
HAL Id: tel-02495924
https://theses.hal.science/tel-02495924v1

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intensive use of computing resources for dominations in
grids and other combinatorial problems

Alexandre Talon

To cite this version:
Alexandre Talon. Intensive use of computing resources for dominations in grids and other combina-
torial problems. Discrete Mathematics [cs.DM]. Université de Lyon, 2019. English. �NNT : 2019LY-
SEN079�. �tel-02495924�

https://theses.hal.science/tel-02495924v1
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2019LYSEN079

Thèse de Doctorat de l’Université de Lyon
opérée par

l’École Normale Supérieure de Lyon

École doctorale InfoMaths No 512
École doctorale en Informatique et Mathématiques de Lyon

Spécialité de doctorat : Informatique

Soutenue publiquement le 29 novembre 2019 par

Alexandre Talon

Intensive use of computing resources
for dominations in grids and other

combinatorial problems
Utilisation intensive de l’ordinateur : dominations dans les grilles

et autres problèmes combinatoires

Devant le jury composé de :

Tero Laihonen Professeur, Université de Turku Rapporteur
Mathieu Liedloff Maître de conférences, Université d’Orléans Rapporteur
Emmanuel Jeandel Professeur des Universités, Université de Lorraine Examinateur
Aline Parreau Chargée de Recherche, ENS de Lyon Examinatrice
Myriam Preissman Directrice de Recherche, Université Grenoble Alpes Examinatrice
Michaël Rao Chargé de Recherche, ENS de Lyon Directeur de thèse

Acknowledgements

Here is the place to thank all the people who, directly or not, helped me achieve this
PhD. Such help fell into two main categories: science and friendship or social activities.

First, I want to thank Michaël for his guidance and support during all the duration
of my PhD. This includes the knowledge he shared with me, as well as the numerous
discussions we had about the problems we tackled. I also want to thank him, Guilhem,
Nathalie, Silvère, Tero and Mathieu for reading part or the whole of this manuscript, and
providing much helpful feedback. I also want to thank Silvère for his involvement in the
work we did together, which gave me knowledge about subshifts which are very interesting
objects. I thank Karl Dahlke for answering my questions with plenty of details about the
work he did on polyominoes. I also want to congratulate him for his project Edbrowse,
a text-based editor which was aimed to help blind people access the web. Many thanks
to the MALIP team who helped me with administrative tasks, and Alice and Aurore for
helping me for the final steps of my PhD.

I now want to thank many other people whom I have met, and who helped me evade
from the world of the PhD. First, I want to thank Alice, Alma and Aurore for their
very valuable friendship and support throughout these three years. The people I played
badminton with, and most specifically Edmond, Juliette, Corentin, Leeroy, Hubert and
Selva allowed me to avoid some stress through sport, and we spent very nice moments
even outside badminton sessions. Michaël and Laetitia supported me regularly around
some beers, helped me rethink part of the world, and we shared a lot of fun moments.
Gabrielle also supported me around beers, being for some time in the same adventure as
me. To continue in the register of beers, I am very glad I randomly met Alice, with whom
I spent lots of great moments, with interesting discussions. I am also grateful to Flore for
all the valuable discussions we had, and her integrity of reasoning over various matters,
among which climate change. Janelle and Mathieu, with small attentions, helped me a
lot at a period when my PhD moments were not so bright. All the messages I received
from friends to cheer me up, at the end of my PhD, were very nice and helped me keep
up, so thanks to all of you who reached me on this occasion. I also had nice discussions
and jokes with the people of the MC2 team.

A lot of other people have been part of my life through several activities. I want to
thank the members of ENvertS and the RF for all the projects and things we organised
together. I also want to thank the Improfesseurs for all the training sessions and shows
we did. Finally, the ‘club jeux’ (board games club) was a big part of my life during these
three years; I am grateful to the support the people attending it provided me, particularly
from Jean, Valentine and Henry. I thank my parents who always supported me, and even
understood at some point that asking me what I had done during the week was not a
good question to raise each week. Finally, I am very happy to have met so many people
with whom I enjoyed very good moments. I am glad to have kept contact with older
friends too. Even though I cannot put all your names here, I think to all of you while
writing this and am happy to know you.

Résumé

Nous cherchons à prouver de nouveaux résultats en théorie des graphes et combin-
atoire grâce à la vitesse de calcul des ordinateurs, couplée à des algorithmes astucieux.
Nous traitons quatre problèmes.

Le théorème des quatre couleurs affirme que toute carte d’un monde où les pays sont
connexes peut être coloriée avec 4 couleurs sans que deux pays voisins aient la même
couleur. Il a été le premier résultat prouvé en utilisant l’ordinateur, en 1989. Nous
souhaitions automatiser encore plus cette preuve. Nous expliquons la preuve et fournis-
sons un programme qui permet de la réétablir, ainsi que d’établir d’autres résultats avec
la même méthode. Nous donnons des pistes potentielles pour automatiser la recherche
de règles de déchargement.

Nous étudions également les problèmes de domination dans les grilles. Le plus simple
est celui de la domination. Il s’agit de mettre des pierres sur certaines cases d’une grille
pour que chaque case ait une pierre, ou ait une voisine qui contienne une pierre. Ce
problème a été résolu en 2011 en utilisant l’ordinateur pour prouver une formule donnant
le nombre minimum de pierres selon la taille de la grille. Nous adaptons avec succès cette
méthode pour la première fois pour des variantes de la domination. Nous résolvons parti-
ellement deux autres problèmes et fournissons des bornes inférieures pour ces problèmes
pour les grilles de taille arbitraire.

Nous nous sommes aussi penchés sur le dénombrement d’ensembles dominants. Com-
bien y a-t-il d’ensembles dominant une grille donnée ? Nous étudions ce problème de
dénombrement pour la domination et trois variantes. Nous prouvons l’existence de taux
de croissance asymptotiques pour chacun de ces problèmes. Pour chaque, nous donnons
en plus un encadrement de son taux de croissance asymptotique.

Nous étudions enfin les polyominos, et leurs façons de paver des rectangles. Il s’agit
d’objets généralisant les formes de Tetris : un ensemble de carrés connexe (« en un seul
morceau »). Nous avons attaqué un problème posé en 1989 : existe-t-il un polyomino
d’ordre impair ? Il s’agit de trouver un polyomino qui peut paver un rectangle avec
un nombre impair de copies, mais ne peut paver de rectangle plus petit. Nous n’avons
pas résolu ce problème, mais avons créé un programme pour énumérer les polyominos et
essayer de trouver leur ordre, en éliminant ceux ne pouvant pas paver de rectangle. Nous
établissons aussi une classification, selon leur ordre, des polyominos de taille au plus 18.

Abstract

Our goal is to prove new results in graph theory and combinatorics thanks to the speed
of computers, used with smart algorithms. We tackle four problems.

The four-colour theorem states that any map of a world where all countries are made
of one part can be coloured with 4 colours such that no two neighbouring countries have
the same colour. It was the first result proved using computers, in 1989. We wished to
automatise further this proof. We explain the proof and provide a program which proves
it again. It also makes it possible to obtain other results with the same method. We give
potential leads to automatise the search for discharging rules.

We also study the problems of domination in grids. The simplest one is the one of
domination. It consists in putting a stone on some cells of a grid such that every cell has a
stone, or has a neighbour which contains a stone. This problem was solved in 2011 using
computers, to prove a formula giving the minimum number of stones needed depending
on the dimensions of the grid. We successfully adapt this method for the first time for
variants of the domination problem. We solve partially two other problems and give for
them lower bounds for grids of arbitrary size.

We also tackled the counting problem for dominating sets. How many dominating sets
are there for a given grid? We study this counting problem for the domination and three
variants. We prove the existence of asymptotic growths rates for each of these problems.
We also give bounds for each of these growth rates.

Finally, we study polyominoes, and the way they can tile rectangles. They are objects
which generalise the shapes from Tetris: a connected (of only one part) set of squares.
We tried to solve a problem which was set in 1989: is there a polyomino of odd order? It
consists in finding a polyomino which can tile a rectangle with an odd number of copies,
but cannot tile any smaller rectangle. We did not manage to solve this problem, but we
made a program to enumerate polyominoes and try to find their orders, discarding those
which cannot tile rectangles. We also give statistics on the orders of polyominoes of size
up to 18.

Contents

Acknowledgements 2

Résumé 3

Abstract 4

Introduction iii

1 Discharging and the four colours theorem 1
1.1 Graph definitions . 3
1.2 The proof . 5

1.2.1 Scheme of the proof . 5
1.2.2 An interesting wrong proof . 6
1.2.3 Forbidden subgraphs . 10
1.2.4 The discharging method . 14

1.3 Contribution . 16
1.3.1 The program . 16
1.3.2 A possible more automated approach 20

2 The domination numbers in grid graphs 21
2.1 Basic definitions and notations . 23
2.2 Method for finding the 2-domination number for grids of arbitrary size . 26

2.2.1 Fixed (small) height and width 27
2.2.2 Fixed number of lines but arbitrary number of columns 30
2.2.3 The number of states . 33
2.2.4 Arbitrary height . 34

2.3 Adaptation to other problems and results 40
2.3.1 The Roman domination . 41
2.3.2 The total domination . 43
2.3.3 The distance-two-domination . 47

2.4 Conjectures about why the method works 49
2.5 Experimental details: implementation and optimisations 51

3 Asymptotic growth of the number of dominating sets 56
3.1 Basic definitions and notation . 57
3.2 Local characterisations and relation with SFTs 58

3.2.1 Local characterisations . 58

i

3.2.2 Subshifts of Finite Type (SFTs) 59
3.2.3 The domination subshifts . 60

3.3 Comparing the growth of SFTs with the growth of dominating sets . . . 61
3.4 Computability of the entropy: the block-gluing property 69

3.4.1 Definition and properties . 69
3.4.2 Algorithmic computability of the entropy 71
3.4.3 Some dominating subshifts are block-gluing 72

3.5 Bounding the growth rates with computer resources 79
3.5.1 Nearest-neighbour unidimensional subshifts of finite type 79
3.5.2 Unidimensional versions of the domination subshifts 80
3.5.3 Recoding into nearest-neighbour subshifts 80
3.5.4 Numerical approximations . 81

3.6 A (2k+3)-block-gluing family: the minimal meta-k -domination 83
3.7 Conclusions . 89

3.7.1 Counting dominating sets . 89
3.7.2 Around the block-gluing property 90

4 Tiling rectangles with polyominoes 92
4.1 Definition and some history . 94
4.2 Finding the order of a polyomino: the basic algorithms 96

4.2.1 Enumerating all the polyominoes 96
4.2.2 Tiling a rectangle with a DFS (inefficient) 99
4.2.3 BFS on the frontiers . 100
4.2.4 Another approach: solving a linear program 103

4.3 Refinements of the algorithms and other optimisations 104
4.3.1 Ruling out non rectifiable polyominoes 104
4.3.2 Improving the BFS approach . 107
4.3.3 Other optimisations . 109

4.4 Statistics and perspectives . 110
4.4.1 Statistics on the polyominoes and their orders 110
4.4.2 Perspectives for future works . 114

Conclusions and perspectives 115

ii

Introduction

This PhD falls into what is called ‘computer science’, or ‘informatique’ in French. This
phrase means the science, hence the study, of computers. One may find it strange that
computers are not more part of it. In some countries, a large part of computer science is
called ‘discrete mathematics’. It is considered part of this topic since for instance com-
binatorics and graph theory consist in studying some discrete objects, which intuitively
means objects we can count. Rational numbers are also discrete objects whereas real
numbers belong to the field of continuous mathematics: there are much too many of
them to be able to count them. However, a certain number of people use computers in
their research works in computer science, but only a few proved big results thanks to
computers.

In this PhD, we put the computers in the limelight and used them as tools to help
us find new results. There are mainly two ways of using a computer to prove a result:
using its huge computational power, and using its rigour to validate proofs and certify
their correctness. In this thesis we focus on the first means: devising and implementing
programs to be run by computers, the result of which are then used to prove a theorem.
However, a computer still has finite resources1 and many problems involve checking an
infinite number of objects. This means that theory is needed to reduce this infinity of
cases into a finite number of them, even if that number is huge (but not too huge). This
part is fundamental, but may turn out not to be enough. A second step may be to think
more to reduce again the number of objects the computer will have to examine, thanks
to symmetry reasons for instance.

The first big result which was proved by harnessing computers power is the four-colour
theorem. It can be formulated as follows: any map in which countries are connected2
can be coloured using only four colours, and such that any two neighbouring countries
have different colours. In computer science, it is stated as ‘every planar graph is four
colourable’. It was first proved by Appel and Haken in 1976 [1]. There were some doubts
on this proof since it contained a flaw, which was quickly fixed by the authors. In 1996,
Robertson and al. proved again this theorem in [45] and their proof was somewhat more
concise. In fact, both proofs rely on two lists of graphs (forbidden graphs, and discharging
rules) and the proof of Robertson and al. contained much fewer forbidden configurations
(633 versus 1476) and rules (32 versus 487). The four-colour theorem was proved using
clever ideas and the computational power of computers. Actually, the idea of using the
discharging method was first suggested by Heesch during the 70s, and he had thought
about it since the 60s. He might have, with Durre, proved it earlier than Appel and
Haken, but they did not have enough resources to run their program. The introduction
of computers and the increase of their speed was crucial for the proof of this theorem.

1As does the Earth, see Chapter 3.
2In particular, all islands must be a proper country of their own.

Other problems were solved or tackled using the power of computers, like the ones
we talk about in this thesis. For instance, Rao recently closed a problem which had
remained open for a century about tiling the plane with convex pentagons in [41]: he
showed that no other families of convex pentagons than the ones already known could
tile the plane. However, the use of computers is not restricted to computer science nor
to graph theory. Some people in cryptography or number theory also resort to the raw
power of computers: some try to factor RSA integers, and others try to find, for example,
which natural integers can be written as x3 + y3 + z3 where x, y, z ∈ Z. We now know3

the answer for all numbers lesser than or equal to 100 and there are only ten numbers
lesser than 1000 for which we do not have the answer yet.

In a completely different domain, here geometry with applications in chemistry, a
400-year-old conjecture made by Kepler was proved in 1998 by Hales and Ferguson in a
series of papers. The whole proof and some comments may be found in [26]. This con-
jecture states that any packing of spheres of equal radius has a density at most around
0.7405. It was proved by examining a finite list of configurations to check the conjecture,
despite the infinite number of possible configurations. It was Fejes Tóth who showed that
this problem could be reduced to checking only a finite number of configurations, and
provided them in 1953. The proof by Hales and Ferguson was very talked about since it
closed a 400-year-old problem which was in the list of most important problems Hilbert
made. Some people were not convinced of it because it was obtained with the help of a
computer, like the proofs of the four-colour theorem some had earlier doubted.

The other use for computers we mentioned above belongs more to the fields of com-
pilation and logic (and even arithmetic). It uses the automation of computers to certify
things like correctness of proofs, correctness of programs, or decimals in floating-point
arithmetic. Indeed, apart from using the raw power of computers, one can use the auto-
mation and the ability of a computer to follow some rules strictly. Some logicians try to
certify proofs, with software tools like Coq, a proof assistant/engine. This means that
they input each step of a proof in a certain fashion to the proof assistant and the software
validates these steps, which certifies that the proof contains no flaws. This was done with
the four-colour theorem by Gonthier [22] in 2005. Concerning the Kepler conjecture, the
first proof was in fact checked during four years by a team of twelve reviewers, which is
quite exceptional. They said they estimated the probability of the proof to be true to
be at least 99%, and the Kepler conjecture was widely accepted as a theorem. To re-
move any remaining doubts, in 2014 the Flyspeck project team, headed by Hales, showed
in [27] that their proof of the conjecture was correct, combining two proof assistants to
do so. People studying compiler design and/or logic also try to certify some aspects of
programs: they prove, with the help of a computer, specific properties a program will
have, for instance that never a division by zero would occur, or that the program will
always terminate4. These so-called certified programs are used in critical real-time em-
bedded systems, as in planes. We recall that this thesis is not about certification or proof
assistants.

3The answer for the famous number 42 was found very recently.
4It may be possible to show that some programs do terminate, however, there is no way to decide if

any program given as input always terminate.

iv

Figure 1: From left to right: a path, a tree and a grid. The vertices are the circles, and
the edges are the line segments joining them.

In this thesis we study mostly problems on graphs, and some combinatorics. A graph
can be seen as a list of relations between objects (see Figure 1). For instance, any social
network would be seen as the set of friendships among its members. The members are
called the vertices of the graph and the friendships are called the edges : they connect
pairs of vertices. Graphs can be used to model a lot of problems occurring in real life:
when asking for a route for public transport, the website or application of the transport
company uses graphs to model its network. Each stop is a vertex, and two successive
stops on a same line are connected by an edge, weighted by the average time between
the two stops. In case a bus and the underground both have the two stops as successive
stops, we may have multiple edges between them. To answer the customer of the public
transport who would like to know the fastest route, we have to study the shortest-path
problem: given two vertices, what is the path of minimal total weight between them?
This problem has been much studied in graph theory and we know efficient algorithms
to solve it.

However, not all problems on graphs are easy and a lot of people study graphs in more
abstract ways, without direct applications. These questions include categorising graphs
into classes the elements of which share a lot of properties. Often, the elements of a same
class are constructed according to specific patterns and rules. Other questions include
studying some problems on graphs, showing that some have a particular property, and
designing fast algorithms to solve some problems. Part of the motivation to split graphs
into classes is to make it easier to study them. For instance, a certain problem may be
very hard on graphs in general, but it may turn out to be easier on some classes of graphs.
Usually, paths (a line of vertices connected only to their left and right neighbours) and
trees (like a family tree, see Figure 1) are the simplest families of graphs on which to study
a problem. Other classes of graphs which have a bounded treewidth, that is ‘look like
trees’, may also be easier to study than general graphs. Another class, which is harder to
study because it does not have a bounded treewidth, or even a bounded cliquewidth, is the
class of grids: each cell of the grid is a vertex, and it is connected to the four adjacent cells.

The main part of this thesis addresses some problems of domination in this class of
grids. This problem consists in selecting a set of dominating vertices such that any vertex
not in this set is connected to a dominating vertex. The goal is to select as few vertices
as possible while dominating the graph. The domination problem can model real-life
problems such as choosing where to build fire stations and hospitals such that every city
is not too far away from one of each type. Multiple variants of this problem have been
studied. They are obtained by modifying the condition for a vertex to be dominated.
The Roman domination, for instance, looks like a game: we put zero, one or two troops

v

of soldiers in each vertex, and the set of troops is dominating if any vertex with zero
troops has a neighbouring vertex with two troops. Intuitively, a military strategy could
consider that a troop would defend the vertex it is placed on and two troops could split
into two, one of the two leaving to defend a neighbouring vertex5. These domination
problems are very hard on general graphs, but we managed to solve some and approxim-
ate others in the case of grids. The simplest domination problem was already solved in
grids by Gonçalves et al. [21] in 2011. Among the multiple variants of the domination,
we study here the domination, minimal-domination, 2-domination, Roman-domination,
total-domination, minimal-total-domination and distance-two-domination problems. We
introduce the meta-k-domination and the minimal meta-k-domination, which extend the
domination and total-domination problems in a certain direction. We already mentioned
that the goal is to find, given a graph, the minimum size of a dominating set. We study
this optimisation problem for variants of the domination, in Chapter 2. Another problem
which we study consists in trying to estimate how many dominating sets there are in a
large grid, in Chapter 3. Whereas the minimum-domination problem in grids belongs to
graph theory and combinatorics, this problem leads us to the side of combinatorics, a bit
outside graph theory.

As we mentioned above, computers are able to operate in an automatic way and very
fast. They may try a lot of possible solutions of a problem, provided we program them
to do so by giving a set of instructions in the right syntax. A computer program would
for instance solve a Sudoku in a matter of seconds, or even less than one if correctly
optimised. The same goes for many puzzles which may take us some, or even a lot of
time to solve. One other kind is the Rubik’s Cube: people usually follow an algorithm to
solve it, hence a computer can solve it way faster than any human would.

Some people exploited the fact that even a computer cannot solve a problem if the
number of configurations to examine is too big, and if no ways to reduce this number are
known. The Eternity game was a puzzle game consisting of 209 irregularly shaped small
polygons, and a dodecadron board. The goal was to fit all the 209 pieces together to
tile the board, and a prize of one million pounds was promised to whomever would solve
it first within four years. A pair of mathematicians made it in 2000 and were paid. A
sequel, called Eternity 2, was released in 2007. It was composed of 256 decorated squares:
they should be placed on the board so that the decorations match on the edges of two
adjacent squares. This problem is strongly related to objects called Wang tiles, which are
equivalent to the concept of SFTs we discuss in this thesis. A prize of two million dollars
was offered if someone could solve it within four years, but no one achieved it.

We tackle another ‘geometric’ problem, similar to the first Eternity game, which also
belongs to the field of combinatorics. It involves polyominoes, which are generalisations
of Tetris pieces: they may contain fewer or more than four squares. We are interested
in a more complex puzzle: given a polyomino and as many copies of it as you want, try
to tile a rectangle with these pieces. The rectangle is not given, it is up to you to find
if there exists one which is tilable by the polyomino or if the polyomino cannot tile any
rectangle. Also, if it can tile a rectangle, please find one which requires as few copies of
the polyomino as possible as in Figure 2. It would be awesome if this minimum number

5provided the enemy does not attack too many vertices at once!

vi

Figure 2: A polyomino of size 12 and order 8 and a tiling of the associated rectangle.

of copies could be an odd integer greater than one. Unfortunately, we still do not know if
this is possible. Here, contrarily to the games we mentioned, the number of configurations
is not finite, for there are infinitely many rectangles we could try. Even trying to tile a
single rectangle with about a hundred copies of a polyomino may require a huge amount
of configurations to try. Fortunately we may use clever arguments to reduce this number,
which makes it possible to find the order of some polyominoes, but not for every one we
tested.

To tackle any problem with the help of a computer, a certain methodology must be
followed. The power of computers is huge, all the more so that we can use parallelism and
we have increasingly powerful machines. However, there is still a finite and fixed number
of operations doable in a certain amount of time by a given machine. This means that
if the problem we want to tackle implies examining an infinite number of objects, the
first step is to reduce it to a finite number, thanks to theoretical arguments. The second
step is to consider the angle of attack: what type of algorithms should we use? Also,
what are the optimal data structures we need? Once this is done, it may be useful to
estimate the running time and memory consumption of the program we are devising, if
this is possible. If it exceeds the available resources, more care must be given to reducing
the number of objects it is to examine. One classical way to do so is to observe the
symmetries of the objects we study and try to reduce their numbers according to this
fact. Indeed, if the objects of a group are equivalent, we may as well examine thoroughly
one of them and detect that the others do not need to be examined. Another way to use
fewer resources can be to think more about the algorithm and data structures, and find
better ones. In case the bottleneck is only time, we may do some precomputations and
store intermediate results to be reused. This trades some memory for a smaller running
time. If on the contrary the amount of memory used is problematic, we may store fewer
results and compute them again several times, to benefit from the opposite trade-off.

Nowadays the frequencies of computers no longer increase, or by very little. The way
to gather more computing resources is to resort to parallelism. This can usually be done
by launching a lot of instances of the same program, at the same time, with different
inputs. Another way is to use threads: a program splits itself into several children which
run the same code. We split the amount of computations between the threads so that
if we have k threads, each would do one kth of the computations. To benefit fully from
parallelising the code, we must think carefully of how to make parts of the computations

vii

independent from one another. Indeed, the speed up will be much higher if the parallel
computations do not write to the same locations in memory and do not need to wait for
results of another computation to start. One problem is that when using threads, we
may tolerate simultaneous accesses to a same location of the memory provided none is
writing to it. If one of the simultaneous accesses is a write, the behaviour of the program
is undefined: if some thread reads this location ‘at the same time’, should the value read
be the new one or the old one? In the case of two writes, which value should be the one
to be stored at the end?

Another hint to achieve better performances is to choose the right programming lan-
guages and libraries6. Interpreted languages such as Python may be very elegant and
have a nice syntax, but they can be as much as 100 times as slow as C/C++. When
the critical operations are classical ones, like matrices products, it may be better to use
a library written for that purpose, which will be faster. Using libraries also make it less
likely to find bugs in the final program.

Figure 3: A screenshot of qcachegrind displaying visually some logs of the profiler
callgrind. It shows each function as a rectangle whose size is proportional to the time
spent in the function.

Finally, there are some good practices to adopt when programming something rather
big. They may take a bit of time and some energy, but they can save a huge amount of
time and frustration later on. The first thing is to always write some simple code first,
before optimising it. It may be sufficient even if not optimal, and if we need to optimise
it we will have a reference to test the new code against. The second thing is then to
have tests, if possible automatic ones. For instance, running the first simple code on
small inputs can generate test cases for the subsequent versions. Third thing, do not
overoptimise, or optimise too early: there is no use optimising some parts (small
rectangles in Figure 3) of the code which take only one or two percent of the running
time. It is only making the code harder to read, maintain, and more prone to bugs. The
objective is to find a good balance between a simple code and a fast one. To see which
parts of the code are important to optimise we may use tools called profilers : they tell
us how many times each function was called, and what portion of the running time these
calls took. We used a lot the callgrind software in this PhD (see Figure 3), with the

6Sorts of programs made by other people, which contain routines to do specific tasks.

viii

visualiser qcachegrind. When bugs occur or are suspected, it is better to use a debugger :
it enables us to stop at specific points of the program (or at the point where it crashes) and
have some information about the current values of the variables, the position in the code,
which functions were currently being called, and so on. We used GDB for this purpose.
For similar goals, we also used valgrind, a piece of software which performs further checks
to detect some possible memory errors or misuse. All these low-level tools, though, are
to be used in the last resort: they do not replace a careful design and implementation of
the algorithms.

Organisation of the manuscript

This thesis deals with four topics: the proof of the four-colour theorem, several dom-
inations numbers of grid graphs, counting some dominating sets in grids, and a tiling
problem with polyominoes. The second and third topics are very related: they study
similar problems. The last problem is to some extent related to the second topic, as we
will see later. All these four topics share the approach to solve them, which resorts at
some point to the use of computer programs. This thesis is divided into four chapters,
one dealing with each of the problems we have just listed.

Chapter 1 is about the four-colour theorem and its proof in [45]. The theorem states
that any finite planar graph can be coloured properly using only four colours. We first
explain the proof from Robertson et al. It works by contradiction: it assumes the exist-
ence of a minimal counter-example to the theorem. The minimality forbids some graphs
to appear in this counter-example: we generate a list of forbidden (or reducible) configur-
ations. The reason the proof works is that no planar graphs can avoid all these reducible
configurations. This is shown with the discharging method, which consists in assigning
weights to the vertices and moving them according to a set of rules. This rules are used
in an exhaustive search for the hypothetical minimal counter-example. They make it
possible to cut all the branches of explorations. Finally, only a finite set of graphs are
examined and none can lead to a minimal counter-example, hence the theorem is true.
We provide an interface for a use with Python, so that the community may prove some
other results with the discharging method, without having to implement everything from
scratch. It may later be ported to Sage. We describe some aspects of the program in this
thesis.

Chapter 2 tackles variants of the domination number, i.e. the minimum size of a dom-
inating set, in grid graphs. The domination number problem in grids was solved in 2011
by Gonçalves et al. [21]. We reuse for the first time their method and apply it to the 2-
domination, the Roman domination, the total domination and the distance-2-domination.
We explain there the method, and give the results we obtained using a new program we
wrote. We solve the 2-domination and the Roman domination, that is we provide closed
formulas giving the 2-domination number and the Roman-domination number according
to the height and the width of the grid. We give, for the distance-2-domination and the
total domination, the numbers for up to 15 lines and an arbitrary number of columns.
For the total loss, this confirms the results of Crevals and Ostergård [9], who went up to
28 lines. We also give, for the total domination, a lower bound provided by our program.
We also try to explain why our method does not seem to be able to give a full result for

ix

the total domination, which we relate to some covering problems. Most of the results of
this chapter are published in [42].

The dominations problems can be viewed from another angle: trying to count the
number of different dominating sets of a specific graph. In Chapter 3, we attack this
problem in grid graphs for several domination variants: the domination, the total domin-
ation, and their minimal variants. Using the notion of subshifts and some known results
about them, we show that the number of dominating sets, for each of these four prob-
lems, admits a growth rate which is furthermore computable. We show this property by
analogy with the entropy of the domination subshifts, which we show are block gluing.
The number of dominating sets in grids is showed to be νnm+o(nm) for some constant ν
depending on the problem studied. For each of these constants, we give numerical bounds
obtained by our program. We also introduce a new domination family, which generalises
the domination and total domination problems: the meta-k-domination family of prob-
lems. We also study one particular property of the subshifts associated to this family.
The work of this chapter is a joint work of Silvère Gangloff and myself [17].

In Chapter 4, we study a problem related to the covering of rectangles we mentioned
for Chapter 2. We study polyominoes and the way they can or cannot tile some rectangle.
We are interested in rectifiable polyominoes: when there exists a rectangle the polyomino
can tile. The question we attacked, and has been open for 30 years, is the following: is
there a polyomino of odd order greater than one? This means we look for a polyomino
which can tile a certain rectangle with an odd number k > 1 of copies and which cannot
tile any rectangle with fewer copies. We tried to find such a polyomino, unfortunately
with no success. We describe several ways to find the order of a polyomino. Apart from
these algorithms, we also describe some methods to show, again with the help of a com-
puter program, that a polyomino is not rectifiable. Some ideas come from the work of
Karl Dahlke [11], which we programmed anew, along with some of our own optimisations.

To access the source codes of the programs I developed and used during my PhD,
see the version of this thesis stored on arxiv; it can be downloaded as a tar archive
at: https://arxiv.org/e-print/2002.11615. In total, the three different programs
account for around 16 000 lines of code.

x

https://arxiv.org/e-print/2002.11615

Chapter 1

Discharging and the four colours
theorem

One thing which strongly characterises human beings is their relation to waste. No other
species produce that much waste and then do not care about it. This waste can take
many shapes: from the plastic of our packagings, to some residues of the cleaning product
we use (or other products used by the industry), buildings and machines left beside when
no longer used... and obviously nuclear waste, which can last for 100 000 years. But more
shockingly is how we process this waste: some of it is simply discharged at the middle of
some nature, illegally1. Some nuclear waste was just dumped into water: between 1946
and 1993, before it was agreed to stop doing this2 France alone has put around 15 000
tons of nuclear wast into the sea and the world.

As we said in the introduction, the four-colour theorem is very famous because it is
the first big problem which was solved with a computer.

Theorem 1.1 ([1]). Every planar graph is four colourable.

We will explain each term in Section 1.1, so for the moment we consider an equivalent
version.

Theorem 1.2. Every planar map can be coloured with four colours.

Le us assume that we draw a finite number of lines on a sheet of papers, the lines
delimiting regions of the sheet. The theorem means that we can colour the regions
using only four colours and such that any two adjacent regions (sharing an edge3) have
different colours. For instance, it implies that it is not possible for five regions to be
pairwise adjacent, for they could not be coloured with only four colours in that case. The
theorem is however stronger than this fact.

The conjecture was apparently first proposed when, in 1852, Francis Guthrie was
colouring the counties of England and noticed that four colours sufficed in this task to

1and the authorities do not seem to put the necessary means to stop it, even when these places are
noticed

2Or maybe not, TEPCO company plans on putting 777 000 tons of contaminated water in the sea
following the Fukushima accident.

3non reduced to a point

1

guarantee that two neighbouring counties are given different colours. A lot of people
tackled this problem with little or no success until 1976. The first big attempt was
made by Kempe [32] in 1879. It was welcomed by his peers until, eleven years later,
Heawood [28] showed it was false. Similarly, a claim made by P. Guthrie Tait in 1880 was
only disproved in 1891 by Petersen. However, Heawood reused one argument in Kempe’s
proof, the notions of Kempe chain and Kempe interchange to prove a weakened version
of the four-colour theorem. These notions turned out to be important in later proofs.

Theorem 1.3 ([28]). Every planar graph is five colourable.

During the 20th century, much progress was made and the theorem was eventually
proved. In 1913, Birkhoff [3] formalised the notion of reducible configurations, i.e. sub-
graphs which cannot appear in a minimal counter-example. He notably showed that the
theorem holds for graphs with fewer than 26 vertices. Beginning in the 60’s, Heesch
worked on the problem and introduced a crucial step towards the resolution of the prob-
lem: the discharging method. Much excitement went about the problem, and it was
thought solved by Shimamoto. He showed that the whole problem could be reduced to
checking some property on a particular graph, the ‘horseshoe’. Heesch announced that it
was one of the graphs for which they had shown this property, called D-recucibility, but
it turned out that it was an incorrect result due to a flaw in the program he had devised
with Dürre. Finally, Appel and Haken [1] proved it in 1976, using the reducibility and
discharging methods. A small flaw in the program they used cast some doubts on their
proof. This proof was criticised by some sceptical people. The program was quickly fixed
by their authors, but this did not end the doubts on their proof. This proof relied on
some approximatively 2000 (later reduced to 1476) reducible configurations which had to
be checked by hand by the authors and Haken’s daughter, Dorothea Blostein. It also
relied on 487 discharging rules. In 1996, Robserton et al. [45] gave another proof, based
on the same principles, but needing much fewer configurations (633) which were checked
by a computer program, and also much fewer discharging rules (32). The same authors
announced in 1999 an alternate proof, by proving the ‘snark theorem’ which implied
the four-colour theorem. The proof is still not completely published. All doubts on the
four-colour theorem were disappeared in 2005 when Gonthier [22], using the Coq proof
assistant, made a certified proof of the theorem.

We begin by giving general definitions about graphs, including planarity, and colour-
ings, in Section 1.1. Section 1.2 is about the proof of the theorem by Robertson et al. We
first give a one-page sketch of the main ideas of their proof. After this, we consider the
false proof of Kempe, which introduced a central concept named the Kempe chains. The
rest of this section is devoted to the main two ingredient of the proofs of the four-colour
theorem: reducible configurations and discharging rules. The former consist in subgraphs
which cannot appear in a minimal counter-example, and the latter help us realise that
no planar graph can avoid all the reducible configurations. The last section is about
the work we did in this topic. It contains some details of the program we developed to
reproduce the proof of Robertson et al., and some ideas on how to further automate the
proof.

2

Figure 1.1: Shimamoto’s ‘horseshoe’ graph.
The figure comes from [7].

1.1 Graph definitions
In this chapter, Chapter 2 and Chapter 3 we talk about graphs. We define here what
they are, some vocabulary related to them, some of which is specific to this chapter.

Definition 1.1. A graph is an ordered pair G = (V,E): V ⊂ N is the set of vertices
and E ⊂ {{u, v} |u, v ∈ V, u 6= v} is the set of edges.
If V is finite, then the graph is finite.

Remark 1.1. Our definition is the one of simple graphs: it forbids loops (an edge between
a vertex and itself) and parallel edges (multiple edges having the same endpoints). In all
this thesis we only deal with simple graphs.

Definition 1.2. If {u, v} ∈ E we say that u and v are neighbours, or connected.
The number of neighbours of a vertex u is called the degree of u and denoted by d◦(u).

Definition 1.3. We define the open neighbourhood, or neighbourhood of a vertex
u, and denoted by N(u) as the set of neighbours of u. The closed neighbourhood of
u is N [u] = N(u) ∪ {u}.

a b

cd

e f

g

Figure 1.2: An example of a graph.

3

Figure 1.2 illustrates a graph with 7 vertices (a to g) and 9 edges. a and e are
connected, but c and a are not. e has degree 4, f has degree 1 and g is not connected to any
vertex: its degree is 0. The neighbourhood of b is {a, e, f} and its closed neighbourhood
is {a, b, e, f}.

Definition 1.4. An embedding of a graph G into the plane is a representation of G
on R2: vertices are given coordinates and every edge {u, v} is drawn as a connected arc
whose endpoints are the points assigned to u and v.

Usually when we speak about graphs, in addition to giving V and E we also give
embeddings of them, i.e. we draw a representation of them.

Definition 1.5. A graph is said to be planar when it can be embedded into the plane
such that no two edges cross.

This means that there is a way to draw the graph on the plane such that no pairs of
edges cross. It does not mean, of course, that any embedding of the graph would respect
this property.

Definition 1.6 (Figure 1.3). Any embedding of a planar graph the edges of which only
intersect at the vertices is called a plane graph.

Remark 1.2. Any planar graph can be embedded on a sphere such that edges only intersect
at the vertices.

Figure 1.3: Two embeddings of the same planar graph (K4). Only the one on the right
is a plane embedding.

In this chapter we focus on planar graphs, and we reason in fact on plane embeddings
of them.

Definition 1.7. A face of a plane graph is a region of the map delimited by vertices and
edges, and which contains no vertices and no edges except the ones of its boundary.
A triangle is a face delimited by three vertices.

In Figure 1.3, the plane graph has 4 faces, all of them being triangles.

Definition 1.8. We say that a plane graph is triangulated when all its faces are tri-
angles. It is almost-triangulated when all its faces except at most one are triangles. If
there is one, the non-triangular face is then called the outer face.

4

Definition 1.9 (see Figure 1.4). c : V 7→ J1, kK is called a k-colouring of G = (V,E).
A k-colouring c is proper when for any {u, v} ∈ E c(u) 6= c(v).
A graph is k colourable when it admits a proper k-colouring.

C R

RG

C R

YG

Figure 1.4: Two colourings of K4. Only the one on the right is proper: the two vertices
coloured in red on the left are connected.

A proper colouring means that the vertices of a graph are given colours among a set
of k colours, such that any two connected vertices receive different colours. The idea of
giving different colours to connected vertices arises from practical problems. In the case
of colouring a map, it makes the map clearer by making the frontiers more visible: since
adjacent countries have different colours we may not think that they are the same big
country. We can also model a room assignment problem with graph colourings. Suppose
we have n different lessons to be given and we fixed the schedule of the lessons but would
like to know how many rooms we need. We can think of the lessons as vertices, and
two vertices are connected if the lessons cannot be put in the same room because their
schedules overlap. Each colour we assign to vertices will represent a room, different col-
ours representing different rooms. Then any proper colouring of the graph with k colours
gives an assignment of the lessons to k different rooms. The minimum number of colours
needed for a proper colouring gives the minimum number of rooms needed.

1.2 The proof

1.2.1 Scheme of the proof

We give here a five-minute overview of the proof: we abstracted it very much skipping
most details and above all technical ones. We boiled down the proof into nine notions,
some very short, other more detailed.

