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Thèse de doctorat de l’Institut Polytechnique de Paris
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Avant-propos en français

Cette thèse vise à discuter un problème technique émergeant du contrôle en régime con-
tinu d’un réacteur de fusion par confinement magnétique : le tokamak. Avant de donner un
bref résumé du dit problème et des moyens qui ont été mis en place durant cette thèse pour
comprendre son origine, son déclenchement, ses conséquences et son potentiel contrôle, une
brève discussion doit être tenue quant à la raison d’être de ce type de réacteur.

La recherche liée à ce type de machine s’inscrit dans l’e↵ort international qui a été entrepris
depuis plusieurs décennies pour décarboner dans un futur proche les moyens de production
énergétiques de nos sociétés. L’utilisation actuelle des énergies fossiles n’est pas pérenne vis-
à-vis de la stabilité de notre éco-système et de son climat. Cette utilisation doit être à moyen
terme abandonnée au profit de nouvelles sources d’énergie non productrices de carbone, et
s’appuyant sur des réserves en matières premières abondantes. Les énergies renouvelables
peuvent alors être vues dans ce contexte comme des sources d’énergies idéales. Cependant,
le caractère transitoire de leur génération d’énergie pose problème pour nos sociétés ayant
un besoin énergétique important, dans la mesure où des moyens de stockage performants de
leur énergie ne sont pas encore opérationnels. La fusion thermonucléaire, dont les réactifs
sont les isotopes d’hydrogènes, abondants sur Terre, est alors une alternative intéressante.
Une telle réaction est plus énergétique que les réactions de fission nucléaire, et s’éxonére des
problèmes d’instabilité intrinsèque de telles réactions, liés à leur déclenchement en châıne, de
par la nature initialement répulsive des réactifs de la fusion.

La recherche liée à cette nouvelle forme de réaction nucléaire existe depuis la seconde moitié
du XXème siècle, et doit encore répondre à un large prisme de problématiques fondamen-
tales et techniques afin de rendre possible la création d’un réacteur économiquement viable.
Parmi ces nombreuses problématiques, l’instabilité dite de ”fisbhone” est celle discutée dans
ce manuscrit.

Au sein des tokamaks, les particules rapides générées par les réactions de fusion et par les
méthodes de chau↵age non-inductives peuvent interagir avec les instabilités Magnéto-Hydro-
Dynamiques, conduisant potentiellement à leur transport en dehors du plasma de coeur.
Cette problématique est importante dans le contexte des plasmas en combustion, où la relax-
ation collisionnelle des particules alpha est nécessaire pour compenser la perte d’énergie lors
la décharge. Le temps de transport résonant des particules rapides étant bien plus petit que
leur temps de thermalisation sur le plasma thermique, ces instabilités MHD-cinétiques peu-
vent engendrer une dégradation de l’e�cacité énergétique de la réaction, qui est d’importance
cruciale pour les futurs réacteurs commerciaux. Dans cette thèse, nous étudions l’interaction
des ions énergétiques avec le mode de kink interne, qui conduit à l’émergence de l’instabilité
fishbone. À cette fin, nous utilisons le code non-linéaire hybride XTOR-K, pour simuler les
phases non-linéaires du fishbone ionique, durant lesquelles les particules rapides sont tran-
portées. Dans un premier temps, la théorie linéaire de l’instabilité fishbone est reproduite,
retrouvant une relation de dispersion similaire à celle du modèle de Porcelli. Un écart est
constaté pour les particules très passantes. Un code linéaire a été implémenté pour résoudre
de façon non perturbative la relation de dispersion du fishbone obtenue. Les résultats obtenus
avec ce code sont cohérents avec ceux d’XTOR-K dans la phase linéaire des simulations, avec
des taux de croissance, des fréquences de rotation et des surfaces de résonance similaires. Ces
résultats fournisent une vérification linéaire de XTOR-K, permettant son utilisation sur des
équilibres plus complexes, et durant des phases non-linéaires. Dans un second temps, une
étude paramétrique est fournise par XTOR-K sur la stabilité linéaire du fishbone alpha, avec
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des équilibres pertinents pour le cas ITER 15 MA. Nos simulations montrent que ce scénario
sera probablement instable à l’égard du fishbone alpha, pour des densités de particules al-
pha réalistes dans ITER. Les résultats non-linéaires obtenus avec XTOR-K sur un équilibre
circulaire peu énergétique et sur le cas ITER 15 MA sont ensuite présentés. Ces résultats
documentent la dynamique auto-cohérente des particules rapides et des modes MHD lors
de plusieurs oscillations fishbone. Le transport résonant de particules rapides est une car-
actéristique commune dans ces simulations, accompagnée d’une décroissance charactéristique
de la fréquence du mode MHD-cinétique. Les di↵érences dans ces simulations sont discutées,
ainsi que le régime non-linéaire charactérisant le mode observé sur la base des théories exis-
tantes. Durant quelques oscillations fishbone, dans nos di↵érentes simulations, le transport
total de particules alpha au coeur du plasma est de l’ordre de 5 % de la population initiale, ce
qui montre que la réduction des performances de fusion due à l’instabilité fishbone-alpha est
limitée. À partir de ces simulations, un mécanisme expliquant le couplage non-linéaire entre
le transport résonant de particules et la décroissance en fréquence du mode MHD-cinétique
est présenté.

De par le caractère international de la recherche en fusion par confinement magnétique,
ce manuscrit est écrit en langue anglaise, afin que les travaux entrepris lorss cette thèse puis-
sent à leur échelle contribuer autant que possible à l’e↵ort global entrepris vers l’obtention
de sources d’énergies abondantes, pérennes, et sûres.
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Chapter 1

Introduction

1.1 Stakes of controlled nuclear fusion

1.1.1 The nuclear fusion reaction

The concept of nuclear fusion takes its origin in a conjecture made by A. Eddington in 1920
[Eddington, 1920]. At the time, very little was known about the physical processes that allow
stars to shine over several billions of years. The only certitude was that the stars’ energy
could not take its source from chemical combustion reactions, or from a conversion of their
gravitational energy into thermal energy. The size and composition of stars did not allow
them to radiate energy over so long periods of time.
At the beginning of the XXth century, it was discovered by Aston [ASTON, 1920] that the
mass of atoms’ nuclei is inferior to the sum of its individual nucleons mass. This is now
known as the mass defect, which is associated to the strong force interaction. This force
enables nuclei to remain stable against their electrostatic repulsion. This mass defect can be
linked to the nuclei binding energy �E through the mass-energy equivalence. For a nucleus
with Z protons and N neutrons [Rax, 2011]

�E(Z,N) = Zmpc
2 +NmNc

2 �Mc2 (1.1)

where mp is the proton’s mass, mn the neutron’s mass, M the nucleus’s mass, and c the
speed of light. The measurement of binding energies using mass spectroscopy was performed
by Aston for most elements of the periodic table, and can be found on Figure (1.1). Accord-
ing to this figure, iron is the most stable element of the periodic table, having the highest
binding energy. This figure implies that nuclear energy can be released from two processes.
Either nuclear fission of nuclei heavier than iron, with for example the fission of uranium 235
into lighter nuclei. Or the fusion of nuclei lighter than iron, such as the fusion of hydrogen
into helium. In both cases, the combined masses of the products is lower than the reactant
masses. The nuclear energy released from the fusion reaction is generally one order of mag-
nitude higher than for the fission reaction, according to (Figure 1.1)

It was this discovery, together with the composition of stars, that led Eddington to be-
lieve that nuclear fusion was the stars’ energy source. The nuclear reactions among stars are
now known to be more complex than the simple fusion of four hydrogen nuclei into helium.
They in fact involve complex fusion chain reactions that are beyond the scope of this thesis.
In order to be able to fuse together, nuclei, that are positively charged, must have enough
kinetic energy so that they can overcome their Coulomb barrier. When they do, the nuclear
strong force attracts nuclei together and fuse them. The rate ⌧fus at which fusion reactions

7



8 CHAPTER 1. INTRODUCTION

arise between two species X and Y for a given volume V can be formally expressed as

⌧fus = nXnY h�viV (1.2)

where n stands for the density, and h�vi the reaction’s cross section. This last term is weighted
by the relative velocity between the two species, averaged over velocity. The dependence of

Figure 1.1: Aston’s curve. The binding energy per nucleon is expressed as a function of the
number of nucleons.

this quantity over the species X and Y kinetic temperature is displayed on Figure 1.2 for
di↵erent fusions reactions. From this figure, it can be noted that the fusion reaction with
the largest cross section at low temperature involves deuterium 2

1D and tritium 3
1T . These

elements are heavy isotopes of hydrogen. The fusion reaction associated to these elements is

2
1D +3

1 T !4
2 He [3.56MeV ] + n [14.03MeV ] (1.3)

where 4
2He is the helium nucleus, also referred to as an alpha particle, and n a neutron. The

energies in brackets are the kinetic energies of each particle. The total energy released per
reaction is then EDT = 17.6MeV . The amount of energy per mass that can be extracted
from nuclear fusion is far superior to any other physical processes. Controlling this reaction
on Earth would generate vast quantities of energy. The DT reaction is particularly interest-
ing in this regard since it enables to get the most energy at the lower cost, cost being the
temperature at which it is needed to heat up the reactants.

On Earth, for the reaction to exhaust a su�cient amount of energy, it is needed to heat
a deuterium/tritium gas at a temperature of order 20keV (⇠ 2.108K). This temperature is
20 times as hot as the Sun’s core temperature. Higher temperatures are required on Earth
since the Sun compresses its gas through its gravitational force, easing its nuclear fusion chain
reactions. A gas at these temperatures is not really a gas anymore. The hydrogen atoms are
fully ionized by the high temperatures. It means that the electrons are not longer bounded to
their nucleus. This medium is called a plasma. An evaluation of the deuterium and tritium
stocks on Earth is now presented, in order to assess the opportunity that represents fusion
energy for the global energy consumption.
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Figure 1.2: Average cross sections of several fusion reactions as a function of kinetic temper-
ature

1.1.2 Opportunities and principles of controlled nuclear fusion

Assessment of the world resources for fusion energy

The current world energy consumption over a year is 1 weu = 7.5⇥ 1019J , which represents
2.4 terawatt per year [Cowley, 2016]. In order to facilitate this discussion, the world energy
unit (weu) has been introduced. Assuming that it possible to create a fusion power station,
the production of one gigawatt of electricity would consume 120 kg of deuterium and tritium
per year. Deuterium is vastly present in sea water, with 0.02 g per liter. Its extraction can be
performed at minimal cost. The total volume of sea water on Earth being of order 1018m3,
the world ressources in deuterium could then lead to the total energy production of 5⇥ 1010

weu.

However, the amount of energy that could be created through nuclear fusion is limited by
tritium. Tritium is almost inexistent on Earth since it has a half life of 12.32 years. In order
to produce fusion reactions, tritium needs to be obtained from lithium, through the nuclear
reactions

n+6 Li !4
2 He [2.1MeV ] +3 H [2.7MeV ] (1.4)

n+7 Li !3 H + n� 2.46MeV (1.5)

with the last nuclear reaction being endothermic. Creating 120kg of tritium through these
reactions would require four tonnes of litium. Currently, it is only feasible to obtain lithium
from the Earth’s crust. World resources in the Earth’s crust are about 13.5 millions tonnes,
which could provide about 103 weu of fusion energy. Tritium is also present in sea water,
with the low concentration of 0.2 mg.L�1. If its extraction from sea water can be achieved
e�ciently, the world reserves would then rise to 230 billions tonnes, ensuring a total fusion
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energy of ⇠ 25⇥106 weu. Compared to the energy that can be extracted from others Earth’s
resources, displayed on Figure (1.3), the advantages of fusion energy are clear. Fossil energies
such as oil, gas or coal, could only sustain the world energy consumption for ⇠ 100 years, and
could not been used without leading to a catastrophic climatic situation. Fission energy in its
existing form can only produce 10 weu from uranium stocks. Advanced breeder technology
could increase this energy to about 103 weu, for the same uranium resources.

Figure 1.3: Comparaison of the total energy in world energy unit (weu) that could be ex-
tracted from the world stocks, for di↵erent physical processes. Chemical processes such as
combustion of oil, gas and coal could only sustain the current world energy consumption for
about 100 years each. Uranium world resources can only provide the world with energy for
10 years with the current technology, and up to 500 years with advanced breeder technology.
The resources of lithium in the Earth’s crust could sustain the world consumption for ⇠ 103

through fusion reactions, and up to ⇠ 10 millions years if lithium can be extracted e�ciently
from sea water. (Source : [Cowley, 2016])

Requirements and basic principles of fusion reactors

Nuclear fusion has then the potential of becoming a major component of the future world
energy production, being more abundant and more energetic than any other energy sources.
However, controlling nuclear fusion on Earth requires the formidable task of confining a DT
plasma long enough so that fusion reactions can occur. For a reliable industrial reactor, it is
required that the power outcast by fusion exceeds largely both the power needed to heat up
initially the plasma, Paux, and the power lost from the plasma Ploss. Power losses arise mainly
through collisional and turbulent transport. The first requirement can be characterized by
the amplification factor Q

Q ⌘ Pfus

Paux

(1.6)

Breakeven (Q=1) is reached when the total power outcast by fusion equals the power used to
bring the plasma at 20 keV. Ignition (Q ! 1) is achieved when the plasma heats up itself
through fusion reactions, and that the auxiliary heating system can be turned o↵.
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For the plasma to heat up itself, the second requirement needs to be met. When fusion
reactions arise in a confined plasma, the energetic neutrons outcast can not contribute to
its heating, since they are not charged. These particles exit the plasma to heat up lithium
blankets. It creates tritium nucleus through the nuclear reactions in 1.4 and 1.5, and pro-
duces electrical energy by heating pressurized water. Only the charged alpha particles, which
carry a fifth of the fusion reaction’s energy, can maintain the plasma at fusion temperatures.
Therefore, the following power balance needs to be respected

P↵ + Paux ⌘ P↵

✓
1 +

5

Q

◆
= Ploss (1.7)

The power outcast by alpha particles is evaluated through the fusion reaction rate, P↵ =
Pfus/5 = n2h�viEfusV/20. The power losses during the plasma’s confinement are charac-
terized by Ploss = W/⌧E, where W = 3nkBT is the plasma internal energy, and ⌧E the
confinement time. It has been assumed in computing these quantities, that the ion and elec-
tron densities are equal, as well as their temperature. Balancing these powers leads to the
Lawson criterion [Rax, 2011]

n⌧E =
60kBT

h�viEfus(1 + 5/Q)
(1.8)

A future fusion reactor would require to operate with an enhancement factor Q 2 [40,+1].
For a confined plasma of 20 keV, it is then required that n⌧E exceeds 2.1020m�3s. Two main
approaches have been considered to control nuclear fusion. The first one is called inertial
confinement fusion. High density plasmas n ⇠ 1031 m�3 are confined on very short times
⌧E ⇠ 10�11s by compressing a target of a few millimeters, using megajoule lasers. This
approach is beyond the scope of this thesis. The second approach is to confine a low density
plasma n = 1020 m�3 on longer times, ⌧E ⇠ 1 s. This can be achieved by confining the
plasma in a closed magnetic configuration. Charged particles follow the magnetic field lines
by gyrating along them, with a finite excursion called the Larmor radius. This radius is
inversely proportional to the local magnetic field, therefore a good confinement is provided
by a strong magnetic field. In present day magnetic confinement devices, the magnetic field
is around 1 � 5T, which is four orders of magnitude above the Earth’s magnetic field. The
� parameter gives a measure of the ratio between the thermal pressure of the plasma and of
the magnetic pressure exerted onto the plasma. Its formal expression is

� =
nkBT

B2/2µ0
(1.9)

Confinement is characterized by � << 1. It implies that the magnetic force confining the
plasma largely exceeds the pressure force that would lead the plasma to expand outward. It
enables to obtain a high pressure gradient, confining the thermonuclear plasma far from the
edges of the magnetic device.

The magnetic devices that have revealed to provide a better confinement are those with
a closed magnetic configuration. It means that the magnetic field lines circle around the
magnetic device, and are not connected to the device’s edges. The most successful configu-
rations so far are the stellarator and the tokamak reactors. Both of them are shaped like a
torus (Figure 1.4), in which lies an helicoidal magnetic field, with toroidal (B') and poloidal
(B✓) components. The toroidal field is dominant in both these configurations. It implies that
at first order, the particles inside the plasma circulate along the torus. However, a toroidal
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Figure 1.4: Example of closed configuration : An helicoidal magnetic field inside a torus

field could not alone confine particles, since they experience drifts when following the field
lines (see Chapter 2). The poloidal field ensures that particles do not drift away from the
torus’ core by averaging out these drifts along their trajectory.

The stellarator configuration creates this helicoidal magnetic field directly through a set
of specifically shaped magnets. Recent results obtained from the Wendelstein 7-X stellarator
are very promising [Pedersen et al., 2018], but are still at an early stage regarding tokamaks’
performances. It is currently the only magnetic device to be close to reach break-even. It
constitutes the configuration studied in this thesis.

1.1.3 The tokamak configuration

Primary heating and current generation

In tokamaks, the toroidal magnetic field is created by a set of coils encircling the torus,
displayed in blue on Figure (1.5). The poloidal field is created by a strong current of several
MA that flows in the toroidal direction, along the torus. The plasma is initially heated up
by the central solenoid at the middle of the torus, or inner poloidal coils as displayed on
Figure (1.5) A strong current is varied in the solenoid, which induces a toroidal electric field
inside the tokamak. Due to the finite resistivity ⌘ of the plasma, a toroidal current is created.
This current generates the poloidal magnetic field, and heats up the plasma by Joule e↵ect.
However, the plasma resistivity scales like ⌘ / T�3/2. Therefore, as the plasma is heated
up, the e�ciency of inductive heating decreases. Additional heating and current generation
techniques are needed to reach temperatures of ⇠ 20 keV and toroidal currents of ⇠ 107 A.

Non-Inductive heating and current generation

Two main non-inductive heating techniques have been developed for tokamaks. The first one
is the Neutral Beam Injection (NBI) : the idea is to heat up the core plasma with a beam of
energetic particles, with kinetic energy of ⇠ 1 MeV. Since charged particles cannot penetrate
the plasma core from the outside due to the magnetic field, deuterium ions are accelerated
to the required energy and get neutralized by electrons. The deuterium atoms created are
launched inside the plasma and are only ionized at the plasma core, where they give away
their kinetic energy through successive collisions.

The other heating technique uses electromagnetic waves to heat up the plasma. Electrons
and ions are gyrating around the magnetic field lines with the frequency !c

i,e

= ei,eB/mi,e,
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Figure 1.5: Sketch of the tokamak configuration

where e and m are the particles charge and mass. Subscript i is used for ion and e for elec-
trons. When the electromagnetic waves are launched at these frequencies, ⇠ 50 MHz for ions
and ⇠ 150 GHz for the electrons, they interact resonantly with the particles, resulting in a
net energy transfer from the waves to the plasma. These techniques are called Ion Cyclotron
Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH).

Non-inductive current generation is needed for two reasons in tokamaks. First, as said
above, the current created by induction is not strong enough for fusion operations. Sec-
ond, the amount of current that can be varied in the center solenoid is finite. In order to pass
from a pulse regime to a steady-state regime, other current generation techniques need to be
employed. A first one relies on the same principle as the resonance heating techniques. The
Electron Cyclotron Current-Drive (ECCD) and the Lower-Hybrid Current Drive (LHCD)
use respectively the electron cyclotron resonance and the lower-hybrid resonance to create a
current along the torus.

A non-inductive current can also be generated naturally by the plasma. This is called
the bootstrap current. It takes its source from the presence of ”trapped” particles inside
the torus. The tokamak configuration induces a magnetic field gradient towards the center
solenoid. Particles with low velocity parallel to the magnetic field can be trapped in low field
region of the device. This is discussed in greater length in Chapter 2. When the collision fre-
quency of these particles is lower than their bounce frequency along their trapped trajectory,
combined with a strong pressure gradient, a toroidal current known as the bootstrap current
occurs. In large tokamaks, this current is expected to represent 30% of the total toroidal
current.

The Joint European Torus (JET) tokamak is today the largest magnetic device built. Some
of its characteristic can be found in Table 1.1. It holds the record [Keilhacker et al., 2001] of
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JET ITER

Major radius (m) 3 6.2
Minor radius (m) 1 2
Plasma volume (m3) 125 830
Plasma current (MA) 6 15
Magnetic field amplitude (T) 3.4 5.3
Pulse duration (s) 10 400
Fusion power (MW) 16 500
Amplification factor Q 0.62 ⇠ 10

Table 1.1: Main parameters for the JET and ITER tokamaks

highest fusion power created Pfus = 16MW with a record enhancement factor of Q = 0.62 in
transient regime. It also holds a record in steady-state regime, with a fusion power of 4MW
produced over 4 s.

Unfortunatly, due to physical and technical di�culties that are briefly discussed in the next
section, the JET tokamak will not be able to exceed its records. Larger magnetic devices
are required to overcome these issues. To this end, a tokamak known as the International
Thermonuclear Experimental Reactor (ITER) is currently being built in southern France.
It will be approximatively seven times larger in volume than the JET tokamak. ITER is
expected to be able to reach an amplification factor of Q = 10 in a steady state regime of
400 to 600 s, producing 500 MW of fusion power. It will also be the first device to confine
burning plasmas. A burning plasma is a plasma where the fusion reactions are self sustained
by the alpha particles over long period of time.

1.1.4 Physical and technical issues to be solved

A brief summary of the physical and technical issues faced by nuclear fusion today is presented
here. It is by no mean exhaustive. The goal of this discussion is merely to provide a brief
explanation of what prevents nuclear fusion from reaching an industrial phase in the present
decades.

Turbulence

In a tokamak, heat and particle transport are mainly due to turbulence. The confinement
time ⌧E is therefore dominantly conditioned by turbulent transport. Given the intrinsic
nonlinear nature of turbulence, transport coe�cients can hardly be predicted by analytical
theory. 5D gyrokinetic simulations and tokamak experiments are needed to obtain the con-
finement time for a given set of plasma parameters. Increasing the number of equilibria on
which gyrokinetic simulations are performed, and of devices on which experiments are con-
ducted, enables to obtain ⌧E dependencies over plasma parameters. Compiling these results
leads to the creation of scaling laws, that help to design future tokamaks with higher con-
finement times.

On Figure (1.6), the scaling law used to design the ITER tokamak [Doyle et al., 2007] has
been displayed. This scaling law is built on experimental data from 16 di↵erent tokamaks.
Scaling laws generally show that the confinement time is an increasing function of the torus
major radius, R0. Larger tokamaks can therefore obtain larger enhancement factor Q.
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Figure 1.6: Comparison between the theoretical confinement time predicted by the scaling law
from [Doyle et al., 2007] (X-axis) and between the experimental confinement time obtained
from di↵erent devices.

Plasma-Wall interaction

All magnetic field lines are not closed inside of a tokamak. At the edge of the device lies
a magnetic separatrix, beyond which the field lines are directed toward a target named a
divertor. This zone of the plasma is called the Scrape O↵ Layer (SOL). Particles transported
by turbulence and other physical processes are eventually transported to this region, which
enables them to exit the plasma without damaging the walls. The divertor is made out of
tungsten, a material that can withstand heat fluxes up to 10 MW.m�2. Most present day
tokamaks cannot create heat fluxes this large on their divertor over long durations, which
would enable to test the resistance of this material on ITER relevant scenario.

An other open question on ITER and future tokamaks is the long term evolution of the
plasma facing components and the tokamak’s structure exposed to heavy 14 MeV neutron
fluxes. Neutrons created by fission reactions are at least one order of magnitude below in
energy. Their study do not permit to extrapolate how the ITER structure will withstand the
atomic displacement caused by these highly energetic neutrons. To investigate this issue, the
International Fusion Materials Irradiation Facility (IFMIF) is currently under development
in Rokkasho, Japan. The goal of this facility is to produce 14 MeV neutrons from deuterons
beams interacting with a lithium target. The ITER plasma facing components will then be
tested for ITER relevant neutron fluxes.

MHD and Kinetic-MHD instabilities

Being able to sustain a plasma core at 20 keV, and at a few eV at its edge requires the
presence of very large pressure and current gradients. In addition to these steep profiles,
burning plasmas contain a lot of species that are supra-thermal. These particles are either
alphas created by the fusion reactions, or fast ions due to the non-inductive heating tech-
niques. Their velocity distribution is far from being of Maxwellian type. Tokamak plasmas
are out of thermodynamic equilibrium. These plasmas represent therefore huge free energy
tanks, that can be tapped to develop di↵erent kinds of macroscopic instabilities. Some of
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these instabilities are of fluid type and called MagnetoHydroDynamics (MHD) instabilities.
They can occur at various locations inside the plasma. ELMs instabilities arise at the plasma
edge, where they add an additional heat load on the divertor. This heat load can be up to
20 MW.m�2, which could be critical for ITER’s divertor. Instabilities can also occur in the
core plasma. The internal kink instability can lead to a phenomenon named sawtheeh. This
instability periodically eject out of the tokamak core a fraction of the plasma, which decreases
the plasma’s temperature, and therefore the fusion power. If controlled, this instability could
reveal to be positive if it is used to transport impurities and ashes from the plasma, since
they strongly decrease the fusion power too.

Another type of macro-instabilities are of Kinetic-MHD type. Macroscopic instabilities can
interact resonantly with particles eigenfrequencies, which leads to the development of Ener-
getic Particle Modes (EPM). One of the main instability of interest for ITER is the fishbone
instability. It takes its source from the interaction between the internal kink rotation fre-
quency, and the precessional, bounce/transit frequencies of energetic particles. This resonant
interaction has been observed experimentally to lead to energetic particle transport out of
the plasma core. In the context of alpha particles, this is problematic because they could
be transported before they have time to heat up to the background plasma, which would
diminish the fusion performances. Understanding and predicting the amount of particle
transported by the fishbone instability is then crucial for future ITER operations. This issue
constitutes the subject of this thesis.

1.2 Content of the thesis

1.2.1 Introduction to the fishbone instability

Experimental evidences of fishbone instability

The fishbone instability was observed for the first time in the PDX tokamak in the early 80’s
[McGuire and al., 1983]. When the NBI was oriented nearly perpendicular to the magnetic
field, successive bursts of m = 1 MHD activity were observed on the soft X-ray signal and
on the Mirnov coils measurements (Figure 1.7). The name fishbone comes from the partic-
ular shape of the signal obtained with the Mirnov coils. This MHD activitity was linked
to a decrease of the neutron emissivity, which indicates a transport of the particles injected
with the NBI. It was found that the particles ejected lied in the energy range [Einj/2, Einj],
where Einj = 50 keV is the injection energy of the beam. It was observed that the fre-
quency of the mode, f ⇠ 10 kHz, was comparable to the precessional frequency of deeply
trapped particles in this energy range. The authors conjectured that a resonance between the
m = 1 mode and the beams ions existed, and associated the particles losses to this resonance.

The fishbone instability was later observed in other tokamaks, using various non-inductive
techniques (ICRH, NBI) [Campbell et al., 1988][Heidbrink and Sager, 1990] [Nave et al.,
1991][Mantsinen et al., 2000]. In particular in the JET tokamak, a stabilization of the saw-
teeth instability was observed when activating the ICRH power [Campbell et al., 1988]. This
stabilization led to monster sawteeth, characterized by violent crashes and important redis-
tribution of the core plasma outside the q = 1 surface. Fishbones were observed on JET
with and without sawteeth activity. Fast-time scale diagnostics were able to highlight a fall
of 9-19% of the total neutron rate, associated to the loss of fast particles during a fishbone
oscillation. This was accompanied by a down chirping of the mode frequency [Nave et al.,
1991] (Figure 1.8).
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Figure 1.7: Fishbone oscillations observed on the PDX tokamak. Traces of soft X-ray emissiv-
ity (top) Mirnov coils measurements (middle) and neutron emissivity (bottom) are displayed.
Source : [McGuire and al., 1983]

Figure 1.8: Fishbone oscillation on the JET tokamak.(a) Traces of Mirnov coils (b) Time
evolution of the fishbone frequency. Source : [Nave et al., 1991]

Linear models and codes

Theoretical linear models where developed to explain the interaction between fast particles
and MHD modes. The first models were formulated by [Chen et al., 1984] and [Coppi and
Porcelli, 1986]. Both of them highlighted the resonance between the MHD frequency and the
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precessional frequency of trapped particles as the drive of the fishbone instability, together
with a fast particle negative density gradient.

These models di↵ered however regarding the nature of the mode described. Chen et al.
[Chen et al., 1984] argued that the fishbone frequency was fixed by the fast particles pre-
cessional frequency, the fishbone being a continuum resonant mode. This type of fishbone
are called precessional fishbones. Coppi et al. [Coppi and Porcelli, 1986] however argued
that the fishbone frequency is related to the ion diamagnetic frequency, which means that it
can be identified as a discrete gap mode. This type of fishbone are called diamagnetic ion
fishbones. It was later understood [Coppi et al., 1990][White et al., 1990][Porcelli, 1991][Wu
et al., 1994] that these two regimes are in fact limiting cases of a more general dispersion
relation. The ion diamagnetic limit corresponds to the partial stabilization of the internal
kink at low beta of fast particles, which explains the sawteeth stabilization observed in JET.
The precessional limit corresponds to the emergence of a new Energetic Particle Mode, at
high beta of fast particles. A window of stability between this two modes was first predicted
by White et al. [White et al., 1990], and illustrated by [Wu et al., 1994] (Figure 1.9). A
more complete linear model was eventually proposed by [Porcelli et al., 1994], to take into
account resonances with passing particles and finite orbit width e↵ects. On the basis of these

Figure 1.9: Mode frequency and growth rate as a function of the alpha particle beta. A
stable window is visible for �↵ 2 [0.005, 0.012]. Source : [Wu et al., 1994]

models, hybrid Kinetic-MHD linear codes [Cheng, 1992][Borba and Kerner, 1999][Lauber,
2013][Nabais et al., 2015] were developed to predict and control Kinetic-MHD instabilities
in present and future experiments such as JET and ITER[Cheng, 1990][Cheng, 1991][Nabais
et al., 2005]. Direct analytical Kinetic-MHD calculations were also performed to e�ciently
control the sawteeth instability in JET using ICRH power [Graves, 2004][Graves et al., 2009].
These results highlighted the importance of considering passing resonances in linear models.
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Non-linear models and simulations of the fishbone instability

The first numerical nonlinear study of the fishbone instability was performed by [Candy et al.,
1999]. This work used a linear MHD model and a nonlinear model to describe fast parti-
cles, and retrieved the characteristic down chirping of the fishbone frequency. Such results
were also reproduced by [Odblom et al., 2002], using a nonlinear MHD model and linear
fast particle model. The fishbone instability was studied in the limit of marginal stability,
where it was shown that the MHD nonlinearities dominate the dynamics. In addition to the
frequency chirping, an explosive growth rate of the fishbone instability, as well as a double
step structure, were observed in the nonlinear phase.

These results were later generalized by simulations using nonlinear hybrid kinetic-MHD
codes, such as M3D-K [Park et al., 1999], XHMGC [Briguglio et al., 1995][Briguglio et al.,
1998][Wang et al., 2011] and MEGA [Todo et al., 1995][Todo and Sato, 1998][Todo, 2006].
These codes are able to treat self-consistently the MHD and kinetic nonlinearities, which
is a crucial feature to simulate the fishbone instability in its nonlinear phase. A first self-

(a)

(b)

Figure 1.10: (a) Time evolution of the fishbone frequency. (b) Time evolution of the trapped
alpha distribution along the toroidal canonical momentum P'. P' can be considered as a
radial coordinate for trapped particles.

consistent hybrid simulation was performed by [Fu et al., 2006] on the alpha fishbone for
ITER and ITER-like equilibria. A down chirping of the fishbone frequency was seen to be
associated with a transport of alpha particles (Figure 4.12), coherently with experimental ob-
servations. These e↵ects were later retrieved with other types of energetic particles. [Wang
et al., 2013] [Pei et al., 2017][Ren et al., 2018] studied the NBI driven fishbone for respectively
spherical tokamaks, the EAST tokamak and the DIII-D tokamak. The simulations performed
compare well with the experimental observations made on these devices. Simulations of the
fishbone instability driven by supra-thermal electrons were performed in [Vlad et al., 2013].
Advanced phase space diagnostics were used to understand the nonlinear interplay existing
between mode chirping and resonant particle transport. For the electron fishbone, mode
chirping is due to phase-locking of resonant particles inside phase space islands.
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Open questions

A number of questions remain untackled regarding the ion fishbone instability. Most of the
recent nonlinear studies focus on ion fishbones driven by NBI and ICRH. It is still unclear
whether or not the fishbone instability driven by alpha particles will be unstable on ITER.
Contradictory results for the ITER 15 MA scenario [iTER physics basics, 2000] have been
obtained. Alpha particles have been found to be stabilizing in [Fu et al., 2006], and destabi-
lizing in [Hu et al., 2006] for this scenario. New linear self-consistent simulations are needed
to assess the linear stability of the ITER configuration regarding the alpha fishbone.

In case that the alpha fishbone is indeed unstable on ITER, nonlinear hybrid simulations
are required to assess the amount of alpha particles transported during several fishbone os-
cillations. The losses in fusion performances can be deducted from this transport.

Moreover, the physical mechanism coupling mode chirping and resonant particle transport is
still not well understood for the ion fishbone instability. Two limits exist for this nonlinear
coupling. A first one is the low kinetic drive limit [Berk et al., 1999][Breizman and Shara-
pov, 2011], where the fishbone instability is marginally unstable. In this limit, particle are
expected to be locked inside phase space island. Some results obtained from hybrid reduced
models [Idouakass, 2016] showed that resonant particle are giving on average energy to the
fields through a phase slippage of the resonant island. The particle transport is induced by
this energy transfer. The other limit is the strong kinetic drive [Zonca and Chen, 2014][Zonca
et al., 2015], in which it is expected that resonant particles detune rapidly with the phase
space island. Self-consistent hybrid simulations in 3D toroidal realistic geometry are required
to understand the nonlinear dynamics of the fishbone instability in both regimes. Under-
standing this dynamics would help for the control of the alpha fishbone instability on ITER
and future industrial devices.

1.2.2 Outline of the thesis

The alpha fishbone instability is the main focus of this thesis. The instability is simulated
with a newly implemented nonlinear code, XTOR-K. This code originates from the nonlinear
code XTOR-2F [Lütjens and Luciani, 2010], that solves the extended resistive MHD equa-
tions with two fluid e↵ects in 3D toroidal geometry. A PIC module has been implemented
in the code to evolve kinetic populations self-consistently with the MHD fields.

Chapter 2 details the trajectories of particles in a tokamak configuration. The particles
characteristic frequencies are derived using an Hamiltonian angle-action formalism. This for-
malism is convenient for the study of wave-particle resonance.

In chapter 3, a brief introduction to MHD is given. The two fluid Kinetic-MHD equations
solved by XTOR-K are then derived. A brief explanation on the numerical integration of
XTOR-K equations and on noise control is provided. The linear theory of the internal kink
instability is then detailed, using the Energy Principle.

In chapter 4, the Kinetic Energy Principle is presented, in order to derive a dispersion re-
lation for the fishbone instability. Some di↵erences are found with existing linear models.
Afterwards, the implementation of a new particle distribution function and phase space di-
agnostics in XTOR-K is discussed. These implementations are essential to study numerically
the fishbone instability.
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In chapter 5, the linear verification of XTOR-K by the fishbone dispersion relation developed
in chapter 4 is performed. Results obtained from the linear theory and XTOR-K are in good
agreement. XTOR-K is then used to study the linear stability of the ITER 15 MA scenario
against the fishbone instability. Results show that, for the Kinetic-MHD equilibria studied,
the alpha fishbone is likely to be unstable.

In chapter 6, nonlinear simulations of the alpha fishbone are performed on ITER-like and
ITER 15 MA equilibria. The strong drive limit is studied on both of them. Resonant par-
ticle transport and mode frequency chirping are retrieved in both these simulations. Phase
space diagnostics highlight in which zone of phase space the transport arises, and what is the
total amount of alpha particles transported over several fishbone oscillations. Based on these
results, a mechanism for the nonlinear coupling of resonant transport and mode chirping is
proposed. Preliminary results from a low kinetic drive simulation on the ITER 15 MA sce-
nario are also presented. These results are shown to be coherent with some features present
in [Odblom et al., 2002][Idouakass, 2016].





Chapter 2

Particle trajectories in a tokamak

Understanding the resonant mechanisms by which energetic particles can trigger instabilities
in tokamak plasmas requires to explain the particles trajectories inside the torus. These
trajectories are entirely determined by the magnetic configuration. In this chapter, the toka-
mak’s magnetic configuration is presented. The di↵erent types of orbits in this configuration
are detailed, as well as the drifts experienced by particles. From the motion of particles
inside the torus, three invariants of the dynamics are identified, as well as three rotation fre-
quencies. These frequencies divide the dynamics of charged particles on di↵erent time scales.
Taking advantage of the presence of three invariants of motion, an Hamiltonian formalism
can be used to describe the particles’ dynamics, with a set of angle-action variables. This
formalism is particularly well adapted for the study of motions with several time scales, and
it enables to reduce the particles’ dynamics to a 3D invariants space. General expressions of
these variables are derived for the tokamak configuration, and explicit formulations are given
for a simplified magnetic equilibrium with circular flux surfaces. This formalism enables to
threat in a simplified and direct manner wave-particle resonance, providing a framework for
the study of wave-particle energy exchange in linear theory and nonlinear hybrid simulations.

2.1 Configuration of the magnetic field in a tokamak

As described in Chapter 1, the magnetic field is composed of a toroidal component, that
ensures that particles follow confined orbits inside the torus, and of a poloidal component,
that prevents particles from drifting away from the field line they are following. Its structure
at the tokamak’s core is composed of a set of nested magnetic poloidal flux surfaces on which
the magnetic field lines lie. A convenient way of expressing the magnetic field is to use the
toroidal and poloidal magnetic fluxes. Their expression for a given radial position using the
toroidal coordinates (r, ✓,') reads
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the subscript P standing for poloidal, and T toroidal. The poloidal and toroidal contours
of integration and surfaces are displayed on Figure 2.1, in blue for the poloidal flux, and red
for the toroidal ones. For the poloidal flux, the surface of integration lies in between the blue
dash lines, and is directed by ✓̂. It has been defined without loss of generality at ✓ = 0, for a
given radial position r. The toroidal surface lies inside the toroidal contour, and is directed
by '̂. The nested structure of the magnetic flux surfaces are materialized on Figure 2.1 by the
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Figure 2.1: Topology of the magnetic field in a tokamak. The nested magnetic flux surfaces
appear as black ellipses, and the contour and surfaces of integration of the poloidal and
toroidal fluxes are respectively represented in blue and red dash lines. The unitary vectors
r̂,  ̂, ✓̂, '̂ are defined at a given point with toroidal coordinates (r, ✓,' = 0). The flux direction
is normal to the local magnetic surface, and the poloidal direction is normal to the radial
one.

black ellipses. The natural set of coordinates used to describe this configuration is ( p, ✓,'),
where  p plays the role of a radial coordinate. In the rest of this thesis, the poloidal magnetic
flux will be noted  = � p/2⇡ for simplicity. The angle ✓ stands for poloidal angle of the
flux coordinates, so that the magnetic field lines appear as straight lines in the (✓,') plane.
The direct covariant basis used is (r ,r✓,r'), with r /  ̂, r✓ / ✓̂ and r' / '̂.

