
HAL Id: tel-02495825
https://theses.hal.science/tel-02495825

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling white-box reasonings on black-box composition
operators in a domain-independent way

Benjamin Benni

To cite this version:
Benjamin Benni. Enabling white-box reasonings on black-box composition operators in a domain-
independent way. Software Engineering [cs.SE]. COMUE Université Côte d’Azur (2015 - 2019), 2019.
English. �NNT : 2019AZUR4096�. �tel-02495825�

https://theses.hal.science/tel-02495825
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT

Un modèle de raisonnement pour les opérateurs

de composition logicielle décrits en boite noire

Benjamin Benni
Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (i3s)

Présentée en vue de l’obtention du grade de

docteur en Informatique de l’Université

Côte d’Azur

Co-dirigée par :

Sébastien Mosser, Professeur, Université du

Québec à Montréal

et

Michel Riveill, Professeur des Universités,

Université Nice Côte D’azur

Soutenue le : 09/12/2019

Devant le jury composé de :

Claudine Peyrat - Professeure des Universités,

Université de Nice Côte d’Azur

Olivier Barais - Professeur des Universités,

Université de Rennes 1

Gunter Mussbacher - Professeur associé, Univer-

sité McGill

Lionel Seinturier - Professeur des Universités,

Université de Lille

This work is licensed under a Creative Commons Attribution 4.0 International License.



Un modèle de raisonnement pour les
opérateurs de composition logicielle

décrits en boite noire

Jury :

Présidente :

Claudine Peyrat - Professeure des Universités, Université Nice Côte D’azur

Rapporteurs :

— Olivier Barais - Professeur des Universités, Université de Rennes 1

— Gunter Mussbacher - Professeur associé, Université McGill

— Lionel Seinturier - Professeur des Universités, Université de Lille

Invités :

— Sébastien Mosser, Professeur à l’Université du Québec À Montréal (UQAM)

— Michel Riveill, Professeur des Universités à l’Université Nice Côte D’azur



Un modèle de raisonnement pour les opérateurs de
composition logicielle décrits en boite noire

Résumé
La complexité des systèmes informatiques a rendu nécessaire leur dé-

coupage avant de les recomposer. Cette séparation est un défi connu et les
développeurs découpent déjà les tâches au préalable. Néanmoins, séparer
sans considérer la recomposition finale entraine des réunifications hâtives
et chronophages. Cette composition doit mener au bon et meilleur système
avec le minimum d’effort humain. Les opérateurs de composition sont sou-
vent ad-hoc et développés par des non-spécialistes. Ils ne respectent pas de
formalismes de haut-niveau et deviennent trop complexes ou informels pour
pouvoir raisonner. Nous les appelons des "boites-noires" : les techniques né-
cessitant d’en connaitre l’intérieur ne peuvent être appliquées. Or, ces boites
noires doivent garantir des propriétés : d’aucun doit vérifier son idempo-
tence pour l’utiliser dans un contexte distribué ; connaitre son temps d’exé-
cution pour des systèmes réactifs ; vérifier des conflits pour le confronter à
des règles d’entreprise. Aucun de ces besoins n’est spécifique à un domaine
applicatif. Dans cette thèse, nous présentons une approche indépendante du
domaine qui permet, sur des opérateurs existants, (i) de raisonner sur des
équations de composition pour (ii) les composer en sécurité, en (iii) propo-
sant une vérification de propriétés similaires à celles de l’état de l’art. Nous
avons validé cette approche sur des domaines différents : 19 versions du
noyau Linux avec 54 règles de réécriture, réparé 13 « antipatrons » dans
22 applications Android et validé son efficacité sur la composition de 20k
images Docker.

Enabling white-box reasonings on black-box
composition operators in a domain-independent way

Abstract
The complexity of software systems made it necessary to split them up

and reunite them afterward. Separating concerns is a well-studied challenge
and teams separate the work to be done beforehand. Still, separating without
considering the recomposition leads to rushed, unsafe, and time-consuming
recomposition. The composition should create the right and best system with
minimal human effort. Composition operators are often ad-hoc solutions de-
veloped by non-specialist development teams. They are not developed us-
ing high-level formalism and end up being too complicated or too poorly
formalized to support proper reasonings. We call them "black-boxes" as ex-
isting techniques requiring knowledge of its internals cannot be applied or
reused. However, black-box operators, like others, must ensure guarantees:
one must assess their idempotency to use them in a distributed context; pro-
vide an average execution time to assess usage in a reactive system; check
conflicts to validate that the composed artifact conforms to business prop-
erties. Despite the black-box aspect, none of these properties are domain-
specific. In this thesis, we present a domain-independent approach that en-
ables (i) reasonings on composition equation, (ii) to compose them safely,
(iii) by assessing properties similar to the ones from the state-of-the-art. We
validated the approach in heterogeneous application domains: 19 versions
of Linux kernel with 54 rewriting rules, fixing 13 antipatterns in 22 Android
apps, and validating the efficiency of the approach on the composition of 20k
Docker images.





Thanks.

First, I would like to thank you, reader! Someone once told me that the
best place to keep your money safe is your thesis because you’ll be the only
guy that will open it up. He was wrong! Or maybe you are reading an online
version...

First of all, I would like to thank the members of my thesis committee. I
believe reading a whole Ph.D. thesis is not an easy task, and I want to thank
you for that. I am proud to present this work to you, and I hope you will
find it understandable and exciting.

I would like to thank my advisors, Pr. Sébastien Mosser and Pr. Michel
Riveill, for their involvement. Thanking advisors for being part of the Ph.D.
thesis can seem silly, but I can assure you it is not. I met a lot of Ph.D. stu-
dents, from various horizons, with different purposes, again, thanks to the
kindness of my advisors, just to realize how lucky I was. I do not mean to
be a brown-noser, but I think it is rare to find such dedicated advisors, that
you can trust and that trust you in return. Special and additional thanks
to Sébastien for his indefectible support which has appeared in surprising
shapes and forms sometimes. Your repeated warnings about the effects of a
Ph.D. did not make me give up, and I am proud of this adventure. Thank
you for our calls, for all the opportunities you gave me, for your trust, your
friendly advices, and for your couch. It was an amazing experience (the
Ph.D., not the couch).

Part of the journey is the end, I guess, and what a journey it was. It is
only years later that I realize how the human factor is a huge chunk of it. I
was lucky enough to have a great mentor and be part of a team of passionate
people. I remember when I first heard about what my advisor Sébastien did
during his Ph.D. I remember how mind-blowing it was to discover a whole
new universe. Guys working with meta-level for the first time understand
what I mean. It is like these times when you connect things remotely located
in your mind, things start to make sense, and you discover new meanings
thank to this new connection.

Speaking of a team of passionate people, I would like to thank all the
Sparks members for their welcoming. Thank you, Mireille, for your open-
mind, your joy and our interactions scientific or not. Thank you, Philippe, for
your constant providing of chocolates and jokes that helped me go through
the tough times. Thank you, Gerald and Franck, for your friendly support
at our coffee breaks whose hours are set with Swiss-precision. Thank you,
Anne-Marie, for our early conversations in the morning that kickstarted my
days and often change the way I see things.

During this Ph.D. I hold a teaching assistant position. I would sincerely
like to thank Sébastien, Mireille, Philippe, Guilhem, Anne-Marie, Michel,
and Erick for all of this. Thanks to your trust and advice, I was able to build
things, courses, tutorings, projects, and learn a lot from both human and
teacher perspectives. Thank you all for your kindness, professionalism, and
for having taken the time to make me learn. Thank you for all the responsi-
bilities you gave to me, and thank you for all the responsibilities you did not
give to me.

As research is made of meeting new people, collaboration, exchange of
ideas and philosophical discussions, I would like to thank all the researchers
that also helped me be who I am today. Thank you Jean-Michel, Daniel,



Gunter, Jörg, Xavier, Houari, Eugene, and many others for our great discus-
sions that started as formals during summer schools or conferences, and end
up being arguing who is the fastest at skiing or won the last round in a board
game.

Finally, I want to thank my family. A not-huge-enough thanks to Pascale,
my Mom, who supported me, no matter what, no matter the cost, even in re-
ally tough times. Obviously, I would not have been the same without her
energy to move forward. Thank you to my brother, Bastien, who has always
told me that “things are going to be ok,” for our breaks in the Bouchaniere’s
mountains, for being supportive even if you did not understand why I was
doing all of this. Thank you Coline, for your lovely attentions, for preparing
coffee at midnight during heavy periods of redaction, for acting as an audi-
ence when I rehearsed for a talk, and you tried your best to understand the
pros and cons of “finding bad practices in container-based technologies us-
ing composition operator”, for the balance you brought in all of this. Thank
you for all the memories we shared during the last 9 years and a half, and for
all those to come. Thank you to my friends Sébastien P., Anais, Nabil, Hugo,
Maxime, and Franck for understanding that “I have work to do” was not an
excuse, and for their support for the last 8 years now. Thank you to Coline’s
family, who also has been supportive, always in surprising ways. Thank you
Maxime, Jean-Baptiste, Olivier, Thierry, Yaya, Hervé, Sylvie and others. The
least I can say is that no one has an in-law family like this one. Thanks for
the warm welcome and for the bottle of wine and others we shared that also
helped for this Ph.D. to end.

Finally, I would like to thank Alfred for his indefectible support at the
end of my Ph.D.





This Ph.D. thesis is dedicated
to my father, Jean-Louis.

“Bounce back, my dear friend.”
J-L.B.





Contents

Contents vi

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Context & Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Motivation 7
2.1 Ultra-Large Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Separation of Concerns: Divide to Conquer . . . . . . . . . . . . . . 9
2.3 Example: Composition in the Internet of Things . . . . . . . . . . . 10

2.3.1 Domain-Specific Use-Cases . . . . . . . . . . . . . . . . . . . 11
2.3.2 Modeling of Seperate Domain-specific Use-cases . . . . . . . 11
2.3.3 Matching distributed context. . . . . . . . . . . . . . . . . . . 12
2.3.4 Matching requirements of composition operator. . . . . . . . 13
2.3.5 Merging Behaviors by Merging FSMs . . . . . . . . . . . . . 13
2.3.6 Issues and Conclusion . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Composition in the wild . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Service deployment . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Code management . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Linux maintenance . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Android automatic optimizations . . . . . . . . . . . . . . . . 18
2.4.5 Catalog construction . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 State of the art 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Composition at the Model-level . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Composition Approaches . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Composition at the Code-level . . . . . . . . . . . . . . . . . . . . . . 27

vi



CONTENTS vii

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Tools considered . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Background and Challenges 34
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 White box rewriting rules are not enough . . . . . . . . . . . . . . . 35

4.2.1 Optimizing Automata With Rewriting Rules . . . . . . . . . 36
4.2.1.1 Order-related issues. . . . . . . . . . . . . . . . . . . 37
4.2.1.2 Non order-related issues. . . . . . . . . . . . . . . . 38

4.2.2 Properties With Rewriting Systems . . . . . . . . . . . . . . . 39
4.2.3 Challenges for Software Developers to Use White-box Ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Black-box Rewriting Rules . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Composition in a Black-Box Context . . . . . . . . . . . . . . 41
4.3.2 Classical Composition Operator apply . . . . . . . . . . . . . 42
4.3.3 Parallel Composition Operator || . . . . . . . . . . . . . . . 43

4.4 Challenges of Ensuring Properties in a Black-box Context . . . . . . 43
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Challenge C.1 - White-box properties in a Black-box Context 44
4.4.3 Challenge C.2 - Domain Independance . . . . . . . . . . . . . 44

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Ensuring Properties on Composition of Black-box Rewriting Rules 46
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 From Black-box Rules to Actions . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Delta as Models and Vice-versa . . . . . . . . . . . . . . . . . 48
5.2.2 Performing a diff Between Models (⊖) . . . . . . . . . . . . . 49
5.2.3 Performing a patch on a Model Given a Sequence of Actions

(⊕) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Composition Operators on Action-based Approach . . . . . . . . . 52

5.3.1 Compatibility with apply . . . . . . . . . . . . . . . . . . . . 52
5.3.2 The seq Composition Operator . . . . . . . . . . . . . . . . . 52
5.3.3 The iso Composition Operator . . . . . . . . . . . . . . . . . . 53

5.4 From Rewriting Rules Reasonings to Actions Reasonings . . . . . . 54
5.4.1 Syntactic Conflicts as Overlapping Deltas . . . . . . . . . . . 54
5.4.2 Semantic conflicts as postcondition violations . . . . . . . . . 55

5.5 Assessing Properties On Running Example . . . . . . . . . . . . . . 55
5.5.1 Detecting Incompatible Rewriting Rules . . . . . . . . . . . . 56

5.5.1.1 Description of the Rewriting System . . . . . . . . . 56
5.5.1.2 Paradigm Shift . . . . . . . . . . . . . . . . . . . . . 56
5.5.1.3 Syntactic conflict . . . . . . . . . . . . . . . . . . . . 56
5.5.1.4 Overcame Challenges . . . . . . . . . . . . . . . . . 57

5.5.2 Detecting Semantic Issues . . . . . . . . . . . . . . . . . . . . 58
5.5.2.1 Description of the Rewriting System . . . . . . . . . 58
5.5.2.2 Paradigm Shift . . . . . . . . . . . . . . . . . . . . . 58
5.5.2.3 Syntactic Conflicts . . . . . . . . . . . . . . . . . . . 58



viii CONTENTS

5.5.2.4 Semantic Conflicts . . . . . . . . . . . . . . . . . . . 58
5.5.2.5 Overcame Challenges . . . . . . . . . . . . . . . . . 59

5.5.3 Domain-independence . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Composing Black-box Rewriting Functions in a Controlled Environ-
ment 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Coccinelle and the Linux kernel use-case . . . . . . . . . . . . . . . . 64

6.2.1 A tool to automatically rewrite the kernel . . . . . . . . . . . 64
6.2.2 Examples of Semantic Patches . . . . . . . . . . . . . . . . . . 65
6.2.3 Semantic Patches as Black-boxes . . . . . . . . . . . . . . . . 66

6.3 Mapping to our proposition . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Example of Overlapping Applications of Semantic Patches . . . . . 67
6.5 Ensuring Composition of Rewriting Rules in the Linux Kernel . . . 70

6.5.1 State of practice (apply) does not provide guarantees . . . . . 70
6.5.2 Applying contribution (iso operator) . . . . . . . . . . . . . . 70
6.5.3 Validating the absence of syntactical conflicts . . . . . . . . . 72
6.5.4 Yielding Previously Silenced Semantic Conflicts . . . . . . . 73

6.6 Conclusion : Overcoming Challenge C1 . . . . . . . . . . . . . . . . 74

7 Composing Black-box Rewriting Functions in the Wild 75
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 SPOON, Paprika, and the Android use-case . . . . . . . . . . . . . . . 76

7.2.1 Context: Power-Consuming Practises in Android Applica-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.2 Example of SPOON processors . . . . . . . . . . . . . . . . . . 77
7.2.3 Mapping to our proposition . . . . . . . . . . . . . . . . . . . 78
7.2.4 Example of Overlapping Applications of SPOON Processors . 79
7.2.5 Overlapping of Energy Anti-patterns in Android Applications 81

7.2.5.1 Overlapping Anti-patterns Detection . . . . . . . . 81
7.2.5.2 Concrete Example . . . . . . . . . . . . . . . . . . . 83

7.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Fast and Optimized Service Delivery . . . . . . . . . . . . . . 86
7.3.1.1 Context Description . . . . . . . . . . . . . . . . . . 86
7.3.1.2 Example of Overlapping Guidelines . . . . . . . . . 87
7.3.1.3 Guidelines Examples . . . . . . . . . . . . . . . . . . 87
7.3.1.4 Context Example . . . . . . . . . . . . . . . . . . . . 88

7.3.2 Mapping to our proposition . . . . . . . . . . . . . . . . . . . 89
7.3.3 Validation: Issues and Overlaps . . . . . . . . . . . . . . . . . 89

7.3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.3.2 Guideline violation (issues) . . . . . . . . . . . . . . 90
7.3.3.3 Overlappings . . . . . . . . . . . . . . . . . . . . . . 91

7.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Conclusion: Overcoming C2 . . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusions and Perspectives 94
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



CONTENTS ix

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2.1 Make Git merge smarter . . . . . . . . . . . . . . . . . . . . . 96

8.2.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2.1.2 Proposed approach . . . . . . . . . . . . . . . . . . . 96
8.2.1.3 Early results . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.2 Characterize black-box composition operators . . . . . . . . 97
8.2.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2.2.2 Proposed Approach . . . . . . . . . . . . . . . . . . 97

8.2.3 Building proper and efficient machine learning pipelines . . 98
8.2.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.3.2 Proposed approach . . . . . . . . . . . . . . . . . . . 99

8.2.4 Using algebraic properties to optimize a composition equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2.4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2.4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.4.3 Proposed approach . . . . . . . . . . . . . . . . . . . 100

A Official Docker guidelines 101

B Collecting Dockerfiles 103

Bibliography 105



List of Figures

2.1 FSMexp1 as designed by the domain expert of UC1 . . . . . . . . . . . . 12
2.2 FSMexp2 as designed by the domain expert of UC2 . . . . . . . . . . . . 12
2.3 FSMUC1 (left) and FSMUC2 (right) follow operational requirements

and expectations of the composition operator . . . . . . . . . . . . . . . 13
2.4 FSMR

∪ representing the minimized union of FSM(L1) and FSM(L2) . . 15
2.5 FSMM

∩ representing the minimized intersection of FSMUC1 and FSMUC2 15

4.1 Initial term t, automaton result of a merge process. . . . . . . . . . . . . 36
4.2 Example of rule R0 merging equivalent states . . . . . . . . . . . . . . . 37
4.3 Example of rule R2, removing dangling states . . . . . . . . . . . . . . . 37
4.4 R1, alternative version of R0 . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 t21 = (R1(R2(t))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 t12 = (R2(R1(t))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Rule R3 redirecting looping edge ω′ from S2 to S0 . . . . . . . . . . . . 38
4.8 Rewriting rule as a black-box . . . . . . . . . . . . . . . . . . . . . . . . 41
4.9 Daisy-chaining (sharing inputs - I, and outputs - O) of black-box rules

(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.10 Parallel composition of rules with a merge operation . . . . . . . . . . . 43

5.1 Equivalence between an automaton (left) and a sequence of actions
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Example of application of a black-box rewriting rule R (middle), on an
input I (left), yielding O (right) . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 From rule R to actions sequence A (elements part of the diff A are
colored in O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Application of ⊕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Compatibility with apply . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Mapping between our proposition, and the state-of-practice seq operator 52
5.7 Example of isolated application of transformations using our iso operator 53
5.8 The two sequences of composition considering the (t, R0, R3) rewrit-

ing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.9 Initial term t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.10 t2 = R2(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.11 t1 = R1(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.12 t21 = R1(R2(t)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.13 t12 = R2(R1(t)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.14 Application of iso to t, R1 and R2 . . . . . . . . . . . . . . . . . . . . . . 59
5.15 tout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.16 Application of χ1 and χ2 to tout . . . . . . . . . . . . . . . . . . . . . . . 60

x



LIST OF FIGURES xi

6.1 Applying 35 semantic patches to 19 versions of the Linux kernel (exe-
cution time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Experimental process of the linux use-case . . . . . . . . . . . . . . . . . 72
6.3 Execution time of our proposition in minutes (the line is the average

time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Spoon: applying processors to Java code . . . . . . . . . . . . . . . . . . 80
7.2 Identifying pairs of overlapping anti-patterns in 22 Android apps . . . 82
7.3 Representing anti-patterns colocations . . . . . . . . . . . . . . . . . . . 83
7.4 Rewriting the RunnerUp Android application (excerpt) . . . . . . . . . 84
7.5 Number of dockerfiles violating a given guideline . . . . . . . . . . . . . 91
7.6 Number of instructions violating a given guideline . . . . . . . . . . . . 91



List of Tables

2.1 Transition table resulting of the intersection of FSMUC1 and FMSUC2 . 14
2.2 Equivalent states as establised by equivalent-group optimization . . . 15

3.1 Summary of the approaches of compositions at the model-level . . . . 26
3.2 Summary of the approaches composing at the code-level . . . . . . . . 32

6.1 Identifying semantic conflicts on the Coccinelle example. Elements
in parentheses are not known by the user. . . . . . . . . . . . . . . . . . 69

6.2 Table of interactions between pairs of semantic patches, on a given line
of a specific code file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Identifying semantic conflicts on the Spoon example . . . . . . . . . . . 81
7.2 Dockerfiles containing guidelines violation pairs . . . . . . . . . . . . . . 92
7.3 Instructions containing guidelines violation pairs (i.e., real conflicts) . . 92

xii



CHAPTER1
Introduction

“ Integrating two software systems is usually more like
performing a heart transplant than snapping together LEGO
blocks. It can be done — if there’s a close enough match and the
people doing it have enough skill — but the pieces don’t fit
together trivially. And failure may not be immediately obvious;
it may take a while to see signs of rejection. ”

John D. Cook [1]

Content

1.1 Context & Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1



2 CHAPTER 1. INTRODUCTION

1.1 Context & Issues

Software systems became so huge that it is mandatory to develop them pieces
by pieces. We decompose a software system following different practices: given
known guidelines, considering features of the final system, or given in which
technologies each piece is developed. This decomposition leads to a (re)compo-
sition step afterward that is not trivial. Bad recomposition can lead to ill-formed,
under efficient, or non-conforming systems.

Model-driven development aims to ease the building of such software sys-
tems by formalizing and ensuring functional and non-functional properties on
the artifact manipulated along with their (re)composition. We saw in the last
decades the development of model-driven approaches such as model composi-
tions and transformations. These approaches enable reasonings on these com-
positions and allow one to safely compose them to ensure that applying many
transformations on the same artifact will end up in a well-formed and sound
system. These methods have a strong background formalism and are used in
(meta-)modeling (e.g., transformation of meta-model using graph rewriting tech-
niques).

Software engineering is the application of engineering to the development of
software in a systematic method. Even if its definition is not unique and well-
formalized, it implies, as any engineering practices, the systematic application of
scientific and technological knowledge, methods, and experience to the design, implemen-
tation, testing, and documentation of software [2]. Therefore, this software engineer-
ing thesis analyzes real situations where the composition is used in an industrial
context.

Software engineering implies to see what is going on in the field, and its main
purpose is to help practitioners and actual developers to build better software
systems more efficiently. Thus, with a software engineering scope, this thesis an-
alyzes the field of practices and confronts it to the state-of-the-art assumptions
and methods. It appeared that, whereas state-of-the-art approaches considered
artifacts to be composed along with the composition itself as white-boxes, practi-
tioners are facing black-boxes mechanisms when working with software composi-
tion. Their white-box approach enables properties verification such as termination
or conflict analysis, useful in an engineering context to ensure that automated
transformations will eventually end, or the identification of incompatible trans-
formations for instance. Unfortunately, none of these properties can be evaluated
yet in the context of black-box industrial tools.



1.2. CONTRIBUTION 3

1.2 Contribution

The contribution of this thesis is to investigate, (i) which properties are inter-
esting in a black-box context, and (ii) why, and (iii) adapt them from a white-box
context to a black-box one, enabling the assessment of properties close to the ones
ensured by the white-box approaches, (iv) in a domain-independent way, our
proposition coming as a support for already existing solutions. To fulfill such
tasks, our solution bridges the state-of-the-art and state-of-practice approaches
by formalizing a delta-oriented approach to model composition and properties
verification in a black-box context. This non-intrusive approach acknowledges the
existence of non-well-formalized operators, and comes as a support to domain-
specific compositions, in a domain-independent way.

Our proposition relies on two assumptions to be applied: the existence of the
diff ⊖ and patch ⊕ operators. The ⊖ operator enables our contribution to capture
the behavior of a black-box composition operator, shifting from an entity-based
composition to a diff-based one, allowing us to reason on those diffs in a domain-
independent way. The ⊕ operator allows our contribution to be operationalized at
the application domain level, using domain-independent definitions to actually ap-
ply the result of this diff-based composition on domain-specific artifacts. Using
this formalized deltas, we provide a generic termination assessment, allowing
one to ensure that a composition ended, and conflicts-detection operators that
yield conflicts at a fine-grained level, providing knowledge to the user and en-
suring the whole composition in a black-box context.

We studied the state-of-practice by analyzing compositions in various do-
mains, industrial and academic, heavily controlled and not controlled environ-
ments [3], [4] and our contribution has been successfully applied to three different
application domains: the development of the Linux Kernel, and the optimization
of Android applications and Docker artifacts. This shows that bridging state-of-
practice approaches that considered black-box compositions, with state-of-the-art
approaches that perform diff-based compositions [5] is feasible and useful for the
final end-user.

We applied our approach in the Linux kernel ecosystem, and 19 of its ver-
sions. Our contribution allows one to ensure its whole maintenance process, by
assessing conflict-free compositions or yielding error along with the involved el-
ements. We applied our approach at large scale in the Docker environment where
our proposition ensures conflict-free situations where no guarantee was ensured
beforehand among 19 rules applied to 12,000 dockerfiles. Lastly, we applied our
contribution to the Android ecosystem and quantitatively evaluate the appear-
ance of depicted composition issues.

We thus validate, (i) the feasibility of our approach, (ii) that our assumptions
hold in real-life scenarios, (iii) that our contribution allows one to ensure conflict-
free situation, or yield errors along with the involved elements, (iv) reducing the
search space in case of conflict, enabling human-in-the-loop interactions, (v) in a
domain-independent way as it can be applied in various domains.



4 CHAPTER 1. INTRODUCTION

1.3 Outline

Chapter 2 motivates this Ph.D. thesis by giving a portrait of different use-cases
of composition, from a practitioner point-of-view. We outline the need to work
with composition to build nowadays software and how software composition
and transformation are performed in a black-box way in industrial contexts.

Chapter 3 depicts the state-of-art in the domain of this thesis: software com-
position and model transformations. We present a description of each approach,
its hypotheses, and its role in an engineering context.

Chapter 4 expresses the challenges of reusing the white-box approaches de-
picted in chapter 3 on use-cases described in chapter 2. Then, it maps the state-of-
practice depicted in chapter 2, with the state-of-the-art described in chapter 3. We
highlight that guarantees ensured by the state-of-the-art do not hold in the pre-
sented contexts, and define two main challenges to bring good white-box proper-
ties in a black-box context. We conclude by stating that no white-box properties
can be ported as-is in a black-box context and that compromises must be made to
ensure such properties in a best-effort way.

Chapter 5 describes the formal model that we propose to build a bridge be-
tween state-of-the-art approaches and black-box state-of-practice, by the use of
delta-reasonings. We leverage two hypotheses on the application domain, to
bring back the reasonings on black-box operators to reasonings on sequences of
modifications.

Chapter 6 performs an in-depth large-scale validation on the Linux-kernel. It
depicts how one can apply our contribution to a narrow environment. We assess
that our proposition can be applied in an industrial use-case, where developers’
skills and heavily controlled development should prevent any issues. We quan-
titatively validate that issues arise, even in this context, and successfully ensure
conflict-free situation and yield non-conflict-free contexts.

Chapter 7 performs a wide large-scale validation on the Android and Docker
environments. It depicts how one can apply our contribution to these two non-
controlled contexts. We quantitatively validate that composition issues arise in
such a context, and conflict even at a fine-grain level. We describe how such com-
position issues can badly affect the final composed artifact from a domain point-
of-view. This chapter successfully validates that our contribution is domain-
independent, and can be applied to various application domains.

Chapter 8 concludes this thesis by summarizing the context and the outcome
of applying our proposed contribution in various domains. This chapter also
depicts the perspectives of work that may follow this thesis. We highlight the
need for reasoning at a meta-level, i.e., on the composition of composition, and
sketches perspectives related to extending the contribution of this thesis.



1.4. PUBLICATIONS 5

1.4 Publications

The research work done during this PhD has lead to the following peer-re-
viewed publications depicted below, along with still unpublished research results
which are still in progress and described at the end of this section.

Journal

B. Benni, S. Mosser, N. Moha, et al., « A delta-oriented approach to support
the safe reuse of black-box code rewriters », Journal of Software: Evolution and Pro-
cess, vol. 31, no. 8, e2208, 2019, e2208 smr.2208. DOI: 10.1002/smr.2208. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2208. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2208.
This publication is an invitation to extend a previous conference paper to a jour-
nal article [5]. We applied the proposed approach and abstractions to real use-
cases, one industrial and one academic validating the feasibility of our approach,
and concretely measuring the outcome enabled in two various domains. The
former use-case is the maintenance of the Linux kernel where our proposition
successfully ensured syntactical-conflict-free situations, and successfully yielded
narrowed semantic-conflicts. The latter analyzed depicted composition issues in
the context of optimizing Android applications.

Conferences

— B. Benni, S. Mosser, N. Moha, et al., « A Delta-oriented Approach to Support
the Safe Reuse of Black-box Code Rewriters », in 17th International Confer-
ence on Software Reuse (ICSR’18), Madrid, France, 2018. [Online]. Available:
https://hal.archives- ouvertes.fr/hal- 01722040. In this publica-
tions, we lay out the foundations of our formalism and depict the propo-
sition, hypotheses, outcome, and feasibility of our approach. We defined
a diff-oriented approach to composition operators, allowing us to formal-
ize conflict-checkings on black-box composition operators. Our proposi-
tion allows one to shift from an domain-specific entity-based composition
to domain-independent diff-based one. It has been validated at large scale
in [3].

— B. Benni, S. Mosser, P. Collet, et al., « Supporting Micro-services Deploy-
ment in a Safer Way: a Static Analysis and Automated Rewriting Approach »,
in Symposium on applied Computing, Pau, France, Apr. 2018. DOI: 10.1145/
3167132.3167314. [Online]. Available: https://hal.archives-ouvertes.
fr/hal-01659776. In this publication, we studied an industrial composition
operator inside the Docker ecosystem. We proposed a formalism that al-
lows one to reason on Docker artefacts, for various purposes. We validated,
at large-scale on more than 23,000 Docker artefacts, that our proposition
was feasible, and provided a meaningful outcome for Docker developpers
and the Docker ecosystem. We outlined that some issues would not have
been detected without a composition approach.

https://doi.org/10.1002/smr.2208
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2208
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2208
https://hal.archives-ouvertes.fr/hal-01722040
https://doi.org/10.1145/3167132.3167314
https://doi.org/10.1145/3167132.3167314
https://hal.archives-ouvertes.fr/hal-01659776
https://hal.archives-ouvertes.fr/hal-01659776


6 CHAPTER 1. INTRODUCTION

Workshops

— (Proceedings not published yet) DevOps@Models, Workshop of Models’19 con-
ference. In the first edition of this workshop, we studied and raised ques-
tions and issues, related to the meaningful and efficient building, testing,
and assessing, of machine learning pipelines. As the number of pipelines
possible is too massive to be handled, even by machines, we applied com-
position mechanisms and reasonings allowing us to drastically reduce the
number of pipelines that one can build or test.

— B. Benni, P. Collet, G. Molines, et al., « Teaching DevOps at the Graduate
Level: A report from Polytech Nice Sophia », in First international workshop
on software engineering aspects of continuous development and new paradigms of
software production and deployment, LASER foundation, Villebrumier, France,
Mar. 2018. [Online]. Available: https://hal.archives- ouvertes.fr/

hal-01792773. This publication depicts how DevOps is taught in Polytech
Nice Sophia Antipolis. We described the issues that arise when software
development effort is spread among different teams, with different skils,
and that the whole system has to be composed, tested, and deployed as fast
as possible.

In Progress

Some of the works that are part of this Ph.D. thesis have not yet been pub-
lished and are described below.

— ECMFA 2020 - 16th European Conference on Modelling Foundations and
Applications. In this publication, we propose a property-based testing ap-
proach to characterize black-box composition operators. We propose a do-
main-specific language that allows a domain-specialist to specify her com-
position operator and the manipulated elements. The DSL also allows one
to specify the algebraic properties (e.g., commutativity) that one wants to
assess along with the equivalence-relation to be used to assess such proper-
ties. Then, the DSL generates portion of Java code that a domain-specialist
needs to complete to use and call her operator effectively; allowing the ex-
periment to be run and the measurements to be made in a semi-automated
way.

