Fig.
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Figure 2.1 : (a) Workflow of MOLGW code: the RT-TDDFT part can be considered as a
post-processing branch along with other possible post-processings (GW and BSE) ; (b) Schematic
representation of the code organization. The grey area in the left-hand side represents the non-
modified generalized Kohn-Sham part (gKS), the blue area represents slightly modified MOLGW
subroutines because of the complex nature of the time-dependent wave function and the orange
area depicts the RT-TDDFT part of the code developed in this work.

2.1b). As was discussed in the previous chapter, for the RT-TDDFT propagation one
needs to calculate the propagator operator on the fly, which depends on the Hamiltonian.
The Hamiltonian, in its turn, is a functional of the electronic density ρ(r), the electronic
density gradient ∇ρ(r) and the density matrix P . The exact dependence is determined
by the choice of the exchange-correlation functional. The procedure of the Hamiltonian
calculation from ρ(r), ∇ρ(r) and P for RT-TDDFT is similar to the ground-state DFT
part. The only difference is that the wave function becomes complex for the RT-TDDFT.
This leads to some modifications that will be discussed later in this chapter. Apart from
that, numerical schemes and parallelization of the code are exactly the same.

2.1.2 Gaussian basis set

Expression

One of the main features which determines the niche of MOLGW code in ab initio codes
classification is its implementation in the localized Gaussian basis set. The term localized
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implies that one-electron wave functions are expanded as linear combinations of atom-
centered orbitals φα:

ϕσi (r) =
NAO∑
α=1

Cσ
αiφα(r), (2.1)

where σ is the spin channel. The summation index α runs from 1 to the number of basis
functions (or, in other words, the number of atomic orbitals, NAO) in a set. Hereafter we
reserve Greek indexes for the basis functions and Latin indexes for the electronic states.

The term Gaussian means that the radial components of the atom-centered orbitals
are chosen to be linear combinations of Gaussian orbitals:

φα(r) = Y m
l (r̂)rl

∑
b

cbe
−αb r2

, (2.2)

where Y m
l (r̂) are the real spherical harmonics, cb are the decomposition coefficients which

are fixed for a given basis set. Every function φα(r) is centered around one of the atoms
of a system.

In equation (2.2) the Gaussian exponents αb determine the spatial extension of the basis
functions. Basis functions with smaller αb parameter are more diffused in space than those
with larger αb parameter. In such a way one can describe with a tunable accuracy both
core and valence electrons. For example, let us consider one arbitrary atom and suppose
that in a given basis set for this atom one has the lowest Gaussian exponent αb = αbmin
and the largest one αb = αbmax, we also assume that the basis contains enough exponents
between the two limits. Then the electronic wave function will be correctly described within
the interval [ 1/√αbmax, 1/

√
αbmin ]. Usually, Gaussian basis functions contain exponents

in the range of 10−2 ÷ 105 Å−2 which leads to a remarkable spatial range of 10−3 ÷ 10 Å.
Furthermore, for a specific application one could expand this range using an appropriate
basis.

Benefits and drawbacks

The choice of Gaussian basis has several appealing advantages, in particular, for the elec-
tronic stopping power calculation.

⊕ The Gaussian basis set allows one to describe at the same level both the valence and
the core electrons. This feature is very important since the ion irradiation is a high
energy process that excites all the electrons of the target.

⊕ The calculation time is significantly lower (at least for the stopping power calcu-
lations) in comparison to, for example, plane-wave or real-space grid codes. This
is possible because of the fact that Gaussian basis functions are located around
atomic positions, somehow anticipating the electronic density distribution, there-
fore the number of Gaussian basis functions for a given system is normally ten to
hundred times lower than in the case of plane-wave or real-space codes.
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⊕ The Gaussian basis set enables the use of the hybrid functionals that include a part
of exact-exchange, at a moderate cost.

On the minus side of the approach, one should mention the following points:

	 It has been reported that Gaussian basis may have difficulties to capture high-energy
excitations for atomic systems [100, 101].

	 In some cases, the convergence of a physical quantity versus a basis set can be slow
and not as systematic as in plane-wave or real-space codes.

Correlation-consistent basis sets

At the present time, there are a lot of available Gaussian basis sets. However, correlation-
consistent (cc) basis set families developed by Dunning and coworkers [102, 103] are the
most systematic and, will be used in this work. Therefore, we would like to focus on these
basis sets. The cc-basis sets provide smooth and monotonic convergence for many physical
quantities such as correlation energy [104], Hartree-Fock energy [105], harmonic frequencies
[106], electric dipole moments [107].

The most standard cc family is the polarized valence (pV) set - cc-pVXZ. Here X stands
for the number of Gaussian orbitals used to represent a valence shell orbital: X=D (dou-

ble), T (triple), Q (quadruple), 5, 6; X=6 being usually the largest basis available
in these series. The number of basis functions (NAO) is a crucial parameter for the accuracy
of calculations as well as for the calculation time, therefore, let us consider in more detail
the construction of cc-pVXZ basis sets.

Let us consider an example of Al atom in the cc-pVDZ basis. Al electron configuration
is: 1s22s22p63s23p1. DZ means that for the valence shell one has 2 Gaussian orbitals per
atomic orbital. Then, for higher angular momenta one has a decreasing number of Gaussian
orbitals: for the d orbitals, one has 1 Gaussian orbital and 0 orbitals starting from f . For
core orbitals one has 1 Gaussian orbital per atomic orbital (by core orbitals we mean all
orbitals which are below the valence shell). The idea behind is that for a given atom
one can always select the parameters of Gaussian functions which will describe the core
orbitals with high precision even with a few basis functions, because they are unaffected
by the environment. Whereas for the valence and excited states one should have a more
flexible basis, hence, larger number of basis functions. When counting the basis functions
one should take into account that for a given orbital momentum l one has 2l + 1 atomic
orbitals. Finally, for Al in the cc-pVDZ basis one has 18 basis functions: 5 basis functions
for the core shells (1s×1, 2s×1, 2p×3), 8 basis functions for the valence shell (3s×2, 3p×6)
and 5 basis functions for the empty shells (3d× 5).

Fig. 2.2 shows the order of the basis functions completion for the bases from cc-pVDZ

to cc-pVQZ. It is seen that by switching from an X-1 to an X basis one increases the highest
angular momentum, but as well the number of basis functions with the orbital momenta
which were already included in the X-1 basis. As a consequence, the number of basis
functions grows not linearly but as a square of X.
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Figure 2.2 : Illustration of the polarized valence basis sets cc-pVXZ construction using an
example of Al atom in cc-pVDZ (green), cc-pVTZ (blue) and cc-pVQZ (red) basis sets. One square
represents basis functions for a given orbital momentum, numbers inside the squares indicate the
number of basis functions, which is nothing but 2l + 1, where l is the orbital momentum. For
the core shells, the number of Gaussians per atomic orbital is the same for all basis sets. On the
right side of the picture, the color legend and the total number of basis functions (NAO) for Al
atom are indicated.

The polarized valence sets can be augmented with diffuse functions (aug-cc-pVXZ),
which is frequently used for optical absorption spectra calculations and core functions (cc-
pCVXZ), which was used in this work for the electronic stopping power calculations. This
improvement of description of valence or core electrons leads to significant growth of the
number of basis functions. For example, for Al atom, the number of basis functions in the
cc-pV6Z basis set is 144 whereas in the cc-pCV6Z basis set it reaches 275.

Density matrix

For a single determinant wave function, the electronic charge density is given by

ρσ(r) =
occ∑
i=1

fiϕ
σ
i (r)ϕσ∗i (r), (2.3)

where fσi is the occupation number for an electronic level i and occ is the highest occupied
level number. By writing the electronic wave function ϕi(r) decomposition in the basis set
(equation 2.1), one gets

ρσ(r) =
occ∑
i=1

fσi
∑
α

Cσ
αiφα(r)

∑
β

Cσ
βi
∗φ∗β(r). (2.4)

It should be noted that even if the C matrix can be complex, the Gaussian basis functions
are always real in MOLGW (φ∗β(r) = φβ(r)). One can reorder the terms in the expression
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2.4 in the following way

ρσ(r) =
∑
αβ

[∑
i

fσi C
σ
αiC

σ∗
βi

]
φα(r)φβ(r). (2.5)

Then we define the expression in the square brackets as the density matrix

P σ
αβ =

∑
i

fσi C
σ
αiC

σ∗
βi , (2.6)

or, in a matrix form,
P σ = CσF σCσH , (2.7)

where F σ is a diagonal matrix of occupations fσi . The symbol (H) means the transpose(T )-
conjugate(∗) of a matrix. By a simple application of the transpose-conjugate operation to
the 2.7 equation, one can show that the density matrix is Hermitian

P σH =
(
CσF σCσH

)H
= CσHH (CσF σ)H = CσF σCσH = P σ. (2.8)

Finally, using the definition of the density matrix, one can express the electronic density
as

ρσ(r) =
∑
αβ

P σ
αβφα(r)φβ(r), (2.9)

and similarly, the density gradient

∇ρσ(r) =
∑
αβ

P σ
αβ∇r [φα(r)φβ(r)] . (2.10)

To summarize, having the coefficient matrix Cσ one can deduce the density matrix P σ, the
electronic density ρσ(r) and the electronic density gradient ∇ρσ(r).

2.1.3 Roothaan-Hall equations

For localized bases, the basis functions are normalized, but not orthogonal which leads
to modifications of usual stationary and time-dependent Schrödinger equations. Here we
derive basic equations which are necessary for the RT-TDDFT code implementation in the
localized basis. In these sections, we will omit the spin channel index σ since the equations
under discussion have exactly the same form for the spin up and spin down channels.

The overlap matrix is defined as

Sαβ = 〈φβ|φα〉 =
∫
drφα(r)φβ(r), (2.11)

where |φα〉 is the corresponding ket state to the basis function φα. The overlap matrix is
symmetric (Sαβ = Sβα).
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When S is not the unitary matrix, the completeness relation reads∑
αβ

|φα〉S−1
αβ 〈φβ| = Î . (2.12)

The expression of the Hamiltonian projected on the basis functions is given by

Hαβ =
∫∫

drdr′φα(r)H(r, r′)φβ(r′). (2.13)

The coefficients C allow one to describe a wave function ϕi(r) as a linear combination
of basis functions (equation 2.1). The construction of C matrix is such that the basis index
comes first and the electronic state index - second, this means that one column of the C
matrix corresponds to a state

C =

ϕ1 ϕ2 ϕ3 · · · ϕNAO


C11 C12 C13 · · · C1NAO
C21 C22 C23 · · · C2NAO

...
...

... · · · ...
CNAO1 CNAO2 CNAO3 · · · CNAONAO

. (2.14)

In order to find the ground state wave functions, one needs to solve the stationary
Schrödinger equation

Ĥϕi(r) = Eiϕi(r). (2.15)

In general terms, this equation has the same form for both Hartree-Fock and gKS.
Then, in order to write equation 2.15 in a matrix form, we can use the relation 2.1 to
express ϕi(r) in the basis set

Ĥ
∑
α

φα(r)Cαi = Ei
∑
α

φα(r)Cαi. (2.16)

Projecting this equation on a basis state 〈φβ| one recovers the Hamiltonian expression in

the basis set Hβα = 〈φβ|Ĥ|φα〉 on the left-hand side and the overlap matrix Sβα = 〈φβ|φα〉
on the right-hand side, i.e.,

∑
α

HβαCαi = Ei
∑
α

SβαCαi. (2.17)

Writing this equation in the matrix form we obtain the Roothaan-Hall equation

HC = SCE, (2.18)

where E is a diagonal matrix containing the orbital energies Ei

E =


E1

E2 0
0 . . .

ENAO

 . (2.19)
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It is important to mention that the wave functions obtained as solutions of the Roothaan-
Hall equation are orthonormal regardless of the basis representation or the Hamiltonian
approximation. The orthonormality condition reads

〈ϕj|ϕi〉 = δij. (2.20)

Using again the representation of ϕi(r) in the localized basis 2.1, one obtains the orthonor-
malization of the coefficients Cαi∑

αβ

〈φβ|C∗βjCαi|φα〉 =
∑
αβ

SβαC
∗
βjCαi = δij. (2.21)

Writing this equation in the matrix form and applying some transformations (multiplication
by C−1, S−1, etc.), one gets the set of orthonormalization equations

CHSC = I (2.22a)

SCCH = I (2.22b)

CCHS = I, (2.22c)

where I is the identity matrix.
Finally, multiplying equation 2.18 by the CH matrix from the left and using the or-

thonormalization relation 2.22a, one obtains the eigenenergies matrix

E = CHHC. (2.23)

In a similar way, multiplying equation 2.18 by CHS from the right and using equation
2.22c, one gets the expression for the Hamiltonian

H = SCECHS. (2.24)

2.1.4 Orthogonalization of the basis

Even though all the calculations (including the time-dependent part) can be performed
in the non-orthogonal basis, switching to an orthogonal basis set at least for a part of
calculations can be advantageous. There are essentially two reasons for doing so. First,
this would put the Roothaan-Hall equation into the form of the usual matrix eigenvalue
problem, which would allow one to use standard diagonalization packages. Second and
more important, the S matrix is often ill-conditioned, it means that the calculation of
the generalized eigenvalue problem can be unstable. To demonstrate this, let us multiply
equation 2.18 by the S−1 matrix from the left, then we get

S−1HC = CE. (2.25)

It is seen now that in the non-orthogonal basis, one needs to diagonalize not H but S−1H
matrix. When some basis functions have a large overlap (diffused functions, for example),
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this leads to large values of S−1 and makes the solution procedure unstable. There is a
classical transformation, canonical orthogonalization [50], which allows one to avoid the use
of unstable S−1 matrix. Furthermore, using this transformation, one can eliminate small
eigenvalues of S, thereby improving the stability of the problem.

The idea is to define a new set of orthogonal functions {φ′α(r)} which can be expressed
through the non-orthogonal set {φα(r)} via a transformation matrix X as follows

φ′β(r) =
∑
α

Xαβφα(r). (2.26)

This time, the orthonormality condition for the {φ′α(r)} set reads

〈φ′β|φ′α〉 =
∫
drφ′α(r)φ′β(r) = δαβ. (2.27)

Substituting φ′α(r) and φ′β(r) with their expression 2.26 and using the definition of the
overlap matrix 2.11 one finds a following property of the X matrix

XHSX = I (2.28)

The method of canonical orthogonalization consists in defining the transformation ma-
trix as

X = Us−1/2, (2.29)

where s is a diagonal matrix, which contains the eigenvalues of the S matrix. Let U be
a matrix of eigenstates of S since the overlap matrix is symmetric, U is a unitary matrix
(UHU = UUH = I) and all eigenvalues of S are non-negative. Then, by a definition, one
has

s = UHSU, (2.30a)

S = UsUH . (2.30b)

Thus, s−1/2 is the matrix that contains inverses of square roots of diagonal elements of s in
order to provide (s−1/2s−1/2)−1 = s. With these definitions, it is seen that the expression of
the X matrix 2.29 indeed satisfies the property of the transformation matrix 2.28, therefore
it can be used for such transformation. This particular choice of the X matrix provides
two additional properties of this matrix which will be used later

XXH = Us−1/2s−1/2UH = S−1 (2.31a)

XHX = s−1/2UHUs−1/2 = s−1. (2.31b)

Now it is explicitly seen that if there is a linear dependence between the basis set
functions, this will lead to very small eigenvalues si (and, as a consequence, very large

s
−1/2
i ), which makes the orthogonalization procedure instable. In order to deal with this

problem, one can eliminate too small si values. For sake of simplicity, let us order the
eigenvalues si in a decreasing order (s1 > s2 > s3 > . . . ). Then, one can truncate the X
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matrix keeping the si values larger than some threshold parameter. Suppose that NMO

eigenvalues are larger than the threshold, then for the X matrix we have

X =


U11 s

−1/2
1 U12 s

−1/2
2 · · · U1 NMO

s
−1/2
NMO

U1 NMO+1 s
−1/2
NMO+1 · · · U1 NAO s

−1/2
NAO

U21 s
−1/2
1 U22 s

−1/2
2 · · · U2 NMO

s
−1/2
NMO

U2 NMO+1 s
−1/2
NMO+1 · · · U2 NAO s

−1/2
NAO

...
...

...
...

...

UNAO1 s
−1/2
1 UNAO2 s

−1/2
2 · · · UNAO NMO

s
−1/2
NMO

UNAO NMO+1 s
−1/2
NMO+1 · · · UNAO NAO s

−1/2
NAO

 ,
(2.32)

where the right-hand part of the matrix is removed to ensure a stable solution. The
threshold parameter depends on a given atomic system, but usually is in a range of 10−3÷
10−5.

In this way, the X matrix is no more square and has dimensions NAO×NMO. Therefore,
according to equation 2.26, the orthogonal basis set {φ′α(r)}NMO

i=1 contains now only NMO

basis functions. One can define a new coefficient matrix C ′ for the {φ′α(r)} basis in exactly
the same manner as it was done for the C matrix (equation 2.1). Then, writing the
decomposition of an electronic state ϕi both in the non-orthogonal and orthogonal bases

ϕi =
∑
α

Cαiφα =
∑
β

C ′βiφ
′
β (2.33)

and using the expression 2.26 for φ′β, one obtains a relation between C and C ′

C = XC ′. (2.34)

Using the orthonormalization equations for the C matrix 2.22 as well as one of the prop-
erties of the X matrix 2.28, one can verify that the C ′ matrix is unitary

C ′C ′H = C ′HC ′ = I. (2.35)

In order to obtain the Schrödinger stationary equation 2.15 in the orthogonal basis, let
us introduce the C ′ matrix in equation 2.18

HXC ′ = SXC ′E. (2.36)

Then, let us multiply this equation by XH from the left

XHHXC ′ = XHSXC ′E. (2.37)

The term XHSX on the right-hand side of the equation, according to equation 2.28, is
equal to the identity. Defining H ′ matrix as

H ′ = XHHX, (2.38)

one gets the usual eigenvalue problem in the orthogonal basis (without the overlap matrix)

H ′C ′ = C ′E. (2.39)
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The dimensions of the H ′ matrix are NMO × NMO, whereas the dimensions of H are
NAO ×NAO. It should be also noted that the C ′ matrix has dimensions NMO ×NMO and
the C matrix - NAO×NMO. It is seen from the C matrix dimensions and from equation 2.1
that using this orthogonalization scheme we have reduced the number of electronic states
from NAO to NMO (hence the name of the NMO variable - number of molecular orbitals)
while keeping the same number of basis functions in the {φα(r)}NAOα=1 basis set.

Since the Hamiltonian diagonalization is more stable in the orthogonal basis, in MOLGW
this part is implemented in the orthogonal basis. However, the Hamiltonian calculation
from ρ(r), ∇ρ(r) and P is performed in the initial non-orthogonal atomic basis. Switch-
ing between the two bases during the self-consistent loop is presented in Figure 2.3. The
loop starts with some initial C matrix guess. The C matrix allows one to calculate all
input “ingredients” for the Hamiltonian H (ρ(r), ∇ρ(r) and P ). Once H is calculated, we
calculate H ′ from H using equation 2.38. Then we perform the diagonalization of H ′ in
order to find the eigenenergies E and eigenvalues C ′. After that, we recover the coefficient
matrix C in the non-orthogonal basis using equation 2.34. If the electronic density is not
converged, we reiterate the loop, otherwise, we use the eigenenergies and wave functions
for the post-processing (MBPT or RT-TDDFT). The self-consistent loop convergence is
accelerated due to the method of Pulay mixing [108].

It should be noted that the properties of the X matrix (equations 2.28 and 2.31) allow
one in principle to “go in reverse order” through some parts of the loop. More precisely,
one can find the C ′ matrix from C, in the following way

C ′ = XHSC (2.40)

and the H matrix from H ′

H = SXH ′XHS. (2.41)

density matrix 
converged?

post-processing 
 

yes no

diagonalization

guess 

mixing 

Figure 2.3 : Diagram of the generalized Kohn-Sham (gKS) self-consistent loop as implemented
in MOLGW with a focus on the basis set representation of different parts of the loop.
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2.1.5 Hamiltonian expression in Gaussian basis

In this section, we will discuss the Hamiltonian calculation in the localized basis. In the
generalized Kohn-Sham part as well as in the GW and BSE parts a real wave function is
used. However, in the RT-TDDFT part, a time-dependent wave function must be complex.
Therefore, we will first consider the Hamiltonian implementation for the real wave function
case and then we will discuss changes because of the complex nature of the wave function
in the time-dependent part.

Real wave function case

The spin-dependent Hamiltonian, as implemented in MOLGW [42], reads in the localized
basis as follows

Hσ
µν = Tµν + Vext µν + Jµν − αKσ

µν − βKγσ
µν + (V σ

xc)µν . (2.42)

In this equation, α and β parameters govern the proportion of Fock exact-exchange Kσ
µν

and long-range Fock exchange Kγσ
µν . Since long-range Fock exchange is not implemented

in the RT-TDDFT part of the code, we will not consider this term further and we will set
β = 0.

Let us detail equation 2.42. The first two terms are: the kinetic energy

Tµν = −1
2

∫
dr lim

r′→r
φµ(r)∇2

r′φν(r′) (2.43)

and the external potential energy

Vext µν = −
∑
a

∫
drφµ(r) Za

|r−Ra|
φν(r), (2.44)

where Za and Ra are the charge and the positions of nuclei.
The Hartree term Jµν describes the classical electron-electron interaction

Jµν =
∑
λτ

(µν|λτ)
∑
σ

P σ
λτ , (2.45)

where P σ
λτ is the density matrix defined in equation 2.6 and (µν|λτ) is a two-electron

integral term in Mulliken (chemists’) notation

(µν|λτ) =
∫ ∫

drdr′φµ(r)φν(r) 1
|r− r′|

φλ(r′)φτ (r′). (2.46)

It is seen from this expression that the pairs of indexes (µν| and |λτ) are interchangeable

(µν|λτ) = (µν|τλ) = (νµ|τλ) = (νµ|λτ) = . . . , (2.47)

additional four expressions can be obtained by interchanging the parts (µν| and |λτ) them-
selves

. . . = (λτ |µν) = (τλ|µν) = (τλ|νµ) = (λτ |νµ) . (2.48)
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The exact-exchange term is given by

Kσ
µν =

∑
λτ

P σ
λτ (µλ|τν) . (2.49)

The two-electron integrals can be calculated analytically with the so-called recursion
formulas [109], which has a positive impact on the accuracy and on the computational
time. In the code, these integrals are calculated using the external library libint [110].

And, finally, the density-functional exchange-correlation potential Vxc in the GGA case
is obtained as

(V ↑xc)µν = 〈µ|vxc[ρσ(r),∇rρ
σ(r)]|ν〉

=
∫
dr
{
∂εxc
∂ρ↑

φµ(r)φν(r) +
[
2 ∂εxc
∂γ↑↑
∇rρ

↑(r) + ∂εxc
∂γ↑↓
∇rρ

↓(r)
]
∇r[φµ(r)φν(r)]

}
,

(2.50)

where εxc stands for the exchange-correlation energy density and γσσ′ is defined as

γσσ′ = ∇rρ
σ(r) ·∇rρ

σ′(r). (2.51)

The expression for the (V ↓xc)µν term can be written in an analogous way. In the code,
the εxc values and its derivatives are obtained using the external library libxc [111]. The
exchange-correlation potential, unlike other Hamiltonian terms, is evaluated on a real-space
mesh.

The total energy of an atomic system can be found as

E =
∑
µν

Pνµ
(
Tµν + Vext µν

)
+ 1

2
∑
µν

PνµJµν + Exc, (2.52)

where Exc is the exchange-correlation energy.

Resolution-of-identity approach

In order to accelerate the calculations, in MOLGW the two-electron integrals are evaluated
using an auxiliary basis set [112]. This technique approximates the 4-center integrals in
terms of 2- and 3-center integrals

(µν|λτ) ≈
∑
RQ

(µν|R) (R|Q)−1 (Q|λτ) , (2.53)

where (µν|R) and (R|Q) are the 3- and 2- center integrals. This allows one to approximate
the 4-center integrals as

(µν|λτ) ≈
∑
R

MR
µνM

R
λτ , (2.54)
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where

MR
µν =

∑
Q

(µν|Q) (Q|R)−1/2 . (2.55)

It should be noted that due to the two-electron integral symmetry relations (equations
2.47), the MR

µν matrix is symmetric with respect to the µ and ν indexes (MR
µν=M

R
νµ).

The Hartree term Jµν , within the resolution-of-identity approach, writes

Jµν =
∑
λτ

∑
R

MR
µνM

R
λτ

∑
σ

P σ
λτ . (2.56)

The expression of the exchange term Kσ
µν in this approach will be given later in this section.

Complex wave function case

In this section, we will analyze the Hamiltonian expression (equation 2.42) term by term
in order to determine whether the time-dependent complex wave function leads to complex
terms in the Hamiltonian. Our derivations are similar to the one carried out by Lopata
[113]. Conclusions made in this section are not dependent on the spin channel, therefore,
for simplicity, we will omit the σ index in the derivations.

From the definition of the density matrix (equation 2.7), it is seen that a complex
wave function (expressed in terms of C(t)) leads to a complex density matrix P (t). Since
the density matrix is used to calculate the charge density ρ(r, t), we should check how
the complex density matrix influences the charge density calculations. In order to verify
whether the imaginary part intervenes into the charge density, let us split the P (t) matrix
into the real and imaginary matrices

P (t) = Re[P (t)] + i Im[P (t)]. (2.57)

Then, the charge density reads

ρ(r, t) =
∑
µν

Re[Pµν(t)]φµ(r)φν(r) + i
∑
µν

Im[Pµν(t)]φµ(r)φν(r). (2.58)

Since the P (t) matrix is Hermitian (equation 2.8), its real part is symmetric and imaginary
part is antisymmetric. Let us consider the second term in equation 2.58. We can divide
the summation into two parts: µ > ν and µ < ν (for µ = ν we have Im[Pµµ(t)] = 0)

∑
µν

Im[Pµν(t)]φµ(r)φν(r) =
∑
µ>ν

Im[Pµν(t)]φµ(r)φν(r) +
∑
µ<ν

Im[Pµν(t)]φµ(r)φν(r). (2.59)

In the second term of the expression we use Im[P (t)µν ] = −Im[P (t)νµ]. In this way, we see
that the expression 2.59 is equal to zero. Therefore, the charge density is determined only
by the real part of the density matrix

ρ(r, t) =
∑
µν

Re[Pµν(t)]φµ(r)φν(r). (2.60)
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The kinetic 2.43 and the external potential energy 2.44 terms do not depend on P (t),
ρ(r, t) or ∇ρ(r, t), therefore these terms remain real.

The exchange and correlation DFT term (expression 2.50) depends only on the charge
density ρ(r, t) and possibly on its gradient ∇ρ(r, t). Therefore, we can directly conclude
that this term is also real and depends only on the real part of the density matrix.

In order to analyze the Hartree term (equation 2.45) we will first proceed in a similar
manner as for the Im[P ]: we will split the summation

Jµν(t) =
∑
τ

∑
λ<τ

Pλτ (t) (µν|λτ) +
∑
τ

Pττ (t) (µν|ττ) +
∑
τ

∑
λ>τ

Pλτ (t) (µν|λτ) . (2.61)

To group the first and the third terms of the expression, let us swap the indexes of sum-
mation for the third term

Jµν(t) =
∑
τ

∑
λ<τ

Pλτ (t) (µν|λτ) +
∑
τ

Pττ (t) (µν|ττ) +
∑
λ

∑
τ>λ

Pτλ(t) (µν|τλ) . (2.62)

Using the two-electronic integral symmetry relations 2.47 we exchange the τ and λ indexes
in the third term, which simplifies the equation into

Jµν(t) =
∑
τ

∑
λ<τ

[Pλτ (t) + Pτλ(t)] (µν|λτ) +
∑
τ

Pττ (t) (µν|ττ) . (2.63)

Using the decomposition of the P (t) matrix 2.57 and taking into account that the imaginary
part of P (t) is antisymmetric, we get Im[Pλτ (t)] + Im[Pτλ(t)] = Im[Pττ ] = 0. So, the Jµν(t)
is real and depends only on the real part of the density matrix.