Using the toroidal and poloidal fluxes, the potential vector A can be defined as

A = �Tr✓ �  r' (2.3)

The potential vector being related to the magnetic field by B = r⇥A, in the direct basis
(r ,r'⇥r ,r'), the magnetic field can be expressed as

B = I( )r'+r'⇥r (2.4)

This formulation enables to describe directly the magnetic field poloidal component as a
function of the poloidal flux, and the toroidal component as function of the total current
crossing the poloidal surface S1 at a given  . Due to the nested structure of the magnetic
field, its expression verifies B ·r = 0. In the same set of coordinates, the Jacobian of the
system is given by

J �1 = (r'⇥r ) ·r✓ = B ·r✓ (2.5)

The helicity of the magnetic field is defined by the safety factor q. It represents the number
of toroidal turns done by a magnetic field line over a poloidal turn at a given radial position
inside the torus. Its expression as a function of the magnetic flux is given by

q( ) =
B ·r'
B ·r✓ (2.6)

The Jacobian of the system ( , ✓,') can therefore be recast as J = I( )/qR2. Also, it is
useful for the derivation of the angle-action coordinates to adopt the Clebsch formulation for
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the magnetic field, in order to express it solely as a function of the magnetic flux and the
safety factor. Using this formulation, the magnetic field is defined as

B = r('� q( )✓)⇥r (2.7)

2.2 Particles trajectory in real space

2.2.1 Invariants of motion

As stated above, at equilibrium, charged particles possess three invariants. A first one is
the particle energy E = 1

2mv2 + Ze�, where � is the electric potential. In the absence of
collisions and wave-particle interaction, the particle energy can be considered invariant when
the electric field evolves on time scales that are slower than the cyclotron rotation. This is
the case in general in MHD.

A second invariant in a tokamak configuration comes from the slow temporal evolution of
the magnetic field with respect to the particle gyro-frequency !c = ZeB(t)/m, such as
d[ln!c]/dt ⌧ !c. It is therefore possible to construct an adiabatic invariant, that appears to
be the particle magnetic moment µ = mv2?/2B. This quantity is equivalent to the magnetic
dipole moment of a magnet, the cyclotron motion of a charged particle generating a dipolar
magnetic field.

A last invariant comes from the axisymmetry of the configuration, which implies that the
particle Lagrangian L, defined in presence of an electromagnetic field as

L(x, ẋ, t) = 1

2
mẋ · ẋ� Ze[�(x, t)� ẋ ·A(x, t)] (2.8)

does not depend on the toroidal angle. Using Euler-Lagrange equation, it can be shown that
the toroidal canonical momentum P' is an invariant of motion

d

dt

✓
@L
@'̇

◆
= 0 , P' = mRv' � Ze = cst (2.9)

where the contravariant toroidal component ẋ' = R'̇ has been used. R is the particle major
radius. For thermal particles at T = 20 keV, the ordering |mRv'| ⌧ |Ze | is respected,
which implies that particles stay attached to their reference magnetic flux surface  , with
a thin excursion along the trajectory of order �b ⇠ mRv'/Ze . This invariant is usually
used as a radial coordinate for this type of particles. However, for supra-thermal particles,
for example the alphas generated by fusion reactions, the previous ordering is not respected.
Energetic particles exhibit large excursion across their reference magnetic surface, that can
lead to non-standard trajectories near the magnetic axis, describing so-called ”potato orbits”.
P' cannot be used as a radial coordinate for these particles.

2.2.2 Orbits in the poloidal plane

Given that the particle’s energy and magnetic moment are invariants, the particle parallel
velocity along the magnetic field vk = v · B/B and the local magnetic field B( , ✓) of a
particle cannot evolve independently, being linked as

vk =

r
2

m

h
E � µB( , ✓)

i
(2.10)
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In a tokamak configuration, a gradient of magnetic field is present, directed toward the center
solenoid that lies at R = 0 (see Figure 2.1). It implies that for a given magnetic surface  ,
the magnetic field is maximal at ✓ = ⇡ and minimal at ✓ = 0, which is usually referred to
as the high field and low field sides. When a particle follows the magnetic field line, it is
advanced in the toroidal direction and in the poloidal one. However, when it evolves in the
poloidal direction from the low field side to the high field one, it experiences a mirror force
F = �µrkB that opposes to the particle parallel poloidal motion. The physical origin of this
phenomenon is the Lorentz force that arises from the conjunction of the particle cyclotron
motion and the magnetic field perpendicular to the considered field line, due to the inhomo-
geneous magnetic field.

Therefore, depending on their parallel velocity on the low field side at ✓ = 0, some par-
ticles, described as trapped, can have their parallel motion fully suppressed by the mirror
force. In this case, they bounce back on the magnetic field line, inverting the sign of their
parallel velocity. It implies that for a given set of invariants (E, µ), according to equation
(2.10), the equation E = µB( , ✓) has a solution ✓ = ✓b, such that orbits with ✓ > ✓b cannot
be described. The trajectory is bounded. It is equivalent to consider that the particle is
trapped in a magnetic well, as described on Figure 2.2. Particles with energy higher than

Figure 2.2: Magnetic well in the (E, ✓) diagram, due to the inhomogeneity of the magnetic
field. The blue curve describing µB is a function of (E, ✓) at a fixed magnetic flux  . Particles
with energy higher than µBmax with Bmax = B(✓ = ⇡) follow passing orbits, whereas particles
observing E = µB(✓b) follow bounded trajectories with ✓ 2 [�✓b, ✓b], called trapped orbits.

µB(✓ = 0) do not have a poloidal angle solution of vk = 0 along their trajectory, therefore
their orbit spans the entire field line. Those particles are called co-passing when they follow
the field line in the same direction as the local poloidal magnetic field (vk > 0), and counter-
passing when they are going in the opposite direction (vk < 0).

It can be convenient to rewrite equation (2.10) using the pitch angle � = µB0/E. Assuming
that the electric potential in negligible regarding the kinetic energy of particles

vk = v

✓
1� �

B( , ✓)

B0

◆1/2

(2.11)
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with � 2 [0, B0/Bmin]. The lower bound of this interval corresponds to a passing particle
with almost no parallel velocity (deeply passing particle), and the upper bound to a trapped
particle with ✓b = 0 (deeply trapped particle).

The boundary between the trapped and passing domain for a given flux coordinate  is given
by particles with a bouncing angle on the high field side ✓b = ⇡, which yields � = B0/B ,✓=⇡,
with B ,✓=⇡ = Bmax, . The set of invariants (E,�) is therefore preferred to (E, µ) for anal-
ysis carried out in phase space, since it provides a simple criterion for a separation between
trapped and passing orbits. An example of trapped orbit is given in Figure 2.3

Figure 2.3: Typical trapped trajectory of a particle with energy E = 100 keV in the poloidal
(R,Z) plane. The dashed red line stands for the particle’s reference magnetic flux surface.

2.2.3 Particle drifts

Due to the presence of forces exerted on the plasma, particles experience drifts from their
reference magnetic flux surface, such as

vD =
X

i

Fi ⇥B

ZeB2
(2.12)

with
P

i Fi the sum of these forces. At equilibrium, three forces are present. Due to the
presence of a finite electric field, particles undergo the electric force FE = ZeE, which leads
to the cross field drift

vE⇥B =
E⇥B

B2
(2.13)

The two others forces are due to the magnetic field’s inhomogeneity in a tokamak. The
magnetic field lines are curved, and there is a gradient of magnetic field towards the central
solenoid. This induces two forces on the particles, the centrifugal and gradient forces

Fcent = m
v2k
R
, Fgrad = �µrB (2.14)
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 = (b ·r)b being the local curvature of the magnetic field, and b = B/B its local direction.
This generates a magnetic drift which can be expressed as a function of the pitch angle as

vd =
2E

m!cB
B⇥

✓
1� �

B

B0

◆
+

�

2B0
rB

�
(2.15)

In a tokamak, it can be shown that the magnetic drift velocity is directed along the Z axis
when � = 2µ0p/B

2 ⌧ 1.

It can be noted that these drifts arise whether or not the magnetic field possesses a poloidal
component. The poloidal magnetic field has been historically introduced to partially average
them out along particles trajectories, in order to obtain confined orbits.

2.2.4 Characteristic frequencies

Three frequencies characterize the particles’ trajectory inside the torus, splitting the dynam-
ics on three distinct time scales. The smallest time scale correspond to the frequency of the
particle gyration around the field line !c = ZeB/m, illustrated as (1) on Figure 2.4. In a
tokamak such as ITER, for alpha particles, it is of order 107 Hz.

The second time scale corresponds to the bounce or transit frequency of respectively trapped
and passing particles in the poloidal plane, whose expression for an arbitrary geometry is

!b(E,�, ) ⌘ 2⇡↵b

✓Z ✓
lim

�✓
lim

dl

vk

◆�1

= 2⇡↵b

✓Z ✓
lim

�✓
lim

B( , ✓)d✓

vk(E,�, ✓)J ( , ✓)

◆�1

(2.16)

where ✓lim = ⇡, ↵b = 1 for passing particles, and ✓lim = ✓b, ↵b = 2 for trapped particles. The
discontinuity of a factor 2 between the passing and trapped domains is due to the fact that
the particle needs to bounce twice to come back to its initial position. This frequency can
be expressed as a tri-dimensional function of the invariants. For fusion born alpha particles
in ITER, the bounce/transit pulsation is of order 105Hz. This motion is depicted as (3) on
Figure (2.4).

The slowest time scale corresponds to the toroidal precession of particles along the toka-
mak toroidal direction. This motion is due to the conjugate e↵ect of the magnetic drift that
shifts particles from their reference surface, and of the invariance of the toroidal canonical
momentum P'. The case of trapped and passing particles are discussed separately here.

For trapped particles, their parallel velocity changes sign along the bounce trajectory. Due to
the magnetic drift and the flux surfaces configuration, particles are shifted on outer magnetic
surfaces when they are located at the tip of the banana trajectory with ✓ = ✓b, and inner
ones at ✓ = �✓b. Since P' is an invariant, the absolute value of the parallel velocity is higher
when particles are on outer flux surfaces, and lower when they lie on inner ones. Therefore,
over one complete particle bounce, the banana orbit has been slighted shifted in the toroidal
direction. Such a drift appears on Figure 2.4 as (2). It should be noted that for most trapped
particles, this precessional drift goes along the magnetic direction. However, it can be shown
that for trapped particles near the passing-trapped boundary, this drift exhibits a reversal
in the opposite direction, due to the fact that particles spend more time on inner magnetic
surfaces than outer ones, even if their parallel velocity is lower there.

For passing particles, the parallel velocity does not change sign, the motion along the toroidal
direction is therefore quasi-uniform. However, due to the variation of the magnetic drift along
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Figure 2.4: Trajectory of a trapped particles along the tokamak’s magnetic field. Its dynamics
is divided into three di↵erent motions evolving on distinct time scales. The gyro-motion of the
particle around the magnetic field field, characterized by the pulsation !c. The bounce motion
between the tipping points of the banana trajectory in the poloidal plane, characterized by
the pulsation !b . And the precession of the banana trajectory along the tokamak toroidal
direction, characterized by the precessional pulsation !d. These pulsations usually respect
the ordering !c � !b � !d

the trajectory, the parallel velocity increases or decreases slightly over a transit frequency.
This small modification constitutes the precessional motion of passing particles. An expres-
sion often found in the literature [Coppi and Porcelli, 1986],[Coppi et al., 1990],[Porcelli,
1991] for the precessional pulsation is

!d(E,�, ) = ↵b!b(E,�, )

Z ✓
lim

�✓
lim

vd(E,�, ) ·r('� q( )✓)/vk dl (2.17)

It will be shown in the next section that this definition is problematic since the precessional
pulsation needs to be defined at a specific magnetic flux surface, for example  ⇤ = �P'/Ze,
that is an invariant of motion along the particle trajectory. For alpha particles in tokamaks,
the precessional frequency is of order 104Hz.

2.3 Hamiltonian formalism with angle-action
coordinates for the tokamak configuration

In this section, a hamiltonian formalism well suited for the description of wave-particle res-
onance is developed. The properties and existence of such an Hamiltonian system are dis-
cussed. Its specific coordinates in the 6D phase space are then derived for the tokamak
configuration in the limit of thin orbit width, when particles do not exhibit large excur-
sions across their reference magnetic flux surface. Explicit expressions are then developed
for the bounce/transit and the precessional pulsations, for an equilibrium with circular mag-
netic flux surfaces, and the application to the resonant wave-particle phenomenon is detailed.

Most of the definitions in this section can be found in [Rax, 2011], chapter 5.
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2.3.1 Integrability and construction of angle-actions variables

The Hamiltonian formalism is useful when the dynamics of a system can be separated into
di↵erent motions that evolve on distinct time scales. This formalism is therefore well suited
to simplify the underlying equations of the particles’ trajectory inside a tokamak. First,
the general properties of the Hamiltonian formalism for an arbitrary set of 6D phase space
variables (x,p), with x positions variables and p momenta ones, are reminded here. The
Hamiltonian for charged particles in an electromagnetic field is defined as

H(x,p, t) =
1

2m
[p� eA(x, t)]2 + Ze�(x, t) (2.18)

where the canonical momentum in presence of a magnetic field is given by p = mv +
ZeA(x, t), with v = ẋ. In this case the Hamiltonian is simply H = mv2/2+Ze�, the charged
particle energy. In this formalism, the equations of motion are given by the Hamilton-Jacobi
equation

dxi

dt
=
@H

@pi
,

dpi
dt

= �@H
@xi

(2.19)

Since three invariants of motion are present for this system, and that particles’ trajecto-
ries are confined (bounded) inside the torus, two theorems proved in [Arnold, 1978] ap-
ply to the tokamak configuration. The first theorem states that the motion of particles
along the magnetic field lines is integrable. It means that the particle trajectories can
be described by simple mathematical formula. The second theorem states that particles
evolves on a compact manifold in the 6D phase (x,p) labelled by the invariants of motion
E(x,p), µ(x,p), P'(x,p) = cst. It implies that the presence of these invariants simplify
the system dynamics to a three dimensional problem, this compact manifold labelled by the
invariants being a set of nested 3D tori in the 6D phase space, each tori corresponding to a
given set of invariants.

In addition to these properties, it will be shown in this section that the particles trajectories
in a tokamak are Poincaré integrable. It implies that it is possible to construct a canonical
set of phase space coordinates called angle-action variables. The actions J, standing for the
momenta coordinates, are invariants of motions. They are conjugated to the angles, positions
coordinates, that evolves linearly in time such as ↵ = ⌦t+↵0. ⌦ are the eigenfrequencies of
the system. These angles can be built so that they relate to the characteristic frequencies of
the system described above. These definitions imply that the equilibrium Hamiltonian only
depends on the invariants, thus indeed making this problem three dimensional, such as the
equations of motion read

d↵

dt
=
@H(J)

@J
,

dJ

dt
= �@H(J)

@↵
= 0 (2.20)

In order to create such variables, it is needed to perform a canonical transform of the phase
space coordinates (x,p). Such an transform imposes that is it possible to construct an Hamil-
tonian so that the new variables are solution of the Hamilton-Jacobi equation. Moreover,
doing the change of variable (x,p) ! (↵,J), it must verify that for any given closed contour
in phase space I

C
p · dx =

I

C
J · d↵ (2.21)

This property is particularly precious for the derivation of actions variables. For a given
angle ↵i that has been defined, the conjugated action Ji can be derived by using the closed
contour Ci associated to the angle ↵i, so that

2⇡Ji =

I

C
i

p · dx (2.22)
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When a system is Poincaré integrable, the 3D tori on which lie the particle trajectories in
the 6D phase space are a set of nested tori called the Kolmogorov-Arnold-Moser (KAM) tori.
The closed contour Ci lies on a surface of constant Ji, as depicted on Figure 2.5. Since the
mental projection of a 3D torus in a 6D phase space is quite beyond the intuition of the
human brain, Figure 2.5 displays a 2D torus defined by the couples (↵1, J1), (↵2, J2) in a 3D
phase space, in order to give some intuition of the closed contour used.

Figure 2.5: 2D KAM tori in a 3D phase space. The direction of increasing actions J1, J2 are
illustrated by the green arrows. The directions of the angles ↵1,↵2 are defined by the red
curves. The closed contour used for the derivation of the actions are the blue curves, that
only lie in the direction of the considered angle.

In the rest of this section, the angles ↵ are built to relate to the characteristic frequencies
of the system !c,!b,!d. Then, the action variables are derived by choosing the appropriate
closed contour. This derivation is performed in the limit of thin orbit width using the guiding
center of particles, which lie at the middle of their cyclotron motion.

2.3.2 Derivation of the angle-action variables

Angle-action couple (↵1, J1) associated to the cyclotron motion

The first angle is chosen to describe the fast motion of the dynamics, the cyclotron motion.
A particle trajectory can be described by its guiding centre xG and a periodic function xc of
the cyclotron angle � such as x(t) = xG(t) + xc(t) and

xc(t) = ⇢c(cos� e1 + sin� e2) (2.23)

vc(t) = v?(� sin�e1 + cos� e2) (2.24)

where ⇢c = mv?/ZeB(x) is the particle’s gyroradius, and (e1, e2) a set of unitary orthogonal
vector perpendicular to the local magnetic field. The gyroangle � is then by definition
d�/dt = v?/⇢c = !c, and the first angle ↵1 = � is defined as

↵1 =

Z t

dt0!c[xG(t
0)] dt0 + ↵1,0 (2.25)

where ↵1,0 is the initial gyroangle, and the eigenfrequency of this motion is ⌦1 = !c.
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Taking the closed contour C1 to be the cyclotron motion for a fixed guiding center posi-
tion, the first action reads

2⇡J1 =

I

C1
mvc(t) · dxc + Ze

I

C1
A · dxc (2.26)

The first integral yields 2⇡m2v2?/ZeB, and the second, using Stokes theorem and a constant
magnetic field inside C1, �⇡m2v2?/ZeB. The minus sign of the second integral comes from the
fact that the surface associated to the closed contour C1 is directed in the opposite direction
to the magnetic field. Therefore, the first action is

J1 =
m

Ze
µ (2.27)

This result also demonstrates that the magnetic momentum µ is indeed an adiabatic invariant
of motion, since it has been assumed that !c has no temporal dependency.

Angle-action couple(↵2, J2) associated to the poloidal motion

Out of simplicity, the electric potential is ignored in the rest of this derivation. This assump-
tion holds well for energetic particles, since their potential energy is negligible regarding their
kinetic energy. The equations of motion of the particles’ guiding center are needed to derive
the angles associated to the motion along the magnetic field lines, ↵2, and the slow toroidal
motion due to the magnetic drift, ↵3. Neglecting the electric field

dxG

dt
= vGkek + vd (2.28)

with vd the magnetic drift described in the previous section. Each toroidal coordinates
( G, ✓G,'G) can be obtained using the contravariant basis

dxi
G

dt
= vG ·rxi

G (2.29)

As stated before, the thin orbit width assumption is used in this derivation. It implies that
particles along their trajectory exhibit small excursion  ̂ around their reference magnetic
surface  ⇤, such as  =  ⇤+  ̂ and  ̂ <<  ⇤. Trapped particles possess an intrinsic reference
flux surface since their parallel velocity vanishes at the banana tips. For trapped particles,
 ⇤ = �P'/Ze, which is indeed an invariant. Passing particles do not possess an intrinsic
reference flux surface, therefore, it is arbitrarily chosen to be built on the invariance of P',
with  ⇤ = �P'/Ze =  G � mI( )vGk/ZeB. The derivation will be conducted with this
choice. An alternative definition using the time average h i as an invariant will be discussed
in the next section. Defining  ̄ = h i is preferred for a comparison with particle trajectories
obtained from numerical integration of their orbit, as in XTOR-K. Given these conventions,
the equations of motion read

d✓G
dt

= ⌦✓( ⇤, ✓G) +
d⌦✓

d 
( ⇤) + vd ·r✓ (2.30)

d'G

dt
= q( ⇤)⌦✓( ⇤, ✓G) +

d[q⌦✓]

d 
( ⇤) + vd ·r' (2.31)

d ̂

dt
= vd ·r (2.32)
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where ⌦✓ is the instantaneous particle transit/bounce frequency, defined as

⌦✓(E,�, ⇤, ✓G) ⌘ vGk

dl
= ↵b

r
2E

m

✓
1� �

B( ⇤, ✓G)

B0

◆1/2J ( ⇤, ✓G)

B( ⇤, ✓G)
(2.33)

where the parallel velocity vGk has been developed as a function of the particle pitch angle
(2.11). dl is the length element along the guiding center poloidal trajectory.

Regarding the poloidal motion of particles along the field lines, the magnetic drift vd can be
discarded considering the existing temporal ordering. It simplifies the time evolution of the
poloidal angle to

d✓G
dt

= ⌦✓(J, ✓G) (2.34)

where the dependency of ⌦✓ over the invariants of motion has simply be marked by J.
Besides simplifying the poloidal motion, discarding the magnetic drift totally suppresses the
precession of particles in the toroidal direction, which implies that the quantity 'G�q( ⇤)✓G
does not evolve in time. The particles are following strictly the magnetic field lines. Such an
equation describes an autonomous system in ✓G for a given J. It implies that averaging over
time can be linked to averaging over ✓G as

Z t

F (J, t0) dt0 =

Z ✓
G F (J, ✓0G)

⌦✓(J, ✓0G)
d✓G (2.35)

This angle does not constitute a good candidate for ↵2, since it does not evolve uniformly for
trapped particles that bounce back and forth along ✓G. However, regardless of the particle
class, the quantity ✓G(t) is periodic in time, with a pulsation !b, computed over the entire
periodic poloidal motion as

2⇡

!b(J)
=

Z ⇡

�⇡

d✓G
⌦✓(J, ✓G)

(2.36)

for passing particles, where its sign depend on the co or counter-passing nature of the particle,
and by

⇡

!b(J)
=

Z ✓
b

�✓
b

d✓G
|⌦✓(J, ✓G)| (2.37)

for trapped particles. !b is always defined positive for trapped particles. The angle ↵2 is
then naturally defined by ↵2 = ⌦2t + ↵2,0, and the eigenfrequency is ⌦2 = !b. The explicit
expression for ↵2 is, given the dependency between t and ↵2

↵2 = !b(J)

Z t

0

dt0 = !b(J)

Z ✓
G

0

d✓G
⌦✓(J, ✓G)

(2.38)

For passing particles, due their uniform motion when averaged over a transit period Tb,
↵2 = ✓G + ✓̂(J, ✓G), where ✓̂ is a periodic function of both ↵2 and ✓b, null averaged over a
transit period. It can be explicitly computed considering the modulation of the instantaneous
poloidal frequency ⌦̃✓ = ⌦✓ � h⌦✓i, h.i standing for a time average over the transit motion
of passing particles, that simply reads

hF i = 1

Tb

Z ⇡

�⇡

F (J, ✓G)

⌦✓(J, ✓G)
d✓G (2.39)

The time evolution of ✓G can then be expressed as ✓̇G = h⌦✓i + ⌦̃✓, and the modulation
explicitly reads

✓̂G(J, ✓G) =

Z ✓
G

0


1� h⌦✓i(J)

⌦✓(J, ✓0)

�
d✓0 (2.40)
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For trapped particles, due to the reversal of the parallel velocity, the time averaged of h⌦✓i is
null, therefore ✓G(J) = ✓̂(J, ✓G). The obtention of an explicit expression for ↵2 is still possi-
ble, but special care needs to be brought to the sign of the parallel velocity when computing
↵2 at a given poloidal position ✓G along the bounce motion. The general expression of ↵2 for
trapped particles is

↵2(✓G) = �c!b(J)

Z ✓
G

�✓
b

d✓0G
|⌦✓(J, ✓0G)|

+ cst (2.41)

the constant depending on the modulo used for ↵2, and �c depending of the sign of the parallel
velocity. This ensures that ↵2 evolves uniformly along the bounce orbit. ↵2 is chosen here to
evolve similarly as for passing particles. The corresponding values between ✓G and ↵2 along
the passing and trapped orbits are presented in Figure 2.6. For ↵2 2 [�⇡,�⇡/2] \ [⇡/2, ⇡],
the trapped particle lies on the inner magnetic surfaces with negative parallel velocity, then
�c = �1. For the first interval, the constant is �⇡/2 and 3⇡/2 for the other one. For
↵2 2 [�⇡/2, ⇡/2], the trapped particles lie on the outer magnetic flux surfaces with positive
parallel velocity, �c = 1 and the constant is �⇡/2.

Figure 2.6: Corresponding values between the angle ↵2 and the guiding center poloidal angle
✓G. The case of passing particles is presented on the left figure, trapped particles on the
right. The green curves represent the reference magnetic surface  ⇤, and the red ones the
trajectory of the guidind center in the poloidal plane

The derivation of the conjugated action J2 is now discussed. Given the definition of ↵2,
the closed contour C2 is defined in the ✓ direction at fixed  =  ⇤ and toroidal angle 'G. J2
can be decomposed in two pieces J2 = J

(0)
2 + J

(1)
2 with

J
(0)
2 =

I

C2
ZeA · dx

2⇡
(2.42)

J
(1)
2 = m

I

C2
v · dx

2⇡
(2.43)
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The poloidal component of the potentiel vector is the toroidal flux �T . Therefore, doing a
first order Taylor development around  G =  ⇤ +mIvGk/ZeB

J
(0)
2 = ✏bZe�( ⇤) +

I
d✓

2⇡

qI

B
mvGk (2.44)

The term ✏b is null for trapped particles and unity for passing particles. This is due to the fact
that trapped particles bounce back and forth along C2, and that �t( ⇤) is solely defined on
the reference flux surface. d�( )/d = q( ) has been used here. Noting that J = I/qBR2,
the toroidal component of the magnetic field is BT = Ir� and that the length element along
a field line is dl = d✓B/J , J (0)

2 can be recast as

J
(0)
2 = ✏bZe�( ⇤) +

I
dl

2⇡

|BT |2
B2

mvGk (2.45)

Regarding J
(1)
2 , the velocity is taken at leading order as v = vGkek, and the length element

can expressed as dx = dlBp/B, which leads to

J
(1)
2 =

I
d✓

2⇡

|Bp|2
B2

mvGk (2.46)

The second action J2 is then

J2 = ✏bZe�T ( ⇤) +

I
dl

2⇡
mvGk (2.47)

Angle-action couple(↵3, J3) associated to the toroidal motion

The last angle-action couple needs to describe the slowest motion of the particles, their
toroidal precession. To this e↵ect, the magnetic drift needs to be reintroduced in equations
(2.30),(2.31),(2.32). Particles are now precessing in the toroidal direction, but the inclusion of
the magnetic drift has two additional e↵ects. Particles exhibit finite magnetic flux excursion
 ̂ along their poloidal motion, and the time evolution of the poloidal angle is modified by a
factor d✓̃G/dt = (d⌦✓/d ) ̂ + vd ·r✓. In this approach, the finite excursion  ̂ is kept, and
is totally defined by the invariance of the toroidal canonical momentum, and the arbitrary
reference flux surface chosen  ⇤. The modifications brought to the poloidal angle motion are
first kept in order to dissociate the drift motion from the rest of the dynamics. They will
be later discarded when evaluating the time evolution of the toroidal angle, being negligible
regarding the pure poloidal evolution along the magnetic field lines.

The drift motion can be characterized using a modified version of the Clebsch angle, ↵⇤ =
'G� q( ⇤)✓G, defined on the reference magnetic flux surface. Indeed, according to equations
(2.31) and (2.32), its time evolution yields

↵̇⇤ = ⌦↵⇤(J, ✓G) = vd ·r'� q( ⇤)vd ·r✓ + dq

d 
⌦✓ ̂ (2.48)

The frequency ⌦↵⇤ entirely defines the precessional motion. As well as for ⌦✓ it can be
divided into a time average and modulations. At this step, the modifications on the poloidal
angle evolution due to the magnetic drift are discarded. Therefore, integrating in time is
still equivalent to integrating along the poloidal angle, weighting the poloidal integral by ⌦✓.
The time average is then equivalent to integrating over the angle ↵2 through the poloidal
angle ✓G. Therefore, ⌦↵⇤(J, ✓G) = h⌦↵⇤i↵2(J) + ⌦̃↵⇤(J,↵2). This directly implies that the
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modulations are a periodic function of ↵2. The averaged term can be identified as the
precessional frequency !d, and its formal expression is

!d(J) =
!b(J)

2⇡

Z ✓
lim

�✓
lim

⌦↵⇤(J, ✓G)

⌦✓(J, ✓G)
d✓G (2.49)

where ✓lim = ⇡ for passing particles, and ✓b for trapped particles. The fact that this integral
only describes a half period is taken into account in the pulsation !b given in (2.16), making
this expression consistent.

The angle ↵⇤ is then defined as ↵⇤ = !d(J)t+ ↵̂⇤(J,↵2). Given that 'G = ↵⇤ + q( ⇤)✓G, and
that ✓G = ✓̂G(J,↵2) + ✏b↵2, the toroidal angle 'G can be rexpressed as

'G =
⇣
!d(J) + ✏bq( ⇤)!b(J)

⌘
t+ ✏bq( ⇤)✓̂G(J,↵2) + ↵̂G(J,↵2) (2.50)

The last angle of the formalism is then simply ↵3 = ⌦3t + ↵3,0, and its eigenfrequency is
⌦3 = !d + ✏bq( ⇤)!b. It can seem at first sight that the eigenfrequency ⌦3 depends on the
choice made for the reference flux surface  ⇤, through the safety factor. This would be
problematic since the physics is invariant through a change of coordinates. In fact, if  ⇤ is
changed, it can be shown that it induces a modification of !d that exactly cancels out the
change induced on the safety factor. The precessional frequency depends then as expected
on the choice of reference magnetic surface. Di↵erent expressions has been derived in circular
geometry in annex B when considering the present choice (B.2.2) and when considering the
reference flux surface as the time average of the flux coordinate over a poloidal orbit  ̄ = h i
(B.14).

The associated conjugated action J3 is then derived from the closed contour C3 that is di-
rected in the toroidal direction at fixed poloidal angle and magnetic flux position. The length
element in this case is then dx = R2r'd', and the toroidal potential vector is A' = � .
Therefore, the final action is the toroidal canonical momentum P'

J3 =
1

2⇡

Z

C3
p · dx = mRv' � Ze = P' (2.51)

The motion of charged particles in a tokamak is therefore Poincaré integrable, since angle-
action variables (↵,J) have been derived.

2.3.3 Explicit expressions for the characteristic frequencies in
circular geometry

It is possible to obtain explicit expressions for the frequencies !b and !d when working in
simplified geometry. Analytical derivations of these expressions are presented in Annex A
and B (A.7), (A.18), (B.14), (B.11), considering circular magnetic flux surfaces. As stated
above, the precessional frequency for passing particles depends on the arbitrary choice of
reference flux surface. In annex B, an explicit derivation of !d for an arbitrary reference
surface is given with circular geometry, and then applied to the choices  ⇤ = �P'/Ze, and
 ̄ =<  >t.

Figure (2.7) displays the dependencies of !b and !d for an ITER-like configuration with
circular poloidal shape. They are plotted against the considered pitch angle, for alpha parti-
cles with fixed birth energy E↵ = 3.5 Mev at a fixed radial position r = 0.2a, with a = 2 m
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(a) (b)

Figure 2.7: Poloidal bounce/transit pulsation (a) and toroidal precessional pulsation (b)
plotted against pitch-angle � = µB0/E at fixed particle energy E and reference magnetic
flux surface. The precessional pulsation is plotted for two di↵erent definitions of the reference
flux surface

the minor radius of the ITER-like configuration. The frequencies of the poloidal and toroidal
motions are respectively of order 105Hz and 104Hz. The precessional pulsation is indeed
invariant over a change of reference flux surface as displayed on Figure (2.7) (b), with the
trapped domain lying beyond � = B0/Bmax = 0.95 for the considered radial position. Then,
its value di↵ers from one definition to an other in the passing domain, as displayed on Figure
(2.7). The precessional drift reversal is also present here for trapped particles, when their
pitch angle is approaching the trapped-passing boundary.

For direct comparison with results obtained from XTOR-K hybrid simulations, the choice
 = h i is found to be more convenient from the numerical point of view. It is then assumed
in the rest of this thesis that particles’ reference magnetic flux surface corresponds to its time
average along the poloidal trajectory.

2.3.4 Application to the resonant wave-particle interaction

The Hamiltonian angle-action formalism derived in this chapter is used for di↵erent purposes
in this thesis.

The fishbone linear model

A first purpose is the derivation of a linear model whose goal is to verify hybrid simulations
of the fishbone instability with XTOR-K. In order to construct a fishbone dispersion relation
predicting the complex frequency of the fishbone mode ! = !r + i�, it is needed to solve
linearly Vlasov equation for the alpha particles distribution function F↵ such as

@tF↵ = {H,F↵} (2.52)

when H the total Hamiltonian of the system and {·, ·} the Poisson’s brackets. The angle-
action formalism is ideal to solve this type of equation by expressing in Fourier space the
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perturbed distribution function f̃↵ as

f̃↵(x,p) =
X

f̃↵,n!(J)e
i(n·↵�!t) (2.53)

with the triplet n characterizing the harmonics of the trajectories. It is shown in Chapter 4
that the solution of the Vlasov equation as the following dependency

f̃↵,n! / 1

! � n ·⌦(J)
(2.54)

Therefore, the angle-action formalism provides a framework that naturally highlights the res-
onant nature of the wave-particle interaction, the perturbed distribution function exhibiting
maxima near the wave-resonance condition that is simply defined by !�n·⌦(J) = 0. Besides
providing a proper formulation for the wave-particle resonant interaction, this formalism also
gives explicit expressions in the invariant space J for the eigenfrequencies of the system,
that are used in Chapter 4 to build the fishbone dispersion relation for a simple equilibrium
with circular poloidal shaping. The actions derived in this chapter are not all used in the
developed linear theory. Given the complex expression of J2, it is replaced by the particle
energy E. The others actions are kept, up to a multiplying factor. The set of invariants used
to label the KAM tori in the fishbone dispersion relation are then J = (�, E, h i).

Verification of !b, !d in XTOR-K

This formalism is also used in this thesis to verify the particle trajectories advanced numer-
ically in 6D in XTOR-K by comparing their eigenfrequencies ⌦2, ⌦3 to the ones obtained
with the angle-action approach for circular geometry. The eigenfrequencies are numerically
computed by taking the Fourier transform of ✓(t) in the simulation to obtain ⌦2 (✓ being
defined modulo 2⇡), and by doing a linear regression of '(t) to obtain ⌦3. This is presented
in Chapter 5.

Characterization of the relevant invariants space

Another purpose of the angle-action formalism, is that it has defined the proper 3D phase
space in which the resonant interaction needs to be studied. The eigenfrequency ⌦3 not
being continuous across the trapped-passing boundary, it is then useful that the trapped
and passing domain are clearly separated in hybrid simulations diagnostics. The particle
distribution and the wave-particle energy are then projected on a 3D space labelled by their
pitch angle, the passing-trapped boundary being then clearly defined. The second dimension
is chosen to be either the radial position r or P'. The third dimension of this diagram can
be chosen freely, and is chosen to be the particle energy E out of simplicity. Phase space
diagnostics implemented during this thesis in XTOR-K are presented in Chapter 4.

Kinetic Poincaré plots

A final purpose of the angle-action formalism in this thesis is the construction of Kinetic
Poincaré plots to visualize the temporal evolution of the island of resonance in phase space due
to the wave-particle interaction. The modification of the system Hamiltonian due to wave-
particle interaction can be formalized with angle-actions coordinates for a given resonant
harmonic n as

H(↵,J, t) = Heq(J)� h̃(t) cos(⇥) (2.55)

⇥ = n ·↵�
Z t

0

!(t0)dt0 (2.56)
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C =
X

i,k

nink
@2Heq

@Ji@Jk
(2.57)

with h(t) the amplitude of the perturbed hamiltonian, that oscillates with the phase ⇥. C

Figure 2.8: Kinetic Poincaré plot displaying the island of resonance in phase space. This
diagram is 2⇡ periodic in ⇥. The resonance location is displayed as the green line in the
diagram. Particle passing orbits are illustrated by blue lines, that are actually curves in
phase space, and trapped orbits by the red ellipses. The separatrix between trapped and
passing orbits is the plain red ellipse. The O point corresponds to the center of the phase
space island, and X its extremity on the separatrix. The width of the island is given by
� = 4

p
h(t)/C by identification with to the nonlinear pendulum . The island of resonance

is therefore expected to evolve dynamically in time.

is the Hamiltonian’s curvature. The wave-particle interaction implies that the Hamiltonian
is no longer solely a function of the invariants J, the invariants are no longer conserved.
The temporal dynamics of the island of resonance in phase space can then been obtained
by plotting the trajectory of near resonance particles in the diagram (⇥, ⇥̇), in a similar
fashion as for the Hamiltonian of the nonlinear pendulum. The trajectories of near resonance
particles in this diagram are then decomposed into two populations, trapped trajectories in
the phase space island, and passing trajectories outside of it. Such trajectories are presented
on Figure (2.8). The numerical integration of Kinetic Poincaré plots in XTOR-K is under
development, and described in greater length in Chapter 4.