— TSE - IEEE Transactions on Software Engineering. In this publication, we
analyze conflicts-solving in the context of code versioning. We investi-
gate the state-of-the-art results regarding the automated solving of code
merge-conflicts. These conflicts happen when multiple developers worked
on the same codebase in parallel and is known to be a complex and time-
consuming task. The early results, based on an open conflicts-dataset, is
that state-of-the-art techniques fail to automatically and correctly merge the
majority of merge scenarios. Our approach is to investigate the code merge-
conflict as a composition issue, where sets of modifications have to be ap-
plied on a codebase safely, to ultimately improve the handling of conflicts,
easing developer’s life by improving automation, and the overall quality of
the merge process.

https://hal.archives-ouvertes.fr/hal-01792773
https://hal.archives-ouvertes.fr/hal-01792773


CHAPTER2
Motivation

“ A Captain ought, among all the other actions of his, endeavor
with every art to divide the forces of the enemy, either by
making him suspicious of his men in whom he trusted, or by
giving him cause that he has to separate his forces, and, because
of this, become weaker ”

Niccolò Machiavelli, The Art of War, Book VI, 1521

Content

2.1 Ultra-Large Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Separation of Concerns: Divide to Conquer . . . . . . . . . . . . . . 9
2.3 Example: Composition in the Internet of Things . . . . . . . . . . . 10

2.3.1 Domain-Specific Use-Cases . . . . . . . . . . . . . . . . . . . 11
2.3.2 Modeling of Seperate Domain-specific Use-cases . . . . . . . 11
2.3.3 Matching distributed context. . . . . . . . . . . . . . . . . . . 12
2.3.4 Matching requirements of composition operator. . . . . . . . 13
2.3.5 Merging Behaviors by Merging FSMs . . . . . . . . . . . . . 13
2.3.6 Issues and Conclusion . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Composition in the wild . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Service deployment . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Code management . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Linux maintenance . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Android automatic optimizations . . . . . . . . . . . . . . . . 18
2.4.5 Catalog construction . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7



8 CHAPTER 2. MOTIVATION

Software composition arose from the need to decompose things. Following
different practices, meant to achieve different goals in various domains, com-
position was developed, refined, and widely used. These different uses lead to
domain-specific applications: composition arose in a specific domain as a tool to
achieve a given goal. Thus, this scattering curbs or prevents any cross-domain
reuse of development effort made towards composition-based tools. This section
gives background history on software compositions, why it arose, and how one
can use compositions. Such black-box mechanisms can be found more and more
with the emergence of AI systems, black-boxes by essence.

2.1 Ultra-Large Scale Systems

When building a software system, developers have to consider the software
itself along with its surroundings. At the early ages of computers and software
development, the surroundings were limited to the input the program should
take, and the outputs it produces. We focused on low-level concerns such as “is
the input data on the stack” or “the registry in which the processed data should go”. The
system under consideration evolved in a tiny isolated bubble.

“Programming [before the 1970s] was regarded as a private, puzzle-solving activ-
ity of writing computer instructions to work as a program.

Harlan Mills [7]

”
Then, everything changed when computers started to interact with each other

and gained in computing power and overall capabilities (e.g., memory, storage ca-
pacities). Progressively, the surroundings-frontier moved outward, and its notion
changed: we had to take more and more information into account when building
a system, we needed to consider satellite systems, how to interact with the other
systems, by which mean, following which protocol. The bubble expanded.

Eventually, this led to an even larger structure, where many systems have to
interact with each other, at a large scale, to achieve various goals. We thus con-
sider the interactions between large bubbles, leading to scaling issues, paradigm
and language heterogeneity, various concerns, multiple stakeholders.

We are now, and for more than a decade, in the Ultra Large Scale Systems
(ULSS) era: highly complex systems that try to sense the reality of a given field,
and take action in the real world, thus changing its context of execution. These
ULSS are characterized by their intrinsic complexity, implied by numerous fac-
tors among the amount of data to be handled, the volume of lines of code to con-
sider, the number of people themselves involved and their respective roles, or
the need for the system to evolve. These ULSS can be found in the evergrowing
apparition of software-intensive systems such as autonomous cars, power-grid
regulation, or smart cities, that come with a new set of challenges.



2.2. SEPARATION OF CONCERNS: DIVIDE TO CONQUER 9

“The U. S. Department of Defense has a goal of information dominance to achieve
and exploit superior collection, fusion, analysis, and use of information to meet
mission objectives. This goal depends on increasingly complex systems charac-
terized by thousands of platforms, sensors, decision nodes, weapons, and war
fighters connected through heterogeneous wired and wireless networks. These
systems will push far beyond the size of today’s systems and systems of systems
by every measure: number of lines of code; number of people employing the sys-
tem for different purposes; amount of data stored, accessed, manipulated, and
refined; number of connections and inter dependencies among software compo-
nents; and number of hardware elements. They will be ultra-large scale systems.

Northrop, Linda, et al. Ultra-large-scale systems: The software challenge of the
future. 2006 [8]

”
2.2 Separation of Concerns: Divide to Conquer

We can no longer, and it has been that way for a while, build an entire software
system with a single team, in a single shot. We need to (i) split things up, and (ii)
build iteratively. The former is a quite old idea introduced by Edsger W. Dijkstra
(which among other things is one of the pioneers of the software engineering
discipline) that states that splitting a huge problem into smaller ones eases the
finding of a solution; the latter is an idea that states that we simply cannot build
a full software from scratch in a single shot and that many tries and validation
are needed along the way.

This separation of concerns principle, applied to the software development
process, means that we will build different parts of the software in parallel, know-
ing that other parts exist, but focusing only on an aspect of the final system at a
time. This separation can be technical or business-driven.

“We know that a program must be correct and we can study it from that viewpoint
only; we also know that it should be efficient and we can study its efficiency on
another day, so to speak. In another mood we may ask ourselves whether, and if
so: why, the program is desirable. But nothing is gained —on the contrary!— by
tackling these various aspects simultaneously. It is what I sometimes have called
“the separation of concerns”, which, even if not perfectly possible, is yet the
only available technique for effective ordering of one’s thoughts, that I know of.
This is what I mean by “focussing one’s attention upon some aspect”: it does not
mean ignoring the other aspects, it is just doing justice to the fact that from this
aspect’s point of view, the other is irrelevant. It is being one- and multiple-track
minded simultaneously.

On the role of scientific thought, E.W. Dijkstra, 1974 [9]

”
No matter how the system was split, given which guidelines, but at some



10 CHAPTER 2. MOTIVATION

point, one needs to recompose every concern, every “sub-systems” into the final
one. This can also be done iteratively and/or interactively and at different levels.
The (re)composition can be done for instance at the model-level (e.g., composing
UML class-diagrams [10], [11]), or at the code level (e.g., merging code modifi-
cations [12]), using different techniques such as match-and-merge, or weaving;
hence, we talk about composition. The composition can also impact the structure
of the whole system or change its behavior.

“When we say “separation of concerns” we mean the idea that it should be pos-
sible to work with the design or implementation of a system in the natural units
of concern – concept, goal, team structure etc. – rather than in units imposed on
us by the tools we are using. We would like the modularity of a system to reflect
the way “we want to think about it” rather than the way the language or other
tools force us to think about it. In software, Parnas [13], [14] is generally credited
with this idea.

An Overview of AspectJ, Gregor Kiczales et al. [15]

”
2.3 Example: Composition in the Internet of Things

This section depicts a use-case that will serve as a motivating example. It
is not meant to be an example of real scaling and composition issues but is a
voluntarily small example to exemplify all that has been said before. We will
take a simplified version of the context of Cyril Cecchinel’s Ph.D. thesis [16] in
which he is deploying software on physical sensors inside smart buildings.

The domain of the Internet Of Things (IoT) aims to sense the world through
sensors and take automated decisions to take actions on the real world (i.e., its
context of execution). IoT addresses the smart-cities use-case, for instance, in
order to improve the city in terms of energy consumption, traffic, or well being.
This whole smart-city example is way too complex to be handled on its own, as
a single piece. Even at a lower scale, handling only energy consumption is a far
too complex task.

Thus, in this domain, experts break down the complexity by splitting the problem
into smaller ones. Each expert will work on a single aspect of the whole system.
In the context of Cecchinel’s work, each expert will focus on a single aspect of a
smart building, e.g., security, air conditioning, energy consumption. Then, con-
cerns are composed together, and the result is deployed onto a sensors network
infrastructure.

The common representation used to model the complete or partial behavior
of a sensor network is an automaton. Thus, each automaton defines the behavior
of a part of the network, representing a part of the whole behavior. Then, all au-
tomata are “merged” together, to form a big(ger) and complex automaton, that
one could not have conveniently defined on its own from scratch. At this stage,
this final automaton can be interpreted, checked against expectations, guidelines,
optimization rules, and may eventually be transformed into a set of running soft-



2.3. EXAMPLE: COMPOSITION IN THE INTERNET OF THINGS 11

ware deployed on actual sensors, actuators, and gateways. As the size of the final
automaton is an essential factor in the deployment process, one must ensure that
it cannot be further optimized.

2.3.1 Domain-Specific Use-Cases

Let us take a small and concrete example here. The goal is to illustrate each
step on a small and understandable example. This subsection describes what
we mean by “composition” in this thesis without going straight to a big and in-
dustrial use-case. Let us assume that we have two experts, each one focused on
a single aspect of a smart building. We will handle two common use-cases in
smart buildings context: automated handling of air conditioning, and automated
security checks of entry points in the building.

Automated handling of air conditioning (UC1). This use-case is meant to re-
duce the overall consumption of the building while keeping the same level of
comfort for users. Part of this goal is to cut-off the AC of an office when its door
is opened and put it back on when the door is closed.

Automated security checks of entry points (UC2). This use-case is meant to au-
tomatically check that entry points such as doors and windows are closed to en-
sure a global security level in the building for potential intruders. Part of this
goal is to raise an alert when a door is opened for too long.

Both of these use-cases target smart-buildings context and will be actually
deployed on a real building. The use-cases have to be defined by the experts
separately; then, the two solutions must be automatically composed together and
be deployed on a sensor network.

Both of the experts’ solutions are using the door in their respective use-cases.
One will merge their solutions before being deploying them. In another context
where two distinct and widely different use-cases would have been defined, the
composition would not happen as the use-cases target different sensors, i.e., their
intersection is empty.

2.3.2 Modeling of Seperate Domain-specific Use-cases

FSM and language involved. One way to model these kind of behaviors is to
use Finite State Machines (FSM). Each use-case will be modelled separately as a
FSM, and will both be working on the following alphabet:

— ‘o’: an event has been fired stating that the door of the office has just been
opened.

— ‘c’: an event has been fired stating that the door of the office has just been
closed.

— ‘th’: an event has been fired stating that the temperature is too high and
needs to be cooled.

— ‘tl’: an event has been fired stating that the temperature is too low and no
longer needs to be cooled.



12 CHAPTER 2. MOTIVATION

Modeling of UC1. The first use-case (UC1) is defined as follow:

1. Put the AC on (ON),

2. When the door has been opened (event o), or when the temperature is low
enough (event tl), shut off the AC (OFF),

3. When the door is closed (event c), enter a waiting state (WAIT)

4. from this state, either the door is opened again (o), and it shuts does the AC,
or

5. the temperature is high enough (th), it puts the AC back on (ON).

The FSM of FIG. 2.1 models the use-case 1 by recognizing the language (o|tl)c(oc)∗th.

ONstart OFF WAIT
o, tl

c

o

th

Fig. 2.1 – FSMexp1 as designed by the domain expert of UC1

Modeling of UC2. The second use-case (UC2) is defined as follow:

1. Waits for the door to be opened and the alarm is set to off (OFF),

2. When the door has been opened (event o), trigger an alert to the central
(ON),

3. When the door is shut (event c), extinguish the alert and wait again (OFF).

The FSM of FIG. 2.2 models the UC2 by recognizing the language (co)+.

OFFstart ON

o

c

Fig. 2.2 – FSMexp2 as designed by the domain expert of UC2

2.3.3 Matching distributed context.

In the previous subsection, domain experts have designed finite state ma-
chines to match their respective use-cases. The behaviors described by these
FSMs will be deployed on a sensor network inside a smart building. As sen-
sor networks are a distributed environment, messages are not reliable and may
be delivered more than once. Finite state machines defined by the experts need
to be adjusted to match the operational context. Hence self-looping edges must



2.3. EXAMPLE: COMPOSITION IN THE INTERNET OF THINGS 13

be added on nodes that do not fully specify outgoing edges for the respective al-
phabets of each FSM. Self-looping edges must be added on ON, OFF, and WAIT
of LUC1 , and similar edges must be added on states of UC2. This adjustments are
not part of the smart-building expertise and is part of the operational context.

2.3.4 Matching requirements of composition operator.

Avoiding conflicts. At this stage, states are automatically renamed to avoid any
upcoming conflicts in the names of the states of both automata. Thus, states
of UC1 are denoted by p, and a number is appended; whereas states of UC2 are
denoted by q.

Aligning alphabet of FSM The finite state-machines developed by the experts
are not working on the same alphabet. As the merge process work on FSMs
using the exact same alphabet, the FSMs need again to be transformed to match
requirements from the composition operator this time. Hence, the finite state
machine of UC2 needs to be transformed to take into account the symbols ‘tl’ and
‘th’. Self-looping edges are added to the states of the FSM with these symbols.

New FSMs At this stage, the FSMs have been transformed to match operational
context, to avoid upcoming conflict in the merge process, and to match the expec-
tations of the composition operator that will be used later. These FSMs recognize
languages different than the one defined by the experts but are actually more per-
missive. Thus any contexts matched by the domain experts’ FSM (i.e., FMSexp)
will be matched by this updated FSM. Nevertheless, each transformation is ex-
pected to ensure that it will not reject previously matched context but may accept
previously unmatched context (e.g., FSMUC2 now accepts words containing tl

or th). The resulting finite state machines FSMUC1 and FSMUC2 are depicted in
FIG. 2.3.

p0start p1 p2
o, tl

c, th

c

o, tl , th

o

c, tl

th

q0start q1

o

c, tl , th

c

o, tl , th

Fig. 2.3 – FSMUC1 (left) and FSMUC2 (right) follow operational requirements and
expectations of the composition operator

2.3.5 Merging Behaviors by Merging FSMs

Different operators and different semantics. Once these two FSMs were spec-
ified and developed in isolation, transformed to match the operational context of
distributed systems, renamed to avoid conflicts, and have their alphabets aligned,
one can merge them to obtain a FSM modeling both of these behaviors [17]. Nev-
ertheless, the semantics of the merge operator used will impact which final be-



14 CHAPTER 2. MOTIVATION

havior is captured by the merged FSM. To merge FSMs, one can use different
operations, each following a different semantic, notably among:

— Union: accepts a word if it is in L1 OR in L2. In our example context, this
means that the overall behavior is to capture one of the use-cases but not
necessarily both.

— Intersection: accepts a word if it is in L1 AND in L2. In our example context,
this means that the overall behavior is to capture both of the use-cases at the
same time.

— Concatenation: accepts a word if it can be cut as a word of L1 followed by
a word of L2. In our example context, this means that the overall behavior
is to capture a use-case, directly followed by the other.

Given the depicted semantic of the operators available, an expert will use ei-
ther the Union or Intersection operations. The procedures triggered when using
these two operators are heavily similar; thus, we will perform an Intersection
and outline the differences that would have occurred if one would have used the
Union operator.

Paradigm shift to perform the composition. The intersection is made by shift-
ing the model-representation: one does not build the result of the merge from
the automata themselves but build a transition table, made from a cross-product
of every state of the two automata to be combined [18]. This procedure is de-
terministic and has a clear semantic. The resulting table is depicted in TAB. 2.1.
One should read this table as follows: “when in state p0q0, and ‘o‘ event happens,
transit current state to p1q1”. When using the intersection operator, final states
are the ones that are finals in the first automaton and in the second automaton.

Table 2.1 – Transition table resulting of the intersection of FSMUC1 and FMSUC2

State
Input

o c tl th

p0q0* p1q1 p0q0 p1q0 p0q0
p1q1 p1q1 p2q0 p1q1 p1q1
p1q0 p1q1 p2q0 p1q0 p1q0
p2q0 p1q1 p2q0 p2q0 p0q0

At this level, we are far from smart-building expertise: the abstractions are
different, the language and vocabulary used are not the same, the result of the
composition nor its inputs have been written by none of the experts. All the
work, transformations, and reasonings applied from this stage is out of the scope
of the smart-building experts’ world and should be done automatically.

Figure 2.4 depicts the raw FSM, named FSMR
∩, made directly from the tran-

sition table described in TAB. 2.1.

Optimization by equivalent-group reduction. At this stage, the transition ta-
ble, and thus the final FSMR

∩, is not optimal in terms of size. For storing usage,
bandwidth restriction, or future algorithms exponential explosion, it may be bet-
ter to keep the finite state machine as small as possible. Thus, the transition table
and FSMR

∩ can be optimized by minimizing its number of states and transitions.



2.3. EXAMPLE: COMPOSITION IN THE INTERNET OF THINGS 15

p0q0start p1q1

p1q0 p2q0

o

tl

c, th

c

o, th, tl

c

o

th, tl

th

o

c, tl

Fig. 2.4 – FSMR
∪ representing the minimized union of FSM(L1) and FSM(L2)

The equivalent-group procedure takes the transition table as input and yields a
set of sets of equivalent-states. This minimization procedure is a well-known, de-
terministic procedure, and is an optional extra-step of the composition step. We
will not go into details of this procedure but kindly redirect the reader to the
relevant articles [19], [20], but the equivalent groups are listed in TAB. 2.2.

Table 2.2 – Equivalent states as establised by equivalent-group optimization

Step States groups

0 equivalent [p0q0] [p1q1, p1q0, p2q0]

1 equivalent [p0q0] [p1q1, p1q0] [p2q0]

2 equivalent [p0q0] [p1q1, p1q0] [p2q0]

The result of the minimization is depicted in 2.5 where the minimized FSMM
∩

contains 3 states, 25% less than the initial FSMR
∩.

p0q0start
p1q1
p1q0

p2q1

o, tl

c, th

c

o, tl , th

o
th

c, tl

Fig. 2.5 – FSMM
∩ representing the minimized intersection of FSMUC1 and FSMUC2



16 CHAPTER 2. MOTIVATION

End to end, to obtain the minimized FSMM
∩ involved three pre-composition

transformations:

— Make the FSM complete to match operational context,

— Align alphabet to conform to the composition operator requirements,

— Rename states to avoid collision during the composition process.

Then, in addition to these transformations, one out of the three following com-
position operations is applied, each one involving three different representations:

— Finite state machine to represent automata,

— Transition-table to perform the composition, which is a morphism of the
FSM,

— Group-equivalence to minimize the automaton.

2.3.6 Issues and Conclusion

As the post-merge process involves many different procedures (e.g., make the
automaton deterministic, minimize its number of states and transitions, remove
unreachable states), in which sequence is one supposed to run them? Is there
a correct sequence? Does the order matter? Even with only four different pro-
cedures to be applied, it represents twenty-four different arrangments. How
can one still find a proper sequence, without running and manually analyzing
the whole 24 different sequences and find the one(s) that is(are) correct? Is the
union of the minimized automata equivalent to the minimization of the merged
automaton? How one can safely compose these operators? For instance, the
post-merge operations aim at optimizing the resulting automaton. How one can
be informed if rewriting rules overlap each others? Is there a particular order
in which they should be run? How to ensure the application of each and all
rewriting rules, as we cannot know nor interpret their internals? The issue is to
list useful properties that need to be assessed and check them against existing
black-box composition operators in a domain-independent way.

This example depicts the kind of composition this Ph.D. thesis targets: already
existing use-cases of composition, involving multiple transformations, which are
not formalized or even known. This composition may imply paradigm shifts and
different variants of the same operator. Still, developers in these contexts need to
ensure that multiple transformations are applied correctly.

2.4 Composition in the wild

This section gives a quick overview of various actual use-cases where soft-
ware composition has a role in an industrial context. This section is not meant to
be an exhaustive list but to give an insight into the variety of domains in which
composition has a role in and characterize “real” use-cases using compositions.
These use-cases have been selected because they are used in industrial contexts,
and are overall representative of the artifacts with which developers interact.



2.4. COMPOSITION IN THE WILD 17

2.4.1 Service deployment

Containers abstract software from the hardware environment and allow one
to wrap a service and its related dependencies into an artifact. Each service can
then be run into a container that ensures that the embedded software will run the
same regardless of their real environment, easing the repeatability of build, test,
and runtime executions. Containers are built from textual configuration files, of-
ten using a pre-defined set of instructions. However, such configuration is reused
as off-the-shelf black-boxes. This black-box reuse easily leads to many forms of
unexpected behaviors and does not help the one reusing or extending such arti-
facts in knowing what it does when she writes her own container’s build file. The
composition operator is hidden, and not known by the end-user, yet its result is
known as it is the final container to-be-deployed. Thus, by essence, the composi-
tion operator is a black-box. In this context, Docker [21] is the leading container
technology that offers, mid-2019, more than 5.8 million applications in its hub,
downloaded more than 105 billion times [22] to be reused in a black-box way.

2.4.2 Code management

Developing software involves many people working on different parts or as-
pects of a final product. To ease and speed up the development process, code
management tools such as Git [23] allow teams to version their code and develop
features in parallel. At some point in time, when the team is ready, a different
development branch will be merged to augment the set of features that a code
fulfills. Merging different development branches is a tedious and complex task
and is meant to be as much automated as possible. Code merges can even become
a time-consuming operation, if they involve a huge set of code, i.e., merging very
different branches. As always in software engineering, it is a trade-off issue: one
can use sophisticated algorithms and techniques to automate as much as possi-
ble, with a cost of a heavy load and high computing time; or perform the merge
as fast as possible, and ask a human to perform what has not been done yet.
GitHub, the most used hosting service for version control, hosted in mid-2018
100 million repositories [24] and had mid-2019 more than 32 million users 1. This
platform groups, mid-2019, more than 1.1 billion contributions and more than
200 million contributions from outside the development teams [25]. This shows
the scale of the actual software development and the number of people who will
benefit from smarter code-management tools.

2.4.3 Linux maintenance

Linux is one of the most-significant community-based software development
in terms of longevity, volume of code, and number of contributors. As of 2017,
15,600 developers and growing, and more than 1,400 companies have contributed
to the kernel [26]. Mid-2019, the official Linux repository showed more than
840,000 contribution [27]. As it involved different profiles of contributors, guide-
lines have been created, and contributions have to be formatted to conform to
them. As common mistakes occur, they also need to be fixed. Finally, as the ker-
nel evolves between a contribution and its integration into the kernel, they also

1. Result of the request https://github.com/search?q=type:user&type=Users

https://github.com/search?q=type:user&type=Users


18 CHAPTER 2. MOTIVATION

have to be modified. All these modifications have been as automated as pos-
sible to avoid unnecessary human labor. Rewriting rules are applied onto the
source-code and fix a specific issue (e.g., guideline, error, evolution). Because the
Linux kernel is huge, and each rule is applied on the kernel source-code, a batch
of rewritings takes a long time, hours on average. As multiple rules may be ap-
plied on the same portion of source-code, the order in which rules are applied
may yield different results. As overlapping rules are applied in sequence, they
silently fail without notice. Currently, the Linux kernel contains 62 rules 2.

2.4.4 Android automatic optimizations

Android is the most used operating system for smartphones with more than
2 billion monthly active users [28], and covering 85% of the mobile market [29].
As every embedded system Android, along with its applications, has to take en-
ergy consumption as an essential concern. Good and bad development practices
evolve along with the development of Android itself, and some guidelines are
even bad practices in another context such as plain object-oriented development.
Thus, tools such as Paprika [30], aim to automatically detect these identified is-
sues and tools such as SPOON [31] will modify the Abstract Syntax Tree of a code-
base to fix the issue effectively. Paprika developers proposed a set of rules that
conform to Google guidelines at the time. Applying related SPOON rules should
lower the energy consumption of the application (if related issue has been de-
tected in the codebase of course), applying two should lower even more, and so
on. Thus, the most power-efficient version of the application should be obtained
by applying each and every rule on an Android application. Yet, sometimes, it is
not the case. Applying the whole rules set is worse than just applying a few of
them or even none of them. How can one explain this? Is it due to overlapping
rewriting rules? As rewriting rules are plain java codes, with heavy use of reflex-
ivity and without normalization, it is quite hard or even impossible to infer the
rule behavior and moreover to check if a pair of rules overlaps at a human scale.

2.4.5 Catalog construction

Catalogs represent a set of products that one can build and deliver. A way
to automatically build a catalog is to build it from the description of products.
The most used formalism to achieve such a goal is to represent products as Fea-
ture Models (FM) that will be merged to obtain the final FM that represents the
catalog [32]. The merge operation is known to be a complex and time-consuming
task. As it is often used inside automatic processes, time-consumption is critical.
Users of this operator report that placing the biggest FM as first operand has a
substantial impact on execution time, are they right? How does the execution
time evolve according to the size of input-FMs? Users of this operator also want
to know if they can use it in a distributed context, i.e., does the operator sup-
ports the merge of the same FM multiple times? As this merge operation involves
paradigm-shifting where the input FMs are transformed into logical formulae,
passed to a black-box solver, then the final FM is synthesized from the output of
the solver thanks to a non-deterministic and heuristics-based process, the analy-

2. https://github.com/torvalds/linux/tree/master/scripts/coccinelle

https://github.com/torvalds/linux/tree/master/scripts/coccinelle


2.5. CONCLUSION 19

sis of the merge process itself is not possible. Thus, one will consider the merge
operator as a black-or-grey-box.

2.5 Conclusion

This section depicted industrial use-cases where composition occurs. We quick-
ly summarized the role the composition occupies in each use-case, and the issues
it solves at the domain-level. The described examples have shown that composi-
tion can come in different shapes and forms, and may serve different purposes,
in very different contexts, targetting different artifacts. In every domain, compo-
sition plays a crucial and central role, answering a need to manage the recompo-
sition of a decomposed problem that was too complex to be handled on its own.
Composition operators are at the frontier between different teams (e.g., devel-
opers, operationals) and a tremendous number of stakeholders use them every
day. The need for insurances and safe compositions is crucial in such a context,
and state-of-practice lacks both of them. In the next chapter, we will take a step-
back and depict the state-of-the-art transformations and compositions, perform-
ing at the model-level or code-level. Then, we will match the state-of-practice,
described in this chapter, against the state-of-the-art, described in the next chap-
ter, and we will ultimately define the challenges that this thesis addresses. In the
context of this thesis, we will use the use-cases depicted in Sec. 2.4.1, 2.4.3, and
2.4.4 to validate the results of this work.



CHAPTER3
State of the art

“ it is not the most intellectual of the species that survives; it is
not the strongest that survives; but the species that survives is
the one that is able best to adapt and adjust to the changing
environment in which it finds itself. ”

Leon C. Megginson [33]

Content

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Composition at the Model-level . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Composition Approaches . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Composition at the Code-level . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Tools considered . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

20



3.1. INTRODUCTION 21

3.1 Introduction

In the previous chapter, we described the use-cases of compositions we want
to address in this thesis, and we presented a classical example of composition
which is the merging of automata. In the context of this thesis, we are interested
in a family of composition which capture the use-cases described in the previ-
ous chapter. For the merge-of-automata example, there exists a language and a
meta-model; thus, the automata-composition issue is brought back to composing
models that conform to their meta-model. The goal of this chapter is to analyze
the approaches that exist in the literature to compose or transform models.

To scope the content of this chapter, we address in this thesis structural com-
positions that statically modify the initial artefacts as this matches the use-cases
we described in the previous chapter. One of the central areas of the structural
composition is model-composition. As composition is a subset of transformation
(the approaches of the former reusing techniques and tools of the latter), we will
address model transformations first in this chapter; then, we will dive into com-
position approaches at the model-level and at the code-level that exist in the state-
of-the-art.

3.2 Model Transformations

The most high-level manipulation of models of any kind is transformation.
Before diving into composition at the model and code-level, this section analyzes
the state-of-the-art of model transformations. This section illustrates the most
widely used approaches in the model transformations ecosystem.

QVT (Query/View/Transformation), is a standard set of languages for model
transformation defined by the Object Management Group (OMG) [34]. It defines
three model transformation languages that operate on models that conform to
Meta-Object Facility metamodels. QVT is used for expressing M2M transformations
only as QVT languages do not permit transformations to or from textual models,
since each model must conform to some MOF metamodel. Model-to-text trans-
formations are being standardized separately by OMG via MOFM2T. QVT is open
to extensions as QVT-BlackBox allows one to invoke transformation facilities ex-
pressed in other languages (for example XSLT or XQuery), as long as the manipu-
lated elements are EMF models.

MOFM2T (MOF Model to Text Transformation Language) is an OMG specifi-
cation for a model transformation language that can be used to express trans-
formations that transform a model into text (e.g., a model into source code or
documentation) [35].

ATL ATL is a model transformation language developed by OBEO and Inria to
answer the QVT Request For Proposal [36]. It is built on top of a model transfor-
mation Virtual Machine and allows one to perform syntactic or semantic transla-
tion. An ATL transformation program is composed of rules that define how source
model elements are matched and navigated to create and initialize the elements



22 CHAPTER 3. STATE OF THE ART

of the target models. A model-transformation-oriented virtual machine has been
defined and implemented to provide execution support for ATL while maintaining
a certain level of flexibility. ATL is executable because a specific transformation
from its metamodel to the virtual machine bytecode exists. Therefore, one can
extend ATL by specifying the execution semantics of the new language features
in terms of simple instructions: basic actions on models (elements creations and
properties assignments).

Viatra (Visual Automated model Transformations) is a framework at the core
of a transformation-based verification and validation environment [37]. It al-
lows one to automatically check consistency, completeness, and dependability
requirements of UML models and manipulate well-formed model-transformations
formalized as graph transformations or Abstract State Machines. Graph trans-
formation rules describe pre- and postconditions to the transformations and are
guaranteed to be executable, which is a main conceptual difference with OCL.
Graph transformation rules are assembled into complex model transformations
by abstract state machine rules, which provide a set of commonly used impera-
tive control structures with precise semantics. Viatra is not metamodeled using
the standard MOF, and is transformation language is not QVT.

Tefkat is a response to the OMG’s MOF QVT Request for Proposals [38]. It defines a
mapping from a set of source metamodels to a set of target metamodels. A Tefkat

transformation consists of rules, patterns, and templates. Rules contain a source
term and a target term. Tefkat does not use explicit rule-calling; all rules fire
independently from all others, however, rules can be loosely coupled. The Tefkat
language is defined in terms of (E)MOF 2.0. However, the engine is implemented
in terms of Ecore, the EMOF-like metamodel at the center of EMF, and acts as an
Eclipse plug-in for EMF. The language is very similar to the Relations package of
QVT, however, it is not strictly compliant.

3.2.1 Summary

Model-transformation works on formalized transformations definitions. These
transformations may target model or metamodel, may conform partially to the
standards, but still, the presented approaches rely on the knowledge of the rules’
definitions (i.e., left-hand side and right-hand side). As depicted in the motiva-
tion chapter of this thesis, the approaches enumerated from the state-of-practice
cannot make this assumption, as they do not formalize, nor handle, nor know the
definition of the transformations they manipulate. To apply these approaches to
our running example, one must (i) write the actual transformations in any of the
tools above, (ii) write the code that enables paradigm shift between automata and
(iii) transition table, and (iv) the other way around. These approaches are really
powerful as they allow advanced reasonings on manipulated transformations,
but they are in an all-or-nothing approach where one has to formalize already exist-
ing model and transformations into these frameworks to benefit from their outcome,
or the approaches are not applicable at all, and none of the potential outcome can
benefit the developer. In the next sections, we will narrow the field of study to
analyze compositions, successively at the model-level, then at the code-level.



3.3. COMPOSITION AT THE MODEL-LEVEL 23

3.3 Composition at the Model-level

The previous section targetted transformations in general, which is a superset
of compositions. As many approaches of model composition use results and tools
of model transformation tools, it seems interesting to analyze the state-of-the-art
model compositions. We structure this study in two sections; this one focuses
on model-composition; the next one will focus on compositions that occur at
the code-level. There are two majors approaches to perform structural compo-
sition: the merge approach and the weaving approach. The merge approach is
a symmetric operation (i.e., that takes models of the same type) and can be an
endogenous or exogeneous operation (i.e., outputting a model of the same type
or a different type respectively). The weaving approach is an asymmetric and
endogenous operation that considers an already existing codebase which will be
modified by weaving an aspect on it. The section depicts solutions that are part
of one of these two approaches.

3.3.1 Criteria

— Model-Driven: A model-driven approach is a top-down approach. The
model is already existing, and one must conform to this (meta-)model to
make use of the solution and its gains. Thus, this criterion can take the
values Yes or No.

— Expressiveness: The expressiveness describes how one uses one of the ap-
proaches. One can use a solution as is, like a tool; or the approach is meant
to create a composition operator. The former is closer to the use of an exter-
nal library, whereas the latter is closer to a framework approach. Thus, this
criterion can take the values USE or CREATE.

— Tunable composition operator: Compositions can target various types of
models, and use different techniques (e.g., weaving aspects on a source-
code). This composition can be extensible, or tunable, e.g., specifying pre- or
post-processing steps, or providing heuristics. This boolean criterion states
if one can, or cannot, tune a given composition operator.

— Open Composition of Composition Operator: A composition of compo-
sitions is triggered when multiple transformations are to be applied to a
codebase. This composition of compositions can be defined and not being
replaceable, extensible, or even tunable. This boolean criterion states if one
can, or cannot, specify her own way of composing multiple rules.

— Entity- or diff-based: Some solutions work at the entities-level, other work
at the diff-level. The former may manipulate models such as class diagrams,
sequence diagrams, or code, whereas the latter solutions work on a set or
sequence of modifications. The former solutions merge entities, whereas
the latter solutions reconcile modifications made on entities.

— Conflict detection: When multiple transformations are composed, i.e., are
applied together on a model, conflicts may occur. Conflicts happen in var-
ious shapes and forms, but this boolean criterion focuses on the capability
of a given tool to check for conflicts in general, or not, and yield them to the
final user.