Concerning the exact-exchange term (equation 2.49), we, at first, split the summation
into three parts, similarly to the Hartree term,

Kµν(t) =
∑
τ

∑
λ<τ

Pλτ (t) (µλ|τν) +
∑
τ

Pττ (t) (µτ |τν) +
∑
τ

∑
λ>τ

Pλτ (t) (µλ|τν) . (2.64)

Then, we permute λ and τ in the third term and take the imaginary part of the equation

Im[Kµν(t)] =
∑
λ<τ

Im[Pλτ (t)][(µλ|τν)− (µτ |λν)]. (2.65)

In a general case, this expression is different from zero. Therefore, the exact-exchange term
is complex and depends on the full density matrix.

Since in the RT-TDDFT part the exact-exchange term is different from that in the
ground-state DFT, we will consider in more detail its implementation in the code. Using the
resolution-of-identity approximation (equation 2.54), the exact-exchange term (equation
2.49) reads

Kµν(t) =
∑
λτ

∑
R

Pλτ (t)MR
µλM

R
τν . (2.66)
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In order to improve the numerical efficiency, we switch from the density matrix to the
coefficient matrix C(t) using the expression 2.6

Kµν(t) =
∑
λτ

∑
R

∑
i

fi
(
MR

µλCλi(t)
) (
MR

ντCτi(t)
)∗

=
∑
i

∑
R

(
BR
µ (t)

)
i

(
BR
ν (t)

)∗
i
, (2.67)

where
(
BR
µ (t)

)
i

= ∑
λM

R
µλCλi(t). We can write equation 2.67 in a following matrix form

Kµν(t) =
∑
i

BT
i (t)B∗i (t). (2.68)

Using this equation, we can show that the complex exact-exchange term is Hermitian

(Kµν(t))H =
(∑

i

BT
i (t)B∗i (t)

)H
=
∑
i

(
BT
i (t)B∗i (t)

)H
=
∑
i

BT
i (t)B∗i (t) = Kµν(t). (2.69)

To summarize, in the case of an RT-TDDFT calculation without the exact Fock ex-
change, all the Hamiltonian terms are real and depend only on the real part of the density
matrix (which does not exempt one from the complex wave function propagation and the
complex density matrix calculation). However, in the case of the Hartree-Fock or a hybrid-
functional DFT calculations, the exact-exchange term in the Hamiltonian is complex and
depends on the full complex density matrix.

So, in order to adapt the MOLGW gKS subroutines for the RT-TDDFT part, rep-
resented as the blue area in Fig. 2.1b, we had to implement the complex density matrix
calculation P (t) from the complex wave functions C(t) and the complex exact-exchange
term. In the next section we will discuss the RT-TDDFT implementation itself, which is
referred to the orange area in the figure.

2.2 Algorithm of the time propagation of Kohn-Sham

equations

In this section, we will describe different propagator approximations that we implemented
in the code. First, we will discuss the basic expressions of propagators written in the
operator form, then, in section 2.2.6, we describe the implementation in the basis and
precise algorithmic schemes.

2.2.1 Standard propagator techniques

Magnus propagator

As was previously discussed in section 1.4.1, the propagator operator Û(t + ∆t, t) can be

expressed as a simple exponential exp
{
−i∆tĤ

}
only in the case when the Hamiltonian is

time-independent, which, unfortunately, does not apply in a general case of RT-TDDFT.
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The idea of Magnus [114] was to find a series of operators Ω̂k for which we can express the
propagator with a time-dependent Hamiltonian Ĥ(t) (equation 1.113) in the following way

Û(t+ ∆t, t) = exp
{

Ω̂1 + Ω̂2 + . . .
}
. (2.70)

In this equation, Ω̂k is a k-dimensional integral of nested commutators of the Hamiltonian
at different times. An approximation of order 2N is performed in two stages: 1) truncation

of the Magnus series exp
{∑

k Ω̂k

}
to the N th order and 2) approximation the time integrals

with some N th order quadrature formula. Blanes and coworkers [115] have shown that an
efficient integral approximation for this problem can be done using the Gauss-Legendre
quadrature. Since Ω̂2 is usually the highest term used for practical applications, we will
provide here the analytical expressions only for Ω̂1 and Ω̂2 terms.

The second order (N = 1) Magnus propagator reads

ÛMAG2(t+ ∆t, t) = exp
{

Ω̂1
}

+O(∆t3) (2.71a)

Ω̂1 = −i∆tĤ(t+ ∆t
2 ). (2.71b)

In this expression, we have approximated the integration using only one point in the middle
of the propagation interval t + ∆t/2 and the Hamiltonian is approximated to a constant
Ĥ(t + ∆t/2) for the whole propagation interval. For this reason, this approximation is
also called the exponential midpoint rule. In the set of Magnus propagators, the ÛMAG2 is
special in the sense that it does not contain any commutator.

The expression for the fourth order (N = 2) Magnus propagator can be written as

ÛMAG4(t+ ∆t, t) = exp
{

Ω̂1 + Ω̂2
}

+O(∆t5) (2.72a)

Ω̂1 = −i
[
Ĥ(τ1) + Ĥ(τ2)

]
∆t
2 (2.72b)

Ω̂2 =
[
Ĥ(τ1), Ĥ(τ2)

]√
3∆t2
12 (2.72c)

τ1,2 = t+
(

1
2 ∓

√
3

6

)
∆t, (2.72d)

where τ1,2 are Gauss Legendre integration points. The expression for the ÛMAG4 propagator
is more complicated and requires two Hamiltonian evaluations per propagation from t to
t+ ∆t. As an advantage of this method, one can use larger time steps than for the ÛMAG2
propagator. However, it was reported [116] that, unless the Hamiltonian is strongly time
dependent, second-order Magnus has a better quality/computational cost ratio. Therefore,
ÛMAG4 was not implemented in MOLGW.

Enforced time-reversal symmetry (ETRS) propagator

The idea of this method is that a backward propagation from t + ∆t to t + ∆t/2 should
lead to the same result as a forward propagation from t to t+ ∆t/2, i.e.,

ϕ(t+ ∆t
2 ) = Û(t+ ∆t

2 , t+ ∆t)ϕ(t+ ∆t) = Û(t+ ∆t
2 , t)ϕ(t). (2.73)
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We will approximate the Hamiltonian integration in the Û(t + ∆t
2 , t + ∆t) propagator by

one point - H(t + ∆t), and, respectively, in the Û(t + ∆t
2 , t) propagator - by Ĥ(t) . The

expression 2.73 then becomes

ϕ(t+ ∆t
2 ) = exp

{
+ i∆t

2 Ĥ(t+ ∆t)
}
ϕ(t+ ∆t) = exp

{
− i∆t

2 Ĥ(t)
}
ϕ(t). (2.74)

From this equation we get the expression for the ETRS propagator

ÛETRS = exp
{
− i∆t2 Ĥ(t+ ∆t)

}
exp

{
− i∆t2 Ĥ(t)

}
. (2.75)

It is seen, that the ÛETRS propagator has a form of two subsequent propagations similar to
ÛMAG2: (t)→ (t+ ∆t/2) and (t+ ∆t/2)→ (t+ ∆t), the difference is that for the ÛMAG2
propagator the point for the integration is taken in the middle of the propagation interval
(would be t + ∆t/4 and 3∆t/4 here), whereas for the ÛETRS propagator these points are
taken on the edges of each interval (t and t+ ∆t).

Crank-Nicolson propagator

For this method, similarly to the ÛMAG2 propagator, we take only one point for the integral
1.124 approximation. Let us first consider a propagation from t to t + ∆t and let us
approximate the integral by the leftmost Hamiltonian value in the interval: Ĥ(t). Then

we develop the exponential e−i∆tĤ(t) to the second order of ∆t

ϕ(t+ ∆t) ≈ e−i∆tĤ(t)ϕ(t) ≈ ϕ(t)− i∆tĤ(t)ϕ(t)− 1
2∆t2Ĥ2(t)ϕ(t). (2.76)

Now, let us perform the same expansion, but for the propagation from t to t−∆t (apply-
ing the time-reversal property of the propagator operator, equation 1.118) and using the
rightmost value of the Hamiltonian in this interval (which in absolute value is similar to
equation 2.76: Ĥ(t))

ϕ(t−∆t) ≈ ei∆tĤ(t)ϕ(t) ≈ ϕ(t) + i∆tĤ(t)ϕ(t)− 1
2∆t2Ĥ2(t)ϕ(t). (2.77)

Substracting equation 2.77 from equation 2.76, we get

ϕ(t+ ∆t) = ϕ(t−∆t)− 2i∆tĤ(t)ϕ(t). (2.78)

This equation involves t−∆t, t and t + ∆t times. In order to have only two times in the
equation, we approximate ϕ(t) as follows

ϕ(t) ≈ 1
2
(
ϕ(t−∆t) + ϕ(t+ ∆t)

)
. (2.79)
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Substituting this expression and switching from the interval [t−∆t, t+ ∆t] to [t, t+ ∆t],
we get the final expression for the Crank-Nicolson propagator

ϕ(t+ ∆t) =
(
Î + i

∆t
2 Ĥ

)−1 (
Î − i∆t2 Ĥ

)
ϕ(t) +O(∆t3). (2.80)

As seen from these derivations, for the Crank-Nicolson propagator ÛCN (also called the
implicit midpoint rule) we have used more approximations than for the equivalent in the
computational cost second-order Magnus propagator ÛMAG2.

All the presented propagators are unitary and preserve the time-reversal symmetry
(properties 1.117 and 1.120).

2.2.2 Predictor-corrector method

In order to solve the problem of the wave function propagation, choosing a propagator
approximation is not enough: one needs also to approximate the Hamiltonian Ĥ(t) for the
future times t. To demonstrate this problem, let us consider the expression of the second-
order Magnus propagator (equations 2.71). To propagate the wave function ϕ(t) from t to
t + ∆t one needs to know the Hamiltonian at t + ∆t

2 , which, in its turn, depends on the

wave function ϕ(t + ∆t
2 ). The problem becomes self-consistent and to solve it one usually

applies the so-called predictor-corrector method.
Let us assume that the evolution of the wave function is already calculated until a time

t, then the next self-consistent propagation to t+ ∆t can be described as follows [117]:

(1) (Predictor) Extrapolate the Hamiltonian Ĥ(τ) for t < τ ≤ t + ∆t using its values
Ĥ(τ ≤ t).

(2) (Predictor) Propagate the wave function ϕ from t to t+ ∆t.

(3) (Corrector) Calculate Ĥ(t+ ∆t) from ϕ(t+ ∆t).

(4) (Corrector) Interpolate the Hamiltonian Ĥ(τ) for t < τ ≤ t+ ∆t.

(5) Repeat the steps (2)-(4) until the self-consistency is reached.

This algorithm is written in general terms. A precise predictor-corrector scheme should
indicate a method for extrapolation/interpolation of the Hamiltonian as well as precise
points in the propagation interval [t, t + ∆t] for the extrapolation/interpolation. Differ-
ent propagators request the Hamiltonian at different times. For example, for the ETRS
propagator one needs to provide the Hamiltonian values at t and t + ∆t (equation 2.75),
whereas for the second-order Magnus and Crank-Nicolson propagators one needs to know
the Hamiltonian at t+∆t

2 (equations 2.71 and 2.80). Therefore, a predictor-corrector scheme
depends on the choice of the propagator technique. The final stability and accuracy of the
propagation depend on both the propagator approximation and the predictor-corrector
scheme.
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2.2.3 Propagators in orthogonal basis

As detailed earlier, the localized Gaussian basis {φ(r)}NAOi=1 is non-orthogonal, however there
exists the orthogonalization procedure (equations 2.26 to 2.34) which not only creates the
orthogonal basis set {φ′(r)}NMO

i=1 , but also eliminates NAO − NMO lowest eigenvalues of
the overlap matrix in order to improve the stability of the Hamiltonian diagonalization
procedure. Since in MOLGW in the gKS part both bases are used (see Fig. 2.3), for the
time-dependent part we had a choice in which basis to represent the wave function ϕ(t) and
the propagator Û . Although the propagation can be performed in the non-orthogonal basis
[118], to ensure the stability of the propagation, we have decided to work in the orthogonal
basis.

In order to write the propagation equations in the matrix form, we use the wave function
ϕi(r, t) decomposition in the orthogonal basis set

ϕi(r, t) =
∑
α

C ′αi(t)φ′α(r). (2.81)

It is seen that the time dependence of the wave function is covered by the coefficient matrix
C ′(t) and the spatial dependence by the basis functions φ′α(r). Then we substitute this
expression into the time-dependent Schrödinger equation (1.86). Projecting this equation
onto a state 〈φ′β| and using the orthonormality condition 2.27, we get

i
dC ′(t)
dt

= H ′(t)C ′(t). (2.82)

We define the propagator matrix in a similar manner to the propagator operator definition
(equation 1.103)

C ′(t) = U ′(t, t0)C ′(t0) (2.83)

with the initial condition

U ′(t0, t0) = I. (2.84)

Substituting the expression of C ′ 2.83 into equation 2.82 we get the differential equation
for the propagator matrix

i
dU ′(t, t0)

dt
= H ′(t)U ′(t, t0). (2.85)

It is seen that the operator formulation of the propagator (equations 1.86, 1.103 and
1.104) corresponds exactly to the matrix formulation in the orthogonal basis (equations
2.82, 2.83 and 2.85). It means that one can use the results for the propagators obtained
in the operator form just transforming an operator by a corresponding matrix. In the
non-orthogonal basis case, the overlap matrix S would have appeared in the equations.
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2.2.4 Different bases

We have several bases while performing the wave function propagation. First and the prin-
cipal is the non-orthogonal basis of atomic orbitals |φα〉. Using the canonical orthogo-
nalization technique, we obtain the orthogonal atomic basis |φ′β〉. The X matrix links these
two bases (equation 2.26). Then, there are two bases of molecular orbitals: propagated
states |ϕi(t)〉 and instantaneous eigenstates |χj(t)〉 of the time-dependent Hamiltonian

Ĥ ′(t). The decomposition of the propagated molecular orbitals |ϕi(t)〉 in the orthogonal
atomic basis |φ′β〉 is given by the C ′(t) matrix (equation 2.33) and the decomposition of
the eigenstates |χj(t)〉 is provided by an A′(t) matrix

|χj(t)〉 =
∑
β

A′βj(t)|φ′β〉. (2.86)

The bases |ϕi(t)〉 and |χj(t)〉 change during the propagation while the bases |φα〉 and
|φ′β〉 remain constant if the atomic coordinates are fixed. Usually, in an RT-TDDFT sim-
ulation, the initial state of a system is defined as the ground state obtained through the
self-consistent gKS loop. We denote this moment as t = t0. For this moment the C ′(t0)
and the A′(t0) matrices are the same since

|ϕi(t0)〉 = |χi(t0)〉. (2.87)

Both matrices are the solution of the eigenstate problem 2.39 with the Hamiltonian Ĥ(t0).
Then, an external perturbation (a moving charge, an external electric field, etc.) leads
to time dependence of the Hamiltonian and of the molecular states. The matrix of the
propagated states C ′(t) evaluate according to the time-dependent Schrödinger equation
2.82 and for t > t0 is no more a solution of the stationary Schrödinger equation. By defi-

Figure 2.4 : Different bases used in the time-dependent propagation.
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nition, the A′(t) matrix is the solution of the stationary equation with the time-dependent
Hamiltonian

H ′(t)A′(t) = A′(t)E(t), (2.88)

where E(t) is the diagonal matrix of the instantaneous eigenvalues of the Hamiltonian Ĥ ′(t).
For the simulation analysis purposes, we also use a matrix Q(t) which will be introduced
in the next section. All the four bases and the links between them are schematically
represented in Fig. 2.4.

2.2.5 Occupations analysis

Here we would like to establish an expression of an occupation matrix Q(t), which char-
acterizes occupations of the states during a simulation with respect to the initial state
|ϕ(t = 0)〉. As was discussed in section 1.4, in RT-TDDFT simulations the occupations
of the electronic levels |ϕj(t)〉 do not change in time. Due to this fact, in the code, we
propagate and keep in the memory only of the occupied states |ϕj(t)〉 (for j from 1 to occ).

However, the projections of |ϕj(t)〉 onto the initial states |ϕi(t = 0)〉 do have non-zero
components corresponding to initially unoccupied states. Let us consider this point in
more detail. We define Q(t) as a decomposition matrix of a propagated state |ϕj(t)〉 in the
basis of initial states |ϕi(0)〉

|ϕj(t)〉 =
∑
i

Qij(t)|ϕi(0)〉. (2.89)

Now we can decompose both |ϕi(0)〉 and |ϕj(t)〉 in the orthogonal atomic basis |φ′〉
∑
α

C ′αj(t)|φ′α〉 =
∑
iβ

Qij(t)C ′βi(0)|φ′β〉. (2.90)

Projecting this equation on 〈φ′γ| and using the orthonormality condition 2.27, one gets the
following expression

C ′γj(t) =
∑
i

C ′γi(0)Qij(t), (2.91)

which can be written in the matrix form as follows:

C ′(t) = C ′(0)Q(t). (2.92)

Multiplying this equation by C ′H(0) from the left and using equation 2.35, we obtain the
expression for the Q(t) matrix

Q(t) = C ′H(0)C ′(t). (2.93)

From equation 2.89 it is also seen that that the Qij(t) matrix element is simply a
projection of the state |ϕj(t)〉 onto the state |ϕi(0)〉

Qij(t) = 〈ϕi(0)|ϕj(t)〉. (2.94)
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Hence, the probability of the transition from the state j to the state i has the following
expression

|〈ϕi(0)|ϕj(t)〉|2 = |Qij(t)|2. (2.95)

One can note the initial condition: |Qij(0)|2 = δij. Then, the occupation of the level i,
qi(t), can be found as a sum of transitions from all levels j to this level i multiplied by the
initial occupations fj

qi(t) =
∑
j

fj|Qij(t)|2. (2.96)

To conclude, let us consider an example of an application of equation 2.96. Suppose,
we want to calculate the occupation of all 1s levels of a system during the RT-TDDFT
simulation. To do this, we need to sum qi(t) over all states i that belong to 1s

q1s(t) =
∑
i∈{1s}

qi(t). (2.97)

2.2.6 Implementation in the code

Propagators implementation

Let us start with the second-order Magnus propagator. Its expression (equations 2.71) in
the orthogonal basis reads

C ′(t+ ∆t) = exp
{
−i∆tH ′(t+ ∆t

2 )
}
C ′(t). (2.98)

In order to calculate the exponential of the Hamiltonian H ′(t + ∆t
2 ), we need first to

diagonalize it using the matrix A′(t + ∆t
2 ). In the following derivations, we consider the

time t+ ∆t
2 for the matrices H ′ and A′, we will skip the time argument for sake of clarity.

Multiplying equation 2.88 by A′H from the right-hand side, and using the orthonormal-
ization condition for the A′ matrix (which is the same as for the C ′ matrix, equation 2.35),
we get

H ′ = A′EA′H . (2.99)

The orthonormality of the A′ matrix allows one to write any power n of the Hamiltonian
H ′ as

(H ′)n =
(
A′EA′H

)n
= A′E A′H A′︸ ︷︷ ︸

I

EA′H . . . A′E A′H A′︸ ︷︷ ︸
I

EA′H = A′E . . . E︸ ︷︷ ︸
n times

A′H = A′EnA′H ,

(2.100)
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where En is a diagonal matrix which contains the eigenenergies to the nth power En
i . Using

this expression, one can develop e−i∆tH
′

as follows

e−i∆tH
′ = I + (−i∆t)H ′ + (−i∆t)2

2 H ′2 + . . .

= A′A′H + (−i∆t)A′EA′H + (−i∆t)2

2 A′E2A′H + . . .

= A′e−i∆tEA′H ,

(2.101)

where e−i∆tE matrix has the following form

e−i∆tE =


e−i∆tE1

e−i∆tE2 0
0 . . .

e−i∆tENMO

 . (2.102)

Hence, the final expression for the second-order Magnus propagator in the orthogonal basis
reads

C ′(t+ ∆t) = A′(t+ ∆t
2 ) exp

{
− i∆tE(t+ ∆t

2 )
}
A′H(t+ ∆t

2 )C ′(t). (2.103)

Due to the exact diagonalization of the exponentials, the propagated wave functions
ϕi(t+ ∆t) (exressed by C ′(t + ∆t)) are orthogonal (C ′H(t + ∆t)C ′(t + ∆t) = I) and
we do not need to perform an additional expensive procedure of the orthogonalization.
One should also mention that the exact diagonalization is possible due to the choice of the
localized basis for the implementation.

The fact that the A′(t) matrix diagonalizes the Hamiltonian justifies the choice of the
orthogonal basis for the propagation. In the case of the propagation in the non-orthogonal
basis, one would need nonetheless switch to the orthogonal basis of A′(t) to perform this
diagonalization.

So, we can write the algorithm for the calculation of the propagation with the MAG2
method:

The MAG2 propagator:
Given: H ′(t+ ∆t

2 ), C ′(t)

1. Diagonalization of H ′(t+ ∆t
2 )→ A′(t+ ∆t

2 ), E(t+ ∆t
2 ).

2. Calculation of C ′(t+ ∆t) = A′(t+ ∆t
2 )e

{
−i∆tE(t+ ∆t

2 )
}
A′H(t+ ∆t

2 )C ′(t).

3. Calculation of C(t+ ∆t) = XC ′(t+ ∆t) for further Hamiltonian calculations.

For the ETRS propagator (equation 2.75) implementation, we perform the same pro-
cedure of the Hamiltonian diagonalization (equation 2.101). The implementation of the
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ETRS propagator (equation 2.75) is analogous to the MAG2 with the difference that this
time one needs to diagonalize two exponentials and one needs two evaluations of the Hamil-
tonian instead of one. Therefore, the algorithm for this method reads:

The ETRS propagator:
Given: H ′1 ≡ H ′(t), H ′2 ≡ H ′(t+ ∆t), C ′(t)

1. Diagonalization of H ′1 → A′1, E1.

2. Diagonalization of H ′2 → A′2, E2.

3. Calculation of C ′(t+ ∆t) = A′2e
−i∆t

2 Ĥ
′
2A′H2 A′1e

−i∆t
2 Ĥ

′
1A′H1 C ′(t).

4. Calculation of C(t+ ∆t) = XC ′(t+ ∆t) for further Hamiltonian calculations.

For the Crank-Nicolson propagator (equation 2.80) we define two matrices as follows

L′ ≡ 1 + ∆t
2 H ′ (2.104a)

B′ ≡ 1− ∆t
2 H ′. (2.104b)

Then, we can precise the algorithm for this method:

The CN propagator:
Given: H ′(t+ ∆t

2 ), C ′(t)

1. Inversion of L′(t+ ∆t
2 )→ L′−1(t+ ∆t

2 ).

2. Calculation of C ′(t+ ∆t) = L′−1B′C ′(t).

3. Calculation of C(t+ ∆t) = XC ′(t+ ∆t) for further Hamiltonian calculations.

Predictor-correctors implementation

Now we will detail the way in which the input blocks “Given:” for the propagators are ob-
tained as well as in what way the output of the propagators is used. In fact, the described
propagator algorithms simply determine how to find the wave function at a time t+∆t from
the wave function at t. However, due to the time dependence of the Hamiltonian, a direct
propagation ϕ(t2) = Û(t2, t1)ϕ(t1); ϕ(t3) = Û(t3, t2)ϕ(t2) . . . (formula 1.123) would de-
mand an unreasonably small time steps in order to ensure the accuracy of the propagation.
On the other hand, a straightforward implementation of the iterative predictor-corrector,
which is presented above, has also shown its inefficiency since it requires many (e.g., 4-5)
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iterations to achieve an acceptable convergence. Therefore, an implementation of more
complicated predictor-corrector schemes using a subdivision of the propagation intervals
or an alternation of propagator techniques appeared to us a necessary measure in order to
optimize the quality/computational cost ratio of the propagation.

As was discussed previously, the predictor-corrector scheme should take into account
a given propagator method because different propagators use the Hamiltonian values at
different times. Since ÛMAG2 and ÛCN propagators require the value of the Hamiltonian at
the same time (t + ∆t

2 ), the predictor-corrector scheme can be developed for either of the
two propagators. We have found the following predictor-corrector scheme (named PC1)
optimal:

PC1:

0. The Hamiltonian values H ′ are known at t, t− ∆t
2 , . . . t− (N − 1)∆t

2 ;
C ′ matrix is known only at t.

1. Using the Lagrange polynomial, extrapolate H ′(t+ ∆t
4 ) from

H ′(t), H ′(t− ∆t
2 ), . . . H ′

(
t− (N − 1)∆t

2

)
.

2. Propagate C ′(t) MAG2/CN−−−−−−→ C ′(t+ ∆t
2 ) using MAG2 or CN with H ′(t+ ∆t

4 ).

3. Calculate H ′(t+ ∆t
2 ) using C ′(t+ ∆t

2 ).

4. Propagate C ′(t) MAG2/CN−−−−−−→ C ′(t+ ∆t) with H ′(t+ ∆t
2 ).

5. Calculate H ′(t+ ∆t) using C ′(t+ ∆t).

6. Update for the next step: H ′ and C ′ are shifted in time by ∆t.

Since in MOLGW we calculate the Hamiltonian from the wave function written in the non-
orthogonal atomic basis, each time when it is written “using C ′ calculate H ′ ” it actually
means: first calculate C from C ′ (equation 2.34), then using C calculate H and then using
the expression 2.38 calculate H ′ from H. So, schematically, C ′ → C → H → H ′.

Concerning the Hamiltonian history from previous steps (governed by the parameter
N), we have found that N in the range of 2-5 improves the stability of the propagation.
However, larger N requires more memory for the Hamiltonian storage. Therefore, N = 2 is
found to be the optimal history parameter, which means that in the step 1 the Hamiltonian
at t+ ∆t

4 is approximated linearly from H ′(t) and H ′(t− ∆t
2 ).

One should also note that the most time consuming operations in the propagation are
the diagonalization of the A′ matrix for U ′MAG2 (or the inverse of the L′ matrix for U ′CN) and
the Hamiltonian calculation from the coefficient matrix. The proposed scheme includes two
diagonalizations (inversions) and two Hamiltonian evaluations per one total propagation.
This predictor-corrector scheme is similar to one proposed by Cheng and coworkers [116]
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Figure 2.5 : Schematic representation of two selected predictor-corrector schemes used in the
code. The legend is at the top of the figure. The enumeration of the predictor-corrector steps in
the figure matches with those described in the text.
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with the difference that in that work there is no step 5, namely, the Hamiltonian is not
calculated after the final propagation. This means that the Hamiltonian grid is two times
sparser than in our case.

For the ETRS propagator we have selected the following predictor-corrector scheme
(named PC2):

PC2:

0. The Hamiltonian values H ′ and the coefficient matrix C ′ are known at t.

1. Propagate C ′(t) MAG2−−−−→ C ′(t+ ∆t) using MAG2 with
[
H ′(t+ ∆t

2 ) ≈ H ′(t)
]
.

2. Calculate H ′(t+ ∆t) using C ′(t+ ∆t).

3. Propagate C ′(t) ETRS−−−→ C ′(t+ ∆t) using ETRS with H ′(t) and H ′(t+ ∆t).

4. Calculate H ′(t+ ∆t) using C ′(t+ ∆t).

5. Repeat steps 3 and 4 Niter times.

6. Update for the next step: H ′ and C ′ are shifted in time by ∆t.

Though this scheme allows one in principle to perform several iterations, which could
permit to use larger time steps, in practice, using Niter = 1 and a moderate time step is
found to be optimal. Hence, similarly to PC1, PC2 has two Hamiltonian evaluations, but
three diagonalizations per one total propagation. The reason is that one ETRS propagation
demands two diagonalizations. This scheme is similar to the one used in the real-space
grid code OCTOPUS [119].

Both predictor-corrector schemes are represented in Fig. 2.5. The final choice of the
propagation scheme will be performed later in this chapter. We will compare the efficiency
of both schemes in the case of the light excitation of molecular systems.

2.2.7 Frozen states propagation

A possibility to prohibit the electronic excitations from some selected electronic levels
could serve as a useful tool. For example, in order to evaluate the role of core electrons
excitations for the stopping power calculations, one of the possible ways to do so is to
“freeze” the core electrons in the simulation. Another example concerns the case when
one wants to compare the results produced with an all-electron code with a plane-wave
code in which normally the utilization of pseudopotentials is indispensable because of the
computational cost reasons. One can directly use pseudopotentials in the localized basis
codes as well, however, using the frozen core states, one does not need to develop a special
pseudopotential for a given atom and for a given number of frozen electrons.
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To approach the effect of a pseudopotential using an all-electron code, one can prohibit
the excitations of those electrons which are modeled by a given pseudopotential. However,
these two approaches are not completely equivalent. The difference between the frozen core
technique and the pseudopotential technique consists in the fact that in the frozen core case
the propagation is still all-electron, meaning that core electrons are still described explicitly,
the core electrons are just not allowed to get excited. Whereas in the pseudopotential case
the core electrons are implicitly included in the potential. Therefore, for the frozen core
propagation, the wave functions of valence states are orthogonal to the core states, which
is not the case for the pseudopotential technique.

