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Résumé Cette thèse contient les résultats de travaux de recherche menés à Safran-
Tech et au Laboratoire d’Analyse des Signaux et des Processus Industriels (LASPI) de
l’Université de Lyon. Le sujet traité porte sur la surveillance vibratoire des transmissions
de puissance aéronautique et plus particulièrement des engrenages.

Traditionnellement, les vibrations sont étudiées par analyse spectrale aumoyen d’une
représentation du spectre de Fourier. Basé sur ces observations, les vibrations des en-
grenages ont été représentées par un modèle empirique multiplicatif : d’une part le
signal d’engrènement, haute fréquence, et de l’autre les signaux de rotations des roues,
basses fréquences. En effet, les vibrations d’engrenage présentent un spectre de raies
ayant des caractéristiques similaires à celles de certains signaux de communication
comme une porteuse modulée en amplitude.

Dans le but de faire de la détection précoce de défauts, il est intéressant de pouvoir
séparer les signaux basses fréquences du reste du signal car ils sont plus souvent porteurs
de l’information de défaut.

Partant de ce modèle et de cette constatation, ces travaux étudient la réponse à deux
questions:

1. A quel point le signal vibratoire produit lors de la rotation d’un engrenage peut-il
être expliqué par la représentation sous la forme d’un produit?

2. Considérant un signal, est-il possible de le reconstruire en estimant ses com-
posantes? Et la solution est-elle unique?

Pour répondre à ces questions, le modèle a été représenté sous la forme d’un prob-
lème d’optimisation. D’autre part, un nouvel outil a été défini pour représenter le spectre
discret d’un signal vibratoire d’engrenage sous la forme d’une matrice de coefficients de
Fourier. Ces travaux ont montré une équivalence entre le produit matriciel de deux
vecteurs et la multiplication de deux signaux temporels, et permis de faire le lien en-
tre la séparation du produit de deux signaux (démodulation) et les opérateurs de rang
faible.

Cette nouvelle approche de séparation et d’estimation des signaux vibratoire
d’engrenage a montré des performances théorique idéales et a permis de détecter de
manière précoce les défauts de denture de signaux d’engrenage réels.
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Abstract This thesis contains the results of the research studies performedwith Safran-
Tech and the Laboratoire d’Analyse des Signaux et des Processus Industriels (LASPI) of
the University of Lyon. The main subject focus on vibratory surveillance of aeronautic
power transmission systems and more specifically gearboxes.

Usually, vibrations are investigated with spectral analysis by means of the common
representation of the Fourier spectrum. Based on these observations,gearbox vibrations
were represented by an empirical product model: on one hand the meshing signal, with
high frequency, and on the other hand the gears rotation signals, with low frequencies.
Indeed, gearbox vibrations develop a line spectrum having similar characteristics with
some communication signals, as a carrier signal modulated in amplitude.

For the purpose of incipient fault detection, it is interesting to be able to separate
low frequency signals as they usually convey more fault information.

Based on these model and observation, this research work investigate the answer to
the two following questions:

1. To which point the vibration signals produced by gears rotation can be explained
by the representation as a product ?

2. Given a signal, is it possible to rebuild it by estimating the two component? Is the
solution unique?

In order to answer those questions, the given model was formulated as an optimiza-
tion problem. Then a new tool was defined to represent the discrete spectrum of gearbox
vibration signal as a matrix containing the Fourier coefficients. This work has proven an
equivalence between the two representations of the matrix product of two vectors and
the temporal multiplication of two signals. Furthermore, it allowed us to link the remote
fields of signal demodulation and low rank approximation.

This new separation and estimation approach for gearbox vibration signals has shown
theoretical interesting performances, close to the ideal and allowed us to perform effi-
cient incipant fault detection on real gearbox vibration dataset.



4



Acknowledgements

This PhD work has been mostly conducted in France, so I switch to french in the present
section.

C’est arrivé! Ces trois années de thèse sont passées à une vitesse folle et n’auraient
pas eu le même charme sans la présence de beaucoup. Malgré quelques hauts et bas,
surtout à la fin, j’ai passé des années incroyablement riches qui m’ont fait grandir. Et il
ne faut pas se le cacher, je me suis vraiment bien amusée!!

Tout d’abord, je tiens à remercier les membres du jury : Nadine Martin et Karim Abed
Meraim pour avoir accepté d’être les rapporteurs de mes travaux de thèse et pour leur
lecture attentive et les remarques constructives qu’ils ont apporté ; Jérôme Antoni pour
avoir accepté de présider mon jury ainsi que Alban Quadrat, Bob Randall et Alexandre
Renaux pour l’intérêt qu’ils ont porté à mon travail et leur présence au sein de mon jury.

Ces travaux n’auraient pas pu avoir lieu si Mohamed El Badaoui, mon directeur de
thèse, ne m’avait pas accordé sa confiance. Merci de m’avoir laissé autant de liberté
et d’autonomie pour explorer les pistes qui nous intéressaient le plus. Un grand merci
à Axel Barrau, qui a co-dirigé mes travaux alors que ce n’était pas initialement prévu.
Merci pour ces heures de discussions et d’explications et pour ton implication au quoti-
dien. J’ai énormément appris à vos côté et pu gagner en maturité et grâce à votre soutien
sans faille, j’ai pu prendre le meilleur des départs dans le monde de la recherche. Je suis
très heureuse et fière d’avoir partagé cette expérience extraordinaire qu’est la thèse avec
vous.

J’ai eu la chance de pouvoir faire de nombreuses rencontres scientifiques qui m’ont
permis d’approcher plusieurs domaines et de monter des collaborations afin de faire des
passerelles dans des domaines variés. Merci à Alexandre Renaux pour les après-midis
au L2S à m’expliquer la Borne de Cramèr Rao et d’avoir pris le temps de se pencher sur
ce sujet inhabituel du traitement de signal qui est l’application aux signaux mécaniques.
Merci aussi à Yacine Bouzidi, Roudy Dagher et Alban Quadrat d’avoir pris autant de
temps m’aider à résoudre mes problèmes de polynôme. Grâce à vous, le calcul formel et
l’algèbre homologique me font moins peur et j’en sais beaucoup plus sur les propriétés
de notre fameuse matrice ! Finally, thank you so much Bob Randall, Pietro Borghesani
and Wade Smith for inviting me at the University of New South Wales in Sydney. Thanks
to you I have eventually learn how mechanical systems produce vibrations and how to
exploit their properties for surveillance algorithms. Thanks you for the funny and joyful
conviviality Tuesday pizza/beer!

J’ai beaucoup de personnes à remercier, car j’ai été vraiment bien entourée, alors
j’espère n’oublier personne. Tout d’abord à SafranTech, merci à Dohy Hong de m’avoir
accueillie dans son équipe et à tous les collègues du pôle TSI pour les discussions pas-
sionnées et les pauses café animées. Merci aux autres doctorants de Safrantech (Michel,
Mina, Paul et EdouardâĂę) d’avoir été là pour mettre de l’ambiance dans l’open space

5



6

au quotidien. Merci à l’équipe jeux de plateau, Axel, Séb, Héléna, David, Michel, Paul,
Mina, Yosra, pour ces nombreuses soirées à découvrir des jeux avec vous, de Small-
world à Room 25 et tant d’autres ! Merci à Luca pour ces pauses café qui font du bien
! Un grand merci à toute l’équipe de Peyresq, qui m’a accompagnée dans mes débuts
en conférence et avec qui j’ai pu découvrir d’autres domaines du traitement du signal et
partager des supers moments de convivialité, entre plage, rando et tournois de pétanque
(Alex, Guillaume, Arnaud, Gilles, Lucien, Joana, Pascal, Eric, Jean-Phi, Fred et tous les
autres. . . ).

Mille mercis à mes colocataires, Amad, Kamel et plus récemment JB et Julien, qui
m’ont soutenue quand j’en avais besoin. Pour les soirées discussion où on se change les
idées ou les petits repas qui remontent le moral !

Un merci infini à Valentine qui est toujours là pour moi et sans qui j’aurai pu avoir
envie d’abandonner.

Pour terminer, mes remerciements sont à mes parents et Hélène, ma sÅŞur. Vous
n’avez pas toujours compris mes explications au combien peu claires sur le parallèle entre
la médecine humaine et l’analyse vibratoire des engrenages mais vous avez toujours été
présents pour moi. Mes retours en Normandie ont toujours été synonyme de bol d’air
frais et iodé qui non seulement change de la pollution parisienne mais permet de se
ressourcer et de recharger les batteries. Merci n’est pas un mot assez fort pour exprimer
ma gratitude mais c’est le seul que j’ai à disposition, alors Merci ! Pour m’avoir laissée
gérer mon parcours d’étude et pour vos valeurs et votre confiance. Vous êtes la meilleure
famille que je puisse rêver avoir.



Contents

I State of the art and problem statement 15

1 State of the art 17

1.1 Gearbox surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.1 General information on gearbox . . . . . . . . . . . . . . . . . . . 18
1.1.2 Gearbox vibration signal . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.3 Typical faults of transmission systems . . . . . . . . . . . . . . . . 22

1.2 Fault detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Stationary methods . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.2 Non-stationary methods . . . . . . . . . . . . . . . . . . . . . . . 27

2 Mechanical modeling of gearboxes 33

2.1 Empirical signal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Lumped parameter modeling . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Finite element modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Our new approach to demodulation 41

3.1 Some reminders about modulation . . . . . . . . . . . . . . . . . . . . . 41
3.2 Classical demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Monocomponent signals . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Multicomponent signals . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Limits of the usual approach . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Demodulation as an optimization problem . . . . . . . . . . . . . . . . . 49

3.4.1 Signal framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Proposed optimization framework . . . . . . . . . . . . . . . . . 50

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II New tools for optimization-based demodulation 53

4 Matrix representation of modulated spectra 55

4.1 Modulation in the discrete Fourier domain . . . . . . . . . . . . . . . . . 55
4.2 Matrix representation of spectrum construction . . . . . . . . . . . . . . 57
4.3 On the properties of the matrix representation of a spectrum . . . . . . . 59

4.3.1 Link with low-rank operators . . . . . . . . . . . . . . . . . . . . 59

7



8 CONTENTS

4.3.2 The case of periodic modulations . . . . . . . . . . . . . . . . . . 59
4.3.3 Complements on centro-symmetric matrices . . . . . . . . . . . . 60

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Amplitude demodulation 63

5.1 Statistical model formulation . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Amplitude demodulation without overlapping . . . . . . . . . . . . . . . 64

5.2.1 Amplitude demodulation with the matrix representation of a spec-
trum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Performance Estimation . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.4 Comparison with classical demodulation methods . . . . . . . . . 70

5.3 Amplitude demodulation with overlapping . . . . . . . . . . . . . . . . . 71
5.3.1 Maximum Likelihood Estimator . . . . . . . . . . . . . . . . . . . 71
5.3.2 Confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Phase and amplitude demodulation 81

6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Matrix formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 The exact problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.1 Solution to the exact problem . . . . . . . . . . . . . . . . . . . . 84
6.2.2 Resolution method . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 The optimal problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.1 Gradient computation . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.2 Resolution method . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 The planetary gearbox case 107

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1.1 Functioning of planetary gearing systems . . . . . . . . . . . . . . 107
7.1.2 Vibration signal of planetary gearing systems . . . . . . . . . . . 108

7.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.1 Vibration models in the literature . . . . . . . . . . . . . . . . . . 111
7.2.2 New vibration signal modeling . . . . . . . . . . . . . . . . . . . 112

7.3 Planet separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.1 Formalization of the planet separation problem . . . . . . . . . . 114
7.3.2 Matrix formulation of the separation problem . . . . . . . . . . . 115
7.3.3 Application to the analysis of the main gear configurations . . . . 116

7.4 Discussion on the applicability to more complex models . . . . . . . . . . 129
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



CONTENTS 9

III Application to gearboxes 135

8 Applicability to fault detection 137

8.1 Fault detection using the multi-carrier amplitude demodulation . . . . . 137
8.2 Test rig presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.3 Real data experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9 Signal model testing 145

9.1 About another possible use of optimal demodulation . . . . . . . . . . . 145
9.1.1 How to test product model validity? . . . . . . . . . . . . . . . . 145
9.1.2 Fixed-shaft gear vibration model testing . . . . . . . . . . . . . . 145

9.2 A quest for understanding . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.2.1 Vibration signal: 20Hz-20Nm test . . . . . . . . . . . . . . . . . . 149
9.2.2 Vibration signal: low speed and no load test . . . . . . . . . . . . 151
9.2.3 Transmission error signal: low speed and no load test . . . . . . . 154

9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

10 Conclusions and future prospects 157

10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.2 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.2.1 Notation & basic homological algebra . . . . . . . . . . . . . . . . 159
10.2.2 A standard result of linear algebra . . . . . . . . . . . . . . . . . 160



10 CONTENTS



General Introduction

Power transmissions such as gears are very common in the industry, as they are one
of the most elementary component of mechanical systems. Using power transmission
systems offers many advantages such as their robustness, correct power ratio and also
their reliability. However, despite those interesting characteristics, when used in hos-
tile environment, gears may become critical. Indeed in the aeronautic industry, aircraft
and helicopter engines evolve at both very high rotation speed and heavy load. Those
operating conditions may boost the development of wear damage in all mechanical sys-
tems but in gearbox it may also lead to more critical failures such as pitting or cracks.
Obviously, a damage lately detected in the gearbox may lead to catastrophic failure.

This is why surveillance of power transmission systems is still an actual research
topic, even if it has been long studied. Actual maintenance system, called scheduled

maintenance, plans maintenance operation at specific times. For example, in the aero-
nautic industry, aircraft engine are checked and dismounted about every thousands hour
of flight. This way of working has a cost and may occasionally create more troubles than
before the maintenance operation. Indeed, to dismount an engine is not a minor pro-
cedure and even if the system was in a good health state, problems are often created
during the process. This is why predictive maintenance is of major interest in an eco-
nomical point of view. It has to be noted that health monitoring allows enabling safety
of aircraft as it gives a day-to-day overview of the system’s state.

Traditionally, surveillance of mechanical systems is done with vibration analysis, as
vibrations generated by rotating machines are usually regarded as a meaningful sig-
nature of their health state, instantaneously expressing any change in the structure or
operating regime of the system. One of the common operation used for rotating ma-
chines’ monitoring and diagnostics purposes is a spectrum analysis.

This work is based on those two traditional techniques but a different approach is
presented with a new point of view. The thesis has been structured in three parts. The
first part recalls the basics about gearbox functioning and monitoring based on tech-
niques extracted from the state of the art. Several models of gearbox are also presented.
It ends with a second state of the art explaining different techniques on demodulation
followed by the new optimal demodulation approach proposed in this thesis.

The second part details the proposed demodulation technique with the introduction
of a new tool that is a matrix representation of spectrum, used for several cases of de-
modulation case, i.e. amplitude demodulation, both phase and amplitude demodulation
and a study of the planetary gearbox case.

The last part is dedicated to some applications of the proposed approach for gearbox
signal analysis. The proposed demodulationmethod is first applied to fault detection and
compared to existing fault indicators. The second point concerns signal model testing:
indeed multi-carrier demodulation allows to separate in an optimal way signal meshing
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as product. Those studies have been done with both simulated and experimental data.



Notations

The notation convention adopted in this manuscript is as follows :
Linear Algebra

a, A : Scalar quantity
a : Vector quantity
A : Matrix quantity
(·)T : Matrix transpose operator
(·)∗: Matrix conjugate operator
(·)H: Matrix conjugate transpose operator
(·)†: Matrix pseudo-inverse operator
Tr(A): Trace of the matrix A

Ai,j : ith row and jth column element of the matrix A

A:,j : jth column of matrix A

a[i] : ith element of vector a
< : A < B is defined for two matrices A and B in the sense that A−B

is a positive semidefintite matrix
||·|| : Modulus if applied to a complex number

2-norm if applied to a Ttot-periodic signal i.e.
||x||2 =

∫ Ttot

0
x(t)2dt if x(t) is a continuous variable

||x||2 = ∑Ttot

0 x(t)2 if x(t) is a discrete variable
||A||2Fro : Frobenius norm of matrix A

(·) ∗ (·) : Convolution product defined such as s1 ∗ s2[i] =
∑+∞

j=−∞ s1[i− j]s2[j]

⊗ : Kronecker product
vec(A): Function that turns a matrix A into a vector a

containing all the columns put end to end
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Signal definitions

s(t): Temporal periodic signal
H (and K): Number of harmonics of signal si(t), i = c,m
C (andM): Amplitude of the temporal signal sc (and sm)
CR (and CI): Real part of C ( and Imaginary part of C)
fi, Ti : Frequency and period of si(t)
Ic (or Im): Discrete set [[−C,C]] (or [[−M,M ]])
Ttot : Lowest Common Multiple (LCM) of the periods Tc and Tm
ki : Integer number defined by the factorization Ttot = kiTi
D(C, Tc) : Set of the Tc−periodic functions whose first C harmonics at most

are non-zero (idem. D(M,Tm))
ŝ : Estimated signal of s(t)
s̃ : Spectrum of s(t)
s̃[k] : k-th harmonic of the spectrum of s(t) regarded as a Ttot-periodic

signal, index k ∈ Z
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Chapter 1

State of the art

In the aeronautic industry, mechanical systems permanently operate under severe con-
ditions characterized, in the case of aircraft engines, by extreme rotation speed, extreme
load and extreme temperature. During the take-off phase of a flight for example, the
engine rotation speed outreaches 10000tr/min while handled load is about 30kNm. In
this context, power transmission technologies are naturally prone to wear and failure
and their monitoring becomes pivotal to the general reliability of a propulsion system.
In addition to the issues raised by the involved power levels, the seriousness of a damage
lately discovered on an aircraft engine is obviously incomparable to the seriousness of a
similar fault occurring on a ground vehicle.

The most hardly exposed mechanical pieces in the process of power transmission are
gears: they are mobile, undergo both high stress (in absolute value) and high stress
variations, technicians access them with difficulty on ground and the tooth profile has
to stay almost perfect for thousands of cycles in order to keep the contact with the
opposite gear smooth. For these reasons, the issue of monitoring them indirectly through
vibration analysis is gaining growing attention from industry, but also from the academic
world. In this chapter we review the main categories of gearbox faults and the detection
methods proposed in the existing literature.

1.1 Gearbox surveillance

Among the multiple kinds of power transmission systems, the present work focuses on
gearboxes, sometimes simply called transmissions. Understanding their behavior from
a mechanical point of view is a first step to building efficient fault detection tools but
in practice, an approach fully based on physical modeling of the kinematics of a gear is
not really tractable due to the complexity of the system and to modeling some phe-
nomena (such as fluid flows) being extremely difficult. In this section dedicated to
vibration-based fault detection we give the basics of gear dynamics allowing qualitative
understanding of the structure (the spectral content in particular) of vibration signals
measured on gearboxes.

Remark 1. A vibration can be defined as a mechanical oscillation motion in solid bodies.

The main source of these vibrations is machine rotation, of which they give an image
conveying a very rich information: any change within the gearbox’s situation or oper-
ating regime can instantaneously read in the vibration signal [77, 42]. Thus, since the
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very beginning of power transmission monitoring, vibration analysis has been the first,
and remains the most used technique [55], mainly due to its implementation simplicity
and reliability.

Gearbox vibration can be coarsely understood as an oscillation created by the mesh-
ing of the teeth, but a finer qualitative description of the signal can be given even without
elaborated physical modeling. This will be the topic of sections 1.1.1 and 1.1.2, while
section 1.1.3 will list the main faults possibly affecting both spur gears and planetary
gears, and describe their transcription in terms of vibration signal.

1.1.1 General information on gearbox

A basic gearbox is a device made up of at least two gears, the driving and the driven
one, the former being usually called pinion for a reducer, illustrated in Figure1.1. The
transmitted mechanical power is mainly a function of the rotation speed of the shaft and
the torque applied to it. The most important value characterizing a gear is its transmis-

sion ratio, defined as the ratio between the in-shaft and out-shaft angular speeds. It only
depends on the number of teeth of the gears in contact:

r =
W1

W2

,

where W1 is the teeth number of the pinion and W2 the teeth number of the driven
gear. As explained above in the introductory paragraph of Section 1.1, the gear vibration
energy is mainly due to the gears meshing, which occurs at a frequency fm calledmeshing

frequency and related to the shaft rotation frequencies by the following equality:

fm = W1f1 = W2f2,

whereW1,W2 are the teeth numbers of gears 1, 2 and f1, f2 are their rotation frequencies.

Figure 1.1: Drawing of an elementary gearbox with the name of its components.

Remark 2. While the most elementary gearbox is made of two gears, as in Figure 1.2(a),

several couples of gears can be used in more elaborated systems called gear trains or, some-

times, transmissions. A classical gear train is made of a series of gears, carried by different

shafts and meshing each other, or of several couples of gears forming a multistage gear as
on Fig. 1.2(b). In the first case the meshing frequency is shared by all the gears of the train:

fm = W1f1 = W2f2 = W3f3 = . . . .
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(a) (b)

Figure 1.2: Several geared transmissions: (a) Elementary gear train with one couple of
gears, (b) Two-stage gear train with two couples of gears.

In the second case, two gears located at both ends of the same shaft share the same rotation

frequency but the corresponding meshing frequencies can be different depending on the teeth

number of each shaft.

Although classical gears and gear trains just described are the most common, some
more elaborated transmissions have been developed for specific applications, in partic-
ular those where bulk is a major concern. This is the case in aircraft engines, which
explains the interest raised recently by the planetary or epicyclic gearing, represented
in Figure 1.3 scheme. Here, the gear system consists of an outer gear ring meshing
with one or more planet gears, themselves revolving around a central gear called sun

gear. The planet axes are linked together with a carrier plate, rotating around the sun
gear too. Depending of the mounting system, the train will be called epicyclic gearing if
the ring gear is stationary or fixed, or planetary gearing if the carrier plate is station-
ary or fixed. It can be noticed that all gear axes are coaxial, enabling a more compact
design as well as a higher transmission ratio. As in the simpler case of a classical gear,
all meshings have the same frequency fm and it is possible to compute the theoretical
rotation frequency of each element of the planetary gearbox as a function of the in-shaft,
or out-shaft, rotation frequency:















fm = Wrfc,

fp =
(

Wr

Wp
− 1

)

fc,

fs =
(

1 + Wr

Ws

)

fc,

where Wr, Wp and Ws are the teeth number of the ring gear, the planet gear and the
sun gear respectively, and fm is the meshing frequency, fc, fp and fs are the rotation
frequencies of the carrier plate, the planet gears and the sun gear. The specificity of
epicyclic gear makes traditional surveillance techniques inappropriate. Indeed, vibra-
tions are generated at the same time from many meshing points, i.e. each planet gear
meshes with both the ring gear and the sun gear all at once. A more extensive investi-
gation of the particular gear system is done hereafter in Chapter 7.
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Figure 1.3: Drawing of an epicyclic gearbox with five satellites.

In addition to the general shape of a gearbox (Number of gears, of teeth, classi-
cal or planetary, etc.), the second issue to be addressed when designing a mechanical
transmission system is the teeth shape. It usually belongs to one of the three following
categories:

Spur gear It is the most common shape and allows a correct meshing at moderate
speeds but tends to be very noisy at high speeds, Figure 1.4(a).

Helicoidal gear The teeth shape is not parallel to the rotation axis but has an angle
which enables a softer and smoother meshing. Meshing is also more progressive, which
diminishes the vibrations produced and thus, makes the gear more silent. In return, an
axial effort is created that only depends on the inclination angle of the teeth. It has to
be be counterbalanced by appropriate bearings, Figure 1.4(b).

Double helicoidal gear It is made with two helicoidal gears mirrored and joined to-
gether in a V shape, overcoming the problem of axial thrust of the previous gear, Figure
1.4(c).

1.1.2 Gearbox vibration signal

The issue of modeling the vibrations produced by a gearbox will be discussed in Chapter
2. For now, let us give some qualitative understanding of the general profile of the
spectrum obtained when studying such signal. These intuitions are at the ground of
most fault detection methods proposed in the literature and reviewed below in Section
1.2.

An ideal gearbox (i.e. where all teeth of each gear are strictly identical and the
two gears are perfectly aligned) rotating at a constant frequency is a periodic system,
getting back to the exact same state at each meshing. Thus, the only vibration produced



1.1. GEARBOX SURVEILLANCE 21

(a) (b) (c)

Figure 1.4: Several types of gears: (a) Spur gear, (b) Helicoidal gear, (c) Double heli-
coidal gear.

would come from the contact between the couples of gears: it would be a periodic signal
repeated at the meshing frequency. In practice, no such a gearbox exists and vibrations
are much richer and more complex. The main sources of discrepancy with respect to
this ideal situation are the following:

• Manufacturing errors, which result in small variations in the teeth stiffness, in-
duce an amplitude modulation pattern of the gear meshing vibration, changing
the envelope shape and the global energy of the signal.

• Some errors regarding the alignment between the input shaft and the output shaft
are almost impossible to avoid, even for the simplest gearboxes. Unbalance and
misalignment are the two common shaft defects. Unbalance is an eccentric dis-
tribution of rotor mass, as in Figure 1.5(a) that produces additional force at the
rotation frequency. Another common shaft failure is shaft misalignment, which oc-
curs when the shaft of the pinion and the driven shaft are not coaxial, as illustrated
in Figure1.5(b).

• The transfer function between the meshing point and the sensor changes the pro-
file of the spectrum. This function can be decomposed into two parts. First, as
any mechanical system, a gearbox is a body subject to the laws of fundamental
dynamics, which means that the gearbox has its proper static transfer function,
made of resonances and eigenmodes, which are likely to interfere with the signal
within the frequency range of interest. Second part of that transfer function is the
transfer path between the gearbox location and the sensor. Transfer path analysis
gave rise to an important amount of literature [26], but it will not be detailed in
the present work.

• Regarding the measurement of those vibration, the sensor is usually mounted as
close to gearbox as possible, i.e. on the casing. But in a real system, the sensor
can possibly be much further from the vibration source, which manifest into an
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(a) (b)

Figure 1.5: Two major shaft defects: (a) Unbalance, (b) Misalignments.

increase of the transfer path between them, even the creation a combination of
several paths.

To sum up, even a healthy gearbox already has a rich vibration content. But we will
see in Section 1.1.3 that gearbox faults usually have a characteristic effect on the global
vibration pattern.

Remark 3. In vibration analysis of rotating machines, signals generated can be split into

two parts:

• a deterministic part resulting from the system’s kinematic with periodicities mainly

related to the rotation speeds,

• a random part due to the non-periodic variations of the machine’s operating, to the

measurement noise. . .

1.1.3 Typical faults of transmission systems

In standard operating conditions, direct metallic contact between two gears teeth are
as limited as possible using a lubricant, which avoids rapid wear of the teeth surface
condition. It is when the gear is poorly lubricated, as during the starting and the ending
periods or in case of a faulty lubrication, that teeth surface damage (the most common
kind of gear fault) tends to appear. These faults are numerous and varied in nature but
mainly belong to two categories: on one hand the faults impacting all teeth of the gear
(wear, pitting and spalling in the list below) and on the other hand the ones localized
on a specific tooth (crack and galling in the list below). Let us shortly review the main
categories of gear faults:

Wear is the progressive abrasion of the gear surface. This is a normal unavoidable phe-
nomenon resulting in a slow and regular loss of the teeth thickness. In unusual
faulty situations, wear becomes much faster. This is usually due to an oil problem
and comes with the presence of debris.

Pitting takes the form of many very small holes on the surface of the gear. It is a usually
explained by an extremely localized corrosion phenomenon caused by an auto
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catalytic process. A small surface damage or a change in the chemical composition
of the oil film protection can initiate the pitting process.