24 CHAPTER 3. STATE OF THE ART

3.3.2 Composition Approaches

AoURN (Aspect-oriented User Requirements Notation) is a multi-views mod-
eling framework that combines aspect-oriented, goal-oriented, and scenario-based
modeling [39]. Whereas the standard URN (User Requirements Notation) com-
bines goal-oriented and scenario-based models, AoURN extends it with aspects
modeling, enabling clean reuse of crosscutting concerns. When multiple con-
cerns are to be applied, the framework takes care of the interactions by applying
concerns to the other concerns. Conflicts are formalized at the model-level inside
a concern interaction graph.

Kermeta (Kernel Metamodeling) is a metamodeling language that extends EMOF
with an action language that allows the specification of behavioral semantics for
metamodels [40]. The Kermeta language can be used for the definition of meta-
models along with the implementation of their semantics, constraints, and trans-
formations. It allows one to develop and execute three DSLs; each one mapped
to a concern: abstract syntax in ECore, static semantic in OCL, and behavioral
semantic in Kermeta. Each DSLs is projected as code, and composition occurs at
this level. One can also refine the composition by adding a custom algorithm in
the body of the operations defined in the composition metamodel. Kermeta is
compatible with the Eclipse Modeling Framework (EMF) [41] and does not provide
any conflict handling mechanisms.

Kompose is a model-driven tool based on Kermeta that composes homogeneous
meta-models as long as they conform to the EMOF [42]. It performs a general-
purpose match-and-merge composition where matched elements are merged,
and unmatched ones are outputted as is. One can specialize the proposed generic
composition operator to a particular modeling language described by a meta-
model, considering a single operator that can be fine-tuned. Kompose formalizes
pre- and post-processing steps, respectively to avoid issues and ensure coherence
of the resulting metamodel, but it is left to the developer to implement them cor-
rectly.

Kertheme (Kermeta and Theme) [43] is an extension of Theme [44], an aspect-
oriented approach built on UML. It proposes two types of compositions that one
cannot override - one merging so-called “basic” concerns, the other weaving so-
called “aspect” concerns into basic ones. As concerns consist of a pair of models: a
class diagram as structural model and a sequence diagram as behavioral model ;
each type of composition embed two composition operators. No conflicts handling
are formalized nor proposed in Kertheme.

EML (Epsilon Merging Language) is a hybrid, rule-based language for statically
merging homogeneous or heterogeneous models [45]. It allows one to develop cus-
tom merging algorithms in EML format, working over models implemented in EMF.
It also allows one to declare comparison operator (in ECL), and call arbitrarily
complex external java methods. When merging models, the resulting model may
not conform to the initial metamodel. Indeed, the merging process may have in-
troduced elements that are not represented in the metamodel. Thus, EML does



3.3. COMPOSITION AT THE MODEL-LEVEL 25

not provide any conflict handling mechanisms, but an error-detection mechanism im-
plemented as a metamodel conformance check.

CORE (Concern-Oriented REuse) aims for the reusability of development ef-
fort [46]. It proposes to modularize models of a system by domains of abstraction
within units of reuse called “concerns”. Inter- and intra-concerns reuse are possi-
ble. It allows one to model heterogeneous models by formalizing each one with
UML models (e.g., class diagram as structural model, sequence diagrams as be-
havioral model). The composition is static and is implemented with weaving
techniques. The weaver is in charge of handling coherence between views of the
system. Conflicts are defined by the developer in an aspect conflict resolution model,
to be automatically fixed when occurring at the user-level.

GeKo (Generic weaving with Kermeta) is a static generic model weaver that can
be used to weave any kind of models that conform to EMOF [47], [48]. In GeKo,
an aspect is defined as a pair of models: a left-hand side for the specification of
where to “cut”, and a right-hand side that represents the expected elements at
the “join” point. GeKo weaving approach may extend the matched behavior,
replace it with a new behavior, or remove it entirely. GeKo defines a two-phased
weaving process: a generic detection and a generic composition, both non-user-
replaceable nor tunable.

MATA (Modeling Aspects using a Transformation Approach) is an Aspect-
oriented Modelling approach for aspect weaving in UML models [49]. MATA is
really similar to GeKo but uses graph theory as a backend to analyze interac-
tions between woven aspects and base models. The resulting graph is outputted
as a UML model. A MATA model is made of left-hand side, right-hand side
transformation-rules which are defined using UML stereotypes to manipulate
model elements. Graph theory and tools allow MATA to perform conflict detec-
tions such as aspect and feature interactions.

Models@runtime combines model-driven and aspect-oriented approaches and
techniques to tame the complexity of developing and maintaining dynamically
adaptive software systems [50]. It is made of a complex events processor, react-
ing to sensors’ values, triggering aspects composition on the system, conforming
to a predefined goal. This reasoning can be tuned at the developer-level as Mod-
els@Runtime reasonings formalisms is open by design. Based on aspect oriented
approaches’ backend that rely on graph theory, Models@Runtime performs con-
flict detections between aspects.

ModelBus defines a merge operator to reconcile concurrent modifications made
on a model in a collaborative context [51]. It focuses on its scaling capabilities in a
collaborative context. For every input model, ModelBus computes the modifica-
tions, i.e., the delta, that were made between the base model and the input one.
As it performs such computation on every input models, it then reconciles all the
modifications and check for conflicts before applying them to the input model. The
definition of conflict is domain-independent; thus, they are consistency checks,



26 CHAPTER 3. STATE OF THE ART

e.g., updating a deleted element, modifying the same property with two different
values. The reconciliation step cannot be refined nor tuned.

3.3.3 Summary

The presented approaches of model composition are all model-driven, and
half of them allow the developer to create her composition operator; the other
half allows direct use by developers and does not allow their composition opera-
tor to be overridden (see TAB. 3.1). Moreover, none of the approaches depicted in
this section consider the composition of compositions operators as a main issue,
which mainly explain the next point. No support for automated conflict detec-
tion, nor general checking capabilities have been identified in these approaches.
Conflicts detection and their respective fixes are sometimes acknowledged as
some approaches formalize interface to yield, capture and fix conflicts, yet it is
still the developer’s responsibility to actually detect, yield, and fix them, manu-
ally. In the next section, we will analyze compositions that occur on the code-level
with more tool-oriented approaches.

Table 3.1 – Summary of the approaches of compositions at the model-level

Approach Expressiveness
Tunable

Composition
Operator

Open
Composition of

Composition
Operator

Entity- or
Diff-based

Conflict
detection

Kompose Creation Yes No Entity No

Kermeta Creation Yes No Entity No

Kertheme Usage No No Entity No

AoURN Usage No No Entity Yes

EML Creation Yes No Entity No

CORE
Usage

Creation
No No Entity No

GeKo Usage No No Entity No

MATA Usage No No Entity Yes

MATA Creation Yes No Entity Yes

ModelBus Usage No No Diff Yes



3.4. COMPOSITION AT THE CODE-LEVEL 27

3.4 Composition at the Code-level

3.4.1 Introduction

Yet, a subset of model-transformations may be of interest and have to be part
of this state-of-the-art chapter: code transformation. A code is a model the same
way a class diagram is a UML model: it is a way to define the structure and be-
havior of an artifact. This subset of software-composition contains tool-oriented
approaches more than reasoning-oriented ones; thus, this section lists code com-
positions tools, with the particularity that composition occurs at the code-level.
Some tools described in this section may rely on models to know how to apply
their composition operators, nevertheless their compositions occur at the code
level, and target code.

3.4.2 Criteria

— Build to match domain specific requirements: This criteria states if a tool
has been developped to match domain-specific requirements, or as a generic
tool to perform many operations targeting various purposes. A tool may
have been developed as a general purpose tool, or as a tailored tool for a
specific requirement of their application domain. For instance, a tool may
be developped to rewrite java code, it is its purpose and it has been built
to do that, but why is someone rewriting a java code is out of its scope.
The rewriting abstractions, formalisms, operations, and intent of the generic
tool are dissociated from its final use.

— Used in industry: Tools may be used as proof-of-concept, in academia, as
a rasearch tool, in an industrial context (e.g., library, API), etc. This boolean
criteria specifies if a given tool is used in an industrial context or not. A tool
is used in an industrial context if it has been used for a long time, in a public
project.

— Expressiveness: The expressiveness describes how one uses one of the tools.
One can use a solution as is, or the tool is meant to create a transformations.
The former is closer to the use of an external library , whereas the latter is
closer to a framework approach. Thus, this criterion can take the values USE
or CREATE.

— Target: In this section, tools may target source-code or text, but transforma-
tions in general can target models also. This criterion specifies the amount
of structure a given tool has on its inputs. A tool can take any textual file
as input, or a source code of a given language, or a model. Therefore, it can
take a values between Text, Source code, Model.

— Customizable composition operator: This composition can be defined, i.e.,
hard-coded, and not being replaceable, nor extensible. Other operators may
be hard-coded but can be customizable by allowing the user to specify par-
tial order between transformations. Thus, this criteria defines the level
of customization as CLOSED, i.e., closed hard-coded and non customizable
operator, CUSTOMIZABLE if one cannot fully override the operator but can
change some of its parameters, and OPEN if one can fully swap the compo-
sition operator.



28 CHAPTER 3. STATE OF THE ART

— Open composition of composition operators: A composition of compo-
sitions is triggered when multiple transformations are to be applied on a
code. This composition of compositions can be defined and not being re-
placeable, extensible, or even tunable. This boolean criterion states if one
can, or cannot, specify her own way of composing multiple rules.

— Composition order: When multiple transformations are defined and com-
posed to-be-applied in a code base, an order in which they are applied is
defined. This order can be partial or total, but this criterion focuses only
on two things: Does the order in which they are applied follow a domain
specific expertise ? If so, the criterion is evaluated to MANUAL, ARBITRARY
otherwise. Then, it specifies the actual order, e.g., SEQUENTIAL, PARALLEL.

— Use of diffs: Code transformations tools may use diffs for various pur-
poses, e.g., as basic model, to solve conflicts, etc. This boolean criterion
states if a given tool makes use of diff or not.

— Static/Dynamic composition: Applying a rule or a set of rules can be done
statically (i.e., at compile-time) or dynamically (i.e., at runtime). Some tools
allow both and thus this criterion can take the values between STATIC, DYNAMIC,
BOTH.

— Conflict detection: When multiple transformations are composed, i.e., are
applied together on a code base, conflicts may occur. Conflicts happen in
various shapes and forms but this boolean criterion focuses on the capabil-
ity of a given tool to check for conflicts in general, or not, and yield them to
the final user.

3.4.3 Tools considered

SPOON - is a Java tool that allows one to transform any Java code. It works at
the AST-level [52]. One specifies transformations inside SPOON processors, imple-
mented as a Java class extending the SPOON framework, that will work on code el-
ements specified in the SPOON framework (e.g., CtClass, CtMethod, CtStatement).
Each SPOON rule must specify 3 things: (i) the AST elements it captures (e.g.,
CtClass), (ii) if it has to be applied on a given element, (iii) the method to actu-
ally apply the rule and transform the AST.

— The element captured is specified byJava generic mechanism in the signa-
ture of the extension of the SPOON class.

— The applicability is assessed via a isToBeProcess(M) 7→ Boolean method.

— The transformation is implemented in an apply(M) 7→ void java method
that will use SPOON factories and abstraction to modify the element, thus the
AST.

The AST is updated and passed between SPOON processors that are executed in
sequence as defined in the order they are specified in a configuration file. Up-
dates of the AST are black-boxed inside SPOON processors, without use of diffs. No
detection of conflicts between processors is available.

Coccinnelle - is a tool that enables transformations of a codebase by specifying
semantic patches [53]. These patches are written in SmPL (Semantic Patch Lan-



3.4. COMPOSITION AT THE CODE-LEVEL 29

guage) and are used in the context of the development of the Linux Kernel. Coc-
cinnelle was developped to automate evolutions and fixes of common issues in
the Linux kernel. A semantic patch is a textual file, made of potentially different
cases. A case is made of (i) context description, i.e., the context to be matched
in a file to trigger the rule, (ii) addition and deletion, respectively in the form of
lines preceded by ++ and – symbols, (iii) potential guards that restrict the context
in which the patch has to be triggered. Coccinnelle defines 54 semantic patches
for the Linux Kernel that will be applied in sequence to check a given version
of the Linux Kernel but more rules can be addded. Each semantic patch will be
applied in sequence, in alpha-numerical order, on the Linux kernel and the result
is passed to the next one. No detection of conflicts between semantic patches is
done, statically or dynamically.

EJB (Enterprise JavaBeans) is a server-side software component that encapsu-
lates business logic of an application and allows modular construction of enter-
prise software in Java by reusing concerns [54]. Such software addresses the
same types of problem, and solutions to these problems are often repeatedly
re-implemented by programmers, thus EJB is intended to handle such common
concerns as persistence, transactional integrity and security in a standard way,
leaving programmers free to concentrate on the particular parts of the enterprise
software at hand. The EJB specification was originally developed in 1997 by IBM
and later adopted by Sun Microsystems, and enhanced under the Java Commu-
nity Process. A set of EJB interceptors, allowing composition of these reusable
concerns, can be added or removed statically. The order in which they are in-
voked is given by the order in which they are declared, or can be overriden by the
developper in a configuration file.

AspectJ AspectJ is a language, supersetting Java, that allows one to implement
crosscutting concerns through pointcuts (collections of principle points in the ex-
ecution of a program), and advices (method-like structures attached to point-
cuts) [15]. When multiple advices have to be applied at a joint point, composition
issue is solved thanks to precedence rules defined by the developper. AspectJ is
used in industry via the SPRING framework, widely used in many projects.

JAC - (Java Aspect Components) is a general-purpose Java framework for dy-
namic aspect-oriented programming [55]. It allows one to specify aspects in Java

to be woven on a Java object at runtime, along with specifying their composi-
tions, also in Java. The weaving can be added as wrapping of an existing object,
to enhance an existing object’s role, or to handle exceptions. When multiple as-
pects have to be woven in an application, different composition issues may arise:
(i) compatibility of an aspect with an application, (ii) inter-aspect compatibility,
(iii) inter-aspect dependance, (iv) aspect redundancy, and (v) aspect-ordering is-
sues. In the JAC framework, the core idea is to provide abstractions and to for-
malize composition of these weavers as an external, simple, and easily reusable
artefact, in an AOP fashion. A controller is in charge of the aspect composition, which
should be developped by a human that knows all the aspects of the application.
“Indeed, JAC programmers can cleanly describe how the composition of the aspects will be



30 CHAPTER 3. STATE OF THE ART

hanlded by the application within a well-bounded part of the program called a wrapping
controller.”

Python 2to3 - is a tool that allows one to transform a Python 2.x codebase into
a Python 3.x compliant codebase [56]. One may just run a Python 2 code under
Python 3 and fix each problem as it turns up, but 2to3 does most of these changes
automatically. The tool 2to3 is made up of a core, named lib2to3 that allows one
to refactor Python code by analyzing the code and building up a parse tree from
it. This core acts as a framework to develop so-called “fixers” that will perform
specific refactorings, such as changing a print statement into a print() function
call directly inside the python source-code. The set of standard fixers consists of
52 fixers that allow 2to3 to convert Python 2 code to Python 3 code. This set is
opened, its rules are executed in alpha-numerical order in an arbitray fashion.
No detection of conflicts is available between multiple fixers.

Git Merge is an operation available in the source code versioning tool Git.
When developing software in a collaborative environment, different develop-
ers may concurrently modify the same portion of the codebase [57]–[59]. Each
of them will, usually, develop on a dedicated development branch, then these
branches will be merged, and the two versions of the codebase will also be merged.
Actually, the codebase itself is not merged, but their modifications are. Git merge
is a diff based composition operator that works on modifications sets and outputs
a modification set. One cannot interfere with the composition process, even if the
Git Merge can be replaced by another tool in the git tool-suite. Conflict detection
is done at the textual level, regardless of the language used to develop the sys-
tem, which is its strongest pros (i.e., language independent) and cons (i.e., poor
precision and recall).

Patch is a tool that allows one to modify a textual codebase given a textual
patch [60], [61]. A patch targets a specific line of code and provides the context
to be captured (lines preceded by “–” symbols), and by which content to replace
it (lines preceded by “++” symbols). No other actions (e.g., update) are avail-
able nor can be added. The order of the patches is defined by the order they are
given as input. No detection of conflicts is available, before appliying patches;
but a warning will be yielded if a patch’s context can no longer be matched, i.e.,
another patch that has been applied before has changed the context of a future
patch.

C preprocessor is part of the tools of the C programming language [62]–[64]. It
defines two directives that we consider as composition operators.

— The first directive is #include, and tells the preprocessor to replace the di-
rective’s instruction by the contents of another file, directy at the source-
code level. This allows one to “compose” a code base by assembling arbi-
trary complex parts of source code. The semantic of this directive cannot
be overriden at the developer-level. As the directive is replace at-compile
time, as the preprocessor finds it, multiple includes will lead to sequential
replacements; and nested includes will be processed recursively, as they are
found.



3.4. COMPOSITION AT THE CODE-LEVEL 31

— The second directive IfNDef is a conditionnal if statement at the prepro-
cessor level. Combined with the previously introduced include directive,
and along with the define directive, it allows development teams to handle
variability directly at the source-code level. For instance, if a global prepro-
cessing variable has been defined, process (i.e., add at the current position)
the following statements (that may again conditionnally define variables).
The entire Linux kernel variability is handled via this mechanism. It is fast
and allows entire portions of the code base to not be considered at compile-
time. The semantic of ifndef cannot be overriden at the developer-level.
As the include directive, this conditional directive is handled as is, and in
place.



32
C

H
A

P
T

E
R

3
.

S
T

A
T

E
O

F
T

H
E

A
R

T

3
.4

.4
S

u
m

m
a

ry

Tool Express. Target

Built w/
domain
specific

req.

Used in
industry

Custom.
Compo.
Operator

Open
compo. of

compo.
operators

Composition
order Diffs?

Static
Dynamic
Compos.

Conflicts
detection

SPOON Creation
Source
code

No No Closed Closed
Arbitrary
sequential

No Static No

Coccinnelle Usage Text Yes Yes Closed Closed
Arbitrary
sequential

No Static No

JAC Creation
Source
code

No No Custom. Opened
Manual

sequential
No Both Yes

2to3 Usage
Source
code

Yes No Custom. Closed
Arbitrary
sequential

No Static No

EJB Creation
Source
code

No Yes Custom.
Opened
(partial)

Manual
sequential

No Static No

AspectJ Creation
Source
code

No Yes Custom. Opened
Manual

sequential
No Static Yes

Git Merge Usage Text Yes Yes Opened Opened
Arbitrary
sequential

Yes Static Yes

Patch Usage Text Yes Yes Closed Closed
Arbitrary
sequential

Yes Static No

C preprocessor Usage
Source
code

Yes Yes Closed Closed
Arbitrary
sequential

No Static No

Table 3.2 – Summary of the approaches composing at the code-level



3.5. CONCLUSION 33

3.5 Conclusion

In this chapter we studied the state-of-the-art approaches regarding model
compositions, model and code transformations. Model compositions were not
compatible with our context as their all-or-nothing approach prevents any already
existing operator to benefit from their outcome. Whereas model transformations
enable powerful reasonings on conflict detection, and order of transformations,
their hypotheses of a white-box well-formalized transformation doesn’t match the
context of this thesis. Finally, the code transformation approaches are tailored
for a more or less generic industrial usage, where one cannot often specify her
own composition operators. These approaches, closer to a tooling approach than
a reasoning one, also offer poor support for conflicts detection and reasoning ca-
pabilities in general. They target source-code or any textual artefact only, and the
order of the composition is defined manually in the best case, or cannot be over-
riden otherwise. Now that the state-of-the-art approaches have been analyzed,
we will map in the next chapter the state-of-practise depicted in Chapter 2 with
the characteristics described in the current chapter to define the challenges of this
thesis.



CHAPTER4
Background and Challenges

“A convincing demonstration of correctness being impossible
as long as the mechanism is regarded as a black box, our only
hope lies in not regarding the mechanism as a black box.”

Dijkstra [65]

Content

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 White box rewriting rules are not enough . . . . . . . . . . . . . . . 35

4.2.1 Optimizing Automata With Rewriting Rules . . . . . . . . . 36
4.2.1.1 Order-related issues. . . . . . . . . . . . . . . . . . . 37
4.2.1.2 Non order-related issues. . . . . . . . . . . . . . . . 38

4.2.2 Properties With Rewriting Systems . . . . . . . . . . . . . . . 39
4.2.3 Challenges for Software Developers to Use White-box Ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Black-box Rewriting Rules . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Composition in a Black-Box Context . . . . . . . . . . . . . . 41
4.3.2 Classical Composition Operator apply . . . . . . . . . . . . . 42
4.3.3 Parallel Composition Operator || . . . . . . . . . . . . . . . 43

4.4 Challenges of Ensuring Properties in a Black-box Context . . . . . . 43
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Challenge C.1 - White-box properties in a Black-box Context 44
4.4.3 Challenge C.2 - Domain Independance . . . . . . . . . . . . . 44

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

34



4.1. INTRODUCTION 35

4.1 Introduction

In the previous chapters, we depicted real-life composition use-cases, their
characteristics and commonalities, before depicting how software composition
is addressed in the literature. We outlined that on the one hand, state-of-the-art
compositions make strong assumptions on the composed elements, but on the
other hand, they ensure powerful and useful properties. This chapter links the
two previous chapters as it maps the use-cases described in 2 and the approaches
depicted in the previous state-of-the-art chapter. This chapter depicts such a
white-box approach, and presents the issues that arise when such automated
transformations are, in fact, black-boxes: one cannot know what it captures or
produces. It depicts how the assessment of white-box properties is not feasible
when facing black-boxes. Reasoning on such black-box artifacts and ensuring
guarantees in a domain-independent way are challenges that we will outline.

4.2 White box rewriting rules are not enough

Models of any kind can be transformed thanks to automated transformations.
Such mechanisms can be put in place to fix common mistakes, perform custom
operations at large scale, to avoid manual intervention and human effort. Auto-
mated fix of common mistakes, evolutions of API, modifications of large UML
models, are a few use-cases where transformations are automatically applied to
an artifact as described in 3. Thus, one can regard these rules as off-the-shelf
functions that one can use to transform a specific portion of a model.

For instance, UML class diagrams can be transformed to match a metamodel
update or to adapt to a new requirement; and the Linux kernel embeds rewrit-
ing rules (named patches) that automatically fix common mistakes or operate at
scale by aligning the whole codebase to a new version of the kernel API. These
rules can operate on various types of models (e.g., UML models, code), and are
implemented via different techniques and tools. Issues may arise when several
of these rules are applied on the same model, e.g., a rule can delete what would
have been captured by another, or two rules can modify the same model element
in two different ways.

As described in the previous chapter, these issues are not new and were ad-
dressed in the literature, mainly by providing a formalism for these rewriting
rules that enable reasoning techniques, able to detect overlapping or conflicting
rules. These transformations are formalized in the literature as white-boxes, often
as term-rewritings rules. What a transformation captures as input and produces
as output is known and enables reasonings capabilities, avoiding conflicting rules
and making the whole set of transformations safer.

In a “white-box approach,” rewriting rules are implemented following a known,
precise, and sound formalism, that one can check beforehand for overlaps or
conflicts. Term rewriting is a paradigm where rewriting rules are formalized as
equations: a left-hand side (i.e., a term) that describes the context to-be-matched
for the rule to be applied, and a right-hand side (i.e., a term) that describes the
matched context once the rule has been applied [66], [67]. When using basic high-
school algebra, one is working with such rewriting rules. Examples such as the



36 CHAPTER 4. BACKGROUND AND CHALLENGES

equation below are formalized as term rewritings, via what we call a white-boxes
approach.

(a + b)2

Left Hand Side Right Hand Side

a2 + 2ab + b2

Terms rewriting can be (excessively) simplified to rewriting rules that substitute
the left term (LHS) by the right term (RHS) if the left term is matched in a given con-
text. Even with such simple formalism, term rewritings enable useful reasoning
techniques to compose multiple rules safely. Term rewritings paradigm can be
applied to various applications from software transformation, to type-checking
or even interpretation of programs [68]–[70]. These approaches also include pre-
conditions to allow conditional application and post-conditions to validate the
resulting output.

4.2.1 Optimizing Automata With Rewriting Rules

S2

S1S0

b

b
a

a

a

Fig. 4.1 – Initial term t, automaton result of a merge process.

Let us take the automaton depicted in FIG. 4.1 and assume that this automaton
is the result of a merge process and that operators of minimization and determiniza-
tion are applied to it. Each of these two operators can be implemented as a set of
rewriting rules. Thus, this example considers automata as terms, and the automa-
ton depicted in FIG. 4.1 is the initial term t that will be modified by rewriting
rules.

The example rewriting systems is composed of two rules. The first rule is de-
picted in FIG. 4.2. It locally detects equivalent states to lower the number of states
reachable and avoiding useless execution paths. The second one is depicted in
FIG. 4.3. It deletes unreachable states that have no incoming/outcoming edges
from/to other states (i.e., dangling states, states that are not linked to other states)
to avoid combinatorial explosion during the merge process. Of course, these rules
are partial and naive implementation of the minimization of automaton but are
enough to exemplify the rewriting approach.

Applying both of these rules on the term t can be done regardless of which
order the rules are applied. One can quickly note that rule R2 will never modify



4.2. WHITE BOX REWRITING RULES ARE NOT ENOUGH 37

ω

ω
′

21

ω

ωω
′

ω
′

1 2

3

Fig. 4.2 – Example of rule R0 merging equivalent
states

ω

1

Fig. 4.3 – Example of
rule R2, removing dan-
gling states

the term t as its left-hand-side is not matched in it. Thus, R0(R2(t)) ≡ R2(R0(t))
and both sequences lead to the same result.

Now, let us consider the rewriting system composed of t (FIG. 4.1), R1 (FIG. 4.4),
and R2 (FIG. 4.3). Considering these transformations as white-boxes by design,
tooling can be developed to analyze them and ensure their safe composition au-
tomatically.

ω

ω
′

21
ω

ωω
′

ω
′

1 2

3

ω
′

3

Fig. 4.4 – R1, alternative version of R0

4.2.1.1 Order-related issues.

Considering this rewriting system composed of t, R1, and R2, state-of-the-art
tools will detect an issue. Indeed, depending on the application order, the result
will differ. In a concrete context, such transformations may target code and have
a significant impact on the final system. Thus, having different results given the
order of the execution without the user being aware of it is not conceivable. The
rules R1 and R2 are not safe to be applied as the rule R1 produces as RHS a term
partially matched by the LHS of R2. These two rules can be applied following
two sequences, R1(R2(t)) or R2(R1(t)).

Sequence R1(R2(t)). Applying R2 first does not modify t since its left-hand-
side (LHS) is not matched, i.e., there is no dangling state in t. Then, applying
R1 to R2(t) effectively modifies t since its LHS is matched. Thus the term t is
modified with the right-hand-side (RHS) of R1 to obtain a new term t21 depicted
in FIG. 4.5. However, in the final term t21, the rule R2 could still have been applied
because now its LHS matches: there is still a dangling state, even if R2 was put
in the sequence of rules to be applied. This implies that R2 has not been applied



38 CHAPTER 4. BACKGROUND AND CHALLENGES

S2

S1S0

b

a

a

b

Fig. 4.5 – t21 = (R1(R2(t)))

S1S0
a

b

a

Fig. 4.6 – t12 = (R2(R1(t)))

correctly in the whole sequence and that applying R2 last would have been the
right way to go.

Sequence R2(R1(t)). Applying R1 first, effectively modifies t since its left-hand-
side is matched. Then, applying R2 to R1(t) modifies the automaton as there is a
dangling state (i.e., S2) that can be deleted. Thus the term t is modified to obtain a
new term t12 depicted in FIG. 4.6. The final term, t12, does not have any dangling
states or redundant paths in it. Thus, applying the whole sequence again, on t12
is not necessary as it will yield the same result. This sequence is the good way to
go as every rule has done all it was supposed to do.

This is a toy example with the smallest set of rules possible. As the size of
the rule-set grows, computing all sequences to find the good one is not feasible.
Toolings working in a white-box context would detect and avoid such issues.
By analyzing the definitions of the rules (hence the white-box approach), it will
either sort the sequence of rules to be applied to avoid a sequence or re-apply
rules if needed (e.g., R2).

4.2.1.2 Non order-related issues.

Now, we change the rules-set to R0 (FIG. 4.2) and R3 (FIG. 4.7). The rule R0
still avoids a path containing S2, whereas R3 avoids a self-looping edge by mov-
ing the self-looping edge of S2 into S0, modifying S2. These two rules (R0 and

ω

ωω
′

ω
′

S0 S1

S2
S2

S1S0

ω
′

ω
′

ω

ω

Fig. 4.7 – Rule R3 redirecting looping edge ω′ from S2 to S0

R3) have non-empty intersections between their respective LHS, and produce a
different output (RHS): one deletes S2, the other uses it as reference. This non-
empty intersection implies that the order in which they will be applied matters,



4.2. WHITE BOX REWRITING RULES ARE NOT ENOUGH 39

and that each sequence will yield a different result. It is still an ordering issue,
but it differs from the previous example. In the previous example, one rule pro-
duced an output matched by the other one; thus, a proper sequence exists (i.e.,
a sequence where all rules applicable were applied). However, in the current
rewriting system (t, R0, and R3), there is no good or bad sequence. These two rules
are incompatible in this context, and both sequences (R0(R3(t)) and R3(R0(t)))
produce two different results.

4.2.2 Properties With Rewriting Systems

State-of-the-art techniques would leverage such formalism, to perform com-
patibility or ordering checks on these off-the-shelf rewriting rules [66], [71]. Such
reasoning is known as a confluence assessment between term rewriting rules and
is possible only because rules are formalized as white-boxes term rewritings, i.e.,
their left- and right-hand sides are known and actionable.

In abstract rewriting systems vocabulary, the depicted rewriting system is
not confluent given this context and sequences of rules that lead to automata de-
scribed in FIG. 4.6 and FIG. 4.5 form a critical pair.

Confluence. Confluence property describes the order-free of rewriting rules trans-
formations [72]. Confluence states that no matter how two sequences of rewriting
rules diverge at a given point, the paths built by successive application of rewrit-
ing rules are joining at some point later. A strongly confluent rewriting system
implies that the order in which one applied the rules does not matter, i.e., it will
eventually lead to the same result. One can see how this property is useful in
a software engineering scenario: there is no bad sequence of application so any
order will be fine, and rules can be applied without extra computation. For ex-
ample, the rewriting systems described previously ((R1, R2) and (R0, R3)) are not
strongly confluent, but (R0, R2) is.

Termination. Termination of rewriting systems is a property that one can assess
on such white-box systems. It is another critical property that can be assessed in
term rewriting systems [73]. This property guarantees that the system will even-
tually lead to a term that cannot be reduced further. Such tools’ algorithms rely
on three majors aspects: (i) simplification orders [74], (ii) dependency pairs [75],
and (iii) the size-change principle [76].

Critical pairs. Analysis of critical pairs highlights the involved rules’ sequences
and allows human-in-the-loop analysis. In the context of a huge rules-set, critical
pair analysis allows to reduce the search space by providing only the sequences
of rules application that lead to a non-confluent system. This enables developers
to either refine the rules to avoid the issue or select which rule to apply in the ac-
tual context, reducing the conflict space and avoiding manual checks or arbitrary
choices.



40 CHAPTER 4. BACKGROUND AND CHALLENGES

4.2.3 Challenges for Software Developers to Use White-box

Approaches

Let us consider the context of a software developer in a company, that needs to
develop a new composition operator. She faces the choice of developing it using
mainstream languages, as its company has always done, or using model-driven
tools using white-box transformations as described quickly in this chapter.

The former option has the benefit of:

— no training is needed since she already has the set of skills required to de-
velop using mainstream development languages,

— plenty of qualified workforce and support available,

— the two last points allow teams to ship software in a time-to-market frame
that keeps getting shorter,

— no need for higher level approvals since the company always worked that
way,

— and a known schedule, since the teams know common mistakes, common
issues and traps, and regular troubleshootings and solutions, reinforcing
the hierarchy trust in this option.

The latter option of developing the new feature using MDE tools and ap-
proaches has the following drawbacks:

— training is needed since the developer is more likely to not be used to MDE
tools,

— compatibility with legacy systems and its assessment may be a difficult and
tedious task. Why developing a new feature in a way that it will be isolated
from the rest of our codebase? Is there a bridge to/from this MDE and
from/to our ecosystem?

— assessing what can (or can not) be developped using MDE tools may be a
difficult task that requires time, human labor, and skills,

— assessing the adequation of such tools with software requirements such as
the execution-time is not an easy task,

— hierarchy has to be convinced since they may not see the benefits of such
an MDE tool. Highlighting the anticipated benefits, weighing the gains,
efforts, and assessing risks is a hard task, especially for a developer with
little experience in these tools.

— assessing the dependency, viability, and sustainability of such tools, as any
other tools, is hard.

Using a tool that she has not used before is a hard choice and definitely not
the easy path. As any other tools, model-driven ones are difficult to be chosen
by teams of developers if they do not have the knowledge and skills needed to
master them.