In order to develop this technique, one should take into account that the electronic
states which one would want to “freeze” (say 1s, 2s, etc.) can be identified only using
the ground state electronic wave function ϕ(0). For example, if at t = 0 a state ϕj(0)
corresponds to a 1s state, after a perturbation it is not anymore a pure 1s state, but has
some non-zero projections on other electronic states ϕi(0) (see the expression of the Q
matrix 2.94). Therefore, to perform the frozen states propagation, a reference to some
quantity at t = 0 is necessary.

The idea of the method is to express the time-dependent Hamiltonian Ĥ ′(t) in the basis
of its instantaneous eigenenergies at t = 0 A′(0)

Ẽ(t) = A′H(0)H ′(t)A′(0). (2.105)

From its definition, it is seen that Ẽ(0) is just a diagonal matrix of the eigenenergies at
t = 0 (expression 2.19). However, at t > 0 this matrix becomes non-diagonal (provided
that there was a perturbation).

Then, in order to “freeze” electronic states from k to l we will cancel out the following
matrix elements: Ẽij(t) = 0 for k < i < l and k < j < l

(2.106)

In this expression, the part of the matrix filled in red symbolically means that the elements
of the matrix in this region are set to zero. In this way, we obtain the modified matrix
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which we define as Ẽmod(t). Then we transform back the modified Hamiltonian into the
orthogonal atomic basis as follows

H ′mod(t) = A′(0)Ẽmod(t)A′H(0). (2.107)

We use the modified Hamiltonian H ′mod(t) to perform the wave function propagation with
any propagator described above. To summarize, for a standard propagation we proceed
as follows: C ′ → H ′ → U ′ → C ′. Whereas for the frozen states propagation one has the
following modification to the scheme: C ′ → H ′ → Ẽ → Ẽmod → H ′mod → U ′mod → C ′.
For the frozen core propagation, one select k = 1 and l equal to the number of core state
to “freeze”.

2.3 Validation

In order to benchmark the RT-TDDFT propagation implementation, we have decided to
test the RT-TDDFT results against the linear-response TDDFT (LR-TDDFT) for the
optical absorption spectra calculations. The LR-TDDFT photoabsorption cross-section
calculation is already implemented in MOLGW [120]. Therefore, in this section we will
first describe an additional implementation in the code in order to calculate the optical
absorption. Then we will compare the results of RT-TDDFT and LR-TDDFT and finally
we will analyze the stability of different propagators and predictor-corrector schemes based
on the optical excitation results.

2.3.1 Dipole coupling

Let us consider a finite charge distribution described by the charge density ρtot(r, t) in an
external electric field E(r, t). Here we consider that the charge density includes both the
nuclear charges ρn(r) = ∑

a Zaδ(r−Ra) and the electron charge distribution ρ(r, t)

ρtot(r, t) = ρn(r) + ρ(r, t). (2.108)

We assume that the nuclei are fixed, therefore the nuclear charge density ρn(r) does not
depend on time. In the length gauge, the electric field is given by a scalar potential Φ(r, t)
as follows

E(r, t) = −∇Φ(r, t). (2.109)

The interaction energy W (t) between this charge distribution and the scalar potential can
be expressed as

W (t) =
∫
drρtot(r, t)Φ(r, t). (2.110)

Suppose that the scalar potential varies slowly near the charge distribution ρtot(r, t):
Φ(r, t) ≈ Φ(r = 0, t), where the origin r = 0 is chosen in some point inside the charge
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distribution. Then we can use the multipole expansion of the Φ(r, t) around r = 0 and we
get the following expression for the interaction energy

W (t) = qΦ(0, t)− d(t) · E(0, t)− 1
6
∑
ij

qij(t)
∂Ei(r, t)
∂rj

∣∣∣∣∣
r=0
− . . . , (2.111)

where i, j = 1, 2, 3; r1 = x, r2 = y, r3 = z. q is the total charge of the system

q =
∫
drρtot(r, t), (2.112)

the integration is performed over a sufficiently large volume to incorporate the whole system
for any t. d(t) is the dipole moment

d(t) =
∫
drρtot(r, t)r. (2.113)

And qij(t) is the second-rank tensor of the quadruple moment

qij(t) =
∫
dr(3rirj − r2δij)ρtot(r, t). (2.114)

Since the expression of the dipole moment (equation 2.113) contains r under the integral
sign, one might wonder whether the dipole moment depends on the origin. To answer this
question, let us displace the origin by r0. The new dipole moment d′(t) will be given by

d′(t) =
∫
drρtot(r, t)(r− r0) =

∫
drρtot(r, t)(r)− r0

∫
drρtot(r, t) = d(t)− r0q. (2.115)

Hereafter we will consider only neutral systems: q = 0. Only in this case, the dipole
moment does not depend on the origin. One can generalize this conclusion (without the
demonstration) in the following way: the lowest nonvanishing multipole moment of a charge
distribution is independent on the origin.

Then we can divide the dipole moment into two contributions: 1) nuclear and 2) elec-
tronic. Substituting the expression of the total density (equation 2.108) into the expression
of the dipole moment (equation 2.113), one gets

d(t) =
∫
drρn(r, t)r +

∫
drρ(r, t)r = d0 +

∫
drρ(r, t)r, (2.116)

where d0 is a dipole moment provided by the nuclei. Since we consider fixed nuclei posi-
tions, d0 is not a function of time.

In this section, we choose the external electric field E(r, t) to be homogeneous in space,
but still time-dependent - E(t). Therefore, the quadruple term, as well as all other higher-
order terms in the expansion 2.111, are exactly equal to zero. Therefore, in this regime,
only dipole coupling is present. In an experimental setup, this would correspond to the
regime when the wavelength of the laser field excitation is much larger than the size of the
molecule.
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Now we would like to express the dipole moment in the basis set. In the length form,
the electron dipole operator is equal to the position operator (in atomic units): d̂ = r̂.
Therefore, the dipole moment can be written in the following form

d(t) = d0 +
∑
i

fi〈ϕi(t)|r̂|ϕi(t)〉. (2.117)

Decomposing 〈ϕi(t)| and |ϕi(t)〉 in the atomic basis set {φα}, one gets

d(t) = d0 +
∑
i

fi
∑
αβ

C∗βi(t)Cαi(t)〈φβ|r̂|φα〉. (2.118)

Using the definition of the density matrix P (equation 2.6), this expression becomes

d(t) = d0 +
∑
αβ

Pαβ(t)〈φβ|r̂|φα〉, (2.119)

or, in the integral form,

d(t) = d0 +
∑
αβ

Pαβ(t)
∫
drφβ(r)r̂φα(r). (2.120)

We define the electron dipole matrix as follows

Dαβ =
∫
drφα(r)rφβ(r) = 〈φβ|r|φα〉. (2.121)

One can explicitly indicate an i component of the matrix

(Dαβ)i =
∫
drφα(r)riφβ(r) = 〈φβ|ri|φα〉. (2.122)

By construction, the D matrix is symmetric. One can also note that the dipole matrix,
unlike the dipole moment, does not depend on time, therefore it can be computed once for
the whole simulation.

We can rewrite the expression of the dipole moment 2.120 using the dipole matrix in
the following way

d(t) = d0 +
∑
αβ

Pαβ(t)Dβα = d0 +
∑
α

(P (t)D)αα = d0 + tr [P (t)D] . (2.123)

The additional term to the Hamiltonian due the external electric field, Ĥ1(t), writes

Ĥ1(t) = −r · E(t). (2.124)

Then in the atomic basis this term will be

Ĥ1αβ(t) =
∫
drφα(r)Ĥ1(t)φβ(r) = −

∫
drφα(r)rφβ(r)E(t) = −DαβE(t). (2.125)
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2.3.2 Optical absorption

In the presence of the external field E(t), the time-dependent dipole moment has the
following expansion

di(t) = di0 +
∑
j

∫ ∞
−∞

dt1αij(t− t1)Ej(t1)

+
∑
jk

∫ ∞
−∞

∫ ∞
−∞

dt1dt2βijk(t− t1, t− t2)Ej(t1)Ek(t2)

+
∑
jkl

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dt1dt2dt3γijkl(t− t1, t− t2, t− t3)Ej(t1)Ek(t2)El(t3)

+ . . . ,

(2.126)

where di0 is the permanent dipole in direction i, αij is the linear polarizability tensor and
βijk, γijkl are higher order polarizabilities. In order to compare the RT-TDDFT results
with the linear response theory, we will consider here the weak field limit. It means that
we assume that the induced dipole moment dind(t) is dominated by the linear polarizability
term

d indi (t) ≈
∑
j

∫ ∞
−∞

dt1αij(t− t1)Ej(t1). (2.127)

Rewriting this equation in the frequency domain, one gets the complex-valued frequency
dependent polarizability tensor [113]

αij(ω) = d indi (ω)
Ej(ω) =

∫
dteiωtd indi (t)e−γt∫
dteiωtEj(t)

, (2.128)

where γ is a numerically adjustable damping factor which leads to the artificial broadening
of the absorption peaks. This factor emulates the coupling effect between electronic and
nuclear degrees of freedom [121]. One can mention that the form of the damping factor
determines the form of the broadening of the absorption peaks (Gaussian, Lorentzian, etc.).
However, the integral over a peak corresponds to the oscillator strength and is a constant
value.

There are different forms of the external electric field to excite the system [122, 123].
We have decided to use a nonphysical delta-function electric field perturbation

Eδ(t) = κδ(t)ê, (2.129)

where κ is the kick strength and ê is the unitary vector pointing in the direction of the
field. In this way, we excite all electronic modes in the molecular system. And the quantity
of energy transmitted to the system by the external field does not depend on the time
discretization ∆t: the electric field is non-zero only at one moment t = 0. In this case, the
polarizability tensor has a simpler expression

αij(ω) = êj
κ

∫
dteiωtd indi (t)e−γt. (2.130)
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The imaginary part of the linear polarizability is proportional to the absorption cross-
section tensor

σ(ω) = 4πω
c

Imα(ω). (2.131)

Finally, the experimentally observed absorption spectrum (dipole strength function) can
be found as

S(ω) = 1
3tr(σ(ω)). (2.132)

Because of a finite simulation time T and time step ∆t, the Fourier transforms of
time-dependent quantities are valid for frequencies less than ωmax = π/∆t and have the
resolution ∆ω = 2π/T .

Hence, in order to calculate the optical response of a molecular system in the RT-
TDDFT, one should proceed in the following way: 0) Perform the ground state DFT
calculation. 1) Apply the electric field excitation E(t) in a direction j. 2) Calculate dipole
moment during the simulation d(t). 3) Perform the calculation of three components of the
polarizability tensor: α1j(ω), α2j(ω), α3j(ω). Repeat these steps for the other directions
of the external electric field. Once the complete polarizability tensor is computed, one can
calculate the dipole strength function S(ω) (equation 2.132). Using molecular symmetries,
one can reduce the number of αij elements to calculate. Usually, in the absence of magnetic
fields, the off-diagonal terms can be neglected.

It should be mentioned that due to the nonperturbative nature of the developed RT-
TDDFT approach, one can calculate the optical response to any external field. However,
for large values of the applied field one should take into account higher order polarizabilities
[124].

Optical absorption spectra of benzene

In order to validate the RT-TDDFT approach we show the results of the absorption spectra
calculation using RT-TDDFT and LR-TDDFT, both implemented in MOLGW. We have
chosen benzene, C6H6, as a model system. The advantage of benchmarking the RT-TDDFT
versus the LR-TDDFT within the same code is that one can choose exactly the same basis
set. For these calculations, the cc-pVTZ basis set was chosen.

For the real-time simulation we have used the following parameters: total simulation
time T = 5000 a.u., time step ∆t = 0.1 a.u., excitation kick strength κ = 2 × 10−4 a.u. .
Large simulation time is chosen to have a good energy resolution of the spectrum: ∆E =
3.4× 10−2 eV. Whereas the time step is limited by the stability of the propagation rather
than the energy range. The bandwidth corresponding to the ∆t = 0.1 a.u. time step is
equal to Emax = 848.2 eV. The dipole moment evolution, as well as the charge density
difference, are presented in Fig. 2.6a and 2.6c. One can note that the initial kick (t = t1)
leads to the maximal dipole moment of the molecule. It is seen that the molecule presents
multiple oscillation modes.

The absorption spectra obtained from RT-TDDFT and LR-TDDFT are normalized for
clarity. Comparing the two approaches (Fig. 2.6b) one can see globally a good agreement
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Figure 2.6 : (a) Temporal evolution of the x dipole moment after the delta-function excitation.
(b) The resulting absorption spectrum obtained from the RT-TDDFT calculation (black) and
LR-TDDFT (red). (c) Isosurface snapshots of the electronic density between the excited and the
ground states for some selected times (these times are also indicated on the panel (a) ). Red color
corresponds to the accumulation of electrons: opaque red ρ(r, t) − ρ(r, 0) = 1.0 × 10−7 bohr−3;
transparent red ρ(r, t) − ρ(r, 0) = 0.5 × 10−7 bohr−3. Blue color corresponds to the depletion
of electrons, the color scheme is identical as for the red color, but with the opposite sign. The
x-component of the dipole moment is presented under each snapshot.
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between the linear-response theory and the time-dependent propagation. For each absorp-
tion peak the position and the amplitude match for both methods. There are some minor
discrepancies though, perhaps because of the finite RT simulation time.

2.3.3 Choice of the propagator and the predictor-corrector scheme

Using the same model system and the same excitation type as in the previous section,
we have made a choice of the propagator technique as well as for the predictor-corrector
scheme. We have pre-selected the following methods: 1) predictor-corrector PC1 with the
second order Magnus propagator ÛMAG2 or with the Crank Nicolson propagator ÛCN ; 2)
predictor-corrector PC2 with ÛMAG2 for the first, predictor, step and the enforced time-
reversal symmetry propagator ÛETRS for the second, corrector, step.

We have used the density matrix error as a propagation quality criterion, which is
defined as follows [116]

PError(t) = 1
NAO

∑
ij

|P exact
ij (t)− P approx

ij (t)|, (2.133)

where P approx(t) is the time-dependent density matrix obtained with a propagator scheme
that one wants to evaluate and P exact(t) is the time-dependent density matrix computed
with some propagation scheme with a very small time step. We have used the time step
∆t = 10−3 a.u. for the P exact(t) construction. At this time step, either of the preselected
propagator schemes gives the same result.

First, we have compared the ÛMAG2 and ÛCN propagators using the PC1 predictor-
corrector scheme. We have used a relatively small time step ∆t = 0.1 a.u. . In Fig. 2.7a it
is seen that the ÛCN propagator leads to a nonphysical instability of the system, whereas
the ÛMAG2 propagator remains stable. Most certainly, this happens because, for the ÛMAG2
propagator one performs the exact diagonalization of the Hamiltonian, whereas for the ÛCN
some further approximations are made (equations 2.76, 2.79). Therefore, the choice of the
propagator among these two is evident: ÛMAG2.

Second, we have performed a comparison between the predictor-corrector schemes: PC1
(using the chosen ÛMAG2) and PC2 (using ÛMAG2 and then ÛETRS). Fig. 2.7b represents
this comparison. One can see that both predictor-corrector schemes show very similar
behavior. Both propagations are stable during a long time with a larger time step than in
Fig. 2.7a case. For this propagation ∆t = 0.5 a.u.. Other things being equal, we should
mention that for the ÛETRS propagation one needs two diagonalizations of the Hamiltonian,
whereas for the ÛMAG2 - only one. Therefore, the propagation scheme provided by the
PC2 is more expensive to calculate, which determines our choice of the predictor-corrector
scheme.

Finally, based on these tests, we have selected the following propagation scheme for all
further calculations: PC1 using the ÛMAG2 propagator. This scheme is relatively cheap for
the calculation and provides a stable propagation with time steps up to 1 a.u. The optimal
time step, of course, depends on a given system and on the perturbation.
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(a) (b)

Figure 2.7 : Density matrix error evolution for the benzene electronic density propagation
after the delta-function excitation. For the propagation the following schemes were used: (a)
MAG2 and CN propagators within the PC1 predictor-corrector scheme, ∆t = 0.1 a.u. . (b) PC1
and PC2 predictor-corrector schemes, ∆t = 0.5 a.u.. In the PC1 the MAG2 propagator was used.
In the PC2 we have used MAG2 for the predictor step and ETRS for the corrector step.





CHAPTER 3

Methodology of the stopping power
calculation in the localized Gaussian
basis

In this chapter, we will discuss the stopping power calculations in the localized Gaussian
basis with particular emphasis on 3D crystalline materials. First, we will describe the
method to deduce the stopping power from a single projectile trajectory in the localized basis.
Then we will discuss our approach to deduce the random stopping power. After that, the
Gaussian basis set specifics in the electronic stopping power calculations will be discussed.
Finally, we will focus on the validity of the fixed projectile trajectory approximation, which
is used in this work.

3.1 Li as a model system

Having developed the RT-TDDFT approach in the Gaussian basis and tested it using the
light absorption spectra calculations (chapter 2), we have directed our efforts towards the
electronic stopping power calculations in crystals. The MOLGW code does not contain pe-
riodic boundary conditions, therefore, in order to perform the stopping power calculations
for crystalline materials, we use clusters that have a size large enough to mimic the bulk
material (this point will be discussed in detail in section 3.1.2).

As a model system, we have selected the proton irradiation in a cluster of metallic
body-centered cubic lithium. We have selected lithium for several reasons: it has few
electrons per atom, it is metallic and therefore the surface truncation does not induce
dangling bonds, there are experimental data for the proton in lithium system and finally
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we have recent linear-response results to compare with [33].

3.1.1 Single-trajectory stopping power

We calculate the instantaneous stopping power using the fixed velocity technique intro-
duced in section 1.5.1. We have selected this method because it corresponds to the
electronic-only response of the system under the irradiation. In addition, since it does
not require the calculation of the forces during the simulation, this method has a lower
computational cost compared to the ab initio molecular dynamics.

To date, the basis functions moving along with the projectile are not implemented in
the code, hence we confine ourselves to the electronic stopping power calculations of light
projectiles. Therefore, the moving “naked” projectile in a cluster can be described simply
as a bare Coulombic potential perturbation

V̂pert(r, t) = Zproj
|r− rproj|

, (3.1)

where Zproj is the charge of the projectile and rproj is the projectile position.

Simulation setup

In this section, we select the [001] orientation of the lithium cluster. RT-TDDFT calcula-
tions are performed using the LDA functional and cc-pVDZ basis set. In next section we
will discuss the influence of these parameters on the stopping power.

A typical simulation of a projectile trajectory performed in this work, can be described
as follows:

• The projectile initial position is rproj 0 = (px; py;−z0), where z0 is the initial sep-
aration between the projectile and the cluster. Typically, we take z0 around 10 Å;
px and py are the components of the impact parameter vector p in the XY plane.

• First, the gKS DFT calculation is performed in order to calculate the ground-state
density of the system.

• Once the convergence of the DFT loop is reached, the constant velocity is assigned
to the projectile and the RT-TDDFT simulation starts.

• The real-time simulation is performed with a time step ∆t which is inversely pro-
portional to the projectile velocity in order to keep the spatial step ∆z constant.
For lithium, we have found ∆z = 0.1 bohr (0.053 Å) to be an adequate spac-
ing. For the projectile velocity v = 1.0 a.u. (Ekin

proj ≈ 25 keV) the time step is
∆t = 0.1 a.u. ≈ 2.42 as.

• The simulation runs until the projectile leaves the cluster. Typically, we have around
400 time steps per simulation (the simulation time is then about tsim = 40 a.u. ≈ 1 fs
for v = 1.0 a.u.).
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Figure 3.1 : Irradiation simulation of proton in the lithium cluster in the localized basis. (a)
Profile view of the irradiation: The projectile (depicted as a black sphere) impinges on a metallic
target (target atoms are in pink and red depending on the atomic plane). The projectile track is
the grey line behind the projectile. The first atomic layer of the target has z = 0 coordinate. The
initial projectile position is given by z0. L is the length of the cluster. (b) Total electronic energy
as a function of the penetration depth z for different velocities (color online). All the trajectories
presented on this graph have the impact parameter py = 0.6 Å, px = 0.0 Å. (c) Front view of
the cluster. The black spheres correspond to six impact parameters for the panel (d). The px
component is equal to zero for all impact points. (d) E(z) curve for different impact parameters
at the projectile velocity v = 1.0 a.u..
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The total energy of the system then depends explicitly on the projectile position z (also
called the penetration depth) and parametrically on the projectile velocity v and its impact
parameter p. For the sake of simplicity, in the expressions concerning the total energy, will
we keep only z dependence and we will mention other arguments when necessary.

Figure 3.1 (b) shows the total electronic energy of the system E as a function of the
penetration depth z for different projectile velocities. It is seen that the energy transfer rate
varies as a function of the projectile velocity v, which demonstrates the electronic stopping
power dependence on v. The peaks of the E(z) curves correspond to the z positions where
the projectile approaches the central atoms of even atomic layers (in red, denoted as B
in Fig. 3.1 (a)). One can also mention that for small velocities (v < 0.2 a.u.) the energy
dependence approaches the so-called adiabatic limit (E(z, v = 0)). In this limit, to get the
E(z) dependence, one performs the time-independent DFT calculation for every z point.
Obviously, the electronic stopping power in this limit is zero (which is seen from Fig. 3.1
(b), black curve).

In Figure 3.1 (d) one can see the total energy dependence as a function of the penetration
depth for several impact parameters p. The origin p = 0 is selected at the central atom
in the XY plane (see Fig. 3.1 (c)). The peaks of E(z) corresponding to the positions of B
layers (z = zB) become larger when the projectile impact parameter decreases. As well, it
can be seen that the overall slope of the curves is larger for small impact parameters.

Electronic density excitations

We would like to illustrate the irradiation simulation by the use of the electronic density
excitation. Fig 3.2 presents the deviation of the lithium electronic density due to a proton
projectile penetration, ρ(r, t) − ρ(r, t = 0), where ρ(r, t = 0) corresponds to the ground
state electronic density. We present the results for different projectile velocities (that
correspond to the rows of the figure). In order to visualize the excited density profile, the
density snapshots for all velocities were taken when the proton nearly exists the cluster
(z ≈ 22 Å). The proton impact parameter was fixed to px = 0.0 Å and py = 0.6 Å.
Red surfaces in Fig. 3.2 correspond to positive and blue to negative electronic density
variations.

It is seen that even though there are no basis functions that are centered around the
projectile, the target basis functions can describe the electronic states of the projectile
(if the projectile is inside the cluster). For example, in the case of a very slow projectile
velocity v = 0.02 a.u. (first row in Fig. 3.2), one can see the electronic density variation,
which is almost spherical and centered around the proton. We expect that the capability of
the target basis functions to capture the electronic density around the projectile is sufficient
for the projectiles with a low charge Zproj, that have the electronic states not very deep in
energy and not very localized in space. Therefore, in this work, we will study the irradiation
of protons, antiprotons, and alpha-particles.

Concerning the electronic density profile, one can see the accumulation of electrons
behind the proton (for the projectile velocities v ≥ 0.5 a.u. or Ekin

proj ≥ 6.2 keV). This wake
charge distribution becomes more elongated as the projectile velocity increases.
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Figure 3.2 : Electronic density differences produced by a proton projectile in lithium cluster
for 5 projectile velocities (indicated on the left-hand side as well as the projectile kinetic energies
Ekinproj). Red surfaces correspond to electron accumulation, while blue to electron depletion.
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Average slope

Now we would like to discuss the method to extract the average slope, which corresponds
to Straje (v), from the energy-penetration depth curves. One can easily calculate the in-
stantaneous electronic stopping power Se(z, v,p) from E(z) curves as a derivative of the
total energy over the penetration depth z (equation 1.128). However, in order to calculate
the electronic stopping power for a single trajectory Straje (v,p) one needs to calculate the
average slope of the energy as a function of z. This procedure should be done for different
impact parameters. It is seen from Fig. 3.1 (d) that the calculation of the average slope for
small impact parameters could be quite challenging even though it is seen that the depen-
dence is periodic. Ullah and coworkers propose to deal with this problem by subtracting
the adiabatic energy E(z, v = 0) from the non-adiabatic energy E(z, v) in order to get rid
of large but periodic peaks of E(z) [94]. However, the calculation of the adiabatic curve
is more computationally expensive (around 30 times) than the RT-TDDFT simulations
themselves because DFT requires to perform the self-consistent loop for every z point.
Therefore, we propose a 3-step procedure to obtain a stable average slope for any impact
parameter.

Figure 3.3 : The procedure of the electronic stopping power calculation from the total
electronic energy as a function of the penetration depth z. The order in the legend corresponds
to the order of the stopping power calculation described in the text: 0) energy values from the
RT-TDDFT simulation → 1) Akima spline → 2) running average → 3) linear regression.

First, we apply the Akima spline [125] to the total energy curve. We select the grid
of z points for the interpolation so as to include precisely the positions of the B atomic
layers, which correspond to the peaks of the energy curve. One can build such grid fixing
the distance between two adjacent points of the grid, ∆z, in the following way

∆z = zmax − zmin
Ninterval − 1 , (3.2)

where zmin and zmax are the positions of the first and the last B layers respectively (see
Fig. 3.1 (a)), Ninterval is the number of points in the interpolation grid between these layers
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(including the boundaries). Then, the position of points in the grid zn (starting from z = 0)
is simply zn = n∆z.

We use a sufficiently large number of interpolation points (around 12 000 for the case
presented in Fig. 3.1). This is done in order to have a smooth energy dependence around
the target atoms for small impact parameters (p < 0.3 Å). For larger impact parameters
the energy curve is already smooth enough even without the spline, however, we apply this
procedure to every impact parameter anyway.

Second, we apply a running average to the interpolated data. In order to calculate the
averaged value of the energy E at the position zn, one uses the following expression

E(zn) = 1
Np

Np−1
2∑

k=−Np−1
2

E(zn+k), (3.3)

where Np is the so-called “average window” - the number of points around zn which are
taken into account for the average calculation at zn. We select Np to be commensurate
with the periodicity of the energy curve, i.e.,

Np = zperiod
∆z + 1, (3.4)

where zperiod is the period of E(z) due to the cluster symmetry (see Fig. 3.1). For the [001]
cluster orientation, zperiod is just equal to the lattice parameter alat, however, for other
orientations it is not necessarily the case. Choosing the interval of the running average
equal to the distance of the period of E(z), we cancel the contributions of the energy terms
that are purely functions of the nuclei coordinates.

Third, we apply the linear regression to the averaged energy E(z) in the region between
zmin and zmax. In this way, we remove the transient regions [0; zmin] and [zmax;L] so to
minimize the surface effect. Finally, the electronic stopping power for a single projectile
trajectory Straje can be found from the slope of the linear fitting curve.

We have found that such a postprocessing of each trajectory is robust and accurate
whatever the impact parameter or the cluster geometry (cluster must contain at least one
periodic repetition though). All the steps are exemplified in Fig. 3.3 for the lowest impact
parameter used in our calculations p = 0.1 Å since it is the most difficult case to analyze.

3.1.2 Cluster geometry

In order to reproduce the bulk stopping power values for a crystalline material, the cluster
used in ab initio simulations must be large enough so to minimize the influence of the
surface effects. On the other hand, the computational time increases with the number of
target atoms as N3

atoms. Therefore, one needs to find a compromise between the accuracy of
the stopping power calculations and the computational cost. It has been reported [39, 126]
that the convergence of the stopping power with respect to the cluster size is fast.
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We have performed the convergence calculations of the electronic stopping power aver-
aged over the projectile trajectory Straje as a function of the cluster length (Fig. 3.4 (a))
and the cluster diameter (Fig. 3.4 (b)).

Figure 3.4 : (a), (b) Electronic stopping power averaged over projectile trajectory Straje of
proton in lithium cluster ([001] cluster orientation). (a) Straje as a function of the cluster length
for the fixed diameter of 14 Å. (b) Straje as a function of the cluster diameter for the fixed length
of 7 Å. Red circles specify the selected cluster geometry parameters. (c), (d) Profile and front
views of the 62-atom lithium cluster retained in this work. The projectile position in the XY
plane is depicted with a black sphere on the panel (d).