Spalling also results in the appearance of holes, but fewer and deeper than those charac-
teristic of pitting. It is described in [82] as a macro-scaled contact damage caused
by fatigue crack propagation.

Crack refers to a fracture of a material under a stress action. It is generated by the
development of a discontinuity initially present at the material surface and usually
appears at the bottom of the tooth.

Galling finally, is one of the most dangerous faults for the system. It is caused by adhe-
sion between sliding surfaces, with a transfer of matter from one side to the other.
It usually occurs when the oil film protection gets destroyed, due for example to a
too high temperature.

As the faults nature and origin can be pretty different, their transcriptions into the
vibration signal are consequently highly specific. Indeed generalized fault such as pit-
ting is more likely to modify the envelope of the vibration signal whereas cracks induce a
phase modulation of the meshing frequency. This is why for decades, several approaches
have been proposed using a wide variety of signal processing techniques for fault detec-
tion. In the next section, several methods are introduced based on diverse techniques
such as model-based and data-driven methods.

1.2 Fault detection methods

Fault detection methods used in vibration analysis can be classified following two crite-
ria: model-based versus data-driven methods or stationary versus non-stationary meth-
ods.

Model-based methods for fault detection assume a model for the process and rely on
parameter estimation or state observers. The model is developed a priori based on
knowledge of the systems’ physics. It can take the form of a mathematical function
connecting the inputs to the outputs of the system or be more qualitative.

Data-driven methods for fault detection do not make physical assumptions and rely
on the data history process only. Some features characterizing faulty behavior are
extracted from the data using statistical tools.

Stationary and non-stationary methods refer to the system’s operating conditions.
Stationary regime means periodic behaviors and makes spectral analysis very ef-
ficient. But in practice, the system can undergo fast transient changes in terms
of load, speed rotation, or both. More problematic, the load being usually higher
during transition phases, some defaults become apparent only when the regime is
non-stationary. This observation arouse intense reflection on the development of
mathematical tools for non-stationary analysis.

In remaining of this section describe the main fault detection tools, splitting them into
stationary (Sect. 1.2.1) and non-stationary (Sect. 1.2.2) methods.
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1.2.1 Stationary methods

From a general point of view, a process is told stationary if its characteristics are time-
invariant or, at least, periodic. In a stochastic framework, it would mean that its prob-
ability distribution is unchanged by a time shift. In particular, statistical moments such
as mean and variance are time independents. In the case of gearbox vibration analysis,
the regime is considered stationary if speed and torque are constant. Let us review the
main fault detection methods used in this situation.

Statistical indicators

The most widespread techniques, data-driven, were established since the 70’s and con-
sist in monitoring some statistical features of the signal conveying information regarding
the health state of the system [57, 81]. The formation of a fault in a gearbox leads to a
change in the vibration signal in terms of energy or envelope shape. These modifications
can be detected using statistical indicators computed from the amplitude and/or phase
of the time signal, which trigger an alarm when exceeding a given threshold. The most
usual indicators are presented below for a sampled time signal x, with N samples and
a sample index k.

Root Mean Square (RMS) is defined as the square root of the arithmetic mean of the
squares of the signal values and is given by:

RMSx =

√

√

√

√

1

N

[

N
∑

k=1

x2k

]

.

The RMS indicator is relevant for detecting an energy dissipation in the global
vibration signal.

Crest Factor (CF) is defined as the ratio of the maximum peak value of the signal to the
RMS value:

CF =
|xpeak|
RMSx

,

where xpeak is the maximum peak value of the vibration signal. The crest factor
is designed to increase in presence of high amplitude peak, caused by local tooth
damage for example. For planetary gearbox diagnosis, a modified version of the
Crest Factor (MCF) has been proposed, locally computed on a tooth-wide signal
portion and thus returning a time process instead of a single value [20].

Kurtosis is the fourth normalized moment of the signal:

Kurtosis =
N

∑N
k=1(xk − x̄)4

[

∑N
k=1(xk − x̄)2

]2 .

It provides a measure of the impulsive nature of the signal. For a healthy gear
we consider that the noise distribution follows a Gaussian distribution, thus the
kurtosis equals 3, whereas for a faulty signal it will increase significantly [9].

Many other statistical indicators have been developed and tuned to be highly re-
sponsive to some particular faults. Among other we can cite FM0 and FM4 proposed by
Stewart in [81], NA4 in [99], M6A [53] or NB4 [100].
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Spectral analysis

Spectral analysis uses a representation of the signal in the frequency domain. This
change from time domain to frequency domain is done breaking down the signal en-
ergy into frequency bands, usually using the widespread Fourier Transform for signals
with finite energy:

X(f) = TF (x(t)) =

∫ +∞

−∞

x(t)e−i2πftdt.

In the case of a digital signal, i.e. a finite sequence x0, · · · , xN−1 of uniformly-
spaced samples of a continuous function, the computation of its frequency counterpart
X0, · · · , XN−1 is done with the Discrete Fourier Transform (DFT):

Xk =
N−1
∑

n=0

xne
− i2πkn

N .

Spectral analysis is complementary to time domain analysis. Some hardly detectable
phenomena in one of the domains are often clearly visible in the other one. Moreover,
many operations are easier in the Fourier domain such as filtering and denoising.

Spectral analysis is an accurate method in machine surveillance as the relation be-
tween spectrum and gearbox kinematic is clearly established. Another point of interest
is that it makes separation and identification of the vibratory sources possible, regarding
the different element characteristics and their rotation speed [11].

Cepstral analysis

Although the presence of a periodic phenomenon at a given frequency can be directly
read on the spectrum of the signal, the sharpness of such a phenomenon is rather related
to the number and energy of its harmonics, i.e. to a kind of periodicity in the spectrum.
In order to identify these periodicities, an operator has been created in 1963 and called
cepstrum [7]. It is defined as the inverse Fourier transform of the spectrum logarithm:

Cx(t) = TF−1(log[x̃(f)]),

where Cx is the cepstrum of signal x(t) and x̃(f) its spectrum. The cepstrum argument t
is called quefrency although it has the dimensions of a time variable. Also, cepstrum has
the major property of turning a convolution product into an addition, which can allow
the separation of the vibration source from the transfer function.

Cepstral analysis can give impressive results when applied to machine surveillance.
Indeed, a failure located on a tooth creates a periodic chock and thus a Dirac comb
on the vibration spectrum, and finally a single peak on the cepstrum. This means the
whole spectral representation of a default can be tracked through the evolution of a
single parameter. Randall was one of the first to study the application of cepstrum to
gearbox diagnosis [75]. For a healthy gear there are two peaks on the cepstrum, one
for each gear quefrency, with the same amplitude. It was shown in [22] that when a
periodic fault appears, the peak corresponding to the faulty gear increases while the
other one decreases proportionally, making the problem clearly visible on the cepstrum.

Based on the power cepstrum of the vibration signal, an indicator was proposed in
[4]. The faults can be detected observing the position of dominant negative rhamonic
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response in the cepstrum. In [24] using the previous indicator, the authors developed a
technique to differentially diagnose two types of localized gear tooth faults: a spall and
a crack in the gear tooth fillet region.

Minimum Entropy Deconvolution (MED)

The minimum entropy deconvolution technique is a system identification method origi-
nally developed to aid extraction of reflectivity information in seismic data. It was first
presented in [92] by Wiggins. MED is a method that allows to recover the output signal
through a optimum set of filters bases on the maximum value of the kurtosis. As kurto-
sis is usually a good indicator for the detection of pulses in a signal, MED was proved
efficient for the deconvolution of impulsive sources in a mixture of signals. MED [34]
and related improved methods [23, 54] was proved useful to enhance detection of gear
tooth fault.

Auto-Regressive models

An auto-regressive (AR) model is simply a linear regression of the current value of the
series against one or more prior values of the series. The AR model of an order p is
defined as:

x(n) =

p
∑

k=1

a(k)x(n− k) + w(n),

where a(k) are the AR coefficients and w(n) is a Gaussian noise. The advantage of
using AR model is that its parameters can be determined by solving a linear set of equa-
tions. AR modeling method is proven appropriate for the estimation of power spectra
with sharp peaks, which is precisely the case of gear meshing vibration spectrum. This
technique was used in [88, 23] to detect tooth cracks in gears.

Spectral Kurtosis (SK)

The spectral kurtosis (SK) is a statistical tool which can indicate the presence of series of
impulsion and their locations in the frequency domain. In [1], a formalization of the SK
by means of the Wold-Cramér decomposition of conditionally non-stationary processes
is proposed. The SK was proved to be able to detect transients in the presence of a
strong background stationary noise. This property is used in vibration-based condition
monitoring of rotating machines [2]. The key idea is to use the high sensitivity of the
SK for detecting and characterizing incipient faults that produce impulsive signals. The
concept of kurtogram is also introduced, which displays the SK as a function of frequency
and of spectral resolution. SK has also been used to detect tooth cracks in planetary gears
[5].

Amplitude/Phase Demodulation (AM/FM)

One current technique used in gear fault diagnosis is amplitude and phase demodula-
tion. Indeed, vibration signals of gearbox can bemodeled as a carrier having themeshing
frequency modulated by two signals having the rotation frequencies of the two shafts.
These methods will be developed with more details in Chapter 3.



1.2. FAULT DETECTION METHODS 27

1.2.2 Non-stationary methods

In non-stationary operating conditions, the vibrations generated by a mechanical sys-
tem cannot be analyzed with the spectral tools described in the above section. The non-
stationarity concept concerns random signals as well as signals with frequency content
and/or statistical properties changing over time. This is the case with aircraft engine
gearbox’ vibrations during take-off, where some important changes appear both regard-
ing rotation speed and torque. To describe and visualize those signals, evolutionary
analysis tools such as time-frequency and cyclostationary analysis have to be used.

Spectrogram

The very first technique that has been used to study transient signals is the spectrogram.
The spectrogram is the result of the spectrum calculation over a band windowed signal
[90, 89]. It is a two-dimensional graphic that represents the spectral energy content
variations over time. The energy is usually given by the squared magnitude of the short-
time Fourier transform (STFT). To study a signal frequency properties over time, the
signal is first multiplied by a time window:

xτ (t) = x(τ)h(t− τ).

The STFT about is the Fourier transform of xτ :

x̃τ (ω) =

∫ +∞

−∞

xτ (t)e
−2iπωτdτ.

Thus the energy density spectrum about time is computed as:

P (t, ω) = |x̃τ (ω)|2.

Spectrogram is used in gear fault detection as it provides a simple representation
of transient signals, such as ramp-up. It is also possible to derive time-dependent pa-
rameters from it, such as instantaneous energy, mean and median frequencies, and the
bandwidth or standard deviation of the mean frequency. The major flaw of spectrogram
is that it tends to smooth the characteristics of the signal and can miss some short-time
phenomena. Spectrogram was used in [96] in a comparative study in order to perform
fault detection on gears.

Wavelet

Unlike the Fourier transform, where the signal is broken down on a basis of sine func-
tions, wavelet analysis uses a class of real and complex bases of non-stationary functions
named wavelet. Those are chosen to best fit the signal [59, 32, 51].

The wavelet approach is essentially an adjustable window Fourier spectral analysis
with the following general definition:

Ty(s, τ) =
1√
s

∫ +∞

−∞

x(t)ψ

(

t− τ

s

)

dt.

where ψ(·) is the basic wavelet function that satisfies certain very general conditions, s is
the dilation factor and τ is the translation of the origin. Although time and frequency do
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not appear explicitly in the transformed result, the variable ˙
s
gives the frequency scale

and τ the temporal location of an event.
Wavelet analysis can be assimilated to a series of correlation between the signal and

the wavelet in time domain, which brings out all moments the signal locally looks like
the wavelet shape. Wavelet analysis was successfully used in non-stationary vibration
signal processing and fault diagnosis [87, 12, 49]. The major problem with this time-
scale representation lies in the choice of the wavelet that best highlights the sought
information in the signal.

Wigner-Ville distribution

Wigner-Ville distribution (WVD) is another kind of time-frequency analysis [16]. It is
sometimes also referred to as the Heisenberg wavelet. By definition, it is the Fourier
transform of the central covariance function. For any time function x(t), the central
variance can be defined as

c(τ, t) = x
(

t+
τ

2

)

x
(

t− τ

2

)∗

.

Then the WVD is set as:

Wx(t, f) =

∫ +∞

−∞

c(τ, t)e−2iπfτdτ.

It can be noticed that even for times that are far from t, the window weight is the
same as if they were near t, which makes the WVD highly non local. Furthermore,
as Wigner-Ville distribution is not a linear transform, a cross term appears when the
source is the sum of two signals. This interference may be useful for identification of
multicomponent signals but it makes in general the interpretation of the distribution
harder. This is why a compromise has to be done between the precision of the spectral
content and the importance of the interferences due to the cross term. The application
of this method to gear faults in particular began with the works [27] by Forrester. He
applied the Wigner-Ville distribution to averaged gear vibration signals and showed that
different faults such as a tooth crack and pitting could be detected in the WVD plot.
McFadden and Wang applied the usual WVD and a weighted version of it to gear failure
analysis in order to improve the detection capabilities of the method [90, 89].

Cyclostationarity

A cyclostationary process is a specific case of non-stationary random signal, the statistical
properties of which are time varying but periodic [8]. This kind of signals can be ob-
tained for example when a periodic signal undergoes a random uncorrelated disturbance
with periodic amplitude, as it is the case for rotating machines and more specifically for
gearboxes. A random process can be called nth order cyclostationary if all its statistical
moments until the nth order are periodically time-varying. In the case of second order
cyclostationarity, it means that the average mx and autocorrelation functions rxx of a
random process x(t) verify: mx(t + T0) = mx(t) and rxx(t + T0, τ) = rxx(t, τ), where T0
is called the cyclic period.

Remark 4. The Wiener–Khintchine theorem states that the autocorrelation function of

a wide-sense-stationary random process has a spectral decomposition given by the power
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spectrum of that process, which allows us to link the autocorrelation function with Fourier

series

Rxx(t, τ) = E
[

x
(

t+
τ

2

)

x
(

t− τ

2

)]

=
∑

α∈A

Rα
xx(τ)e

2iπαt).

The set of all the cyclic frequencies α, defined as α = 1
T0
, is called the cyclic spectrum of

the signal. This variable is used to define the spectral correlation:

Cs(f, α) = E
[

S
(

f +
α

2

)

S∗
(

f − α

2

)]

.

Spectral correlation can be seen as a measurement of the correlation degree between
all the signal frequencies components. Cyclostationarity analysis can be employed to
inspect the non-linearity induced by a breathing crack during fatigue damage. It has
been shown that the magnitude of the cyclic frequency increases with crack depth, and
it can be used as an indicator for fatigue damage [10]. The cyclostationary approach is
very well suited to machine diagnostics. Indeed, a fault occurring in a rotating compo-
nent will produce a repetitive release of vibration energy, which creates a signal with a
strong cyclostationary behavior. The presence of a fault, such as tooth spalling or tooth
crack, usually affects the vibration signals by periodically imposing randommodulations,
which is a good example of cyclostationary behavior. It was shown that the appearance
of a default increases the second order cyclostationary component level [43].

Time Synchronous Average (TSA)

The time synchronous average (TSA) is a method of background noise reduction, used
for periodic signals [56] generated by rotating element of mechanical systems. Usually
the synchronous average is calculated using a trigger signal convoluted with the time
signal. In the frequency domain, it is equivalent to multiply the Fourier transform of the
signal with a comb filter [11]:

C(f) =
1

N

sin(πNTf)

sin(πTf)
.

The TSA is particularly well suited for gearbox analysis, where it allows the vibration
signature of the gear under analysis to be separated from other gears and noise sources in
the gearbox that are not synchronous with that gear. In order to consider both gears, TSA
can thus be done on the lower commonmultiple (LCM) of the two gears rotation periods.
In order to detect gearbox failure, analysis can be performed on both the synchronous
average of the gear at the frequency of the default and on the residual signal. Indeed,
periodic faults synchronous with the gear frequencies are enhanced in the TSA signals
and thus become more easily detectable. However, removing the TSA from the global
vibration signal, allows getting rid of deterministic component of the gear signal, and
helps emphasizing asynchronous perturbations that are yet representative of faults.

TSA can also be used as a tool for extracting gear mesh vibrations from compos-
ite vibration signals, for example in a planetary gearbox. After performing a TSA, the
resulting vibration signal corresponds to one complete revolution of the gear under con-
sideration. Thus changes in the vibration waveform due to damage on individual teeth
can be identified [20, 19]. Synchronous average has been used to detect fatigue cracks
on the carrier of a planetary gearbox. The method is based on detecting changes in the
modulation pattern of the fundamental gear mesh vibration created by the crack [6].



30 CHAPTER 1. STATE OF THE ART

Kalman filter

In statistics and control theory, Kalman filtering is an technique that estimates variables
state from a series of measurements observed over time that may be incomplete or noisy.

Within the category of stochastic approaches, a general fault detection and diagnosis
procedure was first expressed in [58]. The author proposes to use residuals of a Kalman
filters to perform diagnosis of dynamic systems. The faults are diagnosed using statistical
indicators reflecting whiteness, mean and covariance of the residuals. Further research
has led to usingmodified Kalman filter techniques, such as extended Kalman filters (EKFs)
[80] or unscented Kalman filters (UKFs).

Artificial intelligence methods

In [38], artificial intelligence (AI) has been recently defined by Kaplan and Haenlein
as a system’s ability to correctly interpret external data, to learn from such data, and
to use those learnings to achieve specific goals and tasks through flexible adaptation.
Historically, the starting point of this topic is the 50’s with Alan Turing’s research work,
who wonders if machines can "think" [84].

Some have considered fault diagnosis as pattern recognition problem, and AI was
proved to be a powerful pattern recognition tool [50]. Due to the complexity of me-
chanical response signals, it is impossible to directly extract and recognize fault patterns.
This is why the process is cut into two parts: a data extraction and preprocessing step
followed by fault recognition. Here we will briefly present some of the most used meth-
ods for fault diagnosis, and more specifically classifiers and statistical learning methods.
Extensive literature exists on the topic, but it is not the central interest of the present
thesis.

k-nearest neighbor k-nearest neighbor (k-NN) is the simplest nonparametric decisions
procedure that assigns to unclassified observation the label of the nearest sample [17]. It
is used for both classification and regression. There are three basic elements in the k-NN
algorithm: the number of measured instances k, the distance metric and the decision
rule for classification. k-NN was proved to be an efficient way to perform multi-fault
diagnosis in gearboxes [45] but also to detect cracks in [86].

Bayesian classifiers Naive Bayes classifiers are a family of simple probabilistic classi-
fiers based on applying Bayes’ theorem with strong independence assumptions between
the features [63]. Naive Bayes first learns the joint probability distribution of the input
and output by the conditional probability distribution based on the conditional indepen-
dence assumption. Then, based on the learned model, the output label with the biggest
posterior probability, for a given input, can be calculated via Bayes’ Theorem. Naive
Bayes classifiers was used for fault detection for induction machines [79], induction mo-
tors [66] as well as incipient bearing failures [64].

Support Vector Machine Support vector machine (SVM) are supervised learning mod-
els used for classification and regression analysis. To do so, the SVM builds a hyperplan
to discriminate the set in a non-linear space. Some researchers have used SVM-based
methods in order to classify several health state conditions of gearboxes [41]. Cracks
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were also detected in the carrier plate of planetary gearbox with SVM combined with
least square [40].

Neural Network The neural network (NN) is a framework for many different machine
learning algorithms to work together and process complex data inputs. Such systems
"learn" to perform tasks by considering examples, generally without being programmed
with any task-specific rules. In [71], the authors used a hierarchical neural network to
perform classification for bearing fault detection. An NN-based procedure was used for
fault detection and identification of gearboxes using a vector extracted from standard
deviation of wavelet packet coefficients of vibration signals [73].
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Chapter 2

Mechanical modeling of gearboxes

This thesis is mainly focused on empirical modeling of vibrations produced by gear rota-
tion. As gearboxes are highly complexmechanical systems, it is important to have a some
understanding of its functioning from a mechanical point of view before proposing sim-
plified models. Gearbox mechanics has been a major research field in the last decades,
mostly driven by the need for models helping designing industrial products. Several ap-
proaches exist, each of them with its own specificity and benefits. Gear modeling can be
split into two main categories: empirical signal modeling and dynamic modeling. The
former can be used as a first approximation of the vibration signal, especially when the
problem does not require a deep analysis or contains too many unpredictable factors, as
is for example the case of operating system monitoring. The latter is based on a more
fundamental analysis of the gear mechanism, modeling all physical interactions using
either Newton’s laws of motion, or equilibrium reasoning and quasi-static approxima-
tions. In the present Chapter, three different approaches are briefly described in order
to help the reader locating the work presented in the remaining of the manuscript in the
big picture of the gear vibration theory.

2.1 Empirical signal modeling

A first route to gearbox vibration modeling is looking for a general shape retaining the
main features of the vibration signals observed in practice, both on time and frequency
representations.

To that end, qualitative understanding of the phenomena generating the vibration
is necessary. Considering a pair of gears, the main source of vibration comes from the
meshing force applied at the contact point between the teeth of the pinion and driven
gear. The time profile of this force can vary from one tooth to the other, and what is
observed in practice is that this variation takes the shape of two amplitude modulations,
each of them having the frequency of one of the two wheels.

Remark 5. One important thing to note is that in the perfect case of an ideal couple of

gears, i.e. where the stiffness is the same for all teeth, vibrations would be a pure periodic

signal at the tooth-meshing rate.

According to this observation, a simple modulation model was proposed as an ap-
proximation of the vibration stemming from the gear rotation [13].

s(t) = scarrier(t)× (1 + sgear1(t) + sgear2(t)) , (2.1)
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where scarrier(t) is the high frequency component representing the gear mesh and
sgear1(t), sgear2(t) are the two modulations coming from the pinion and driven gear rota-
tions. s(t) represents here the vibration at the meshing point between the gears.

In reality, the accelerometer used to measure the vibrations is located on the casing
of the gear, which can be more or less distant from the meshing point. That is why a
transfer function is usually also added to the vibration model along with white Gaussian
noise in order to have a more realistic representation of the measured signal

x(t) = s(t) ∗ h(t) + w(t), (2.2)

where x(t) is the representation of the measured vibration at the accelerometer point,
h(t) is the transfer function which can be seen as the path taken by the mechanical wave
from the meshing point through the casing, and w(t) the additive white Gaussian noise.

But in a real vibration signal, even in the case of a healthy gear, many additional
components also contribute besides the gear meshing. Those have various origins, such
as tooth deflection under load or geometrical errors in the tooth profile. Machining er-
rors is one of the source of tooth profile differences that may produce either random or
periodic variations. The latter are sometimes called ghost components, and correspond
to the integer number of teeth of the gear. Therefore, they appear at the rotation fre-
quency of the gear. Moreover, operating parameters such as load and rotation speed
have been assumed so far to be constant over time and teeth spacing for each gear was
supposed to be identical. Fluctuations of some of the above parameters will generate ad-
ditional modulations. Sensitivity of vibration to tooth loading is more likely to generate
an amplitude modulation pattern while variation of the rotation speed or tooth spacing
are more susceptible to engender a frequency modulation of the signal generated by the
gear mesh.

Remark 6. As in the vibration the sidebands generated by both types of modulation have

the same frequency components, in the empirical model 2.1, the frequency modulation phe-

nomenon is neglected in order to simplify the problem.

For amplitude and phase modulation issue, a different model has been used in order
to represent the vibration signal of the gear. Based on an extension of the previous
amplitude modulation model to include the phase modulation Eq.2.3 gives the usual
representation of both phase and amplitude modulated signal,

s(t) = scarrier(t+ sΦ(t))× (1 + sgear1(t) + sgear2(t)) , (2.3)

where all variables are the same as in Eq.2.1 and sΦ(t) is the periodic phase modulation
of the carrier signal.

Remark 7. It has to be mentioned that the formation of faults obviously produce major

changes on the gear and thus in its vibrations and therefore in the signal model itself. Some

faults may alter mainly the amplitude of the vibration without changing its spectral content

but it is also known that for example, crack formation generates some frequency modulation

sidebands such as the stiffness of the tooth is modified.

2.2 Lumped parameter modeling

An approach often used for mechanical systems modeling, more elaborated than the
empirical model described above, is lumped parameter modeling. This representation
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is based on a simplified description of the systems behavior. The mechanical structure
under study is decomposed into elementary components, i.e. solid parts with given
mass and inertia moments, whose interactions are described by a system of springs and
dampers. In other words, several assumptions are made to simplify the complex nature
of gears, namely, all objects are regarded as perfectly rigid bodies while all interactions
between those rigid bodies are split into spring and damper actions.

Themajor interest of this representation is to reduce the number of degree of freedom
(dof) before solving the equations describing the system.

In the case of gears, setting the main body of the gear as a rigid body means concen-
trating all the deformations in the teeth part.

In the literature, many studies have used lumped-parameters models in order to
enhance understanding of gear mechanisms [65, 85]. As an example, simple lumped-
parameter representations can not only provide insight into the mechanisms that gener-
ate forces and moments but also help for elucidating the non-linearity of the gear mesh
and explain how tilting/twisting moments impact gear vibration.

In [68], the authors modeled the contact of a spur gear pair in order to investigate
its non-linear dynamic response. When interesting in studying the gear mesh, a simple
representation such as illustrated in Figure 2.1, considering a single degree of freedom
model is enough.

Figure 2.1: Two-gear system modeled with a single degree of freedom.

The unique contact modeling permits dynamic response analyses (as opposed to the
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much simpler static and natural frequency/vibration mode analyses) with a reasonable
number of degrees of freedom.

In order to improve the accuracy of the model, some more complex modeling has to
be considered with a bigger number of degree-of-freedom. In [67], the authors proposed
a 6-dof non-linear model. The model includes four inertia, prime mover, pinion and gear.
The torsional compliance of shafts and the transverse compliance of bearings combined
with those of shafts are included in the model. The 6-dof lumped-parameter model is
illustrated in Figure 2.2.

Figure 2.2: 6-degree-of-freedom nonlinear model of the fixed-shaft gearbox.

With this model, the response, including modulations due to transverse and torsional
vibration stemming from bearing and shaft compliance, can be calculated.

Then, in order to improve modeling, several upgrades of this type of model have
been proposed. In [44], the authors have combined the 6-dof transverse-torsional dy-
namic model with an elastohydrodynamic lubrication model of the spur gear. This tribo-
dynamics model allowed to capture all transient effects associated with the gear kine-
matics but also to measure tooth surface roughness profiles. Some studies proposed to
add failures into models in order to better understand the way it affects the dynamic
response of a spur gear. In [14], the authors studied crack propagation in the tooth by
modifying a 6-dof model in order to consider crack mechanical characteristics.

2.3 Finite element modeling

The last approach to mechanical system modeling is the Finite Element Method (FEM).
This technique is widely employed in the industry for dynamic modeling of gears since
it allows describing space- and time-dependent problems. Overall, FEM provides an



2.3. FINITE ELEMENT MODELING 37

approximate solution of a partial differential equation (PDE) defined on a compact do-
main for specific boundary conditions, describing the physical behavior of a system un-
der study. This numerical technique is performed in three steps. The discretization,
first, consists in dividing the whole system into simpler and smaller pieces called finite
elements, each of them described a few parameters. Then, an equation on these pa-
rameters is written, making the discretized system a good approximation of the real,
continuous-time/continuous space system. Finally, the equation is solved by numerical
means. This method also needs a proof of the convergence toward the system solution of
the approximted solution. Looking deeper into the discretization step, we see it involves
defining a mesh on the whole space, the cells of which are the finite elements. Usually,
these elements are triangles or quadrangles, but more complex shapes can be chosen.

Remark 8. It has to be noticed that the more vertices the shape contains, the higher is

the dimension of the obtained equation: a compromise has to be done between the preci-

sion/detail of the mesh and the computational cost of the algorithm.