2.4 Conclusion

In this chapter, the trajectories of charged particles in real space for a tokamak configuration
have been described. Out of these trajectories, three invariants of motion have been identified,
as well as three characteristic frequencies that decompose the particles’ motion on three
distinct time scales. From these properties, it has been demonstrated that the tokamak
configuration is Poincaré integrable, which implies that the particle dynamics is reduced
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to 3D manifolds, that are nested 3D KAM tori in the 6D phase space. The angle-action
coordinates of these tori are explicitly derived. It is then shown that this Hamiltonian
formalism is particularly well adapted for the study of the wave-particle resonance, which is
a crucial mechanism of the fishbone instability. In particular, it gives the framework for the
construction of a fishbone instability linear theory, as well as for the implementation in hybrid
codes of relevant phase space diagnostics to follow in time and phase space the evolution of
the wave-particle resonance.



Chapter 3

MHD and Kinetic-MHD theory

In tokamak plasmas, large scales instabilities involving significant portions of the core plasma
can arise. These instabilities do not take their source in the local behavior of some charged
particles in the 6D phase space, but rather from a collective motion of particles in the physical
3D space, generating an additional magnetic field that perturbs the magnetic configuration
described in Chapter 2. Such instabilities can therefore be described, averaging the particle
distribution function in the entire velocity space, by a fluid formalism known as the Magneto-
Hydro-Dynamics (MHD) theory. This theory can be compared to a fluid description using
Navier-Stokes equation, but for a fluid that is composed of di↵erent species of charged par-
ticles, that can interact with exterior electromagnetic fields, as well as generating perturbed
ones through the charged particles motion. The equations describing the MHD theory can
then be seen as a coupled set of Maxwell and Navier-Stokes equations.

However, the MHD formalism is not ideal to describe burning plasmas. These plasmas
are composed of minority species that are supra-thermal. In the case of fusion born alphas,
supra-thermal particles can be two hundred times more energetic than the bulk plasma, with
E↵ = 3.5 MeV. At such temperatures, particles eigenfrequencies ⌦i, derived in Chapter 2,
can be comparable with the frequencies of MHD instabilities. The fluid description breaks
down under these conditions, since resonant processes occur between MHD instabilities and
supra-thermal particles. A kinetic formalism is needed to describe the dynamics of these
minority species. To this purpose, the nonlinear two fluid MHD code XTOR-2F [Lütjens and
Luciani, 2010] has been extended to treat the Kinetic-MHD equations. A Particle In Cell
module has been introduced to describe kinetic particles, and the two fluid equations have
been modified to take into account the kinetic moments. The resulting hybrid nonlinear code
is named XTOR-K [Leblond, 2011].

In this chapter, a brief introduction to the MHD formalism is given. The ideal MHD equa-
tions are detailed, and the notion of MHD equilibrium is presented. Then, the Kinetic-MHD
code XTOR-K is presented. The derivation of its two fluid MHD equations is detailed. The
numerical scheme used to couple the MHD and kinetic modules is then discussed. The man-
agement of the PIC noise in XTOR-K is also explained. Last, the linear theory of the internal
kink in MHD is presented. The internal kink mode structure and dispersion relation are par-
tially derived from the ideal MHD equations in cylindrical geometry. The dispersion relation
is afterwards generalized with the inclusion of toroidal curvature, resistivity and two fluid
e↵ects. This dispersion relation will set the groundwork for the derivation of the fishbone
dispersion relation in Chapter 4.

41
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3.1 The MagnetoHydroDynamic formalism

3.1.1 Ideal one fluid MHD model

The ideal MHD equations are a set of equations obtained from Vlasov equation and Maxwell’s
equations. Moments of the Vlasov equation are computed to obtain the time evolution of
the plasma density, velocity and scalar pressure. The ideal MHD set of equations are closed
using a truncation procedure that sets to zeros moments with order superior to the plasma
pressure. Details for the derivation of the ideal MHD equations can be found in [Freidberg,
2014], chapter 2.

Assumptions of MHD models

Before presenting the equations of this model, assumptions of MHD models are discussed
here. Given that the MHD theory aims at describing macro-instabilities, the typical length
scale L�1

MHD / r is considered to be much larger than all length scales characterizing the par-
ticles at a microscopic level. In particular, LMHD >> ⇢L, with ⇢L the particles’ gyroradius or
Larmor radius. This property enables to construct the small parameter ⇢⇤ = ⇢L/LMHD << 1,
typical of highly magnetized plasmas.

The MHD spatial length scale also needs to verify LMHD >> �D =
p

2✏0kBTs/nse2, where
�D is the Debye length of the specie s. This quantity represents in a plasma the length after
which particles do not feel the Coulomb interaction of other particles. This implies that a
quasi-neutrality approximation can be made in MHD, so that

P
s qsns = 0.

The characteristic time evolution of MHD waves must be larger that the smallest time scale
of the microscopic dynamics, which is the gyro-pulsation ! << !c. The phase velocity of
MHD waves is also small regarding the speed of light, !/k << c. This implies that the
displacement current c2@tE in Maxwell’s equations can be discarded.

For the MHD fluid description to be valid, kinetic and finite orbit e↵ects must be negligible.
Kinetic e↵ects can either come from Landau resonances, when the MHD mode frequency
verifies ! ⇠ k · v, or from resonances with the eigenfrequencies of the individual motion of
particles, ! ⇠ n ·⌦. Therefore, MHD frequencies must always be much higher or much lower
than these frequencies.

Considering the Landau resonances, the condition for avoiding them is ! >> k · v, since
MHD modes exhibit small wave vectors. Regarding the eigenfrequencies resonances, they
are generally avoided for thermal species, which are in the energy range 104 eV for tokamak
plasmas. At this energy range, the particles gyrofrequency is much higher than those of
MHD modes, and their bounce and precessional frequencies !b,!d are much lower. However,
for particles with higher energies, in the range 106 eV, precessional and bounce frequencies
are increased, due to their respective energy dependence, E1/2 and E. At these energies,
!b and !d lie in the range 104 � 105 Hz. This frequency range is similar to those of some
MHD instabilities, for example the internal kink n = m = 1. Moreover, particle orbit width
becomes also non-negligible at these energies. The fluid MHD description therefore breaks
down in this energy range, that is typical of alpha particles in burning plasmas. A hybrid
Kinetic-MHD formalism must then be applied for these plasmas in order to simulate the
modes dynamics. Such a formalism is presented in the next section.
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One fluid ideal MHD equations

Now that the MHD assumptions has been stated, the ideal one fluid MHD model is presented.
The thermal bulk plasma is assumed to only contain two species, electrons and one specie of
ions, usually deuterium ions. Considering that the electron inertia can be discarded, the one
fluid mass density is defined by ⇢ = ⇢i, its scalar pressure by p = pi + pe, and its averaged
velocity by v = vi. The subscript i and e stand respectively for bulk ions and electrons. The
time evolution of these quantities are given by

@⇢

@t
+r · (⇢v) = 0 (3.1)

⇢


@v

@t
+ (v ·r)v

�
= J⇥B�rp (3.2)

d

dt

✓
p

⇢�

◆
= 0 (3.3)

with � = 5/3 the ratio of specific heats. The Ohm’s law describing the electric field is obtained
through the electron momentum equation. Since the electron inertia can be discarded, Ohm’s
law reduces in ideal MHD to

E = �v? ⇥B (3.4)

This equation implies that the magnetic flux through a given surface is a constant of motion,
the plasma is attached to the magnetic field and evolves with it. This is known as the
frozen-in law. Considering the following Maxwell’s equations

r ·B = 0 (3.5)

r⇥B = µ0J (3.6)

r · E = �@B
@t

(3.7)

the set of equations (3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7) fully defines the one fluid ideal MHD
equations, being a set of 14 equations with 14 unknowns (⇢,v, p,B,J,E). These 14 unknowns
constitute the MHD fields.

3.1.2 The MHD equilibrium

The numerical simulation of MHD fields constitutes an initial value problem. An equilibrium
needs to be defined before the simulation of MHD instabilities can be performed. Such an
equilibrium is characterized by setting the fluid velocity v and the time derivatives to zero in
the MHD equations. It is then equivalent to assume that no waves propagate in the plasma.
The equilibrium is formally expressed as

J⇥B =
(r⇥B)

µ0
⇥B = rp (3.8)

This equation highlights the fact that in a tokamak, at equilibrium, the relaxation of the
pressure gradient is prevented by the confinement e↵ects of the magnetic field. Solving this
equation for an arbitrary poloidal shaping represents a complex task since the magnetic
field is not solely an external field determined by the poloidal coils. Its poloidal component
depends on the poloidal magnetic flux  , magnetic flux on which depends also the pressure
profile, since  is the natural radial variable of the system. Finding the MHD equilibrium of
a given axisymmetric configuration therefore implies to solve for  an equation implicit in  .
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The MHD equilibrium is better defined by highlighting the dependencies over the poloidal
magnetic flux, recasting equation 3.8 as

r · 1

R2
r = �@ p( )� 1

R2
I@ I( ) (3.9)

This formulation of the equilibrium is called the Grad-Shafranov equation. It can be solved
numerically by specifying input pressure and current profiles on a uniform radial grid. From
these inputs, the free functions @ p and I@ I( ) are computed numerically with a finite
di↵erence scheme. The radial grid  can then be found numerically by a series of complex
iterations, detailed for example in [Lütjens et al., 1996]. The radial grid solution of the Grad-
Shafranov equation has a priori no reason to have its center, the magnetic axis, located at
the geometrical center of the poloidal shaping, nor to be uniformly spaced. It can in fact
be shown that the magnetic axis is not located there, the magnetic axis being shifted from
this geometrical center even for simple equilibria with circular cross sections. This shift is
called the Shafranov shift. Figure (3.1) displays a poloidal section of a torus at equilibrium,
with a set of magnetic surfaces solution of equation (3.9). This figure highlights the last
closed surface  edge, as well as the Shafranov shit �. The forces FB and Fp are both directed
radially along  ̂, and exactly cancel each other. In this thesis, the numerical code CHEASE

Figure 3.1: Illustration of a set of magnetic flux surfaces solution of the Grad-Shafranov
equation. The equilibrium is exactly balanced by the forces FB and FP . The Shafranov shift
corresponds to the length �, and the last closed flux surface by  edge.

[Lütjens et al., 1996] is used to generate the MHD equilbrium needed as an initial input for
the Kinetic-MHD code XTOR-K.

3.2 The XTOR-K model for Kinetic-MHD

In this section, the general method for coupling the bulk MHD plasma to kinetic populations
is discussed. The equations solved by the code XTOR-K and the self-consistent scheme to
advance both MHD fields and kinetic particles are presented. The noise management in
XTOR-K is also detailed.
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3.2.1 Classical hybrid coupling between kinetic populations and
bulk plasma

As first established in [Park et al., 1992], there exists two main coupling methods between
bulk MHD plasma and kinetic or gyrokinetic populations of particles. A population k of
kinetic particles is added to the bulk plasma, which is now denoted by the subscript b.
Considering the one fluid ideal MHD equations in the previous section, and the first order
fluid moment for a population k of kinetic particles, the equation of motion of the MHD fluid
and of the kinetic population k are

⇢b
dvb

dt
+
@

@t
[⇢kvk,k]b̂ = �rpb �r ·Pk + J⇥B (3.10)

@t[⇢kvk] = �r ·Pk + Jk ⇥B+ qknkE? (3.11)

Notable approximations have been made in deriving these equations. The parallel electric
field has been discarded in (3.11) due to the ideal MHD approximation. The perpendicular
kinetic change of momentum @t(⇢kvk,?) has been neglected in 3.10. The time evolution of
the magnetic field direction @tb in 3.10 has also been discarded. These approximations are
made to illustrate simply the di↵erent coupling methods, following [Park et al., 1992]. Such
approximations are not made in the derivations of XTOR-K equations, since on one hand
its MHD equations take into account both two fluid and resistive e↵ects, and on the other
hand, it is debatable to neglect @t(⇢kvk,?) and @tb in 3.10.

The first coupling method uses the particle pressure Pk to couple the kinetic specie to the
MHD equations. This equation of motion is obtained by subtracting the parallel component
of equation (3.11) to equation (3.10), yielding

⇢b
dvb

dt
= �rpb � (r ·Pk)? + J⇥B (3.12)

The second coupling method uses the kinetic current inside the MHD equations, obtained by
subtracting all components of 3.11 to 3.10, reading

⇢b
dvb

dt
= �rpb + (J� Jk)⇥B� qknkE? (3.13)

In XTOR-K, the pressure coupling is preferred to the current coupling. However current
terms are also present in the MHD equations of XTOR-K, since the terms @t(⇢kvk,?) and
@tb have not been neglected. Kinetic current terms also enter the MHD equations through
the average velocity of electrons, due to the inclusion of two fluid e↵ects. This tends to alter
the clear division between the two di↵erent coupling schemes. In the following part, the
derivations of XTOR-K equations are detailed.

3.2.2 Derivation of XTOR-K fluid equations

To take into account the kinetic e↵ects of supra-thermal particles, XTOR-K uses a PIC mod-
ule to advance kinetic particles in six dimensions, on electromagnetic fields that are derived
from its fluid module. The equations are derived so that an arbitrary number of kinetic
species can be considered, and not necessarily fast particles. Bulk species can also be sim-
ulated kinetically. In order to establish a self consistent description of MHD and kinetic
e↵ects, the equations of the two fluid XTOR-2F model [Lütjens and Luciani, 2010] need to
be modified when considering additional kinetic species.
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Considering a specie k of kinetic particles, its two first fluid moments read

@nk

@t
+r · (nsvk) = 0 (3.14)

@

@t
(mknkvk) +r ·Pk = qknk(E+ vk ⇥B) (3.15)

where momentum exchange between kinetic particles and bulk ions and electrons have not
been kept, since collisions are not yet implemented in XTOR-K. It should be noted here that
the pressure tensor considered here stands for the total pressure. It includes isotropic partial
pressure pk, anisotropic partial pressure ⇧k, as well as velocity convection

Pk = mknkvk ⌦ vk + pk +⇧k (3.16)

The total pressure Pk is directly used in XTOR-K fluid equations. Particle density nk, mean
particle velocity vk and total pressure Pk can be obtained by taking moments of the 6D
distribution function Fk of the kinetic specie

Fk(r,v, t) =
N

kX

i=1

�[r� rk,i(t)]�[v� vk,i(t)] (3.17)

where Nk is the total number of physical particles in the kinetic specie k.

nk(r, t) =

Z
Fk(r,u, t)d

3u =
N

kX

i=1

�[r� rk,i(t)] (3.18)

vk(r, t) =

Z
ukFk(r,u, t)d

3u =
N

kX

i=1

uk,i�[r� rk,i(t)] (3.19)

Pk(r, t) =

Z
uk ⌦ ukFk(r,u, t)d

3u =
N

kX

i=1

uk,i ⌦ uk,i�[r� rk,i(t)] (3.20)

The kinetic momentum and current density can be expressed as

Jm
kin(r, t) =

X

k

mknkvk, Jq
kin(r, t) =

X

k

mkqkvk (3.21)

The only kinetic moments entering XTOR-K fluid equations are
P

k nk,
P

k Pk, J
m
kin and

Jq
kin. They are therefore the only moments computed by the code. The numerical projection

of the kinetic moments will be discussed in the next section, together with the 6D particle
advance.

Regarding the fluid module of XTOR-K, it has been chosen to maintain the definition of
the MHD velocity as

v = vE + uk,ib̂ (3.22)

used in XTOR-2F [Lütjens and Luciani, 2010]. It is important to note that such a choice is
arbitrary, and implies specific bi-fluid terms in the fluid equations. Such a choice has been
made to be as close as possible to the initial XTOR-2F equations. Considering that the
quasi-neutrality of the plasma needs to be preserved, the electron density is not considered
as a variable in XTOR-K and is then defined as

ne = Zini +
X

k

Zknk (3.23)
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where Zk is the charge of the k kinetic specie, and Zi the charge of the fluid bulk ion. The
electron mean velocity ue is, using the total current J = r⇥B/µ0

ue =
Ziniui + Jq

kin

ne

� J

ene

(3.24)

The averaged velocity of a bulk specie s can be expressed by a drift ordering with the small
parameter ⇢⇤ << 1 [Hazeltine and Meiss, 2003]

us = us,k + v(1)
?,s + v(2)

?,s (3.25)

with the first order drift velocity being the sum of the cross field and diamagnetic drift
velocities

v(1)
?,s =

E⇥B

B2
+

B⇥rps
nsZseB2

(3.26)

and the second the sum of the polarization, frictional force induced and the viscous stress
induced drift velocities. The second order of the drift ordering is neglected in XTOR-K fluid
equations. Considering equation (3.25) and the MHD velocity chosen in equation (3.22), the
averaged bulk ion and electron velocities are

ui = v+ v⇤
i (3.27)

ue = v+

✓
Zini

ne

� 1

◆
ui,k +

✓
Jq
kin,k �

Jk

ene

◆�
b̂+ v⇤

e (3.28)

Equation (3.28) has been obtained by taking the parallel component of (3.24), and the in-
trinsic perpendicular component of the averaged electron velocity. It is interesting to note
that the usual assumption Zini ⇠ ne has not been made here. This is because the kinetic
species considered in XTOR-K are not necessarily supra-thermal species. In this context,
the kinetic density nk cannot be discarded regarding the bulk densities. Therefore, the term
Zini/ne � 1 is not null in XTOR-K equations.

The continuity equation and the momentum equation of a bulk specie s can be respectively
expressed as

@ns

@t
+r · (nsus) = 0 (3.29)

msns

✓
@us

@t
+ (us ·r)us

◆
= Zsens(E+ us ⇥B)�rps �r ·⇧s +Rs (3.30)

with Rs is the momentum transfer on the specie s. For bulk ion and electrons, it can be
expressed as

Re = �Ri = �nee[⌘kJk + ⌘?J?] (3.31)

with ⌘k and ⌘? the parallel and perpendicular plasma resistivity.

XTOR-K ion continuity equation

In XTOR-K, the time advance of the kinetic density is obtained by the kinetic particle
advance. Therefore only the time evolution of the bulk ion density is needed. Using equations
(3.27,3.29), the ion continuity equation implemented in XTOR-K can be obtained as

@tni = �r(niv)� 1

eZi

rpi ·r⇥ B

B2
+r ·D?rni + S (3.32)

where S and D are source and transport terms that arise from the inclusion of viscous drift.
The source term is a free parameter, but it is usually set such as S = �r ·D?rni(t = 0).
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XTOR-K parallel equation of motion

Since the MHD parallel velocity is simply the parallel velocity of bulk ions (equation 3.22),
the parallel fluid equation of motion only needs to take into account the ion momentum
equation. Using the ion continuity equation (3.29) and the parallel ion momentum equation
(3.30) gives

b̂ ·

mini

@

@t
ui +miini(ui ·r)ui

�
= �rkpi � b̂ ·r ·⇧i + qiniEk + b̂ ·Ri (3.33)

The Ohm’s law used in XTOR-K fluid equations is identical to the one used in [Lütjens and
Luciani, 2010], with

E = �v⇥B� 1

ene

b̂
⇣
b̂ ·rpe + b̂ ·r ·⇧e

⌘
+ ⌘kJk + ⌘?J? (3.34)

Concerning the fluid equation of motion, a ion gyroviscous cancellation arises between some
ion diamagnetic terms and the anisotropic partial ion pressure, such as dv⇤

i /dt = �r · ⇧i

[Hazeltine and Meiss, 2003]. Using the gyroviscous cancellation and the parallel component
of equation (3.34), equation (3.33) can be recast as, using the average ion velocity (equation
3.27)

b̂[@tv+ (v ·r)v+ (v⇤
i ·r)v?] =

rkpi
mini

� Zirkpi
mine

� (r ·⇧e)k
mine

+
e⌘kJk
mi

hne

ni

� Zi

i
(3.35)

In order to modify as less as possible the existing equations in XTOR-2F, the left hand side
of this equation needs to rewritten using the identity x@ty = @t(xy)� y@tx. Noting that

@tb̂ =
(@tB)?

B
= �r⇥ E?

B
(3.36)

where Faraday equation has been used. The electric field rotational can computed from
Ohm’s law. Therefore, the left hand term of equation (3.35) can be developed as

b̂ · [@tv+ (v ·r)v+ (v⇤
i ·r)v?] = @tui,k + (v ·r)ui,k +

1

B
v? · (r⇥ E)? (3.37)

Adding the e↵ects of ion viscous drift, the complete parallel equation of motion implemented
in XTOR-K is

@tui,k + [(v ·r)v+ (v⇤
i ·r)v?]k =

1

B
v? · (r⇥ E)? � rkpi

mini

� Zirkpe
mine

� (r ·⇧e)k
mine

(3.38)

The term (r ·⇧e)k is neglected for now in XTOR-K.

XTOR-K perpendicular equation of motion

Turning to the perpendicular equation of motion, summing the equations of motions of
electrons, ions and kinetic particles gives

(I� b̂⌦ b̂)

 X

s=i,e

msnss@tus +
X

s=i,e

mssns(us ·r)us + @t

⇣X

k

mknkuk

⌘
�

J⇥B+
X

s=i,e

⇣
rps +r ·⇧s

⌘
+
X

k

r ·Pk

�
= 0 (3.39)
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where collisions contributions are null since Ri +Re = 0. It is reminded that collisions are
not taken into account in the kinetic particle momentum equation (3.15). Using the vectorial
relation

(I� b̂⌦ b̂)@tx = @tx? + (x · b̂)@tb̂+ (x · @tb̂)b̂ (3.40)

and equation (3.36), the equation (3.39) can be reformulated as

X

s

msns@tui,? +
X

s

msns(us ·r)us,? + @t

⇣X

k

mknkuk,?

⌘
�

1

B

hX

s

msnsus,k(r⇥ E)? + (
X

s

msnsus,? · (r⇥ E)?)b̂
i
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J⇥B�
X

s=i,e

⇣
rps,? + (r ·⇧s)?

⌘
+
⇣X

k

r ·Pk

⌘

?
(3.41)

The electron inertia can be neglected in the left hand side of equation (3.41) sinceme << mi,k.
Kinetic particles are considered here to be of ionic type. Considering equations (3.27) and
(3.21), and using the gyroviscous cancellation of the bulk ion specie dv⇤

i /dt = �r ·⇧i, the
left hand side of equation (3.41) +r ·⇧i reads

X

s=i,e

msns@tui,? +
X

s=i,e
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i
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+ @t

X

k

Jm
kin,? (3.42)

Finally, combining equations (3.41) and (3.42), the perpendicular fluid equation of motion
implemented in XTOR-K is

⇢i@tv? +
h
⇢i(v ·r)v+ ⇢i(v

⇤
i ·r)v?
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X
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i )

◆

?
(3.43)

The term (r ·⇧e)? is neglected for now in XTOR-K.

Electron and ion temperature evolution in XTOR-K

The same closure procedure as in [Lütjens and Luciani, 2010] is used for XTOR-K. The
second order moment in XTOR-K two fluid equations reads

dSs

dt
+

r ·Qs

ps
= 0 (3.44)

with Ss the specie entropy, and Qs the specie heat flux, defined as

Ss =
1

� � 1
ln

ps
n�s

, Qs =
5ps

2qsB2
B⇥rTs (3.45)

with � the ratio of specific heat, equal to 5/3 in a hot plasma. The total temporal temperature
derivative of each specie s can be directly rewritten in terms of its entropy one as

dTs

dt
=

2

3
Ts

dSs

dt
+

2

3

Ts

nS

dns

dt
(3.46)
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Then, using the specie continuity equation and equation (3.44), the vectorial relations r ·
(A⇥B) = (r⇥A) ·B�A · (r⇥B) and r⇥rx = 0 , the specie temperature time evolution
reads

@tTs = �us ·rTs � 5

3

Ts

qs
rTs ·r⇥ B

B2
� 5

3
Ts

B

qsnsB2
· (rTs ⇥rns)� 2

3
Tsr · us (3.47)

To close XTOR-K set’s of fluid equations, the evolution of both the electron and ion tem-
perature are required. The inclusion of kinetic species induces a kinetic term in the averaged
electron velocity (equation [3.28]), since the quasi-neutrality assumption ne = Zini +

P
k Zk

needs to be preserved.

Inserting equation (3.27) in equation (3.47), the ion temperature evolution implemented
in XTOR-K is

@tTi = �2

3
Tir · v� v ·rTi � Ti

Zie

✓
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+
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3

◆
·r⇥ B

B2
(3.48)

Inserting equation (3.28) in equation (3.47), the electron temperature evolution implemented
in XTOR-K is

@tTe = �2

3
Ter · v� v ·rTe +

Te

e
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with Jk = (r ⇥ B) · b/µ0. Equations (3.32), (3.38), (3.43),(3.48) and (3.49) are then the
complete set of fluid equations solved by XTOR-K, including kinetic moments contributions.

3.2.3 Newton-Krylov/Picard algorithm in XTOR-K

In XTOR-K, it has been chosen to describe the kinetic species using a full-f method. It implies
that the phase space position (r,v) of every particle among the kinetic species distribution
function is evolved in time. The choice of a full f method was motivated by the simplicity of
its implementation in a hybrid code, compared to a �f method. The particle time advance
is performed in 6D by using the classical Lorentz equation

ṙk = vk, v̇k =
qk
mk

[E+ vk ⇥B] (3.50)

The particle advance is done numerically by applying a Boris-Buneman scheme, that is de-
tailled in [Leblond, 2011]. For simplicity, the basis used for this time advance is the orthogonal
set (eR, e'⇤ , eZ), with eR and eZ respectively the directions of the tokamak R and Z axis,
and e'⇤ the counter toroidal direction regarding the basis used for the MHD fields, (e , e✓, e').

The particle distribution function is computed with a Particle In Cell (PIC) module. A
finite number of markers N, macro-particles, is used to represent the distribution function
Fk. In XTOR-K, the weight from one marker to another is chosen to be constant. In order
to simulate Nphys physical particles, the weight of the jth marker !j is !j ⌘ !PIC = Nphys/N ,
such as

Fk(r,v) =

N
physX

i

�(r� ri)�(v� vi) =
NX

j

!j�(r� rj)�(v� vj) (3.51)

The noise level introduced by a PIC module with constant weighting is ✏noise / 1/
p
N

[Aydemir, 1994].
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Particle sub-time step

The physical richness of having a ”full orbit, full-f” code has unfortunately its computational
downsides. Given that the particle advance is not gyro-kinetic, particles need to be advanced
using a sub-time step regarding the time step used for the evolution of the MHD fields. This
sub-time step needs to resolve the particle’s gyration. Theoretically speaking, because of
the circle’s squaring, only four sub-time step per gyration are needed. However, parametric
studies in [Leblond, 2011] showed that approximatively 12 points by gyration are required
for a good conservation of the particles invariants. This imposed a sub-time step of order
�t,k ⇠ 10�3⌧A ⇠ 10�10 seconds for light ions such as alpha particles. The Alfvén time is
defined by ⌧A =

p
µ0⇢/B0R0. For ITER relevant magnetic equilibria, the Alfvén time is of

order 10�7 seconds. The fluid time step in XTOR-K is usually set at �t,MHD ⇠ ⌧A. Therefore,
⇠ 103 sub-time steps are required to advance kinetic particles over one fluid time step.

The ratio between the electron and ion frequencies is |!c,e/!c,i| = me/mi ⇠ 10�3. Kinetic
advance of electrons would require sub-time steps three orders of magnitude below those of
ions. Therefore the full orbit full f simulation of kinetic electrons is not numerically realistic
yet for reasonable simulation times. However, a gyro-kinetic description of kinetic electrons
would waive the requirement of having such low electron sub-time step.

Since a full-f method is used, every macro-particle of the kinetic distribution needs to be
advanced in time. Moreover, 107 � 108 macro-particles are required in the PIC module to
have a reasonable level of noise. These two points imply that that the particles advance rep-
resent the most costly operation in a XTOR-K fluid time step, superior to the MHD advance.
The PIC module therefore needs to be highly parallelized, to decrease the computational time
of a hybrid simulation.

Moments projection

Similarly to the particle advance, the particles moments are projected on the direct grid
(R,'⇤, Z). To simplify the interpolation of the particles position on this grid, a Fourier
transform in the toroidal direction in performed. In the poloidal plane (R,Z), macro-particles
are projected on the grid using bilinear projection. The weighting factor Si,j at a grid point
(Ri,'

⇤
l , Zj) for a macro-particle with coordinate (Rk, Zk) is

Si,j(Rk, Zk) = !PIC�H(Ri+1�Rk)�H(Rk�Ri)�H(Zj+1�Zk)�H(Zk�Zj)(1+Rk�Ri+1)(1+Zk�Zj+1)
(3.52)

Assuming that nmax toroidal grid points are used, the kinetic moments used in XTOR-K
fluid equations at a grid point (Ri, Zj) are

nk(Ri, Zj) =
NX

k=1

Si,j(Rk, Zk) (3.53)

vk(Ri, Zj) =
NX

k=1

ukSi,j(Rk, Zk) (3.54)

Pk(Ri, Zj) =
NX

k=1

uk ⌦ ukSi,j(Rk, Zk) (3.55)

The moment vk is not computed in XTOR-K, but it illustrates how the moments Jm
kin and

Jq
kin are computed.
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The self-consistent Kinetic-MHD advance in XTOR-K

For a self-consistent advance of both MHD fields and kinetic particles, a Newton-Krylov/Picard
algorithm is used in XTOR-K. It uses the implicit Newton-Krylov scheme described in
[Lütjens and Luciani, 2010].

Figure 3.2: The Newton-Krylov/Picard schem. It enables to advance self-consistently kinetic
particles and MHD fields.

The Newton-Krylov/Picard scheme is summarized on Figure 3.2. A brief explanation of this
scheme is discussed here over one fluid time step. Let us consider the nth fluid iteration. At
the beginning of this iteration, the MHD fields are noted xn, the kinetic moments ⇧n and the
phase space position of all macro-particles (r,v)n. In order to obtain all theses quantities at
the n+1th fluid iteration, a Picard loop is performed. The algorithm of this loop is explained
here in details for the ith Picard iteration

• Step [1] : The Newton-Krylov algorithm is used to advance XTOR-K fluid equations.
The MHD fields used are xn. The particles moments used are ⇧n+1

i , obtained at the
previous Picard iteration. If i = 0, ⇧n+1

0 is initialized by extrapolation of the kinetic
moments ⇧n and ⇧n�1. This initialization enables to reduce the number of Picard
iterations required over one fluid iteration. The MHD fields xn+1

test are obtained at the
end of the MHD advance.

• Step [2] : The particle advance is done from the initial phase space positions (r,v)n. It
is performed by successive advances over a kinetic sub-time step. The electromagnetic
fields used in Lorentz equation are interpolated between the MHD fields xn

test and xn+1
test .

Once the advance has reached a fluid time step, the new phase space positions (r,v)n+1
test

are obtained. From these positions, the new kinetic moments ⇧n+1
i+1 are interpolated on

the (R,'⇤, Z) grid.

• Step [3] : The quantity �⇧n+1
i+1 = ⇧n+1

i �⇧n+1
i+1 is computed. The kinetic moment used

in the total pressure tensor Pk. If ||�⇧n
i || < ✏, the Picard algorithm has converged.

Therefore, at the n + 1th fluid step, the MHD fields are xn+1 = xn+1
test , the phase space

position (r,v)n+1 = (r,v)n+1
test and the kinetic moments ⇧n+1 = ⇧n+1

i+1 .
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If ||�⇧n
i || > ✏, the Picard algorithm has not converged. The quantities xn+1

test and
(r,v)n+1

test are not retained. The algorithm goes to step [4]. The quantity ✏ is a small
parameter set in advance at the beginning of the simulation.

• Step [4] : The kinetic moments ⇧n+1
i+1 are injected back into step [1]. One complete

fluid iteration has been done.

3.2.4 Management of the noise level in XTOR-K

Since a full f method is used in XTOR-K, the code is considerably more a↵ected by the
noise brought by the PIC module than other hybrid codes using a �f scheme. According
to [Aydemir, 1994], the noise in a �f method is reduced by a factor �fk/Fk << 1, where
Fk = Feq,k + �fk. Therefore, several points need to be verified carefully when perform-
ing Kinetic-MHD simulations with a full f method. First, the dominant modes simulated
must not be a↵ected by the number of macro-particles N in the simulation. Second, the
noise level must evolve as 1/

p
N when the number of macro-particles is increased [Aydemir,

1994]. The noise level can be evaluated by the harmonic with lowest energy in the simulation.

On Figure 3.3, magnetic energies obtained from the same XTOR-K simulation, with dif-
ferent number of macro-particles, are presented. The harmonics n = 1 correspond to the
dominant modes, in their linear phase. The harmonics n = 3 correspond to the harmon-
ics with lower energy in each simulation. It can be seen on Figure 3.3 that the dominant

Figure 3.3: Magnetic energies of the n = 1 and n = 3 modes simulated in XTOR-K. The
number of macro-particles have been varied from one simulation to an other. Up to t/⌧A =
900, the n = 3 modes are still below the noise level. At t/⌧A = 900, these modes rise above
the noise level. It is noted that the noise level from one simulation to another indeed varies
as 1/

p
N . This is particularly visible at t/⌧A = 600. The n = 1 dominant modes are not

a↵ected by the number of macro-particles.

n = 1 modes are not a↵ected by the number of macro-particles used. The n = 3 modes
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are below their respective noise level up to t⌧A = 900. Their noise level can be compared
for example at t/⌧A = 600. Let us denote EN the noise level observed for each simulation,
with N the number of macro-particles. At t/⌧A = 600, E300 = 2.10�6, E51 = 5.10�6 and
E13 = 1.05 ⇥ 10�5. It can be observed that E51/E300 = 2.5 ⇠ p

300/51 = 2.4 and that
E13/E51 = 2.1 ⇠ p

51/13 = 1.98. The noise level indeed varies has 1/
p
N . After t/⌧A = 900,

all the n = 3 harmonics are beyond their noise level, they get pumped by toroidal coupling
with the n = 1 harmonics.

A last point needs to be verified when performing a hybrid simulation with XTOR-K. The
noise level needs to be below the local minima of the unstable modes that are studied in the
nonlinear phase. As an example, kinetic energies of a XTOR-K simulation at the beginning

Figure 3.4: Kinetic energies obtained from a hybrid simulation in its nonlinear phase. The
PIC noise is particularly high in this simulation, the linear phase of the unstable modes n = 1
are below the noise level. In its nonlinear phase, the n = 1 modes exhibit local minima. The
number of macro-particles N needs to be tuned so that the local minima lie above the noise
level.

of the nonlinear phase are plotted on Figure 3.4. According to the n = 4 modes, the noise
level of the simulation in terms of kinetic energy is 10�4. The dominant modes n = 1 exhibit
oscillations in the nonlinear phase, with the lowest local minima value being W = 5.10�4. In
this simulation, 300 million macro-particles are used. If 13 million of macro particles would
have been used, the local minima W = 5.10�4 would have lied below the noise level, which
is not acceptable.

It has been chosen to set the noise level well below the n = 1 modes smallest minima
for two reasons. First, modes with lower energies such as the n = 2 can become of interest in
the simulation. Therefore, their local minima, which will be below those of the n = 1 modes,
need also to be resolved. Second, phase space diagnostics are used in this simulation. They
permit to see the time evolution of the wave-particle resonance and its structure in phase
space. These diagnostics are presented in Chapter 4. A high number of macro-particles are
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required for these diagnostics. It enables to obtained a refined resolution in phase space in
order to see the thin wave-particle resonant structures.

3.3 Linear stability of the internal kink in MHD

Now that the XTOR-K code has been presented in details, the structure and the dispersion
relation of the n = m = 1 internal kink MHD is discussed. This discussion is needed here for
two reasons. First, the fishbone instability studied in this thesis is a n = m = 1 Kinetic-MHD
mode, that gets destabilized due to the resonant interaction between a n = m = 1 internal
kink and energetic particles eigenfrequencies. Before addressing the issue of the fishbone
instability, the nature of the internal kink instability needs to be presented.
Second, a linear theory for the fishbone instability needs to be derived. The code XTOR-K
has been implemented recently, it needs to be verified against linear theory before being used
to simulate the fishbone instability. In order to derive such a linear theory, which is the
matter of Chapter 4, a dispersion relation for the internal kink is required.

In this section, the ideal MHD equations are firstly linearized. The energy principle is
presented, in order to assess the stability of an arbitrary magnetic configuration. Using
the energy principle formalism, the mode structure and the dispersion relation of the ideal
MHD internal kink in cylindrical geometry is derived from [Freidberg, 2014]. Afterwards,
the internal kink mode structure and its the dispersion relation is generalized to two fluid
resistive MHD equations, including toroidal curvature. This dispersion relation constitutes
the groundwork of the fishbone dispersion relation derived in the next chapter.

3.3.1 The Energy Principle

Linearization of the MHD equations

In order to perform a linearization of the ideal MHD equations (equations 3.1 - 3.7), all
MHD fields can be separated into an equilibrium and a perturbed part. Noting P (r, t)
a given field, it can be expressed as P (r, t) = P0(r) + P1(r)e�i!t, where ! the complex
frequency of an arbitrary instability. All MHD fields possess an equilibrium part, except the
MHD velocity since at MHD equilbrium, v = 0. When a macroscopic instability occurs, the
plasma experiences, at a given time t and location r inside the torus, a shift ⇠(r, t) from its
equilibrium position. This shift is called the MHD displacement and verifies ⇠̇(r, t) = v(r, t).
Using these notations, the MHD equations can be linearized

p1 = �⇠ ·rp� �pr · ⇠ (3.56)

B1 = r⇥ (⇠ ⇥B) (3.57)

� !2⇢⇠ = F(⇠) (3.58)

F(⇠) =
1

µ0

⇥
(r⇥B1)⇥B+ (r⇥B)⇥B1

⇤
+r(⇠ ·rp+ �pr · ⇠) (3.59)

The linear stability analysis in MHD therefore reduces to an eigenvalue/eigenvector prob-
lem according to equation (3.58), with eigenvalue !2 and eigenvector ⇠. In ideal MHD,
!2 2 R. During plasma discharges and MHD numerical simulation, several eigenfunctions ⇠
with corresponding eigenvalues !2 can co-exist. However, only those with the smaller !2 are
of interest, i.e. with highest growth rates, since they will dominate the dynamics. The linear
stability problem is then solved by finding eigenfunctions ⇠ solutions of (3.58) that minimizes
the eigenvalues !2.
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The present formulation of the eigenvector/eigenvalue problem does not detail a system-
atic scheme for finding the solutions of (3.58) with minimum eigenvalues. It enables only
to obtain the eigenvalue corresponding to a given test eigenfunction ⇠0. This is only useful
when the global structure of the unstable mode is already known. However, in order to prop-
erly assess the linear stability of a given magnetic configuration, the eigenvector/eigenvalue
problem needs to be solved entirely. To this end, a variational formalism is now presented.