The first idea is that we make a proof by contradiction: we assume that there is
indeed a planar graph which is not 4 colourable. Let us call this guy G0. Actually, we
will reason on plane graphs (see Definition 1.6): a planar graph may admit several non-
isomorphic plane embeddings. The second idea is to reduce the number of candidates for
G0: to show that it cannot exist, we must find contradictory properties it has. So we first
assume that we look for a critical counter-example: G0 must be 5 colourable. We also
restrict ourselves to minimal counter-examples: G0 is chosen such that no graphs smaller
than G0 can be counter-examples. Idea three is then to use the previous conditions to

5

show properties our graph has, to restrict the number of candidates for G0. For instance,
we can show that G0 must be triangulated (see Lemma 1.4) and have no vertex of degree
less than five. The fourth ingredient is the notion of reducible configurations : they are
graphs which cannot appear in G0. There are several reasons for a configuration to
be reducible, and they can be tested by a computer. The goal here is to obtain a list
of reducible configurations ‘big enough’. Now, at step five, we want to show that no
plane graphs can avoid all the reducible configurations we found. To do this, we use the
discharging technique. First we decide on a way to assign weights to the vertices of G0,
such that the sum of the weights over any plane graph is 120. We then design discharging
rules : each time some specific configuration4 appear in a weighted graph G, we transfer
some weight from some special vertex to another special one, depending on the rule. At
the sixth step, we know that any application of a rule preserves the total weight of the
graph. Hence after applying our set of rules to G0, the sum of the weights is still 120.
Therefore, some vertex v0 has a positive weight after applying the rules. We want to
show that some reducible configuration necessarily appears in the second neighbourhood
of v0. The seventh ingredient is to enumerate all possible neighbourhoods for v0 with
the help of a computer. We start with v0 and use a branch-and-bound algorithm to
generate these neighbourhoods. At each step of the algorithm we precise a little more
our neighbourhood, or we extend it. Before going further, at each step we test our current
neighbourhood. If it cannot be triangulated, or if we can see that any extension of this
neighbourhood will necessarily contain a reducible configuration or forces v0 to have a
non-positive weight after applying our set of rules, we discard it and backtrack. The
eighth thing to do is to find a set of discharging rules which is good enough. By this we
mean a set which, together with the list of reducible configurations, leads to discarding
all possible neighbourhoods and show that G0 does not exist. Robertson et al. found, by
trial and error, a sufficient set of discharging rules. Beginning with only a few rules, the
exploration program did not seem to finish. By looking at some neighbourhoods which
could not be discarded, they designed new discharging rules. A new run of the program
led to other new rules, and so on... until at some point the program terminated, proving
the theorem.

1.2.2 An interesting wrong proof

We give here a proof which turned out to be false and could not be fixed. However
it introduces an important notion in the colouring of planar graphs: the one of Kempe
chains. It was published in 1879 by Kempe [32]... and the flaw was discovered by
Heawood [28] 11 years later! The proof uses some lemmas which are true and reused in
the proof by Thomas et al., in particular the concept of Kempe chains.

We us assume we colour our vertices with four colours: α, β, γ and δ.

Lemma 1.4. Any minimal counter-example to the four-colour theorem is triangulated.

Proof. Let assume G0 = (V0, E0) is a minimal counter-example for the four-colour the-
orem and has a face with at least 4 vertices. Then let u and v be two non-adjacent vertices
of this face. We create G′0 to be the graph where u and v are identified: G′0 = (V ′0 , E

′
0) with

V ′0 = V \{u, v}∪{uv} and E ′0 = E0\{{a, b} | a ∈ {u, v}}∪{uv , b} | {u, v} ∈ E0 or {v, b} ∈ E0}.
4not the reducible ones, some other ones

6

Now any colouring c′ of G′0 extends itself to a colouring c of G0 by giving to u and v
the colour uv has in c′. Indeed, identifying u and v preserved the vertices connected to u
and v: any of their neighbours is neighbour of uv . This works because u and v were not
neighbours in G0. This implies that the set of colourings of G′0 is included in the one for
G0. Since G0 admits no four-colourings, the same applies to G′0. Therefore G′0, which is
still planar, is a smaller counter-example, which is a contradiction.

Lemma 1.5. Any triangulated planar graph has a vertex of degree less than 6.

Proof. We use Euler’s formula for planar graphs: n−m+ f = 2, where n is the number
of vertices, m the number of edges and f the number of faces. Besides, since all faces are
triangles, the number of edges satisfies f = 2m/3: each edge belongs to two faces and
the sum of edges over the faces, which are triangles, is 3f . Euler’s formula can then be
rewritten to 3n−m = 6 or m = 3n− 6. Summing the degrees of the vertices equals 2m:
each edge has two incident vertices. The average degree of the (finite) graph is 2m/n so
here it is 2m/n = (6n− 12)/n < 6. Since the average degree is lesser than 6, at least one
vertex must have a degree at most equal to 5.

Now we want to show that no counter-examples to the four-colour theorem exist. To
show this, Kempe used strong induction: we look for a minimal counter-example G0. By
Lemma 1.4, we may know that G0 has a maximum number of edges, namely that it is
triangulated. We proceed by contradiction, assuming that such a counter-example G0

exists. We proceed by disjunction of cases since G0 has a vertex of degree d < 6:

First case: d < 4.
In this case let u be a vertex of degree d < 4. We remove u and its edges, so the

remaining graph must be four colourable by the minimality hypothesis. Let us consider
the colours its d < 4 neighbours receive. There is at least one colour which is not given to
them (since we have four colours available). We can extend the four-colouring of G0 \ u
to u by colouring it with the remaining colour, hence our graph G0 is four colourable,
which is a contradiction.

Note that the graph obtained by removing umight no longer be triangulated. However
this is not a problem: G0 \ u is still smaller than G0.

Second case: d = 4. (see Figure 1.5)
We need here to introduce the very useful concept Kempe introduced in his proof.

Definition 1.10. Let G = (V,E) be a four colourable graph and c : V → {1, 2, 3, 4}
a four colouring of it. Let G{α,β}, more concisely written Gα,β, be the subgraph of G
whose vertices are coloured with colour α or β. For any pair of α 6= β ∈ {1, 2, 3, 4}, any
maximal connected component of Gα,β is called a Kempe chain, or more precisely an
αβ-chain of c.

Definition 1.11. Given G, c and a pair α 6= β a Kempe interchange with respect to
the colour partition {{α, β}, {δ, γ}} is the colouring c′ obtained by switching colours α
and β in one of the αβ-chains, or by switching the colours γ and δ in one of the γδ-chains.

One important and useful fact about Kempe chains is the following:

7

Fact 1.1. Performing a Kempe interchange on a proper four-colouring c always yields a
proper four-colouring c′.

Indeed, by definition of a Kempe chain, we are switching two colours of a maximal
component of vertices which had these colours. This means that if we exchanged colours
α and β, any vertex which had its colour changed did not have any neighbour coloured
α or β outside its αβ-chain.

Remark 1.3. Performing a Kempe interchange along an αβ-chain may create or remove
αγ-chains, αδ-chains, βγ-chains and βδ-chains. However such a Kempe interchange does
not modify the αβ-chains and γδ-chains.

Now let us consider a vertex u of degree 4. We remove it from the graph, and
colour the resulting (smaller) graph with four colours. If two of u’s neighbours share the
same colour, then we use one spare colour for u. Otherwise, the neighbours have four
different colours, let us say Orange, Cyan, Pink and Red. Let us call vO, vC, vP and vR
the neighbours of u labelled with these colours. We assume that in clockwise direction,
the neighbours of u are vO, vC, vP and vR. We take for instance vO and the OP-chain GOP

which contains vO. If vP does not belong to this subgraph, then we perform a Kempe
interchange along this chain. This frees colour O because vO gets colour pink. Hence
we can colour u with orange. On the contrary, if vP belongs to the OP-chain containing
vO then we consider the RC-chain GRC containing vR. vC cannot belong to this chain
because the chain GOP acts as a barrier: it contains only orange and pink vertices, hence
no red or cyan vertex of GRC. Since the graph is plane, no edges can cross GOP. This
means that we can perform a Kempe interchange along GRC. vR becomes cyan and we
can colour u in red.

u

C vC

P vPR vR

O vO

P
O

P

O

R

C R

R

C

C u

R vC

P vPR vR

O vO

P
O

P

O

C

R C

C

R

Figure 1.5: Illustration of the Kempe interchange for the case d = 4 in Kempe’s proof.
The PO-chain acts as a barrier: it guarantees that the CR-chain containing vC cannot
contain vR. On the right we have performed a CR-interchange so that the colour cyan is
free for u.

8

Third case: d = 5.
This last case is the most difficult and uses the ideas of the previous case. As usual,

let u be a vertex of degree 5. We four colour the graph G0 \ {u}. If the neighbours of
u are coloured with fewer than four different colours, we use a spare one for u. If this
is not the case, two vertices have the same colour, say pink, and each of the other three
has a colour from the remaining three ones. There are two cases: either the two pink
vertices are adjacent when we list the neighbours of u in clockwise order, or they are not.
The first case cannot occur since G0 is triangulated: two consecutive neighbours of u are
connected themselves, hence they cannot receive the same colour in G nor in G \ u.

So we deal with the case when the two pink vertices are not adjacent. We may assume
that the vertices, listed in clockwise directions are (their names reflect their colours): vP,
vO, v′P, vR, and vC. We consider the OC-chain GOC which contains vO. If it does not
contain vC then for the same reason as in the case d = 4 we are done. So we assume GOC

contains vC. We then consider the OR-chain containing vO. We again assume that we are
in the worst case: vR ∈ GOR. We now consider two new Kempe chains: the PR-chain GPR

which contains vP and the PC-chain GPC which contains v′P. Like before, GOR and GOC

act as barriers. Therefore, using the same arguments we conclude that both vC /∈ GPC

and vR /∈ GPR. We can then perform a Kempe interchange on GPR and one on GPC such
that vP becomes red and v′P becomes cyan. We finish by colouring u with pink.5

u

R vR

C
vC

P vP O vO

P v′P

O

RxR C xC

u

R vR

C
vC

R vP O vO

C v′P

O

PxR P xC

Figure 1.6: Illustration of the flaw in Kempe’s proof for the case d = 5. When performing
the two interchanged mentioned in the proof, xR and xC both receive the colour pink,
hence the colouring is not proper.

A fourth case for the prosecution. (see Figure 1.6)
There is subtle flaw in this proof, which you may have overlooked. Indeed, vO may have

5QED

9

one neighbour xR coloured in red and xC coloured in cyan. Let us assume that xR and
xC are connected. It is moreover possible that xC belongs to GPC and that xR belongs
to GPR. In this case, after performing the Kempe interchanges in GPC and in GPR, a
problem arises: xR and xC are both pink, which makes the colouring invalid.

In his PhD manuscript, in 1921, Errera6 found a graph with 17 vertices and 45 edges,
known as the Errera Graph, on which Kempe’s proof fails. Therefore, the proof cannot
be fixed.

However, Kempe’s proof can be used to show that any planar graph is five colourable
as Heawood did in [28]. Indeed, the only non-trivial case in the proof of this result is
when d = 5. We can use the arguments of the case d = 4 of Kempe’s proof: taking two
disjoint Kempe chains and using one as a barrier.

1.2.3 Forbidden subgraphs

To reduce the number of possible counter-examples to explore, one way is to find a list of
subgraphs which cannot be contained in any triangulated minimal counter-example: the
forbidden configurations. This way, if at some point our current partial graph contains
any graph in the list of forbidden configurations, we may discard it because any final graph
we would obtain from this one would contain the forbidden configuration, hence could
not be a counter-example. These forbidden configurations can be obtained thanks to the
properties we imposed on our counter-example G0: triangulation and minimality. We
begin by giving a property shared by minimal counterexamples. We then define what a
configuration is, and afterwards explain how to find some of the forbidden configurations.

The idea behind it is, assuming the correctness of the theorem, that if we list enough
configurations then no plane graphs forbidding them all can exist. Section 1.2.4 describes
a tool to realise ‘quickly’ that indeed no plane graphs can exclude all the given forbidden
configurations.

We already proved something with Kempe’s false proof.

Lemma 1.6. The minimum degree of a minimal counter-example is five.

Proof. The proof is simple. Let G be a minimal counter-example. Let us assume that G
has a vertex u of degree less than 5. By minimality of G, G \ u is four colourable. We
showed in the correct part of Kempe’s false proof that there exist a 4-colouring of G \ u
which can be extended to a colouring of G. Therefore, G is not a counter-example, which
concludes the proof.

Definition 1.12. A separating short circuit C of a plane graph G is a cycle of size at
most five such that: if C is of length 3 or 4 then each of the two open7 regions bounded
by C contains at least one vertex, and if C is of length 5 then both open regions contains
at least 2 vertices.

Lemma 1.7 ([3]). Any minimal counter-example contains no short cycles.

We prove this lemma in the cases of cycles of lengths 3 and 4 to illustrate a bit the
concept of reducibility. We leave aside the case with a short cycle of length 5, which is
longer to prove and does not bring much more understanding.

6who bears the same first name as Kempe
7excluding C

10

Partial proof. Let us assume that G0 is a minimal counter-example to the theorem and
that C is a separating short circuit of G0 of length 3 or 4. We define Gin and Gout be the
two closed regions bounded by C. Note that they both contain C.

Let us assume that C is a triangle with vertices a, b and c. Since Gin and Gout are
smaller than G0, each of them admits a four-colouring, and the vertices of C must receive
different colours since they are pairwise connected. Up to renaming the colours, we may
assume that in both colourings a receives colour 1, b colour 2 and c colour 3. The two
colourings agree on the vertices of C so that they can be combined to form a four colouring
of G0, which is a contradiction.

We now assume that C has four vertices: a, b, c and d. We define in the same way Gin

and Gout. For the same reason as before, each of them is four colourable. Up to renaming
the colours, each colouring must be (1, 2, 3, 4), (1, 2, 1, 3), (1, 2, 1, 2) or (1, 2, 3, 2): either
all vertices receive different colours, only two opposite vertices receive the same colour,
or each pair of opposite vertices receive the same colour. If both Gin and Gout admit a
colouring of the shape (1, 2, 3, 4) then we are done: each of this colouring can be extended
to G0 as for the previous case.

We then assume that Gout does not admit (1, 2, 3, 4) as a proper colouring. We will
show that it admits both (1, 2, 1, 3) and (1, 2, 3, 2) as proper colourings, and that Gin

admits one of the two. First, we prove that Gout must admit colourings of the shape
(1, 2, 1, 3) and (1, 2, 3, 2). Indeed, the graph Gout to which we add the edge {a, c} is still
smaller than G0, hence it admits a proper 4-colouring giving a and c different colours.
This colouring is a proper colouring for Gout. The same argument applies if we instead add
the edge {b, d}. Now we know that Gout admits both (1, 2, 1, 3) and (1, 2, 3, 2) as proper
colourings. If Gin admits one of them, we are done. If it is not the case then Gin only
admits colourings of the shape (1, 2, 3, 4). We can then look at the 13-chain containing c:
if it does not contain a we may perform a Kempe interchange and obtain (1, 2, 1, 4). Up
to renaming the colours, we may assume it is the desired (1, 2, 1, 3). Otherwise, as in the
case d = 4 of the Kempe proof in Section 1.2.2 we know that the 24-chain containing d
does not contain c, hence we can obtain (1, 2, 3, 2), which concludes the proof for a short
circuit of length 4.

We now introduce the notion of configuration used by the correct proofs of the four-
colour theorem. It enables us to define ‘partial’ graphs, which will be shown to be excluded
from any minimal counter-example. We recall that an almost-triangulated plane graph
is an embedding in which every face is a triangle, except for at most one.

Definition 1.13. A configuration is a couple C = (H, γ) where H = (V,E) is an
almost-triangulated plane graph and γ : V → N. It verifies γ(v) = d◦(v) except for the
vertices of at most one face, which has to be the non-triangular face if any. This face is
called the outer face, and its vertices verify γ(v) > d◦(v).

We can see an example of configurations in Figure 1.7. Each configuration is drawn
such that its contour is the outer face. We can see that, in the second line, two config-
urations have a vertex which does not belong to the outer face. In both cases it has a γ
value of five, and its degree in the configuration is indeed five. The other vertices have a
degree in the configurations at most equal to their γ value.

Definition 1.14. A configuration C = (H, γ) appears or is contained in a triangulated
graph G when:

11

Figure 1.7: An example of reducible configurations found by Robertson et al. The vertices
represented by a black circle have a γ-value of 5, and the others a γ-value of 6.
The figure comes from [45].

• H is an induced subgraph of G;
• except for the outer face, any face of H is mapped to a face in G;
• if uH ∈ H is mapped to uG ∈ G then d◦(uG) = γ(uH): γ represents the degrees of

the vertices once mapped in a graph.

Definition 1.15. When a configuration C cannot appear in any minimal triangulated
counter-example, we say that C is a forbidden configuration, or that C is reducible.

Figure 1.7 gives an example of twelve reducible configurations from [45]. In that
paper, great care is brought to the list of reducible configurations. Their configurations
have stronger structural properties than in Definition 1.13. For instance, if removing a
vertex splits the graph into several components then there are at most two of them and
this vertex has exactly two other neighbours than the one appearing in the configurations
(its γ-value is 2 more than its degree in the configuration). If a vertex is not incident to
the region which is not a triangle, then its gamma value is its degree in the configuration.
Some other properties are true for their list of reducible configurations, one of which
saying that the sum of the γ(v)− d◦(v)− 1 over some specific sets of vertices is at least
two.

One way to show that a configuration G = (H, γ) is reducible is to show that if a
graph G0 contains G and is not four colourable, then there exists a graph G′0, still not
colourable, but with fewer vertices than G0. For instance, G′0 could be constructed from
G0 by removing H and replacing it with a smaller subgraph. We describe a bit further
how to detect this case, as well as another way to find that a configuration is reducible.

We consider a configurationG, almost-triangulated, and denote by L the cycle defining
its outer face. We call L the crown of the configuration. We generate the list Xtrue of all
4-colourings of L which induce a proper colouring on G, i.e. all colourings pf L which can
be extended into a proper colouring of G. If G appears in some counter-example, then
every proper 4-colouring of G is guaranteed to be non-extendible to the whole graph it
would appear in, for otherwise the counter-example would have a 4-colouring. We study
the restrictions of the colourings of G to its crown because if G appears in a counter-
example, its crown is its ‘interface’ with the other vertices. We now try to find a smaller
configuration G′ which has the same crown bounding its outer face, with some property
on its colourings. If, denoting the set of the restrictions of its proper 4-colourings to the

12

crown L by X ′true, we find that X ′true ⊆ Xtrue, we deduce that G is reducible. Indeed, let
G0 be a counter-example containing G. Let us replace G by G′ in G0 to obtain G′0. G′0 is
smaller than G0 and admits no 4-colourings. Indeed, any 4-colouring of G′0 would induce
a 4-colouring of G0: this 4-colouring restricted to the crown L would also be proper
for G, hence a proper colouring for G0. We would have achieved our goal: any time G
would appear in a counter-example, it could be replaced by G′, hence this would show
its reducibility.

However, having to enumerate all smaller configurations with the same crown (and
its 4-colourings inducing a proper 4-colouring of G!) is very costly in time. Also, this
technique was not efficient enough for the proof of Robertson et al.: it misses a lot of
reducible configurations. Indeed, when examining a configuration, it leaves aside the
completions of the configuration into a plane graph. It may be possible to show that
some configuration forces any graph extending it to be four colourable. There are indeed
others techniques to show that a configuration is reducible: in fact the researchers who
worked on the four-colour conjecture categorised the reducibility property into several
classes. One of them, used in the proof of Robertson et al. is the D-reducibility. It once
again uses an argument based on Kempe chains. Let again G be a configurations which
we want to show is reducible. Let us call Xfalse the list of the 4-colourings of the crown
L of G which do not induce a proper 4-colouring of a configuration. Let us assume that
G appears in G0. We then know that G′ = (G0 \G) ∪ L is four colourable, because it is
smaller than G0. Let us call X ′true the list of the 4-colourings of L which induce a proper
4-colouring of G′. G appears in G0 and G0 is not four colourable, therefore like previously
X ′true ⊆ Xfalse. Our goal is to show that in fact X ′true = ∅, which is a contradiction: G′,
being smaller than G0, is four colourable. To do so, we try to find a maximal consistent
set X ′C of allowed 4-colourings for G′. We begin by setting X ′C = Xfalse. Then, for each
colouring in X ′C, we first look for other colourings of the crown which should be allowed
for G′ based on Kempe interchange arguments. If, for some colouring c ∈ X ′C, one such
colouring c1 is not allowed, i.e. not in X ′C then this implies that c is in fact not allowed
either. This is what is called the consistency of a set: if a colouring is allowed, but
not some colourings obtained by Kempe interchanges, then the set of allowed colourings
is inconsistent. Removing c may in turn lead to some other removals of possibly valid
colourings. We iterate this process until the set X ′C stabilises. If at the end X ′C = ∅,
this means that the configuration is D-reducible. We do not dive into the details of
how to deduce which colourings should also be valid, given that some c belongs to the
current X ′C. The algorithm to compute these is quite complex. In our code, the search
for a maximal consistent set of colourings included in some Xfalse is done by the function
get_maximal_consistent_colouring_subset.

We may notice that we can combine this method with the previous one, when we
enumerated smaller subgraphs. Indeed, we looked for some smaller configuration G′ such
that X ′true ⊆ Xtrue, or, equivalently, such that Xfalse ⊆ X ′false. This condition is more
frequently met if we reduce the set Xfalse to a maximal consistent subset. Robertson et
al. used this D-reducibility notion, but they also used another type of reducibility (the
C-reducibility) which we do not define here.

13

1.2.4 The discharging method

We detail here more the idea of discharging, mentioned in Section 1.2.18. It helps us
realise that the class of minimal counter-examples is empty. Discharging requires us to
work on weighted graphs.

Definition 1.16. A weighted graph is a couple (G,w) where G = (V,E) is a graph and
w : V 7→ Z is the weight function.

The weight function assigns a weight to each vertex of the graph. The discharging
method will consist in locally moving parts of the weights between certain vertices and
some of their neighbours whenever certain conditions are met. Note that here we only
put weights on vertices, but it is possible to also put weights on edges and faces.

Definition 1.17. A discharging rule is a quadruplet (F , u, v, q): F is a configuration, u
(the source) and v (the sink) are vertices of F , and q is the weight of the rule.

Definition 1.18. Applying rule (F , u, v, q) to a weighted graph (G,w) results in the
weighted graph (G,w′) where for all u ∈ V , w′(u) = w(u) + (a− b)q if, in G, F appears
in a different times with u as a sink and b different times with u as a source.

Applying a rule consists in, each time F appears in G such that u ∈ F is matched
with u′ ∈ G and v ∈ F is matched with v′ ∈ G, transferring a weight of q from u′ to v′.
Remark 1.4. Note that, like for weighting a graph, we put weights on the vertices, but
other uses of the discharging method can also weight edges and faces. In this case, the
discharging rules would also transfer weights between vertices, edges and faces.

Fact 1.2. Applying any discharging rule to a graph does not change its total weight.

Fact 1.3. If a graph has a positive total weight then it has a vertex of positive weight.

These two facts are trivial. Now, let us assume that the class of minimal counter-
examples to the four-colour theorem is not empty. Let G0 be a minimal counter-
example. We assign the weights in G0 in the following way:

w(v) = 10(6− d◦(v)).

Claim 1.1. If G is triangulated, then the sum of the weights of (G,w) is 120.

Proof. To show this claim, we use again Euler’s formula for planar graphs: n−m+f = 2
where n,m and f are respectively the number of vertices, edges, and faces of our graph.

Since our graph is triangulated, we have 3f = 2m: each face has three edges, but
each edge is shared by two faces. Now:∑

v∈V

w(v) =
∑
v∈V

10(6− d◦(v)) = 10(
∑
v∈V

6−
∑
v∈V

d◦(v)) = 10(6n− 2m) (1.1)

= 10(6m− 6f + 12− 2m) (1.2)
= 10(12 + 4m− 6f) (1.3)
= 120. (1.4)

(1.2) comes from Euler’s formula and (1.4) from the relations between f and m we
mentioned above.

8We hope we were not too efficient so that there are still things to learn or understand here.

14

Figure 1.8: The 32 rules used in the proof by Robertson et al. The degrees are given by
symbols: black circles, points, white circles, white squares and white triangles respectively
represent integers from 5 to 9. A ’-’ (resp. ’+’) sign as exponent means ‘degree at most’
(resp. ‘degree at least’). All rules have weight 1 except for the first one. The arc in the
configuration originates at the source of the rule and ends at its sink.
The figure comes from [45].

15

Since G0 has a total weight of 120, and from Facts 1.2 and 1.3, there is a vertex
which has a positive weight after applying all the discharging rules once.
We name it v0. Our goal will be to show that it cannot exist: any neighbourhood
for v0 will necessarily contain reducible configurations. We will enumerate the possible
neighbourhood with the help of a computer. This enumeration is detailed in Section 1.3.1.
We show in Figure 1.8 the 32 discharging rules of the proof of Robertson et al.

1.3 Contribution
We began by proving again the four-colour theorem, using the data (the lists of forbidden
subgraphs and discharging rules) from the proof of Robertson et al. [45]. We explain
here the different parts of the program and some of the algorithms we implemented. A
modification of this program is released with a Python interface. It can be included
with the Sage software, a free mathematical assistant. It enables anyone to try to prove a
result using the discharging method: the user has to provide the forbidden subgraphs and
discharging rules for their problem, as well as a weight function. Then our program tries
to prove that no plane graphs avoiding all the forbidden subgraphs exist. We provide
some flexibility to the user since they can provide a python function which, given a
partial current graph, decide whether or not it should be discarded: some properties may
be better coded than expressed in terms of forbidden subgraphs.

1.3.1 The program

We describe here several parts of the program, like the scheme of the branch-and-bound
enumeration of the possible neighbourhoods for v0. We recall that G0 is a minimal
counter-example we assume the existence, and v0 is one of its vertex which has positive
weight after applying all the rules once.

The enumeration.
We start the search for G0 with v0: it is the first vertex we build. We then explore

the possible neighbourhoods for v0. In the exploration, we can do several things: add
vertices and edges, or choosing the final degree of a vertex (at first, they have some degree
interval). By doing so, we will indeed explore every possible neighbourhood for v0, until
building G0 or showing that G0 does not exist9.

Let us describe the algorithm with more details. We first start with the vertex v0, or
in fact a triangle containing v0 since G0 is triangulated. The degree of each vertex of the
triangle has degree between 5 and 12, except for v0 which has degree between 6 and 11.
These restrictions were shown by Robertson et al. (we already showed each degree must
be at least 5).

Let us assume that we are at some step with a partial neighbourhood of v0 we call G.
We have two options. We may choose a vertex u whose current degree lies between k1
and k2 with k1 < k2. We subdivide its degree interval into two smaller ones: G′ derived
from G by fixing the degree of u to be k1 and G′′ in which the degree of u is between
k1 + 1 and k2. We will continue the exploration first with G′, then with G′′. The second

9The course of History has taught us that it is this option which happens.

16

option is to create a new edge from a vertex u whose degree interval is not J0; 0K. This
edge may create a new vertex, or its other endpoint may be an existing vertex. In both
cases, we create every free triangle we can: if a vertex has degree one, we know it will
belong to a triangle we can describe.

Sometimes creating free triangles may fail: a triangle cannot be constructed because
a vertex cannot accept new neighbours for instance. When this occurs, we may discard
our current graph and backtrack. Before calling recursively our exploration function on
a graph G′, we do some checks. If G′ contains a reducible configuration, we may also
discard it. Finally, we also apply all the discharging rules which involve v0 and obtain an
interval for the final weight of v0. For instance, for the upper bound we apply the rules
we are sure apply, and apply also the rules which may apply and contribute to increasing
the weight of v0. If the upper bound is non-positive, this is a contradiction10 and we
may also discard G′ and backtrack. Besides, we may use the information about some
configurations which almost appeared, or some rule which almost applied to choose how
to expand our current graph or which degree to refine. Good heuristics for this choice
lead to reducing the number of graphs we explore, hence reducing the running time.

Storing plane graphs.
We manipulate partial plane graphs all the time in the program so they must be

stored efficiently for our uses. First, before storing them we had to read the reducible
configurations and rules from Robertson et al. The way the reducible configurations are
encoded is available at http://people.math.gatech.edu/~thomas/FC/ftpinfo.html.
To parse them requires a good comprehension of their proof. Each one is given as the
coordinates of an embedding of the configurations. The format of the rules is described
in [46] and, is also not that handy. Our program uses a different format which we
find easier and more convenient. Since a plane graph is completely determined by the
directed list of the edges of each vertex, we decided to store a graph as the directed
adjacency lists of each of its vertices. We chose the counter-clockwise direction in our
program. As we mentioned, each half-edge contains the information about the minimum
and maximum number of future edges between itself and the next known half-edge of the
vertex.

Concerning the storing of the graphs properly speaking, it essentially boils down to a
doubly-linked list of ‘half-edges’ for each vertex. We call them half-edges because an edge
{a, b} is both stored for a and for b. Also, any edge defines an angle: the interval giving
the number of other edges between this edge and the next known edge of the vertex. This
means that the half-edge joining a to b and the one joining b to a are not the same: they
define different angles. For easy triangle making and detection we also store, for each
half-edge, a link to its other half.

Detecting if a configuration appears.
To detect when reducible configurations appear and which rules apply, we need some

subgraph detection routine. This is called the induced subgraph isomorphism problem,
and is known to be very hard for general graphs. However, here it is on plane graphs that
we want to detect some type of isomorphism, which modifies the rules of the problem,

10We chose v0 such that its weight is positive after applying the rules.

17

http://people.math.gatech.edu/~thomas/FC/ftpinfo.html

0[5;5]

1[5;5]

2[6;12]

3[6;12]4[6;12]

5[8;8]

6[5;12]

0
1
2
3
4
5

Figure 1.9: A screenshot of our program showing a partial graph during the exploration.
The colours are indicated on the top left corner. The label of each vertex is of the form
‘a[b; c]’: vertex a has degree between b and c. Each edge is split in two in the middle: the
two different half-edges. The colour of the half-edges indicated the degree interval of the
angle until the next edge (in counter-clockwise direction). If a half-edge has two colours,
the smallest one is the lower bound on the degree of the angle, the other one is the upper
bound.

and make it polynomial.
Indeed, let us assume that G and C are plane graphs and not configurations: each

vertex has a degree instead of a degree interval, and all vertices and edges are known.
We want to know if, or even (for the discharging rules) where C appears in G.We may
choose an edge eC and try to match it to every edge eG. Now, to verify if one matching
of this edge extends to an isomorphism between C and G, we may do a graph traversal
by walking from faces to faces. We are forced to map the faces which contain eC to the
faces which contain eG. There are two faces, and as soon as one is chosen, then the rest
of the isomorphism is forced: there is always one choice (or 0 if G does not contain C)
for matching every other vertex and edge.

Yet, here we do not test for exact isomorphism because in the rules and reducible
configurations, vertices of the crowns do not have every neighbour instantiated. This
happens a bit in C, and more in G. We precise here how a configuration appears in
such ‘partial’ graphs G we manipulate here: a configuration appears if whatever the
completion of G into any Gfinal, C appears in Gfinal. Due to this problem we sometimes
cannot conclude: C might for instance be a subgraph but we cannot decide yet if it will
be an induced one.

In order to optimise the induced subgraph detection we may first look at the maximum

18

and minimum degree of C: each of these two vertices must be assigned a vertex in G
with the same degree. After this, we may look at the list of degrees in C and in G. By
choosing to match first an edge belonging to a vertex of G whose degree appears the least
often in the list of degrees of G, we may reduce the running time of the check. Indeed,
ideally the vertex would only be matched to a single vertex of G, if it is alone to verify
the degree condition.

A Python/Sage library to use the discharging method.
We decided, since we had programmed it, to let the community use our engine for

discharging. We created a Python interface to our program. The user has to provide a
file containing the reducible configurations, and a file containing the discharging rules11.
They must also provide a function to compute the weights of the vertices. They can
provide a python function which has access to a current neighbourhood in the explora-
tion, and decides whether it should be discarded based on some other properties. The
program then enumerate the possible neighbourhoods of a vertex which should have a
positive weight after applying the rules. It can print the neighbourhoods which could not
be discarded (see Figure 1.9).

Making this program available to Sage meant porting it to Python. Instead of writing
the code from scratch in Python, which would in addition make it slower, we decided to
interface it with Python. We used the Boost.Python library, which allows us to expose
some C++ functions to a python program. It creates a Python module including the
specified functions. To do so, we needed to add a bit of code: tell Boost.Python how
to translate the functions, i.e. what types they should have. Some problems occurred
during this translation, in particular with C++ functions using some C++ features. We
sometimes had to define a new C++ function to wrap a problematic one into something
with a simpler header (the types of the arguments of the function and its return type).
For instance, no functions exposed to Python could contain pointers.

We also said that the user could provide a function to check for properties easier to
check with some code than by forbidding graphs. They also need to provide a function
to compute the weight of a vertex. This means the C++ code12 should be able to
execute a Python function13. This was harder than running C++ code from Python.
We managed to do it with the same Boost.Python library, which provided some ‘python
object’ type, which could be anything passed by Python to the C++ program. It also
provides functions to specify this object, that is for instance specify its type, and if it is
a function. In the latter case, it is possible to run the Python function and retrieve its
output. After some time testing how all this was working, we achieved our goal. A good
thing is that the modifications involved adding a bit more code but are rather transparent:
the exploration function calls the function compute_weights which can either be a C++
function (as we did ourselves for the four-colour theorem) or a Python function. Our
exploration function contains a unique call to the compute_weights function, which
means that the syntax of the calls was not modified and that a C++ function and a

11for the moment, only with weights on vertices
12called from a python code
13If you followed carefully, it means that a python code would execute (some C++ code which executes)

some Python code!

19

Python function can be unified in a single C++ Boost.Python type.

1.3.2 A possible more automated approach

The original goal which motivated us to study and redo the proof of the four-colour
theorem was to automatise the proof a bit further. The set of reducible configurations
was generated by a computer, so this part is fine. The set of discharging rules, however,
was found by hand, by error and trial. This part is somewhat tedious because, as we will
see, it is repetitive. It is the part we wanted to improve by making it more automatic, so
this section gives ideas on how achieve this.

As we have just written, looking for discharging rules is repetitive. We start with a
limited set of discharging rules, and run the program. If it seems not to terminate, it is
possible to look at some of the graphs it did not manage to discard, notably (for the four-
colour theorem) the ones going further than a neighbourhood of distance two from the
first vertex, which was supposed to be non-necessary. Then it is possible to devise some
rules, and rerun the program again. Once more, if the program does not terminate in a
reasonable amount of time, we can have a look at the graphs which were not discarded.
This makes it possible to craft new rules, taking care of not going backwards on the
ones which were introduced earlier: a graph which was discarded before should still be
discarded after adding a new rule.

The objective was to find a way to generate automatically new discharging rules: the
program would be the one to analyse the non-discarded graphs, and find some ‘optimal’
rules. A rule would for instance be optimal if it makes it possible to discard ‘as many
graphs as possible’. One obvious way to generate rules would be to enumerate a certain
number of ‘small’ configurations and generate rules by defining sources and sinks. Then
we could replay the beginning of the run with each rule tested as the new one to be
adopted. The one which would lead to discarding the most graphs would be kept.

Another idea could be to try to optimise an existing set of rules: we assume we already
have a few rules. We may discard more graphs without adding a new rule by modifying
the weight of each rule. A linear program may model our needs: given the list of graphs
we have explored so far (the ones we already discarded and some others we would like to
discard), we may associate to each one an equation. Let us consider a graph G and xi,G
be the net effect of Rule i on our vertex v0 in G. If Rule i leads to transferring 4 towards
v0 and 7 from v0, then its net effect would be 4− 7 = −3. Now we obtain the condition,
for each G:

w(v0) +
∑
i

xi,G · wi ≤ 0.

The wi’s are proper to the rules, independent from the explored graphs. If solving the
linear program shows that some solution exists, it means that with the same set of rules,
only by tweaking the coefficients, we may discard more graphs.

We did not investigate much the possible methods to automate the search for good
discharging rules. However, finding some automatic ways to obtain them would be a big
step forward in the field of automatic proofs for planar graphs. It would make it a lot
faster and easier to try the discharging method to attack some other problems on planar
graphs.

20

Chapter 2

The domination numbers in grid graphs

Societies have always (or for long, at least) seen a group of dominant people emerge
and set the rules. Nowadays, it is both publicly said by some people and conveyed by
some media that some groups dominate the majority of people. This is refuted or ig-
nored by many in the dominating groups, and little is done to correct the state of things.
Such groups may include (very) rich people and countries, men, cisgender1 people, valid2
people, white people and so on. Let us state a trivial thing: not all of these people,
who enjoy some privileges due to the colour of their skin, their gender or other factors,
consciously oppress women or some minorities. Not every person in these groups takes
part in the wrongdoings, but many do or take part in the system, which is oppressing.
Thus the overall behaviour of these groups is bad. Well, yes, a lot of women contribute to
sexism, because society framed them into doing so. But guess what? Women suffer from
this problem which comes from, and is mostly maintained by men: the ones who refuse to
see the problem, and those who do nothing to try to fix this state of things. The domin-
ating groups come from all sort of problems such as patriarchy and sexism, queerphobia3,
disabilism, and a lot of other systemic discriminations. For instance, society leads to the
invisibility of disabled people in society: how many times did you watch a sport played
by disabled people, either on TV or in real life, or read about it somewhere? Do you
realise that in some cities, some disabled people cannot take the underground or the bus,
or go to some buildings, because they have mandatory stairs? In Paris for instance, only
one line and a dozen stations (out of 303) of the underground are accessible to people
in a wheelchair. Patriarchy and sexism also induce a lot of problems: in France women
who have a job are four times as likely as men to have a part-time job. They earn overall
18.5% less than men, 16.3% less than men when restricting to full-time employees, and
they are still paid 12.8% less than men when considering equivalent positions. They also
compose only 23% of the people in the French parliament. In addition to this, there were
149 people killed in domestic violence in France in 2018: 128 of them were women. 25%
of women between 20 and 65 years declared having suffered some violence in a public
place during the last year, and this rate jumps to more than 60% if we consider women

1a person whose (social) gender is the same as the biological sex which was assigned to them at their
birth

2not disabled
3including, but not limited to transphobia and homophobia: (when) did you learn about asexuality

and/or stopped thinking this was a disease or a problem?