In order to select the longitudinal geometry of the cluster (of [001] orientation), we have
been guided by the following considerations: We select the impact parameters in a way that
the closest atoms along the projectile path are always the central atoms of B atomic layers
(see Fig. 3.1 (c)). Therefore, we select such cluster configurations to have the electronic
density around these atoms close to the bulk one. To do so, we always put the A layers
as the first and the last layers in the cluster. Hence, the clusters used in the convergence
tests have the following configurations: A(BA)n. With the cluster geometry selected in
this way, the stopping power Straje does not have significant variations as a function of the
cluster length (Fig. 3.4 (a)).

Concerning the cluster diameter, we do not have any limitations regarding the choice
of this parameter. It is seen (Fig. 3.4 (a) and (b)) that the stopping power is less sensitive
to the cluster length than to the cluster diameter.

The results presented in Fig 3.4 have been produced with the projectile velocity v =
1.0 a.u. (Ekin

proj ≈ 25 keV) and the projectile impact parameter px = 0.5 Å, py = 0.6 Å (see
Fig. 3.4 (d)). For different velocities and different impact parameters we have observed
similar behavior.

Finally, we have retained the 62-atom cluster represented in Fig. 3.4 (c) and (d), which
permits one to evaluate the bulk limit within 5%. This cluster is approximatively 7 Å long
(having ABABA configuration) and 14 Å wide.
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3.1.3 Random stopping power

In this section, we will describe the method we employ to calculate the random stopping
power. First, we will consider the ensemble average technique (section 1.5.2) performed
on fine grids for different crystal orientations. Then, we will discuss the polar symmetry
approximation for the random stopping power calculations, and finally, we will describe our
efficient working scheme to obtain the random stopping power. In addition, the correlation
between the stopping power and the electronic density will be discussed.

Crystalline orientations

We have calculated the random electronic stopping power (RESP) in lithium for three
orientations of the lattice: [001], [110], [111]. The cluster geometries for [110], [111] orien-
tations (Fig. 3.5 (a) and (b)) were selected using similar reasoning as it was done for the
[001] orientation. As a convention, for each orientation, we select the z-axis to be along
the projectile path and the XY plane to be orthogonal to the projectile passage trajectory.

First, let us analyze the crystalline symmetry for each direction. Fig. 3.5 (b) shows in
green the elementary surfaces A for each orientation. The elementary surfaces are found
using the crystalline symmetry considerations: For a given crystal orientation, one finds
the smallest surface which can completely pave the entire surface in the XY plane. In our
truncated clusters we focus on the most central elementary surface that would best mimic
the infinite solid.

Impact parameter grid

Since in the ensemble average RESP calculations every value of Straje (p) is obtained by
running a separate simulation for a given p, we cannot average the stopping power over
a continuous p ∈ A (like in linear response approach [33]), but rather on a finite discrete

grid of impact parameters {pi}
Ngrid
i=1 ∈ A, where Ngrid is the number of grid points.

To select the impact parameter grid, we break the elementary surface A on subelements
A′i . Then for a givenA′i we select one point pi and assume that the stopping power Straje (pi)
represents the average over A′i. Following the idea of the centroid path approximation
(section 1.5.2), we select pi as the geometric center of A′i. One can say that doing so we
perform the centroid path approximation, but applying it to every small A′i instead of to
the entire A.

Finally, we calculate RESP on the impact parameter grid as follows

〈Se(v)〉 = 1
A

∫
dpStraje (v,p) =

∑Ngrid
i=1 Straje (v,pi)wi∑Ngrid

i=1 wi
, (3.5)

where wi stands for a weight of an impact parameter point pi. This weight is proportional
to the intersection between A and Ai: If Ai is completely inside A (which is the case of
a large majority of the grid points), the weight is equal to 1. If Ai is halfway inside A
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Figure 3.5 : (a) Profile and (b) front views of three lithium clusters used for the RESP
calculations. For each crystal orientation we select z-axis along the projectile path. The elemen-
tary surfaces are presented in green and the Wigner-Seitz cells in 2D are depicted with black
dashed lines in the panel (b). (c) Impact parameter grid for 3 orientations. Every impact point
is enclosed in the subsurface Ai, which can be entirely or partially included in A. For the sake
of clarity, the grids are presented for a small number of grid points Ngrid. The positions of the
channeling and centroid path impact points are indicated at the bottom of the figure.
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(which is the case for pi on the borders for the orientations [001],[111], Fig. 3.5 (c)), then
the weight is equal to 1/2, etc.

In order to perform a reliable comparison of the RESP values in different directions
and to make valuable conclusions for the following calculations, we have used a large
number of grid points. To make an equitable sampling, we have selected the number of
grid points more or less proportional to the elementary surface area in a given direction:
N

[001]
grid = 72, N

[110]
grid = 88, N

[111]
grid = 45 (one cannot choose any number of grid points

because of the grid symmetry constraints). We have done the calculations for 5 projectile
velocities. This amounts approximatively to 1000 calculations of Straje (v,p). We would like
to emphasize that such an extensive study is possible due to the low computational cost
of the calculations in the localized Gaussian basis set.

RESP in 3 crystalline directions

Fig. 3.6 presents a colormap of the stopping power Straje (v,p) calculated on the impact
parameter grids for 3 crystalline orientations and the 3 most representative projectile ve-
locities. Calculations were performed within the elementary surfaces and then replicated
to larger surfaces thanks to the crystal symmetries. One can note the following features of
the stopping power common to all the orientations:

• The stopping power becomes more polar-symmetric around the atoms when the pro-
jectile velocity increases.

• The stopping power is less homogeneous at larger velocities: The difference be-
tween the largest (around the atoms) and the lowest (far from atoms) stopping
power is about 0.03 a.u. (≈ 0.015 keV/nm) for v = 0.5 a.u. and about 0.06 a.u.
(≈ 0.03 keV/nm) for v = 4.0 a.u.. This is due to the core electron excitations. As we
will see later, localized core electron excitations take place at high projectile velocities
(higher than v = 1.0 a.u.), whereas delocalized valence electrons get excited at all
the range of studied velocities. Therefore, at low v the stopping power is almost flat
around the atoms whereas at high v one can see the peaks centered at the atomic
positions.

• Different crystal orientations are more or less symmetric. Let us consider the [110]
orientation. In this case, the distance between the projections of the atomic positions
on the XY plane is different in x and y directions: the projections are closer in the
x-direction than in the y-direction. Therefore, the variation of the stopping power
along x-direction is considerably different from the one along y-direction. On the
contrary, in the case of [111] orientation, the atomic projections are equidistant and,
hence, the stopping power has the most symmetric behavior with respect to the polar
angle among the 3 orientations.

Fig. 3.7 presents RESP as a function of the proton velocity for the 3 crystal orienta-
tions. One can see that despite the different behavior of Straje (v,p) in different crystalline
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Figure 3.6 : Straje (v,p) for 3 Li crystal orientations and 3 velocities. Every colored point
corresponds to a stopping power value. Black circles indicate the atomic positions. Calculations
were performed using the cc-pVDZ Gaussian basis.
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orientations, their averaged values are the same (except for minor discrepancies before the
stopping power peak at v = 0.5 a.u. or Ekin

proj = 6.2 keV). Therefore, we select only one,
[001], crystal orientation for the following studies of the random stopping power assuming
that the average in this orientation represents the average in any other orientation and,
therefore, it represents the random electronic stopping power for a polycrystalline material.

The necessary condition for such irrelevance with respect to the crystalline orientation
is the cubic structure of the crystal. In anisotropic systems, like, for example, graphite,
one does not have such property [34, 127].

Figure 3.7 : Random electronic stopping power (RESP) of a proton in lithium as a function
of the projectile velocity for 3 crystalline orientations. Calculations were performed using the
cc-pVDZ Gaussian basis. The actual velocity points are marked with the squares. The lines are
simple guides to the eye.

Correlation between stopping power and electronic density

In earlier models for the stopping power calculations [128, 129], it was assumed that the
electronic stopping is directly related to the local electronic density of the target. Using our
ab initio calculations we can check whether the electronic stopping power can be presented
as a function of the ground state electronic density.

In order to identify a relation between the stopping power and the electronic density,
we introduce a suitable quantity - normalized electronic density along the projectile path
ρ⊥(p). For a given impact parameter p = (px, py), the value of ρ⊥(p) is calculated as
follows

ρ⊥(p) = 1
L

∫
dzρ(px, py, z), (3.6)

where L is the length of the projectile trajectory.
Fig. 3.8 presents the values of ρ⊥(p) for three crystalline orientations. This figure

presents the total electronic density as well as the separate contributions from 1s and 2s
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electrons. One can see that 1s electronic density is localized around the nuclei whereas 2s
electrons are almost equally spread and also have a peak at the nuclei positions.

In order to evaluate the possible correlation between the stopping power and ρ⊥(p), we
plot in Fig. 3.9 the stopping power as a function of the total electronic density along the
path. To do so, we took the values of Straje (v,p) and ρ⊥(p) at the same grid points pi as
previously described.

One can see that for any crystalline orientation (see Fig. 3.9 (a)) there is no correlation
between the quantities for small densities: for one value of ρ⊥ one finds several values
of Straje corresponding to this ρ⊥. In contrast, at large electronic densities, the stopping
power is a normal single-valued function of the electronic density along the path. But this
function is slightly different for different crystalline orientations.

Concerning the correlation at different projectile velocities (Fig. 3.9 (b)), one can
mention that for all the projectile velocities except v = 0.5 a.u. the stopping power has a
rapid growth when the electronic density approaches its maximal value. The absence of
such behavior at v = 0.5 a.u. can be explained by the fact that large electronic densities
along the path are associated mostly with 1s core electrons. The core electrons do not
get excited at low velocities (this statement will be shown in detail later in section 3.2.2),
therefore, the stopping power at v = 0.5 a.u. remains almost constant in the region where
the core electron density has the largest variation.

The observed correlation behavior is more complicated than the one derived from the
scattering theory in a non-uniform electron gas [128, 129], where the electronic stopping is
a pure function of the electronic density at any projectile velocity.

Polar symmetry of the stopping power

In the following sections, we will consider the random stopping power calculations in the
[001] crystal orientation, as we have shown, it can represent any direction.

As one can visually conclude from Fig. 3.6, the electronic stopping power has a polar
symmetry, meaning that Straje remains almost unchanged with respect to the polar angle α
in the XY plane (we fix the origin at the central atom of the cluster). In order to present
this fact in a more evident manner, we plot in Fig. 3.10 (a) and (b) the stopping power as a
function of the absolute value of the impact parameter p. The polar angle α is encoded by
the color of the points: blue points correspond to α = 0◦ and red points to α = 45◦, which
is the direction along the y-axis. One can see that the stopping power becomes sensitive
to the polar angle when one approaches the border of the elementary surface (p ≥ 1.0 Å).
This effect is more important at low velocities (see Fig. 3.10 (a) and (b)).

Taking into account the polar symmetry, one could save a lot of computational time: If
only Straje (v, p) values (instead of Straje (v,p)) are needed to calculate the random stopping,
one can perform the stopping power calculations along only one direction in the XY plane
and not on the grid. In order to quantify the error of the polar symmetry assumption, we
keep the same grid as was used for previous RESP calculations (as in Fig. 3.7 for example)
but for every grid point pi we assign the stopping power value corresponding to p = |pi|
and α = 45◦ (see Fig. 3.10 (c)). Then we calculate the difference between RESP evaluated



3.1. LI AS A MODEL SYSTEM 109

Figure 3.8 : Electronic density of lithium along the proton path for the 3 crystalline orienta-
tions. The first row of plots presents the total density. The second row - the localized 1s and the
third - the valence densities.
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Figure 3.9 : Electronic stopping power as a function of the electronic density along the
projectile path for: (a) the 3 crystalline orientations and one proton velocity v = 1.0 a.u.; (b)
One crystalline orientation [001] and several projectile velocities.

in this way and RESP calculated on a real grid. This error (presented in Fig. 3.10 (d)) has
the largest value at low v. The error is negative, it means that the stopping power along
the direction α = 0◦ is slightly larger than along α = 45◦ (as one can see from Fig. 3.10
(a) and (b)). The absolute value of the error is lower than 2% which indicates that the
polar symmetry approximation is good enough for the case of lithium. It is true though
that lithium is a simple metal with non-directional bonds and that this statement is not
completely unexpected.

Simplified RESP calculation scheme

For the whole rest of the work, we assume the polar symmetry of the stopping power
and restrict the calculations of Straje (v,p) to the direction of y-axis Straje (v, p = (0, py)).
Therefore, in order to calculate the random stopping power, one can transform the 2D
integration over p to 1D integration over the absolute value p

〈Se(v)〉 = 1
A

∫
dpStraje (v,p) = 1

A

∫ alat/2

0
dp p ∆α(p) Straje (v, p), (3.7)

where ∆α(p) is the angular range of the arc contained in the elementary tile at each distance
p (Fig. 3.11 (a)). The integration is performed over the limits of the elementary surface
along the y-axis (see Fig. 3.5). In this way, p∆α(p) is the weight of the stopping power
Straje (v, p) that takes into account the crystal geometry. For the bcc [001] orientation,
∆α(p) has the following expression

∆α(p) =

π/4, if 0 ≤ p ≤
√

2alat/4
1/2 arcsin

(
a2
lat/4p2 − 1

)
, if

√
2alat/4 < p ≤ alat/2.

(3.8)
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Figure 3.10 : (a) and (b) Electronic stopping power of lithium at proton velocity of 0.5 a.u.
and 4.0 a.u. respectively as a function of the absolute value of the impact parameter p. The
origin is placed on the central lithium atom. The coloring scheme encodes the polar angle. (c)
Schematic illustration of the polar symmetry error evaluation. One assigns to each point of the
grid the value of the stopping power corresponding to the same p, but along the y-direction. (d)
Polar symmetry error as a function of the projectile velocity.

The factor p∆α(p) can be also interpreted as a probability to impinge the crystal (at
[001] orientation) at the impact parameter p. For example, the probability for the projectile
to impinge the surface of the target at precisely p = 0.0 as well as at p = (alat/2; 0) is
zero (see Fig. 3.11 (b)). The impact point of the maximal probability is situated at
p =
√

2alat/4.

For the case of lithium, we have found that 6 sampling points is sufficient to numerically
perform the integral in equation 3.7. This scheme significantly reduces the number of
calculations (from 72 points to only 6) needed to accurately evaluate the RESP values.
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Figure 3.11 : (a) Illustration to the stopping power integration under the polar symmetry
approximation. One assumes that the stopping power depends only on the module of the impact
parameter p. Then, in the integration one needs to take into account the length of the arc ∆α(p)
as a function p; (b) Weight function under the integral (equation 3.7).

3.2 Basis set influence on the stopping power

As was already mentioned in section 2.1, the particularity of the stopping power calculations
is the strong effect of (almost) all-electron excitations due to the highly-energetic projectile.
Therefore, a proper description of the unoccupied electronic states, provided by a localized
basis set, is crucial for this problem.

We have considered in general terms the localized Gaussian basis sets in section 2.1.2.
In this section, we will consider in detail the specifics of the basis sets as applied to the
electronic stopping power calculations.

In general words, there are three different mechanisms (or “degrees of freedom”) that
influence the Gaussian basis set of a given target:

• The cluster geometry. One of the advantages of the localized basis sets is their tunable
accuracy as a function of space. Therefore, for a given system, one can identify “more
important” atoms (when it is possible) and assign to them a larger number of basis
functions than for the rest of the system. In this way, the electronic density (the
ground state and the time-dependent) will be better described around the selected
atoms.

• The order of the basis set X. As was discussed in section 2.1.2, increasing the order
X of the standard Dunning basis sets cc-pVXZ, one increases the highest orbital mo-
mentum l and as well as the number of the basis functions for lower orbital momenta.
It is expected that adding basis functions, one improves the description of the excited
electronic states. Therefore, the X influence on the electronic stopping power will be
studied here.
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• The standard Dunning bases cc-pVXZ can be improved by inclusion of the tight-core
cc-pCVXZ or diffuse aug-cc-pVXZ functions (or, even, both at the same time). How-
ever, the computational time, of course, will be also larger. Hence, the justification
for such possible improvements should be carefully studied.

To make an analogy with the plane-wave codes, these parameters would correspond to
tunning of the plane-wave cutoff and to choosing the number of electrons hidden in the
pseudopotential [35, 88].

In this section, first, using the example of proton in lithium irradiation, we will introduce
our technique of the position-dependent basis that allows us to save the computational time
while keeping high accuracy. Then we will switch to the proton in aluminum system in
order to study the basis set convergence problem. And finally we will describe a proposed
scheme for the basis set generation specifically for the stopping power calculations.

3.2.1 Mixed basis technique

First, we would like to illustrate the importance of the unoccupied states description.
Fig. 3.12 (a) presents the random electronic stopping power (RESP) for the following
basis sets: cc-pVDZ (black curve, 14 basis functions per Li atom) and cc-pVQZ (red curve,
55 functions per Li). It is seen that for the projectile velocities v < 0.7 a.u. (Ekin

proj < 12.2
keV) both bases give almost the same result. However, for larger projectile velocities, the
cc-pVDZ basis underestimates much the electronic stopping in comparison to the larger
basis cc-pVQZ: The cc-pVDZ basis does not provide a proper description of the target
electron excitations.

We found that the quality of the electronic states description is especially important
for the atoms that are close to the projectile track. With Gaussian basis sets, it is possible
to tune the quality of the basis set on each atom of the target individually. Therefore,
we can assign more precise basis functions to the atoms that are closer to the projectile
trajectory. Fig. 3.12 (b) demonstrates this idea: A larger basis set cc-pVQZ is assigned to
the closest atoms to the projectile trajectory, depicted in red. Then, a less complete basis
cc-pVTZ is assigned to the atoms that are more distant from the track, painted cyan. All
the remaining atoms (presented in gray color) are described with the cc-pVDZ basis set
quality. Such a basis set configuration allows one to produce almost the same results (green
curve in Fig. 3.12 (a)) as for the system where all the target atoms are described in the
cc-pVQZ basis set (red curve in 3.12 (a)). The tunable basis allows for a drastic reduction
of the number of basis functions: In this example there are 3410 basis functions for the
whole cluster described within the cc-pVQZ basis, whereas there is only 1570 of them with
the mixed basis.

Therefore, for further basis set studies we will consider only the central region of the
cluster (depicted in red): For every calculation we will keep the atoms in the “cyan region”
described in the cc-pVTZ basis and in the “gray region” with cc-pVDZ basis, while changing
the basis set of the central, “red”, region. The statement that such configuration is equiv-
alent to a system where all atoms are described with the highest quality basis was verified
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Figure 3.12 : (a) Random electronic stopping power of proton in lithium as a function of
the proton velocity obtained with different basis sets. (b) The lithium cluster represented with
a coloring scheme that encodes the basis quality on each atom for the mixed basis technique.
Red atoms are described with cc-pVQZ (abbreviated as QZ in the figure) basis, cyan atoms with
cc-pVTZ (TZ) and gray atoms with cc-pVDZ (DZ).

for different kinds of basis sets (including diffuse aug-cc-pVXZ).
One should mention that the mixed basis technique is well adapted for the ensemble

average random stopping calculation since the projectile trajectories are known in advance
and they have the impact parameters within the elementary surface which is small com-
pared to the cluster size.

3.2.2 Dunning basis series comparison

As we have seen in Fig. 3.12 (a), increasing the basis set order X in the set cc-pVXZ

improves the description of the electronic states and hence provides larger stopping power
values, especially for high projectile velocities. In this section, we would like to compare
different families of the Dunning basis sets for a fixed value of X. We would like to examine
the standard correlation-consistent sets cc-pVXZ as compared with the diffuse aug-cc-

pVXZ and the tight core cc-pCVXZ basis sets. The highest value of X for which all these
bases exist for lithium is X=Q(quadruple). The corresponding bases have the following
number of basis functions per one Li atom: 55 for cc-pVQZ, 80 for aug-cc-pVQZ and 84
for cc-pCVQZ.

As the first criterion of the comparison, we can analyze the spatial extent and spatial
density of the basis functions for each of the sets. As was explained in section 2.1.2, the
square root of the inverse of a Gaussian exponent 1/√αb provides an approximate distance

|r−Ra| at which the corresponding Gaussian function e−αb(r−Ra)2
describes the electronic

wave function around a target nucleus a. Fig. 3.13 presents these effective distances for
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Figure 3.13 : Length scale of Gaussian basis functions for three basis sets of the basis order
X=Q for lithium. The color encodes the orbital momentum l of the basis functions. Four s basis
functions with the effective distances lower than 0.1 Å which are included in all considered basis
sets are not presented.

each basis set. It is seen that cc-pCVQZ has more basis functions in comparison to cc-pVQZ

in the region close to nuclei (0.15 Å < |r −Ra| < 0.7 Å). Whereas the basis set aug-cc-

pVQZ describes better a region farther from the nuclei (1.5 Å < |r − Ra| < 7.0 Å). The
basis set which includes both core and diffuse states, aug-cc-pCVQZ (109 basis functions
per Li, not presented), incorporates all the functions shown in Fig. 3.13.

After having analyzed the spatial extension of the basis functions, we can compare
them based on the electronic stopping power calculations. Fig. 3.14 (a) shows the random
electronic stopping power of proton in lithium calculated with the three studied bases. The
behavior of the basis functions is somewhat similar to the cc-pVDZ/cc-pVQZ comparison
(Fig. 3.12 (a)): For small velocities all the three basis sets produce almost the same results,
while for v > 1.0 a.u. (Ekin

proj > 25 keV) the cc-pCVQZ basis set gives considerably larger
stopping power values.

One can explain this effect by looking at the impact parameter dependence of the
weighted stopping power p∆αStraje (p) for different velocities (Fig. 3.14 (b) and (c)). We
have taken two projectile velocities at which the stopping power impact parameter depen-
dence is clearly different: v = 0.5 a.u. (Ekin

proj ≈ 6.2 keV) and v = 4.0 a.u. (Ekin
proj ≈ 400

keV). In the low-velocity case (Fig. 3.14 (b)), one can see that, as compared to the stan-
dard cc-pVQZ basis set, the weighted stopping power p∆αStraje is slightly larger for the
larger impact parameters p (p > 0.6 Å) for the diffuse aug-cc-pVQZ basis set. The tight
core basis set provides slightly larger stopping power values for smaller p (p < 0.6 Å). This
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Figure 3.14 : (a) Random electronic stopping power as a function of the projectile velocity
of proton in lithium for three Gaussian basis sets: standard cc-pVQZ, tight core cc-pCVQZ, and
diffuse aug-cc-pVQZ; (b), (c) Weighted stopping power as a function of impact parameter for
projectile velocities v = 0.5 a.u. (Ekinproj ≈ 6.2 keV) and v = 4.0 a.u. (Ekinproj ≈ 400 keV)
respectively for the same three bases.
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effect is due to different spatial extensions of the bases (see Fig. 3.13).

However, for the high velocity (Fig. 3.14 (c)), the difference between the bases becomes
crucial: One can note a large peak at small p for the cc-pCVQZ basis, that is absent for
the two other bases. For larger impact parameters, the difference between the bases at
high velocities is minor. These results are resumed in Table 3.1 that presents the stopping
power difference for these two distinct velocity regimes. One obtains the same qualitative
results for other basis order X values. Therefore, we generalize our conclusions to the
corresponding basis set families (standard, diffuse and tight core).

(
〈Se〉CQZ − 〈Se〉QZ

)
/〈Se〉QZ

(
〈Se〉aug-QZ − 〈Se〉QZ

)
/〈Se〉QZ

v = 0.5 a.u. 2.4 % 4.2 %
v = 4.0 a.u. 23.4 % 0.9 %

Table 3.1 : Difference of the random electronic stopping power for two projectile velocities.
cc-pVQZ basis (abbreviated as QZ) is taken as a reference. The first column presents the difference
for the cc-pCVQZ (CQZ) basis and the second for the aug-cc-pVQZ (aug-QZ) basis set.

In conclusion, based on the stopping power calculations of proton in lithium, we consider
that the tight core basis set family cc-pCVXZ is necessary because of the proper description
of core electron excitations. The diffuse basis sets aug-cc-pVXZ bring the corrections to
the random stopping power at low velocities. However, since these corrections are minor,
we assume that taking into account the diffuse functions is needless in the case of lithium
target. In the next section, we will see the difference in conclusions in the case of aluminum.

Correlation of weighted stopping power with the core electron density

Having identified the importance of the description of the core electron excitations that can
be provided by including the tight core basis functions, we can re-examine the question
of the stopping power correlation with the electronic density discussed in section 3.1.3.
Since for the random stopping power calculation within the polar symmetry approximation
(equation 3.7), the stopping power Straje is integrated together with the weight function
p∆α, let us consider now the complete function under the integral for different velocities
and compare it with the electronic density weighted in the same way (Fig. 3.15).

At low velocity (Fig. 3.15 (a)), the variation of the stopping power as a function of the
impact parameter is rather limited and the shape of p∆α(p)Straje is mostly dictated by the
integration weight p∆α(p) (compare Fig. 3.11 (b) and Fig. 3.15 (a)). Since the valence
electron density ρval⊥ is almost flat with respect to p, the quantity p∆α(p)ρval⊥ also repeats
the form of the weight function.

At large velocity (Fig. 3.15 (b)) the stopping power is strongly dependent on p and
p∆α(p)Straje is much flatter. Interestingly, the position of a peak in the weighted stopping
power coincides with the position of the peak of the Li 1s electrons. This fact demonstrates
that the core electrons participate much when the proton kinetic energy is large.
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Figure 3.15 : (a) Weighted stopping power (solid black line), total weighted electron density
(dashed green line) and weighted valence electron density (dashed line) as a function of the impact
parameter p at the projectile velocity v = 0.5 a.u.. (b) Weighted stopping power (solid red line),
total weighted electron density (dashed green line) and weighted core 1s electron density (dashed
line) as a function of the impact parameter p at the projectile velocity v = 4.0 a.u..

3.3 Basis set convergence in aluminum

In this section, we will study in detail the electronic stopping power convergence with
respect to the Gaussian basis set. For this problem, we have chosen the aluminum fcc [001]
target because in this case, the convergence is more complicated than in the case of lithium.
At first, we will examine the core electron excitations contribution to the convergence
behavior. Then, we will re-examine the comparison of two larger basis families - tight
core and diffuse basis sets. Finally, we will describe the stopping power extrapolation with
respect to the basis set in order to obtain converged values.

Proton in aluminum irradiation: simulation setup

Switching from a simpler case of lithium to aluminum target did not affect significantly
the numerical scheme of the stopping power calculations described in section 3.1. Here
we briefly summarize the most important characteristics of the random electronic stopping
power calculations in aluminum:

• The cluster size convergence has a similar behavior compared to the Li case. 8 Å-
long and 9 Å-wide 54-atom cluster is retained for the calculations: It has 5 layers in
z-direction, similarly to Li, of ABABA configuration.

• For aluminum, we also find the polar symmetry of the stopping power which allows
us to switch from a surface average to a weighted average along one line.
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• The geometry of the fcc [001] target is different from the case of lithium (bcc),
however, the weight function for the Straje (p) integration derived for the lithium case
is very similar: actually one just needs to substitute alat with alat/

√
2 in equation

3.8.

• The mixed basis technique is also successfully tested for Al and we will keep the same
position-dependent basis configuration as for Li. In all further basis set convergence
tests, the atomic basis for second and third layers (cyan and grey atoms in Fig. 3.12)
will be always set to cc-pVTZ and cc-pVDZ respectively.

• The dependence of Straje (p) on the impact parameter p is more variable in Al than
in Li, therefore, we perform calculations with a finer impact parameter grid: ∆p =
0.1 Å, which amounts to 13 impact point calculations per velocity.

• In Al target we treat all the 13 electrons explicitly. The 1s2s2p electronic states,
considered as core states, are much deeper in energy compared to the 1s core electrons
of lithium. Therefore, the excitation dynamics of Al core electrons is faster than in
the case of Li. In order to properly capture the core electrons excitation dynamics,
we decrease the spatial step to ∆z = 0.04 Å for the impact parameters p ≤ 0.6 Å.
Such impact parameters correspond to the case when the projectile impinges the
regions of core electrons. For impact parameters p > 0.6 Å we keep the spatial step
∆z = 0.1 Å as in the case of Li target.