Creators of tools used by skilled developers, such as the creators of Coccin-
nelle, acknowledge these issues. Convincing Linux developers to use tools such
as Coccinnelle, shaped the whole way Coccinnelle was built and formalized. Coc-
cinnelle semantic patches are written as code fragment, developed in C and in the
C-ecosystem because Linux developers were used to it lawall-talk. Coccinelle’s



4.3. BLACK-BOX REWRITING RULES 41

creators listed ease of use and preservation of coding style as the first two require-
ments for the Coccinelle toolsuite to convince Linux developers to use it [77].

Of course, MDE tools have great benefits but they are hard to grasp and as-
sessed for a non-specialist, whereas both benefits and drawbacks of the main-
stream development are known and mastered by most of the developers as this
approach is more likely to be part of their culture and education curriculum. It
is not surprising that, both from a development and project-management point-
of-views, the choices tend to lead to a well-known, well-handled comfort zone.
As described in the previous chapters and as formalized in the next section, this
comfort-zone solution comes without well-formalized white-box artefacts, but
with black-box ones. The next section depicts the challenges we outlined to work
with such black-boxes.

4.3 Black-box Rewriting Rules

4.3.1 Composition in a Black-Box Context

The previous section depicted how term rewritings using a white-box ap-
proach enable the assessment of properties such as termination and confluence
and allow one to highlight rules that will lead to different results. By making the
strong assumption that one formalized the rules as white-boxes term rewriting,
such formalism allowed powerful and useful reasonings.

Nevertheless, what happens when rewriting rules are black-boxes?

Development contexts may prevent the rules from being white-boxes. As de-
scribed in Chap. 2, they can be part of legacy systems, can be too complex to
be analyzed such as reflexive Java code, and as a consequence are considered as
black-boxes. In actual scenarios where rules are not formalized in a white-box
approach, developers still need such assessment and reasonings. If we limit the
visibility of a rewriting rules’ definition as a black-box, depicted in FIG. 4.8, how
does it change the guarantees and properties we can ensure?

OperatorInput Output

Fig. 4.8 – Rewriting rule as a black-box

In a black-box context, a rewriting rule ρ can be seen as an endogenous func-
tion ϕ that operates over a model M and yields a model M. Each rule comes with
a postcondition checker χ that states if it was applied correctly. It takes the ini-
tial and final models and states if all needed modifications were made correctly.
We do not have more information at our disposal. Thus, as depicted in Eq. 4.1,
rewriting rules are a pair: one actual rewriting function, and a check function.



42 CHAPTER 4. BACKGROUND AND CHALLENGES

For any input model, checking χ over the application of ϕ holds, as we considered
bug-free implementations.

Let ρ = (ϕ, χ) ∈ (Φ × X) = P, (ϕ : M → M) ∈ Φ

χ : M × M → B ∈ X, ∀m ∈ M, χ(m, ϕ(m))

ϕ(m) = m if ϕ is not applicable to m

(4.1)

Working with such definitions shape the whole way rules may be composed
together. Analyzing a black-box rule in itself and ensuring properties on it, is
trivial. Issues arise when black-box rules are composed together when several
black-box rules must be applied.

4.3.2 Classical Composition Operator apply

Composing rules can be made using the classical ◦ operator that chains the
applications of the rules. This approach takes rules and passes the output of the
first to be applied, as input to the second one. They are daisy-chained at the
execution time (FIG. 4.9).

ϕnI ϕn−1 ϕ1On
... O2 O1

Fig. 4.9 – Daisy-chaining (sharing inputs - I, and outputs - O) of black-box rules
(r)

For a set of rules [ρ1, . . . , ρn] to be applied, they are consumed in sequence.
This leads to a situation where only the last postcondition (χ1) can be ensured in
the resulting program, by construction. This rule composition operator, named
apply, models the classical behavior for rule composition in the state of prac-
tice. Note that since ◦ is a sequential operator (as denoted by <), it unfolds into
ϕ1(ϕ2(...(ϕn(m)))). Thus, only the last postcondition to be applied, i.e., χ1, holds.

apply : M × Rn
<
→ M

m, [ρ1, . . . , ρn] 7→ Let m2.n = (
n
◦

i=2
ϕi)(m), m′ = ϕ1(m2.n), χ1(m2.n, m′)

(4.2)

The main issue with this approach is the impact of overlapping rules on the
yielded model. This daisy-chained composition, which is mandatory given the
provided formalism, has multiple drawbacks:

— It is order sensitive since the index of a given operator in the sequence may
have an impact on the final output O,

— Considering large software systems where separation of concerns matters,
each rewriting rules is defined independently. As a consequence, if two
rules do not commute (r1(r2(p)) 6= r2(r1(p))), it is up to the developer to
(i) identify that these rules are conflicting inside the whole rule sequence,
and (ii) fix the rules or the application sequence to yield the expected result.



4.4. CHALLENGES OF ENSURING PROPERTIES IN A BLACK-BOX

CONTEXT 43

— One can only ensure that the last rules Rn has done all its work since it is the
last one to-be-applied. Generally speaking, operators with an index n, can
output a program that would have been modified by an operator of index
m, where m < n. Of course, we assume that an operator is bug-free and
deterministic.

In a white-box context, tools would have been done these reasonings automat-
ically, based on the transformations’ definitions. We cannot assess rules confluence,
nor outline the critical pairs to the user using the ◦ composition operator.

4.3.3 Parallel Composition Operator ||

Black-box rewriting rules can be applied in parallel. Each rule will take the
same input, and each one will yield an output model as described in FIG. 4.10.

R1

I

O1

O2R2

......

OnRn

Merge On

Fig. 4.10 – Parallel composition of rules with a merge operation

Thus, the parallelization approach involves a domain-dependent merge of
models at some point. Then, all checker χ can be applied and assessed on the
merged model On.

4.4 Challenges of Ensuring Properties in a Black-box

Context

4.4.1 Introduction

This chapter started by depicting state-of-the-art approaches of reasonings on
transformations in a broad meaning. It depicted how these approaches enabled
powerful and useful reasonings based on the transformations’ definitions. Then,
in the next section, we depicted how the context changed when the considered
transformations were black-boxes. We depicted the operators that can be used in
such a context to perform composition and outlined that none of the properties
from the state-of-the-art can be assessed. In this section, we outline the challenges
this thesis addresses in the previously described black-box context.



44 CHAPTER 4. BACKGROUND AND CHALLENGES

4.4.2 Challenge C.1 - White-box properties in a Black-box

Context

Confluence. Confluence assessment tools require to formalize rewriting rules
as term rewritings where each side is accessible and “readable.” This formaliza-
tion is mandatory for the whole assessment process. In the context of a black-box
rewriting rule where its definition is not known nor formalized, such property
cannot be assessed.

Termination. Termination of rewriting systems is another critical property that
can be assessed automatically. Termination tools’ algorithms rely on three major
aspects: (i) simplification orders, (ii) dependency pairs, and (iii) the size-change
principle. The first one requires so-called rewrite-relation that needs access to the
definition of the rewriting rule ; the second one identifies dependencies between
left-hand and right-hand sides of rewriting rules, thus needs access to the definition
of the rewriting rule, and the third one aims at program termination and decid-
ability and works on programs’ function calls and is therefore out-of-topic. In a
context of a black-box rewriting rule where its definition is not known nor formal-
ized, none of these levers can be applied; therefore, the termination property
cannot be assessed.

In scenarios where rules are not formalized in a white-box approach, develop-
ers still need such assessment and reasonings. When working with black-boxes,
the need for automated checks for order-issue, automated extraction of conflict-
ing rewriting rules is critical as they cannot be opened or easily analyzed. Their
black-box nature exacerbates the need for such automated reasonings. Develop-
ment teams working in such a context still need somehow similar guarantees. We
cannot ensure confluence nor termination as described and assessed in the state-
of-the-art, but still need something close. Thus, we outline the following challenges
to propose similar properties.

Confluence-like - How to assess the order-free of a rewriting system made of
black-box rules?

Conflict - How to detect rules conflicts in a black-box context?

Termination-like - How to assess the termination of rewriting systems in a
black-box context?

Critical pairs - How to reduce the conflict space, extracting the non-confluent
rules to yield critical pairs to the final user, in a black-box context?

4.4.3 Challenge C.2 - Domain Independance

Black-boxes rewriting rules are not tied up to a specific application domain
and can be found in various and different domains. Each domain comes with
its custom properties and tools that can vary in arbitrary complex form. Thus,
our proposition must overcome the outlined challenges in a domain-independent
way. Domain-independence goes against using a model-dependent ‖ parallel



4.5. CONCLUSION 45

composition operator. Thus we consider that the domain under experiment does
not provide any support to compose these functions excepting the classical com-
position operator ◦.

4.5 Conclusion

Considering a black-box approach as an actual real-life scenario prevents any
form of assessments on off-the-shelf rewriting rules. We defined two challenges
we want to address in this work: enabling assessment of white-box properties
that are useful in our selected black-box context, in a domain-independent way.
In the remainder of this Ph.D. thesis, we propose a formalism that allows one
to assess similar properties on black-box rewriting rules, before validating the
approach on real large-scale use-cases.



CHAPTER5
Ensuring Properties on Composition

of Black-box Rewriting Rules

“Great things are not done by impulse, but by a series of small
things brought together”

Vincent van Gogh in a letter to his brother Theo.

Content

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 From Black-box Rules to Actions . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Delta as Models and Vice-versa . . . . . . . . . . . . . . . . . 48
5.2.2 Performing a diff Between Models (⊖) . . . . . . . . . . . . . 49
5.2.3 Performing a patch on a Model Given a Sequence of Actions

(⊕) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Composition Operators on Action-based Approach . . . . . . . . . 52

5.3.1 Compatibility with apply . . . . . . . . . . . . . . . . . . . . 52
5.3.2 The seq Composition Operator . . . . . . . . . . . . . . . . . 52
5.3.3 The iso Composition Operator . . . . . . . . . . . . . . . . . . 53

5.4 From Rewriting Rules Reasonings to Actions Reasonings . . . . . . 54
5.4.1 Syntactic Conflicts as Overlapping Deltas . . . . . . . . . . . 54
5.4.2 Semantic conflicts as postcondition violations . . . . . . . . . 55

5.5 Assessing Properties On Running Example . . . . . . . . . . . . . . 55
5.5.1 Detecting Incompatible Rewriting Rules . . . . . . . . . . . . 56

5.5.1.1 Description of the Rewriting System . . . . . . . . . 56
5.5.1.2 Paradigm Shift . . . . . . . . . . . . . . . . . . . . . 56
5.5.1.3 Syntactic conflict . . . . . . . . . . . . . . . . . . . . 56
5.5.1.4 Overcame Challenges . . . . . . . . . . . . . . . . . 57

5.5.2 Detecting Semantic Issues . . . . . . . . . . . . . . . . . . . . 58
5.5.2.1 Description of the Rewriting System . . . . . . . . . 58
5.5.2.2 Paradigm Shift . . . . . . . . . . . . . . . . . . . . . 58
5.5.2.3 Syntactic Conflicts . . . . . . . . . . . . . . . . . . . 58

46



47

5.5.2.4 Semantic Conflicts . . . . . . . . . . . . . . . . . . . 58
5.5.2.5 Overcame Challenges . . . . . . . . . . . . . . . . . 59

5.5.3 Domain-independence . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



48
CHAPTER 5. ENSURING PROPERTIES ON COMPOSITION OF BLACK-BOX

REWRITING RULES

5.1 Introduction

In the previous chapters, we successively depicted compositions of black-box
rewriting rules and challenges that arise when assessing white-box properties in
such a context. In this chapter, we propose a delta-based formalism, show how it
is mapped to existing black-box operators, and how reasonings on top of actions
tackle the presented issues and overcome the listed challenges.

5.2 From Black-box Rules to Actions

In this section, we introduce the main and the core idea: bring the problem-
atic of reasoning on black-box rewriting rules to reasoning on their modifications.
Since properties we want to ensure need to know what a rule has done (e.g., ter-
mination checks that applying the rule reduces the size of the model, confluence
needs to know the LHS and RHS of a rule), we need to find a way to compute
these modifications that have been made by a rule.

We propose a model that takes the definition of black-box rewriting rules and
leverage two hypotheses to yield actions that have been performed by the rule.
These modifications are actions to be applied to the input to obtain the output,
similarly to patch theory [78], [79]. This paradigm shift is depicted step by step
in the following subsections.

5.2.1 Delta as Models and Vice-versa

Research results from the model community state that a model can be consid-
ered as actions [80]. Any model, e.g., UML class diagram, Java code, workflow,
can be considered as actions that would create model elements, equivalent to the
initial model.

“Every model can be expressed as a sequence of elementary construction operations. The
sequence of operations that produces a model is composed of the operations performed to
define each model element. [80]

”
Let us illustrate this equivalence, on one of the finite state machines of the

running example from SEC. 4.2.1.
Figure 5.1 depicts an example of such equivalence. We can either consider

a finite state machine (FIG. 5.1a) or consider its equivalent sequence of actions
(LIST. 5.1b). These are PRAXIS [80] domain-independent actions. The actions-
sequence depicted in LIST. 5.1b can build the FSM modeled in FIG. 5.1a. Each
one of these representations can be obtained via a deterministic procedure on the
other.



5.2. FROM BLACK-BOX RULES TO ACTIONS 49

s0start s1 s2
b

a

b

a a, b

(a) A model of finite state machine

[ c r e a t e ( ’ s t a t e ’ , s0 ) , s e t I s I n i t i a l ( s0 )
,

c r e a t e ( ’ t r a n s i t i o n ’ , s0 , s0 , [ ‘ a ’ ] ) ,
c r e a t e ( ’ s t a t e ’ , s1 ) ,
c r e a t e ( ’ t r a n s i t i o n ’ , s0 , s1 , [ ‘ b ’ ] ) ,
c r e a t e ( ’ t r a n s i t i o n ’ , s1 , s1 , [ ‘ a ’ ] ) ,
c r e a t e ( ’ s t a t e ’ , s2 ) , s e t I s F i n a l ( s2 ) ,
c r e a t e ( ’ t r a n s i t i o n ’ , s1 , s2 , [ ‘ b ’ ] ) ,
c r e a t e ( ’ t r a n s i t i o n ’ , s2 , s2 , [ ‘ a ’ , ‘b

’ ] ) ]

(b) A PRAXIS action-based model of the automaton
of FIG. 5.1a

Fig. 5.1 – Equivalence between an automaton (left) and a sequence of actions
(right)

Example Context Rewriting rules under study are black-boxes. They take a
model mi ∈ M and output a model mo ∈ M. Our proposition is as follows: in-
stead of reasoning on black-box rewriting rule, we will reason on their actions.
We have shown in the previous subsection that one can consider a model or a
sequence of actions that allow one to build it. We need to bridge the gap be-
tween our proposition of an action-based approach, and the actual definition of a
rewriting rule. In figures, actions are represented as ∆ or δ. Along the remainder
of this section, we will use the action-based model to formalize our operators and
our proposed reasonings. We will leverage the fact that we can either consider a
model (e.g., an FSM), or the actions that one can interpret to build it. Actions will
be used in the next subsections to define composition operators and two opera-
tions: ⊕ (patch) and ⊖ (diff).

Let us take the following context: an automaton (depicted in FIG. 5.3a) is
passed as an input to a black-box rewriting rule R, which outputs another au-
tomaton (depicted in FIG. 5.3b).

s0start s1
b

a a

(a) Automaton I input of R

I R O

(b) Definition of R

s0start s1 s2
b

a

b

a a, b

(c) Automaton O yielded by R

Fig. 5.2 – Example of application of a black-box rewriting rule R (middle), on an
input I (left), yielding O (right)

5.2.2 Performing a diff Between Models (⊖)

Principle. How are we going from black-boxes rewriting rules to actions? The
rules may already take and produce actions. In such a case, we do not need to
formalize them specifically. If rewriting rules under study do not produce actions,
we hypothesize that one can compute them given the input and the output of the
rule via a diff operation. This diff operation computes the differences that exist
between the input and the output models, hence, it allows us to compute, at
fine-grains, what a rule has done instead of having a plain output model. This



50
CHAPTER 5. ENSURING PROPERTIES ON COMPOSITION OF BLACK-BOX

REWRITING RULES

diff operation is called after the classical code-diff operation. In the following,
actions are denoted by δ, and actions sequence by ∆. We denote this operation ⊖
as specified in EQ. 5.1.

Definition. An operator ⊖ exists to perform a diff operation between the input
and the output, yielding a sequence of actions. By definition, applying (⊕) this
sequence of actions (∆) on the input (m) yields the output (m′). The definition of
the diff (⊖) requires the definition of a patch (⊕) to be operationalized.

Hypothesis 1: A ⊖ operation is available in the application domain to perform a
diff between models.

⊖ : M × M → D∗
<

(m′, m) 7→ ∆, where m′ = m ⊕ ∆
(5.1)

Example of application. If we take the automata I and O depicted in FIG. 5.2,
and apply the ⊖ operation on them, it will yield the sequence of actions depicted
in FIG. 5.3d. The ⊖ operation will be called with the output O yielded by R
(FIG. 5.3b) and the input I taken as input by R (FIG. 5.3a). It will compute the
differences between the output and the input; thus, computing that the state s2
has been added, that a transition between s1 and s2 has been added, and so on. The
complete diff is shown in FIG. 5.3d. Conforming to our new formalism, we bring
black-box rewriting rules to a sequence of actions. Our proposition yields a diff
as depicted in FIG. 5.3d ( FIG. 5.3c).

s0start s1
b

a a

(a) Automaton I input of R

s0start s1 s2
b

a

b

a a, b

(b) Automaton O yielded by R

R

I

⊖(O, I)

A

O

R
′

(c) Performing a diff on input/ouput of R

⊖(O, I) = [ create(‘state′, ‘s′2), set(‘isFinal′, ‘true′, s2),

create(‘transition′, s1, s2, [‘b′]), create(‘transition′, s2, s2, [‘a′, ‘b′])]

(d) Sequence A, diff obtained via the ⊖ operation

Fig. 5.3 – From rule R to actions sequence A (elements part of the diff A are
colored in O)



5.2. FROM BLACK-BOX RULES TO ACTIONS 51

5.2.3 Performing a patch on a Model Given a Sequence of

Actions (⊕)

Principle. In order to operationalize a diff, we formalize a patch operation. This
operation allows us to be able to apply the rules, compose them together, and
yield a final result. Thus, we assume that a patch operation exists, allowing one
to take an input model and a sequence of actions, to yield an output model. This
operation is for compatibility purposes and allows our proposition to be oper-
ationalized at the domain-level. This patch operation is called after the classical
code-patch operation. An operator ⊕ is available, taking an input model and a
sequence of actions, and applying the sequence on the input yields the output
model.

Definition. The ⊕ operation relies on domain-specific application (i.e., exec) but
its signature is domain-independent, which is sufficient enough for our proposi-
tion to work. It is part of our hypotheses that: (i) during the application of a
sequence of actions on a model, the latter may be in an inconsistent state, but
(ii) applying all of its actions must end in a consistent and correct result. For in-
stance, dangling references or naming issues may occur during the application of
an actions-sequence, but once ended, the patch operation yields a consistent model
(e.g., without dangling references or naming issues).

Hypothesis 2: A ⊕ operation is available in the application domain to perform a
patch on a model.

⊕ : M × D∗
<
→ M

(m, ∆) 7→

{

∆ = ∅ ⇒ m

∆ = δ|∆′ ⇒ exec(m, δ)⊕ ∆′, exec being domain specific.
(5.2)

Example of application. In order to still operationalize our proposition, i.e., be-
ing compatible with the initial definition of rewriting rules, we defined the ⊕
operator that applies actions on top of a model to yield a modified one. Applied
to our example, the ⊕ operator takes A (FIG. 5.3d) and I (FIG. 5.2) to produce
O (FIG. 5.4). The application of each individual action is domain-specific, e.g.,
applying an action create on a graph, is not the same as applying it on a Java code
to create a statement. Nevertheless, the definitions of ⊖ and ⊕ are domain- and
implementation-independent. The whole process, using ⊖ and ⊕, is depicted in
the next section.

I

⊕(I, ∆)

∆

O

Fig. 5.4 – Application of ⊕



52
CHAPTER 5. ENSURING PROPERTIES ON COMPOSITION OF BLACK-BOX

REWRITING RULES

R

I

⊖(O, I)

O

R
′

⊕(I, ∆)

∆

O

Fig. 5.5 – Compatibility with apply

5.3 Composition Operators on Action-based

Approach

5.3.1 Compatibility with apply

In the previous section, we defined the ◦ operation via the apply operator. This
operator represented the classical sequential composition of rules. The action-
based representation, along with the ⊖ and ⊕ operators, is compatible with the
previously defined semantics for the apply composition operator as depicted in FIG. 5.5.

The EQ. 5.3 describes how to apply two rewriting rules using ⊖ and ⊕ opera-
tions and shows the mapping between the original apply operator and our propo-
sition to use actions instead. A model m1 obtained via applying ϕ1 on a model m,
is equal to applying the modifications made by ϕ1 (i.e., ∆1) on the model m. To
avoid confusion, modifications are denoted with ∆ or ∆

′
if they are different.

Let m ∈ M, ρ1 = (ϕ1, χ1) ∈ R, ρ2 = (ϕ2, χ2) ∈ R

m1 = ϕ1(m) = m ⊕ (m1 ⊖ m) = m ⊕ ∆1, χ1(m, m1) holds

m2 = ϕ2(m) = m ⊕ (m2 ⊖ m) = m ⊕ ∆2, χ2(m, m2) holds

m12 = apply(m, [ρ1, ρ2]) = ϕ1 ◦ ϕ2(m) = ϕ1(ϕ2(m)) = ϕ1(m ⊕ ∆2)

= (m ⊕ ∆2)⊕ ∆
′
1, χ1(m2, m12) holds

m21 = apply(m, [ρ2, ρ1]) = ϕ2 ◦ ϕ1(m) = ϕ2(ϕ1(m)) = ϕ2(m ⊕ ∆1)

= (m ⊕ ∆1)⊕ ∆
′
2, χ2(m1, m21) holds

(5.3)

5.3.2 The seq Composition Operator

R

I

⊖(O1, I)

O1

ρ1

⊕(I, ∆1)∆1 O1

R

⊖(O2, O1)

O2

ρ2

⊕(O1, ∆2)∆2 ...

Fig. 5.6 – Mapping between our proposition, and the state-of-practice seq opera-
tor

Based on the new action-based approach, we add the definition of a new com-
position operators: seq. It allows one to perform rewriting rules in sequence and



5.3. COMPOSITION OPERATORS ON ACTION-BASED APPROACH 53

check that all post-conditions hold, not just the last-one as with the legacy apply
operator. It chains the calls to rewriting rules and using our proposition.

seq : AST × Pn
<
→ AST

p, [ρ1, . . . , ρn] 7→ pseq = (
n
◦

i=1
ϕi)(p),

n
∧

i=1
χi(p, pseq)

(5.4)

5.3.3 The iso Composition Operator

R

I

⊖(O1, I)

O1

ρ1

∆1

R

⊖(O2, I)

O2

ρ2

⊕(I, ∆)

∆2

O; ∆

Fig. 5.7 – Example of isolated application of transformations using our iso operator

Whereas apply and seq are both sequential operators, we leverage the new
action-based approach to add the definition of a parallel composition operator:
iso. It allows one to perform rules in parallel, in isolation of each others (hence
iso), each one reduced to ultimately yielding a sequence of actions, and then
merge their respective results to obtain the final sequence of actions ∆.

iso : AST × Pn → AST

p, {ρ1, . . . , ρn} 7→ piso = p ⊕ (
n
;

i=1
(ϕi(p)⊖ p)),

n
∧

i=1
χi(p, piso)

(5.5)

This operator allows one to check their proposed modifications before apply-
ing them. Thanks to the iso operator, one can check deltas together, and ensure
the application of all black-box rules, ensuring all post-conditions and one can
leverage it also for scaling purposes since this approach allows one to process
and apply everything in parallel.

By definition, this operator is associative in conflict-free situations. The output
will remain the same, regardless of which order the modifications (i.e., delta) were
applied (i.e., via the patch ⊕ operation).

Our proposition brought reasonings based on black-box rewriting rules to
action-based reasonings. The iso composition operator allows one to analyze all
the merged modifications to-be-made before applying them. The next section
formalizes what kind of reasonings can be performed on it.



54
CHAPTER 5. ENSURING PROPERTIES ON COMPOSITION OF BLACK-BOX

REWRITING RULES

5.4 From Rewriting Rules Reasonings to Actions

Reasonings

In the previous section, we introduced an action-based approach and depicted
how to go from black-box rewriting rules to actions. This section illustrates the
reasonings that can be performed on action-based approaches and depicts the
detection of issues named conflicts. We discriminate conflicts according to two
types: (i) syntactic conflicts and (ii) semantic conflicts. The latter is related to
the violation of postconditions associated to the rewriting rules. The former is
a side effect of the iso operator, considering that ∆s might perform concurrent
modifications of the very same tree elements when applied in an isolated way.

5.4.1 Syntactic Conflicts as Overlapping Deltas

Syntactical issues may arise when using the iso operator. As a reminder, this
operator applies every rule on the same input term and works on the actions
they want to perform, before merging the actions and applying the result on the
input. For instance, a state cannot be deleted and used as a reference at the very
same time.

ϕ1(t)⊖ t = ∆1 = [. . . , delete(S2), . . . ]

ϕ2(t)⊖ t = ∆2 = [. . . , add(“edge′′, E2ω0),

setRe f erence(E2ω0, “start′′, S2),

setRe f erence(E2ω0, “end′′, S0),

setProperty(E2ω0, “value′′, ω) . . . ]

(5.6)

The seq operator cannot encounter such syntactical conflicts, as it is passing
the output of a rule to another. The iso operator on its part can encounter three
kinds of conflicts (EQ. 5.7) at the syntax level 1: Concurrent Property Modification
(CPM), Concurrent Reference Modification (CRM) and Dangling reference (DR). The
first and second situations identify a situation where two rules set a property (or
a reference) to different values. It is not possible to automatically decide which
one is the right one. The latter situation is identified when a rule uses a model
element that is deleted by the other one. Using the definition of these conflicting
situations, it is now possible to check if a pair of ∆s is conflicting through the
definition of a dedicated function conflict.

conflict? : A∗
<
× A∗

<
→ B

If this function returns true, it means that the two rewriting rules cannot be ap-
plied independently on the very same program. One can generalize the conflict?

1. See the PRAXIS seminal paper [80] for a more comprehensive description of conflict detec-
tion in the general case.



5.5. ASSESSING PROPERTIES ON RUNNING EXAMPLE 55

function to a set of ∆s by applying it to the elements that compose the Cartesian
product of the ∆s to be applied on a term t.

CPM : A∗
<
× A∗

<
→ B

∆, ∆
′ 7→ ∃δ ∈ ∆, δ′ ∈ ∆

′, δ = setProperty(elem, prop, value)

α′ = setProperty(elem, prop, value′), value 6= value′

CRM : A∗
<
× A∗

<
→ B

∆, ∆
′ 7→ ∃δ ∈ ∆, δ′ ∈ ∆

′, δ = setReference(elem, ref , elem′)

δ′ = setReference(elem, ref , elem′′), elem′ 6= elem′′

DR : A∗
<
× A∗

<
→ B

∆, ∆
′ 7→ ∃δ ∈ ∆, δ′ ∈ ∆

′, δ = _(elem, _, _)

δ′ = delete(elem)

conflict? : A∗
<
× A∗

<
→ B

∆, ∆
′ 7→ CPM(∆, ∆

′) ∨ CRM(∆, ∆
′) ∨ DR(∆, ∆

′) ∨ DR(∆′, ∆)
(5.7)

5.4.2 Semantic conflicts as postcondition violations

We now consider rewriting rules that are not conflicting at the syntactical
level. Semantic assessment is domain-dependent and cannot rely on generic rea-
sonings. This is the reason why we use postconditions as a way to assess the
presence of semantic conflicts. We focus here on the postconditions defined for
each rule, w.r.t. the legacy, sequential and isolated composition operators. The
existence of such postconditions is a requirement for our proposition to work at
its fullest extent, yet we acknowledge that such postconditions may not be found
in all contexts; thus we provide a domain-independent post-condition definition
in SEC. 5.5.2.4.

When composed using the apply operator (p′ = apply(p, rules)), the only
guarantee is that the last postcondition is true.

When using the seq operator, ordering issues may be detected as it checks that
all postconditions hold. Let rules = [ρ1, . . . , ρn] ∈ Pn be a set of rewriting rules.
Applying these rules using the seq operator can lead to semantic conflict if a rule
ρi sees its postcondition violated given the initial input term and the final output
final. For instance, this can happen if a rule ρj, where j > i creates an element
that should have been deleted by ρi.

When composed using the iso operator (p′ = iso(p, rules)), the resulting pro-
gram is valid only when all the postconditions hold when the rules are simulta-
neously applied to the input program. The fact that at least one postcondition
is violated when using the iso operator gives a piece of important information:
these two rewriting rules cannot be applied independently on this program.

5.5 Assessing Properties On Running Example

In this section, we close the loop and apply our proposition on the running
example depicted at the beginning of this chapter. We will show, on concrete and



56
CHAPTER 5. ENSURING PROPERTIES ON COMPOSITION OF BLACK-BOX

REWRITING RULES

small examples, how our proposition contributes to safely compose black-box
rewriting rules as they enable detection of issues that were silenced otherwise.

5.5.1 Detecting Incompatible Rewriting Rules

In this subsection, we will go step-by-step and depict successively the context
we take, the operator used, how to apply it to the context, and how to yield
syntactical conflicts.

5.5.1.1 Description of the Rewriting System

We recall below the rewriting system of the running example: t, R0, and R3.
As the rules composing the system are black-box rewriting rules, their definitions
are not known. Thus, one can only analyze the result of their applications on the
initial term t depicted in FIG. 5.8a). The intermediate and final results of the two
sequences are depicted respectively in FIG. 5.8b and FIG. 5.8c; and FIG. 5.8d and
FIG. 5.8e. Let us apply step-by-step our contribution to this example using the
iso operator.

5.5.1.2 Paradigm Shift

Our proposition is to reason on actions instead of rewriting rules. As de-
scribed in SEC. 5.2.2, we compute the diff between the initial term t and the result
of each rule. As we use the iso operator, we perform the diffs between t and t3,
and on t and t0 (or the other way around). A partial view of these diffs is depicted
in EQ. 5.8.

ϕ0(t)⊖ t = t0 ⊖ t = ∆0 = [. . . , delete(S2), . . . ]

ϕ3(t)⊖ t = t3 ⊖ t = ∆3 = [. . . , add(“edge′′, E2ω0),

setRe f erence(E2ω0, “start′′, S2),

setRe f erence(E2ω0, “end′′, S0),

setProperty(E2ω0, “symbol′′, ω) . . . ]

(5.8)

5.5.1.3 Syntactic conflict

The deltas ∆0 and ∆3 are then concatenated together (FIG. 5.8) and the result-
ing ∆ is analyzed for conflicting situations. Among the rules that detect conflict,
DanglingReference returns true as ∆0 deletes S2 that is used as a reference in ∆3.
Thus, a syntactic conflict is detected, and the two deltas involved can be high-
lighted. Following the conflicts defined in SEC. 5.4.1, a DR-conflict is detected
(EQ. 5.9). The syntactical conflict detection gives a piece of information: among
all the rules used to rewrite the initial term, there exists a pair of rules that cannot
be applied independently.

DR : A∗
<
× A∗

<
→ B

∆, ∆
′ 7→ ∃δ ∈ ∆, δ′ ∈ ∆

′, δ = _(elem, _, _)

δ′ = delete(elem)

(5.9)



5.5. ASSESSING PROPERTIES ON RUNNING EXAMPLE 57

S2

S1S0

b

b
a

a

a

(a) Initial term t

S2

S1S0

b

b a

a

a

(b) t3 = R3(t)

S1S0
a

a

b

(c) t0 = R0(t)

S2

S1S0

b

b a

a

a

(d) t30 = R0(R3(t))

S1S0
a

a

b

(e) t03 = R3(R0(t))

Fig. 5.8 – The two sequences of composition considering the (t, R0, R3) rewriting
system

5.5.1.4 Overcame Challenges

Confluence-like assessment Confluence states if there is an order in which ap-
plying a set of rules, or if every composition equations eventually yield the same
result. Thanks to the actions-based approach, the new extra-step allows us to
check for such ordering issues. One can look for conflicts in the delta-set to-be-
applied. We outlined that, even applied independently, the rules are conflicting,
implying that all sequences of application may lead to a different result in this
context.



58
CHAPTER 5. ENSURING PROPERTIES ON COMPOSITION OF BLACK-BOX

REWRITING RULES

Reducing Problem Space Our contribution enables the outlining of the con-
flicting black-box rewriting rules, and even why and where they are conflicting.
By providing the conflicting deltas, linked to the original rule that created it, we
drastically reduce the search space in case of issues. It enables human-in-the-loop
interactions to let the user gain knowledge about the rules, fix them, or manually
handle the conflict.

5.5.2 Detecting Semantic Issues

5.5.2.1 Description of the Rewriting System

We recall below the rewriting system of the running example: t, R1, and R2.
As before, the rules composing the system are black-box rewriting rules; there-
fore, their definitions are not known. Thus, one can only analyze the result of
their applications on t (FIG. 5.9). We see that the two sequences output different
results (FIG. 5.12 and FIG. 5.13). Let us apply step-by-step our contribution to
this example and use the iso operator.