A way to dramatically reduce the complexity of such a model is noticing that drawing
a regular mesh is not mandatory. Indeed, in some cases, only a specific zone of the whole
system is of interest: when studying crack formation on gears for example, it is more
interesting to have a precise representation of the system in the fillet part of the tooth
than on the entire gear, as shown on Figure 2.3.

Once a mesh is defined, continuous functions describing the dynamics of the sys-
tem (stress or deformations for example) are approximated by a combination of basis
functions attached to the nodes: in practice, a system of piecewise linear functions is
generally chosen but it is also common to find piecewise polynomial functions. The PDEs
can then be substituted with a system of ordinary differential equations (or classical al-
gebraic equations in the quasi-static case). Finally, a solver is chosen among several
numerical algorithms which usually belong to one of the two main categories: iterative
and direct solvers. The final solution is eventually extracted during a post-processing
phase, where the best representation of the solution is selected depending on the ap-
plication. For example, in Figure 2.4, the constraints generated by the contact between
the two gears are represented in a 2D plot.

Remark 9. There can be a last step where approximation errors are computed and com-

pared to a threshold of acceptability. If the latter is exceeded, one goes back to the dis-

cretization step and starts over with a more precise mesh.

In the specific case of gears, the most elaborated models of the literature are tridi-
mensional and describe several physical quantities such as elasticity and stiffness along
with numerous sources of excitation such as the gearmesh, mounting faults and manu-
facturing errors.

In spite of the rich description of gears they provide, these models also have strong
limitations. They are limited to quasi-static regime due to the very high dimension of the
vector describing the state of the system: solving ODE’s of this size is in general out of
reach. Indeed, the mesh has to be precise enough to capture small deflections near the
teeth. Note that under this quasi-static assumption, all phenomena related to inertia are
discarded. Another restriction is that the limit conditions of the equations should depend
on all other mechanical components interfering with the gear, such as bearings, shafts
and casing, which is impossible in practice. More generally, the mechanical behavior of
a system is highly dependent on its (unknown) environment.
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Figure 2.3: Example of a gear discretized with quadrangles elements. Here the meshing
is getting denser from the gear centre over the teeth.

2.4 Conclusion

This chapter was dedicated to describing the most common modeling techniques appli-
cable to gear dynamics. Each of them comes with its own benefits and drawbacks, which
can be summed up as follows:

Empirical modeling allows direct description of the signal actually observed, retaining
its main features while sparing a lot of computation time. It is the most natural
approach to fault detection: on the one hand if for instance a crack happens to
create a kind of modulation, then demodulation should provide a good indicator
and should be tried. On the other hand, mere observation can give a false idea
of the true nature of a phenomenon. Presence of sidebands around the meshing
frequency, for instance, evokes a modulation but can result from a amplitude or
phase modulation, a combination of both or even a different operation. This issue
will be discussed in Chapter 3.

Lumped parameter modeling allows covering dynamical behavior and in particular
inertia effects. As opposed to empirical modeling, it allows testing the relation
between a physical property (say for instance stiffness variations) and a given
characteristic of the observed signal. Yet, it relies on strong assumptions (infinitely
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Figure 2.4: Numerical simulation using Finite Element Method for a couple of gears.
Here is shown the force applied at the contact point between the pinion and the driven
gear along with the propagation of that force toward the center of the gears.

rigid pieces) and requires a first additional modeling step relating the lumped
parameters to the gear geometry and used materials. Moreover, it does not help
estimating internal constraints.

Finite Element Modeling is an attempt to take into account the continuous nature of
the pieces at play. This results in a state representation having a great number
of degrees of freedom. It follows a high-dimensional differential equation which
cannot always be solved without a quasi-static assumption. In this case, all inertia-
related effects covered by lumped parameter modeling are lost. On the other
hand, parameterization is less problematic as all required parameters have phys-
ical meaning. To retain the benefits of both approaches some hybrid models was
proposed where finite elements are used only near the contact surfaces.

The remainder of this thesis will be dedicated to determining if empirical models
developed until now for gearbox monitoring do provide a sufficient representation of
the signals measured in practice.
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Chapter 3

Our new approach to demodulation

3.1 Some reminders about modulation

Modulation is the process of applying a low-frequency perturbation to a high-frequency
wave called “carrier”, usually with the aim of encoding information. This perturbation
can be of several kinds, but the two most commonly encountered classes are amplitude
modulation (AM) and angle modulation. In the field of telecommunications this pertur-
bation is deliberate: it is used to transmit a message. In the case of mechanical signals
the perturbation reflects imperfect operating conditions and thus, can contain informa-
tion regarding the health condition of the system. Let us describe in more details these
two families of modulated signals (amplitude and angle modulated signals).

Figure 3.1: From top to bottom: Low frequency signal usually constituting the useful
information, high frequency signal used to “carry” the information and amplitude mod-
ulated signal computed as the product of the low and high frequency signals.

Amplitude modulation of a signal sc(t) by a signal sm(t) returns a signal s(t) defined
as the product below:

s(t) = sc(t)sm(t). (3.1)

41
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In more visual terms, this operation can be thought of as a modifying of the envelope of
the carrier signal sc(t) to give it the same shape as the modulating signal sm(t) as shown
in Figure 3.1.

In the Fourier domain, a product signal such as Eqn.(3.1) becomes a circular convo-
lution of the spectra s̃c and s̃m of the carrier and modulating signals: s̃ = s̃c ∗ s̃m. The
result is represented in Figure 3.2: the spectrum of the modulation is repeated at all
multiples of the carrier frequency and multiplied by the corresponding harmonic.

Figure 3.2: Spectrum of an amplitude modulated signal where the carrier signal has two
harmonics.

That modulation pattern repeated about frequencies fc, 2fc, etc. is proportional to
the spectrum of sm(t). This characteristic gives an immediate way to access its spec-
trum and thus its temporal representation through the demodulation process developed
hereafter in Section 3.2.

In the case of angle modulation, the information is encoded as a perturbation of the
phase or the frequency of the carrier signal, which are referred to as phase modulation
(PM) and frequency modulation (FM). In FM the variations of the carrier frequency are
controlled by both the frequency and the amplitude of the modulating wave. In PM,
the instantaneous phase deviation Φ(t) of the carrier is controlled by the modulating
waveform, such that the frequency remains constant. Generally speaking, the perturba-
tion used is a real periodic signal named sΦ. The output s(t) of the phase or frequency
modulation of a “carrier” signal sc by a signal sΦ is then defined as below:

s(t) = sc (t+ sΦ(t)) . (3.2)

The profile of the resulting signal is illustrated on Figure 3.3 in the case of frequency
modulation: we see that the shape of the signal taken on one period is unchanged but a
time-varying horizontal scaling is applied.

In the Fourier domain the effect of an angle modulation is more complicated than
for amplitude modulation, but a formula can be derived in the simplified case of a sine
wave modulated by a second sine wave:

s(t) = cos(ωct+ α sin(ωmt)), (3.3)
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Figure 3.3: From top to bottom: low-frequency signal sometimes referred to as the
“message”, high-frequency carrier signal and phase modulated signal constructed from
Eqn. (3.2).

where ωc and ωm are the pulsations of the carrier and the modulating signal respectively
and the factor α is called the modulation index. The spectrum of an angle modulated
signal is given by the amplitudes of the Bessel functions Jk according to the signal’s
modulation index α, where k represents the number of sidebands. The impact of the
modulation index α on the specific case of phase modulated signal is illustrated by Figure
3.4.

Figure 3.4: Spectrum of a phase modulated signal for four different values of the mod-
ulation index α: α = 0.5, α = 1, α = 2 and α = 5.

Contrary to amplitude modulation, where the number of sidebands created around
each harmonic of the carrier is the number of harmonics of the modulating signal, angle
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modulation always generates an infinite number of sidebands. Thus, it can be shown
that 98% of the signal’s energy is included in a frequency bandwidth around the carrier
frequency, called Carson bandwith, computed as BC = 2(fm + ∆f). In the phase mod-
ulation example above, it can be noticed that for α < 0.5, i.e. BC ≈ 2∆f , the spectrum
of the angle modulated signal is similar to the amplitude modulation one. The spec-
trum’s energy is mostly concentrated on the peak coming from the carrier signal and
the modulations present around are quickly negligible. However, when the modulation
index increases, the corresponding spectrum has less and less negligible modulation har-
monics as the energy of the carrier frequency is distributed over the harmonics of the
modulating signal.

Remark 10. Amplitude modulation changes the global signal energy, whereas angle mod-

ulation only changes the distribution of this energy over the spectrum.

Finally, a signal can be both phase and amplitude modulated at the same time. The
process is defined as a combination of the two previous models (3.1) and (3.2):

s(t) = sc (t+ sΦ(t))× sm(t). (3.4)

There are many situations where both amplitude and phase modulations are present,
and where instantaneous amplitude and phase are commonly used for the detection of
broken rotor bars, eccentricity fault and bearing defects.

Although initially motivated by telecommunications, the theory of modulation finds
applications to other domains of signal processing and, in particular, to the analysis of
mechanical signals. Indeed, we showed in the previous Chapter that vibration signals
generated by rotating machinery have a spectrum recalling the modulation patterns just
described. As a consequence, modeling the impact of a fault as a modulation (either of
the phase or the amplitude) of a reference periodic signal has become a standard idea
leveraged by numerous works [52]. While this reference signal characterizing a healthy
gearbox has the same frequency as the meshing, the modulation assumed to reflect a
fault has the frequency at which the default goes through the meshing (i.e. usually
the rotation frequency of the damaged gear). For this reason, in order to improve fault
detection, we are interested in recovering a modulated signal as precisely as possible.
This issue, called demodulation, is the topic of the remaining of the present chapter.

3.2 Classical demodulation

Demodulation was first defined as recovering a low-frequency signal and a high-
frequency signal out of their product, in the case of amplitude demodulation, and has
been then extended to include angle modulation.

It has been used in telecommunications for several decades and the first implemen-
tations were entirely analogical. The ideas they were based on were later transposed to
the digital digital world and improved. In the present thesis, they will be referred to as
“classical demodulation” and described in the sections 3.2.1 and 3.2.2 below.

3.2.1 Monocomponent signals

When considering the simplest case of amplitude modulated signal, the amplitude mod-
ulation of the carrier is composed of a single sine wave. The classical solution to that
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demodulation problem is illustrated on Figure 3.5 and detailed hereafter. One carrier
harmonic is first selected and the rest of the spectrum is filtered out. The remaining
spectrum is then shifted to zero, whichmakes it proportional to the spectrum of the mod-
ulation signal. Naturally, its time counterpart is then proportional to the time-varying
modulating signal.

Figure 3.5: Classical demodulation steps: the frequency spectrum of the amplitude mod-
ulated signal (top left) is filtered around the most energetic carrier harmonic (top right)
and the rest of the signal is set to zeros (bottom left). The remaining of the spectrum is
then shifted to zero (bottom right).

Remark 11. In practice, the harmonic with the highest energy is chosen in order to max-

imize the signal-to-noise ratio and thus to have a better estimation. But this procedure is

problematic for some recent applications of signal demodulation.

Then for the combined amplitude and phase modulation case, the usual demodula-
tion method traditionally consists in using Hilbert transform to estimate the envelope of
the modulated signal [61, 78]. For an arbitrary signal, the Hilbert transform is defined
as:

H(s(t)) =
1

π

∫ +∞

−∞

s(τ)

t− τ
dτ. (3.5)

From (3.5), the analytical signal of s(t) can be defined as:

z(t) = s(t) + jH(s(t)) = a(t)ejΦ(t), (3.6)

where, themodulus a(t) and phase derivative Φ̇(t) can serve as generally approximate es-
timates for the envelope and instantaneous frequency of s(t). Indeed, Hilbert transform
allows a complex demodulation analysis that suits a signal made of a single modulated
sine wave. Theoretically, it can be used for any kind of modulated signal, but in practice
it makes sense to use it only for narrowband signal.

Instead of using Hilbert transform, demodulation can also be performed using other
techniques such as energy separation algorithm. It usually is computed by means of
nonlinear diferential operators [70]. For example the Teager-Kaiser energy operator,
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derived in [37], can be used to extract the amplitude envelope and the instantaneous
frequency of modulated signals. The Teager-Kaiser Energy Operator of a continuous
signal is defined as:

Ψ(s(t)) =

(

ds(t)

dt

)2

− s(t)
ds(t)2

dt2
, (3.7)

while its discrete version is defined as:

Ψ(s(n)) = s2(n)− s(n− 1)s(n+ 1). (3.8)

In order to improve the energy separation algorithm, an iterative generalized demodu-
lation method was developed in [25].

When considering phase modulated signal, in order to estimate the modulations, the
main purpose is to make the signal equivalent to an amplitude modulated signal. Thus,
similar demodulation techniques can be used to retrieve the modulations.

In the classical approach of demodulation problems, the carrier energy is usually
concentrated on one harmonic , i.g. in telecommunication. Considering this point, the
demodulation process is the strictly opposite operation of modulation and thus recovers
exactly the message signal. But it can be easily noticed that if several harmonics of the
carrier are visible, all of them but one are filtered out during the process although they
also contain information and could contribute to noise cancellation.

3.2.2 Multicomponent signals

Even if the use mono-component allows many applications, it is sometimes too simplistic
for more elaborated signals, which is why some methods have been developed in order
to use all the information contained in those signals. Multicomponent signal analysis
have been obviously used in telecommunication [29, 21] but also in many other fields
such as biomedical engineering [94], speech processing [31, 3] and also in mechanics
[55].

Demodulation performed on multicomponent signals is usually made of two steps:
the signal is first decomposed into mono-component signals and then those are demod-
ulated individually.

The most classical multicomponent demodulation method selects one carrier har-
monic and the modulations around, which involves that the rest of the spectrum is fil-
tered out, as illustrated in Figure 3.6. In practice, the harmonic with the most energy
is chosen in order to maximize the signal-to-noise ratio and thus to have a better esti-
mation. The remaining spectrum is shifted to zero, which makes the resulting spectrum
proportional to the one of signal sp(t). As a consequence, its time counterpart is propor-
tional to sp(t).
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Figure 3.6: Classical demodulation steps: the frequency spectrum of the amplitude mod-
ulated signal (top left) is filtered around the most energetic carrier harmonic (top right)
and the rest of the signal is set to zeros (bottom left). The whole is then shifted to zero
(bottom right).

Some other methods of multicomponent AM-FM demodulation have been proposed,
mainly in the communication community. In [78] the signal separation is made with
a periodicity-based algebraic algorithm and the demodulation is then performed on
the mono-components so obtained with energy-based algorithm (PASED). In order to
compute the matrix algebraic separation, the signal has to be composed of an additive
mixture of narrowband periodic signals. The problem was solved using some linear
algebra techniques elaborated in [62, 78]. To perform the signal separation, some oth-
ers have prefered to use several kind of filters such as bandpass filters or comb-filters
[28]. Another method named Hilbert-Huang transform and introduced in [35] anal-
izes the signal by taking it apart into intrinsic mode functions (IMF) using the empirical
mode decomposition. A Hilbert transform is then performed on the obtained IMFs. A
more recent approach was introduced in [30] where an iterative Hilbert transform is
computed on the low-pass filtered amplitude envelope of the signal. The instantaneous
frequencies and amplitudes are extracted from the resulting components. This algo-
rithm has the main advantage to have a low computational complexity, which makes
it suitable for online use. Regarding the former three methods, even if they are very
effective in terms of demodulation accuracy, they all present an important lack of the-
oretical support and background understanding. For non-stationary analysis, wavelet
based methods have the advantage to allow detection on signal whose time-frequency
distributions are curved paths [97], but the interpretation is much more difficult since
image processing techniques have to be used as a final step of the analysis.

3.3 Limits of the usual approach

In the previous section we have seen that in the literature there is a large choice of
demodulation methods with application to many signal processing domains. But even
though the use of demodulation algorithms is widely spread, there are conditions on
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the signal that have to be respected to properly perform it. Those conditions can be
set regarding the signal’s frequency content as well as its time properties. Those signal
restrictions may make the demodulation techniques listed above not properly applicable.

A first common requirement is to have a narrowband signal. Indeed many techniques
lose accuracy when used on wideband signals, even worse, they can theoretically be not
applicable. The main cause which turns signal to be wideband is the noise. This leads
to some considerations on the background noise: thanks to its statistical properties and
appropriate representation of experimental noise, background noise is usually consid-
ered additive white Gaussian. Usually while the noise level stays under a threshold, the
signal can be considered narrowband as it does not spread too much in the spectrum.
But when the noise level increases, the signal’s frequency content expands and thus does
not allow the narrowband hypothesis to be fulfilled.

In our application, i.e. gearbox monitoring, there are many systems that contribute
to total vibration (bearings, rotors. . . ) and thus they amplify the noise level. This one
can easily reach (and even exceed) the level of the signal of interest. As the main con-
sequence, gearbox vibration spectrum content is very rich as illustrated in Figure 3.8.

Figure 3.7: Example of vibration acquisition on a gearing system: it is difficult to identify
the gearbox component as they are shrouded in noise.

Another limitation of demodulation techniques for the specific application of gearbox
monitoring is the filtering step. By removing a large part of the available information,
demodulation techniques turn to be sub-optimal. Indeed as explained in Chapter 2,
vibration signals are periodic with several harmonics for both low and high frequency
signals, as illustrated in Figure 3.8. Therefore by filtering the signal, the demodulation
algorithms are losing a significant part of the available information, even in the case of
multi-component techniques and last but not least limitation, they does not take advan-
tage of the specific structure of the gearbox vibration.



3.4. DEMODULATION AS AN OPTIMIZATION PROBLEM 49

Figure 3.8: Gearbox vibration spectrum: a multicomponent signal with a particular
structure.

Remark 12. It is not enough to just rely only on the observation of a signal’s spectrum to

claim that this signal stems from a modulation process. Indeed even if a modulated signal

will always have the characteristic spectral pattern made of a carrier lines with sidebands,

the reciprocal is not necessarily true. A signal composed of several purely additive periodic

signals is an example of signal that may have a spectrum similar to that of a modulation

but which is not one.

In order to free ourselves from the limitations listed above, we propose to rewrite the
demodulation issue as an optimization problem. The main interest is that the modulated
signal can be considered in its entirety, so that no informations are lost.

3.4 Demodulation as an optimization problem

In this section we present a first idea that can be summed up as follows: casting the
demodulation problem into an optimization framework leads to more accurate results.
This alternative approach recasts the demodulation problem as the problem of finding
both carrier and modulation signals that best fit the data.

3.4.1 Signal framework

In the following sections, a discrete framework will be used, since it better suits the
demodulation methods that will be presented thereafter than the continuous time one.

From a mathematical point of view, for a given sequence of sampling times (tn)n>0,
the signal s(tn) output obtained by a modulation process is the product of a high-
frequency carrier sc(tn) with a low-frequency modulation sm(tn):

s(tn) = sc(tn)sm(tn). (3.9)

In the Fourier domain, the Discrete Fourier Transform (DFT) of the obtained signal s(tn)
(denoted here with a tilde sign s̃) is a circular convolution of the carrier and modulation
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DFT: s̃ = s̃c ∗ s̃m. The discrete spectrum s̃m of the modulation is repeated at all multiples
of the carrier frequency and multiplied by the corresponding harmonic of s̃c. In the case
where the pattern centered on two consecutive harmonic do not overlap, the spectrum
of the modulation is directly accessible from the spectrum of s̃. This is the condition
making demodulation possible:

Hypothesis 1. A periodic carrier of frequency fc and a modulation of maximum frequency

Fm can be recovered from their product under the following hypothesis:

2Fm < fc. (3.10)

In discrete time an additional assumption is actually needed:

Hypothesis 2. The signal duration has to be a multiple of the carrier period. Otherwise,

the carrier won’t have a pure line spectrum.

Under Hypothesis 1, there is at most one carrier/modulation couple reversing the
modulation operation, up to a multiplicative factor. Finding this couple will be referred
to as Problem 1:

Problem 1 (Exact demodulation). Given a discrete signal (s(tn))n∈[[1,N ]] (with N ∈ N)

of sampling period Ts and duration Ttot = N · Ts, given a frequency fc = kc · ftot (with
ftot = 1/Ttot and kc ∈ N), find a carrier/modulation couple (sc(tn), sm(tn)) verifying for

any n ∈ [[1, N ]]:

s(tn) = sc(tn)sm(tn), (3.11)

with the temporal signal sc(tn) of frequency fc, and (sc(tn), sm(tn)) verifying Hypothesis 1.

3.4.2 Proposed optimization framework

Casting the problem of demodulation into an optimization means replacing Problem 1
with the following optimization problem:

Problem 2 (Optimal demodulation). Given a discrete signal (s(tn))n∈[[1,N ]] (with N ∈ N)

of sampling period Ts and duration Ttot = N · Ts, given a frequency fc = kc · ftot (with
ftot = 1/Ttot and kc ∈ N), find a carrier/modulation couple (sc(tn), sm(tn))minimizing the

following cost function:

C(sc, sm) =
N
∑

n=1

|sc(tn)sm(tn)− s(tn)|2

over all carrier/modulation couples verifying Hypothesis 1, with fc the frequency of the

temoral signal sc(tn).

A first remark is that Problem 2 is non-quadratic, actually it is even not necessarily
convex.

Remark 13. The cost function C(sc, sm) is the l2-norm of the difference sc(tn)sm(tn)−s(tn)
but other choices can be done. But we will see later striking properties making the l2-norm
particularly suited to numerical implementation.
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3.5 Conclusion

Demodulation problems are widespread and can be found under many types and mul-
tiple situations. Using demodulation tools is more recent in the field of mechanical
signal analysis than in telecommunications. This is why existing techniques are mostly
adapted to the specificity of telecommunication signals. We saw that vibration signals
stemming from the rotation of mechanical systems are extremely rich in term of fre-
quency components and often highly noisy. Furthermore, still by comparison with the
telecommunication domain, the modulation pattern is not just present about one carrier,
but repeated about several harmonics of that carrier, which makes most of the available
demodulation techniques less adapted. This is the main reason why we proposed to
recast the demodulation problem into a new optimization framework.
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Part II

New tools for optimization-based

demodulation
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Chapter 4

Matrix representation of modulated

spectra

The optimization approach for demodulation problems introduced in the previous Chap-
ter is set for any kind of modulation problems, as long as the signal to be demodulated
can be represented as a product of two signals. This general set-up, set as Problem 2,
is defined in the temporal domain, but an equivalence can be done into the spectral
domain. In this Chapter, we will introduce an original representation of the Fourier
spectrum which proves to be more relevant in order to solve the optimization problem.
We will also establish the striking properties of that representation.

4.1 Modulation in the discrete Fourier domain

First, let remind some technicalities regarding the Discrete Fourier transform (DFT) at
play. The considered signal is measured at discrete times tn = nTs, with Ts the sam-
pling period. Some technical assumptions are also made to ensure product signals of
the form sc(tn)sm(tn) have a modulation spectrum such as those of Figure 4.1, for ex-
ample avoiding the sides effects. Furthermore, in order to respect Hypothesis 2, the
acquisition duration T is an integer multiple of the carrier period Tc, which is itself an
integer multiple of the sampling period Ts:

T = kcTc and Tc = NcTs, with kc, Nc ∈ N.

Dividing by Ts we obtain that sc(tn) has period Nc as a discrete signal and that the re-
lation N = kcNc is verified, where N is the total length of the signal. In the Fourier
domain, this implies that the modulation pattern has a discrete length of kc and is re-
peated Nc times (with different scale factors) over the total length N of the spectrum.
These notations are illustrated by Figure 4.1. Note these assumptions are not restrictive,
but re-sampling the signal and discarding a possibly remaining fraction of the period Tc,
is usually necessary to fulfill them.

Remark 14. When talking about the DFT of a signal, we use the usual convention that the

mean value of the signal (“frequency zero”) is the first element of the DFT.

But the following abuse of notations will be used to greatly alleviate computations:

Remark 15. Indices of the DFT s̃ of a signal s(tn) of length N have to be understood

modulo N . So, s̃[0], s̃[−1], s̃[−2] mean respectively s̃[N ], s̃[N − 1], s̃[N − 2]. This allows
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representing DFTs with harmonic zero in the middle as done on Figure 4.1, where the DFT

coefficients s̃[k] are represented not for k ranging not from 1 to N but from Nl = −⌊N/2⌋
to Nr = +⌊(N − 1)/2⌋ (with the modulo N convention for negative indices). For a given

integer N this sequence of shifted indices will be denoted by:

IN = [[−⌊N/2⌋,+⌊(N − 1)/2⌋]].

(a) Case 1 : Nc is odd

(b) Case 2 : Nc is even

Figure 4.1: DFT of a discrete modulated signal, with indices ranging in IN (see Re-
mark 15 for the meaning of IN). Note that when Nc is even, one modulation pattern is
cut in the middle.

After these clarifications, let us transpose Problems 1 and 2 to the Fourier domain:

Proposition 1 (Exact demodulation in the Fourier domain). In the Fourier domain, Prob-

lem 1 becomes finding the DFT coefficients s̃c[kci+1] for i ∈ [[0, Nc[[ and s̃m[j+1] for j ∈ Ikc
verifying for all couple (i, j):

s̃[ikc + j + 1] = s̃c[kci+ 1]s̃m[j + 1].

Proof. A DFT applied to the equality appearing in Problem 1 gives the equality s̃[k] = s̃c∗
s̃m[k] for all k ∈ [[1, N ]] (the product becomes a convolution product). But Hypothesis 1
ensures there is no overlap in the convolution product s̃c ∗ s̃m so we have the equality
(s̃c ∗ s̃m)[ikc + j + 1] = s̃c[kci + 1]s̃m[j + 1] for i ∈ [[0, Nc[[ and j ∈ Ikc. As the expression
ikc + j + 1 covers, modulo N , the whole interval [[1, N ]], Proposition 1 is verified.
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Proposition 2 (Optimal demodulation in the Fourier domain). In the discrete Fourier

domain, Problem 2 becomes finding the DFT coefficients s̃c[kci + 1] for i ∈ [[0, Nc[[ and
s̃m[j + 1] for j ∈ Ikc that minimize the following cost function:

C̃(s̃c, s̃m) =
Nc−1
∑

i=0

∑

j=Ikc

|s̃c[kci+ 1]s̃m[j + 1]− s̃[ikc + j + 1]|2 .

Proof. The cost function C of Problem 2 is the l2−norm of the difference s(tn) −
sm(tn)sc(tn). Using the Plancherel theorem, it is equal to 1

N
||s̃c ∗ s̃m − s̃||2l2 =

1
N

∑N
k=1 |(s̃c ∗ s̃m) [k]− s̃[k]|2. As in the proof of Proposition 1, Hypothesis 1 ensures

there is no overlap in the convolution product s̃c ∗ s̃m so we have the equality (s̃c ∗
s̃m)[ikc + j + 1] = s̃c[kci + 1]s̃m[j + 1] for i ∈ [[0, Nc[[ and j ∈ Ikc. As the expres-
sion ikc + j + 1 covers, modulo N , the whole interval [[1, N ]], we have C(sc, sm) =
1
N

∑Nc−1
i=0

∑

j∈Ikc
|s̃c[kci+ 1]s̃m[j + 1]− s̃[ikc + j + 1]|2. As removing the factor 1

N
does

not change the optimum, we end up with the cost function of Proposition 2.

4.2 Matrix representation of spectrum construction

We propose and discuss a new tool for demodulation problems that we call Matrix rep-

resentation of a spectrum.
Let s(tn)n ∈ [1, N ] be a discretized time signal and s̃ its DFT. Each Fourier coefficient

of the spectrum can be decomposed into the product of one element of the carrier signal
and one element of the modulation signal as represented in Figure 4.2.

Figure 4.2: Discrete spectrum represented as the product of two vectors.