The Energy Principle

The eigenvector/eigenvalue problem can be reformulated into the Energy Principle [Freidberg,
2014], chapter 8.7. By forming �1/2

R
V
d3r ⇠⇤· on (3.58), the instability total energy can be

expressed as
E(⇠, ⇠⇤) = K(⇠, ⇠⇤)� �W (⇠, ⇠⇤) = 0 (3.60)

where K stands for the kinetic energy of the instability

K(⇠, ⇠⇤) =
1

2

Z

V

d3r ⇢!2|⇠|2 (3.61)

and �W its potential energy.

�W (⇠, ⇠⇤) = �1

2

Z

V

d3r ⇠⇤ · F(⇠, ⇠⇤) (3.62)

The eigenfunctions of interest are those which minimize the potential energy. Consider-
ing a test solution ⇠s for a given magnetic configuration, it needs to verify that 8�⇠ 2
R3, �W (⇠s + �⇠) = �W (⇠s). Given that the potential energy is a complex function of the
MHD displacement, it is useful to choose a variational parameter that eases the minimization
procedure, by taking advantage of the potential energy structure for an arbitrary magnetic
configuration. Once the potential energy has been minimized for a given magnetic configu-
ration, its linear stability can be directly assessed by the sign of �W since

!2 =
�W (⇠, ⇠⇤)

1
2

R
v
d3x |⇠|2 (3.63)

Given that |⇠|2 is purely positive, the sign of !2 is entirely determined by the potential en-
ergy, so that the considered magnetic configuration is unstable when �W < 0, and stable
otherwise. This is however only true for the one fluid ideal MHD equations

The potential energy needs to be reformulated in a way that highlights its simple depen-
dence over a variational parameter. This reformulation also enables to highlight the physical
processes that are stabilizing or destabilizing MHD waves. Following the complete derivation
presented in [Freidberg, 2014] chapter 8.5.3, �W can be expressed as

�W (⇠, ⇠⇤) =
1

2

Z

V

dr

"
|B1,?|2
µ0

+
B2

µ0
|r·⇠?+2⇠?·|2+�p|r·⇠|2�2(⇠?·)(⇠?·rp)�Jk(⇠

⇤
?⇥b)B1,?

#

(3.64)
The three first terms of the potential energy being strictly positive, they represent the sta-
bilizing terms. These terms relax perturbations imposed to the equilibrium by propagating
MHD waves. The only terms that do not have a priori a clear sign are the last two. They
constitute the terms that can drive MHD instabilities. The physical meaning of each terms
is explained as follow :
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1st term : It stands for the energy required to bend the field lines, driving the shear Alfvén
wave at the Alfvén velocity Va = B0/

p
µ0⇢. This velocity, or order 107m.s�1 in tokamaks, is

associated to the Alfvén time by ⌧A = VA/R0, or order 10�7 � 10�6 s.
2nd term : It represents the energy required to compress the field lines, driving the compres-
sional Alfvén waves, that propagates either at the Alfvén velocity, or at the sound velocity
cs =

p
�p/⇢.

3rd term : It is associated to the energy required to compress the plasma, driving the sound
wave that propagates at the sound velocity.
4th and 5th term : They represent respectively the pressure and current terms, that drives
MHD instabilities.

It can be noted that the parallel MHD displacement ⇠k only appears in the third term of the
potential energy. Therefore, using it as the variational parameter enables to simplify greatly
the amount of analytical calculations required to minimize the potential energy. It can be
shown that minimizing �W against ⇠k is equivalent to choose perturbations such that the
plasma becomes incompressible, i.e. r · ⇠ = 0 [Freidberg, 2014] chapter 8-9.

To summarize, the general procedure to assess the linear stability goes as follow. In a first
step, the potential energy needs to be explicitly derived for the considered magnetic con-
figuration. Then, the potential energy is minimized against ⇠k so that the plasma becomes
incompressible with r ·⇠ = 0. If necessary and/or possible, the potential energy is minimized
further with an other components of the MHD displacement. Finally, the eigenfunction ob-
tained through this variational formalism is injected inside the potential energy. The sign
of �W then assesses the linear stability, and equation (3.63) is the dispersion relation of the
instability.

3.3.2 Stability of the internal kink in cylindrical geometry

The energy principle formalism is now applied to the tokamak configuration, for the study
of the internal kink. The derivation with toroidal curvature is beyond the scope of this dis-
cussion, and can be found in [Bussac et al., 1975]. The present derivation will be performed
in cylindrical geometry.

In order to describe a configuration still relevant to the tokamak configuration with circular
cross section and large inverse aspect ratio, a cylinder of length L = 2⇡R0 is considered, with
outer radius r = a. Periodic boundary conditions are used to mimic a tokamak configuration.
The equilibrium magnetic field of such a configuration is B = B✓✓̂ + B'(r)'̂, '̂ being here
the direction along the cylinder axis. The safety factor is simply q(r) = rB'/(R0B✓). This
configuration is periodic along ✓ and ', so the MHD displacement can be described by ⇠(r) =
⇠(r)ei(m✓�n'). The wave vector has been here assumed to be of the form k = m✓̂/r � n'̂/R.
The derivation of �W firstly considers arbitrary poloidal and toroidal harmonics, and then
focuses on the n = m = 1 internal kink. Given the relative complexity of the magnetic field,
it is convenient to use the following basis vectors

b̂ = 1
B
(B✓✓̂ +B''̂), ✓̂ = 1

B
(B✓b̂+B'⌘̂)

⌘̂ = 1
B
(B'✓̂ � B✓'̂), '̂ = 1

B
(B'b̂� B⌘'̂)

(3.65)

The displacement vector can then be expressed as ⇠(r) = ⇠r(r) r̂ + ⌘(r) ⌘̂ + ⇠k(r)b̂. The
derivation that will follow is present in [Freidberg, 2014], chapter 11-5. The steps of the
derivation are presented to give some intuition of the internal kink structure.
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Minimization of �W with respect to ⇠k and ⌘

In order to get an expression for ⇠k from r · ⇠ = 0, the following notations are used :
F = k ·B = (B'/R0)(m/q � n), G = (m/r)B' + (n/R)B✓

rk⇠k = �r? · ⇠? , ⇠k =
iB

F
r · ⇠? (3.66)

It is noted here that ⇠k is only defined for F (r) 6= 0. The parallel displacement becomes
singular at the resonant surface rs. This surface is defined by k · B(rs) = 0, which implies
q(rs) = m/n for a tokamak configuration. But it can be shown that ⇠k can be extended by
continuity at this surface, the plasma compressibility making a vanishing contribution to �W .

It can be shown that �W is further minimized by

⌘ =
iR2

B'n2r


G(r)[r⇠r]

0 � 2nB✓

R
⇠r

�
(3.67)

Minimized expression of �W for the n = m = 1 internal kink

Using equations (11.89) and (11.90) in [Freidberg, 2014], it can then be shown that the
potential energy for this configuration is

�W

2⇡2R/µ0
=

Z a

0

dr
⇥
f(r)|⇠0r|2 + g(r)|⇠r|2

⇤
+


n2✏2B2

' �m2B2
✓

n2✏2 +m2

�

a

|⇠r(a)|2 (3.68)

with

f(r) =
r✏2B2

'

⇣
1/q � n/m

⌘2

1 + ✏2n2/m2
(3.69)

g(r) =
✏2B2

'

1 + ✏2n2/m2


2µ0p

0

B2
'

n2

m2
+
1

r

⇣1
q
� n

m

⌘2

(m2�1+n2✏2)+
2n2✏2

rm2(1 + ✏2n2/m2)

⇣ n2

m2
� 1

q2

⌘�

(3.70)
Since only internal modes are of interest in this thesis, ⇠(a) = 0 has been chosen as bound-
ary condition. This is equivalent to neglect external kink modes. Using the notation
�WPµ0/2⇡2R =

R
dr(B2

')/(1 + ✏2n2/m2)W (r), an expansion of W can be performed re-
garding the small parameter ✏ = r/R, such as W = W2 +W4 + O(✏6). The lowest order of
this expansion reads

W2(r) =
✏2

r

⇣1
q
� n

m

⌘2

r2|⇠0|2 + (m2 � 1)|⇠|2

�
(3.71)

Therefore, at leading order, all perturbations are stable for m > 1 since W2(r) > 0. This
result implies that the m = 1 mode is always the most unstable for this configuration.
Turning now to the internal kink n = m = 1, it is possible to construct eigenfunctions that
minimize further the potential energy so that

W2(r) = r✏2
✓
1

q
� 1

◆2

|⇠0r|2 = 0 (3.72)

This equation implies that at its lowest order, denoted ⇠r,0, the radial eigenfunction of the
n = m = 1 internal kink reads

⇠r,0 = ⇠0�H(rs � r) (3.73)
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with �H the Heaviside function, and ⇠0 the radial displacement at r = 0. ⇠r,0 is not constant
all over the cylinder since at r = rs, 1 � q(rs) = 0 for the n = m = 1 instability. Therefore
W2 vanishes for r > rs. Using this eigenfunction, the potential energy needs to be expressed
at the next order in ✏

W4(r) = �⇠2r,0✏2�
✓
✏2
3q + 1

�rq2
[1� q]� p0

p

◆
(3.74)

The minimized potentiel energy �Wmin then reads

�Wmin =
2⇡2R0

µ0

Z r
s

0

B2
'(r)W4dr (3.75)

The internal kink n = m = 1 is therefore unstable when �Wmin < 0 , W4(r) > 0. Given that
inside the cylinder, as in a tokamak, p0(r) < 0 since all the profiles are peaked, the internal
kink is always unstable when 1 � q(r) > 0. It implies that existence of a q = 1 surface is a
su�cient condition to trigger this instability. Moreover, the dependencies of W4 over p0 and
1�q show that the internal kink is at the same time a current and pressure driven instability.

Mode structure and growth rate

In order to obtain the precise mode structure of the internal kink, as well as its dispersion
relation, it is necessary to minimize the instability total energy E = K��W . This is necessary
since the next order contribution in ✏ to ⇠r, ⇠r,2, becomes singular near the resonant surface
r = rs. It implies that the kinetic energy varies significantly in this region, called the inertial
layer. First, the potential energy is minimized at next order in ✏, ✏4. Considering equation
(3.68) and applying the variational principle with respect to ⇠r ! ⇠r + �⇠r, �W is minimized
through

�(�W )⇠ ⇡
Z

dr
h
(f⇠0)0 � g⇠

i
�⇠ = 0 (3.76)

which gives the Euler-Lagrange equation

(f⇠0)0 � g⇠ = 0 (3.77)

Given that the expansions of f , g and ⇠ with respect to ✏ are f(r) = f2(r) + O(✏4), g(r) =
g4(r)+O(✏6) and ⇠(r) = ⇠r,0+ ⇠r,2+O(✏4), the next order MHD displacement ⇠r,2 is given by

d

dr

⇣
f2(r)

d⇠2
dr

(r)
⌘
= ⇠0(r)g4(r) (3.78)

with

f2(r) =
r✏2B2

'

q2
(1� q2), g4(r) = B2

'(r)W4(r) (3.79)

which gives an expression at second order for ⇠ at both sides of the inertial layer

d⇠2
dr
(r) = q2⇠0

r✏2[1�q(r)]2B2
'

(r)

R r
s

0 B2
'(r

0)W4(r0)dr0, r < rs

= q2↵
r✏2[1�q(r)]2B2

'

(r) , r > rs
(3.80)

↵ being here a constant yet to be determined. The derivative of ⇠r,2 is in fact diverging in
the inertial layer, the kinetic energy cannot be considered constant there as it is the outer
region r < rs, E needs to be minimized. Assuming that the internal kink is unstable with
!2 = ��2 the mode growth rate, the kinetic energy reads

K = �2⇡2R

Z
dr r⇢�2

h
|⇠k|2 + |⇠r|2 + |⌘|2

i
(3.81)
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In the inertial layer r ⇠ rs, it can be assumed that ⇠ << rs⇠
0 due to the brutal shift in the

displacement vector at the lowest order. Such an assumption implies that in K, the term
|⇠r|2 is neglected, and that

⇠k ⇡ iB

rF

h
1� G2

B2k2
0

i
⇠0r =

iF

Bk2
0

⇠0r ⇡ ir
B✓

B
⇠0r / ✏⇠0r (3.82)

|⇠k|2 being of order ✏2, it can also be neglected. The only term remaining in (3.81) is therefore
|⌘|2, which reads under the previous assumption

⌘ ⇡ iG

Bk2
0

⇠0r ⇡ ir
B�

B
⇠0r ⇡ ir⇠0r (3.83)

Therefore, inside the inertial layer r ⇠ rs, the instability kinetic energy is

K ⇡ �2⇡2R

Z
dr ⇢�2r3|⇠0r|2 (3.84)

At order 2 in ✏ in the inertial layer, W2 = r3F 2|⇠0r|2/R2
0. The potential energy then is

�W =
2⇡2R0

µ0

Z
dr r3F 2|⇠0r|2 (3.85)

Therefore, at lowest order, using the Alfvén velocity and the Alfvén time vA = B2
'/
p
µ0⇢ and

⌧A = R0/vA

K � �W = 0 ,
Z

dr
B2
'

µ0
r3
✓h

(�⌧A)
2 +

R2
0F

2

B2
'

i
|⇠0r|2

◆
= 0 (3.86)

where F 2 can be expanded around the inertial layer following r = rs + x at first order
as F 2(R2

0/B
2
') ⇡ x2q02(rs) = x2s(rs)2/r2s . s is the local magnetic shear defined by s(r) =

rq0(r)/q(r). Assuming that at lowest order in ✏ B' ⇡ B'(r = 0) = B0, the Euler equation
for (3.86) reads at lowest order in ✏

(d/dx)
h
r3s
�
⌧ 2A�

2 + x2s2/r2s
�|⇠0|2

i
= 0

, (d⇠r/dx) = cst/
h
1 + (s2x2/⌧ 2A�

2r2s)
i

, ⇠r = K1 +K2 arctan
�
sx/⌧A�rs

�
(3.87)

Matching this expression with the boundary conditions limx!�1 ⇠(x) = ⇠0, limx!+1 ⇠(x) =
0, the complete radial mode structure of the n = m = 1 internal kink finally is

⇠r = ⇠0


1

2
� 1

⇡
arctan

⇣ sx

⌧A�rs

⌘�
(3.88)

The mode structure is displayed on Figure (3.5). The MHD displacement ⇠ of the internal
kink is predominantly a core radial displacement ⇠r, shaped at first order as a Heaviside func-
tion ⇠r,0 centered on the resonant location q(rs) = 1. The next order correction ⇠r,2 tends to
smooth the discontinuity at the resonant surface. According to equation (3.88), ⇠r,2 becomes
important for large growth rates, large resonant position rs, and low magnetic shear at the
resonant surface. Since for parabolic q profile, s(rs) = 2[1�q(0)], ⇠r,2 becomes also important
when the on-axis safety factor is close to m/n = 1. On Figure 3.5, a parabolic q profile has
been used, with the following parameters rs = 0.5, �⌧A = 1.10�2, q0 = 0.8.
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Figure 3.5: Compared values for the safety factor q, the total displacement ⇠r, and the lowest
order displacement ⇠r,0, as functions of the normalized radial flux component r =

p
 / edge,

where  edge is the magnetic flux at the edge of the cylinder

The growth rate and the ↵ constant are found by matching (3.80) and the derivative of
(3.88) at x ! 1, far from the q = 1 surface which is

lim
x!1

d⇠r
dr

= �⇠0⌧A�rs
⇡sx2

(3.89)

giving

�⌧A = � ⇡R2
0

sr2sB
2
'(rs)

Z r
s

0

B2
'(r)W4(r)dr, ↵ =

⇠0R
2
0

B2
'(rs)

Z r
s

0

B2
'(r)W4(r)dr (3.90)

Since it can be shown that �⌧A / 1/n, the n = m = 1 instability is then the dominant one
in the cylindrical configuration. A similar result can be shown in toroidal geometry [Bussac
et al., 1975]. Finally, the link between the minimized potential energy, �Wmin, and the mode
normalized growth rate with �H = ⌧A�, can be made by direct comparison of equations (3.75)
and (3.90), yielding the one fluid ideal MHD dispersion relation

�Wmin = �2⇡

µ0

⇠20
R2

0

R0r
2
0s0B

2
'(r

2
s)�H = �2⇡

µ0
⇠20R0s0B

2
✓�H (3.91)

This relation holds also for toroidal geometry, assuming large inverse aspect ratio.

3.3.3 Generalization of the internal kink relation dispersion

E↵ects of toroidal curvature

The inclusion of toroidal curvature was first performed in [Bussac et al., 1975], and then later
in [Connor and Hastie, 1985], where monotonic q profiles were assumed. It does not change
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the eigenfunction ⇠ found in cylindrical geometry. However, toroidal curvature a↵ects the
dispersion relation of the internal kink, as

�H = �⌧A = �3⇡s(rs)
�
1� q(0)

� r2s
R2

0

✓
13

144
� �p(rs)

2

◆
(3.92)

where �p = 2µ0p/B
2
✓ is the poloidal beta. Contrarily to cylindrical geometry, the internal

kink is not always unstable when there exists a q = 1 surface inside the torus. The poloidal
beta needs to be as well beyond the threshold value �p,res = 13/144.

A 3D representation of the internal kink mode structure has been displayed on Figure (3.6)
in toroidal geometry. The color gradient refers to the core magnetic surfaces as red, and
to the edge magnetic surfaces as blue. The n = m = 1 mode is pushing radially outward
the magnetic axis, with a structure 1,1 periodic in the poloidal and toroidal directions. The
green lines represent the helicoidal structure of the magnetic field in the torus, at di↵erent
poloidal positions of the magnetic surface labelled in green. The red lines display the same
thing at the plasma core.

Figure 3.6: 3D representation of the n = m = 1 internal kink mode structure

E↵ects of finite resistivity

Relaxing the ideal MHD approximation implies that the frozen-in law is not verified anymore,
Ohm’s having the additional contribution ⌘J, where ⌘ is the plasma resistivity. Resistive
e↵ects induce magnetic reconnection inside the inertial layer. The mode eigenfunction is
only modified by the fact that the ideal growth rate is replaced by the resistive one. The
mode eigenvalue !2 is modified when considering kinetic e↵ects. Considering the normalized
growth rate �H of ideal MHD, the kink instability dispersion relation becomes in resistive
MHD [Ara et al., 1978]

!⌧AIR(!) = i�H (3.93)

where the resistive contribution IR(!) is given by

IR(!) =
8�[(⇤3/2 + 5)/4]

⇤9/4�[(⇤3/2 � 1)/4]
, ⇤ =

!⌧AS
1/3

s(rs)2/3
(3.94)
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S is the Lundquist number defined by S = ⌧R/⌧A, and ⌧R is the resistive time given by
⌧R = µ0r

2
s/⌘. The main e↵ect of resistivity on the internal kink mode is that it is always

unstable, even in toroidal geometry with �p < 13/144. For example, at ideal MHD marginal
stability �H = 0, it can be shown that the growth rate is �⌧A = S�1/3. Also, when the
resistive e↵ects are included, ! 2 C.

Two fluid e↵ects

When two fluids are considered in the MHD momentum equation, one for thermal ions and
the other for thermal electrons, it can be shown [Ara et al., 1978] that the dispersion relation,
in presence of resistive e↵ects, reads

p
!(! � !⇤i)

8�[(⇤3/2 + 5)/4]

⇤9/4�[(⇤3/2 � 1)/4]
= i�H ,⇤ = [!(! � !⇤i)(! � !⇤e)]

1/3⌧A
S1/3

s(rs)2/3
(3.95)

This dispersion relation will serve as a basis for the fishbone linear model developed in
Chapter 4.

3.4 Conclusion

In this chapter, the XTOR-K code has been presented. This code is used in this thesis to
simulate the nonlinear phase of the fishbone instability. This is the matter of Chapter 6. The
derivation of its fluid equations including kinetic moments has been detailed. The projection
of the particle moments has been explained, as well as the self-consistent scheme used to
couple MHD advance and particle advance. Methods to manage the noise brought by the
PIC module have also been discussed.
Afterwards, the energy principle has been used to partially derive the mode structure and
the dispersion relation of the n = m = 1 internal internal kink instability from the one fluid
ideal MHD equations in cylindrical geometry. The derivation was performed to give some
intuition on the obtained mode structure and dispersion relation. The complete derivation
is performed in [Freidberg, 2014] chapter 11-5. The internal kink dispersion relation is then
generalized for the two fluid resistive MHD equations including toroidal curvature. This
generalization has been done by using results from [Bussac et al., 1975][Ara et al., 1978].
This complete internal kink dispersion relation constitutes the groundwork for the derivation
of the fishbone linear theory performed in Chapter 4.





Chapter 4

Theoretical and numerical
developments for the study of the
fishbone instability

In this thesis, theoretical and numerical developments were required before studying the alpha
fishbone instability with XTOR-K. The implementation of the Kinetic-MHD code XTOR-K
is fairly recent. It therefore needs to be validated before performing long nonlinear simula-
tions with XTOR-K. Two methods can be used to validate XTOR-K’s implementation. A
benchmarking of the code can be done, using results from other linear or nonlinear hybrid
codes. A linear verification of XTOR-K can also be performed by deriving a linear Kinetic-
MHD theory. Few examples of alpha fishbone simulations exist in the literature [Cheng,
1991][Fu et al., 2006][Hu et al., 2006], contrarily to other Kinetic-MHD instabilities, such as
TAEs. Since the alpha fishbone is the subject of this thesis, it has been preferred to develop
a linear theory for this instability. The Kinetic Energy principle is used to derive a fishbone
dispersion relation, similarly as in other linear theories such as [Porcelli et al., 1994]. The
linear theory developed in this thesis [Brochard et al., 2018] is presented in the first section
of this chapter.

New numerical developments were also required to be implemented in the code XTOR-K.
Energetic particles in a tokamak are not at thermodynamic equilibrium. They cannot be
described in velocity space by a Maxwellian. It can be shown [Devaney and Stein, 1971][Stix,
1972] that their distribution function is a slowing-down distribution. Slowing-down distri-
butions in a tokamak can either be isotropic or anistropic, depending on the nature of the
energetic particles. Fast ions distributions generated by non-inductive heating techniques are
anisotropic, whereas alpha particles distributions generated by fusions reactions are isotropic.
Both kind of slowing down distributions have been implemented in XTOR-K. In addition
to these realistic distribution functions, phase space diagnostics were also implemented in
XTOR-K. Their purpose is to locate in the 3D invariants space where the wave-particle res-
onances ! � n ·⌦ = 0 arise, and to observe the time evolution of such structures during the
nonlinear phase of the fishbone instability. A diagnostic computing Kinetic Poincaré plots
has also been partially implemented in XTOR-K. These numerical developments are detailed
in the second section of this chapter.
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4.1 Linear model for the Kinetic-MHD fishbone
instability

In this section, the linear theory of the fishbone instability is derived. First, the fishbone
dispersion relation is derived from the Kinetic Energy Principle. Then, the kinetic contri-
bution �K in the fishbone dispersion relation is derived from the Hamiltonian formalism in
angle-action coordinates presented in Chapter 2. Afterwards, the analytical/numerical com-
putation of �K is discussed. Finally, the method used to solve the fishbone dispersion relation
is detailed.

4.1.1 The Kinetic Energy Principle

The Energy Principle presented in Chapter 3 needs to be extended when considering an
additional population of fast particles to the equilibrium. In presence of fast particles, an
additional force F = �r · Ph is exerted on the plasma, with Ph the fast particles pressure
tensor. According to the kinetic energy principle, the potential energy becomes

�W = �WMHD + �WK (4.1)

where �WMHD is the same quantity as in equation (3.62)

�WMHD = �1

2

Z

V

d3x ⇠⇤ ·
✓
µ0J̃⇥B+ µ0J⇥ B̃�rp̃b

◆
(4.2)

and �Wk the potential energy associated to the fast particles

�WK =
1

2

Z

V

d3x ⇠⇤ · P̃h (4.3)

pb = pi + pe is the isotropic bulk plasma pressure, and J the total plasma current. The
tilde symbol denotes perturbed quantities regarding the MHD equilibrium. In the present
derivation, resistive and two fluid e↵ects are taken into account. However, these e↵ects do
not modify the potential energy �WMHD obtained in one fluid ideal MHD, since they do not
introduce additional forces to the bulk momentum equation. An identical expression for the
total potential energy is used in [Porcelli et al., 1994] equation (64).

The perturbed fast particles pressure tensor can be expressed, following [Antonsen, 1982], as

P̃h = p̃?,hI+ (p̃k,h � p̃?,h)bb+ (pk,h � p?,h)(b̃b+ bb̃) + B̃k
@Ph

@B
(4.4)

with b the magnetic field equilibrium direction, B̃k the perturbed parallel magnetic field.
p̃?,h and p̃k,h are the perturbed perpendicular and parallel scalar pressure of kinetic species,
that can be expressed as

p̃?,h = mh

Z
d3v v2k f̃h, p̃k,h = mh

Z
d3v v2?f̃h (4.5)

with f̃h the perturbed distribution function of the kinetic species, solution of the linearized
Vlasov equation. In the rest of this section, only the diagonal terms of P̃ are retained.

In equation 4.1, the contribution of fast particles does not only enter the term �WK . Since
J stands for the total current, it also includes the contribution of kinetic species. Therefore,
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the bulk MHD term implicitly depends on the kinetic particle pressure. This dependence is
brought by the modification of the MHD equilibrium due to the inclusion of kinetic particles,
p ! pb + ph. Therefore, in general, the term �WMHD cannot be computed without taking
into account the contribution of kinetic particles.

However, when ph << ptot = pb + ph, the contribution of fast particles to �WMHD can
be neglected. �WMHD can therefore be computed with the contribution of the bulk plasma
only. The internal kink dispersion relation in equation (3.95) is modified by the inclusion of
fast particles [Coppi et al., 1988],[Porcelli et al., 1994],[Zonca and Chen, 2014]. It becomes
the fishbone dispersion relation

D(!, nh,0) = [M!(! � !⇤i)]
1/2IR(!)� i!A[�H + �K(!, nh,0)] = 0 (4.6)

where IR is the resistive contribution in equation 5.11, and nh,0 is the on-axis density of fast
particles. M is the inertial enhancement factor. An expression for this term can be found in
[Merle, 2012], equation (5.35). In this linear model, it is assumed that the plasma is com-
pressible, which implies [Merle, 2012] that M = 3. The relation between �W and � is given
in equation (3.90).

The fishbone dispersion relation is used to compute the complex frequency ! = !r + i�
for a given Kinetic-MHD equilibrium. Since it is considered that ph << ptot, the MHD equi-
librium used to compute �H and �K does not take into account fast particles. The CHEASE
code is used to generate this MHD equilibrium. The one fluid ideal growth rate �H is com-
puted with XTOR-K, by excluding fast particles, resistive e↵ects, bi-fluid e↵ects. It is then
equivalent to the growth rate described in equation (3.92) [Bussac et al., 1975]. The equilib-
rium computed by CHEASE is chosen to have circular magnetic flux surfaces. It enables to
simplify the the analytical derivation of �K . This derivation is now presented.

4.1.2 Linear solution of Vlasov equation f̃h

In order to obtain an analytical expression for �K , it is needed to obtain an expression for
the perturbed distribution function f̃h in equation (4.5). Let Fh be the distribution function
of fast particles such as Fh = Feq,h + f̃h, Feq,h being the equilibrium distribution function.
Vlasov equation can be written as, assuming no collisions between particles and the bulk
plasma

dtF = @tF � {H,F} = 0 (4.7)

where H is the Hamiltonian of fast particles. The Poisson’s brackets {·, ·} are defined in the
angle/action formalism presented in Chapter 2 as

{A,B} =
@A

@↵
· @B
@J

� @B

@↵
· @A
@J

(4.8)

Linearizing (4.7)
@tf̃h � {h̃, Feq,h}� {Heq, f̃h} = 0 (4.9)

Since Feq,h and Heq are equilibrium quantities, they only depend on the actions J. Using
(4.8) in (4.9)

@tf̃h � @h̃

@↵
· @Feq

@J
+
@f̃h
@↵

· @Heq

@J
= 0 (4.10)

A Fourier expansion of a perturbed quantity g̃ can be done using angle-action variables

g̃(↵,J, t) =
X

n

gn!(J) e
i(n·↵�!t) (4.11)
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where n = (n1, n2, n3) is the wave-vector in the angle/action formalism. Applying this Fourier
expansion to (4.10), the resonant solution of Vlasov equation in Fourier space is

f̃n! = �n · @Feq,h/@J

! � n ·⌦ h̃n! (4.12)

Considering that Feq,h is solely a function of the invariants (Heq = E, µ, P'), its derivative
with respect to J expands as

n· @Feq,h

@J
= n·


@Heq

@J

@Feq

@Heq

+
@µ

@J

@Feq

@µ
+
@P'
@J

@Feq

@P'

�
=
@Feq,h

@Heq

h
(n·⌦�!)+!�!+�!⇤

i
(4.13)

where ! is artificially introduced to later dissociate f̃ into a resonant and a fluid part. !+

and !⇤ are defined as

!+ = n1
qs
ms

@Feq,h/@µ

@Feq,h/@Heq

, !⇤ = �n3
@Feq,h/@P'
@Feq,h/@Heq

(4.14)

with qs the particle’s charge and ms the particle’s mass. It is assumed in this model that the
perpendicular potential vector is negligible, considering A? ⌧ Ak. The perturbed Hamilto-
nian reads, using equation (2.18)

h̃ = qs(�� vkAk) (4.15)

with � the electric potential. The ideal MHD assumption implies Ek = 0. Resistive e↵ects
are taken into account in the term IR(!) of equation (4.6). Introducing the time integral of
the electrical potential �(x, t) =

R t

0 �(x, t
0)dt0, it leads to

Ek = �rk�� @tAk = 0 , Ak = �rk� (4.16)

The perturbed Hamiltonian can then be expressed as

h̃ = qs[@t�+ vkrk�] = qs[dt�� (vd ·r)�] (4.17)

where dt� = (@t + v ·r)�,v = vkb+ vd, vd being the drift velocity of fast particles. dt� can
be expressed, using the angle-action Hamiltonian approach, as

dt� = @t�� {Heq,�} = @t�+⌦ · @�
@↵

(4.18)

Therefore, inserting (4.18) into (4.17) and Fourier expanding h̃

h̃n! = i(n ·⌦� !)qs�n! � [qs(vd ·r)�]n! (4.19)

Then, inserting (4.19),(4.13) into (4.12), one obtains f̃n! = f̃ res
n! + f̃ fl

n!, with

f̃ res
n! =

@Feq

@Heq

! � !+ � !⇤

! � n ·⌦ [qs(vd·r)�]n!, f̃ fl
n! =

@Feq

@Heq


i(n·⌦�!+�!⇤)qs�n!�[qs(vd·r)�]n!

�

(4.20)
It is reminded from Chapter 2 that ⌦1 = !c,s. The fast particles gyrofrequency is several
orders of magnitude larger that their bounce/transit and precessional frequency, as well as
the mode pulsation Re[!]. Therefore, the Kinetic-MHD mode cannot resonate with ⌦1, n1

is set to zero. It implies that !+ = 0.

A n = m = 1 mode is of interest in this derivation, in order to describe the fishbone
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instability. Perturbed quantities such as the electrostatic potential can be expressed as
�(r) = �(r)e�i(✓�'). Performing a Fourier expansion

�n =
1

(2⇡)2

Z
d↵2d↵3 �(r)e

�i(✓�'+n3↵3+n2↵2) (4.21)

It is assumed in this derivation that the position vector r corresponds to the particles’ guiding
center. The subscript G designing the guiding center is dropped from simplicity. It is also
assumed that particles have thin orbit widths around their reference magnetic surface  ̄. In
Chapter 5, it is shown that for alpha particles, the thin orbit width approximation is valid
up to E = 1 MeV. In this derivation, the reference flux surface  ̄ = h i is the time averaged
flux surface of the particle.

Using equations (2.38)(2.50), the toroidal and poloidal angles can be expressed as ' =
↵3 � ✏bq( ̄)✓̂ � ↵̂, ✓ = ✓̂ + ✏b↵2. It is reminded that ✓̂ and ↵̂ are periodic functions of
↵2. ✏b = 1 for passing particles and 0 for trapped particles. Replacing these expressions for
' and ✓ in equation (4.21), the only non vanishing component of �n along the integration
over ↵3 is n3 = n = 1. Therefore, the general resonance condition reads

! �
X

n2

�c

h
n2 + ✏bq( ̄)

i
!b � !d = 0 (4.22)

It is reminded that �c = ±1 for co/counter passing particles. Since the frequencies !b,!d

depend on the three invariants of motion (E,P', µ), the solutions of this resonance condi-
tion are surfaces in phase space. On Figure (4.1) the resonant planes have been displayed,
considering every harmonic n2. The analytical expressions for !b,!d are obtained assuming
circular flux surfaces (A.18), (A.7), (B.11), (B.14). These planes have been computed for
alpha particles on a ITER-like MHD equilibrium, at a fixed  ̄ position. Only three surfaces,
one for trapped particles with n2 = 0 and two for passing ones with n2 = �1 (co-passing and
counter-passing), contribute to the resonant term. All the other n2 harmonics are therefore
neglected, the general resonance condition for the n = m = 1 internal kink can then be
restricted to

! + �c✏b[1� q( ̄)]!b � !d = 0 (4.23)

Regarding the fluid term in equation (4.20), it is not necessary to use the angle/action
formalism to describe it. This formalism is better adapted to the study of resonant terms.
It is therefore more convenient to come back to real space. Noticing that in Fourier space
v ·r = in ·⌦ and that {�, P'} = i�n,!

f̃ fl = qs
@Feq

@Heq


vkrk�� !⇤{�, P'}

�
(4.24)

The first term of this expression is directly linked to the kinetic tearing term in [Edery et al.,
1992]. As a current term, it needs to be incorporated in �WMHD.

In order to derive explicitly f̃ , an expression of � as a function of ⇠, the MHD displace-
ment, is needed. In this derivation, ⇠ is taken at the lowest order in ✏ = r̄/R. r̄ is the
radial position associated to  ̄. For n = m = 1, as discussed in Chapter 3 equation(3.73),
⇠ = ⇠0�H(rq=1 � r̄)e�i(✓�'+!t)er. Following the drift ordering in MHD assumption, at lowest
order in ⇢⇤

v? = vE⇥B , �i!⇠0B0e
�i(✓�'+!t)=i!@✓�/r̄ , � = �i⇠0B0r̄e

�i(✓�'+!t) (4.25)
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Figure 4.1: Curves of resonance between fast particles and the internal kink in the energy
- pitch angle diagram at a fixed  ̄ position. Three branches of resonance are available, one
for trapped particle resonating with the precessional frequency, and two for passing particles
resonating with combinations between transit and precessional frequencies, considering co
and counter passing particles.

It is possible to obtain explicit expressions for both the resonant and fluid perturbed distri-
bution using the definition of the drift velocity

vd =
2E

ms!c
s

B
B⇥

⇣
1� �

H⇤

⌘
+

�

2H⇤r lnB

�
(4.26)

where � = µ0B0/Heq stands for the generalized pitch angle, and B0 the magnetic field at
r̄ = 0, H⇤ ⌘ B0/B(r̄, ✓) = R/R0 = 1 + r̄/R0 cos ✓, !c the particle’s gyrofrequency and
 = (b ·r)b the magnetic curvature.

It is reminded here that a MHD equilibrium with circular flux surfaces is used in this deriva-
tion. The flux surfaces used are also concentric, which is an approximation. This is not the
case in the MHD equilibrium computed by CHEASE. Therefore, at first approximation, the
quantities R0 and B0 used in �K are defined at the magnetic axis computed by CHEASE.
At low �, (4.26) reduces to

vd =
E�

ms!c,sBH⇤B⇥r lnB (4.27)

with B = B0R0/R, � = 2� �/H⇤ and B = (B0/H
⇤)(e� + (r̄/Rq)e✓). Therefore

r lnB =
hsin ✓
R0

e✓ � cos ✓

R0
er
i

(4.28)

Then

vd ·r = � �E

qsB0R0

⇣
sin ✓@r +

cos ✓

r̄
@✓

⌘
(4.29)

For the resonant term, inserting (4.25) in (4.20)

(vd ·r)� =
�E⇠0
qsR0

ei(↵3+q✓̂�!t) (4.30)

The Fourier coe�cient being given by the inverse Fourier transformation

gn! =

Z
d↵1

2⇡

d↵2

2⇡

d↵3

2⇡
e�in·↵g (4.31)
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two cases need to be considered in computing the resonant term. First, for trapped particles,
only the triplet nt = (0, 0, 1) contributes, therefore

[qs(vd ·r)�]n
t

! =
E⇠0
R0

Z
d↵2

2⇡
�eiq✓ =

E⇠0
R0

�Iq (4.32)

where Iq =< cos ✓ >↵2 +(1 � q) < ✓ sin ✓ >↵2 , whose derivation is given in annex A. For
passing particles, only the triplet np = (0,�1, 1) contributes, therefore

[qs(vd ·r)�]n
p

! =
E⇠0
R0

Z
d↵2

2⇡
�eiq✓+(1�q)↵2 =

E⇠0
R0

�Iq,p (4.33)

Given the ↵2 dependence in Iq,p, the obtention of an analytical expression for this term is
quite di�cult. However, performing a series expansion of exp[(1 � q)↵2], where 1 � q is
considered as a small parameter given that the studied MHD instability is the internal kink,
trapped and passing contributions are identical at lowest order. Therefore the analytical
expression for Iq is used for both trapped and passing particles. The resonant perturbed
distribution function then reads

f̃ res
n! = E

@Feq

@Heq

! � !⇤

! + �p�k(1� q)!b � !d

⇠0
R0

Iq(r̄,�) (4.34)

Regarding the fluid term, using the expression of Poisson’s brackets in regular toroidal coor-
dinates [Brizard and Hahm, 2007], one finds

{�, P'} = � b

eB0
·r�⇥rP' =

r̄

q
r̂ · (b⇥r�) (4.35)

The fluid contribution, or interchange contribution by comparison with [Edery et al., 1992],
yields

f̃ int = �⇠0@Feq

@r̄
ei('�✓) (4.36)

This term is identical to the adiabatic term from [Coppi et al., 1990], as well as to the more
general expression in eq. (71) of [Porcelli et al., 1994] in the limit of thin particles’ orbits.

An explicit expression for the precessional frequency !d is needed in (4.34). It can be found
in annex B for a reference magnetic surface defined by  ̄ = h i = m(Rvk � hRvki↵2)/Ze.