5.5.2.2 Paradigm Shift

Our proposition is to reason on actions instead of rewriting rules. As de-
scribed in SEC. 5.2.2 and depicted in FIG. 5.8, we compute the diff between the
initial term t and the result of a given rule. As we use the iso operator, we per-
form the diffs between t and t1, then on t and t2. A partial view of these diffs is
depicted in FIG. 5.14.

5.5.2.3 Syntactic Conflicts

As one of the delta produced (δ2) is empty, syntactic conflict cannot occur.
By definition, a bug-free rewriting rule cannot conflict with itself; therefore, the
concatenated ∆ is free of any syntactic conflicts.

5.5.2.4 Semantic Conflicts

As no syntactic conflict was yielded, the concatenated delta can be applied on
I, to yield the final output tout(FIG. 5.15).

Then, the term tout can be checked against all the rules’ postconditions χ .
As a domain-independent implementation of postcondition checking, we decided to
re-apply every rule, and each non-empty sequence of actions will consist of a
postcondition violation. This will capture that the composition of the rules does
not violate any post-condition violation, meaning that during the composition
itself (i.e., when not all the rules have been applied), a post-condition can be vi-
olated temporarly. This approach holds if the rules are convergent and meant to
be applied only once.

As depicted in FIG. 5.16 R2 produces a non-empty sequence, yielding a post-
condition violation.



5.5. ASSESSING PROPERTIES ON RUNNING EXAMPLE 59

S2

S1S0

b

b
a

a

a

Fig. 5.9 – Initial term t

S2

S1S0

b

b
a

a

a

Fig. 5.10 – t2 = R2(t)

S2

S1S0

b

a

a

b

Fig. 5.11 – t1 = R1(t)

S2

S1S0

b

a

a

b

Fig. 5.12 – t21 = R1(R2(t))

S1S0
a

b

a

Fig. 5.13 – t12 = R2(R1(t))

ρ1

I

δ1

δ2ρ2

[ ]

[delete(S0b2), ...]

; (δ1, δ2) δ12

Fig. 5.14 – Application of iso to t, R1 and R2

5.5.2.5 Overcame Challenges

Confluence-like assessment Confluence states if there is an order in which ap-
plying a set of rules, or if every composition equations eventually yield the same
result. We outlined that, even applied independently, the rules are not conflict-



60
CHAPTER 5. ENSURING PROPERTIES ON COMPOSITION OF BLACK-BOX

REWRITING RULES

S2

S1S0

b

a

a

b

Fig. 5.15 – tout

ρ1

I

δ1

δ2ρ2

[ ]

[delete(S0b2), ...]

⊕(I, δ12)

; (δ1, δ2) δ12

ρ2 δ2

δ1ρ1

[delete(S2), ...]

O12 6= ∅

[ ] χR1

χR2

!

Fig. 5.16 – Application of χ1 and χ2 to tout

ing syntactically but that they conflict semantically implying that a sequence of
applications can lead to a valid (i.e., non-conflicting) result.

Reducing Problem Space by yielding critical pairs Our contribution enables
the outlining of the conflicting black-box rewriting rules, and even why and
where they are conflicting. By providing the rule that has its postcondition vi-
olated, we reduce the search space in case of issues. By analyzing which model
element has been modified lately by R2, and comparing it with model elements
modified by R1, we can automatically deduce (i) the involved rules, (ii) a par-
tial order, (iii) the involved elements, thus; highlighting critical pairs. This also
reduces the search-space and provides stronger insights to the user.

Termination-like assessement We cannot ensure that a rewriting system will
never terminate. However, using the iso operator, we can ensure that termination
is reached and that no further rules need to be applied. Postcondition checks can
serve as a termination flag. If all postconditions hold, then compute is over; if a



5.6. CONCLUSION 61

postcondition does not hold, we state that we do not know if the rewriting system
will eventually terminate.

5.5.3 Domain-independence

This subsection assesses the domain-(in)dependence of our proposition and
summarizes all the aspects involved. The reasoning on ordering issue checking
is independent of the language of action and even independent of the application
domain considered.

— The actions-based approach is domain-independent.

— The definition of the diff (⊖) and patch (⊕) operations are domain-inde-
pendent. Of course, their implementations are domain-dependent, but we
rely on their definitions only to shift to an action paradigm.

— The composition of actions is made using the ; concatenation operator which
is domain-independent.

— Syntactic conflicts are defined using rules’ types only, not what they ma-
nipulate. Therefore, syntactic conflict definition and detection is domain-
independent.

— Semantic conflicts are defined using two domain-models yielding a boolean.
Again, their implementations are domain-dependent, but their definitions
are not. We even proposed a generic domain-independent way of check-
ing postconditions. Therefore, semantic conflicts are defined in a domain-
independent way.

Our contribution allows one to reason on any black-box rewriting rules, given
the two hypotheses mentioned, regardless of its actual application domain, and
safely compose them by detecting and yielding syntactic and semantic conflicts,
highlighting the involved rules if needed.

5.6 Conclusion

In this chapter, we moved from black-box rewriting rules to actions. We
shifted the paradigm to reasonings on an action-based approach instead of black-
box rewriting rules and defined the hypotheses needed to perform such a shift:
the existence of diff ⊖ and patch ⊕ operations in the addressed domain. We
defined the state-of-practice composition operator apply, and seq and iso oper-
ators using this action-based formalism. This formalism allowed us to define
reasonings that can be done on actions to detect syntactic or semantic conflicts
that would have gone unnoticed previously. Finally, we defined and assessed
black-box equivalents of white-box properties such as confluence, termination,
and critical-pairs. We illustrated the whole chapter on the running example of
this thesis, assessing (non-)conflicting rules, terminating black-box rewriting sys-
tems, and yielding critical pairs, reducing the search space for the user. All the
formalisms and operations defined in this chapter are domain-independent. This
allows our contribution to ensure the safe composition of black-box rewriting
rules, in a domain-independent way.

However, we did not consider (i) if actual transformations are black-boxes,
(ii) how our formalism can be actually applied in real-life use-cases, and (iii)



62
CHAPTER 5. ENSURING PROPERTIES ON COMPOSITION OF BLACK-BOX

REWRITING RULES

whether the outcome in real-life use-cases is as expected. In the next chapters,
we validate our proposition on two real-life scenarios. We will check rules that
automatically transform the Linux kernel, and rules that modify Android appli-
cations to reduce their energy consumption, validating both the relevance and
applicability of our proposition and its outcome.



CHAPTER6
Composing Black-box Rewriting

Functions in a Controlled
Environment

Content

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Coccinelle and the Linux kernel use-case . . . . . . . . . . . . . . . . 64

6.2.1 A tool to automatically rewrite the kernel . . . . . . . . . . . 64
6.2.2 Examples of Semantic Patches . . . . . . . . . . . . . . . . . . 65
6.2.3 Semantic Patches as Black-boxes . . . . . . . . . . . . . . . . 66

6.3 Mapping to our proposition . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Example of Overlapping Applications of Semantic Patches . . . . . 67
6.5 Ensuring Composition of Rewriting Rules in the Linux Kernel . . . 70

6.5.1 State of practice (apply) does not provide guarantees . . . . . 70
6.5.2 Applying contribution (iso operator) . . . . . . . . . . . . . . 70
6.5.3 Validating the absence of syntactical conflicts . . . . . . . . . 72
6.5.4 Yielding Previously Silenced Semantic Conflicts . . . . . . . 73

6.6 Conclusion : Overcoming Challenge C1 . . . . . . . . . . . . . . . . 74

63



64
CHAPTER 6. COMPOSING BLACK-BOX REWRITING FUNCTIONS IN A

CONTROLLED ENVIRONMENT

6.1 Introduction

In the previous chapter we depicted our proposition and how it enables rea-
sonings on black-box rewriting functions. Whereas state-of-practise approaches
reason and ensure guarantees on top of white-box rewriting functions, our con-
tribution makes no assumption on the content of these rewriters, neither on what
they capture nor what they produce. We have shown the benefit of this approach
on our running example, that serves as an illustration example. In this chapter we
will validate the whole approach. This chapter will (i) validate the black-box as-
sumption, assessing that this black-box context happens in real-life scenario, (ii)
validate the hypotheses that issues exist when working in a black-box context,
(iii) apply our proposition on real-life use-cases, validating its conformance to ac-
tual scenarios, and (iv) check that our proposition applied in real-life scenario
enables reasonings capabilities that were not feasible in the initial context.

We chose to validate the points mentionned above in a heavily controlled en-
vironment. We selected to analyze the context of the Linux kernel, its devel-
opment and maintenance. The Linux project is a huge project spanning sev-
eral decades, developed by skillfull developers, heavily managed by a narrow
team of highly competent and trusted developers. Such environment is clearly
a non-friendly context to assess our hypotheses as such controlled environment
should be conflicts-free and none of the issues that occur when working with
black-boxes, described in the previous chapter, are expected to occur.

In this Linux use-case, we more specifically target the automated fixes that
occur inside the Linux kernel to fix common issues or make use of new APIs. It
is a robust eco-system, built by skillful developers and act as a real-life use-case.
In the following, the term developers designate the developpers of the applica-
tion, i.e., the domain-developers. A separate team is in charge of developing the
automated transformations that will modify the code base to fix different issues.

6.2 Coccinelle and the Linux kernel use-case

6.2.1 A tool to automatically rewrite the kernel

Linux is a family of open source operating systems based on the Linux ker-
nel, an operating system kernel first released on September 17, 1991. It is also a
massive code base of more than 20 millions lines of code, maintenained and de-
veloped by more than 21,900 contributors 1 via more than 856,000 contributions.

With this amount of contributions, spread over a huge set of contributors,
developping Linux and conforming to best practices becomes challenging. Re-
viewing a contribution before its integration involves notably: conforming the
code to Linux formatting guidelines (e.g., naming, namespaces), check for com-
mon mistakes or issues, conforming the code to Linux conventions, review the
contribution as a feature addition, etc. Integrating a contribution in such eco-
system involves a lot of human effort, and conformance checks must be done as
automatically as possible.

1. https://github.com/torvalds/linux/community_contributors, in July 2019

https://github.com/torvalds/linux/community_contributors


6.2. COCCINELLE AND THE LINUX KERNEL USE-CASE 65

In 2006, Muller et al. coined the term of collateral evolution to address the
issues that appear when developing Linux drivers: the kernel libraries contin-
uously evolve, and device-specific drivers must be ported to support the new
APIs. To tame this challenge, they develop the Coccinelle tool [77], [81]. It is
used to automatically fix bugs in the C code that implements the Linux kernel,
as well as conforming to code guidelines, or even backporting device-specific
drivers [53]. These activities are supported by allowing a software developer to
define semantic patches.

A semantic patch contains (i) the declaration of free variables in a header iden-
tified by at symbols (@@), and (ii) the patterns to be matched in the C code coupled
to the rewriting rule. Statements to remove from the code are prefixed by a mi-
nus symbol (-), statements to be added are prefixed by a plus symbol (+), and
placeholders use the “...” wildcard.

6.2.2 Examples of Semantic Patches

The two examples below are direct excerpts of the examples available on the
Coccinelle tool webpage 2.

Automating the use of new API. One of the evolution made in the Linux ker-
nel is to add a new kernel function that replaces a set of functions usually called
together. Therefore, they develop a Coccinelle patch Rk, that will make the code-
base evolve (LIST. 6.1). It describes a semantic patch removing any call to the
kernel memory-allocation function (kmalloc, l.5) that is initialized with 0 values
(memset, l.8), and replacing it by an atomic call to kzalloc (l.6), doing allocation
and initialization at the very same time. As depicted in line 7, wildcard patterns
can define guards to prevent the application of the patch, for example here the
patch cannot be applied if the allocated memory was changed in between (using
the when keyword). This semantic patch allows to automatically perform an API
evolution at large scale (i.e., the whole Linux codebase) instead of retrieving and
analyzing the codebase manually.

1 @@

2 type T;

3 expression x, E, E1 ,E2;

4 @@

5 - x = kmalloc(E1 ,E2);

6 + x = kzalloc(E1,E2);

7 ... when != \( x[...]=E; \| x=E;

\)

8 - memset ((T) x, 0, E1);

Listing 6.1 – kmalloc ∧ memset(0) 7→ kzalloc (Rk)

Fixing common mistakes. A common issue when developping in C code, is
that memory initialization (memset) is not done properly when using pointers
(e.g., array or structures). This kind of mistake can be hard to find and implies
debugging and human effort. Therefore, they develop a semantic patch Rm, that

2. http://coccinelle.lip6.fr/impact_linux.php

http://coccinelle.lip6.fr/impact_linux.php


66
CHAPTER 6. COMPOSING BLACK-BOX REWRITING FUNCTIONS IN A

CONTROLLED ENVIRONMENT

will look for such context and fix it if necessary (LIST. 6.2). It will look for a
type T, which is a pointer (l.2,3) that is used in a memset call (l.7) and replace its
parameter by using pointers (l.8). This patch allows to automatically fix easy-to-
miss mistakes at large scale, avoiding useless human effort.

1 @@

2 type T;

3 T *x;

4 expression E;

5 @@

6

7 - memset(x, E, sizeof(x))

8 + memset(x, E, sizeof (*x))

Listing 6.2 – Fix size in memset call (Rm)

6.2.3 Semantic Patches as Black-boxes

In the previous sections we described semantic patches as white-boxes and
manually extracted easy and comprehensible portion of hand-picked semantic
patches, e.g., the actual kzalloc definition contains 275 lines. Actually, these patches
can be really complex: they can consider a huge set of different cases; or their def-
initions can be complex on their own:

— Some patches take advantage of an import mechanism, allowing to capital-
ize on human effort 3 4, other are build using dependency mechanisms 5 6

that require a lot of extra-effort to have the “complete” semantic patch that
will be actually executed,

— Coccinelle semantic patches can even run arbitrary scripts (usually in python)
that can perform arbitrary operations 7 8 9, adding a huge extra layer of com-
plexity to understand what the semantic patch will actually do and of what
it actually consists,

— Finally, goto mechanism can be used inside a semantic patch definition 10

making even a local analysis complex.

Considering the complexity induced by the elements above, we consider se-
mantic patches as black-boxes. In the Linux use-case, a semantic patch is a black-box
rewriting rules that operates over the Linux’s codebase. Again, applying a single se-
mantic patch is a trivial operation as we consider bug-free implementation. Our
goal is to ensure the composition of multiple semantic patches, when issues can
arise.

3. http://coccinelle.lip6.fr/impact/round.html

4. http://coccinelle.lip6.fr/impact/array.html

5. http://coccinelle.lip6.fr/impact/jiffies.html

6. http://coccinelle.lip6.fr/impact/usbdata.html

7. http://coccinelle.lip6.fr/impact/countptr.html

8. http://coccinelle.lip6.fr/impact/notnull.html

9. http://coccinelle.lip6.fr/impact/sdhci.html

10. http://coccinelle.lip6.fr/impact/kmalloc8.html

http://coccinelle.lip6.fr/impact/round.html
http://coccinelle.lip6.fr/impact/array.html
http://coccinelle.lip6.fr/impact/jiffies.html
http://coccinelle.lip6.fr/impact/usbdata.html
http://coccinelle.lip6.fr/impact/countptr.html
http://coccinelle.lip6.fr/impact/notnull.html
http://coccinelle.lip6.fr/impact/sdhci.html
http://coccinelle.lip6.fr/impact/kmalloc8.html


6.3. MAPPING TO OUR PROPOSITION 67

6.3 Mapping to our proposition

In this section we map the abstractions and operations of the Linux kernel
use-case, presented in the previous sections, to our proposition.

Rewriting rules ρ are implemented as the application of semantic patches to
the Linux kernel. A Coccinelle’s patch is a black-box rewriting rule that will
modify the Linux kernel source code.

The diff (⊖) operation (i.e., diff outputing ∆) is implemented by the code diff
one can obtain as the output of Coccinelle usage.

Deltas are classic diff/patch actions operating at the textual level. The language
of action is made of addition, deletion, or update of a given line of code.

The patch (⊕) operation is classical code patch operation. It takes a patch - i.e., a
sequence of additions, deletions, and/or updates or lines of codes; and applies it
on an input source code.

The postcondition χ is created to detect semantic conflict. We leverage the fol-
lowing assumption: a semantic patch whose intention is respected, yields an empty
diff. Thus, reapplying the rewriting rule to the rewritten kernel must yield an
empty diff when the postcondition is respected, or non-empty otherwise. Post-
conditions are implemented as an empty-diff check.

6.4 Example of Overlapping Applications of

Semantic Patches

Considering a single semantic patch and applying it on the Linux kernel should
not yield any issue. But what about when one applies multiple semantic patches
on the Linux kernel? As Coccinelle proposes a set of 59 semantic patches, is-
sues may arise when one applies, i.e., composes, all these patches together, on the
same version of Linux.

Let us consider the two semantic patches Rk (LIST. 6.1) and Rm (LIST. 6.2). The
intention of applying the first one (Rk) is to make use of calls to kzalloc whenever
possible in the source code, and the intention associated to the second one (Rm) is
to fix bad memory allocation. In the state of practice, applying the two patches,
in any order, does not yield any error. However, the application order matters.



68
CHAPTER 6. COMPOSING BLACK-BOX REWRITING FUNCTIONS IN A

CONTROLLED ENVIRONMENT

1 struct Point {

2 double x;

3 double y;

4 };

5 typedef struct Point Point;

6

7 int main()

8 {

9 Point *a;

10 // ....

11 a = kmalloc(sizeof (*a), 0)

;

12 // not using a

13 memset(a, 0, sizeof(a));

14 // ...

15 return 0;

16 }

Listing 6.3 – Example of a C program (pc)

For example, let us consider the sample program pc described in LIST. 6.3 and
apply the rules Rk and Rm to it. They can be applied following two sequences
detailed below.

pkm = Rm(Rk(pc)) Applying the rules in this order, Rk is applied first and
doesn’t modify the program pc as its expression line 8 doesn’t match with the
expression line 13. Then, Rm is applied to the output of Rk (i.e., unmodified pc)
and the erroneous memory allocations are fixed (l.13). The memset issue is fixed
after the kzalloc merge. As a consequence, the sequence misses some of these
kzalloc calls (l.11). This sequence may miss kzalloc call when it implies badly
defined memset. The sequence Rm(Rk(pc)) leads to a program pkm where the in-
tention of Rk is not respected: the kzalloc method is not called whenever it is
possible in the final program as depicted in LIST. 6.4.

1 int main()

2 {

3 Point *a;

4 // ....

5 a = kmalloc(sizeof (*a), 0);

6 // not using a

7 memset(a, 0, sizeof (*a));

8 // ...

9 return 0;

10 }

Listing 6.4 – Actual program: pkm = Rm(Rk(Pc))

pmk = Rk(Rm(pc)) The erroneous memset is fixed (LIST. 6.3, l.13) first and as a
consequence the kzalloc optimization is also applied to the fixed memset, merg-
ing l.11 and l.13 into a single memory allocation call. In this order, the two initial
intentions are respected in pkm: all the erroneous memory allocations are fixed,
and the atomic function kzalloc is called whenever possible. This is the expected
result depicted in LIST. 6.5.



6.4. EXAMPLE OF OVERLAPPING APPLICATIONS OF SEMANTIC

PATCHES 69

1 int main()

2 {

3 Point *a;

4 // ....

5 a = kzalloc(sizeof (*a), 0);

6 // ...

7 return 0;

8 }

Listing 6.5 – Expected Program: pkm = Rk(Rm(pc))

Comparison of yielded errors. Let us apply the three compositions operators
apply, seq and iso on this small example. We summarize the results in Tab.6.1
showing the status of the different postconditions given a specific operation. The
first two rows state that, when applying a rule, its postcondition holds (by defi-
nition). The next two rows use apply, that can only guarantee the application of
the last rules, hence the silenced postcondition violation in the 4th row. The seq
operator takes advantage of assessing all postconditions, hence the yielded post-
condition violation marked as a cross. Finally, the iso operator states that, even
applied in parallel, these two rules are conflicting semantically.

Table 6.1 – Identifying semantic conflicts on the Coccinelle example. Elements
in parentheses are not known by the user.

p ∈ AST p′ ∈ AST χk(p, p′) χm(p, p′) Postconditions
pc ϕk(pc) -
pc ϕm(pc) -

ϕm(pc) apply(pc, [ρk, ρm]) ( )
ϕk(pc) apply(pc, [ρm, ρk]) ( )

pc seq(pc, [ρk, ρm])
pc seq(pc, [ρm, ρk])
pc iso(pc, {ρk, ρm})

Considering only these two simple and simplified patches, on a dedicated
and hand-picked example, issues can arise. The Coccinelle’s rules-set is made
of 59 different rules, each one implementing many transformations, capturing
different contexts to fix a specific issue. This validates the need for automated rea-
sonings as no manual approach would scale, and that these semantic patches (i.e.,
rewriting functions) are considered as black-boxes.



70
CHAPTER 6. COMPOSING BLACK-BOX REWRITING FUNCTIONS IN A

CONTROLLED ENVIRONMENT

6.5 Ensuring Composition of Rewriting Rules in the

Linux Kernel

The validation material for this section can be found on the dedicated repos-
itory 11 and has been built using the Coccinnelle tool, in the Linux ecosystem.
Each rewriting rule is defined as a Semantic patch working at the code-level.
The objective here is to show how the iso operator can be used in practice to iden-
tify conflicts among legacy rules and reduce the number of rules to order when
necessary. The validation was performed on 19 different versions of the Linux

kernel source-code, with an Intel Xeon E5-2637v2 (3,5GHz, 8cores) processor and
64GB of RAM DDR3. The data sample was made by randomly picking a version
of Linux per month from january 2017 to july 2018, and analysing the applica-
tions and interactions of all semantic patches available in Coccinnelle for each
kernel version.

6.5.1 State of practice (apply) does not provide guarantees

The Linux kernel represents around 20M lines of codes, and the Coccinelle’s
rules set applicable to this source code contains 35 semantic patches. Without our
proposition, the only way to ensure that no conflicts occured when applying the
rules to the source code is to assess that each possible sequence of rule applica-
tions (here 35! ≈ 1040) lead to the same result. The patterns matched by each
semantic patch are not known as a semantic patch is a black-box. This prevents
any analysis between semantic patches and renders the brute-force approach as
the only one applicable. Considering one second to apply each sequence (an ex-
tremely optimistic guess), it leads to approximately 1032 years of computation,
for a single commit (the Linux kernel versioning system contains more than 700K
commits in 2018).

One can obviously argue that computation can be parrallelised to multiple
computers. To assess this issue, we measured in FIG. 6.1 the average time taken
by each semantic patch to analyse and rewrite the source code. One can notice
that 75% of the rules are quick to execute (less than 5 minutes in average for each
rule, FIG. 6.1a), and that a few semantic patches (25%, FIG. 6.1b) are complex
and slow. In average, without taking into account the time to orchestrate the rule
set, it takes ≈ 190 minutes to execute a single sequence on the kernel. It is clearly not
reasonable to execute all of the sequences, even in a distributed and parallelized
environment.

As a consequence, the current state of practice does not provide any guarantee on
the generated source code with respect to rule interactions.

6.5.2 Applying contribution (iso operator)

In this section, we show how the iso operator described in the previous chap-
ter is used to identify conflicts among rules in a reasonable amount of time, and
how to map the proposed formal model to real-life artefacts.

11. https://github.com/ttben/xp-jsep-linux

https://github.com/ttben/xp-jsep-linux


6
.5

.
E

N
S

U
R

IN
G

C
O

M
P

O
S

IT
IO

N
O

F
R

E
W

R
IT

IN
G

R
U

L
E

S
IN

T
H

E
L

IN
U

X

K
E

R
N

E
L

71

●●

●● ●

●

●

●●

● ●

● ●
●

●

●

●

●● ●

●●

●

●

●

●● ● ●

●● ●

● ●

● ●

●● ●

●

●

●

●●

●

●

●●

●●●

●

0

1
0

0

2
0

0

3
0

0

alloc_cast

array_size

badty

boolconv

boolreturn

bugon

call_kern

check_bq27xxx_data

clk_put

cond_no_effect

cstptr

d_find_alias

debugfs_simple_attr

deref_null

device_node_continue

devm_free

double_lock

doublebitand

doubleinit

doubletest

drm−get−put

eno

err_cast

fen

flags

ifaddr

ifcol

ifnullfree

iounmap

irqf_oneshot

itnull

kfree

kfreeaddr

kmerr

kstrdup

kzalloc−simple

list_entry_update

memdup

memdup_user

mini_lock

odd_ptr_err

of_table

orplus

pci_free_consistent

platform_no_drv_owner

pm_runtime

pool_zalloc−simple

ptr_ret

resource_size

semicolon

setup_timer

simple_open

unsigned_lesser_than_zero

use_after_iter

vma_pages

warn

zalloc−simple

S
e
m

a
n

tic
 p

a
tc

h

Computing time in seconds

(a)Fastp
atches

(26),ap
p

lied
in

less
than

5
m

inu
tes

● ●●

● ●●

●● ●● ●

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

alloc_cast

badzero

boolinit

doublebitand

itnull

noderef

resource_size

returnvar

semicolon

S
e
m

a
n

tic
 p

a
tc

h

Computing time in seconds

(b)Slow
p

atches
(9),ap

p
lied

in
m

ore
than

5
m

inu
tes

Fig.
6.1

–
A

p
p

lying
35

sem
antic

p
atches

to
19

versions
of

the
L

inu
x

kernel(exe-
cu

tion
tim

e)

E
x
p

e
rim

e
n

ta
l

p
ro

ce
ss.

T
he

exp
erim

entalp
rocess

ap
p

lied
to

each
version

of
the

kernelis
d

ep
icted

in
Fig.6.2.Itp

erfom
s

the
follow

ing
step

s:



72
CHAPTER 6. COMPOSING BLACK-BOX REWRITING FUNCTIONS IN A

CONTROLLED ENVIRONMENT

1. Checkout the Linux source code at a given version (i.e., a given commit),
2. Phase 1: Use iso operator by applying independently all the 35 semantic

patches with Coccinnelle. Each patch (i.e., rewriting rule) produces code
diffs (i.e., ∆s) to be applied to the kernel to rewrite it;

3. Detect any syntactical conflict among the generated patches. A syntactical
conflict is detected when several code diffs target the same lines of C code
in the kernel;

4. Phase 2: For conflict-free situations, apply the code diffs to the source code to
obtain the rewritten kernel and verify the 35 postconditions on the obtained
kernel.

!2

!1

C

!n

… …

conflict? C’ = iso( C , SP )

1

2

n

… …

" : ∃ ∂ ∈ ∆ , ∂ ≠ ∅

C’

⊖ ( c, $
1
(c) )

⊖ ( c, $
2
(c) )

⊖ ( c, $
n
(c) )

false

⊖ ( c, $1(c) )

⊖ ( c, $2(c) )

⊖ ( c, $n(c) )

C Code

!1 Rewriter

Set of actions

(delta)
n

n

1

2

!2

!1

!n

Fig. 6.2 – Experimental process of the linux use-case

Assessment duration. We depict in Fig. 6.3 the time consumed by our exper-
imental setup for each of the 19 versions picked in this context. The average
execution time is 190 minutes for a given version, with a low standard devia-
tion. Even if “long”, this time is more reasonable than the absence of guarantee
identified in the previous paragraph and is compatible with continous build and
integration pipelines that can be put in place for such large projects. We describe
in the two following paragraphs how the conflict-detection step identified issues
that were previously silenced.

6.5.3 Validating the absence of syntactical conflicts

The conflict? function, which looks for syntactical issues, is implemented as
an intersection between generated deltas of phase 1. As the actions generated are
code diffs, they basically consist of a set of chunks describing editions (addition
or deletion) of the source code. We look then for pairs of chunks (c1, c2) such as
c1 will modify the same piece of code than c2 in the codebase.

No syntactical conflicts were found between the 35 rewriters on the 19 different
versions of Linux. That was expected given the high-level of expertise and the
limited number of developers involved in the development of such rewriters.

This is a more important result than it might look like at first sight. It means
that independently, each semantic patch behaves correctly. Moreover, the 35
patches written by experts do not target the same locations in such a large code-
base and do not overlap at the syntactical level. This emphasizes the difficulty to
identify interactions among rules in such a context.



6.5. ENSURING COMPOSITION OF REWRITING RULES IN THE LINUX

KERNEL 73

0

50

100

150

200

0
d

4
a

6
6

0
8

f6
8

c

1
3

4
b

d
9

0
2

8
6

d

1
5

b
4

d
d

7
9

8
1

4
9

2
5

5
1

a
5

3
0

5
3

d
e

2
5

a
3

b
a

6
1

0
6

0
9

2
f5

3
fb

d
5

2
1

8
2

3
8

6
5

1
6

8
3

a
a

9
8

4
e

fe
3

7
f4

c
4

e
f

5
0

0
3

a
e

1
e

7
3

5
e

7
0

0
7

b
a

6
3

0
e

4
a

7
8

1
0

9
d

2
3

0
b

7
9

8
2

7
e

d
2

b
0

6
b

0
5

8
4

7
e

c
d

3
fa

3
1

1

9
6

8
0

1
b

3
5

f0
7

e

b
c
e

1
a

6
5

1
7

2
d

1

b
fd

4
0

e
a

ff
5

a
b

c
e

8
d

1
0

1
5

a
2

b
8

e
7

1
ff
8

9
c
7

1
2

c

e
c
6

6
3

d
9

6
7

b
2

2

Commit

C
o

m
p

u
ti

n
g

 t
im

e
 i

n
 m

in
u

te
s

Fig. 6.3 – Execution time of our proposition in minutes (the line is the average
time)

6.5.4 Yielding Previously Silenced Semantic Conflicts

Table 6.2 lists the interactions detected in the experimental dataset. Out of
19 versions, 7 (> 36%) presented semantic conflicts that were not detected be-
fore. The table is ordered in chronological order, meaning that these interactions
come-and-go, and are not solved once and for all. From a software engineer
point of view, it is interesting to notice how the process helps to debug the rule
set. Among 35 fully-functionning semantic patches available, now the develop-
ers only have to focus on two of them: alloc_cast and memdup. They also know
the precise location(s) in their code where these two rules conflicts.

Table 6.2 – Table of interactions between pairs of semantic patches, on a given
line of a specific code file.

commit.id Rewriter #1 Rewriter #2 File with conflict @line
38651683aa98 alloc_cast memdup .../sh_css_firmware.c 146
4efe37f4c4ef alloc_cast memdup .../sh_css_firmware.c 146

b134bd90286d alloc_cast memdup .../vega12_processpptables.c 292
25a3ba610609 alloc_cast memdup .../sh_css_firmware.c 133
bce1a65172d1 alloc_cast memdup .../vega12_processpptables.c 285
2551a53053de alloc_cast memdup .../vega12_processpptables.c 285
bfd40eaff5ab alloc_cast memdup .../vega12_processpptables.c 292

According to Coccinelle documentation, the alloc_cast semantic patch per-
forms the following operation: “Remove casting the values returned by memory al-
location functions like kmalloc, kzalloc, kmem_cache_alloc, kmem_cache_zalloc
etc.” 12. The memdup patch is self-described in its implementation 13. It avoids to
reimplement the behavior of the kmemdup kernel-function at multiple locations in

12. https://bottest.wiki.kernel.org/coccicheck

13. https://github.com/coccinelle/coccinellery/blob/master/memdup/memdup.cocci

https://bottest.wiki.kernel.org/coccicheck
https://github.com/coccinelle/coccinellery/blob/master/memdup/memdup.cocci


74
CHAPTER 6. COMPOSING BLACK-BOX REWRITING FUNCTIONS IN A

CONTROLLED ENVIRONMENT

the kernel (which implies kmalloc and kzalloc). By reading the documentation,
one might expect an interaction as both rules target the memory allocation, and it
is interesting to notice how fine-grained the issue is. These two rules only conflict
when applied to a very specific code subset in the kernel, even if their definitions
might conflict in essence.

6.6 Conclusion : Overcoming Challenge C1

In Chapter 4.4 we identified challenge C1 that aims to ensure white-box prop-
erties in a black-box context. We identified that, by construction of these prop-
erties’ assessment, none of these properties can be checked as is in a black-box
context. Neverthless, developpers working in such black-box contexts still need
to ensure similar properties.

In this chapter we validated our proposition to reason on generated deltas to
enable reasonings on black-box rewriting functions. We applied our proposition
on a real-life, non-friendly, use-case: the maintenance of the Linux kernel.

We outlined the outcome enabled by such an approach, providing reasonings
that were not feasible in the state-of-practise. Our approach was capable of de-
tecting two overlapping black-box rewriting rules among 39 of these ran against the
Linux kernel and providing the whole context, the rule involved, the portion of
the code in which it happened, and the two changes of each rules.

Therefore, we detected the non-confluence-like of the system, and highlighted
the critical pairs involved.

We also implemented a termination-like assessment as a one-step lookahead
that assesses if a rewriting rule still has something to do or not.

We also validated that our hypotheses, needed to apply our approach, respec-
tively the presence of a ⊖ and ⊕ operator, hold in real-life use-cases.