• For the same basis (for example, within cc-pCVQZ for both targets), the computa-
tional time for aluminum is approximatively two times larger than for lithium because
of the larger number of basis functions (84 function for Li and 109 functions for Al
in cc-pCVQZ basis set) and the larger number of electrons (3 for Li and 13 for Al).

3.3.1 Convergence of cc-pCVXZ basis sets: comparison with the
frozen core dynamics

As was concluded for the Li target, the tight core cc-pCVXZ basis sets are necessary for the
stopping power calculations. Therefore, we have started the convergence tests with this
basis set family.

Fig. 3.16 (solid lines) shows the random stopping power as a function of projectile
velocity for cc-pCVXZ basis sets. One can note that the stopping power has a convergent
behavior for all velocities. Though, the convergence is not completely reached for any of
projectile velocities: The difference between the most precise basis set cc-pCV6Z and the
previous one cc-pCV5Z is about 6 %. In addition, the convergence is quite slow, especially
for the larger basis sets (X=Q,5,6): For example, the difference between the previous pair
of bases, cc-pVC5Z, and cc-pVCQZ, is about 7 %.

In order to get a better understanding of the nature of the convergence problem, we
have performed the same series of calculations with the frozen core electron dynamics: We
prohibit the electronic excitations from the localized 1s, 2s and 2p electronic stated of
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Figure 3.16 : Random electronic stopping power for proton in aluminum as a function of
proton velocity within the cc-pCVXZ (X=D,T...6) basis sets. The calculations are performed in
all-electron (solid lines) and frozen core (dashed lines) dynamics.

aluminum target. The implementation of the frozen core dynamics in MOLGW code was
described in section 2.2.7. It is seen that for high projectile velocities (v > 3.0 a.u. or
Ekin
proj > 225 keV) in the case of frozen core states (Fig. 3.16, dashed lines), the stopping

power has lower but converging values. While at lower velocities, especially at v < 1.0 a.u.
(Ekin

proj < 25 keV), the stopping power with the frozen core is the same as in the case of the
all-electron dynamics. These results lead to the following conclusion: The random stopping
power convergence problem at high projectile velocities is due to the core electrons, whereas
at low velocities it is due to the valence electrons.

As we have seen in the lithium case (Fig. 3.14), the addition of the diffuse functions
to the basis set somewhat influences the stopping power at low projectile velocities. Even
though, this effect was limited in the case of Li target, since Al contains more valence
electrons, let us re-examine this effect.

3.3.2 Most complete aug-cc-pCVXZ basis set family

The tight core basis functions are necessary for the full convergence problem investigation
(including all the range of studied projectile velocities). Therefore, in order to study the
influence of diffuse functions on the stopping power, we do not consider the diffuse-only
basis sets, i.e. aug-cc-pVXZ, but rather the most complete aug-cc-pCVXZ basis set family
that includes both diffuse and localized basis functions.

Fig. 3.17 (a) shows the comparison between cc-pCVXZ and aug-cc-pCVXZ for the
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Figure 3.17 : (a) Random electronic stopping power of proton in aluminum as a function of
projectile velocity for the tight core basis sets cc-pCVXZ (dashed lines) and the complete diffuse
and tight core aug-cc-pCVXZ (solid lines). The basis order X varies for both sets from X=D to
X=6. (b) Random electronic stopping power for the same system and the same basis sets as a
function of the basis order X for the proton velocity v = 1.0 a.u. (Ekinproj = 25 keV). The colors
of the symbols correspond to the basis set order and are consistent with (a) panel. The stopping
power obtained with aug-cc-pCV5Z (blue triangle) is almost the same as the value obtained with
cc-pCV6Z (yellow square).

projectile velocities ranging from 0.2 a.u. to 3.0 a.u. It is seen that the aug-cc-pCVXZ

basis sets yield larger values of the stopping power for low velocities. In particular, at
the projectile velocity v = 1.0 a.u. (Ekin

proj = 25 keV), the stopping power value within
the aug-cc-pV5Z almost reaches the value obtained with the cc-pCV6Z basis set (see Fig.
3.17 (b)). Then, at v > 3.0 a.u. (Ekin

proj > 225 keV), the stopping power values obtained
with both basis sets become similar. Hence, adding the diffuse basis set functions improves
the convergence of the stopping power of proton in aluminum at the projectile velocities
v < 3.0 a.u. The effect of adding the diffuse functions is more important in the case of
aluminum target than of lithium one.

Finally, one could have a good description of the electronic excitations with the diffuse-
only basis functions aug-cc-pVXZ at low velocities and tight core-only basis cc-pCVXZ at
high velocities. However, in order to obtain a complete curve of the random stopping
power including the transient regime, which incorporates both types of valence and core
electron excitations, in the next section, we use the most complete basis set family, i.e.
aug-cc-pCVXZ.

3.3.3 Stopping power extrapolation

Having determined the final basis set for the convergence calculations, we will study an
extrapolation procedure of the stopping power as a function of the basis order X that would
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allow us to find the asymptotic values.
We have tested two methods for the stopping power extrapolation:

1) Extrapolate the weighted stopping p∆αStraje (p) for each impact parameter p sepa-
rately (Fig. 3.18 (a)) and then integrate the extrapolated curve to obtain the random
stopping power.

2) Extrapolate already integrated random stopping power 〈Se〉 as a function of X (Fig.
3.18 (b)).

For both methods we have selected the extrapolation formula of the following form:

〈Se(X)〉 = A0 − A1 exp
{
− A2 · X

}
, (3.9)

where A0, A1, and A2 are the fitting coefficients. We have tried to use different forms of
the extrapolation curves (various polynomial and exponential-like functions). With the
presented one (equation 3.9), we could achieve a good fitting quality of the stopping power
for all ranges of impact parameters and velocities used in this work. A similar function
was used by Yao and coworkers for the extrapolation of the stopping power as a function
of the plane-wave cutoff in order to describe the K-shell excitations of water [130].

Figure 3.18 : Illustration of two possible methods for the stopping power extrapolation as
a function of the basis order X for the projectile velocity v = 5.0 a.u. (Ekinproj ≈ 625 keV). (a)
Extrapolation of weighted stopping power: each point on the extrapolated curve (pink line) is
obtained as a separate extrapolation procedure. Then, to obtain the asymptotic value of the
random stopping power, one needs to integrate the extrapolated curve. (b) Direct extrapolation
of the random stopping power. The extrapolate value (〈Se〉extrap = 0.101 a.u. = 0.052 keV/nm)
is reported with the horizontal black line. The relative deviation of the asymptotic value with
respect to the value obtained with the largest basis aug-cc-pCV6Z is also presented on the figure.

In order to select the method of the extrapolation we have used the following criteria:
We extrapolate the stopping power with two methods using not complete data, namely,
X=D, T, Q, 5 (without X=6). Then we compare the obtained values with ones obtain with
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Figure 3.19 : Extrapolation of the random electronic stopping power using the direct 〈Se〉
extrapolation method: (a) The standard deviation of the asymptotic values with respect to the
values obtained with the largest basis aug-cc-pCV6Z; (b) Stopping power for the series of aug-

cc-pCVXZ basis sets (black: X=D, red: X=T, ... , yellow: X=6) and the extrapolated values (in
pink).
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the full basis set basis data (X=D, T, Q, 5, 6). Finally, we found the random stopping
extrapolation method (Fig. 3.18 (b)) more stable and precise that the weighted stopping
extrapolation.

The final result of the electronic stopping power calculations using the largest Dunning
basis sets family and the extrapolation scheme is presented in Fig. 3.19 (a). The relative
deviation between the asymptotic stopping power values and the values obtained with
the largest basis aug-cc-pCV6Z (Fig. 3.19 (a)) is at most 17 %. The best convergence is
achieved at high projectile velocities: the relative deviation is only about 6 %. Nevertheless,
the results of the relative deviation show that one needs to perform the calculations up
to the highest basis order X to obtain the asymptotic values within the highest possible
precision.

We have also tried to perform the extrapolation of the stopping power based on the
cc-pCVXZ basis sets calculations (which is less computationally expensive). However, at
low proton velocities (v < 1.0 a.u. or Ekin

proj < 25 keV) we could achieve the convergence:
the stopping power growth with the basis order X was almost linear in this case. This fact
proves again the necessity of the most complete basis sets (aug-cc-pCVXZ) usage for the
accurate stopping power calculation of proton in aluminum.

3.4 Basis set generation

3.4.1 Motivation

As we have seen in the previous section, the basis set is crucial for the accuracy of the
stopping power calculations. Among all simulation parameters (cluster size, polar sym-
metry assumption, number of impact parameter points, etc.), the stopping power is most
sensitive to the basis set completeness. Note that without the extrapolation over the basis
set order X we would get the stopping power errors up to 17 %. In addition, the con-
vergence is very slow, which forces one to perform the calculations with the largest basis
set that exists for each element. Though, slow convergence with respect to the basis set
order X is a common problem for other physical quantities [131, 132]. Recently, Luppi and
coworkers [133, 134] have proposed the methods of the Gaussian basis optimization for the
high-harmonic generation spectroscopy.

Although Dunning Gaussian basis sets are the handiest bases commonly used in the
quantum chemistry community for a variety of atomic systems, they are constructed in a
way to reproduce, above all, the electronic correlation energy. Hence, these basis sets are
not necessarily optimal for the electronic stopping power calculations. In order to examine
this question, we have performed the following calculation: We have selected the cc-pCVQZ

basis set, which has already a large number of basis functions in the case of aluminum
(NAO = 109). Then, in order to evaluate the “importance” of a given basis function
presented in the set, we performed the random stopping power calculation of proton in
aluminum within the cc-pCVQZ basis but without this function. Next, we calculated the
deviation of the stopping power calculated without the basis function with respect to the
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Figure 3.20 : Contribution of different basis functions of the set cc-pCVQZ to the random
stopping power of proton in aluminum: Each line corresponds to the random stopping power
deviation calculated without the basis function of a given Gaussian exponent αb with respect to
the value calculated with the complete basis. Some basis functions have very small contributions
(lower than 0.2 %). Therefore, in order to make them visible in the diagram, every line begins in
the grey region of the graph, which does not have any numerical significance.

one calculated with the complete basis set. In this way, we estimate a contribution of the
given basis function to the random stopping power value. We have selected the proton
velocity v = 4.0 a.u. (Ekin

proj = 400 keV) because at this velocity both core and valence
electrons are excited by the projectile (see Fig. 3.16).

Fig. 3.20 presents the results of such analysis. Systematically, the stopping power
calculated without a given basis function decreases. However, for many basis functions,
it decreases by less than 1 %. Only some basis functions have strong importance on
the stopping power leading to 4 % or more of stopping power reduction. Of course, the
presence of basis functions that have a small contribution to the stopping power is also a
consequence of a large total number of basis functions in the cc-pCVQZ set: Absence of
one basis function can be more or less compensated by a linear combination of some other
functions. However, taking into consideration that there are some other basis functions
that are much more significant for the stopping power value, it is clear that one could have
placed the basis function in another, more optimal, way that would have led to a more
converged (larger) stopping power for the same number of basis functions.

There already exist some works that propose the “all-purpose” solutions for the basis
set generation. For example, Lehtola and coworkers [135, 136] propose an approach for
the basis set optimization within some finite region in space around a nucleus [rmin, rmax].
One assumes that the physical quantity of interest is sensitive to the electronic density in
this range. The [rmin, rmax] spatial interval corresponds to a range of Gaussian exponents
[αb min, αb max] such that αb min = 1/r2

max and αb max = 1/r2
min. With the proposed algo-

rithm one will retain as many Gaussian exponents in this range of αb as needed to ensure
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the completeness of the basis set within some specified accuracy.
Such a basis completeness-optimization approach is hard to apply to the stopping power

problem for the following reason: Let us consider one atom of a target. During the irradi-
ation process, the projectile-target distance varies from ∞ to p, where p is the projectile
impact parameter with respect to the considered atom. Hence, strictly speaking, the re-
gion for the basis completeness optimization should be [p,∞] for which this algorithm, of
course, would not be practical. Certainly, there exists some effective maximal distance of
the interaction between the projectile and the target atom. However, this distance depends
on a given atomic structure of the target, projectile energy, etc. Therefore, we have decided
to develop the basis set optimization not with respect to some spatial range, but directly
with respect to the quantity of interest - random electronic stopping power.

3.4.2 Basis set optimization algorithm

The idea underlying our algorithm is quite simple and is based on the following considera-
tion: According to the variational principle, adding a basis function (to some existing basis
set) with any Gaussian exponent αb assigned to any atom of the target would improve
the quality of the electronic states description, intuitively, this would increase the stopping
power value. As an illustration of this idea, one can look at the stopping power convergence
with respect to the Dunning basis sets (Fig. 3.18,3.19): An increase of the basis set order
X leads for the increase of the stopping power for any impact parameter and any projec-
tile velocity. One can mention also an example from the plane-wave codes: it has been
reported [130] that the stopping power systematically increases with the increasing of the
plane-wave cutoff energy (the data presented in [130] concerns a high projectile velocity).
Therefore, our basis optimization procedure consists in the maximization of the random
stopping power.

Here we present the detailed description of the basis set optimization algorithm (the
steps of the description match the steps indicated on the diagram 3.21):

(0) We start with the initial basis, called opt0. This basis must contain at least the
minimal set of functions needed to describe the occupied electronic states. For the
proton in aluminum system, to obtain opt0, we take the cc-pCVQZ basis and keep
only s and p orbitals. Even though these retained orbitals might be not optimized, the
computational cost of them is low (due to low 2l+1 value). We start our optimization
with the value of orbital momentum l = 0. The optimization scheme is designed for
a fixed projectile velocity v0.

(1) We perform the optimization progressively for the orbital momentum values from
l = 0 to l = lmax. At steps (2)-(5) the value of l is fixed.

(2) We define a candidate list of Gaussian exponents {α(i)
b }ni=1, that includes a large range

of α
(i)
b values (typically, from αb = 10−3 to αb = 20). If needed, this range can be

extended on the fly of the optimization.
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Figure 3.21 : Algorithm for the basis set optimization with respect to the electronic stopping
power.
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(3) For each α
(i)
b , we add this exponent to the basis set. Then, we calculate the random

stopping power with the basis containing the additional function, 〈Se(α(i)
b )〉 (the

projectile velocity being equal to v0). To do this, we proceed by the usual scheme:
we calculate Straje (p) for a set of impact parameters and then we integrate Straje (p)
with the weight function (equation 3.7).

(4) Among all values of 〈Se(α(i)
b )〉 we select the value of αb (called αmaxb ) that maximizes

the random stopping power.

(5) If the relative deviation of the stopping power calculated with the Gaussian function
with exponent αmaxb , 〈Se〉max, with respect to the stopping power calculated without
this function (in the previous iteration), 〈Se〉maxprev.iter, is larger than the threshold
(fixed to 1 %), we keep this function and continue the optimization for a given
orbital momentum l. Otherwise, we reject this function and increment the orbital
momentum l.

Since the optimization procedure contains a large number of steps, we perform the
stopping power calculations using a cluster of a small size, containing only the atoms of
the central region (red atoms in Fig. 3.12). The optimization is designed for the basis set
finding in the central region of the cluster, keeping the position-dependent basis set for the
atoms that are outside the region, the same as in the previous sections (see Fig. 3.12).

In order to obtain a basis set that can be used for the stopping power calculations at the
complete projectile velocity range, we perform the optimization procedure for two projectile
velocities: We start with v = 4.0 a.u. (Ekin

proj = 400 keV). At this step, we optimize the
basis mostly with respect to the core electrons. Then, we use the obtained basis set as the
starting basis (opt0) for v = 0.5 a.u. (Ekin

proj ≈ 6.2 keV). The optimization at low velocity
adds the more diffuse functions that describe the valence electron excitations. After the
second optimization run (at v = 0.5 a.u.) we obtain around 40 % of additional basis
functions. In the case of aluminum, we run the optimization up to the orbital momentum
l = 7 (k) and we call the final optimized basis opt-k.

Now, let us discuss the main optimization steps. Here, we will consider the first part
of optimization, for the proton velocity v = 4.0 a.u. (Ekin

proj = 400 keV). First, we focus
on the αb loop (steps (2)-(4) on the optimization diagram 3.21). As an example, we take
the first iteration for the orbital momentum l = 2 (d). Fig. 3.22 (a) presents the weighted
stopping power dependence on the impact parameter for different Gaussian exponents αb
(0.5 bohr−2 ≤ αb ≤ 12.0 bohr−2). For the sake of simplicity, we do not present the whole
range of αb used in optimization. One can see that at low αb values (αb < 3.0 bohr−2) the
stopping power has larger values at larger impact parameters (p > 0.8 Å) and vice versa.
Then, according to the step (4), the algorithm will select the αb parameter at which the
random stopping is maximal. The stopping power deviation is shown in Fig. 3.22 (b) and
the selected αb value (αmaxb = 2.0 bohr−2) is highlighted with the green circle. At the given
example, as it is the first iteration for l = 2, the selected exponent leads to the increase of
both the values of Straje for core and valence electrons. In the next iterations, the exponents
maximizing only core and only valence regions will be also retained.
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Figure 3.22 : Basis optimization procedure for the first iteration corresponding to the orbital
momentum l = 2 (d). (a) Weighted stopping power of proton (v = 4 a.u.) in aluminum as
a function of the impact parameter for a set of Gaussian exponents αb of the additional basis
function. The color of the curves encodes the αb value. The selected curve for this iteration
(in green), that provides the highest random stopping value, has a larger width as compared to
others. (b) The deviation of the random stopping power calculated with a given αb with respect
to the stopping power calculated without the additional basis function. The selected maximal
value is highlighted with a green circle.

Next, let us consider only the results of each αb loop for different iterations at fixed
l and for different l values. Fig. 3.23 (a) presents the resulting weighted stopping power
for all orbital momenta l and all iterations within one l. In other words, in Fig. 3.22 (a)
we have presented the curves for each αb (fixed l), then Fig. 3.23 shows only the curves
corresponding to the selected αmaxb . In the same manner, we present the random stopping
deviation: for the set of αb (Fig. 3.22 (b)) and only the selected values for different l (Fig.
3.23 (b)).

It is seen that the stopping power corresponding to both core and valence regions
increases with each subsequent iteration and with the value of l. A large change in Straje is
seen for the transition from the orbital momentum p to d. Then, the difference decreases
at each subsequent l. At the last orbital momentum used in optimization, k (l = 7), the
weighted stopping power curve almost coincides at all impact parameters with the curve
obtained at l = 6, which demonstrates the stopping power convergence. Fig. 3.23 (b)
presents the random stopping power deviations at each step of the optimization procedure.
Each colored sector corresponds to a given value of orbital momentum l, and the points
within a sector correspond to iteration for a fixed value of l. In agreement with 3.23
(a), the largest deviation is observed at l = 2 (d), and for higher orbital momenta the
value decreases. Low deviations for s and p are due to the fact that the initial basis opt0

contained already the functions taken from the cc-pCVQZ basis with these orbital momenta.

Now, let us examine the spatial extension of the optimized basis exponents. On Fig.
3.24 we compare the values of αb between the optimized basis opt-k (obtained after two
runs, for v = 4.0 a.u. and v = 0.5 a.u.) and the most complete Dunning basis set
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Figure 3.23 : Basis optimization presented for all orbital momenta l and all iterations with each
l, projectile velocity is v = 4.0 a.u. (a) The weighted stopping power as a function of the impact
parameter. Colors of the curves correspond to different orbital momenta. Curves corresponding
to earlier iterations have dimmer shades. (b) Stopping power deviations as a function of the
optimization step number divided into sectors corresponding to different orbital momenta l. The
color scheme of sectors matches the one from the panel (a).

for aluminum, aug-cc-pCV6Z. Since both bases contain quite a large number of basis
functions, we compare their exponents for each orbital momentum separately. We start the
comparison with l = 2 (d) because lower s and p momenta do not have a large importance
in the optimization. One can see that the spreading of the optimized basis exponents
is smaller than in the case of Dunning basis. The values of 1/√αb of opt-k are mostly
concentrated in the region [0.25 Å; 1.0 Å]. This region corresponds to the projectile impact
parameters at which the stopping power weight has the largest values. In this region, the
density of optimized exponents is noticeably larger than in the case of aug-cc-pCV6Z basis.

Even though the Gaussian exponents of the optimized basis are somewhat closely-
grouped in the highest impact parameter weight region, different orbital momenta l have
different corresponding spatial regions. For example, f and i orbitals contain some expo-
nents that correspond to 1/√αb > 2.0 Å. Therefore, one cannot simply define a spatial
region common for all l. Hence, we suppose that the completeness-optimization proce-
dure [135, 136] would not be the best basis optimization choice for the stopping power
calculations.

Concerning the number of basis functions per orbital momentum, the optimized func-
tions follow approximately the “pyramid” form similarly to the standard basis sets: the
number of basis functions decreases with respect to l (see Fig. 3.24).
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Figure 3.24 : Comparison of spatial extensions of the optimized basis opt-k with the stan-
dard aug-cc-pCV6Z for each orbital momentum l (starting at 2) separately. The numbers and
rectangles on the right-hand side indicate the number of basis functions per l.



132 3. METHODOLOGY OF THE STOPPING POWER CALCULATION

3.4.3 Stopping power calculated with the optimized basis

Velocity dependence

Fig. 3.25 shows the random stopping power of proton in aluminum calculated with the op-
timized basis opt-k compared with the largest standard basis set aug-cc-pCV6Z and with
the extrapolated values obtained from the aug-cc-pCVXZ series. For the proton velocities
v ≤ 0.5 a.u. (Ekin

proj ≤ 6.2 keV) the stopping power values obtained with the opt-k basis
almost coincide with the extrapolated ones. For the velocity range 0.7 a.u. ≤ v ≤ 5.0 a.u.
(12.2 keV≤ Ekin

proj ≤0.6 MeV), 〈Se〉 values for the opt-k basis are lower than the extrapo-
lated ones and only slightly larger than the values calculated with the aug-cc-pCV6Z basis
set. Finally, for v > 6.0 a.u. (Ekin

proj > 0.9 MeV) opt-k basis gives the values slightly lower
than aug-cc-pCV6Z.

Figure 3.25 : Random electronic stopping power of proton in aluminum calculated using
the most complete standard aug-cc-pCV6Z, optimized opt-k basis sets and obtained from the
extrapolation of the aug-cc-pCVXZ bases.

These results indicate that for small projectile velocities, the basis set functions with
the orbital momenta 0 ≤ l ≤ 7 are sufficient to describe the stopping power without the
extrapolation. This is not the case for larger v. For l ≤ 7 the opt-k basis contains as many
basis functions as needed to ensure the stopping power convergence within 1 %. Therefore,
the difference between opt-k stopping power and the extrapolated values for v ≥ 0.7 a.u.
shows that the missing basis functions necessarily have the orbital momenta larger than
l = 7. The underestimation of the stopping power calculated with opt-k basis at v > 6.0
a.u. is minor and can be neglected.
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Optimized basis set convergence

Similarly to the standard Dunning basis set series, one can use the optimized basis sets for
the extrapolation of the random stopping power. In the case of Dunning bases aug-cc-

pCVXZ, the extrapolation argument is the basis set order X, whereas in the case of optimized
bases, the argument is the orbital momentum l. Fig. 3.26 presents the random stopping
power for the proton velocity v = 4.0 a.u. as a function of the basis set order X in the
case of aug-cc-pCVXZ bases and of the orbital momentum l in the case of optimized bases
opt-l. For the stopping power extrapolation, we have used the same function as in the
previous section (equation 3.9) for both data sets. One can see that the optimized bases
converge faster than the Dunning bases. Noticeably, both curves converge towards the
same stopping power value (within 3 %). It is also seen that at high orbital momenta
(l > 6) the convergence of the stopping power with respect to the opt-l basis sets becomes
extremely slow. Therefore, using the orbital momenta l > 7 would not significantly change
the stopping power value, however, would be much more computationally expensive.

Figure 3.26 : Random stopping power as a function of the basis set parameter n. The value
of n stands for the basis set order X in the case of Dunning basis sets (orange points) and for
the orbital momentum l in the case of the optimized bases opt-l (green points). Dashed lines
represent the extrapolation curves.

Though, the stopping power extrapolation as a function of l for the optimized basis
sets opt-l could be a good option, the full study including different projectile velocities
and different target materials stays in a perspective and is out of the scope of this work.
In this work, we use the stopping power obtained only at the highest orbital momentum
l = 7, opt-k.
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Computational time

The optimized opt-k basis contains NAO = 293 basis functions, whereas for the largest
Dunning basis aug-cc-pCV6Z, NAO = 324. Even though the difference is only in 31 basis
functions, because of the cubic dependence of the computational time on NAO, the cost
of calculations using opt-k is 1.5 lower than for the aug-cc-pCV6Z basis (Fig. 3.27).
Moreover, the opt-k basis provides more converged random stopping power values.

Figure 3.27 : Computational time of the random stopping power of proton in aluminum as a
function of the number of basis functions. The timing is presented for one projectile velocity (13
impact parameter points). Black points present the data for the Dunning aug-cc-pCVXZ basis
sets and red point - for the optimized opt-k basis. The calculations were performed on a Haswell
CPU supercomputer.

Conclusions

To summarize, we have studied three approaches for the random stopping power calcula-
tions with respect to the Gaussian basis set:

1. Calculation with the highest basis of the Dunning basis set series aug-cc-pCVXZ or
cc-pCVXZ.

2. Extrapolation of the stopping power based on the calculations using all the basis sets
of a given Dunning basis set family.

3. Calculation within the optimized basis opt-l created for a given target with the
highest orbital momentum lmax.

As we have seen in Fig. 3.19, the first method can lead to the stopping power errors
up to 17 % (for small velocities). The second method is the most accurate. However, it
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is quite expensive since it requires the calculations within all the basis sets of one family.
Moreover, one still has the error due to the extrapolation function, because the choice
of the function is arbitrary. The third method provides less converged values than the
second one, however, it avoids the extrapolation error. In addition, often the existing
Dunning basis set families do not contain the basis sets including X values high enough.
For example, for lithium, the maximal basis set order X for the basis sets containing the
tight core functions (cc-pCVXZ and aug-cc-pCVXZ) is X=4 (see Fig. 3.28). Therefore, with
the basis set optimization procedure, one can generate the basis sets with higher orbital
momenta and obtain more converged stopping power values.

Finally, we find the optimized basis approach to be a good compromise between the
computational cost and the high stopping power accuracy. Therefore, we will use this
method in the following stopping power calculations for different target materials and
different projectiles (chapter 4).

Figure 3.28 : Random electronic stopping power of proton in lithium target. The calculations
were performed using the largest available Dunning basis set (cc-pCVQZ) and the basis set created
in this work (opt-k).
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3.5 Validity of fixed trajectory approximation

As discussed in sections 1.5.1 and 3.1.1, in our ab initio simulations we restrict the projec-
tile to move along a straight line with a constant velocity. In this section, we will discuss
the validity of this approximation and the stopping power errors it leads to. Having cal-
culated the electronic stopping power (per trajectory Straje (p, v) and random 〈Se(v)〉), we
can estimate these errors applied to the systems that are studied in this work.

We will characterize the validity of the fixed trajectory approximation using the fol-
lowing criteria: 1) relative slowing down of the projectile along a straight trajectory and
2) deviation of the projectile from the straight line within the two-body scattering the-
ory. Since the atomic number of aluminum and the electronic stopping power of proton in
aluminum are larger than the corresponding values in the case of lithium target, the ap-
proximation errors are also larger in aluminum. Therefore, in this section we will consider
the proton irradiation in aluminum target for the error estimations.

3.5.1 Projectile slowing down

To estimate the proton velocity change during the path, we will use the continuous slowing
down approximation (CSDA). Within this approximation, the projectile energy loss in
every point of its trajectory (equation 1.134) is calculated using the average stopping
power (Straje (p, v) or 〈Se(v)〉 ) rather than instantaneous one (Se(p, v, z)).

Figure 3.29 : Comparison between the stopping power averaged over the proton trajectory
at pmin = 0.1 Å (black line) and the random stopping power (yellow line) of proton in aluminum.
The calculations were performed in aug-cc-pCV6Z basis.

In this section, our objective is to examine the extreme cases of the deviations from the
fixed trajectory and fixed velocity approximation. Therefore, we will consider the highest
stopping power Straje (p, v) values we encounter in our simulations that correspond to the
smallest impact parameter pmin = 0.1 Å. For the trajectories corresponding to p = pmin,
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the slowing down is maximal. The stopping power Straje (pmin, v) as a function of velocity
compared with the random stopping power is shown in Fig. 3.29.