21

between 20 and 24 years. Among these violences, 1 million women declare having, over
the last year, suffered harassment or sexual harassment. During the year 2018 in France,
1905 acts of LGBTQ-phobia4 have been recorded, among which 231 involving physical vi-
olence. These numbers keep increasing and a poll suggested that only 27% of the victims
of physical violence report it to the police. Two thirds of LGBT people have at some
point avoided holding the hands or kissing their companion and 12% have considered
moving to another city to avoid being harassed or assaulted. This means that a majority
of LGBT people are denied the right of walking freely in the street without fearing for
themselves.

However, we study here some forms of domination which makes no one suffer... except
maybe the people studying these problems. Indeed, the domination number problem, that
is the problem of finding the minimum size of a dominating set5 is a NP-complete problem
for general graphs. This informally means that if we ask, ‘Does G admit a dominating
set of size less than or equal to k?’, then it is easy to check that one solution we are given
is indeed of size at most k and dominating (the problem is in NP); however we do not
know any systematic and ‘fast’ algorithmic way to prove the ‘no’ answer (the problem is
NP-hard: it is as hard as other NP-complete problems).

The basic domination problem consists in selecting a set of vertices in a graph such
that any other vertex has a neighbour in that set. As we will see, many variants of this
problem exist. These problems can be used to model optimising problems arising in real
life, as the Roman-domination problem illustrates: it is said to have been used as a model
by the Romans to defend their territory. The domination problem can also be used in
other contexts, such as some public services: where to put hospitals, fire stations, and
other critical places such that every person in a country can benefit from it.

The domination number problem is one of many problems which are hard for general
graphs, but are easy to solve for graphs of bounded treewidth. Indeed, Courcelle [8]
showed in 1990 that a particular class of properties, the one being expressible in monadic
second-order logic, are decidable in linear time on the class of bounded-treewidth graphs.
The treewidth can be understood, intuitively, as a measure of how much a graph ‘looks
like’ a tree. The grids are among the simplest graphs which neither have a bounded
treewidth nor a bounded cliquewidth (another graph parameter), and for which these
kinds of problems are usually difficult to tackle.

The first values (for a number of lines n ∈ {2, 3, 4}) of the domination number in grids
were discovered by Jacobson and Kinch in 1983. Then, ten years later Chang and Clark
found the ones for 5 and 6 lines. All these results were found without using any computer.
Also in 1993, Chang [6] conjectured that the domination number for a grid graph of arbit-
rary size, that is the minimum size of a dominating set, was γ(Gn,m) =

⌈
(n+2)(m+2)

5

⌉
− 4.

He also showed that this was actually an upper bound. Fisher [14], using computer re-
sources, found the values for n ≤ 19 and showed that these values were conform to the
conjecture. He also found a method to detect and prove the periodicity of the domination
number, so as to establish formulas for a fixed number of lines and arbitary number of

4LGBT stands for Lesbian, Bisexual, Transgender, Queer. The acronym designates the union of
people in these non-exclusive sets.

5or to be more formal, the decision problem associated to this optimisation problem

22

columns. After a few papers by a few other people, Gonçalves et al. [21] finally proved
Chang’s conjecture in 2011 by showing that his formula was also a lower bound, improving
a bound by Guichard [24]. After 2011, several papers gave formulas for small number of
lines for various domination problems. Several generalisations of the domination problem
have also been studied in the literature (see for example [4]).

The goal of this chapter is to solve the 2-domination and Roman-domination prob-
lems. We achieve this by giving closed formulas computing the minimum cost of the
respective dominating sets for any size of grids as in [42]. The formulas we give are
simple: they involve multiplications, additions, division and rounding to lower or upper
integer. This shows that, like the domination number, the 2-domination and the Roman
domination numbers problems are solvable in constant time in grids.

This chapter is organised as follows. After giving some definitions in Section 2.1, we
will explain in Section 2.2 how to solve the 2-domination problem on grid graphs: first
on fixed-height grids and then on arbitrary grids, relying on the notion of loss. We also
use the Rauzy graphs to give some complexity information. In Section 2.3, we will study
the distance-two-domination problem and the total-domination problem, but are only
able to give formulas for grids of small number of lines. We also give a lower bound
for the total loss when both the number of lines and the one of columns are arbitrary.
We continue by giving in Section 2.4 some insight on why the method for arbitrary-size
grids what we believe the method works in some cases and seems not to in others. We
define some properties like the fixed-height-border-fixing one which we conjecture explains
when the method for arbitrary grids works. In Section 2.5, we finally explain some of the
optimisations we made and give some implementation details and statistics.

2.1 Basic definitions and notations
We define here formally the different types of problems we will study in this chapter. We
list them by increasing complexity.

Since we work with two dimensions in this chapter and the following, we will try to
be coherent all along. There may be some differences on the order of the indices between
these chapters and the associated papers. In what follows, n will always be the number
of lines and m the number of columns. When speaking of a grid Gn,m or the domination
number γ(n,m) we first put the number of lines. When using coordinates, we will use
the standard order (x, y). The indices will be j when referring to the columns numbers,
and i when we refer to the lines indices.

In this thesis, the x-values are increasing from left to right, and the y-values are when
going from top to bottom. In this chapter, the indices and coordinates will always begin
at 0 (and not 1), and (0, 0) are the coordinates of the top-left cell of a graph or rectangle.

We denote by Gn,m the grid graph with n lines and m columns. In the illustrations
to come, the vertices of a grid will be its cells (and not the intersections of the lines).

Definition 2.1. A set S of vertices of G is dominating when any vertex not in S has
at least one neighbour in S.

23

(a) (b)

Figure 2.1: Illustration of a dominating set on G5,7:
(a) the cells pointed by arrows are not dominated;
(b) the set of black cells is dominating.

Definition 2.2. A set S of vertices of G is 2-dominating when any vertex not in S has
at least two neighbours in S.

(a) (b)

Figure 2.2: Illustration of a 2-dominating set on G5,7:
(a) the cells pointed by arrows are not 2-dominated: they have 0 or 1 black neighbour;
(b) the set of black cells is 2-dominating.

Definition 2.3. A set S of vertices of G is distance-two-dominating6 when any vertex
v not in S has a neighbour at distance at most two in S: either a neighbour of v or a
neighbour of one of v’s neighbours.

It is easy to note that for instance any 2-dominating set is dominating. Similarly, any
dominating or 2-dominating set is distance-two-dominating.

Definition 2.4. A set S of vertices of a graph G is total dominating when any vertex
v ∈ G has at least one neighbour in S.

Notice that, by contrast with the domination, even dominant vertices must have a
neighbour which dominates them. In the case of grids, since there are no loops, a vertex
is never its own neighbour, therefore each v ∈ S must be connected to some vertex in
S \ {v}.

6As for the other types of domination, a point of English grammar arises. We write: ‘This child is six
years old.’ but ‘This is a six-year-old child.’ From that we infer that while there is no need to hyphenate
the group when following ‘to be’, we have to when the whole group is an adjective which precedes a
noun. We also hyphenate when necessary to avoid confusions.

24

(a) (b)

Figure 2.3: Illustration of a distance-2-dominating set on G6,8:
(a) the cells pointed by arrows are not distance-two-dominated: the closest black cell is
at distance at least three;
(b) the set of black cells is distance-two-dominating.

(b) (b)

Figure 2.4: Illustration of a total-dominating set on G5,7:
(a) the set is not total dominated: the two cells pointed by arrows are not dominated;
(b) the set of black cells is total dominating.

Definition 2.5. A Roman-dominating ‘set’ is a pair (S1, S2) such that every vertex
v /∈ S1 ∪ S2 has at least one neighbour in S2.

Informally, a Roman-dominating set consists in placing troops of soldiers on the ver-
tices. We can either put no troops, one troop or two troops. A single troop can defend
the vertex it is placed on while two troops placed on a vertex defend both it and its
neighbours. The cost is the total number of troops.

Definition 2.6. The cost of a dominating, 2-dominating or distance-2-dominating set S
is its size: |S|. For a Roman-dominating set, the cost is |S1|+ 2|S2|. The 2-domination
number of a graph G, denoted by γ2(G), is the minimum cost of a 2-dominating set of
G.
We define similarly the total-domination number γT, the distance-2-domination number
γd2 and the Roman-domination number by γR.

Note that in the previous figures illustrating the various domination problems, the
correct dominating sets are not necessarily of minimum size. For some, we may even
trivially remove some vertices from the dominating set without breaking the domination
property. For instance in Figure 2.5 one grey cell has a black cell neighbour. The grey

25

(a) (b)

Figure 2.5: Illustration of a Roman-dominating set on G5,7 (ells with two troops are black
and cells with one troop are grey):
(a) the cells pointed by arrows are not dominated.
(b) the set of black and grey cells is Roman dominating

cell can be removed because it is still dominated by its black neighbour and it does not
dominate any cell.

Notation 2.7. For concision we will denote γ2(Gn,m) by the shorter notation γ2(n,m).
The same applies to the other domination problems.

2.2 Method for finding the 2-domination number for
grids of arbitrary size

Here, we set up a framework for finding the minimum size of dominating sets in a grid.
We first explain how to proceed when the number of lines is fixed, then we introduce the
notion of loss to extend it, when possible, to grids of arbitrary height. The first method is
only usable when the number of lines is small, because the number of objects we examine
with our computer program becomes too big at some point. The second method begins
to work when the number of lines is big enough, but does not always work, depending on
some characteristics of the problem. Also, even if it should work on a problem, it may fail
by lack of computational power. In fact, the number of lines for which the method works
needs to be small enough to make it possible to run the method on a computer. We first
explain one after the other the two methods, on the 2-domination problem (see [21] for
an alternate explanation of the loss method, applied to the domination problem). Both
methods rely on the notions of states and compatibility relations, which are translated
into transfer matrix products in the (min,+)-algebra (it can also be viewed as a dynamic
algorithm). The (min,+)-algebra consists in substituting, in the computations, the
operator + by the operator min as well as replacing the multiplication by the addition.
It is a standard method. The second method uses the more recent and more complex
method of loss introduced by Gonçalves et al. [21]. We are the first ones to use this method
to find other results. The optimisations we made and some details on the manner they
were implemented will also be discussed.

Throughout the explanations of this section, we will prove the following theorem,
which confirms the results found by [34, 47] for n ≤ 4 and slightly corrects the result by
[47] for n = 5:

26

Theorem 2.1 ([42]). For all 1 ≤ n ≤ m, the 2-domination number equals:

γ2(n,m) =

⌈
m+1
2

⌉
if n = 1

m if n = 2

m+
⌈
m
3

⌉
if n = 3

2m−
⌊
m
4

⌋
if n = 4 and m mod 4 = 3

2m−
⌊
m
4

⌋
+ 1 if n = 4 and m mod 4 6= 3

2m+
⌈
m
7

⌉
+ 1 if n = 5 and m mod 7 ∈ {0, 6}

2m+
⌈
m
7

⌉
if n = 5 and m mod 7 /∈ {0, 6}

2m+
⌊
6m
11

⌋
+ 1 if n = 6 and m mod 11 ∈ {0, 2, 6}

2m+
⌊
6m
11

⌋
+ 2 if n = 6 and m mod 11 /∈ {0, 2, 6}

3m−
⌊
m
18

⌋
+ 1 if n = 7, m > 9, m mod 18 ≤ 9 and m mod 18 6= 7

3m−
⌊
m
18

⌋
if n = 7 and (m ≤ 9 or m mod 18 > 9 or m mod 18 = 7)

3m+
⌊
m
3

⌋
if n = 8 and m mod 3 = 1

3m+
⌊
m
3

⌋
+ 1 if n = 8 and m mod 3 6= 1⌊

(n+2)(m+2)
3

⌋
− 6 if n ≥ 9.

2.2.1 Fixed (small) height and width

We present here the technique of transfer matrices, a well-known method to solve many
problems of this kind. We adapt it here to establish the 2-domination values for grids of
fixed height and width. The technique follows a dynamic programming approach. One
parameter of this approach (the number of states) is exponential in the number of lines,
which is why the latter needs to be small enough: we want the computations we run on
a computer to finish within a reasonable7 time.

In this paragraph, we introduce the notion of column states, which enables us to
‘enumerate’ the partial (i.e. the first columns of) 2-dominating sets by remembering only
their ‘fingerprint’ on their last column. This way, when we consider adding a new column,
we do not need to remember the whole partial dominating set but only some information
stored in the current column. This is possible because the domination problems we study
have a local characterisation8: while the property is global (defined on a whole object,
which can be arbitrarily large), it is possible to make local queries (querying neighbours
at most at a fixed distance from the vertex we consider) in such a way that we can check
if the global property is verified by querying local information at each vertex. This is
most helpful for us because we can enumerate a dominating set column by column and,
when looking at column j, we can forget columns with index less than j − 2: designing
our algorithm smartly, we do not recall the full columns with indices j − 1 and j − 2 but
only the necessary information.

7i.e. less than the time until the end of the PhD... or more truthfully a few hours up to a couple of
days on a machine with a hundred of cores

8We speak a bit about this notion in Chapter 3

27

Before defining the notions, we indicate that the number of lines n is supposed fixed.
We show in Proposition 2.2 that all the states and compatibility relations we will define
implicitly appear when the number of columns m is at least some number. We assume
here that m is big enough in this respect, that is 8 for the 2-domination. We define
S = { stone, need_one, ok } to be the set of cell values. stone means that the cell
belongs to the 2-dominating set D: in the rest, we refer to the cells of D as ‘containing
a stone’. ok means that the previous and current columns suffice to 2-dominate the cell,
before adding the next column. Finally, need_one means that the cell had so far one
neighbour in D, so it needs a new one in the next column. If D is a 2-dominating set of
cells of the grid Gn,m let f(D) ∈ (Sn)m be such that9 f(D)[i][j] is stone if10 (j, i) ∈ D,
ok if at least two among (j−1, i), (j, i−1) and (j, i+1) are inD, or need_one otherwise.
Note that, since D is 2-dominating, a cell is need_one if exactly one among (j − 1, i),
(j, i−1) and (j, i+1) is in D. Note that the value of a cell does not depend on the values
of the cells of the next column(s). We also define, for 0 ≤ j < n, fj(D) to be the vector
containing the values of column j of f(D): for all i ∈ J0, n− 1K, fj(D)[i] = f(D)[i][j].

We now define the set of (column) states V = ∪0≤j<m{fj(D) : D is 2-dominating}.
V is the set of states which appear in some 2-dominating set. Among these states, we
define the set of first states F = {f0(D) : D is a 2-dominating set}. Finally, we define
the set of end (or dominated) states E = {fm−1(D) : D is a 2-dominating set}. F is
the set of states which can be the first column of a 2-dominating set, that is whose entries
only depend on themselves and not on a presupposed previous column. E is the set of
states which can be the last column of a dominating set because they do not need a next
column to be 2-dominated: they are dominated by themselves and their previous column.

We now define the relation of compatibility R: we say that a state S ′ ∈ V is
compatible with S ∈ V , and write SRS ′ if there exist a 2-dominating set D and some
j ∈ J0,m − 2K such that fj(D) = S and fj+1(D) = S ′. Defining these states enables
us to use the principles of dynamic programming: instead of enumerating all possible
2-dominating sets, we realise that the information conveyed in f(D) is enough, and that
we only need the information at a column j to continue to column j + 1. In particular,
we do not need to know what happened in previous columns with indices less than j.
This corresponds to the notion of nearest-neighbour recoding in the world of SFTs which
we will define in Chapter 3: a translation subshift into an equivalent one on a different
alphabet such that the forbidden patterns are only of size two. In our case, it means that
we only forbid couples of columns states S, S ′ when S ′ cannot be put just after S.

To illustrate these concepts, we give the rules defining the sets V , F , E and the
relation R. These explicit definitions correspond exactly to the implicit way we defined
these concepts in the previous paragraph. It is easy to convince ourselves of this fact as
they are translations of the implicit definitions of V , F , E and R considered along with
the definition of the cell values stone, need_one and ok. The concept of states and
compatibility relation are shown on Figure 2.6.

9f(D) is considered as a matrix so i is the index for the lines and appears first.
10Here (j, i) are coordinates, hence their inverted order compared to indexing f(D).

28

S ∈ V if and only if for all i ∈ J0, n− 1K:
• if S[i] = need_one then at most one among S[i− 1], S[i+ 1] is stone;
• if S[i] = ok then at least one among S[i− 1] and S[i+ 1] is stone.

S ∈ F if and only if for all i ∈ J0, n− 1K:
• if S[i] = need_one then exactly one among S[i− 1], S[i+ 1] is stone;

• if S[i] = ok then both S[i− 1] and S[i+ 1] are stone (so 1 ≤ i < m− 1).

A state S belongs to E if and only if S ∈ V and none of its entries is need_one.
Finally, SRS ′ if and only if for all i ∈ J0, n− 1K:

• if S[i] = need_one then S ′[i] = stone;

• if S ′[i] = need_one then exactly one among S ′[i− 1], S ′[i+ 1] and S[i] is stone;

• if S ′[i] = ok then at least two among S ′[i− 1], S ′[i+ 1] and S[i] are stone.

Figure 2.6: Illustration of the states and compatibility relations for the 2-domination
problem. ’n’ corresponds to the state value need_one and ’*’ corresponds to stone.
The data on one column only depends on this column and the columns at its left.

We said above that the number of states is exponential in the number of lines. We
can in fact compute the growth rate of the number of states thanks to a concept named
the Rauzy graph of a language. We will explain in Section 2.2.3. It allows us to find the
number of states in our technique.

Fact 2.1. There are Θ(xn0) ≈ Θ(2.485584n) states in V for n lines, where x0 is the real
root of the polynomial x3 − 2x2 − 3.

Notation 2.8. If V is a vector, then we denote by |V |foo the number of its entries equal
to foo.

Claim 2.1. Let F be the vector of size |V| such that F [S] = |S|stone if S ∈ F or +∞
otherwise.
Let E be the vector of size |V| such that E[S] = 0 if S ∈ E or +∞ otherwise.
Let T be the square matrix with |V| lines such that T [S][S ′] = |S ′|stone if SRS ′ or +∞
otherwise.
Then for any m > 0, γ2(n,m) = F TTm−1E.
(We recall that the products of matrices are done in the (min,+)-algebra.)

29

Proof. Let j ≥ 1. Vj = F TT j−1 is a vector such that if S ∈ V then Vj[S] is the minimum
size of a set X which 2-dominates the subgrid with n lines and j − 1 columns, and such
that the last column of X is in state S. However, we are interested in a 2-dominating
set, therefore the last column (assumed to be in state S) should be 2-dominated as well.
Thus VmE = minS∈E Vm[S] gives us the minimum size of any 2-dominating set.

This claim leads to a simple algorithm to compute γ2(n,m): generate the different
sets and the compatibility relation, and then compute the exponentiation of matrices, and
two matrix-vector products. The matrix T is a transfer matrix, whose exponentiation
propagates the fact of being 2-dominated one column further. This is enough to compute
the 2-domination numbers for fixed n and m, but our goal here is to find all the numbers
for fixed n and arbitrary m. The next section fills this hole.

2.2.2 Fixed number of lines but arbitrary number of columns

The method we have just presented works for a fixed number of lines. Since it is linear in
the number of columns, this number must be finite. We use here a less known method to
obtain values for arbitrary width of the grid, establishing recurrence relations whose exist-
ence are guaranteed by some properties of the transfer matrices. The computations lead
to closed formulas for a fixed number of lines, hence we obtain a constant-time algorithm
at the end, exploiting this formula. We also, on a theoretical point, make the connection
between the effectiveness of the method and the primitivity of the transfer matrix we use.

By observing that the transfer matrix we manipulate is primitive, we show that this
periodicity was expected. That is, even without finding the recurrence relation, it is
possible to prove that the formula follows some recurrence relation without running any
program. Furthermore, this observation extends to any problem like this one. We can, for
instance, guarantee that the distance-three-domination (any vertex not in S must have
a neighbour at distance at most three in S) number satisfies a recurrence relation. The
same applies to all the dominating problems we study in this chapter.

Definition 2.9. A matrix M is primitive (in the (min,+)-algebra)11 when there exists
an integer k > 0 such that maxi,j({Mk[i][j]}) < +∞.

Proposition 2.2. T is primitive.

This proposition means that given two states S1 and S2, it is always possible to
find some 2-dominating set D and some i1 and i2 ≤ i1 + k such that fi1(D) = S1 and
fi2(D) = S2. This can be related to the notion of irreducibility of Markov chains. As we
mentioned above, it certifies that any possible state appears in some dominating set of a
grid if there are k columns separating it from the special first states and the special end
states. So any state appears if there are at least 2k + 1 columns. Now, to be sure to see
every compatibility relations, we must add another column: each possible state appears
at the k + 1th column, and any next state must be separated from the end states by k
columns. Therefore, m ≥ 2k + 2 is enough, which means 8 for the 2-domination (see the
proof just below).

11(almost) last reminder that we do not work in the standard algebra

30

Proof. Let S0, S2 ∈ V . Let S∗ be the state whose entries all are stone. There exists
some S1 ∈ V such that S0RS∗, S∗RS1 and S1RS2. We leave the construction of S1 to
the reader: put the necessary stones and fill the rest accordingly. We conclude that
T 3 < +∞.

We now prove an interesting property that primitive matrices have, in the
(min, +)-algebra: the series of their powers satisfy some recurrence relation. This is true
for any primitive matrix in this algebra.

Theorem 2.3. Let M be a primitive matrix with coefficients in N∪{+∞}. Let k be such
that max({Mk[i][j]}) < +∞. Then there exist some l0, p and r such that for all l ≥ l0,
M l+r = M r + p, where M r + p means12 that we add p to every element of M r.

Proof. Notice that, since max({Mk[i][j]}) < +∞, each line ofM has at least one element
different from +∞. The same goes for the columns. We denote by α the maximum value
of Mk. Let l > k. For every i and j,

M l[i][j] = min
u

(M l−k[i][u]+Mk[u][j]) ≤ min
u

(M l−k[i][u]+α) ≤ min
u

(M l−k[i][u])+α. (2.1)

This quantity is finite since M l−k, like M , has in each row and each column one element
different from +∞.

Now let us bound the value of M l[i][j] from below:

M l[i][j] = min
u

(M l−k[i][u] +Mk[u][j]) ≥ min
u

(M l−k[i][u]) (2.2)

By subtracting Equation (2.2) from Equation (2.1), we obtain

0 ≤ max
i,j

(M l[i][j])−min
i,j

(M l[i][j]) ≤ α.

This allows us, for any l > k, to define M ′
l ∈ J0;αKnm by the following decomposition:

M l = min(M l) +M ′
l .

This means that each M l is decomposed into a matrix which has all its coefficients equal
to min(M l) plus a matrix whose coefficients are bounded by a value independent from l.
Since there are finitely many matrices in J0;αKnm, we conclude that there are two equal
matrices Ml0 = Ml1 for l1 > l0 > k. By letting p = min(M l1)−min(M l0) we obtain

M l1 = M l0 + p. (2.3)

Now we choose r = l1 − l0, and for l ≥ l0:

M l+r = M l−l0M l0+r = M l−l0(M l0 + p) = M l−l0M l0 + p = M l + p.

Note that in our tropical algebra, if A,B and C are matrices, and ’+’ denotes, as
before, the standard plus operation, then A(B + C) = AB + C.

A direct implication of Theorem 2.3 is that the transfer matrix T verifies some recur-
rence relation. Thanks to Claim 2.1, the relations we obtain for the transfer matrix T
directly apply to the 2-domination number. Here are the relations we obtain for n ≤ 12:

12We recall that the replacement of (+,×) by (min,+) only applies in the internal operations of
products between matrices and matrices or vectors.

31

• ∀m ≥ 3, γ2(1,m) = γ2(1,m− 2) + 1;

• ∀m ≥ 3, γ2(2,m) = γ2(2,m− 1) + 1;

• ∀m ≥ 5, γ2(3,m) = γ2(3,m− 3) + 4;

• ∀m ≥ 8, γ2(4,m) = γ2(4,m− 4) + 7;

• ∀m ≥ 14, γ2(5,m) = γ2(5,m−7)+15;

• ∀m ≥ 20, γ2(6,m) = γ2(6,m−11)+28;

• ∀m ≥ 31, γ2(7,m) = γ2(7,m−18)+53;

• ∀m ≥ 16, γ2(8,m) = γ2(8,m−3)+10;

• ∀m ≥ 17, γ2(9,m) = γ2(9,m−3)+11;

• ∀m ≥ 14, γ2(10,m) = γ2(10,m−1)+4;

• ∀m ≥ 16, γ2(11,m) = γ2(11,m−3)+13;

• ∀m ≥ 17, γ2(12,m) = γ2(12,m−3)+14.

These relations were obtained by running our program on a computer. For instance,
finding the relation for n = 12 takes around 17.5 seconds on a personal laptop using only
one CPU, and it uses 56Mib of RAM. There are around 26.5k states and 10M compatible
pairs between states.

Thanks to these relations, and to the first values we obtain for each n, we deduce the
formulas for γ2(n,m), for 1 ≤ n ≤ 12. For instance, for n = 5 we only need to know
the recurrence relation, plus the first twelve13 values. We stopped here at n = 12 here
because the method for arbitrarily large n works from n ≥ 13.

We may observe that these figures are the ones reflecting the periodicity of the trans-
fer matrix: for n = 12, this begins when m ≥ 17. However, once we have this relation we
can ‘go back in time’ and check from what point the relations begins to be valid for the
γ2 numbers we computed. By doing so, we find for instance that the recurrence relation
for γ2(12,m) is actually valid from m = 13 instead of 17.

Now thanks to Theorem 2.3 we can prove a meta-theorem for a class of problems.

Theorem 2.4. Any minimisation problem on grids which admits a local characterisation
and a primitive transfer matrix has, when the number of lines is fixed, a closed formula
for answer.

Proof. It suffices to apply the same method as here. The recurrence relation the transfer
matrix satisfies guarantees a recurrence relation on the parameter studied, hence the
answer is a closed-form expression. This expression involves basic arithmetic operations
(+,-,*,/) and the remainder of a Euclidean division.

Remark 2.1. We can notice that any problem to which we can associate an SFT with
the block-gluing property (see Chapter 3) will have a primitive transfer matrix and hence
falls into the hypothesis of Theorem 2.4.

This method can work for other classes of graphs, as long as we find an ‘acyclic’ way
of enumerating parts of the dominating sets, like for the fasciagraphs defined by Bouznif
et al. [5]. Our method, and the theory behind stated by Theorem 2.4 can for instance
be used to prove parts of what they investigate in [5]. We used it to prove that some
local problems with a primitivity condition admits a closed formula as answer, hence
can be answered in constant time. In fact, the same applies to rotagraphs: instead of
computing F TTm−1E (for a fasciagraph, with a first and last ‘column’), we compute

1320 = 14 + 6

32

minS∈V(Tm[S][S] (for m > 1): the first and last state must be the same. In their paper,
they prove similar results, using a different technique and a result similar to the one we
prove for the recurrence of powers of primitive matrices.

The method we described can work also in these structures for other types of problems.
We show in Chapter 3 that we can also count some types of dominating sets, using
different arguments (and working in the standard algebra). Basically, this approach will
work when the problem has some sort of local characterisation or local property.

2.2.3 The number of states

We present here a technique to find the growth rate of the number of words of a factorial
language: a set of words which is defined by forbidding specific patterns to be factors.
This means for instance that we choose to allow only words which do not contain ‘an’ or
‘on’: ‘tomato’ and ‘cherry’ would be authorised whereas ‘banana’ and ‘cinnamon’ would
not. The method consists in constructing the Rauzy graph of the language, and take its
largest eigenvalue, which turns out to be the desired growth rate.

Let L be a language of words forbidding patterns of sizes up to k. Without loss of
generality, we may assume that all the forbidden factors are of length equal to k. The
(directed) Rauzy graph Ri(L) = (Vi, Ei) of L of order i is defined by: Vi is the set of
factors of size i appearing in words of L, and (u, v) ∈ Ei (note that the relation is not
symmetric) when there exist u′ and two letters a and b such that u = au′ and v = u′b.
We will refer to this relation as Ri in the rest of this subsection. The way this graph
works is similar to the one in Section 3.5.4, in which we use transfer matrices in the
standard algebra to count dominating sets. The number of arcs going to some vertex u of
a Rauzy graph is the number of ways to obtain this factor by adding a letter to a smaller
authorised factor of L. This way, Rn

i [u] counts the number of words of size n the suffix of
which is u, forbidding all forbidden factors of L of size up to i+ 1. In the case when the
matrix is primitive (in the standard algebra), the Perron-Frobenius theorem states that
it admits a largest eigenvalue which is positive and simple. Let us call it λi for the graph
Ri. This λi is a lower bound on the growth rate. However, for i ≥ k− 1, this λi becomes
the growth rate of the number of words of the language: all forbidden factors of size up
to k − 1 + 1 = k are guaranteed not to appear.

Unfortunately here our languages of the valid states are not factorial: for the first
and last lines of a state, we forbid specific factors which are not forbidden in the ‘middle’
of the word. Still, if we remove this limitation, the factorial language which we would
obtain would have the same growth rate as our language of real valid states. As we
showed in Section 2.2.2, the matrices of compatibility between the states are primitive.
Therefore we could compute the matrices of the associated factorial languages (without
the limitations at the extremities of the states). However, we proceeded here by smartly
reusing the existing code: we take, as vertices of the Rauzy graph Ri, the factors of size i
of our languages which are far enough away from the beginning and from the end of the
states. Their behaviour is similar to the behaviour of the middle parts of the states, if
the distance to i = 0 and i = n− 1 is big enough. With the help of the Sage software, we
could compute an approximate form of the λi’s by providing the adjacency matrix of the
Rauzy graph, computed by our program. We also obtain a polynomial there are root of
(the minimal polynomial of the matrix). We give each time the minimal polynomial of the

33

Rauzy graph, or more precisely this polynomial divided by its lowest degree monomial.

2.2.4 Arbitrary height

We adapt here the method Gonçalves et al. introduced in [21]. This method is much less
known than the previous ones, and to our knowledge it is the first time it is adapted.
Quite some people provided formulas for some domination problems when the number of
lines is small and fixed, but no one provided a formula for the real 2D case.

The idea is to assume that for a sufficiently large grid, there are always dominating
sets of minimum size in which the positions of the stones would be a projection of an
optimal dominating set (i.e. one with minimum ratio of stones, one fifth here) of Z2,
except on a fixed-height border of the grid. The border are special because not every cell
has 4 neighbours at the frontier of a finite grid. This assumption turns out to also be true
for the 2-domination problem. The height of the border which needs some rearrangement
is a constant: it does not depend on the size of the grid we consider (provided n and m
are large enough).

We need to count how many stones we need to make up for the problematic fact that
the cells of the border have fewer than four neighbours. We use the dual concept of loss
to integrate this number to the number of stones at the centre of the grid. The loss
denotes how much ‘influence’ produced by the stones of a 2-dominating set is wasted.
For instance, two neighbouring stones would cause a loss of 2: each stone cell dominates
its stone neighbour which did not need to be dominated by another cell since it has a
stone. Instead of computing the minimum number of stones needed, we will compute
a lower bound on the minimum loss possible on the border. It happens that this lower
bound gives us a direct lower bound on the 2-domination number, and that these bounds
are sharp.

More formally, given a 2-dominating set D of the n×m grid, we define the loss to be

`(D,n,m) = 4|D| − 2(nm− |D|).

The idea behind this formula is simple: each stone contributes to the domination of
its four neighbours, and each cell not in D should be dominated twice. The difference
between these two quantities is the influence of stones that was ‘lost’, or ‘wasted’, i.e.
not necessary. The loss function should have several characteristics: while it should be
‘easy’ to compute, it should also be reversible so that given the loss, we can deduce the
2-domination number.

The loss for the 2-domination problem can be computed in the following way. Let us
consider a 2-dominating set S and a cell which belongs to S. If it is a corner of the grid,
it induces a loss of 2 because of this; else, if it is on the border, it induces a loss of 1. If
a stone cell has p neighbours also in S, then its loss is increased by p. Now if a cell does
not belong to S and has p neighbours in this set, then it has a loss of p− 2. We illustrate
these computations in Figure 2.7. For instance, the top-left cell has a loss of two because
it is a corner: its top and left neighbours do not exist. Two cells at the right, we have a
loss of two: this cell in on the border and has a neighbour in S. The cell with a three on
the one before last column is in S and has p = 3 neighbours in S. Last example: the cell
on the second column and one before last line has a loss of two: it does not belong to S

34

but has p = 4 neighbours in S: two of them are enough to 2-dominate it, hence it has a
loss of two.

Figure 2.7: Illustration of the local computation of the loss for the 2-domination problem.
The red numbers indicate the loss induced by the cell they are on. The cells with no
number have a loss of 0.

Notation 2.10. We denote by `(n,m) the minimum possible loss over every 2-
dominating set of Gn,m.

Here, we can indeed reverse the formula as we wanted: |D| = (2nm + `(D,n,m))/6.
We then obtain

γ2(n,m) =
2nm+ `(n,m)

6
. (2.4)

The method solves the problem, that is the lower bound we obtain by the loss technique
matches the 2-domination numbers: we prove later that it is also an upper bound. Com-
puting the minimum loss over a big grid seems very hard, but we managed to obtain the
right values by computing a lower bound for `(n,m) which happens to be equal to it: we
achieve this by computing the loss only on the border of size h (where 2h < min(n,m),
see Figure 2.8).

Definition 2.11 (see Figure 2.8). The border of height h of an n×m grid is the set of
cells (j, i) such that either min(i, n− 1− i) < h or min(j,m− 1− j) < h. We define the
corners as the four connected parts of the grid composed of cells (j, i) such that both
min(i, n− 1− i) < h and min(j,m− 1− j) < h. The remaining four connected parts of
the border are called the bands.

35

m

n

h

h

Figure 2.8: The borders of size h of the grid. The four parts coloured in black are the
corners, and the white parts are the bands. The grey cells belong to both the bands
and the corners: the ones filled with light grey are the output of a band and input of
the corner next to it; the ones in dark grey are the output of a corner and input of the
following band.

Once again, we use an algorithm which is faster than an exhaustive search over the
dominating sets by working with the notion of states. However, we need to adapt the
sets V ,F , E and the relation R we worked with.

Let us begin with computing the loss over the bottom band. We will, using transfer
matrices as in the beginning of the chapter, compute the loss column by column. We
remember, for each state placed on each column, what the minimum possible loss is so
that the column is in this state. Thus we need to adapt the sets V , E and the relation R.
In the following we assume, as mentioned before, that 2h < min(n,m).

Notation 2.12. We define the function f̂j such that, if D is a 2-dominating set,
f̂j(D) = fj(D)[0], · · · fj(D)[h− 1]. f̂j consists of the bottom h lines of fj. As previously,
f̂j(D) denotes the column j of f̂(D).

We continue by defining the set of almost valid states

Va =
⋃

0≤j<m

{f̂j(D) : D is a 2-dominating set}.

This set contains the states we will enumerate to compute the loss. It is in fact almost
the same set as V : S ∈ Va if and only if, for i ∈ J0, h− 1K:
• if S[i] = need_one then at most one among S[i− 1], S[i+ 1] is stone;
• if S[i] = ok then i = 0 or at least one among S[i− 1] and S[i+ 1] is stone.

36

We need neither first states nor dominated states to compute the loss, so we will neither
define a set Fa nor Ea. We define the relation of almost-compatibility, which differs
a bit from R. The main difference with the relation of compatibility we used earlier
concerns the top line (of the bottom border) i = 0: the first cell will have a neighbour
above it, in the centre of the grid, so we need to consider the case when this neighbour
has a stone. More explicitly, if S, S ′ ∈ Va, SRaS

′ if and only if for i ∈ J0, n− 1K:
• if S[i] = need_one S ′[i] = stone;
• if S ′[i] = need_one and i 6= 0 then exactly one among S ′[i− 1], S ′[i+ 1] and S[i]

is stone;
• if S ′[0] = need_one then at most one among S ′[1] and S[0] is stone;
• if S ′[i] = ok and i 6= 0 then at least two among S ′[i − 1], S ′[i + 1] and S[i] are

stone;
• if S ′[0] = ok then at least one among S ′[1] and S[0] is stone.

As said just before, we allow a state whose first cell has value need_one not to be dom-
inated by the next column: in this case, we consider that its neighbour above dominates
it. This is a conservative assumption: we may underestimate the loss this way, but this
is fine since we compute a lower bound on the loss.

We use again the exponentiation of a transfer matrix to compute the minimum loss
over some border of a grid. We define the band matrix Ta such that Ta[S][S ′] contains
the loss induced by putting state S ′ after state S. By exponentiating the matrix Ta we
can compute the minimum loss over a border, excluding the loss induced by the first state
alone on itself.

The next step is to compute the loss for the corners. A corner is composed of an h
by h square, plus an input column and an output column. Let us consider the bottom
right corner of Figure 2.8. The last column of the bottom band is coloured in light grey:
it is the input column of the square (and the output column of the band). At the other
side of the square, the horizontal ‘column’ filled with dark grey is the output column of
the square (and the input column of the next border). Suppose that the input column of
the square is in state A and its output column is in state B. The loss over the corner
is the sum of:
• the loss on the corner by A,B and the corner itself;
• the loss on B by the corner and B itself;
• the loss on A by the corner.

The explanation is simple: the input state was fixed by the loss computation on the band
(so its loss so far was already counted) and the corner provides the first state for the
next band (so we have to compute its loss so far). Similarly to Ta, we define the corner
matrix Ca for a corner: Ca[S][S ′] contains the minimum loss over a corner whose input
state is S and output state is S ′ as defined just before (we do not count the loss induced
by S alone on itself).

Lemma 2.5. The minimum loss over the border is

min
S∈Va

((Tm−2h−1a CaT
n−2h−1
a Ca)

2[S][S]).

37

Before diving into the proof, we mention that, since we are in the (min,+)-algebra,
the formula in the above lemma can be rewritten as Tr((Tm−2h−1a CaT

n−2h−1
a Ca)

2).

Proof. Tm−2h−1a is the minimum loss over a band starting on the output column of the
bottom-left corner and ending on the input column of the bottom-right corner. Hence
Tm−2h−1a Ca means computing the minimum loss on the bottom band we have just de-
scribed, and extending it to the output state of the bottom right corner. As mentioned
above, in the corner loss we take the input state of the corner as it is (which is exactly what
Tm−2h−1 provides: the loss on the last state by itself and its preceding column was already
computed). Since Ca includes the loss induced by the corner onto the output state of the
corner, Tm−2h−1a CaT

n−2h−1
a extends the loss to the right band. Now, Tm−2h−1a CaT

n−2h−1
a Ca

corresponds to the loss from the output of the bottom-left corner to the output of the
top-right corner, that is the loss of half the border. By squaring this matrix, we obtain
the minimum losses over the whole border of the grid: (Tm−2h−1a CaT

n−2h−1
a)2[S][S] means

that we compute the minimum loss by starting from the leftmost column of the bottom
band, excluding the bottom-left corner, which we suppose is in state S, and leaving it
in state S after the bottom-left corner computation, after going through all the band in
counter-clockwise direction.

