
HAL Id: tel-02496926
https://theses.hal.science/tel-02496926v1

Submitted on 3 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static and Automatic Resource Composition in
Web-based Environments : An Application for Buildings

Energy Management
Lara Kallab

To cite this version:
Lara Kallab. Static and Automatic Resource Composition in Web-based Environments : An Applica-
tion for Buildings Energy Management. Web. Université de Pau et des Pays de l’Adour; Univerza na
Primorskem (Koper, Republika Slovenija), 2019. English. �NNT : 2019PAUU3028�. �tel-02496926�

https://theses.hal.science/tel-02496926v1
https://hal.archives-ouvertes.fr

DOCTORAL THESIS

Static and Automatic Resource Composition in
Web-based Environments: An Application for

Buildings Energy Management

Lara KALLAB

Advisors: Pr. Richard CHBEIR Univ Pau & Pays Adour, France
Pr. Michael Mrissa University of Primorska, Slovenia

Reviewers: Pr. Mike PAPAZOGLOU University of Tilburg, The Netherlands
Pr. Walid GAALOUL Télécom SudParis, France

Examiners: Pr. Ernesto EXPOSITO Univ Pau & Pays Adour, France
Dr. Sana SELLAMI Aix-Marseille University, France

Collaborator: Dr. Pierre BOURREAU NOBATEK/INEF4, France

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

December 6, 2019

iii

To mom and dad. . .

v

Acknowledgements
I would like to take the opportunity to pay tribute and express my heartfelt thanks
to all those who have contributed to the realization of my doctoral project, which
would not have been possible without their support and guidance.

At the outset, I would like to express my greatest gratitude to my advisors: Pr.
Richard Chbeir and Pr. Michael Mrissa, who supported me all the way and allowed
me to grow as a scientist researcher. I am deeply thankful to Pr. Richard Chbeir
for his constant support, constructive comments, strong belief in my abilities when-
ever I started doubting myself, and inspiring wealth of knowledge, which helped
me to establish the overall direction of my research. I would also like to thank Pr.
Michael Mrissa for his valuable guidance, helpful advices, trust, and continuous en-
couragement that kept me motivated throughout my thesis. It has been a wonderful
opportunity and a privilege to have worked with them.

I extend my sincere thanks to Dr. Pierre Bourreau for his useful suggestions, sup-
port, patient, and valuable inputs particularly on the technical aspect of my work.

My sincere gratitude goes to Pr. Mike Papazoglou and Pr. Walid Gaaloul for
dedicating their time to read my thesis report and giving me helpful comments. I
am also thankful to the rest of my thesis committee Pr. Ernesto Exposito, Dr. Sana
Sellami, and Dr. Pierre Bourreau for their presence in the jury and their valuable
comments.

I gratefully acknowledge the funding received towards my thesis project: SIBEX
(Solutions Intelligentes pour le Bâtiment en EXploitation), from the "Association Na-
tionale de la Recherche et de la Technologie" (ANRT), France. Without their financial
support, my work would not have been possible.

I am highly thankful and honored to be a member of NOBATEK/INEF4, where I
have been working during my PhD. I am very much grateful to Dr. Pascale Brassier
and Dr. Christophe Cantau for their constant aid and support, which helped me
in keeping things into perspective and promoting my work in useful industrial
projects.

I would like to thank Dr. Gilbert Tekli for his assistance, support and inspiration
during the first year of my thesis. I greatly appreciate his motivations and efforts to
pursue my PhD in France. Also, I am grateful to Dr. Joe Tekli for his confidence,
encouragement, and valuable advices.

I would also like to thank all the technical and administrative staff of the IUT
de Bayonne for the convivial atmosphere, their sympathy, and allowing me to use
the materials and facilities. A special thanks to Philippe ANIORTE for his kindness,
support and positive vibes.

I am so grateful to my colleagues in NOBATEK/INEF4 and LIUPPA who were
supportive and caring, each in their own unique way. Special thanks to my friend
Elio Mansour for his availability in the hard moments, continuous listening, and the
good times that kept flowing. I also thank Karam Bou Chaaya for his empathy, kind-
ness and support. To Joelle Céméli, Emlyne Tessari Rossi, Christelle Martinez, and
Igor Perevoschikov, thank you for your encouragement that kept my moral high.

I would never forget the unconditional support and care of my friends scat-
tered around the world: Lebanon, France and abroad, especially Khouloud Salameh
(Kouki), Rima Akiki (Rimzi), Eliana Raad (Louna), and Nadine Abi Aad (Nado).
Thank you for not making distance a big deal, and for your kind well-wishes, prayers,
phone calls, and texts.

vi

To the music, coffee machines, chocolate, fitness rooms, beers, delicious food,
and my piano, thank you for lifting me up and giving me moments of pleasure. I
had a blast!

I would like to thank also my adorable cousins Myriam El Gharby and Tracy
Klaiany, for being there for me. I surely will not forget the comfort they provided
me, with the crazy moments and laughs we had.

To my best and dearest friend Nathalie Charbel, with whom I shared all this jour-
ney from the very beginning to the very end, I am truly blessed for having you by my
side. From the bottom of my heart, thank you for the care, support, and advices you
have given me, and above all, for making ordinary moments extraordinary ones.

To my beloved family, whom without I would not have lasted, I cannot thank you
enough. Mom and Dad you are my heroes, and all that I am today or I ever hoped
to be, I owe to you. I am profoundly grateful for your sacrifices, your unconditional
love, and consistent support to reach my dreams. I will be forever indebted to you
for your limitless encouragements to explore new directions in life and seek my own
destiny. As for my brothers Dory and David, thank you for believing in me and for
always showing me how proud you are of who I am. I love you all...

Lastly, and most importantly, I bow my head to God, who blessed me with
health, faith, and strength to undertake and complete my work. I never prayed
for an easy life, but to be a strong person, and He kept me strong enough all the way.

vii

Abstract

Nowadays, a plethora of Web-based environments (Web applications, Web plat-
forms, etc.), publish their functions as RESTful services, i.e., self-contained and self-
describing resources that follow the REpresentational State Transfer (REST) archi-
tectural style principles. As the Web has become a major medium of communi-
cation, integrating objects (e.g., smart devices) into the Web and taking advantage
of its open popular standards has created an emerging trend: the Web of Things
(WoT). In the WoT, objects expose their functions also as resources respecting the
REST principles. Each resource provides well defined functions that meet specific
users’ requests. However, there are cases in which a single resource is not sufficient
to answer users’ requests, and often, combining two or more resources forming a
resource composition, achieves the desired output. Nevertheless, several challenges
are to be addressed when composing resources.

In this thesis, we address three challenges. The first one consists on verifying the
behavior of static resource compositions built manually by the user, as several design
errors may occur (e.g., end-loops preventing other resources to run, and datatype
mismatch between the Inputs/Outputs of the linked resources). For the other two
challenges, the targeted Web environments are hybrid providing: (i) dynamic re-
sources (connected to/removed from the environment at different instances), and
(ii) static resources (established to be always available). The challenges focus re-
spectively on the automatic resource discovery, while considering resource location
(whenever exposed by objects), and the automatic selection of the appropriate re-
sources to form suitable compositions satisfying users’ requests.

To cope with these challenges, we first propose a formal model based on Col-
ored Petri Nets (CPN) that maps resources behavior with their composition to CPN.
This allows to use CPN behavioral properties to verify the correctness of static com-
positions behavior. Then, we propose a formal graph representation linking static
resource to dynamic ones, allowing adapted graph algorithms to explore the seman-
tically annotated descriptions of the traversed graph resources, in order to identify
automatically the required resources. The resource discovery process uses an orig-
inal defined indexing schema that allows identifying the resources based on their
location (if exposed by objects), and enhancing resource search in large Web environ-
ments connecting many resources. As for automatic resource selection, we present
a Selection Strategy Adaptor that selects the suitable resources to form several com-
positions with different implementation alternatives, taking into account Quality of
Resource (QoR), Inputs/Outputs matching of related resources, as well as resource
availability.

Our proposal is generic as it can be applicable in Web environments belonging
to different application domains. However, in this thesis, it has been illustrated in
the smart buildings domain, more particularly, in projects for managing buildings’
energy behavior.

viii

Résumé

Chapitre 1

Introduction

Aujourd’hui, de nombreux environnements basés sur le Web, tels que les
applications Web et les plateformes Web, fournissent leurs fonctions en tant
que services RESTful, qui sont des ressources autonomes et auto-descriptives
qui suivent le style architectural du REST (REpresentational State Transfer).
Comme le Web est devenu un moyen de communication principal, intégrer
des objets dans le Web (tels que les appareils intelligents) et exploiter ses tech-
nologies populaires, ont abouti au développement d’un nouveau concept : le
Web des objets (ou Web of Things (WoT) en Anglais). Dans le WoT, les ob-
jets exposent leurs fonctions en tant que ressources respectant également les
principes de REST. Chaque ressource fournit des fonctions qui répondent à
des demandes spécifiques des utilisateurs. Mais, parfois, une seule ressource
ne suffit pas pour répondre à certaines demandes et, souvent, la combinai-
son de plusieurs ressources, formant une composition de ressources, permet
d’obtenir le résultat souhaité. Néanmoins, il existe plusieurs défis à relever
lors de la composition de ressources.

Dans cette thèse, nous faisons face à trois défis. Le premier consiste à véri-
fier le bon comportement des compositions statiques, où les ressources sont
sélectionnées et liées manuellement par l’utilisateur, vu que plusieurs erreurs
de conception peuvent survenir, telles que des boucles produites empêchant
d’autres ressources de s’exécuter et la non correspondance entre les types de
données des entrées/sorties des ressources liées. Les deux autres défis sont
liés aux environnements Web hybrides fournissant des ressources : (i) dyna-
miques (connectées/déconnectées de l’environnement à différents instants)
et (ii) statiques (établies pour être toujours disponibles). Dans ce cas, les défis
portent respectivement sur la découverte automatique des ressources, en te-
nant compte de la position des ressources (exposées par des objets), et sur la
sélection automatique des ressources appropriées pour former des composi-
tions répondant aux demandes de l’utilisateur.

Pour faire face à ces différents défis, nous proposons une plateforme géné-
rique, applicable dans plusieurs domaines, intitulée StARC (a Framework for
Static and Automatic Resource Composition) qui a pour but de composer sta-
tiquement et automatiquement des ressources qui respectent les principes de
REST. Dans cette plateforme, nous présentons plusieurs contributions liées
aux deux aspects de la composition de ressources : statique et automatique.
Ces contributions se résument comme suit :

ix

• Un modèle formel basé sur les réseaux de Petri colorés (Colored Petri Nets
(CPN) en Anglais), un langage graphique pour la conception, la spécification,
la simulation et la vérification des systèmes, qui exprime le comportement des
ressources et leur composition en CPN. Cela permet d’utiliser les propriétés de
CPN pour vérifier le bon comportement des compositions statiques.

• Une représentation graphique formelle liant les ressources statiques à celles
dynamiques, permettant à des algorithmes de graphe, adaptés à explorer les
descriptions sémantiques des ressources parcourues, de découvrir automa-
tiquement les ressources requises. Le processus de la découverte utilise un
schéma d’indexation défini pour identifier les ressources en fonction de leur
position (si elles sont exposées par des objets) et améliorer la recherche dans
des environnements Web connectant de nombreuses ressources.

• Un adaptateur de stratégie de sélection qui permet de sélectionner les ressources
les plus appropriées parmi celles qui sont candidates, pour former plusieurs
compositions ayant différentes alternatives d’implémentation, tenant compte
de la qualité des ressources, du matching entre les entrées/sorties des ressources
liées, ainsi que de leurs disponibilités.

Nos contributions proposées sont génériques qui peuvent être appliquées dans
des environnements Web appartenant à différents domaines d’applications métiers.
Cependant, dans cette thèse, nos solutions sont illustrées dans le domaine des bâ-
timents intelligents, en s’appuyant sur des projets de gestion du comportement én-
ergétique des bâtiments.

Chapitre 2

Connaissances de Base

Le chapitre 2 présente des concepts technologiques importants afin de bien
comprendre les solutions proposées. D’abord, nous expliquons le concept
des services Web, les principaux protocoles/principes supportés pour leur
implémentation en se focalisant sur le principe de REST (celui adopté dans
notre travail), ainsi que les langages Web sémantiques utilisés pour que les
propriétés des services Web, telles que les fonctions fournies et les entrées/
sorties, soient compréhensibles par les machines. Ensuite, nous présentons
une synthèse concernant les langages existants pour décrire les services REST-
ful (type des services ciblés dans cette thèse), conçu comme des ressources,
en mettant l’accent sur les langages basés sur l’hypermédia tel que le vocab-
ulaire Hydra (celui utilisé dans notre travail).

Chapitre 3

Utilisation des Réseaux de Petri Colorés pour Vérifier les Compositions
de Ressources

Dans le chapitre 3, nous proposons une solution pour la vérification des com-
positions de ressources statiques (construites manuellement par l’utilisateur)

x

avant leurs exécutions. À cette fin, nous définissons un modèle formel util-
isé pour mapper le comportement des ressources et leur composition aux
réseaux de Petri colorés (Colored Petri Nets (CPN) en Anglais), un langage
graphique pour la conception, la spécification, la simulation et la vérifica-
tion de systèmes. Sur la base du modèle défini, nous pouvons utiliser les
propriétés de CPN (par exemple, Accessibilité (Reachability), pour garantir
que l’état final souhaité est accessible, et Vivacité (Liveness), pour garantir
que toutes les ressources puissent être exécutées lors de l’exécution de la
composition), pour vérifier le bon comportement des ressources avant leur
exécution. Cette approche est expérimentée dans un outil basé sur les CPN
(CPN Tools) pour vérifier une composition de ressources illustrée dans le do-
maine de la gestion de l’énergie des bâtiments. Dans le chapitre, nous présen-
tons aussi un prototype développé dans le cadre d’un projet de recherche et
développement lancé par NOBATEK/INEF41, nommé SIBEX (Solutions In-
telligentes pour le Bâtiment en EXploitation), afin de vérifier les compositions
de ressources orientées bâtiment avant exécution. Le prototype permet de
modéliser, valider, convertir et exécuter des ressources composées vérifiées
à travers différents moteurs développés. Plusieurs tests sont effectués pour
tester les différents moteurs implémentés, y compris le moteur de validation
basé sur notre modèle CPN défini.

Chapitre 4

Découverte Automatique des Ressources Tenant Compte de leurs Local-
isation dans des Environnements Web Hybrides

Dans le chapitre 4, nous présentons une approche pour la découverte au-
tomatique de ressources, tenant compte de leurs localisations (si elles sont
exposées par des objets), dans des environnements Web hybrides connec-
tant des ressources: (1) statiques (établies pour être toujours disponibles) et
liées entre elles selon le principe HATEOAS (Hypermedia As The Engine
of Application State en Anglais) du REST, et (2) dynamiques pouvant être
connectées et déconnectées de l’environnement à différents instants. Pour
ce faire, nous proposons une représentation formelle liant les ressources (dy-
namiques et statiques) dans un seul graphe de ressources. Ceci en définissant
des ressources virtuelles qui se lient aux ressources statiques et qui contien-
nent des ressources dynamiques. Le graphe de ressources peut être parcouru
par plusieurs algorithmes de graphe (BFS et DFS dans notre travail) qui sont
adaptés pour découvrir k nombre de ressources (k ∈ N∗) pour chaque fonc-
tion requise pour réaliser la demande de l’utilisateur. La découverte des
ressources se base sur des annotations sémantiques intégrées dans les de-
scriptions de ressources (exprimées avec le vocabulaire Hydra dans cette
thèse). Dans le chapitre, nous définissons également un schéma d’indexation
en 3 dimensions qui lie les ressources à leurs fonctions fournies et à leurs
localisations (si elles sont exposées par des objets). Le schéma d’indexation
sert à identifier les ressources de collecte de données en fonction de leurs po-
sitions, et à améliorer la recherche de ressources dans des environnements

1https://www.nobatek.inef4.com

xi

Web connectant un grand nombre de ressources. Plusieurs tests sont menés
pour évaluer la performance de notre solution proposée dans différentes
configurations d’environnement Web (par exemple, variation du nombre de
ressources, et variation du nombre de fonctions requises pour réaliser la de-
mande de l’utilisateur), et selon 4 aspects: dynamicité, multiplicité, efficac-
ité et évolutivité. Les résultats soulignent l’importance d’utiliser le schéma
d’indexation, en particulier dans les environnements Web comprenant un
très grand nombre de ressources, pour améliorer le temps de réponse de la
découverte de ressources.

Chapitre 5

Sélection Automatique des ressources basée sur leurs Qualités dans des
Environnements Web Hybrides

Dans le chapitre 5, nous présentons une approche de sélection automatique
de ressources appliquée dans des environnements Web hybrides connectant
des ressources statiques et dynamiques. Dans cette approche, nous définis-
sons d’abord un modèle formel qui relie les ressources identifiées au cours
du processus de découverte de ressources dans un graphe acyclique dirigé,
en fonction de leurs fonctions fournies. Ensuite, nous proposons un adapta-
teur de stratégie de sélection qui permet de sélectionner, parmi les ressources
candidates qui ont été découvertes, les ressources plus appropriées pour for-
mer plusieurs compositions ayant différentes alternatives d’implémentation,
répondant aux besoins de l’utilisateur (par exemple, compositions optimales
et sans coût: ayant les scores les plus élevés mais sans aucune charge, com-
positions optimistes: ayant des scores acceptables mais obtenues dans des
délais plus satisfaisants). Le processus de sélection prend en compte les
contraintes de qualité de ressource (Quality of Resource (QoR) en Anglais)
données par l’utilisateur, le matching entre les entrées/sorties des ressources
liées, ainsi que l’aspect dynamique des ressources. Plusieurs tests sont réal-
isés pour étudier et évaluer la performance de notre solution de sélection de
ressources automatique proposée, dans différentes configurations d’environnement
Web, telles que la variation du nombre de ressources candidates (réalisant la
même fonction requise) et la variation du nombre de fonctions nécessaires
pour répondre à la demande de l’utilisateur. En outre, des analyses sont ef-
fectuées pour comparer notre modèle de qualité de ressource proposé aux
travaux existants, montrant l’efficacité de notre solution dans des environ-
nements hybrides où l’aspect de la dynamicité des ressources est considéré.

Chapitre 6

Conclusion

Le chapitre 6 conclut cette étude et présente plusieurs axes de développe-
ment et de recherche futurs que nous envisageons d’explorer par la suite,

xii

vis à vis des limitations identifiées. Par exemple, comme axes de développe-
ment, nous visons intégrer les solutions proposées pour la composition de
ressources statique/automatique dans des environnements Web réels. En
fait, pour l’aspect statique, le prototype développé dans le cadre du projet
SIBEX, utilise actuellement des ressources hébergées en dehors de la plate-
forme implémentée dans le projet (une plateforme qui fournit des ressources
de collecte de données, de prétraitement, et de traitement avancé). Dans le
futur, nous allons intégrer le prototype dans la plateforme pour que la com-
position de ressources se base sur des ressources proposées par la plateforme.
De même, nous cherchons à tester les solutions que nous avons présentées
concernant l’aspect automatique de la composition (découverte et sélection),
qui aujourd’hui sont testées dans des environnements Web simulés orientés
bâtiments, dans un contexte réel.

Ensuite, comme axes de recherche, notre objectif est d’étendre l’approche
de découverte automatique de ressources en intégrant/adaptant d’autres al-
gorithmes de graphe (outre que BFS et DFS dans ce travail) et proposer dy-
namiquement celui qui convient le mieux en fonction de la topologie actuelle
du graphe de fonctions (le graphe qui définit les dépendances entre les fonc-
tions fournies par les ressources), contrairement à l’approche courante où
l’algorithme est choisi manuellement. De plus, nous visons à considérer
la correspondance sémantique entre les fonctions requises pour réaliser la
demande de l’utilisateur et les fonctions des ressources traversées dans le
graphe de ressources, plutôt que de tester leur correspondance exacte, comme
c’est le cas dans l’approche actuelle. Aussi, dans la solution de découverte
de ressources, les nouvelles fonctions fournies par les ressources dynamiques
sont liées de manière aléatoire au graphe de fonctions existant. Dans l’avenir,
nous cherchons à étudier les mesures qui définissent les dépendances en-
tre les nouvelles fonctions et les fonctions existantes. Sans oublier de met-
tre à jour le schéma d’indexation de manière dynamique, en évitant de le
régénérer à partir de zéro à chaque fois.

Pour l’approche de la sélection, nous visons à améliorer sa performance
en intégrant la vérification de l’éligibilité des ressources (s’ils respectent les
contraintes de l’utilisateur) lors du processus de la découverte, et non pas
durant la sélection comme dans l’état actuel de la solution. Ainsi, aucune
ressource non éligible ne peut passer au processus de sélection. Nous cher-
chons également à lancer le processus de sélection en parallèle avec la dé-
couverte de ressources dans certains cas. Cela peut améliorer davantage les
performances de la sélection en termes de temps de réponse.