The loss of the projectile kinetic energy in this case is given by the equation

dEkin
proj

dz
= −Straje (pmin, v). (3.10)

We assume that the projectile enters the target with the initial energy E0 (velocity v = v0,
see Fig. 3.30). Within CSDA the projectile kinetic energy is a monotonically decreasing
function, hence, one can find the penetration depth z(t) as a function of time by integrating
equation 3.10

z(t) = −
∫ E(t)

E0

dE

Straje (v)
= −

∫ v(t)

v0

mv dv

Straje (v)
, (3.11)

wherem is the mass of the projectile. We are interested in the projectile slowing down at the
scales corresponding to our ab initio simulations. Therefore, we will take the penetration
depth approximatively equal to our cluster length L, say 10 Å. Suppose that at a time t1
the projectile reaches this distance, then

z(t1) = L =
∫ v0

v(t1)

mv dv

Straje (v)
. (3.12)

Figure 3.30 : Illustration of the projectile passage in a target within the fixed trajectory and
the continuous slowing down (CSDA) approximations.

From this equation we, cannot get an explicit expression for the projectile slowing down.
However, we can solve it numerically: One should find such velocity v (v < v0), at which
the integration between v and v0 in equation 3.12 would give precisely the penetration
depth L.

Fig. 3.31 presents the relative slowing down (∆v/v) of proton in aluminum target
for the smallest impact parameter pmin. It is seen that the largest value is at the lowest
projectile velocity v = 0.2 a.u. and is equal to 3.7 %. Therefore, we can neglect the effect of
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Figure 3.31 : Relative slowing down of proton in aluminum at the impact parameter pmin =
0.1 Å as a function of proton velocity. The lowest presented velocity is vmin = 0.2 a.u. (Ekinproj = 1
keV).

projectile slowing down in our calculations. In addition, this impact point has a low weight
in the random stopping power integration (see Fig. 3.11). For other impact parameters,
the slowing down is lower. For example, for the channeling trajectory, the largest relative
slowing down is only about 1 % (for the projectile velocity v = 0.2 a.u.).

3.5.2 Deviation from straight path due to ballistic losses

In this section, we will consider the deviation of the projectile trajectory from the straight
path for different projectile impact parameters p and velocities v. Obviously, the most
significant deviations occur for projectile trajectories at which the projectile approaches the
target nuclei. Therefore, to study the errors of the random stopping power calculations due
to this effect, the binary collision approximation (BCA) is sufficient. In this approximation,
one considers a two-body scattering problem [20, 77]: the scattering of the projectile ion
on a target atom (Fig. 3.32).

We will characterize the scattering trajectory using three quantities: the impact pa-
rameter p, the distance of closest approach rmin and the deflection angle in the laboratory
coordinate system ϕ. In order to calculate rmin and ϕ for a given p, one needs to know
the scattering potential V (r). Instead of using the semi-empirical models for the potential
which include in some way the complex electronic screening of two nuclei [20], we calcu-
lated this potential for the proton-aluminum case from DFT using the MOLGW code: for
each distance r we performed a separate DFT calculation in order to find the ground-state
energy. Obtained in this way potential V (r) corresponds to the adiabatic motion of the
projectile (see section 3.1.1), which approaches the real projectile-target potential for small
velocities. As we will see, the largest deviations take place at small velocities regime, there-
fore, this level of description - two-body scattering theory with the adiabatic potential - is
well suited for the largest errors estimations.
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Figure 3.32 : Scattering of projectile on a target atom in the laboratory system of coordi-
nates. The main quantities for our calculations are the projectile impact parameter p, the closest
approach distance rmin, and the projectile deflection angle ϕ.

Closest approach distance

We will start to characterize the deviation with the distance of the closest approach of
the projectile to the target atom rmin. From the two-body scattering theory, there is no
explicit expression for this quantity. Though, it can be found from the numerical solution
of the following equation (see reference [77], chapter 1, equation 1.77)

ηEkin
proj i = V (rmin)

1− p2

r2
min

, (3.13)

where Ekin
proj i is the initial kinetic energy of the projectile and η is

η = Ma

m+Ma

, (3.14)

where m and Ma are the masses of the projectile and the target atom respectively.
Fig. 3.33 (a) shows rmin as a function of projectile impact parameter p for a range of

projectile velocities. We also characterize the relative deviation of rmin with respect to p:
(rmin−p)/p×100% (Fig. 3.33 (b)). It is seen that rmin approaches to p for higher p and for
higher velocities. For the projectile velocities v > 1.0 a.u. (Ekin

proj > 25 keV), the absolute
value of rmin is almost the same as p for any impact parameter p.

In our simulations we do not take into account the deflection of the projectile: the
distance of the closest approach is just equal to the impact parameter p for any value of
p within the fixed trajectory approximation. Therefore, in order to calculate the error in
the random stopping power calculation due to this effect, we can assume that the value
of the stopping power that we obtain, Straje , corresponds not to the impact parameter p,
but rather to rmin. Hence, we propose the following rmin-correction scheme: We use the
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Figure 3.33 : (a) Closest approach value as a function of the impact parameter for several
velocities in the case of proton projectile and aluminum target atom. (b) The same information,
but in terms of the relative deviation of rmin from p. The colors of lines designate the projectile
velocities in the same way in both panels.

same sampling of the impact parameter p with the weight function p∆α(p) (equation 3.8).
However, the stopping power Straje (p) in equation 3.7 should be changed to Straje (rmin(p))

Straje (p) → Straje (rmin(p)) (3.15a)

〈S〉 =
∫ alat/2

0
dp p∆α(p)Straje (p) →

∫ alat/2

0
dp p∆α(p)Straje (rmin(p)). (3.15b)

The stopping power Straje is calculated for a proton in an aluminum cluster, whereas rmin(p)
is obtained from the two-body scattering theory. The weight function p∆α(p) takes into
account the surface geometry and should not be changed due to the projectile deflection.

This idea is illustrated in Fig. 3.34: We “send” a beam of projectiles with the impact
parameters which are equally distributed. Due to the deflection of the projectile, we assign
to each value of p the closest approach distance rmin(p) and then we integrate Straje (rmin(p))
using the weight function that corresponds to the initial impact parameters grid. We obtain
the Straje (rmin(p)) values from the interpolation of the stopping power calculated on the p
grid for each projectile velocity.

This rmin correction leads to a region of impact parameters, at which the projectile
never enters (red region in Fig. 3.34). This region is limited by rmin 0 - the distance of
the closest approach at the head-on collision. The value of rmin0 can be obtained from the
limit p→ 0 in equation 3.13

ηEkin
proj i = V (rmin 0). (3.16)

It is seen that rmin 0 depends on the initial projectile energy.
We would like to mention, that within the proposed correction scheme, we still assume

the rectilinear motion of the projectiles, but with a rmin(p) impact parameter instead of p.
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Therefore, it can be used only for the random stopping power errors estimations and not
as a method for the improvement of the stopping power values.

Figure 3.34 : Stopping power integration within the rmin-correction scheme. The first axis
at the top of the figure represents the equidistant impact parameter grid. Then one can obtain
the rmin(p) grid (in red) used for the integration. The stopping power Straje obtained within the
fixed trajectory technique from our simulations can be associated with Straje (rmin), presented on
the graph.

The results of the rmin-correction scheme for proton projectile in aluminum are pre-
sented in Fig. 3.35. Fig. 3.35 (a) shows the weighted stopping power calculated with
(red line) and without (black line) the correction. We have selected the lowest projectile
velocity we use in our calculation since the difference is the most significant. One can see
that even at the extreme velocity, taking into account the deviation of the closest approach
distance from the impact parameter leads to errors not larger than 1.5 % (Fig. 3.35 (b)).
Even if this deviation becomes significant at very small impact parameters (p < 0.1 Å),
due to the weight function, the difference is still almost zero.

Deflection angle

To find the projectile deflection angle in the center of mass coordinate system, θ, one can
use the following expression (see reference [77], chapter 1, equation 1.76)

θ = π − 2
∫ 1/rmin

0
dx

[ 1
p2

(
1− V (1/x)

ηEkin
proj i

)
− x2

]−1/2
. (3.17)
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Figure 3.35 : (a) Weighted stopping power of proton in aluminum. The black line is the
stopping power without the rmin-correction, the red line is the stopping power with the correction,
as a function of rmin(p). (b) The error of the random stopping power due to the closest approach
distance deviation from the projectile impact parameter.

Then, the deflection angle in the laboratory system of coordinates, ϕ, can be obtained from
θ as

tan2 ϕ = sin2 θ(
cos θ + m

Ma

)2 . (3.18)

Fig. 3.36 (a) shows the deflection angle ϕ in the case of the proton projectile and
aluminum target atom. We can see that the deflection is quite large. It follows the same
behavior as the closest approach distance: it decreases for larger impact parameters and
larger projectile velocities. However, the values of the angle ϕ are non-negligible even for
large impact parameters. In order to evaluate the importance of a given deflection angle,
we also calculate the deviation of the projectile y-position at the penetration depth z,
corresponding to the next atomic layer of aluminum, za2 (see Fig. 3.36 (b) for the results
and 3.36 (c) for the schematic explanation). For example, at projectile velocity v = 0.2 a.u.
(Ekin

proj = 1 keV) and impact parameter p = 0.3 Å, the deflection angle is ϕ = 12.8◦ and the

projectile deviation ∆p = 0.9 Å, which is three times larger than the impact parameter p.
The projectile deviation ∆p can be neglected only starting at v = 2.0 a.u. (Ekin

proj = 100
keV).

We think that in order to calculate the random stopping power using the ensemble
average technique, one has to fix the projectile y-position because of the following reasons:
The random stopping power is obtained by means of the sampling of the projectile impact
parameters p. Therefore, for each trajectory we need to know the value of Straje (p) for a
fixed impact parameter. If we allow for the projectile to deflect, we then would obtain
the impact parameter that changes from one atomic layer to another and we would not
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be able to perform a proper sampling over the impact parameters. Similar considerations
are taken into account in the SRIM ion implantation profile calculations [20]: For each
independent collision, one randomly selects an impact parameter, then one calculates the
energy transfer from the projectile to a target atom and the projectile deflection. For the
scattering calculation at the next iteration, the knowledge of the previous deflection angle
is not needed: the impact parameter is selected randomly using the same distribution
law as at the previous step. In such a way, during one projectile trajectory one will
perform an impact parameter sampling which takes into account the target density, but
not its structure. The deflection angle can be then useful only to reproduce the projectile
implantation profile.

Figure 3.36 : (a) Proton deflection angle of the scattering on aluminum atom as a function
of the impact parameter for a set of proton velocities. (b) Deviation of the distance to the target
atom ∆p from one atomic plane to another as a function of the impact parameter. The set
and the color scheme for the projectile velocities are the same as in panel (a). (c) Illustration
of the impact parameter deviation ∆p because of the deflection of the projectile. To simplify
the representation, we assume that the closest approach distance is approximatively equal to the
impact parameter rmin ≈ p.
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Conclusive remarks

In this section, we have estimated the main quantities that characterize the deviation of
the projectile from the uniform motion along a straight line. As a general rule, the largest
deviations of all the studied quantities (slowing down, closest approach, deflection angle)
occur for small projectile velocities and for the projectile trajectories that correspond to
small impact parameters. At the same time, these trajectories contribute to the random
stopping with low weights (equations 3.7, 3.8). In other words, thinking about the beam of
many projectiles, such trajectories are less probable than the trajectories that correspond
to larger impact parameters. Therefore, one can neglect the slowing down and deviation of
the closest approach distance rmin from the impact parameter p. In contrast, the deflection
angles are significant even for large impact parameters. However, from our point of view,
taking into account the projectile deflection would bring an excessive structure dependence
into the averaging procedure. Our goal is to calculate a proper average over the impact
parameters. Even if the separate projectile trajectories (in particular those having small
impact parameters) do not correspond to the real ones, the average over the trajectories
yields the correct random stopping power.

The projectile deflection considerations do not apply to the simulations of the chan-
neling trajectories. Under the channeling conditions, the projectile moves along a straight
line without any assumption. One the other hand, the projectile slowing down, treated
in section 3.5.1, can be applied for the channeling case. To do that, one needs to take
the stopping power value at the channeling impact parameter Straje (pchan). The relative
slowing down along the cluster length is negligible, however, using the presented approach
one can calculate the total penetration depth in a target (will be considered in chapter 4).

3.6 Summary

In this chapter, we have developed a methodology for the random electronic stopping power
calculations in the localized Gaussian basis code.

First, we have described our method to deduce the stopping power from a single projec-
tile trajectory (with fixed velocity and fixed impact parameter). Then, we have performed
the convergence tests of the electronic stopping as a function of the cluster size. As ex-
pected, relatively small clusters (50-60 atoms) are enough to reproduce the stopping power
of the crystalline material. Though we have found that the transverse size (with respect to
the projectile path) has greater importance on the stopping power than the longitudinal
one, therefore, the retained clusters are approximatively two times larger in width than in
length.

Then, we have focused on the random stopping power calculation methodology. In
order to study the direction dependence, we have taken three orientations of the Li cluster
([001], [110] and [111]). For all the chosen orientations we have calculated an accurate
average over the impact parameter (using very fine grids). We have found that the random
stopping power in all the directions is the same (except for small deviation at low projectile
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velocities). This conclusion allowed us to consider only one cluster orientation for further
random stopping power studies.

Even, dealing with only one cluster orientation, the calculation of the stopping power
average over the impact parameter can be still a challenging task in terms of the number of
calculations. Therefore, we have studied the polar symmetry of the stopping power in order
to attempt to reduce the calculation time. Indeed, the average calculated along one line (in
XY plane, selected as y-axis) differs from the average calculated on the grid not more than
by 2 %. At the same time, the variation of S with the module of the impact parameter p
is significant and should be taken into account. Neglecting the p dependence and taking
only one pcent for the RESP calculations would be the centroid path approximation. We
will discuss the validity of this approximation in chapter 4.

In the following sections, we have studied in detail the Gaussian basis set problem in
relation to the stopping power calculations. We have started with the standard Dunning
basis sets. We have shown that in the case of the aluminum target, the inclusion of both
tight-core and diffuse basis functions is necessary to obtain the full range of projectile
velocities we are interested in. In the lithium target case, only the tight core additional
basis functions are important. We have also seen that with increasing of the basis set order
X, the stopping power significantly increases. Therefore, the stopping power extrapolation
can be employed in order to obtain more accurate values.

Then, we have proposed our algorithm for the Gaussian basis sets generation specific
to the stopping power problem. Having empirically observed that the stopping power
increases with the increase of X, we have elaborated the basis generation scheme based
on the stopping power maximization. With those basis sets we can obtain the stopping
power values more converged than the highest available standard bases and with a lower
computational time. Therefore, for all the rest of the calculations, we will use the optimized
basis sets.





CHAPTER 4

Stopping power of light projectiles in
lithium and aluminum

In this chapter, we present the final results of the random stopping power calculations.
Here we take into account all the conclusions obtained in the previous chapter (cluster size,
random stopping calculation technique, Gaussian basis set, etc.) in order to obtain the
most accurate values of the electronic stopping power.

In this work, we have performed the calculations in two crystalline targets: lithium and
aluminum with [001] orientation for three types of projectiles: protons H+, antiprotons

H −, and α-particles He2+. Therefore, in order to systemize the results, most of the times,
we will present the calculations for both targets side by side.

First, we will discuss the calculations of the stopping power of the proton in lithium
and aluminum targets. Using this system as an example, we will estimate the influence of
the exchange-correlation functional on the stopping power values. Then, will focus on the
core electrons contribution to the stopping power using the frozen core technique and the
occupation analysis (the method will be presented in this chapter). We will also evaluate
the accuracy of the centroid path approximation for the proton in the aluminum system.

After that, we will present the random stopping power calculated for the α-particle.
Next, we will discuss the penetration depth obtained from the electronic stopping power
within the continuous stopping down approximation (CSDA).

Then, the stopping power of the antiproton will be discussed. And finally, we will provide
the effective charge of the antiproton and α-particle projectiles calculated as a scaling factor
between RT-TDDFT and the linear response theories.



148 4. STOPPING POWER OF LIGHT PROJECTILES IN LI AND AL

4.1 RESP of proton

Fig. 4.1 presents the results of the RT-TDDFT stopping power calculations of proton
in lithium (Fig. 4.1 (a)) and aluminum (Fig. 4.1 (b)) targets. We compare our results
with the linear response theory (LR-TDDFT) [33], the empirical code SRIM [20] and the
experimental data. We remind the main parameters used for our RT-TDDFT calculations:

• The calculations are performed in the optimized Gaussian basis sets (obtained in this
work).

• The target orientations are [001].

• The exchange-correlation functional is LDA.

• We have used the 62-atom and the 54-atom clusters for Li and Al targets respectively.

Figure 4.1 : Random electronic stopping power of proton in lithium (panel (a)) and aluminum
(panel (b)) as a function of the projectile velocity. The target orientation is [001], the exchange-
correlation functional is LDA. RT-TDDFT results obtained in this work are in black. LR-TDDFT
curves (dashed green lines) come from reference [33]. Experimental points for the proton in lithium
irradiation are from references [137, 138]. In the case of aluminum target, 18 different experiments
have been performed, therefore we do not cite them separately. SRIM interpolation curves are
depicted in blue. For the aluminum target, the QBOX ab initio code results are presented in
red.

4.1.1 Lithium target

In the case of the lithium target, we can note an excellent agreement between RT-TDDFT
and LR-TDDFT for the whole range of velocities available for the linear response results
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(v ≤ 4.0 a.u. or Ekin
proj ≤ 400 keV). Concerning the comparison with SRIM, there is a very

good agreement for high velocities (v ≥ 2.0 a.u. or Ekin
proj ≥ 100 keV). However, for low

velocities, the disagreement is compelling: the ab initio results are larger than the SRIM
values. We argue that SRIM is extrapolated from experimental data that are missing for
the proton in lithium at low velocities. Furthermore, between two experiments performed
by Bader [137] and Eppacher [138] there is a disagreement on the proton velocity at which
the stopping power has the maximal value as well as on the absolute value of the peak.
Hence, due to the absence of the experimental data at low v and the disagreement around
the peak velocities, we conclude that SRIM results are certainly not reliable for v ≤ 2.0
a.u. (Ekin

proj ≤ 100 keV).

4.1.2 Aluminum target

For the proton irradiation in aluminum target, there are much more experimental data
including small projectile velocities. The dispersion of experimental points around the
maximum of the stopping power is significant, however, at large velocities, the points
follow more or less the same line. For this system, the real-time ab initio calculations of a
plane-wave code QBOX [35] are also available.

One can see that in the low-velocity regime, all the ab initio results are in agreement
with the experimental data and with SRIM. However, the MOLGW RT-TDDFT calcu-
lations yield slightly larger values. Then, around the peak, the results of ab initio codes
provide larger values than SRIM. It is difficult to judge the agreement with the experiment
since the discrepancy of experimental data is large in this region (around 35 %). However,
for larger projectile velocities (v ≥ 4.0 a.u. or Ekin

proj ≥ 400 keV) it is clearly seen that all the
ab initio results are lower than both SRIM and the experimental data. In addition, such
behavior is quite common for the comparison between the ab initio and the experimental
results [79, 82, 87, 88].

We have tried to identify the possible causes of the disagreement between the exper-
imental data and the ab initio results at large proton velocities. Having tested all the
convergence parameters in our MOLGW code (cluster size, averaging procedure, Gaus-
sian basis, etc.), there is only the exchange-correlation functional that still needs to be
tested. Moreover, to our knowledge, the ab initio calculations (based on TDDFT) have
never been performed using a hybrid exchange-correlation functional for the proton ir-
radiation simulations in aluminum. All the theoretical results presented in Fig. 4.1 are
performed with the LDA functional.

Another possible source of the difference between the ab initio results and the exper-
imental data concerns the QBOX plane-wave code: In the work of Schleife et coworkers
[35], a pseudopotential that treats 2s2p3s3p electrons explicitly was used. This means that
the 1s electron excitations were not taken into account in these calculations.

Therefore, in the following sections, we will separately consider these possible sources
of errors: First, we will analyze the stopping power calculations performed with a hybrid
exchange-correlation functional and then we will evaluate the role of the 1s electrons in
the proton stopping in aluminum. Finally, in order to perform a more complete study, we
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will discuss the electronic contributions to RESP from other electronic levels.

Exchange-correlation functional dependence

Fig. 4.2 shows the random electronic stopping power calculated in RT-TDDFT with the
MOLGW code using the LDA functional and PBE0 hybrid functional. With the purpose
of comparison and a more complete study, we present the results not only for the aluminum,
but also for the lithium targets.

It is seen that the change of the exchange-correlation functional leads to a minor dif-
ference in the electronic stopping power: The largest change for aluminum is for v = 1.0
a.u. (Ekin

proj = 25 keV) and is equal to 3.5 %. For the lithium target the maximal difference
of 4.5 % is for v = 0.7 a.u. (Ekin

proj = 12.2 keV).
For the lithium target, we have also tested other exchange-correlation functionals:

HSE06, B3LYP, PBE (not presented). The conclusions are similar to those obtained for
the LDA/PBE0 comparison: the largest change is around the stopping power peak and is
lower than 5 %.

Hence, we conclude that for the studied target materials, there is no significant impor-
tance of the exchange-correlation functional. Therefore, the usage of the less expensive
LDA functional is justified.

Figure 4.2 : Random electronic stopping power of proton in lithium, (a), and proton in alu-
minum, (b), obtained in this work as a function of the projectile velocity. Calculations performed
with the LDA functional are presented in black, with the PBE0 functional is in red.

Core states contribution to the stopping power in aluminum

Here, our goal is to tackle the second point: the role of the 1s electron excitations in the
stopping power of proton in aluminum, which can be a source of the error for the plane-
wave approaches. With our localized basis all-electron code, we deal with it by simply
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E − EF (eV)

1s [−1498.5,−1496.7]
2s [−104.1,−102.2]
2p [−67.2,−65.0]
valence [−10.1, 0.0]
excited > 0.0

Table 4.1 : Energy ranges with respect to the Fermi level of different electronic states of the
aluminum cluster. We remind the aluminum electronic configuration: 1s22s22p63s23p1.

freezing the 1s states in the simulation and taking the difference between the all-electron
and the frozen 1s stopping power values. In addition, we will evaluate the contributions
to the stopping power from other states (2s, 2p, and valence) in the same manner. The
numerical approach that we use to perform the frozen states RT-TDDFT propagation is
described in section 2.2.7.

Fig. 4.3 (a) shows the stopping power as a function of the projectile velocity calculated
with the all-electron response as well as with 1s, 1s2s, and 1s2s2p frozen electrons. It is
seen that the results with the 1s frozen electrons (red squares) are almost the same as in
the all-electron case: The largest difference is at the highest projectile velocity used in our
calculations, v = 7.0 a.u. (Ekin

proj = 1.2 MeV), and it is equal to 0.2 %.

Fig. 4.3 (b) presents the weighted stopping power dependence on the projectile impact
parameter for the projectile velocity v = 4.0 a.u. (Ekin

proj = 400 keV). The frozen states
coloring scheme is the same as in Fig. 4.3 (a). One can see that the weighted stopping
power values for the 1s frozen electrons coincide with the all-electron results for all the
impact parameters.

The absence of the 1s excitations can be explained by their very low energies: around
1500 eV below the Fermi level. In comparison, 2p electrons have energy around −65 eV
(see Table 4.1).

Hence, in the case of the proton irradiation in aluminum target, the reason of the
underestimation of the ab initio calculations (LR-TDDFT and RT-TDDFT performed
in MOLGW and QBOX) with respect to the experimental results and SRIM at high
projectile velocities (presented in Fig. 4.1) remains to be determined.

In the following, we will evaluate the contribution to the stopping power of the 2s,
2p and valence electronic levels in the aluminum target. It is seen from Fig. 4.3 that
the contribution of 2s and 2p levels is significant for the projectile velocities v ≥ 2.0 a.u.
(Ekin

proj ≥ 100 keV): The random stopping power calculated with the frozen 1s2s and 1s2s2p
electrons is considerably lower than the values obtained with the all-electron dynamics.
From the impact parameter dependence (Fig. 4.3), one can note that the characteristic
peak of the weighted stopping power around p = 0.3 Å disappears when all the core
electrons are frozen. This demonstrates the core electron contribution.

Having calculated the stopping power with the different number of frozen states, we
can now calculate separately the contributions from each shell. We can arbitrarily define
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Figure 4.3 : (a) Random electronic stopping power of proton in aluminum as a function
of the projectile velocity performed with the all-electron dynamics (black solid line) as well as
with 1s (red points), 1s2s (blue points) and 1s2s2p (orange points) frozen electronic states; (b)
Weighted stopping power as a function of the proton impact parameter for the projectile velocity
v = 4.0 a.u. (Ekinproj = 400 keV). The frozen state color scheme is the same as in panel (a).

the valence electron contribution, S val, as the stopping power calculated with all the core
electrons (1s2s2p) frozen

S val = S frozen 1s 2s 2p. (4.1)

The contribution from 1s electrons can be defined as the difference between the total all-
electron stopping power and the stopping power calculated with 1s electrons frozen (this
difference, as we have seen, is negligible)

S1s = Stotal − S frozen 1s. (4.2)

Then, one can find the 2s contribution, S 2s, as the difference between the all-electron
stopping power calculated with 1s and 1s2s frozen electrons, i.e.,

S 2s = S frozen 1s − S frozen 1s 2s. (4.3)

Finally, the 2p contribution can be defined as the difference between 1s2s and 1s2s2p frozen
electrons,

S 2p = S frozen 1s2s − S frozen 1s2s2p. (4.4)

See also the vertical arrows that indicate the 2s, 2p and the valence electron contributions
in Fig. 4.3. Using these definitions, we satisfy the total stopping power, namely,

S total = S 1s + S 2s + S 2p + S val. (4.5)
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Figure 4.4 : Weighted stopping power of proton in aluminum as a function of the proton
impact parameter for the projectile velocity v = 4.0 a.u. (Ekinproj = 400 keV). The total stopping
power (black line) is divided on the 2s (blue), 2p (green) and the valence (orange) contributions.
Being negligible, the 1s contribution is not presented.

We apply this separation to the weighted as well as to the random stopping power.
The electron contributions as a function of the impact parameter for the projectile velocity
v = 4.0 a.u. (Ekin

proj = 400 keV) are presented in Fig. 4.4.

Figure 4.5 : The relative contributions to the random electronic stopping power of the proton
in aluminum of 2s (blue), 2p (green) and valence (orange) electrons as a function of the projectile
velocity.
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Fig. 4.5 presents the electron contributions to the random stopping power as a function
of the projectile velocity. It is seen that at the stopping power peak velocity (around v = 1.0
a.u. or Ekin

proj = 25 keV) the contribution of the core electrons (2s2p) is very limited (lower
than 1 %), however, for v ≥ 4.0 a.u. (Ekin

proj ≥ 400 keV) the core electron contribution is
50 % or larger. This shows the necessity of a proper core electron excitation description,
especially, for large projectile velocities.

4.2 Occupation analysis

In this section, we aim to get a deeper insight into the excitation dynamics, in particular,
of the core electrons. In the previous section, we have evaluated the contributions of
the different electronic levels using the frozen core technique. Here, we will analyze the
electronic excitations by looking directly at the electronic levels occupations. This analysis
is quite similar for the lithium and aluminum targets, except that it is richer for Al since
it contains more electrons than Li. Therefore, in this section, we will focus only on the Al
target.

4.2.1 Single-trajectory occupation dynamics

In section 2.2.5 we have presented how to calculate the occupation of the electronic levels,
called q, in the localized basis code. In brief, we obtain an occupation of a given electronic
level from the projection of the time-dependent wave function on the ground state wave
function corresponding to this level. During our RT-TDDFT simulation trace the occupa-
tions of the electronic levels. We divide the levels into 5 groups according to their energies
(see Table 4.1): 1s, 2s, 2p, valence and excited.

Fig. 4.6 shows the change in the occupations during the projectile irradiation. This
graph looks like the total energy of the system as a function of the penetration depth (Fig.
3.1). However, here, in addition, we have a decomposition of the occupation dynamics on
different energy levels. Naturally, the electronic levels that were initially occupied (1s, 2s,
2p, and valence), lose some part of electrons, while the excited levels become populated.
For example, as seen from Fig. 4.6, after the passage of the proton projectile along the
8 Å aluminum cluster, the excited levels of the target acquire approximatively 1.5 electrons
from the initially occupied levels.