Lemma 2.6. Let `h(n,m) be the minimum loss over the border of height h on a n×m-grid
for the 2-domination. Then d2nm+`h(n,m)

6
e is a lower bound on γ2(n,m).

Proof. When computing the loss over some part of the grid, we obtain a lower bound on
the loss of the whole grid. The same applies when we compute the minimum loss. We
then replace `(n,m) by `h(n,m) in Equation (2.4). Since γ2(n,m) is an integer, we can
take the upper bound.

We now try to find some h for which the minimum loss over the border of height
h matches the minimum loss over the grid. In the rest of this section, we consider
that h = 6, unless explicitly specified otherwise. This value is sufficient to obtain
the correct bounds with our program. Here again, we have the problem of comput-
ing the minimum loss over borders of arbitrary widths. However, we may notice that,
if we let H(n,m) = (Tm−13a CaT

n−13
a)2, then there exist some j0, k and p such that

∀ r ≥ r0, T
r+k
a = T ra +p, so that H(n+i,m+j) = H(n,m)+2(i+j)p for all n,m ≥ 13+r0.

Indeed, the matrix Ta is primitive for the same reasons as for the transfer matrix of The-
orem 2.3. The factor 2 before (i + j)p comes from the fact that the matrix Ta appears
twice for the horizontal bands and twice for the vertical onew.

With the program considering a band of height 6, we find that

for all r ≥ 20, T r+3
a = T ra + 6. (2.5)

Note that if we choose a border of height 7, the same recurrence relation on Ta is true
from r ≥ 17. From Equation (2.5) and because `(n,m) is symmetric, we deduce:

Claim 2.2. `6(n+ 3,m) = `6(n,m+ 3) = `6(n,m) + 12 for every n,m ≥ 33.

The recurrence begins at 33 because in Lemma 2.5, Ta is put to the power n− 2h− 1
for instance, so that to have n− 2h− 1 ≥ 20 we need to have n ≥ 20 + 2h + 1 = 33 for
h = 6. Despite Equation (2.5), it is 12 that we add and not 6, because in the formula

38

in Lemma 2.5: as we wrote just above, there are two vertical bands and two horizontal
ones. The formula can be rewritten as `6(n,m) = `6(n,m− 3) + 12 for every n ≥ 36. So,
to complete the proof, we must check that the formula holds for n,m ≤ 36 to initialise
the recurrence. We check with the method for fixed height the values for 9 ≤ n ≤ 12
because the loss method can only by used when 2h < min(n,m). This means that, when
the height is 6, we must check the γ2 values for n < 13 by another method. Then, we can
compute our lower bound for γ2(n,m) values for 13 ≤ n,m ≤ 36 using the loss method
with height 6. These values match the upper bound we show below, so we obtain the
values of γ2(n,m).

Now the recurrence relation on T ra from Equation (2.5) and exploited in Claim 2.2
completes the proof of the theorem. Indeed, if 13 ≤ n,m ≤ 33 then for all k ∈ N:

γ2(n,m+ 3k) ≥ 2n(m+ 3k) + `(n,m+ 3k)

6
≥2n(m+ 3k) + `6(n,m+ 3k)

6

≥2nm+ `6(n,m)

6
+ nk + 2k

≥
⌊

(n+ 2)(m+ 2)

3
− 6

⌋
+ nk + 2k

≥
⌊

(n+ 2)(m+ 3k + 2)

3
− 6

⌋
.

The first inequality comes from Lemma 2.6. The transition from the first line to the
second one comes from Claim 2.2. The transition from the second to the third line comes
from the fact that we checked values of γ2 for n and m between 13 and 33 and they match
the equality we use to substitute (2nm + `6(n,m))/6. This proves the lower bound for
every 13 ≤ n ≤ 36 and m ∈ N. To prove it for n > 33, it suffices to do the exact same
computation, namely computing γ2(n+3k,m) for any n ≥ 36 and any m ≥ 2 ·6+1 = 13.

Sheet1

Page 1

Figure 2.10: The two rules used to convert a restriction of an optimal 2-dominating set
of Z2 into optimal 2-dominating set of a rectangle. For each corner, if one of the two
patterns before the arrows appear, we replace them by the version on the right of the
arrow.

To show that this bound is sharp, we show that our lower bound is also an upper
bound, by giving general 2-dominating sets of the right sizes. To construct these 2-
dominating sets we consider, for the infinite grid Z2, the 2-dominating setD = {(j, i) : i+j
mod 3 = 0} and its rotations. We then take all the different restrictions of these 2-
dominating sets for Z2 into a finite n×m grid. For each restriction, we modify each
corner of size 6 according to two rules which depend on the pattern of that corner. The
two rules are shown in Figure 2.10. A rule corresponds to removing some cells and adding
some other cells to D in that corner. For instance, Rule 1 could be stated as follows: if
the cell at the angle of the grid is in the dominated set, we remove it from the set and

39

Figure 2.9: Example of an optimal 2-dominating set D on a 18×30 grid. D is the set
of cells which are filled with grey or black. The black cells and the cells with a cross
constitute the projection of a minimal 2-dominating set on the grid Z2.

add instead its two neighbours. Finally, we put a stone on the cells of the first and last
rows and columns which are not 2-dominated. One can show that for 13 < n ≤ m one
of the resulting 2-dominating Dn,m set has the right size. We can see an example of such
a Dn,m for a 18×30 grid in Figure 2.9. The first rule is used in the top-left corner and
the second rule is used in the top right and bottom left corner. No modifications need
to be done in the bottom right corner. By counting the number of stones in the regular
pattern (black and crossed cells in Figure 2.9), removing the number of crossed cells, and
adding the number of grey cells, we get D = nm+2n+2m

3
− 5, which is equal to the number

in Theorem 2.1 when n and m are multiple of 3.
The grid we show is of size 18×30, but it extends immediately to any n×m grid

when n and m are both greater than 14 and multiple of 3. Applying the same method for
14 ≤ n,m when the two numbers have other congruences modulo 3 leads to 2-dominating
sets having the right size.

2.3 Adaptation to other problems and results
In this section we explain the adaptations needed to make the method presented in the
previous section work for one other type of domination, namely the Roman domination.
We will give the corresponding theorem obtained by applying this method. We will also
give partial results on some dominations problems, namely the distance-two-domination

40

and the total domination, for which we could not get the method to fully work. We will
conjecture the possible reasons explaining the partial failure of the method to obtain a
closed formula for arbitrary heights and widths of the grid. We also give a lower bound
for the total domination.

2.3.1 The Roman domination

We explain here how the code was adapted to the Roman domination to obtain the
following result.

Theorem 2.7 ([42]). The Roman-domination number is such that, for all 1 ≤ n ≤ m,

γR(n,m) =

⌈
2m
3

⌉
if n = 1

m+ 1 if n = 2⌈
3m
2

⌉
if n = 3 and m mod 4 = 1⌈

3m
2

⌉
+ 1 if n = 3 and m mod 4 6= 1

2m+ 1 if n = 4 and m = 5

2m if n = 4 and m > 5⌊
12m
5

⌋
+ 2 if n = 5⌊

14m
5

⌋
+ 2 if n = 6 and m mod 5 ∈ {0, 3, 4}⌊

14m
5

⌋
+ 3 if n = 6 and m mod 5 /∈ {0, 3, 4}⌊

16m
5

⌋
+ 2 if n = 7 and m = 7 or m mod 5 = 0⌊

16m
5

⌋
+ 3 if n = 7 and (m > 7 and m mod 5 6= 0)⌊

18m
5

⌋
+ 4 if n = 8 and m mod 5 = 3⌊

18m
5

⌋
+ 3 if n = 8 and m mod 5 6= 3⌊

2(n+1)(m+1)−2
5

⌋
− 1 if n ≥ 9 and n mod 5 = 4 and m mod 5 = 4⌊

2(n+1)(m+1)−2
5

⌋
if n ≥ 9 and n mod 5 6= 4 or m mod 5 6= 4

First, for this problem the set of values for a cell is S = { two_stones, stone, ok,
need_one }. stone means that we put a troop (here we will talk of stones instead) on
the cell, so it does not need to be dominated by another cell. two_stones means that
we put two troops on the cell, so it dominates its neighbours. Now a state S is in V if
and only if for each i ∈ J0, n− 1K:
• if S[i] = need_one then neither S[i− 1] nor S[i+ 1] is two_stones;
• if S[i] = stone then neither S[i− 1] nor S[i+ 1] is two_stones or stone;

Note that the second rule is not required for the consistency of the state, but it is an
optimisation which allows us to reduce a lot the number of states, as we will see in
Section 2.2.3. It is justified by the fact that in a minimum Roman-dominating set, we

41

can always remove any stone neighbouring a cell with two stones, and if there are two
neighbouring cells with a stone each we still have a dominating set of same value by
removing one of the stones and putting a second stone on the other cell. This implies
that there exist minimum Roman-dominating sets matching the extra rules we enforce.

Fact 2.2 (see Section 2.2.3). There are Θ(xn0) ≈ Θ(2.956295n) states in V for n lines,
where x0 is the largest real root of the polynomial x4 − 3x3 − x2 + 3x+ 1.

A state S ∈ V is in F if and only if for every i ∈ J0, . . . , n− 1K, if S[i] = ok then at
least one among S[i− 1] and S[i+ 1] is two_stones.

(S, S ′) is a compatible pair if and only if for i ∈ J0, . . . , n− 1K:
• if S[i] = need_one then S ′[i] = two_stones;
• if S ′[i] = need_one then S[i] 6= two_stones;
• if S ′[i] = ok then at least one among S[i], S ′[i− 1] and S ′[i+ 1] is two_stones;
• if S[i] ∈ {two_stones, stone} then S ′[i] 6= stone;
• if S[i] = stone then S ′[i] 6= two_stones.

Finally, a state S ∈ V is in E if and only if none of its entry is need_one. We may
notice that we do not enumerate every fj(D): we forbid for instance two neighbouring
cells when each contains one or two stones. This is possible because there exist Roman-
dominating sets of minimum size which do not contain this pattern. We will discuss this
optimisation in Section 2.5. Here we can always avoid this pattern by removing the single
stone of one cell. If the other one also had a single stone, we add one stone to it..

We now need to adapt the loss. We define, for the Roman domination,

`(n,m) = 5|S2|+
5

2
|S1| − nm =

5

2
(2|S2|+ |S1|)− nm.

Indeed, each cell with two stones dominates five cells, and each cell in S1 dominates only
itself, but we add to it an additional loss of 3/2 to penalize its bad ratio of number of
dominated cells compared to number of stones used. This allows us to obtain

γR(n,m) ≥ 2

5
(`(n,m) + nm).

Note that in the program, what we compute is actually 2`(n,m) to avoid to manipulate
fractions or floating numbers. Let us define the almost-valid states which, for this prob-
lem, coincide with the valid states: Va = V . Now if S, S ′ ∈ Va, SRaS

′ if and only if for
i ∈ J0, n− 1K:
• if S[i] = need_one then S ′[i] = two_stones;
• if S ′[i] = need_one then S[i] 6= two_stones;
• if S ′[i] = ok and i 6= 0 then at least one among S[i], S ′[i − 1] and S ′[i + 1] is

two_stones;
• if S[i] ∈ {two_stones, stone} then S ′[i] 6= stone;
• if S[i] = stone then S ′[i] 6= two_stones.
Here we do not give complete details on how we compute the loss. Each cell with two

stones having k < 4 neighbours with one or two stones contributes for k, and each cell
dominated by k > 1 cells (with two stones) also contributes for k− 1. Finally, each stone

42

with one cell contributes for 3/2. All these contributions sum up to make the loss. We
recall that in the program we compute twice these values.

As in the previous section, we get exact values for ‘small’ values of n, and a lower
bound for bigger values of n. This time, we obtain the following recurrence relation:

for all r ≥ 12, T r+5
a = T ra + 5. (2.6)

We prove the formula for an arbitrary number of columns and lines the same way as for
the 2-domination problem, using Equation (2.6) and the definition of the loss function.
We conclude that our lower bound is the exact value of γR thanks to the thesis of Currò
(see [10, Chapter 4, Theorem 10]). Indeed, he showed some upper bound for the Roman-
domination number. The lower bound we find is the same as his upper bound, hence
both are sharp and are the Roman-domination number.

2.3.2 The total domination

We present here the details for the total domination. Unfortunately, for reasons we will
discuss in Section 2.4, we were not able to find the values for grids of arbitrary size, so
we give only partial results. The total domination in grids was studied by Gravier [23].
He gives the values for up to 4 lines, and provides some lower and upper bound. We
improve his lower bound. Crevals and Ostergård [9], on their side, gave values up to 28
lines, which is more than we do (up to 15 lines for us).

First, we can see that the domination, 2-domination and total domination are in fact
part of a more general class of problems:

Definition 2.13. A set S ⊂ V is (a, b)-dominating a graph G = (V,E) when any
vertex v in S has at least a neighbours in S and every vertex outside S has at least b
neighbours in S.

It is clear that the domination is the (0,1)-domination while the total domination is the
(1, 1)-domination. Given this fact, storing information about whether a cell has a stone, or
whether one or zero of its ‘current’ neighbours have one is no longer enough. Fortunately,
we can encode in a cell value the number of neighbouring stones, or alternately the
number of stones it lacks to be (a, b)-dominated, plus the knowledge of whether or not
it contains a stone. Depending on the problem we consider, we may need more or less
information: for the total domination for instance, we also need to store for the cells with
a stone whether or not they are dominated by another cell.

One way to encode the necessary information for an (a, b)-domination problem is to
have the following set for the cells values: stone_prev, stone, none_prev, none.
The ‘_prev’ suffix means that the neighbouring cell from the previous column also
contains a stone. ‘none’ means that the cell does not contain a stone itself. We then
compute which states are valid and the compatibility relations just from that. Indeed,
we can recover how many times a cell is dominated from this piece of information.

However, as we will see in details in Section 2.2.3, we can make the computations
a lot faster by choosing carefully how to encode the necessary information. So the

43

set of cell values is S = {stone_ok, stone_need_one, stone_need_two, ok,
need_one, need_two}. Some of these values are not necessary: for the computa-
tions of the exact values, when the number of lines is fixed, any cell would have at most
one new neighbour (in the next column). This makes the values ending by ’_two’
useless: they are used only for the loss computation. We do not give explicitly the
set of valid states, first states, ending states and compatibility relation: the logic be-
hind them is very similar to the one for the domination, and they are present in the code
(see respectively functions is_state_valid, can_cell_neighbourhood_be_first,
is_state_dominated and are_state_compatible in the source code).

Fact 2.3 (see Section 2.2.3). There are Θ(xn0) ≈ Θ(2.618034n) states in V for n lines,
where x0 is the real root of the polynomial x4 − 3x3 + 3x− 1.

As we warned above, we did not manage to get a closed formula which would work
for every value of n and m. Hence we give here values for small number of lines (up to
15), and some bounds on the quantity γT when the number of lines is arbitrary. The
lower bound is obtained by the same loss method, and again the transfer matrix we use
for the bands verifies some recurrence property, hence we can extend our lower bound for
an arbitrary number of lines and columns. However, this lower bound does not seem to
match the actual value: it seems to increase little by little, and we exhaust the computing
resources while it still wants to grow14.

Theorem 2.8. For 1 ≤ n ≤ 15 and any m ≥ n, the following equalities about the total
domination number hold:

γT(1,m) =

⌊
m
2

⌋
if m mod 4 = 0⌊

m
2

⌋
+ 1 otherwise

γT(2,m) =

⌊
2m+2

3

⌋
+ 1 if m mod 3 = 1⌊

2m+2
3

⌋
otherwise

γT(3,m) = n

γT(4,m) =

⌊
6m+3

5

⌋
+ 2 if m mod 5 ∈ {0, 3}⌊

6m+3
5

⌋
+ 1 otherwise

γT(5,m) =

⌊
6m+3

4

⌋
+ 2 if m mod 4 = 0⌊

6m+3
4

⌋
+ 1 otherwise

γT(6,m) =

⌊
12m
7

⌋
+ 4 if m mod 7 = 5⌊

12m
7

⌋
+ 3 if m mod 7 ∈ {1, 2, 3}⌊

12m
7

⌋
+ 2 otherwise

γT(7,m) =

 2m+ 2 if n mod 2 = 0 or m ∈ {9, 11, 15, 21}

2m+ 1 otherwise

14like a poor vegetable running out of water

44

γT(8,m) =

⌊
20m+6

9

⌋
+ 4 if m mod 9 ∈ {0, 7} and n /∈ {9, 16}⌊

20m+6
9

⌋
+ 3 if m mod 9 ∈ {2, 3, 4, 5}⌊

20m+6
9

⌋
+ 2 otherwise

γT(9,m) =

⌊
10m+3

4

⌋
+ 3 if m mod 4 = 2⌊

10m+3
3

⌋
+ 2 otherwise

γT(10,m) =

⌊
30m+1

11

⌋
+ 6 if m mod 11 = 9 and m 6= 20⌊

30m+1
11

⌋
+ 5 if m mod 11 ∈ {2, 5, 7} and m /∈ {13, 18}⌊

30m+1
11

⌋
+ 4 if m mod 11 ∈ {0, 1, 3, 6} or m = 20⌊

30m+1
11

⌋
+ 3 otherwise

γT(11,m) =

3m+ 4 if m ∈ {12, 22}
3m+ 3 if m ∈ {13, 15, 17, 19, 23, 27, 29, 33, 37, 43, 47, 57}
3m+ 2 otherwise

γT(12,m) =

⌊
42m+9

13

⌋
+ 6 if m mod 13 ∈ {0, 11} and m /∈ {13, 24, 26, 37}⌊

42m+9
13

⌋
+ 5 if m mod 13 ∈ {2, 4, 7, 9} and m /∈ {15, 17, 20}⌊

42m+9
13

⌋
+ 4 if m mod 13 ∈ {3, 5, 6, 8} or m ∈ {13, 24, 26, 37}⌊

42m+9
13

⌋
+ 3 otherwise

γT(13,m) =

⌊
14m+3

4

⌋
+ 5 if m ∈ {14, 26}⌊

14m+3
4

⌋
+ 4 if m mod 4 = 0 or m = 19⌊

14m+3
4

⌋
+ 3 otherwise

γT(14,m) =

⌊
56m+2

15

⌋
+ 8 if m mod 15 = 13 and m /∈ {28, 43}⌊

56m+2
15

⌋
+ 7 if m mod 15 ∈ {2, 9, 11} and m /∈ {17, 24, 26, 32, 41}⌊

56m+2
15

⌋
+ 6 if (m mod 15 ∈ {0, 5, 6, 7} and m /∈ {15, 21, 22, 30})

or m ∈ {28, 43}⌊
56m+2

15

⌋
+ 5 if m mod 15 ∈ {1, 3, 4, 10} or m ∈ {17, 24, 26, 32, 41}⌊

56m+2
15

⌋
+ 4 otherwise

γT(15,m) =

4m+ 6 if m ∈ {16, 30}
4m+ 5 if m ∈ {21, 23}
4m+ 4 if (m mod 2 = 0 and m /∈ {16, 30})

or m ∈ {17, 19, 25, 27, 31, 35, 37, 39, 41, 45, 49, 53, 55, 59, 63,

67, 73, 77, 81, 91, 95, 109}
4m+ 3 otherwise

45

Theorem 2.8 confirms the results from Crevals and Ostergård [9] for values up to 15.
In their paper they managed to go up to n = 28, using another approach. They do not
enumerate full dominating sets as we do, but have like us some notion of states. However,
instead of enumerating the states of the columns, they only enumerate the states of partial
dominating sets: they store only the elements of the minimal-dominating set. Using clever
arguments they also manage to cut down on the number of states they enumerate, and
it turns out this number grows less fast than in our method.

The loss can be adapted to the generic (a, b)-domination problem: each stone con-
tributes to dominating its 4 neighbouring cells. The dominating |D| cells need to be
dominated a times and the cells nm− |D| cells not in D need to be dominated b times.
When reversing the formula we obtain:

γa,b(n,m) =
b · nm+ `(n,m)

4− a+ b
. (2.7)

With our program to compute the loss, we find that, for a band of height 10:

for all r ≥ 31, T r+22
a = T ra + 10. (2.8)

From this, as for the other problems we studied above, we deduce:

Claim 2.3. `10(n+ 22,m) = `10(n,m+ 22) = `10(n,m) + 10 for every n,m ≥ 52.

First, we may notice that our lower bounds obtained thanks to the loss are not too
far from the actual values Crevals and Ostergård found. For 28 lines, they find 416 for
m = 56 and 427 for m = 58 when we find that it must respectively be at least 411 and
426.

Also, the bounds we obtain agree to some extent to the conjecture of [9]. Indeed,
their formulas imply that, when m mod 4 ∈ {1, 3} then γT(n,m) = Θ(nm+n+m

4
) and our

values imply

γT(n,m) ≥ nm+ 10/11(n+m)

4
+O(1). (2.9)

We can even go a bit further on the constant after this equivalent. By using Claim 2.3
we deduce that `10(n,m) ≥ 210

22
(n + m) + c = 10

11
(n + m) + c(n mod 22,m mod 22),

where the c(i, j) for 0 ≤ i, j ≤ 22 are some constants depending on the actual values
of `10(n,m). The factor 2 comes from the fact that a rectangle has two vertical bands
and two horizontal bands, as we mentioned for the 2-domination. We determine, thanks
to the values of the loss of height 10 for 52 ≤ n,m ≤ 74, a lower bound on the c(i, j)
constants. From what just precedes and by Equation (2.7), we obtain:

Proposition 2.9.

γT(n,m) ≥
nm+ 10

11
(n+m)

4
− 1.

We may even notice that the fraction which is multiplied by (n+m) in Equation (2.9)
increases when the height increases and may converge towards 1, which is the values from
their conjecture. Indeed, the fractions we obtain equal 6/7 for 6 and 7 lines, 8/9 for 8
and 9 lines, and 10/11 for 10 lines. It may even be possible that it takes all the values of
the shape 2l/(2l + 1) when the height becomes arbitrarily big.

46

Conjecture 1.
γT(n,m) =

nm+ n+m

4
+O(1).

2.3.3 The distance-two-domination

As was written in the introduction, a grid is distance-two-dominated by S when any
vertex not in S is at distance at most two of an element of S. The more general distance-
k-domination problem was studied by Farina and Grez [13] who proved some upper bound
on the associated domination number.

Here again we did not manage to get a closed formula for arbitrary numbers of lines
and columns. The problem is not the same as for the total domination: we more likely
just lacked of a bit a computing resources instead of the problem being much more difficult
to tackle. Indeed, since now a vertex may be dominated by a vertex at distance two, we
need to store more information on previous columns: not just some information about
the previous columns, but also some about the one even before.

The set of cell values is S = { stone_prev, stone, ok_prev, ok, need_dist_two,
need_dist_one }. The ‘prev’ suffix, here again, means that the cell of the previous
column has a stone. ok means that the cell is dominated, whereas need_dist_two
means that the cell is not dominated so that it requires a cell at distance at most two
with a stone. need_dist_one is similar but it means here that the cell in the pre-
vious column was not dominated, hence the next cell needs to have a stone to domin-
ate this ante-predecessor cell. As for the total domination we do not detail the other
special sets and the compatibility relation, which are only a matter of logic and op-
timisations, and can be found in the source code (see the functions is_state_valid,
can_cell_neighbourhood_be_first, is_state_dominated and are_state_compatible).

Fact 2.4 (see Section 2.2.3). There are Θ(xn0) ≈ Θ(2.958770n) states in V for n lines,
where x0 is the largest real root of the polynomial x24−5x23+6x22+2x21−7x20+6x19−8x18

+ 8x17 + 4x16− 13x15 + 5x14 + 6x13 + 8x12− 14x11− 17x10 + 14x9− 8x8− 10x7− 8x6 + 5x5

+ 9x4 − x3 − 5x2 + 4x− 1.

As for the total domination, we give the formulas for small values of n.

Theorem 2.10. For 1 ≤ n ≤ 14 and any m ≥ n, the following equalities about the
distance-two-domination number hold:

γd2(1,m) =
⌈m

5

⌉
γd2(2,m) =

⌊m
4

+ 1
⌋

γd2(3,m) =
⌈m

3

⌉
γd2(4,m) =

⌊
3m
7

⌋
+ 1 if m mod 7 ∈ {0, 1, 3, 5}⌊

3m
7

⌋
+ 2 otherwise

γd2(5,m) =

⌊
m+1
2

⌋
if m mod 6 = 1⌊

m+1
2

⌋
+ 1 otherwise

47

γd2(6,m) =

⌊
3m
5

⌋
+ 1 if m mod 5 6= 3⌊

3m
5

⌋
+ 2 otherwise

γd2(7,m) =

 7 if m = 9⌊
2m
3

⌋
+ 2 otherwise

γd2(8,m) =

12 if m = 13⌊
3m
4

⌋
+ 1 if m mod 8 ∈ {4, 7}⌊

3m
4

⌋
+ 2 otherwise

γd2(9,m) =

⌊
5m
6

⌋
+ 1 if m ∈ {11, 18}⌊

5m
6

⌋
+ 3 if m mod 6 ∈ {2, 3, 9} and m /∈ {4, 15, 20, 21, 27, 32, 39}⌊

5m
6

⌋
+ 2 otherwise

γd2(10,m) =

⌊
10m
11

⌋
+ 3 if m mod 11 ∈ {2, 3, 5, 8}⌊

10m
11

⌋
+ 2 otherwise

γd2(11,m) =

 m+ 1 if m mod 30 ∈ {1, 4, 6, 7, 9, 11, 14, 16, 17, 19, 21, 24, 26, 27, 29, 30}

m+ 2 otherwise

γd2(12,m) =

⌊
15m
14

⌋
+ 4 if m mod 14 = 11 and m 6= 25⌊

15m
14

⌋
+ 2 if m mod 14 ∈ {1, 4, 7} or m ∈ {14, 17, 19, 28}⌊

15m
14

⌋
+ 3 otherwise

γd2(13,m) =

⌊
15m
13

⌋
+ 4 if m mod 13 = 5 and n 6= 31⌊

15m
13

⌋
+ 3 if (m 6= 13 and mod 13 ∈ {0, 2, 3, 6, 8, 10, 11, 12}) or n = 31⌊

15m
13

⌋
+ 2 otherwise

γd2(14,m) =

⌊
21m
17

⌋
+ 2 if m mod 17 = 1 or n ∈ {23, 30, 47}⌊

21m
17

⌋
+ 4 if m = 36 or (m > 46 and n mod 17 ∈ {2, 3, 8, 11, 14, 16}

and n /∈ {54, 59, 71})⌊
21m
17

⌋
+ 3 otherwise

γd2(15,m) =

⌊
21m
16

⌋
+ 2 if m mod 16 ∈ {1, 4, 7}⌊

21m
16

⌋
+ 4 if m mod 16 ∈ {2, 3, 5, 8} and n /∈ {19, 21}⌊

21m
16

⌋
+ 3 otherwise

48

Figure 2.11: The shape corresponding to the domination tiling problem.

We adapt again the loss function: now a cell contributes to the domination of 12 cells,
and each cell not in the dominating set needs to be dominated once. We then obtain:

γ2d(n,m) =
nm+ `(n,m)

13
.

However, we were not able to find good bounds with the method we used for the other
problems.

2.4 Conjectures about why the method works
As we said earlier, the method for a fixed number of lines should work for any problem
the properties of which can be checked locally, that is by the means of a finite list of
forbidden patterns. Some authors investigated the problem of domination in Cartesian
products of cycles (see for instance [25, 38]). The first part of the technique (when n
is fixed and small) may be adapted, as stated by Theorem 2.4 but the second part (for
arbitrary number of lines) does not apply directly since a crucial property is that the loss
can be concentrated inside the borders of the grids.

Some necessary and sufficient conditions for the loss method (the one described in
Section 2.2.4, for arbitrary large number of lines) to work are yet to be discovered. We
try here to infer what these conditions might be by giving some properties we believe to
be related to the effectiveness of the method.

We believe that the reasons why the method gives sharp bounds can be expressed as
some tiling properties. Indeed, the domination problems are related to covering problems.
For instance, Figure 2.11 shows the shape associated to the domination problem. A
smallest dominating set in a grid is equivalent to a smallest covering set of the rectangle
with this shape. The method of Gonçalves et al. works thanks to the fact that the shape
has the following two properties. First, it can tile (that is, cover without overlaps) the
infinite plane. Second, we can find optimal solutions which consist of projecting a tiling
of the plane, cropping it and modifying only tiles at bounded distance from the border.

In the case of the 2-domination and the Roman domination, it is not properly speak-
ing a covering problem, but a generalised covering problem with some weights (see Fig-
ure 2.12). The properties we write below are rather focused on standard tilings than on
generalised tiling.

One crucial point is the following property.

Property 2.1 (Fixed-height border-fixing). Let X be a shape. X has the fixed-height
border-fixing property if there exist k, n0,m0 such that, for any n ≥ n0 and m ≥ m0,
there exists an optimal covering of the n × m rectangle whose cells at distance greater
than k of the border are included in a tiling (so with no overlaps) of the plane.

49

21

1

1

1

cost=2

cost=2

(a) The 2-domination shape.

cost=1

cost=2

(b) The Roman-domination shapes.

Figure 2.12: The shapes for the 2-domination and the Roman domination. For the 2-
domination, we look for a covering such that the sum of the weights (in white) on a cell
is at least 2. For the Roman domination, we cover with two tiles, but they have different
costs. We are interested in a covering of minimum weight.

For instance, the 2-domination shape has this property for k = 3: any optimal solution
to the 2-domination problem can be obtained from an infinite optimal 2-domination set
of which we modify only cells at distance at most 3 from the border. Note that, due to
the automation feature of the algorithm, this is indeed k = 3 here even if the program
needs to explore borders of size 6 to find the correct bounds.

The fixed-height border-fixing property implies that the bounds given by the method
are sharp for some constant height band, independent of the size of the rectangle. This
seems to be related to the following property.

Property 2.2 (Crystallisation). Let X be a shape. We say that X has the crystallisation
property if there exists k ∈ N such that for every partial tiling of size k with the shape
X, either this tiling cannot be extended to tile the plane, or there is a unique way to do
so up to rotation/symmetry.

For instance, the domination shape has this property for k = 2: any two cross shapes
put on a grid either cannot be extended into a tiling of Z2 or can be completed into only
one such tiling. On the contrary, the total domination does not have this property. The
total-domination problem has been studied a lot in other graphs (see [30] for example),
but remains open for grids. It is related to the shapes in Figure 2.13. The small one
corresponds to the influence of one ‘stone’: note that the centre cell does not dominate
itself. The big ones are the unions of two copies of the small one. One can see that tiling
the plane with the small shape is equivalent to tiling the plane with the set of the two big
shapes: in the small shape, the middle cell must be dominated. As shown, the big shape
can be vertical or horizontal. The problem with our technique is that a tiling of the plane
can, with a certain degree of freedom, mix the vertical and the horizontal big shapes.
This probably leads to some non-zero loss in the centre of a big grid to be necessary for
a covering to be of minimum size. In this case, the assumption of the loss on the centre
of the grid being zero would be false, making our technique unusable.

Conjecture 2. If a shape X tiles the plane and has the crystallisation property then it
also has the fixed-height border-fixing property.

50

Figure 2.13: The shapes associated to the total domination. The big ones are the two
different unions of two copies of the small one. Tiling the plane with the small one boils
down to tiling the planes with the two big ones.

These properties could also be used on tiling problems with other shapes, even if they
have no relation with any domination problem on grids.

2.5 Experimental details: implementation and optim-
isations

All of the results we obtained required a lot of computing resources. Some of them
were obtained after quite a lot of optimisations, and some partial results could have been
improved if the memory consumption and the running time had been smaller. We explain
here some optimisations we applied, some of them being more theoretical while others
are technical.

Problem-dependent optimisations.
As we said before, we made optimisations to reduce the number of states in some

problems, using their properties. For instance for the Roman domination, there exist
minimum dominating sets which never have one stone next to a cell with either one
(case a) or two stones (case b). We can simply remove the stone in case a, or make it
a two stones cell and remove its neighbours with one stone in case b. If we remove the
optimisations for the states of the Roman domination, the growth rate of the number
of states becomes 3.561553 instead of 2.956295. We achieved a very good improvement.
For instance, for 10 lines the optimised version generates 32.5k states and 6.2M elements
in the transfer matrix, while the unoptimised version generates 182k states and 2500M
elements in the transfer matrix, which is very significant.

Another part where the improvements were big was about the (a, b)-domination.
The first version we programmed encoded in the states whether or not each cell had
a stone, and whether its predecessor had a stone. The set of states of this version is:
S = { stone_prev, stone, none_prev, none }. The other version we programmed
after, which we will call the fast version, instead encoded for each cell the fact of whether
it has a stone and how many stones it needs (that is 0 or 1 for computing the dom-
ination numbers, and 0, 1 or 2 for the computation of the loss). The states of this

51

version for a fixed number of lines, is included15 in { stone_ok, stone_need_one,
stone_need_two, ok, need_one, need_two }. This version is faster because if
for instance a cell is dominated by its state, we do not need to convey the information
of whether or not its predecessor cell had a stone. We will compare the two versions for
the total domination, i.e. the (1,1)-domination. In the slow version, the growth rate of
the number of states is 4, whereas in the fast version, it is 2.618034, which is a huge
gain. Using 95 cores, computing the transfer matrix for 10 lines uses 150s for the slow
version compared to 1.3s for the fast one. In the slow version there are 525k states and
252M compatible pairs in the transfer matrix; in the fast version there are 10.4k states
and 2.2M compatible pairs, once again a very important gain.

Pruning symmetries in the states.
In order to reduce the number of states, we can do a simple observation: take a

dominating set for any domination problem, and apply a horizontal symmetry to it. It
remains dominating. This means that we do not need to store all the states: when they
are not symmetrical we may keep only one representative out of the two since they both
have the same number of stones. Also, let us assume that S and S ′ are compatible,
and let us denote the symmetric of S by rev(S). Then let us assume that S and S ′ are
compatible, but we only stored rev(S) and not S ′. This is not a problem since S and S ′
being compatible implies that rev(S) and rev(S ′) are compatible. When computing the
transfer matrix, it suffices to check for compatibility with the reversed versions of one
of the two states. If a state can be put first, then its symmetrical can also. The same
applies for the end states. This implies that, by using only one representative for each
pair of symmetrical states, we compute the same domination numbers as when we store
all states. This optimisation saves us around half of the states, half of the compatible
pairs. This optimisation does not, however, change the growth rate of the number of
states of a problem: it would otherwise make it decrease exponentially when the number
of lines increase instead of roughly dividing it by two.

For the 2-domination with 12 lines, without pruning symmetrical states we have
around 142k states and 10M compatible pairs, and the computation of the transfer mat-
rix with 95 cores takes around 59s. When we prune symmetrical states it takes 43.5s:
we have 71k states and 4.6M compatible pairs. This a slight improvement, however the
optimised version has a memory peak at 236MB whereas the other uses 493MB at peak.
This may make a difference, for some problems, when computing the transfer matrices:
it may make it possible to go one line further. Unfortunately, this optimisation does not
apply to the computation of the loss matrices. Indeed, the top cells have a neighbour
above which can contain a stone

Checking validity while generating states.
To generate the valid states, we may recursively enumerate all the states in Sn and

each time we complete a state (by choosing its bottom value) we check whether or not
the state is valid. However, in the program the generation of the valid states was not
parallelised and so it took a non-negligible part of the total running time when using a
machine with a lot of cores. This justified trying to optimise this part of the program.

15If a or b equals zero, some states are no longer useful.

52

The optimisation we programmed was to partially check the validity of a state while
generating the state: each time we fix the value of the next cell we check whether or not
this beginning is valid instead of waiting until the state is complete.

This means that in many cases we can cut some branches of exploration of the states
values before reaching the end. In the minimal-domination problem we investigate in
Chapter 3, this helped reduce the time a lot: it takes 5.1s instead of 9.7s for a height of
7 and 46.4s instead of 121.4s for a height of 8. We did not implement this feature for the
problems in this chapter since the generation of states did not take that long compared
to the other parts of the computation. Computing the loss matrix is, as we will see, cubic
in the number of states.

Pre-computing a subset of the potentially compatible states.
The previous paragraph was about precomputing the validity of possible states while we

are generating the states. The idea here is similar: when considering a state and checking
which other states might be compatible with it, we waste some time trying a lot of states
which have no chance of being compatible. For instance, S may be incompatible with S ′
because of the values of the first three cells... in that case, any state S ′′ with the same
first three cells will not be compatible with S ′. For some problems, we may precompute a
list of candidates to the compatibility relation with a specific state S ′: any state outside
this list will not be compatible, but not every state in the list will be compatible. For
other problems, like the simple domination or the 2-domination, precomputing the list of
candidates to the compability slows down the program: the ratio of incompatible ‘pairs’
is less than the one of the minimal domination, for instance. This method will be used
in Chapter 3 for the minimal versions of the domination problems.

In some problems, mainly the ones storing a lot of things in the past: the distance-
two-domination, and especially the minimal and minimal total domination that we study
in Chapter 3 are the best examples to illustrate this fact. Since the latter stores whether
or not the current cell has a stone as well as the information about the most recent three
columns, compatibility rules follow some structure. Indeed, if S ′ can be put after S then
the information about columns ‘-1’, ‘-2’, and ‘-3’ must respectively be the same as the
information in S about its relative current column and columns ‘-1’ and ‘-2’. So we can
discard any state where the information differs. Since each value is stored in four bits
(one for each column we store information about), the list of possible next states S ′ is
obtained by shifting each value of S by one bit. This means that we test only one eights
of the number of states as possible successors for a state S, as opposed to the whole set of
states we would test otherwise. To simplify, for instance, 1110 cannot be compatible with
1111 because its one-before-last bit should match the last bit of 1110 (i.e. a zero). 1110
might, on the contrary, be compatible with 1100 or 1101: the zero has shifted towards
the left.

For the minimal domination of height 7 (around 6.2 millions states), using a ma-
chine with 20 cores, the computation of the transfer matrix takes 8 seconds with the
optimisation and more than 22 minutes without (we did not wait for it to end).