Enfin, nous cherchons à assurer automatiquement la bonne interaction
entre les ressources sélectionnées, constituant une composition appropriée
réalisant la demande de l’utilisateur. Ainsi, le processus d’orchestration des
ressources prendra rôle, dans lequel les ressources impliquées seront con-
trôlées par un processus central (une autre ressource).

xiii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Context . 1

1.1.1 Insight on the Web Environment: Developments and
Technologies . 1
1.1.1.1 Web Services 2
1.1.1.2 Web of Things 3

1.1.1.2.1 Smart Buildings: An Example of Web
Connected Environments 4

1.1.1.3 Service Oriented Architecture (SOA) 6
1.1.1.3.1 SOA-based Project Examples in the

Smart Buildings Domain 6
1.1.2 Thesis Scope . 10

1.1.2.1 Collaboration 10
1.1.2.2 Objectives . 10

1.2 Motivating Scenario and Research Challenges 11
1.3 Proposal: StARC Framework 14

1.3.1 Contributions and Publications 16
1.3.1.1 Verification of Static Resource Composition . 16
1.3.1.2 Automatic Location-aware Resource Discovery 16
1.3.1.3 Automatic QoR-based Resource Selection . . 17

1.4 Report Organization . 18

2 Background 21
2.1 Web Services: Technology and Semantics 22

2.1.1 SOAP-based Services . 22
2.1.2 REST-based Services . 24
2.1.3 Semantic Web Languages 26

2.1.3.1 RDF, RDF-S . 27
2.1.3.2 OWL . 28
2.1.3.3 JSON-LD Format 29

2.2 Resource Description . 30
2.2.1 The Web Services Description Language (WSDL) . . . 31
2.2.2 The Web Application Description Language (WADL) . 32
2.2.3 Web Page Annotations-based Languages 32
2.2.4 Hypermedia-based Languages 33
2.2.5 Evaluation Summary . 36

2.3 Summary . 37

xiv

3 Verification of Static Resource Compositions Behavior 38
3.1 Introduction . 39
3.2 Motivation and Problem Statement 40
3.3 Related Work . 42

3.3.1 Petri Net-based Approaches 43
3.3.2 FSM-based Approaches 44
3.3.3 Linear Logic-based Approaches 45
3.3.4 Process Algebra-based Approaches 45
3.3.5 Semantic-based Approaches 46
3.3.6 Verification of SOAP-based Services 46
3.3.7 Evaluation Summary . 47

3.4 Preliminaries: Colored Petri Nets 48
3.5 CPN-based Approach for RESTful Service Composition Veri-

fication . 50
3.5.1 General Overview . 50
3.5.2 Resource Generic Interface 51
3.5.3 Colored Petri Nets-based Formal Composition Model . 52
3.5.4 Composition Behavioral Properties in CPN 56

3.6 Experimental Illustration . 59
3.7 Developed Prototype . 61

3.7.1 Engines Specifications 62
3.7.1.1 Modeling Engine 65
3.7.1.2 Validation Engine 65
3.7.1.3 Conversion Engine 65
3.7.1.4 Execution Engine 66

3.7.2 Data Model for RESTful Services 66
3.7.3 Implemented APIs . 69
3.7.4 Tests . 69

3.7.4.1 Syntax Checking 70
3.7.4.2 Behavior Properties Verification 72

3.8 Summary . 74

4 Automatic Location-aware Resource Discovery for
Hybrid Web Environments 75
4.1 Introduction . 76
4.2 Motivating Scenario and Challenges 78
4.3 Related Work . 81

4.3.1 Resource Description . 82
4.3.2 Resource Discovery . 84
4.3.3 Evaluation Summary . 86

4.4 Automatic Location-aware Approach for k-resources Discovery 87
4.4.1 General Overview . 87
4.4.2 Static and Dynamic Resource-based Graph 89
4.4.3 Indexing Schema for an Enhanced Resource Search . . 93
4.4.4 Resources Discovery Process 96

4.5 Evaluation and Discussion . 98
4.5.1 Environment Setups . 98
4.5.2 Scenario 1: Basic Search vs Enhanced Search Evaluation 99

xv

4.5.3 Scenario 2: Discovery Evaluation based on Resource
Location . 101

4.6 Summary . 103

5 QoR-based Resource Selection for Hybrid Web Environments 104
5.1 Introduction . 105
5.2 Motivation, Challenges and Needs 106
5.3 Related Work . 109

5.3.1 QoS-based Approaches 110
5.3.2 I/O similarities-based Approaches 111
5.3.3 k-service Compositions Approaches 112
5.3.4 Evaluation Summary . 113

5.4 A QoR-driven Resource Selection for i-compositions 114
5.4.1 General Overview . 114
5.4.2 Preliminaries . 115
5.4.3 Formal modeling of a QoR-based Resource Graph . . . 117
5.4.4 Selection Strategy Adaptor for i-compositions 120

5.5 Evaluation and Discussion . 125
5.5.1 Resource Selection Performance Evaluation 125
5.5.2 Comparison with Existing QoS Models 127

5.6 Summary . 128

6 Conclusion 129
6.1 Recap . 129
6.2 Future Works . 132

6.2.1 Integrate the Static/Automatic Resource Composition
in Real-world Environments 132

6.2.2 Extend the Automatic Resource Discovery 133
6.2.3 Improve the Automatic Resource Selection Performance 133
6.2.4 Propose an Automatic Resource Orchestration Approach133

A WSDL 2.0 Example 135

B WADL Example 137

C HAL Example 138

D SIREN Example 139

E MASON Example 140

F Resource Composition Modeling 141

G Hydra-based Composed Resource Description 144

H SIBEX Resource Description using Hydra 148

I Prototype APIs 154

J Comparative Results between DFS and BFS 158

xvi

K Hydra Vocabulary Extended 160

L Performance Evaluation of the Indexing Schema Construction 162

Bibliography 166

xvii

List of Figures

1.1 The Web evolution . 1
1.2 The use of SOAP and REST from 2004 till present 3
1.3 Statistics on the number of Internet of Things (IoT) connected

devices from 2015 to 2025 . 4
1.4 Smart building example . 5
1.5 Before SOA VS After SOA . 6
1.6 Global final energy consumption and global energy-related CO2

emissions by sector . 7
1.7 BEMServer Architecture . 9
1.8 Resource composition scenario 12
1.9 BEMServer extended to be a hybrid environment 13
1.10 An overview of the proposed framework: StARC 15

2.1 SOAP, UDDI, and WSDL interactions 24
2.2 SA-REST example . 32
2.3 hrest example . 33
2.4 The Hydra core vocabulary model 35

3.1 Instance of the BEMServer Web platform 40
3.2 The resources involved in the prediction process 41
3.3 Non-interoperability of data types between the linked resources 41
3.4 Linking error causing a loop in the execution of a resource . . 42
3.5 Linking error causing a dead resource 42
3.6 Example of a single Petri net . 48
3.7 Example of a Colored Petri Net 49
3.8 Overview of the static RESTful service composition process . 50
3.9 Resource composition to convert and align the collected air

temperature . 55
3.10 CPN graphical model of the "AirTempConvAlign" composed

resource . 56
3.11 Reachability graph . 59
3.12 CPN model for the resources composition relative to the pre-

diction scenario . 60
3.13 Information retrieved from the state space report 61
3.14 Defined color sets and interoperability issue 61
3.15 The sequence diagram showing the interaction of the resource

composition prototype components 63
3.16 Example of a composition use case in SIBEX 64
3.17 Link between resources . 64
3.18 Structure of the resource description JSON-LD document . . . 68
3.19 Composition model with a non reachable final state 72
3.20 Composition model with an end-loop 73

xviii

3.21 Composition model with non interoprable resources 73

4.1 Type of resources exposed by connected objects and Web ap-
plications . 76

4.2 BEMServer, an example of hybrid Web environment 78
4.3 The dependencies between the required functions necessary to

realize "EDP" function . 79
4.4 Dynamicity nature of connected resources 79
4.5 Examples of rnca and rca in BEMServer 80
4.6 A Web environment connecting many resources exposed by

connected objects . 81
4.7 Access to a resource descriptor URI 84
4.8 Overview of the resource discovery approach 88
4.9 Flowchart of the process linking dynamic resources to static ones 90
4.10 An example model of the relations between the resources used

to predict energy demand . 90
4.11 An example model linking static and dynamic resources used

to predict air temperature values 91
4.12 An example of a geographic hierarchy VS The indexing schema 94
4.13 IdS linking resources to their functions and used to identify

the initial resources necessary to realize "EDP" function 95
4.14 IdS linking resources to their functions and used to identify

the initial resources necessary to realize "ATP" function 95
4.15 Performance results . 100
4.16 Performance results of the resource discovery 102

5.1 rnca and rca examples in BEMServer 107
5.2 Overview of the resource selection approach 115
5.3 An example of a DRAG showing the scores defined for each of

the involved resources, their I/O matching, and each possible
composition . 119

5.4 Flowchart of the selection process and its related Selection Strat-
egy Adaptor . 124

5.5 Selection results while varying the number of resources 126
5.6 Selection results while varying the number of functions 126

J.1 Horizontally distributed function graph 158
J.2 Vertically distributed function graph 159

L.1 The indexing time of the tests conducted while varying the
number of functions . 163

L.2 The indexing memory usage of the tests conducted while vary-
ing the number of functions . 163

L.3 The indexing time of the tests conducted while varying the
number of resources . 164

L.4 The indexing memory usage of the tests conducted while vary-
ing the number of resources . 164

xix

List of Tables

2.1 SOAP vs REST . 27
2.2 Evaluation of existing languages used to describe REST-based

Web services w.r.t. the identified criteria 36

3.1 Evaluation of existing approaches used for the formal model-
ing of REST services w.r.t. the identified criteria 48

3.2 URIs of the prediction process resources 51
3.3 Interfaces of the resources involved in the prediction process . 52
3.4 Request to create a resource composition 69
3.5 Response for creating a resource composition 70

4.1 Evaluation of existing works related to the Web service do-
main and used for resource description and discovery w.r.t.
the identified criteria . 87

5.1 Quality aspects of the ATC objects 107
5.2 Evaluation of existing service selection approaches w.r.t. the

identified criteria . 113
5.3 Examples of 3 optimal compositions having the highest scores 120
5.4 Examples of 4 optimistic compositions having acceptable score

> 50 . 120
5.5 Examples of 4 hybrid compositions having acceptable score >

50, including one (the latest) consisting of static resources . . . 121
5.6 QoR values of optimistic and hybrid compositions subtypes . 121
5.7 Examples of generated compositions achieving, each, the re-

quired workflow without score calculation, 123
5.8 Examples of returned i-compositions with score calculation . . 123
5.9 Response time (in ms) of SP while varying resource number

per function (m), and number of required functions (n) 126
5.10 Summary evaluation of existing works w.r.t. the service/ com-

position quality related criteria 128

I.1 Request to get resources description 154
I.2 Response for getting resources description 154
I.3 Request to create a resource composition 155
I.4 Response for creating a resource composition 155
I.5 Request to store the resource composition 156
I.6 Response for storing the resource composition 156
I.7 Request to execute the resource composition 157
I.8 Response for executing the resource composition 157

xx

List of Abbreviations

API Application Programming Interface
BMS Building Management System
CPN Colored Petri Net
CPU Central Processing Unit
CRUD Create, Read, Update, Delete
DB DataBase
EPBD Energy Performance of Buildings Directive
FDD Fault Detection and Diagnosis
FSM Finite State Machine
GUI Graphical User Interface
HAL Hypertext Application Language
HATEOAS Hypermedia As The Engine Of Application State
HDF Hierarchical Data Format
HIT2GAP Highly Innovative building control Tools Tackling the energy

performance GAP
HTTP HyperText Transfer Protocol
HVAC Heating, Ventilation and Air Conditioning
IBM International Business Machines
ICT Information and Communication Technology
ID IDentifier
IEA International Energy Agency
IoT Internet of Things
IT Information and Technology
JSON JavaScript Object Notation
LD Linking Data
OWL Web Ontology Language
PNML Petri Nets Modeling Language
RDF Resource Description Framework
RDFa Resource Description Framework in Attributes
RDF-S Resource Description Framework Schema
REST REpresentational State Transfer
URI Uniform Resource Identifier
QoR Quality of Resource
QoS Quality of Service
RAM Random Access Memory
SBA Smart Building Alliance
SIBEX Solutions Intelligentes pour le Bâtiment en EXploitation
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SA-REST Semantic Annotations of Web Resources
UDDI Universal Description, Discovery, and Integration
W3C World Wide Web Consortium

xxi

WADL Web Application Description Language
WoT Web of Things
WSDL Web Services Description Language
XML eXtensible Markup Language

1

Chapter 1

Introduction

"If the challenge exists, so must the
solution"

Rona Mlnarik

1.1 Context

1.1.1 Insight on the Web Environment: Developments and Technologies

The World Wide Web (commonly known as the Web) [28], is the leading com-
munication model that, through HTTP1, enables the exchange of information
over the internet (the worldwide computer network). Originally designed in
1991 [26], the Web is conceived to allow users to access information, that are
connected to each other by means of hypertext or hypermedia links, from any
source, in a consistent and simple way. It is built around the client-server
paradigm; a client is a software program that sends requests to a server,
whereas a server is a software program that processes clients’ requests.

Figure 1.1 – The Web evolution

The Web has been through various phases of development, and has been
marked by several generations with very short cycles. These generations,
discussed more in [7], are depicted in Figure 1.1. The first implementation
of the Web, representing the Web 1.0, is considered as the "read-only Web",
where users were allowed to search for information and read it. There was

1Hypertext Transfer Protocol is a set of rules defined to transfer data between servers and clients

2 Chapter 1. Introduction

no option given for users to communicate back the information to the con-
tent providers. Then, the Web 2.0, referred to as the "Social Web", was built
around the users, allowing them to communicate with other users, and share
their perspectives, opinions, thoughts and experiences. Some of the famous
Web 2.0 applications are Facebook, YouTube, and Twitter. The Web 3.0, which
is known as the "Semantic Web", is the third generation of the Web in which
information is given a meaning, to enable computers and people to work in
cooperation [27]. This is done by representing Web content, its properties,
and its relations, through machine-readable data that can be effectively used
across various Web applications [35]. The Web 4.0 is the newest evolution of
the Web paradigm (currently it is in its early stage), in which further sophis-
tication and higher levels of intelligence will be added. It is known as the
"Symbiotic Web", which considers that humans and machines are mutually
dependent. The Web 4.0 is also characterised as the Web Operating System
(OS), where information flows from any point to any other. It is associated
to the Web of Things (WoT) concept [17], where users, real and virtual ob-
jects are integrated together in the Web environment forming an "always on"
connected world.

In the Web’ different generations, Web functions are provided via "Web
services", which are software components published, found, and used on the
Web. They are built on top of open standards and protocols (e.g., HTTP and
XML2), for exchanging data between Web applications or systems. During
the Web development, Web service technologies and paradigms (e.g., REST3

and JSON4) have been also evolving to facilitate service implementation, de-
scription, discovery, and integration. Next, we present the most interesting
ones to our work.

1.1.1.1 Web Services

Published on the Web, a Web service can be searched over the Web and in-
voked by a client (i.e., end-users, a Web application, a Web browser, etc.)
to realize a certain set of functions. Web services encapsulate Web appli-
cation functionalities to make them available through programmatic inter-
faces [123]. The main advantage of using Web services relies in providing
a common platform that allows heterogeneous applications from different
sources to have the ability to communicate with each other on the Web, real-
izing thus, interoperable application-to-application interactions [43].

Web services’ implementation is mainly based on the SOAP5 protocol [117]
or the REST principles [45]. SOAP is a standard messaging protocol used by
Web services to exchange data, whereas REST is an architectural style used
to design and develop Web services. In both cases, HTTP is used to trans-
port the data on the Web. Nevertheless, as shown in Figure 1.26, REST has
recently become the most adopted solution for implementing Web services.
This is due to several factors as: (i) its simplicity and ease of use that make

2Extensible Markup Language
3REpresentational State Transfer
4JavaScript Object Notation
5Simple Object Access Protocol
6Source: https://trends.google.com/trends/explore?date=2004-01-01%202019-02-01&q=

%2Fm%2F077dn,%2Fm%2F03nsxd/

https://trends.google.com/trends/explore?date=2004-01-01%202019-02-01&q=%2Fm%2F077dn,%2Fm%2F03nsxd/
https://trends.google.com/trends/explore?date=2004-01-01%202019-02-01&q=%2Fm%2F077dn,%2Fm%2F03nsxd/

1.1. Context 3

services’ integration cost-effective, (ii) its support for different data formats
(e.g., XML and JSON), and (iii) its ability to support caching for better per-
formance and scalability.

Figure 1.2 – The use of SOAP and REST from 2004 till present

Hence, more and more Web applications provide functionalities as Web
services that follow the REST principles [45]. These services are referred to
as "RESTful services". In the REST architecture, everything is designed as a
resource that is addressable by Uniform Resource Identifier (URI). Resources
take advantage of existing Web open standards, typically HTTP. As such,
they can be invoked directly using HTTP methods (e.g., GET, POST, PUT,
and DELETE) to realize specific requested functions, without adding over-
head on the request and response messages as in SOAP. REST allows to use
various data formats to represent a resource like text, JSON, and XML. JSON
is the most popular one, as it allows an easy parsing and faster execution of
the data. Another main advantage of using REST, is the possibility to link re-
sources together, with support to the "Hypermedia As The Engine Of Appli-
cation State" (HATEOAS) principle [108], one of the main REST constraints
that we consider in this thesis. HATEOAS allows to use hypermedia links
in the response contents so that the client (typically Web browsers) can dy-
namically navigate to the appropriate resource by traversing the hypermedia
links. This is conceptually the same as a Web user navigating through Web
pages by clicking on the appropriate hyperlinks in order to achieve a final
goal. In this way, all future actions the client may take are discovered within
resource representations returned from the server. However, and in order to
facilitate resource discovery and allow an automatic resource usage, the se-
mantic Web is used. In the semantic Web era, resources properties, capabili-
ties, interfaces, behavior, etc., are encoded in an unambiguous and machine
understandable form. This is done to create semantic resources [76], whose
descriptions are annotated by machine-readable languages so that other soft-
ware agents can use them without having any prior "built-in" knowledge
about how to invoke them.

1.1.1.2 Web of Things

As the Web has become a major medium of communication, integrating ob-
jects (e.g., smart devices) into the Web and taking advantage of its open
standards, such as HTTP and REST, has created an emerging trend: the
Web of Things (WoT) [17]. The WoT was designed to enable interoperabil-
ity across Internet of Things (IoT) platforms and application domains. IoT

4 Chapter 1. Introduction

mainly refers to the networked interconnection of smart devices, which em-
beds electronics, software, sensors, and communication components, enabling
them to collect and exchange data [7].

Figure 1.3 – Statistics on the number of Internet of Things (IoT)
connected devices from 2015 to 2025

Recent statistics, as depicted in Figure 1.37, show that the total installed
Internet of Things (IoT) connected devices is projected to an amount of 75.44
billion worldwide by 2025, making the world a connected place. The WoT ex-
tends the IoT by integrating devices with the existing Web infrastructure, and
exposing them as Web resources. This allows IoT devices to communicate
with each other, independently from their underlying implementation, and
across multiple networking protocols. Thus, in the WoT, objects resources
are identifiable by URIs and can be callable using HTTP methods, similar to
RESTful services.

1.1.1.2.1 Smart Buildings: An Example of Web Connected Environments

Nowadays’ smart buildings are a good example of Web connected environ-
ments, as they are equipped with sensors, domestic appliances, and other
electronic and electric devices that can be monitored, accessed and controlled
using the Web. Ensuring the communication between these Web connected
devices, e.g., cameras, air filters, cooling coils, smoke detectors, heating units,
pumps, fire alarm panels, chillers and boilers, etc., allows: (1) collecting data
related to building light, temperature, occupancy, asset usage, etc., and (2)
managing buildings’ installed services, to provide as much as possible a flex-
ible, comfortable and secure environment for the building occupants. As
such, several type of systems within the building can be monitored and con-
trolled:

• Heating, Ventilation, and Air Conditioning (HVAC) systems
7Source: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-/

/worldwide/

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-//worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-//worldwide/

1.1. Context 5

• Lighting systems

• Security and access control systems

• Fire systems

• Electric power systems

• Plumbing systems

• Piping and pumping systems

• Renewable energy sources systems used for self-consumption

Figure 1.4 – Smart building example

Figure 1.48 shows an example of a smart building, in which various de-
vices are connected to monitor and control different systems.

8Source: https://tinyurl.com/yxuoqdeq/

https://tinyurl.com/yxuoqdeq/

6 Chapter 1. Introduction

1.1.1.3 Service Oriented Architecture (SOA)

The emergence of Web services’ developments and standards has driven ma-
jor technological advances in the Web, most notably, the Service Oriented Ar-
chitecture [89] (SOA). By definition, SOA is a software development model
for distributed application components that are designed in the form of in-
teroperable loosely coupled services. Services are components that can be
reused for different purposes than originally intended, by a variety of appli-
cations and across different platforms.