In a similar way, Figure 4.3 represents the product of a column vector with a line
vector, building a matrix. It is easy and fast to notice that both notations are identical
which allows un to define an equivalence of both representation, mapped in Figure 4.4.
Based on the above mentionned observation, the matrix representation we propose con-
sists in cutting s̃ into buckets centered on each harmonic of the carrier, then stacking its
values vertically as illustrated by Figure 4.5.
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Figure 4.3: Matrix built as the product of a column vector with a line vector.

Figure 4.4: Equivalence between the discrete spectrum of a temporal product signal and
the matrix product of two vectors.

Figure 4.5: Matrix spectrum construction from the line spectrum vector.

Let us write down a mathematical definition of this matrix Ms:

Definition 1 (Matrix representation of a spectrum). Let (s(tn))n∈[[1,N ]] be a discrete time

signal of lengthN , s̃[·] its DFT and kc an integer dividingN . We call “matrix representation

of s̃ for kc periods” the matrix Ms defined as:

[Ms]i+1,: = s̃ [Ikc + kci] , (4.1)

where Ikc + kci denotes the sequence Ikc (see Remark 15) with kci added to each element.

This definition is illustrated by Figure 4.5.
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4.3 On the properties of the matrix representation of a

spectrum

The matrix representation of a spectrum was proposed because it shows to have inter-
esting properties for the resolution of the demodulation issue previously exposed. More
specifically, we will see that it builds a bridge between the theories of signal modulation
and low-rank operators.

4.3.1 Link with low-rank operators

In the case where s(tn) stems from a modulation of a carrier sc(tn), as illustrated by
Figure 4.1, we see that each line of the matrixMs is a representation of the same pattern
up to a multiplicative scale factor. This precisely means that Ms has rank one, which is
where the interest of this reshaping lies:

Proposition 3. Problem 1 can be solved for signal s(tn) and carrier period Nc = N/kc if
and only if the matrix representation Ms for kc periods has rank one.

For any couple of spectra (s̃c, s̃m) of size N we define two “reduced" spectra (s̃rc and
s̃rm) of sizes Nc and kc respectively as s̃rm[j + 1] = s̃m[kcj + 1] for j ∈ [[0, Nc − 1]] and
s̃rc[i] = s̃c[i] for i ∈ [[1, kc]] (Note that s̃rc is simply obtained keeping only the Nc first
elements of s̃c).

Proof. For any couple of “reduced" spectra (s̃rc, s̃rm), we have the following equivalences:

Problem 1 is solved by (sc, sm)
⇔ ∀n, s(tn) = sc(tn)sm(tn)
⇔ ∀i ∈ [[0, Nc[[, ∀j ∈ Ikc s̃[kci+ j + 1] = s̃c[kci+ 1]s̃m[j + 1] (see Prop. 1)
⇔ ∀i ∈ [[0, Nc[[, ∀j ∈ Ikc [Ms]i+1,j−⌊kc/2⌋+1 = s̃c[kci+ 1]s̃m[j + 1] (see Def. 2)
⇔ Ms = s̃rcs̃

T
rm .

But when the couple (s̃rc, s̃rm) describes Rkc × RNc , the matrix s̃cs̃m
T exactly describes

the set of all matrices of size kc ×Nc and rank one. So we obtain the following equiva-
lence:

Problem 1 can be solved ⇔ rank(Ms) = 1.

4.3.2 The case of periodic modulations

As it usually occurs for mechanical systems, the signal sm(tn) stemming from of its ro-
tation is periodic. This implies that the modulation pattern of Figure 4.1 itself is a line
spectrum, meaning additional holes are present (see Figure 4.6). Note this happens only
if the acquisition duration T is chosen to be a multiple of Tc the carrier period and Tm the
period of the modulation: T = kmTm = kcTc with km, kc ∈ N (otherwise the expected
clean peaks spread around the expected position of each harmonic). In this case the
values of s̃[·] at the position of the holes play no role in the optimization Problem 2 and
may be ignored. Concretely, this means that a reduced form of the matrix representation
can be used, which is illustrated by Figure 4.6.
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Remark 16. The reduced matrix representation of a spectrum will always be used in the

further algorithms, as it allows to reduce the computation load.

Figure 4.6: Periodic modulation and reduced matrix representation

Its formal definition is as follows:

Definition 2 (Reduced matrix representation of a spectrum). Let kc, km ∈ N and

(s(tn))n∈[[1,N ]] be a discrete time signal with N a multiple of kc and of km, and s̃[·] its DFT.
We call “matrix representation of s̃ for kc carrier periods and km modulation periods” the

matrix Ms defined as:

[Ms]i+1,: = s̃[Ikc;km + kci+ 1], (4.2)

where Ikc;km = Ikc [1, 1+ km, 1+ 2km, ...] is the set Ikc defined in Remark 15 where one over

kc indices is kept. This definition is illustrated by Figure 4.6.

This situation is specific to the application to mechanical systems, as in telecommu-
nications the transmitted signal has no reason to be periodic.

4.3.3 Complements on centro-symmetric matrices

The results of this section regard the specific structure that we call “centro-symmetric”
of the matrix representation of a spectrum. They will only be used in Chapter 7 and do
not have to be read immediately but since they are not related to a specific application,
we chose to present them here. The general idea we develop is that the spectrum of a
real signal being conjugate-symmetrical its matrix representation has a similar property.
First, let us give a few definitions.

Definition 3. For a given integer N ∈ N, we call “symmetry operator”, denoted by σN :
[1, N ] → [1, N ], the operator switching the indices of “symmetrical” harmonics of a discrete

spectrum. With the convention that the zero harmonic (the average value of the signal) is

in first position (the usual FFT convention) we have σN(1) = 1 and σN(1 + i) = N + 1− i
for i ∈ [0, N − 1]. If the zero harmonic is at position I = ⌈(N + 1)/2⌉ as it can also be the

case we have σN(I) = I and σN(I + i) = I − i if I + i ∈ [1, N ] and I − i ∈ [1, N ]. Note
that in any case, σN is a bijection.
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This operator allows writing down the symmetry property verified by the matrix
representation of a specrum regardless of the DFT index convention used.

Definition 4 (Centro-symmetric matrix). A complex matrixM ∈ MN,P (C) is told centro-

symmetric if it verifies the following property for any i ∈ [1, N ] and j ∈ [1, P ]:

MσN (i),σP (j) = M̄i,j

where x̄ denotes the conjugate of complex number x ∈ C. The definition naturally expands

to a vector x ∈ RN as:

xσN (i) = x̄i

The space of centro-symmetric matrices (resp. vectors) will be denoted by SC(N,P ) (resp.
SC(N)).

It can be easily checked that matrix representations of spectra are centro-symmetric
matrices, which is why we dedicate a section to giving their main properties. First, the
“size” of this space is given by Proposition 4 below:

Proposition 4. The set SC(N) endowed with vector addition and multiplication by a real

factor is a real N -dimensional vector space.

Proof. First, note this result is not as obvious as it looks like as we consider dimension
of a set of complex vectors as a real vector space. Let V be CN seen as a R-vector space.
RN is then a vector subspace of V . The DFT operator is linear and invertible on CN , and
in particular on V . Thus the image of RN through this operator is also a vector subspace
of V , and it has dimension N over R.

The following result allows us to use centro-symmetric matrices as linear operators
on the R-vector space SC(N):

Proposition 5. The product of two centro-symmetric matrices is also a centro-symmetric

matrix. In particular, the operation x 7→ Mx defines a linear operator on SC(N) if M is

centro-symmetric.

Proof. Let A,B be two centro-symmetric matrices of respective dimensions N × P and
P ×Q. We have:

¯(AB)ij =
P
∑

k=1

Āi,kB̄k,j

=
P
∑

k=1

AσN (i),σP (k)BσP (k),σQ(j)

=
P
∑

l=1

AσN (i),lBl,σQ(j) (where we introduced l = σP (k))

= (AB)σN (i),σQ(j)

These basic properties will be used later to distinguish between the C-rank and the
R-rank of a centro-symmetric matrix.
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4.4 Conclusion

Thematrix representation of a spectrum is a new tool introduced in this work to facilitate
signal demodulation when it is set as an optimization problem. We have seen that it is
possible to link the optimization issue with the low-rank operator theory. Thanks to that
correspondance, the resolution turns to become equivalent to a search for a rank-one
matrix, for which an abundant litterature exists.



Chapter 5

Amplitude demodulation

The matrix representation of a spectrum, introduced in Chapter 4, was shown to have
extremely convenient properties regarding demodulation. They will be leveraged in
the present chapter to solve the optimal amplitude demodulation problem proposed in
Chapter 3.

But as previously mentioned, the properties of the matrix spectrum representation
require a non-overlapping condition (Hypothesis 1): the spectral support of the ampli-
tude modulation should be finite and smaller than half the carrier frequency. Since the
case where this hypothesis is not verified can occur in practice, it is also studied but we
will see that the problem becomes much more complicated when the matrix spectrum
representation we introduced cannot be used.

In Section 5.1 a statistical interpretation of the optimization framework proposed
in Chapter 3 is given. In Section 5.2 a new demodulation algorithm is derived for the
case where the matrix spectrum representation can be used, based on the relation es-
tablished in the previous chapter between modulated signals and rank-one operators.
In Section 5.3 the case where the matrix spectrum representation cannot be used is ad-
dressed using a more classical optimization algorithm. Simulations results are presented
for all proposed algorithms.

5.1 Statistical model formulation

Let us cast optimal demodulation into the framework of parameter estimation. Prob-
lem 2 can be seen as the maximum-likelihood estimator of the couple (sc, sm) if we
assume the following statistical model for the measured signal:

s(tn) = sc(tn)× sm(tn) + w(tn), (5.1)

where the sequence w(tn) is a white Gaussian noise verifying w(tn) ∼ N (0, σ2). As both
signals sc(tn) and sm(tn) are considered periodic, let us define their frequencies fc and
fm and set a maximum number of harmonics H and K. Each signal is defined in the
time domain by the following formulae:

{

sc(tn) =
1
N

∑H
h=−H Che

2iπhfctn ,

sm(tn) =
1
N

∑K
k=−K Mke

2iπkfmtn .
(5.2)

All Ch andMk are unknown complex values which verify the following constraints. The
carrier is set to have zero-mean C0 = 0 and an arbitrary constant mean is set for the
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modulation such as M0 = 1. Also, in order to ensure sc(tn) and sm(tn) are real signals
we set the additional constraint C−h = C∗

h andM−k =M∗
k .

In order to adopt a real-valued vector parameterization we introduce the sine/cosine
Fourier Coefficients:

CR
h = 2ℜ (s̃c[hkc]) , CI = 2ℑ (s̃c[hkc]) , for h ∈ [1, H]

MR
k = 2ℜ (s̃m[k]) , M I

k = 2ℑ (s̃m[k]) , for k ∈ [1, K]

We obtain a real-valued vector of parameters θ defined as:

θ =
[

CR
1 , · · · , CR

H , C
I
1 , · · · , CI

H ,M
R
1 , · · · ,MR

K ,M
I
1 , · · · ,M I

K

]T
. (5.3)

This statistical interpretation and the real-valued parameterization will be used later to
define the Cramér - Rao Lower Bound of the demodulation problem while the param-
eterization of Chapter 4, based on DFT coefficients will be preferred when using the
matrix representation as in Secttion 5.2 below.

5.2 Amplitude demodulation without overlapping

We are first interested in the case where there is no overlapping between the modula-
tion sidebands. This precisely means that the maximum number of harmonics for the
carrier and modulation are H = ⌊Nc/2⌋ and K = ⌊kc/2⌋ respectively. The set of all cou-
ples (sc, sm) verifying Hypothesis 1 can be parameterized by the complex-valued DFT
coefficients of s̃m and s̃c, as defined previously in Section 4.1

5.2.1 Amplitude demodulation with the matrix representation of a

spectrum

In the previous Chapter, we have seen that Proposition 3 allows us to replace a search for
a modulated signal fitting at best the measurements as in Problem 2, with a search for
a rank-one matrix fitting at best the matrix Ms of Definition 2. This idea is formalized
by Proposition 6 below:

Proposition 6. Let M1 be the set of rank-one kc × Nc matrices and Ms the matrix rep-

resentation of the spectrum of the measured signal s(tn) as defined in Chapter 4. Consider

the following cost function defined for matrices M ∈ M1:

Cmat(M) = ||M−Ms||2Fro .

Then we have the following equivalence:

The matrix s̃rcs̃
T
rm minimizes Cmat over M1 ⇔ (s̃c, s̃m) minimizes C̃,

with indices ·rc and ·rm defined as in Proposition 3, C̃ defined as in Proposition 2 and ||·||Fro

the matrix Frœbenius norm.

This result means that finding the optimal demodulation of a signal in the sense
of Problem 2 is equivalent to approximating the matrix Ms by a rank-one matrix. The
literature for this second problem is extensive, which gives a general approach to optimal
demodulation:
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Algorithm 1. The optimization Problem 2 can be optimally solved in the Fourier domain

through the following steps:

1. Building the matrix Ms,

2. Applying a rank-one approximation method to Ms,

3. Decomposing the obtained matrix M̂ as M̂ = s̃rcs̃
T
rm,

4. Returning the corresponding spectra s̃c and s̃m (see Proposition 3) or their time coun-

terparts.

Note that Step 3 is easy as M̂ has rank one. One could for instance take s̃rc as the first

column of M̂ and s̃rm as its first line, divided by M̂1,1. Several algorithms can be used

at Step 2. For the simulations of the next section, the SVD-factorization Ms = UDV T

was performed, with U ∈ C(Nc+1)×(Nc+1), V ∈ C(kc+1)×(kc+1) and D ∈ R(Nc+1)×(kc+1) a

diagonal matrix. Then, the estimated reduced spectra s̃rc, s̃rm are defined as:

s̃rc = U :,1,
s̃rm = D1,1V :,1.

(5.4)

Remark 17. Performing the optimization using Algorithm 1 requires one step since the

problem has a closed-form solution.

The observation we have in hand is the discrete signal s(tn), i.e. a vector of dimension
N , related to the vector of parameters θ to be estimated through the relations (5.1) and
(5.2). Algorithm 1 provides an estimator of θ, whose precision we want to numerically
compare with the theoretical limit given by the CRLB to be computed in the Section
5.2.2 below.

5.2.2 Performance Estimation

The precision of an unbiased estimator θ̂, usually measured by its variance V ARθ̂(θ) =

E

(

(θ̂ − θ)(θ̂ − θ)T
)

, has a theoretical limit called Cramér-Rao bound [18]:

V ARθ

(

θ̂
)

< F (θ)−1,

where F (θ) is the Fisher Information Matrix (FIM) given by: F (θ) , −E

(

∂2 ln p(y;θ)
∂θ∂θ

T

)

,

with p (y;θ) probability density function of the measurement y for the parameter vector
θ.

In order to simplify the computation of the Cramér-Rao Lower Bound, we rewrite
Problem 5.1 with sine/cosine Fourier Coefficients. Thus Equation 5.2 becomes:

{

sc(tn) =
1
N

∑H
h=0C

R
h cos(2iπhfctn) +

∑H
h=1C

I
hsin(2iπhfctn),

sm(tn) =
1
N

∑K
k=0M

R
k cos(2iπkfmtn) +

∑K
k=0M

I
ksin(2iπkfmtn).

(5.5)

Proposition 7. The FIM for the parameter estimation problem (5.1) reads:

F =
1

σ2

N
∑

tn=1

[

sm(tn)γn

sc(tn)µn

] [

sm(tn)γn

sc(tn)µn

]T

, (5.6)
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with γn and µn the vectors defined as γn =
[

cos(2π kcn
N
) . . . cos(2πHkcn

N
)
]T

and µn =
[

cos(2π n
N
) . . . cos(2πKn

N
)
]T
.

Proof. In the model Eqation (5.1) the observation is an i.i.d. sequence of Gaussian
variables with means parameterized by θ. Consequently, the computation of the FIM
can be carried out using the so-called Slepian-Bang formula (see [Kay] p.47) which
takes, in the case where the noise variance σ2 is known, the simplified form F =
1
σ2

∑N
n=1 [∇θs] [∇θs]

T , with∇θs the gradient of s(tn)w.r.t. θ. Let us compute separately
the gradient of s(tn) with respect to the carrier part θc =

[

CR
0 , . . . , C

R
H , C

I
1 , . . . C

I
H

]T of
θ and its modulation part θm =

[

MR
0 , . . . ,M

R
K ,M

I
1 , . . .M

I
K

]T . Formula (5.5) can be
rewritten as sc(tn) = γn

Tθc and sm(tn) = µn
Tθm + 1, which allows rewriting (5.1)

as s(tn) = θc
Tγn(µn

Tθm + 1) + wn. The gradients of s(tn) with respect to θc and θm

are thus ∇θcs = γn(µn
Tθm + 1) and ∇θms = µnγn

Tθc. Using sc(tn) = γn
Tθc and

sm(tn) = µn
Tθm, they simplify as ∇θcs = sm(tn)γn

T and ∇θms = sc(tn)µn
T . Finally,

stacking ∇θcs and ∇θms to build ∇θs and injecting the result into the Slepian-Bang
formula F = 1

σ2

∑N
n=1 [∇θs] [∇θs]

T we obtain Equation (5.6).

Remark 18. The variance σ2 of the noise could also be considered as an unknown parameter

to be estimated and added to the vector θ (say at the last position). The FIM can still be

computed, using full Slepian Bang formula (including its variance term):

Fi,j =
1

σ2

L
∑

t=1

(

∂s(t)

∂θ[i]

∂s(t)

∂θ[j]

)

+
L

2σ4

∂σ2

∂θ[i]

∂σ2

∂θ[j]
. (5.7)

We see that the right-hand term will be zero, except if i and j are both the last index of

θ, corresponding to the variance, while the left-hand term will be zero if i or j is this last
index. This gives:

Ftot(θ) =

[

F 0
N×1

0
1×N 1

2σ4

]

(5.8)

with F the FIM of Proposition 7.

5.2.3 Simulations

The performance of the proposed amplitude estimator is assessed in several situations.
We are interested in fine in gearboxmonitoring, so as to be close to evaluate it in relevant
conditions, i.e. in the operating conditions we will have with real dataset in Chapter 8,
the two parameters of influence studied are the length of the signal (i.e. the number
of samples) and the signal to noise ratio (SNR). For each case, the estimator range
of validity is first assessed with a bias study and then, the Mean Square Error (MSE)
is compared to the Cramér-Rao Lower Bound computed in the previous subsection in
order to conclude on its asymptotic statistical efficiency.

A general set up was defined for the simulations. A synthetic vibration signal is
generated according to Equation (5.1) and Equation (5.5) and NMC = 10000 Monte-
Carlo draws are run out to obtain the variance of the estimated parameter θ̂. The signal
settings used in the simulations are a sampling frequency fs = 10kHz, signal frequencies
fc = 500Hz, fm = 20Hz, number of harmonics H = 9 and K = 5. Consequently,
one has 27 parameters to estimate. The amplitudes coefficients cR, cI, mR and m

I are
randomly set with real positive values. It has to be noted that the sampling frequency was
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chosen high enough to ensure the Nyquist-Shannon sampling theorem and the numbers
of harmonicsH andK are chosen to guarantee the Hypothesis 3.10, i.e. to avoid aliasing
in the signal spectrum.

The two evaluation criteria are defined by:

bias =
1

NMC

NMC
∑

n=1

(

θ̂n − θ
)

, (5.9)

where the considered bias, i.e. biascR (resp. biascI , biasmR , biasmI) is the mean of the
c
R vector bias (resp. cI,mR,mI), and:

MSE =
1

NMC

NMC
∑

n=1

(θ̂n − θ)2. (5.10)

The MSE can be calculated for each vector parameter separately, i.e. MSEcR (resp.
MSEcI , MSEmR and MSEmI) from Equation (5.10) by averaging the correponding
part of θ and θ̂ as defined in Equation(5.3).

Influence of the signal-to-noise ratio

Here, the impact of the noise level on the estimator performances is evaluated. The
length of the signal is set to N = 10000 and the signal-to-noise ratios are spanning the
range from SNR = −10dB to SNR = 20dB.

The first step of the estimator assessment is to verify that it is unbiased with respect
to the SNR. Figure 5.1 displays the bias for all the parameter vectors for several SNRs.

Figure 5.1: Overlay of the evolution of the bias for all four parameter vectors with respect
to the Signal-to-Noise Ratio.

It can be seen that for cR and c
I, the bias, that was normalized to the magnitude of

the estimated vector, is really close to zero even for low SNR, and for mR and m
I the

bias tends to slowly move away from zero for low SNR.



68 CHAPTER 5. AMPLITUDE DEMODULATION

The second step consists in visualizing the impact of the noise level on the recon-
struction error, computed from the MSE. Figure 5.2 presents the performances of the
amplitude estimator for the previously defined range of SNR.

(a) (b)

(c) (d)

Figure 5.2: Graphical representations of the MSE and the CRB in a given range of signal-
to-noise ratios for the four vector parameters (a) cR, (b) cI, (c) mR and (d) mI.

The MSE is plotted along with its corresponding CRB. It can be seen that for all the
parameters the mean square errors computed on the estimated amplitudes achieve the
bound. For the parameter vectors m

R and m
I, for low SNR, the estimator is moving

away from the bound, which corresponds to the emergence of the bias. This can be
explained with the loss of resolution for very low frequency signals. This results will be
verified in the study of the signal’s length influence.

Influence of the length of the signal

The second criterion for the estimator assessment leads to the analysis of the signal’s
length effect on the performances of the amplitude estimation. For this simulation, it
is evaluated for a given signal-to-noise ratio of SNR = 0dB and with the signal length
ranging from N = 1000 to N = 50000.

As before, the estimator’s bias is first evaluated. In Figure 5.3, the bias evolution was
plotted for each parameter. It can be seen that in average, the bias for all parameter
vectors oscillates around zero. For signals with very few samples, it can be noticed that
the bias tends to increase.

The reconstruction error is then computed to complete the performance study. Figure
5.4 displays the MSE versus the data-length at SNR = 0dB. Again it is possible to
note that the proposed amplitude estimator achieves the CRB for all the parameters
and whatever the signal length, except for really short signals (N < 2000) where the
resolution of the temporal signal is not sufficient.
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Figure 5.3: Overlay of the evolution of the bias for all four parameter vectors with respect
to the number of samples.

(a) (b)

(c) (d)

Figure 5.4: Graphical representations of the MSE and the CRB for several length of the
signal and for the four vector parameters (a) cR, (b) cI, (c) mR and (d) mI.

Those two studies might lead to the conclusion that first, by experiment, all vector
parameters are asymptotically unbiased accordingly to both the SNR and the number
of samples, and second that it is also asymptotically statistically efficient as the CRB is
achieved in a large majority of cases.
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5.2.4 Comparison with classical demodulation methods

In this subsection the capacity of the presented method is compared to the widespread
demodulation algorithm to estimate the modulations of an amplitude modulated signal.

In order to have a fair comparison, the proposed optimal demodulation algorithm
is confronted to the classical demodulation and to an averaged demodulation. This last
one is the classical demodulation introduced in Section 3.1, computed on every carrier
and then averaged to estimate the modulations.

In Figure 5.5 a Monte-Carlo simulation is done for 10000 draws in order to com-
pare the performance of the presented optimal demodulation algorithm (red triangles)
with the one of the single classical demodulation (blue squares) and the averaged de-
modulation (green diamonds) on the estimation of the modulation parameters mR and
m

I.

(a)

(b)

Figure 5.5: Overlay of the MSE for the same modulation estimation with the classi-
cal demodulation and the averaged demodulation methods and the proposed (optimal)
multi-carrier demodulation method for both parameters (a) mR and (b) mI.

It can be seen that the MSE on the estimation of the modulation amplitudes with the
multi-carrier demodulation is always lower than the one performed on the amplitudes



5.3. AMPLITUDE DEMODULATION WITH OVERLAPPING 71

estimated with both the classical and averaged demodulation methods until a signal-
to-noise ratio of −10dB. The average Hilbert demodulation is worse than the single
one as the average is done with demodulation for all carrier harmonics, unlike Hilbert
demodulation which has been done on the carrier harmonics with the best signal-to-
noise ratio. The amplitudes of the modulation signal are estimated with more accuracy
with the proposed multi-carrier demodulation method than with traditional algorithms.
It has to be noticed that the Hilbert demodulation does not allow the estimation of a
carrier with several harmonics. To do so, a second distinct step has to be done to estimate
the high frequency (carrier) signal with a synchronous average algorithm for example,
whereas it is estimated at the same time with the multi-carrier demodulation.

5.3 Amplitude demodulation with overlapping

This study has been conducted collectively with the condition monitoring research team of

the School of Mechanical and Manufacturing Engineering of the University of New South

Wales of Sydney.

In the previous case we considered that the spectral support of the signal under
study was bounded, ensuring that any overlap between the modulations was avoided.
However, it is also interesting to consider the case where modulations do overlap, i.e.
the upper limit of the spectral support of the modulation signal is bigger than half the
carrier frequency, in other words Hypothesis 1 set in Chapter 3 is not fulfilled.

Based on the model 5.1 defined in section 5.1, we can compute the signals DFT over
a finite length of N samples and at a sampling rate Fs. Here we specify that the carrier
frequency fc is an integer multiple of the modulation’s fundamental frequency fc = Gfm.
The components corresponding to the carrier harmonics and sidebands will be identified
by s̃(tn) = s̃(nfm) and can thus be expressed according to the model as

s̃(tn) =
H
∑

h=−H

ChMn−hG + Yn, (5.11)

with Yn ∼ CN (0, σ
2

N
) and CN representing a circular symmetric complex normal distri-

bution. The quantities s̃(tn) will be therefore stochastic with the following distribution:

s̃(tn) ∼ CN
(

µn(θ),
σ2

N

)

. (5.12)

with

µn(θ) =
H
∑

h=−H

ChMn−hG.

5.3.1 Maximum Likelihood Estimator

Assuming H and K known, the estimation of the parameter vector θ, i.e. the carrier
and modulation amplitudes coefficients, can be formulated as a maximum-likelihood
problem. The negative-log-likelihood function of a set of s̃(tn) with n ∈ W is:

Λ̄ = L log

(

πσ2

N

)

+N
∑

n∈W

|s̃(tn)− µn(θ)|2
σ2

,
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where L is the size of the setW of selected frequency points. The problem of minimizing
Λ̄ against µn is independent on the variance σ2, so it can be rewritten as the following
least-squares problem:

θ̂ = argmin
θ

∑

n

|s̃(tn)− µn(θ)|2

= argmin
θ

{

∑

n

[

s̃Rn − µR
n (θ)

]2
+
∑

n

[

s̃In − µI
n(θ)

]2

}

.

(5.13)

In order to be able to solve this non-linear problem, we propose to use the well-known

Gauss-Newton descent algorithm on the residuals r =
[

r
R

r
I

]

, where

rRn = s̃Rn − µR
n (θ)

rIn = s̃In − µI
n(θ),

(5.14)

and

µR
n (θ) =

H
∑

h=−H

ℜ{ChMn−hG} =
H
∑

h=−H

{

CR
h M

R
n−hG − CI

hM
I
n−hG

}

µI
n(θ) =

H
∑

h=−H

ℑ{ChMn−hG} =
H
∑

h=−H

{

CI
hM

R
n−hG + CR

h M
I
n−hG

}

.

(5.15)

Remark 19. The following notation has been chosen to represent real and imaginary parts

of the considered object : (·)R and (·)I .

Using the symmetry of the spectrum of both the carrier and the modulation, we can
rewrite expressions in 5.15 as

µR
n (θ) =

H
∑

h=1

{

CR
h M

R
|n−hG| + CR

h M
R
n+hG − CI

hM
I
|n−hG|sgn(n− hG) + CI

hM
I
n+hG

}

µI
n(θ) =

H
∑

h=1

{

CI
hM

R
|n−hG| − CI

hM
R
n+hG + CR

h M
I
|n−hG|sgn(n− hG) + CR

h M
I
n+hG

}

.