CHAPTER7
Composing Black-box Rewriting

Functions in the Wild

Content

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 SPOON, Paprika, and the Android use-case . . . . . . . . . . . . . . . 76

7.2.1 Context: Power-Consuming Practises in Android Applica-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.2 Example of SPOON processors . . . . . . . . . . . . . . . . . . 77
7.2.3 Mapping to our proposition . . . . . . . . . . . . . . . . . . . 78
7.2.4 Example of Overlapping Applications of SPOON Processors . 79
7.2.5 Overlapping of Energy Anti-patterns in Android Applications 81

7.2.5.1 Overlapping Anti-patterns Detection . . . . . . . . 81
7.2.5.2 Concrete Example . . . . . . . . . . . . . . . . . . . 83

7.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Fast and Optimized Service Delivery . . . . . . . . . . . . . . 86
7.3.1.1 Context Description . . . . . . . . . . . . . . . . . . 86
7.3.1.2 Example of Overlapping Guidelines . . . . . . . . . 87
7.3.1.3 Guidelines Examples . . . . . . . . . . . . . . . . . . 87
7.3.1.4 Context Example . . . . . . . . . . . . . . . . . . . . 88

7.3.2 Mapping to our proposition . . . . . . . . . . . . . . . . . . . 89
7.3.3 Validation: Issues and Overlaps . . . . . . . . . . . . . . . . . 89

7.3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.3.2 Guideline violation (issues) . . . . . . . . . . . . . . 90
7.3.3.3 Overlappings . . . . . . . . . . . . . . . . . . . . . . 91

7.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Conclusion: Overcoming C2 . . . . . . . . . . . . . . . . . . . . . . . 92

75



76 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

7.1 Introduction

In the previous chapter, we have quantitatively validated that black box rewrit-
ing rules may suffer ordering issues, that lead to undesired behavior, and this in
the (heavily) controlled environment of the development of the Linux Kernel. We
mapped and applied our contribution on this use-case and validated that, in such
supposed error-free environment, our contribution was capable of highlighting
semantic onflicts in the automated rewriting of the Linux Kernel, overcoming our
challenge C1.

In this chapter, the goal is different and is focused on a vast and open ecosys-
tem, opposed to the closed and controlled environment provided by the Linux
kernel codebase. We will described two use-cases: the development of webser-
vices in the context of Docker and the optimization of Android applications, re-
spectively acting as an industrial use-case and an academic use-case. This chapter
will depict the mapping between each of this use-cases and our contribution, and
will validate three things: (i) the black-box assumption is not Linux specific, (ii)
the hypotheses of the existence of diff and patch operators hold in various do-
mains, and (iii) our proposition is not tied up to the Linux use-case (Challenge
C2).

7.2 SPOON, Paprika, and the Android use-case

7.2.1 Context: Power-Consuming Practises in Android

Applications

Smartphones. Smartphones are the most used embedded platform. Their bat-
tery requirements are critical and they keep growing overtime. Each manufac-
turer and kernel developers release guidelines on how to avoid useless battery
consumption and how to reduce power consumption on Smartphones’ applica-
tions 1. Toolings have been developed to monitor applications in order to identify
power-consuming portion of code [82]–[84].

Following guidelines. Software deployed on such platforms (i.e., Apps) must
take a specific care of their power consumption, more than classical desktop soft-
ware. Unfortunately, good software development practises, from a software en-
gineering point-of-view, can become bad practices in terms of power consump-
tion as they may impact negatively the battery lifespan of the final device [30],
[85]. Moreover, good practises from the power-consumption point-of-view can
be platform specific, and even narrow to a specific version of this platform. Hence,
software developpers are not familiar with these guidelines, and may not respect
them, and these “counter-intuitive” rules are not applied.

Paprika to yield issues. To encounter this issue, Paprika has been developped
[85]. It aims to formalize these power-consumption guidelines, and implement

1. https://developer.android.com/topic/performance/power

https://developer.android.com/topic/performance/power


7.2. SPOON, PAPRIKA, AND THE ANDROID USE-CASE 77

them as Paprika rules (i.e., sniffing rules), that will find a specific issue, and re-
port it. Fixing this issue is meant to reduce the power-consumption of the final
application. Whereas Paprika yields issues, it does not actually fix them.

SPOON to fix issues. In this eco-system, the actual rewriting part is left to a tool
that rewrites Java Abstract Syntax Tree (AST), named SPOON [31], [52]. SPOON is a
tool defined on top of the Java language, which works at the Abstract Syntax Tree
(AST) level. It provides the AST of a Java source code and lets the developer define
her transformations. A SPOON rewriting rule is modeled as a Processor, which
implements an AST to AST transformation. It is a Java class that analyses an AST

by filtering portions of it (identified by a method named isToBeProcessed), and
applies a process method to each filtered element, modifying this AST. SPOON rei-
fies the AST through a meta-model where all classes are prefixed by Ct: a CtClass

contains a set of CtMethods made of CtExpressions. In this context, a SPOON pro-
cessor will find an issue yielded by Paprika, and fix it, to reduce the power-
consumption of the final application. It applies to the most used smartphone
platform: Android.

7.2.2 Example of SPOON processors

An example of processor is given in LIST. 7.1. This SPOON processor (i.e.,
rewriting rule) will process every CtClass (i.e., Java class) that has setter 2 meth-
ods in it (l.3-6). Then, for each setter method (l.12), it uses SPOON factories to build
a not-null assessment statement, and wrap it around the initial body of the set-
ter method. This processor is a rewriter used to protect setters from null pointer
assignment by introducing a test that prevents an assignment to the null value to
an instance variable in a class.

In this section we described SPOON processors as white-boxes and manually
extracted easy and comprehensible portion of hand-picked Java code. Actually,
these processors are really complex: they can consider a huge set of different
cases; use part of Java reflexive code; relies on SPOON API to build arbitrary com-
plex statements, etc. Considering the complexity induced by the elements above,
we consider SPOON processors as black-boxes.

2. We use the classical definition of a setter, i.e., “a setter for a private attribute x is a method named
setX, with a single parameter, and doing a single-line and type-compatible assignment from its parameter
to x”.



78 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

1 public class NPGuard extends AbstractProcessor <CtClass > {
2 @Override
3 public boolean isToBeProcessed(CtClass candidate) {
4 List <CtMethod > allMethods = getAllMethods(candidate);
5 settersToModify = keepSetters(allMethods);
6 return !settersToModify.isEmpty ();
7 }
8
9 @Override

10 public void process(CtClass ctClass) {
11 List <CtMethod > setters = settersToModify;
12 for (CtExecutable currentSetterMethod : setters) {
13 if (isASetter(currentSetterMethod)) {
14 CtParameter parameter = (CtParameter) currentSetterMethod.

getParameters ().get(0);
15 CtIf ctIf = getFactory ().createIf ();
16 ctIf.setThenStatement(currentSetterMethod.getBody ().clone());
17 String snippet = parameter.getSimpleName () + " != null";
18 ctIf.setCondition(getFactory ().createCodeSnippetExpression(

snippet);
19 currentSetterMethod.setBody(ctIf);
20 }
21 }
22 }
23 }

Listing 7.1 – Spoon: using processors to rewrite Java code (NPGuard.java, Rnp))

7.2.3 Mapping to our proposition

In this section we map the abstractions and operations of the Android use-
case, presented in the previous sections, to our proposition.

Rewriting rules ρ are implemented as a SPOON processor that operates over an
Java AST. A SPOON processor is a black-box rewriting rule that will modify a por-
tion of an Android application’s source code.

The diff (⊖) and patch (⊕) operations. The diff can be implemented by the code
diff one can obtain as the output of classic diff, or via toolings performing diffs
at the AST level [86], or even via SPOON itself that keeps records of modifications
made to an AST. The patch operation can be implemented in an analogous way.

Deltas are diff/patch actions operating at the textual level or AST level depending
on the tool used. The language of action is made of addition, deletion, or update
of a given line of code or node of AST.

The postcondition χ is created to detect semantic conflict. We leverage the fol-
lowing assumption: a semantic patch whose intention is respected, yields an empty
diff. Thus, reapplying the rewriting rule to the rewritten app must yield an empty
diff when the postcondition is respected, or non-empty otherwise. Postcondi-
tions are implemented as an empty-diff check.

Again, applying a single processor is a trivial operation as we consider bug-
free implementation. Our goal is to ensure the composition of multiple proces-
sors, when issues can arise.



7.2. SPOON, PAPRIKA, AND THE ANDROID USE-CASE 79

7.2.4 Example of Overlapping Applications of SPOON Processors

Applying a single SPOON processor is supposed to be bug free, so there is no
issue in that. But what happens when applying (i.e., composing) multiple proces-
sors?

We consider here two processors. The first one is depicted in file NPGuard.java
(Rnp, LIST. 7.1). The second one (IGSInliner.java, Rigs) 3 implements a guide-
line provided by Google when developing mobile application in Java using the
Android framework. It states that inside a given class, a developer should di-
rectly use an instance variable instead of accessing it through its own getter or
setter (Internal Getters Setters anti-pattern). This avoids a useless function call.
We do not depict its implementation as it is too complicated to be understand-
able and usable. This is one (among others) way to improve the energy efficiency
of the developed application [87] with Android 4.

Like in the Coccinelle example, these two processors work well when ap-
plied to Java code, and always yield a result. However, order matters as there is
an overlap between the addition of the null check in Rnp and the inlining process
implemented by Rigs.

We depict in FIG. 7.1 how these processors behave on a simple class pj. The
figure contains two columns representing sequences of functions calls. Figure
7.1a depicts the initial program, then FIG. 7.1b and FIG. 7.1d depict a possible
sequence of application of rules Rigs and Rnp whereas FIG. 7.1c and FIG. 7.1e
depict the other possible sequence.

Inlining setters yields pigs (FIG. 7.1b), where internal calls to the setDt method
are replaced by the contents of the associated method (line 10). Then, introducing
the null guard will modify the body of the setter method (FIG. 7.1d, line 6).

However, when introducing the null guard first the content of the setDt method
is changed (FIG. 7.1e, line 6), which prevents any upcoming inlining as setDt is not
considered as a setter based on its new implementation and the used definition.
As a consequence, Rigs(Rnp(pj)) = Rnp(pj), and Rigs is useless in this very con-
text.

It is interesting to remark that, when considering Rigs and Rnp to be applied
to the very same program, one actually expects the result described in FIG. 7.1d:
internal setters are inlined with the initial contents of setDt, and any external call
to setDt is protected by the guard.

Comparison of yielded errors. Let us apply the three compositions operators
apply, seq and iso on this small example. We summarize the results in Tab.7.1
showing the status of the different postconditions given a specific operation. The
first two rows state that, when applying a rule, its postcondition holds (by defini-
tion). The next two rows use apply, that can only guarantee the application of the
last rules, hence the postcondition violation in the 4th row. The seq operator takex
s advantage of assessing all postconditions, hence the yielded postcondition vio-
lation marked as a cross. Finally, the iso operator states that, applied in parallel,
these two rules are syntactically and semantically non-conflicting.

3. https://github.com/GeoffreyHecht/spoon-processors/blob/master/src/main/

java/io/paprika/spoon/InvokMethodProcessor.java

4. http://stackoverflow.com/a/4930538

https://github.com/GeoffreyHecht/spoon-processors/blob/master/src/main/java/io/paprika/spoon/InvokMethodProcessor.java
https://github.com/GeoffreyHecht/spoon-processors/blob/master/src/main/java/io/paprika/spoon/InvokMethodProcessor.java
http://stackoverflow.com/a/4930538


80 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

1 public class C {

2

3 private String dt;

4

5 public String setDt(String s)

{

6 this.dt = s;

7 }

8

9 public void doSomething () {

10 setDt(newValue)

11 }

12 }

(a) Example of a Java class (C.java, pj)

1 public class C {

2

3 private String dt;

4

5 public String setDt(String s)

{

6 this.dt = s;

7 }

8

9 public void doSomething () {

10 this.dt = newValue /* <<<<

*/

11 }

12 }

(b) pigs = Rigs(pj)

1 public class C {

2

3 private String dt;

4

5 public String setDt(String s)

{

6 if (s != null) /* <<<< */

7 this.dt = s;

8 } /* <<<< */

9

10 public void doSomething () {

11 setDt(newValue)

12 }

13 }

(c) pnp = Rnp(pj)

1 public class C {

2

3 private String dt;

4

5 public String setDt(String s)

{

6 if (s != null) /* <<<< */

7 this.dt = s;

8 } /* <<<< */

9

10 public void doSomething () {

11 this.dt = newValue /* <<<<

*/

12 }

13 }

(d) pnp◦igs = Rnp(Rigs(pj))

1 public class C {

2

3 private String dt;

4

5 public String setDt(String s)

{

6 if (s != null) /* <<<< */

7 this.dt = s;

8 } /* <<<< */

9

10 public void doSomething () {

11 setDt(newValue)

12 }

13 }

(e) pigs◦np = Rigs(Rnp(pj))

Fig. 7.1 – Spoon: applying processors to Java code

Here we depicted the smallest set of rules ran against a toy and handpicked
example, thus ending with only 2 combinaisons possible. The number of auto-
mated transformations (around 10) grows and keep changing along versions of



7.2. SPOON, PAPRIKA, AND THE ANDROID USE-CASE 81

Table 7.1 – Identifying semantic conflicts on the Spoon example

p ∈ AST p′ ∈ AST χigs(p, p′) χnp(p, p′) Postcondition
pj ϕk(pc) -
pj ϕm(pc) -

ϕnp(pj) apply(pj, [ρigs, ρnp]) ( )
ϕigs(pj) apply(pj, [ρnp, ρigs]) ( )

pj seq(pc, [ρigs, ρnp])
pj seq(pc, [ρnp, ρigs])
pj iso(pc, {ρigs, ρnp})

android. Thus, the combinatory approach, even automated, is not feasible and
one needs to ensure the safe composition of SPOON processors.

7.2.5 Overlapping of Energy Anti-patterns in Android

Applications

In this section, the objective is to focus on a vast and open ecosystem, op-
posed to the closed and controlled environment provided by the Linux kernel
codebase (SEC. 6.5). We analyzed 22 different Android apps publicly available
on GitHub and took 19 rules that detect and correct when possible energy-related
anti-patterns in Android apps [88]. Our goal in this section is not to quantitavely
validate that each rewriting rules conflict, but to show that issues described in the
motivation section of this chapter (e.g., overlaping rules) happen in real-life an-
droid applications, on a set of apps that we do not manage. We selected 22 public
android applications that matched our technical requirements (e.g., android ver-
sion compatible with both Paprika, SPOON, and our in-house Fenrir tools), thus
reducing the number of android applications analyzed.

We will first focus on the characterization of the overlap that exists among these
rules before diving into a concrete example to see in practice how our contribu-
tion properly supports software developers.

The experiments were run on a mid-2015 MacBook Pro computer, with a 2,5
GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 of RAM.

7.2.5.1 Overlapping Anti-patterns Detection

Experiment tooling. Paprika is a tool that allows one to analyse an Android
application and detect anti-patterns, including the energy-related ones. Along
with these anti-patterns, respective corrections are developed. According to the
toolchain used at the implementation level, the rewriting rule is here a function
that rewrites the AST of an Android application [87] using SPOON. Thus, fixing mul-
tiple anti-patterns at the same time can lead to postcondition violations, more-
over if they happen at the very same location. We consider here the 22 energy
anti-patterns available for detection in the Paprika toolsuite 5. We use the visu-
alisation tool associated with Paprika logs to identify pairs of co-located anti-
patterns. This situation can happen at three different levels: (i) the class level,

5. https://github.com/GeoffreyHecht/paprika

https://github.com/GeoffreyHecht/paprika


82 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

(ii) the method level and (iii) the instruction level. When several anti-patterns
are colocated within the same scope, there is an high probability that repairing the
overlapping patterns will interact.

First, to identify the order of magnitude of such interactions, we only consider
overlapping pairs. We depict in FIG. 7.2 the result of analysing the 22 anti-pattern
detection rules for the 19 apps of our dataset. At the class level (FIG. 7.2a), we
detected up to 2, 130 co-occurences of the Leak Inner Class (LIC 6) and the Long
Method (LM 7) anti-patterns (FIG. 7.2b). We detected 44 pairs of overlapping anti-
patterns at the class level, among the (22

2 ) = 231 pairs, meaning that almost 20%
of the rules overlapped at this level in our dataset. At the method level (FIG. 7.2b),
18 pairs are (still) overlapping, representing 8% of the possible conflicts. Even at
the instruction level, three anti-patterns interact together. These results strengthen
the need to automate the detection of rule interaction issues on concrete examples,
as it is not useful to analyse the 231 possible rule combinations but only a small
subset of such set.

(a) Overlapping anti-patterns detected at the class level

(b) Overlapping anti-patterns detected at the method level

Fig. 7.2 – Identifying pairs of overlapping anti-patterns in 22 Android apps

6. Usage of a non-static, anonymous, inner class, leading to memory leak.
7. Method that has significantly more lines than the other, and can be splitted into smaller

ones.



7.2. SPOON, PAPRIKA, AND THE ANDROID USE-CASE 83

(a) Class level (b) Method level

Fig. 7.3 – Representing anti-patterns colocations

The previous analysis only considered pairs of anti-patterns. We used the Fen-
rir tool 8 to visualize at a coarse-grained level the relationship existing among mul-
tiple anti-patterns. We represent in FIG. 7.3 the relationship that exists among
anti-patterns. Each node of the graph is an anti-pattern, and the existence of an
edge between two nodes means that these two anti-patterns were detected at the
very same place in the dataset.

7.2.5.2 Concrete Example

In the previous paragraphs, we validated the existence of overlaps between
anti-patterns in existing applications, emphasizing the need for interaction detec-
tion mechanisms as the one described in the section motivation of this chapter.
Unfortunately, it is very difficult to reproduce the build chain associated to these
applications (even when the apps rely on tools such as Maven or Gradle), limitat-
ing the possibility to fix and rebuild all these apps in an automated way. To tame
this challenge and validate the safe reuse of code rewriters (i.e., the safe composi-
tiong of rewriting rules) in the Android context, we made the choice to perform
an in-depth analysis of a single application.

In the Java ecosystem, each rewriting rule is defined as a Spoon Processor

working at the AST level, and we also used the same mechanism to implement
the associated postcondition, as another Processor that identifies violations when
relevant. To exemplify our contribution on a concrete application, we consider
here as a validation example the development of a real Android application.
Based on the collaborative catalogue Android Open Source Apps 9, we selected the
RunnerUp 10 application. This application is developed by an external team, is
open-source, has a large number of installations (between 10, 000 and 50, 000)
and positive reviews in the Android Play Store. From a source code point of
view, it has 316 stars on its GitHub repository (December 2017) and has involved

8. https://github.com/FlorianBourniquel/Fenrir

9. https://github.com/pcqpcq/open-source-android-apps

10. https://github.com/jonasoreland/runnerup

https://github.com/FlorianBourniquel/Fenrir
https://github.com/pcqpcq/open-source-android-apps
https://github.com/jonasoreland/runnerup


84 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

1 delete (2)

2 add(2, "this.column =

dbColumn")

(a) Delta of the application of IGS

1 delete (11)

2 add(11, "if(name != null)

{")

3 add(12, "this.column =

name;")

4 add(13, "}")

(b) Delta of the application of AddGuard

1 import org.runnerup.export.format

2 class DataTypeField {

3 private String column = null;

4 public DataTypeField(String dbColumn) {

5 this.setColumn(dbColumn);

6 }

7 public void setColumn(String name) {

8 this.column = name;

9 }

10 }

(c) Initial program

1 import org.runnerup.export.format

2 class DataTypeField {

3 private String column = null;

4 public DataTypeField(String dbColumn) {

5 this.column = dbColumn;

6 }

7 public void setColumn(String name) {

8 if(name != null) {

9 this.column = name;

10 }

11 }

12 }

(d) Final program

Fig. 7.4 – Rewriting the RunnerUp Android application (excerpt)

28 contributors since December 2011. It defines 194 classes implemented in 53k
lines of code. This application is dedicated to smartphones and smartwatches,
thus its energy efficiency is very important.

From the software rewriting point of view, we reused here four different rules.
The first one, named Rλ, is used to migrate plain old iterations to the new λ-based
API available since Java 8, helping the piece of software to stay up to date. The
second one, named Rnp, is used to introduce guards preventing null assignments
(LIST. 7.1) in setters, introducing safety in the application. The two others are
dedicated to energy consumption anti-pattern fixing: Rh replaces HashMaps in the
code by a more efficient data structure (ArrayMaps are preferred in the Android
context), and Rigs inlines internal calls to getters and setters (SEC. 7.2.4).

We act here as the maintainer of RunnerUp, who wants to reuse these four
rules. As there is no evident dependencies between the rules, she decides to use
the iso operator to automatically improve her current version of RunnerUp:



7.2. SPOON, PAPRIKA, AND THE ANDROID USE-CASE 85

p′ru = iso(pru, {Rnp, Rigs, Rh, Rλ}).
Figures 7.4a and 7.4b show what has been modified by each rule (i.e., the

delta they produced). There is no interaction between those two sets of modifica-
tions. It happens that all the postconditions hold when applied to pru and p′ru: (i)
there is no call to internal getter/setter left in the final program p′ru (Fig.7.4d), and
(ii) there is no “un-guarded" modification of private field. Thus, the iso operator
can be used in this case. The maintainer does not have to wonder about ordering
issues w.r.t. this set of rules (4! = 24 different orders).

To validate the seq operator, we consider a slightly different implementation of
the Rigs rule, named R′

igs. This rule rewrites a setter even if it does not contain a
single line assignment, and expects as postcondition that the call to the setter is
replaced by the contents of the method in the resulting program. With such a rule,
p′ru = iso(pru, {Rnp, R′

igs, Rh, Rλ}) is not valid with respect to its postcondition,
as χ′

igs(pru, p′ru) does not hold, as depicted in Fig. 7.4d. Actually, the yielded
program contains calls to the initial contents of the setter, where the guarded one
is expected according to this postcondition.

Considering this situation, the maintainer is aware that (i) isolated applica-
tion is not possible when R′

igs is involved for pru and (ii) that the conflicting sit-
uation might involve this specific rule. She can yield a valid program by calling
iso(pru, {Rnp, Rh, Rλ}), meaning that these three rules do not interact together on
pru, and thus an order involving R′

igs must be defined. The main advantage of the
seq operator is to fail when a postcondition is violated, indicating an erroneous
combination that violates the developers intention. Any call to the seq operator
that does put R′

igs as the last rule will fail, thanks to a postcondition violation.
Thus, among 24 different available orderings, the expected one is ensured by
calling p′ru = seq(pru, [. . . , R′

igs]). The expected program is depicted in LIST. 7.2.

1 import org.runnerup.export.format

2 class DataTypeField {

3 private String column = null;

4 public DataTypeField(String dbColumn) {

5 if(name != null) {

6 this.column = dbColumn;

7 }

8 }

9 public void setColumn(String name) {

10 if(name != null) {

11 this.column = name;

12 }

13 }

14 }

Listing 7.2 – Final version of the RunnerUp excerpt using the seq operator

7.2.6 Conclusion

In this section, we identified the composition problem that exists when com-
posing multiple rewriting rules using Spoon. We quantitatively validated on
open-source Android applications that rewriting rules, aiming to fix energy con-
sumping apps, overlap even at the instruction level. Then, we zoomed on an



86 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

external Android application, using four rewriting rules designed to identify
and fix anti-patterns, following the latest guidelines from Google for Android de-
velopment and outlined concretely how overlappings black-box rewriting rules
badly affects the whole application.

7.3 Docker

7.3.1 Fast and Optimized Service Delivery

7.3.1.1 Context Description

Web Services. The Service-Oriented Programming (SOP) paradigm has recently
evolved to the definition of microservices that cooperate together in a scalable
way. Monolithic deployments used until then do not comply with the needs as-
sociated with such ecosystem [89]. As part of the microservice paradigm comes
the idea of quickly propagating a change from development to production [90],
according to a DevOps approach. Development and Operations are no longer sep-
arated in the service lifecycle, and a change in a given service can be automati-
cally propagated to production servers through an automated delivery pipeline.
In this context, it is up to the service developer to carefully describe how a mi-
croservice will be delivered, using dedicated technologies.

Among these technologies, the adoption of the container approach is tremen-
dously increasing [91]. Containers ensure that a given microservice will run the
same regardless of its environment, easing the repeatability of build, test, de-
ployment and runtime executions [92], [93]. Containers are faster at runtime and
boot-time, lighter than virtual machines, and scale better [94]–[97]. In the con-
tainer field, the Docker engine quickly became the reference platform for builds
and deployments of micro-services [98].

Building artefacts by reuse. Building a non-trivial container image is a difficult
process. Describing an image is an imperative process, where a service deployment
descriptor is written (e.g., a dockerfile in the Docker ecosystem) to describe as shell
commands how the microservice is installed and configured inside the container.
Following an off-the-shelf approach, a container is defined on top of others (reused
as black boxes). However, this implementation is not compliant with the open/-
closed principle, as it is open for extensions (a descriptor extends another one),
but not closed for modifications (a descriptor does not provide a clear interface
about its contents, making reuse hazardous). By hiding the contents of an im-
age as a blackbox, deployment instruction can conflict with the hidden one, e.g.,
overriding executables, duplicating installation of the same piece of software in
alternative versions, or shadowing executables. It leads to erroneous deploy-
ments, detected at runtime. Moreover, the technologies supporting microservice
deployment evolve constantly, to make it more efficient or scalable. This evo-
lution can drastically change the way the deployment engine is implemented,
and abstraction leaks can occur (i.e., an internal technological choice inside the
deployment engine the final user must take into account when writing a service
descriptor). It is up to the service developer to stay up to date with ever-changing
guidelines that implements fixes to abstraction leaks.



7.3. DOCKER 87

Optimize artefact following official guidelines. As the service to be deployed
must be deployed fastly and at scale, the quality of the artefact providing the
service is critical. Properties such as its weight impact transfer time and deploy
time. Moreover, as for all software artefacts, maintenance is an important aspect
which is rendered difficult by the low-level approach of such service deployment
descriptors. Their low level of abstraction combined with the fast change of the
deployment technology makes maintenance a difficult and critical task.

To mitigate these issues, guidelines were created to develop service deploy-
ment descriptors. These guidelines can be provider-specific (e.g., docker); team-
specific (e.g., CentOS team has its own guidelines); company specific (e.g., the
Amadeus company has its set of guidelines), etc.

7.3.1.2 Example of Overlapping Guidelines

One of the critical properties of software deployment artefacts such as Dock-
erfiles is their weight. Their weight is linked to the number of information units
they embed, and in the Docker ecosystem, these units are stored in layers.

7.3.1.3 Guidelines Examples

Let us consider the service deployment descriptor described in LIST. 7.3. It
is a Dockerfile that reuses the latest alpine image and installs packages for a
Javascript and C applications.

1 FROM alpine:latest

2 MAINTAINER Ben <ben@super -nice.cc>

3 RUN apt-get install nodejs

4 RUN apt-get install npm

5 RUN apt-get install maven

6 RUN apt-get install coccinnelle autoconf

7 CMD [" nodejs "]

Listing 7.3 – Dockerfile d

Reducing size by merging instructions (R1). The more instructions your Dock-
erfile has, the more layers your Docker image will have, the heavier it will be, the
longer will be the transfer and deployment times, and more expensive will be the
storage. Thus, one of the official guidelines is to minimize the number of layers in
the image. Actually, one can merge similar contiguous instructions to reduce the
number of layers. For instance, contiguous RUN docker instructions using apt-get

can be merged into a single one and their bodies concatenated. Thus, the result
of applying R1 on d is depicted in LIST. 7.4.

Install only what is needed (R2). Another way to reduce the footprint of an
artefact is to simply install fewer packages. As one may not know, when in-
stalling a specific package, some package manager will also silently install addi-
tional packages that may be used later. This automatic addition, which is user-
friendly in a standard context, becomes a bad practise in a context of building a
deployable artefact. Thus, one can add –no-install-recommend option to avoid
this on d ( LIST. 7.5).



88 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

1 FROM alpine:latest

2 MAINTAINER Ben <ben@super -nice.cc>

3 RUN apt-get install nodejs npm maven

coccinnelle autoconf

4 CMD [" nodejs "]

Listing 7.4 – R1(d)

1 FROM alpine:latest

2 MAINTAINER Ben <ben@super -nice.cc>

3 RUN apt-get install --no-install -

recommend nodejs

4 RUN apt-get install --no-install -

recommend npm

5 RUN apt-get install --no-install -

recommend maven

6 RUN apt-get install --no-install -

recommend coccinnelle autoconf

7 CMD [" nodejs "]

Listing 7.5 – R2(d)

Sorting package installation (R3). As the number of packages needed to be
installed in order to deploy a given service can become huge, it is a good practise
to sort the packages alphabetically for a single apt − get install command. This
will ease the maintenance of the service descriptor and will speed up finding a
specific package in the whole set of instructions. Thus, applying it on d will yield
the Dockerfile described in LIST. 7.6.

1 FROM alpine:latest

2 MAINTAINER Ben <ben@super -nice.cc>

3 RUN apt-get install nodejs

4 RUN apt-get install npm

5 RUN apt-get install maven

6 RUN apt-get install autoconf coccinnelle

7 CMD [" nodejs "]

Listing 7.6 – R3(d)

7.3.1.4 Context Example

If we consider the three rules R1, R2, R3 described above, and apply them on
this Dockerfile, overlappings and order-related issues occur. There exist 6 dif-
ferent combinations to apply these rules, and only two are valid w.r.t the intent of
the rules. Sorting the packages first (R3) will only impact the last RUN instructions
(LIST. 7.6), but, if one merges all the consecutive RUN instructions (R1) and then
sorts the packages (R3), one will end up with a minimized Dockerfile, with sorted
list of packages. Thus, applying R2(R3(R1(d))) or R3(R2(R1(d))) will yield the
Dockerfile depicted in LIST. 7.7.



7.3. DOCKER 89

1 FROM alpine:latest

2 MAINTAINER Ben <ben@super -nice.cc>

3 RUN apt-get install --no-install -

recommend autoconf coccinnelle maven

nodejs npm

4 CMD [" nodejs "]

Listing 7.7 – Dockerfile d

7.3.2 Mapping to our proposition

In this section we map the abstractions and operations of the Docker use-case,
presented in the previous sections, to our proposition.

Rewriting rules ρ are implemented as substitutions that operate over an textual
Dockerfile. A substitution is a black-box rewriting rule that will modify a portion
of a Dockerfile source code.

The diff (⊖) and patch (⊕) operations can be implemented as a classic textual
diff/patch.

Deltas are diff/patch actions operating at the textual level The language of action
consists of addition, deletion, or update of a given line of code.

The postcondition χ is made to detect semantic conflict. We leverage the fol-
lowing assumption: a semantic patch whose intention is respected, yields an empty
diff. Thus, reapplying the rewriting rule to the rewritten dockerfile must yield an
empty diff when the postcondition is respected, or non-empty otherwise. Post-
conditions are implemented as an empty-diff check.
Again, applying a single guideline is a trivial operation as we consider bug-free
implementation. Our goal is to ensure the composition of multiple guidelines,
when issues and overlappings can arise.

7.3.3 Validation: Issues and Overlaps

We described in the previous subsection, in a small and dedicated example,
that overlappings and order-relating issues can occur. We did this at small scale
for the sake of the example. In this subsection, we check that issues and overlap-
pings can occur at large scale.

7.3.3.1 Dataset

Dockerfiles We built a dataset of dockerfiles available on GitHub, the community
code-versioning reference platform. We collected an initial set of 24, 357 deploy-
ment descriptors (i.e., Dockerfiles). Details about this collection, the composition,
and the building of the dataset are available in Appendix B. Over these dockerfiles,
5.8% (1, 412) were considered as trivial (i.e., having less than 3 instructions 11) and
were removed from the dataset. The remaining 22, 945 dockerfiles regroup 178, 088

11. A parent reference and a single command.



90 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

instructions and represent our experimental dataset, denoted DS. As issues can occur
when analyzing a dockerfile or a dockerfile with its reused extension, we also
analyze composed dockerfiles that we name normalized dockerfiles. A normal-
ized dockerfile is the content of this very dockerfile, appended to the content of
its parent dockerfile, again appended to its parent dockerfile, until reaching the
root level. The normalized version of our dataset, denoted DS, is made of also
22, 945 dockerfiles but due to extension mechanism, it regroups 285, 142 instruc-
tions. Isolated dockerfiles of DS contain between 3 and 202 instructions with 7.76
instructions per dockerfile on average; normalized dockerfiles of DS have between 3
and 202 instructions, with 14.37 on average. The smallest sizes are the same since
it is our lower-threshold for trivial dockerfile. The highest size is a single dockerfile
that is bigger than every normalized dockerfiles. The most interesting metric here
is that normalized dockerfiles double in size on average. Normalized dockerfiles of
DS have between 0 and 6 parent dockerfiles with 1.45 level of parents on average.

Guidelines. From the guidelines in the official Docker webpages 12, we identi-
fied and implemented 15 of them as they are both highly used by the community
and general enough to be relevant for a wide number of dockerfiles. They are
detailed Appendix A of this chapter.