Adopting SOA has many benefits, among them: (i) services reusability
as they are loosely coupled and self-contained programs, (ii) improved man-
ageability and scalability as services are separate components, which makes
it much simpler to scale up the architecture, and (iii) increased productiv-
ity since Web application developers do not need to create every applica-
tion from scratch, instead, they can adapt and reuse services to evolve. Fig-
ure 1.59 shows how each required business function is dependent from the
application using it before SOA, and how these functions are reusable busi-
ness services that can be used independently by multiple applications across
different platforms with SOA.

Figure 1.5 – Before SOA VS After SOA

1.1.1.3.1 SOA-based Project Examples in the Smart Buildings Domain

According to recent studies of the International Energy Agency (IEA), the
building sector is responsible for 30% of global final energy consumption and
28% of total direct and indirect CO2 emissions, as presented in Figure 1.610.
It is also responsible of 55% of global electricity demand11.

Over the building life cycle phases (i.e., Design, Construction, Commis-
sioning, and Operation), more than 80% of the energy is consumed during

9Source: http://fr.logimethods.ca/enterprise-soa-soe_fr.php/
10Source: https://www.iea.org/statistics/
11Source: https://www.iea.org/buildings/

http://fr.logimethods.ca/enterprise-soa-soe_fr.php/
https://www.iea.org/statistics/
https://www.iea.org/buildings/

1.1. Context 7

Figure 1.6 – Global final energy consumption and global
energy-related CO2 emissions by sector

the operation phase [3], while the remaining energy mainly goes to the con-
struction and commissioning phases. This is mainly due to the HVAC, light-
ing and appliances’ energy use. Therefore, energy and cost saving strategies
addressing the building’ operation phase are highly being implemented to
achieve long-term energy savings. However, although the efforts taken, op-
erational buildings are still in a need to be efficiently managed. This appears
with the existence of a huge energy performance gap, i.e., the difference be-
tween the estimated and the actual energy consumption of a building. Re-
cent measurement campaigns reveal that the actual energy use of buildings
is 5 up to 10 times higher than calculations carried out during their design
phase12, creating a huge energy performance gap. This gap arises from vari-
ous sources related to the building life cycle phases:

• In the design phase: design specifications are not always reliable and
simulation tools can be inaccurate

• In the construction phase: equipment and materials may lack of quality,
and construction methods can be inadequate

• In the commissioning phase: the installed systems are not well verified
and thus, they do not operate as intended by the building owner and as
designed by the building engineers

• In the operation phase: energy systems do not run properly and occu-
pants’ behavior highly impacts buildings energy consumption

With the evolution of the Information and Technology (IT) sector, a large
number of solutions are being adopted to manage buildings energy behavior
during their operation phase. Some are directly related to the smart building
domain and act as building management solutions (BMSs) [79, 29, 78] that
monitor and operate on the electrical and mechanical systems of a building:
heating, ventilation, air conditioning (HVAC), lighting, etc. Other solutions
are related to the business analytics domain [16, 87] and can be used to ana-
lyze the collected building related data (i.e., internal temperature/humidity,
energy consumptions, energy costs, etc.). Nevertheless, these solutions face

12https://www.designingbuildings.co.uk/wiki/Performance_gap_between_building_design_
and_operation/

https://www.designingbuildings.co.uk/wiki/Performance_gap_between_building_design_and_operation/
https://www.designingbuildings.co.uk/wiki/Performance_gap_between_building_design_and_operation/

8 Chapter 1. Introduction

major obstacles when being implemented due to various factors, amongst
others: (1) the non-interoperability of data between the existing building de-
vices and the management applications used, (2) the limited analysis of data
collected from the installed equipment (e.g., sensors, meters, etc.), and (3)
the non-adaptability to new building requirements (i.e., adding new sensors,
implementing new management applications, etc.). To cope with these lim-
itations, NOBATEK/INEF413, French Institute for the Energy Transition of
Buildings, has launched several projects that focus on the development of
tools to support the energy optimisation for the operational phase of build-
ings:

1. SIBEX14, is a Research and Development (R&D) project that aims at
managing buildings energy behavior through the development of a Web-
oriented platform offering several Web services used for: (1) collecting
heterogeneous on-site building data (e.g., internal temperature and en-
ergy consumption), (2) pre-processing collected data (e.g., outliers cor-
rection), and (3) analyzing data (e.g., energy prediction).

2. HIT2GAP15, is an EU-funded H2020 project that aims to control and re-
duce buildings energy consumption during the exploitation phase by
extending the SIBEX Web energy management platform to allow the
integration of several advanced building-oriented services (i.e., devel-
oped by the HIT2GAP consortium). The developed Web platform is
known today as BEMServer.

Being a service-oriented Web platform, BEMServer architecture design
follows the SOA model, as shown in Figure 1.7. The architecture, described
more in details in [60], has been elaborated on the basis of a survey conducted
on the existing solution architectures and tools used to manage energy build-
ings, while considering both SIBEX and HIT2GAP projects requirements.

Mainly, BEMServer architecture consists of:

• The Field level, which includes heterogeneous data collected from the
building (e.g., internal temperature, energy consumptions, and other
building related information such as doors and building levels), and
from other sources (e.g., weather forecasts and occupants).

• The Core platform level, that contains mainly (i) the data repository to
store time-serie collected data, (ii) an ontology-based data model [98], to
store semantically linked descriptive information, (iii) a set of basic ser-
vices (i.e., data pre-processing services used to prepare and correct the
data collected from the Field level), and (iv) Web APIs (Application Pro-
gramming Interface) implemented as RESTful services, through which
advanced services access the data collection and basic services.

• The Management level, that contains the advanced services used to an-
alyze and process building data in advanced manner (e.g., using data

13https://www.nobatek.inef4.com/
14Solutions Intelligentes pour le Bâtiment en EXploitation: http://spider.sigappfr.org/research-

projects/sibex/
15Highly Innovative Building Control Tools Tackling the Energy Performance Gap:

http://www.hit2gap.eu/

https://www.nobatek.inef4.com/

1.1. Context 9

Figure 1.7 – BEMServer Architecture

mining and machine learning algorithms [118]). Using the Web APIs,
the advanced services can access the collected data stored in the plat-
form and the basic services to prepare the data before being processed.
Examples of such advanced services in the HIT2GAP project are:

– Forecasting, used to predict building energy consumption and an-
ticipate reactive behavior.

– Fault Detection and Diagnosis (FDD), used for detecting faulty sys-
tem operations based on advanced monitoring capabilities. It gen-
erates warnings and recommendations for the facility management.

The services provided by the BEMServer platform mainly follow the REST
architecture style, thus, they are designed as resources identified through
URIs and callable using HTTP methods. A resource can offer a set of func-
tions that answer specific requests of building actors (e.g., building manager
and the building energy manager). However, buildings actors may have
complex demands that require the interaction of two or more resources (data
collection, data pre-processing, and/or advanced data processing), forming
a composition of resources [48]. In order to fulfil such demands, we propose
in this thesis, solutions for RESTful service composition, that can be applica-
ble in the smart buildings environments, to help building actors in creating

10 Chapter 1. Introduction

new resources for managing and controlling more efficiently buildings en-
ergy behavior.

1.1.2 Thesis Scope

1.1.2.1 Collaboration

This thesis was held under a French CIFRE convention (Industrial Conven-
tion of Formation by Research) between: (1) NOBATEK/INEF4, an Insti-
tute for Energy and Environmental Transition in the Construction indus-
try (France), and (2) the Computer Science Laboratory of the University of
Pau & Pays Adour (France). The work has received funding from the Na-
tional Association of Research and Technology in France (ANRT16), for the
SIBEX project (tightly related to this thesis), previously described in Sec-
tion 1.1.1.3.1.

1.1.2.2 Objectives

Web Service composition has become the most promising way to support
business-to-business application integration [48]. It refers to the combination
of two or more services to offer new and value-added services responding
to complex user’ requests. The aim of this thesis is to propose generic so-
lutions for RESTful service (resource) composition, that can be applicable in
the smart buildings Web connected environments (see Section 1.1.1.2.1), pro-
viding resources exposed by Web applications and connected objects. The re-
source composition allows buildings actors (e.g., the building manager and
the building energy manager) to create new resources by combining several
resources together, in order to answer specific complex demands for manag-
ing buildings energy behavior. In our work, we consider two aspects of the
composition [48]: (1) static, in which the resources to be used are manually
chosen and linked together by the user before being deployed, and (2) au-
tomatic, where the composed resources are automatically created on the fly
(i.e., resources are automatically discovered and selected to form a suitable
composition for user’s request) based on some user inputs. More specifically,
the main objectives of this thesis can be presented as follows:

1. Definition of a SOA-based architecture for buildings energy manage-
ment: Elaborating the architecture of the Web-based energy manage-
ment platform, BEMServer (see Section 1.1.1.3.1), which provides mul-
tiple building-oriented services (resources), was part of our preliminary
tasks in this thesis. In the proposed contributions related to resource
composition (static and automatic), we used several case studies iden-
tified within the context of BEMServer, since it is a resource-oriented
platform. Thus, the motivation behind our solutions have been illus-
trated in scenarios related to the building energy management domain.

2. Verification of static resource composition: When the composed re-
sources are manually built, i.e., the involved resources are selected and
linked together by the user, several errors can occur during the composi-
tion design (e.g., non-interoperability of data types between the linked

16Association Nationale de la Recherche et de la Technologie

1.2. Motivating Scenario and Research Challenges 11

resources, and end-loops occurred preventing other resources to run).
This leads to an erroneous composition behavior. To avoid such behav-
ior that provokes inaccurate results, and to prevent unnecessary execu-
tion of erroneous composition, we aim in this thesis to verify the com-
position behavior before being executed, while considering the REST
principles.

3. Automatic resource composition: In order to facilitate the composition
process for the user, especially with the existence of numerous and over-
lapping resources providing similar functions, and allow composing re-
sources in hybrid Web environments providing static resources (i.e, al-
ways available on the Web) and dynamic resources (i.e., connected to
and removed from the Web at different instances), an automatic com-
position approach becomes necessary. In this context, the purpose of
this thesis is to:

• Discover automatically the resources providing the functions re-
quired to answer user’s requests;

• Select automatically the suitable resources from the identified ones
during resource discovery, to form the required compositions.

To allow such automatic approaches, it is important that resources prop-
erties (provided functions, inputs/outputs, etc.), are machine-readable
data. This is done through the use of a descriptive language (Hydra vo-
cabulary in this work) that allows annotating resource properties with
semantic data processable by machines.

1.2 Motivating Scenario and Research Challenges

In this section, we motivate our work focused on RESTful service compo-
sition, with a scenario illustrated in the BEMServer Web platform (see Sec-
tion 1.1.1.3.1). Mainly, the platform provides static resources (i.e., established
to be always available) for: collecting heterogeneous on-site building data,
pre-processing the collected data, and analyzing the data. We suppose that
the static resources follow the HATEOAS principle (one of the main con-
straints of the REST architecture style that we seek to adopt in this thesis),
thus, they are linked together based on their provided functions defined in a
function graph. The links between the static resources are included in each
resource description, which is expressed in Hydra [64] and registered in a
triplestore-based repository. Each resource provides a specific function that
can be called using HTTP methods (e.g., GET, POST, PUT, and DELETE) to
satisfy a building actor request. However, some requests require the combi-
nation of several resources forming a composition. We consider the case of
a building manager (with little skills in both technical and energy domain
aspects) who needs to predict the heating energy consumption of a specific
zone of his building (e.g., his office), for the upcoming week. The resulted
consumption can help him to anticipate the building’ energy resource needs.
In order to satisfy the building manager demand, several resources are re-
quired, as depicted in Figure 1.8:

12 Chapter 1. Introduction

• Data collection resources to collect the required data: Air Temperature
(i.e., internal temperature) extracted from the BEMServer repository,
and climate temperature (i.e., external temperature) provided by an ex-
ternal weather forecast resource).

• Data pre-processing resources to clean the collected data from the exter-
nal weather forecast resource:

– Resources for detecting and correcting outliers values, which are
data values outside the range of most of the other values

– Resources for detecting and correcting empty or missing values re-
trieved during certain timestamps

• A resource for predicting energy demand using the collected and pre-
pared data. This resource relies on a prediction model that is considered
already implemented in our work.

Figure 1.8 – Resource composition scenario

To realize the necessary composition scenario involving several resources,
two cases are possible:

• Case 1: Static resource composition - In this case, the building manager
is responsible to choose and select the required resources from a list of
the provided static resources and link them manually.

• Case 2: Automatic resource composition - In this case, we tackle the
resource composition process, in more complex Web environments by
considering the dynamicity and mobility aspect of resources (whenever
they are exposed by connected objects). As such, we assume that BE-
MServer is extended to be an open and dynamic environment allowing
ad-hoc connection of external resources exposed by stationary/mobile
objects (e.g., mobile phones and tablets) at runtime, as shown in Fig-
ure 1.9. These resources are dynamic (i.e., can be connected to and re-
moved from the environment at different instances). In order to facili-
tate the composition task for the building manager in such hybrid en-
vironment providing both static and dynamic resources, an automatic
composition process, in which resource properties are semantically de-
scribed, is required. In the process, the building manager is only re-
quired to provide some inputs (e.g., required function (energy demand
prediction), startdate/enddate, and the necessary location).

However, several challenges arise when dealing with each of the above
two cases:

1.2. Motivating Scenario and Research Challenges 13

Figure 1.9 – BEMServer extended to be a hybrid environment

1. For the static resource composition:

• Verification of the composition behavior: As the composition is
built manually by the building manager, several problems may oc-
cur during the composition execution. For example, he may link
the "Missing Values Interpolation" resource illustrated in Figure 1.8,
to the "Outliers Values Interpolation" resource, causing an end-loop
in the composition and preventing other resources (i.e., the "En-
ergy Demand Prediction" resource) to run. In order to cope with
such design problems, it is important to verify the correctness of a
composition behavior before being executed.

2. For the automatic resource composition:

• Automatically identify resources in hybrid Web environments:
The existence of numerous published resources in a Web-based en-
vironment as the BEMServer platform, and the dynamic nature of
part of the connected resources, which are not linked to the existing
static resources, make the automatic discovery of resources realiz-
ing building manager request a challenging task. Also, allowing
an efficient resource discovery with an acceptable response time in
an environment connecting large number of resources, makes re-
source identification even more complex. Additionally, and in or-
der to ensure accurate prediction results, it is essential to consider
the location of the data collection resources exposed by objects (as
the connected tablets and mobile-phones in our scenario) during
resource identification. For instance, a resource that collects tem-
perature data whose location is different than the required predic-
tion zone (e.g., the building manager office) will not be efficient to
the building manager demand. However, considering object loca-
tions is a critical task that requires processing spatial queries, e.g.,
Range type [18] to identify objects in a specific region and KNN [67]
to locate the K nearest neighbors (objects).

• Automatically select the resources forming suitable compositions
in hybrid Web environments: The discovery of several resources

14 Chapter 1. Introduction

providing similar functions required for the building manager de-
mand, makes it difficult for him to select the appropriate ones form-
ing suitable composition matching his needs. As such, a resource
may be better than others since it may have: (i) continuous con-
nectivity to the environment (if it is static), (ii) cost free when us-
ing it, and (iii) high usage rate (i.e., it has been invoked many
times). Moreover, the selection becomes more complex when deal-
ing with dynamic resources that are unavailable for execution (af-
ter being selected). Therefore, and in order to prevent missing dy-
namic resource in a composition, other compositions with different
implementation alternatives realizing user’s request are necessary.
In this context, the building manager may need to have different
types of compositions (e.g., optimal compositions having the high-
est scores in terms of Cost, Availability, etc., and optimistic com-
positions with acceptable scores but obtained in more satisfactory
delays). Therefore, considering user’s needs is also important to
answer more efficiently his demands.

To tackle the aforementioned challenges, we propose in this thesis three
main contributions for: (1) verifying the behavior of statically composed re-
sources, (2) discovering automatically the required resources in hybrid Web
environments, and (3) selecting automatically the appropriate resources iden-
tified in resource discovery to form the necessary compositions. Each of the
proposed solutions is detailed next in Section 1.3.

1.3 Proposal: StARC Framework

In this thesis, we present StARC, a framework for Static and Automatic Resou-
rce Composition. The framework is generic, as it can be applicable in differ-
ent Web-based environment domains. It allows to compose statically and au-
tomatically resources that follow the REST principles, including HATEOAS.
As shown in Figure 1.10, StARC covers 2 aspects of resource composition:

• Static Resource Composition - In this case, the resource composition is
manually created by the user, based on a resource’ descriptions guide
that provides data on the available static resources properties (e.g., pro-
viding functions, inputs, outputs, etc.). In order to verify the composi-
tion behavior, it is passed to the Verification process for validation. In
the latter, the composition model (i.e., expressed in JSON in this work) is
transformed by the Modeling Engine into a formal language based on
Colored Petri Nets (CPN)17, i.e., PNML (XML-based syntax for high-
level Petri nets). The transformation is done using the Resource CPN
Mapper, which includes a defined model that maps the resources and
their composition to CPN. Based on CPN, the Validation Engine allows
to verify the resource composition behavior using CPN formal proper-
ties (i.e., Reachability, Liveness, and Interoperability). After the compo-
sition is validated, the Conversion process is launched. In the process,
the composition is converted by the Conversion Engine into a suitable

17A graphical oriented language for design, specification, simulation and verification of systems

1.3. Proposal: StARC Framework 15

Figure 1.10 – An overview of the proposed framework: StARC

format that can be stored into the Resource Description repository (i.e.,
expressed in the Hydra Vocabulary [64] in this thesis), so it can be in-
voked and executed later by the Execution Engine of the Execution pro-
cess.

• Automatic Resource Composition - It includes 3 processes: Automatic
Discovery, Automatic Selection, and Execution. The discovery process
aims at identifying the resources (static and dynamic) satisfying the
functions needed to answer the user’s requested function included with-
in its request. These functions are presented in a directed acyclic Func-
tion Graph (FG) that defines their dependencies. To identity the neces-
sary resources, the discovery process uses RES Graph, a resource graph
where static and dynamic resources are linked together, based on their
providing functions defined in FG. An Indexing Schema, that maps re-
sources to their provided functions and location (i.e., defined in a Loca-
tion Map and assigned to resources that are exposed by objects as smart
devices) is defined. The schema allows to identify the resources from
which the discovery process (using a graph-based algorithm stored in
the Algorithms Library) starts crawling the RES graph to identify the
resources providing the functions required for user’s request. If no
overlapped resources are discovered for the same required functions,
one resource composition is returned. However, when there are several
candidate resources identified during resource discovery, for at least
one function necessary to realize user’s request, the selection process is
launched. In the latter, a directed acyclic graph that links the discovered
resources according to the Workflow Model required for user’s request
is formed. Based on the built graph, and using a graph-based algo-
rithm, the selection process consists on selecting the suitable resources
to form different composition alternatives, i.e., i-compositions (with i
∈ N∗), answering user’s request. With the existence of many possible

16 Chapter 1. Introduction

compositions, the selection process uses a Selection Strategy Adaptor
that forms different compositions types responding to different user’s
needs expressed in user’s request type (e.g., optimal compositions hav-
ing the highest scores, optimistic compositions having acceptable scores
but obtained in satisfactory delays, etc.). This is done while considering
user Quality of Resource (QoR) constraints (e.g., Cost and Availability),
resources Input/Output (I/O) semantic matching, as well as resource
dynamicity. Once the compositions are formed, they can be executed
by the Execution process to obtain the required results. However, in
this thesis, the execution of the automatically composed resources is
not covered. It will be held in a subsequent work.

1.3.1 Contributions and Publications

In this section, we present the key contributions previously identified in the
StARC framework. The contributions concern the verification process in the
static resource composition, and both resource discovery and selection pro-
cesses, in the automatic resource composition applicable in hybrid Web en-
vironments (i.e., connecting static and dynamic resources).

1.3.1.1 Verification of Static Resource Composition

For the static resource composition in the StARC framework, our contribu-
tion is focused on the composition verification process. As such, and in order
to allow the verification of a static resource composition behavior before ex-
ecution, the key contribution is the formal CPN-based Model.

• Formal CPN-based Model: It is defined to represent formally the be-
havior of static resources and their composition using Colored Petri
Nets (CPN). By mapping resources to CPN, the model allows to use
CPN verification tools properties to verify relevant composition behav-
ior: (1) Reachability, to make sure that the desired results can be reached
from the initial composition state, (2) Liveness, to verify that all in-
volved resources can be invoked during composition execution, and (3)
Interoperability, to check if the linked resources are compatible accord-
ing the their related Input/Output data types.

The composition verification contribution is published in the proceedings
of the 25th International Conference on Cooperative Information Systems
(CoopIS):

- KALLAB, Lara, MRISSA, Michael, CHBEIR, Richard, et al. Using colored
petri nets for verifying restful service composition. In : OTM Confederated
International Conferences" On the Move to Meaningful Internet Systems".
Springer, Cham, 2017. p. 505-523.