(5.16)

The Jacobian of the residual r with respect to the unknown parameters θ is defined
as

J =

[

JR,CR

JR,CI

JR,MR

JR,MI

JI,CR

JI,CI

JI,MR

JI,MI

]

(5.17)

which all sub-matrices are composed by the following elements:
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jR,CR

n,h = −
{

MR
|n−hG| +MR

n+hG

}

jR,CI

n,h = −
{

−M I
|n−hG|sgn(n− hG) +M I

n+hG

}

jR,MR

n,k = −∑H
h=1

{

CR
h δ|n−hG|,k + CR

h δn+hG,k

}

jR,MI

n,k = −∑H
h=1

{

−CI
hsgn(n− hG)δ|n−hG|,k + CI

hδn+hG,k

}

jI,C
R

n,h = −
{

M I
|n−hG|sgn(n− hG) +M I

n+hG

}

jI,C
I

n,h = −
{

MR
|n−hG| −MR

n+hG

}

jI,M
R

n,k = −∑H
h=1

{

CI
hδ|n−hG|,k − CI

hδn+hG,k

}

jI,M
I

n,k = −∑H
h=1

{

CR
h sgn(Mn− hG)δ|n−hG|,k + CR

h δn+hG,k

}

.

The Gauss-Newton method can be then implemented by iteratively refining the estima-
tion of the parameters θ as

θ(s+1) = θ(s) −
{(

θ(s)
)}†

r
(

θ(s)
)

,

where the operator (·)† represents the pseudo-inverse operator.

5.3.2 Confidence interval

Confidence intervals are a range of potentials values of the unknown parameter and de-
fined as the relation between all the parameters, which is represented by the covariance
matrix. In order to compute that covariance matrix, we use its standard approximation
by the Hessian matrix, made possible by the formulation of our problem with the Gauss-
newton algorithm. In other words, the covariance matrix Σ is defined as Σ = H−1

where H is the Hessian matrix. The Hessian matrix is the second derivative of the
residual with respect to each parameter in the full parameter vector β = [θσ]:

H =
∂2Λ

∂β2 , (5.18)

which can be detailed as:

H =















HCR,CR

HCR,CI

HCR,MR

HCR,MI

HCR,σ

HCI ,CR

HCI ,CI

HCI ,MR

HCI ,MI

HCI ,σ

HMR,CR

HMR,CI

HMR,MR

HMR,MI

HMR,σ

HMI ,CR

HMI ,CI

HMI ,MR

HMI ,MI

HMI ,σ

Hσ,CR

Hσ,CI

Hσ,MR

Hσ,MI

Hσ,σ















Remark 20. It is possible to notice that H is symmetric, i.e. HCR,CI

= HCI ,CR

for each

couple of parameters.

Based on Remark 20, it is not necessary to calculate separately all the sub-matrices.
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The essentials sub-matrices are defined as below:

HCR,CR

= 2H
σ2

(

1 + 2
∑K

k=1

(

MR
k +M I

k

)

)

HCR,CI

= 0
H×H

HCR,MR

= 4K
σ2

∑H
h=1C

R
h

HCR,MI

= 4K
σ2

∑H
h=1C

R
h

HCR,σ = − 4
σ3

(

∑H
h=1

(

−s̃Rh,0 + CR
h

)

+
∑H

h=1

∑K
k=1

(

−s̃Rh,k + CR
h M

R
k − CI

hM
I
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Ih,k + CR
h M

I
k + CI

hM
R
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Rh,−k + CR
h M

R
k + CI

hM
I
k

)

+
∑H

h=1

∑K
k=1

(

s̃Ih,−k + CR
h M

I
k − CI

hM
R
k

)

)

HCI ,CI

= 2H
σ2

(

1 + 2
∑K

k=1

(

MR
k +M I

k

)

)

HCI ,MR

= 4K
σ2

∑H
h=1C

I
h

HCI ,MI

= 4K
σ2

∑H
h=1C

I
h

HCI ,σ = − 4
σ3

(

∑H
h=1

(

−s̃Ih,0 + CI
h

)

+
∑H

h=1

∑K
k=1

(

s̃Rh,k − CR
h M

R
k + CI

hM
I
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Ih,k + CR
h M

I
k + CI

hM
R
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Rh,−k + CR
h M

R
k + CI

hM
I
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Ih,−k − CR
h M

I
k + CI

hM
R
k

)

)

HMR,MR

= 4K
σ2

∑H
h=1

(

CR
h + CI

h

)

HMR,MI

= 0
K×K

HMR,σ = − 4
σ3

(

∑H
h=1

∑K
k=1

(

−s̃Rh,k + CR
h M

R
k − CI

hM
I
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Ih,k + CR
h M

I
k + CI

hM
R
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Rh,−k + CR
h M

R
k + CI

hM
I
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Ih,−k − CR
h M

I
k + CI

hM
R
k

)

)

HMI ,MI

= 4K
σ2

∑H
h=1

(

CR
h + CI

h

)

HMI ,σ = − 4
σ3

(

∑H
h=1

∑K
k=1

(

s̃Rh,k − CR
h M

R
k + CI

hM
I
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Ih,k + CR
h M

I
k + CI

hM
R
k

)

+
∑H

h=1

∑K
k=1

(

−s̃Rh,−k + CR
h M

R
k + CI

hM
I
k

)

+
∑H

h=1

∑K
k=1

(

s̃Ih,−k + CR
h M

I
k − CI

hM
R
k

)

)

Hσ,σ = 2
σ2

(

−2
3
+
∑H

h=1

(s̃Rh,0−CR
h )

2

σ2

+
∑H

h=1

(s̃Ih,0−CI
h)

2

σ2

+
∑H

h=1

∑K
k=1

(s̃Rh,k−CR
h
MR

k
+CI

h
MI

k)
2

σ2

+
∑H

h=1

∑K
k=1

(s̃Ih,k−CR
h
MI

k
−CI

h
MR

k )
2

σ2

+
∑H

h=1

∑K
k=1

(s̃Rh,−k
−CR

h
MR

k
−CI

h
MI

k)
2

σ2

+
∑H

h=1

∑K
k=1

(s̃Ih,−k
+CR

h
MI

k
−CI

h
MR

k )
2

σ2

)
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5.3.3 Model selection

So far we have assumed that the number of harmonics is known for both carrier and
modulation signals, which is usually not the case in practice. Fitting a model with an
approximate H is not so critical, as long as higher harmonics are simply negligible in
amplitude, but the selection of the correct K is indeed an important task, especially in
case of overlapping modulation sidebands, i.e.

(

K > G
2

)

where significantly biased re-
sults could be obtained with the wrong assumption on the number of actual modulation
harmonics. In order to automatically select the best number of modulation harmonics,
the procedure described in the previous section is repeated with a fixed number H of
carrier harmonics (for instance the maximum H = ⌊max(n)

G
⌋ ) and a series of possible

K(q), q = 1, · · · , Q. The log-likelihood of each model is computed as

Λ(q) = −L log
(

πσ2 (q)

N

)

+N
∑

n∈W

|s̃(tn)− µn

(

θ(q)
)

|2

σ2

(q)

. (5.19)

The optimal model can be selected using the maximum likelihood ratio and Wilks’
theorem. In statistics, a likelihood test ratio is a statistical test used for comparing the
quality of fitting for two statistical models. The test expresses which models of two
is a better representation of the data, usually choosing between an alternative model
against the null model. When it is the logarithm of the likelihood test that is computed,
the Wilks’ theorem provides an asymptotic distribution of the ratio statistic. This result
has been demonstrated in [93] and states that when a variate is distributed in large
samples, then the distribution of −2 logΛ is similar to a χ2 distribution.

With this in mind, it is possible to compute the following log-likelihood differences

∆Λq,q′ = Λ(q) − Λ(q′), (5.20)

with q = 1, · · · , Q and q′ = 1, · · · , q. Then, Wilks’ theorem allows to calculate the
p-values. In statistical hypothesis testing p-values are the probality under a specified
statistical model that a statistical summary of the data (e.g., the sample mean difference
between two compared groups) would be equal to or more extreme than its observed
value [91]. p-values for the previous log-likelihood differences in 5.20 can be calculated
as follow:

p(q,q
′) = χ2

K(q)−K(q′)

(

2∆Λq,q′
)

, (5.21)

where χ2 represents the chi-squared cumulative distribution function .
The selection of the model that best fit the data can be done by setting an arbitrary

threshold α for the p-values and choosing q as

qopt = max

(

q|min
q′
pq,q

′

> α

)

. (5.22)

Remark 21. The optimal model will be the most complex one that shows the higher p-value

against all models along with the lower number of parameters.

5.3.4 Numerical example

A signal is generated following the model of Eq.5.1 with N = 100, 000, Fs = 10kHz, a
fundamental frequency fm = 10Hz, and a gearmesh order G = 10. The components of
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the signal are shown in Figure 5.6 and include a 20-harmonic carrier and a 15-harmonic
modulating signal (thus with different carrier harmonics presenting significantly over-
lapping sidbands). The resulting signal-to-noise ratio has been evaluated at 6, 5dB.

The actual number of harmonics for carrier and modulation signals are respectively
H = 20 and K = 15.

Figure 5.6: Simulation of the temporal signal numerically generated. From top to bot-
tom: Carrier signal, Modulation signal, Noise signal and Overlay of noisy signal set
according to Eq.5.1 and the modulated signal only .

The procedure described in the previous sections is applied using all available har-
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monics of the fundamental frequency s̃n with n = 1, · · · , Fs

2fm
). The maximum number of

possible carrier harmonics is set for the model parameters as Ĥ = ⌊max(n)
G

⌋ and a search
for the optimal value ofK is done over the intervalK(q) = [1, · · · , 30], i.e. with the max-
imum extent of the sidebands set at 3 times the carrier. The likelihood is calculated for
each of the 30 optimized models and a p-value matrix comparing each pair is shown in
Figure 5.7 (left). This allows the calculation of the combined p-value (minimum value
across teach row) and the selection of model 15, which is the most complex model with
combined p-value above the predetermined threshold of α = 0.999. It has to be high-
lighted that, despite α being arbitrarily chosen, in this case all combined p-values below
15 have a value of 1, thus leading to selection of model 15 for any α.

Remark 22. This is obviously theoretically impossible (chi-squared distribution are not

right-bounded), but it shows that the confidence is superior to the numerical truncation

error of a MATLAB chi2cdf function.

Figure 5.7: Model selection matrix (left) and combined p-value (right). In red the com-
bined p-value of the selected model (α = 0.999).

We evaluate the fitting of the selected model for every amplitude coefficient, i.e. for
both carrier andmodulation and for real and imaginary parts, as illustrated in Figure 5.8.
A temporal overlay of the generated theoretical signal without noise with the estimated
amplitude modulated signal is shown in Figure 5.9.

Three periods of the modulation signal and its estimations are shown in Figure 5.9.
It is clear how the estimation results in an order-of-magnitude gain in demodulation
accuracy.

The MLE method applied to overlapping signal, without previous knowledge of the
number of modulation harmonics has been compared to the classical demodulation
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Figure 5.8: Fitting of both the real (left) and imaginary (right) parts of the signal for
the carrier (top) and the modulation (bottom) signals.

Figure 5.9: Overlay of the estimated signal with the theoretical one (top) and estimation
error representation on the temporal representation (bottom).

method. The estimated amplitude coefficients, represented in Figure 5.10, are clearly
badly estimated when using the usual demodulation technique as it is not adapted to
overlapping sidebands. Figure 5.11 presents the temporal reconstruction of the esti-
mated signals with both methods, and in that case there is no possible comparison in
the results as the classical demodulation algorithm is completely wrong in its estimation
meanwhile the MLE-based estimation is more than correct.

5.4 Conclusion

The amplitude demodulation formulated as an optimization problem has been studied
in this chapter, considering two situations. First the case where we consider that the
sidebands of the modulation do not overlap, which allows us to use the multi-carrier
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Figure 5.10: Results of the fitting given by the two estimation methods for both the real
(left) and imaginary (right) parts of the signal for the carrier (top) and the modulation
(bottom) signals.

Figure 5.11: Overlay of the estimated signal given by the classical demodulation (top)
and MLE-based demodulation (bottom) with the theoretical one (left) and estimation
error representation on the temporal representation (right).

demodulation algorithm based on the matrix representation of a spectrum tool defined
in Chapter 4. Then in the second case, we considered that sidebands of the modulation
can overlap, which implies that the optimization problem has to be tracked with a de-
scent algorithm. Here we used a MLE-based demodulation in a Gauss-Newton descent
algorithm. The proposed algorithm has shown interesting properties such as a good
estimation of the model number of parameters and also the right amplitude coefficients.

In both cases, the algorithms have been compared to the classical demodulation
method which is always the worse estimator.
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Chapter 6

Phase and amplitude demodulation

In Chapter 5, we were only focused on the amplitude demodulation problem . But
generally speaking, in signal modulation studies, phase modulation is also very common
and usually much more difficult to detect and analyze. Indeed, one of phase modulation
characteristics is that it generates an infinite spectrum support but with little energy and
fast decrease.

For example, little variation in the rotational speed of a rotating machine affects its
vibration and is reflected in the measured signal by a phase modulation. For that reason,
extensive research has been conducted on combined phase and amplitude demodulation
processes. Here we are interested in both the formulation of phase and amplitude de-
modulation as an optimization problem and the analysis of the properties of that system.

6.1 Problem statement

6.1.1 Model formulation

There are major differences between amplitude modulation and both phase and ampli-
tude modulation signals, but from a statistical point of view their expression are very
similar. Based on the previous amplitude modulation statistical model, it is possible to
extend it by adding a phase modulation of the carrier. This new formulation is expressed
below in Problem 3.

Problem 3 (Exact phase demodulation). Given a discrete signal (s(tn))n∈[[1,N ]] (with N ∈
N) of sampling period Ts and duration Ttot = N · Ts, given a frequency fc = kc · ftot (with
ftot = 1/Ttot and kc ∈ N), find (sc(tn), sm(tn), sΦ(tn)) verifying for any n ∈ [[1, N ]]:

s(tn) = sc (tn + sΦ(tn)) sm(tn), (6.1)

where sc and sm are the same carrier and amplitude modulation as before, and sΦ is the

new element representing the phase modulation.

As previously exposed, those signals are periodic and defined with complex coeffi-

81
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cients as below:






























sc(tn) =
1

N

H
∑

h=−H

Che
2iπhfctn ,

sm(tn) =
1

N

K
∑

k=−K

Mke
2iπkfmtn

sΦ(tn) =
1

N

∞
∑

j=−∞

Pje
2iπjfΦtn .

(6.2)

A study of this general system is difficult, therefore we reckon an additional hypoth-
esis.

Hypothesis 3. In this study we consider that the phase fluctuation is small, i.e. sΦ(tn) <<
2π, which means that the delay induced by the phase modulation does not cause any lag

bigger than a short percentage of the carrier period.

Under the constraint given by Hypothesis 3, we can use a first-order approximation
w.r.t. sΦ using Taylor’s series, that allows us to rewrite the phase modulation of the
carrier as follow:

sc (tn + sΦ(tn)) ≃ sc(tn) + sc
′(tn)sΦ(tn),

where sc′(tn) is the temporal derivative of the carrier signal sc(tn). It is possible then to
reformulate Eq. 6.1 of Problem 3 into

s(tn) = sc(tn)sm(tn) + sc
′(tn)sΦ(tn)sm(tn). (6.3)

Setting sc1 = sc, sc2 = sc
′, sm1 = sm and sm2(tn) = sΦ(tn)sm(tn), Eq. 6.3 yields to:

s(tn) = sc1(tn)sm1(tn) + sc2(tn)sm2(tn). (6.4)

Remark 23. It can be noticed that Eq. 6.4 can be seen as an extension of the amplitude

modulation formulation of Eq. 3.11 introduced in Chapter 3. This observation has lead us

to set a more general class of signals that are of the form:

s(tn) =

q
∑

i=1

sci(tn) smi(tn).

Remark 24. Some conditions can be set in order to have sm2 and sm1 having zeros at the

same locations to be able to recover sΦ(tn).

Remark 25. In the remain of the study, the frequency of the phase modulation signal is the

same as the one of the amplitude modulation, i.e. fΦ = fm.

Optimal demodulation In Chapter 3, we have expressed amplitude demodulation as
an optimization problem. This concept can be extended to the amplitude and phase
modulation issue expressed in Problem3. The same analogy that has been done in am-
plitude demodulation for Problems 1 and 2, can be repeated for Problem 3.

Problem 4 (Optimal phase demodulation). Given a discrete signal (s(tn))n∈[[1,N ]] (with

N ∈ N) of sampling period Ts and duration Ttot = N · Ts, given a frequency fc = kc · ftot
(with ftot = 1/Ttot and kc ∈ N), estimate all signals (sc1, sc2, sm1, sm2) minimizing the

following cost function:

C(sc, sm) =
N
∑

n=1

|sc1(tn) sm1(tn) + sc2(tn) sm2(tn)− s(tn)|2

with fc the frequency of sc(tn).
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6.1.2 Matrix formulation

In practice, transposing Problems 3 and 4 in the Fourier domain and using the matrix
formulation introduced in Chapter 4 allows a very handy reformulation of the problems.

Problems 3 and 4 can be both reformulated within a matrix formulation.

Problem 5 (Exact matrix formulation). If c1 (resp., c2,m1,m2) denotes the vector con-

taining the Fourier coefficients of sc1(tn) (resp., sc2(tn), sm1(tn), sm2(tn)), and
H the Hermi-

tian transpose operator, then Problem 3 is equivalent to finding the vectors c1, c2 and the

vectors m1,m2 satisfying:

Ms = c1 m1
H + c2 m2

H .

Problem 6 (Optimal matrix formulation). If c1 (resp., c2,m1,m2) denotes the vector

containing the Fourier coefficients of sc1(tn) (resp., sc2(tn), sm1(tn), sm2(tn)), and
H the

Hermitian transpose operator, then Problem 4 is equivalent to finding the vectors c1, c2
and the vectors m1,m2 satisfying:

C(c1, c2,m1,m2) =
∣

∣

∣

∣c1m1
H + c2m2

H −Ms

∣

∣

∣

∣

2

Fro
.

Remark 26. All vectors c1, c2,m1,m2 are vectors containing the complex Fourier coeffi-

cients of each signal spectrum, i.e. the carrier, the amplitude modulation and the product

of phase and amplitude modulation respectively.

We recall that c2 = c1
′ = c

′ is the derivative of c in the frequency domain. This
derivative operation can be expressed as c′ = D c, where D is a diagonal matrix that
allows the computation of the derivative of the carrier spectrum in the frequency domain,
i.e.

D = i 2 π fc diag(−H · · ·H).

Thus, we obtain the following general matrix formulation of the phase and amplitude
demodulation problem:

Ms = cm1
H +Dcm2

H .

Remark 27. Intrinsically, the matrix Ms has a very specific structure, that is complex

centrosymmetric, as it is built with all the complex coefficients of the signal’s spectrum. In

the case where M ∈ C3×3 the matrix can basically be represented as

Ms =





a b̄ d̄
b c ē
d e ā



 .

This property will be of interest in order to study the indeterminations of the optimization

problem 4.

6.2 The exact problem

To address the matrix decomposition problem obtained in the previous section the author

contacted the Ouragan Inria research team, who proposed a reconstruction algorithm for

the exact case. Section 6.2.1 below is the justification of the algorithm provided by the team,

and cannot be considered a part of this PhD work as the author has no contribution to it. It

is given only for the sake of self-sufficiency of the manuscript. The reader interested only in

the final solution can go straight to Section 6.2.2. The results presented in Sect. 6.3 stem

from discussions with the same team, but should be considered part of the PhD work.
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6.2.1 Solution to the exact problem

Motivated by Problem 5, we can now state the main problem as: Main problem Given
M ∈ Kn×m and D ∈ Kn×n, determine − if they exist − u ∈ Kn×1 and v1, m2 ∈ K1×m

satisfying:
M = u v1 +Dum2. (6.5)

We shall name this problem the rank 2 decomposition problem.
Problem 5 corresponds to the case K = C, q = 2, i.e., the phase and amplitude

modulation problem, u = c, Du = D c, v1 = m1
H , and m2 = m2

H .
Annexe 10.2 recalls principles of homological and linear algebra for solving inhomo-

geneous linear systems.
Let us note:

A(u) := (u D u) ∈ Kn×2, v := (vT1 m2
T )T ∈ K2×m.

Then, (6.5) can be rewritten as:
A(u) v =M. (6.6)

Problem defined in (6.6) is bilinear in u and m.

Remark 28. If M = 0, then u = 0 or v1 = m2 = 0 solves the problem. Hence, in what

follows, we suppose thatM 6= 0.

Remark 29. The K-vector space imK(A(u).) is generated by the two vectors u and Du,
which shows that:

rankK(A(u)) := dimK(imK(A(u).)) ≤ 2.

A necessary condition for the solvability of (6.5) is then:

rankK(M) ≤ 2. (6.7)

Remark 30. If (6.6) is solvable with a non full row rank matrix m, then there exists

α := (α1 α2) ∈ K1×2 such that α v = α1 v1 + α2 m2 = 0, which yields:

{

M =
((

D − α2 α
−1
1 In

)

u
)

m2, if α1 6= 0,

M =
((

In − α1 α
−1
2 D

)

u
)

v1, if α2 6= 0.

Hence,M 6= 0must satisfy rankK(M) = 1. A necessary condition for the solvability of (6.6)

for a matrixM satisfying rankK(M) = 2 is then that m has full row rank.

In what follows, we shall consider the case of a full row rank matrix m. By Re-
mark 30, this case includes the case of a matrixM satisfying rankK(M) = 2 and the case
rankK(M) = 1 by first considering D = 0, solving (6.5) with a full row rank matrix m

to get − if it exists −M = u v1, and finally considering the solution:

M = u v1 +Du 0.

Hence, the rank 1 decomposition problem will be considered as a particular case of the
general case with D = 0.
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Necessary condition for the solvability of Problem (6.5)

Let us solve (6.6). Let L ∈ Kp×n be a matrix whose rows generate a basis of theK-vector
space kerK(.M), i.e., L is a full row rank matrix satisfying:

kerK(.M) = imK(.L) = K1×p L.

Let us explicitly characterize p in terms of the rank ofM :

p = dimK(kerK(.M)) = n− dimK(imK(.M))

= n− dimK(imK(M.)) = n− rankK(M). (6.8)

Now, (6.6) yields:
LA(u) v = LM = 0. (6.9)

Since m has full row rank, we get LA(u) = 0, i.e., u must satisfy the following K-linear
system:

{

Lu = 0,

LD u = 0.
(6.10)

Remark 31. Since the p rows ofL areK-linearly independent, the dimension of theK-vector

solution space of Lu = 0, i.e., kerK(L.), is n − p = rankK(M) by (6.8). The dimension of

the solution space of (6.10) is then at most rankK(M) (exactly rankK(M) if, e.g., D = In
or LD = 0).

Let us now derive an equivalent characterization of (6.10). By definition of L, we
have the following exact sequence:

0 // K1×p .L
// K1×n .M

// K1×m .

Applying the exact functor homK( · ,K) to it, we obtain the following dual exact sequence
of K-vector spaces:

0 Kp×1oo Kn×1L.
oo Km×1.M.

oo

Using kerK(L.) = imK(M.), we get Lu = 0 is equivalent to the existence of w ∈ Km×1

such that u =M w. Thus, the second equation of (6.10) is equivalent to L (DM w) = 0,
which in turn is equivalent to the existence of w′ ∈ Km×1 such that DM w = M w′,
which can be rewritten as:

(M −DM)

(

w′

w

)

= 0.

Using (6.7) and the upper bound of Sylvester’s inequality

rankK(D) + rankK(M)− n

≤ rankK(DM) ≤ min{rankK(D), rankK(M)},

then (6.10) is equivalent to:

rankK(M −DM) ≤ 3. (6.11)

Lemma 1. With the above notations, a necessary condition on u for the existence of a

solution of Problem (6.5) is (6.10) with p ≥ n− 2, or equivalently (6.7) and (6.11).
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Necessary and sufficient conditions for the solvability of Problem (6.5)

Let u be a non-trivial solution solution of (6.10). We can now form the matrix A(u) =
(u D u) and we are then led to the study of the linear inhomogeneous system A(u) v =
M . Let L′ ∈ Kp′×n be a full row rank matrix whose rows form a basis of kerK(.A(u)),
i.e., kerK(.A(u)) = imK(.L

′), and p′ = dimK(kerK(.A(u))). By Theorem 2, there exists
v ∈ K2×m which satisfies A(u) v =M iff the following compatibility condition holds:

L′M = 0. (6.12)

Notice that the compatibility condition (6.12) depends on u, and thus we seek for u −
if it exists − in the solution space of (6.10) so that (6.12) holds.

Let us reinterpret (6.12) and (6.9) in a more intrinsic mathematical setting. By
definition of L, we have the following exact sequence of K-vector spaces:

0 // K1×p .L
// K1×n .M

// K1×m .

Then, LA(u) = 0 iff u satisfies (6.10). If so, then we get the following complex of
K-vector spaces:

0 // K1×p .L
// K1×n .A(u)

// K1×2 .

The defect of exactness of this complex at K1×n is then:

H(K1×n, u) := kerK(.A(u))/imK(.L).

Now, by definition of L′, we have the following exact sequence of K-vector spaces:

0 // K1×p′ .L′

// K1×n .A(u)
// K1×2 . (6.13)

Hence, we obtain:
H(K1×n, u) = kerK(.A(u))/ kerK(.M)

= imK(.L
′)/imK(.L).

Since imK(.L) ⊆ imK(.L
′), L ∈ imK(.L

′), and thus there exists L′′ ∈ Kp×p′ such that
L = L′′ L′. Since L′ has full row rank, we obtain the following isomorphism:

H(K1×n, u) = imK(.L
′)/imK(.L) ∼= K1×p′/imK(.L

′′).

Hence, H(K1×n, u) = 0 iff imK(.L
′′) = K1×p′ , i.e., iff there exists X ∈ Kp′×p such that

X L′′ = Ip′ , i.e., iff L′′ admits a left inverse, which is also equivalent to the injectivity of
the K-linear map L′′. : Kp′×1 −→ Kp×1.

Applying the exact functor homK( · ,K) to the exact sequence (6.13), we obtain the
exact sequence:

0 Kp×1oo Kn×1L′.
oo K2×1.

A(u).
oo

Then, applying the exact functor · ⊗K K1×m to the last exact sequence, we get the fol-
lowing exact sequence:

0 Kp×moo Kn×mL′.
oo K2×m.

A(u).
oo

Hence, M belongs to imK1×m(A(u).) = A(u)K2×m, i.e., there exists v ∈ K2×m such that
M = A(u) v, iff:

L′M = 0.
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By definition of L, we have LM = 0, i.e., L′′ (L′M) = 0. Therefore, LM = 0 yields
L′M = 0 iff L′′. is injective, i.e., iff L′′ admits a left inverse, i.e., iff

H(K1×n, u) ∼= K1×p′/imK(.L
′′) = 0,

i.e., iff:
kerK(.A(u)) = kerK(.M). (6.14)

Problem (6.5) is reduced to finding 0 6= u satisfying (6.10) such that the K-vector space
H(K1×n, u) is trivial, i.e.:

dimK(H(K1×n, u)) = 0.

Remark 32. Let us give a direct interpretation of (6.14). Let us first suppose that (6.5) or

equivalently that (6.6) is solvable and let us compare the K-vector spaces:

kerK(.A(u)) = {λ ∈ K1×n | λA(u) = 0},
kerK(.M) = {λ ∈ K1×n | λM = 0}.