Optimising matrices products.
The matrices we handle are big, or even huge: as many lines and columns as there

are states, which can be around one million (or a bit more) for some problems in this

53

chapter. So the products between matrices take a lot of time and this is a concern of
primary importance. Yet, our matrices are very sparse, the ratio of the number of states
squared divided by the number of actual (different from +∞) values are the following:

• for the 2-domination, it is 32 for 10 lines and 153 for 14 lines;
• for the Roman domination, it is 314 for 10 lines and 2899 for 14 lines;
• for the distance-2-domination, it is 226 for 10 lines and 1884 for 14 lines.

This is very fortunate because the algorithm we use have a running time of roughly
O(nbState2) when the number of lines is fixed and O(nbState3) for the loss method.
Since the matrices are sparse, the running time is in fact proportional to the number of
compatible pairs, that is the number of values of the matrix. Still, the matrices products
take a very long time. One first observation is that since we know that our matrices
are primitive (i.e. there exists k such that Mk has its full nbState2 coefficents) products
between matrices rapidly take a very very long time. This can be avoided, for the first
method (fixed number of lines) by doing only matrix-vector products when computing
the domination numbers. This way, we do a number of operations which is around the
number of values in the matrix which are different from +∞.

Ordering the corner computations.
The final optimisation we talk about here is done at a higher level: it is more a design

detail of the algorithm. To compute the loss, we need to compute the corner transfer
matrix (see Section 2.2.4) Ca. Ca[a][b] contains the minimum loss inside the corner if a
and b are the ‘internal’ edges of the corner. So the standard algorithm is basically the
following: for any two states a and b, compute the minimum loss over the corner (i.e.
compute the loss over h columns, where h is the height of the border we chose). This leads,
letting nbState = |Va|, to nbState2 possibilities for the choices of a then b, multiplied by
a factor of h · |Ra| where |Ra| is the number of almost compatible pairs. Roughly, this
would be some O(nbState4). However, things can be more finely tuned: let us assume
we compute the loss over the bottom-right corner, let us fix b as the output state of
the corner (the ‘upper horizontal’ state). We then compute the minimum loss inside the
corner, and finally obtain, for every possible input state of the corner (‘left vertical’ state)
a the value of Ca[a][b] by considering all the possible states a as a (h+ 1)th compatibility
computation. This leads to a roughly O(nbState3) algorithm, which is much better: we
handle matrices with nbState = 20000, so we save a factor around 20000 in this case.

Using threads.
When you lack time, you may want to save up time eating, so a brunch is a good com-

promise. Or rather, ‘brunch’ was the name of the machine with the most (efficient) cores
in our laboratory: it has 96 cores. So this was a great incentive to parallelise the code. As
we mentioned in the introduction, the key point when parallelising a code is to identify
how to make the parallel computations independent. Here we were lucky: computing the
transfer matrix (i.e. the compatibility and almost-compatibility relations) can be done
fairly easily in parallel: we divide the states into p share of equal size and each thread
computes, for each state S in its share, the set of states which are compatible with S.
The good thing is that all threads write the list of compatible states at different points

54

of memory, so there is no risk of writing at a location of the memory at the same time as
another write or a read. They may read the same variable at the same time but this is
not an issue. Due to the fact that not all portions are easily parallelisable and to a few
technical issues the speedup is not 1: if we use p cores, the running time is not divided
by p. Some of the problems involve context switching (to a minor impact): sometimes a
thread is executed in one core and then switched to another so that all the values in the
registers need to be copied, and all the thread do not have exactly the same amount of
work to do: when multiplying two matrices and giving a portion of the multiplication to
each core, some may be ‘lucky’ and finish well before the others. For instance, computing
the transfer matrix of height 13 for the 2-domination problem takes 167.6 seconds using
one thread. On a machine with 96 cores, using 20 threads, it takes 15.2s and using the
100 threads, it takes 4.8s.

It is beautiful to create a lot of threads and then see the usage of CPU decrease little
by little, as though the finishing times of the threads followed a normal law.

55

Chapter 3

Asymptotic growth of the number of
dominating sets

We live in a world whose main concept is the one of growth. All countries try to achieve
the maximum possible economic growth so that their people may enjoy a better life be-
cause they have more money and comfort. However, alongside with the growing number
of people on the Earth, such an economical and technological growth leads to huge prob-
lems, some of which are climate change and the loss of biodiversity. For instance, we have
lost 52% of the existing animal species between 1970 and 2012, according to the WWF.
Some animals are small yet very useful to humans, like bees. They also have suffered
a big loss over the past decades, and still decrease now. Concerning the resources and
energy that we consume, we can cite the IEA1 which says that between 1971 and 2017
the total of produced energy increased by more than 2.5 times. Our consumption
of resources increased a lot as well, which is not sustainable. Indeed, in 2019 the Earth
Overshoot Day was July 29th2: between January 1st and this date, the world con-
sumed the amount of resources that the Earth can renew in one year. This means that
we consume at least 1,42 times what the earth renews each year... asymptotically, this
leads to the total depletion of the available resources.

However, in this chapter the only thing which grows is the number of inoffensive3 dom-
inating sets. In the previous chapter, we studied these sets from an optimisation point
of view: trying to minimise the size of a dominating set. It is also of interest to study
the related counting problem: how many different dominating sets are there? We will
tackle this question on various domination problems: the domination, total domination,
minimal domination and minimal total domination. This means that, for each of these
problems, we will show the existence of some constant ν, depending on the problem, such
that the number of appropriate dominating sets is νnm+o(nm) when both dimensions n
and m of the grid tend to infinity. We will also give bounds and estimates on the growth
rate ν. We will do the same for the other domination problems listed just above. In
this journey, we will see that counting dominating sets is related to some problems in
dynamical systems, and particularly to the notion of entropy in subshifts of finite type.

1International Energy Agency
2It happened to be the precise day I wrote this paragraph.
3yes, remember Chapter 2

56

This notion of subshift, which we define later, encompasses the problems which can be
defined as colouring Zd forbidden a specific set of patterns to appear. In dimension 2,
the subshifts can be seen as factor-free languages of bidimensional words.

We begin in Section 3.1 by giving the missing definitions of some dominating sets. We
then introduce in Section 3.2 the simple concept of local characterisation and the notion
of subshifts (of finite type), and explain their similarities with the domination problems.
These concepts are tools we will use to obtain our results: our domination problems can
be viewed as some subshifts of finite type (SFT). In Section 3.3, we explain the link
between these tools and our objectives: counting the patterns of a certain size which can
appear in one of our SFTs helps us count the number of dominating sets associated to
this SFT. We then introduce in Section 3.4 the notion of entropy of a subshift, which,
in our cases, turns out to be equal to the growth rates we are looking for. In one
subsection we show that some of the subshifts we have defined are block gluing. This fact
implies that their entropies are computable numbers, hence the same is true for their
asymptotic growth rates. In Section 3.5 we finally show how to obtain bounds on the
growth rates. We give the numerical approximations and bounds we obtained for each
problem, thanks to computer resources, using a program similar to the one of Chapter 2.
Finally, we introduce a family of subshifts with particular properties in Section 3.6. This
family generalises the domination and total domination, and we provide a second family
of problems to do the same for their minimal counterparts. We study the block-gluing
property for this second family and show that each of them are block gluing, but the
block-gluing constant is a function of the parameter of the family.

The work of this chapter was done with Silvère Gangloff. Most of the results can be
found in [17]. Beware that some notations, like Dn,m, differ a bit from the article in order
to keep a coherency with Chapter 2.

3.1 Basic definitions and notation
In this chapter, G will be an undirected graph of which we examine the diverse dominating
sets, and we will focus on grid graphs only. Contrarily to the previous chapter, the graphs
here may be infinite when we specify it. We recall here Definition 2.4: a set S of vertices
of a graph G is total dominating when any vertex v ∈ V has at least one neighbour in
S

Definition 3.1. A minimal dominating set S is a dominating set which is inclusion-
wise minimal: any S ′ (S is not dominating. Or equivalently: for each v ∈ S, the set
S \ {v} is not dominating.
Likewise, a minimal total-dominating set is a total-dominating set which is inclusion-
wise minimal.
Notation 3.2. In the following, for all integers n and m, we denote by Dn,m, Mn,m,
Tn,m and MTn,m respectively the number of dominating sets of the grid Gn,m, the
number of its minimal dominating sets, the number of its total-dominating sets and the
number of its minimal total-dominating sets.

To familiarise the reader with the notions of domination we study here, some of them
are illustrated in Figure 3.1.

57

(a)
(1,1)

(b) (c)

Figure 3.1: Illustration on G4,4:
(a) a dominating set which is neither minimal dominating nor total dominating;
(b) a minimal dominating set which is not total dominating (the bottom-left dominant
vertices are not dominated);
(c) a minimal total dominating set.

3.2 Local characterisations and relation with SFTs
In this section we recall, and for completeness prove, the local characterisations of some
notions of dominating sets. This means that one can check if a set S is dominating (or
minimal dominating, and so on) by examining, for each vertex, whether or not this vertex
and its (possibly extended) neighbourhood are in S. This was what enabled Chapter 2
to work: checking properties locally makes it possible to encode only some information
about the (few) previous column(s). This allows us to enumerate the dominating sets
without keeping (and hence enumerating) them fully in memory. We then introduce and
define the subshifts of finite type (SFT) which are dynamical systems objects strongly
linked to the local characterisation property. Each domination problem will be associated
to its SFT counterpart, with which it shares some properties like the growth rate (called
entropy in the world of SFTs). We will later use the framework around the SFTs and
prove some properties they have to deduce the counterpart in the domination growth
rates.

3.2.1 Local characterisations

Definition 3.3. When a set S of a graph G is fixed, a vertex is called a dominant
element of G when it is in S, and a dominated element when it has a neighbour in S.
w is said to be a private neighbour of a dominant element v when v is the only
neighbour of w in the set S.

Fact 3.1. Let S be a set of vertices of a graph G. Then for all vertices v and w such that
w is not a neighbour of v, w is dominated by S if and only if it is dominated by S \ {v}.

Definition 3.4. Let S be a set of vertices of a graph G. We say that a dominant element
is isolated in S when it has no neighbours in S.

In the previous three definitions, S is a dominating set for any of the variant of
domination we study.

Proposition 3.1. Let S be a dominating set of a graph G. S is minimal dominating if
and only if every element of S is isolated in S or has a private neighbour not in S.

58

Proof.

• (⇒): Let us assume that S is minimal dominating. Every vertex not in S has
a neighbour in S because S is a dominating set. Now let us fix v ∈ S. From
Fact 3.1 and by definition of a minimal dominating set, any w which is not in the
neighbourhood of v is dominated by S \ {v}. Since S \ {v} is not dominating, it
means that:

1. v is not dominated by S \ {v}, which means that v is isolated in S;

2. or there exists some u /∈ S connected to v which is not dominated by S \ {v},
hence u is a private neighbour of v which is not in S.

• (⇐): Conversely, let us fix some dominating set S such that every v ∈ S has a
private neighbour not in S, or is isolated. Fix some v ∈ S. If it has a private neigh-
bour u, then u is not dominated by S \{v}, and thus S \{v} is not dominating. If it
has no private neighbours, then it is isolated. This means that v is not dominated
by S \ {v}, therefore the set is not dominating. In both cases, we conclude that S
is minimal dominating.

With a similar proof, we obtain the following:

Proposition 3.2. A total-dominating set S of a graph G is minimal total dominating if
and only if any v ∈ S has a private neighbour.

3.2.2 Subshifts of Finite Type (SFTs)

We now introduce the notion of SFTs: they intuitively correspond to sets of possible
colourings of the infinite grid Zd which avoid some fixed finite set of forbidden patterns.
We give the definitions in the general context of arbitrary dimension d, but in this chapter
we will mostly work in dimension two, and a bit in dimension one in Section 3.5.1.

Definition 3.5. Let A be a finite set, and d ≥ 1 an integer. A pattern p on alphabet
A is an element of AU for some finite U ⊂ Zd. The set U is called the support of p, and
is denoted supp(p).

Definition 3.6. Given an alphabet A, any colouring of Zd with values in A, that is any
element of AZd , is called a configuration.

Definition 3.7. Let C1 and C2 be two configurations. Let Sn be the square of size 2n+1
centred in (0, 0). Let n be the maximum integer such that the pattern on support Sn of
C1 and the one on same support of C2 coincide, or +∞ if C1 = C2.

We define the distance on the set of configurations to be d(C1, C2) = 2−n if C1 6= C2

or 0 otherwise.

Notation 3.8. For a configuration x = (xu)u∈Zd of AZd (resp. for a pattern p ∈ AU for
some U ⊂ Zd), we denote by x|V the restriction of x to some subset V ⊂ Zd (resp. the
restriction of p to V ⊂ U).

59

Definition 3.9. Let A be a finite set, and d ≥ 1 integer. A d-dimensional subshift on
alphabet A is a subset of AZd defined by a set of forbidden patterns. Formally, a subset
X of AZd is a subshift when there exist some finite sets U ⊂ Zd and F ⊂ AU such that:

X =
{
x ∈ AZd

: ∀u ∈ Zd, x|u+U /∈ F
}
.

The elements of F are called the forbidden patterns.

Definition 3.10. Let X be a subshift defined by a set of forbidden patterns F . When
F is finite, then X is called a subshift of finite type or SFT.

Definition 3.11. For a subshift X, a globally-admissible pattern of size J1, nKd is
some pattern p ∈ AJ1,nKd which appears in a configuration of X, that is when x|J1,nKd = p.
When d = 2, we extend the definition to patterns p ∈ AJ1,nK×J1,mK when there exists a
configuration x of X such that x|J1,nK×J1,mK = p.

Although here we limit ourselves to SFTs, the world of subshifts contains many sub-
shifts which are not of finite type. We will give a few examples in dimension one, on
alphabet {a, b}. The set X≤1 of words with at most one ’a’ is not of finite type: an
infinite word may contain two ’a’s at arbitrarily large distance from each other, which we
cannot forbid with finite forbidden patterns. However, there exists a SFT on an alphabet
with three symbols which, after remaping one to a and the other two to b, gives the same
language as X≤1: we say that X≤1 is sofic. Now, by modifying slightly the condition, we
define X=1 to be the set of words with exactly one ’a’. This set is not a subshift. It is
due to the fact that the desired ’a’ may be arbitrarily ‘far away’. No sets of forbidden
patterns can enforce that an ’a’ is present. We can also consider the equivalent definition
of subshifts to see that X=1 is not one:

Definition 3.12 (Alternate definition of subshift). A set X of configurations of Zd with
values in A is a subshift when it is closed and stable by translation.

We can see that the word containing only ’b’s is in the closure of X=1 but does not
belong to X=1, which shows that X=1 is not closed, hence neither is it a subshift.

3.2.3 The domination subshifts

For our domination subshifts, the alphabet is A0 = { , }, and d = 2. We work in
dimension two since we study grids.

Definition 3.13. The domination (resp. minimal-domination, total-domination
and minimal-total-domination) subshift denoted by XD (resp. XM, XT and XMT),
is the set of elements x ∈ AZ2

0 such that {u ∈ Z2 : xu = } is a dominating (resp.
minimal dominating, total-dominating and minimal total-dominating) set of the infinite
square grid Z2. In all these cases, a configuration x of the subshift is called a dominated
configuration. We also say that u is a dominant position of the configuration x when
xu is grey. Likewise, a private neighbour is still a position which is dominated by
exactly one dominant position.

60

The local characterisations for each type of dominating sets we gave earlier can
straightforwardly be translated into finite sets of forbidden patterns. We then obtain
the following result:

Proposition 3.3. The sets XD, XM, XT and XMT are subshifts of finite type.

As we just mentioned, the key point is that these domination problems have a local
characterisation, that is a set of forbidden patterns of bounded sizes. All the problems
which enjoy this property can also be associated to SFTs. For instance, the stable set
problem for graphs consists in selecting vertices such that no two vertices are connected.
In the world of SFTs, it is called the hard-square problem, and is associated to the
Fibonacci subshift of dimension two. This SFT has been studied a lot, as well as its
growth rate. We have good approximations of the growth rate (see for instance [39]),
which corresponds to the entropy of the subshift. However we do not know its exact
value, nor do we have closed formulas accounting for the number of stable sets of the
finite grid Gn,m. These problems of counting turn out to be very hard to solve exactly,
even if we only want to find the exact entropy. This chapter is a first step in studying the
number of dominating sets for a few variants of domination, by proving that they have
some interesting properties and approximating their entropies.

3.3 Comparing the growth of SFTs with the growth of
dominating sets

Notation 3.14. For a subshift of finite type X, we denote by Nn(X) the number of
globally-admissible patterns of size J1, nKd. When d = 2, we extend the notation and
denote by resp. Nn,m(X) the number of globally-admissible patterns of size J1, nK×J1,mK.

Definition 3.15. The topological entropy of a subshift of finite type is the number

h(X) = inf
n→+∞

log2(Nn(x))

nd
.

We will simply refer to this notion as the entropy in the rest of the manuscript. The
following two lemmas are well known (see for instance [33]).

Lemma 3.4. The infimum in the definition of h(X) is in fact a limit:

h(X) = lim
n

log2(Nn(x))

nd
.

Notation 3.16. Let us denote by σ the Zd-shift action on AZd defined such that for all
u,v ∈ Zd,

(σux)v = xv+u.

Informally, σ acts on a configuration by translating it by the vector u.

Definition 3.17. A conjugation between two d-dimensional subshifts of finite type
X and Z is an invertible map ϕ : X → Z such that, for all u ∈ Zd and x ∈ X,
ϕ(σu.x) = σu.ϕ(x). In this case, X and Z are said to be conjugated.

61

Lemma 3.5. If two subshifts of finite type X and Z are conjugated, then h(X) = h(Z).

The entropy is one parameter which is preserved by conjugation. It may be a way to
show that two subshifts are not conjugated, by showing that their entropies are different.
We will use this lemma and the concept of conjugation only in Section 3.5.1.

Lemma 3.6. Let X be a bidimensional subshift of finite type. Then:

h(X) = lim
n,m

log2(Nn,m(X))

nm
.

This limit is to be understood as letting both n and m tend towards infinity at
the same time (but possibly at different speeds). We can see that this limit exists and
corresponds to the entropy by decomposing a square into rectangles and doing the other
way around. This allows us to bound by below and by above this limit by numbers which
tend towards the entropy h(X).

We now need to show, for each variant of the domination, that the SFT and its
associated dominating set problem grow at the same speed, that is the number of n×m
patterns appearing in the SFT grows at the same pace as the number of dominating
sets of the n × m grid. This is not trivial, since the dominating sets of a finite grid
Gn,m do not correspond exactly to the globally-admissible patterns on the same grid of
the corresponding SFT type presented in Section 3.2.3. Indeed, in such a pattern, the
positions of the border may for instance be dominated by a position outside the pattern
in a configuration in which the pattern appears. Nonetheless, we will see that we can
compare the number of globally-admissible patterns of size n × m for XD (resp. XM,
XT and XMT) to the number of dominating sets (resp. minimal dominating sets, total-
dominating set and minimal total-dominating sets) of Gn,m. We will later use this to
prove the existence of an asymptotic growth rate for the grid, turning out to be equal to
the entropy of the corresponding SFT.

For concision, we will assimilate the set of vertices of Gn,m to any translate of
J1, nK × J1,mK. We will assimilate any dominating (for any domination problem) set
S of vertices of a finite grid Gn,m with the pattern p of AZ2 on J1, nK× J1,mK defined by
pu being grey if and only if u ∈ S.

Definition 3.18. If U is a subset of Z2, we define the (extended) neighbourhood of U
as

N (U) =
⋃
u∈U

(
u + J−1, 1K2

)
.

Using iterates of the function N we also define, for all n,m ≥ 1 and k ≥ 1, the border

Bn,m,k = N k(J1, nK× J1,mK) \ N k−1(J1, nK× J1,mK).

For convenience, we extend the notation to Bn,m,0 = J1, nK×J1,mK\J2, n−1K×J2,m−1K.

62

Bn,m,k+1

(1, 1)

N k(J1, nK× J1,mK)

J1, nK× J1,mK

Lemma 3.7. For all n,m ≥ 3, the following inequalities hold:

Nn−2,m−2(X
D) ≤ Dn,m ≤ Nn,m(XD).

Proof.

1. For all n,m ≥ 1, any dominating set of Gn,m can be extended into a configuration
of XD by defining the symbol of any position outside J1, nK× J1,mK to be grey. As
a consequence, any dominating set of Gn,m is globally admissible in XD and thus
Dn,m ≤ Nn,m(XD).

2. Any pattern of XD on J1, nK × J1,mK can be turned into a dominating set of
J0, n + 1K × J0,m + 1K by extending it with grey symbols. Hence we obtain the
inequality Nn,m(XD) ≤ Dn+2,m+2 for all n,m ≥ 1.

Using very similar arguments, we obtain the same inequality for the total domination.

Lemma 3.8. For all n,m ≥ 2, the following inequalities hold:

Nn−2,m−2(X
T) ≤ Tn,m ≤ Nn,m(XT).

We then address the minimal and minimal total domination. As we will see, the
proofs of the following inequalities are more complex.

Lemma 3.9. For all n,m ≥ 1, the following inequalities hold:

1

26(n+m)
Nn,m(XM) ≤Mn,m ≤ Nn,m(XM).

63

Proof.

1. Second inequality.

(a) A completion algorithm of a minimal dominating set into a config-
uration of XM.
Let S be a minimal dominating set of J1, nK × J1,mK. Let us extend it into
a configuration x of XM using the following algorithm: successively for every
k ≥ 0, we extend the current pattern into a pattern on N k+1(J1, nK× J1,mK)
using the following operations, for all u ∈ Bn,m,k+1:

i. if u is a corner then xu is white;
ii. if u is a neighbour of a corner in one of the vertical sides of Bn,m,k+1 then

xu is white;
iii. for every other u, xu is grey if and only if its neighbour inN k(J1, nK×J1,mK)

is neither dominated by an element in this set, nor a dominant element.

This algorithm is illustrated in Figure 3.2.

Figure 3.2: Illustration of the completion algorithm in XM: steps of the algorithm are
applied successively from left to right.

(b) The output obtained by repeating the algorithm is a configuration
of XM.

• Every position is dominated.
This is verified for the positions in J2, n− 1K× J2,m− 1K because we start
from a minimal dominating set. Outside this set, if a position in some
N k(J1, nK × J1,mK) (for k ≥ 0) is not dominated before extending the
configuration on N k+1(J1, nK×J1,mK), then it gets dominated at this step
by Rule iii and stays that way afterwards.
• Every dominant position is isolated or has a private neighbour.

Let us consider a dominant position u which is not isolated. If it lies in
J2, n − 1K × J2,m − 1K, then it has a private neighbour since the pattern
on J1, nK× J1,mK is a minimal dominating set of Gn,m. Otherwise, it lies
in some Bn,m,k for some k ≥ 0 and there are two cases:
– u is not a corner.

Its neighbour v ∈ Bn,m,k+1 is white by the application of the algorithm.
Also, since its neighbours in Bn,m,k are thus dominant or dominated,
their neighbours in Bn,m,k+1 are white. In addition, the neighbour of
v in Bn,m,k+2 is thus white. This is illustrated in Figure 3.3. As a
consequence, v is a private neighbour for u.

64

– u is a corner.
This case can only happen for the corners of J1, nK× J1,mK: the other
corners are white by Rule i. We apply a similar reasoning: u has
two neighbours, so we may use the previous proof by considering for
instance the one at its left or at its right, which is left white by Rule
ii.

Figure 3.3: Illustration of the proof of a private neighbour for a non-isolated position.
Steps of the completion algorithm for XM applied from left to right.

2. First inequality.

(a) Transforming patterns of XM into minimal dominating sets.
Let us define an application φn,m which, to each pattern ofXM on J1, nK×J1,mK,
associates a minimal dominating set of Gn,m defined by:

i. suppressing any dominant position in Bn,m,0 (see Definition 3.18 for the
definition of the borders) which has no private neighbours in Gn,m and
which is dominated by an element of Gn,m;

ii. changing successively any non-dominant position of Bn,m,0 which is still
not dominated into a dominant one;

iii. successively, for every dominant position u ∈ Bn,m,0: if one of u’s neigh-
bours v is the only private neighbour of a position w which is not isolated
in Gn,m then change w into a non-dominant position.
This step is illustrated in Figure 3.4.

After Step i. After Step ii.

v
w
u

After Step iii.

Figure 3.4: Illustration of the second and then third steps of the algorithm defining φn,m
for XM, from left to right. u,v and w are instances of the positions described in Rule iii.

(b) Verifying that images of φn,m are minimal dominating sets.
Let us consider a globally-admissible pattern p of XM on J1, nK× J1,mK. Let
us show that the set φn,m(p) is a minimal dominating set of Gn,m:

65

• Any vertex of Gn,m is dominated or dominant in φn,m(p).
Before Step ii, if a position is not dominant and not dominated, it becomes
dominant during this step. Every position in J2, n − 1K × J2,m − 1K was
already dominated since the pattern was in XM. Moreover, during Step
iii, any position which is modified to no longer be dominant is necessarily
a dominated position (‘w’ is chosen among non-isolated positions).
• Any non-isolated dominant position has a private neighbour.

Before applying φn,m, only the positions on the border Bn,m,0 might not
have any private neighbour. After Step i, every dominant position on
Bn,m,0 is isolated, or has a private neighbour. After Step ii, some positions
may be dominant, non-isolated, and have no private neighbours. Such
positions obtain a private neighbour in Step iii.

(c) For all n,m, the number of preimages of φn,m for any minimal dominating set
of Gn,m is bounded by 23(2n+2m): any symbol modified by the application is
at distance at most two from Bn,m,0, and there are 3(2n + 2m) such symbols.
Therefore Nn,m(XM) ≤ 26(n+m)Mn,m.

Lemma 3.10. For all n, the following bounds hold:

1

28(m+n)
Nn,m(XMT) ≤ MT n,m ≤ Nn,m(XMT).

For readability, we reproduce the structure of the proof of Lemma 3.9, but simplify
the arguments and refer to this proof.

Proof.

1. Second inequality.

(a) A completion algorithm of a minimal total-dominating set into a
configuration of XMT.
Let us consider a minimal total-dominating set of Gn,m. Any element in
J2, n− 1K× J2,m− 1K is dominated by an element of J1, nK× J1,mK, and any
dominant element in J2, n − 1K × J2,m − 1K is not isolated and has a private
neighbour in J1, nK× J1,mK (which may or may not be a dominant position).
Let us extend this set into a configuration x of XMT using an algorithm very
similar to the one in the corresponding point in the proof of Lemma 3.9. The
condition in the third point is different:

i. if u is a corner then xu is white;
ii. if u is a neighbour of a corner in one of the vertical sides of Bn,m,k+1 then

xu is white;
iii. for every other u, xu is grey if and only if its neighbour inN k(J1, nK×J1,mK)

is not dominated by an element in this set.

66

(b) The result of the algorithm is a configuration of XMT.

• Every position is dominated.
Similar to the corresponding point in the proof of Lemma 3.9. This implies
that no dominant positions are isolated.
• Every dominant position has a private neighbour.

Let us consider a dominant position u. If it is in J3, n − 2K × J3,m − 2K,
since the pattern on J1, nK × J1,mK is a minimal total-dominating set of
Gn,m, we know that it has a private neighbour. Otherwise, it lies in some
Bn,m,k for k ≥ 0, or in J2, n− 1K× J2,m− 1K. Then there are two cases:
– u is not a corner. If it has no dominant neighbours inN k(J1, nK×J1,mK),

let us call v its neighbour in Bn,m,k+1. Note that, depending on
whether or not u is dominated inside N k(Bn,m,0), v may be white
or grey. Since the neighbours of u in Bn,m,k are dominated, v’s neigh-
bours in Bn,m,k+1 are white. Finally, since v is dominated by u, its
neighbour in Bn,m,k+2 is white, hence v is a private neighbour for u.

– u is a corner. We apply a similar reasoning.

2. First inequality:

(a) A transformation of patterns of XMT into minimal total-dominating
sets.
Let us define once again an application φn,m which, to each pattern of XMT on
J1, nK×J1,mK, associates a minimal total-dominating set of Gn,m. It is defined
in a similar way as in the corresponding point in the proof of Lemma 3.9, but
the proof is more complex.

i. Suppress any dominant position on the border Bn,m,0 which has no private
neighbours in Gn,m.

ii. Successively, for every non-corner undominated position u on the border
Bn,m,0, do the following:
• Consider the position v, neighbour of u in J2, n − 1K × J2,m − 1K.

For each dominant position w in the neighbourhood of v, and for
each dominant position w’ in the neighbourhood of w, if w is the only
private neighbour of w’, then change w’ into a non-dominant position.
• Change v into a dominant position.

Then do the same operations for the corners of Bn,m,0, except that v is
replaced by any neighbour of the corner.

This Step is illustrated on Figure 3.5.

67

ww’
v
u

After Step i. After Step ii, first point. After the second point.

Figure 3.5: Illustration of the second and then third steps of the algorithm defining φn,m
for XMT, from left to right. u,v,w and w’ are instances of the positions described in
Rule ii.

(b) Verification that images of φn,m are minimal total-dominating sets.
Consider a pattern p of XMT on J1, nK× J1,mK. The set φn,m(p) is a minimal
total-dominating set of Gn,m:
• Any vertex of Gn,m is dominated in φn,m(p).

Any (dominant or not) position which was dominated before applying Rule
i is still dominated afterwards: if some position u lies in the neighbourhood
of a dominant position v suppressed by Rule i, then since v had no private
neighbours in Gn,m, u is dominated by another position. For similar reas-
ons, no positions become undominated after the application of Rule ii:
only the neighbours of some w’ could be affected and if w’ becomes non-
dominant it means that they were dominated by other positions, so that
they stay dominated. Since all the positions inside J2, n− 1K× J2,m− 1K
were dominated before applying the rules, it only remains to show that
the positions inside Bn,m,0 are dominated after applying Rule ii. This is
true thanks to this rule: any undominated position u inside the border
sees its neighbour v inside J2, n− 1K× J2,m− 1K become dominant. The
same applies to the corners, except that the neighbour comes from the
border.
• Any dominant position has a private neighbour.

At the end of Step i, any dominant position has a private neighbour. Only
the creation of a dominant position v during the execution of Rule ii on
position u could affect this property, by disabling the private neighbour of
a position w in its neighbourhood, or by not having any private neighbour
itself. The first case cannot happen since any dominant position w’ having
w as its unique private neighbour is suppressed. The second one also never
happens since the position u is a private neighbour for v.

(c) For all n and m, the number of preimages of φn,m for any minimal dominating
set of Gn,m is bounded by 24(2m+2n), since any symbol modified by the applica-
tion is at distance at most 4 of the border of J1, nK×J1,mK. As a consequence,
Nn,m(XMT) ≤ 28(m+n)MT n,m.

68

Theorem 3.11 (Asymptotic behaviour). There exists some νD ≥ 0 (resp. νM, νT and
νMT) such that

Dn,m = ν
nm+o(nm)
D

(resp. Mn,m = ν
nm+o(nm)
M , Tn,m = ν

nm+o(nm)
T and MT n,m = ν

nm+o(nm)
MT).

Proof. Let us prove this for the sequence (Mn,m) (the proof is similar for the other se-
quences).

As a consequence of Lemma 3.9, for all n,m:

−6(m+ n)

nm
+

log2(Nn,m(XM))

nm
≤ log2(Mn,m)

nm
≤ log2(Nn,m(XM))

nm
.

As a consequence,
log2(Mn,m)

nm
→ h(XM).

This means that Mn,m = 2h(X
M)·nm+o(nm) = ν

nm+o(nm)
M , where νM = 2h(X

M).

3.4 Computability of the entropy: the block-gluing prop-
erty

In this section, we prove that the growth rates νD (resp. νM, νT and νMT) are computable
numbers, meaning that there exists an algorithm which computes approximations of
these numbers with arbitrary given precision. For this purpose, we rely on the block-
gluing property. If a subshift of finite type has this property then it allows us to compute
it with the known Algorithm 1 on page 73. We will finally prove that XD (resp. XM,
XT and XMT) are block gluing.

3.4.1 Definition and properties

For two finite subsets U,V of Z2, we write

δ(U,V) = min
u∈U

(min
v∈V
||v− u||∞).

This corresponds to the shortest distance between a point in U and one in V. Note that
a square of length one contains four points in Z2 if placed on integer coordinates. This
means that if there is one column between U and V then the distance between them is
one (and not zero). The usual definition of the block-gluing property is the following one.

Definition 3.19. For a fixed integer c ≥ 0, we say that a bidimensional subshift of
finite type X on alphabet A is c-block-gluing when, for every n ≥ 0 and any two
globally-admissible patterns p and q of X on support J1, nK2, for all u,v ∈ Z2 such that
δ(u+ J1, nK2,v+ J1, nK2) ≥ c, there exists a configuration x ∈ X such that x|u+J1,nK2 = p
and x|v+J1,nK2 = q.
We say that X is block gluing if it is c-block-gluing for some integer c.

69

Informally, this means that any pair of rectangular patterns placed at whatever posi-
tions can be completed into a configuration of X provided that there are at least c lines
or columns separating the two patterns.

Notation 3.20. For any subshift of finite type X, we denote by c(X) the smallest c such
that X is c-block-gluing. If X is not block gluing for any integer c, we write c(X) = +∞.

In the following, we will use the notations Z− = K−∞, 0K and Z+ = K0,+∞J. We give
in Proposition 3.12 an equivalent characterisation of the block-gluing property:

Remark 3.1. In Proposition 3.12 we extend the notion of patterns to infinite supports.
This will be the case whenever their supports are infinite.

Proposition 3.12. Let c ≥ 0 be an integer. A bidimensional subshift X is c-block-gluing
if and only if for all k ≥ c and p and q globally-admissible patterns on supports Z− × Z
(resp. Z× Z−) and Z+ × Z (resp. Z× Z+), there exists a configuration x ∈ X such that
x|Z−×Z = p and x|(k,0)+Z+×Z = q (resp. x|Z×Z− = p and x|(0,k)+Z×Z+ = q).

Informally, this means that in order to check the block-gluing property, it is sufficient
to prove that any two patterns on half-planes glued at arbitrary distance, provided it is
greater than c, can be completed into a configuration of X.

Proof.

• (⇐): Let us assume that X satisfies the second hypothesis. Let us consider some
integer n, and two globally-admissible patterns p, q of X on support J1, nK2. We
prove the result in the case of columns separating the two patterns: the proof when
the patterns are separated by lines is completely symmetrical. We place p and q
such that k ≥ c columns separate them. Since p and q are globally admissible,
there exist p and q globally-admissible infinite patterns of X on respective supports
Z−×Z and (k, 0)+Z+×Z which extend respectively p and q. By hypothesis, there
exists some configuration x ∈ X which extends p and q separated by k columns,
hence X is c-block-gluing.

• (⇒): Let us assume that the first hypothesis on X is true, and let p and q be two
patterns on supports Z− × Z and (k, 0) + Z+ × Z for some k ≥ c (the case with
Z×Z− and Z×Z+ is proved in the same way). From the block-gluing property, for
all n > 0 one can extend the restriction of p on J1, nK2 − (n, 0) and the restriction
of q on J1, nK2 − (n, 0) + (k + 1, 0) into a configuration xn ∈ X. By compactness
of the subshift X for the product of the discrete topology, this sequence admits
a subsequence which converges to some x ∈ X. This x satisfies the equalities
x|Z−×Z = p and x|(k,0)+Z+×Z = q.

70

3.4.2 Algorithmic computability of the entropy

Definition 3.21. A function f : N → N is computable when there exists a Turing
machine which, on any integer n written in binary4 on its input tape, terminates with
f(n), also written in binary, on its output tape.

Definition 3.22. Let f : N → N be a computable function. A real number x is said to
be computable with rate f when there exists an algorithm which, given an integer n as
input, outputs in at most f(n) steps a rational number rn such that |x− rn| ≤ 1

n
.

This definition corresponds to Definition 1.3 in [40]. The following theorem is The-
orem 1.4 in the same reference. Its proof provides an algorithm to compute h(X).

Theorem 3.13 ([40]). Let X be a block-gluing bidimensional subshift of finite type. Then
h(X) is computable with rate n 7→ 2O(n2).

Remark 3.2. Let us note that in general the entropy of a bidimensional subshift of finite
type is not computable at all (see Theorem 1.1 in [31] and the existence of non-computable
right-recursively-enumerable numbers). This motivates our detour by the block-gluing
property, which is needed for Algorithm 1.

Definition 3.23. Given an SFT, every pattern which does not contain any forbidden
pattern is called locally admissible.

Any globally-admissible pattern is locally admissible: it can be extended to a config-
uration of the subshift in which no forbidden patterns appear. However the contrary is
not true: if for instance we define a one-dimensional SFT on alphabet {a, b} by forbidding
patterns aa, bb and aba then a is locally admissible but not globally admissible since any
word of Z{a,b} extending it will necessarily contain a forbidden pattern.

The following lemma gives us an effective way to compute the entropy of a SFT. It
relates the entropy to the locally-admissible patterns instead of using globally-admissible
patterns the way it is defined (Definition 3.15). Indeed, it is possible to check that a
pattern is locally admissible by verifying that no forbidden patterns appear. On the
contrary, there is no automatic way to check that a given pattern is globally admissible:
one way would be to find an extension of it to Z2, but this might not end in finite time.

Lemma 3.14 ([40]). Let X be a c-block-gluing bidimensional subshift of finite type on
alphabet A. For all k ≥ 1, the number Nk(X) is equal to the number of k × k patterns
which appear in a (|A|2c+1 · (c+ k) + 1)×(2c+k+2) locally-admissible rectangular pattern
whose restrictions on the two extremal vertical (resp. horizontal) edges are equal.

The algorithm is as follows:
4Note that all binary digits are either 0 or 1. Sex, however, is not binary: there are intersex people

who, on biological sex criterion, are neither male nor female. Gender also is not binary: some people
categorise themselves as men, some as women, some as agender, gender-fluid, transgender, and a lot of
other genders.

71

Algorithm 1: Computing the entropy of a c-block-gluing bidimensional SFT.
Input: An integer n, an alphabet A and a set of patterns F of AU for some

finite U ⊂ Z2

Output: A rational approximation of h(X) up to 1/n, where X is the SFT on
alphabet A defined by the set of forbidden patterns F

1 k ← 0
2 r ← +∞
3 while r ≥ 1/2n do
4 k ← k + 1
5 m← Nk(X) (this is a sub-procedure using Lemma 3.14).
6 r ← some rational approximation up to 1/2k of log2(Nk(X))

k2
− log2(Nk(X))

(k+c)2

7 end
8 Return a rational approximation up to 1/2n of log2(Nk(X))/k2

3.4.3 Some dominating subshifts are block-gluing

It is straightforward to check that the domination subshift XD and the total-domination
subshift XT satisfy the block-gluing property, with c(XD) = 1 (just fill every cell with
grey). In this section, we prove that XM and XMT also satisfy this property. However,
to show that this problem is not trivial, we first show that not all domination problems
have the block-gluing property.