It should be noted that such a choice for  ̄ does not allow all the physics related to the
inertial layer to be retained, since the MHD displacement ⇠ is naturally a function of  , not
 ̄. Therefore, using a step function for ⇠, inertial enhancement and global stability e↵ects
recovered in [Graves, 2013], where  was chosen as radial variable, are not included in this
model. However, for fast particles at low energies (⇠ 100keV-1Mev), orbit widths are rela-
tively small (see Chapter 5), which means that considering ⇠(r) = ⇠(r̄) should not impact
significantly the solution of the fishbone dispersion relation.

4.1.3 Derivation of the kinetic contribution �K

Now that the perturbed fast particle distribution function has been derived, the derivation
of �WK is performed. Considering the momentum equation of fast particles, discarding
their inertia on the basis of their dilution in the whole plasma, J̃h ⇥ B = r · P̃h. Since
⇠ = (b/B)⇥r�, �WK can be written as

�WK = �1

2

Z
d3x J̃?h ·r�⇤, J?h ⌘

Z
d3vf̃hqsvd (4.37)
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It is noted here that the parallel component of the fast particles current has also to be
taken into account. This term is incorporated into the functional �WMHD so that the current
considered in �WMHD stands for the total current. This parallel current is negligible regarding
the total current since ph << ptot. Using equation (3.90) the kinetic contribution �K in
equation (4.6) can be written as

�K =
1

⇠20s0R0B2
p

Z
d3xd3vf̃h[e(vd ·r)�⇤] (4.38)

Therefore, using this expression, the resonant perturbation in Fourier space equation (4.34)
and applying Parseval’s theorem to (4.20)

�resK =
1

s0R0B2
p

Z
d3xd3v

@Feq

@E

! � !⇤

! + ✏b�c(1� q)!b � !d

�2E2

R2
0

I2q (4.39)

In order to compute �resK , it is useful to express its resonant denominator as a polynomial
of v =

p
2E/ms. Explicit expressions for !b and !d can be found in (A.7), (A.18), (B.14),

(B.11). In the rest of the derivation, the notations Ib and Id are used instead of Ib,p/t and
Id,p/t to simplify the notations. Therefore, expliciting !⇤

�resK =
1

s0R0B2
p

Z
d3xd3v

�2E2I2q
�R2

0Id

✓
@Feq

@r̄

R0

Eb

� @Feq

@E

x!̂

q

◆
1

v̂2 + v1v̂ + v2
(4.40)

with v̂ = v/vb, !̂ = !/!̄d r0 = r̄q=1, x = r̄/r0 and

!̄d = !d(r̄ = r0,� = (1� ✏)�1, E = Eb) =
Eb

qsB0r0R0
(4.41)

This quantity is the precessional frequency of deeply trapped particles at energy Eb located
on the resonant surface rq=1. The coe�cients of the polynomial are

v1(r̄,�) = 2✏b�c[1� q(r̄)]
qsB0r0x

q2(r̄)�msvbIb(r,�)
(4.42)

v2(r̄,�,!) = � !̂x

q(r̄)�Id(r,�)
(4.43)

vb and Eb correspond to the birth velocity and energy of the fast particles, considering that
Feq is a slowing-down function. The fluid contribution to �K can be developed as

�intK = � 1

s0R0B2
p

Z
d3xd3v

@Feq

@r̄

�E

R0
e�i✓ (4.44)

In this derivation, it is chosen to describe the 6D phase space with the coordinates (r̄, ✓,', E,�,�),
� being the gyro-angle. The Jacobian J6D of this change of variables is therefore needed. In
toroidal geometry, assuming large aspect ratio

Z
d3x = 2⇡R0

Z a

0

r̄dr̄

Z 2⇡

0

d✓ (4.45)

Now, using (vk, v?,�) coordinates

Z
d3v =

Z
2⇡v?dvkdv? = 2⇡

Z X

�
c

E1/2

✓
2

m

◆1/2✓
�

H⇤

◆1/2

J2DdEd� (4.46)
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J2D is the Jacobian of the change of variable (vk, v?) ! (E,�). Since vk = �c(2E/ms)1/2(1�
�/H⇤)1/2, v? = (2�E/msH

⇤)1/2

@vk
@E

= �k(2Em)�1/2(1� �/H⇤)1/2,
@vk
@�

= ��k(2Em)1/2
h
(2H⇤)�1(1� �/H⇤)�1/2

i
(4.47)

@v?
@E

= (�/2msEH⇤)1/2,
@v?
@�

= (E/2ms�H
⇤)1/2 (4.48)

yielding

J2D =
1

2ms

1

(�H⇤)1/2(1� �/H⇤)1/2
(4.49)

Therefore, using the following identity,

Z ⇡

�⇡
d✓

Z H

0

d� =

Z (1�✏)�1

0

d�

Z ✓0

�✓0
d✓ (4.50)

The Jacobian J6D is obtained as

Z
d3xd3v =

Z r0

0

dr̄

Z (1�✏)�1

0

d�

Z 1

0

dEJ6D(r̄,�, E) (4.51)

J6D =
X

�k=±1

⇡2R0

✓
2

ms

◆3/2

r̄

Z ✓0

�✓0

⇣
1� �

H⇤

⌘�1/2

d✓E1/2 (4.52)

where the sum over the parallel velocity is two for trapped particles. Regarding the di↵erent
terms of �K , considering only even terms in ✓ and the bounce-averaging formalism developed
in annex A, one gets

�resK =
2⇡3✏0

s0r0B2
p,0

✓
2

m

◆3/2 X

�
c

=±1

Z r0

0

r̄dr̄

Z (1�✏)�1

0

d�
�2IbI

2
q

�Id

Z 1

0

E5/2@r̄Feq/Eb � r̄!̂@EFeq/qr0R0

v̂2 + v1v̂ + v2
dE

(4.53)

�intK = � 4⇡3✏0
s0r0B2

p,0

✓
2

m

◆3/2 Z r0

0

r̄dr̄

Z (1�✏)�1

0

d��IbIc

Z 1

0

E3/2@Feq

@r̄
dE (4.54)

where Ic =< cos ✓ >↵2 , Ib =< 1 >↵2 . It can be shown that these two expressions are similar
to �W1 and �W2 in [Porcelli et al., 1994] equations (71-72). However, a di↵erence arises when
considering deeply passing particles in the integrand of (4.53). The term �2/� is used instead
of �. This di↵erence appears more clearly in equation (11) of [Porcelli, 1991].

4.1.4 Computation of the kinetic term �K

The terms in (4.53-4.54) need to be computed for a given MHD equilibrium and a mode
frequency ! = !r + i�. The di↵erent integrals in these terms are not independent, they need
to be computed in chain. The energy integral contains the wave-particle resonance !�n ·⌦.
This integrand tends to diverge for finite MHD growth rates when particles are located near
the resonant planes. Therefore, its computation cannot be simply handled by a trapezoidal
method. It would miss the imaginary contribution due to the poles of this integral. It would
also introduce important error on the real part of this integral. For both these reasons, this
integral needs to be solved by taking into account its poles carefully.
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Integration contour C of the energy integral

For simplicity, the integrand’s numerator of the energy integral is noted f(r̄,�, E). The
energy integral can then be expressed as

Ires =

Z
dE

f(r̄,�, E)

v̂2 + v1(r̄,�)v̂ + v2(r̄,�,!)
=

Z
dv̂

2

msv2b

v̂f(r̄,�, E)

(v̂ � v+)(v̂ � v�)
(4.55)

v±(r̄,�,!) = �
h
v1 ±

q
v21 � 4v2

i
/2 (4.56)

To compute the complex integral Ires, an integration contour C needs to be defined. This
contour must not encounter the poles for a given !, otherwise �K(!) cannot be computed
accurately. Moreover, the fishbone dispersion relation (4.6) is an implicit function of !. In
order to find the solution of (4.6), �K needs to evaluated for di↵erent test complex frequencies
!test. Therefore, the contour C needs also to be defined so that it still does not encounter a
pole when ! is evolved arbitrarily.

It can be shown from equation (4.56) and (4.43) that the poles are always complex when
� 6= 0, and that their imaginary parts have opposite signs. The sign of the imaginary part of
the poles is also reversed when � changes sign, since v2 / !.

Considering these properties for the poles, the integration contour C is chosen to be the
real axis when � > 0. When � changes sign, the poles cross the real axis. In order to avoid
singularites, the contour C is deformed as shown on Figure (4.2) Vertical parts of the contour
on both sides of the poles cancel each other. The half circles of the contour add/substract an
extra i⇡ to the imaginary pole contributions. An identical contour is used in [Merle, 2012].

Figure 4.2: Integration contour of the resonant integral in the complex plane, the red cross
standing for v+ and the blue one for v�. When � > 0, the contour is simply taken to be the
real axis, as displayed on the left figure. When � changes sign, the poles cross the contour,
it then needs to be deformed as shown on the right figure.
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Computation of the energy integral for a slowing-down distribution

In the fishbone linear model, the distribution function of interest is the isotropic slowing-down
function. Its expression is [Stix, 1972][Devaney and Stein, 1971]

Feq,SD(r̄, v) =
nh(r̄)

v3bC

�H(vb � v)

v̂3 + (vc/vb)3
(4.57)

with v̂ = v/vb and where the normalization factor C is

C =
4⇡

3
ln


1 +

✓
vb

vc(r̄)

◆�
(4.58)

nh(r) is the density profile of fast particles, denoted at r = 0 as nh,0. vc is the critical speed
of fast particles at which they give as much energy to the bulk ions as to the bulk electrons
via Coulombian collisions. This velocity can be expressed as

vc(r̄) =

✓
3
p
⇡me

4ms

◆1/3
s

2kBTe(r̄)

me

(4.59)

with me the electron mass and Te the electron temperature profile. Inserting this equilibrium
function in the energy integral

Ires /
Z 1

0

dv̂
v̂n

(v̂3 + (vc/vb)3)(v̂ � v+)(v̂ � v�)
(4.60)

Only the terms depending on v in the integrand of the energy integral have been displayed

(a) (b)

Figure 4.3: Comparison of the analytical and numerical computation of the resonant velocity
integral, for both real (a) and imaginary (b) contributions. These curves are obtained by
varying the pitch angle onto its entire domain of definition, at fixed r̄ = 0.3r̄q=1

on (4.60). n=6 for the term proportional to @r̄Feq and n = 4 for the term proportional to
@EFeq in (4.53). When an ordering can be formed such as (vc/vb)3 � v̂3 or (vc/vb)3 ⌧ v̂3 for
most v̂ relevant to the slowing-down distribution function, a direct analytical calculation of
Ires is performed. This is done by neglecting either v̂3 or (vc/vb)3 in v̂3 + (vc/vb)3 in (4.60).
Explicit expressions can be found in annex C.1 in both cases. However, a numerical inte-
gration needs to be performed when an ordering does not exist. In this case, the numerical
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method used is the collocation method. It takes into account properly the poles and retrieves
correct expressions for both the real and imaginary contribution. The collocation method is
detailed in annex C.2.

The collocation method has been tested on a Kinetic-MHD equilibrium where the ordering
(vc/vb)3 << v̂ is achieved. The particles considered are alphas with birth energy Eb = 3.5
MeV, and the on-axis electron temperature is Te,0 = 10 keV. Therefore, (vc/vb)3 = 8.10�3.
The complex MHD frequency considered is !⌧A = (2 + 0.5i)10�2. Figure 4.3 shows that the
analytical and numerical methods agree rather well, ensuring the good implementation of
both of them.

Computation of the radial and pitch angle integrals

The radial and pitch angle integrals can be computed using a simple trapezoidal method. For
a fixed r̄, the pitch angle integral is computed by calculating Ires(r̄,�), and then the same is
done at all r̄.

An artificial singularity requires special care in the pitch angle integral. When the reso-
nance condition is normalized to express it as an unitary second order polynome, it adds a
factor 1/Id(r̄,�) to the integrand of the pitch angle integral. Id vanishes when the preces-
sional drift of fast particles is reversed. Given the complex expression of Id in (B.11-B.14),
finding the couples (r̄,�) solution of Id(r̄,�) = 0 is not a direct operation. These couples are
then found using a dichotomy method. Then, the pitch angle grid is designed such that the
singularities lie at equal distance of two grid points, minimizing the error.

4.1.5 Non-perturbative resolution of the fishbone dispersion
relation

The fishbone dispersion relation (4.6) is an implicit function of the mode frequency !, since
the kinetic contribution �K depends on !. Finding ! solution of D(!, nh,0) at a given nh,0

requires a specific numerical method. Some linear codes adopt a perturbative method to
solve this equation [Nabais et al., 2015]. However, such a method is only valid when the
MHD frequency of the internal kink is weakly a↵ected by the inclusion of the fast particles.
In the case of the fishbone instability, the mode complex frequency evolves significantly when
particles are included, even for ph << ptot.

Therefore, a non-perturbative scheme needs to be implemented to solve (4.6). Some nu-
merical techniques have been developed for the purpose of locating the zeros of an analytic
function [Davies, 1986]. They can be used to solve D(!, nh,0) = 0, as it is done in [Merle,
2012] for the MIKE code that solves the electronic fishbone dispersion relation.

In this fishbone linear model, a simpler method is used to solve 4.6. For a given nh,0, the
term D(!, nh,0) is computed on a grid in the complex plane (!r, �), in which the solution of
4.6 is assumed to lie. Then, on the same grid, the quantity 1/|D|2(!, nh,0) is computed. The
solutions of (4.6) appears then as maxima on the grid (!r, �). When a hybrid simulation is
performed with XTOR-K, the instability with the largest growth rate dominates the others
in the linear phase. Therefore, in order to verify the code XTOR-K, the growth rate obtained
from a hybrid simulation is compared to the solution of 4.6 with the highest growth rate �.

Solutions obtained from 4.6 for a given Kinetic-MHD equilibrium are displayed on Figure
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(a) (b)

Figure 4.4: Complex frequencies solutions of the fishbone dispersion relation, for a test
example MHD equilibrium. (a) The instability growth rate. (b) The mode pulsation. The
two branches obtained in [Wu et al., 1994] are retrieved. The internal kink branch at low
fast particle density, where the mode is stabilized by the alpha particles, and the fishbone
branch, where a new Energetic Particle Mode is destabilized at higher fast particle density.

(4.4). The mode pulsation and growth rate are functions of nh,0. An isotropic slowing-down
distribution function of with birth Eb =3.5 MeV has been used to describe fast particles.
The MHD equilibrium computed by CHEASE is an ITER-like equilibrium with circular flux
surfaces.

As it was expected from earlier numerical works [Wu et al., 1994] and experimental results
[Nave et al., 1991], the fishbone dispersion relation exhibits two branches of solution. One
for the internal kink mode, and an other for the fishbone mode. The internal kink branch
is stabilized at low fast particles density. At the fishbone threshold n↵,0 = 4.4.1017m�3, the
fishbone instability dominates the internal kink, and grows well above the initial growth rate
without fast particles, whereas the internal kink is fully stabilized. These results highlight
the necessity of using a non-perturbative method to solve the fishbone dispersion relation.

4.2 Numerical developments in XTOR-K

In this section, the implementations made in XTOR-K to study the fishbone instability are
presented. First, the introduction of an anisotropic slowing-down distribution function in
XTOR-K is discussed. Then, the implementation of phase space diagnostics is detailed.

4.2.1 Coherent implementation of fast particles distributions
between CHEASE and XTOR-K

In order to study the impact of fast particles onto the MHD stability in a hybrid code such as
XTOR-K, two implementations need to be performed. The first one is the implementation
of a new particle initialization in XTOR-K, to obtain a slowing-down distribution in velocity
space. When including kinetic particles in XTOR-K, an additional pressure is added to the
total pressure. Therefore, the MHD equilibrium needs to be modified. The second imple-
mentation is the introduction of the additional scalar pressure induced by fast particles in
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the code CHEASE.

The following slowing-down distribution function has been implemented in XTOR-K

FSD,ani(r, v,�) =
nh(r)

C

�H(vb � v)

v3 + v3c (r)
e
�
h

���0
��

i2

(4.61)

where the anistropy is characterized by a Gaussian function. The isotropic distribution is
recovered when �� ! +1. The scalar pressure associated to (4.61) is firstly derived, then
the particle initialization procedure in XTOR-K will be discussed.

Modification of the scalar pressure in CHEASE

Considering the change of variable (vx, vy, vz) ! (v,�,�), following the same procedure as
in (4.46) Z

d3v = 2⇡

Z H⇤
max

0

d�

H⇤[1� �/H⇤]1/2

Z 1

0

v2dv (4.62)

H⇤
max(r) = B0/Bmin(r) is the maximum pitch angle value for a given magnetic flux surface

denoted by r. The normalization factor C is defined by nh(r) =
R
d3vFSD,ani. Considering

�0 = �/H⇤, it can then be expressed as

C =
2⇡

3
ln
h
1 +

⇣v↵
vc

⌘3i Z 1

0

d�0
e�[(�0H��0)/��]2

[1� �0]1/2
(4.63)

In the particular case of an isotropic distribution, ��! +1, the pitch angle integral value
is 2.

The scalar pressure due to the fast particles can be obtained from the CGL stress tensor
Ph = Pkbb+ P?(I� bb)

ph =
Pk + 2P?

3
=

m

3

 Z
d3v v2kF +

Z
d3v v2?F

�
(4.64)

The parallel velocity of fast particles can be expressed with (2.11), leading to

ph,k = nhE
2
b

2Iv2
IvI�

Z 1

0

[1� �0]1/2e�[�0H⇤��0]/��d�0 (4.65)

ph,? = nhE
2
b

2Iv2
Iv1I�

Z 1

0

�0

[1� �0]1/2
e�[�0H⇤��0]/��d�0 (4.66)

where

Iv1 = ln
h
1 +

⇣v↵
vc

⌘3i
, Iv2 =

Z 1
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v̂4

v̂3 + v̂3c
dv I� =

Z 1

0

d�0
e�[(�0H⇤��0)/��]2

[1� �0]1/2
(4.67)

Therefore, in a equilibrium code that solves the Grad-Shafranov equation for an anisotropic
plasma, adding these parallel and perpendicular fast particle scalar pressure to the bulk
pressure will ensure to work with a consistent MHD equilibrium when a significative fraction
of energetic particles is introduced. The pitch angle integral I� can be computed numerically
through a trapezoidal method. It can be shown by direct calculations that the velocity
integral Iv2 yields
Z 1

0

v4

v3 + a3
dv = � ⇡a2

6
p
3
+
1

6


3+a2

✓
2
p
3 arctan

h
(1� 2a�1)/

p
3
i
+2 ln(1+a)�ln(1�a+a2)

◆�

(4.68)
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However, the equilibrium code CHEASE is implemented to solve Grad-Shafranov equation
for an isotropic plasma. The method used to obtain a coherent equilibrium with fast particles
can be described as follow. The isotropic fast particle scalar pressure is added to CHEASE.
This scalar pressure is obtained by imposing ��! +1 and reads

ph,iso = nh(r)E↵
2Iv2(r)

Iv1(r)
(4.69)

The fast particles are then initialized according to (4.61). Then a hybrid simulation is
launched, during which the MHD fields are projected on the harmonic n = 0 at each fluid
time step. After a su�cient number of fluid advances, the initially ill-defined equilibrium
computed with CHEASE has relaxed towards an equilibrium coherent with an anisotropic
distribution of fast particles.

When an isotropic slowing-down distribution function of fast particles is used in XTOR-
K, such a procedure is not required. The equilibrium computed by CHEASE is already
correct. It is noted that in (4.69), 2Iv2/Iv1 can be seen as a temperature profile by direct
comparison with the isotropic maxwellian distribution function.

Initialization in XTOR-K for slowing-down distribution functions

Now that the method for obtaining a coherent MHD equilibrium with fast particles have been
detailed, the initialization of an anisotropic slowing down distribution function in XTOR-K
is discussed. A Monte-Carlo method is used to populate the 6D phase space with particles.
The initialization of particles is decomposed in two steps.

First, particles are initialized in position space. The poloidal and toroidal angles of each
particles is chosen randomly in the interval [0, 2⇡]. Sobol operators are used in XTOR-K to
generate random numbers. To initialize the radial coordinate of kinetic particles, the density
profile nh is used as a probability density function. The radial coordinate of each particle is
chosen randomly inside nh, by inverting this profile.

In velocity space, particles can be characterized using the triplet v = (v,�0,�). The ve-
locity vector associated to this triplet is

v = v
hp

1� �b̂+
p
�0(cos�e1,? + sin�e2,?)

i
(4.70)

where (b, e1,?, e2,?) is a direct orthogonal basis. b is the local direction of the magnetic field
at the position r = (r, ✓,'). The probability density function for each of these coordinates
needs to be defined for an anisotropic slowing-down distribution function. Considering (4.61)
and (4.62) Z

d3vFSD,ani =

Z 2⇡

0

d�

Z 1

0

g(r, ✓,�0)d�0
Z +1

0

h(r, v)dv (4.71)

g(r, ✓,�0) =
exp[�(�0B0/B(r, ✓)� �0)/��]p

1� �0
, h(r, v) =

�H(vb � v)

ln(1 + [vb/vc(r)]3)(v3 + v3c (r))
(4.72)

The probability density function of the gyroangle � is uniform. For each particle, the gyroan-
gle is chosen randomly in [0, 2⇡]. The coordinates �0 and v need to be initialized randomly
according to their respective probability density functions g(r, ✓,�0) and h(r, v). This can be
performed by inverting theses functions, choosing randomly a value in the interval in which
the inverse functions are defined, and getting the corresponding coordinates (�0, v). For �0,
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this operation is performed numerically in XTOR-K by inverting the arraysX = �0, Y = g(r).
For the norm velocity of particles, an analytical expression of the inverse function h can be
obtained directly

v = h�1(Y, r) =
vc(r)

v↵


eY ln[1+v�3

c

(r)]

�1/3
(4.73)

Once the coordinates (r, ✓,', v,�0,�) have been obtained for every particle in the simulation,

(a) (b)

Figure 4.5: (a) Histogram of the kinetic particles velocity. (b) Histogram of the kinetic
particles pitch angle

they are transferred to the coordinates (R,'⇤, Z, vR, v'⇤ , vZ) used for the particle advance.
On Figure 4.5, histograms of the particles velocity and pitch angle � = µB0/E obtained from
XTOR-K are presented. An isotropic slowing distribution function of particles with birth
energy Eb = 3.5 MeV has been used, and the on-axis electron temperature is Te,0 = 20 keV.

4.2.2 Implementation of phase space diagnostics

Finding the resonant planes in phase space where the wave-particle energy exchange occur
is essential for diagnosing Kinetic-MHD simulations. In the nonlinear phase of such simula-
tions, the resonance condition !�n ·⌦ = 0 can evolve significantly. This is due to variation
of the mode frequency, and/or to evolution of the particles resonant frequencies, the particles
invariants not being invariant anymore. A diagnostic computing the wave-particle energy
exchange between kinetic particles and the MHD fields enables to follow the position of the
resonance in time. A discussion on the nonlinear evolution of the resonance condition can be
found in [Zonca et al., 2015], appendix A-2.

Moreover, fast particles can be transported out of their initial orbit, due to wave-particle
energy exchange in these resonant zones of phase space. Following the time evolution of both
the particle distribution and of the resonance is then of crucial interest in the nonlinear phase
of hybrid simulations to understand the physical processes at play.

The total energy density of fast particles is noted Ek. Its time evolution is

@tEk =
X

k

vk · [mk@tv] (4.74)
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using Lorentz equation, this leads to

@tEk = Jk · E (4.75)

The total energy of the system bulk + fast particles is composed of the electromagnetic fields’
energy, the bulk particles kinetic energy and of the fast particles kinetic energy. The total
energy density reads

E =
✏0E

2

2
+

B2

2µ0
+
X

i

mi

2
v2i + Ek (4.76)

Since the total energy of the system is conserved, the quantity Jk · E then stands for the
power transferred from kinetic particles to the rest of the plasma. When it is positive, it
implies that kinetic particles are taking energy away from the plasma, and giving it away
when it is negative.

The total energy-exchange of fast particles needs to be computed on specific phase space
grids in order to highlight the resonant processes. Since the resonance condition is solely
a function of the particles invariants, this can be done by computing Jk · E on the 3D grid
labelled by (E,�, P'). It is also convenient to use the grid (E,�, r), where r labels a magnetic
flux surface, in order to study the resonant transport of fast particles. The implementation
of the wave-particle energy exchange diagnostic in XTOR-K is now discussed. The instanta-
neous power exchange of a single kinetic particle located in phase space at (rk,vk) is

wk(rk,vk) = qkvk · E(rk) (4.77)

wk is projected onto the grids (E,�, r) or (E,�, P') by tri-linear interpolations. Denoting
the coordinates r and P' by A, the total power is

W (Em,�n, Ap) =
NX

k

wkSL(Ek, Em)SL(�k,�n)SL(Ak, Ap) (4.78)

for N macro-particles, with the weighting factor

SL(X,Xi) = �H(X�Xi)�H(Xi+1�X)
Xi+1 �X

�X
+�H(X�Xi�1)�H(Xi�X)

X �Xi�1

�X
(4.79)

The distribution function of kinetic particles on these grids is simply given by

F (Em,�n, Ap) =
NX

k

SL(Ek, Em)SL(�k,�n)SL(Ak, Ap) (4.80)

In Kinetic-MHD simulations, fast particles resonate with MHD modes with finite pulsation
!. The energy exchange in XTOR-K is time averaged at least over one rotation time of the
MHD mode, TMHD = 2⇡/!. Several are preferred in general to average out the inherent
noise brought by the PIC module.

On Figure 4.6 and Figure 4.7, results obtained with these diagnostics are presented, for
a nonlinear hybrid simulation performed with XTOR-K. On Figure 4.6, the wave-particle
energy exchange for respectively trapped particles and passing particles have been plotted
on the diagram (E,�) at a fixed P'. Resonant structures can be observed in both trapped
and passing diagrams. The transport of particles associated to these resonant structures is
displayed on Figure (4.7). The perturbed distribution squared has been plotted on the same
diagram.
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(a) Trapped particle domain (b) Passing particle domain

Figure 4.6: Wave-particle energy exchange �Jk · E in the diagram (E,�) at fixed P', in
arbitrary units.

(a) Trapped particle domain (b) Passing particle domain

Figure 4.7: Perturbed distribution function squared in the diagram (E,�) at fixed P'

4.2.3 Implementation of Kinetic Poincaré plots in XTOR-K

In addition to the energy exchange diagnostic, a Kinetic Poincaré diagnostic can be very
useful to study the evolution of the resonant island in phase space. Such a diagnostic has
been developed for the code XHMGC [Briguglio et al., 2014][Briguglio et al., 2017]. A similar
method has been implemented in XTOR-K. It consists in following resonant particles in the
phase space diagram (⇥, ⇥̇) that was presented in Chapter 2.3. The quantity ⇥ is defined in
(2.57). As done in [Briguglio et al., 2014], ⇥̇ can be replaced by P' for simplicity.

In XTOR-K, this diagnostic is still under development. Preliminary results have though
already been obtained. The implementation of this diagnostic, and the method to use it is
discussed here. First, the resonant zones of phase space need to identify, in order to decide
which particles to follow in the diagram (⇥, P'). Then, for a given P',res lying on a wave-
particle resonant surface, it is chosen to follow particles with the same energy and pitch angle,
on a range of P' around the resonant surface.
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The phase ⇥ depends on the nature of the resonance considered in the angle-action formal-
ism. For the alpha fishbone instability, only two resonances are of interest. The precessional
resonance with n = (0, 0, 1), and the passing resonance n = (0,�1, 1) (see Figure 4.1).

⇥precessional(↵, t) = ↵3 �
Z t

0

!(t0)dt0 (4.81)

⇥passing(↵, t) = ↵3 � ↵2 �
Z t

0

!(t0)dt0 (4.82)

In the Kinetic Poincaré diagnostic implemented in XTOR-K, both resonances can however
be treated similarly. Along the trajectory of resonant particles, a dot in the diagram (⇥, P')
is plotted every time their poloidal angle ✓ = 0 on the low field side. The same procedure is
used in [Briguglio et al., 2014]. At ✓ = 0, as displayed on Figure (2.6), the angle ↵2 = 0. The
angle ↵3 can be written as (2.50) ↵3 = ' + F (↵2) with F a periodic function of ↵2. When
computing ⇥ at ✓ = 0, F (✓ = 0) is a constant, so ⇥ can be defined for both resonances as

⇥(t) = '�
Z t

0

!(t0)dt0 (4.83)

As of now in XTOR-K, the Kinetic Poincaré diagrams can only be obtained for one resonant
particle. Being able to use an arbitrary number of particles is currently being implemented,
and constitutes a mandatory feature to observe the dynamics of the resonant island. Yet, a
one-particle diagram gives a general idea of the island behavior. On Figure 4.8, an example of
a one particle Kinetic Poincaré diagram is displayed. It has been obtained from a nonlinear
hybrid simulation performed with XTOR-K.

Figure 4.8: Trajectory of a resonant particle in the Kinetic Poincaré diagram (⇥, P'). The
precessional resonance is located at P' = 4, marked by the red line. The considered particle
was initially trapped in a resonant island, and escaped at larger P'.



84
CHAPTER 4. THEORETICAL AND NUMERICAL DEVELOPMENTS FOR THE

STUDY OF THE FISHBONE INSTABILITY

4.2.4 Conclusion

In this chapter, the linear theory of the fishbone instability has been derived. A fishbone
dispersion relation has been obtained, considering an isotropic slowing distribution function
of fast particles. It incorporates some specificities regarding earlier linear models. The
resonant contribution of passing particles is taken into account [Cheng, 1992][Fu et al., 2006],
and non-resonant terms are included in the kinetic contribution �K to the fishbone dispersion
relation [Nabais et al., 2015]. This fishbone linear model will enable to verify linearly the code
XTOR-K in Chapter 5. The implementation of realistic fast particles distribution function in
XTOR-K has also been presented. It will permit the study of the alpha fishbone instability
in Chapter 5 and 6. The implementation of phase space diagnostics has also been discussed
in this chapter. They are used in chapter 6 to study the behavior of fast particles in the
nonlinear phase of the alpha fishbone instability.



Chapter 5

Linear verification of XTOR-K and
application to ITER linear stability

The advantage of having a linear model when possessing a global nonlinear hybrid code is
double. On one hand, the fishbone linear model can be used to assess at minimal computa-
tional cost the linear stability of simple equilibria against the fishbone instability. Assessing
the linear stability of a given equilibrium with a hybrid code such as XTOR-K requires of
order 104� 105 computing hours, whereas the fishbone linear model only requires a few min-
utes. Therefore, the fishbone linear model lowers drastically the amount of computational
time needed to obtain the threshold �h,res/�tot at which the fishbone instability dominates
the internal kink instability. The assessment of the fishbone threshold with hybrid codes
requires several simulations with di↵erent kinetic particle densities.

On the other hand, the linear model can be used to proceed to the linear verification of
hybrid codes such as XTOR-K. It enables to validate the correct implementation of kinetic
modules in nonlinear MHD codes. Such a verification permits two studies. First, the fishbone
linear model uses intrinsic assumptions that prevents it from estimating the linear stability
of complex Kinetic-MHD equilibria, with for example non-circular magnetic surfaces and
highly energetic kinetic particles. Once verified, the code XTOR-K can be used instead of
this model to assess the linear stability of complex equilibria. This is done for the ITER 15
MA equilibrium in this chapter. Second, when verified, nonlinear hybrid codes can be used to
study the nonlinear phase of the fishbone instability, in which resonant transport and mode
chirping occur. Such a study is performed in Chapter 6.

In this chapter, the eigenfrequencies of kinetic particles in XTOR-K are first compared to
those obtained from the angle-action formalism. Then, the Kinetic-MHD equilibrium on
which the code XTOR-K can be verified by the fishbone linear model is defined, taking into
account the model restrictive assumptions. Afterwards, the linear verification of XTOR-K
is presented, and the importance of the linear model specificities is highlighted. Finally, the
code XTOR-K is used to find the fishbone thresholds of two Kinetic-MHD equilibria relevant
to the ITER 15 MA scenario. It is found that the fishbone thresholds lie well below the
expected �↵/�tot for this scenario. The ITER 15 MA scenario is then likely to be unstable
against the alpha fishbone instability.

85
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5.1 Verification of the particles’ characteristics
frequencies

The fishbone instability is characterized by resonant processes between the mode ! and the
particles eigenfrequencies !b,!d. The first step of XTOR-K’s linear verification is then the
comparison between the eigenfrequencies computed from the code, and those obtained from
the angle-action formalism (A.7), (A.18), (B.11), (B.14). In a previous work [Leblond, 2011],
it has been shown that in XTOR-K simulations, the invariants of motion are well conserved
when particles are advanced on a Grad-Shafranov equilibrium. As a result, it is expected that
the particles eigenfrequencies, directly linked to the invariants of motion by the angle-action
formalism, are correct. However, it is worth verifying that it is numerically the case, since
slight divergences in these frequencies values would induce significative di↵erences regarding
the overall characteristics of the fishbone instability, such as its growth rate, rotation fre-
quency and/or position of resonances in phase space.

In order to work out numerical values for !b,!d from particle orbits obtained with XTOR-K,
the 6D particle advance in the code has been taken out into a separated module. This module
is used to advance particles on MHD equilibria computed by the CHEASE code. Particles
are initialized for a given set of invariants (E,�, h i), which facilitates the comparison with
the angle-action formalism. The particles’ eigenfrequencies in XTOR-K are obtained from
the time evolution of their poloidal and toroidal angles.

The bounce/transit frequency !b is computed using a Fourier transform of ✓(t), since the
poloidal angle is computed modulo 2⇡ in the code. Typical ✓ time evolutions for passing
and trapped particles are given in Figure 5.1. The precessional frequency !d can be ob-

(a)

(b)

Figure 5.1: Poloidal angle time evolution for passing particles (a), and trapped particles (b).
✓ is given modulo 2⇡.

tained from the toroidal angle using equation (2.50). For trapped particles, !d is obtained
by performing a linear regression on '(t), since ' / !dt. For passing particles, the preces-
sional frequency is computed by subtracting q( ̄)! from the slope of '(t). However, since
!b � !d, the computation of !d is quite challenging since it involves a precise measurement
of q( ̄), which is not always possible for deeply passing particles. Therefore, the eigenfre-
quency ⌦3 = q( ̄)!b + !d in XTOR-K is directly compared with the value predicted by the
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(a)

(b)

Figure 5.2: Toroidal angle time evolution for passing particles (a), and trapped particles (b).
On (b), the precessional frequency (red curve) is obtained by a linear fit of '(t)

angle-action formalism. Typical ' time evolutions can be found in Figure 5.2.

The theoretical expressions of !b,!d have been derived using a thin orbit width approxi-
mation. Therefore, the particles’ eigenfrequencies in XTOR-K need to be verified at low
energy, since the particles’ orbit width is proportional to

p
E. It is then chosen to advance

particles with energy E = 100 keV. Particles are chosen all over the pitch angle range, for
di↵erent radial positions inside the q = 1 surface. Particles with radial positions beyond
q = 1 are not of interest since they cannot interact resonantly with the mode.

Figure 5.3 displays the values of !b,!d computed from the angle-action formalism and parti-
cles’ trajectories in XTOR-K. The trapped and the passing domains have been separated on
this figure. The agreement between the numerical and theoretical values is satisfactory, for
all radial positions considered and all over the pitch angle range. Particles’ eigenfrequencies
are therefore well described by XTOR-K.

5.2 Valid Kinetic-MHD equilibrium for XTOR-K’s
linear verification

As mentioned in Chapter 4, a number of assumptions have been used in the derivation of the
analytical model. They are restricting the Kinetic-MHD equilibria that can be considered
with the fishbone linear model. The most restrictive assumptions are the circular magnetic
surfaces, a small inverse ratio aspect at q = 1, thin orbit widths and low kinetic pressure
regarding total pressure ph ⌧ ptot.

Some of these constraints can be easily applied, for example by configuring a circular MHD
equilibrium with CHEASE verifying a ⌧ R0. However, the parameters space in which the
two others assumptions are valid needs to be found. It is shown in this section that the
birth energy Eb of the slowing-down distribution function used is a crucial parameter for
meeting the model assumptions. Once the ideal birth energy has been found, it must also be
determined if an ordering between the critical and birth velocity of the slowing-down distri-
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(a) (b)

(c) (d)

Figure 5.3: (a) Precessional frequencies. (b) Bounce frequencies in the trapped domain. (c)
Third eigenfrequencies ⌦3. (d) Transit frequencies in the passing domain. Blue points are
obtained from the theoretical expressions of !b,!d, and the red points are computed from
XTOR-K. The frequencies are plotted at di↵erent radial positions  ̄ against their pitch angle
� for E = 100 keV. Frequencies are normalized at the Alfvén time ⌧A.

bution can be obtained. If not, the fishbone dispersion relation will be computed with the
collocation method.

5.2.1 Limit brought by high birth energies

When the particles’ energy is increased, their trajectory in the poloidal plane evolves from
thin banana orbits to large potato orbits, as displayed on Figure 5.4. Therefore, there exists
an energy threshold beyond which a thin orbit width approximation cannot be used to de-
scribe fast particles.

Such a threshold is defined here as the energy beyond which the eigenfrequencies derived
by the linear theory do not match those obtained from XTOR-K. The frequencies !b,!d

computed from XTOR-K are assumed to be correct at all energies. Such an assumption is
acceptable since the particle advance is not restricted at high particle energy in XTOR-K,
and because eigenfrequencies obtained from the code have been verified at low energy.

On Figure (5.5), precessional and bounce frequencies obtained at E = 3.5 MeV and E = 1
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(a) (b) (c)

Figure 5.4: Trajectories in the poloidal plane for trapped particles. Particles have the same
 ̄ and �, but were launched at di↵erent energies to highlight orbit width e↵ects. (a) 100 keV,
(b) 1MeV, (c) 3.5 MeV. The red circle on these figures represent the reference flux surface  ̄
of the particles.

(a) (b)

(c) (d)

Figure 5.5: Comparison of the frequencies !b,!d at di↵erent energies between the linear
model (blue points) and XTOR-K (red points), at r=0.5rq=1 against pitch angle. Results at
3.5 MeV are displayed respectively on (a) for the precession, and in (b) for the bounce. Same
results are shown in (c) and (d) at 1 MeV. Frequencies are normalized at the Alfvén time ⌧A
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MeV are displayed. Only the trapped domain is shown here to simplify this discussion, re-
sults from the passing domain being redundant. At E = 3.5 MeV, the bounce frequencies of
the linear model remain somewhat valid. However, the theoretical precessional frequencies
do not recover those obtained from XTOR-K, especially near the trapped-passing boundary.
Therefore, a realistic slowing-down distribution of alpha particles with birth energy Eb = 3.5
MeV cannot be described by the fishbone linear model.