1.3.1.2 Automatic Location-aware Resource Discovery

As part of the automatic resource composition in the StARC framework, we
propose an automatic location-aware resource discovery that can be applica-
ble in hybrid Web environments connecting linked static resources support-
ing the HATEOAS principle, and dynamic resources. Within the solution,
several key contributions have been presented:

1.3. Proposal: StARC Framework 17

• Resource Graph Linking Static and Dynamic Resources: It is one of
the major key contributions related to the automatic resource discov-
ery process. It allows to link dynamic resources (i.e., connected to and
removed from the Web environment at different instances) to existing
static linked resources (i.e., established to be always available on the
Web environment) that follow the HATEOAS principle. This is done by
using defined virtual resources; one for each provided function in the
environment defined in a directed acylic function graph. The virtual re-
sources hold the connected dynamic resources answering the same cor-
responding function, and are linked to static resources providing that
same function.

• Indexing Schema: It is defined to map the available resources in the
Web environment, to their providing functions and location (whenever
they are exposed by objects as smart devices). The indexing schema
is used to identify the resources required for user’s request while con-
sidering their location. This is important mostly for the discovery of
data collection resources, as it enables to have accurate data necessary
for user’s request. Also, the indexing schema allows to make resource
discovery faster, especially in large Web environments. This is done by
pointing to the necessary resources (providing the required functions
for user’s demand) from which the resource discovery process will start
its search, instead of crawling resource graph from the root resources.

• Resource Discovery Process: It uses several graph-based algorithms, as
Breadth First Search (BFS) and Depth First Search (DFS) [97] in this the-
sis, to traverse resource graph (including static and dynamic resources)
and identify the resources required to answer user’s request. The differ-
ent implemented algorithms, are adapted to explore resource descrip-
tions (expressed in Hydra vocabulary in our work) enriched by seman-
tic annotations.

The contribution related to the automatic resource discovery is published
in the proceedings of the IEEE International Conference on Web Services
(ICWS):

- KALLAB, Lara, CHBEIR, Richard, et MRISSA, Michael. Automatic K-Resou-
rces Discovery for Hybrid Web Connected Environments. In : 2019 IEEE
International Conference on Web Services (ICWS). IEEE, 2019. p. 146-153.

1.3.1.3 Automatic QoR-based Resource Selection

For the selection process of the automatic resource composition in the StARC
framework, we present an approach for selecting the appropriate resources
(static and/or dynamic) among other candidates, to form the required re-
source compositions responding to user’s needs. The key contribution be-
hind our selection approach is the Selection Strategy Adaptor.

• Selection Strategy Adaptor: Using a formal model graph that relates
the identified resources during resource discovery, and based on several
defined rules, the Selection Strategy Adaptor allows forming different

18 Chapter 1. Introduction

compositions alternatives answering user’s request (e.g., Optimal com-
positions having the highest scores, Optimistic compositions having ac-
ceptable scores, i.e., ≥ a defined threshold, but obtained in satisfactory
delays, etc.). This is done while considering QoR constraints, I/O se-
mantic matching of related resources, and resource dynamicity aspect.

This is an ongoing work that will be submitted soon.

In addition to the aforementioned scientific contributions, we defined the
SOA-based architecture of the BEMServer platform used for managing build-
ing energy behavior in the context of SIBEX and HIT2GAP projects. The
architecture is published in the Energy Procedia proceedings of the Interna-
tional Scientific Conference related to Climate Resilient Cities, Energy Effi-
ciency, and Renewables in the Digital Era (CISBAT):

- KALLAB, Lara, CHBEIR, Richard, BOURREAU, Pierre, et al. HIT2GAP:
Towards a better building energy management. Energy Procedia, 2017, vol.
122, p. 895 - 900.

Also, we mention below other publications in which we included part of our
work related to Web service composition in the buildings energy domain:

- CHBEIR, Richard, CARDINALE, Yudith, CORCHERO, Aitor, et al. On-
toH2G: A Semantic Model to Represent Building Infrastructure and Occu-
pant Interactions. In : International Conference on Sustainability in Energy
and Buildings. Springer, Cham, 2018. p. 148 - 158.

- BOURREAU, Pierre, CHBEIR, Richard, CARDINALE, Yudith, et al., "BE-
MServer: An Open Source Platform for Building Energy Performance Man-
agement", presented at the 2019 European Conference on Computing in Con-
struction, 2019, p. 256 - 264.

1.4 Report Organization

The rest of this report is organized as follows.

Chapter 2 gives some background information for the full understanding
of the different approaches proposed in this thesis. It presents: (i) the concept
of Web services, (ii) the main technologies used to implement them with em-
phasis on the REST architecture style (the one adopted in our work), and (iii)
the different semantic Web languages used to make Web services properties
machine-readable. Then, the chapter provides a review on the existing lan-
guages that allow resource descriptions, with a focus on hypermedia-driven
approaches as Hydra vocabulary, the one used to describe the resources in
this thesis.

Chapter 3 tackles the challenge of verifying a resource composition be-
havior before execution. For this aim, we propose a formal model that maps
the behavior of resources with their composition to Colored Petri Nets (CPN).
Using the defined CPN-based model, we show how the verification of a re-
source composition behavior can be done by applying several CPN behav-
ioral properties (i.e., Interoperability, to check whether the linked resources

1.4. Report Organization 19

are compatible according the their related Input/Output datatypes, Reacha-
bility, to ensure that the final desired state is reachable, and Liveness, to en-
sure that all resources can be executed during composition execution). The
work has been tested using CPN tools to verify the applicability of our ap-
proach. The chapter presents also a standalone prototype that has been de-
veloped within the context of the SIBEX project to verify building-oriented
resource compositions. The prototype includes different engines for model-
ing, validating, converting, storing and executing new composed resources.
Several tests have been conducted to test the different functionalities of the
developed prototype, including the validation process that is based on our
defined CPN model.

Chapter 4 tackles the challenge of the automatic resource discovery in hy-
brid Web environments connecting: (1) static resources that are established
to be always available and follow the HATEOAS principle, and (2) dynamic
resources, which can be connected to and removed from the environment
at different instances. In the chapter, we propose a formal model represen-
tation that links resources (i.e., dynamic and static) in one single resource
graph. The resource graph can be traversed by several graph-based algo-
rithms (i.e., BFS and DFS in this thesis) to discover the resources realizing
the required functions for user’s request. The graph-based algorithms are
adapted to follow the semantic annotations integrated in the resource de-
scriptions (expressed with Hydra vocabulary in our work) of the traversed
resources, for resource discovery. In this chapter, we also define an original
3-dimensional indexing schema that maps the resources to their provided
functions and location (whenever they are exposed by objects as smart de-
vices). Such indexing schema allows the identification of data collection re-
sources based on their location. It also enhances resource search in large Web
environments by pointing to the resources from which the crawling of the
resource graph will start, instead of starting from the root graph resources.
Several tests have been conducted to evaluate our solution performance in
different environment setups (e.g., varying the number of resources and the
number of functions required for user’s request), and on 4 aspects: dynam-
icity, multiplicity, efficiency, and scalability. The results show the utility of
using the indexing schema to enhance resource discovery response time, es-
pecially in large Web environments.

Chapter 5 tackles the challenge of the automatic resource selection in hy-
brid Web environments. In the solution, we first propose a formal model
that links the identified resources during the discovery process in a directed
acyclic graph, based on their providing functions. Then, we define a Selec-
tion Strategy Adaptor that allows resource selection to form several alter-
native compositions having different types answering user different needs
(e.g., optimal compositions having the highest scores, optimistic composi-
tions having acceptable scores but obtained in more satisfactory delays, etc.).
During resource selection, user QoR constraints, resource I/O semantic match-
ing and dynamicity (whenever it is required) are considered. Several tests
are conducted to study the performance of our proposed solution in differ-
ent environment setups (e.g., varying the number of resource candidates and

20 Chapter 1. Introduction

the number of required functions answering user’s request), and analysis are
made to compare our QoR model with existing works.

Chapter 6 concludes this study and presents several future directions that
we are planning to explore afterwards, on the basis of the limitations identi-
fied in our work.

21

Chapter 2

Background

"The building is only as tall as the
foundation is strong enough to build on"

Paula White

Before elaborating on our main contributions related to both static and
automatic resource composition presented in the StARC framework: (1) veri-
fication of static resource compositions, (2) automatic resource discovery, and
(3) automatic resource selection, we present in this chapter several important
technological concepts in order to fully understand the proposed solutions.
The chapter gives preliminaries on Web services, i.e., their definition, the
most supported protocol/principles used to implement them with emphasis
on the REST architecture style (the one adopted in this thesis), and the known
semantic Web languages used to make their properties (provided functions,
inputs/outputs, etc.) machine-readable. Also, the chapter provides a review
on the existing languages used for describing RESTful services (resources) by
focusing on the hypermedia-driven languages as the Hydra vocabulary (the
one used to describe the resources in our work).

22 Chapter 2. Background

2.1 Web Services: Technology and Semantics

According to the World Wide Web Consortium (W3C)1: "A Web service is a
software system identified by a URI and designed to support interoperable
machine-to-machine interaction over a network. It has an interface defined
and described in a machine-processable format. Its definition can be discov-
ered by other software systems. Other systems may then interact with the
Web service in a manner prescribed by its description". In essence, Web ser-
vices are self-describing and loosely coupled application components devel-
oped using any programming language, and on any platform. They expose
business logic through Application Programming Interfaces (APIs), which
can be published, discovered, and invoked over the Web. Mainly, there are
two types of Web services: (1) SOAP-based services, that use the SOAP pro-
tocol, and (2) REST-based services, that follow the REST architecture style
principles. Both types are described in the following sections.

2.1.1 SOAP-based Services

SOAP (Simple Object Access Protocol) is an XML-based messaging protocol
for exchanging structured information in the implementation of Web services
in computer networks [117]. It has been introduced two decades ago and
has been popular for about ten years, before beginning to be less used with
the huge evolution of REST. Briefly, a SOAP message is an ordinary XML
document containing the following main elements:

• An Envelope element that identifies the XML document as a SOAP mes-
sage. It defines the start and the end of the message.

• A Header element that contains any optional attributes used in the pro-
cessing of the message.

• A Body element that contains the XML data comprising the message
being sent.

• A Fault element providing information about errors that occur while
processing the message.

In the example below, a "GetNumberFloors" request is sent to a SOAP
server over HTTP. The request, shown in Listing 2.1, has a building name
parameter, and a number of floors parameter that is returned in the response,
presented in Listing 2.2.
The namespace of the function is defined in "http://www.example.org/buil-
ding".

1 POST /bui lding HTTP/1.1
2 Host : www. example . org
3 Content−Type: a p p l i c a t i o n /soap+xml ; c h a r s e t =utf−8
4 Content−Length: nnn
5

6 <?xml version=" 1 . 0 " ?>
7 <soap:Envelope
8 xmlns:soap=" h t t p : //www. w3 . org /2003/05/soap−envelope/"
9 soap:encodingStyle=" h t t p : //www. w3 . org /2003/05/soap−encoding ">

1https://www.w3.org/TR/ws-arch/

https://www.w3.org/TR/ws-arch/

2.1. Web Services: Technology and Semantics 23

10 <soap:Body xmlns:m=" h t t p : //www. example . org/bui lding ">
11 <m:GetNumberFloors>
12 <m:BuildingName>buildingA</m:BuildingName>
13 </m:GetNumberFloors >
14 </soap:Body>
15 </soap:Envelope>

Listing 2.1 – Example of a SOAP request

1 HTTP/1.1 200 OK
2 Content−Type: a p p l i c a t i o n /soap+xml ; c h a r s e t =utf−8
3 Content−Length: nnn
4

5 <?xml version=" 1 . 0 " ?>
6 <soap:Envelope
7 xmlns:soap=" h t t p : //www. w3 . org /2003/05/soap−envelope/"
8 soap:encodingStyle=" h t t p : //www. w3 . org /2003/05/soap−encoding ">
9 <soap:Body xmlns:m=" h t t p : //www. example . org/bui lding ">

10 <m:GetNumberFloorsResponse>
11 <m:NumberF>7</m:NumberF>
12 </m:GetNumberFloorsResponse>
13 </soap:Body>
14 </soap:Envelope>

Listing 2.2 – Example of a SOAP response

SOAP offers basic communication for Web services, but it does not pro-
vide information about what messages must be exchanged to successfully
interact with a service. That role is filled by WSDL (Web Services Description
Language) [36], an XML format developed by IBM2 (International Business
Machines) and Microsoft to describe Web services as collections of communi-
cation end points that can exchange certain messages. Mainly, a WSDL doc-
ument describes a Web service’s interface: what the Web service does (what
operations it offers and what messages need to be exchanged), how to use it
(what protocols and data encoding systems it uses), and where it is located
(its access point).

WSDL service descriptions are registered in the Universal Description,
Discovery, and Integration (UDDI) registry [31]3. UDDI provides a mech-
anism that can be used to find a Web service that meets user requirements
and to find information about how to use the service, usually specified in a
WSDL document. Thus, these three technologies (SOAP, UDDI, and WSDL)
are seen as the core of what most people view as the standard Web services
infrastructure, as it is shown in Figure 2.1.

SOAP has several advantages [117], among them:

• It is not tied to any transfer protocol. It can be transferred via SMTP4,
FTP5, HTTP (which is the most popular transfer protocol that SOAP
uses), etc.

• It supports WS-Security, which adds enhancements to SOAP messag-
ing to provide quality of protection through message integrity, message

2https://www.ibm.com/
3Source: http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb/
4Simple Mail Transfer Protocol
5File Transfer Protocol

https://www.ibm.com/
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb/

24 Chapter 2. Background

Figure 2.1 – SOAP, UDDI, and WSDL interactions

confidentiality, and single message authentication. WS-Security mech-
anisms can be used to accommodate a wide variety of security models
and encryption technologies.

• It supports WS-ReliableMessaging: SOAP has successful/retry logic
built in and provides end-to-end reliability even through SOAP inter-
mediaries.

• It has a built error-handling. As such, if a problem occurs in the request,
the response will contain error information that can be used to fix the
problem.

Despite these advantages, many developers found SOAP complex and
hard to use. In addition to being dependent from XML, and other XML-based
standards as WSDL, working with SOAP requires writing a lot of code to
perform sometimes simple tasks because it is necessary to have the required
XML structure in every task. As an alternative, REST architecture style has
emerged [91], and has been gaining popularity since the last decade when
designing and implementing Web services.

2.1.2 REST-based Services

REST architecture style [45] has recently become a popular choice for imple-
menting Web Services. A Web service that conforms to all REST principles is
referred to as a "RESTful service". Mainly, a RESTful service provides a func-
tionality through an abstract resource-oriented view identified by a Unique
Resource Identifier (URI), and invoked via HTTP-based methods (e.g., GET,
POST, PUT and DELETE). Several architectural principles [46] are defined to
design and implement RESTful services:

• Resource-oriented and addressability: Resources are central elements
addressable through their URI. They can be defined as objects with
different format representation (e.g., JSON, XML, etc.), associated data

2.1. Web Services: Technology and Semantics 25

(e.g., text files, images, etc.), relationships to other resources, and a set
of methods that operate on it (e.g., GET, POST, PUT and DELETE).

• Uniform interface: The interactions with the exposed resources are
made via a uniform interface, which provides a set of standard oper-
ations supported by the HTTP protocol. The consequence of the ex-
ecution of these methods is the change of the resource state that can
be transferred from/to clients, and represented in various types (e.g.,
JSON, XML, etc.). Each method has a well-defined semantics in terms
of its effect on the state of the resource. It can be: (1) idempotent, i.e., it
produces the same results when executed once or multiple times, or (2)
safe, i.e., it does not modify the resource on the server side. The main
methods are:

– GET: The GET verb is idempotent and safe. It is used to retrieve in-
formation. For example, retrieving a building with an ID of "buildi-
ngA" would be: GET /buildings/buildingA

– POST: The POST verb is used to send data to the server to create
new resources. In particular, it is used to create subordinate re-
sources, i.e., subordinate to some other resource (e.g., parent). In
other words, when creating a new resource, the server associates
the new resource to the parent and assigns to it an ID (new URI).
POST is not idempotent and not safe. As such, making two identi-
cal POST requests will result in two resources containing the same
information, thus, producing different resource states on the server
side. As an example of POST, in order to add a floor to the building
A, the request would be: POST /buildingA/floors.

– PUT: A PUT request is idempotent, but not safe. It is mainly used to
update existing resources, but in some cases, when the client knows
the URI of the resource to create, it can also be used to create new
resources. As an update example, to modify a building with an id
of "buildingA", the request would be: PUT /buildings/buildingA

– DELETE: It is idempotent but not safe. It is used to delete a resource
having a specific URI. If a resource is deleted, it is removed. To
delete a resource with an id of "buildingA", the request would be:
DELETE /buildings/buildingA

• Client-Server model: This essentially means that client applications
and server applications are able to evolve separately, and independently.
As such, a client is not concerned with the data storage and business
logic, which remain internal to each server, and a server is not con-
cerned with the user interface or user state.

• Stateless communication: Every interaction with a resource is stateless.
This means that the server does not store any state about the client ses-
sion on the server side. In fact, each request is handled independently
from the other, and request messages must contain all the necessary in-
formation that the server needs to process it. From another side, the
response messages received from the server should also contain data

26 Chapter 2. Background

related to the response state (e.g., HTTP response code6 and Content-
Type). Stateless communication saves energy on the server side, as the
state of the interaction with any client does not need to be stored in
memory.

• Layered architecture: REST promotes to use a layered system architec-
ture where each layer does not know any thing about any layer other
than that of immediate layer. In such model, there can be lot of in-
termediate servers between the client and the end server. This allows
improving system availability by enabling load-balancing and by pro-
viding shared caches.

• Cacheable: A cacheable response is an HTTP response which can be
cached, i.e., stored to be retrieved and used later, thus, saving a new
request to the server. In this context, client will return the data from its
cache for any subsequent request and there would be no need to send
the request again to the server. This can eliminate some client-server
interactions, and further improve availability and server performance
because the load has reduced.

• Code on demand: It is an optional feature. According to it, servers can
provide downloadable and executable code to the client in the form of
applets or scripts. This helps clients in reducing the number of features
required to be pre-implemented. Allowing features to be downloaded
after deployment improves system extensibility.

• HATEOAS: Known as Hypermedia as the Engine of Application State,
is the latest constraint of the REST paradigm used to provide directions
to the client/agent regarding the next possible operations to be trig-
gered. The principle is to include within returned server responses, the
possible next resources URIs to follow, based on the current resource
state. The methods used to invoke such resources can also be included.
The main advantage of HATEOAS is to enable runtime drive of the ap-
plication without the need to pre-design the workflow.

A comparison between SOAP and REST is presented in Table 2.1, which
reveals the advantages of REST on different aspects (e.g., responses formats,
message contents, bandwidth, etc.). Therefore, in this thesis, Web services
are designed as RESTful services (resources) that follow the REST principles.
During the elaboration of the contributions, we focused on the following
main REST constraints [91]: (1) resource-oriented and addressability, (2) uni-
form interface, and (3) HATEOAS. The remaining constraints (excepting the
"Code on demand" feature) are supported during resource implementation.

2.1.3 Semantic Web Languages

In the semantic Web [27], information is given a meaning by representing it
through a machine-readable markup language with a well-defined seman-
tics. This is done to allow data to be shared and reused across applications

6Examples: "200 OK", means that the request is succeeded, and "201 Created", means that the re-
quest has been fulfilled and a new resource is created (see https://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html)/

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html)/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html)/

2.1. Web Services: Technology and Semantics 27

Table 2.1 – SOAP vs REST
Category SOAP REST

Transfer

It was designed to be independent of any
transfer protocol. Often, it missuses

HTTP and adds overheads in the
request/response messages

It is typically implemented with HTTP,
and takes advantage of all of it features

Responses Formats Only permits XML data format
Permits different data format such as

Plain text, HTML, XML, JSON etc.

Message Contents

SOAP-based Web services send additional
information apart from the message (e.g.,

the header) which makes the size
of message heavy

RESTful services only send the message to be
passed, which makes it lighter than SOAP.

The message contains the information about the
internet resource to be accessed (URI)

Bandwidth Requires more bandwidth Requires less bandwidth

Security
Has more control over security
using WS-Security for example

It lacks security compared to SOAP.
It inherits security measures from
the underlying protocol (HTTP)

Reliability
It has inbuilt retry logic in case of
transaction failure and provides

end-to-end reliability

It does not have a standard messaging system
and expects clients to deal with communication failures

by retrying the operation

Transaction Management
SOAP has more control for
transactions management

In REST, it is necessary to write the
logic for managing transactions

Operations State It is stateful It is designed to be stateless
Caching Mechanisms Cannot be cached Can be cached

Development and Implementation
It requires writing a lot of code

to perform simple tasks

It uses HTTP and basic CRUD operations
(Create, Read, Update, Delete), so it is

simple to write

or systems, and provide knowledge understandable to all (machines and hu-
mans).

From this perspective, and in order to allow generic clients (typically
Web browse-rs) to discover and invoke resources automatically, facilitating
thus the composition process for end-users, especially in complex environ-
ments connecting mobile/stationary objects and providing static/dynamic
resources, it is important that resource properties are described using a ma-
chine readable language. In this context, semantic Web markup languages
are used to represent data related to Web services, i.e., known as semantic
Web services, by making their properties (e.g., provided functions, input-
s/outputs, etc.), encoded in an unambiguous and machine understandable
form. Each semantic Web language has a well-defined syntax and semantics
to enable unambiguous computer interpretation when describing Web ser-
vices. It is based on a specific formalism. A number of languages have been
proposed for representing semantic Web meta-data, in particular RDF [37]
and OWL [20].