We clearly have kerK(.A(u)) ⊆ kerK(.M). Now, if we consider λ ∈ kerK(.M), then

λA(u) v = λM = 0, which yields λA(u) = 0 since m is full rank rank. Thus, if a so-

lution exists for Problem (6.5), then (6.14) holds.

Conversely, if u is a non-trivial solution of (6.10) such that (6.14), then K1×p′ L′ =
K1×p L, which shows that p′ = p and there exist U, V ∈ Kp×p such that L′ = U L and

L = V L′, which yields (U V − Ip)L
′ = 0 and (V U − Ip)L = 0, i.e., U V = Ip and

V U = Ip since both L and L′ have full row rank. The compatibility condition L′M = 0 is

thus equivalent to LM = 0, which is satisfied by definition of L. Then, Theorem 2 shows

that there exists v ∈ K2×m such that A(u) v =M , which solves (6.5).

Let us state the first main result of this section.

Theorem 1. With the above notations, Problem (6.5) is solvable iff there exists 0 6= u ∈
Kn×1 satisfying

{

Lu = 0,

LD u = 0,

and such that H(K1×n, u) = kerK(.A(u))/ kerK(.M) = 0.

Let us study the K-vector space H(K1×n, u). The Euler-Poincaré characteristic of the
short exact sequence

0 // kerK(.M) i
// kerK(.A(u))

π
// H(K1×n, u) // 0,

yields:

dimK(H(K1×n, u)) = dimK(kerK(.A(u))− dimK(kerK(.M))

= p′ − p. (6.15)

Let us now characterize p′. Considering the following two short exact sequences of
K-vector spaces

0 // kerK(.A(u)) // K1×n // imK(.A(u)) // 0,
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0 imK(A(u).)oo K2×1oo kerK(A(u).)oo 0,oo

the Euler-Poincaré characteristic then yields:
{

dimK(imK(.A(u))) = n− dimK(kerK(.A(u))) = n− p′,

dimK(imK(A(u).)) = 2− dimK(kerK(A(u).)).

Since we have

rankK(A(u)) = dimK(imK(.A(u))) = dimK(imK(A(u).)),

we obtain:
p′ = n− 2 + dimK(kerK(A(u).)).

By (6.8), we have p = n− rankK(M). Hence, we obtain:

H(K1×n, u) = 0 ⇔ p′ = p

⇔ dimK(kerK(A(u).)) = 2− rankK(M).

Corollary 1. With the above notations, Problem (6.5) is solvable iff there exists 0 6= u ∈
Kn×1 satisfying

{

Lu = 0,

LD u = 0,

and one of the following two equivalent conditions holds:

1. p′ = p, i.e., dimK(kerK(.A(u))) = dimK(kerK(.M)),

2. dimK(kerK(A(u).)) = 2− rankK(M).

Let us now study the K-vector space:

kerK(A(u).) = {w ∈ K2×1 | A(u)w = 0}.

If w = (w1 w2) ∈ kerK(A(u).), i.e., uw1+Duw2 = 0, then, using u 6= 0, we have w = 0
if w2 = 0, orDu = −w1w

−1
2 u if w2 6= 0, i.e., u is an eigenvector ofD with the eigenvalue

−w1w
−1
2 ∈ K. Hence, if u is not an eigenvector of D, then kerK(A(u).) = 0. We then get

the following exact sequence

0 Kp′×1oo Kn×1L′.
oo K2×1A(u).

oo 0,oo

and we find again that p′ = n− 2.
Now, if u is an eigenvalue of D with eigenvalue λ ∈ K, then kerK(A(u).) = imK(K.),

where K = (−λ 1)T , is a K-vector space of dimension 1. We get the exact sequence

0 Kp′×1oo Kn×1L′.
oo K2×1A(u).

oo K
K.

oo 0,oo

and we find again that p′ = n− 2 + 1 = n− 1.

Corollary 2. With the above notations, Problem (6.5) is solvable iff there exists 0 6= u ∈
Kn×1 satisfying

{

Lu = 0,

LD u = 0,

and such that:
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1. If rankK(M) = 2, then u is not an eigenvector of D for an eigenvalue λ ∈ K. Then,

there exists a unique v ∈ K2×m satisfying A(u) v =M defined by

v = EM,

where E ∈ K2×n denotes a left inverse of A(u).

2. If rankK(M) = 1, then u is an eigenvector of D with an eigenvalue λ ∈ K. Then, all

the solutions v ∈ K2×m satisfying A(u) v =M are defined by

∀ z ∈ K1×m, v = EM +K z,

where K = (−λ 1)T and E ∈ K2×n denotes a generalized inverse of A(u).

6.2.2 Resolution method

In the above section we have proved that there exist necessary and sufficient conditions
that allow us to retrieve each couples of carrier and modulation signals. Here we propose
an algorithm to compute the solution when it exists.

Algorithm 2. Given two known matrices M ∈ Cn×p and D ∈ Cn×n, and three unknown

vectors c ∈ Cn×1, m1 ∈ Cp×1 and m2 ∈ Cp×1 where n and p are the dimensions of vectors

c and m respectively. The matrix equation cm1
H +Dcm2

H = M is feasible if and only if

• rank(M) ≤ 2

• rank ([DM,−M]) ≤ 3.

Under the above conditions, the solution(s) can be found as follows

1. Perform the SVD of M

M = UV WH = XY H .

2. Select a transformation matrix A ∈ R2×2, such that

vec(A) ∈ ker ([DX,−X]) .

3. The target factorization reveals the solution vectors:

XA = [c,Dc]
Y A−H = [m1,m2] .

6.3 The optimal problem

If a noisy phase and amplitude modulated signal is studied, there is no way to find
a closed-form solution to the optimization problem. In the best case-scenario, some
elements can be studied in order to characterized the space where the solutions are,
such as the conditions of existence of the solution, the shape of the solution space, the
number of minimums, the existence of a global minimum . . .
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In order to solve this optimization problem, descent techniques have to be imple-
mented. One need to first compute the gradient of the scalar function C(c,m1,m2)
with respect to the real and imaginary part of each variables

For more generality, let consider a more general formulation of the rank-2 problem

arg min
c1,c2,m1,m2

C(c1, c2,m1,m2) =
∣

∣

∣

∣c1m1
H + c2m2

H −Ms

∣

∣

∣

∣

2

Fro
,

where in the specific case of phase and amplitude demodulation, the parameters are set
as c1 = c and c2 = Dc.

6.3.1 Gradient computation

In the general formulation defined above, the implementation of the gradient of C can
be reduced to the computation of an equivalent problem. By splitting C into two sub-
problems w.r.t. the variables with the same index, i.e. 1 or 2, we obtain a rank-1 formula
which is much simpler. As variables c2 and m2 can be considered constant against c1
and m1, the two sub-problems can then be rewritten as

argmin
c1,m1

C1(c1,m1) =
∣

∣

∣

∣c1m1
H −M1

∣

∣

∣

∣

2

Fro
,

where M1 = c2m2
H −Ms and

argmin
c2,m2

C2(c2,m2) =
∣

∣

∣

∣c2m2
H −M2

∣

∣

∣

∣

2

Fro
,

where M2 = c1m1
H − Ms. This transformation is allowed as long as each variable is

independent from the others.
The main idea at this stage is to study the gradient of the global problem by starting

with its rank-1 version. Once both rank-1 gradient are computed (i.e. ∇C1 and ∇C2),
they can then be stacked into a single vector expressing the global gradient.

∇C =

[

∇C1
∇C2

]

.

At this stage, we have computed a global gradient for a general rank-2 problem with
independent variables. But in our case, we have a link between two variables. Which is
why we define a transformation functionHwhich allows to turn our 3-variables problem
into a 4-variables problem.

H





c

m1

m2



 →









c

m1

Dc

m2









.

The transformation matrix H is built according to the following scheme

H =





Id
2(n+p)×2(n+p)

0
2(n+p)×2p

Dd 0
2(n+p)×4p

0
2p×2(n+p)

Id
2p×2p



 ,
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where matrix Dd is defined as Dd =

[

ℜ(D) −ℑ(D)
ℑ(D) ℜ(D)

]

.

It now possible to compute the gradient of the 3-variables problem using the chain
rule on the new cost function L.

L = C ◦ H ⇐⇒ L





c

m1

m2



 = C



H





c

m1

m2







 .

∇L = HH∇C. (6.16)

Now, we will expand the complete detail of the rank-1 gradient computation. The rank-1
problem is written as :
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. All variables are complex, which brings us to the following notations: M =MR + jMI

(resp.c and m).
The problem is developed with the complex notation below:
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As we are interested in estimating the gradient of the previous optimization problem,
the terms which are independent from the variables c and m can be ignored.
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= ||cR||2 ||mR||2 + ||cR||2 ||mI ||2 + ||cI ||2 ||mR||2 + ||cI ||2 ||mI ||2 .

The new optimization problem can be expressed as:

CR :
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The next step is to calculate the partial derivatives w.r.t each variable of the problem,
i.e. cR, cI , mR and mI .
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The gradient can though be expressed as:
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. (6.17)

6.3.2 Resolution method

Based on the gradient computation as we have defined previously, we have developed
several descent algorithms in order to estimate the three unknown vectors. In this work
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we will present you two different algorithms. The first algorithm is called Line search:
it basically looks for the best descent step solving a polynomial. Here all the vectors are
estimated at the same time. The second one is called alternated descent. It is based on
a gradient descent too, but this time, the product variables are separated into two parts
that are estimated independently and repeatedly.

Line search Algorithm

In order to solve this optimization problem, we compute a gradient descent with a line
search assimilated method. The gradient is implemented considering the 3 variables we
are interested to estimate c,m1 andm2. Then a polynomial of degree 4 is implemented
from the cost function. The descent step value is chosen from the minimum root of
the polynomial previously computed. The gradient is implemented for each step of the
optimization.

Algorithm 3. Given two known matrices M ∈ Cn×p and D ∈ Cn×n, and three unknown

vectors c ∈ Cn×1, m1 ∈ Cp×1 and m2 ∈ Cp×1 where n and p are the dimensions of vectors

c and m respectively. The following process is repeated until a satisfying error threshold is

reach.

1. Compute the gradient w.r.t. the full unknown vector,

2. Vectors c, m1 and m2 will vary in the direction of the gradient of the cost function,

3. Computation of the polynomial coefficients,

4. Choosing of the root minimizing the polynomial,

5. Incrementation of the estimated vector,

6. Update of the reshaped estimated vectors

We will detail some of the algorithm steps here. Step 2 is called vector variation, and
is mere splitting the variation vector obtained with the gradient computed during step
1 Eq. 6.18 into three parts corresponding to the parameters to be estimated.

~∇C =



















~∇CcR
~∇CcI
~∇Cm1R

~∇Cm1I

~∇Cm2R

~∇Cm2I



















(6.18)

∆u = ~∇CcR + i~∇CcI
∆v1 = ~∇Cm1R + i~∇Cm1I

∆m2 = ~∇Cm2R + i~∇Cm2I .

(6.19)

In order to chose the descent step of the optimization, we express the cost func-
tion as a 4th degree polynomial depending on a constant parameter α. The polynomial
computation of step 3 is given in the Appendix 2.
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Two simulations have been run to measure the method performances on the estima-
tion of all parameters vectors. As a first step, the algorithm is studied for a matrix M

built with known vectors c,m1 andm2, such asM = cm1
H+Dcm2

H . The initialization
of the gradient descent is given by the solution with an additive Gaussian noise.

Simulation 1 The initial error on the initialization is set to 1e−3.

Remark 33. The initialization error may seem small to the reader when compared to the

amplitude modulation, that is true. However, when compared to the phase modulation

values, it is very important.

We first look at the global evolution of the reconstruction error for the global descent
as illustrated by Figure 6.1 and the first 1000 descent steps in Figure 6.2.

Figure 6.1: Reconstruction error of the estimated vectors

Figure 6.2: Reconstruction error of the estimated vectors zoom on the 1000 first steps

One first thing to note is that the algorithm does not converge as quickly as we
thought it would. On the contrary, after reaching a certain error value, it seems not
to descent anymore. This is not true, the process continue to go down but at a very low
speed.

We also the descent step values, in order to observe the behavior of the algorithm.
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Figure 6.3: Descent steps

We can see the optimal descent step values chosen by the algorithm are very small
and draw an almost symmetric pattern. We do not have an explanation for the oscillating
behavior.

Now we get interested in the evolution of the values estimated for the vector c. As
the final space in which the solution is living is of very high dimensions, we look at the
projection on the line of its two first principal components, for the last 500 000 steps of
the descent:

Figure 6.4: Evolution of the vector c along the plan stem from the two PC

Figure 6.5 represents the evolution of the values estimated for the vector c projected
on the line of its two first principal components, for the last 250 000 steps of the descent:
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Figure 6.5: Evolution of the vector U

In order to have a better understanding of the algorithm behavior, we want to have
a visual representation of the trajectory given by all the obtained values. To do so, we
plot the the projection of the estimated value on the three first principal components for
c and m for the first 250 steps, when the descent is the quickest.

The evolution of the values estimated for the vector c projected on the space of its
three first principal alone is represented in Figure 6.6 while Figure 6.7 adds some values
of the cost function chosen randomly.

Figure 6.6: Projection of the descent on the space given by the three first principal
components
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Figure 6.7: Projection of the descent on the projection space with some randomly chosen
values of the cost function

The same representation is done for the vector m in Figures 6.8 and 6.9.

Figure 6.8: Projection of the descent on the space given by the three first principal
components

Figure 6.9: Projection of the descent on the projection space with some randomly chosen
values of the cost function
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For the second vector, we see that the descent values seem to ”live" in a plan more
than a 3D volume. A representation in the plan given by the two PC is illustrated by
Figure

Figure 6.10: Projection of the descent on the plan given by the two first principal com-
ponents

Figure 6.11: Projection of the descent on the projection surface with the values of the
cost function

It is clearly visible that the algorithm is going in the direction of the minimum of the
space, but when a valley is reach, it slows down a lot.

Simulation 2 For the second simulation, the problem is the same but with a different
initialization. The same representations as the ones of simulation 1 have been illustrated.
Initial error on the initialization = 1e−3

Evolution of the reconstruction error :
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Figure 6.12: Reconstruction error of the estimated vectors

Evolution of the descent step values:

Figure 6.13: Descent steps

Evolution of the values estimated for the vector c projected on the space of its three
first principal components:

Figure 6.14: Projection of the descent on the space given by the three first principal
components
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Figure 6.15: Projection of the descent on the projection space with some randomly cho-
sen values of the cost function

Evolution of the values estimated for the vector m projected on the space of its three
first principal components:

Figure 6.16: Projection of the descent on the space given by the three first principal
components

Figure 6.17: Projection of the descent on the projection space with some randomly cho-
sen values of the cost function
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Generally speaking, there is no major difference between the results of the two simu-
lations. The obtained parameter vectors, i.e. c andm are approximately well estimated.
The main concern is that we have not proved that the algorithm always converge.

Alternated descent Algorithm

To solve the optimization problem, in this second algorithm, two steps are considered:
one part (vector c) of the product is estimated while the other one is considered con-
stant and then the second part (vectors m1 and m2) of the product are estimated while
considering the the latter constant.

Algorithm 4. Given two known matrices M ∈ Cn×p and D ∈ Cn×n, and three unknown

vectors c ∈ Cn×1, m1 ∈ Cp×1 and m2 ∈ Cp×1 where n and p are the dimensions of vectors

c and m respectively. The following process is repeated until a satisfying error threshold is

reach.

1. Vector c estimation with m1 and m2 known,

2. Update of the reconstruction error,

3. Vectors m1 and m2 estimation with c known,

4. Update of the reconstruction error,

and repeat the process until a satisfying reconstruction error is obtained.

We have done the two same simulations (same initialization point and same ground
truth vectors) with the alternating descent to compare the results in terms of number of
iteration needed to reach the reconstruction error wanted and the speed of the descent.

Simulation 1 Number of iteration needed to reach a relative error of reconstruction of
10−5 : 2410.

Evolution of the reconstruction error:

Figure 6.18: Reconstruction error of the estimated vectors

Evolution of the values estimated for the vector c projected on the space of its three
first principal components:



102 CHAPTER 6. PHASE AND AMPLITUDE DEMODULATION

Figure 6.19: Projection of the descent on the space given by the three first principal
components

Figure 6.20: Projection of the descent on the projection space with some randomly cho-
sen values of the cost function

Evolution of the values estimated for the vector m projected on the plan of its two
first principal components:

Figure 6.21: Projection of the descent on the plan given by the two first principal com-
ponents
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Figure 6.22: Projection of the descent on the projection surface with the values of the
cost function

Simulation 2 Number of iteration needed to reach a relative error of reconstruction of
10−5 : 217.

Evolution of the reconstruction error:

Figure 6.23: Reconstruction error of the estimated vectors

Evolution of the values estimated for the vector c projected on the space of its three
first principal components:
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Figure 6.24: Projection of the descent on the plan given by the two first principal com-
ponents

Figure 6.25: Projection of the descent on the projection surface with the values of the
cost function

Evolution of the values estimated for the vector m projected on the plan of its two
first principal components:

Figure 6.26: Projection of the descent on the space given by the three first principal
components
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Figure 6.27: Projection of the descent on the projection space with some randomly cho-
sen values of the cost function

The alternated descent algorithm has shown interesting properties regarding the
convergence. Indeed, for a given threshold, the estimation error has always reach a
smaller value.

6.4 Conclusion

Several points were addressed in this chapter. First of all, the class of both amplitude
and phasemodulated signals has been cast into the samematrix framework as amplitude
modulated signals only. This reformulation allowed us to express phase and amplitude
demodulation either as an exact matrix decomposition (noiseless case) or as an opti-
mization problem (noisy case).

For the exact case, we were able to prove that a solution could be computed under
some necessary and sufficient conditions. For the optimal case, we proposed two differ-
ent algorithms based on a gradient computation, namely the Line search algorithm and
the alternate descent algorithm.

Based on simulations, it seems that the Line search algorithm is faster at the begin-
ning of the descent but then stay stuck into a minimum and do not converge to the
solution. However, the alternated descent algorithm is more efficient, as it converges to
the solution.

We have to say that, we do not have a precise idea of the structure of the solution-
space. We do not know if there is a global minimum, nor even if there is a finite number
of local minimums. Those questions are very interesting and will surely be part of a
future work.
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Chapter 7

The planetary gearbox case

Previous chapter presented demodulation issues raised by the study of fixed-shaft gear-
ing systems. Now we go to a different configuration briefly described in the general
introduction on gearboxes of Chapter 1: epicyclic gearing.

These devices are of major importance to aeronautics as they can be found in heli-
copters and more recently in some aircraft engines. As their functioning is very differ-
ent and way more complicated than the one of classical gearing systems, both dedicated
surveillance systems and signal processing techniques have to be developed. We will see
in this chapter that the matrix representation of a spectrum we introduced previously
helps analyzing the models currently used to describe vibration signals produced by this
family of gearboxes. More precisely, it allows in some cases distinguishing the respective
contribution of each planetary wheel to the total signal measured by a static sensor.

7.1 Introduction

7.1.1 Functioning of planetary gearing systems

The specificity of a planetary (or epicyclic) gear lies in its arrangement, which is going
to be briefly recalled here.

Remark 34. For the anecdote, epicyclic gears have been named after their earliest applica-

tion, invented by the Greek about 500BC, that is the representation of the planets’s move-

ments as epicycles, i.e. circles moving in a circular orbit. This theory has been formalized

by Ptolemy in the Almagest in 148AD [83].

Unlike fixed-shaft gearing systems that usually have parallel axes, except for bevels
gears that have an angle between input and output shafts, in the case of planetary gears,
planets, sun and ring gears are coaxial. This particular arrangement allows systems
with reduced overall dimension, which can result in significant space savings. But the
major interest is that planetary gearing systems provide both higher power density than
comparable parallel axis gear trains and increased torque capability as the load is shared
among the multiple planet gears.

In plain terms and as illustrated in Figure 7.1, planetary gearing systems are com-
posed of a central sun gear around which several planet gears rotate. Those gears are
identical and equally spaced around the sun gear. Planet gears are also meshing at the
same time with the ring gear and are linked together by a carrier plate. In order to

107
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Figure 7.1: Illustration of a planetary/epicyclic gearing system with the name of its
components.

be operational, one element has to be fixed. Depending on the chosen element, it is
possible to obtain two different mountings:

• planetary gear when the carrier plate is fixed,

• epicyclic gear when the ring gear is fixed.

7.1.2 Vibration signal of planetary gearing systems

Generally speaking and whatever be the considered type of gearbox, if the tooth profiles
of a gear transmission were perfect and the teeth were considered as rigid bodies, then
no vibration would be generated during the rotation of the system. But in reality tooth
profiles differ a lot from perfection, which generate vibrations.

Moreover we have seen that by construction, each planet gear meshes simultaneously
with both the ring and the sun gears, creating two vibration sources per planet gear, and
as all of them are meshing at the same time, this kind of gearing system therefore has a
multitude of vibration sources emitting all at once.

The vibrations are usually measured in the outer part of the ring gear since it is the
closest access to the vibration sources, as represented in Figure 7.2. From the sensor’s
point of view, the global measured vibration can be seen as a sum of each planet gear
contribution. Those are supposed to be approximately identical but delayed due to the
spatial shift of planet gear positions.

During the acquisition, the planet gears revolve around the sun gear. This makes the
contact points between each planet gear and the ring gear, i.e. the source location of the
vibrations, to follow the internal circumference of the ring gear, as illustrated in Figure
7.3.

As the sensor remains steady, the distance between the sensor and the sources of
the vibrations is thus variable during the rotation of the system. The variable distance
produces a variable transmission path, which turns into an amplitude modulation effect
on each planet periodic vibration. Hence, the sensor experiences an increase in the
amplitude of the vibration as the ith planet gear approaches the sensor position and a
decrease in the amplitude of the vibration, as the planet gear moves away from it. One
rotation period of the global vibration signal is illustrated by Figure 7.4. It is possible to
see that the global vibration signal is modulated by the passage of each planet gear.
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Figure 7.2: Representation of a measurement mounting

The structure of the vibration spectrum of planetary gear has been studied in [60].
The authors have classified vibration spectrum in four groups based on the planet dis-
tribution around the sun gear and the phase of gear mesh process.

Remark 35. Here the phase of the gear mesh process is defined as the ratio of the ring gear’s

number of tooth and the number of planets. The gear mesh process is stated in-phase if the
ratio is an integer number and out-of-phase if the ratio is not.

Quickly, the four groups of planetary gear transmissions are separated after those
characteristics:

• group A: Planetary gear transmissions with equally-spaced planet gears and in-
phase gear mesh processes. The spectrum presents lines at the gear mesh fre-
quency and harmonics. In addition, each of these lines presents a symmetrical
distribution of spectral lines.

• group B: Planetary gear transmissions with equally-spaced planet gears and out-
of-phase gear mesh processes. The spectrum presents no line at the gear mesh
frequency and harmonics. Additionally, an asymmetrical (in magnitude and fre-
quency) distribution of spectral lines is observed around the frequency axis defined
by the gear mesh frequency and its harmonics.

• group C: Planetary gear transmissions with unequally-spaced planet gears and in-
phase gear mesh processes. The spectrum presents non-zero magnitude lines at
the gear mesh frequency and harmonics. A symmetrical distribution of spectral
lines is present around the gear mesh frequency and its harmonics.

• group D: Planetary gear transmissions with unequally-spaced planet gears and out-
of-phase gear mesh processes. There is no typical vibration spectrum structure. It
can be stated that in this group transmissions will present a vibration spectrum
with non-zero magnitude lines at the gear mesh frequency and harmonics, each
with a magnitude-asymmetrical distribution of spectral lines.
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(a)

(b)

(c)

Figure 7.3: Illustration of the rotation of a planet around the sun gear and the vibration
generated relatively to the sensor position. (a),(b),(c): Relative position of the planet
gear and associated vibration signal in time domain

Faulty gear characteristics

As planetary gearboxes are used in particularly difficult conditions such as high load,
high rotation speed or extreme functioning conditions, they are also quickly susceptible
to wear and failures. The appearance of faults in the gear changes its kinematic and
brings new rotation frequencies, specific to the fault [74]. For an epicyclic gearbox with
N satellites, the values of these possible frequencies are:

where f ′
c, f

′
p and f ′

s are the fault frequencies and of the carrier plate, the planetary
gears and the sun gear respectively and Wr,Wp,Ws are the number of teeth of the ring
gear, planet gear and sun gear respectively.

Basically, epicyclic gear faults are similar to the ones of fixed-shaft gear and so are
the fault detection techniques: the main principle remains identical, i.e. use of spectral
or cepstral analysis, statistical indicators . . . , but some tricks are found in order to adapt
them to the specific characteristics of epicyclic gearing.
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Figure 7.4: Illustration of the global vibration signal generated by a planetary gear made
of 3 planet gears.

7.2 Modeling

Recently, planetary gearing systems rose an increasing interest as many industrial sys-
tems are equipped with it, such as wind turbines, helicopter engines, bucket wheels
excavators... which are critical equipment. Monitoring them properly requires having
good understanding of their functioning. That is why research have been made to pro-
pose representative modeling of planetary gear behavior. Plenty of models can be found
in the recent literature which, as fixed-shaft gearing systems, can be of several types:
lumped parameters, finite elements and mathematical modelings. In this section, some
references on these representations are briefly given and a new empirical approach is
proposed.

7.2.1 Vibration models in the literature

Planetary gear dynamics and vibration has been studied intensively by means of lumped-
parameter models. Figure 7.5 shows a typical 2-D lumped parameter modeling of a
planetary gear set introduced in [46]. Each gear has three degrees of freedom: angular
rotation and transverse motions in the x- and y-directions. Each gear mesh interface
and each bearing are modeled as a spring-damper system [33]. Other models have
been proposed previously to simulate dynamic vibrations. In [48] the proposed model
admits three planar degrees of freedom for each of the sun, ring, carrier and planets.
It includes key factors affecting planetary gear vibration such as gyroscopic effects and
time-varying stiffness, while in [36] the model includes several manufacturing errors
and assembly variations, and can accommodate tooth separations and time-varying gear
mesh stiffness.

Finite Element Modeling for spur gear has been extended to planetary gear to inves-
tigate its dynamic response [69]. This finite element/contact mechanics approach did
not require a highly refined mesh at the contacting tooth surfaces. That model has then
been used as a basis for further studies. For example, it has been used for the analysis of
quasi-static loads [47] and the root stresses [72] in planetary gears. Furthermore the ef-
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Figure 7.5: Dynamic modeling of a planetary gearbox using a 2-D lumped parameter
model.

fect of manufacturing errors [15] and wear [98] on planetary gear dynamics have been
both investigated to enhance fatigue mechanisms. Torsional effects have been deeply
investigated in [95] with models including gear mesh stiffness evaluation, crack and
spalling modeling and gear dynamic characteristics.

7.2.2 New vibration signal modeling

In the case of fixed-shaft gears, existing literature [52] proposes empirical models mostly
based on the shape of spectra obtained on real data. Such work has not really be con-
ducted for epicyclic gears, except in [60] where a sum of multiplicative signals is pro-
posed (one for each gear), encoding the increase and decrease of the intensity of the
contribution of each gear depending on its (varying) distance to the sensor. This model
reads:

s(tn) =
P−1
∑

p=0

smesh,p(tn)splanet,p(tn), (7.1)

with s(tn) the signal measured by the sensor, P the number of planet gears, smesh,p the
signal produced by the meshing of gear p and splanet,p the amplitude modulation due to
the distance between the meshing of gear p and the sensor. This model was used in [60]
to provide a convincing explanation of a counter-intuitive phenomenon observed on real
data : the meshing frequency is absent from the spectrum.