However, at intermediate particle energy E = 1 MeV, the theoretical precessional and bounce
frequencies are found to be still in good agreement with XTOR-K’s at  ̂ = 0.5 ̂q=1. At lower
radial position close to the magnetic axis, some particles at 1 MeV exhibit non-standard
orbits, and are then badly described by the thin orbit width approximation. However, the
proportion of particle with non-standard orbits is found to be weak regarding particles with
standard ones. Therefore, the thin orbit width approximation still holds for slowing-down
distribution function with birth energy Eb = 1 MeV. For birth energies higher than 1 MeV,
it has been observed that the theoretical frequencies !d,!b are not recovered by XTOR-K.
Eb = 1MeV is therefore the threshold birth energy regarding the thin orbit width assumption.

5.2.2 Limit brought by low birth energies

At first sight, regarding the thin orbit width assumption, it seems that a slowing-down dis-
tribution function with a birth energy as low as possible is a good candidate for a linear
verification. However, at lower energy, much larger kinetic densities are required to destabi-
lize significantly the fishbone instability. Since the kinetic pressure needs to verify ph ⌧ ptot
in the fishbone linear model, a birth energy in an intermediate regime needs to be used to
satisfy both assumptions.

In order to find the ideal birth energy, two sets of linear simulations have been done with
XTOR-K. Both sets consider an isotropic slowing distribution function of alpha particles at
kinetic densities just high enough to trigger the fishbone instability. The first set considers a
birth energy Eb = 100 keV, and the second one Eb = 1 MeV. The ratio ph/ptot for both sets
of simulations is displayed on Figure (5.6).

(a) (b)

Figure 5.6: On-axis ratio between the kinetic and total pressure, for di↵erent kinetic pressures
at which the fishbone instability is significantly perturbed. (a) Case at 100 keV, (b) Case at
1 MeV.
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For the case with Eb = 100keV, the fishbone instability begins to appear at nh,0 = 4.1018m�3.
At this density, the on-axis pressure ratio ph,0/ptot,0 is about 10 %, which is already too large
regarding the limit ph/ptot ⌧ 1. The complex frequencies ! + i� cannot be expected to be
similar between XTOR-K and the fishbone linear model for Eb = 100 keV. The birth energy
of the slowing-down distribution function needs to be further increased in order to obtain
lower pressure ratio.

For the set Eb = 1 MeV, the fishbone instability is appearing at nh,0 = 1.1017m�3, with
a corresponding pressure ratio ph/ptot = 4%. It satisfies the condition ph/ptot ⌧ 1. At the
maximum on-axis density considered for this set, the low kinetic pressure condition is not as
well respected, with ph/ptot = 11%. Compared results between XTOR-K and the fishbone
linear model can be expected to diverge above nh,0 = 4.1017m�3.

Therefore, an isotropic slowing-down distribution function with birth energy Eb = 1 MeV is
an ideal candidate to verify XTOR-K with the fishbone linear model. It meets simultaneously
the thin orbit width and the low kinetic pressure assumptions.

5.2.3 Computational method used for �K

Now that the relevant birth energy Eb has been defined, the quantity (vc/vb)3 needs to be
evaluated. As explained in 4.1.4, the computation of �K in the linear model (4.60) depends
on the value of this ratio. If an ordering between the two velocities can be found, the energy
integral of �K is computed analytically. Otherwise, the collocation method needs to be used.
The only free parameter remaining in the ratio (vc/vb)3 is the electron temperature. For
realistic tokamak plasmas, this parameter lies between 10-30 keV.

(a) (b)

Figure 5.7: (a) Velocity histogram of slowing-down distribution functions for di↵erent on-axis
electron temperature. (b) Cubic ratio between the critical velocity and the birth velocity, as
a function of the birth energy for di↵erent on-axis electronic temperatures

Figure (5.7) (a) displays the velocity histograms of the slowing-down distribution functions
for various electron temperatures. Most particles’ velocity range in v̂ 2 [0.4, 1]. Unfortu-
nately, as displayed on Figure (5.7) (b), for realistic electron temperatures, an ordering as
(vc/vb)3 ⌧ v̂3 or (vc/vb)3 � v̂3 cannot be formed. At the lowest temperature considered Te
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= 10 keV, the ordering (vc/vb)3 ⌧ v̂3 is only marginally satisfied at v̂ = 1, not for lower
velocities. At higher temperatures, there is no energy range on which an ordering can be
formed. Therefore, the electron bulk temperature cannot be tuned in order to use an analyt-
ical method for Ires in (4.60). The bulk temperature is then set to Ti(0) = Te(0) = 20 keV
to describe an ITER-like equilibrium and the collocation method is used to compute Ires.

5.2.4 Valid equilibrium for linear verification

The Kinetic-MHD equilibrium defined for the linear verification of XTOR-K is presented
here. As explained above, a MHD equilibrium with circular cross sections is used, with di-
mensions and magnetic field identical to those of ITER, R0 = 6.2m, a = 2m,B0 = 5.3T . By
imposing a q = 1 surface at s =

p
 / edge = 0.4, this ITER-like geometry has a small inverse

aspect ratio on q = 1 as ✏q=1 ⌘ ✏0 ⇠ 0.11 ⌧ 1, which is required by the linear model.

The safety factor profile is also chosen to have an on-axis value q0 = 0.95 close to 1, which
is an other requirement of the fishbone linear model. The kinetic density profile is chosen to
be steep in order to trigger the fishbone instability at low kinetic pressure, with ph ⌧ ptot.
It is possible since �K / @rFeq / @rnh in (4.53). The density profile is n↵(s) = n↵,0(1� s2)6,
with s the normalized radial coordinate s =  / edge. Kinetic particles are chosen to be alpha
particles.

The equilibrium alpha distribution function is represented on Figure 5.8, in the (E,�) dia-
gram at a fixed radial position, for both trapped and passing populations. The number of
particles in this diagram is peaked on the trapping-passing � = B0/Bmax(r) boundary.

The bulk part of the equilibrium has been designed such that it is unstable against the
n = m = 1 resistive internal kink mode. Diamagnetic e↵ects have not been considered in
the bulk. The growth rate of the instability without alpha particles is �⌧A = 1.7 10�3. This
choice has been made such that it is possible to observe the expected stabilization of the
instability at low density of fast particles.

5.3 Quantitative verification

5.3.1 Quantitative match for the linear frequencies of the
internal kink

Now that a suitable equilibrium has been defined, the complex frequencies ! = ! + i� ob-
tained from XTOR-K and the fishbone linear model are presented. The fishbone dispersion
relation (4.6) is solved with di↵erent on-axis kinetic densities n↵,0, and several hybrid sim-
ulations are performed with XTOR-K for the corresponding n↵,0. Results are presented on
Figure 5.9. As expected theoretically and experimentally [White et al., 1990], [Wu et al.,
1994][Nave et al., 1991], both models recover the two branches of solution, as in 4.1.5. The
internal kink branch, dominant at low kinetic density, corresponds to the stabilization of the
internal kink MHD mode. The fishbone branch dominates the kink mode above the fishbone
beta threshold �h,th/�tot = 5%. The fishbone mode is destabilized by the resonant drive
introduced by kinetic particles. It is further destabilized with increasing fast particles beta,
contrarily to the kink branch.

Regarding the pulsations, the two branches exhibit di↵erent behaviors. The mode pulsa-
tion on the kink branch is one order of magnitude below than on the fishbone branch. Still
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(a) (b)

(c) (d)

(e)

Figure 5.8: Kinetic MHD equilibrium used for linear verification. (a) Bulk ion density in the
poloidal plane, exhibiting the equilibrium geometry. (b) Parabolic q profile with q0 = 0.95
and q95 = 2. (c) Peaked alpha density profile. (d)-(e) Alpha distribution function in the
(E,�) in the trapped (d) and passing (e) domains, at r = rq=1.
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(a) (b)

Figure 5.9: Compared complex frequencies against the beta ratio �h/�tot. Values from the
linear model in blue, and from XTOR-K in red. Growth rates are shown in (a), pulsations
in (b). A quantitative agreement is obtained between the hybrid code and the linear theory.

on the kink branch, the instability rotates mainly because of the diamagnetic e↵ect carried
by the fast alpha-like particles. Instead, on the fishbone branch, the rotation is due to both
the diamagnetic e↵ect and the resonant interaction between the n = m = 1 mode and the
fast particles eigenfrequencies. On the fishbone branch, due to the resonant interaction, the
mode pulsation tends to scale as the precessional frequency of deeply trapped particles. On
Figure (5.9), !⌧A ⇠ 5.5⇥ 10�3 and on Figure (5.5) (c), !d⌧A = 6.10�3 for � ⇠ 1.

The kink branch still exists beyond the critical kinetic beta, but has a lower growth rate
than the fishbone branch. The fishbone linear model shows that fast particles fully stabilize
the internal kink mode at higher kinetic beta. In XTOR-K, only the instability with the
largest growth rate can be observed, which is why Figure 5.9 does not show overlap between
the two branches.

The agreement between the fishbone linear model and the linear simulation phases of XTOR-
K is satisfactory at lower densities. Both models recover the same critical kinetic beta at
which the fishbone branch dominates the kink branch. On the fishbone branch, the two mod-
els begin to diverge with increasing kinetic density. On Figure (5.9), at the highest kinetic
beta, the pressure ratio is ph/ptot = 11%, which begins to be too large regarding the as-
sumption ph ⌧ ptot. At this kinetic pressure, �WMHD cannot be computed without including
the kinetic contribution to the total current J. The divergence between XTOR-K and the
fishbone linear model at higher kinetic beta is then due to the restrictive assumptions of the
linear model.

Therefore, a linear verification of the hybrid code XTOR-K has been provided by the linear
theory. It ensures that the kinetic PIC module and its coupling with the fluid equations has
been correctly implemented.
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5.3.2 Relevance of the linear model specificities

The specificities introduced in the fishbone linear model have revealed to be essential to
provide a precise verification of XTOR-K. Figure 5.10 displays the complex frequencies that
would have been obtained from the fishbone linear model without those specificities. The
features removed from the linear model on this figure are respectively the resonant contri-
bution of passing particles, and the non-resonant kinetic contribution (4.54) to the fishbone
dispersion relation (4.6). Results obtained using Porcelli’s expression in [Porcelli, 1991] have
also been plotted on Figure (5.10).

(a) (b)

Figure 5.10: Compared results between di↵erent theoretical linear models and XTOR-K
regarding the mode growth rates (a) and pulsations (b). Red diamonds : XTOR-K, blue
points : the full fishbone linear model, green points : the full linear model without the
resonant passing contribution, black points : the full linear model without the non-resonant
contribution and brown points : Porcelli’s model expression [Porcelli, 1991].

From this figure, it can be observed that without the passing resonant contribution (green
points), the pulsations obtained are closer to XTOR-K’s values than with the complete model.
However, the growth rates obtained in this limit are more than twice as high as XTOR-K’s
growth rates. Since the linear model needs to recover precise values for the total complex
frequencies, the inclusion of the resonant contribution of passing particles is necessary for
the linear verification of XTOR-K by the fishbone model. Similarly, the inclusion of the
non-resonant contribution is necessary for the linear verification. Without this contribution
(black points), the growth rates computed are closer to XTOR-K’s, but the pulsations are
twice as large as those obtained with the hybrid code.

Results obtained between the complete fishbone linear model (blue points) and the Porcelli’s
model are quite similar. Complex frequencies for the Porcelli’s model have been obtained
by replacing the term �2/� in equation (4.53), by � according to equation (11) in [Porcelli,
1991]. The growth rates computed from this model are somewhat larger than those of the
fishbone model, whereas the pulsations obtained are almost identical. The fishbone model
derived in Chapter 4 is therefore preferred for verifying linearly the hybrid code XTOR-K.
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5.3.3 Quantitative match for positions of resonances in phase
space

Finally, the linear verification of XTOR-K is completed by comparing the positions of the
precessional resonance in the 3D invariants space. The position of the resonance in the linear
theory is obtained by solving numerically the equation ! � !d(E,�, r̄) = 0 using (B.11).
This equation is solved at a fixed radial position r̄, and the solution is a curve in the (E,�)
diagram. The resonance is found in XTOR-K by using the diagnostics implemented in 4.2.2.
During the linear phase of the fishbone instability, the perturbed kinetic distribution function
�F is expected to be maximal around the resonance position, according to equation (4.12).

Figure 5.11: Perturbed kinetic distribution function squared �F 2 obtained from a XTOR-K
simulation. It is taken at the late linear phase of the fishbone instability, and projected on
the (E,�) on the radial slice r 2 [rq=1� �r, rq=1+ �r]. The red and white curves corresponds
to the theoretical position of the precessional resonance at di↵erent radial positions. Red for
r = rq=1, and white for r = rq=1 ± �r. The resonant structure acquired from XTOR-K is
coherent with the theoretical position of the resonance.

On Figure (5.11), the results obtained from the linear theory and XTOR-K phase space di-
agnostics are presented. They have been acquired by considering the beta ratio �h/�tot = 8%
(see Figure (5.9)). For this simulation, the mode pulsation is !⌧A = 4.10�3. This value has
been used to solve ! = !d. The color dots on this figure correspond to the perturbed kinetic
distribution function squared �F 2, computed on the (E,�) diagram between the two radial
grid points on which lies the q = 1 surface rq=1. It is noted that the (E,�) diagram consid-
ered lies in the trapped domain, since only the precessional resonance is of interest here. On
Figure (5.11), �F corresponds to the perturbed distribution function taken at the end of the
linear phase, before the fishbone mode saturates. This simulation has been continued further
in the nonlinear phase, it will be discussed in Chapter 6.
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The red curve on Figure (5.11) is the solution of ! � !d(E,�, rq=1) in the (E,�) diagram.
Since �F 2 has been computed in XTOR-K for kinetic particles with radial positions such as
r 2 [rq=1 � �r, rq=1 + �r], it is necessary to evaluate the error bars associated to this radial
interval. These error bars can be provided by the linear theory, solving !�!(E,�, rq=1� �r)
and ! � !(E,�, rq=1 + �r) in the (E,�) diagram. The solutions of these equations are il-
lustrated by the white curves on Figure (5.11). The theoretical position of the resonance is
almost identical to the resonance’s position obtained from XTOR-K, the structure observed
on the �F 2 diagnostic lying nearly entirely inside the white curves.

The linear verification of XTOR-K by the fishbone linear model has now been fully ad-
dressed. Complex mode frequencies and resonance position obtained with the hybrid code
match quantitatively those computed from the linear model.

5.4 Stability of the ITER equilibrium against the
alpha fishbone instability

XTOR-K can now be used on equilibria that are beyond the scope of the fishbone linear model.
In this section, the linear stability of the ITER 15 MA scenario against the alpha fishbone
is studied with XTOR-K. Such a study has already been carried out in two previous works
[Hu et al., 2006][Fu et al., 2006], respectively through linear theory and hybrid simulations
performed with the nonlinear code M3D-K. Results acquired from XTOR-K simulations are
compared to these previous works.

5.4.1 Equilibrium used

This study is based on profiles inspired from integrated simulations performed with the code
Corsica [Imbeaux et al., 2015] on the ITER 15 MA case. Profiles have been adjusted at
the plasma edge to obtained null pressure gradient, needed for initial values codes such as
XTOR-K. The current profile has been modified in order to obtain parabolic q profile with
on-axis value below unity, which facilitates the study of n = m = 1 modes. Also, the plasma
resistivity has been decreased from S = 3.109 to S = 1.107 in order to resolve the mode
inertial layer. Such a layer gets too thin for ITER relevant Lundquist numbers, and cannot
be resolved by the radial resolution used in these XTOR-K simulations. 200 grid points
are used in the radial direction. The on-axis ion/electron bulk temperatures are set at 20
keV, the bulk density at 1020 m�3. In the di↵erent simulations performed, the only free
parameters are the on-axis kinetic density, and the shape of the current profile. They are
used respectively to explore the di↵erent instability branches, and to set the on-axis safety
factor . Bulk diamagnetic e↵ects have not been added to these hybrid simulations. The
kinetic density profile is the same as the one used for the linear verification. Such a profile
is rather peaked, its relevance is discussed in the latter part of this chapter. An isotropic
slowing distribution function with birth Eb = 3.5MeV is used to describe alpha particles.
On Figure 5.12, several features of the Kinetic-MHD equilibrium are presented.

5.4.2 Results for flat q profile and peaked alpha density profile

Two sets of simulations have been performed for this analysis. Di↵erent q profiles have been
used, with on axis values of 0.9 and 0.95, same edge safety factor and same radial position
for the q = 1 surface, sq=1 = 0.35. It ensures to only study the impact of the on-axis safety
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(a) (b)

(c) (d)

Figure 5.12: Kinetic-MHD equilibrium defined for the ITER 15 MA case. (a) The bulk ion
pressure in the poloidal plane, which highlights the equilibrium geometry. (b) The alpha
distribution function velocity histogram, for Eb = 3.5 MeV and Te,0 = 20keV . (c) The
electron bulk density profile. (d) The q profile, that is chosen to be parabolic with on axis
values below unity

factor when varying the q profiles. The alpha beta is evolved from 0 to 12% of the total
plasma beta. Such a range is lower than the expected beta ratio [iTER physics basics, 2000]
on ITER, where depending on the on-axis temperature, �↵/�tot 2 [15%, 20%]. This is not
restrictive since the point of these linear simulations is to find the fishbone threshold in beta
ratio. For both cases studied, they lie below �h/�tot = 12%

As discussed in 4.1.5 and 5.3.1, results shown on Figure 5.13 recover the characteristics
of the interaction between fast particles and 1,1 modes. A kink and a fishbone branch appear
in both cases. Points displaying null growth rates on Figure (5.13) (a) do not necessarily
describe stable configurations. Points marked with null frequencies are those where no modes
emerge from the noise level after t = 4000⌧A. Such points can be indeed stable, or unsta-
ble with a growth rate low enough to prevent them from raising above the noise level after
4000⌧A. This kind of situation is depicted on Figure 5-16, where magnetic energies from cases
�↵/�tot = 6% and 8% with q0 = 0.95 are compared. The n = 1 harmonic at �↵/�tot = 8%
emerges from the noise and becomes unstable. The n = 1 harmonic at �↵/�tot = 6% does
not rise above the noise level defined by the harmonics n = 2, n = 3.
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(a) (b)

Figure 5.13: Instability growth rates (a) and pulsations (b) for the ITER 15 MA case, with
in red results with q0 = 0.9, and in blue q0 = 0.95

(a)

(b)

Figure 5.14: (a) Magnetic energies of m = 1 modes, for several n harmonics and beta ratio.
(b) Perturbed electronic temperature in the poloidal plane during the linear phase, that
exhibits the inherent noise level

These results show that the fishbone threshold is a decreasing function of the on-axis safety
factor. For q0 = 0.95, the threshold is located at �h/�tot = 5%, while for q0 = 0.9, the fish-
bone branch starts around 10%. Given the low variation applied on q0, the fishbone threshold
is quite sensitive to the safety factor used. The growth rates without alpha particles are dif-
ferent between the two set of simulations studied. The fluid growth rate derived in [Bussac
et al., 1975] scales like 1� q0, which explains the factor two of di↵erence between the growth
rates without fast particles.

The error bars on Figure 6.20 (b) are due to the noise level in the ITER simulations. The
mode pulsation is obtained in XTOR-K by computing ! = !E⇥B � !lab. !E⇥B refers to
the cross field rotation of the whole plasma, and can be easily computed. !lab refers to the
rotation rate of the mode instability. It is computed by locating the maxima of a perturbed
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quantity on the flux surface q = 1, at a given toroidal position. Figure (5.14) (b) shows for
example the perturbed electron temperature at ' = 0 in the linear phase of the simulation.
It can be seen on this figure that a certain level of noise is present, the 1,1 mode structure
not being symmetric. It prevents a precise localization of the perturbed quantity maximum.
Therefore, it induces an error on the measurement of !, quantified by the error bars on Figure
(6.20) (b).

5.4.3 Comparison of XTOR-K’s results with earlier works

The results obtained with XTOR-K hybrid simulations reveal that both Kinetic-MHD equi-
libria studied become unstable against the fishbone instability at low kinetic beta. For the
two sets of simulations performed, the fishbone thresholds lie below the expected �↵/�tot =
15� 20% beta ratio in [iTER physics basics, 2000], by a factor up to 3 for the set q0 = 0.95.
The alpha fishbone instability is therefore likely to be unstable on the ITER 15 MA scenario,
according to the simulations presented.

However, earlier results find the fishbone instability to be either unstable [Hu et al., 2006]
or stable Fu et al. [2006] on the ITER 15 MA scenario. The equilibrium parameters used
in these works need to be presented and compared to those used in XTOR-K, to assess in
greater depth the linear stability of the ITER configuration.

Results from [Hu et al., 2006] have been obtained with a linear model fairly similar to the
one developed in 4.1. Complex geometries are allowed in this model, and kinetic e↵ects of
the bulk plasma are derived, to take into account the kinetic bulk ion inertia enhancement.
Such bulk kinetic e↵ects are not taken into account in XTOR-K’s alpha fishbone simulations.
The equilibrium used in this work is quite similar to those defined in 5.4.1, with for example
parabolic q profiles with q0 = 0.9. A notable di↵erence though is the alpha density profile
used in this work. It is not defined arbitrarily as defined in 5.4.1, but obtained by balancing
the source of fusion born alpha particles and their loss due to thermalization. These results
show, for the unique beta ratio of 7% considered, that there exists a threshold on �tot, keeping
�↵/�tot constant, above which the equilibrium is fishbone unstable. In 5.4.2, for q0 = 0.9, the
fishbone is triggered at a beta ratio around 10% for a fixed �tot. Therefore, results obtained
between XTOR-K on the ITER 15 MA scenario are in good agreement with those in [Hu
et al., 2006].

However, global hybrid simulations performed with M3D-K [Fu et al., 2006] do not agree
with such results. In this work, for q0 = 0.95 and �h/�tot = 15%, the internal kink is only
stabilized, with a growth rate that is 50% below the one without fast particles. In compar-
ison, at 12% of beta ratio and q0 = 0.95, XTOR-K simulations show that the internal kink
is fully stabilized and that the fishbone instability is triggered. Such a discrepancy with the
results obtained in 5.4.2 and those of [Hu et al., 2006] can be explained by a number of points.
First, the total beta used in M3D-K ITER simulation is �tot = 6.5%, and only �tot = 5.75%
in XTOR-K. It can then be expected that the q = 1 poloidal beta is higher in M3D-K, which
implies that the internal kink without fast particles is more unstable in M3D-K’s simulations.
A higher alpha density than in XTOR-K’s simulations is then required to fully stabilize the
kink.

Moreover, as shown in Figure 5.15, the normalized alpha density gradient used in M3D-
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K is much lower that those taken in [Hu et al., 2006] and XTOR-K, by a factor of 3 when
considering a q=1 radius around s =

p
 / edge = 0.4. As shown in equation (4.53), the

kinetic drive is directly proportional to the alpha density gradient. Therefore the fishbone
threshold is a decreasing function of rn↵. Given that in the corresponding XTOR-K simu-
lation, the beta ratio threshold is ⇠ 10%, the threshold in [Fu et al., 2006] should lie ⇠ 30%.
It explains why only a stabilization e↵ect is recovered at �h/�tot = 15% for the ITER 15 MA
case in [Fu et al., 2006].

It is interesting to note that the arbitrarily defined alpha density profile used with XTOR-K
is quite similar to the one obtained with realistic density of alpha particles, when considering
sq=1 ⇠ 0.4. A realistic density profile for alpha particles can be derived with a source Sfusion

due to fusion reactions, and a sink due to alpha thermalization such as

@n↵
@t

⌘ Sfusion � Pthermalization =
n2
i

4
h�vi � n↵⌧th (5.1)

At steady state, @tn↵ = 0, and according to (5.1), n↵(r) = n2
i h�v(Ti(r))i⌧th(r)/4, with ⌧th the

thermalization time, of order 1 second in ITER [iTER physics basics, 2000]. This thermaliza-
tion time scales radially as ⌧th(r) / Te(r)3/2 when considering flat bulk density. The reaction
rate scales as h�v(Ti)i / e0.1Ti

(r) for Ti 2 [10 keV ,20 keV] [Wesson and Sen, 1989]. Therefore,
the alpha density radial dependency is n↵(r) / Te(r)3/2e[0.1Ti

(r)]. The realistic alpha gradient
is plotted in green on Figure (5.1). The ad hoc profile used in XTOR-K’s simulation is then
well suited to analyze the ITER 15 MA scenario linear stability against the alpha .

Figure 5.15: Compared normalized alpha particle gradients between di↵erent linear study
of the fishbone instability on the ITER 15 MA case. In red the gradient used in M3D-
K’s simulations, in green the realistic gradient computed from the bulk electronic and ionic
temperature, and in blue the one used in XTOR-K’s simulations.

It can then be concluded that the ITER 15 MA scenario is indeed likely to be unstable
against the alpha fishbone, since a ITER relevant alpha density profile has been used in
XTOR-K’s linear simulations.
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LINEAR STABILITY

5.5 Conclusion

The linear verification of the hybrid code XTOR-K by the fishbone linear model developed
in 4.1 has been detailed in this chapter. First, the particles eigenfrequencies in XTOR-K
have been verified through theoretical expressions obtained from the angle-action formalism.
Then, taking into account the restrictive assumptions of the linear model, a suitable Kinetic-
MHD equilibrium has been defined for XTOR-K’s linear verification. Results for the complex
frequencies ! + i� obtained with XTOR-K are in good quantitative agreement with those
computed from the fishbone linear model. Such results confirm the correct implementation
of kinetic modules in XTOR-K. Furthermore, the specificities retain in the linear model have
revealed to be essential for the verification of XTOR-K. Finally, the linear verification has
been completed by identifying the zones of resonant interaction in the 3D invariants space.
The theoretical position of the precessional resonance was found to be consistent with the
resonant structure obtained from XTOR-K’s phase space diagnostics.

The linear verification of XTOR-K has enabled to conduct a series of linear hybrid simu-
lations on the ITER 15 MA scenario. The fishbone instability was studied for ITER relevant
parameters. It was shown that the fishbone kinetic beta thresholds lie well below the opera-
tional alpha beta expected on ITER [iTER physics basics, 2000]. These results obtained with
XTOR-K are then discussed with previous studies performed on the ITER 15 MA scenario.
It is noted that the alpha density gradient used in XTOR-K’s simulations is relevant to the
realistic alpha density on ITER. It is then concluded that the alpha fishbone instability is
likely to be triggered on the ITER tokamak.



Chapter 6

Fishbone-induced transport of fast
particles

In the previous chapter, it has been established that the alpha fishbone instability will likely
be triggered during burning plasmas experiments on the ITER tokamak. Therefore, first
principle simulations in the nonlinear phase of the fishbone instability are essential. They
can be used to predict and control the redistribution of fast particles occurring during fish-
bone oscillations. Such simulations can also evaluate to which extent kinetic particles a↵ect
the sawteeth period. At the present time, self-consistent hybrid simulations over an entire
sawtooth cycle are requiring a too long computational time. Yet, it is possible to assess
with reasonable computing time the particles resonant transport during fishbone oscillations
appearing before a sawtooth crash. In this chapter, the aim is then to study particle trans-
port during alpha fishbone oscillations prior to complete magnetic reconnection. This study
is performed by simulating the instability in its nonlinear phase using the code XTOR-K,
linearly verified in the previous chapter. For this study, isotropic slowing-down distribution
functions of alpha particles have been imposed at the beginning of the simulations. The
assumption of taking an imposed distribution, and not one generated by a source of al-
pha particles and collisions between kinetic particles and the bulk plasma will be discussed
in this chapter. Characteristic resonant transport and thermalization times will be compared.

As described in the literature, two nonlinear regimes exist for the fishbone instability. The
first one is the low kinetic drive limit, where the considered equilibrium is close to the fishbone
threshold [Berk et al., 1999] [Odblom et al., 2002] [Breizman and Sharapov, 2011] [Idouakass,
2016], where |� � �L| ⌧ �L. � and �L are respectively the fishbone linear growth rates for
a given equilibrium, and at the fishbone threshold. For this regime, the resonant islands in
phase space are evolving on a characteristic time ⌧NL much smaller than the bounce time
inside these islands ⌧B. This regime is likely to arise when MHD activity occurs while fast
particles begin to be generated by fusion reactions. The other regime is the strong kinetic
drive limit, where the considered equilibrium is far away from the fishbone threshold, � > �L
[Zonca et al., 2015][Vlad et al., 2013]. There, the evolution time of the resonance structure
is equivalent or smaller to the bouncing time in the structure, ⌧NL ⇠ ⌧B. This regime arises
when MHD activity is triggered after the formation of a stationary fast particle distribution
function, with a kinetic beta well above the fishbone threshold. XTOR-K solves the extended
MHD equations in 3D toroidal geometry and self-consistently advances kinetic particles in
6D inside the whole torus. Therefore, it takes into account all nonlinearities. For this reason,
it is an ideal tool for the study of the fishbone instability in any regime.

In this chapter, the nonlinear phase of the alpha fishbone instability is firstly studied on
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an ITER-like equilibrium, similar to the one used for the linear verification. This equilibrium
is expected to lie in the strong kinetic drive limit. In the nonlinear phase, the simulation
exhibits frequency chirping of the mode, associated with resonant particle transport. De-
trapping of resonant particles in phase space is also observed in this simulation. Then, the
alpha fishbone instability is studied on the ITER 15 MA scenario. Two simulations are
performed in each of the nonlinear regimes. Results obtained from the strong kinetic drive
limit are coherent with the ITER-like nonlinear simulation. A weak redistribution of alpha
particles out of q = 1 is predicted by the simulation. A total transport of order 5% of the
initial distribution is observed over several fishbone oscillations on the ITER 15 MA sce-
nario. Preliminary results have been obtained for the low kinetic drive limit. They are found
consistent with those of previous works [Odblom et al., 2002][Idouakass, 2016].

6.1 ITER-like case far from fishbone threshold

For the first nonlinear simulation of fishbone oscillations performed with XTOR-K, it has
been chosen to consider a simple equilibrium whose linear phase can be predicted by the
fishbone linear model. The fishbone threshold can therefore be predicted easily, so that the
instability indeed lies on the desired nonlinear regime. Moreover, it also enables to know
in advance the phase space zones in which the mode will resonate with kinetic particles.
Indeed, for an equilibrium with circular flux surfaces, equations (A.7),(A.18),(B.11),(B.14)
are characterizing the particles eigenfrequencies !b,!d in the 3D invariants space.

The Kinetic-MHD equilibrium described in this nonlinear simulation is then chosen to be
the same as in 5.2.4. The only exception is that the on-axis ion bulk density is of 2.1019m�3

rather than 3.1019. Such a modification enables to lower the linear growth rate without fast
particles to �MHD⌧a = 7.10�4. The fishbone threshold then arises at lower kinetic beta. It
permits to conduct a nonlinear simulation in the strong drive limit with a relatively small
beta ratio of �↵/�tot = 8%. This is preferable for a nonlinear simulation since the noise
brought by the PIC module is smaller in that case. 300 millions macro-particles are used
in the simulation to ensure that the noise level is not critical. Only four n harmonics are
retained in the fluid part, with 20 poloidal modes, given that the instability of interest is a
n = m = 1 mode.

6.1.1 Nonlinear dynamics of the MHD fields

The modes’ time evolution are presented in Figure 6.1. The noise level is well below the oscil-
lations of the di↵erent energies, ensuring that the simulation is not limited by the PIC module.
Four phases can be dissociated in this simulation. A first phase lasting until t = 4000⌧A is
dominated by PIC noise. The modes energies are not yet larger than the noise level. Then,
from t = 4000⌧A to t = 9500⌧A, a fishbone linear phase is visible, with the 1,1 mode growing
exponentially with �⌧A = 1.1 ⇥ 10�3, and a constant mode frequency !⌧A = 4.10�3 (Figure
6.2). The linear growth rate is far above the fishbone threshold predicted by the linear theory.
The 2,2 and 3,3 modes are also getting pumped by toroidal coupling.

A nonlinear fishbone phase occurs afterwards. Two 1,1 mode amplitude roll-over arise at
t/⌧A = 1.104, 1.2 ⇥ 104. These roll-over are identified as fishbone oscillations. As shown on
Figure 6.2, this nonlinear phase is accompanied by down chirping of the 1,1 mode frequency.
This nonlinear phase has been associated to the fishbone instability since the saturation ob-
served di↵ers from the classical internal kink case. For a 1,1 internal kink, in the nonlinear
phase, magnetic reconnection at the resonant surface q=1 is causing the mode saturation.
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Figure 6.1: Kinetic energy of the toroidal harmonics, for all n resolved in the simulation. A
linear phase is dominated by the 1,1 mode until t = 9500⌧A. Then, a nonlinear phase occurs.
It is characterized by two fishbones oscillations, identified during the 1,1 mode saturations
at t/⌧A = 1.104, 1.2⇥ 104. It is followed by an linear internal kink phase at t/⌧A = 14000.

In this case, as displayed on the Poincaré plots on Figure 6.3, magnetic reconnection does
happen at the end of the linear phase and during saturation (Figure 6.3 (a) and Figure 6.3
(b)). A clear 1,1 island appears on the q=1 surface that lies at r = 0.4. However, because of
its size, the observed island cannot alone explain the mode saturation, as well as the mode
frequency down chirping. Moreover, mode chirping is a characteristic feature of the fishbone
instability [Nave et al., 1991]. This point is further confirmed on Figure 6.4 (a), where the
safety factor profile has been plotted at characteristic times of the simulation. During the
fishbone phase, at t = 1.1 104⌧A, the q profile is weakly flattened around q = 1. The saturated
fishbone is observed in Figure 6.3 (b).

Figure 6.2: Time evolution of the 1,1 mode frequency. As expected the mode pulsation
is almost constant during the linear phase, and then chirps down significantly during the
fishbone phase. It is almost zero during the kink phase.

A linear internal kink phase appears after the mode frequency down chirping is over at
t/⌧A = 1.4⇥ 104. In fact, as displayed on Figure 6.3 (c) (d), the 1,1 island has grown signifi-
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cantly in this phase, and the core plasma begins to get evacuated by the n = m = 1 island.
At the end of the simulation, the q profile (Figure 6.4) is largely flattened around q=1. This
dynamics correspond to a standard resistive internal kink. The nonlinear simulation was
stopped at this stage, since the simulation of an entire sawtooth cycle with kinetic particles
requires a too long simulation time.

(a) t = 7756.8⌧A (b) t = 9835.3⌧A

(c) t = 13614⌧A
(d) t = 15800⌧A

Figure 6.3: Poincare plots in the polar plane (r, ✓) taken at selected times of the simulation.
(a) End of the linear fishbone phase, a 1,1 island begins to grow on q=1. (b) Saturation of
the 1,1 fishbone mode, the island on q=1 is somewhat larger.Be (c) Beginning of the linear
kink phase, with the growth of a large m = m = 1 island. (d) End of the simulation, the
core plasma begins to be evacuated by magnetic reconnection with the 1,1 island on q = 1.

Even if these fluid diagnostics enables to dissociate the di↵erent phases of the simulation,
they do not however permit to understand the main mechanism at play during the nonlinear
fishbone phase. A detailed study of the alpha-like particles distribution function dynamics in
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Figure 6.4: (a) Evolution of the safety factor profile. During the linear (blue line) and
nonlinear (red dotted line) fishbone phase, the profile does not evolve much. It is only
weakly flattened around q = 1 during the nonlinear phase. However, it is significantly flatten
in the linear internal kink phase (brown line), which is characteristic of the beginning of
magnetic reconnection.

invariants space is required. To this purpose, the phase space diagnostics presented in 4.2.2
are used.

6.1.2 Nonlinear evolution of the alpha distribution function in
phase space

Before looking at the nonlinear time evolution of the wave-particle energy exchange and of
the distribution function in the invariants space, it is very useful to know in advance in which
zones of invariants space the resonances lie, and what kind of resonances are involved. It en-
ables to dissociate the weakly nonlinear regime, where the resonances positions do not evolve,
from the deep one where the resonances position change due to mode chirping and evolution of
the invariants of motion. As it was explained above, equations (A.7),(A.18),(B.11),(B.14) can
be used to obtain the initial resonance positions, since the Kinetic-MHD equilibrium consid-
ered has circular cross sections and a low slowing-down birth energy Eb =1MeV. For this equi-
librium, it was observed that mostly trapped particles interact resonantly with the 1,1 mode,
through their precessional frequency. The passing resonance condition !� [1� q( ̄)!b]� !d

is marginally met in invariants space in this case.

The resonance curves in the (E,�) diagram at di↵erent radial positions are shown on Fig-
ure (6.5). The resonant curves lie at higher pitch angle and energy values when the radial
position is increased, coherent with the fact that !d / E�/r (see equations (B.11,B.14)).
During mode down chirping, it is then expected that the resonances are all shifted at lower
pitch angle and energy values. In this diagram, two zones have been identified. One where
the kinetic trapped particles are very likely to resonate with the mode, and one where they
are not. These curves will be useful when analyzing the time evolution of the wave particle
resonance.

The time evolution of the perturbed kinetic particles density profile is plotted on the di-
agram (s, t/⌧A) on Figure (6.6). s =

p
 / edge is the normalized radial position. Three cases
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Figure 6.5: Positions of the precessional resonance on the (E,�) diagram for trapped particles,
at di↵erent radii. Two zones are identified, a zone free from resonances (blue) and one crossed
by many resonances (red). When the MHD mode frequency chirps down, the resonant curves
are displaced at lower energies and pitch angles.

have been considered on these diagrams. Figure 6.6 (a) displays the entire perturbed kinetic
density, (b) the perturbed kinetic density of only trapped particles and (c) of only passing
particles. It can be seen that particle transport from inside sq=1 = 0.4 to this surface occurs
for all classes of particles during the first mode saturation. The particle transport is mostly
dominated by trapped particles, as it was expected given the resonant patterns in Figure 6.5.
Two peaks of transport are observed at t/⌧A = 1.104, 1.2⇥ 104. These peaks correspond to
the fishbone oscillations that occur when the 1,1 mode saturates in the nonlinear fishbone
phase (Figure (6.1)). Around 15% of the initial trapped distribution is transported towards
q=1 during the fishbone oscillations, whereas only a few percents of passing particles are
concerned. Since the equilibrium fraction of trapped particles scales as the inverse aspect
ratio ✏, only a few percents of all particles are transported from the core plasma towards q = 1.