Definition 3.24. Let σ and ρ be two sets of integers (subsets of J0, 4K in the case of
grids). S is said to be (σ,ρ)-dominating when

1. the number of neighbours in S of each vertex in S belongs to σ;

2. the number of neighbours in S of each vertex outside S belongs to ρ.

For instance, the domination is the ({0, 1, 2, 3, 4}, {1, 2, 3, 4})-domination and the total
domination is the ({1, 2, 3, 4}, {1, 2, 3, 4})-domination.

Proposition 3.15. The ({3}, {1})-domination subshift is not block-gluing.

Notation 3.25. In the following, for all j ∈ Z, we denote by Cj the column {j} × Z of
Z2.

Proof. We prove this result by providing a half-plane pattern which can be glued with
itself only if the number of columns between them is of the form 4k + 2.

We use Proposition 3.12 so that instead of finite pattern we may use a half-plane
pattern. We take the half-plane pattern p whose rightmost two columns (i.e. C0 and C−1)
are filled with grey (i.e. dominant elements), the two at their left are filled with white,
the two at their left with grey, and so on: Cj for j ≤ 0 is grey if −j mod 4 ∈ {0, 1}
and is white otherwise (see Figure 3.6). We take q as the vertical symmetric of p, as
in Figure 3.6. Since in the column called C0 in the figure, each vertex has exactly 3
neighbours in the dominating set, its neighbour in C1 must be white. Every element in
C1 having a neighbour which dominates them, each neighbours of an element of C1 must
be white, hence C2 is also white. Now the elements of C2 are not dominated, so C3 must

72

be grey. Every element of C2 now has only 2 grey neighbours, so that C4 must be grey,
and so on. q forces every column C4k−1 and C4k to be grey, and every C4k+1 and C4k+2 to
be white. However, q forces the exact opposite, which means that for any k ≥ 0, p and q
cannot be glued with a gap of size 4k for instance, hence the subshift is not block gluing.

p q

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13

Figure 3.6: The {{3}, {1}} domination is not block gluing. The half-plane pattern p
forces every C4k−1 and C4k to be grey and the rest to be white, whereas q forces the
opposite. Hence they cannot be glued whenever 4k columns separate them.

Remark 3.3. Proposition 3.12 is very useful to avoid some technicalities, which we briefly
mention here for the sake of insight. If we only considered finite patterns p and q as they
are in Figure 3.6, the proof would have been longer. Let us consider in this remark that
p and q are patterns with 8 lines an 2 columns as in the figure. Then the top visible cell
of C2 could have been dominated by either its upper neighbour or the one in C3. So we
would have had to argue that this is not possible, or that it is not a problem: the sagging
of the grey cells is linear in the size of the gap, so taking arbitrarily large (but finite)
patterns will show that any gap of constant size would not work.

Theorem 3.16. The minimal-domination subshift is block gluing and c(XM) = 5.

Idea of the proof: In order to simplify the proof of the block-gluing property, we rely
again on Proposition 3.12. The proof of the block-gluing property for two half-plane pat-
terns consists in determining successively how to fill the k intermediate columns from the
patterns towards the ‘centre’ (chosen, for concision, to be column Ck−2). The completion
follows an algorithm which enforces that, when the number of intermediate columns is
large enough, any added dominant element is isolated or has a private neighbour in an
already-constructed column. This ensures that the rules of the subshift are not broken.
We now give the full proof.

Proof.

• Filling the intermediate columns between two half-plane patterns.

Let p and q be two patterns respectively on Z− × Z and Z+ × Z (the proof for
the vertical case is similar). Let us determine a configuration of AZ2

0 such that
x|Z−×Z = p and x|(k,0)+Z+×Z = q. The intermediate columns C1, ..., Ck are determ-
ined by the following algorithm. It intuitively puts grey cells only when it is really
necessary to dominate the neighbour in the previous column:

73

...

...

...

...

Figure 3.7: Illustration of the rule for filling the non-central intermediate columns for
XM. It is also applied symmetrically if the neighbour in Ck−1 is not dominated.

p q

C1C0 Ck+1Ck. . .

(0)
Ck−2

(1)

(2) (3)

Figure 3.8: Illustration of the algorithm filling the intermediate columns between two
half-plane patterns p and q for the minimal domination.
(0) Initial setting of the two patterns.
(i) After Step i of the algorithm
Since we show only finite sub-parts of p and q, the values of some cells in between remain
unknown. We left them non filled and remove one of their boundary. We chose k = 6 for
the illustration, still the proof works from k = 5 upwards.

1. Filling the intermediate columns, from C1 to Ck−3, then Ck, Ck−1.
Successively, for all j from 1 to k − 3, we determine the column Cj according
to the following rule: for all u ∈ Cj, xu is when xu−(1,0), xu−(1,1), xu−(1,−1)
and xu−(2,0) are (see Figure 3.7). Else, xu is set to . Similarly, for j = k
and then j = k− 1, we determine x on any position xu for u ∈ Cj by applying
a symmetrical rule: xu is when xu+(1,0), xu+(1,1), xu+(1,−1) and xu+(2,0) are
. Else, xu is set to .

2. The central column Ck−2.
We now determine x on the central column Ck−2. For all u ∈ Ck−2, xu is
when xu+(1,0), xu+(1,1), xu+(1,−1) and xu+(2,0) are equal to , or when xu−(1,0),
xu−(1,1), xu−(1,−1) and xu−(2,0) are equal to . Else, it is .

74

3. Eliminating non-domination errors in the central column. Choose
any position u0 ∈ Ck−2 and check if this position has a symbol in its
neighbourhood. If not, then set the symbol on this position. Repeat this
from u0 + (0, 1) upwards, and in parallel from u0 − (0, 1) downwards.

See an illustration of this algorithm on Figure 3.8.

• The obtained configuration is in XM.

We have to check that the configuration x we constructed satisfies the local rules
of the minimal-domination subshift. We divide this part of the proof according to
whether or not the cells belong to p or q, or lie outside. For concision, this division
is approximate: columns C−1 and Ck+2 are checked in the second and third point
instead of the first one.

1. The local rules are satisfied in the ‘interior’ of the half-planes.
By hypothesis, the patterns p and q are globally admissible in XM. As a
consequence, for all u in K − ∞,−2K × Z or Jk + 3,+∞J×Z, the pattern
x|u+J−2,2K2 is not forbidden. It remains to check that no forbidden patterns are
created through the execution of the algorithm described in the first point of
the proof, for columns C−1 to Ck+2.

2. Every position in C−1, · · · , Ck+2 and not in S is dominated.
In the columns C−1 and Ck+2, this comes from the fact that the patterns p
and q are globally admissible. For j between 0 and k − 3, and u ∈ Cj, if u
is not dominated by a position in Cj or Cj−1 the position u + (1, 0) contains
the symbol (by the first and second steps of the algorithm), and thus u is
dominated. A symmetrical reasoning works for the positions in the columns
Ck+1, Ck, Ck−1. For a position in the central column Ck−2, this is guaranteed
by Step 3.

3. Every dominant position in C−1, · · · , Ck+2 is isolated or has a private
neighbour not in S.
Let us consider a non-isolated dominant position u.

(a) If it lies in C−1 (resp. Ck+2), u has a private neighbour in a configuration
x ∈ X that extends p (resp. q). If this private neighbour is in fact in
p (resp. q), in column C−2 or C−1 (resp. Ck+2 or Ck+3), then it stays a
private neighbour of u in x since the intermediate columns cannot make
it not private. If it is u + (1, 0) (resp. u − (1, 0)), then it stays a private
neighbour in x: since this position is dominated by u according to the
first step (resp. second step) of the algorithm, it is not dominated in x by
a position in C0 (resp. Ck+1). The same reasoning is applied to positions
in columns C0 and Ck+1.

(b) In the other columns Cj for j < k − 2, the first step guarantees, for
any position u in Cj that is dominant, that the position u − (1, 0) is
a private neighbour. A symmetric reasoning applies to column Ck and
Ck−1 : u + (1, 0) is a private neighbour in that case.

75

(c) If u is in the column Ck−2, it means that it was introduced in either the
second or the third step, meaning that it has a private neighbour in column
Ck−3 or Ck−1 (if introduced in the second step), or in Ck−2 (if introduced
in the third step).

• The subshift XM is not 4-block-gluing.

We consider the two half-plane patterns p and q on respective supports Z− × Z
and Z+ × Z such that for all j ≤ 0, if −j ≡ 0, 1 mod 4, then for all u ∈ Cj, pu
is , else for all u ∈ Cj, it is , and q is obtained from p by vertical symmetry.
It is easy to see that these patterns are globally admissible. We leave 4 columns
between p and q (see Figure 3.9). To ensure that the dominant positions in columns
0 and 5, which are not isolated, have private neighbours, every cell of the middle
four columns needs to be , as in Figure 3.9. This filling implies that the cells in
column 2 and 3, which are not dominant, are also not dominated. This shows that
the subshift is not 4-block-gluing.

p q

C0 C1 C2 C3 C4 C5

Figure 3.9: Illustration of the fact thatXM is not 4-block-gluing: when attempting to glue
p and q, ensuring the existence of private neighbours according to the rules of XM forces
the presence of undominated positions in columns C2 and C3. It is also a counter-example
for XMT being 4-block-gluing.

As a consequence, c(XM) > 4. Since it is 5-block-gluing, c(XM) = 5.

Theorem 3.17. The minimal total-domination subshift is block gluing and c(XMT) = 5.

Idea of the proof: We follow the same scheme as in the proof of Theorem 3.16, except
that we have to take into account the variations in the definition of the subshift XMT. For
the sake of readability, we reproduce the structure of the proof. We now give the proof.

Proof.

• Filling the intermediate columns between two half-plane patterns.

We provide here an algorithm to fill these columns between two patterns p and q
respectively on Z− × Z and Z+ × Z into a configuration x ∈ XMT. As in the proof
of Theorem 3.16, intuitively, it puts grey cells only when it is really necessary to
dominate the neighbour in the previous column:

76

p q

C1C0 Ck+1Ck. . .

(0)
Ck−2

(1)

(2) (3)

Figure 3.10: Illustration of the algorithm filling the intermediate columns between two
half-plane patterns p and q for the minimal-total-domination subshift. In the last step,
the position u0 is the bottommost represented position of the central column, and the
central column is coloured with a possible colouring. We chose k = 6 for the illustration,
still the proof works from k = 5 upwards.

1. Filling the intermediate columns, from C1 to Ck−3, then Ck, Ck−1.
Successively, for all j from 1 to k − 3, we determine the column Cj according
to the following rule: for all u ∈ Cj, xu is when xu−(1,1), xu−(1,−1) and xu−(2,0)
are (the difference with the proof of Theorem 3.16 is that the symbol xu−(1,0)
is not imposed). Else, xu is set to . This rule is illustrated in Figure 3.11.

...

...

...

...

...

...

...

...

Figure 3.11: Illustration of the local rules for the completion algorithm for the interme-
diate columns.

For j = k and then j = k − 1, we determine x on any position xu for u ∈ Cj
by applying a symmetrical rule: xu is when xu+(1,1), xu+(1,−1) and xu+(2,0)

are . Else it is .

77

2. The central column (j = k − 2).
We then determine x on the central column Ck−2. For all u ∈ Ck−2, xu is
when xu+(1,1), xu+(1,−1) and xu+(2,0) are equal to , or when xu−(1,1), xu−(1,−1)
and xu−(2,0) are equal to . Else, it is .

3. Eliminating total-domination errors in the central column.
Choose any position u0 ∈ Ck−2. From this position upwards, check for every
position u if it is dominated. If this is not the case, then change the symbol
on u+ (0, 1) into . As soon as u0 has been processed, do the same symmet-
rically (change the symbol in u − (0, 1) when u is not dominated) in parallel
downwards, beginning from u0 − (0, 1).

See an illustration of this algorithm on Figure 3.10.

• The obtained configuration is in XMT.

We have to check that the local rules of the minimal-total-domination subshift are
satisfied over the whole constructed configuration x.

1. The local rules are satisfied inside the ‘interior’ of the half-planes.
Same as the corresponding point in the proof of Theorem 3.16.

2. Every position in C−1, · · · , Ck+2 is dominated.
Same as the corresponding point in the proof of Theorem 3.16 for the positions
outside the central column Ck−2. In this column, let us assume that a position
u above u0 (without loss of generality) is not dominated. Then the last step of
the algorithm, when examining this position, would have changed the symbol
on position u + (0, 1), which is a contradiction. In particular, no dominant
positions are isolated.

3. Every dominant position in C−1, · · · , Ck+2 has a private neighbour.

(a+b) Outside the central column, the proof is similar to the corresponding
points in the proof of Theorem 3.16.

(c) In the column Ck−2, the dominant positions added in Step 2 necessarily
have a private neighbour in column Ck−3 or Ck−1. Let us take a dominant
position u, assumed without loss of generality to be above u0, which was
added in the last step. This implies that u − (0, 1) was not dominated
when the algorithm checked this position. As a consequence, it is a private
neighbour for u.

• The subshift XMT is not 4-block-gluing.

Let us consider the patterns p and q defined in the corresponding point in the
proof of Theorem 3.16. It is easy to see that these two patterns are also globally
admissible in the subshift XMT. Using the proof for XM, we only have to check
that in the constructed configuration, no dominant positions are isolated, which is
straightforward.

Using the same arguments as the ones for the minimal domination case, it is easy
to see that any configuration in AZ2 where p and q are glued at distance 4 contains
some forbidden patterns.

78

As a consequence c(XMT) > 4. Since it is 5-block-gluing, c(XMT) = 5.

As a direct consequence of Theorem 3.13:

Theorem 3.18. The numbers νD, νT, νM and νMT are computable with rate n 7→ 2O(n2).

3.5 Bounding the growth rates with computer resources
Although the algorithm presented in Section 3.4.2 provides a theoretical way to compute
the growth rates of various dominating sets of the finite square grids, it is not efficient
enough for practical use on a computer. In this section, we use other tools which make
it possible to obtain bounds for the growth rates. These bounds are obtained using
computer resources, by running a C++ program made for the occasion. The program
is a modification of the program used in Chapter 2. Its modularity enabled us to only
(re)write partly the local characterisation rules of domination problems and use the same
main code. The main difference is that we work in the (+,×)- algebra instead of the
previously used (min,+)-algebra.

We explain here the method differently, relating it to unidimensional SFTs. We do not
dive much into the details of the specific problems, but give the abstract framework. As
we have just mentioned, the technique relies on, for a fixedm, assimilating the dominating
sets ofGn,m to patterns of a unidimensional subshift of finite type, whose entropy is known
to be computable through linear algebra computing. Note that, in its use in Chapter 2
there are no such things as lower or upper bounds we investigate now: we only enumerated
sets which are precisely 2-dominating or Roman dominating. Since we were interested in
finding the minimum size of such a set, we had the right to apply some optimisations to
avoid having to enumerate all dominating sets, in particular the ones we knew were not
of minimum size. Since we now want to count all the different dominating sets, these
optimisations do not apply here: we must enumerate all possible states.

3.5.1 Nearest-neighbour unidimensional subshifts of finite type

In this section A = (a1, ..., ak) is a finite set, and X is a unidimensional subshift of finite
type on alphabet A. The elements of A are the cell values we defined in Chapter 2. Let
us denote by (e1, ..., ek) the canonical basis of Rk.

Definition 3.26. The subshift X is said to have the nearest-neighbour property when
it is defined by forbidding a set of patterns on support {0, 1}.

Definition 3.27. The adjacency matrix of a nearest-neighbour SFT X is the matrix
M ∈Mk(R) such that M [ei][ej] = 1 if the pattern aiaj is not forbidden, or 0 otherwise.

The following is well known (see [33]):

Proposition 3.19. Let ||.|| be any matricial norm. The entropy of X is equal to the
spectral radius of M :

h(X) = log2 lim
n
||Mn||1/n.

79

Our matrix has non-negative coeffecients and is primitive for the same reason as in
Proposition 2.2. Thanks to these properties, the Perron-Frobenius theorem states that
the matrix has a largest eigenvalue in R+.

3.5.2 Unidimensional versions of the domination subshifts

We define here the unidimensional versions of the domination subshifts introduced in
Section 3.2.3. We use them to describe and prove the method we use to obtain the
bounds on the growth rates. We recall that n refers to the number of lines and m to the
number of columns. The first sequence of SFTs (XD,n) is used to obtain the lower bound,
whereas we use the second one (XD,n

∗) to obtain the upper bound.

Notation 3.28. Let us fix some integer n ≥ 1. We denote by XD,n the undimensional
subshift on alphabet An0 such that a configuration x is in XD,n if and only if the set of
positions (j, i) ∈ Z× J1, nK such that the symbol x(j,i) is grey forms a dominating set of
the grid Z× J1, nK.

With arguments similar to the ones of the proofs of Lemma 3.9 and Lemma 3.10, we
obtain the following asymptotic formula when n is fixed and m grows to infinity. We
recall Notation 3.2: Dn,m denotes the number of dominating sets of Gn,m.

Dn,m = 2h(X
D,n)·m+o(m).

Notation 3.29. For all n ≥ 3, we also denote by XD,n
∗ the undimensional subshift on

alphabet An0 such that a configuration x is in XD,n
∗ if and only if the set of positions

(j, i) ∈ Z × J2, n − 1K such that the symbol x(j,i) is grey forms a dominating set of the
grid Z× J2, n− 1K.

3.5.3 Recoding into nearest-neighbour subshifts

Let us set A1 = { , , }, and let us consider the map ϕ : (An0)Z → (An1)Z which
acts on configurations of (An0)Z by changing the ith symbol of any position j ∈ Z into

whenever it is not dominant and dominated by an element of Cj−1
⋂

(Z× J1, nK) or
Cj
⋂

(Z× J1, nK). Informally, from lightest to darkest, the symbols stand for an undomin-
ated cell (which is not dominant), a dominated cell which is not dominant and a dominant
cell. This is illustrated in Figure 3.12. The nearest-neighbour property makes it possible
to count the dominating sets without enumerating them fully: it is enough to store the
information about a small number of the latest columns, proceeding from left to right in
the grid. We encode this information from the possibly several columns we need to recall
into a single column, for practical reasons. This is why it coincides with the definition of
the nearest-neighbour property.

ϕ is a conjugation and the entropy is stable by conjugation by Lemma 3.5, therefore:

h(XD,n) = h(ϕ(XD,n)).

Moreover, the subshift XD,n has the nearest-neighbour property.

80

ϕ

Figure 3.12: Illustration of the map recoding XD,n into a nearest-neighbour SFT.

3.5.4 Numerical approximations

We give here the numerical bounds we can compute, and prove them. The proof is only
given for the simple domination, the other ones use the same method, hence are very
similar.

Theorem 3.20 (Domination). The following inequalities hold:

1.950022198 ≤ νD ≤ 1.959201684.

Proof.

• Lower bound:

1. For all integers n1, n2 and m, Dn1+n2,m ≥ Dn1,m ·Dn2,m.

Indeed, let us consider two sets dominating respectively Gn1,m and Gn2,m. By
gluing the first one on the top of the second one, we obtain a dominating set
of Gn1+n2,m. This is true because any position in this grid is either in the copy
of the grid Gn1,m and thus dominated by an element in this grid, or in the
copy of Gn2,m. Since this construction is invertible our remaping is indeed a
conjugation. We obtain the announced inequality.

2. As a consequence, for all k ≥ 0,

D18k,m ≥ Dk
18,m = 2h(X

D,18)·km+k·o(m),

where the function o(m) is related to the fact that we used 18 lines5. This
implies that

lim
n,m

log2(Dn,m)

nm
= lim

n,k

log2(D18k,m)

18km
≥ h(XD,18).

3. This number is equal to h(ϕ(XD,18)), which is computed using Section 3.5.1
and Section 3.5.3. The lower bound follows: for any value of n we may compute
the transfer matrix Tn counting Dn,m. The n-th root of the largest eigenvalue
of Tn is a lower bound for νD. We could compute Tn for at most 18 lines given
the computing resources at our disposal.

5We could not do the computations with more lines out of lack of RAM.

81

• Upper bound:

1. For all n,m, let us denote by D∗n,m the number of sets of vertices of Gn,m which
dominate the middle n− 2 lines (i.e. cells of the first and last lines might not
be dominated). We have a direct inequality

Dn,m ≤ D∗n,m.

2. For a reason similar as the one in the first point of the proof of the lower
bound, for all n1, n2, D∗n1+n2,m

≤ D∗n1,m
·D∗n2,m

.

3. For all k ≥ 0 and m ≥ 0,

D∗18k,m ≤ (D∗18,m)k = 2h(X
D,18
∗)·km+k·o(m).

As a consequence
νD ≤ h(XD,18

∗).

With the same method as for the lower bound, we obtain the upper bound.

Remark 3.4. With further numerical manipulations, we notice that the lower bound
and the upper bound seem to get closer to each other rather slowly. To speed up the
convergence, we had the idea of using the sequences of ratios 2h(X

D,n+1)/2h(X
D,n) and

2h(X
D,n+1
∗)/2h(X

D,n
∗). This seems to offer a much better convergence speed. Indeed, for

both sequences, from h = 11 on, the ratio seem to be stabilised around 1.954751195.
This ratio is not a bound on νD but it is guaranteed to converge towards this quantity.

Conjecture 3 (Domination). νD ≈ 1.954751

Using the same method, we provide bounds for the other problems. For the total
domination, we can make the computations up to n = 17. However, for the other
problems (the ones with the minimality constraint) the number of patterns we enumerate
grows (exponentially) at a much faster rate than for the non-minimal problems, thus the
bounds are less good. We cannot go further than about n = 10 for these problems. This
comes from the fact that we need to encode information about more columns than from
their non-minimal counterparts.

Theorem 3.21 (Total domination). 1.904220376 ≤ νT ≤ 1.923434191. νT ≈ 1.9153

Remark 3.5. As in Remark 3.4, we can observe that the ratios 2h(X
T,n+1)/2h(X

T,n) and
2h(X

T,n+1
∗)/2h(X

T,n
∗) offer a much better convergence speed. Indeed, from n = 10 they seem

to stabilise, both around 1.915316.

Conjecture 4 (Total domination). νT ≈ 1.9153

Theorem 3.22 (Minimal domination). 1.315870482 ≤ νM ≤ 1.550332154.

Theorem 3.23 (Minimal total domination). 1.275805204 ≤ νMT ≤ 1.524476040.

82

3.6 A (2k+3)-block-gluing family: the minimal meta-
k -domination

When we spoke about the block-gluing property, we only defined the constant version of
it. This property may be declined in finer-grained versions than choosing between being
block gluing or not being block gluing.6

Definition 3.30. Let X be a subshift and f : N → N be a function. We say that X is
f -block-gluing when any two globally-admissible patterns q and q of size n × n may be
glued when they are separated by at least f(n) columns.

This definition encompasses more SFTs because now the gap depends on the size of
the pattern. This leads to interesting questions, such as:

Question 1. What functions can f be? For instance, can f be a non-constant sub-linear
function, or a super-linear function?

We will answer partly these questions by recalling some known results in Section 3.7.2.
We propose here an extension of the domination problems. The standard domination

consists of two sets S1 = D and S0 = V \D: the members of S0 need to be dominated
by a vertex in S1 while the members of S1 do not need to be dominated. We introduce a
new family of problems where we colour the vertices with k + 1 colours, which denotes a
hierarchy of who may dominate whom. We will then show that each SFT associated to
a problem of this family is block gluing, but the gluing constant linearly depends on the
parameter k. We will also give some hints as to why it is difficult to find problems which
are f -block-gluing with f being something other than an affine function.

Definition 3.31. S = (S0, S1, · · · , Sk) is a meta-k-dominating tuple if it is a partition
of V and every v ∈ Vi such that i < k has a neighbour in some Vj with j > i.

Notation 3.32. If S is a meta-k-dominating tuple and x ∈ V , we denote by argS(x) the
integer 0 ≤ i ≤ k such that x ∈ Si.

Definition 3.33. Similarly as in the other domination problems, we say that u ∈ Gn,m

is dominated by a neighbour v or that v dominates u when argS(u) < argS(v). u is a
private neighbour of v if, in addition to being dominated by v, u is not dominated by
another neighbour.

Now that we have generalised the notion of domination and total domination, we
attack the minimal and minimal total domination. Since we no longer have a natural
inclusion order, we choose one which generalises the inclusion on sets, for tuples of sets.

Definition 3.34. Let S and S ′ be two meta-k-dominating tuples. We say that S ′ ≤ S if
for every x ∈ V , argS′(x) ≤ argS(x). We say that S ′ < S if S ′ ≤ S and if there exists at
least one x ∈ V such that argS′(x) < argS(x).
We say that a meta-k-dominating tuple S is minimal if there is no meta-k-dominating
tuple S ′ such that S ′ < S.

6‘To be or not to be, that is the question.’ said a famous writer. Maybe he was thinking about
block-gluing SFTs.

83

In this definition, S ′ ≤ S if we can reduce the labels of a set of vertices altogether
simultaneously. We could define another order allowing the reduction of the label of a
unique vertex at each step. We show that the two definitions are equivalent.

Definition 3.35. If S and S ′ are two meta-k-dominating tuples, we write S ′ <1 S if
there exists a unique x ∈ V such that argS′(x) < argS(x) and argS′(u) = argS(u) for
every u 6= x.

Proposition 3.24. Let S be a meta-k-dominating tuple. S is minimal for the relation
< if and only if it is minimal for the relation <1.

Proof. It suffices to show that if a tuple S is reducible for one order, it is also reducible
for the other, and vice versa.

It is clear that if S is reducible for <1, then it is reducible for <.
Now, let S be such that there exists some S ′ < S. We show that S is reducible for

<1. Let D = {x ∈ V | argS′(x) < argS(x)} and x0 ∈ D with minimal argS′ value among
the elements of D. Let S ′′ be such that argS′′(x0) = argS′(x0) and argS′′(x) = argS(x) for
every x 6= x0. Let us show that S ′′ is a meta-k-dominating tuple.

First, any vertex in V \ N [x0] (see Definition 1.3 for the definition of the closed
neighbourhood N [v]) is dominated because itself and its neighbours have the same label
as in S. x0 is also dominated because its label decreased while the others stayed constant.
Finally, let v ∈ N(x0). If v belongs to Sk, then it still does not need to be dominated. Else,
if v is dominated by some vertex other than x0 in S ′, it is also the case in S ′′. Else, v is
only dominated by x0 in S ′. The definition of x0 implies that argS(v) = argS′(v). Since v
is dominated in S ′, it implies that argS′′(x0) = argS′(x0) > argS′(v) = argS(v) = argS′′(v),
hence v is dominated in S ′′.

Hence the minimal elements for < are the same as the minimal elements for <1.

Definition 3.36. If u ∈ Sm withm > 0, we say that any private neighbour of u belonging
to Sm−1 is a good private neighbour.

Proposition 3.25. Let (S0, · · · , Sk) be a meta-k-dominating tuple. Then it is minimal
meta-k-dominating if and only if every x ∈ Si with i < k has a good private neighbour,
and any x ∈ Sk with a neighbour in Sk has a good private neighbour.

Proof.
If a meta-k-dominating tuple has the private-neighbour property, then it

is minimal.
Let S be a meta-k-dominating tuple having the private neighbour property. By Pro-

position 3.24 it is sufficient to show that there is no S ′ such that S ′ <1 S. We proceed
by contradiction and assume that we have some S ′ <1 S. Let x0 be the vertex such that
argS′(x0) < argS(x0). There are two cases, the first one being that x0 has label k in S.
Since x is dominated in S ′, it has a neighbour of label k in S ′ which has the same label
in S: x0 is not isolated in S. Since by hypothesis it has, in S, a private neighbour y of
label k−1, this implies that y is not dominated in S ′. Thus S ′ is not meta-k-dominating,
a contradiction. The other case is when argS(x) < k. Let y be a good private neigh-
bour of x0 in S: argS(y) = argS(x0)− 1 and no neighbours of y dominates it in S. Since
arg′S(x0) < argS(x0) and the labels of the others vertices are the same, y is not dominated
in S ′, which is also a contradiction. This proves that S is minimal.

84

If a meta-k-dominating tuple is minimal then it has the private-neighbour
property.

We show the contrapositive implication: let us consider a meta-k-dominating tuple
S which does not have the private-neighbour property. We will prove that it is not
minimal. Let x0 be such a vertex with label p > 0 which does not have any good private
neighbour, and if p = k then has a neighbour in Sk. Let S ′ be such that argS′(x0) = p−1
and argS′(x) = argS(x) for every x 6= x0. In S ′, x0 is dominated by the same vertex it
is dominated by in S, or by its neighbour of label k if p = k. Any neighbour which is
dominated by x0 in S has either label at most p − 2 or is also dominated by another
vertex in S, hence it is dominated in S ′. Therefore S ′ is a meta-k-dominating tuple and
S ′ < S, which concludes the proof.

Theorem 3.26. The SFT associated to the minimal meta-k-domination problem is (2k+3)-
block-gluing.

We can notice that this result coincides with the one about the minimal domination,
for which k = 1. We can also see easily that the meta-k-domination subshift is 1-block-
gluing for all k (we put label k for any cell in the gap column).

Proof. Let Xk be the SFT associated to the meta-k-domination, and XM
k its minimal

version.
We give here a proof similar to the one in the proof of Theorem 3.16. The argument

is more general and can be used to show that the minimal domination is 5-block-gluing.
We give an algorithm to fill the middle columns, providing there are at least 2k + 3 of
them, and then prove that the result is indeed minimal meta-k-dominating.

• Filling the intermediate columns between two half-plane patterns.

Let p and q be two patterns respectively on, without loss of generality, Z− × Z
and Z+ × Z. Let us determine a configuration of AZ2 such that x|Z−×Z = p and
x|(k,0)+Z+×Z = q. The intermediate columns C1, ..., Cn are split, like before, into the
‘left part’ of the middle columns (C1 to Cn−k−3, the central column n−k−2 and the
‘right part’ of the middle columns (Cn−k−2 to Cn). We determine their values by
the following algorithm. For concision, we introduce the following definition:

4 3 2 1 0 0 1 2 3 5 0 5 4 3 2 1 0 0

4 3 2 1 0 0 1 2 3 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 1 0 0 5 4 3 2 1

5 5 4 3 2 1 0 0 0 2 1 0 0 5 4 3 2 1

0 0 0 0 0 0 0 1 2 3 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 4 5 4 3 2 1 0 0 5

0 0 1 2 3 4 5 0 0 1 0 0 0 0 0 0 0 0

p q

C0 C1 C2 Cj0 Cn−1 Cn Cn+1

Figure 3.13: Illustration of the algorithm filling the middle columns for the minimal
meta-k-domination for k = 5. We assume the line above the values and the one below
them are filled with zeroes. Here n = 14 = 2k + 4, although a gap of 13 is enough.

85

1. Filling the middle left columns, from C1 to Cn−k−2.
The following algorithm, to fill the values of the middle columns, is illustrated
through an example in Figure 3.13. Successively, for all j from 1 to n− k− 2,
we determine the column Cj according to the following rule: for each i ∈ Z,

Cj[i] =

Cj−1[i] + 1 if Cj−1[i] is not dominated;
Cj−1[i]− 1 if Cj−1[i] 6= 0 and has no private neighbours in SCj−1[i]−1;
0 otherwise.

Note that since p is globally admissible, no cells in C0 (or Cn+1) can need both
a good private neighbour and some neighbour to be dominated. For the same
reason, if some C0[i] needs a good private neighbour then C0[i − 1] must, if
it needs a good private neighbour, be equal to C0[i]: otherwise its neighbour
in C1[i− 1] (resp. C1[i+ 1]) would either dominate or be dominated by C1[i],
hence one of the two would not play its role of good private neighbour. It must
also be dominated, either by C0[i] if lesser, or by another cell in p if greater
or equal (otherwise its neighbour in C1[i− 1] would dominate C1[i]. The same
applies to C0[i + 1], so that the algorithm is well defined for the first step.
These properties propagate to each new column filled, so that the algorithm
is completely well defined.
Filling the middle right columns, from Cn to Cn−k−1.
We apply the symmetric rule: instead of considering the value of Cj−1[i] to
determine the one of Cj[i], we use the one of Cj+1[i].

2. The central column Cn−k−1.
We first let j0 = n− k− 1 be the index of the central column. We first set the
value Cj0 [0], then the values of Cj0 [−1] and Cj0 [1]. After this, we give the way
to fill the values of the column from index 2 to infinity, and in parallel from
index -2 to minus infinity. We define max(∅) = −1.
First let R0 be the set of values among Cj0−1[0] and Cj0+1[0] which are different
from k and are not dominated so far. Then Cj0 [0] = max(R0)+1.
Now let7 R′1 (resp. R′−1) be the set of values among Cj0−1[1] and Cj0+1[1] (resp.
Cj0−1[−1] and Cj0+1[−1]) which are different from k and are not dominated so
far. Up to symmetry, we may assume that max(R′1) ≥ max(R′−1). We then
set R”1 = R′1 if Cj0 [0] is already dominated, or R”1 = R′1∪{Cj0 [0]} otherwise.
We define Cj0 [1] = max(R”1) + 1 and Cj0 [−1] = max(R′−1) + 1. We do the
same thing in symmetric if max(R′−1) > max(R′1).
Now for i = 2 to infinity, we define Ri to be the set of values among Cj0−1[i],
Cj0+1[i] and Cj0 [i − 1] which are different from k and not dominated so far
and we set Cj0 [i] = max(Ri) + 1. In parallel downwards for i from -2 to minus
infinity, we define similarly Ri considering Cj0 [i + 1] instead of Cj0 [i− 1] and
we set Cj0 [i] = max(Ri) + 1 as well.

• The obtained configuration is in XM
k .

We have to check that the configuration x we constructed satisfies the local rules
of the minimal-domination subshift. We divide this part of the proof according to
whether or not the cells belong to p or q, or lie outside.

7We named it R′
1 instead of R1 here because it is not exactly how the others Ris are defined.

86

1. The local rules are satisfied inside the half planes.
By hypothesis, the patterns p and q are globally admissible in XM

k . As a con-
sequence, all symbols in p or q except the columns C0 and Cn+1 are dominated,
and all symbols in p or q except the columns C−1, C0, Cn+1 and Cn+2 have a
private neighbour with the right value. We prove that this is also the case
for C−1 and C0. The cases for Cn+1 and Cn+2 are symmetric. Let i ∈ Z. If
C0[i] 6= k is not dominated by an element inside p then the algorithm sets
C1[i] = C0[i] + 1, which dominates C0[i]. Remember that C0[i] cannot both
need being dominated and a good private neighbour, for p would not be glob-
ally admissible if this were the case. Now we know that every cell in C0 is
dominated, and has a potential good private neighbour in C1. It remains to
show that this neighbour is not dominated by C2. Let i ∈ Z such that C0[i]
does not have a good private neighbour in p. We showed that both C1[i − 1]
and C1[i+ 1] are less than or equal to C1[i]. C1[i] is dominated by C0[i], hence
C2[i] < C1[i] and C1[i] is indeed a good private neighbour for C0[i]. If C−1[i]
needs a good private neighbour, either it has it in C−2 or C−1 and we are
done, or it needs to be C0[i]. But then C0[i] is dominated by C−1[i] so that
C1[i] < C0[i] and C0[i] stays a good private neighbour for C−1[i].

2. Every position outside supp(p) ∪ supp(q) with label less than k is
dominated.
We prove the case for columns C1 to Cn−k−1 (the central column), the proof is
identical for the columns at the right. At the left of the central column, this is
true by the definition of the algorithm: if Cj[i] is not dominated, then Cj+1[i]
is equal to Cj[i]+1, or has at least this value if Cj+1 is the central column.
For the central column it is also true for the same reason by the definition of
the algorithm for this column.

3. Every dominant position outside supp(p)∪supp(q) with label greater
than 0 has a good private neighbour.
We recall that j0 = n− k − 1 is the index of the central column. Once again
we only prove this for columns C1 to Cj0 . We first state an intermediate result
before proving this.

Claim 3.1. Let 0 ≤ j < j0 and i ∈ Z. If Cj[i] needs a good private neighbour
in Cj+1 then Cj[i] is the unique good private neighbour of Cj−1[i], i.e. its
predecessor was in the same situation.

Proof. Let 0 ≤ j < j0 and i ∈ Z be (if any) such that Cj[i] needs a good
private neighbour in Cj+1. This iplies, by the definition of the algorithm, that
Cj−1[i] did not need to be dominated by Cj[i] (otherwise Cj−1[i] would have
been a good private neighbour). Since Cj[i] 6= 0 (a position with value 0
does not need a good private neighbour) then the definition of the algorithm
implies that we are in the case Cj[i] = Cj−1[i]−1, hence Cj−1 needed a private
neighbour.

We now go back to the proof of Theorem 3.26. Let 0 ≤ j < j0 − 1 and i ∈ Z.
Let us show that Cj[i] has a good private neighbour if it is different from 0.

87

From Claim 3.1 and an easy induction, we know that C0[i] also needed a good
private neighbour in C1[i]. We mentioned that each of C0[i− 1] and C0[i+ 1]
is dominated in p, and if any needed a good private neighbour in C1 then this
neighbour would have the same value as C0[i]. By an easy induction, we can
see that Cj[i−1] = 0 or Cj[i−1] = Cj[i] and the same applies to Cj[i+1]. For
the same reasons that C0[i] was guaranteed to have a good private neighbour
in C1, Cj[i] has a good private neighbour in Cj+1[i].
If now j = j0 − 1, then j = n − k − 1 − 1 ≥ 2k + 3 − k − 2 ≥ k + 1. Let
us show that Cj0−1 does not need a good private neighbour in Cj0 . Let us
assume that this is false: it does need one. Then using the same argument as
before, we know that each Cu[i] needed a good private neighbour in Cu+1[i]
for −1 ≤ u < j. This implies that C1[i] = C0[i] − 1, and so on, so that
Cj[i] ≤ Ck+1[i] = C0[i] − k − 1. However, C0[i] ≤ k, which implies that this
is not possible. Therefore, at most column Ck−1 may have cells which need a
good private neighbour.
It only remains to show that positions in Cj0 , if containing values greater
than 0, have a good private neighbour. This is true thanks to the definition
of the algorithm for the central column: every set Si only contains values
of undominated neighbours. This implies that any new defined value in the
central column is one above its maximum undominated neighbour, which will
not have any new neighbour to also dominate it. The exception is with the
cells at lines 1 and -1. However, the way their values are defined in the central
column ensures that at most one of them may have Cj0 [0] as a good private
neighbour, and the other one does not dominate it. This proves that both
have a good private neighbour in column Cj0 , Cj0−1 or Cj0+1.