7.3.3.2 Guideline violation (issues)

In this subsection, we focus on identifying guidelines violations to check that
issues occur in real-life scenarios. Fig. 7.5 shows how many dockerfiles are de-
tected as violation of a given guideline. The blue bars represent non-composed
Dockerfiles, whereas yellow bars represent composed Dockerfiles, i.e., we con-
sider the content of the dockerfile and its parents’ contents. We note that somes
guidelines (e.g., G2, G7, G15) are violated by a lot of Dockerfiles (around 1,000).
We also note that guidelines G3, G4, G5, G9, G10 and G11 are violated the same
amount of times, which is very low. This is due to the fact that (i) those errors are
rarely made and (ii) are more likely to be made by beginners (i.e., at the bottom
of the hierarchy). We also note that the 9 remaining guidelines are more violated
when applying the normalized operator. This difference corresponds to guide-
lines violation that cannot be detected without taking the normalized descriptor
into account, as our approach does.

Fig. 7.6 shows how many instructions are detected as violating a given guide-
line in isolated and normalized modes (using a logarithmic scale). This figure
focus on instructions, so a Dockerfile can violate a guideline multiple times. This
gives insights about how many times a dockerfile violates a given guideline and
therefore that a high-level dockerfile has a given flaw. For instance, guideline #2
is violated by a very small amount of instructions, which impacts a lot of docker-
files. The amount of instructions involved in the violation of guideline 2, in the
isolated dataset, is a bit smaller than the amount of instructions involved in the
violation of guideline 2, but in the normalized dataset. This means that fixing
a small amount of instructions, in parents dockerfile, may actually fix a lot of
dockerfiles.

12. https://docs.docker.com/engine/reference/builder/, https://docs.docker.com/

engine/userguide/eng-image/dockerfile_best-practices/.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/


7.3. DOCKER 91

Guideline ID
N

b
. 
o
f 
d
o
c
k
e
rf

ile
s

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

1 2 3 4 5 6 7 8 9 10 12 14

Fig. 7.5 – Number of dockerfiles violating a given guideline

Guideline ID

N
b
. 
o
f 
c
o
m

m
a
n
d
s

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1
e
+

0
6

1 2 3 4 5 6 7 8 9 10 12 14

Fig. 7.6 – Number of instructions violating a given guideline

7.3.3.3 Overlappings

In the previous section we checked that issues (i.e., guideline violations) occur
in real-life scenario, on public and community-driven Dockerfiles. In this section,
we focus on the overlappings that exists between the instructions involved in
these issues. Do issues occur on the same portion of code or do they occur at
different location; i.e., their resolution may be problematic or not?

Some guidelines are going to conflict with each other, by construction (e.g.,
updating before installing, and adding specific arguments to aptget command).
Half of the extracted guidelines target RUN commands, hence are more likely to
be conflicting. An interference matrix of conflicting guidelines can then be built.

Table 7.2 shows the number of dockerfiles that present potential conflicts for
each guideline pair. We represent only the upper right part of the matrix, as it is
symmetric by construction. There is a potential conflict when two guidelines are
violated on the same dockerfile d and target the same kind k of commands. For
example, 8, 492 dockerfiles violate guideline 6 and guideline 7, whereas only 124
dockerfiles violated guideline 1 and guideline 5. Two issues can occur in a single
dockerfile but on different instructions and therefore create no new conflict, but
this information is not available on Table 7.2.

Table 7.3 shows the number of instructions that are really conflicting, i.e., con-
flicts occurring on the same instructions of the same dockerfile and producing dif-
ferent results. We note that some guidelines pairs (e.g., G1 and G15) are violated in



92 CHAPTER 7. COMPOSING BLACK-BOXES IN THE WILD

Table 7.2 – Dockerfiles containing guidelines violation pairs

Gi,j 1 5 6 7 13 14 15
1 – 124 2, 212 2, 901 1, 731 2, 810 1, 816
5 – – 524 685 176 436 629
6 – – – 8, 492 2, 110 6, 331 6, 531
7 – – – – 2, 601 8, 690 10, 223

13 – – – – – 2, 351 1, 861
14 – – – – – – 5, 965
15 – – – – – – –

many dockerfiles (1816) but that only 671 instructions are really in conflict; whereas
others (e.g., G6 and G7) are violated in around 8, 500 dockerfiles, and that more that
20, 000 instructions are really conflicting. This result shows that these guidelines
are often violated together, on a lot of instructions, exposing an understanding prob-
lem of the platform by the service designers.

Table 7.3 – Instructions containing guidelines violation pairs (i.e., real conflicts)

Gi,j 1 5 6 7 13 14 15
1 – 15 1, 795 5, 445 4, 100 3, 509 671
5 – – 9 360 12 174 314
6 – – – 20, 094 1, 211 9, 155 14, 655
7 – – – – 5, 239 19, 474 50, 256

13 – – – – – 1, 815 1, 211
14 – – – – – – 8, 680
15 – – – – – – –

7.3.4 Conclusion

In this section, we identified the composition problem that exists when com-
posing multiple rewriting rules using Docker guidelines. We zoomed in on an
external Dockerfile, using three rewriting rules designed to identify and fix bad
practises that add useless weight to the final artifact, or violate good practises.
Then, we quantitatively validate on open-source Dockerfiles that rewriting rules,
aimed at lightening dockerfiles and following good maintenance practices, over-
lap even at the instruction level.

7.4 Conclusion: Overcoming C2

In this chapter we described two use-cases, Android and Docker, that use
black-box rewriting rules, and mapped our proposition to them. Contrarily to
the previous chapter that performed a quantitative validation of syntactic and
semantic conflict in a controlled environment (the Linux Kernel), this chapter



7.4. CONCLUSION: OVERCOMING C2 93

depicted a quantitative validation of overlapping rewriting rules in two different
domains in uncontrolled environments.

We showed that rules (i.e., SPOON processors) that aim to decrease the power
consumption of android apps overlap at the instruction levels ; and that rules (i.e.,
Docker guidelines) that aim to lighten and optimize docker images overlap at the
instruction levels too. This partially validates challenge C1 as our proposition
was able to outline the conflicts and the involved rules.

These two very different domains have the same issues. We mapped both
of these contexts to our proposition, showing how each domain is captured and
handled by our contribution. Therefore, this chapter overcomes challenge C2,
aiming for a domain-independant approach, and we validated the applicability
of our proposition in real industrial and academic use-cases.



CHAPTER8
Conclusions and Perspectives

“There is no real ending. It’s just the place where you stop the
story.”

Frank Herbert [99]

Content

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2.1 Make Git merge smarter . . . . . . . . . . . . . . . . . . . . . 96
8.2.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2.1.2 Proposed approach . . . . . . . . . . . . . . . . . . . 96
8.2.1.3 Early results . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.2 Characterize black-box composition operators . . . . . . . . 97
8.2.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2.2.2 Proposed Approach . . . . . . . . . . . . . . . . . . 97

8.2.3 Building proper and efficient machine learning pipelines . . 98
8.2.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.3.2 Proposed approach . . . . . . . . . . . . . . . . . . . 99

8.2.4 Using algebraic properties to optimize a composition equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2.4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2.4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.4.3 Proposed approach . . . . . . . . . . . . . . . . . . . 100

A Official Docker guidelines 101

B Collecting Dockerfiles 103

94



8.1. CONCLUSION 95

8.1 Conclusion

Composing things comes from the fact that we decompose them to handle
their complexity. Decomposing without proper recomposition is a meaningless,
error-prone, and time-consuming task.

Whereas state-of-the-art acknowledges the issue and provides powerful ways
of (re)composing things in a model-driven fashion, state-of-practice does not.
The state-of-the-art approaches and techniques rely on the assumption that the
composition, along with the elements to be composed are known or formalized in a
specific way, enabling powerful reasoning mechanisms, ensuring the whole com-
position. The state-of-practice cannot always have such characteristics or does
not work that way, preventing any automated safety checks on the composition
and its result.

There is a need, from the field of practice, for insurance, guarantees, and rea-
sonings, on their non-well-formalized compositions. These composition opera-
tors are designated as “black-boxes” in opposition as the well-formalized “white-
boxes” of the state-of-the-art.

This thesis proposed a delta-oriented approach to enable reasonings to en-
sure properties on black-box compositions. The chosen approach relies on the
assumption that two operators, respectively ⊖ (diff) and ⊕ (patch), exist in the
addressed application domain. Our approach bridged state-of-the-art techniques
and formalisms with state-of-practice assumptions and context. The former ⊖
operator allows us to shift reasonings from an artifacts-based reasonings to a
modifications-based one. These modifications were introduced in the state-of-
the-art and used as a base in this thesis. We brought the composition issue from
an open-world composition to the (re)conciliation of known deltas. Our con-
tribution enabled the capture of various black-box composition operators, both
from the industrial and academic worlds. By shifting from domain-specific mod-
els to domain-independent actions, we successfully formalized state-of-practice
composition operators.

Moreover, this shift allowed our approach to extend the existing composi-
tions by enabling reordering in compositions and a dedicated reasoning step.
Finally, over this reasoning step, we formalized confluence-like and termination
properties, allowing our contribution to detect and yield conflicts, in a domain-
independent way. Our delta-based approach enabled syntactic and semantic con-
flicts detection, a step forward ensuring white-box properties in a black-box con-
text.

The latter ⊕ operator allows one to apply our proposition in real-world use-
cases. This operator takes conflict-free modifications and uses a domain-dependent
operator to apply them on an arbitrary artifact, allowing our proposition to be op-
erationalized in various domains. The implementation of this operator is domain-
dependent, but its definition as we used it in our formalism is not. We validated
the applicability of the existing delta-based reasonings, along with the hypothe-
ses made, on real use-cases representing widely different domains. We validated
that our contribution enables one to assess conflicts-free situations, or yield the
rules and the portion of code involved in the conflict to the final user. This valida-
tion was made in the context of the Linux kernel maintenance where rules mod-
ifying the Linux codebase are black-boxes. No guarantee was ensured regarding



96 CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

the conflicts between rules and our contribution ensured conflicts-free situations
and yielded scoped conflicts when needed. We also validated our contribution
in less-controlled environments such as Android and Docker, where rules aim
to optimize their respective artifacts given arbitrary guidelines. We quantitatively
validated that composition-issues happen in those contexts, and described how
our contribution detect such overlapping rules that would have badly affected
the final artifact.

8.2 Perspectives

This section gives an overview of short-term to long-term perspectives and
visions. The first perspective is a short-term goal and targets merge conflicts in
a code versioning context. Then, the second and third perspectives are mid-term
ones. One focuses on characterizing black-box composition operators, assessing
their algebraic properties and measuring non-functional metrics. The third per-
spective acts as a support to build efficient, coherent, and optimized machine
learning pipelines. Finally, the last perspective is a long-term one. It aims to per-
form multi-criteria optimization on equations of composition and ensuring that
the optimizations are applied safely.

8.2.1 Make Git merge smarter

8.2.1.1 Context

When building a software system, multiple teams are involved and work in
parallel with developing the same system. Using a code versioning solution,
such as Git, they can diverge from a version of a codebase, develop features in
parallel, then reunite their work, speeding up the whole development process.
This reunification is a code merge operation [100]. This idea of diff and merge is
quite old [58], [59], [101]–[103] and in practice, developers still use line-based un-
structured tools to handle merges. Nowadays, this merge is done via textual diff
and textual merge and does not exploit language-dependent information such
as structure, or order sensitivity of some elements. More or less recent research
works have been done to improve the precision of the merge operation in specific
domains [104], [105] while others try to reach a sweet-spot between better merge
and execution time added by adding the extra computation [106]–[108]. Merging
code is known to be a complex and time-consuming task, and the reasons for why
a merge may automatically fail are not fully known [109]–[112], but developers
try to avoid them as much as possible, and research tries even to predict merge
conflict beforehand [113], [114].

8.2.1.2 Proposed approach

We propose to apply the proposition and contribution made in this thesis to
the context of automatic merge conflict detection and resolution in code version-
ing to improve the smartness, precision, and recall of the merge process. We will
exploit already existing sources of diffs such as textual diff, or smart diffs working
at the AST level [86], [108] and reconcile them in the same approach depicted in
ModelBus [51]. Again, we need to compose the various differences safely, and



8.2. PERSPECTIVES 97

yield conflicts, the same way nowadays merge work, but with various sources
of diff. However, we can go a step further: we can use off-the-shelf transforma-
tions that will try to solve yielded conflicts. These transformations are still to be
defined and are part of the early results described in the next section. The trans-
formations will capture conflicts, e.g., concurrent addition of statements, and will
transform these conflicting actions into a new one that solves the issue. Again,
these off-the-shelf transformations that fix conflicts need to be composed safely,
at the meta-level this time. The whole point is that, again, our contribution can be
applied as-is, even at the meta-level of transformations, modifying actions that
represent transformations at the AST-level.

8.2.1.3 Early results

To start this work, we first analyzed the conflicts that occur in real-life sce-
narios. We use recent findings classifying merge conflicts [115] to describe con-
flicts that happen the most, to formalize them as off-the-shelf transformations.
Thus, each transformation is effectively applied onto the dataset to measure and
check its “performance”. We listed state-of-the-art tools that perform code merge
and automated merge-resolutions and measure how many merge scenarios were
fixed automatically, and how many are not. The early conclusion of this study is
that state-of-the-art tools do not automatically fix merge scenarios correctly most
of the time, leaving room from improvements.

8.2.2 Characterize black-box composition operators

8.2.2.1 Context

In this Ph.D. thesis, we validated composition operators, measuring their exe-
cution time, assessing their pros and cons, comparing multiple implementations
of composition operators. A lot of the work done was repeated across experi-
ments, tailoring the development to match the context of the experiment. This
repetition brought us to take a step back and ask what are the reusable abstrac-
tions and operations between experiments? What does it mean and imply to
perform experiments on composition operators? As seen in the motivation chap-
ter of this Ph.D., targetted composition operators are black-boxes, performing
paradigm-shifts, via non-deterministic procedures sometimes. This is the case
for a black-box composition that we did not study, develop or use in this thesis:
Familiar. Familiar is a tool suite that allows one to manipulate feature models for
many purposes, e.g., building a catalog from product descriptions [116]. It pro-
poses many compositions operators [32], with varying semantics, is developed in
Java, uses reflexivity, performs paradigm shift to perform the composition, and
use non-deterministic algorithms to move between different representations.

8.2.2.2 Proposed Approach

End-users of FAMILIAR highlighted issues raising questions regarding the
algebraic properties of the operator:



98 CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

“From a set of N descriptions of products, can I merge N/2 descriptions twice,
then merge the two results?”

“I use Familiar in a distributed context, can I merge the same description multiple
times without changing the semantic of the result?”

We chose to map these questions to algebraic questions at the developer-level,
i.e., the developer of FAMILIAR has to assess if its operator is, for instance, as-
sociative, commutative, or idempotent. Following the overall approach of this
thesis where operators are black-boxes, assessing commutativity (or any other al-
gebraic properties) is not a trivial thing to do. It is not feasible following formal
methods as no information about the definition of the operator is available.

Moreover, algebraic properties (e.g., commutativity) hold regardless of the in-
put passed as operands. Classically, if an operator is commutative, this implies
that it respects the commutativity property on any inputs. As no such strong re-
sult can be made with black-box composition operator, one has to find a middle-
ground. Of course, practitioners and engineers would want to know that their
composition operator is always commutative, but how one can guarantee that a
reflexive and arbitrarily complex Java code, calling many external libraries, com-
posing two automata, is commutative? Of course, one would want to guarantee
100% of the time, but as this seems to not be feasible in practise, a best-I-can-do
approach is acceptable.

As recently pointed out in the literature [117], “Conducting technology-oriented
experiments [...] without proper tool support is often a time-consuming and highly error-
prone task.”. Conducting experiments in the composition domain, moreover in a
black-box context is even more challenging. Yet, the need for proper tooling has
been identified, and solutions fitted for composition use-cases are still needed.
We propose a composition-operator-oriented framework that allows one to rea-
son and benchmark her own composition operator.

To answer this question, we list below the challenges that need to be over-
come:

— Formalizing of a composition operator from a benchmark point-of-view,

— Defining a composition-oriented experiment, its goal, and its measurements,

— Ensuring the quality of the measurements,

— Ensuring the reproducibility of the experiment,

— Efficiently navigate the search space, as a brute force approach is not feasi-
ble in practice,

— How to give confidence in algebraic assessments?

8.2.3 Building proper and efficient machine learning pipelines

8.2.3.1 Context

Machine learning (ML) pipelines aim to create knowledge from user-data. An
ML pipeline is composed of different steps (e.g., filtering data, transforming data),



8.2. PERSPECTIVES 99

each step constraining the possibilities in the next steps. As ML is an active com-
munity, a lot of new steps appear every day; thus, creating an ML pipeline to an-
swer a specific question is a difficult task. Assessing if newer preprocessing can
be attached to older ones or to the previous algorithm is a difficult task that can-
not be operationalized at a human scale, because the number of possible pipelines
rises exponentially.

8.2.3.2 Proposed approach

Machine learning pipelines are made by concatenating preprocessing and al-
gorithms. Our approach would be to take the lense of composition and con-
sider the building of ML pipelines as a composition issue. The concatenation-
as-composition approach would help developers of ML pipeline by reducing the
search space they are confronted to. By formalizing preprocessors’ expectations
on their input data, and properties of their output data, along with algoritm’s re-
quirements, an automatic composition may be triggered to help the developer in
his task. Then, by applying the proposition of this thesis, considering preproces-
sors as black-box composition operators, we would be able to gain knowledge of
what the preprocessing steps actually do, feeding the preprocessors’ expectations
and properties database.

8.2.4 Using algebraic properties to optimize a composition

equation

8.2.4.1 Context

We have seen in this Ph.D. thesis that applying multiple composition oper-
ators on an input can lead to ordering issues. As they may be many ways to
arrange different composition operators, this leads to a composition of composi-
tion challenge. One arrangement may be different from another in terms of the
semantic of their outputs, again, as seen in this thesis. For instance, an arrange-
ment may be invalid from a domain point-of-view. This often happens when
some concerns must be applied last, e.g., security, logging. Thus, all arrangement
not applying these last are wrong from a domain point-of-view.

Moreover, even if all arrangements of composition operators end up in the
same result (i.e., the considered system is strongly confluent), every arrangement
may not be stricly equivalent regarding functionnal and non-functionnal metrics.
For instance, an arrangement may be quicker to compute than another, hence
optimizing a non-functionnal metric (i.e., execution-time). Let us consider the
simple arrangement described in EQ. 8.1.

((A ∪ B) ∪ C) (8.1)

If the ∪ operation copies all the information from its left operand to its right
operand, one should always put the smallest of the operands as left-hand side
of the ∪ operation. Thus, if A is bigger than B, and C is smaller than A and B,
the following arrangement is supposedly more efficient, from an execution time
point-of-view that the one depicted in EQ. 8.2.

(C ∪ (B ∪ A)) (8.2)



100 CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

The concern of optimizing non-functional metrics such as execution time is of
crucial importance in reactive systems and where dynamic compositions is used.
Moreover, when such compositions are applied at large-scale (e.g., a huge UML
model, a massive codebase), non-functional metrics are critical. The feasibility
of the whole composition approach relies of the capability of the composition to
be executed in a reasonable amount of time. In a context where millions of lines
of code have to be composed together (e.g., massive merge scenarios), memory
usage and execution time are of primary concerns.

8.2.4.2 Challenges

— How to optimize non-functionnal metrics of a composition of compositions
without interfering with its functional requirements?

— How to optimize non-functionnal metrics of a composition of compositions
ensuring that the result will remain equivalent?

— How to find the most optimized arrangement of compositions, if any?

— How to safely compose multiple optimization to be applied on a composi-
tion equations?

8.2.4.3 Proposed approach

A sequence of compositions (i.e., an arrangement) can be formalized in an
algebraic context, considering a composition operator as an algebraic operator
manipulating models. An arrangement will be formalized as an equation of com-
positions that will represent the sequence in which composition operators are
applied. Algebraic properties attached to a composition operator will ensure se-
mantic equivalence of the result in case of transformations. For instance, the
two equations depicted in EQ. 8.1 and EQ. 8.2 are equivalent if the ∪ opera-
tor is known to be commutative. Then, to formalize such transformations of
equations, one can again formalize modifications made by algebraic properties
as meta-transformations, working directly at the equation-level.



APPENDIXA
Official Docker guidelines

1. FROM command first: the FROM command must be the first to appear in a
dockerfile

2. RUN Exec form: RUN commands have two syntaxes, one with brackets
and one without. Interpretation of arguments differ from the two syntaxes.
The one with brackets must be used.

3. Multiple CMD: CMD commands allows one to start a service when booting
up a container. Docker allows only a single service to be specified, therefore
multiple CMD are useless since only the last one will be run.

4. Provides default to CMD: One has to provide default parameter via CMD to
start a service. If an EntryPoint command is specified, CMD and EntryPoint
commands should be specified in JSON format.

5. Variables in exec form of CMD: Variables used in CMD commands in its
exec form are not interpreted. CMD [ “echo”, “$HOME” ] won’t output the
$HOME variable value.

6. Merge LABEL commands: When possible, merge labels commands.

7. Avoid apt-get upgrade: You should avoid RUN apt-get upgrade or dist-
upgrade, as many of the “essential” packages from the base images will not
upgrade inside an unprivileged container

8. Combine install with update: Always combine RUN apt-get update with
apt-get install in the same RUN statement. Ommiting this can lead to unex-
pected behaviour since apt-get update can be not run.

9. Packages, version pinning: Always fully specify the version of the package
to install.

10. FROM, version pinning: Always fully specify the version of the parent
dockerfile to use (i.e., latest tag is therefore not permitted).

11. CMD exec form: CMD commands have two syntaxes, one with brackets
and one without. Interpretation of arguments differ from the two syntaxes.
The one with brackets must be used if parameters are specified.

12. Prefer COPY: Although ADD and COPY are functionally similar, generally
speaking, COPY is preferred.

101



102 APPENDIX A. OFFICIAL DOCKER GUIDELINES

13. ADD <http> discouraged: Because image size matters, using ADD to fetch
packages from remote URLs is strongly discouraged; you should use curl
or wget.

14. User root discouraged: You should avoid installing or using sudo since
it has unpredictable. TTY and signal-forwarding behavior that can cause
more problems than it solves. If you absolutely need functionality similar
to sudo (e.g., initializing the daemon as root but running it as non-root),
you may be able to use gosu.

15. As few USER commands as possible: To reduce layers and complexity,
avoid switching USER back and forth frequently.

16. WORKDIR must have absolute path: For clarity and reliability, you should
always use absolute paths for your WORKDIR.

17. cd in RUN should be avoided: Do not use cd in RUN commands, use
WORKDIR instead.

18. Sort installation alphanumerically: Installation of multiple softwares must
be written in alphanumerical order.

19. Add –no-install-recommend: Add –no-install-recommend when installing
with apt-get, this will avoid installation not explicitly specified.

Guidelines can be found in a our repository 1. Guidelines 4 and 11 are not
implemented since they are too domain-specific.

1. https://github.com/ttben/dockerconflict/tree/master/src/main/java/fr/unice/

i3s/sparks/docker/core/guidelines

https://github.com/ttben/dockerconflict/tree/master/src/main/java/fr/unice/i3s/sparks/docker/core/guidelines
https://github.com/ttben/dockerconflict/tree/master/src/main/java/fr/unice/i3s/sparks/docker/core/guidelines


APPENDIXB
Collecting Dockerfiles

Our main requirement was to avoid downloading images since (i) a docker
image can easily weight more than 500MB (the official version 3.5 of python im-
age weights 680MB, the official java image weights 640MB and node 655MB)
the amount of data to store would be too large, and (ii) a docker image does not
contain all the information originally written by the user.

We first targeted the largest collections of docker files we known: the Dock-
erHub. This hub hosts both official images (around 120 images) 1 and open non-
official repositories (around 150 000 repositories 2). This hub is based on a reg-
istry that lists all available images (and therefore, dockerfiles) 3 through a cata-
logue endpoint. This specification is currently not implemented by the docker
company itself 4 therefore we can not list all available images or dockerfiles in
the hub.

The second biggest source of dockerfiles was GitHub. We decided to crawl a
set of dockerfiles from GitHub platform. Again, GitHub does not provide an API
endpoint to list all files by type. We had to web-crawl dockerfiles as a physical
user would do. Due to GitHub restrictions, one can not look for a specific type
of file and has to specify information about the content of the dockerfile. This
communal platform allowed us to perform more or less specific requests on the
content of the dockerfiles and gave us a random sample of it. This has to be done by
crawling, too. We use a chrome-extension to crawl github content. We perform
requests on those kind of URLs to be able to find Dockerfile that, at least, contains
a FROM code inside.

https://github.com/search?p=100&q=language%3ADockerfile+FROM

&ref=searchresults&type=Code&utf8=%E2%9C%93

We then filter the result to delete duplicates since the API returned a random sam-
ple. In order to have a fair set of files, we iteratively looked for docker commands
from the docker DSL. This way, we had a homogeneous amount of each docker
commands and let statistics do the remaining work. Moreover, the parent-child

1. http://www.slideshare.net/Docker/dockercon-16-general-session-day-2-

63497745

2. https://www.ctl.io/developers/blog/post/docker-hub-top-10/

3. http://54.71.194.30:4014/reference/api/docker-io_api/

4. https://github.com/docker/distribution/pull/653

103

http://www.slideshare.net/Docker/dockercon-16-general-session-day-2-63497745
http://www.slideshare.net/Docker/dockercon-16-general-session-day-2-63497745
https://www.ctl.io/developers/blog/post/docker-hub-top-10/
http://54.71.194.30:4014/reference/api/docker-io_api/


104 APPENDIX B. COLLECTING DOCKERFILES

relationship still needs to be established since the layer does not store explicitly
the parent image ID. We manually retrieve parent’s dockerfiles to cover half of
our dataset [4].



Bibliography

[1] J. D. Cook. (Feb. 2011). LEGO blocks and organ transplants, [Online]. Avail-
able: https://www.johndcook.com/blog/2011/02/03/lego-blocks-and-
organ-transplants/.

[2] « ISO/IEC/IEEE 24765:2017: Systems and software engineering — Vo-
cabulary », International Organization for Standardization, Geneva, CH,
Standard, 2017. [Online]. Available: https://www.iso.org/standard/
71952.html.

[3] B. Benni, S. Mosser, N. Moha, and M. Riveill, « A delta-oriented approach
to support the safe reuse of black-box code rewriters », Journal of Software:
Evolution and Process, vol. 31, no. 8, e2208, 2019, e2208 smr.2208. DOI: 10.
1002/smr.2208. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/smr.2208. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/smr.2208.

[4] B. Benni, S. Mosser, P. Collet, and M. Riveill, « Supporting Micro-services
Deployment in a Safer Way: a Static Analysis and Automated Rewriting
Approach », in Symposium on applied Computing, Pau, France, Apr. 2018.
DOI: 10 . 1145 / 3167132 . 3167314. [Online]. Available: https : / / hal .
archives-ouvertes.fr/hal-01659776.

[5] B. Benni, S. Mosser, N. Moha, and M. Riveill, « A Delta-oriented Approach
to Support the Safe Reuse of Black-box Code Rewriters », in 17th Interna-
tional Conference on Software Reuse (ICSR’18), Madrid, France, 2018. [On-
line]. Available: https://hal.archives-ouvertes.fr/hal-01722040.

[6] B. Benni, P. Collet, G. Molines, S. Mosser, and A.-M. Pinna-Déry, « Teach-
ing DevOps at the Graduate Level: A report from Polytech Nice Sophia »,
in First international workshop on software engineering aspects of continuous de-
velopment and new paradigms of software production and deployment, LASER
foundation, Villebrumier, France, Mar. 2018. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-01792773.

[7] H. D. Mills, « Structured Programming-Retrospect and Prospect », 1986.

[8] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff,
R. Kazman, M. Klein, D. Schmidt, K. Sullivan, et al., « Ultra-large-scale sys-
tems: The software challenge of the future », CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, Tech. Rep., 2006.

[9] E. W. Dijkstra, « On the role of scientific thought », in Selected writings on
computing: a personal perspective, Springer, 1982, pp. 60–66.

105

https://www.johndcook.com/blog/2011/02/03/lego-blocks-and-organ-transplants/
https://www.johndcook.com/blog/2011/02/03/lego-blocks-and-organ-transplants/
https://www.iso.org/standard/71952.html
https://www.iso.org/standard/71952.html
https://doi.org/10.1002/smr.2208
https://doi.org/10.1002/smr.2208
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2208
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2208
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2208
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2208
https://doi.org/10.1145/3167132.3167314
https://hal.archives-ouvertes.fr/hal-01659776
https://hal.archives-ouvertes.fr/hal-01659776
https://hal.archives-ouvertes.fr/hal-01722040
https://hal.archives-ouvertes.fr/hal-01792773
https://hal.archives-ouvertes.fr/hal-01792773


106 BIBLIOGRAPHY

[10] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Ref-
erence Manual, The (2nd Edition). Pearson Higher Education, 2004, ISBN:
0321245628.

[11] A. Zito, Z. Diskin, and J. Dingel, « Package merge in uml 2: Practice vs.
theory? », in International Conference on Model Driven Engineering Languages
and Systems, Springer, 2006, pp. 185–199.

[12] M. J. Rochkind, « The source code control system », IEEE transactions on
Software Engineering, no. 4, pp. 364–370, 1975.

[13] D. L. Parnas, « On the criteria to be used in decomposing systems into
modules », Communications of the ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[14] ——, « Software engineering or methods for the multi-person construction
of multi-version programs », in IBM Germany Scientific Symposium Series,
Springer, 1974, pp. 225–235.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold, « An overview of AspectJ », in European Conference on Object-Oriented
Programming, Springer, Sep. 2001, pp. 327–354. DOI: 10 . 1007 / 3 - 540 -
45337-7_18.

[16] C. Cecchinel, « DEPOSIT : an approach to model and deploy data col-
lection policies on heterogeneous and shared sensor networks », Theses,
Université Côte d’Azur, Nov. 2017. [Online]. Available: https://tel.
archives-ouvertes.fr/tel-01703857.

[17] J. C. Martin, Introduction to Languages and the Theory of Computation. McGraw-
Hill NY, 1991, vol. 4.

[18] M. Sipser et al., Introduction to the Theory of Computation. Thomson Course
Technology Boston, 2006, vol. 2.

[19] J. Berstel, L. Boasson, O. Carton, and I. Fagnot, Minimization of Automata,
2010. eprint: arXiv:1010.5318. [Online]. Available: https://arxiv.org/
abs/1010.5318v3.

[20] (2019). DFA minimization, [Online]. Available: https://en.wikipedia.
org/wiki/DFA_minimization (visited on 09/20/2019).

[21] Docker. (2019). Docker Official website, [Online]. Available: https://www.
docker.com/ (visited on 09/01/2019).

[22] ——, (2019). Docker Official Numbers, [Online]. Available: https://www.
docker.com/company (visited on 09/10/2019).

[23] Git. (2019). Git Official Numbers, [Online]. Available: https://git-scm.
com/ (visited on 09/10/2019).

[24] VentureBeat. (2018). Github Passes 100M Repositories, [Online]. Available:
https://venturebeat.com/2018/11/08/github-passes-100-million-

repositories/ (visited on 09/10/2019).

[25] Github. (2019). Github, State of the Octoverse, [Online]. Available: https:
//octoverse.github.com/ (visited on 09/10/2019).

https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/3-540-45337-7_18
https://tel.archives-ouvertes.fr/tel-01703857
https://tel.archives-ouvertes.fr/tel-01703857
arXiv:1010.5318
https://arxiv.org/abs/1010.5318v3
https://arxiv.org/abs/1010.5318v3
https://en.wikipedia.org/wiki/DFA_minimization
https://en.wikipedia.org/wiki/DFA_minimization
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/company
https://www.docker.com/company
https://git-scm.com/
https://git-scm.com/
https://venturebeat.com/2018/11/08/github-passes-100-million-repositories/
https://venturebeat.com/2018/11/08/github-passes-100-million-repositories/
https://octoverse.github.com/
https://octoverse.github.com/


BIBLIOGRAPHY 107

[26] L. Foundation. (2017). 2017 Linux Kernel Report Highlights Developers’
Roles and Accelerating Pace of Change, [Online]. Available: https : / /
www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-

highlights-developers-roles-accelerating-pace-change/ (visited on
09/10/2019).

[27] L. Torvald. (2019). Linux Official Repository, [Online]. Available: https:
//github.com/torvalds/linux (visited on 09/10/2019).

[28] T. Lee. (2017). Android Now Has 2 Billion Monthly Active Users, [Online].
Available: https://www.ubergizmo.com/2017/05/android-2-billion-
monthly-users/ (visited on 09/10/2019).

[29] D. Bohn. (2018). ANDROID AT 10: THE WORLD’S MOST DOMINANT
TECHNOLOGY, [Online]. Available: https://www.theverge.com/2018/
9/26/17903788/google- android- history- dominance- marketshare-

apple (visited on 09/10/2019).

[30] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien, « Tracking the
Software Quality of Android Applications Along Their Evolution (T) », in
2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), Nov. 2015, pp. 236–247. DOI: 10.1109/ASE.2015.46.