But looking at the peaks in spectra obtain from real data we see that some harmonics
of significant intensity are not explained by themodel of Eq. (7.1). Thus, we investigated
possible improvements ensuring the model predicts all frequencies observed in practice.
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Remark 36. It has to be noted that we are interested in the specific case of epicyclic gear

- and not planetary - as the distance between the sensor and meshing point varying over

time is pivotal to both the model of Eq. (7.1) and the one we propose in the remaining of

this section.

Building on the empirical approach leading to the classical model of fixed-shaft gear
vibration we first identify what combinations of the rotation frequencies of interest seem
to be present on the spectra obtained from real data then propose the simplest possible
model compatible with the presence of these harmonics.

Remark 37. The task is actually more complicated than in the case of fixed-shaft gears

as the superposition of 5 contributions creates artifacts on the spectrum. Thus, the Fourier

analysis has to be completed with an observation of the time signal. In particular, it can be

observed in the time domain that amodulation pattern is repeatedP times per planet carrier

period, with P the number of planets as on Figure 7.4. This pattern, easily interpreted as

an intensity variation due to the distance between a meshing and the sensor, is visible in

the time domain but completely hidden in the spectrum as all planet gears have the same

rotation frequency.

Using a visual identification of the spectrum’s lines, we have been able to pinpoint
the contribution of each epicyclic gear rotating element:

• lines at the meshing frequency

• modulations of the sun gear around the meshing frequency

• modulations of the planet gears around the meshing frequency

• carrier plate rotation frequency.

An interesting fact noticed looking deeper into the spectrum typical features is that there
are no frequency combinations between the sun and planet gears. This observation can
be translated mathematically as a pure additive relation between the sun and planet
gears lines, while the combinations between the meshing frequency and both the sun
and planet gears, imply a nonlinear relations the simplest model of which is a product.

Based on these observations of the spectrum and temporal signal, we propose amodel
for a planetary gearbox vibration s(tn) inspired by the empirical model of fixed-shaft
gearbox:

s(tn) =
P−1
∑

p=0

smesh,p(tn) (1 + scarrier,p(tn)) (1 + ssun,p(tn) + splanet,p(tn)) , (7.2)

where smesh,p(tn) represents the pth meshing component, scarrier,p(tn) the modulation at
the carrier plate frequency, ssunp

(tn) the sun gear rotation contribution to planet p and
splanetp(tn) the intrinsic contribution of planet gear p. Each involved temporal signal is
periodic, with the following periods:
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Figure 7.6: Overlay of the vibration spectrum computed from the experimental data and
from simulation data using the proposed model.

where Tc is the carrier plate period taken as the reference.
Figure 7.6 illustrates that the proposed model allows to identify every characteristic

peak in the vibration spectrum. However the magnitude are not estimated properly.
An immediate application of this model is predicting what peaks should be affected

by a fault on the carrier, on the sun gear or on a planet gear. But this work has been
jeopardized by the lack of usable real data. Instead, we provide in the next section
a theoretical analysis, based on the matrix representation of spectra we introduced in
Chapter 4, of the possibility to separate the contributions of the planetary gears.

7.3 Planet separation

When studying fault detection in planetary gearbox, a crucial topic is the localization
and identification of the faulty gear. We have seen in the previous section that a plane-
tary gearbox is made of three types of gears, each of them impacting specific frequencies.
This observation allows finding out if a detected fault occurred on the sun gear, on the
ring gear or on a planet gear. However, when the fault is on the planet gear, the identi-
fication of the faulty one becomes tricky, as we have seen that their individual spectral
contribution are overlaid. Moreover, classical fault detection methods are designed for
a single meshing signal and cannot be transposed if several of them are combined. For
instance, the ration between the meshing harmonic and its side bands is usually consid-
ered a good indicator of the health condition of a fixed-shaft gear. There are two ways
to address this issue. The first one is designing from scratch new indicators for epicyclic
gears. The second one, to be discussed below, is isolating the contribution of each gear.

7.3.1 Formalization of the planet separation problem

The possibility to break down the vibration signal produced by a planetary gearbox will
be studied in the simplified framework proposed in [60], where the contribution of each
gear is simply a periodic signal having the period of the meshing, as in Eq. (7.1). Let us
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recall this model already written above in Eq. (7.1):

s(tn) =
P−1
∑

p=0

smesh,p(tn)splanet,p(tn), (7.3)

where smesh,p(tn) and splanet,p(tn), which denote respectively the signal produced by the
kth gear and the modulation of this signal encoding the energy loss between the meshing
of this gear and the sensor, are two periodic signals with respective frequencies fm and
fc. While the P meshing signals smesh,p can be different, the amplitude modulations
splanet,p(tn) are related the physical position of the gear only, and thus are related through
a mere time shift:

splanet,p+1(tn) = splanet,p(tn + Tc/P ), (7.4)

where P is the number of planet gears and Tc the period of the carrier rotation.
A signal of this kind is displayed on Fig. 7.4. To describe the model in a more wordy

manner we know that all planet gears contribute to the global vibration signal although
there is not direct way to identify individual contributions. From the point of view of the
sensor mounted on the ring gear, the measured signal is a weighted sum of the vibrations
generated by each gear, the weight assigned to a gear becoming higher when the gear
is close. We obtain the exact separation problem 7 below:

Problem 7 (Exact planet separation). Given a discrete signal (s(tn))n∈[[1,N ]] (with N ∈ N)

of sampling period Ts and duration Ttot = N · Ts, given an integer number P stating for

the number of planet gears, find P carrier signals sc,p(tn) and a modulation signal sm(tn)
verifying for any n ∈ [[1, N ]]:

s(tn) =
P−1
∑

p=0

sc,p(tn)sm(tn + p
Tc
P
) (7.5)

This separation problem recalls the first-order phase and amplitude demodulation of
Eq. (6.4) (Chapter 6): a signal has to be broken down into a sum of products verifying
a given linear condition. The specificity here, beyond the higher number of components
involved, is that the linear condition to be respected by the components is a time shift
instead of the second component being the time derivative of the first one.

Remark 38. Planet gears meshing signals cp(tn) are supposed to be identical if all planet

gears are interchangeable.

In order to solve problem 7, we introduce a general methodology based on the matrix
representation introduced in Chapter 4.

7.3.2 Matrix formulation of the separation problem

As shown in Chapter 4, the matrix representation of a spectrum provides a comfortable
framework for analysis of modulated signals. Let us see how it can help solving Problem
7. First, lets us use it to reformulate the problem:

Proposition 8. Let s(tn) be a time signal and Ms the matrix representation of its spec-

trum for carrier frequency fc and modulation frequency fm. Let sm, sc,0, . . . , sc,P−1 can-

didate modulation and carrier signals for Problem 7 respecting Hypotheses 1 and 2 and
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s̃rm, s̃rc0 , s̃rcP−1
their reduced spectra as defined in the proof of Proposition 3. Then Eq.

(7.5) is equivalent to:

Ms =
P−1
∑

p=0

Sps̃rms̃
T
rcp ,

with S the diagonal “time shift” matrix defined by S[k, k] = exp(2iπkN/P ) and Sp the

power p of the matrix, representing p times the shift represented by S, which could also be

explicitly written as S[k, k]p = exp(2iπkpN/P ).

This reformulation of the problem answers the question of the uniqueness of the
decomposition in Problem 7 as shown by the proposition below:

Proposition 9. Let sm, sc,0, . . . , sc,P−1 be modulation and carrier signals verifying Hypothe-

ses 1 and 2. Denoting by s(tn) =
∑P−1

p=0 sc,p(tn)sm(tn+ pTtot

P
) their combination as in Prob-

lem 7, then the decomposition of s(tn) is not unique and the space of solutions regarding u
is a real vector space of dimension smaller than P .

Proof. Vectors u, vp and matrix S being centro-symmetric, all matrices SpuvTp are centro-
symmetric operators of rank 1 (as an R-linear operator). As a consequence, M is a
centro-symetric operator of (real) rank at most P , i.e., we have RankR(M) 6 P . But the
solution regarding u necessarily lies in ImR(M), which is aR−vector space of dimension
RankR(M), which proves the result.

Usually the bound given by Prop. 9 is accurate, i.e., ImR(M) does have dimension
P . A consequence of this fact is that distinguishing the contributions of P planet gears
requires P additional assumptions on the modulating function. note that in the case P =
1 we simply recover the classical result that amplitude demodulation can be performed
only up to an unknown factor, which can be circumvent impsing for instance that the
mean value of the modulation is 1.

7.3.3 Application to the analysis of the main gear configurations

Epicyclic gears can be classified depending of the number of planetary gears and we
will call “configuration” the number of gears and the position they are given on the
planetary carrier. As we will focus here on regular configurations, the number of planets
is sufficient to characterize the configuration. The initial motivation for this work was
monitoring of a 5-planet epicycle gear, but other configurations are also of interest and
will also be studied. Three of them will be considered: 2-planet, 3-planet and 5-planet
epicyclic gear systems. For all the above listed configurations, Proposition 9 is applied in
order to find out what additional information is required to achieve the decomposition.
A specific resolution method is then used for each particular case under study.

2-planets gearbox

Problem introduction For a 2-planets epicycle gear, the two planet gears are opposite
to each other as illustrated by Figure 7.7.

Based on the general formulation in Eq. 7.1, the temporal vibration signal expressed
at the sensor location can be formulated as

s(tn) = smesh,1(tn)splanet(tn) + smesh,2(tn)splanet

(

tn +
Tc
2

)

,
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Figure 7.7: General draw of a 2-planets epicyclic gear with equispaced planet gears.

where splanet(tn) represents the modulation due to the distance to the sensor, smesh,i is
the vibration of the ith planet gear and index i defines each planet gear, i.e. i takes values
1 or 2.

Conditions As it is expressed here, according to Proposition 9 components of the signal
s(tn) cannot be recovered. In order to overcome the problem we propose setting two
additional conditions to make the solution unique. The first one, C1, is the modulation
reaching the value 1 when the planetary gear passes by the sensor and the second one,
C2, is the modulation reaching zero when the planetary gear is at the opposite of the
sensor. Mathematically, it can be written as:

{

C1 : splanet(0) = 1,
C2 : splanet(Tc/2) = 0,

(7.6)

Then, the procedure is quite simple: we parameterize the space of possible solutions
by two scalars (see Prop. 9) then write down conditions C1 and C2 and obtain two
linear equations verified by the parameters. More precisely, let (m1,m2) a basis of the
space of possible modulation functions allowing reconstructing the signal s(tn). The true
modulation we are looking for takes the shape splanet = λm1 + µm2, which we inject in
C1 and C2 to obtain the system of equations:

{

λm1(0) + µm2(0) = 1
λm1(T/2) + µm2(T/2) = 0.

Solving this system for λ and µ gives the sought modulation splanet and eventually the
signals smesh,1 and smesh,2

Simulation A simulation of that system has been done with Matlab where the two
planet gears are positioned diametrically opposite the one to the other. The resolution
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of the problem is done in two-step: first the estimation algorithm is run on a simulated
signal to evaluate its capability to retrieve the modulation and gearmesh of each planet.
Then some noise is added to the same simulated signal to evaluate the algorithm reli-
ability to noise, as in real conditions planetary are submerged under the surrounding
signals.

In the following simulations we defined the main parameters as, the gearmesh fre-
quency is set to 100Hz, the modulation frequency is 4Hz, the sampling frequency is
5kHz, the number of harmonics of the gearmesh and the modulation are 10 and 8 re-
spectively. In the noisy simulation, a white Gaussian noise is added to the modulated
signal, which generates a Signal-to-noise ratio of 5dB. Figure 7.8 illustrates each gen-
erated signal, i.e. the gearmesh, the modulation and the modulated signal while Figure
7.12 gives the same information with in addition the noise signal and the its combination
with the modulated signal.

Figure 7.8: Simulation of the temporal signal numerically generated. From top to bot-
tom: Carrier signal, Modulation signal and Global signal set according to Eq.7.2.

Figures 7.9,7.10 and 7.11 below represent the temporal representations of the re-
sulting estimation for each planet gearmesh and modulation. As we can see, there are
no differences between the estimated signals and the original ones.

Below, we repeat the same simulation but with an additive white Gaussian noise.
On Figures 7.13, 7.14 and 7.15 it is clearly visible that the estimation is very satisfy-

ing: the error is less than 2%.

3-planets gearbox

problem introduction For a 3-planets epicycle gear, planet gears are set such as illus-
trated in Figure 7.16 and the temporal vibration signal expressed at the sensor location
is formulated as

s(tn) = smesh,1(tn)splanet(tn) + smesh,2(tn)splanet(tn + Tc/3) + smesh,3(tn)splanet(tn + 2Tc/3),
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Figure 7.9: Overlay of the estimated signal with the theoretical one (top) and estimation
error representation on the temporal representation (bottom).

Figure 7.10: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Conditions As in the previous configuration, some additional information on the am-
plitude modulation due to the distance to the sensor has to be introduced in order to
obtain enough equations. And as there are 3 planets we need 3 conditions. We propose
imposing a symmetry condition: the amplitude decay is only due to the distance to the
sensor. Mathematically, for each planet gear the conditions can be expressed as:







C1 : splanet (0) = 1
C2 : splanet

(

Tc

2

)

= 0
C3 : splanet

(

Tc

3

)

= m
(

2Tc

3

)

,
(7.7)

where, we recall, Tc is the period of the carrier rotation. Thus, Tc

2
is the instant in the

carrier rotation when the meshing point and the sensor are diametrically opposite and
Tc

3
and 2T

3
are at one third and two thirds of the ring gear positions with respect to the

sensor location respectively.
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Figure 7.11: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.12: Simulation of the temporal signal numerically generated. From top to
bottom: Carrier signal, Modulation signal, Noise signal and Overlay of noisy signal set
according to Eq.5.1 and the modulated signal only.

The procedure to extract the modulation u from the measured signal is similar to
the on used in the 2-planet case: we parameterize the space of possible solutions by
two scalars (see Prop. 9) then write down conditions C1, C2 and C3 and obtain three
linear equations verified by the parameters. More precisely, let (c1, c2, c3) a basis of the
space of possible modulation functions allowing reconstructing the signal s(tn). The true
modulation we are looking for takes the shape sm = λm1 + µm2 + νm3, which we inject
into C1, C2 and C3 to obtain the system of equations:






λm1(0) + µm2(0) + νm3(0) = 1
λm1(T/2) + µm2(T/2) + νm3(T/2) = 0
λm1(T/3) + µm2(T/3) + νm3(T/3) = λm1(2T/3) + µm2(2T/3) + νm3(2T/3) = 0

(7.8)
Solving this system for λ, µ and ν gives the sought modulation sc and eventually the
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Figure 7.13: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.14: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

signals sc,1, sc,2 and sc,3.

Simulation As in the 2-planet gear epicyclic system, some simulations have been run
with exact same parameters and conditions, the only difference being the third planet
gear seen as a third couple of modulation/gearmesh in the signal.

Figures 7.187.197.21 below represent the temporal representations of the resulting
estimation for each planet gearmesh and modulation. As we can see, there are no dif-
ferences between the estimated signals and the original ones.

Then we repeat the same simulation but with an additive white Gaussian noise. Fig-
ures 7.237.247.207.26 show that the estimation is also very satisfying: even if the error
increased a little, it is still less than 3%.
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Figure 7.15: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.16: General draw of a 3-planets epicyclic gear with equispaced planet gears.

5-planets gearbox

problem introduction For a 5-planets epicycle gear, planet gears are set such as illus-
trated in Figure 7.16 and the temporal vibration signal expressed at the sensor location
is formulated as

s(tn) =smesh,1(tn)splanet(tn) + smesh,2(tn)splanet(tn + Tc/5) + smesh,3(tn)splanet(tn + 2Tc/5)

+ smesh,4(tn)splanet(tn + 3Tc/5) + smesh,5(tn)splanet(tn + 4Tc/5),

Conditions For such a configuration, as there are more signals to estimate from the
mixture, more conditions are logically needed than for the previous 3-planet config-
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Figure 7.17: Simulation of the temporal signal numerically generated. From top to
bottom: Carrier signal, Modulation signal and Global signal set according to Eq.7.2.

Figure 7.18: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

uration. We can still use the two conditions set for the 2-planet configuration then
for the 3-planet configuration, namely: the modulation takes value one at the sensor
location and is null at the sensor opposite point. We add two symmetry conditions:
sn(Tc/5) = sn(4Tc/5) and sn(2Tc/5) = sn(3Tc/5), and end up with 4 conditions.

Remark 39. The symmetry is now encoded by two equations sn(Tc/5) = sn(4Tc/5) and
sn(2Tc/5) = sn(3Tc/5). This only encodes symmetry between points Tc/5 and 4Tc/5 on

one hand, and between 2Tc/5 and 3Tc/5 on the other hand. So an idea could be to

use other points (than Tc/5 and 2Tc/T ) to add as many conditions as we need. Actu-

ally it does not work because the conditions we ad that way are redundant. Indeed, our

search space for the sequence splanet(tn) contains splanet(tn) and all linear combinations of

splanet(tn), splanet(tn + Tc/5), splanet(tn + 2Tc/5), splanet(tn + 3Tc/5), splanet(tn + 4Tc/5) is

symmetrical. If splanet is symmetrical, so are all combinations of the form αsplanet(tn) +
βsplanet(tn + Tc/5) + γsplanet(tn + 2Tc/5) + γsplanet(tn + 3Tc/5) + βsplanet(tn + 4Tc/5). In
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Figure 7.19: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.20: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

other words, the space of symmetric candidates for splanet is 3-dimensional. This means that

regardless of the number of symmetry conditions we add, the remaining space of candidates

still has dimension 3. Thus, once the space of solutions has been reduced from 5 to 4 using

2 symmetry conditions, all the information present in symmetry of the modulation function

has already been extracted.

Due to Remark 39 above we don’t have enough information to recover the original
signals. More precisely, the space of candidate signals has dimension 1. Let us obtain
a parametric description of this space of candidates, denoting by an arbitrary real α
the value of splanet at time 3Tc/10 then setting the additional condition sm(3Tc/10) =
α. When α describes R, the resolution solution will describe the space of remaining
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Figure 7.21: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.22: Simulation of the temporal signal numerically generated. From top to
bottom: Carrier signal, Modulation signal, Noise signal and Overlay of noisy signal set
according to Eq.5.1 and the modulated signal only.

candidate signals. In brief, we have now the five conditions we need:























C1 : splanet (0) = 1
C2 : splanet

(

T
2

)

= 0
C3 : splanet

(

T
5

)

− splanet
(

4T
5

)

= 0
C4 : splanet

(

2T
5

)

− splanet
(

3T
5

)

= 0
C5 : splanet(3T/10) = α

(7.9)

Let m1,m2,m3,m4,m5 be the time counterparts of a basis of the image of Ms as an R-
linear operator: the sought modulation can we written under the shape sm =

∑5
i=1 λimi.

Introducing this expression into the conditions (7.9) we obtain. the following set of
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Figure 7.23: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.24: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

equations:
5

∑

i=1

λimi (0) = 1

5
∑

i=1

λimi

(

T

2

)

= 0

5
∑

i=1

λi

[

mi

(

T

5

)

−mi

(

4T

5

)]

= 0

5
∑

i=1

λi

[

mi

(

2T

5

)

−mi

(

3T

5

)]

= 0

5
∑

i=1

λimi(3T/10) = α
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Figure 7.25: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.26: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Using the vector notation Λ = [λ1, λ2, λ3, λ4, λ5]
T , the set of conditions above can be

re-written under the following shape:

CΛ = [1000α]T

⇔ Λ = C−1 [1000α]T .

We noticed that the value of parameter α has a great influence on the estimation
of the signals: when the chosen value moves off its true value, the shape of estimated
signals changes a lot. An idea to find the true value of α is imposing that the value of
the modulation decreases when the distance to the sensor increases. The time value of
the modulation can be obtained as BΛ, with B = [mT

1 ,m
T
2 ,m

T
3 ,m

T
4 ,m

T
5 ] the matrix the

columns of which are our basis of the space of solutions. Denoting byD the (N −1)×N
the difference operator returning the time difference between 0 and Tc/2 and its opposite
on the rest of the vector (i.e. returning the vector of all variables we want to be positive)
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Figure 7.27: General draw of a 5-planets epicyclic gear with equispaced planet gears.

we end up with the following condition:

DBΛ > 0

or equivalently:

DBC−1 [1000α]T > 0

Such a condition takes the form of an inequality, not an an quality, and thus only allows
deriving an interval where the parameter α lives. An estimate of the signal can then be
obtained taking for instance the middle of the interval.

Simulation As for the two previous study-cases, the same simulations have been run.
On Figure 7.29 and 7.30 we can see that the estimation is not as good as the 2-planets

nor the 3-planets systems, but knowing how complex is such as gearbox, the results are
quite satisfying.

However, unlike the two previous simulations, this time there is an issue regarding
the reproducibility of the estimation. Indeed for some reason, sometimes the algorithm
does not estimate the proper signal but its opposite. We presently do not have any
appropriate explanation for this issue, but we guess that it is due to the fact that we
could not define enough conditions on the signal.

On the noisy simulation, we observe the exact same phenomenon.
We observe in the noisy simulation that when the sign is correct the estimation is

satisfying.
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Figure 7.28: Simulation of the temporal signal numerically generated. From top to
bottom: Carrier signal, Modulation signal and Global signal set according to Eq.7.2.

Figure 7.29: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

7.4 Discussion on the applicability to more complex

models

7.5 Conclusion

In this Chapter we have presented the epicyclic gearing system. We have first recalled
generalities about its functioning and especially detailed information regarding the
mechanism that produce vibrations. Some models found in the literature have been
briefly presented and a new empirical modeling have been proposed in order to define
vibration signal originating from epicyclic gearing in a similar way as fixed-shaft gear-
box. Based on this new modeling and on the previous multi-carrier amplitude demodu-
lation, we adapted the demodulation to epicyclic gearing vibration in order to estimated
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Figure 7.30: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.31: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

all couples of gearmesh/modulation generated by each planet passage in front of a sin-
gle sensor. Three different systems have been studied and simulated in order to test the
method. For both 2-planets and 3-planets systems, the estimation is very satisfying even
in noisy situation as the relative error does not exceed 3% of the global signal energy.
For the 5-planets system, we have not been able to find enough independent conditions
that would enable us to estimate properly the signals. Future work can go into three
directions:

1. We designed a method for the exact case then applied it in the presence of noise
without modification although it does not solve the optimal decomposition prob-
lem. The latter could be addressed using optimization algorithms similar to those
used in Chapter 6.

2. We only considered one sensor although using several of them could bring more
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Figure 7.32: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.33: Simulation of the temporal signal numerically generated. From top to
bottom: Carrier signal, Modulation signal and Global signal set according to Eq.7.2.

information helping the decomposition.

3. We used a simplified model where the signals from the 5 planet gears have the
frequency of the meshing, i.e., they are not affected by planet and sun rotations.
The framework we propose can be extended to this case: the matrix representation
of the spectrum simply has to include all combinations of the meshing, sun and
gear frequencies. Only one case is problematic: if two different combinations of
these frequencies overlap.
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Figure 7.34: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.35: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).
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Figure 7.36: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).

Figure 7.37: Overlay of the estimated signal with the theoretical one (top) and estima-
tion error representation on the temporal representation (bottom).
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Part III

Application to gearboxes
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Chapter 8

Applicability to fault detection

In the present Chapter, a possible use of the multi-carrier amplitude demodulation is
going to be presented. We recall that the starting point of this whole work was about
gearbox monitoring, and more especially how to enhance incipient fault detection so as
to be able to predict how long will the system be able to be operating and thus to plan the
system’smaintenance. The impact of gearbox faults on the spectrum is going to be briefly
recall, then we will present how we apply the proposed demodulation algorithm on real
data. Two points are going to be studied, first by comparing the classical demodulation
technique with our optimal demodulation algorithm and second we will compare with
some usual indicators how optimal demodulation allows to detect fault earlier than other
techniques.

8.1 Fault detection using themulti-carrier amplitude de-

modulation

Remainder on faults We have seen in Chapter 1 that there are several class of faults
that may happen to gearbox. Some are usual and come with the system getting older,
such as wear, but other may happen suddenly and are the sign of a malfunctioning. Both
class of fault bring interesting information about the system and are worth be detected.
On one hand, in order to be able to better plan maintenance, it is important to evaluate
which stage of wear the system has reach. On the other hand, sudden changes in any
monitored signal due to incipient fault that may lead to failure are very important as
they may severely damage other pieces of the system, which could get the whole system
to break.

In the case of power transmission systems, sizing of gearbox is designed such that it
should be one of latest system to be damaged. That is why unexpected fault in gearbox
must be detected as early as possible.

We have previously seen that gear faults mainly affect the spectrum, which justifies
that many fault detection methods are based on spectral considerations, and so is our
method.

Proposed method In this work we got interested in one specific signal processing
method, namely demodulation, as it is widely used in the telecommunication but less
extended to mechanical systems. When applied on vibration signal, it allows to enhance
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fault detection of mechanical systems. An optimal amplitude demodulation algorithm
has been developed in the present work which has proved to be able to estimate product
components for simulated signals. Here we propose to adapt this technique for real
vibration signal originating from test-rig.

The multi-carrier demodulation performed on real test-rig dataset differs a little from
the demodulation done in the simulation, in the sense that there are some preliminary
processing techniques to be applied. The obtained algorithm is performed in several
steps, including basic and classical preprocessing steps. First the signal is usually or-
dertracked. With a tachometer signal (an encoder can be enough but less precise), the
vibration, or any signal under study is rearranged with respect to the gear rotation.
This has the effect of making the spectrum lines more ”peaky", indeed the demodulation
techniques , and more specifically multi-carrier demodulation are based on the Fourier
coefficient estimation, which means that the more precise is the spectrum computation
the better the estimation.

Once all those steps are done, the proper multi-carrier demodulation algorithm may
start. First frequencies of interest are selected, as well as the number of considered
harmonics. The vibration spectrum is then rewritten in the matrix tool. Thanks to a SVD
(or any low-rank approximation technique), two vectors are estimated, representative
of the gearmesh and modulations.

Remark 40. As we select the frequencies of interest, i.e. the rotation frequencies of the input

and output shafts, our demodulation techniques performs a highly selective filter, which

allows to remove a huge amount of background noise along with uninteresting frequencies,

i.e. bearing frequencies, electrical component . . .

Remark 41. To enhance even more the shape of the spectrum lines, it is possible to cut the

signal in order to have a integer number of the gearbox great period.

The amplitude demodulation computed here has been described in Algorithm 1. We
remember that the signal estimation is performed up to a scale factor. In order to avoid
extreme magnitude scales, the modulation signal average is set to one.

Eventually we will have an estimation of the gearmesh vibration along with the mod-
ulations. Then recovering each gear component is mere using a band-pass filter.

8.2 Test rig presentation

CETIM dataset The evaluation of fault detection performance has been done on a pub-
licly available dataset. The test bench has been done at the GIPSAlab and instrumented
by CETIM. It is a fatigue test where the gearbox has been running for 12 days with
an acquisition taken on everyday. The gearbox reducer is a fixed-shaft gearing systems
made of two gears which have 20 and 21 teeth respectively. The acquisitions are made
at a sampling rate of 20 kHz. The rotation frequencies of both gears are f1 = 16.75Hz
and f2 = 17Hz respectively.

Remark 42. It can be noticed that as the numbers of teeth are very close, the rotation

frequencies are very similar. This particularity of the test rig turns the identification and

the separation of the two gears component to be very tricky. Indeed at low frequencies they

cannot be distinguished as the sampling rate is too low.

In this dataset the only available measurement is the vibration given by a single-axis
accelerometer.
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UNSW dataset A second dataset have been used to test the developed technique.
Within the partnership with the condition monitoring research lab of the UNSW, some
tests have been run with their fixed-shaft gearbox test rig. The reducer is made of two
gears of 19 and 52 teeth respectively.