Concerning the 1s electronic excitations, the largest occupation change, which occurs
at the largest projectile velocity used in our calculations, v = 7.0 a.u. (Ekin

proj = 1.2 MeV)
is only about 2.4× 10−3. The absence of the 1s electron excitations is consistent with the
conclusions drawn in the previous section. Therefore, we will not consider this level in the
following.
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Figure 4.6 : (a) Illustration of the proton penetration (black trace) in the aluminum cluster.
The target atoms belonging to the A (odd) atomic levels are in pink, those that belong to the
B (even) atomic layers are in red. z-positions of even atomic levels are depicted in red dashed
lines in panels (b) and (c). (b) Change of the occupation with respect to the initial state as a
function of the proton penetration depth. Proton velocity is v = 4.0 a.u. (Ekinproj = 400 keV) and

the impact parameter is px = 0.0 Å; py = 0.6 Å. (c) The same as panel (b), but in a lower scale
in order to better visualize the 2s and 2p occupation changes.

4.2.2 Weighted occupations: correlation with weighted stopping
power

Similarly to the stopping power definition, a reasonable quantity to characterize the oc-

cupation dynamics can be the occupation change per penetration distance,
dq

dz
(in elec-

trons/bohr). In order to get valuable results based on the occupation analysis, we proceed
with the same numerical scheme as for the random stopping power calculations that was
introduced in chapter 3: We calculate the average occupations change rate per trajectory,(dq
dz

) traj
, using our 3-step procedure (described in section 3.1.1). Then, in order to calcu-

late the averaged (or, one can say, random) occupation change,
〈dq
dz

〉
, we use the same as

for the stopping power assumption of the polar symmetry and, using the geometrical con-
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siderations, integrate
(dq
dz

) traj
as a function of the impact parameter along one direction

in the XY plane, multiplied by the weight function (for the details, see section 3.1.3).

Fig. 4.7 shows the weighted occupations as a function of the projectile impact pa-
rameter. We have taken the projectile velocity (v = 4.0 a.u. or Ekin

proj = 400 keV) at
which the core electrons contribution is significant. As in the case of the single-trajectory
occupations (Fig. 4.6 (b)), excited state occupation change is always positive, while the
occupation changes of all initially occupied levels are negative.

Figure 4.7 : Weighted value of
(dq
dz

)traj
for the proton in aluminum as a function of the

projectile impact parameter. The projectile velocity is v = 4.0 a.u. (Ekinproj = 400 keV). Panel (b)
presents a magnification of (a)-panel.

Comparing the positions of the peaks of the weighted occupations of different levels
and the position of peaks of the different contributions to the stopping power (Fig. 4.4)
one can see a perfect match: The maximum of 2s and 2p electrons corresponds to the
impact parameter p ≈ 0.3 Å, while the valence contribution mainly repeats the weight
function form and has a maximum at p ≈ 1.0 Å. However, the relative contribution of the
core state occupations to the excited state occupation is not the same as the contribution
of the core stopping power to the total one: The peak of the excited state occupations
corresponding to the core states depopulation (at p = 0.3 Å) is much less pronounced
than in the case of the weighted stopping power. One can explain this observation by
the fact that the valence electrons are much easier to excite. Therefore, the contribution

to the stopping power of valence
dqval
dz

and core
dq2s, 2p

dz
occupation changes have to be

taken into account in different ways. In other words, the promotion of one 2s electron to
the conduction band due to the projectile passage would contribute more to the stopping
power than the promotion of one valence electron. Hence, the direct comparison of the
absolute values of the occupation changes from different levels cannot be translated into a
conclusion on the stopping power. Therefore, in this section, we concentrate rather on the
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velocity dependence of the occupations and on the comparison of the occupations of the
same levels under different conditions (frozen core simulations, channeling conditions).

4.2.3 Valence electron occupations in frozen core dynamics

Having adapted the methodology of the average occupation change calculation from the
stopping power, we would like first to verify whether the separation of the total stopping
power Stot into the core S2s, S2p and the valence Sval contributions (equations 4.1-4.4) is
reasonable for the proton in aluminum system (we do not consider here the 1s contribution
because it is negligible).

Figure 4.8 : Proton in aluminum simulation within the all-electron (black curves) and the
frozen core (orange curves) dynamics. Random electronic stopping power is presented in solid
and random valence state occupations change in dashed lines.

Fig. 4.8 shows the stopping power of proton in aluminum performed in the all-electron
and the frozen core dynamics. As well, on the same graph we present the calculations of the

occupation change of the valence electrons
〈dqval
dz

〉
, similarly, for the all-electron response

and the frozen core case. One can see that while the stopping power has considerably
lower values starting from v = 2.0 a.u. (Ekin

proj = 100 keV) in the case of the frozen
core, the dependence of the valence state occupations is almost the same for both the
all-electron and the frozen core dynamics. This demonstrates that, in the case of the
proton irradiation in aluminum, the core and the valence states excitation dynamics can
be decoupled: Regardless of the fact that the core excitations are allowed or not, during the
irradiation simulation, the valence electrons excitation dynamics is almost the same. Hence,
we justify the separation of the stopping power into the core and valence contributions
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done is the previous chapter. For the proton in lithium target case (not presented) we have
obtained the same conclusion.

Concerning the correlation between RESP and the valence state occupations, one can
note the overall similarity of the curves. However, the peak of the valence occupations is
shifted to the left: v ≈ 0.7 a.u. (Ekin

proj ≈ 12.2 keV), while RESP has the maximum at
v ≈ 1.3 a.u. (Ekin

proj ≈ 42.2 keV). One can also note that the valence electrons are well
excited even at small projectile velocities: For the lowest projectile velocity that was used
in our calculations (v = 0.2 a.u. or Ekin

proj = 1 keV), the valence state occupation change is
still large (80 % of the peak value), while the stopping power is already quite low (25 % of
the peak value) and goes linearly to zero.

4.2.4 Core electron occupations velocity dependence

Now, we will focus on the 2s and 2p core occupations change dynamics. Fig. 4.9 presents
the contribution of the core electrons (sum of 2s and 2p) to the random stopping power as
a function of proton velocity, calculated as follows

〈Se〉core = 〈Se〉total − 〈Se〉frozen 1s2s2p. (4.6)

In the same plot we present the random occupation change of 2s and 2p levels separately.
We observe that the proton velocity at which the core electrons are the most excited is
about v = 3.0 a.u. (Ekin

proj = 22.5 keV). This velocity is different from the peak velocity of
the total stopping power.

Figure 4.9 : Proton velocity dependence of the core (2s + 2p) contribution to the random elec-
tronic stopping power (black curve), 2s (dashed blue) and 2p (dashed green) random occupation
changes.
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One can also note a threshold behavior at low velocities of all the curves: after some
projectile velocity, the core contribution to the stopping power as well as the occupation
changes start to increase. Such behavior is inherent to semiconductors, where the stopping
power is strictly equal to zero for the projectile velocities lower than the threshold velocity
v∗, that has the following expression (in SI units) [16]

v∗ = Eg
2kF~

, (4.7)

where Eg is the bandgap energy (in the case of semiconductors) and kF is the Fermi wave
number. kF can be expressed from the Fermi velocity vF as follows

~kF = mevF . (4.8)

In turn, one can find the Fermi velocity of a homogeneous electron gas from the electron
density n in the following way

vF =

(
3π2n

)1/3
~

me

. (4.9)

The final expression for the threshold velocity is then

v∗ = Eg

2~
(
3π2n

)1/3 . (4.10)

We can apply this formalism to the 2s and 2p electrons of aluminum assuming their
effective bandgap energy equal to the energy difference of the level with respect to the
Fermi level: -102.2 eV for 2s and -65.0 eV for 2p (see Table 4.1). Usually, one takes the
density for the Fermi velocity calculations equal to the valence electron density. However,
since we consider here 2s and 2p electrons, we will include them into the electronic density
n. One should note that such treatment is approximate.

Finally, we get the following threshold velocities for 2s and 2p electrons: v∗2s = 1.32 a.u.
(E∗2s = 43.5 keV), v∗2p = 0.84 a.u. (E∗2p = 17.6 keV). These values are indicated in Fig. 4.9
as vertical lines. We can see that, even this treatment that uses the effective bandgap is
approximate, the values of the threshold velocities are in a very good agreement with the
ab initio RT-TDDFT simulations results.

One can add that the threshold velocity for the 1s electrons (according to their energy
≈ −1500 eV) is very large and is equal to v∗1s = 19.3 a.u. (E∗1s = 10.0 MeV). At these
projectile velocities, the electronic stopping power of proton is already very low.

4.2.5 Channeling conditions

Here we would like to analyze the difference between the random and channeling conditions
for both the stopping power and the electronic occupations as a function of the proton
velocity presented in Fig. 4.10. The channeling stopping power is lower than the random
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one for all the projectile velocities. Thanks to the occupation analysis we have a clue about
the contributions of different electronic levels to the difference in the stopping power.

First, while the 2s excitations do contribute to the random stopping for v > 1.0 a.u.
(Ekin

proj > 25 keV), their contribution in the case of the channeling trajectory is negligible
(compare solid and dashed blue lines in Fig. 4.10 (c)).

Concerning the 2p core electrons, we can see small excitations in the channeling case
starting from v > 2.0 a.u. (Ekin

proj > 100 keV) that increase with the projectile velocity
(compare solid and dashed green curves in Fig. 4.10 (c)).

Figure 4.10 : (a) Random (black solid line) and channeling (turquoise dashed line) electronic
stopping power of proton in aluminum. (b), (c) Random (solid lines) and channeling (dashed
lines) occupation change as a function of the proton velocity. (b)-panel presents the valence
electron and (c)-panel shows the core (2s and 2p) occupation changes. The aluminum cluster
orientation is [001].

Random and channeling valence electron occupations changes are the same for large
projectile velocities (v ≥ 3.0 a.u. or Ekin

proj ≥ 225 keV). However, we can see a difference in
the occupation dynamics of the valence levels for lower velocities (solid and dashed orange
lines in Fig. 4.10 (b)).
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Figure 4.11 : Difference between the random electronic stopping power and the channeling
stopping power of the proton in the aluminum target. Orange fill of the curve corresponds to
the valence occupation dynamics difference in the random and channeling cases and green fill
corresponds to the core occupations dynamics difference.

Therefore, we can conclude, that for the small projectile velocities, the channeling
stopping power is lower than the random one because of lower valence electrons excitations
(core excitations being negligible at small v). While for large projectile velocities, the
difference in the stopping power is mostly due to lower core electron excitations in the
channeling case. This conclusion is illustrated in Fig. 4.11 that presents the difference
between the random and the channeling stopping power. The curve has two peaks. The
maximum of the random - channeling stopping at low velocities is due to the difference in
the valence excitation dynamics, while the peak at high velocities is due to the difference
in the core electron excitations in the random and channeling simulations.

Conclusive remarks

As we have seen in this section, the frozen core technique and the occupation analysis
provide useful pieces of information about different electronic level excitations during the
RT-TDDFT simulations. Both techniques give quite similar information: We have seen
a good agreement between the contributions of different electrons to the stopping power
calculated using the frozen core simulations and the occupation change. There is a good
correlation for both the impact parameter and the velocity dependencies. However, using
the frozen core technique, we have information about the relative contributions of the
electrons from different shells to the stopping power. Whereas we do not have this piece of
information from the occupation analysis, where we can compare only the absolute values
of occupation changes within the same electronic levels (bands). On the plus side of the
occupation analysis technique, using this method we were able to demonstrate that the
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valence and the core excitations are decoupled, while it is not possible to show within the
frozen core simulations.

Hence, we conclude that the occupation analysis can be a complementary tool to the
frozen core technique. One should also mention that the calculation of the occupation
dynamics during the RT-TDDFT simulations is performed on-the-fly and adds less than
0.5 % of the overall computational time, whereas, for the frozen core technique, one needs
to run separate simulations.

4.3 Centroid path approximation accuracy

In this section, we would like to discuss the accuracy of the centroid path approximation in
the random stopping power calculations. This approach was presented in section 1.5.2 and
it is used in some RT-TDDFT stopping power calculations, for example, in this reference
[88].

We have performed the calculations of the stopping power for the centroid trajecto-
ries Straje (pcent) for proton in lithium and proton in aluminum targets having the [001]
orientation. For lithium, the impact parameter corresponding to the centroid path is

pLi
cent = (a

Li
lat

12 ; aLi
lat

4 ) and for aluminum pAl
cent = ( aAl

lat

12
√

2 ; aAl
lat

4
√

2), where aLi
lat and aAl

lat are the lattice

constants of lithium (bcc structure) and aluminum (fcc structure) respectively.
We compare the random stopping power calculated within the centroid path approx-

imation with the random stopping obtained using our averaging approach that has only
the polar symmetry approximation and leads to errors not larger than 2 % (see section
3.1.3). Fig. 4.12 shows this comparison. It is seen that the centroid path approximation
works well at low projectile velocities (v < 1.0 a.u. or Ekin

proj < 25 keV). However, for large
velocities, it leads to significant errors (up to 35 %) in 〈Se〉 for both targets.

Based on our calculations of the stopping power along the y-axis, Straje (p = (0; py)),
we have found the impact point p ′y at which the stopping power Straje (p = (0; p′y)) is
equal to the random stopping 〈Se〉 (see Fig. 4.13). As one can see, this point changes
as a function of the proton velocity: At low velocities, the stopping power dependence on
the impact parameter is quite flat, therefore, any impact parameter point in some large
interval would yield almost the same value of Straj as the random 〈Se〉. Concerning the
high-velocity limit, the core excitations become significant, therefore the p ′y value shifts
towards the nucleus.

In order to demonstrate that the centroid path error at high velocity comes from the
core electrons, we have performed the same centroid path/ensemble average comparison as
in Fig. 4.12 but with the frozen core.

The results are presented in Fig. 4.14. One can see that in this case, the stopping
power obtained within the centroid path approximation agrees very well (less than 3 % of
difference) with the 〈Se〉 values obtained using the ensemble average. It is important to
mention that our results shed new light on those obtained by Yost and coworkers [87] for
the α-particle stopping power calculations in SiC. Indeed, in that work, a pseudopotential
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Figure 4.12 : Random electronic stopping power calculated within the impact parameter
averaging (black curves) and the centroid path approximation (pink curves) of proton in lithium
(a), and proton in aluminum (b). The relative error of the centroid path approach with respect
to the impact parameter averaging is shown on the top plots in black dashed lines.

Figure 4.13 : The impact parameter along y-axis p ′y at which the stopping power is equal to
the random one. The norm of the centroid impact parameter pcent is presented as the red line.
(a) Proton in lithium. (b) Proton in aluminum.
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Figure 4.14 : Random electronic stopping power calculated within the impact parameter
averaging and the centroid path approximation within the frozen core (1s2s2p) dynamics for: (a)
Proton in lithium irradiation; (b) Proton in aluminum.

that does not include the core states was used and, hence, the centroid path approximation
compared well with the ensemble average results. This fact shows that the centroid path
approximation can yield a reasonable estimate of the average only in the case of the frozen
core electron dynamics.

Finally, we conclude that, in the case of the all-electron calculations, the centroid path
approach yields significant errors in the random stopping power for proton in lithium and
aluminum systems. Therefore, the average over the impact parameter (described in section
3.1.3) should be carefully performed for each projectile velocity.

4.4 RESP of α-particle

Having analyzed in detail different aspects of the stopping power using the proton projec-
tile as an example, we will now mostly concentrate on the random stopping and on the
comparison of the stopping power of different ionic projectiles. We start with the α-particle
irradiation simulations.

Fig. 4.15 presents the stopping power of α-particle in lithium and aluminum targets.
As was done for the proton case (Fig. 4.1), we compare our ab initio results with SRIM,
experimental data, and the linear response theory results. For both targets, one can note
similar trends that we have seen in the case of the proton projectile: overestimation of the
RT-TDDFT stopping power with respect to SRIM around the peak and underestimation
at high projectile velocities. The disagreement between SRIM and RT-TDDFT is larger
in the case of the lithium target for low v. One can note that in this case, SRIM code had
only one experimental point in its database at large α-particle velocity (v = 9.3 a.u. or
Ekin
proj = 8.6 MeV). Remarkably, this experimental point is not far from RT-TDDFT values.
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Figure 4.15 : Random electronic stopping power of α-particle in lithium, (a), and aluminum,
(b). The RT-TDDFT results obtained in this work are in black. Data from the SRIM code (in
blue) as well as the experimental points (crosses) are taken from the reference [20].

However, in the region of the stopping power peak and of the low velocities, similarly to
proton in Li case, we argue that SRIM data is not reliable because of the absence of the
experimental data.

Concerning the linear response results, within this theory, the random stopping power
of an ion having the charge Z, SZ , can be found from the proton stopping power, SH+

, in
the following way [34]

SZ = Z2 SH+
. (4.11)

Hence, within the linear response, the stopping power of the α-particle is simply 4×SH+
. It

is seen from Fig. 4.15 that for the α-particle velocities v > 3.0 a.u. (Ekin
proj > 0.9 MeV) the

linear response results are in a very good agreement with the RT-TDDFT results. How-
ever, LR-TDDFT overestimates much the RT-TDDFT and SRIM values for the projectile
velocities around the stopping power peak and for lower v. Indeed, the linear response
theory does not include the charge transfer for the projectile irradiation simulations. This
becomes a significant problem for low projectile velocities and the projectile charges larger
than Z = 1.

4.5 Penetration depth of H+and He2+ within CSDA

Having calculated the stopping power of proton and α-particle in lithium and aluminum
targets, we can now evaluate the penetration depths of the projectiles using the continuous
slowing down approximation (CSDA). This approximation was introduced in section 3.5.1.
We have used the CSDA approach to evaluate the projectile slowing down during its passage
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along the cluster length. Here, we would like to calculate the penetration depth at which
the projectile will be completely stopped. Therefore, the penetration depth ∆zCSDA has
the following expression

∆zCSDA =
∫ E0

0

dE

S(E) =
∫ v0

0

mv dv

S(v) , (4.12)

where E0 and v0 are the initial projectile energy and velocity before entering the material.
In order to find the penetration depths corresponding to the channeling conditions as well
as to the random trajectories, we will substitute the stopping power in equation 4.12 with
the channeling or the random stopping calculated in RT-TDDFT.

The CSDA approach assumes the projectile penetration trajectory along a straight
line. However, as we have seen in section 3.5, the deflection of a projectile from the
straight-line path can be significant at low projectile velocities. Therefore, in the case
of the random stopping power, the CSDA approach that we use here, can provide only
the maximal penetration depth corresponding to the straight trajectory. The complete
penetration depth profile based on the electronic stopping power can be obtained using
the Monte Carlo simulations within the binary collision approximation. This approach is
implemented, for example, in SRIM [20] or Iradina [139] codes.

In contrast, in the case of the channeling propagation, the projectile indeed moves along
a straight-line trajectory (see section 1.5.3). Hence, the penetration depth profile in this
case should be very narrow and the CSDA approach has to provide the value corresponding
to the position of the profile peak.

Fig. 4.16 presents the stopping power (RT-TDDFT random, RT-TDDFT channeling
and the data from the SRIM stopping power) as well as the penetration depths for proton
and α-particle in lithium and aluminum targets calculated from these stopping power
curves. For the projectile energy range studied in this work, the penetration depth varies
in a wide range (from 10−1 µm to 102 µm). Therefore, we present the data in the logarithmic
scale.

In order to compare the numerical values of the penetration depths, we present the
∆zCSDA values in Table 4.1 for the initial projectile energy E0 = 1 MeV (v0 = 6.3 a.u. for
H+and v0 = 3.2 for He2+).

Li Al
random channeling SRIM random channeling SRIM

H+ 55.5 107.2 51.7 18.3 37.8 14.9
He2+ 14.0 26.5 13.6 4.7 9.2 4.1

Table 4.2 : Penetration depths in µm for the proton and α-particle irradiation in lithium
and aluminum targets calculated within the CSDA approach. The values are calculated using
the random and channeling stopping power calculated in this work as well as from the SRIM
stopping power. The initial projectile kinetic energy is taken as E0 = 1 MeV.

Despite the discrepancies between the SRIM data and RT-TDDFT random stopping
power calculations, the penetration depths of H+and He2+projectiles in both targets are in
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Figure 4.16 : (a), (b) Electronic stopping power of proton (solid lines) and α-particle (dashed
lines) in lithium, (a), and aluminum (b) as a function of the projectile velocity. The penetration
depth as a function of the projectile initial energy is presented for proton in lithium (c), proton in
aluminum (d), α-particle in lithium (e) and α-particle in aluminum (f). The curves corresponding
to the random trajectory obtained from RT-TDDFT are in black, from SRIM in blue and the
curves corresponding to the channeling conditions obtained from RT-TDDFT are in turquoise.
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a good agreement. This is due to the fact that the random stopping power calculated in
RT-TDDFT in more or less in agreement with SRIM for quite a large range of projectile
velocities after the stopping power peaks. On the other hand, there is a compensation
of errors: SRIM is larger than RT-TDDFT for high v and lower for small v. In the case
of lower initial projectile energies E0, especially, before the peaks, the discrepancies are
larger.

Concerning the channeling penetration depth, one can note that it is approximatively 2
times lower than in the case of the random trajectory for both projectiles and both targets.
We would like to mention that the SRIM database does not contain information about the
channeling projectiles. In our ab initio RT-TDDFT calculations, it is easier to obtain the
channeling stopping power because to do that, one needs to calculate Straj at only one
impact point (instead of 13).

4.6 RESP of antiproton

Having analyzed the “usual” types of projectiles, H+and He2+, we now switch to a more
“exotic” case: antiproton. In our code, the implementation of the antiproton irradiation
just means a change of the sign of the perturbation potential from Z = 1 (proton case) to
Z = −1 in equation 3.1.

Figure 4.17 : Random electronic stopping power of proton (black) and antiproton (red)

irradiation in lithium, (a), and aluminum, (b). Experimental points (for H −in Al) are depicted
in crosses and are taken from references [140–142].

Fig. 4.17 presents the comparison of the random stopping power for proton and an-
tiproton in lithium and aluminum targets. One can note that the random stopping power
of antiproton is lower than that of proton, known as the so-called Barkas effect [143]. This
shows that the electron screening for proton and antiproton is different [144]. Though,
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at large projectile velocities, the random stopping power of both projectiles is almost the
same.

Since the linear response results are simply proportional to Z2, within this theory
one obtains the very same result as for proton projectile. Indeed, the Barkas effect is
proportional to Z3 [145] and cannot be captured by LR-TDDFT.

Concerning the comparison with the experimental data (available for antiproton in
aluminum), we see a good agreement with our ab initio results, though, RT-TDDFT slightly
overestimates the experiment around the peak (around 12 %).

4.7 Effective charge of projectile

In this section, we will study in more detail the discrepancies between RT-TDDFT and
the linear response results (obtained in reference [33]). While the agreement between
LR-TDDFT and RT-TDDFT is strikingly good for the proton irradiation simulations in
lithium and aluminum targets, the disagreement for H −and He2+ projectiles is compelling,
especially for the projectile velocities around the stopping power peaks (see Fig. 4.15 and
4.17). Having the stopping power values obtained from both methods, we can introduce
an idea of an effective projectile charge: For the stopping power within LR-TDDFT of a
projectile of charge Z, SZ , instead of using the nominal projectile charge Z (as in equation
4.11), we substitute it with Zeff

SZ = Z2SH+ → SZ = Z2
effS

H+
. (4.13)

Then, we select this effective charge in a way to reproduce the stopping power values
calculated within RT-TDDFT. Finally, we can find Zeff simply from the ratio of the
stopping power SZ , calculated in RT-TDDFT, and the stopping power of proton

Zeff =
(
SZ/SH+)1/2

. (4.14)

One can also interpret Zeff as a scaling factor between LR-TDDFT and RT-TDDFT.

Fig. 4.18 presents the effective charge calculated in this way for H −and He2+ projectiles
in lithium and aluminum targets. The value of Zeff varies as a function of the projectile
velocity. This shows that for these projectiles additional higher-orders in Z perturbation
terms are necessary to obtain an adequate stopping power. Though, one can see from
Fig. 4.18 that at large v, the effective charge reaches the values given by the linear response
theory: |Zeff | = 1 for antiproton and Zeff = 2 for α-particle, meaning that this level of
theory is enough for a proper description of the electronic response at high v.
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Figure 4.18 : Effective charge (in violet) of antiproton ((a) and (b)) and α-particle ((c) and (d))
irradiation in lithium and aluminum targets. Random electronic stopping power obtained from
the linear response theory is presented in green dashed lines, the one obtained from RT-TDDFT
is presented in red (for antiproton) and in black (for α-particle).
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4.8 Summary

In this chapter, we have present the random electronic stopping power calculated with our
RT-TDDFT localized basis code. The calculations were performed for proton, antiproton
and α-particle irradiation in lithium and aluminum targets.

Concerning the proton irradiation in lithium, for large projectile velocities, we note a
good agreement between our RT-TDDFT results, SRIM and experimental points. For the
velocities lower than the peak, the experimental data are absent and the disagreement with
SRIM is significant. We think that since in this velocity range there is no experimental
data, the SRIM results are simply a reckless extrapolation. For the aluminum target,
the experimental database is considerably larger for all the velocities and the agreement
between SRIM is better. However, we note an underestimation of RT-TDDFT with respect
to SRIM around the peak and an overestimation for larger velocities. Such behavior is
common to other ab initio codes though. Even if the disagreements are not significant,
we have tried to identify their possible origins: we have analyzed the exchange-correlation
functional importance and the contribution of 1s electrons to the stopping power. None of
those can lead to the observed difference between the ab initio codes and the experimental
data. Then, using the proton in Al system, we have studied in detail the contribution from
different electronic levels to the stopping power using the frozen core technique and the
occupation analysis. We have also seen the spatial extension and the velocity dependence
for each level separately.

For the case of α-particles in Li and Al, one can draw a similar conclusion as in the
proton case. For the lithium target, the comparison with SRIM is good for the velocities
where one has experimental points (only one odd data point available in this case though).
For aluminum, one has a large number of measurements and the overall comparison is
better than in lithium case.

Then, using the stopping power values obtained from our RT-TDDFT code for the
above-mentioned projectiles and target, we have calculated the penetration depths within
the CSDA approach. The calculations were done for the random electronic stopping power
and for the channeling one. We have seen that in the channeling conditions the projectiles
travel around 2 times deeper in targets before the complete stopping.

For the antiproton irradiation, we have shown that the proton stopping power is larger
than in the antiproton case for the projectile velocities around the stopping power peak.
However, in the regime of high velocities, the stopping power values corresponding to both
projectiles become very similar.

Concerning the LR-TDDFT results, we have seen a very good agreement between LR-
TDDFT and RT-TDDFT for the proton irradiation, while this approach fails for the other
projectiles. From the stopping power obtained from RT- and LR- TDDFT methods, we
have evaluated the effective charge of antiproton and α-particle.
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Conclusions

In the present work, we have developed a real-time TDDFT approach based on the Gaussian
basis set code MOLGW for the electronic stopping power calculations. This development
involved the following steps:

• The derivation of the time-dependent Kohn-Sham equations in the localized basis
set.

• The implementation of different time propagation algorithms that consist in a prop-
agator and a predictor-corrector scheme.

• The benchmarking of the implementation using the optical absorption spectra calcu-
lations.

• The optimization of different parameters for the stopping power calculations (cluster
size, time step, impact parameter grid, basis set, etc.).

• The development of the post-processing scripts that allow us to manipulate a large
amount of data (for example, one stopping power curve includes around 200 separate
RT-TDDFT trajectories, for each trajectory one needs to apply the 3-step averaging
procedure, described in section 3.1, in order to deduce the stopping power).

The developed methodology, in particular, equations 2.70 - 2.107, can be easily applied
to any localized basis code that contains a standard ground-state DFT part in order to
extend it to RT-TDDFT.