[31] R. Pawlak, C. Noguera, and N. Petitprez, « Spoon: Program Analysis and
Transformation in Java », Inria, Research Report RR-5901, 2006. [Online].
Available: https://hal.inria.fr/inria-00071366.

[32] M. Acher, P. Collet, P. Lahire, and R. France, « Composing Feature Mod-
els », in Software Language Engineering, M. van den Brand, D. Gašević, and
J. Gray, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 62–
81, ISBN: 978-3-642-12107-4. DOI: 10.1007/978-3-642-12107-4_6.

[33] L. C. Megginson, « Lessons from Europe for American business », The
Southwestern Social Science Quarterly, pp. 3–13, 1963.

[34] I. Kurtev, « State of the art of QVT: A model transformation language stan-
dard », in International Symposium on Applications of Graph Transformations
with Industrial Relevance, Springer, 2007, pp. 377–393.

[35] O. MOFM2T, « OMG MOF Model to Text Transformation Language (OMG
MOFM2T) Version 1.0 », Object Management Group. http://www. omg. org/spec/-
MOFM2T/1.0, 2008.

[36] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, « ATL: a QVT-
like transformation language », in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applica-
tions, ACM, 2006, pp. 719–720.

[37] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varro, « VI-
ATRA - visual automated transformations for formal verification and val-
idation of UML models », in Proceedings 17th IEEE International Conference
on Automated Software Engineering,, Sep. 2002, pp. 267–270. DOI: 10.1109/
ASE.2002.1115027.

[38] M. Lawley and J. Steel, « Practical declarative model transformation with
Tefkat », in International Conference on Model Driven Engineering Languages
and Systems, Springer, 2005, pp. 139–150.

https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://www.ubergizmo.com/2017/05/android-2-billion-monthly-users/
https://www.ubergizmo.com/2017/05/android-2-billion-monthly-users/
https://www.theverge.com/2018/9/26/17903788/google-android-history-dominance-marketshare-apple
https://www.theverge.com/2018/9/26/17903788/google-android-history-dominance-marketshare-apple
https://www.theverge.com/2018/9/26/17903788/google-android-history-dominance-marketshare-apple
https://doi.org/10.1109/ASE.2015.46
https://hal.inria.fr/inria-00071366
https://doi.org/10.1007/978-3-642-12107-4_6
https://doi.org/10.1109/ASE.2002.1115027
https://doi.org/10.1109/ASE.2002.1115027


108 BIBLIOGRAPHY

[39] G. Mussbacher, D. Amyot, J. Araújo, and A. Moreira, « Requirements mod-
eling with the aspect-oriented user requirements notation (AoURN): a
case study », in Transactions on aspect-oriented software development VII, Springer,
2010, pp. 23–68.

[40] J. Klein, L. Hélouët, and J.-M. Jézéquel, « Semantic-based weaving of sce-
narios », in Proceedings of the 5th International Conference on Aspect-Oriented
Software Development, R. E. Filman, Ed., Bonn, Germany: ACM, Mar. 2006,
pp. 27–38. DOI: 10.1145/1119655.1119662. [Online]. Available: https:
//hal.inria.fr/hal-00921480.

[41] E. Merks, R. Eliersick, T. Grose, F. Budinsky, and D. Steinberg, « The eclipse
modeling framework », retrieved from, total, p. 37, 2003.

[42] F. Fleurey, R. Reddy, R. France, B. Baudry, S. Ghosh, and M. Clavreul,
Kompose: a generic model composition tool, 2005.

[43] A. Jackson, J. Klein, B. Baudry, and S. Clarke, « Executable Aspect Ori-
ented Models for Improved Model Testing », in ECMDA workshop on In-
tegration of Model Driven Development and Model Driven Testing., Bilbao,
Spain, Spain, 2006. [Online]. Available: https://hal.inria.fr/inria-
00512544.

[44] E. Baniassad and S. Clarke, « Theme: an approach for aspect-oriented anal-
ysis and design », in Proceedings. 26th International Conference on Software
Engineering, May 2004, pp. 158–167. DOI: 10.1109/ICSE.2004.1317438.

[45] D. Kolovos, R. Paige, and F. Polack, « Merging Models with the Epsilon
Merging Language (EML) », vol. 4199, Oct. 2006, pp. 215–229. DOI: 10.
1007/11880240_16.

[46] M. Schöttle, O. Alam, J. Kienzle, and G. Mussbacher, « On the modular-
ization provided by concern-oriented reuse », in MODULARITY, 2016.

[47] B. Morin, J. Klein, O. Barais, and J.-M. Jézéquel, « A Generic Weaver for
Supporting Product Lines », in International Workshop on Early Aspects at
ICSE’08, Leipzig, Germany, Germany, 2008. [Online]. Available: https:
//hal.inria.fr/inria-00456485.

[48] M. Kramer, J. Klein, J. Steel, B. Morin, J. Kienzle, O. Barais, and J. Jézéquel,
« On the formalisation of GeKo: A generic aspect models weaver », Tech-
nical Report, University of Luxembourg, Tech. Rep., 2012.

[49] J. Whittle and P. Jayaraman, « MATA: A Tool for Aspect-Oriented Model-
ing Based on Graph Transformation », in Models in Software Engineering, H.
Giese, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 16–27,
ISBN: 978-3-540-69073-3.

[50] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and A. Solberg, « Mod-
els@runtime to support dynamic adaptation », Computer, vol. 42, no. 10,
pp. 44–51, 2009.

https://doi.org/10.1145/1119655.1119662
https://hal.inria.fr/hal-00921480
https://hal.inria.fr/hal-00921480
https://hal.inria.fr/inria-00512544
https://hal.inria.fr/inria-00512544
https://doi.org/10.1109/ICSE.2004.1317438
https://doi.org/10.1007/11880240_16
https://doi.org/10.1007/11880240_16
https://hal.inria.fr/inria-00456485
https://hal.inria.fr/inria-00456485


BIBLIOGRAPHY 109

[51] P. Sriplakich, X. Blanc, and M.-P. Gervais, « Collaborative Software En-
gineering on Large-scale models: Requirements and Experience in Mod-
elBus », in 23rd Annual ACM Symposium on Applied Computing (SAC’08),
Fortaleza, Ceará, Brazil: ACM, Mar. 2008, pp. 674–681. DOI: 10 . 1145 /
1363686.1363849. [Online]. Available: https://hal.inria.fr/hal-
00668912.

[52] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
« SPOON: A library for implementing analyses and transformations of
Java source code », Software: Practice and Experience, vol. 46, no. 9, pp. 1155–
1179, 2016. DOI: 10.1002/spe.2346. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/spe.2346. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/spe.2346.

[53] L. R. Rodriguez and J. Lawall, « Increasing Automation in the Backport-
ing of Linux Drivers Using Coccinelle », ser. 11th European Dependable
Computing Conference - Dependability in Practice, https://hal.inria.
fr/hal-01213912, Paris, France, Nov. 2015.

[54] V. Matena, B. Stearns, and L. Demichiel, Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform, 2nd ed. Pearson Ed-
ucation, 2003, ISBN: 0201914662.

[55] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin, « JAC : A Flexible and
Efficient Framework for AOP in Java », in Reflection, The Third Interna-
tional Conference on Metalevel Architectures and Separation of Cross-
cuting Concerns, Kyoto, Japon, sept 2001, X, France, Jan. 2001. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01124645.

[56] (Oct. 2019). 2to3 - Automated Python 2 to 3 code translation, [Online].
Available: https://docs.python.org/2/library/2to3.html.

[57] F. Santacroce, Git Essentials: Create, merge, and distribute code with Git, the
most powerful and flexible versioning system available. Packt Publishing Ltd,
2017.

[58] V. Berzins, « Software merge: Models and methods for combining changes
to programs », in ESEC ’91, A. van Lamsweerde and A. Fugetta, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 229–250, ISBN:
978-3-540-46446-4.

[59] V. Berzins and D. A. Dampier, « Software merge: Combining changes to
decompositions », Journal of Systems Integration, vol. 6, no. 1, pp. 135–150,
Mar. 1996, ISSN: 1573-8787. DOI: 10.1007/BF02262754. [Online]. Available:
https://doi.org/10.1007/BF02262754.

[60] (2019). Patch, [Online]. Available: http://man7.org/linux/man-pages/
man1/patch.1.html (visited on 09/30/2019).

[61] S. Mimram and C. D. Giusto, A Categorical Theory of Patches, 2013. eprint:
1311.3903v1. [Online]. Available: https://arxiv.org/abs/1311.3903v1.

[62] R. M. Stallman and Z. Weinberg, « The C preprocessor », Free Software
Foundation, 1987.

[63] (2019). Patch, [Online]. Available: https://gcc.gnu.org/onlinedocs/
cpp/ (visited on 09/30/2019).

https://doi.org/10.1145/1363686.1363849
https://doi.org/10.1145/1363686.1363849
https://hal.inria.fr/hal-00668912
https://hal.inria.fr/hal-00668912
https://doi.org/10.1002/spe.2346
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2346
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2346
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2346
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2346
https://hal.inria.fr/hal-01213912
https://hal.inria.fr/hal-01213912
https://hal.archives-ouvertes.fr/hal-01124645
https://docs.python.org/2/library/2to3.html
https://doi.org/10.1007/BF02262754
https://doi.org/10.1007/BF02262754
http://man7.org/linux/man-pages/man1/patch.1.html
http://man7.org/linux/man-pages/man1/patch.1.html
1311.3903v1
https://arxiv.org/abs/1311.3903v1
https://gcc.gnu.org/onlinedocs/cpp/
https://gcc.gnu.org/onlinedocs/cpp/


110 BIBLIOGRAPHY

[64] M. D. Ernst, G. J. Badros, and D. Notkin, « An empirical analysis of C pre-
processor use », IEEE Transactions on Software Engineering, vol. 28, no. 12,
pp. 1146–1170, 2002.

[65] E. W. Dijkstra et al., Notes on structured programming, 1970.

[66] F. Baader and T. Nipkow, Term rewriting and all that. Cambridge university
press, 1999.

[67] J. W. Klop and J. Klop, Term rewriting systems. Centrum voor Wiskunde en
Informatica, 1990.

[68] P. Mishra and U. S. Reddy, « Declaration-free Type Checking », in Proceed-
ings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, ser. POPL ’85, New Orleans, Louisiana, USA: ACM, 1985,
pp. 7–21, ISBN: 0-89791-147-4. DOI: 10.1145/318593.318603. [Online].
Available: http://doi.acm.org/10.1145/318593.318603.

[69] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann, « Type
Checking with Open Type Functions », SIGPLAN Not., vol. 43, no. 9, pp. 51–
62, Sep. 2008, ISSN: 0362-1340. DOI: 10.1145/1411203.1411215. [Online].
Available: http://doi.acm.org/10.1145/1411203.1411215.

[70] M. G. J. van den Brand, P. Klint, and J. J. Vinju, « Term Rewriting with
Traversal Functions », ACM Trans. Softw. Eng. Methodol., vol. 12, no. 2,
pp. 152–190, Apr. 2003, ISSN: 1049-331X. DOI: 10.1145/941566.941568.
[Online]. Available: http://doi.acm.org/10.1145/941566.941568.

[71] G. Huet, « Conflunt reductions: Abstract properties and applications to
term rewriting systems », in 18th Annual Symposium on Foundations of Com-
puter Science (sfcs 1977), Oct. 1977, pp. 30–45. DOI: 10.1109/SFCS.1977.9.

[72] T. Aoto, J. Yoshida, and Y. Toyama, « Proving Confluence of Term Rewrit-
ing Systems Automatically », in Rewriting Techniques and Applications, R.
Treinen, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 93–
102.

[73] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke, « Automated Ter-
mination Proofs with AProVE », in Rewriting Techniques and Applications,
V. van Oostrom, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 210–220.

[74] N. DERSHOWITZ and J.-P. JOUANNAUD, « CHAPTER 6 - Rewrite Sys-
tems », in Formal Models and Semantics, ser. Handbook of Theoretical Com-
puter Science, J. V. LEEUWEN, Ed., Amsterdam: Elsevier, 1990, pp. 243–
320, ISBN: 978-0-444-88074-1. DOI: 10 . 1016 / B978 - 0 - 444 - 88074 - 1 .
50011-1. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/B9780444880741500111.

[75] T. Arts and J. Giesl, « Termination of term rewriting using dependency
pairs », Theoretical Computer Science, vol. 236, no. 1, pp. 133–178, 2000, ISSN:
0304-3975. DOI: https://doi.org/10.1016/S0304-3975(99)00207-8.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0304397599002078.

https://doi.org/10.1145/318593.318603
http://doi.acm.org/10.1145/318593.318603
https://doi.org/10.1145/1411203.1411215
http://doi.acm.org/10.1145/1411203.1411215
https://doi.org/10.1145/941566.941568
http://doi.acm.org/10.1145/941566.941568
https://doi.org/10.1109/SFCS.1977.9
https://doi.org/10.1016/B978-0-444-88074-1.50011-1
https://doi.org/10.1016/B978-0-444-88074-1.50011-1
http://www.sciencedirect.com/science/article/pii/B9780444880741500111
http://www.sciencedirect.com/science/article/pii/B9780444880741500111
https://doi.org/https://doi.org/10.1016/S0304-3975(99)00207-8
http://www.sciencedirect.com/science/article/pii/S0304397599002078
http://www.sciencedirect.com/science/article/pii/S0304397599002078


BIBLIOGRAPHY 111

[76] C. S. Lee, N. D. Jones, and A. M. Ben-Amram, « The Size-change Princi-
ple for Program Termination », in Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL ’01,
London, United Kingdom: ACM, 2001, pp. 81–92, ISBN: 1-58113-336-7.
DOI: 10.1145/360204.360210. [Online]. Available: http://doi.acm.
org/10.1145/360204.360210.

[77] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, « Documenting and
Automating Collateral Evolutions in Linux Device Drivers », SIGOPS Oper.
Syst. Rev., vol. 42, no. 4, pp. 247–260, Apr. 2008, ISSN: 0163-5980. DOI: 10.
1145/1357010.1352618. [Online]. Available: http://doi.acm.org/10.
1145/1357010.1352618.

[78] G. Sittampalam et al., « Some properties of darcs patch theory », Available
fr om http://urchin. earth. li/darcs/ganesh/darcs-patch-theory/theory/formal. pdf,
2005.

[79] J. Dagit, « Type-correct changes—a safe approach to version control im-
plementation », 2009.

[80] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, « Detecting model incon-
sistency through operation-based model construction », in 2008 ACM/IEEE
30th International Conference on Software Engineering, W. Schäfer, M. B. Dwyer,
and V. Gruhn, Eds., ACM, May 2008, pp. 511–520, ISBN: 978-1-60558-079-
1. DOI: 10.1145/1368088.1368158. [Online]. Available: http://doi.acm.
org/10.1145/1368088.1368158.

[81] Y. Padioleau, J. L. Lawall, and G. Muller, « Understanding Collateral Evo-
lution in Linux Device Drivers », SIGOPS Oper. Syst. Rev., vol. 40, no. 4,
pp. 59–71, Apr. 2006, ISSN: 0163-5980. DOI: 10.1145/1218063.1217942.
[Online]. Available: http://doi.acm.org/10.1145/1218063.1217942.

[82] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, « Runtime Mon-
itoring of Software Energy Hotspots », in ASE - The 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering - 2012, Essen, Ger-
many, Sep. 2012, pp. 160–169. DOI: 10.1145/2351676.2351699. [Online].
Available: https://hal.inria.fr/hal-00715331.

[83] A. Noureddine, R. Rouvoy, and L. Seinturier, « Monitoring Energy Hotspots
in Software », Journal of Automated Software Engineering, vol. 22, no. 3, pp. 291–
332, Sep. 2015. [Online]. Available: https://hal.inria.fr/hal-01069142.

[84] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, « PowerAPI: A
Software Library to Monitor the Energy Consumed at the Process-Level »,
ERCIM News, Special Theme: Smart Energy Systems, vol. 92, ERCIM, Ed.,
pp. 43–44, Jan. 2013. [Online]. Available: https://hal.inria.fr/hal-
00772454.

[85] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien, « Detecting Antipatterns
in Android Apps », in Proceedings of the Second ACM International Confer-
ence on Mobile Software Engineering and Systems, ser. MOBILESoft ’15, Flo-
rence, Italy: IEEE Press, 2015, pp. 148–149, ISBN: 978-1-4799-1934-5. [On-
line]. Available: http : / / dl . acm . org / citation . cfm ? id = 2825041 .
2825078.

https://doi.org/10.1145/360204.360210
http://doi.acm.org/10.1145/360204.360210
http://doi.acm.org/10.1145/360204.360210
https://doi.org/10.1145/1357010.1352618
https://doi.org/10.1145/1357010.1352618
http://doi.acm.org/10.1145/1357010.1352618
http://doi.acm.org/10.1145/1357010.1352618
https://doi.org/10.1145/1368088.1368158
http://doi.acm.org/10.1145/1368088.1368158
http://doi.acm.org/10.1145/1368088.1368158
https://doi.org/10.1145/1218063.1217942
http://doi.acm.org/10.1145/1218063.1217942
https://doi.org/10.1145/2351676.2351699
https://hal.inria.fr/hal-00715331
https://hal.inria.fr/hal-01069142
https://hal.inria.fr/hal-00772454
https://hal.inria.fr/hal-00772454
http://dl.acm.org/citation.cfm?id=2825041.2825078
http://dl.acm.org/citation.cfm?id=2825041.2825078


112 BIBLIOGRAPHY

[86] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, « Fine-
grained and accurate source code differencing », in ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE ’14, Vasteras, Swe-
den - September 15 - 19, 2014, 2014, pp. 313–324. DOI: 10.1145/2642937.
2642982. [Online]. Available: http://doi.acm.org/10.1145/2642937.
2642982.

[87] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, « Inves-
tigating the energy impact of Android smells », in IEEE 24th Int. Conf. on
Software Analysis, Evolution and Reengineering, Klagenfurt, Austria, February
20-24, S. 2017, Ed., 2017, pp. 115–126. DOI: 10.1109/SANER.2017.7884614.
[Online]. Available: https://doi.org/10.1109/SANER.2017.7884614.

[88] G. Hecht, N. Moha, and R. Rouvoy, « An empirical study of the perfor-
mance impacts of Android code smells », in Proceedings of the International
Conference on Mobile Software Engineering and Systems, MOBILESoft ’16, Austin,
Texas, USA, May 14-22, 2016, ser. MOBILESoft ’16, Austin, Texas: ACM,
2016, pp. 59–69, ISBN: 978-1-4503-4178-3. DOI: 10.1145/2897073.2897100.
[Online]. Available: http://doi.acm.org/10.1145/2897073.2897100.

[89] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture. " O’Reilly Media,
Inc.", 2016.

[90] A. Balalaie, A. Heydarnoori, and P. Jamshidi, « Microservices architecture
enables DevOps: migration to a cloud-native architecture », IEEE Software,
vol. 33, no. 3, pp. 42–52, 2016.

[91] DevOps.com and ClusterHQ, Container market adoption - Survey 2016, https:
//clusterhq.com/assets/pdfs/state- of- container- usage- june-

2016.pdf, Jun. 2016.

[92] C. Boettiger, « An Introduction to Docker for Reproducible Research »,
SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, Jan. 2015, ISSN: 0163-
5980. DOI: 10.1145/2723872.2723882. [Online]. Available: http://doi.
acm.org/10.1145/2723872.2723882.

[93] D. Merkel, « Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment », Linux J., vol. 2014, no. 239, Mar. 2014, ISSN:
1075-3583. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2600239.2600241.

[94] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. D.
Rose, « Performance Evaluation of Container-Based Virtualization for High
Performance Computing Environments », in 2013 21st Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing, Feb.
2013, pp. 233–240. DOI: 10.1109/PDP.2013.41.

[95] R. Peinl, F. Holzschuher, and F. Pfitzer, « Docker Cluster Management for
the Cloud - Survey Results and Own Solution », Journal of Grid Computing,
vol. 14, no. 2, pp. 265–282, 2016, ISSN: 1572-9184. DOI: 10.1007/s10723-
016-9366-y. [Online]. Available: http://dx.doi.org/10.1007/s10723-
016-9366-y.

https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1145/2897073.2897100
http://doi.acm.org/10.1145/2897073.2897100
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf
https://doi.org/10.1145/2723872.2723882
http://doi.acm.org/10.1145/2723872.2723882
http://doi.acm.org/10.1145/2723872.2723882
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1109/PDP.2013.41
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1007/s10723-016-9366-y
http://dx.doi.org/10.1007/s10723-016-9366-y
http://dx.doi.org/10.1007/s10723-016-9366-y


BIBLIOGRAPHY 113

[96] R. Morabito, J. Kjällman, and M. Komu, « Hypervisors vs. Lightweight
Virtualization: A Performance Comparison », in Cloud Engineering (IC2E),
2015 IEEE International Conference on, Mar. 2015, pp. 386–393. DOI: 10 .
1109/IC2E.2015.74.

[97] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, « An updated perfor-
mance comparison of virtual machines and Linux containers », in Perfor-
mance Analysis of Systems and Software (ISPASS), 2015 IEEE International
Symposium on, Mar. 2015, pp. 171–172. DOI: 10.1109/ISPASS.2015.7095802.

[98] G. Rushgrove, DockerCon16 - The Dockerfile Explosion and the Need for Higher
Level Tools by Gareth Rushgrove, https://goo.gl/86XPrq, Jun. 2016.

[99] W. McNelly. (1969). Interview of Frank Herbert: ’Herbert’s science fiction
novels, “Dune” and “Dune Messiah”’, [Online]. Available: http://www.
sinanvural.com/seksek/inien/tvd/tvd2.htm.

[100] T. Mens, « A state-of-the-art survey on software merging », IEEE Transac-
tions on Software Engineering, vol. 28, no. 5, pp. 449–462, May 2002. DOI:
10.1109/TSE.2002.1000449.

[101] V. Berzins, « Software Merge: Semantics of Combining Changes to Pro-
grams », ACM Trans. Program. Lang. Syst., vol. 16, no. 6, pp. 1875–1903,
Nov. 1994, ISSN: 0164-0925. DOI: 10.1145/197320.197403. [Online]. Avail-
able: http://doi.acm.org/10.1145/197320.197403.

[102] Jackson and Ladd, « Semantic Diff: a tool for summarizing the effects
of modifications », in Proceedings 1994 International Conference on Software
Maintenance, Sep. 1994, pp. 243–252. DOI: 10.1109/ICSM.1994.336770.

[103] J. Buffenbarger, « Syntactic software merging », in Software Configuration
Management, J. Estublier, Ed., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1995, pp. 153–172, ISBN: 978-3-540-47768-6.

[104] T. Apiwattanapong, A. Orso, and M. J. Harrold, « JDiff: A differencing
technique and tool for object-oriented programs », Automated Software En-
gineering, vol. 14, no. 1, pp. 3–36, Mar. 2007, ISSN: 1573-7535. DOI: 10.1007/
s10515-006-0002-0. [Online]. Available: https://doi.org/10.1007/
s10515-006-0002-0.

[105] N. Niu, S. Easterbrook, and M. Sabetzadeh, « A category-theoretic ap-
proach to syntactic software merging », in 21st IEEE International Confer-
ence on Software Maintenance (ICSM’05), Sep. 2005, pp. 197–206. DOI: 10.
1109/ICSM.2005.6.

[106] O. Leßenich, S. Apel, and C. Lengauer, « Balancing precision and perfor-
mance in structured merge », Automated Software Engineering, vol. 22, no. 3,
pp. 367–397, Sep. 2015, ISSN: 1573-7535. DOI: 10.1007/s10515-014-0151-
5. [Online]. Available: https://doi.org/10.1007/s10515-014-0151-5.

[107] G. Cavalcanti, P. Borba, and P. Accioly, « Evaluating and Improving Semistruc-
tured Merge », Proc. ACM Program. Lang., vol. 1, no. OOPSLA, 59:1–59:27,
Oct. 2017, ISSN: 2475-1421. DOI: 10.1145/3133883. [Online]. Available:
http://doi.acm.org/10.1145/3133883.

https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1109/ISPASS.2015.7095802
https://goo.gl/86XPrq
http://www.sinanvural.com/seksek/inien/tvd/tvd2.htm
http://www.sinanvural.com/seksek/inien/tvd/tvd2.htm
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1145/197320.197403
http://doi.acm.org/10.1145/197320.197403
https://doi.org/10.1109/ICSM.1994.336770
https://doi.org/10.1007/s10515-006-0002-0
https://doi.org/10.1007/s10515-006-0002-0
https://doi.org/10.1007/s10515-006-0002-0
https://doi.org/10.1007/s10515-006-0002-0
https://doi.org/10.1109/ICSM.2005.6
https://doi.org/10.1109/ICSM.2005.6
https://doi.org/10.1007/s10515-014-0151-5
https://doi.org/10.1007/s10515-014-0151-5
https://doi.org/10.1007/s10515-014-0151-5
https://doi.org/10.1145/3133883
http://doi.acm.org/10.1145/3133883


114 BIBLIOGRAPHY

[108] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, « Semistructured
Merge: Rethinking Merge in Revision Control Systems », in Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11, Szeged, Hungary:
ACM, 2011, pp. 190–200, ISBN: 978-1-4503-0443-6. DOI: 10.1145/2025113.
2025141. [Online]. Available: http://doi.acm.org/10.1145/2025113.
2025141.

[109] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen, « Indicators
for merge conflicts in the wild: survey and empirical study », Automated
Software Engineering, vol. 25, no. 2, pp. 279–313, Jun. 2018, ISSN: 1573-7535.
DOI: 10.1007/s10515-017-0227-0. [Online]. Available: https://doi.
org/10.1007/s10515-017-0227-0.

[110] J. Eyolfson, L. Tan, and P. Lam, « Do Time of Day and Developer Experi-
ence Affect Commit Bugginess? », in Proceedings of the 8th Working Confer-
ence on Mining Software Repositories, ser. MSR ’11, Waikiki, Honolulu, HI,
USA: ACM, 2011, pp. 153–162, ISBN: 978-1-4503-0574-7. DOI: 10.1145/
1985441.1985464. [Online]. Available: http://doi.acm.org/10.1145/
1985441.1985464.

[111] P. Accioly, P. Borba, and G. Cavalcanti, « Understanding semi-structured
merge conflict characteristics in open-source Java projects », Empirical Soft-
ware Engineering, vol. 23, no. 4, pp. 2051–2085, Aug. 2018, ISSN: 1573-7616.
DOI: 10.1007/s10664-017-9586-1. [Online]. Available: https://doi.
org/10.1007/s10664-017-9586-1.

[112] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, « How Do Cen-
tralized and Distributed Version Control Systems Impact Software Changes? »,
in Proceedings of the 36th International Conference on Software Engineering,
ser. ICSE 2014, Hyderabad, India: ACM, 2014, pp. 322–333, ISBN: 978-1-
4503-2756-5. DOI: 10.1145/2568225.2568322. [Online]. Available: http:
//doi.acm.org/10.1145/2568225.2568322.

[113] M. L. Guimarães and A. R. Silva, « Improving early detection of software
merge conflicts », in 2012 34th International Conference on Software Engineer-
ing (ICSE), Jun. 2012, pp. 342–352. DOI: 10.1109/ICSE.2012.6227180.

[114] T. Ziegler, « GITCoP: A Machine Learning Based Approach to Predicting
Merge Conflicts from Repository Metadata », PhD thesis, University of
Passau, 2017.

[115] G. G. L. Menezes, L. G. P. Murta, M. O. Barros, and A. Van Der Hoek, « On
the Nature of Merge Conflicts: a Study of 2,731 Open Source Java Projects
Hosted by GitHub », IEEE Transactions on Software Engineering, pp. 1–1,
2018. DOI: 10.1109/TSE.2018.2871083.

[116] M. Acher, P. Collet, P. Lahire, and R. B. France, « Familiar: A domain-
specific language for large scale management of feature models », Science
of Computer Programming, vol. 78, no. 6, pp. 657–681, 2013.

[117] E. Silva, A. Leite, V. Alves, and S. Apel, « ExpRunA : a domain-specific
approach for technology-oriented experiments », Software & Systems Mod-
eling, Aug. 2019, ISSN: 1619-1374. DOI: 10.1007/s10270-019-00749-6.
[Online]. Available: https://doi.org/10.1007/s10270-019-00749-6.

https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/2025113.2025141
https://doi.org/10.1007/s10515-017-0227-0
https://doi.org/10.1007/s10515-017-0227-0
https://doi.org/10.1007/s10515-017-0227-0
https://doi.org/10.1145/1985441.1985464
https://doi.org/10.1145/1985441.1985464
http://doi.acm.org/10.1145/1985441.1985464
http://doi.acm.org/10.1145/1985441.1985464
https://doi.org/10.1007/s10664-017-9586-1
https://doi.org/10.1007/s10664-017-9586-1
https://doi.org/10.1007/s10664-017-9586-1
https://doi.org/10.1145/2568225.2568322
http://doi.acm.org/10.1145/2568225.2568322
http://doi.acm.org/10.1145/2568225.2568322
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1007/s10270-019-00749-6
https://doi.org/10.1007/s10270-019-00749-6

	Contents
	List of Figures
	List of Tables
	Introduction
	Context & Issues
	Contribution
	Outline
	Publications

	Motivation
	Ultra-Large Scale Systems
	Separation of Concerns: Divide to Conquer
	Example: Composition in the Internet of Things
	Domain-Specific Use-Cases
	Modeling of Seperate Domain-specific Use-cases
	Matching distributed context.
	Matching requirements of composition operator.
	Merging Behaviors by Merging FSMs
	Issues and Conclusion

	Composition in the wild
	Service deployment
	Code management
	Linux maintenance
	Android automatic optimizations
	Catalog construction

	Conclusion

	State of the art
	Introduction
	Model Transformations
	Summary

	Composition at the Model-level
	Criteria
	Composition Approaches
	Summary

	Composition at the Code-level
	Introduction
	Criteria
	Tools considered
	Summary

	Conclusion

	Background and Challenges
	Introduction
	White box rewriting rules are not enough
	Optimizing Automata With Rewriting Rules
	Order-related issues.
	Non order-related issues.

	Properties With Rewriting Systems
	Challenges for Software Developers to Use White-box Approaches

	Black-box Rewriting Rules
	Composition in a Black-Box Context
	Classical Composition Operator apply
	Parallel Composition Operator ||

	Challenges of Ensuring Properties in a Black-box Context
	Introduction
	Challenge C.1 - White-box properties in a Black-box Context
	Challenge C.2 - Domain Independance

	Conclusion

	Ensuring Properties on Composition of Black-box Rewriting Rules
	Introduction
	From Black-box Rules to Actions
	Delta as Models and Vice-versa
	Performing a diff Between Models (-)
	Performing a patch on a Model Given a Sequence of Actions (+)

	Composition Operators on Action-based Approach
	Compatibility with apply
	The seq Composition Operator
	The iso Composition Operator

	From Rewriting Rules Reasonings to Actions Reasonings
	Syntactic Conflicts as Overlapping Deltas
	Semantic conflicts as postcondition violations

	Assessing Properties On Running Example
	Detecting Incompatible Rewriting Rules
	Description of the Rewriting System
	Paradigm Shift
	Syntactic conflict
	Overcame Challenges

	Detecting Semantic Issues
	Description of the Rewriting System
	Paradigm Shift
	Syntactic Conflicts
	Semantic Conflicts
	Overcame Challenges

	Domain-independence

	Conclusion

	Composing Black-box Rewriting Functions in a Controlled Environment
	Introduction
	Coccinelle and the Linux kernel use-case
	A tool to automatically rewrite the kernel
	Examples of Semantic Patches
	Semantic Patches as Black-boxes

	Mapping to our proposition
	Example of Overlapping Applications of Semantic Patches
	Ensuring Composition of Rewriting Rules in the Linux Kernel
	State of practice (apply) does not provide guarantees
	Applying contribution (iso operator)
	Validating the absence of syntactical conflicts
	Yielding Previously Silenced Semantic Conflicts

	Conclusion : Overcoming Challenge C1

	Composing Black-box Rewriting Functions in the Wild
	Introduction
	SPOON, Paprika, and the Android use-case
	Context: Power-Consuming Practises in Android Applications
	Example of SPOON processors
	Mapping to our proposition
	Example of Overlapping Applications of SPOON Processors
	Overlapping of Energy Anti-patterns in Android Applications
	Overlapping Anti-patterns Detection
	Concrete Example

	Conclusion

	Docker
	Fast and Optimized Service Delivery
	Context Description
	Example of Overlapping Guidelines
	Guidelines Examples
	Context Example

	Mapping to our proposition
	Validation: Issues and Overlaps
	Dataset
	Guideline violation (issues)
	Overlappings

	Conclusion

	Conclusion: Overcoming C2

	Conclusions and Perspectives
	Conclusion
	Perspectives
	Make Git merge smarter
	Context
	Proposed approach
	Early results

	Characterize black-box composition operators
	Context
	Proposed Approach

	Building proper and efficient machine learning pipelines
	Context
	Proposed approach

	Using algebraic properties to optimize a composition equation
	Context
	Challenges
	Proposed approach



	Official Docker guidelines
	Collecting Dockerfiles
	Bibliography