During these oscillations, the MHD displacement is not large enough to explain the out-
ward particle transport, and could not account for a transport of mostly trapped particles.
An other mechanism must be introduced to explain this dynamics. The global transport
is not shown in the linear internal kink phase, since there the MHD displacement pushes
the entire plasma towards q = 1. The fluid transport cannot be dissociated from an other
transport mechanism.

As expected from the resonant patterns in Figure (6.5), and from the experimental behavior
of the fishbone instability [Nave et al., 1991], the mechanism at play here is the resonant
transport of kinetic particles. Such a mechanism is clearly revealed in Figures (6.7) and
(6.8). On Figure (6.7), the perturbed distribution function between the end of the fishbone
phase and the beginning of the simulation is plotted on the (E,�) diagram for two di↵erent
radial slices, r = 0.5rq=1 (Figure 6.5 (a)) and r = rq=1 (Figure 6.5 (b)). rq=1 is the radial
position of the q = 1 surface.

At r = 0.5q=1, around 40% of the trapped particles are transported out of the radial slice
in a zone of invariants space in which the precessional resonance lies, according to Figure
(6.5). The resonant zone observed is larger than the initial resonant curve on Figure (6.5)
for s = 0.2. It a↵ects about a quarter of the (E,�) diagram, with E 2 [0.4, 1], � 2 [1,�max].
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(a)

(b) (c)

Figure 6.6: Global transport of particles on the (s, t/⌧A) diagram, with s the normalized
radial position. The z axis corresponds to perturbed density in percentage between the time
t and the initial density. (a) Transport of all kinetic particles in the simulation (b) Transport
of trapped particles (c) Transport of passing particles

At q=1, in approximately the same zone of invariants space, a gain of 140% of the initial
population is observed.

On Figure (6.8), the density profile of fast particles is plotted in the resonant and non-resonant
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(a)

(b)

Figure 6.7: Total transport on the (E,�) diagram between the beginning and end of the
simulation. The transport is presented at two di↵erent radii. (a) At the mid q=1 radius, it
can be seen that particles located in the resonant zone are transported outward (40%). (b)
At the q=1 surface, the density in the resonant zone has more than doubled (140%), particles
coming from lower radial layers arriving to the q=1 surface.

zones of invariants space found in Figure (6.5). These figures clearly show a flattening of the
density profile inside of q=1 where resonances can occur (a), at characteristic times coherent
with the nonlinear fishbone phase. The flattening is not present in the second zone of invari-
ants space (b), except at the very end of the simulation in the linear kink phase due to the
MHD displacement that a↵ects the entire plasma. Figures (6.6), (6.7) and (6.8) therefore
show that an net outward radial transport of kinetic particles towards q = 1 is observed
in the simulation. Fast particles cannot be transported further since they are transported
through resonant interaction with the n = m = 1 mode. This mode vanishes beyond q = 1.

Partial mechanism explaining resonant transport

This nonlinear simulation lies in the strong kinetic drive limit, where ⌧NL ⇠ ⌧B. It means
that the nonlinear evolution of the resonant island evolves on a time scale comparable to the
bounce time of resonant particles inside this island. Therefore, resonant islands in this limit
are virtual. The notion of island is used here to guide the discussion. A partial mechanism
is proposed here to explain the role of virtual islands in the net outward radial resonant
transport observed. This mechanism is proposed on the basis of observations made on this
hybrid simulation, they will be detailed after this discussion. The part of mode frequency
down chirping in this mechanism is highlighted.

The equations describing the nonlinear evolution of trapped particles due to the preces-
sional resonance are presented here. They can be obtained by deriving the Hamilton-Jacobi
equations of the perturbed Hamiltonian in equation 2.55

dP'
dt

⌘ � @H

@↵3
= h(t) sin⇥ (6.1)
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(a) (b)

Figure 6.8: 1D radial transport in the resonant and non-resonant zone of invariants space
at di↵erent times. (a) Flattening of the particle density in the resonant zone (b) Particle
density in the non-resonant zone. The density does not flatten here, except during the kink
phase in which the strong MHD displacement transports all particles, resonant or not.

dE

dt
⌘ @H

@t
= �h(t)!(t) sin⇥+

dh

dt
cos⇥ (6.2)

d⇥

dt
⌘ !d(E,�, P')� ! (6.3)

with the phase ⇥ described in equation (2.57), and h(t) the width of the resonant virtual
island. These equations give the time evolution of the particle invariants in the nonlinear
fishbone phase. The virtual island is stationary when the frequency of the 1,1 mode ! does
not evolve in time. In that case, considering the precessional resonance lies at P'0 such as
!d(E,�, P'0) = !, to next order in �P', equation (6.1.2) can be recast as

d⇥

dt
=
@!d

@P'

����
E,�,P

'0

(P' � P'0) =
@K

@P'
(6.4)

with

K =
1

2

@!d

@P'

����
E,�,P

'0

(P' � P'0)
2 � h(t) cos⇥ (6.5)

K = H�!P' can be seen as the new Hamiltonian in the referential of the internal kink wave
!. The virtual island is then described by K = cst in the diagram (⇥, P'), as displayed on
Figure (6.9) by the green curve.

The island is only virtual since the mode frequency is quickly evolving for the fishbone
instability. K is not a constant of motion anymore. The fast chirping prevents particles from
circling once on the island. At the beginning of the nonlinear fishbone phase, @th can be
neglected, but !(t) 6= cst . Combining equations (6.1-6.2), the nonlinear time evolution of
the kinetic toroidal momentum can be recast as

Ṗ' = �Ė

!
(6.6)
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In XTOR-K’s conventions, P' increases when  and r increase. Since a net outward radial

Figure 6.9: Sketch of the trajectory of a near resonance particles in the Kinetic Poincaré
diagram (⇥, P'). The precessional resonance is the dotted red line. The green ellipse is the
trajectory of the near resonance particle if both ! and !d remain constant. Particles are
giving energy to the fields when they go up in P' with sin⇥ > 0 (yellow curve), and are
yielding energy when they go down in P' with sin ✓ < 0 (blue curve). Due to a gradient of
particles in this diagram, more particles are going up than down. The mode down chirping
pushes up the resonance, which prevents particles from cycling once in the island. It leads
to a net transfer of energy to the fields and to outward radial transport.

transport is occurring, for most resonant particles, Ṗ' > 0. The transport observed can
only be explained if particles loose irreversibly energy to the fields, according to equation
(6.6). The transport is also enhanced if the mode frequency chirps down, as it is noticed
in this simulation. The sole existence of the precessional resonance cannot explain the fast
particles transport. For a classical wave-particle resonance [O’Neil, 1965], resonant particles
are circling inside an island in phase space. It is illustrated on Figure (6.9). The island of
precessional resonance is plotted in the Kinetic Poincaré diagram (⇥, P'). If the resonance,
the red dotted line, does not change position, particles are circling around the resonance on
the green curve. According to equation (6.2), when @th is neglected, particles are taking en-
ergy when sin⇥ < 0, i.e when particle go down the island with Ṗ' < 0, and are giving energy
when sin⇥ > 0 with Ṗ' > 0. The net energy transfer over a bounce in the island is then zero.

In this simulation, the islands are virtual, resonant particles do not have time to circle
entirely in the diagram (⇥, P') since the initial position of the island of resonance is evolving
too rapidly. On Figure (6.9), it is noted that the gradient of alpha-like particles is directed
towards lower P' since P' / + . Therefore, a potential mechanism explaining the resonant
transport can be expressed as follows. When the precessional resonance initially arises, more
particles are going up (yellow curve) the island structure than down (blue curve). Afterwards,
mode down chirping occurs in the simulation. It displaces the position of the resonance. !
decreases due to chirping, so the value of the precessional frequency !d on the resonance
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Time evolution of the precessional resonance in the (E,�) diagram at r =
0.8rq=1. The flux of particles on a mode rotation �FT at a given time is plotted (left figures),
together with the wave-particle energy exchange �Jh · E (right figures). On subfigures (a)
and (b) (beginning of the nonlinear fishbone phase), it is noted that resonant transport
arises prior to the mode frequency chirping. On subfigures (c),(d),(e) and (f) (middle and
late nonlinear phase), it is observed that resonant structures with �FT > 0 correspond to
zones with �J · E > 0, and vice-versa. Several resonance patterns are observed in the late
nonlinear fishbone phase. This is due to the nonlinear evolution of the resonance positions,
and of resonant structures arriving from inner radial layers.
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needs to decrease too. Since !d / 1/r / 1/P' (equation B.11), the chirping tends to
displace the resonance at higher P', as displayed on Figure (6.9). Particles circling up the
island are ejected at larger P', and those circling down at smaller P'. Due to the direction
of the density gradient, more particles are ejected radially outward than inward.

In order to validate such a partial mechanism, several behaviors need to be observed in
the hybrid simulation. First, a net transport of resonant particles needs to be seen before
the mode chirps down. It corresponds to the transport due to the combined e↵ects of the
direction of rn↵, and the initially constant position of the precessional resonance. Second,
a time evolution of the resonance position needs to be observed, in a direction coherent with
the frequency chirping. It indicates that the mode chirping indeed modifies the positions
of the resonance, preventing them for circling completely in the (⇥, P') diagram. Last, the
de-trapping of a near-resonance particle in the Kinetic Poincaré diagram (⇥, P') needs to be
observed. However, such a partial mechanism does not explain why the chirping is occurring
in first place. This will be addressed in the next section.

The proposed mechanism have been motivated by the observation of these di↵erent features
in the hybrid simulation. These features are now detailed.

Time evolution of the wave-particle energy exchange and of particle transport

To investigate further the resonant transport of trapped particles, the time evolution of the
wave-particle energy exchange and of the resonant flux of kinetic particles are plotted in the
diagram (E,�) near the q = 1 surface at r = 0.8rq=1 on Figure (6.10).

Subfigures (b),(d) and (f) correspond to the wave-particle energy exchange �Jh ·E detailed in
section 4.2.2. When �Jh ·E > 0, particles are yielding energy to the fields, and taking some
away from the fields when �Jh · E < 0. The wave-particle energy has been plotted at char-
acteristic times of the nonlinear fishbone phase. (b) and (d) correspond to the two fishbone
oscillations, (f) to the end of the nonlinear fishbone phase. On these subfigures, the wave-
particle energy exchange is averaged in time over a mode period. Subfigures (a),(c) and (e)
correspond to the resonant flux of particles over a mode period T as �FT (t) = F (t)�F (t�T ).
This quantity is plotted at the same times as subfigures (b), (d) and (f).

From Figure (6.10), several observations can be made. First, from (a), it can be noted
that an outward resonant particle transport begins at t/⌧A = 9500. About 10% of particles
are transported over a mode period, in a resonant zone coherent with Figure (6.5) regarding
the radial slice s = 0.24� 0.28. Particles come from inner radial layers. This resonant trans-
port is associated to a small energy loss from the particles to the fields �Jh ·E > 0, according
to Figure (6.10) (b). As observed on Figure (6.2), the fishbone frequency only chirps down
at t/⌧A = 1.104, 500⌧A after the beginning of resonant transport. Therefore, the resonant
transport of fast particles begins before the mode frequency chirps down, as expected by the
partial mechanism detailed above. This point is further confirmed by Figure (6.8) (a), where
it can be seen that the density profile begins to get flattened at t/⌧A = 9600, prior to the
mode frequency down chirping.

Moreover, it can also be observed on Figure (6.10) that an interplay exists between wave-
particle energy exchange and resonant flux of fast particles. On Figure (6.10) (c) and (e),
several flux structures are observed at r = 0.8rq=1. They correspond either to particles com-
ing from inner radial layers and arriving at r = 0.8rq=1 (�FT > 0), or to particles leaving the
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radial layer r = 0.8rq=1 for outer radial layers (�FT < 0). On Figure (6.10) (c), a structure
�FT > 0 is located at the middle of two structures �FT < 0. On Figure (6.10) (d), three
structures are also present in the same part of the (E,�) diagram. One with �Jh ·E > 0, in
between of two with �Jh · E < 0. It is noted that the color bars on subfigures (c) and (d)
do not have the same color when the quantity they are describing changes sign. The same
behavior is observed between subfigures (e) and (f), with in this case three structures with
�FT > 0, and two with �FT < 0. There is therefore a connexion between resonant transport
of particles and wave-particle energy exchange on Figure (6.10). When �FT > 0, �Jh ·E > 0,
particles lose energy to the fields, and when �FT < 0, �Jh ·E < 0, they gain energy from the
fields. This dynamics is in agreement with equation (6.6), Ṗ' > 0 when �FT < 0 and particles
yield energy to the fields. When �FT > 0, Ṗ' < 0 and particles extract energy from the fields.

A last observation is made regarding the nonlinear evolution of the resonance position ob-
served on Figure (6.10). At the first fishbone oscillation on subfigures (a) and (b), only
one resonant structure is present, at the position predicted by the linear theory (Figure 6.5,
s = 0.24 � 0.28), since it is only the beginning of the nonlinear fishbone phase. The mode
has not chirped yet, and the particles invariants are only beginning to evolve in time. A
study on the particles invariants is conducted in the next section. Therefore, both ! and
!d(E,�,  ̄) do not evolve much. However, on subfigures (c),(d),(e) and (f), several structures
are present, and spans a larger zone of invariants space, such as E 2 [0.4, 1], � 2 [1,�max].
This larger zone corresponds to the total transport observed on Figure (6.7). The extension
of the resonant zone to lower energies and pitch angles is coherent with the mode chirping,
according to Figure (6.5). When the mode frequency ! is decreasing, it tends to shift all
resonant curves in zone of invariants space with lower energies and pitch angle. This confirms
further the partial mechanism for resonant transport described above.

However, the chirping mechanism cannot explain why resonant structures are observed at
higher energies and pitch angles than the initial resonance position for a given radial layer.
An additional mechanism can explain this new resonant zone. The nonlinear evolution of the
particles invariants can lead particles to populate these zone of invariants space. In order to
investigate this assumption, the individual nonlinear behavior or near resonance particles is
presented. The study of the individual behavior will also permit to see that particles behave
in the (⇥, P') diagram as presented in the partial mechanism proposed above.

6.1.3 Individual nonlinear behavior of near resonance particles

On (Figure 6.11), the time advance of a particle initialized with invariants (E,�, P') close
to the linear resonance has been performed along the electromagnetic fields advanced self-
consistently by XTOR-K. This time advance has been obtained by saving at each fluid time
step of the hybrid simulation the 3D (E,B) fields. Then, the Boris kinetic advance is per-
formed with a separate module. This procedure is similar to the one detailed in 5.1, but with
time evolving electromagnetic fields. The nonlinear behavior of the near resonance particle
detailed on (Figure 6.11) is similar to those of others near resonance trapped particles in the
simulation.

As explained above, the resonant particle is indeed transported from its initial radial po-
sition towards the q=1 surface (Figure 6.11 (a) and (b)). At the same time, its triplet of
invariants (c) and (e), that were naturally invariants in the linear phase until t = 8000⌧A,
are evolving notably in the fishbone phase. The toroidal kinetic momentum P' is increased
drastically for t/⌧A 2 [9.103, 104], which corresponds to the particle outward radial transport.
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(a) (b)

(c) (d)

(e)

Figure 6.11: Time evolution of a near resonance trapped particle. (a) Particle’s orbit, observ-
ing a net outward radial transport. The red and green circles correspond to the initial and
final reference flux surface. The final one is q = 1. (b)Particle’s radial position, normalized
by the radial position of the q = 1 surface. The particle stops being transported at q = 1. (c)
P', whose invariance is greatly altered in the nonlinear fishbone phase. It increases signifi-
cantly, due to radial transport, in a transport phase t/⌧A 2 [9.103, 104]. (d) Time evolution
of the weakly nonlinear invariant !P' � E, showing that the resonant particle reacts to the
mode chirping. (e) Nonlinear trajectory of a resonant particle in the (E,�) diagram. Along
this trajectory, the resonant particles is evolved to larger pitch angles

It is noted again here that the resonant particle starts being transported before the mode
frequency chirps down, confirming further the partial mechanism presented.
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The nonlinear trajectory of the resonant particle on the diagram (E,�) is displayed on sub-
figure (e). Along this trajectory, the particle’s energy is slightly lower, and its pitch angle is
notably increased. The nonlinear evolution of � therefore explains why resonant structures
at larger pitch angles are observed on Figures (6.7) and (6.10).

Furthermore, Figure 6.11 (d) displays the time evolution of the term !P' � E, that is sup-
posed to be an invariant of motion when the mode frequency is not evolving in time. Indeed,
in that case, !(t) = cst, and equation (6.6) becomes !P' � E = cst. On Figure 6.11 (d),
it can be seen that !P' � E is no longer time invariant after t/⌧A ⇠ 9000. Therefore the
individual particles are indeed reacting to mode chirping.

(a) (b)

Figure 6.12: (a) Kinetic Poincaré plot of a particle launched near the precessional resonance
at P' = 4.5. The particle does not have time to circle in the virtual island that it is imme-
diately transported at larger P'. (b) Compared time evolutions of the mode frequency and
precessional frequency of a particle. The precessional frequency decreases slightly in ampli-
tude when the mode is chirping, synchronizing with it over t/⌧A 2 [9.103, 104]. Afterwards,
the particle desynchronizes with the mode. This synchronization phase corresponds on (a)
to the de-trapping of the resonant particle.

Finally, the trajectory of the near resonance particle is plotted on the diagram (⇥, P') on
Figure (6.12) (a). The particle is initialized just below the precessional resonance condition
at P' = 4. It is noted on this Figure that the resonant particle indeed does not have time
to circle once in a phase space island. The island is virtual, and used here as a guidance.
When the particle starts interacting with the mode via a precessional resoance, it is rapidly
transported at higher P'. This behavior starts and ends during the transport phase high-
lighted on Figure (6.11) (c). Then, the resonant particle remains at a larger P' = 16, that
corresponds to the q = 1 surface according to Figure (6.11) (b). The particle cannot interact
with the mode anymore.
Moreover, on Figure (6.12) (b), the time evolutions of the mode frequency ! and of the reso-
nant particle precessional frequency !d are compared. In the linear phase until t/⌧A = 9000,
the particle precessional frequency is comparable with ! since it is near the resonance posi-
tion. Then, both frequencies are decreasing at the same pace for t/⌧A 2 [9.103, 104] during
a synchronization phase. This phase corresponds to the transport phase observed on Fig-
ures (6.11) (c) and (6.12) (a). Afterwards, both frequencies desynchronize, the precessional
frequency remains constant and the mode frequency keeps on decreasing. The resonant trans-
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port therefore arises during phase-locking, ⇥̇ ⌘ !�!d ⇡ cst in the nonlinear fishbone phase.
A similar behavior has been observed for electronic fishbones [Vlad et al., 2013].

Formulation of a complete mechanism for mode chirping and resonant particle
transport

The observations made so far with the hybrid simulation has enabled to construct a par-
tial mechanism explaining the net outward transport of particle due to resonant interaction
and mode chirping. However, it does not explain why the mode frequency is chirping down
initially. A more complete mechanism is proposed here, on the basis of the initial resonant
transport prior to mode chirping, and to the linear fishbone dispersion relation (4.6).

When the particles are initially being displaced at !(t) = cst, prior to mode chirping, the
density profile of fast particles is flattened in resonant zones of invariants space (see Figure
6.8 (a) t/⌧A = 9500), due to the direction of the density gradient in the diagram (⇥, P') (see
Figure 6.9). In the fishbone dispersion relation (4.6), the kinetic contribution �K is mainly
proportional to @rFeq (see equation (4.53)), and then to rn↵. On Figures (5.9) (b) and
(5.13) (b), it is observed that on the fishbone branch, the rotation frequency decreases when
n↵,0 is smaller. Since �K / rn↵, flattening the density profile in parts of invariants space
is equivalent to lowering the amplitude of the density. Both operations decrease the kinetic
drive brought by fast particles.

Therefore, the flattening of n↵ tends to decrease !, which starts the frequency down chirp-
ing. This chirping moves away the resonance position has described on Figure (6.7). Thus,
the mode frequency down chirping flattens further n↵, as it can be seen on 6.8 (a) at
t/⌧A = 1.2 ⇥ 103. It increases the down chirping until it stops at t/⌧A = 1.3 ⇥ 104 (see
Figure (6.2)).

Conclusion on the ITER-like hybrid simulation

To conclude the analysis of this first hybrid simulation of the alpha fishbone instability, it
has been observed that a net outward resonant transport of kinetic particles towards q = 1
is occurring. This transport a↵ects merely a few percents of the initial distribution function,
the redistribution of fast particles due to the fishbone instability is weak. The total resonant
transport arises over a time �t ⇠ 3000⌧A ⇠ 10�3s. The thermalization time of fast particles
is of order ⌧th ⇠ 10�1 � 1s [iTER physics basics, 2000]. Therefore, using an imposed slowing
distribution function was realistic since �t ⌧ ⌧th.

A mechanism has been proposed to explain the particle transport during the fishbone in-
stability. It highlights the role of the mode frequency down chirping, that prevents the
precessional resonance position to remain stationary in the strong kinetic drive limit. This
behavior was expected [Zonca et al., 2015]. The corresponding resonant island is therefore
only virtual, resonant particles are yielding irreversibly energy to the fields and get trans-
ported. The hybrid simulation ends with a linear internal kink phase. The m = n = 1 island
is growing significantly and starts the evacuate the plasma core. The simulation is ended
here since the simulation of a complete sawtooth cycle with kinetic particles requires a too
long computational time.
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6.2 ITER 15 MA case far from the fishbone threshold

Now that fishbone oscillations have been analysed using XTOR-K with a simple Kinetic-MHD
equilibrium, more complex equilibria relevant to the physics of burning plasmas are studied in
this section. Results obtained from a nonlinear simulation on the ITER 15 MA equilibrium are
discussed here. This simulation lies in the strong kinetic drive limit. It serves two purposes.
First to generalize the results obtained with the previous simulation. Second, to study on a
ITER relevant scenario the fishbone instability in its nonlinear phase, to predict the amount
of resonant transport. This nonlinear simulation constitutes the prolongation in its nonlinear
phase of the hybrid simulation presented in 5.4.2, with a beta ratio of �↵/�tot = 12% and
q0 = 0.95. It lies indeed in the strong kinetic drive limit, since its linear growth rate is
�⌧A = 4.10�3. It is far larger than the linear growth rate around the fishbone threshold,
�L⌧A ⇠ 8.10�4 (see Figure (5.13 (a))).

6.2.1 Nonlinear dynamic of the MHD fields

Given the equilibrium shape, it has been chosen to increase to n=4 the number of resolved
toroidal modes. Therefore, this simulation uses 201 radials points, 64 poloidal and 16 toroidal
ones. The kinetic and magnetic energies of all n = 0� 4 modes have been plotted on Figure
(6.13), against their poloidal harmonic m. Both these figures show an expected behavior of

(a) (b)

Figure 6.13: Energies of the modes n resolved in the simulation as a function of the poloidal
m harmonic, at the end of the simulation. Kinetic energies are displayed on (a) and magnetic
energies on (b).

the mode energies. The energies of all n harmonics converge towards zero when m ! mmax.
These results imply that the simulation is reasonably converged regarding the poloidal and
toroidal resolutions.

The time evolution of the kinetic and magnetic energies of the n modes is displayed on
Figure (6.14). Contrarily to the previous nonlinear case, a linear internal kink is not growing
after the fishbone oscillations. The nonlinear fishbone phase is more complex from the MHD
point of view. The linear fishbone phase ends around t = 2500⌧A, the 1,1 mode amplitude
roll-over afterwards. This roll-over is accompanied by the formation of a small 1,1 island as
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(a) (b)

Figure 6.14: Time evolution of the kinetic (a) and magnetic (b) energies of the n modes.

displayed on Figure 6.16 (a) , and by the beginning of a mode down chirping in Figure 6.15
at t ⇠ 3000⌧A. This hints that the roll-over is partially due to resonant particle transport, as
in the previous simulation. In this simulation, two roll-over of the 1,1 mode amplitude can
be observed at t/⌧A = 3000, t/⌧A = 4100. They are associated to fishbone oscillations.

However, the mode down chirping is not as clear as before. The signal !(t) is more af-
fected by noise due to the di�cult computation of !(t) = !E⇥B � !lab on a equilibrium with
such an elongated shape. As discussed in 5.4.2 , !lab is computed by following the maxima
of a perturbed field in the poloidal plane. The ITER shaping makes this task more di�cult.
It appears clearly however that the E ⇥ B rotation frequency decreases in time on Figure
(6.15) (a), starting at t = 3000⌧A. A clear down chirping of !(t) arises around t = 4000⌧A
on Figure (6.15) (b). This noisy mode frequency does not enable to study the trajectory of
individual particles in the kinetic Poincaré diagram (⇥, P').

The nonlinear behavior of the MHD fields in the nonlinear fishbone phase is significantly
di↵erent than in the previous nonlinear simulation. Successive formations of 2,2, 3,3 4,4 and
5,5 islands arise on q=1. A 5,5 structure can be considered as problematic regarding the res-
olution of the simulation in the toroidal direction, since the harmonic n = 5 is not resolved.
However, the sole formation of a 5,5 island structure on q=1 does not necessarily highlight
a convergence issue. A n=5 structure on the q=1 surface can arise since a Poincaré plot is
computed using

d✓

d'
=

B ·r✓
B ·r' (6.7)

Performing algebraic operations between the toroidal and poloidal components of the mag-
netic field introduces coupling between the resolved modes. It can lead to a dominant 5,5
structure on the resonant q=1 surface. It shows that the formation of a 5,5 island is more
related to the post-processing diagnostic computing the Poincaré plot, than to the simulation
itself.

The q profile (Figure 6.17) oscillates during the nonlinear phase around its equilibrium po-
sition. It is not flattened around q = 1 at any point of the simulation, which would be a
precursor of an internal kink instability.
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(a)

(b)

Figure 6.15: Time evolution of the E ⇥ B frequency (a) and of the mode frequency (b).
These figures exhibits a general down chirping of the mode frequency, typical of fishbone
oscillations. The signal !(t) is a↵ected by noise due to the complex shaping of the ITER
configuration.

Moreover, again contrarily to the previous simulation, the mode structure of the instabil-
ity evolves during the simulation, as displayed on Figure 6.18. After each roll-over of the 1,1
mode, its amplitude decreases, up to competing with the 2,2 mode. It leads to transitions
between 1,1 and 2,2 structures during the entire simulation. This is an additional reason for
the noisy !(t) signal, since two maxima are present in the poloidal plane for n = m = 2. It
is noted that a double step structure briefly appears near t = 5150⌧A (subfigure (e)) when
the 1,1 mode amplitude grows again after the second saturation.

Even though the nonlinear evolution of the MHD fields is more complex in this simula-
tion, the formation of magnetic islands cannot fully explain the mode roll-overs observed,
and the mode down chirping.

6.2.2 Nonlinear evolution of the alpha distribution function in
phase space

Similarly to the ITER-like case, a net outward resonant transport of alpha particles occurs
during the nonlinear phase of this simulation. The overall transport is slightly higher for this
ITER 15 MA case, as shown on Figure (6.19). This figure displays the perturbed alpha parti-
cles density on the (s, t/⌧A) diagram for all particles (a), only trapped particles (b), and only
passing particles (c). In fact, in the core plasma, 25% of trapped particles are transported
by fishbone oscillations beyond q = 1 (subfigure (b)), 3% of passing particles (subfigure (c))
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(a) t = 2300⌧A (b) t = 3000⌧A (c) t = 3400⌧A

(d) t = 4000⌧A (e) t = 4400⌧A (f) t = 4750⌧A

(g) t = 5500⌧A

Figure 6.16: Poincaré plots in the polar (r, ✓) plane taken at characteristic moments of the
simulation. (a) End of the linear phase, generation of 2,2 islands. (b) Saturation of the 1,1
mode, formation of 5,5 islands. (c) Collapse of the 5,5 structure into a 2,2 one. (d) Second
saturation of the 1,1 mode, with 3,3 islands on q=1. (e) Re-appearance of the 5,5 structure
during the decline of the 1,1 mode. (f) Second collapse of the 5,5 structure into a 2,2. (g)
End of the simulation, characterized by 3,3 islands on q=1
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Figure 6.17: Time evolution of the q profile. During the simulation, the q profile oscillates
around its initial equilibrium position. No flattening around q = 1 is observed.

(a) t = 2600⌧A (b) t = 3515⌧A (c) t = 4000⌧A

(d) t = 4500⌧A (e) t = 5150⌧A (f) t = 5500⌧A

Figure 6.18: Time evolution of the mode structure in the poloidal plane (R,Z). The per-
turbed electron temperature is plotted here. The mode structure is initially of type n = m = 1
(a), and then oscillates between a 2,2 (b) (d) and a 1,1 (c) (f) type. On figure (e), the mode
is characterized by a 2,2 and a double step structure.
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(a)

(b) (c)

Figure 6.19: Global transport of particles in the diagram (s, t/⌧A) for all (a), trapped (b)
and passing particles (c). Around 5% of all particles are transported by the fishbone in the
core plasma, 25% and 3% respectively for trapped and passing particles.

and around 5% for all particles (subfigure (a)). In this simulation, the birth energy of fast
particles is higher (Eb = 3.5 MeV). The particles have larger orbit width, which explains why
they do not stop at q = 1 as in the ITER-like case. This point will be discussed further in
the next section on the individual behavior of fast particles.

Morevover, on Figure (6.19) (a), two bursts of resonant transport can be observed at t ⇠
3000⌧A and t ⇠ 4000⌧A. They occur when the 1,1 mode amplitude roll-over on Figure (6.14)
(a), during the fishbone oscillations. Furthermore, a notable distinction with the ITER-like
case is that for passing particles, their initial density tends to be recovered at the end of the
simulation. It is not the case for trapped particles, that remain at higher radial position.
Given that the MHD displacement alone is not enough to explain the transient passing par-
ticles transport, resonant processes must also be at play for these particles.
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This point is confirmed by Figure (6.20), where the available resonances for this equilib-
rium with a linear mode frequency of !⌧A = 1.3 10�2 are displayed. Since this non circular
equilibrium with hot particles does not allow for an analytical prediction of resonant zones
in invariants space, the same procedure as in 5.1 is applied to obtain the particles eigenfre-
quencies ⌦2,⌦3. The equation !�n ·⌦ = 0 is then solved in the diagram (E,�) at di↵erent
radial positions. Only the harmonics n = (0,�1, 1) and n = (0, 0, 1) are studied, according to
Figure (4.1). The precessional resonances obtained here (Figure (6.20) (a)) are quite similar

(a)

(b)

Figure 6.20: Structure of the resonances for trapped and passing particles in the (E,�)
diagram. (a) Positions of the precessional resonance at di↵erent radii. (b) Positions of the
co and counter passing resonances at di↵erent radii. There is no resonances available after
r = 0.71rq=1.

to the ITER-like case. They have exactly the same dependencies over (E,�, r).
However, for this equilibrium and mode rotation, the harmonics n = (0,�1, 1) also matters
for both co and counter-passing particles, at specific radial positions below r = 0.71rq=1. The
passing resonant curves are quite noisy on (Figure (6.20) (b)) since they have been obtained
by advancing particles on only 5000 Alfvén times. It is not enough to compute bounce fre-
quencies with a great precision. Yet, their pattern is somewhat similar to those obtained
with the analytical theory on Figure (4.1).

Even if passing resonances do exist in this simulation, they do not transport particles as
e�ciently as the trapped resonance, according to Figure (6.19) (b) and (c). Resonant parti-
cle transport due to the precessional resonance is highlighted on Figures (6.21) and (6.22).
On Figure (6.21), the perturbed distribution function between the beginning and the end of
the simulation is plotted on the trapped (E,�) diagram at several radial positions. These
positions span over the radial interval on which particle transport occurs on Figure (6.19).
The radial positions used are r = 0.5rq=1 on subfigure (a), r = rq=1 on subfigure (b), and
r = 1.43rq=1 on subfigure (c). In this simulation, radial surfaces beyond q = 1 are of interest
since particles are transported beyond the inertial layer.

As in the ITER-like case, a net outward transport of trapped particles around the linear
resonance zone is observed. Inside q = 1 at r = 0.5rq=1, 50% of the initial distribution is
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transported to larger radial layers. The linear resonance at r = 0.5rq=1 (Figure (6.20)) lies
inside the transport zone. This transport zone is here again much larger that the initial
resonance position. It is explained by the mode down chirping and the evolution of the par-
ticles invariants, as discussed in the resonant transport mechanism presented in the previous
section.
According to Figure (6.21) (b), some resonant particles are stopped at the q=1 surface,
whereas some others are transported further. On this figure, the resonant transport zone is
also larger than the linear resonance position at r = rq=1. The resonant transport may not
be over in this simulation since the mode frequency has not decreased to zero, as it is the
case in the ITER-like simulation.
Particles are transported up to r = 1.43rq=1, where a particle gain of ⇠ 50% is observed.

(a)

(b) (c)

Figure 6.21: Total time evolution of the alpha distribution function in the (E,�) diagram at
di↵erent radii. (a) At r = 0.5rq=1, particles are mostly transported to higher radial layers
in the resonant zones of the diagram. (b) At the q=1 surface, particles are coming from
lower radial layers and transported to higher ones, due to the positions in phase space of the
di↵erent resonances. (c) At r = 1.43rq=1, particles are solely coming from lower layers, since
the particles cannot resonate with the 1,1 mode anymore at this radius.

An e↵ective flattening of the alpha particle density profile in invariants space is also ob-
served on Figure 6.22 (a). The kinetic density has been plotted at di↵erent times of the
nonlinear fishbone phase, in a phase space region in which precessional resonances lie, ac-
cording to Figure 6.20. The density flattening is up to 40% at the plasma core, at the end of
the simulation. Furthermore, this flattening is observed to begin at t = 2761⌧A. According to
Figure (6.15) (a) and (b), the mode frequency has not evolved yet significantly at this time.
The mode chirping occurs later around t/⌧A ⇠ 3000. Therefore, resonant particles begin to
be transported prior to the mode chirping, as described by the mechanism detailed in 6.1.
When a non-resonant zone of invariants space is considered (Figure (6.22) (b)), it appears
that the alpha density profile is marginally flattened during the whole simulation. Such a
weak flattening is not due to resonant processes, but to the MHD displacement of the 1,1
mode. It pushes all core particles towards q = 1.

Time evolution of the precessional and passing resonances

The time evolution of the resonances position is required to confirm that the mechanism
described in 6.1 is also explaining the resonant transport in this simulation. To this e↵ect,
the particle flux �FT and the wave-particle energy exchange �J ·E are displayed on Figures
(6.23) and (6.24). On figure (6.23), these quantities are computed on the trapped (E,�)
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(a) (b)

Figure 6.22: Evolution of the particle density in resonant (a) and non-resonant (b) zones of
phase space at characteristic time. A large flattening is observed in resonant zone, due to
wave-particle interaction. In the non linear zone, the density is slightly modified due to the
MHD displacement.

diagram at r = rq=1, for the precessional resonance n = (0, 0, 1). On Figure (6.24), �FT and
�J ·E are computed on the passing (E,�) diagram at r = 0.71rq=1, for the passing resonance
n = (0,�1, 1).

On Figure (6.23), the precessional resonance is observed just before the mode frequency
chirps down at t = 2710⌧A (a) and (b), during the first fishbone oscillation at t = 3500⌧A (c)
and (d), and at the second fishbone oscillation at t = 3900⌧A (e) and (f). On subfigure (a), it
is noticed that the resonant transport arises before the mode chirping. This transport occurs
on the initial resonance position at q = 1 displayed on Figure (6.20). On subfigure (b), the
transport is associated to a small zone where �J · E > 0.
Moreover, on subfigures (c),(d),(e) and (f), it is observed that the position of the precessional
resonance evolves in time, and that new resonant structures arrive from inner radial layers, as
in the previous simulation. On these subfigures, there is again the same connection between
the sign of �FT and �J · E. Therefore, since the resonance position is evolving in time and
that the zone of transport corresponds to the zone of wave-particle energy exchange, the
same mechanism as in 6.1 is at play here for the precessional resonance.

On Figure 6.24, the passing resonance is displayed at later times than for the precessional res-
onance. At t/⌧A = 3900 on (a) and (b) during the second fishbone oscillation, at t/⌧A = 4200
on (c) and (d) which corresponds to the end of the second fishbone oscillation, and at
t/⌧A = 4900 on (e) and (f) near the simulation’s end. The passing resonance is not dis-
played at earlier times because it does not occur. The same connection exists between �FT

and �J ·E, but the resonant structures do not evolve in time. Multiple resonances arise here
as before. It is again due to a competition between particle transport from the considered
radial position r = 0.71rq=1 and inner radial layers. The shape of the resonant structures is
in good agreement with the resonances expected linearly on Figure (6.20) (b) for counter-
passing particles.
The transport associated to the passing resonance is an order of magnitude weaker than
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(a) (b)

(c) (d)

(e) (f)

Figure 6.23: Time evolution in the trapped (E,�) diagram of the particle resonant flux �FT

(left figures) and of the wave-particle energy-exchange �J · E (right figures), over a mode
period at r = rq=1. These quantities are plotted just before the first fishbone oscillation at
t = 2710⌧A (a) and (b); after the first fishbone oscillation at t = 3500⌧A (c) and (d); and
during the second fishbone oscillation at t = 3900⌧A (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.24: Time evolution in the passing (E,�) diagram of the particle resonant flux �FT

(left figures) and of the wave-particle energy-exchange �J · E (right figures), over a mode
period at r = 0.71rq=1. These quantities are plotted at the second fishbone oscillation at
t = 3900⌧A (a) and (b); after the second fishbone oscillation at t = 4200⌧A (c) and (d); and
near the end of the simulation at t = 4500⌧A (e) and (f).
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the transport due to the precessional resonance. The mechanism behind the passing
resonance is then di↵erent from the mechanism described in 6.1. In this scenario, resonant
islands play some role since the resonances do not move. Following the trajectory of a
resonant passing particle in the (⇥, P') would help obtain some insights on the physics at
play for this resonance. However, the signal !(t) is too noisy to carry out such an analysis
in this thesis.

6.2.3 Individual nonlinear behavior of near resonance particles

(a) (b) (c)

(d)

Figure 6.25: Time evolution of a trapped particle near linear resonance. (a) Trajectory in
the poloidal plane (R,Z). (b) Time evolution of P'. (c) Time evolution of the radial position
normalized to rq=1. (d) Trajectory of the particle in the trapped (E,�) diagram.