2.1.3.1 RDF, RDF-S

RDF [74], which stands for Resource Description Framework, is a framework
that describes Web resources, identified by Web identifiers (URIs), with prop-
erties and property values. The combination of a resource, a property, and a
property value forms a statement known as the subject, predicate and object
of a statement.
Below an RDF example describing the resource "https://www.buildings.com-
/bldgA":

1 <?xml version=" 1 . 0 " ?>
2 <rdf:RDF xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "

xmlns:ex= " h t t p : //www. semanticweb . org/myontology ">
3 < r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p s : //www. bui ld ings . com/bldgA ">
4 <ex:NumberFloors>8</ex:NumberFloors>
5 <ex:Type> R e s i d e n t i a l </ex:Type>
6 </ r d f : D e s c r i p t i o n >

28 Chapter 2. Background

7 </rdf:RDF>

Listing 2.3 – RDF Example

RDF documents, which are designed to be read and understood by com-
puters, are written in XML. By using XML, RDF information can easily be
exchanged between different types of computers using various types of op-
erating systems and application languages.

RDF Schema (RDF-S) [30] is an extension to RDF. It provides mecha-
nisms for describing groups of related resources and the relationships be-
tween them. Besides defining triples, it allows to define class and property
hierarchies. The RDF-S class and property system is much like classes in ob-
ject oriented programming languages, allowing resources to be defined as
instances of one or more classes, and subclasses of classes. For example, a
class "Sensor" might be defined as a subclass of "Device". This means that
any resource that is in class "Sensor" is also implicitly in class "Device" as
well. RDF-S constructs are the RDF-S classes, associated properties (i.e., used
to describe a relation between subject resources and object resources) and
utility properties, built on the limited vocabulary of RDF. Below an RDF-S
document showing a subclass example:

1 <?xml version=" 1 . 0 " ?>
2

3 <rdf:RDF
4 xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "
5 xmlns : rdfs=" h t t p : //www. w3 . org /2000/01/ rdf−schema# "
6 xml:base=" h t t p : //www. example . com/Bui ldings/devices # ">
7

8 < r d f : D e s c r i p t i o n r d f : I D=" Device ">
9 < r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2000/01/ rdf−schema# Class "/>

10 </ r d f : D e s c r i p t i o n >
11

12 < r d f : D e s c r i p t i o n r d f : I D=" Sensor ">
13 < r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2000/01/ rdf−schema# Class "/>
14 <rdfs : subClassOf r d f : r e s o u r c e =" # Device "/>
15 </ r d f : D e s c r i p t i o n >
16

17 </rdf:RDF>

Listing 2.4 – RDF-S Example

2.1.3.2 OWL

The Web Ontology Language (OWL) [90] facilitates greater machine inter-
pretability of Web content than that supported by RDF and RDF-S, by pro-
viding additional vocabulary along with a formal semantics, and thus OWL
goes beyond these languages in its ability to represent machine interpretable
content on the Web. Apart from defining classes and properties as in RDF-
S, it mainly provides constructs to create new class descriptions as logical
combinations (intersections, unions, or complements) of other classes, and
defines cardinality restrictions on properties. OWL provides mainly three
increasingly expressive sub-languages [75]:

• OWL-Lite: is the least expressive sub-language. It is used in situations
where only a simple class hierarchy and simple constraints are needed.

2.1. Web Services: Technology and Semantics 29

• OWL-DL: is more expressive than OWL-Lite and is based on Descrip-
tion Logics [12] (hence the suffix DL). It is used when more expressive-
ness is required, while retaining computational completeness (all con-
clusions are guaranteed to be computable) and decidability (all compu-
tations will finish in finite time).

• OWL-Full: is the most expressive OWL sub-language. It is used in situ-
ations where a very high expressiveness is required. OWL Full is unde-
cidable, so no reasoning software is able to perform complete reasoning
for it.

In the following, we show an OWL example where the building occupant
class is equal to the person class defined in another ontology.

1 <?xml version=" 1 . 0 " ?>
2

3 < !DOCTYPE rdf:RDF [
4 <!ENTITY f o a f " h t t p : //xmlns . com/ f o a f /0.1/# " >
5 < ! ENTITY exemple " h t t p : //www. semanticweb . org/ontology # ">
6] >
7

8 <rdf:RDF
9 xmlns:owl=" h t t p : //www. w3 . org /2002/07/owl# "

10 xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# ">
11

12 <owl :Class r d f : a b o u t="&exemple ; occupant ">
13 <owl :equiva lentClass r d f : r e s o u r c e ="&f o a f ; person "/>
14 </owl :Class>
15 </rdf:RDF>

Listing 2.5 – OWL Example

2.1.3.3 JSON-LD Format

JSON-LD [102], which stands for JavaScript Object Notation for Linked Data,
is a JSON-based representation of RDF. As such, a JSON-LD document is
both an RDF document and a JSON document, representing an instance of
an RDF data model. However, JSON-LD also extends the RDF data model
to optionally allow JSON-LD to serialize generalized RDF Datasets7. JSON-
LD provides a way to help JSON data interoperate at Web-scale, by adding
semantics to existing JSON documents. It is easy for humans to read and
write. Also, little effort is required from developers to transform their plain
old JSON to semantically rich JSON-LD. The basic idea of JSON-LD is to link
objects and their properties in a JSON document to concepts defined in data
models (i.e., ontologies). These ontologies are defined in the form of a so
called context. A context can either be directly embedded in a JSON-LD doc-
ument or put into a separate file and referenced from different documents.
An example of a JSON-LD is given in Listing 2.6:

1 {
2 " @context " : {
3 " h2g " : " h t t p : //www. h2g . eu/ontoh2g /" ,
4 " d e s c r i p t i o n " : " h 2 g : d e s c r i p t i o n " ,
5 " nbf loor " : " h2g :nbf loor "
6 } ,

7https://www.w3.org/2018/jsonld-cg-reports/json-ld/#relationship-to-rdf/

https://www.w3.org/2018/jsonld-cg-reports/json-ld/#relationship-to-rdf/

30 Chapter 2. Background

7 " @id " : " h t t p : //bui lding . example . com " ,
8 " @type " : " h2g :bui ld ing " ,
9 " d e s c r i p t i o n " : " This bui lding c o n s i s t of 5 f l o o r s " ,

10 " nbf loor " : 5
11 }

Listing 2.6 – JSON-LD Example

Listing 2.6 describes a building using the BEMServer ontology [98] related
to the smart buildings domain. In the example, the context is embedded
in the JSON-LD document, which contains a prefix referring to the ontol-
ogy concepts, instead of using their long Internationalized Resource Iden-
tifier (IRI). As seen in lines 4-5, the two JSON properties: description and
nbfloor, are mapped to concepts in the BEMServer ontology, allowing them
to be machine-readable and understandable properties.

Since automatic RESTful service (resource) composition is one of the ob-
jectives of this thesis, more specifically, the resource discovery and resource
selection processes, it is important to describe the resources using a semantic-
based machine-processable language. In our work, we use Hydra vocabulary
expressed in JSON-LD, as it is a lightweight format that is understandable
and less complex to use by both machines and humans. Hydra is presented
in the next section, with other existing resource descriptions languages.

2.2 Resource Description

Resource descriptions allow to give information about resources to mini-
mize the amount of shared knowledge and customized programming that
is needed to ensure communication between the resource provider and the
resource requester. Several description languages have been proposed in or-
der to describe REST services. In this section, we review the most known
ones. During the review, we analyze the descriptive languages according to
the following criteria:

• Resource-oriented: the ability of the language to describe the services,
as resources by associating to each, a URI, an HTTP verb, links to other
resources, etc.

• Hypermedia-based: the ability to define links between resources. This
is important to cover the HATEOAS principle, one of the main REST
principles that we aim to consider in this thesis. It consists in including
within resource response message, the set of resources URIs that can be
called next, based on the current resource state. Although HATEOAS is
still rarely used [83], our work seeks to support it, as it allows generic
clients (typically Web browsers) to dynamically navigate to the next ap-
propriate resources.

• Support for semantic annotations: the ability to integrate semantic an-
notations allowing the properties of the resources to be machine pro-
cessable.

• Supported data format: defines the data format used to express the de-
scriptive language (e.g., XML, JSON, HTML, etc.).

2.2. Resource Description 31

The above criteria match the principles of the Linked Data8, which refers
to a set of best practices for publishing structured data on the Web. Linked
Data allows to use standards for the representation and the access of data on
the Web, and enables the propagation of set of hyperlinks between data from
different sources.

2.2.1 The Web Services Description Language (WSDL)

The WSDL [36] is an XML-based language that is mainly used to describe
SOAP-based Web services. A WSDL description contains the necessary de-
tails that clients can use to interact with a service. It mainly consists of:

• The service’s URL

• The communication mechanisms it understands

• What operations it can perform

• The structure of its messages

The first version introduced was WSDL 1.1. However, the WSDL 1.1 was
inadequate to describe communications with HTTP and XML, and thus REST
services, which rely only on HTTP, were not compatible with such language.

WSDL 2.0 [34] was declared a W3C recommendation, and introduced new
elements and attributes to allow REST services endpoints definition. In fact,
this second version of WSDL was created to mainly (i) address issues with
WSDL 1.1, many of which had been identified by the Web Services Interop-
erability organization (WS-I), and to (ii) support HTTP bindings. Briefly, the
root element of a WSDL 2.0 document is the description element which has
four child elements:

• Types: describes the data types used by the Web service. Most often a
Web service will have an input type, an output type, and a fault type.
The data types can be declared in any language, as long as the Web
service supports it. Data types are often specified using XML Schema
though, since XML Schema is a natural fit for XML structures.

• Interface: defines the Web service operations, including the specific in-
put, output, and fault messages that are passed along with their order.

• Binding: defines how a client can communicate with the Web service.
In the case of REST services, a binding specifies that clients can commu-
nicate using HTTP.

• Service: associates an address, referring to a URI Web service, with a
specific interface and binding.

An example of a WSDL 2.0 is given in Appendix A.
8https://www.w3.org/wiki/LinkedData/

https://www.w3.org/wiki/LinkedData/

32 Chapter 2. Background

2.2.2 The Web Application Description Language (WADL)

The Web Application Description Language (WADL) [50] is a machine read-
able XML description of HTTP-based Web services that models the resources
provided by a service and the relationships between them. It is intended
to simplify the reuse of Web services that are based on the existing HTTP
architecture of the Web. WADL is considered to be the REST equivalent of
SOAP’s Web Service Description Language (WSDL). The service in WADL is
described using a set of resource elements. Each resource contains method
elements, which describe the request and response of a resource. The re-
quest element specifies through param elements the input, the necessary
type, and any specific HTTP headers that are required. The response de-
scribes the representation of the service’s response, as well as any fault infor-
mation to deal with errors. An example of a WADL is given in Appendix B.

SWSAL [42] is an XML-based annotation language that allows to link data
expressed in WADL, with concepts taken from a domain ontology [72] that is
used to define a domain, and to reason about the properties of that domain.
By annotating resources with concepts of an ontology, semantics meanings
are given to the resource. This allows service users as well as machines to
understand the behavior of the resources.

2.2.3 Web Page Annotations-based Languages

SA-REST [65], which refers to Semantic Annotations of Web Resources, is
an annotation scheme that is used to add additional meta-data to Web re-
source descriptions expressed in HTML or XHTML9 pages. The meta-data
contained in various models, e.g., OWL and RDF, can be embedded into the
documents, making them human and machine readable. This allows various
enhancements, such as improving resource search, facilitating data media-
tion, and simplification of resources integration. Figure 2.2, shows an exam-

Figure 2.2 – SA-REST example

ple of a RESTful service described using SA-REST [101]. In the description,
semantic annotations are inside the <meta> tag as well as inside formatting

9Extensible HyperText Markup Language

2.2. Resource Description 33

tags such as . Annotations in the <meta> tags are not visible to the
user, contrary to the tags.

hRESTS [62], or HTML for RESTful Services, is a microformat used to
structure existing RESTful Web service documentation expressed in the form
of Hypertext Markup Language (HTML) Web pages. The microformat serves
as the basis for extensions that introduce additional information (in the form
of annotations) to the services HTML-based Web pages allowing them to be
machine-processable. It is made up of a number of HTML classes, such as
service class, operation class, address class, input and output classes, etc.,
that correspond directly to the various parts of services models. An example
of a hRESTS-based service description is given in Figure 2.3. Alternatively to

Figure 2.3 – hrest example

using the microformat to capture the service model structure in the HTML
documentation of RESTful Web services, RDFa10 [2] can also be deployed
pointing directly to the RDF model. RDFa specifies a collection of XML at-
tributes to express RDF data in any markup language, including HTML.

2.2.4 Hypermedia-based Languages

HAL11, referring to Hypertext Application Language, is an open specifica-
tion describing a generic structure for RESTful resources. It can be expressed
through two hypermedia types, XML and JSON. HAL is designed for im-
plementing RESTful services in which clients navigate around the resources
by following links. It revolves around representing two concepts: Resources
and Links. Resources include:

• Links to URIs

• Embedded Resources (i.e., other resources contained within them)

• State (JSON or XML related data properties)

Links include:

• A target that is a URI

• A relation, which is the name of the link
10It stands for "Resource Description Framework in Attributes"
11https://apigility.org/documentation/api-primer/halprimer/

https://apigility.org/documentation/api-primer/halprimer/

34 Chapter 2. Background

• A few other optional properties related to content negotiation

An example of HAL description expressed in JSON is given in Appendix C.

SIREN12 is a hypermedia specification for representing entities, i.e., URI-
addressable resources. SIREN offers (i) structures to communicate informa-
tion about entities, (ii) actions for executing state transitions, and (iii) links for
client navigation. The initial implementation of SIREN is expressed through
JSON. However, XML may also be used. SIREN specification includes:

• Entities that are URI-addressable resource having properties and ac-
tions associated with them. They may contain sub-entities and navi-
gational links

• Actions showing available behaviors that an entity exposes

• Fields that represent controls inside the actions

• Links representing navigational transitions

An example of SIREN description is given in Appendix D.

Mason13 is a JSON format that introduces hypermedia elements to classic
JSON data representations. Through Mason several data can be acquired:

• Hypermedia elements for linking and modifying data

• Useful information to client developers

• Standardized error handling

Mainly, Mason consists of the following features:

• The "@meta" element: which conveys information to the client devel-
opers. It contains a "@title" and a "@description" property, to describe
the response for the client developers. The ‘"@meta" element may even
contain links for the client developers, as an online documentation.

• The "@controls" element: which includes the links representing the re-
lations between the current resource and another resource, and other
hypermedia control elements (e.g., HTTP verb). The relation between
each two resources has a name (i.e., relation type) that is used as an
index by the client to locate the link.

An example of MASON description is given in Appendix E.

Hydra [64], represented by the model in Figure 2.4, is a lightweight vocab-
ulary used to describe RESTful services and publish valid state transitions
to clients. This published information can help clients to construct HTTP
requests and access exposed resources. It can be expressed with different for-
mats, but essentially via JSON-LD, described in Section 2.1.3.3, which simpli-
fies the mapping of resources properties, e.g., their provided functions and

2.2. Resource Description 35

Figure 2.4 – The Hydra core vocabulary model

linked resources, to concepts defined in existing data models such as ontolo-
gies. This allows resources to be effectively exploited by automated tools. An
example of Hydra is shown in Listing 2.7.

1 {
2 " @context " : {
3 " @vocab " : " h t t p : //www. w3 . org/ns/hydra/core # " ,
4 " schema " : " h t t p : //schema . org /" ,
5 " h2g " : " h t t p : //www. h2g . eu/ontoh2g /" ,
6 " func t ion " : " h 2 g : s e r v i c e f u n c t i o n "
7 } ,
8 " @id " : " h t t p : //www. h2g . eu/h2g/ r e s o u r c e d e s c r i p t i o n /geta i r tempera ture .

md" ,
9 " Operation " : [{

10 " method " : "GET" ,
11 " expects " : [" h 2 g : s t a r t d a t e " , " h2g:enddate "] ,
12 " re turns " : [" schema:DateTime " , " schema:Float "] ,
13 " func t ion " : "ATC"
14 }] ,
15 " Link " : [{
16 " entrypoint " : " h t t p : //www. h2g . eu/h2g/resource/predheatengcons " ,
17 " method " : "GET"

12https://github.com/kevinswiber/siren/
13https://github.com/JornWildt/Mason/

https://github.com/kevinswiber/siren/
https://github.com/JornWildt/Mason/

36 Chapter 2. Background

18 }]
19 }

Listing 2.7 – Resource description example using Hydra in
JSON-LD

2.2.5 Evaluation Summary

Table 2.2 shows the evaluation summary of existing languages used to de-
scribe REST-based services according to the identified criteria. With the ex-
ception of the "Supported Data Format", where we give clearly the data for-
mat supported by each language, we used for the rest of criteria the "+" sym-
bol to express a positive criterion coverage, and "-" symbol to express a lack
of criterion coverage.

Table 2.2 – Evaluation of existing languages used to describe REST-
based Web services w.r.t. the identified criteria
Resource-oriented Hypermedia-based Support for Semantic Annotations Supported Data Format

WSDL-based WSDL 2.0 - - + XML

WADL-based
WADL + - - XML
SWSAL + - + XML

Web Page
Annotations-based

SA-REST + + + HTML
hREST + + + HTML

Hypermedia-based

HAL + + - XML and JSON
SIREN + + - XML and JSON
MASON + + - JSON

Hydra + + +
XML, JSON-LD,

and Turtle

As seen in the table, WSDL 2.0 is an XML-based language that is not re-
source oriented, nor a hypermedia-driven language, i.e., it does not define
links to other related resources, despite its ability to be linked to several se-
mantic models concepts (e.g., ontologies). Also, and among the two WADL-
based languages supporting XML, only SWSAL can add semantic annota-
tions. However, both do not allow the definition of links to other related
resources (they are not hypermedia-based). In addition, and although the
Web page annotations-based languages (SA-REST and hRESTS) are resource-
oriented, hypermedia-based and support semantic annotations, they are de-
scription based on HTML integrated directly into RESTful services HTML
pages. This makes service descriptions unclear and hard to follow for many
developers, as they are combined within the services HTML pages. As for
the Hypermedia-based languages, HAL, SIREN, and MASON are resource-
oriented and hypermedia-based languages that allow the definition of links
to other related resources. While HAL and SIREN support each XML and
JSON as data formats, MASON is only expressed with JSON. These three
languages, however, lack in adding semantic annotations, which is an im-
portant criteria to consider, to provide knowledge about resources proper-
ties and links that are understandable to machines. Expressed with different
data formats, but mostly with JSON-LD, Hydra is a resource oriented and
hypermedia-based vocabulary that allows the integration of semantic anno-
tations by linking resources properties to concepts in existing data models.
As such, in the description shown in Listing 2.7, and based on JSON-LD,
resource properties are linked to concepts existing in ontologies, as the on-
tology [32] developed in BEMServer (see Section 1.1.1.3), to give a seman-
tic meaning of the shared information to both humans and machines. The
"@context" element contains the ontologies prefixes mapped to their URL.

2.3. Summary 37

These prefixes are used to link the JSON-based resource properties to their
corresponding ontologies concepts (e.g., the "expects" values: startdate and
enddate, which refer to the inputs parameters of the resource, are defined in
the HIT2GAP ontology specified by the prefix "ontoh2g"). As for the prop-
erties that are not linked to a data model, they are directly defined in the
Hydra vocabulary, e.g., Operation and method. For these reasons, we used
Hydra expressed with JSON-LD to describe the resources in this thesis. Such
Hydra-based descriptions allow the automatic discovery and selection of re-
sources, which will be explained respectively in details in both Chapter 4 and
Chapter 5.

2.3 Summary

This chapter gives some background information related to several main
technical concepts for the full understanding of the context of this thesis. It
starts by presenting the concept of Web services, the main protocol/princi-
ples used to implement them, with emphasis on the REST architecture style
(the one supported in our work due to its various advantages), and the se-
mantic Web languages defined to make their properties machine-readable,
facilitating thus their usability. Then, it presents a review on the existing lan-
guages used to describe RESTful services (resources) with a focus on hyperm-
edia-driven languages, including Hydra vocabulary expressed in JSON-LD
(the one adopted in this thesis).

In the next chapter, we present our first contribution related to the verifi-
cation of static resource compositions before their execution.

38

Chapter 3

Verification of Static Resource
Compositions Behavior

"Trust, but verify"

Ronald Reagan

RESTful service composition, which consists on combining several ser-
vices (resources) in one single process, has received much interest to satisfy
complex user requirements. However, verifying the correctness of a com-
position remains a tedious task. In this chapter, we present our approach
for verifying the behavior of static resource compositions involving several
resources manually selected and linked by the user, which is part of the ver-
ification process in the static resource composition of the StARC framework.
To do so, we propose a formal model based on Colored Petri Nets (CPNs) for
modeling the behavior of resources and their composition. Using the pro-
posed model, we show how it can be used to verify relevant composition
behavior properties: (1) Interoperability, to check if the linked resources are
compatible according the their related Input/Output data types, (2) Reach-
ability, to make sure that the desired results can be reached from the initial
composition state, and (3) Liveness, to verify that all involved resources can
be invoked during composition execution. A standalone prototype has been
developed, to model, verify, store, and execute a resource composition. The
prototype concerns two categories of resources: data collection and data pre-
processing.