Figure 8.1: The spur gear test rig at the University of New South Wales (UNSW).

The test-rig is equipped with several sensors. Vibrations are measured on two dif-
ferent points: on the input and output shafts on the brake side. A tachometer and an
encoder are also mounted on each rotating shaft.

8.3 Real data experiments

All running test have been done using the Cetim dataset. In this section we will specifi-
cally look at three points: the results of the multi-carrier demodulation on the vibration,
the comparison of the estimation of modulations between the classical and multi-carrier
demodulation and eventually we will compare which technique allows to better detect
incipient faults.

Some results of multi-carrier demodulation After performing the multi-carrier de-
modulation, we obtain the gearmesh on one hand and the two modulations on the other
hand. Let us now display the two components sm(tn) and sc(tn) for a healthy run and
for a run where a fault has been diagnosed on one gear. The outputs of the optimal de-
composition are represented in Figure 8.2. The two modulations have been separated
with a specific filter.
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(a)

(b)

Figure 8.2: Temporal representation of the reconstructed signals (meshing, gear 1 and
gear 2) for a healthy run (a) and a faulty run (b).

We see that considering each component of the signal separately makes monitoring
easier. When a failure appears, it becomes visible on the concerned recovered signal, as
in Figure 8.2. Then, common fault indicators can be calculated directly on sgear1 and
sgear2, allowing early detection of the fault as well as its localization.

Comparison with demodulation In Chapter 5 the proposed multi-carrier demodula-
tion technique has been compared with the classical demodulation using Hilbert trans-
form. There we have seen that in term of statistical study, the proposed multi-carrier
demodulation is a better estimator for both carrier and modulation amplitude parame-
ters. In this section we propose to compare those two methods on the real dataset pre-
sented above in order to quantify the improvement obtained by using the multi-carrier
demodulation.

On Figure 8.3, the measurement has been done at the beginning of the test. It is visi-
ble that with the classical demodulation there is an additional low frequency component
that has been filtered out with the multi-carrier demodulation. However, in Figure 8.4,
the fault is clearly visible and its energy is so strong that both methods gives approxi-
mately the same results, even if the estimation given by multi-carrier demodulation is
much more regular than the other.
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Figure 8.3: Temporal representations of the modulation given by the classical demodu-
lation (top) and multi-carrier demodulation (bottom).

Early fault detection For system maintenance purpose, we are generally interested
in detecting incipient fault. As a matter of fact, if a fault is detected in its early stages,
corrective and preventive action can be taken to avoid any significant machine failure.

In this section wewant to compare several usual fault indicators calculated on diverse
signals. Here the we compare the results of four basic indicators (i.e. Root Mean Square
(RMS), kurtosis, Peak-to-Peak and FM4) computed on three signals, i.e. raw signal,
demodulated with classical and multi-carrier techniques. This will allows us to study
the capability of our method to detect incipient faults.

By analyzing all Figures 8.5, 8.6, 8.7 and 8.8, the first thing that has to be noticed
is that the multi-carrier does not always give the best response to incipient fault. When
looking to the FM4 indicator, it is possible to say that the best indication is given with the
raw signal. However, with all indicators, it is also important to remark that multi-carrier
demodulation avoid some false detection that classical demodulation do not.

8.4 Conclusion

In this Chapter we have applied the amplitude multi-carrier demodulation technique
we have developed. It shows to have interesting properties when we just compare the
quality of modulation estimation. However, even if opposite to classical demodulation it
avoids easily false alarms, it is not always the best signal on which indicator are the most
efficient. The multi-carrier method gives similar results to those of classical demodula-
tion, but both are sometimes worse than the simple raw signal.
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Figure 8.4: Temporal representations of the modulation given by the classical demodu-
lation (top) and multi-carrier demodulation (bottom).

Figure 8.5: Computation of the RMS indicator on the three signals every day.
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Figure 8.6: Computation of the kurtosis indicator on the three signals every day.

Figure 8.7: Computation of the PP indicator on the three signals every day.

Figure 8.8: Computation of the FM4 indicator on the three signals every day.



144 CHAPTER 8. APPLICABILITY TO FAULT DETECTION



Chapter 9

Signal model testing

9.1 About another possible use of optimal demodulation

9.1.1 How to test product model validity?

In the previous Chapters we introduced a new optimal demodulation technique we called
multi-carrier demodulation. Unlike traditional methods, the multi-carrier demodulation
takes into consideration the whole signal, avoiding the band pass filtering step and en-
suring a smaller loss of information in the process. Thanks to the matrix representation
of spectrum tool that has also been developed, a link has been made between low-rank
matrices an the operator theory.

Thus, one possible way to use the multi-carrier demodulation method we proposed in
the previous Chapters is to verify if a signal can be represented by a product. As we have
shown that a multiplicative signal can be exactly decomposed into its two components,
a first interesting point is that we can verify whether or not a signal can be decomposed
into the two components of a product.

In the case of gearbox vibration signal, we have seen that usually, they are empiri-
cally modeled by a product (see Chapter 2). An interesting question is to evaluate how
representative is that modeling for vibration signals.

9.1.2 Fixed-shaft gear vibration model testing

In order to test the multiplicative model of gearbox vibration, the multi-carrier demodu-
lation is run on the vibration signal originating from the CETIM dataset. The decompo-
sition has been made considering 15 harmonics for the carrier signal and 9 harmonics
for the modulation signal. The temporal representation of the resulting decomposition
is displayed in Figure 9.1.
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Figure 9.1: temporal representation of the estimated signals with the multi-carrier am-
plitude demodulation technique. From top to bottom: Gearmesh, Gear 1 and Gear 2.

First opinion on the decomposition Obviously we have been able to obtain an esti-
mation of the signals, but as we do not have the theoretical ones, we cannot asses how
right they are. A way do verify how close we are to the original signal is to multiply the
estimated carrier and modulation and combined them in the same way as the model,
and then to compare with the original signal. This comparison is illustrated in Figure
9.2 for the temporal representation and in Figure 9.3 for the overlay of the spectra.

Figure 9.2: Overlay of the temporal representation of the raw signal and the estimated
one.



9.1. ABOUT ANOTHER POSSIBLE USE OF OPTIMAL DEMODULATION 147

Figure 9.3: Overlay of both spectra of the raw signal and the estimated one.

It is clearly visible that the estimation is not perfect. This may have several reasons:

1. an arbitrary number of carrier harmonics has been chosen which may not be the
optimal one,

2. with this algorithm, the condition of no overlapping between the sidebands is done,
even if there is no evidence that it is actually the case,

3. there might be other phenomenons at play that are not well considered and above
all they may interact with the vibration components we are interested in for the
estimation.

Nevertheless, we considered that even not perfect, it was a good approximation of the
vibration signal for that dataset and we first validated it.

Second opinion on the decomposition But after some discussions with researcher
having a more mechanical approach, we have noticed that sometimes the modulations
originating from the gears rotation were periodically crossing the zero line, as illustrated
by Figure 9.4.

Figure 9.4: Temporal representation of the estimated signal corresponding to a faulty
gear.
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Even if this observation may seem hardly worth mentioning, it has to be precised
that when we are considering mechanical systems, there is a physical reality that has to
be taken into account. Here we can directly link the vibration due to the gears rotation
to the force that is applied on those gears. When we have a closer look into the system
dynamic, we see that during the rotation, when the tooth of the driving pinion starts to
push the tooth of the driven gear, this one generates a reaction force.

9.2 A quest for understanding

We have previously demonstrate in Chapter 5 that it is always possible to break a product
of two signals down into its two components, even in highly noisy signals. From this
observation, the methodology cannot be questioned for the wrong reconstruction of the
two modulation signals. If the problem does not find its origins in the methodology, the
only possible explanation is that the product model is not representative of the gearbox
vibration.

In order to verify this hypothesis, we looked more deeply in the vibration signal and
found that even though the established model may be an interesting approximation at
first sight, our experimental investigation has shown several inconsistencies.

First, there are sidebands present in the spectrum at the crossed frequency fc±(fm1×
fm2). This is actually justified by the fact that a model

s(θ) = sc(θ)(1 + sm1(θ)sm2(θ))

may be more physically rigorous, i.e. the combined effect of the two gears must have a
periodicity which corresponds to the event of the same two teeth meshing again. This
part has been studied afterward and will be presented in a future work, in collaboration
with the UNSW condition monitoring lab.

Secondly, irregularities of the sideband patterns can be observed in every experimen-
tal spectra we have, i.e. the ratio between the sidebands of different gearmesh harmonics
is not constant, even after a precise order-tracking using an encoder with a high number
of pulses. There are several hypotheses regarding the explanation for this difference.

1. The transfer function. The transfer function between excitation and actual mea-
surement is the obvious suspect for this distortion. However, even after applying
a cepstral long-pass lifter (aimed at removing the transfer function âĂĲscalingâĂİ
of the spectrum), the differences between sideband patterns remain strong.

2. Simultaneous effect of tooth stiffness and geometric profile error A more subtle
hypothesis instead involves the consideration of two effects resulting in the mod-
ulation of the gearmesh. Under this hypothesis, tooth-stiffness-induced vibrations
(load dependent) and vibrations induced by profile error (independent of load)
are acting as two parallel models, with different carriers and modulations, but co-
incident frequencies. Under this assumption the gearmesh harmonics show differ-
ent combined patterns of sidebands because of the additive effect of two different
gearmesh carriers and modulations.

We studied how different were the ratio between sidebands of different gearmesh
harmonics for gearbox vibration signal. The difference between the ratios is evaluated
graphically. The four first gearmesh harmonics are normalized and both left and right
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sidebands are displayed. Two points are to be verified, first the symmetry for a single
gearmesh harmonic between right and left sideband, and second the fact that sideband
patterns should repeat identically at each carrier harmonics.

9.2.1 Vibration signal: 20Hz-20Nm test

On the test-rig of the UNSW lab we investigated the lines repartition in the spectrum.
In Figure 9.5 we see the ordertracked (OT) spectrum of the vibration signal in the low
orders.

Figure 9.5: Spectrum representation of the ordertracked vibration signal for the four
first harmonics.

On the spectrum it is clearly visible that there are many sidebands for all the
gearmesh frequencies, but it is hard to say how symmetric they are regarding the
gearmesh harmonic neither if the ratio between sidebands of different gearmesh har-
monics is similar. Figure 9.6 shows the repartition of the sidebands for the four first
harmonics of the signal.

Figure 9.6: Display of the ratio between sidebands and the gearmesh harmonics.
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This results shows that the patterns are massively different even disregarding their
phase, which should also coincide after normalisation by the carrier harmonics. Two
possible explanations for such behaviour were suggested: amplifications due to the sys-
tem transfer function, or dominant frequency-modulation effects. This complete lack of
element tends to validate that the vibration cannot be modeled as a product. Neverthe-
less, there are some elements that may interfere and hinder the identification of a clue
that would go in the direction of the model validity. For example, we know that in a
gearbox system, the transfer function is messing a lot in the hole spectrum but not with
the same intensity for all frequencies. That is why we will estimate the transfer function
and remove it from the signal. Figure 9.7 show the previous spectrum of Figure 9.5 with
the estimated transfer function overlaid.

Figure 9.7: Overlay of the previous spectrum (blue) with the estimated transfer function
(red).

After removing the transfer function, the spectrum is flatter, giving hope that the
symmetry and ratio will become more visible. Figure 9.8 shows the new spectrum.

Figure 9.8: Spectrum representation of the vibration signal after removing the estimated
transfer function.
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We compute and display the new sidebands repartition in Figure 9.9.

Figure 9.9: Display of the ratio between sidebands and the gearmesh harmonics after
removing the transfer function.

Despite the good result in terms of spectral liftering, the problems observed in Figure
9.6 continue to be as severe in the normalised spectrum harmonics reported in Figure
9.9. There is no real impact of the removing of the transfer function on the sidebands.

9.2.2 Vibration signal: low speed and no load test

A possible explanation of the differences in the sideband patterns could be found in the
different roles played by two different root-cause mechanisms resulting in gear vibra-
tion: geometric and static transmission error. The first is due to profile irregularities,
whereas the second is due to the angular dependence of the gear-meshing compliance
under load. An additional test was therefore executed at very low load ( 1.5Nm, just
enough to maintain contact between the gear teeth) and speed (2Hz), where geometric
transmission errors were expected to dominate. In order to have comparable displays
of the sideband harmonics with the previous test, we repetead the exact same analy-
sis. Figure 9.10 represents the spectrum of the gearbox vibration and Figure 9.11 the
sidebands.

Remark 43. As the rotation speed of the gearbox is very slow, in the low frequencies of the

spectrum there is a huge interference coming from some electromagnetic interference within

the test rig. It should not be taken into account though we looked at the harmonics 2 to 5.
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Figure 9.10: Spectrum representation of the ordertracked vibration signal for the four
first harmonics.

Figure 9.11: Spectrum representation of the ordertracked vibration signal for the four
first harmonics.

As for the faster and loaded case, we notice that there is no clear multiplicative pat-
tern recognizable within the representation of the sidebands. Thus, once again we esti-
mate and remove the transfer function, Figure 9.12, and then repeat the process: Figure
9.13 and Figure 9.14 illustrate the transfer function-less spectrum and the associated
harmonics representation.
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Figure 9.12: Spectrum representation of the ordertracked vibration signal for the four
first harmonics.

Figure 9.13: Spectrum representation of the ordertracked vibration signal for the four
first harmonics.
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Figure 9.14: Spectrum representation of the ordertracked vibration signal for the four
first harmonics.

The patterns shown in Figure 9.14 are much more consistent, even if discrepancies
are still present, thus supporting the idea of a potential two-mechanism root-cause of
the observed pattern inconsistency.

9.2.3 Transmission error signal: low speed and no load test

In this example we are interested in the transmission error (TE) of the gearbox. The
TE is computed as the difference between the two encoders (or tachometers) located
on both the input and output shafts. The running test that has been done is a dry wear
test, which means that there were no lubricant in the gearbox. The gear is considered
healthy at the very beginning and faulty later as some pitting has been found on the
gears surface.

We display the sideband repartition in both healthy in Figure 9.15 and faulty case in
Figure 9.16.
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Figure 9.15: Display of the ratio between sidebands and the gearmesh harmonics after
removing the transfer function.

Figure 9.16: Display of the ratio between sidebands and the gearmesh harmonics after
removing the transfer function.

In the case of the healthy gear there is no major indication that the sidebands follows
the multiplicative rules. As the data has been taken at the very beginning of the test, i.e.
during the first minute, the run-in period may not have occurred yet, which causes an
uncertainty regarding the vibrating behavior of the gearbox. Unexpectedly, we notice
that in the case of the faulty gear, it is reasonable to say that the ratio between sidebands
and gearmesh harmonics is quite identical. It is so far the only situation where the
hypothesis of a product could be done.

9.3 Conclusion

We were interested in this Chapter in knowing whether or not a fixed-shaft gearbox
vibration could be reasonably described by the multiplicative model extensively used in
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the literature. After a first good impression, we observed an incompatibility between the
mechanical properties of the system and the estimated signal characteristics. Then we
led an investigation looking for any clue that may suggest the model is representative
of some aspect of the gearbox operation. Our conclusion is that for accelerations there
were no situation which gave acceptable characteristics of the multiplicative modeling,
even when the transfer function is removed. Whereas when looking to the transmission
error in very specific operating conditions, for some reason, multiplicative modeling can
be considerate accurate.



Chapter 10

Conclusions and future prospects

10.1 Conclusions

Gearboxes are vital systems in rotating machinery. A reliable monitoring system is criti-
cally needed in industries to provide early warning of damage or malfunction in order to
avoid sudden failures and breakdowns. It is also of major interest for economic purposes
as it allows to better plan the maintenance of mechanical systems. In aircraft engines,
power transmissions systems are supposed to be the system that last the longest in time
which means that unexpected troubles may have important consequences on the rest of
the system.

In this PhD work, we have proposed a new approach for the analysis of gearbox
vibration signals. Vibration signals originating from gearboxes are very complex and
hard to represent through simple modelings, though they are usually represented as a
multiplication between a high frequency signal called carrier and some modulations. In
this case the carrier stands for the gearmesh signal, i.e. the periodic contact between
the teeth of the two gears together and the modulations are identified to the rotation
periods of each gears. This amplitude modulated signal model has been widely used in
condition monitoring to estimate the modulations. In this work we have been interested
in a new technique that allows to represent product signals as optimization problems.
This formulation as the striking property to enable a matrix representation of the signal
spectrum which let us link the study of this estimation problem with rank one approxi-
mation problems.

Based on the optimization framework, an amplitude demodulation algorithm has
been developed and has shown to be the best approximation possible for product sig-
nals. This new result has shown promising uses. In this work we have basically used the
amplitude multi-carrier demodulation for fault detection andmostly to verify how repre-
sentative is the product of gear signals. For fault detection we have seen that the optimal
amplitude demodulation does not enhance significantly the detection but it may improve
false alarms. Regarding the representativity of the multiplicative model for gearbox vi-
bration signal, we have experimentally shown that there are some inconsistencies. For
example, sometimes the estimated modulations becomes negative, which is impossible
with mechanical systems. Moreover we have noticed that there are some peaks in the
spectrum that do not belong to the amplitude modulation model.

In this work we have also extended the optimization framework developed for am-
plitude demodulation to phase and amplitude modulated signals. This situation may
appear when there is some fluctuation in the rotation speed, which is usually the case.
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We have obtain necessary and sufficient conditions to the solvability of the exact prob-
lem. In the case where the signal is noisy, or when the small fluctuation hypothesis is
not fulfilled, the exact conditions are not enough. This is why we proposed some algo-
rithms based on gradient descent estimation. Those techniques have been proven to be
interesting in the case of simulated signals but have not been tested on real signals.

The case of epicyclic gearboxes has also been studied. In that case the matrix for-
mulation of the spectrum can also be used, which allows us to perform a theoretical
separation of each planet gear contribution to the global signal. We have proposed some
algorithms that separate each planet gear contribution to the signal but just for specific
gearbox configuration.

10.2 Future prospects

Future research is suggested to address the following topics:

1. A first very interesting topic is to pursue studies on the epicyclic gearboxes. In-
deed, in the case of five planetary gears we have not been able to propose enough
conditions on the system to separate planet contributions. A better understanding
of the system would help to define proper conditions that would allow the prob-
lem resolution. A theoretical study with symbolic computation and homological
algebra tools may help get a better understanding of the mathematical objects at
play.

2. As we have seen that the traditional modeling of fixed-shaft gears as a multipli-
cation between the gearmesh and the gears rotation signals is not exact, a work
could be done on a more representative model along with some further study on
more experimental data to compare their spectrum under several speed and load
conditions.

3. It would be interesting to compare all fault detection method and indicators on
more dataset. In this work, we did not have in our possession enough vibration
signals originating from different test-rig to have representative results.



Appendix

Appendix 1 : Solving inhomogeneous linear systems

10.2.1 Notation & basic homological algebra

Let us introduce a few notations and recall basic results of homological algebra (see, e.g.,
[76]) which will be of constant use in what follows.

In what follows, Kwill denote a field (e.g., K = Q, R, C) and A ∈ Kr×s a r×smatrix
with entries in K. Associated with A ∈ Kr×s, we can consider the two K-linear maps:

.A : K1×r −→ K1×s

λ 7−→ λA,
A. : Ks×1 −→ Kr×1

η 7−→ Aη.
(10.1)

If B ∈ Ks×t is such that AB = 0, then we can consider the following so-called complexes

of K-vector spaces

K1×r .A
// K1×s .B

// K1×t, (10.2)

Kr×1 Ks×1A.
oo Kt×1,

B.
oo (10.3)

i.e., linear maps with zero consecutive compositions, i.e.:

imK(.A) := K1×r A ⊆ kerK(.B) := {µ ∈ K1×s | µB = 0},
imK(B.) := BKt×1 ⊆ kerK(A.) := {η ∈ Ks×1 | Aη = 0}.

The defect of exactness of (10.2) (resp., (10.3)) is defined by

H(K1×s) := kerK(.B)/imK(.A)

(resp., H(Ks×1) := kerK(A.)/imK(B.)) ,

where E/F stands for the quotient of aK-vector space E by aK-subvector space F . E/F
is theK-vector space defined by the residue classes π(e) for all e ∈ E, where π(e1) = π(e2)
if e1 − e2 ∈ F , endowed with the operations:

∀ e1, e2 ∈ E, ∀ k ∈ K,

{

π(e1) + π(e2) := π(e1 + e2),

k π(e1) := π(k e1).

The complex (10.2) (resp., (10.3)) is said to be exact at K1×s (resp., Ks×1) if we have

H(K1×s) = 0 (resp.,H(Ks×1) = 0),

i.e., if kerK(.B) = imK(.A) (resp., kerK(A.) = imK(B.)).
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An exact sequence of the form 0 // K1×s .B
// K1×t means that kerK(.B) = 0,

i.e., that .B is injective, whereas the exact sequence K1×r .A
// K1×s // 0 means that

imK(.A) = kerK(0) = K1×s, i.e., that .A is surjective. Similar comments hold for linear
maps of the form (A.).

A standard result on the duality of K-vector spaces and K-linear maps asserts that if
(10.2) (resp., (10.3)) is an exact sequence of finite-dimensional K-vector spaces, then
so is (10.3) (resp., (10.2)). In homological algebra, we say that the functor homK( · ,K)
is exact, where homK(E,K) denotes the K-vector space formed by all the K-linear maps
(forms) from a K-vector space E to K. See, e.g., [76].

Similarly a standard result in linear algebra asserts that if (10.2) (resp., (10.3)) is
an exact sequence of finite-dimensional K-vector spaces, then, for any q ∈ N, so is

Kq×r .A
// Kq×s .B

// Kq×t, (10.4)
(

resp., Kr×q Ks×qA.
oo Kt×qB.

oo

)

, (10.5)

where .A : Kq×r −→ Kq×s denotes the natural extension of (10.1) defined by (.A)(Λ) :=
ΛA for all Λ ∈ Kq×r, and similarly for .B, A. andB. respectively. In homological algebra,
we say that the tensor functor Kq×1⊗K · (resp., ·⊗KK1×q) is exact, where E⊗K F stands
for the tensor product of two finite-dimensional K-vector spaces E and F . For more
details, see, e.g., [76].

If 0 // K1×r .A
// K1×s .B

// K1×t // 0 is a short exact sequence of finite-
dimensional K-vector spaces, then the Euler-Poincaré characteristic asserts that:

t− s+ r = 0.

More generally, the Euler-Poincaré characteristic of a long exact sequence of finite-
dimensional K-vector spaces

0 // K1×rn .An
// K1×rn−1

.An−1
// . . .

.A1
// K1×r0 // 0

asserts that
∑n

i=0(−1)i ri = 0. See e.g., [76]. Now, since the duality, i.e., the functor
homK( · ,K), preserves the exactness of long exact sequences of finite-dimensional K-
vector spaces, the same result holds for a long exact sequence of the form:

0 Kr0×1oo Kr1×1A1.
oo . . .

A2.
oo Krn×1An.

oo 0.oo

Such an exact sequence always splits ([76]), i.e., there existBi ∈ Kri−1×ri for i = 0, . . . , n,
such that:

B0 = Bn+1 = 0, BiAi + Ai+1Bi+1 = Iri , Bi+1Bi = 0.

10.2.2 A standard result of linear algebra

Let K be field (e.g. K = Q, R, C), A ∈ Kr×s a r × s matrix with entries in K, and
y ∈ Kr×t. We first state a standard result on the existence of solutions x ∈ Ks×t of the
following K-linear inhomogeneous system:

Ax = y. (10.6)
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Let us consider the following K-vector space:

kerK(.A) := {λ ∈ K1×r | λA = 0}.

Let B ∈ Kq×r be a matrix whose rows form a basis of kerK(.A). In other words, B is
a full row rank matrix (i.e., µB = 0 yields µ = 0 since the rows of B are K-linearly
independent) which satisfies:

kerK(.A) = imK(.B) := K1×q B.

In particular, we have q = dimK(kerK(.A)).
Then, we have:

∀ λ ∈ kerK(.A) : λ y = λAx = 0.

Hence, B y = 0 is a necessary condition for the solvability of (10.6). The next theorem
shows that it is also sufficient.

Theorem 2. For a fixed A ∈ Kr×s and a fixed y ∈ Kr×t, the system (10.6) is solvable, i.e.,

(10.6) admits a solution x ∈ Ks×t, iff the following compatibility condition holds:

B y = 0. (10.7)

Then, all the solutions of (10.6) are given by

∀ z ∈ Ku×t, x = E y + C z, (10.8)

where C ∈ Ks×u is a matrix whose columns form a basis of kerK(A.) := {η ∈ Ks×1 | Aη =
0}, i.e., C is a full column rank matrix (i.e., C θ = 0 yields θ = 0) which satisfies

kerK(A.) = imK(C.) := C Ku×1,

and E ∈ Ks×r is a generalized inverse of A, namely:

AE A = A.

Proof 1. By definition of B and C, we have the following exact sequences ofK-vector spaces

0 // K1×q .B
// K1×r .A

// K1×s,

Kr×1 Ks×1A.
oo Ku×1C.

oo 0,oo

where (.A)(λ) := λA for all λ ∈ K1×r, (A.)(η) := Aη for all η ∈ Ks×1, and similarly with

B and C. Since the functor homK( · ,K) (duality) is exact, we get the following long exact

sequences of K-vector spaces:

0 // K1×q .B
// K1×r .A

// K1×s .C
// K1×u // 0,

0 Kq×1oo Kr×1B.
oo Ks×1A.

oo Ku×1C.
oo 0.oo (10.9)

The Euler-Poincaré characteristic then yields:

q − r + s− u = 0.
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Moreover, since Kt×1 ⊗K · and · ⊗K K1×t are two exact functors, we obtain the following

long exact sequences:

0 // Kt×q .B
// Kt×r .A

// Kt×s .C
// Kt×u // 0,

0 Kq×too Kr×tB.
oo Ks×tA.

oo Ku×tC.
oo 0.oo (10.10)

The long exact sequence (10.10) shows that (10.6) is solvable iff y ∈ imK1×t(A.) := AKs×t,

i.e., iff B y = 0. Since the long exact sequence (10.9) splits ([76]), there exist matrices

D ∈ Kr×q, E ∈ Ks×r, and F ∈ Ku×s such that:

BD = Iq, D B + AE = Ir, E A+ C F = Is, F C = Iu,

E D = 0, F E = 0.
(10.11)

Then, E is a generalized inverse of A, i.e., AE A = A.

Let us now suppose that y ∈ Kr×t is such that B y = 0. Using the second identity of

(10.11) and AC = 0, we get y = AE y = A (E y + C z) for all z ∈ Ku×t, which shows

that (10.8) are solutions of (10.6). Finally, if there exists x⋆ ∈ Ks×t satisfying (10.6), i.e.,

Ax⋆ = y, then we have

A (x⋆ − E y) = Ax⋆ − AE Ax⋆ = 0,

which shows that x⋆ − E y ∈ kerK1×t(A.) = C Ku×t. Thus, there exists z ∈ Ku×t such that

x⋆ − E y = C z, which shows that all the solutions of (10.6) are of the form of (10.8).

Appendix 2: Polynomial computation

We can define C









cR

cI

mR

mI









= C( ~X), and ~∇C the previously computed gradient.

When some little variations d ~X are introduced in the cost function, we have

( ~X + d ~X) = min
α

C
(

~X + α~∇C
)

.

This new approach allows another formulation of the problem, where the optimal de-
scent step is the solution of the fourth degree polynomial.
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All the computation steps are going to be developped separately below, in order to
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When combining all the previous intermediary steps, the problem can be explained
as below:
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