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k − 1

k − 1

k − 1

k − 1

k − 1

k − 1

k − 1

k − 1

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

k − 1

k − 1

k − 1

k − 1

k − 1

k − 1

k − 1

k − 1

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

p q· · · · · ·

C0 C1 C2 Ck−1 Ck Ck+1 Ck+2 Ck+3 Ck+4 C2k+1C2k+2

Figure 3.14: Illustration of the fact that XM
k is not 2k+2-block-gluing: when attempting

to glue p and q, the values of the next k+ 1 columns are forced, and leave the cell of the
middle columns Ck+1 and Ck+2 undominated.

• XM
k is not 2k+2-block-gluing.

We take a globally-admissible half-plane pattern p of Z−×Z such that its rightmost
two columns are filled with value k. It is globally admissible because the preceding
column may be filled with values k − 1, the one before by k − 2, and so on until
a column of 0s. The column preceding it must also be filled with 0s and the one

88

at its left can be filled by ones, then by twos, and so on. We take q as the vertical
symmetric of p.

By Proposition 3.25 since the cells of C0 (see Figure 3.14) have no neighbours
of value k − 1 in p, column C1 must be filled with value k − 1. In fact for the
same reason, for every 1 ≤ i ≤ k, the column Ci must be filled with the value k− i.
Now, to guarantee for each cell of column Ck−1 that its neighbour in Ck is its private
neighbour, column Ck+1 must not dominate column Ck, hence it must be filled with
zeroes. A symmetric reasoning forces the values of the cells of the other columns
between p and q. Now columns Ck+1 and Ck+2 are not dominated. This proves that
the minimal-meta-k-dominating subshift SM

k is not (2k + 2)-block-gluing. Hence it
is block gluing with c = 2k + 3.

We can notice, for the minimal meta-k-domination, that there is some linear decrease
on the values of the forced cells. Indeed, in Figure 3.14 for instance, we see that when
the label is k, we managed to need roughly k steps to get down to 0, so that a minimum
gap cannot be less than around 2k. We could easily have only needed a gap of k if we
had slightly modified the rules, so that a private neighbour of a vertex with label i may
have either label i − 1 or i − 2. We may even implement a roughly 2k/q-block-gluing
SFT if a vertex of label i needs a private neighbour of label between i− q and i− 1. This
behaviour is similar to the one in Remark 3.3 when we mentioned the sagging of the set
of forced cells. In the example showing that the minimal-meta-k-domination subshift is
not (2k+2)-block-gluing, we took half-plane patterns to avoid some technicalities. Had
we not done that, at each new column one cell at the top (and one at the bottom) would
not have been forced, since they have upper (and lower) neighbours outside the band
of the same height of the pattern. These extra cell give some liberty for the symbol in
the top and bottom cells, so that with each new column we may lose two lines which
were forced but which are independent now. This constitutes, as in Remark 3.3, a linear
sagging. Hopefully, here it does not prevent the SFT from being block-gluing because
the values decrease by themselves.

3.7 Conclusions

3.7.1 Counting dominating sets

Here we both proved the existence and the computability of an asymptotic growth rate
for four variants of the domination problem in grid graphs. We gave some bounds and
some values we think approximates rather accurately each of these growth rates. The
bounds for the domination and total-domination problems are rather good: respectively
0.5% and 1% of the computed value. However, the ones for their minimal counterparts
are looser: the gaps between the upper and the lower bounds are around 20% of the lower
bound.

Theorem 3.22 improves the bound given by Fomin et al. [15], when the graph is a
grid. They provide an algorithm enumerating the minimal dominating sets of a graph. By
analysing its complexity, they show that there are at most 1.7159n minimal dominating

89

sets for a graph on n vertices. We reduce this bound by approximately 10% in the case
of grids.

As for the minimal domination and minimal total domination, the associated bounds
could be improved by using a more powerful computer (mainly one with more than 1.5TB
of memory), or by optimising the technique or finding one more efficient.

Also, the bounds we give are not numerically certified because of two reasons. First,
the computations are done in floating-point arithmetic, hence some rounding errors may
propagate. However, we only do additions and one division, so this should not occur.
Also, we checked one value using arbitrary-precision numbers and it gave the exact same
results. Second, we compute the largest eigenvalue of the matrix by using the power
iteration method: start with a vector V , compute the iterates (MkV) and see how the
norm of the vector evolves. We observe that this method converges rather quickly (around
20 iterations), but it does not certify any digit of the value as being the right one: we
have no guarantee on the precision of the numerical values. However, when we used the
arbitrary-precision numbers, we computedM150V and there seemed to be 85 digits which
stabilised, so it really looks like it is converging here. One direction of work could be to
find a way it to certify the digits of the computed eigenvalues and use it.

3.7.2 Around the block-gluing property

In the proofs of the block-gluing property, we mentioned some phenomenon: the sagging
of the values in the middle cells between two pattern we try to glue, or the one about
the number of lines which are still forced when the patterns are finite (instead of half
planes). We discuss here the matter further, for there exist subshifts for which this sag-
ging prevents the block-gluing property: the values or number of forced cells decrease too
slowly, in a linear manner. This prevents two patterns to be glued with a gap less than
something linear in the heights of the patterns, as we shall see.

Among others (and stronger) results, Gangloff and Sablik introduced the concept of
linearly-block-gluing SFTs in [16] and showed that some SFTs indeed have this property.
One example they show kinds of encodes an integer by having a pattern with a column
of k black cells. By forbidding a list of three small patterns, they force the next column
to be a column of k − 2 black cells, the black cells being centred compared to the ones
of the previous column. The next column must be a column of (k − 2) − 2 = k − 4
black cells also centred, and so on. This means that if we begin with a column pattern
of height k full of black cells we need a gap of size around k/2 to glue it to a column of
white cells. Hence no constant block-gluing gaps are possible, but only a gap the size of
which is linear in the height of the pattern. We can see this as if the height of the pattern
encodes a number, which then decreases is a linear way.

This reminds us of the Question 1 to know if there exists subshifts, or even SFTs
which are f(n)-block-gluing, but where f is not an affine nor a constant function. Let
us now think about a potential SFT which would log(n)-block-gluing for instance. We
can think that each new column we build between two patterns should have halved the
number of forced cells from the number in the previous column. For instance, with the
previous example we would need, beginning with a column with k adjacent black cells,

90

that only k/2 cells are black in the next columns, then k/4, and so on. This could be
done by several ways. We could, for instance in one dimension, encode an arbitrarily
large alphabet with a finite alphabet but considering arbitrarily large patterns: if the
alphabet is {0, 1} a word 1111 could represent 15. For instance, we can define a subshift
which would allow any word which forbids 01k0q1 if q < log2 k. This subshift is not an
SFT and is not constant block gluing, but it is log(n)-block-gluing.

However, for a SFT to be log(n)-block-gluing appears to be a much more difficult
problem: we have a finite alphabet and only a finite number of finite patterns which
we forbid. For a subshift to have a sagging other than linear, it seems to need to be
able to encode arbitrarily large values: if the sagging is logarithmic, it should work for
patterns arbitrarily large so that it can effectively ‘compute’ the logarithm of arbitrarily
large numbers, but only with local rules of fixed radius. This seems rather difficult to
achieve in the world of SFTs, but Gangloff and Sablik also showed in [16] that this was
possible by constructing a log(n)-block-gluing SFT. They basically implement an +1
adder component (like in CPUs) with a system of carry. The number of digits only
increases by one when we reach a new power of two, that is after 2k iterations if the
pattern is of size 2k. This settles one case of the question we asked in Question 1, but all
the spectrum of other subliner functions (except for the logarithm) or superlinear ones
remains open. For instance, are there SFTs or subshifts which are

√
n-block-gluing?

91

Chapter 4

Tiling rectangles with polyominoes

Even though we can wonder how we let this possible and even happen, some parts of
the Pacific ocean are currently covered by 80 000 tons of plastic, tiling around three
times the surface of France. Some other people are untiling big and ancient forests right
now: over the past year, for instance, the Amazon rainforest in Brasil suffered the loss of
between 500 000 and one million football pitches. The rate of deforestation of this area
has increased eight times as much it was before Bolsonaro was elected.

Fortunately here, while we try to tile, it is not with plastic but instead with objects
called polyominoes, looking like the inoffensive Tetris pieces. We try to fill a rectangle
with such pieces, a bit like in a jigsaw puzzle, except that all the pieces are copies of the
same one.

Informally, a polyomino is a connected finite set of unit squares. This means that the
polyomino is made of only ‘one part’: see Figure 4.1. We already talked about them in
Chapter 2. We showed there how to encode a domination problem into a polyomino. A
dominating set of the grid is then a covering of the rectangle with the right polyomino:
placing copies of the polyomino so that each cell is covered by at least one polyomino.
A minimum dominating set is a covering of the rectangle with as few polyominoes as
possible. The number of polyominoes used in such a covering gives the domination
number of the grid.

In this chapter, we are interested in a notion close to the one of coverings: the notion
of tiling. Tiling a surface with a shape means covering the surface with copies of the
shape such that no copy go over the surface, and no two copies overlap. We want to
know, given one particular polyomino, if we can tile a rectangle with it. There are many
questions in the topic of tilings with polyominoes. The natural question is to wonder
which polyominoes can tile the plane. In the case when we allow only translations, that
is when we choose one orientation for each polyomino and all its copies are obtained from
it by translation only, the case is settled. Indeed, there exists an algorithm to decide if
a given polyomino can tile the plane Z2 by translations. However, in the case when we
allow translations, rotations and mirrors of the polyomino, we have little knowledge. We
do not know whether or not this problem of tiling is decidable or whether there exists a
polyomino which tiles only the plane in an aperiodic way. However, we know that the
problem of tiling a plane with a set of polyominoes is not decidable. We will develop
a bit more on these results in Section 4.1. Unless written otherwise, when we speak of

92

tiling, we mean a tiling by copies allowing translations, rotations and vertical mirrors.
A funny concept about the polyominoes is the one of reptiles.1 It stands for auto-

replicating tiles. This means that we can assemble several copies of a polyomino P in
such a way that the obtained shape is P zoomed in. This implies that the polyomino
can tile the infinite plane Z2. Indeed, just take your shape, assemble copies of it so that
you obtain that shape again but bigger in size. This way, you tile a bigger and bigger
connected area by extending step by step your partial tiling, and never changing what is
already done. Hence you will tile the whole plane if you can wait indefinitely, with no
need for the axiom of choice.

This chapter is focused on a stronger property a polyomino can have: to be rectifiable,
i.e. to be able to tile (allowing rotations, translations and mirrors) some rectangle. This
property is stronger than tiling the plane since when a polyomino tiles a rectangle then
we can put together copies of this arrangement to tile the plane. We can also assemble
the rectangles to obtain a big square, with which we can obtain a bigger shape of the
polyomino, hence any rectifiable polyomino is also a reptile. If a polyomino is rectifiable,
we want to find the smallest rectangle which can be tiled by this polyomino, or in fact the
smallest number of copies we need to tile a rectangle. This minimum number of copies
is called the order of a polyomino, if it exists. This problem looks rather simple, or at
least can be expressed very easily, however there are big gaps in our knowledge of the
subject. For instance, we do not know if there exists a polyomino the order of which is
five, that is one which can tile a rectangle with five copies but cannot tile a rectangle
with a smaller number of copies.

In 1989, in a paper studying polyominoes, their tileability and their rectifiability,
Golomb [20] asked a question which is still unresolved. It was our goal for studying
polyominoes.

Question ([20]). Is there any polyomino with odd order greater than one?

In the first chapter, we first give basic formal definitions and a bit of history on
the subject of tilings using polyominoes. We will for instance give more details of the
hierarchy Golomb made about the tiling properties polyominoes can have (tiling the
plane, being rectifiable, being a reptile for instance). We will also say a bit about tilings
with sets of polyominoes. In Section 4.2, we will give the methods which can be used
to find the order of polyominoes. We give there simple versions of the algorithm, to be
refined in Section 4.3. It begins with Section 4.2.1 where we explain how we enumerate
the polyominoes, which is a first step before testing them for rectifiability. We then focus
on how to test if a rectangle can be tiled by some polyomino. We present two methods:
one looking like a DFS in Section 4.2.2 which is rather slow, and another one which
looks like a breadth-first search (BFS) in Section 4.2.3 which is much faster. We even
mention in Section 4.2.4 an approach using integer linear programming, which is slower
than the two previous methods. In Section 4.3 we explain the methods we used to detect
polyominoes which are not rectifiable, in order to rule them out. We also provide some
optimisations mainly for the BFS algorithm. In Section 4.4, we give some statistics on
the number of polyominoes which are rectifiable, and on their orders. We also give some
ideas for further work in order to tackle this problem.

1Don’t worry, they don’t bite!

93

4.1 Definition and some history
Definition 4.1. A polyomino P is a finite and connected2 union of unit cells of the Z2

lattice.

(a) (b) (c)

Figure 4.1: Illustration of the polyomino definition. (a) is not a polyomino because it
is not connected. The same goes for (b): connectivity is done through edges and not
corners. (c) is a valid polyomino.

Definition 4.2. An isometry of the plane is a geometric transformation which preserves
the distance between any pair of points. If a and b were at distance d, their images must
be at distance d as well.

Fact 4.1. Including itself, a polyomino may have up to 8 isometric copies in total (see
Figure 4.2). All isometric copies of P are polyominoes obtained from P by a succession
of rotations by π/2 and vertical symmetries.

Definition 4.3. Given a (finite or not) surface X ⊂ Z2 and a polyomino P we say that
P tiles X when X can be decomposed into isometric copies of P .

In Definition 4.3 X may be finite of infinite. In this chapter, we will mostly consider
finite rectangles to be tiled, but sometimes we speak of tiling the plane Z2.

Figure 4.2: The eight copies of one heptomino. The second line is the vertical flip of the
first one.

Definition 4.4. A polyomino P is rectifiable when there exists a finite rectangle which
can be tiled with copies of P . The order of a polyomino is the minimum number of
copies with which we can tile a rectangle, or +∞ if it is not rectifiable.

2Two unit cells of Z2 are connected when they share an edge.

94

Golomb [18] established in 1966 a hierarchy of polyominoes according to their ability to
tile some parts of the planes. For instance, we mentioned that reptiles can tile the plane,
thus being a reptile is a stronger property than tiling the plane. Also, being rectifiable
implies that a polyomino can tile an infinite strip, which implies it can tile a half-plane,
which in turn implies that it can tile the whole plane. We mentioned in the introduction
that a rectifiable polyomino can tile a big square by combining the rectangles, hence it
is a reptile: a bigger version of the polyomino can be constructed with copies of this big
squares. In fact, the rectifiability is the strongest class of the hierarchy Golomb defined
because of this ability to tile a square: when you tile a square you can tile any shape
decomposable into squares. The full set of categories and implications can be found
in [18]. One big question remains open in this domain:

Question. Is tiling the plane with one polyomino decidable?

Golomb also studied the tiling of different surfaces when, instead doing it with just
one polyomino, we are allowed to use several polyominoes from a given set. In 1970,
he gave in [19] a hierarchy of the different tiling problems when we tile with a set of
polyominoes. He also answered the above question in this context.

Theorem 4.1 (Golomb, [19]). The problem of tiling the plane with a set of polyominoes
is equivalent to Wang’s domino problem and is therefore undecidable.

This means that there are no Turing machines which, on every possible set of polyo-
minoes given as input, would output, in finite time, 1 if we can tile Z2 with the polyo-
minoes in this set, and 0 otherwise. Theorem 4.1 was further improved in 2008:

Theorem 4.2 (Ollinger, [37]). The problem of tiling the plane with a set of five polyo-
minoes is undecidable.

Ollinger also proved this result by reducing the domino problem to the problem of
tiling the plane with a set of five polyominoes. This narrows the gap between the unde-
cidability of tiling the plane by a set of polyomino and the question about doing so with
a single polyomino. Maybe tiling the plane with a set of four polyominoes would turn out
to be decidable, hence implying the same for sets of size less than four, including tiling
with one polyomino.

In 1991, Beauquier and Nivat showed in [2] an interesting characterisation of the
polyominoes which can tile the plane by translation (forbidding copies obtained by rota-
tion or mirror). This gives an algorithm to check if a polyomino can tile Z2 by translation:
all we needed is to look at its frontier and use some combinatorics on words. However this
does not help us here since we consider also rotations and symmetries of the polyominoes.
Recently, Nitica investigated how to translate Golomb’s hierarchies of polyominoes and
sets of polyominoes when only translation is allowed. This resulted in different classes
and some inclusion relations between these classes, as it can be seen in [35] and [36].

Shortly after, in 1992, Stewart and Wormstein [48] put a first stone towards the
resolution of this question: they answered the question about a polyomino of odd order
for the smallest odd integer greater than one. We still do not know the answer for any
other odd number.

Theorem 4.3 ([48]). No polyominoes of order 3 exist.

95

This theorem can be restated in the following way: if a polyomino can tile a rectangle
with three copies then this polyomino is necessarily a rectangle. However, there are no
strong reasons for ruling out any odd order greater than three. Indeed, Golomb has
shown that there are infinitely many polyominoes which can tile some rectangle with
an odd number of copies; the problem is that it might not be the minimum number of
copies needed, hence not their orders in that case. Let us call such a polyomino, which
can tile some rectangles with an odd number of copies, an odd polyomino. In 1997,
Reid [44] showed that the minimum number of odd copies needed to tile a rectangle with
a polyomino can be arbitrarily large. He showed this by giving a way to construct, for
each prime number p, a polyomino of odd-order 3(p + 2): a polyomino which can tile a
rectangle with 3(p + 2) copies but cannot tile a rectangle with an odd number of copies
less than that.

The funny thing is that while we have no clues about half of the possible orders,
namely the odd numbers, we have knowledge for half of the even orders.

Theorem 4.4 ([20]). Each positive multiple of 4 is the order of some polyomino.

Golomb showed this theorem by providing, for each number 4s, a polyomino of order
precisely this number. In 1989, Dahlke [12] gave the order of a polyomino mentioned by
Golomb: it was 92 (see Figure 4.3). He also answered in another paper, with the same
program, that another polyomino the ordered of which Golomb had also asked, had order
76. To summarise, regarding which numbers are the order of some polyomino, we know
the answer for a quarter of N plus a few isolated cases. So there is still much space for
discoveries. We also do not know the answer for small numbers: are there polyominoes
of order 5? Of order 6, 14 or 22?

4.2 Finding the order of a polyomino: the basic al-
gorithms

We explain in this section how to look for rectifiable polyominoes. We first show how to
enumerate them, or in fact, enumerate the ones which have no holes since any polyomino
with a hole cannot tile the plane. After this we present two methods, given a rectifiable
polyomino, to find its order. This section will be completed by Section 4.3, which provides
some optimisations of our algorithms, as well as techniques to show that some polyominoes
are not rectifiable. In all this section we assume that we have a polyomino P and try to
find its order, by trying to tile rectangles of size n×m with isometric copies of P .

4.2.1 Enumerating all the polyominoes

Counting polyominoes is not a new topic at all. Several tables or sequences giving the
number of a certain type of polyominoes according to their sizes can easily be found
on some papers and on the Internet. The On-Line Encyclopedia of Integer Sequences
(oeis.org) lists such tables: see for instance the sequences A000105, A001168, A000988.
There are several sequences because there are several ways to list polyominoes, according
for instance to whether or not we count isometric copies as different polyominoes. The

96

oeis.org

Figure 4.3: A tiling with 92 copies of a polyomino of order 92. It also illustrates the
four-colour theorem: two polyominoes sharing an edge always have different colours.

sequences respectively focus on free, one-sided and fixed polyominoes. The first one
considers that two isometric polyominoes are the same; the second one considers that two
polyominoes are the same if one can be obtained from the other by combining rotations
and translations; to the third one two polyominoes are the same only if they differ by
translation.

In this chapter, we are interested in enumerating all the polyominoes. We consider,
since we authorise isometric copies of a polyomino for our tilings, that two isometric
copies of a polyomino are the same polyomino, and we enumerate just one of them. As
mentioned in Fact 4.1, a polyomino can have up to 8 ‘different’ forms: we may obtain
them for instance by applying from zero to three rotations by π/2 and, on top of this,
also applying zero or one vertical flip3 (see Figure 4.2).

Definition 4.5. We say that X is a set of free polyominoes when no two elements are
isometric.4

Definition 4.6 (see Figure 4.4). Let P be a polyomino placed on a grid. Any finite
connected region of cells not in P which is disconnected from the rest of the grid by P is
called a hole.

Notation 4.7. Let us denote by Pn the set of free polyominoes of size n with no holes.
3also called horizontal symmetry
4We keep this phrase because it is widespread, though we are not quite satisfied with it: the polyo-

minoes are not free. Saying that a polyomino is free means nothing. It would be better to speak of a
free set of polyominoes: two sets of polyominoes are equivalent if any polyomino in one has an isometric
copy in the second, and vice versa.

97

Figure 4.4: The six octominoes containing a hole.

We now introduce two new notions we will use to show how to choose a representative
for equivalent polyominoes. As we will see, doing so will improve the running time of the
enumeration.

Definition 4.8. Let L be the list of coordinates of a copy of a polyomino P . We say
that L, or the copy of P it represents, is lifted when L is sorted in lexicographic order
and the first coordinate of the list is (0, 0).
The copy represented by L is the representative of P when L is lexicographically smaller
than the lifted list of coordinates of the other copies of P .

To enumerate the polyominoes of size n, we use a rather simple method. It is based
upon the fact that in any polyomino of size n > 1 there is at least one square we can
remove to obtain a polyomino of size n−1. This fact is trivial, but here we deal with hole-
free polyominoes, which is trickier. The proof of Lemma 4.5 will explain why this assertion
is still true in the context of hole-free polyominoes. Our algorithm (see Algorithm 2 on
next page) takes as input the set Pn−1 of polyominoes of size n−1: for each P ∈ Pn−1, we
add a square at every possible location (maintaining the connectivity of the polyomino).
We will explain the hole detection, done with a flood-and-fill algorithm, in Section 4.3.

In order to avoid storing several copies of the same polyomino, we use Definition 4.8
to keep a unique representative for each copy we enumerate. Let us reformulate the
definition: a copy is lifted when the first element of its list of cells is (0, 0) and this list is
sorted by increasing x-values, and in case of equality, increasing order of y-values. A lifted
polyomino does not have negative x-coordinates, but may have negative y-coordinates.
This notion is central to compare two polyominoes: any copy of a polyomino has a unique
lifted list of coordinates, which is a representative of this copy. Two copies with the same
lifted list of coordinates are in fact the same up to translation. The representative copy of
a polyomino is the copy which, once lifted, has the list of coordinates which is minimum
for the lexicographic order. For instance, in Figure 4.2 the leftmost cell (and topmost
in case there are several) of every copy will have coordinate (0, 0) once the (coordinate
list of the) copy is lifted. Then the two copies of the second column will have two cells
of x-coordinate 0 so they are smaller than the other ones. The third cell in the (sorted)
list will have x-coordinate 0 for both copies, but y-coordinate -1 for the bottom one,
whereas the copy on the first row will have y = 0. Hence the copy of the second row and
second column is the smallest copy of Figure 4.2. Again, this concept of representative
of a polyomino is crucial: one can detect if two copies of polyominoes are copies of the
same polyomino by comparing their representatives. We will detail in Section 4.3.3 the
hash table data structure we used to achieve a fast insertion of new polyominoes without
having duplicates of them.

98

Algorithm 2: Computing Pn from Pn−1
Input: An integer n and the set Pn−1
Output: Pn

1 X ← ∅
2 foreach P ∈ Pn−1 do
3 foreach (x, y) ∈ P do
4 foreach (x′, y′) neighbour of (x, y) do
5 Q← P ∪ (x′, y′)
6 if Q has no holes then
7 Q′ ← representative of Q // the smallest lifted copy of Q
8 Insert Q′ into X
9 end

10 end
11 end
12 end
13 return X

4.2.2 Tiling a rectangle with a DFS (inefficient)

We present here a classical backtracking algorithm, described in Algorithm 3, which
features the characteristics of a depth-first search (DFS). The idea is, when examining
one specific (partial) tiling, to continue it as far as we can. When we find a contradiction
we rollback one step before, try another choice, continue, and so on. DFS stands for
‘depth-first search’: this means that when we have several options, we first examine the
first one as far as we can go before considering the second one, and so on. By doing this,
we explore all possible tilings, hence if there exists a tiling we will find it. If we exhaust
all the possible choices for where to put the next copy of P without managing to tile the
rectangle, this constitutes a proof of the fact that P does not tile the rectangle.

Algorithm 3: Trying to tile an n×m rectangle, in a DFS fashion.
Input: The dimensions n and m of the rectangle, the polyomino P
Output: True if the n×m rectangle can be tiled by P , False otherwise

1 Function DFS_tile(grid, P , nbLeft):
2 if nbLeft = 0 then
3 return True
4 end
5 (x, y)← choose_free(grid)
6 foreach partial tiling grid′ extending grid by exactly one copy of P covering

(x, y) do
7 if DFS_tile(grid’, P , nbLeft-1) then
8 return True
9 end

10 end
11 return False

12 return DFS_tile(empty_grid, P , nm/|P |)

99

One important point in the algorithm is not to enumerate the same partial tiling
several times: we want to avoid putting a copy in P at cell (0, 0) then one copy at cell
(3, 3), realise that there is a contradiction... and then try to put a copy at (3, 3) and then
one at (0, 0) and come up with the same conclusion. To enforce this, at each depth we
choose a unique cell to be tiled at that step (the role of the function choose_free). We
then force the chosen cell (x, y) to be covered at this step backtrack directly, should the
one we chose fail to be covered. We are sure to still enumerate all possible tilings: the
chosen cell must be covered at some point so it might as well be covered now, and we
try every possible way to cover it. When we go back because we fail to cover the cell
we chose at the current step, it is possible that another option for a choice made at an
earlier step will lead to a tiling of the rectangle.

In our program, we chose the function choose_free to return the leftmost free cell,
and in case of ties, the topmost one. However, it could be chosen differently as we mention
below. The choice for this function choose_free is crucial. Indeed, choosing judiciously
the next cell to be covered can impact the performances a lot. There is one main ap-
proach. It consists in trying one cell which has very few possibilities to be covered, so
that we do not have to branch a lot. We hope that we can find successive positions for
which the number of ways to cover them is indeed very small: ideally only one possibility
to cover it, or zero so that we backtrack directly. If we are lucky, by doing so we only have
one choice at each time and the running time would in fact be ‘linear’: the first tiling
we explore would work, with no need to backtrack. However, nothing guarantees that by
choosing a spot with only a few possibilities we do not double (or even more) the number
of possibilities for the next spots. The only sure thing is: if there is only one way to cover
one tile, we may as well cover it now so that we realise some contradictions sooner, and
we cannot make things worse since there was a unique choice to cover the cell here no
matter when it is done. Other approaches based on other heuristics can be tried, as for
instance tiling in ‘spiral’: prioritise cells according to their distance to the closest edge
of the rectangle, and in clockwise direction if there are ties. This choice was less efficient
than the one prioritising the cell with the lest number of possibilities. Another approach
is to prioritise cells to be tiled according to their distance from the top-left corner, that
is tiling kinds of diagonal waves one after the other.

This approach is very fast for polyominoes of small order, for instance it takes 0.08s
for a specific polyomino of order 50. However it led to very long running times for greater
orders: it takes one minute on a polyomino of order 76, and 24 minutes for a polyomino
of order 96. This is why we describe a second more efficient method in Section 4.2.3:
the BFS approach. This other approach is outperformed by the DFS for small orders:
it takes one second for the polyomino of order 50. However, for the other two, the BFS
method (with the optimisations of Section 4.3.2) takes respectively 6.5s and 4.8s.

4.2.3 BFS on the frontiers

We present here an approach which may seem slower at first: we try iteratively and
‘simultaneously’ all the partial tilings with k copies. Basically, we try to fill the rectangle
column by column and enumerate all the partial tilings with one tile, then with two tiles,
and so on. We do it on a BFS fashion: all the partial tilings with k copies of P are tried

100

before trying the ones with k+ 1 copies. This seems slower because we enumerate all the
partial tilings sequentially whereas a good heuristic might have discarded a lot of them
early and explored a promising tiling first. However, if the rectangle cannot be tiled, we
are forced to try all possible tilings, hence the BFS approach might not be more costly

Definition 4.9. Let T be a partial tiling of a rectangle. Let Cl (resp. Cr) be the leftmost
(resp. rightmost) non-empty yet non-completely filled column. The frontier is the set
of cells of the columns Cl, Cl+1, · · · , Cr covered by the polyomino (shown in red boxes in
Figure 4.5).

Remark 4.1. Assume that at each step the next cell to be covered is chosen to be the
leftmost one still uncovered, and in case of ties, the topmost one. The surface covered by
any partial tiling T obtained in this fashion is connected.

This is true because of the design of the algorithm. Apart from the first one, every
new copy we put in the current partial tiling T necessarily shares an edge with T . In
case the obtained partial tiling does not contain a hole, the surface it covers constitutes
a polyomino.

We now introduce the basic algorithm without the technical details and without some
optimisations: we enumerate the frontiers resulting of the partial tilings with first one
tile, then two, and so on.

k

k+kClean

curFrontier nextFrontier

k

Figure 4.5: Illustration of the creation of a new frontier from en existing one (Line 8
of Algorithm 4). The cells hatched with white lines represent the copy of P which was
added at this step.

101

Algorithm 4: Trying to tile a rectangle with n lines and at most mmax columns,
in a BFS fashion.
Input: The dimension n and mmax of the rectangle, the polyomino P
Output: (True, m) if the n×m rectangle can be tiled by P , False otherwise

1 nbColumnsTiledRectangle ← +∞ // No tiled rectangle so far.
2 newFrontiers ← ∅ // This is a queue.
3 emptyColumn ← [0, · · · , 0] // n zeroes: an empty column; covered cells

contain 1’s.
4 newFrontiers.push((0, emptyColumn)) // 0 means there were no filled

columns at the left
5 while newFrontiers is not empty do
6 (k,curFrontier) ← newFrontiers.pop() // curFrontier was seen with k

filled columns at its left
7 (x,y) ← choose_leftmost_free(curFrontier) // In case of ties, the

topmost one.
8 foreach nextFrontier extending curFrontier by a copy of P covering (x,y)

// See Figure 4.5.
9 do

10 nextFrontierClean ← nextFrontier stripped of its fully filled columns
11 kClean ← number of removed filled columns
12 if nextFrontierClean = [] then

// We tiled a rectangle.
13 nbColumnsTiledRectangle ← k+kClean
14 break // We get out of the loop.
15 end
16 if nextFrontierClean was not seen yet then
17 Mark nextFrontierClean as seen
18 newFrontiers.push((k+kClean, nextFrontierClean))
19 end
20 end
21 end
22 return nbColumnsTiledRectangle

The general principle of this algorithm was already used by Karl Dahlke. In this al-
gorithm, we first explore all frontiers consisting of one copy of P , then the ones with two
copies, then the ones with three copies, and so on. Hence this algorithm has the charac-
teristic of a BFS. Indeed, BFS stands for ‘Breadth-first search’: we explore step by step
all possible solutions, as opposed to the DFS which explores fully each one after the other.

We can observe that any frontier may consists of at most w columns, where w is
the maximum width of the copies of the polyomino. We speak here of the number of
columns which are not completely filled. Indeed, since we always try to fill the leftmost
free cell, any copy we add must fill this cell. The result follows since it spans at most
w columns. This means that the number of frontiers is bounded by 2nw. However, since
we forbid a lot of configurations, we have fewer than 2nw possible configurations: see
Section 4.3.2 to see how we discard some frontiers, apart from the obvious cases when

102

the configuration contains a hole. Since the maximum width of a polyomino is fixed, it
is better, when trying to tile a n ×m rectangle, to choose min(n,m) as the number of
lines of the rectangle we actually try to tile. The method works well for rectangles with
disproportionate widths and heights, and less with the ones close to squares.

Keeping the frontiers in memory enables us to reduce the running time of the program
(see Line 16). Indeed, we may obtain a frontier by several different ways. By keeping
them in memory we know that when we find some frontier F which we had already seen
(necessarily with fewer filled columns since we enumerate the frontiers in a BFS way,
with fewer copies needed first), we may skip it now instead of investigating again what
other frontiers it leads to. To save memory and for easier access, we only remember the
frontiers without the completely filled columns, and instead store this number and link
the frontier to it: in Figure 4.5 the four (on the left) and three (on the right) columns,
surrounded by a red rectangle, are the real frontiers we store. For the left one we associate
the number k of filled columns, and the number k+kClean for the right one. By doing
so, if we find a frontier F with 42 preceding filled columns and see again later F with 44
filled column, we overlook it. We used a hash table to perform fast lookups for already
seen frontiers. We detail this data structure in Section 4.3.3.

4.2.4 Another approach: solving a linear program

At the beginning, we decided to give a chance to some solvers of (integer) linear programs.
Indeed, the problem of knowing if a polyomino tiles a given rectangle can be expressed as
an integer linear program. The idea is that we encode the locations of the copies of the
polyomino and ensure that each cell is covered exactly once. To so do, we first consider the
8 different orientations of our polyomino P (applying rotations and horizontal symmetry):
P1, . . . , P8. For each Pi and each cell (x, y) of the rectangle, we denote by C(Pi, x, y) the
set of coordinates covered by placing the top-left cell of Pi on cell (x, y) or ∅ if doing so
causes the polyomino to go over the rectangle. Our integer linear program can then be
defined as:

For each x0, y0 :
∑

(x0,y0)∈C(Pi,x,y)

Ai,x,y = 1.

Each sum is done for a fixed value (x0, y0): we are summing over i, x and y. To each
(x0, y0) corresponds an equation for our linear program. If the set of feasible solutions is
not empty, this means that a tiling exists, and the variables set to one give this tiling. If,
on the contrary, it is empty, this is a proof of the fact that the given polyomino does not
tile the rectangle.

However, even by using Gurobi, one of the best solvers available, we did not obtain
any interesting results with this method. The program using Gurobi was much too slow:
4 minutes for the polyomino of order 76, and 24 minutes for another one of order 96. The
method in Section 4.2.3 (with the optimisations of Section 4.3.2) took respectively 6.5s
for the polyomino of order 76 and 4.8s for the one of order 96. In addition to this, Gurobi
used the 24 cores available in the test machine whereas the time for the BFS method was
achieved using only one core. Gurobi was even (slightly) outperformed by the slow DFS
algorithm!

103

4.3 Refinements of the algorithms and other optimisa-
tions

We present here two main things. On the one hand we introduce other techniques to
improve our search. We begin by giving and explaining methods to show that a polyomino
is not rectifiable, so that we may avoid to lose time by not attempting to find its order. We
then present optimisations both in the design and the implementation of the algorithms of
the Section 4.2, which we kept at the time as simple as possible for pedagogical purposes.

4.3.1 Ruling out non rectifiable polyominoes

One crucial point is to find which polyominoes can be discarded because they are not
rectifiable. Indeed, it would take an infinite amount of time to try to tile all possible
rectangles with a polyomino which is not rectifiable. This is why we need efficient meth-
ods which can discard as many non-rectifiable polyominoes as possible. Some of the
techniques were used by Karl Dahlke (see [11]), and some are ‘new’ or were improved by
us.

Playing chess.
This method does not, properly speaking, detect non-rectifiable polyominoes, but

rather shows that some classes of rectangles with specific properties cannot be tiled by
some polyominoes. This well-known parity argument consists in overlaying a checker-
board on the rectangle and deducing some properties of the tiling. For instance, let us
assume that the polyomino P is formed out of a rectangle with 2 lines and three columns
by removing the cell of the middle column in the first row. Wherever on the checkerboard
we place it, horizontally or vertically, it consumes either three white cells and one black,
or the contrary, once put on the checkerboard. Since P has an even number of cells, the
rectangle it might tile must have, for instance an even number of lines, therefore it con-
tains as many black cells as white cells. We deduce that there should be an even number
of copies of P since each one consumes an odd number of either black or white cells: the
set of copies covering 3 black cells must be of even size, as must its white counterpart.
This shows that our polyomino cannot tile any rectangle of size n × l when kl is not
a multiple of 10. For instance tiling a rectangle of size 5 × 5 would require 5 copies of
the polyomino, hence either the number of white cells covered or the one of black cells
covered would be odd. This argument implies that the polyomino is less interesting: its
possible order cannot be odd. We also tried to obtain other equations showing that some
other types of rectangles are impossible to be tiled by some polyominoes. We tried to put
alternating columns of white and black cells, or even different moduli: instead of having
white and black cells, that is reasoning modulo 2, we can try with other prime numbers.
We managed to discard some rectangles which could not be discarded with the classical
checkerboard argument, but not many more.

The checkerboard argument can also be exploited in another way: when tiling any
rectangle there must be as many pieces covering three black cells as pieces covering three
white cells since there are as many black cells as white cells. This could be used to
improve the DFS algorithm: if, out of the k = nm/|P | copies, we already placed more
than k/2 pieces covering three white cells out of the k pieces to put, we may backtrack.

104

Tiling a quarter of the plane.
As we mentioned in Section 4.1, being rectifiable implies tiling a half-plane. Using

the same argument, it is easy to prove that in fact being rectifiable also implies tiling a
quarter of the plane ({(x, y) | x ≥ 0, y ≤ 0} for instance). We use this property to show
the non-rectifiability of some polyominoes: if they do not tile a quarter of the plane then
they are not rectifiable. We also use another similar property which we will define just
below.

We now present one property which can be tested as soon as when we enumerate the
polyominoes and helps us enumerating fewer of them, hence speeding up the process.

Definition 4.10. We say that a polyomino P is corner compatible when there is a
way to place it such that it covers the corner cell of an arbitrarily large rectangle without
disconnecting the set of empty cells of the rectangle.

Informally, P is not corner compatible when, however the way we place it, it separ-
ates the set of empty cells into several connecting components. This implies that the
polyomino cannot tile a quarter of the plane, thus we can overlook them. Note that if we
cannot cover the top-left corner, it implies that the polyomino is not corner compatible.

Notation 4.11. Let us denote by P∗
n the set of free polyominoes of size n, with no holes,

which are corner compatible.