3.1. Introduction 39

3.1 Introduction

The construction of new resources by combining two or more existing re-
sources in the same composition scenario, raises several challenges, among
them, the guarantee of the correct interaction between the resources, leading
to a proper behavior of the overall composition [105]. Within this context,
there is a growing interest for the verification techniques to ensure the cor-
rectness of the composition and enable its designers to detect erroneous be-
havior before actual composition run [121]. As such, several problems may
occur during composition execution due to an erroneous composition de-
sign, e.g., I/O datatype mismatching between the linked resource, and end-
loops occurred during composition execution preventing other resources to
run.

Verifying a composition usually relies on the verification of its behavioral
properties [121] (e.g., Reachability, and Liveness). Such verification typically
depends on the formal modeling of the composition behavior using a mod-
eling language with clear semantics. Several works have been carried out in
this scope. Some RESTful composition approaches are based on formal lan-
guages (e.g., Petri Nets [5, 40], Finite State Machine [128, 113], and Process
Algebra [119, 122]), and others rely on services descriptions with embedded
semantics such as in [109]. Although these approaches respect the majority of
REST principles, inlcuding HATEOAS, they mainly contribute in modeling
and constructing RESTful services composition without verifying its correct
behavior. In this chapter, we propose a formal language based on Colored
Petri Nets [69], known as CPNs, to model and verify RESTful service com-
position. The main contribution of this work is the mapping between CPNs
model and RESTful services, to allow the use of CPNs behavioral properties
for verifying RESTful service composition. Based on CPNs, several proper-
ties can be checked, among them:

• Reachability, is used to verify that the desired final composition state is
reachable from the initial state.

• Liveness, is used to ensure that all resources participating in the com-
position will be invoked (i.e., not dead) during composition execution.

• Interoperability, is used to check if the resources involved into the com-
position can be linked together. This is related to data type compati-
bility between the input and output of the linked resources where the
output of a resource should be of the same type of the input of another
resource.

• Persistence, is used when parallel resources accessing the same infor-
mation are executed simultaneously. It ensures that there is no conflict
between them.

• Boundness, is used to check the maximal allowed number of input/out-
put data (i.e., tokens) of each resource in a composition.

Nevertheless, in this work, we focus on the first three properties, namely:
Reachability, Liveness, and Interoperability, as they are considered to be fun-
damental in the literature [94, 107], and cope with the main design problems

40 Chapter 3. Verification of Static Resource Compositions Behavior

that an end-user may occur when linking manually the resources of a com-
position: (i) erroneous resource linking causing an unreachable desired state,
and preventing other resources to run (i.e., dead resources), and (ii) datatype
mismatch of the linked I/O resources.

The remainder of this chapter is organized as follows. Section 3.2 presents
a scenario illustrated in the BEMServer Web platform to motivate our work,
and highlights the research problem we tackle. Section 3.3 presents the re-
lated work and highlights the originality of our approach. Section 3.4 gives
a description on the basics and formal model of Colored Petri Nets (CPNs).
Section 3.5 details our CPN-based approach for verifying RESTful service
composition. Section 3.6 illustrates the proposed solution within our mo-
tivating scenario. Section 3.7 presents the prototype implementing our ap-
proach in the context of SIBEX. Finally, Section 3.8 concludes the chapter.

3.2 Motivation and Problem Statement

Our motivating scenario is illustrated in the BEMServer Web platform pre-
sented in Chapter 1. Technically, the platform provides: (1) resources for
collecting heterogeneous on-site data (e.g., internal temperature and energy
consumption) contained in the Field layer, (2) basic resources, presented in
the Core layer, for preparing the collected data (e.g., outliers correction and
data alignment), and (3) advanced resources, integrated in the Management
layer, to process the prepared data (e.g., energy prediction and energy model
calibration). In the scenario, we assume that a building manager wants to es-
timate the upcoming week heating energy consumption of his building. The
prediction output will help him to anticipate building energy resource needs
required for the resulted consumption, and analyze building energy behav-
ior. To do so, the building manager has to invoke several services simulta-
neously, embedded as resources, through the corresponding Web platform
instance deployed in the building (as depicted in Figure 3.1), and link them
together correctly to reach the desired composition behavior. Figure 3.2 de-

Figure 3.1 – Instance of the BEMServer Web platform

picts the overall process to be executed for answering the building manager’s
request. It mainly requires the interaction with the following resources:

1. Data collection resources to collect data required for the prediction pro-
cess:

3.2. Motivation and Problem Statement 41

(a) Upcoming week predicted internal temperature, which is extracted
directly from the platform storage

(b) Upcoming week predicted external temperature, which is provided
by an external weather forecast RESTful service

We consider that the collected data are aligned to the same required
frequency (per 15 minutes).

2. Data pre-processing resources that clean the collected data from the ex-
ternal weather forecast service:

(a) Resource that manages and corrects outliers values, which are data
values outside the range of most of the other values

(b) Resource that manages and corrects empty or missing values re-
trieved during certain timestamps

3. Resource responsible for the prediction of the heat energy consumption.
This resource, embedded into the Forecasting module in the BEMServer
platform, uses a prediction model considered already implemented in
the module.

Figure 3.2 – The resources involved in the prediction process

The scenario shows the resources’ composition needed to satisfy the re-
quest at hand. However, building the composition properly and ensuring its
correct behavior is a difficult task for the building manager. In fact, several
problems may occur when building the composition:

- Non-interoperability: Links between the output of a resource and the
input of another may be invalid. This is due to the difference of data
types that each resource handles. For example, as shown in Figure 3.3,
the resource responsible for correcting outliers’ values returns an array
of temperature values whose data type is "Reak". However, as the heat
consumption prediction resource receives values with a different data
type (e.g., "Integer"), the composition will be erroneous by losing preci-
sion in the data.

Figure 3.3 – Non-interoperability of data types between the linked
resources

42 Chapter 3. Verification of Static Resource Compositions Behavior

- Looping: Starting the composition by collecting the required data (the
internal and external predicted temperature), the process may not reach
the final expected result, which is acquiring the predicted energy heat
consumption of the building. This can be due to an end-loop occurred
at one of the data preparation resources, as depicted in Figure 3.4.

Figure 3.4 – Linking error causing a loop in the execution of a
resource

- Dead resources: A resource, as the resource responsible for correcting
missing’ values, may not respond due to some missing linking (see Fig-
ure 3.5). This can prevent the next related resources involved in the
composition process to run or cause an erroneous results (the missing
values will not be handled).

Figure 3.5 – Linking error causing a dead resource

In order to overcome the aforementioned problems, we propose in this chap-
ter a formal language based on Colored Petri Nets (CPNs) to model resources
and their composition, while considering the REST principles. By using
CPNs, our approach is able to handle data types, and thus, to check re-
sources datatype matching. Moreover, with the formal syntax and seman-
tics of CPNs, we are able to validate the behavior of the built composition
models through several verification properties (i.e., Reachability, Liveness,
and Interoperability), embedded in open source and well known tools such
as the CPN tools. The advantage of CPNs are detailed more in Section 3.4.

3.3 Related Work

In this section, we review existing approaches that modeled REST service
compositions using formal languages (e.g., Petri nets, Process algebra, etc.).
As REST is a recent emerging technology, in the literature, there exist little
work related to this research area. Therefore, we also show some of the works
related to SOAP oriented services. During the review, we mainly compare
existing modeling approaches according to the following criteria:

- RESTful principles support: This allows modeling RESTful services
and compositions behavior. As such, the solution should be aligned

3.3. Related Work 43

with the resources properties w.r.t. the REST architecture style princi-
ples (see Section 2.1.2), including HATEOAS.

- Data types handling: The ability to handle the types of data flowing
between resources (i.e., String, Integer, etc.) allows composition syntax
checking and thus better management of the links between them.

- Composition behavior verification: In order to verify the correctness
behavior of the composition, the solution should be able to verify sev-
eral behavior properties (i.e., Reachability, Liveness, and Interoperabil-
ity).

3.3.1 Petri Net-based Approaches

Petri nets are graphical and mathematical modeling language used to model
distributed systems. They are designed to describe and study information
processing systems, with concurrent, asynchronous, distributed, parallel, non-
deterministic and stochastic behaviors [82]. A Petri net is graphically repre-
sented by a number of places (represented by circles) occupied by tokens,
and transitions (represented by bars). Transitions and places are connected
via arcs. A transition may fire when each of its input places has the required
tokens. When it fires, all tokens from its input places are removed, and a to-
ken is placed into every output place.

In [40], a formal language for RESTful Web services is defined based on
high level Petri nets, i.e., a class of Petri nets that includes some extensions
as colored tokens (having a data type). Although this approach integrates
the hypermedia aspect with external services, the links between the internal
resources of a single Web service are not defined. Moreover, there are no
verification properties to evaluate the composition correctness behavior, and
all tokens are expressed only in XML data, without supporting explicitly de-
fined data types (i.e., standard types and other defined types required for the
resources), which implies several advantages:

• The ability to differentiate places by assigning a type (color) for each.
This allows us to define the set of possible values that a place can have
and the set of operations/ transitions that can be applied on these val-
ues.

• The ability to express directly the outputs type of a resource and the
inputs type of another, and ensure their correspondence so that their
composition can take place. This is easier than handling XML data type
presented in the XML document, which requires additional parsing op-
erations (XML parser) to ensure their consistency. As such, interpreting
the ’prediction time’ parameter type (time) related to the heat consump-
tion prediction resource, is simpler from parsing an XML document and
analyze the embedded data types.

• Similar to programming languages, data types can be used to apply
specific conditions, known as guards, can be implemented to the tran-
sitions. While guards expressed in XML requires additional analysis,
guards expressed using data types are faster and easier to evaluate.

44 Chapter 3. Verification of Static Resource Compositions Behavior

• Better checking and verification in the composition process. In fact, with
strong typing we will be steered away from error during resources com-
positions.

• From a graphical point of view, it is easier to analyze workflows where
data types are shown visibly, without the need to do additional investi-
gation efforts.

The same Petri nets formalism was also used in [5], where an XML-based
language, Resource Linking Language, was defined for describing REST ser-
vices. Although the proposed formalism models several REST concepts (e.g.,
resources, media types, and links to resources), internal resources linking is
not expressed, and there are no verification properties applied to the Web
services composition.

Authors in [68] propose REST Chart, a model and a definition language
for REST APIs. Based on Colored Petri Nets (where data types are assigned
to tokens), REST Chart integrates REST constraints to guide REST API de-
signs. It basically models a REST API as a set of hypermedia representations
and transitions between them. The model is then transformed into a special
Colored Petri Net whose token markings define the representational state
space of user agents using that API. Although respecting RESTful principles
during the modeling, and handling data types, the work does not consider
the verification of a REST API behavior by taking advantage of the CPNs
properties such as deadlock detection.

3.3.2 FSM-based Approaches

Finite State Machine (FSM) [111], also called finite state automaton, is a math-
ematical model of computation used to simulate sequential logic and con-
trol execution flow of computer programs. It can be represented as directed
graph, in which there are finite numbers of states, and each state has tran-
sition into next state. The FSM can change from one state to another in re-
sponse to some inputs that determine which transitions is to be executed.

In [128], RESTful services are modeled through a non-deterministic1 FSM
approach with epsilon transitions (ε-NFA) that do not need to read an input
symbol in order to modify the system’s state. The proposed model follows
RESTful design principles, i.e., uniform interface, stateless client-server op-
eration, and code-on-demand execution, and supports hypermedia links be-
tween internal resources belonging to the same system. However, there are
no composition verification properties used to ensure the correct behavior of
the composition execution, and no explicit handling of data types between
the related resources.

Authors in [113] propose an approach for verifying hypermedia charac-
teristics of a meta-model, Domain Specific Language (DSL), that is used to
define RESTful API components, as resources with attributes and multiple

1It can exhibit different behaviors on different runs, as opposed to a deterministic

3.3. Related Work 45

application states described by a resource and an HTTP verb. Transitions be-
tween application states are done using hyperlinks. The verification process
of the model is done before transforming it into a ready source code. During
model verification, authors first check whether it is ε-NFA (Nondeterminis-
tic Finite Automaton) compliance, i.e., every state within an application is
accessible. And then, they make sure that there are no inappropriate state-
to-state transitions within the model. Despite respecting all REST principles,
including HATEOAS, and handling data types, there are several properties
that are not considered during verification, that we considered important to
verify, as Reachability and Interoperability.

3.3.3 Linear Logic-based Approaches

Linear logic is a non-classical logic of actions and resources describing pro-
cesses dynamics and resource handling [77]. It is expressed in the sequent
calculus format: assumptions a conclusions, where the conclusions on the
right side are achieved by consuming the assumptions on the left side. Linear
Logic has been applied to several areas in computer science, including func-
tional programming, logic programming, general theories of concurrency,
syntactic and semantic theories of natural language, artificial intelligence and
planning.

In [124], Intuitionistic Linear Logic (ILL) is used to model formally REST-
ful Web services. The main contribution of this approach is Web services
composition modeling, and the ability to ensure composition completeness
and correctness, through theorems based on propositional Linear Logic and
π-calculus. However, although it respects the main principles of REST archi-
tectural style principles, and handles data types, additional verification(e.g.
no deadlock) are needed to check the correct behavior of the composition.
Moreover, Linear Logic is a complicated formal language that requires extra
efforts from Web engineers to put it in practice.

In [125], authors present a formal definition of REST Web services, and
provide a method for Web service composition based on Linear Logic. The
approach is a two-stage method used to find a composition of existing ser-
vices that applies the business constraints and satisfies the composition re-
quirements. However, the proposed approach neglects the hypermedia con-
cept of REST (HATEOAS principle), and there is no explicit handling of data
types.

3.3.4 Process Algebra-based Approaches

Process algebras (or process calculi) [47] are mathematical languages with
well-defined semantics used to formally model systems behavior, and de-
scribe their interactions, communications and synchronizations. They pro-
vide algebraic laws that allow process descriptions to be manipulated and
analyzed, and permit formal reasoning about equivalences between processes.
Several process algebras-based languages are proposed in the literature, such
as CSP, CSS, and LOTOS [112].

46 Chapter 3. Verification of Static Resource Compositions Behavior

In [119], REST services are described through the combination of process
calculi format with tuple space computing, which is a model for managing a
distributed object system. Based on this work, a semantic resource is formal-
ized as a process associated with a triple space and a URI used for handling
remote requests. However, the proposed approach does not support HA-
TEOAS principle, nor even verify properties to check the correctness of the
composition.

The work in [122] models a RESTful system using CSP (Communicating
Sequential Processes), a member of the process algebras mathematical theo-
ries. In the proposed model, the client, server and resources are modeled as
processes. Formal descriptions are given to check whether the model fulfills
the requirements of stateless and hypertext-driven properties of a RESTful
system, and the safe and idempotent properties of standard HTTP meth-
ods. These constraints are verified using a model checker called PAT (Pro-
cess Analysis Toolkit) [103]. Despite supporting HATEOAS, the work doe
not verify the correctness behavior of a composition of resources.

3.3.5 Semantic-based Approaches

The semantic approaches define the meaning of resource descriptions, by
adding metadata that are readable to machines, to enable them to under-
stand and reason on resources properties, their relations to other resources,
etc [110].

In [109], a semantic description model, called RESTdoc, is proposed to se-
mantically describe RESTful resources. RESTdoc describes resources’ func-
tionalities using the Notation3 syntax with embedded semantics. Though the
integration of semantics, RESTdoc is used for resource discovery and interac-
tion, rather than dealing with compositions behavior. Moreover, Notation3
is a format that cannot be interpreted easily by Web engineers during the de-
velopment, and thus it requires extra analysis skills to be understood.

In [54], a definition of REST semantic Web Services using process calcu-
lus formalism is proposed. This model can only describe specific type of
REST services that are characterized by several points (e.g., a semantic Web
resource that consists of a set of triples stored in a certain shared memory
accessible by processes taking part in a computation). The work does not
consider the hypermedia property of REST services, nor does it describe a
methodology for checking the proper behavior of the composed services.

3.3.6 Verification of SOAP-based Services

Before the emergence of REST technology, many works were conducted to
verify the behavior of Web service compositions, involving SOAP oriented
services implemented using the SOAP protocol [117] (see Chapter 2).

In [44] a framework for the design and the verification of Web Services
based on process algebras (e.g., CCS, π calculus, LOTOS) is proposed. Focus-
ing on LOTOS, the work presents a two-way mapping between BPEL/WSDL

3.3. Related Work 47

and LOTOS, and general guidelines for translations between BPEL/WSDL
and a process algebra. The approach allows reasoning tools to verify and en-
sure some properties (as liveness), and handles data types.

In [53] an approach that extends π-calculus to allow modeling and ver-
ifying dynamic Web service compositions, in which services are selected at
run time, is proposed. The work defines the syntax and the semantic of the
defined model, however there is no verification applied on the compositions.

In [33], a Web service composition approach modelled by Objects-Oriented
Petri nets, called G-nets, is presented. G-nets offer efficient mechanisms for
modeling complex systems, based on a defined algebra. Besides defining a
model that describes Web services and allowing the verification of proper-
ties (as Reachability), the work provides an operators representative set with
clear syntax and semantics.

The work in [51], defines a Petri net-based algebra for modeling Web ser-
vices control flows. The proposed algebra allows capturing the semantics of
complex Web service combinations. As such, formal semantics of the compo-
sition operators (e.g., Sequence, Parallelism, and Alternative) are expressed
using Petri nets by providing a direct mapping from each operator to a Petri
net construction.

In [39], an approach for model abstraction and verification of compos-
ite Web service application described using BPEL, is proposed. The work
consists mainly on transforming BPEL model into Colored Petri Net (CPN)
model based on defined transformation rules, and on generating dummy
Web services to cope with their defined WSDL. The BPEL transformed model
(i.e., the orchestration abstraction model) and the dummy Web services are
then composted as one CPN. The resulting CPN model is drawn by a CPN
tool that is used to check the desired properties (e.g., deadlock free and an
unreachable path).

3.3.7 Evaluation Summary

Table 3.1 shows the evaluation summary of existing formal models used to
describe REST services according to the identified criteria. We used "+" sym-
bol to express a positive coverage for a criterion, and "-" symbol to express a
lack of a criterion coverage. As seen in the table, most models do not support
the HATEOAS principle, which is important to consider when designing a
RESTful service (see Section 2.1.2). Second, many models do not handle data
types, and are not conceived to verify service compositions behavior. Third,
the majority of the approaches do not offer an explicit mapping from REST
principles to the proposed formalism. As for SOAP approaches, and though
many of them allow the verification of several composition properties, and
handle services data types, they are SOAP oriented.

48 Chapter 3. Verification of Static Resource Compositions Behavior

Table 3.1 – Evaluation of existing approaches used for the formal
modeling of REST services w.r.t. the identified criteria

RESTful Principles
Support

Date Type
Handling

Composition Behavior
Verification

REST

Petri Nets Approaches
[40] + - -
[5] + - -
[68] + + -

FSM Approaches
[128] + - -
[113] + + -

Linear Logic Approaches
[124] + + -
[125] - - +

Process Algebra Approaches
[119] - - -
[122] + - -

Semantic Approaches
[109] + + -
[54] - + -

SOAP Approaches

[44] - + +
[53] - - -
[33] - + +
[51] - - -
[39] - + +

3.4 Preliminaries: Colored Petri Nets

A Petri net consists of a number of places (circles), transitions (rectangles),
and arcs. Arcs link a place (i.e., an input place) to a transition, and a transition
to a place (i.e., an output place) [104]. Places in a Petri net may contain a
discrete number of marks called tokens. A transition, t, may fire when each
of its input places has at least one token (Figure 3.6 (a)). When it fires, a
token from each of its input places is removed, and a token is placed into
every output place (Figure 3.6 (b)). The number and position of tokens may
change during the execution of the Petri net transitions. The assignment of
tokens to places designates a state or a marking of the net.

Figure 3.6 – Example of a single Petri net

In ordinary Petri nets, tokens cannot be distinguished and they are all
identically represented as black dots. However, in more complex applica-
tions it is useful to allow the distinction between tokens and assign them
some information. For these reasons, Colored Petri Nets (CPNs) combine the
strengths of ordinary Petri nets with the strengths of high-level programming
languages [49], to allow handling data types and manipulating data values.
As such, within CPNs, each token can have a data type called a token color.
Each color can be of a simple type (i.e., String, Integer, Boolean, etc.) or a
complex type (i.e., array of String and Integer values). In addition, tokens
with assigned colors can contain values. Normally, places in CPNs contain
tokens of one type.