At the present moment, within this code, one can perform the non-perturbative ab-
sorption spectra calculations and, more importantly, the random electronic stopping power
calculations of ionic projectiles. In the code, we have implemented the time propagation
of Kohn-Sham equations, which is general to any time-dependent problem that one would
need to solve numerically. Hence, our code is easy to generalize to any other perturbation
type.
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The overall computational performance of the code is very good (around 14 000 CPU
hours for the random stopping power calculation for one projectile velocity within LDA
exchange-correlation functional). For the moment, the target nuclei are fixed and the
projectile is naked (without Gaussian basis functions around the impinging ion). Indeed,
implementation of the moving basis functions around the projectile is quite a challenging
task because of the following reasons: 1) The two-electron integrals, which are presently
calculated once at the beginning of a calculation, would change in time because of the
changing basis set; 2) The time propagation in an evolving Hilbert space would lead to
additional complicated terms in equations 2.70 - 2.107 [146].

We expected benefits from the localized basis implementation, therefore, here, we would
like to reevaluate the pros and cons of the localized basis implementation based on the
accomplished calculations:

• As was anticipated, one of the main advantages of the localized basis codes with
respect to the stopping power calculations is the cheap account of core electrons that
we prove to be very important in this problem. In plane-wave codes, the explicit
treatment of core electrons can come at a prohibitive computational expense because
of very high cutoff energies required in this case [88].

• The calculations with the hybrid exchange-correlation functionals (tested B3LYP,
PBE0, HSE08) are about 7 times heavier than in the case of LDA, however, this
timing stays still lower than a plane-wave calculation even within the LDA functional
[91].

• Even if the ionic projectile is naked in our simulations, the basis functions centered
around the nuclei are enough for light projectiles (H+, H −, He2+) irradiation simu-
lations.

• As an unexpected advantage, the tunable position-dependent basis set (described in
section 3.2.1) is very useful together with the fixed projectile trajectory approximation
(section 1.5.1) and the ensemble average technique (section 3.1.3). This technique
allows one to save a large amount of computational time: The calculations with the
mixed basis are around 4 times faster than in the case where the highest precision
basis is assigned to all atoms of the cluster.

• In the case of highly energetic excitations (like one we have in the stopping power
calculations), the basis set has a crucial importance (especially for the atoms that
are close to the projectile trajectory): The stopping power variation with the basis
set is almost one magnitude larger than the variation with any other simulation
parameter (cluster size, impact parameter grid, exchange-correlation functional, time
step, etc.). Therefore, one should pay special attention to the basis set problem when
the excitation energy is large. In this work we have proposed two solutions related
to this problem:
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1) Extrapolation of the stopping power based on standard Dunning basis sets (de-
scribed in section 3.3). The extrapolation is quite slow, therefore one needs to
include the largest bases available for a given material. In addition to its com-
putational expense, the problem of this approach is the fact that for some atoms
(like Li), basis sets at high enough order are not available in the literature. We
have shown that the incorporation of both diffuse and tight core basis functions
is necessary for the extrapolation over the whole projectile velocity range.

2) Basis set generation (presented in section 3.4). The proposed approach is based
on the maximization of the stopping power. The obtained in this work optimized
bases for Li and Al targets, allow one to perform the RESP calculations with
better accuracy than provided by the highest Dunning basis sets and with a lower
computational time. The optimization procedure is quite simple to implement
and parallelize. However, some additional algorithmic optimization and the
parameters space exploration remains to be done.

The elaborated solutions to the basis set problem could be useful for other fields,
where the localized basis codes are applied (for example, in the case of strong optical
excitations). The possibility of use of the ghost atoms around the real target atoms
in order to improve the basis set accuracy (like, for example, in reference [133]) for
stopping power simulations will be considered in the future.

Concerning the random electronic stopping power calculations, we would like to point
out the most important and general conclusions. Throughout this work, we have used the
ensemble average technique (presented in section 1.5.2). We have seen that this technique is
well adapted for the localized basis: It provides accurate random stopping power values and,
at the same time, it allows one the dummy parallelization over different impact parameters.
We have also shown that the centroid path approximation works well only in the case when
the core excitations are forbidden (within the frozen core technique in our code or with a
pseudopotential within plane-wave codes). Hence, for the RESP calculations, one should
properly calculate the impact parameter average for each projectile velocity.

Using the ensemble average technique and very fine impact parameter grids, we have
shown that the random stopping power is the same for different cubic target orientations
(see section 3.1.3). Thank to this fact, for the RESP calculations we have considered only
the [001] crystalline orientation of targets. Although, the correlation between the stopping
power and the electronic density along the projectile path is different for different target
orientations. In addition, the correlation vanishes at low projectile velocities.

Throughout this work, we have proven the importance of the core electron excitations
in the stopping power simulations using different approaches: Basis set tuning (section
3.2.2), frozen core technique (section 4.1) and the occupation analysis (section 4.2). We
have also evaluated the contribution of the core electrons in RESP as a function of the
projectile impact parameter. As well, the velocity behavior of the contributions from
different electronic levels to RESP was analyzed.
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Concerning the exchange-correlations functionals dependence, we have found that it
does not have significant importance in the case of the studied targets (Li and Al). However,
since the relatively moderate cost of the exchange-correlation functionals is an advantage
of our code, we are looking for a projectile/target system, where the exchange-correlation
functional would be an important parameter.

Comparing the RT-TDDFT ab initio results with SRIM, we would like to summarize
that there is an overall good agreement between our theoretical results and the empirical
code SRIM in the cases when the SRIM database contains enough experimental points.
There are some systematic discrepancies though between the RT-TDDFT results and ex-
periment common for different ab initio codes and different targets: the RT-TDDFT results
are usually larger than the experimental points around the stopping power peak, whereas
at high projectile velocities, the ab initio results slightly underestimate the experiment.
In addition, using our code, we can calculate the channeling stopping power (even more
easily, than RESP), which is absent in the SRIM database.

Regarding the linear response theory, LR-TDDFT produces the same results as RT-
TDDFT for proton projectile. In the case of antiproton and α-particle, one notes a good
agreement only at high projectile velocities. This fact allowed us to determine the effective
velocity-dependent projectile charge such that with this charge, LR-TDDFT would yield
the same results as RT-TDDFT. The effective charge reaches the nominal projectiles’ charge
values only at high projectile velocities.

Perspectives

This work could be extended in several directions. Using the current state of the code, we
would like to continue the stopping power calculations of light projectiles (H+, H −, He2+)
in other materials. In particular, we are interested in the iron target that is of paramount
importance for the nuclear industry.

In this work, we have spent a lot of effort to calculate the electronic stopping power
of crystalline materials because this was our initial goal. However, our localized basis
implementation is very well adapted for the stopping power calculations of finite systems.
Therefore, we would like to investigate the electronic stopping of gases (a work that we
have already started but did not report in this thesis), polymers, 2D materials, and other
nanostructures. The localized basis has even more advantages than the plane-wave codes
in the case of these systems. For example, to simulate a graphene layer in a plane-wave
code, one needs to use a large simulation box in order to ensure a separation between the
periodic images of the system in the direction perpendicular to the layer. Furthermore, the
vacuum between the images would “cost” as much as the most important region of space
around the graphene layer. On the other hand, within the localized basis code, firstly,
one does not need to deal with the unwanted periodic repetitions of the atomic system
and, secondly, since the basis functions are centered around the atoms, the “vacuum” part
(necessary for the stopping power setup) would in no case increase the computational time.

Moreover, we are going to analyze in more detail the Barkas effect using the frozen core
technique and the occupation analysis (some calculations being already performed). Even-
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tually, we would like to finalize the calculations of the wake electronic density distribution
of different projectiles (in relation to the Barkas effect).

In the long term perspectives, it would be useful to implement the moving Gaussian
basis functions around the projectiles, which would allow one to calculate the stopping
power of heavy ions. One would be able to simulate systems such as Fe projectile in Fe
target. Such projectile/target system would be important in the cases of the iron target
irradiation with any nature of the irradiating beam (any ionic projectile or, even, photons):
because of the interaction with the external beam, some Fe target atoms become secondary
projectiles themselves and interact with the target. Hence, in order to simulate this effect,
the electronic stopping power of Fe projectile in Fe target is required. A similar simulation
setup of nickel projectile in nickel target was studied very recently by Ullah, Artacho, and
Correa [91]. Concerning the medical applications, the stopping power of carbon ions in
organic matter is of particular interest in the hadron therapy of cancer [78, 147].

In addition, the implementation of the forces in the code (between the target nuclei
and between the target and the projectile) would give an ab initio access to the systems
where both nuclear and electronic stopping are important (slow heavy ion irradiation,
for example) and one would be able to describe the dissociation of molecules under the
irradiation.
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[35] André Schleife, Yosuke Kanai, and Alfredo A Correa. Accurate atomistic first-
principles calculations of electronic stopping. Physical Review B, 91(1):014306, 2015.
(Cited on pages 15, 50, 52, 53, 113, and 149).
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Synthèse 
 
 

1. Introduction 
 
Le dommage d'irradiation dans la matière condensée est un phénomène important pour de 
nombreux domaines : les matériaux pour le nucléaire bien sûr, mais aussi l'électronique 
embarquée dans les satellites sujets aux rayonnements cosmiques, ou encore la matière vivante 
soumise au traitement des tumeurs par radiothérapie. Une connaissance précise de l'interaction 
entre la particule irradiante et le matériau cible est par conséquent fondamentale. L’interaction 
entre un projectile ionique et une cible peut être décrite par le biais du pouvoir d’arrêt, 𝑆𝑆. Il est 
défini comme étant le transfert d’énergie du projectile au matériau divisé par la profondeur 
d’implantation. La perte d’énergie d’un ion est induite majoritairement par les excitations 
électroniques de la cible.  Le pouvoir d’arrêt électronique, 𝑆𝑆𝑒𝑒, est alors la grandeur principale 
dans ce domaine. L’arrivée de la théorie de la fonctionnel de la densité dépendante du temps 
(TDDFT) a permis de largement améliorer la description de ce phénomène. 
Donc, l’objectif de cette thèse était de développer une approche basé sur TDDFT et l’utiliser pour 
les calculs du pouvoir d’arrêt électronique dans le cas d’irradiation aux projectiles ioniques pour 
des matériaux cristallins.  
 
 

2. Approche 
 
2.1 Implémentation 

 
Au cours de cette thèse, nous j’ai développé un code ab initio basé sur la TDDFT en temps réel 
(RT-TDDFT) dans les bases gaussiennes. Cette implémentation a des avantages considérables 
comme le traitement direct des électrons de cœurs, la rapidité de calculs des fonctionnelles 
hybrides et la flexibilité de la base. Nous avons basé l’implémentation sur le code MOLGW 
(implémenté également dans notre laboratoire).  
Pour calculer l’évaluation du système électronique soumis à une perturbation, nous calculons la 
fonction d’onde électronique dépendante du temps, Ψ(𝑡𝑡), avec la technique du propagateur. 
Pour calculer la fonction d’onde à un instant 𝑡𝑡 + Δ𝑡𝑡,Ψ(𝑡𝑡 + Δ𝑡𝑡), Δ𝑡𝑡 étant le pas de temps, à partir 
de Ψ(𝑡𝑡), nous appliquons l’opérateur de propagation 𝑈𝑈� : 𝜓𝜓(t+Δt) = 𝑈𝑈�(t+Δt, 𝑡𝑡)𝜓𝜓(𝑡𝑡). Cet 
opérateur a une expression suivante : 𝑈𝑈� = 𝑇𝑇�exp �−𝑖𝑖 ∫ 𝑑𝑑𝑑𝑑𝐻𝐻�(𝑑𝑑)𝑡𝑡+𝛥𝛥𝑡𝑡

𝑡𝑡 �, où 𝑇𝑇�  est le « time-
ordering operator ». En fait, l’expression de cet opérateur est juste la reformulation de l’équation 
temporelle de Schrödinger, mais qui permet de mieux contrôler la stabilité et la précision de la 
propagation. Dans un cas général, afin d’implémenter cette technique, nous devons appliquer 
deux approximations : une pour l’intégral d’Hamiltonien en temps et une autre pour 
l’exponentielle. Cependant, dans les bases gaussiennes localisées, la dimension typique de la 
matrice d’Hamiltonien permet d’évaluer l’exponentielle directement, sans aucune 
approximation. La seule approximation qui reste à faire, c’est celle de l’intégrale. Cela peut être 
considéré comme un autre avantage d’implémentation dans les bases gaussiennes par rapport, 
par exemple, aux ondes planes.  La stabilité numérique de la solution en temps a été ensuite 
amélioré grâce à une technique de prédicteur-correcteur, développée dans cette thèse 
spécialement pour ce problème.  



Finalement, une simulation typique de RT-TDDFT implémentée dans le code MOLGW est la 
suivante. Nous calculons l’état électronique fondamental d’un système donné avec la DFT 
statique.  Ensuite nous appliquons une perturbation est nous calculons l’évaluation du système 
électronique avec la méthode de RT-TDDFT. Le calcul d’état fondamental de DFT a été 
implémenté en MOLGW avant cette thèse, tandis que la partie de la propagation en temps a été 
implémenté dans ce travail.  
   
 

2.2 Validation 
 
Une fois que le code de RT-TDDFT a été implémenté, nous avons tout d'abord calculé un cas de 
figure permettant le test de la qualité du code écrit. Nous avons donc effectué un calcul de RT-
TDDFT en temps réel pour une situation que nous pouvions calculer par ailleurs avec une 
approche déjà existante dans MOLGW, la réponse linéaire.  
Nous avons évalué le spectre d'absorption optique d'une petite molécule, le benzène C6H6. Pour 
ces deux méthodes, nous avons utilisé les mêmes positions atomiques et la même base localisée, 
dans l'approximation de la densité locale (LDA) pour l'échange corrélation. 
Le spectre d'absorption optique est obtenu tout d'abord de façon classique dans le cadre de la 
réponse linéaire grâce à la solution de la TDDFT dans l'espace des fréquences : ce sont les 
équations de Casida. Puis nous avons entrepris une simulation en temps réel avec RT-TDDFT. 
Pour exciter le système nous avons introduit une impulsion de champ électrique homogène dans 
l'espace et de forme gaussienne dans le temps à instant 𝑡𝑡 = 0. Cette impulsion gaussienne est 
une excitation quasiment « blanche » qui active tous les modes du benzène. 
L'intensité de l'impulsion est faible de façon à rester dans le régime de la réponse linéaire et 
pouvoir ainsi comparer avec notre calcul de référence.  
Finalement, nous avons obtenu un très bon accord pour les résultats obtenus avec la réponse 
linéaire et RT-TDDFT ce qui certifie notre implémentation. Il faut remarquer que nous avons 
utilisé la limite des petites perturbations afin de comparer nos résultats avec la réponse linéaire. 
Cependant, après cette étape de vérification, notre code permet d’avoir des spectres 
d’absorption qui correspondent aux intensités d’excitations quelconques.  
De plus, l’approche de l’évaluation du système électronique sous une perturbation en RT-TDDFT 
et en base localisée pourrait être appliquée pour des différents types d’excitations.  
 
 

2.3 Méthode de simulations ab initio du pouvoir d’arrêt  
 
Après la validation de l’implémentation, nous nous sommes tournés vers les simulations de 
pouvoir d’arrêt électronique aux ions. MOLGW n’a pas de conditions aux limites périodique, c’est 
pourquoi un système typique pour simuler le pouvoir d’arrêt se compose d’un projectile ionique 
et d’un agrégat qui représente la cible.  
Pour calculer le pouvoir d’arrêt, dans un premier temps, nous calculons l’état fondamental du 
système. Ensuite, nous imposons une vitesse de projectile constante. Cela veut dire que nous 
appliquons un travail supplémentaire pour maintenir cette vitesse, ce qui implique une 
croissance de l’énergie totale du système projectile-agrégat. Le travail appliqué compense la 
perte de l’énergie cinétique du projectile. Par conséquent, la croissance de l’énergie, Δ𝐸𝐸, divisé 
par la profondeur d’implantation, Δ𝑧𝑧, est exactement le pouvoir d’arrêt 𝑆𝑆 = Δ𝐸𝐸

Δ𝑧𝑧� . Dans nos 



simulations nous fixons les positions atomiques de la cible, donc le pouvoir d’arrêt calculé avec 
cette approche est purement électronique, 𝑆𝑆𝑒𝑒.  
Le but de cette thèse était de calculer le pouvoir d’arrêt pour des matériaux cristallins. Pour ce 
faire, il est nécessaire de simuler des agrégats assez grands pour représenter approximativement 
le solide.  Nous avons vérifié la convergence du pouvoir d’arrêt vis-à-vis de la taille de la cible et 
nous avons retrouvé des conditions d’irradiation de matériaux cristallins. 
Ensuite, pour comparer nos résultats avec l’expérience, il est nécessaire d'effectuer une moyenne 
sur les différentes trajectoires du projectile. Nous avons simulé de nombreuses trajectoires pour 
considérer cette moyenne et nous avons établi une stratégie pour obtenir les moyennes à un 
coût contrôlé et avec une bonne précision. 
 
 

2.4 Optimisation de la base Gaussienne   
 
Une des particularités du phénomène d’irradiation aux ions est le fait que ce phénomène est très 
énergétique : un projectile ionique rapide excite tous les électrons de la cible en les promouvant 
sur des états énergétiques très loin d’équilibre. C’est pourquoi la base utilisée pour décrire 
correctement les états électroniques de la cible joue le rôle principal dans ce problème. 
Au cours de ce travail, j’ai montré que le pouvoir d’arrêt électronique est très sensible à la base 
et que les bases standards de la chimie quantique ne sont pas adaptées pour le problème du 
pouvoir d’arrêt. Cela s’explique par le fait que dans la plupart de problèmes de la chimie 
quantique, l’excitation du système électronique est relativement faible ce qui n’est pas le cas 
dans ce travail.  
Pour faire face à ce problème, nous avons proposé deux stratégies : 

1) L’extrapolation du pouvoir d’arrêt en fonction de la base. Nous avons remarqué que le 
pouvoir d’arrêt devient plus grand quand on augmente la précision de la base de la cible. 
Cela est dû au fait qu’en augmentant la taille de la base, on améliore la qualité de la 
description des états occupés et, par conséquent, on ouvre plus de canaux de la 
dissipation de l’énergie du projectile. Donc, on peut arriver à la limite de la base complète 
en extrapolant le pouvoir d’arrêt en fonction de la base. Cependant, nous avons trouvé 
que la convergence est assez lente ce qui demande à mener des calculs avec des bases 
très grandes. Cela conduit à un autre problème : pour certains éléments (comme, par 
exemple le lithium), on ne dispose pas de bases standards disponibles assez grands.  

 
En prenant en compte les problèmes de l’extrapolation du pouvoir d’arrêt en utilisant des bases 
standards, nous avons proposé une autre solution : 

2) La génération des bases spécialement pour le problème du pouvoir d’arrêt. Le fait que le 
pouvoir d’arrêt électronique croît avec la précision de la base, permet d’établir une 
procédure de génération de bases qui s’appuie sur la maximisation du pouvoir d’arrêt. 
Pour ce faire, j’ai créé des scripts qui permettent de générer les bases de façon 
automatique pour des cibles différentes.  

 
Les bases obtenues dans ce travail pour lithium et aluminium ont permis de calculer le pouvoir 
d’arrêt électronique avec une meilleure précision et avec un coût de calculs modéré. La 
procédure élaborée pour le pouvoir d’arrêt pourrait être appliqué aux autres problèmes 
physiques où il y a des fortes excitations électroniques. 
 
 



3. Résultats 
 
Dans ce travail, j’ai effectué les calculs du pouvoir d’arrêt électronique en RT-TDDFT du lithium 
et de l’aluminium dans le cas d’irradiation aux protons, aux antiprotons ainsi qu’aux particules 
alpha. J’ai comparé les résultats directement aux données expérimentales et aux données 
générées par le code empirique SRIM, largement utilisé par les expérimentateurs.  On obtient un 
bon accord avec SRIM lorsque celui-ci contient une base de données expérimentales 
suffisamment riche.  
 

 

Fig. S1: Pouvoir d’arrêt électronique (en unités atomiques, a.u., ou en keV/nm) calculé à partir de simulations en RT-
TDDFT pour l’irradiation aux protons (noir continu), antiprotons (rouge continu) et aux particules alpha (vert 
continu) dans lithium en fonction de la vitesse des projectiles (en unités atomiques, a.u.) ou de l’énergie cinétique du 
proton (en keV). Les données de SRIM pour le proton sont en bleu. Les points expérimentaux sont présentés pour 
l’irradiation aux protons (croix noires) et aux particules alpha (croix vertes). Les résultats de RT-TDDFT sont 
obtenues avec les bases optimisées, en utilisant LDA comme le fonctionnelle d’échange corrélation.   
 
Dans le cas d’irradiation de lithium aux protons (Fig. S1, une courbe et des points en noir), la base 
de données de SRIM ne dispose pas de points expérimentaux pour des petites vitesses (v<1.0 
unités atomiques, a.u.). Remarquablement, seulement dans cette région il y a un désaccord entre 
les données de SRIM et de RT-TDDFT. Pour des vitesses plus grandes, on voit un excellent accord 
entre les résultats ab initio, SRIM et les points expérimentaux. C’est pourquoi, nous pouvons 
conclure que les données de SRIM ne sont pas fiables dans la région de petites vitesses. Pour 
l’irradiation aux particules alpha, la situation est encore plus inquiétante : dans la base de 
données de SRIM il n’y a qu’un seul point expérimental datant de 1928 (Fig. S1, la croix en vert). 
Finalement, pour l’irradiation aux antiprotons, il n’y a aucune donnée expérimentale. Ces 
exemples montrent l’importance de calculs ab initio qui peuvent enrichir la base de données du 
pouvoir d’arrêt.  
 
Dans le cas l’irradiation d’aluminium aux protons (Fig. S2 (a)), la base de données de SRIM est 
assez large pour toutes les vitesses et nous observons un meilleur accord entre SRIM et les calculs 
ab initio. Pour les antiprotons (Fig. S2 (b)), on observe un bon accord avec l’expérience, le code 
SRIM ne fournit pas de résultats pour des antiprotons. 
Concernant la dynamique électronique pendant l’irradiation, nous avons montré l’importance 
des excitations des électrons de cœurs : leur contribution dans le pouvoir d’arrêt est supérieure 
à 50 % pour des grandes vitesses des projectiles (v>2.0 a.u.).  



 
 

 

Fig. S2 : Pouvoir d’arrêt électronique pour l’irradiation aux protons (a) et aux antiprotons (b) dans l’aluminium. Les 
calculs de RT-TDDFT sont faits avec LDA et la base optimisée.   
 
 
Nous avons aussi montré qu’il est très important d’avoir un nombre de trajectoires assez grand 
pour échantillonner correctement la cible. La méthode du « centroid path » qui propose d’utiliser 
qu’une seule trajectoire et qui est souvent utilisé, ne peut être précis que dans le cas de petites 
vitesses de projectiles (v<1.0 a.u.) quand les excitations des électrons de cœurs sont négligeables. 
Pour calculer le pouvoir d’arrêt avec une bonne précision pour toute la gamme de vitesses, les 
calculs de la moyenne sur les trajectoires pour chaque vitesse de projectile est nécessaire.  
 
MOLGW permet d’effectuer des calculs avec les fonctionnelles d’échange corrélation hybrides 
avec un coût de calculs modéré. Nous avons trouvé que l’influence de la fonctionnelle d’échange 
corrélation sur le pouvoir d’arrêt est très limitée (au moins, dans le cas des cibles métalliques). 
 
De plus, nous avons retrouvé l’effet de Barkas, c’est à dire l’observation du pouvoir d’arrêt 
d’antiprotons inférieur à celui de protons (Fig. S2 (b) pour aluminium, les résultats pour lithium 
ne sont pas montrés ici). Cet effet n’est pas reproduit dans les cas de théories plus simples telle 
que la théorie de la réponse linéaire. 
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Résumé : Le dommage d’irradiation dans la matière
condensée est un phénomène important pour de nom-
breux domaines : les matériaux pour le nucléaire bien
sûr, mais aussi l’électronique embarquée dans les sa-
tellites sujets aux rayonnements cosmiques, ou encore
la matière vivante lors du traitement d’une tumeur par
radiothérapie. Une connaissance précise de l’interac-
tion entre la particule irradiante et le matériau cible
est par conséquent fondamentale. L’interaction entre
un projectile ionique et une cible peut être décrite par
le biais du pouvoir d’arrêt. Il est défini comme étant
le transfert d’énergie du projectile au matériau divisé
par la profondeur d’implantation. La perte d’énergie
d’un ion est induite majoritairement par les excitations
électroniques de la cible. Le pouvoir d’arrêt électronique
est alors la grandeur principale dans ce domaine. L’ar-
rivée de la théorie de la fonctionnelle de la densité
dépendante du temps (TDDFT) a permis d’améliorer
largement la description de ce phénomène.
Au cours de cette thèse, nous avons développé un code
ab initio basé sur la TDDFT en temps réel (RT-TDDFT)
dans les bases gaussiennes. Cette implémentation a
des avantages considérables comme le traitement di-
rect des électrons de cœurs, la rapidité de calculs
des fonctionnelles hybrides et la flexibilité spatiale
de la base. Avec notre code, nous avons vérifié la

convergence du pouvoir d’arrêt vis-à-vis de la taille
de la cible afin de tendre vers les matériaux cristal-
lins. Nous avons analysé la dépendance du pouvoir
d’arrêt en fonction du paramètre d’impact afin d’ob-
tenir un pouvoir d’arrêt moyenné, correspondant aux
conditions expérimentales. L’importance des excitations
des électrons de cœurs dans l’irradiation ionique a été
démontrée. Nous avons également étudié l’effet de la
base gaussienne sur le pouvoir d’arrêt. Cette étude
nous a permis de définir deux stratégies pour obtenir
une bonne précision du pouvoir d’arrêt : l’extrapolation
du pouvoir d’arrêt à partir des bases standards ou la
génération de nouvelles bases.
Finalement, nous avons calculé le pouvoir d’arrêt du
lithium et de l’aluminium dans le cas de l’irradia-
tion aux protons, aux antiprotons ainsi qu’aux parti-
cules alpha. Nous avons comparé nos résultats direc-
tement aux données expérimentales et aux données
générées par le code empirique SRIM, largement uti-
lisé par les expérimentateurs. Nous obtenons un bon
accord avec SRIM lorsque celui-ci contient une base de
données expérimentales suffisamment riche. De plus,
nous avons observé l’effet de Barkas : le pouvoir d’arrêt
des antiprotons est inférieur à celui des protons. Cet
effet n’est pas reproduit dans les cas de théories plus
simples telle que la théorie de la réponse linéaire.
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Abstract : Ionic irradiation damage in condensed mat-
ter is central to many technological applications : ma-
terials in nuclear plants of course, but also electronics
and solar panels in space that are subjected to the
cosmic irradiation, living matter treated by radiotherapy
to eliminate tumors, etc. For all these subjects, an ac-
curate knowledge of the interaction between the irra-
diating projectile and the target is crucial. The interac-
tion between the irradiating ion and the target mate-
rial can be described by a stopping power, defined as
the energy transfer from projectile to material per pene-
tration distance. The most important ionic energy loss
channels in irradiation process are the electronic exci-
tations. Therefore, the electronic stopping power is the
central quantity in this field. With the advent of time-
dependent density-functional theory (TDDFT), it is no-
wadays possible to provide a complete and realistic
quantum-mechanical description of the phenomenon.
In this thesis, we have developed a fully ab initio real-
time TDDFT (RT-TDDFT) approach in the localized
Gaussian basis. This implementation has several ap-
pealing advantages, such as the cheap account of core
electrons, the ease of using the modern hybrid functio-
nals, the flexibility of the basis set and overall low com-
putational cost. With our tool, we explored the bulk limit,

the validity of the projectile impact parameter averaging
to obtain the experimental random electronic stopping
power. We have proven the importance of core electron
excitations in the ionic irradiations. A great care was
also taken about the Gaussian basis set convergence:
the extrapolation of the stopping power based on stan-
dard basis sets and the basis set generation scheme
were proposed.
Finally, we have computed the random electronic
stopping power in lithium and aluminum targets for
three types of projectiles: protons, antiprotons and α-
particles. We have compared our results directly to the
experiment as well as to the empirical code SRIM, that
is a widely-used database of stopping powers and a de
facto standard for experimentalists. The agreement with
SRIM is good when the SRIM database contains en-
ough experimental points, whereas we show that the
SRIM extrapolation can be hazardous when the under-
lying experimental data points are too few. Concerning
the antiproton irradiation, our RT-TDDFT calculations
show that the antiproton stopping power is lower than
the proton one, which is in agreement with the general
experimental observation (the so-called Barks effect).
This effect is out of reach of simpler theories, such as
the linear response approximation.
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