The cross with 5 squares (see Figure 4.6) is an example of a polyomino which is not
corner compatible: because it creates a hole which cannot be filled so that the corner
cannot be tiled. Our program uses a modified version of Algorithm 2 to enumerate
elements of P∗n: it discards any polyomino which is not corner compatible. This is
done in the same way as the elimination polyominoes with holes: we use a flood-and-fill
algorithm5. We assume (up to rotating the copy of the polyomino) that we want to tile
the top-left corner. We put each copy of the polyomino into the smallest rectangle hull
and add a column at the right and one line at the bottom. We then compute the set of
connected components of the free cells (the ones which do not belong to the polyomino),
considering that the polyomino is a ‘wall’: two cells are connected if they are connected
in the grid and none of them belong to the polyomino. The polyomino contains a hole or
is not corner compatible if and only if there are several components.

We must now ensure that any element of P∗n can be obtained from an element P∗n−1
to which we add a square, so that computing P∗n from P∗n−1 indeed enumerates all the
polyominoes we are interested in.

Lemma 4.5. Let n > 1 and P be a polyomino of size n which is corner compatible and
contains no holes. Then there exists a polyomino Q of size n−1 with the same properties
such that P \Q is a single square.

What follows also proves that the algorithm we explained in Section 4.2 for the enu-
meration of hole-free polyominoes is valid. Indeed, the lemma remains true if we remove

5The flood-and-fill algorithm is a classical graph algorithm. It starts from one vertex and fills it with
one colour, along with any vertex accessible: it colours its connected component with the same colour.
Repeat this, with a new colour each time, for any vertex not yet coloured so that we compute the different
connected components of the graph, in linear time.

105

the corner-compatibility requirement and only keep the hole-free one, as we mention at
the end of the proof.

Proof. Let us place P on the top-left corner of a smallest rectangle containing it and
augmented by a column on the right and a line below, in a way such that the flood-
and-fill algorithm would find a single component outside P . We first observe that if the
polyomino is corner compatible, this implies that there exists some x0 such that every
cell of the top row with x ≤ x0 belongs to P . Otherwise, this would create a component
of free cells disjoint from the one containing the rightmost cell of the bottom line. The
same goes for the leftmost column: there exists some y0 such that every cell of the first
column with y ≤ y0 belongs to P . Note that both sets we defined contain the top-left
cell, so they are connected.

We know, since n > 1, that max(x0, y0) > 0. We assume without loss of generality
that x0 > 0: at least two cells of the top row are covered by P . We define a procedure
which will terminate, and find the a cell we can remove. We first choose the cell (x0, 0)
and try to remove it. We know that we are neither creating a hole nor obtaining a
non-corner-compatible polyomino since this cell has a free neighbour at its right. If the
polyomino we obtain is still connected, we set Q = P \ (x0, 0).

Otherwise, we consider the polyomino P ′1 defined as the component disconnected from
P by removing (x0, 0), and we set P1 = P ′1 ∪ (x0, 0). Note that P ′1 does not contain any
cell of the form (0, y) or (x, 0): we mentioned that all the cells of this shape which belong
to P are connected to (x0, 0), hence not in P1. This means that any Q we will define by
removing a cell from P1 will necessarily be corner compatible. If P ′1 is reduced to a single
cell, we may remove it to obtain Q with the desired properties. Otherwise, we choose a
cell (x1, y1) ∈ P1 \ (x0, 0) with fewer than four neighbours in P1. Since it has fewer than
4 neighbours, removing it does not create a hole in the polyomino. If removing it does
not disconnect P1, then it does not disconnect P : the only way to disconnect P1 from P
is to remove (x0, y0) and we define Q = P \ (x1, y1). Otherwise, let P ′2 be a connected
component of P \ (x1, y1) which does not contain (x0, y0). We set P2 = P ′2 ∪ (x1, y1). P2

is smaller than P1 so that our procedure selects smaller and smaller parts of P . This
means that it will terminate at some point, finding some cell (x, y) with fewer than four
neighbours which fulfils our conditions.

If we only want a cell which does not create a hole or disconnects the polyomino, to
show that our generation of hole-free polyominoes in Section 4.2.1 works, it suffices to
choose for (x0, y0) any cell with fewer than four neighbours. The rest of the procedure is
not modified, and comes up with some cell such that P \ (x, y) is a connected hole-free
polyomino.

Trying to ‘fully’ tile a corner.
This method looks a bit like the method we have just explained, to test if the polyomino

is corner compatible. In fact, it is an extension of the corner-compatibility concept.
Trying to fully tile a corner consists in taking the corner of a quarter of a plane. We then
try to tile this corner, by tiling the k cells which are the closest to the corner point. If
we want to cover all cells at distance at most d, we will have to cover (d + 1)(d + 2)/2
cells. We do this using our DFS algorithm, covering cells according to the distance to the
corner. If at any step it turns out that it is impossible to cover these k cells, then we know

106

that the polyomino will not be able to tile any rectangle (but it might tile the plane like
the one in Figure 4.6). This method extends the one of the corner compatibility because
by tiling cells at distance at most |P | + 1 for instance we would have realised that the
position of the first copy of the polyomino induces an unfillable hole. To see the relative
efficiency of this method, see Table 4.2 where we can observe that almost every polyomino
ruled out by this method also does not ‘tile’ a bottom band of a certain size. One could
ask why introduce two concepts if tiling a corner implies being corner compatible. The
answer is that the corner-compatibility test can be used during the enumeration phase,
discarding a lot of polyominoes (see the data of Section 4.4.1). This saves us a lot of time
generating the polyominoes.

Figure 4.6: The cross polyomino. It cannot tile the rectangle of a rectangle but can tile
the plane Z2.

Trying to ‘tile’ the bottom band.
The most efficient technique to rule-out polyominoes which are not rectifiable is to try

to tile the bottom band of a rectangle. Indeed, it may not only show that a particu-
lar rectangle cannot be tiled by a polyomino, but also show that the polyomino is not
rectifiable at all. The scheme is simple: we try to tile a band of height h but we allow
the tiling to go over h. However, it must not exceed the strip neither by the left or by
the bottom. This way, we simulate the bottommost h lines of any rectangle to be tiled
by the polyomino. We enumerate all the possible frontiers in a BFS manner, like the
one for tiling a rectangle. We keep all the frontiers in memory and stop when either we
found a ‘full frontier’: all the columns are filled, or when we no longer enumerate new
frontiers. In the latter case, this means that any rectangle with a height greater than h
cannot be tiled: indeed this outcome of the algorithm shows that in any possible tiling
the bottom-right corner cannot be covered. It is easy to show, by using this technique
with h = 2, that the z-shaped pieces in Tetris cannot tile any rectangle. Sometimes we
have no contradictions with h = 2 or h = 3, but when we increase the height we find one.
For the efficiency of this method, see Table 4.2.

4.3.2 Improving the BFS approach

After presenting some ways to mark a polyomino as not rectifiable or showing that it
cannot tile some family of rectangles, we focus here on the BFS algorithm described in
Algorithm 4 for which we present some optimisations.

107

Looking for a complementary frontier.
In addition to using the BFS approach, Dahlke used a clever idea: when trying to tile

a rectangle, we may at each step look for the complement of the current frontier among
the ones we have seen. If we have already enumerated the complement (the rectangle
deprived of the current tiling), then assembling the two frontiers yield to a tiling of
the rectangle and we are finished. Dahlke uses this idea to stop his search at roughly
half the width of the desired rectangle: if a tiling exists, then it can be split into two
parts of almost equal sizes, the biggest of the two being roughly half of the width of the
rectangle. Therefore it is possible to look for this biggest part, and to stop the search
when we no longer have any chance to find it. However, due to the way we generate the
frontiers, we cannot guarantee that we would enumerate this biggest part of the particular
decomposition we spoke of. Hence we always look for a complementary frontier, but we
do not stop the search at half the width of the rectangle. Yet, in our runs, we could
always find the order of the known rectifiable polyominoes by stopping halfway of when
trying to tile a rectangle.

Using symmetries.
The notion of symmetries can generally lead to large reductions in the running time of

some algorithms. Here we use it to reduce the running time of Algorithm 4 but also its
memory usage. Let us say that two frontiers F and F ′ are equivalent if F ′ is obtained
from F by applying a horizontal symmetry. For each frontier, we maintain only one
representative for each equivalence class6. In our case, we choose the lexicographically
smallest (see the paragraph after Notation 4.7). This way, we approximately halve (some
states are symmetric) the number of frontiers we store. Since we also process half the
number of states, hence also the running time. When we consider a new frontier, we now
also check if we have seen the symmetric of the representative, or the complement of its
symmetric.

Forbidden relative positions.
Some copies of a polyomino P may need to avoid some particular cells. For instance,

let us consider a square of width three from which we remove the top cell of the middle
column. It is obvious that if we place it in this orientation at the top of the rectangle,
the middle free cell will never be covered. If we reverse the orientation (by applying a
horizontal symmetry), the same problem happens: it cannot be placed at the bottom of
a rectangle for the same reason. To avoid exploring and storing useless frontiers leading
to or containing such contradictions, we compute at the beginning, for each copy of P ,
the set of cells on which we may place the copy such that that the frontier will not be
trivially not extendible. To test this, we may for instance place the copy on a location
and then try to cover the next k cells for some value of k. If this is not possible, we
forbid this position for the given copy. The bigger k is, the more time it takes to do this
pre-computation but the most efficient it will turn out later so we have to choose a good
trade-off. One could worry that if we place the copy near the last column of the rectangle
we want to tile, then there is no need for some k other copies to be placed. This could
lead us to some false forbidden positions. However this is not true: let us assume P tiles

6They are of size two, or one if the frontier is invariant by symmetry.

108

a n×m rectangle. Then it also tiles a 2n× 2m rectangle, so this is not a problem at all
because with a wide enough rectangle, we would be able to place k copies of P for any
value of k.

4.3.3 Other optimisations

We begin by giving an optimisation for the DFS approach, and then speak of more
technical optimisations, which are a matter of implementation.

Forbidden pairs.
In order to avoid placing one copy of P and realise later on that there is no way to cover

some neighbouring cells, we do some other pre-computations. We trade again some extra
time at the beginning of the program for benefits each time some particular function is
run. This time the idea is to know, for every two copies P1, P2 of our polyomino, at
which relative positions they may be put from each other to guarantee that the obtained
partial tiling is extendible. Let us assume that we put P1 at (x1, y1). For each free
position (x2, y2) we check whether, if P2 is put at (x2, y2), there is a way to cover all cells
neighbouring P1 ∪ P2. If it is not possible we forbid P1 and P2 to be placed at these
positions relatively to each other. For instance, if putting P1 at (2, 3) and P2 at (6, 3)
would necessarily cause one neighbouring cell to be uncovered however the way we extend
the partial tiling, we will forbid P2 to be separated by the vector (6, 3) − (2, 3) = (4, 0)
from where any P1 is placed. This is very useful because it saves us time (we realise
sooner that placing P2 there leads nowhere) and memory (we store fewer frontiers). This
optimisation is much more suited to the DFS approach, because we explore one partial
tiling at a time. For the BFS approach, we would need to store a list of forbidden cells
for specific copies, and detect when it is time to remove elements from this list.

Data structures used.
In order to have good performance, one needs to use the right data structures. Some

of them may be asymptotically optimal but have poor performance when used with few
elements. For instance, a priority queue achieves insertion and deletion in O(log(n))
while keeping the elements ordered but there is a constant in the O which can make it
worse than using an array and inserting or deleting (at an arbitrary position) in time
O(n), when n is not big enough. Here, we used a hash table (std::unordered_map in
the C++ code) to store and remember the frontiers. This allows us to make operations
(search, insertion for instance) in time O(1) on average. To further optimise, since the
complement of any frontier F must have the same number of partially filled columns to
be able to match F , we may store the frontiers according to their sizes. We create an
array of size w of hash tables, one for every possible number of partially filled columns,
and store and look for a complement in the right hash table. When we look up for a
frontier of width k, we look it up in the hash table of index k. This way, each hash table
has fewer elements than a single one would have. This makes the insertions and lookups
empirically faster.

Let us describe a bit more this data structure. Each element is assigned a hash, for
instance a 64-bit value computed from the value of the element. The hash is then some

109

index to access the element in the hash table. Since there are many 64-bit integers, we
cannot allocate the memory for a full array, so different hashes may be attributed the
same bucket. This also happens for two elements which would have the same hash. In
case, when we look for the presence in the hashtable of some element x, two scenarii can
occur. If the hash of x is not present, we know that x is necessarily absent from the
table. If the hash exists, all the elements with the same hash (the point in the structure
is to choose a good hash function so that there are few collisions) are checked until one
equal to x is found, if any. This makes almost all operations on a hashtable to take
O(n) in the worst case (all elements are put in the same bucket) but an average O(1)
practical complexity. In C++, this structure corresponds to std::unordered_set<> and
std::unordered_map<>.

For the frontiers, we use a vector of boolean values: each cell is either occupied (true)
or empty (false). In C++, the corresponding std::vector<bool> is in fact a bitset :
instead of having each bool element take its usual one byte size, here one byte stores eight
elements. This is saving a lot of memory, but may or may not slow down the program
depending on the operations made.

Too many polyominoes.
When enumerating polyominoes, at some point there are just too many of them. In

this case, even if they can fit in the very large RAM we had at our disposal (around
1.5TiB), we may not want to write such a file to the disk. Therefore we decided to
compress the files we were writing. One simple way was to use the gzip format and the
gzstream library7 which enables us to directly write in the compressed format with very
little modification of the C++ code. We achieved a good gain. For instance, the list of
the about 5 million of free hole-free and corner-compatible polyominoes of size 16 takes
358Mib uncompressed versus 45Mib if compressed. If we compare the other sizes, it seems
that we reduce the size of the file by a factor around 9.

4.4 Statistics and perspectives

4.4.1 Statistics on the polyominoes and their orders

We give here statistics about the orders of polyominoes, and also details about polyo-
minoes we could discard as not rectifiable. Given the way we decided to enumerate only
polyominoes which had a chance to tile a rectangle, the statistics we give are to be read
as data about polyominoes in P∗n: with no holes and which are corner compatible.
Polyominoes with holes, or which would split the set of free cells of a rectangle into sev-
eral connected components when put on a corner (however the way we put them) are not
counted here.

We recall that Pn is the set of hole-free free polyominoes, that is no two polyominoes
in this set are isometric; P∗n is the set of polyominoes we enumerate: they contain no
holes, are corner compatible (see Definition 4.10). In Section 4.3.1 we explained two
methods to rule out a polyomino as not rectifiable, after they are enumerated. We show

7https://www.cs.unc.edu/Research/compgeom/gzstream/

110

https://www.cs.unc.edu/Research/compgeom/gzstream/

here the efficiency two methods: the band method which consists in trying to tile the
bottom band of a rectangle and the corner method which tries to tile a corner with some
number k of pieces, covering cells by prioritising at each step the ones closest to the corner.

As indicated in the caption of Table 4.2, for lines 17 and 18 the percentage of ruled
out polyominoes is 100.00. In fact there remain a few polyominoes, but very very few:
18 out of the 18 637 273 we generated (using the corner-compatibility optimisation) for
size 17, for instance. This illustrates completely the scarcity of rectifiable polyominoes.
Another interesting property is that when the size is a prime number there seems to be
much fewer possibly rectifiable polyominoes: the number of remaining polyominoes is
less than 20 for orders 11, 13, 17 when it is at least 97 for orders 12, 14, 15 and 16. The
numbers for 15 and 16 are even 210 and 385, before dropping down to 18 for size 17...
and it increases again to 686 for size 18.

111

n
#
P
n

#
P
∗ n

M
ay

be
O
rd
er
≤

10
10
<

O
rd
er
≤

10
0

10
0
<

O
rd
er
≤

30
0

?
(>

15
0)

?
(>

30
0)

1
1

1
1

1
0

0
0

0
2

1
1

1
1

0
0

0
0

3
2

2
2

2
0

0
0

0
4

5
5

4
4

0
0

0
0

5
12

11
4

4
0

0
0

0
6

35
32

10
8

2
0

0
0

7
10

7
91

7
4

2
0

1
0

8
36

3
28

8
16

10
1

2
2

1
9

12
48

92
3

36
33

0
0

3
0

10
44

60
30

62
33

26
1

1
2

3
11

16
09

4
10

29
6

13
6

1
1

4
1

12
58

93
7

35
17

5
97

79
0

1
8

9
13

21
71

17
12

13
49

10
7

0
0

1
2

14
80

54
75

42
26

65
10

1
84

0
0

9
8

15
30

01
12

7
14

83
27

4
21

0
19

2
1

0
6

11
16

11
23

00
03

52
41

85
6

38
5

37
0

0
0

4
11

17
42

16
15

29
18

63
72

73
18

9
0

0
0

9
18

15
87

81
10

6
66

63
51

82
68

6
65

0
0

0
18

18

Ta
bl
e
4.
1:

St
at
is
ti
cs

on
th
e
or
de
r
of

po
ly
om

in
oe
s
up

to
si
ze

18
.

P
n
is

th
e
nu

m
be

r
of

fr
ee

po
ly
om

in
oe
s
of

si
ze
n
w
it
h
no

ho
le
s.
P
∗ n
⊂
P
n
co
nt
ai
ns

th
e
po

ly
om

in
oe
s
w
it
ho

ut
ho

le
s
w
hi
ch

ar
e
co
rn
er
-

co
m
pa

ti
bl
e
(s
ee

D
efi
ni
ti
on

4.
10

).
‘M

ay
be

’
in
di
ca
te
s
th
e
nu

m
be

r
of

po
ly
om

in
oe
s
th
at

w
e
co
ul
d
no

t
di
sc
ar
d
w
it
h
th
e
co
rn
er

m
et
ho

d
w
it
h
50

co
pi
es

an
d
th
e
bo

tt
om

‘t
ili
ng

’m
et
ho

d
of

he
ig
ht

up
to

11
(o
ne

m
or
e
th
an

in
ta
bl
e
4.
2.

T
he

‘?
>
x
’c

ol
um

ns
m
ea
n
th
at

w
e
pr
ov
ed

th
e
po

ly
om

in
o
ei
th
er

is
no

t
re
ct
ifi
ab

le
or

ha
s
or
de
r
gr
ea
te
r
th
an

x
.
T
he
se

co
lu
m
ns

ar
e

no
t
cu
m
ul
at
iv
e
bu

t
m
ut
ua

lly
ex
cl
us
iv
e:

th
e
co
lu
m
n
‘?

(>
10

0)
’d

oe
s
no

t
in
cl
ud

e
th
e
po

ly
om

in
oe
s
of

th
e
co
lu
m
n
‘?

(>
20

0)
’.

112

n
R
ul
ed

ou
t

C
B

C
&

B
B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

1
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

2
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

2
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

4
20

.0
0

0.
00

20
.0
0

0.
00

20
.0
0

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

5
63

.6
4

45
.4
5

63
.6
4

45
.4
5

18
.1
8

36
.3
6

9.
09

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

6
68

.7
5

50
.0
0

68
.7
5

50
.0
0

18
.7
5

31
.2
5

9.
38

6.
25

0.
00

0.
00

0.
00

3.
12

0.
00

7
92

.3
1

86
.8
1

91
.2
1

85
.7
1

19
.7
8

45
.0
5

15
.3
8

7.
69

1.
10

1.
10

1.
10

0.
00

0.
00

8
94

.4
4

88
.5
4

94
.4
4

88
.5
4

21
.5
3

44
.4
4

16
.3
2

7.
99

3.
12

0.
69

0.
00

0.
00

0.
35

9
96

.1
0

93
.1
7

96
.1
0

93
.1
7

24
.0
5

46
.0
5

17
.7
7

5.
31

1.
84

0.
76

0.
00

0.
22

0.
11

10
98

.9
2

97
.2
6

98
.9
2

97
.2
6

26
.0
9

47
.6
8

17
.4
1

5.
23

1.
60

0.
56

0.
23

0.
07

0.
07

11
99

.8
7

99
.7
8

99
.8
7

99
.7
8

28
.2
0

48
.4
7

17
.0
3

4.
24

1.
31

0.
38

0.
16

0.
07

0.
03

12
99

.7
2

99
.3
6

99
.7
1

99
.3
5

30
.0
0

48
.5
1

15
.9
7

3.
73

1.
01

0.
33

0.
11

0.
04

0.
01

13
99

.9
9

99
.9
8

99
.9
9

99
.9
7

31
.7
1

48
.9
3

14
.9
1

3.
19

0.
86

0.
26

0.
09

0.
03

0.
01

14
99

.9
8

99
.9
4

99
.9
7

99
.9
3

33
.2
1

48
.8
4

14
.0
1

2.
89

0.
71

0.
21

0.
07

0.
02

0.
01

15
99

.9
9

99
.9
7

99
.9
8

99
.9
6

34
.5
8

48
.6
8

13
.1
9

2.
64

0.
63

0.
18

0.
06

0.
02

0.
01

16
99

.9
9

99
.9
8

99
.9
9

99
.9
8

35
.7
8

48
.5
0

12
.4
6

2.
45

0.
58

0.
16

0.
05

0.
02

0.
01

17
10

0.
00

10
0.
00

10
0.
00

10
0.
00

36
.8
6

48
.2
5

11
.8
5

2.
29

0.
54

0.
15

0.
04

0.
01

0.
00

18
10

0.
00

10
0.
00

10
0.
00

10
0.
00

37
.8
3

47
.9
8

11
.3
3

2.
17

0.
50

0.
14

0.
04

0.
01

0.
00

Ta
bl
e
4.
2:

H
ow

th
e
po

ly
om

in
oe
s
ar
e
ru
le
d
ou

t
as

no
t
re
ct
ifi
ab

le
.

’C
’m

ea
ns

th
e
pe

rc
en
ta
ge
s
of

po
ly
om

in
oe
s
(o
ut

of
|P
∗ n
)
ru
le
d
ou

t
as

no
t
be

in
g
ab

le
to

pu
t
50

co
pi
es

to
ti
le

a
co
rn
er
.

’B
i’
m
ea
ns

th
e
on

es
w
hi
ch

ca
nn

ot
‘t
ile
’a

ba
nd

of
si
ze
i
bu

t
ca
n
ti
le

a
ba

nd
of

si
ze
i
−

1.
‘C

&
B
’m

ea
ns

bo
th

th
e
ba

nd
an

d
th
e
co
rn
er

m
et
ho

ds
ru
le

ou
t
th
es
e
po

ly
om

in
oe
s.

T
he

m
et
ho

ds
fo
r
ru
lin

g
ou

t
po

ly
om

in
oe
s
ar
e
ex
pl
ai
ne
d
in

Se
ct
io
n
4.
3.
1.

Fo
r
n

=
17

an
d
n

=
18

th
e
10

0.
00

an
d
0
.0
0
ar
e
ro
un

de
d:

so
m
e
po

ly
om

in
oe
s
ar
e
re
ct
ifi
ab

le
,a

nd
th
e
ba

nd
m
et
ho

d
fo
r
h

=
10

is
us
ef
ul
:
it
ru
le
s
ou

t
24

64
po

ly
om

in
oe
s
fo
r
n

=
18

fo
r
ex
am

pl
e.

113

Figure 4.7: Example of extended polyominoes which are not classical polyominoes. Six
of them have order two.

4.4.2 Perspectives for future works

Trying other types of polyominoes.
Since we could not find a polyomino of odd order, we thought about more general

types of objects. First we thought about 3D polyominoes, which would have required
quite some work to rewrite the program to test them. A less costly approach, which we
tried, was to test the extended polyominoes (see Figure 4.7): sets of unit squares of
Z2 connected either by edges or by corners. This means that the cells of an extended
polyomino need not be connected by edges but can be connected through their corners.
We did not have more success with extended polyominoes: we found none with an odd
order, despite the fact that there are much more of them than of regular polyominoes. We
explored extended polyominoes of size up to 11 (there are around 1.6 millions of them)
but found none of odd order either.

Finding other impossible orders.
So far, we only know that the number three cannot be the order of a polyomino. It

would be interesting to check if this fact still holds for greater odd number, like five,
seven and so on. The problem with the argument in [48] is that it is an ad-hoc geometric
argument which does not seem, as the authors write, to be generalisable. It would be nice
to simplify their argument so that showing the same for five, should it be true, would be
less tedious.

114

Conclusions and perspectives

The main goal of this thesis was to use the power of computers to solve some problems
of graph theory. We attacked four main problems, two of which are much related: the
dominations numbers and the growth rates of various dominating sets. We solved totally
some problems we attacked, some others partially, and did not make much raw progress
in the polyomino problem. We recall in what follows our contribution to each problem
we tackled, chapter by chapter.

In Chapter 1 we reproduced the proof of the four-colour theorem by Robertson et al.
[45]. It did not need verification since it was proved in Coq. However, this gave us an
occasion to give another explanation of their proof, in a more abstracted way, but keeping
some technical details. A piece of software we developed was released to the community to
make it easier for anyone to investigate a problem using the discharging method. We gave
small hints as to how the search for the discharging rules could be automated. Achieving
some kind of automation on this part would be a very good improvement to the method,
and would contribute to make it more widespread and performing.

Chapter 2 provides an alternate explanation of the method of the loss introduced by
Gonçalves et al. [21]. We reuse this method for the first time to solve the 2-domination
and the Roman-domination numbers on grid graphs: we give closed formulas computing
these numbers for any size of grids. This proves that the lower bound for the Roman
domination of grids given by Currò [10] was tight. We also give values for the total-
domination and distance-2-domination numbers for small number of lines on grids. This
confirms the first formulas of the work of Crevals and Ostergård [9]. We also give bounds
for arbitrary grids for the total domination, as well as a conjecture on the real formula.
According to our conjectures, the total domination number is out of reach of the loss
method. What method will be found to solve this problem? For all the problems, we
may also wonder how to solve the problems on cylinders: Cartesian products between a
path and a cycle.

In Chapter 3, we study the counting problem for various dominations problems: the
domination, total domination, and their minimal counterparts. To solve it, we link it to
the study of SFTs. We show some properties on the associated subshifts: they are block
gluing. We prove that each number of dominating sets grows exponentially, at a spe-
cific growth rate. We show that these growths rate are computable, and give numerical
bounds on each of them. The bounds on the domination and total domination are quite
good, and we are able to conjecture the actual value of their growth rates. Will these
conjecture be proved someday? Also, we may resort to other methods to improve the
bounds for the minimal domination and the minimal total domination.

Concerning the polyominoes, in Chapter 4, we do our little part in tackling the ques-
tion of whether or not a polyomino of odd order exists. We pursue notably the work done
by Dahlke to find new orders empirically. We recall some algorithmical techniques to
discard a polyomino as being not rectifiable, and to find its order. We also improve some
of them. We compare the effectiveness of the main methods to show that a polyomino is
not rectifiable. We also sum up some data about the orders we could find for polyominos
of size up to 18. If there exists one polyomino of odd order, the only proof needed is
this polyomino and the reasons why it does not tile a smaller rectangle. This involves
checking a finite number of cases. It seems much harder to prove that no odd number
greater than one is the order of some polyomino, given that so far we only proved it for
three. Also, the fact that some polyominoes can tile some rectangle with an odd number
of copies (but have a smaller even order) rather seems to give more credit to the existence
of an odd-order polyomino than to its impossibility. Also, due to parity reasons there are
many polyominoes which cannot tile any rectangle with an odd number of copies. This
could explain their possible scarcity and our difficulties in finding one.

This PhD was also an occasion to think about the proofs using results from some
computer program. Some doubt them because a bug could occur, or even some bit in
the memory of the computer could flip because of cosmic rays8. One first answer to this
objection is to ask if a very long mathematical proof (with no use of a computer) can truly
be verified with a high degree of scrutiny. The more the proof is long and complicated,
the more small (or even bigger ones) flaws can be contained in it. Also, a source code
may be hard to verify, because it requires simulating it somehow. It is not necessarily
more prone to risks than a long proof. Yet, we could get some inspiration from experi-
mental sciences to convince sceptics: it is possible to strengthen the confidence in some
program by having other people program it their own way, independently. Should one or
more teams be able to independently make a program giving the same results, we could
consider the risk of bugs or errors is negligible.

Something else we may wonder is how much computers will help us solve problems
in the future. Or, rather, which problems will be within reach, and which could remain
forever out of reach of computer solving. In 2010, Google put a lot of computing power
to solve a problem on Rubik’s cube. They showed that, from any of the 43 · 1018 starting
configurations, one could solve the cube with 20 moves or less. Other problems seem
out of reach of today’s computers, like finding a winning strategy for chess, because the
combinatorial complexity of this game is huge: there are an enormous amount of config-
urations of the game. However, it seems impossible from today’s knowledge. Maybe the
next years will see a shift on the computing models: some people for instance think that
quantum computers will help us solve some problems which were previously thought out
of reach. On the contrary, we do not know if the computing resources will continue to
grow forever. For instance, the frequencies of processors has stopped to grow for some
years, because of limits from physics. This forces people to use parallelism instead of raw
power, but comes with limitations: the more units you put together, the more time you
spend in communications between them. So the question remains: which problems will

8yes, it happens, but not that much

116

be solved in 100 years9 which were not possible to solve today?

Finally, each chapter was the occasion, in this manuscript, to sensitize the readers to
some problems of our world. The major one is ecological: global warming and the huge
loss of biodiversity. Maybe it is also time to reconsider everyday life, and some choices
made a long ago when we were not informed. It should require us to reconsider and
update our values and lives accordingly.

9if we are still here trying to solve these kind of abstract problems, and with computers...

117

Bibliography

[1] Appel, K. I., & Haken, W. (1989). Every planar map is four colorable. American
Mathematical Society, 98.

[2] Beauquier, D., & Nivat, M. (1991). On translating one polyomino to tile the plane.
Discrete & Computational Geometry, 6(4), 575-592.

[3] Birkhoff, G. D. (1913). The reducibility of maps. American Journal of Mathematics,
35(2), 115-128.

[4] Bonomo, F., Brešar, B., Grippo, L. N., Milanič, M., & Safe, M. D. (2018). Domination
parameters with number 2: Interrelations and algorithmic consequences. Discrete
Applied Mathematics, 235, 23-50.

[5] Bouznif, M., Moncel, J., & Preissmann, M. (2016). A constant time algorithm for some
optimization problems in rotagraphs and fasciagraphs. Discrete Applied Mathematics,
208, 27-40.

[6] Chang, T. Y., Clark, W. E., & Hare, E. O. (1994). Domination numbers of complete
grid graphs. I. Ars Combin, 38(1), 994.

[7] Chartrand, G., & Zhang, P. (2008). Chromatic graph theory. Chapman and
Hall/CRC.

[8] Courcelle, B. (1990). The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs. Information and computation, 85(1), 12-75.

[9] Crevals, S., & Ostergård, P. R. Total Domination of Grid Graphs. (2017). Journal of
Combinatorial Mathematics and Combinatorial Computing, 101, 175-192.

[10] Currò, V. (2014). The Roman domination problem on grid graphs, PhD Thesis.

[11] Dahlke, K., http://www.eklhad.net/polyomino/

[12] Dahlke, K. A. (1989). The Y-hexomino has order 92. Journal of Combinatorial
Theory Series A, 51(1), 125-126.

[13] Farina, M., & Grez, A. (2016). New Upper Bounds on the Distance Domination
Numbers of Grids. Rose-Hulman Undergraduate Mathematics Journal, 17(2), 7.

[14] Fisher, D. C. (1993). The domination number of complete grid graphs. Manuscript.

118

http://www.eklhad.net/polyomino/

[15] Fomin, F. V., Grandoni, F., Pyatkin, A. V., & Stepanov, A. A. (2008). Combin-
atorial bounds via measure and conquer: Bounding minimal dominating sets and
applications. ACM Transactions on Algorithms (TALG), 5(1), 9.

[16] Gangloff, S., & Sablik, M. (2017). Quantified block gluing, aperiodicity and entropy
of multidimensional SFT. arXiv preprint arXiv:1706.01627.

[17] Gangloff, S., & Talon, A. (2019). Asymptotic growth rate of square grids dominating
sets: a symbolic dynamics approach. arXiv preprint arXiv:1906.10779.

[18] Golomb, S. W. (1966). Tiling with polyominoes. Journal of Combinatorial Theory,
1(2), 280-296.

[19] Golomb, S. W. (1970). Tiling with sets of polyominoes. Journal of Combinatorial
Theory, 9(1), 60-71.

[20] Golomb, S. W. (1989). Polyominoes which tile rectangles. Journal of Combinatorial
Theory, Series A, 51(1), 117-124.

[21] Gonçalves, D., Pinlou, A., Rao, M., & Thomassé, S. (2011). The domination number
of grids. SIAM Journal on Discrete Mathematics, 25(3), 1443-1453.

[22] Gonthier, G. (2008). Formal proof–the four-color theorem. Notices of the AMS,
55(11), 1382-1393.

[23] Gravier, S. (2002). Total domination number of grid graphs. Discrete Applied Math-
ematics, 121(1-3), 119-128.

[24] Guichard, D. R. (2004). A lower bound for the domination number of complete grid
graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 49,
215-220.

[25] Klavžar, S., & Seifter, N. (1995). Dominating Cartesian products of cycles. Discrete
Applied Mathematics, 59(2), 129-136.

[26] Hales, T. C., Lagarias, J. C., & Ferguson, S. P. (2011). The Kepler Conjecture: The
Hales-Ferguson Proof. Spinger.

[27] Hales, T., Adams, M., Bauer, G., Dang, T. D., Harrison, J., Le Truong, H., ... &
Nguyen, Q. T. (2017). A formal proof of the Kepler conjecture. Forum of Mathematics,
Pi, 5.

[28] Heawood, P. J. (1949). Map-Colour Theorem. Proceedings of the London Mathem-
atical Society, 2(1), 161-175.

[29] Heinrich, I., & Tittmann, P. (2018). Neighborhood and Domination Polynomials of
Graphs. Graphs and Combinatorics, 34(6), 1203-1216.

[30] Henning, M. A. (2009). A survey of selected recent results on total domination in
graphs. Discrete Mathematics, 309(1), 32-63.

119

[31] M. Hochman and T. Meyerovitch Hochman, M., & Meyerovitch, T. (2010). A char-
acterization of the entropies of multidimensional shifts of finite type. Annals of Math-
ematics, 171(3), 2011-2038.

[32] Kempe, A. B. (1879). On the geographical problem of the four colours. American
journal of mathematics, 2(3), 193-200.

[33] Lind, D., Marcus, B., Douglas, L., & Brian, M. (1995). An introduction to symbolic
dynamics and coding. Cambridge university press.

[34] Lu, Y., & Xu, J. M. (2012). The 2-domination and 2-bondage numbers of grid
graphs. arXiv preprint arXiv:1204.4514.

[35] Nitica, V. (2018). Revisiting a Tiling Hierarchy. IEEE Transactions on Information
Theory, 64(4), 3162-3169.

[36] Nitica, V. (2018). Revisiting a Tiling Hierarchy (II). Open Journal of Discrete
Mathematics, 8(02), 48.

[37] Ollinger, N. (2009). Tiling the Plane with a Fixed Number of Polyominoes. Language
and Automata Theory and Applications, 638-647.

[38] Pavlič, P., & Žerovnik, J. (2012). Roman domination number of the Cartesian
products of paths and cycles. the electronic journal of combinatorics, P19-P19.

[39] Pavlov, R. (2012). Approximating the hard square entropy constant with probabil-
istic methods. The Annals of Probability, 40(6), 2362-2399.

[40] Pavlov, R., & Schraudner, M. (2015). Entropies realizable by block gluing Zd shifts
of finite type. Journal d’Analyse Mathématique, 126(1), 113-174.

[41] Rao, M. (2017). Exhaustive search of convex pentagons which tile the plane. arXiv
preprint arXiv:1708.00274.

[42] Rao, M. & Talon, A., (2019). The 2-domination and Roman domination numbers of
grid graphs. Discrete Mathematics & Theoretical Computer Science, 21.

[43] Rauzy, G. (1982). Suites à termes dans un alphabet fini. Séminaire de théorie des
nombres de Bordeaux, 1-16.

[44] Reid, M. (1997). Tiling rectangles and half strips with congruent polyominoes.
Journal of Combinatorial Theory Series A, 80, 106-123.

[45] Robertson, N., Sanders, D., Seymour, P., & Thomas, R. (1997). The four-colour
theorem. Journal of combinatorial theory, Series B, 70(1), 2-44.

[46] Robertson, N., Sanders, D. P., Seymour, P., & Thomas, R. (2014). Discharging
cartwheels. arXiv preprint arXiv:1401.6485.

[47] Shaheen, R., Mahfud, S., & Almanea, K. (2016). On the 2-domination number of
complete grid graphs. Open Journal of Discrete Mathematics, 7(1), 32-50.

120

[48] Stewart, I. N., & Wormstein, A. (1992). Polyominoes of order 3 do not exist. Journal
of Combinatorial Theory, Series A, 61(1), 130-136.

121

	Acknowledgements
	Résumé
	Abstract
	Introduction
	Discharging and the four colours theorem
	Graph definitions
	The proof
	Scheme of the proof
	An interesting wrong proof
	Forbidden subgraphs
	The discharging method

	Contribution
	The program
	A possible more automated approach

	The domination numbers in grid graphs
	Basic definitions and notations
	Method for finding the 2-domination number for grids of arbitrary size
	Fixed (small) height and width
	Fixed number of lines but arbitrary number of columns
	The number of states
	Arbitrary height

	Adaptation to other problems and results
	The Roman domination
	The total domination
	The distance-two-domination

	Conjectures about why the method works
	Experimental details: implementation and optimisations

	Asymptotic growth of the number of dominating sets
	Basic definitions and notation
	Local characterisations and relation with SFTs
	Local characterisations
	Subshifts of Finite Type (SFTs)
	The domination subshifts

	Comparing the growth of SFTs with the growth of dominating sets
	Computability of the entropy: the block-gluing property
	Definition and properties
	 Algorithmic computability of the entropy
	Some dominating subshifts are block-gluing

	Bounding the growth rates with computer resources
	Nearest-neighbour unidimensional subshifts of finite type
	Unidimensional versions of the domination subshifts
	Recoding into nearest-neighbour subshifts
	Numerical approximations

	A (2k+3)-block-gluing family: the minimal meta-k-domination
	Conclusions
	Counting dominating sets
	Around the block-gluing property

	Tiling rectangles with polyominoes
	Definition and some history
	Finding the order of a polyomino: the basic algorithms
	Enumerating all the polyominoes
	Tiling a rectangle with a DFS (inefficient)
	BFS on the frontiers
	Another approach: solving a linear program

	Refinements of the algorithms and other optimisations
	Ruling out non rectifiable polyominoes
	Improving the BFS approach
	Other optimisations

	Statistics and perspectives
	Statistics on the polyominoes and their orders
	Perspectives for future works

	Conclusions and perspectives