3.4. Preliminaries: Colored Petri Nets 49

Figure 3.7 – Example of a Colored Petri Net

An example of a CPN illustrating a temperature unit conversion is shown
in Figure 3.7. As it is illustrated, the first input place holds a record datatype
containing two variables of String and Integer type respectively (one denot-
ing the unit of measurement of the current temperature value, and the other
the actual measured temperature value). The other input place holds a String
type data representing the desired temperature unit of the Integer output
place value.
Formally, a CPN is defined as follows [106]:

Definition 1. CPN = (Σ, P, T, A, C, G, E, I), where:

• Σ is a finite set of non-empty types, called color sets

• (P ∪ T, A) forms a directed graph, where:

– P (the set of places) and T (the set of transitions) are disjoint sets, such
that P ∩ T = ∅

– A ⊆ (P × T) ∪ (T × P) is the set of arcs, such that places are only
connected to transitions, and vice versa

• C : P→ Σ is the color function that maps places to elements of Σ

• G : T → B associates a precondition g (a boolean expression) to each transi-
tion. g should be evaluated to true for T execution.

• E : A → Expr associates an expression E(a) to each arc a. E(a) is used to
define input-output behavior of arcs, and may include variables such that:

– Each variable in E(a) has a type in Σ
– ∀a ∈ A, C(E(a)) = C(p), with p is the place connected to a

• I is the initialization function that maps each place p ∈ P with an expression
such that I(p) is associated to the type C(p)

By using CPNs, we are able to analyze composition behavior and verify
the properties that we considered important, in a flexible and powerful way.
In addition, CPNs have the potential to explicitly show data in the compo-
sition, and there are several tools and libraries supporting CPNs that can be
used. However, an extension of this model is necessary to be able to model
resources while following REST principles. The extensions are explained in
details in Section 3.5.

50 Chapter 3. Verification of Static Resource Compositions Behavior

3.5 CPN-based Approach for RESTful Service Composition
Verification

3.5.1 General Overview

Before elaborating on our solution for verifying RESTful service composi-
tions, we show in Figure 3.8 the complete overview of the static composition
process presented in the proposed StARC framework (see Figure 1.10). As
such, in order to define the required composition, and based on a resource
description guide that provides data on the available resources’ properties
(stored in the Resource Description repository), the user selects the desired
resources, and link them in a single composition model (expressed in this
work in JSON as explained in Section 3.7.1.1).

Figure 3.8 – Overview of the static RESTful service composition
process

The composition model is syntactically checked by the Modeling Engine.
If it is valid, it is modeled into a CPN-based format, i.e., PNML2. If not, a
message error is returned to the user. The transformation of the composi-
tion model to PNML is based on a formal model that we defined to align
resources to CPNs. Such model is embedded within the Resource CPN Map-
per. The obtained PNML format is then passed to the Validation Engine to
verify the necessary properties that we identified important to consider (i.e.,
Reachability, Liveness, and Interoperability). When the composition is veri-
fied, it is sent to the Conversion Process; if not, a report of design error(s) is
sent back to the user. During conversion, the Conversion Engine converts the
composition related PNML into a description format that can be stored in the
Resource Description repository, which includes the resource descriptions. In
our work, a verified composition is converted to JSON-LD (explained later
in Section 3.7.2). Once the composition description is stored in the Resource
Description repository, it can be executed by the Execution Engine of the Ex-
ecution Process.

Our contribution in this chapter is essentially related to the Verification
process, and more specifically to the Resource CPN Mapper, which includes
our formal model proposed to align resources properties and their compo-
sitions to CPNs, allowing therefore the verification of resource compositions
behavior using CPNs-based tools. The overall composition process has been
implemented in a standalone prototype within the context of SIBEX (see Sec-
tion 3.7)

2PNML is an XML-based syntax for high-level Petri nets, which is designed as a standard inter-
change format for Petri net tools.

3.5. CPN-based Approach for RESTful Service Composition Verification 51

3.5.2 Resource Generic Interface

One of the key requirements of our modeling approach is to be aligned with
REST principles. Therefore, it is essential to define the generic REST interface
of a resource before presenting the interfaces of the resources involved in our
motivating scenario. Generally, REST interface describes the required URI,
HTTP method, query parameters3, and responses of a resource. Responses
includes:

• A list of the next resources to follow with the method used to invoke
them. In our work, the list can be empty when there are no resources to
call.

• HTTP status code to indicate the query result. Such as, HTTP ‘200 OK’
code denoting that the request has succeeded, and HTTP ‘201 Created’
code designating that the request has been fulfilled and a new resource
is created.

• The information provided by the resource, when it is available.

Illustration

Here, we restricted ourselves to the required interfaces in the motivating sce-
nario (see Section 3.2) to ease the illustration of our approach. Table 3.2 lists
the URIs of the composition scenario resources4, and Table 3.3 defines their
required interfaces.

Table 3.2 – URIs of the prediction process resources
Id URI
1 http://www.h2g.eu/h2g/resource/pred-internal-temp
2 http://www.weatherforecast.com/forecast/external-temp
3 http://www.h2g.eu/h2g/resource/missing-data-manager
4 http://www.h2g.eu/h2g/resource/outliers-data-manager
5 http://www.h2g.eu/h2g/resource/missing-data-corrected
6 http://www.h2g.eu/h2g/resource/outliers-data-corrected
7 http://www.h2g.eu/h2g/resource/pred-heat-consumption
8 http://www.h2g.eu/h2g/resource/heat-consumption

URI1 is called with GET to collect the predicted internal temperature
according to 2 parameters: startdate and enddate, denoting the prediction
time range requested by the building manager. The required data is re-
trieved directly from the BEMServer database, and considered as already
pre-processed data. The array ‘PrInTemp’ in the responses represents the
predicted internal temperatures. URI2 is invoked using GET to collect the
predicted external temperature according to the same 2 parameters of the
previous URI. The required data is retrieved from an external weather fore-
cast resource. The array ‘PrExTemp’ represents the predicted external tem-
perature. After data retrieval, URI3 is invoked through POST to correct the
missing values presented in the array ‘PrExTemp’, and URI4 is called to cor-
rect the outliers values presented in the array ‘PrExTemp’. Through GET,
URI5 is called to retrieve the modifications applied on the predicted exter-
nal temperature values obtained from the URI3 (missing data manager). The

3Parameters are to be encoded in the URI or in the message body according to the HTTP format
4It is to note that the resources URIs (and later their descriptions) illustrated in this chapter are not

yet available online

52 Chapter 3. Verification of Static Resource Compositions Behavior

‘#dataset’ represents the id of the pre-processed data, modified by URI3. The
array ‘CorrMPrExTemp’ contains the modifications applied on the predicted
external temperatures. Using GET, URI6 is called to retrieve the modifica-
tions applied on the predicted external temperature values obtained from
the URI4 (outliers data manager). Similar to the previous step, the ‘#dataset’
represents the id of the pre-processed data, modified by URI4. The array
‘CorrOPrExTemp’ contains the modifications applied on the predicted exter-
nal temperatures.
In our composition scenario, we considered that the merging of both URI5
and URI6 outputs, is being held on the client side to obtain the pre-processed
external predicted temperatures array: [CorrExTemp{date, temp}]. URI7
is invoked with POST to predict the energy heat consumption based on (i)
the startdate and the enddate, representing the prediction period range, and
(ii) the predicted internal temperatures with the pre-processed external tem-
perature values previously collected. And finally URI8 is called using GET
to retrieve the predicted heat energy consumptions obtained from the URI7
and represented by ’#dataset’. The array ‘PrHeatEngCons’ in the responses
contains the predicted values of the heat energy consumption.

Table 3.3 – Interfaces of the resources involved in the prediction pro-
cess

URI HTTP Verb Parameters Responses

1 GET startdate=dd/mm/yyyy
enddate=dd/mm/yyyy

200 OK
[PrInTemp{date, temp}]
{(POST, URI7)}

2 GET startdate=dd/mm/yyyy
enddate=dd/mm/yyyy

200 OK
[PrExTemp{date, temp}]
{(POST, URI3), (POST, URI4)}

3 POST [PrExTemp{date, temp}] 201 Created
{(GET, URI5)}

4 POST [PrExTemp{date, temp}] 201 Created
{(GET, URI6)}

5 GET #dataset
200 OK
CorrMPrExTemp{date, temp}]
{(POST, URI7)}

6 GET #dataset
200 OK
[CorrOPrExTemp{date, temp}]
{(POST, URI7)}

7 POST

startdate=dd/mm/yyyy
enddate=dd/mm/yyyy
[PrInTemp{date, temp}]
[CorrExTemp{date, temp}]

201 Created
{(GET, URI8)}

8 GET #dataset
200 OK
[PrHeatEngCons{date, HeatEngCons}]
{ }

3.5.3 Colored Petri Nets-based Formal Composition Model

As mentioned in Section 2.1.2, a resource can be invoked through HTTP
methods to provide a specified functionality. It is published by a service
provider, and located on a specific server. An exposed resource, res, has a set
of inputs, a set of outputs, and a function assigned to it. In our modeling ap-
proach, a resource can be atomic or composed. In the CPN model, we define
(i) an atomic resource as a single CPN with a single transition, input and out-
put places, and (ii) a composed resource as a set of linked CPN representing
linked resources. Before we formally define a resource, we define below the
following sets:

3.5. CPN-based Approach for RESTful Service Composition Verification 53

• DataType = {BasicT ∪ ExtendedT} refers to the date types supported
by a resource, such that:

– BasicT = {String, Integer, Real, Boolean, Date}, denotes the ba-
sic data types known in programming languages

– ExtendedT = {Req, Status} denotes the extended data types de-
fined to meet resources requirements

• Req = (HTTP x U) is the HTTP request sent to the resource URI, where:

– HTTP = POST|PUT|DELETE|GET|HEAD|PATCH|CONNECT|OPTIONS|TRACE is
the HTTP method used to invoke the resource URI

– U is the resource URI based on the standard RFC39865

• Status = (Code, Desc) is the status of the resource response, where:

– Code ⊆N∗ denotes the HTTP response status code
– Desc represents the description of the HTTP code (e.g., ’Created’,

’OK’)

Definition 2. A RESTful resource, res, is defined as res = (URI, N), where URI is
the URI associated to res, and N = (Σ, P, T, A, C, G, E, I) is a CPN such that:

• Σ ⊆ DataType, denoting the set of data types that the resource can process

• P is a finite set of input and output places of the resource, where:

– P = PIn ∪ POut

– PIn =
⋃m

i=1 {pini} |
⋃N∗

i=1 resi.PIn, such that:
◦ ⋃m

i=1 {pini}, denotes the set of input places of an atomic resource,
with m ∈ N∗. As such, each resource requires at least one input
place, representing the request sent to it. Other input places can be
defined according to the resources needs, as the resources’ parameters.
◦ ⋃N∗

i=1 resi.PIn, denotes the set of input places of a composite resource

– POut =
⋃n

i=1 {pouti} |
⋃N∗

i=1 resi.POut, such that:
◦ ⋃n

i=1 {pouti}, represents the set of output places of an atomic resource,
with n ∈ N∗ and n ≥ 2. As such, a resource requires two output
places, denoting respectively the status response code and the set of
the HTTP requests that can be sent to the next possible URI resources.
Other places can be defined according to the resources needs, such as
resources output results.
◦ ⋃N∗

i=1 resi.POut, denotes the set of output places of a composite resource

• T = t | ⋃N∗
i=1 resi.T. t represents the functionality of an atomic r, whereas the

union of T sub-resources represents the functionality of a composite resource.

• A is a finite set of arcs linking input places to transitions and transitions to
output places, such that: P ∩ T = P ∩ A = T ∩ A = φ

• C is a color function. It associates a type from Σ to each place, where:
5https://www.ietf.org/rfc/rfc3986.txt/

https://www.ietf.org/rfc/rfc3986.txt/

54 Chapter 3. Verification of Static Resource Compositions Behavior

– ∃p ∈ PIn, such that C(p) ∈ Req

– ∃p1, p2 ∈ POut, such that C(p1) ∈ Status, and C(p2) ∈ Req

• G is a guard function. It maps the transition t ∈ T to a boolean guard expres-
sion g. The resource can only be executed if g is evaluated to true.

• E is an arc expression function. It maps each arc a ∈ A into an expression that
may include variables.

• I is an initialization function that associates places to initial values

Illustration

Based on our defined CPN formal model for RESTful service composition,
we represent formally the composed resource of the prediction scenario, in-
volving the resources defined in Table 3.3. Such a formal language can be
directly applicable to other scenarios and represents the corresponding Web
services as long as they are RESTful.
EnergyHeatPrediction = (URI, N), where URI is the address associated to the
composed resource, and N = (Σ, P, T, A, C, G, E, I) is a CPN such that:

• Σ =
⋃8

i=1 resi.Σ with resi denoting the resources involved in the predic-
tion process, and where:

– resi.Σ ⊆ DataType, designates the data types handled by the re-
sources participating into the composition

• P = PIn ∪ POut, where:

– PIn =
⋃8

i=1 resi.PIn, such that:
◦ res1.PIn = res2.PIn = res3.PIn = res4.PIn = {pin1, pin2}, denot-

ing that each of these resources has 2 inputs.
◦ res5.PIn = res6.PIn = res8.PIn = {pin1}, denoting that each of

these resources has 1 input.
◦ res7.PIn = {pin1, pin2, pin3}, denoting that this resource has 3

inputs.

– POut =
⋃8

i=1 resi.POut, such that:
◦ res1.POut = res2.POut = res5.POut = res6.POut = res8.POut =
{pout1, pout2, pout3}, denoting that each of these resources has 3
outputs.
◦ res3.POut = res4.POut = res7.POut = {pout1, pout2}, denoting that

each of these resources has 2 outputs.

• T =
⋃8

i=1 resi.T, with resi.T = t denoting the specific functionality pro-
vided by each resource.

• A is a finite set of arcs linking input places to transitions and transitions
to output places, such that: P ∩ T = P ∩ A = T ∩ A = φ.

• C is a color function. It associates a type from Σ to each place, where:

– ∃p ∈ PIn, such that C(p) ∈ Req

3.5. CPN-based Approach for RESTful Service Composition Verification 55

– ∃p1, p2 ∈ POut, such that p1 6= p2, C(p1) ∈ Status, and C(p2) ∈ Req

• G is a guard function. It maps the transition t ∈ T to a Boolean guard
expression g.

• E is an arc expression function. It maps each arc a ∈ A into an expres-
sion that may include variables.

• I is an initialization function that associates places to initial values

Another resource composition example is shown in Figure 3.9, where the
collected air temperature values are converted to "celsius" unit and aligned
to a frequency of 600 seconds (10 minutes).

Figure 3.9 – Resource composition to convert and align the collected
air temperature

Based on our CPN-based formal model, the resulted composition is repre-
sented as: AirTempConvAlign = (URI, N), where URI is the address associ-
ated to the composed resource, and N = (Σ, P, T, A, C, G, E, I) is a CPN such
that:

• Σ =
⋃3

i=1 resi.Σ, with res1, res2, res3 refers respectively to the Air Temper-
ature Collection, Data Conversion, and Data Alignment resource, and
where:

– resi.Σ ⊆ DataType, designates the data types handled by the re-
sources participating into the composition (e.g., "String" type re-
lated to the Unit input of the Data Conversion resource, and "In-
teger" type related to the Frequency input of the Data Alignment
resource).

• P = PIn ∪ POut, where:

– PIn =
⋃3

i=1 resi.PIn, such that:
◦ res1.PIn = {pin1, pin2}, denoting that the resource res1 has 2

inputs, i.e., the Time range and the Req type input.
◦ res2.PIn = res3.PIn = {pin1, pin2, pin3}, denoting that each of

the resources res2 and res3 have 3 inputs, i.e., the necessary
data (data array), the required parameter (the Unit or the Fre-
quency), and the Req type input.

– POut =
⋃3

i=1 resi.POut, such that:
◦ res1.POut = res2.POut = res3.POut = {pout1, pout2, pout3}, denot-

ing that each of the resources res1, res2 and res3, has 3 outputs,
i.e., the obtained data (data array), the Status type output, and
the Req type output.

56 Chapter 3. Verification of Static Resource Compositions Behavior

• T =
⋃3

i=1 resi.T, with resi.T = t denoting the specific functionality pro-
vided by each of the resources: res1, res2, and res3.

• A is a finite set of arcs linking input places to transitions and transitions
to output places.

• C is a color function. It associates a type from Σ to each place.

• G is a guard function. It maps the transition t ∈ T to a Boolean guard
expression g.

• E is an arc expression function. It maps each arc a ∈ A into an expres-
sion that may include variables.

• I is an initialization function that associates places to initial values

In Figure 3.10, we show the graphical CPN-based model of the AirTemp-
ConvAlign resource composition.

Figure 3.10 – CPN graphical model of the "AirTempConvAlign"
composed resource

We note that a URI is assigned to each composed resource after the verifi-
cation of the composition behavior that will be discussed in the following
section.

3.5.4 Composition Behavioral Properties in CPN

Modeling RESTful services with CPNs format allows to analyze several CPN-
based behavioral properties of the composition. As such, mapping RESTful
services and composition to CPNs with some extensions, enables the exe-
cution of the algorithms related to CPNs properties. These algorithms still
apply in our extended formal model, as it will be shown in this section.

As it is presented in Section 3.2, three properties have been considered
important to verify in this thesis: Reachability, Liveness, and Interoperabil-
ity. In the Reachability and Liveness definitions below, we use (N, M0) to
denote a Petri net, N, with its initial Marking, M0. The Petri net marking,
M, designates the state of the net, which corresponds to the assignment of
tokens to places. The initial marking M0 designates the availability of some
data (tokens) in the input places of one or more resources involved in the
composition, before launching the composition execution.

3.5. CPN-based Approach for RESTful Service Composition Verification 57

Definition 3. Reachability - A marking Mn is reachable from M0 in a Petri net
N, if there exists a sequence of transitions that can be fired from M0 to Mn.

One of the challenges in the composition process is to make sure that the
final desired state is reachable from the initial state. To verify that the result
is reached, we use the Reachability graph.

Definition 4. Reachability Graph (RG) - It is a set of all the reachable markings
of a Petri net represented as nodes. The nodes are connected with arcs designating
the firing of a transition.

The Reachability graph algorithm, inspired from [82], is described as:

Algorithm 1 : Reachability Graph

1 label the initial marking M0 as the root and tag it "new"
2 while "new" markings exist do
3 select a new marking M
4 if no transitions are enabled at M, tag M "dead-end"
5 while there exist enabled transitions t at M do
6 obtain the marking M’ that results from firing t at M
7 if M’ does not appear in the graph, add M’ and tag it "new"
8 draw an arc with label t from M to M’ (if not already present)

In our scenario, the Reachability property is true when: ∃ M0 and ∃ M ∈
RG as the end node, with M designating the final desired state.

Definition 5. Liveness - A Petri net (N, M0) is considered to be Lk-live if every
transition t in the net is Lk-live. t is said to be:

• L0-live, if it can never be fired in any firing sequence. In this case, the transi-
tion, t, is deadlocked.

• L1-live, if it can be fired at least once in some firing sequence

• L2-live, if it can fire arbitrarily often

• L3-live, if it can fire infinitely often

• L4-live, if it always fire

Another challenge in our composition is to verify that the resources in-
volved in the composition process will eventually be executed at least once.
If, for example, the pre-processing resources responsible of correcting erro-
neous data are not executed, the prediction resource will predict the building
heat energy consumption based on inaccurate data. This will affect nega-
tively the prediction results quality. Therefore L1-live was our main focus,
to ensure that all CPN transitions will eventually be fired by progressing
through further allowed firing sequences. We note that transition firing de-
pends on the availability of tokens (data) in all its input places. Thus, a
resource can be executed only if its input places contain the required data
which are: HTTP_VERB, URI, and some parameters (when it is necessary).
In our composition, a transition t is L1-live when: ∃ M0 and ∀ t ∈ T in N, t ∈
RG. If not, t is considered dead.

58 Chapter 3. Verification of Static Resource Compositions Behavior

By verifying both the Reachability and Liveness properties, we can ensure
that the composition contains no loop and all resources receive the required
input in order to be executed.

As for the Interoperability, by definition the CPN formalism put the fol-
lowing as a constraint: ∀a ∈ A : [C(E(a)) = C(p)]. This means that the CPN
workflow execution will not be possible unless data flowing to and from a
place are of the same type. We note that data flowing to a place corresponds
to a transition output, while data flowing from a place denotes the input of
the next transition.

3.6. Experimental Illustration 59

3.6 Experimental Illustration

We illustrate our proposed CPNs-based formal composition approach within
the composition scenario presented in Figure 3.2, using the CPN tools6, one
of the most known tools for editing, simulating, and analyzing Colored Petri
Nets models. CPN tools provides a graphical user interface (GUI) with tool
palettes and marking menus, to build the CPNs models. Moreover, it features
syntax checking while the workflow is being constructed, and generates a
standard state space report that contains information about behavioral prop-
erties of the modeled system. Figure 3.12 represents the CPN-based model
of the prediction scenario implemented according to our formalism. As it is
illustrated, the model includes all the resources involved in the energy pre-
diction process. During the tests, we extended the input places related to
URI7 to respect the HATEOAS principle. In fact, due to the existence of sev-
eral resources (URI1, URI5 and URI6) that point out to URI7 in their next re-
sources to follow, we linked each of these resources to URI7 transition. Using
the state space tool of the CPN tools, and by implementing queries via ML
code (the functional programming language of the CPN tools), we were able
to verify Reachability and Liveness properties. As for Interoperability prop-

Figure 3.11 – Reachability graph

erties, it is verified automatically during composition construction. Below
are the tests applied to the composition scenario to verify the corresponding
properties:

- Reachability Test: Figure 3.11(a) shows the Reachability graph of our
scenario, containing a node for each reachable state. In total we have
22 states, with node 22 representing the final state that is the predic-
tion output results (PrEnH). Moreover, we used the ‘Reachable (1,22)’
boolean function (written in ML code) to test if state 22 is reached from
state 1. The returned boolean value equal to "true" verifies the Reacha-
bility property.