The individual nonlinear behavior of a near resonance trapped particle in this simulation
is similar to the previous one, as observed on Figure (6.25). The considered particle is trans-
ported at a higher radial position as displayed on Figure (6.25) (a), (b) (c). On subfigure
(a), the trajectory of the trapped particle is plotted in the poloidal plane. It is observed that
the particle orbits on an outer reference flux surface at the end of the simulation.
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On subfigure (b), it can be seen that P' increases rapidly at the end of the linear phase
around t ⇠ 2200⌧A. This is associated to the outward motion of the particle. Moreover, it is
again noted that the transport occurs before the mode chirping. The mechanism detailed in
6.1 explains the transport associated to the precessional resonance.
On subfigure (c), the radial position is plotted, normalized to rq=1. It is observed that the
particle continues to resonate with the 1,1 mode until r ⇠ 1.2rq=1. As long as a part of the
particle’s orbit is inside the surface q = 1, it keeps on interacting with the mode.
On subfigure (d), the nonlinear trajectory of the resonant trapped particle in the diagram
(E,�) is plotted. As in the previous section, the particle gets transported to larger pitch
angle values and slightly smaller energies.

(a) (b) (c)

(d) (e)

Figure 6.26: Time evolution of a counter-passing particle near linear resonance. (a) Time
evolution of the radial position, normalized to rq=1. (b) Time evolution of P'. (c) Trajectory
in the poloidal plane (R,Z). (d) Time evolution of the particle’s energy. (e) Time evolution
of the pitch angle

Regarding the time evolution of a near resonance counter-passing particle (Figure 6.26),
it is observed that its dynamics is a↵ected by the mode. It is noted that the counter-passing
particle is transported radially inward and outward during the simulation. This evolution
can be observed on subfigures (a), (b) and (c). However, the net transport is still in the out-
ward direction. This would need to be confirmed over longer simulation times. The particle’s
invariants are also a↵ected by the mode. The energy of the co-passing particle (subfigure
(d)) is lowered due to the interaction with the fields. Its pitch angle (subfigure (e)) is also
slightly increased.

Interestingly, for the co-passing particle near resonance (Figure (6.27)), no net resonant
transport is found in subfigures (a), (b) and (c). Moreover, the particle’s invariants such
as P' (subfigure (c)) and the particle’s energy (subfigure (d)) oscillate in time, rather than
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(a) (b) (c)

(d) (e)

Figure 6.27: Time evolution of a co-passing particle near linear resonance. (a) Time evolution
of the radial position, normalized to rq=1. (b) Time evolution of P'. (c) Trajectory in the
poloidal plane (R,Z). (d) Time evolution of the particle’s energy. (e) Time evolution of the
pitch angle

presenting a net evolution. It could be the sign that this particle is trapped in a phase space
island. Plotting the trajectory of this particle in the (⇥, P') diagram would help understand-
ing this phenomena. However, this is beyond the scope of this thesis.

Conclusion on the ITER 15 MA hybrid simulation, in the strong kinetic drive
limit

To conclude this study of the fishbone instability on the ITER 15 MA scenario, it can be said
that two fishbone oscillations have been observed. They are associated to a weak redistribu-
tion of kinetic particles, around 5% of the core alpha particles, and to the down chirping of
the 1,1 mode frequency.

Particles are transported on a characteristic time of order 10�3 seconds. The nonlinear
fishbone phase lasts approximatively 3000 Alfvén times, with an Alfvén time ⌧A = 5.10�7

seconds in the simulation. Again, this resonant transport time is a lot smaller than the typ-
ical thermalization time of fast particles in ITER, of order 10�1 � 1 seconds [iTER physics
basics, 2000]. The use of an imposed slowing-down distribution function for alpha particles
is therefore justified.

The resonant transport of trapped particles follows the same mechanism as in the previ-
ous hybrid simulation. However, a di↵erent mechanism is at play for the passing particles,
which is yet to be clarified. Moreover, the dynamics of co-passing and counter-passing par-
ticles are observed to be di↵erent.
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At the end of the simulation, the growth of an internal kink is not observed. Therefore,
it would be interesting to continue this simulation further, to see if others fishbone oscilla-
tions occur, or if an internal kink takes over.

6.3 ITER 15 MA case close to the fishbone threshold

A nonlinear simulation in the low kinetic drive limit has also been carried out on the ITER
15 MA scenario. It has been performed for the Kinetic-MHD equilibrium described in 5.4.2,
with q0 = 0.95, �h/�tot = 7%. This equilibrium is close to the fishbone threshold since at
�h/�tot = 6%, the fishbone mode is not unstable (see Figure (5.13) (a)). The nonlinear sim-
ulation performed is still at a preliminary stage.

The time evolution of the kinetic energy of the n = 0 � 4 modes obtained so far is dis-
played on Figure 6.28. The 1,1 mode does not exhibit a clear linear phase, since a strong 1,1
perturbation has been imposed on the equilibrium. Given the low linear growth rate of this
fishbone instability, this high perturbation has been used to reduce the computational time
of the simulation. It enables to mainly focus on its nonlinear phase, that arises at t = 6000⌧A.

During this nonlinear phase, the mode begins to saturate at a low energy level. The MHD
displacement ⇠ associated to this energy level does not displace much the core plasma. There-
fore, a strong resonant interaction cannot arise yet between the 1,1 mode rotation and the
particles eigenfrequencies. No net resonant transport is observed. Frequency chirping has not
been seen either during this simulation. It needs to be continued further, to see if a resonant
transport can arise.

However, some preliminary comparisons with earlier works can be drawn from this early
stage nonlinear simulation. The 1,1 mode energy saturates with increasing oscillations, that
are not characteristic of the classical nonlinear collisionless damping described in [O’Neil,
1965]. A similar behavior of the 1,1 mode energy has been obtained in [Idouakass, 2016]
chapter 5.2. Similar nonlinear increasing oscillations were observed in this work, from the
simulation of a fishbone instability in the low kinetic drive limit.
In order to compare properly with this work, Kinetic Poincaré plots in resonant zones of
phase space need to be computed. In [Idouakass, 2016] chapter 5, these plots highlight that
when the 1,1 mode energy is at a minima, the phase space island is shifted by an additional
phase of ⇡ in the diagram (⇥, P'). This phase slippage is found to explain the observed
resonant transport of kinetic particles. Since no resonant transport has yet been observed in
XTOR-K’s nonlinear simulation, the kinetic Poincaré plots need to be computed at a later
stage of the simulation.

Moreover, an other feature of fishbone instabilities in the low kinetic drive limit is also
recovered in this simulation. In [Odblom et al., 2002] and [Idouakass, 2016] chapter 4.4,
a double step structure is obtained on the 1,1 mode during the nonlinear evolution of the
instability. Such a structure is observed in XTOR-K’s simulation when the 1,1 kinetic en-
ergy reaches a local minima, as shown on Figure 6.29. On (a) and (d), the mode exhibits
a classical 1,1 structure with a one step Heaviside side type MHD displacement. However,
during (b) and (c), around the energy local minima, a second structure forms inside of q=1.
It is characteristic of a double step MHD displacement.
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(a) (b)

Figure 6.28: Time evolution of the kinetic energies of the toroidal n modes near the fishbone
threshold. This simulation does not have a clear linear phase. The beginning of the nonlinear
phase features increasing oscillation of the 1,1 energy.

(a) t = 8831⌧A (b) t = 9484⌧A (c) t = 9676⌧A (d) t = 9906⌧A

Figure 6.29: Evolution of the 1,1 mode structure during the bounces of the mode energy. A
double step structure is found when the mode energy is at a minima.

6.4 Conclusion

To conclude this chapter on the analysis of particle transport during the nonlinear phase of
the fishbone instability, it can be said that several milestones has been reached.

Firstly, a dynamics coherent with the experimental behavior of the fishbone instability has
been recovered with XTOR-K. Simulations performed in the strong kinetic drive limit ex-
hibit mode frequency down chirping, accompanied with resonant transport of mostly trapped
particles. Simulations have been first carried out for a simplified ITER-like case, and then
for an equilibrium more relevant to the ITER 15 MA scenario in terms of geometry, bulk
equilibrium and alpha particle energies. Such a study is of crucial importance since it has
been shown in Chapter 5 that this scenario will be likely to be unstable against the alpha
fishbone instability. A quantification of the global particle transport due to fishbone oscil-
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lations has been performed. It is found that over several oscillations, only up to 5% of the
core alpha particles are transported outside of the q=1 surface. It implies that the fishbone
instability does not decrease importantly the fusion performances due to alpha redistribution
before their full thermalization onto the bulk. However, nonlinear simulations would need to
be performed over more fishbone oscillations in order to generalize this result.

Moreover, a mechanism explaining the nonlinear interplay between mode down chirping and
trapped particle transport has been proposed in the strong kinetic drive limit. A rapid dy-
namical evolution of the resonant island in phase space occurs at the end of the linear phase.
It induces an asymmetric wave-particle energy exchange between resonant particles and the
fields that is more beneficial for the fields. This asymmetry is explained by the direction of
the kinetic density gradient in the (⇥, P') diagram. An outward transport of fast particles is
associated with this asymmetry, flattening in parts of phase space the alpha density profile.
This flattening leads to mode down chirping since the kinetic drive in the fishbone disper-
sion relation is proportional to the alpha density gradient. When the mode frequency chirps
down, it allows the precessional resonance to explore new zones of phase space, in which it
continues to transport kinetic particles, which increases further the mode frequency down
chirping.

Also, it has been found that the characteristic transport time of energetic particles is between
two and three orders of magnitude below the total thermalization time of alpha particles onto
the bulk plasma. Therefore, an imposed slowing-down distribution function can realistically
describe a first series of fishbone oscillations.

Finally, a nonlinear simulation in the low kinetic drive limit has been performed. Preliminary
results show increasing bouncing oscillations of the mode energy in the nonlinear phase, as
well as a double step structure that appears when the mode energy is at a local minima.
These features are present in existing literature [Odblom et al., 2002][Idouakass, 2016]. The
mechanism coupling mode frequency down chirping and resonant particle transport is pos-
sibly di↵erent in this limit. Longer simulations, together with Kinetic Poincaré plots, are
necessary to highlight the physics at play in the low kinetic drive limit.





Chapter 7

Conclusion and Perspectives

The ITER tokamak will be the first fusion device to confine burning plasmas over long du-
rations. The alpha particles created by these plasmas are needed to maintain temperatures
allowing fusion reactions to happen. Using a large fraction of non-inductive power to heat
up the plasma in steady-state operations would severely reduce the enhancement factor of
the device. It appears that alpha particles can resonantly interact with MHD instabilities.
This interaction results in a new macroscopic instability named the alpha fishbone. The
instability tends to transport alphas out of the core plasma. If energetic alphas in the MeV
range are transported by the fishbone, they will not be able to transfer their energy to the
core plasma. However, if understood and controlled, this instability could help transport
the alpha particles that have partially thermalized on the bulk plasma. Thermalized alpha
particles in the core plasma are impurities that decrease the fusion power.

Since DT operations on the ITER tokamak are still more than a decade away, nonlinear
simulations of this instability are required to identify the scenarios in which the fishbone
can occur, and estimate the amount of associated transport. The nonlinear coupling mech-
anism between mode chirping and resonant transport during fishbone activity needs also to
be studied numerically. This would help designing scenarios taking advantage of the fishbone
instability. First steps in this direction have been made in this thesis. Chapter 4 reports
the implementation of realistic distribution function of energetic particles, slowing-down dis-
tributions, in the nonlinear hybrid code XTOR-K. Phase space diagnostics have also been
implemented in the code. Their goal is to localize the regions of phase space in which wave-
particle interaction and resonant particle transport arise. These implementations enable the
fishbone instability to be simulated with XTOR-K, and diagnosed to gain a better under-
standing of the fishbone dynamics.

Since the kinetic module of XTOR-K has been recently implemented, a linear verification
of the code was required before simulating the nonlinear phases of the fishbone instability.
To this e↵ect, a linear fishbone dispersion relation has been derived from the Kinetic En-
ergy Principle. This model has the particularity to take into account the resonant e↵ect
of passing particles and non-resonant terms. It also solves non-pertrubatively the fishbone
dispersion relation. Some minor di↵erences were found between this model and the earlier
one on which its derivation is built [Porcelli et al., 1994]. In chapter 5, results obtained from
this fishbone dispersion relation and XTOR-K linear simulations are compared for simple
Kinetic-MHD equilibria. They are in correct agreement regarding the values of the fishbone
complex frequency obtained for di↵erent on-axis alpha densities. The phase space region in
which wave-particle interaction arises in XTOR-K is also coherent with the position of the
precessional resonance predicted by the linear theory. These results enable to verify linearly
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the code XTOR-K, attesting the good implementation of its kinetic module. Since the linear
model takes into account the e↵ects of passing particles, the particle distribution function
implemented in XTOR-K has not been restricted. Moreover, the specificities included in the
linear model revealed to be decisive for the verification. Results obtained without resonant
passing particles, or without non-resonant terms, did not agree as well with linear results
obtained from XTOR-K. The fishbone dispersion relation has also been solved using the ex-
pressions presented in [Porcelli et al., 1994]. Results show that the complex frequencies are
comparable between the two models. The linear theory developed in this thesis is slightly
more in agreement with XTOR-K results than this other model.

As the XTOR-K code was verified linearly, it was then used to study the linear stability
of the ITER 15 MA scenario against the alpha fishbone in Chapter 5. The linear model
developed could not study this equilibrium due to its intrinsic assumptions over circular
shaping and particles of intermediate energies. Linear simulations were performed for two
sets of Kinetic-MHD equilibria relevant for the ITER 15 MA case. These sets use di↵erent
ratio of �h/�tot 2 [0, 12%], and two di↵erent on axis safety factor, q0 = 0.9, 0.95. It was found
that the threshold in beta ratio at which the fishbone instability occurs is �h,th/�tot = 5%
for q0 = 0.95, and �h,th/�tot ⇠ 8� 10% for q0 = 0.9. Since the expected beta ratio on ITER
is �h/�tot ⇠ 15� 20%, it implies that for these equilibria, the ITER 15 MA scenario will be
unstable against the fishbone instability. A discussion is provided in Chapter 5 on the com-
parison of these results with those of earlier studies. It is discussed why results obtained in
[Fu et al., 2006] did not find that this configuration was unstable against the alpha fishbone.
It appears that the alpha density gradient used was not peaked enough to destabilize the
fishbone.

Nonlinear simulations were performed in the strong kinetic drive limit with XTOR-K in
chapter 6. Two set of simulations were studied in this limit, one with a simplified circu-
lar ITER-like scenario, and one on the ITER 15 MA equilibrium defined in chapter 5 with
�h/�tot = 12% and q0 = 0.95. Results obtained from these two simulations were comparable.
Down chirping of the fishbone frequency and resonant alpha particle transport were observed
simultaneously. The global transport of alpha particles outside the q = 1 surface is found
to a↵ect only 5% of the initial distribution function over a few fishbone oscillations. The
fusion performances of ITER will then not be too a↵ected by this instability. A mechanism
explaining the coupling between mode chirping and resonant transport has been proposed,
using the phase space diagnostics. The time evolution of the wave-particle interaction and
of the resonant transport show that particles start to be transported before the mode begins
to chirp. This leads to the flattening of the alpha density in specific regions of phase space,
lowering the kinetic drive of alpha particles. As highlighted by the developed linear theory,
lowering the kinetic drive decreases the complex frequency of the mode. Mode roll-over and
down frequency chirping are therefore induced by this transport. Given that the mode chirps
down, the positions of the resonances are displaced in phase space. More alpha particles
can then resonate with the mode, which induces their transport and chirps further down the
mode frequency.

A nonlinear simulation was also performed near the fishbone threshold for the ITER 15 MA
scenario, in the low kinetic drive limit. This simulation is still at a preliminary stage. The
mode has not reached a high enough amplitude to resonate with alpha particles. However,
the time evolution of the mode energy, and the onset of a transient double step structure,
seems to be in agreement with results obtained from reduced Kinetic-MHD models [Odblom
et al., 2002][Idouakass, 2016].
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It order to further address the study of the alpha fishbone on ITER and other devices,
several points will need to be tackled in the near future. Nonlinear simulations in the strong
kinetic drive limit were only performed during a few fishbones oscillations. However, it is
observed experimentally that many more oscillations can arise during plasma discharges.
Longer simulation times are required to generalize the weak transport results obtained in
this thesis. However, if more oscillations were to be described with XTOR-K, not taking
into account collisions in the simulation could reveal problematic. The fishbone is flattening
the alpha distribution function locally in phase space. Collisions might replenish these zones
with alpha particles on longer simulations time, due to the thermalization of particles slightly
more energetic and not in resonance with the mode. Partial thermalization would then com-
pete with resonant transport. This could allow the fishbone to be excited again, and to flush
the newly resonant particles in cycle. A collision operator has been recently implemented in
XTOR-K and is currently being tested. Combining this operator with a realistic source of
alpha particles at 3.5 MeV will allow simulations to take this e↵ect into account. Comparing
these simulations with the present ones, without any collisions, can determine if the resonant
transport time and the partial thermalization time can indeed compete. Moreover, simulat-
ing a full cycle of fishbone oscillations followed by a sawtooth crash can help to understand
what happens to the alpha distribution function on much longer times. These results would
be convenient for assessing quantitatively the amount of alpha heating yielded to the plasma.
However, such simulations are not at present tractable since they would require too long
simulation times.

In addition to these developments, finalizing the implementation of Kinetic Poincaré plots
in XTOR-K would help getting a more complete image of the mechanism coupling mode
chirping and transport. The mechanism described in Chapter 6 only notes that a quick dy-
namical change a↵ects the phase space island at the end of the linear phase. Observing the
full dynamics of the island will permit to see how theses changes arise, and to determine
how the fishbone instability could be used beneficially. Assuming that a quick island break
up is a common feature of strong kinetic drive scenarios, the fishbone could be controlled by
engineering in advance the position of the resonance in phase space. When the island breaks
up, trapped particles around the resonance are rapidly being transported.

To conclude, simulations in the low kinetic drive limit need to be continued and performed
for other equilibria with XTOR-K. The nonlinear behavior of phase space islands is expected
to be di↵erent in this limit. Resonant particles are more likely to be trapped inside the mode.
When the fishbone frequency is chirping down, the island location is displaced at larger ra-
dial positions. Particles trapped in the mode would then be transported along with the
resonance. The total amount of alpha transported in this limit could therefore be di↵erent
from the strong kinetic drive case.





Appendix A

Bounce-averaging formalism

In this section, bounce-averaging calculations are detailed for both passing and trapped
particles. It is assumed that the MHD equilibrium used has circular flux surfaces, with low
Shafranov shift. Any bounce-averaged quantity hF i is calculated through

hF i =
Z
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where C is the path followed by the particle in the poloidal plane. The parallel velocity can
be expressed as follows, considering E = 1/2mv2, µ = mv2?/2B,� = µB0/E,H = R/R0
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where the electric potential has been neglected. Considering ✓0 the bounce angle for trapped
particles and ✓0 = ⇡ for passing ones
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using ✏ = r/R0, one has
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with y2 being expressed as

y2(x,�) =
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(A.5)

Passing particles are distinguished from trapped particles by a simple condition on y2.
Trapped particles are characterized by the existence of two turning points in the poloidal
plane where their parallel velocity is zero. Therefore, the condition on having trapped par-
ticles translates itself, according to (A.2), as (1 � �/H)1/2 = 0, which implies, assuming
� < 1/1� ✏, that 0 < y2 < 1. Passing particles are therefore characterized by 1 < y2 < +1.

From these conditions on y2, the corresponding conditions on the pitch angle � can be de-
duced. Respectively, for y2 = 0, 1,+1, the corresponding � are � = 1/1�✏,� = 1/1+✏,� = 0.
Therefore, for trapped particles, 1/1 + ✏ < � < 1/1 � ✏, and for passing particles, 0 < � <
1/1 + ✏.

These expressions enable to write hF i as
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Let us now derive expressions for hcos ✓i, h✓ sini, hv2ki, and hcos(q✓)i for both passing and
trapped particles, which are appearing in the derivation of �K .

A.1 Passing particles

For passing particles, ✓0 = ⇡, the frequency to perform a poloidal revolution is defined as
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K being the elliptic integral of first kind. The definition of a bounce-averaged quantity is
then
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Therefore, knowing that
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it leads to
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where E is the elliptic integral of the second kind. Moreover, noticing that
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it implies, using an integration by parts
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Therefore, it yields
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For hv2ki, the derivation is straightforward

hv2ki =
4E�✏y2

m

E(1/y2)
K(1/y2)

(A.15)

Finally, in order to obtain < cos(q✓) >P , one simply performs an expansion according to the
small paramater (1� q), reading

hcos(q✓)iP = Iq,p = hcos ✓iP + (1� q)h✓ sin ✓iP = Ic,p + (1� q)Is,p (A.16)
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A.2 Trapped particles

For trapped particles, ✓0 can have any value in the interval [0, ⇡]. In order to have explicit
expressions for bounce-averaged terms, it is needed to perform a change of variable. Consid-

ering the following one, (1/y) sin(✓/2) = sin u, d✓ =
⇣
2y/cos(✓/2)

⌘
cos u du and knowing

that cos(✓/2) = (1 � y2 sin2 u)1/2, and also noticing that ✓ 2 [�✓0, ✓0] , u 2 [�⇡/2, ⇡/2]
since the existence of a bounce angle implies that y2 = sin2 ✓0/2, it leads to

Ib,t = 2

Z ✓0

�✓0

⇣
1� �

H

⌘�1/2 d✓

2⇡
=

⇣
1��+(r/R0)�

⌘�1/2
Z ⇡/2

0

4y

cos(✓/2)

du

2⇡
=

⇣
2�

r

R0

⌘�1/22K(y2)

⇡
(A.17)

where the bounce frequency is given in this case by

!b

2⇡
=

(2E/m)1/2

qR0Ib,t
(A.18)

Moreover, knowing that cos ✓ = 2(1� y2 sin2 u)� 1

Z ✓0

�✓0
cos ✓

⇣
1� �

H

⌘�1/2

d✓ = 4
⇣
2�

r

R0

⌘�1/2
Z ⇡/2

0

cos ✓

cos(✓/2)
du = 4

⇣
2�

r

R0

⌘�1/2

[2E(y2)�K(y2)]

(A.19)
which gives

hcos ✓iT = Ic,t = 2
E(y2)
K(y2)

� 1 (A.20)

Performing the same integration by parts as before for h✓ sin ✓iT , where this time the first
term is dropped since 1� y�2 sin2 ✓0/2 = 0

Z ✓0

�✓0
✓ sin ✓

⇣
1� �

H

⌘�1/2

d✓ = 4
⇣
2�

r

R0

⌘�1/2

4y2
Z ✓0

�✓0

⇣
1� y�2 sin2(✓/2)

⌘1/2

d✓ (A.21)

Therefore, noticing that cos2 u = y�2(1� y2 sin2 u) + 1� y�2

h✓ sin ✓iT = Is,t =
4y2

K(y2)

Z ⇡/2

0

cos2 u

(1� y2 sin2 u)1/2
du = 4

E(y2)
K(y2)

+ 4(y2 � 1) (A.22)

For hv2ki, it can be shown easily, using the same expression for cos2 u, that

hv2ki =
E�✏

m
< ✓ sin ✓ > (A.23)

The expression of hcos q✓i is defined identically for both passing and trapped particles.





Appendix B

Derivation of the precessional
frequency for an arbitrary reference
magnetic surface

In this annex, explicit derivations of the precessional drift frequency of both trapped and
passing particles are presented. These derivations are performed assuming a MHD equilib-
rium with circular flux surfaces and low Shafranov shift. Given that for passing particles,
there is no bijection between their toroidal canonical momentum P' and the radius of their
reference flux surface r̄, the definition of their precessional drift frequency is not unique, and
depends on the arbitrary choice made for the reference flux surface. First, a general defini-
tion of !d will be performed without specifying  ̄ the reference flux surface. Then, it will be
applied to two definitions, present in the literature.

B.1 General expression of !d

Considering a general definition of the reference magnetic surface  ̄, as

 ̄ =  0 � P'
Ze

(B.1)

where  0 is an arbitrary shift from the toroidal canonical momentum, the excursion from the
reference magnetic surface reads

 ̂ =
mRvk
Ze

�  0 (B.2)

The general definition for the precessional drift frequency is, given in equations (2.48-2.49)

!d =

⌧
vd ·r'� q( ̄)vd ·r✓ + dq

d 
( ̄) ̂

d✓

dt

�

↵2

(B.3)

with

vd = � �E

ZeB0R0
(sin ✓ er + cos ✓ e✓) (B.4)

Therefore, the first term in equation (B.3) is null, and the second one reads

D
� q( ̄)vd ·r✓

E

↵
=

q( ̄)E

ZeB0R0r̄

h
�hcos ✓i↵2 � �✏hcos2 ✓i↵2 + 4✏�y2hcos ✓(1� y�2 sin2 ✓/2)i↵2

i

(B.5)
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APPENDIX B. DERIVATION OF THE PRECESSIONAL FREQUENCY FOR AN

ARBITRARY REFERENCE MAGNETIC SURFACE

In the rest of this derivation, only the lowest order in ✏ is kept. Bounce-averaged quantities
for terms with higher orders in ✏ are given in annex A. The last term in equation (B.3) can
be recast as

⌧
dq

d 
( ̄) ̂

d✓

dt

�

↵2

=

⌧
dq

d 
( ̄) ̂vkrk✓

�

↵2

=

⌧
dq

d 
( ̄)


mRvk
Ze

�  0

�
vkrk✓

�

↵2

(B.6)

Knowing that in a cylindrical limit and at leading order rk = @'/R0 + R0@✓/(q( ̄)R2), it
yields

⌧
dq

d 
( ̄) ̂

d✓

dt

�

↵2

= 4
dq

d 
( ̄)

r̄�Ey2

q( ̄)ZeR0

h m

4E�y2✏
hv2ki↵2 �

2Ze

R0m

⇣ m

E✏�

⌘1/2

h 0i↵2

i
(B.7)

The arbitrary reference flux surface  ̄ being linked to its reference radius as  ̄ = B0r̄
2/2q(r̄)

without loss of generality, the derivative along  can be recast as

dq

d 
( ̄) =

s(r̄)

r̄2B0
, s(r̄) = r̄

dq

dr
(r̄)/q(r̄) (B.8)

Equation (B.7) can then be re-expressed as

⌧
dq

d 
( ̄) ̂

d✓

dt

�

↵2

=
q(r̄)�E

ZeB0r̄R0
4s(r̄)y2

h m

4E�y2✏
hv2ki↵2 �

2Ze

R0m

⇣ m

E✏�

⌘1/2

h 0i↵2

i
(B.9)

The precessional drift frequency for an arbitrary reference flux surface is then, at lowest order
in ✏

!d =
q(r̄)�E

ZeB0r̄R0


hcos ✓i↵2 + 4s(r̄)y2

✓
m

4E�y2✏
hv2ki↵2 �

2Ze

R0m

⇣ m

E✏�

⌘1/2

h 0i↵2

◆�
(B.10)

B.2 Explicit expressions

B.2.1 Trapped particles

For trapped particles, the choice for  0 does not matter since their reference flux surface is
an invariant of motion. The choice of the reference flux surface is then unique and intersects
the banana turning points in the poloidal plane as  ̄ =  = �P'/Ze. The explicit expression
for the precessional frequency is then, using annex A

!d(r̄,�, E) =
q(r̄)�E

ZeB0r̄R0
Id,t(r̄,�), Id,t =


2
E(y2)
K(y2)

� 1 + 4s(r̄)
⇣E(y2)
K(y2)

+ y2 � 1
⌘�

(B.11)

B.2.2 Passing particles

Two definitions of the reference flux surface for passing particles are present in the literature.
In [Nguyen, 2009], this surface is taken to be directly proportional to the canonical toroidal
momentum,  ̄ = �P'/Ze, where in this case  0 = 0. This choice enables to simplify
significantly the derivations using the angle-action formalism, and is closed to the intrinsic
reference flux surface for passing particles near the passing-trapped frontier. The explicit
expression for !d in this case is

!d(r̄,�, E) =
q(r̄)�E

ZeB0r̄R0
Id,p(r̄,�), Id,p =


2y2

✓
E(1/y2)
K(1/y2)

�1

◆
+1+4s(r̄)y2

E(1/y2)
K(1/y2)

�
(B.12)
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It is noted that this expression is identical in [Nguyen, 2009]. However, this definition is not
the most practical.

Indeed, for energetic particles, the term mRv' is of the same order of magnitude than Ze .
Therefore, passing particles orbits can be quite distant from the latter definition of  ̄. If it
is wished to compare theoretical values for !d with ones obtained from orbit codes, as it is
done in Chapter 5 with XTOR-K, it prevents a precise comparison. Therefore, a wiser choice
is to take the time average particle flux surface as reference, which is equivalent to take its
average value along ↵2

 ̄ = h it = 1

Ze
[mhRvki↵2 � P'],  ̂ =

m

Ze
[Rvk � hRvki↵2 ] (B.13)

Such a choice is also made in [Graves, 2013][Merle, 2012][Zonca et al., 2007]. It implies that
 0 = mhRvki↵2/Ze, the explicit expression for !d then reads

!d(r̄,�, E) =
q(r̄)�E

ZeB0r̄R0


2y2

✓
E(1/y2)
K(1/y2)

�1

◆
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✓
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K(1/y2)

�
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2K(1/y2)

⌘2
◆�

(B.14)

This expression agrees with [Merle, 2012] and is close to [Zonca et al., 2007], up to the term
(⇡/2K(1/y2))2 replaced by (⇡/2K(1/y2))

p
1� y�2





Appendix C

Analytical expressions for �resK

C.1 General derivation

Using a normalized slowing-down distribution function

Feq(r̄, v̂) =
3

4⇡ ln[1 + (vb/vc)3]

✓
m

2

◆3/2

n(r)
�H(v↵ � v)

v̂3 + v̂3c
(C.1)

with v̂ = v/vb, v̂c = vc/vb, vb the birth velocity of the slowing-down distribution function. The
resonant contribution to the fishbone dispersion relation (equation (4.6)) can be decomposed
as �resK = �res,!⇤

K +�res,!K , where �res,!⇤
K corresponds to the term proportional to !⇤, and �

res,!
K

the one proportional to !.

�res,!⇤
K =

3⇡2✏0Eb
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�Id
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with

Ires,1 =
4
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(C.3)
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Ires,2 =
1

(1 + v̂3c )(1 + v1 + v2)
+

3

2(v+ � v�)
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Z 1
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(C.5)
The expressions for Ires,1 and Ires,2 are now explicitly derived in two limits, vc/vb ⌧ v̂ and
vc/vb � v̂. The following expression enables to explicit Ires,1 and Ires,2

Z 1

0

vn

v � v0
=

n�1X

m=1

vm0

Z 1

0

vn�mdv + vn0 ln


1� 1

v0

�
(C.6)

A numerical integration called the collocation method is also presented in the general case.

C.2 vc/vb ⌧ v̂

When vc/vb ⌧ v̂, Ires,1 and Ires,2 can be recast as

Ires,1 =
4

v+ � v�


v+

Z 1

0

dv̂
v̂2

v̂ � v+
� v�

Z 1

0

dv̂
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�
(C.7)
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Ires,2 =
1
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C.3 vc/vb � v̂

When vc/vb ⌧ v̂, Ires,1 and Ires,2 can be recast as

Ires,1 =
4

v̂c
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Ires,2 =
1

v̂3c
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(C.10)

C.4 The collocation method

When an ordering between v̂c and v̂ cannot be found for most v̂ 2 [0, 1], the collocation
method is used. The method aims at computing the following resonant integral

K =

Z +1

�1
dv

g(v)

v � v0
(C.11)

In order to compute Ires,1 and Ires,2, g(v̂) = v̂n/(v̂3 + v̂3c ), with n = 3 or 5. The collocation
method consists in computing K on uniformly spaced grid such as v0 = k�v, with �v the
length between two grid points and k 2 [0, N ].

On that grid, g is approximated as

g(v) =
X

j

gjhj(v) (C.12)

with hi(v) = 0 when |v � vj| > �v, and

hj(v) = 1� |v � vj|
�v

(C.13)

otherwise. The resonant integral K can then be expressed as

K =
NX

j=�N

gjj,k (C.14)

with the kernel

j,k =

Z 1

�1

dx
1� |x|

x+ j � k
(C.15)

The kernel can be computed analytically. When j � k 6= 0 and j � k 6= ±1

j,k = ln


j � k + 1

j � k � 1

�
� (j � k) ln


(j � k)2

(j � k)2 � 1

�
(C.16)

and j,k = ±2 ln(2) when j � k = ±1, and j,k = i⇡ when j � k = 0.
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Titre : Dynamique du fishbone ionique dans les tokamaks : théorie et simulations non-linéaires multi-échelles
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´

e : Dans les plasmas de tokamak, les particules rapides
générées par les réactions de fusion et par les méthodes de chauf-
fage non-inductives peuvent interagir avec les instabilités Magnéto-
Hydro-Dynamiques, conduisant potentiellement à leur transport en
dehors du plasma de coeur. Cette problématique est importante
dans le contexte des plasmas en combustion, où la relaxation col-
lisionnelle des particules alpha est nécessaire pour compenser la
perte d’énergie lors la décharge. Le temps de transport résonant
des particules rapides étant bien plus petit que leur temps de ther-
malisation sur le plasma thermique, ces instabilités MHD-cinétiques
peuvent engendrer une dégradation de l’efficacité énergétique de
la réaction, qui est d’importance cruciale pour les futurs réacteurs
commerciaux. Dans cette thèse, nous étudions l’interaction des
ions énergétiques avec le mode de kink interne, qui conduit à
l’émergence de l’instabilité fishbone. À cette fin, nous utilisons le
code non-linéaire hybride XTOR-K, pour simuler les phases non-
linéaires du fishbone ionique, durant lesquelles les particules ra-
pides sont tranportées. Dans un premier temps, la théorie linéaire
de l’instabilité fishbone est reproduite, retrouvant une relation de
dispersion similaire à celle du modèle de Porcelli. Un écart est
constaté pour les particules très passantes. Un code linéaire a
été implémenté pour résoudre de façon non perturbative la rela-
tion de dispersion du fishbone obtenue. Les résultats obtenus avec
ce code sont cohérents avec ceux d’XTOR-K dans la phase linéaire
des simulations, avec des taux de croissance, des fréquences de
rotation et des surfaces de résonance similaires. Ces résultats four-

nisent une vérification linéaire de XTOR-K, permettant son utili-
sation sur des équilibres plus complexes, et durant des phases
non-linéaires. Dans un second temps, une étude paramétrique est
fournise par XTOR-K sur la stabilité linéaire du fishbone alpha,
avec des équilibres pertinents pour le cas ITER 15 MA. Nos si-
mulations montrent que ce scénario sera probablement instable
à l’égard du fishbone alpha, pour des densités de particules al-
pha réalistes dans ITER. Les résultats non-linéaires obtenus avec
XTOR-K sur un équilibre circulaire peu énergétique et sur le cas
ITER 15 MA sont ensuite présentés. Ces résultats documentent
la dynamique auto-cohérente des particules rapides et des modes
MHD lors de plusieurs oscillations fishbone. Le transport résonant
de particules rapides est une caractéristique commune dans ces
simulations, accompagnée d’une décroissance charactéristique de
la fréquence du mode MHD-cinétique. Les différences dans ces
simulations sont discutées, ainsi que le régime non-linéaire cha-
ractérisant le mode observé sur la base des théories existantes.
Durant quelques oscillations fishbone, dans nos différentes simu-
lations, le transport total de particules alpha au coeur du plasma
est de l’ordre de 5 % de la population initiale, ce qui montre que la
réduction des performances de fusion due à l’instabilité fishbone-
alpha est limitée. À partir de ces simulations, un mécanisme expli-
quant le couplage non-linéaire entre le transport résonant de parti-
cules et la décroissance en fréquence du mode MHD-cinétique est
présenté.

Title : Dynamics of ion-driven fishbones in tokamaks : theory and nonlinear hybrid fluid/kinetic simulations

Keywords : Fusion, plasma, magnetohydrodynamics, energetic particles, nonlinear, fishbone

Abstract : In tokamak plasmas, fast particles generated by fusion
reactions and by non-inductive heating techniques can resonantly
interact with Magneto-Hydro-Dynamic (MHD) instabilities, poten-
tially leading to their transport out of the plasma core. This topic
is important in the context of burning plasmas, where the collisional
relaxation of alpha particles is expected to compensate the energy
losses. The resonant transport time of fast particles being much
lower than their typical relaxation, these Kinetic-MHD instabilities
can adversely impact the plasma energy balance, and therefore
the fusion performance of future commercial reactors. In this the-
sis, we study the interaction of energetic ions with the internal kink
mode, resulting in the onset of the fishbone instability. To this end,
we use the nonlinear hybrid Kinetic-MHD code XTOR-K to simu-
late the nonlinear phases of the fishbone instability, during which
fast particles are being transported. Firstly, the linear theory of
the fishbone instability is re-derived, recovering similar expressions
with Porcelli’s dispersion relation. Differences arise when conside-
ring deeply passing particles. A linear code has been implemented
to solve non-perturbatively the fishbone dispersion relation obtai-
ned. Results with this code are consistent with those obtained from
XTOR-K linear simulations, in terms of mode growth rates, rotations

frequencies and resonant surfaces. This provides a linear verifica-
tion of XTOR-K, that enables its use on complex equilibria and du-
ring nonlinear phases. Secondly, a parametric study is provided by
XTOR-K regarding the alpha fishbone linear stability with equilibria
relevant for the ITER 15 MA case. Our simulations show that this
scenario is likely to be fishbone unstable for ITER relevant alpha
particle densities. Finally, nonlinear results obtained with XTOR-K
in low energy circular equilibria and in the ITER 15 MA case are
presented. These results document the self-consistent dynamics of
fast particles and MHD modes during several fishbone oscillations.
Resonant fast particle transport is a common feature of these simu-
lations, together with frequency chirping of the Kinetic-MHD mode.
Differences between these simulations are discussed, as well as
the nonlinear regime characterizing the observed mode based on
existing theories. During a few fishbone oscillations, in our different
simulations, the overall alpha particle transport in the core plasma
impacts around 5% of the initial population, which shows that the
reduction of fusion performances due to the alpha-fishbone instabi-
lity is limited. From these simulations, a mechanism explaining the
nonlinear coupling between resonant particle transport and mode
chirping is presented.
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