- Liveness Test: Liveness property is verified through analyzing the Reach-
ability graph arcs, which are labeled by the resources responsible of
the state changing. Figure 3.11(b) shows examples of some Reacha-
bility graph arcs labels, appeared when clicking on the arcs. It proves

6http://cpntools.org

http://cpntools.org

60 Chapter 3. Verification of Static Resource Compositions Behavior

Fi
gu

re
3.

12
–

C
PN

m
od

el
fo

r
th

e
re

so
ur

ce
s

co
m

po
si

ti
on

re
la

ti
ve

to
th

e
pr

ed
ic

ti
on

sc
en

ar
io

3.7. Developed Prototype 61

Figure 3.13 – Information retrieved from the state space report

that all URIs (from 1 to 8) are executed at least once. Moreover, and
when generating the state space report through the state space tool of
the CPN tools, several information can be retrieved including Liveness
property results. Figure 3.13(a) for example shows the statistics repre-
senting the number of nodes and arcs of the composition scenario, and
Figure 3.13(b) proves that there are no dead transition instances, denot-
ing that all the resources will be eventually executed starting from the
initial state.

Figure 3.14 – Defined color sets and interoperability issue

- Interoperability Test: In order to represent the flowing data types be-
tween resources, we defined the color sets as shown in Figure 3.14(a).
Using CPNs, our approach allows to verify the Interoperability prop-
erty between the linked resources. CPN tools check the syntax of the
nets during their construction where errors, such as in data types, can
be visually seen through specific color indications, as shown in Fig-
ure 3.14(b).

3.7 Developed Prototype

In this section, we present the technical details of our prototype developed
as a standalone module for the Web management platform in the context of
SIBEX project, to verify resource compositions. The prototype, implemented
in Python7, allows the modeling, verification, storage, and execution of com-
posed resources, involving resources belonging to two categories: Data col-
lection and pre-processing (resources related to the advanced data process-
ing were not included in the prototype). The prototype consists of several
components:

• Four engines:
7https://www.python.org/

https://www.python.org/

62 Chapter 3. Verification of Static Resource Compositions Behavior

– Modeling engine, used to model the required resource composi-
tion into a CPN format, i.e., Petri Net Markup Language (PNML),
based on our proposed CPN formalism (see Section 3.5), which is
integrated in the Resource CPN Mapper (see Figure 3.8).

– Validation engine, responsible of verifying the composition correct
behavior according to several CPNs properties (i.e., Reachability,
Liveness, and Interoperability).

– Conversion engine, used to transform the verified composition PN-
ML model into a suitable format (JSON-LD in this work) that can
be stored in the platform service data model, i.e., ontology.

– Execution engine, used to execute the verified and stored resource
composition.

• REST APIs8: Some are used to access the prototype functionalities (e.g.,
modeling engine and execution engine), and others to access the core
platform resource descriptions.

• A service ontology, expressed using Hydra vocabulary in JSON-LD,
which is mainly used to describe the properties of the available resources
(e.g., provided functions, inputs, outputs, etc.) used for collecting and
pre-processing building data, and store the properties of the new com-
posed resources.

In order to understand the different functionalities of the prototype com-
ponents, we describe in Figure 3.15 the related sequence diagram that covers
the set of interactions applied between them.

3.7.1 Engines Specifications

Before elaborating on the specifications of each engine, we will present a
composition use case identified in SIBEX, and explain how it can be modeled
before it is sent to the prototype for verification, storage, and execution. As
shown in Figure 3.16, the composition mainly allows one of SIBEX advanced
modules providers (i.e., relative to the Energy Consumption Prediction mod-
ule) to prepare the required data, before it is used by the module. The mod-
ule requires: (1) collecting several data: Air Temperature, Power Energy, and
Light Radiation, (2) converting the data to the required unit (for instance,
convert the air temperature values from Fahrenheit to Celsius), and (3) align-
ing the data to the same frequency (expressed in seconds), before predicting
the energy consumption of a particular zone of a building (zoneId=’A’) ac-
cording to a specific date (i.e., startDate−endDate).

In order to represent the required composition, we use a model based
on JSON, which is understandable by both machines and humans, and can
easily be sent to and from a server. In JSON, data is expressed through key-
word/value pairs, separated by a comma. Curly braces "{}" hold objects,
while square brackets "[]" hold arrays. The resource model that we propose,
includes the keyword "composition" containing the "resources" element. "re-
sources" is an array of objects designating several resources (in parallel or in

8They use HTTP requests to GET, PUT, POST and DELETE data

3.7. Developed Prototype 63

Figure 3.15 – The sequence diagram showing the interaction of the
resource composition prototype components

sequence). Each resource involved in the composition process is represented
by the following properties:

• "URL": refers to the public address of the resource

• "Method": refers to the HTTP verb by which the resource is called

• "Name": refers to the name of the resource

• "Param": includes the input parameters required to run the resource.
"Param" is an array that can contain multiple objects.

64 Chapter 3. Verification of Static Resource Compositions Behavior

Figure 3.16 – Example of a composition use case in SIBEX

• "Output": refers to the name of the variable where the result of the re-
source will be stored.

In the composition modeling, we distinguish between fixed and non-
fixed parameters:

1. Fixed parameter values cannot be changed after creating the com-
posed resource. Their values are given when modeling the compo-
sition.

2. The non-fixed parameters, defined in the "variables" keyword of
the JSON model, are not provided during the modeling of the com-
position. Their values will be affected when executing the compo-
sition, after validation and storage.

The link between the resources is done by assigning the value of the key-
word "output" of a resource to a value of a parameter, presented in "param",
of another one, as illustrated in Figure 3.17.

Figure 3.17 – Link between resources

During the modeling of the composition, the user (as the module provider)
must define the name and functionality of the composition using the follow-
ing two keywords: "name" and "description". We note that each resource
in the prototype has only one output, and the composition is supposed to
generate a single result designated by the element "goal". "goal" is the same
output of the last resource involved in the composition. As an example, we
represent in Appendix F, the resource composition modeling of the compo-
sition scenario of Figure 3.16, while respecting the defined JSON model.

3.7. Developed Prototype 65

3.7.1.1 Modeling Engine

The modeling engine receives the composition’s JSON format, checks if the
JSON model is syntactically correct, and verifies if it contains one single goal.
If the JSON format is valid, it is translated into Petri Nets Modeling Language
(PNML), using the Snakes toolkit9 [93], which is used to build Petri nets mod-
els in Python. The PNML is then passed to the validation engine. If the JSON
format is not valid, a report error is sent to the user (i.e., the composition
designer).

3.7.1.2 Validation Engine

Since the user (as the module provider in Figure 3.16) builds his composition
manually, he is susceptible to make mistakes (e.g., create infinite loops that
prevent the execution of the rest of the resources, link resources that are not
compatible with the same data type, etc.), which affect negatively the behav-
ior of the composition. To cope with these problems, the validation engine
verifies the behavior of the composition before its execution, according to
several CPN properties: Reachability, Liveness, and Interoperability. In or-
der to verify these properties, the verification engine relies on neco10 library
in Python, which allows compiling the Petri nets models (as PNML) and ver-
ifying the desired formal properties. Once the composition is verified, it is
passed to the Conversion Engine. If not, a report guiding the user on the
composition design errors(s) is sent.

3.7.1.3 Conversion Engine

After being verified, the composition is converted to a specific format, JSON-
LD (explained later in Section 3.7.2), that can be stored in the service ontol-
ogy, with:

– An assigned URL

– The composed resource category (i.e. composed)

– The necessary HTTP-Verb: GET

– The composed resource name and description which are given by the
user

– The required inputs (matching the non-fixed parameters)

– The resulted output (matching the composition "goal")

– The internal workflow of the composed resource

The stored composition description can help in using the new created com-
posed resource in other composition scenarios.

Appendix G presents the composed resource description, expressed using
Hydra in JSON-LD, related to the composition in Figure 3.16.

9http://code.google.com/p/python-snakes/
10https://github.com/Lvyn/neco-net-compiler/

https://github.com/Lvyn/neco-net-compiler/

66 Chapter 3. Verification of Static Resource Compositions Behavior

3.7.1.4 Execution Engine

The role of the execution engine is to call the resources involved to create the
new composed resource. These resources are presented in the internal work-
flow of the composed resource description. The execution is done through
forming a URL-based list related to all of the resources used in the composi-
tion (HTTP VERB + Corresponding URL) with their required inputs.

3.7.2 Data Model for RESTful Services

In order to capture the functional and non-functional properties of a resource,
it is important to describe resources using a description language that can be
processed by a machine. Such description can guide the user in the selection
of the appropriate resources involved in the composition, and helps in re-
trieving the behavior (i.e., set of resources to invoke) of a composed resource
during its execution.

As explained in Section 2.2.4, the Hydra vocabulary has been chosen to
describe the resources in this thesis, in JSON-LD format. The later is used
to express resource descriptions thanks to its ability to be easily understood
by both humans and machines, its easy processing, and most importantly
its simple linking to existing data models. In the service data model that
contains resource descriptions, each resource (elementary or composed) is
represented by the following properties, inspired from Hydra:

• "@id": designates the Unique Resource Locator of the resource;

• "@type": refers to the resource category (i.e., dataCollection, pre-processing,
or composed);

• "description": describes the main purpose of the resource;

• "title": refers to the name of the resource;

• "operation": designates an array of all the operations provided by the
resource:

– "method": refers to the HTTP verb used to call the operation, e.g.,
GET, POST, PUT, and DELETE;

– "expects": denotes the set of input parameters used to run the op-
eration;

– "returns": denotes the output parameters resulted from the opera-
tion execution;

– "acronym": refers to the functionality abbreviation (for example:
"DCV" for Data Conversion, and "DC" for Data Collection). This
field will essentially be used in the automatic composition approach,
and not in this chapter where the composition is built statically by
the user.

– "Workflow": designates the internal workflow of a composed re-
source.

The "Workflow" element will be empty for elementary resources. As for
the composed ones, it contains an array named "member" that describes all

3.7. Developed Prototype 67

the resources used to build the required composition, and a "goal" referring
to the composition output that represents the same output of the last resource
involved in the composition. The "data" element used in the inputs (expects)
and output (returns) of the related members (resources) in the "Workflow",
serves in linking the resources to each other.

For each member in a composition "Workflow", there are:

• "id": referring to the resource identifier. As such, each involved resource
into the composition should have a unique identifier. In this way, even
if in the composition process there are three resources invoked having
the same "url", they can be distinguished by their unique id;

• "url": designating the URL address of the resource;

• "method": referring to the HTTP verb used to call the resource opera-
tion;

• "expects": designating the set of input parameters used to run the re-
source operation;

• "returns": containing the name of the variable where the resource result
is stored. This variable is used to link resource between each other.

Figure 3.18 shows the structure of the resource description JSON-LD doc-
ument.

68 Chapter 3. Verification of Static Resource Compositions Behavior

Fi
gu

re
3.

18
–

St
ru

ct
ur

e
of

th
e

re
so

ur
ce

de
sc

ri
pt

io
n

JS
O

N
-L

D
do

cu
m

en
t

3.7. Developed Prototype 69

Appendix H lists the description of all the elementary resources related
to data collection and data pre-processing in the SIBEX Web platform, using
Hydra in JSON-LD.

3.7.3 Implemented APIs

In order to access the functionalities of the developed resource composition
prototype components, we implemented several APIs. The later are used by
the user in order to:

• List the description of all resources available in the SIBEX Web platform.
This aids the user in knowing the resources that can be selected during
his composition modeling.

• Create a new resource composition

• Store the composed resource

• Execute the composed resource

For example, Table 3.4 and Table 3.5 presents respectively the request for
creating a resource composition, and the correspondent response.

Table 3.4 – Request to create a resource composition
Method URL
POST /resources/composition

Type Parameters Values
HEAD UserID string
HEAD SourceID string
HEAD ProxyToken string
HEAD Options List[string]

POST

{
"composition":{

"name",
"description",
"variables":[],
"resources":[{

"url": "",
"method": "",
"name": "",
"param": [{"key": "value"},
{etc.}],
"output": ""

}],
"goal": ""

}
}

string
string
List[string]

string
string
string
List[string]

string

string

The developed APIs are listed in Appendix I.

3.7.4 Tests

We test our resource composition prototype implemented using Python, on
a Linux Debian (64 bits) virtual machine, with 1 dedicated Intel® Core™ i7-
46000 CPU @ 2.10GHz 2.70GHz processor, and 1 GB RAM. The source code
of the prototype can be accessible online11. We first implemented the re-
sources exposed by the SIBEX platform using Flask12, which is a Web frame-
work that provides tools, libraries and technologies allowing to build Web

11https://github.com/larakallab/RESTfulComposition/
12https://pymbook.readthedocs.io/en/latest/flask.html/

https://github.com/larakallab/RESTfulComposition/
https://pymbook.readthedocs.io/en/latest/flask.html/

70 Chapter 3. Verification of Static Resource Compositions Behavior

Table 3.5 – Response for creating a resource composition
Status Response
201 {"compID": compID}
400 {" bad request ":"Invalid options."}
400 {" bad request ":"Invalid type."}
401 {" unauthorized ":"Invalid proxy token."}
401 {" unauthorized ":"Unknown user."}

403

{
ValidationResults:{

Reachability,
Liveness,
Interoperability

}
}

boolean
boolean
boolean

500 {" error ":"Internal error."} 500

services. Then, we uploaded resource Hydra-based descriptions expressed
in JSON-LD, as shown in Section 3.7.2, into an RDF graph in Apache Jena
Fuseki13, which is a SPARQL server that provides REST-style SPARQL HTTP
Update, SPARQL Query, and SPARQL Update using the SPARQL protocol
over HTTP.

After developing each required engine (i.e., modeling engine, validation
engine, conversion engine, and execution engine), we conducted several tests
on different composition JSON-based models, to: (1) check their correct JSON
syntax, and (2) verify the different behavioral properties (i.e., Reachability,
Liveness, and Interoperability).

3.7.4.1 Syntax Checking

Here, the purpose is to ensure the correct syntax of the composition model
expressed with JSON. To do so, we verify whether the composition model
contains a single key "goal", and check the validity of the JSON format (e.g.,
the use of double quotes when defining a key and preventing to have dupli-
cated keys).

A. Single "goal"
Considering the composition model defined in Listing 3.1, in which
there is no single key "goal" expressed.

1 {
2 " composition " : {
3 "name" : " Conversion of c o l l e c t e d data " ,
4 " d e s c r i p t i o n " : " This composition c o l l e c t s i n t e r n a l

temperature data from bldg A and converts i t to the
desired uni t " ,

5 " v a r i a b l e s " : [" s t a r t D a t e " , " endDate "] ,
6 " resources " : [{
7 " u r l " : " h t t p : //s ibex/measures " ,
8 " method " : "GET" ,
9 "name" : " measures " ,

10 " param " : [{
11 " type " : " internalTemp "
12 } ,
13 {
14 " zoneid " : " BldgA "
15 } ,
16 {

13https://jena.apache.org/documentation/serving_data/

https://jena.apache.org/documentation/serving_data/

3.7. Developed Prototype 71

17 " s t a r t d a t e " : " s t a r t D a t e "
18 } ,
19 {
20 " enddate " : " endDate "
21 }
22] ,
23 " output " : "A"
24 } ,
25 {
26 " u r l " : " h t t p : //s ibex/dataconversion " ,
27 " method " : "GET" ,
28 "name" : " Data conversion " ,
29 " param " : [{
30 " data " : "A" ,
31 " uni t " : " c e l s i u s "
32 }] ,
33 " output " : "B"
34 }
35]
36 }
37 }

Listing 3.1 – Composition model defined without a single
key "goal"

When the modeling engine receives such composition model example,
an error message is returned:

<p>Please specify a "goal" for the composition</p>

B. Correct syntax
For the correct syntax checking, we defined the composition model as
shown in Listing 3.2, where the "param" key of the internal temperature
collection resource is single quoted and not double quoted.

1 {
2 " composition " : {
3 "name" : " Conversion of c o l l e c t e d data " ,
4 " d e s c r i p t i o n " : " This composition c o l l e c t s i n t e r n a l

temperature data from bldg A and converts i t to the
desired uni t " ,

5 " v a r i a b l e s " : [" s t a r t D a t e " , " endDate "] ,
6 " resources " : [{
7 " u r l " : " h t t p : //s ibex/measures " ,
8 " method " : "GET" ,
9 "name" : " measures " ,

10 ’param ’ : [{
11 " type " : " internalTemp "
12 } ,
13 {
14 " zoneid " : " BldgA "
15 } ,
16 {
17 " s t a r t d a t e " : " s t a r t D a t e "
18 } ,
19 {
20 " enddate " : " endDate "
21 }
22] ,
23 " output " : "A"
24 } ,
25 {

72 Chapter 3. Verification of Static Resource Compositions Behavior

26 " u r l " : " h t t p : //s ibex/dataconversion " ,
27 " method " : "GET" ,
28 "name" : " Data conversion " ,
29 " param " : [{
30 " data " : "A" ,
31 " uni t " : " c e l s i u s "
32 }] ,
33 " output " : "B"
34 }
35]
36 }
37 }

Listing 3.2 – Composition model with erroneous JSON
syntax

For such kind of syntax error, the following error message is returned:

<p>The syntax of the JSON model is wrong. Possible mistakes:
Errors in the brackets|braces|commas|quotes
Duplicated keys</p>

3.7.4.2 Behavior Properties Verification

The main objective of this section, is to verify the correct behavior of different
composition models according to the Reachability, Liveness, and Interoper-
ability properties.

A. Reachability
In this test, we consider the composition model example depicted in
Figure 3.19, where the data alignment resource (aligning the light radi-
ation data) is connected to the same merging resource input used by the
previous alignment resource (aligning the power energy data).

Figure 3.19 – Composition model with a non reachable final state

3.7. Developed Prototype 73

When verifying such composition, and since the merging resource misses
one input, it will not be executed, and the "goal" will not be reached.
Thus, the validation engine returns the following error message:

<p> Final state is not reachable
Not all resources are properly linked</p>

B. Liveness
In this case, we consider the composition model depicted in Figure 3.20,
where an end-loop is occurred to the data conversion due to a linking
error. Such loop prevents the data alignment resource from execution
(dead resource). When verifying such composition model, the valida-

Figure 3.20 – Composition model with an end-loop

tion engine returns the following error message:

<p> Final state is not reachable
Not all resources are properly linked</p>

C. Interoperability
For the Interoperability property, we considered the composition model
illustrated in Figure 3.21, where two data collection resources are linked.

Figure 3.21 – Composition model with non interoprable resources

Due to the mismatch of the I/O datatypes between the data collection
resources, the validation engine returns the following message error:

<p>Some resources cannot be linked</p>

If the resource composition is valid (i.e., there are no identified syntax er-
rors in the composition model, and the behavior properties are verified), the
validation engine confirms the following:

<p>Resource composition is verified</p>

74 Chapter 3. Verification of Static Resource Compositions Behavior

After the composition validation, the conversion engine converts the mod-
eled composition to a Hydra-based description expressed in JSON-LD for-
mat, which can be stored into the platform service ontology, and assigns to
it a new URL. The user can then execute the composition by calling the cor-
responding URL, and giving values to the necessary parameters, which are
non-fixed parameters as it was defined in the "variables" key of the modeled
composition.

Listing 3.3 shows the results of the converted and aligned collected data
defined in the composition modeled in Figure 3.16. The results are obtained
based on the given parameters: startDate and endDate, i.e, "2018-11-15T09:00-
:00" and "2018-11-15T11:00:00" respectively, which are non-fixed parameters
as it was defined in the composition model (see Appendix F).

1 {
2 " data " : [
3 [" 2018−11−15 T 0 9 : 0 0 : 0 0 " , 26 , 2283 , 6 3 1] ,
4 [" 2018−11−15 T 0 9 : 1 5 : 0 0 " , 26 , 2299 , 5 9 7] ,
5 [" 2018−11−15 T 0 9 : 3 0 : 0 0 " , 25 , 2321 , 6 9 0] ,
6 [" 2018−11−15 T 0 9 : 4 5 : 0 0 " , 27 , 2280 , 4 8 1] ,
7 [" 2018−11−15 T 1 0 : 0 0 : 0 0 " , 25 , 2024 , 6 7 5] ,
8 [" 2018−11−15 T 1 0 : 1 5 : 0 0 " , 28 , 2407 , 5 5 4] ,
9 [" 2018−11−15 T 1 0 : 3 0 : 0 0 " , 26 , 2182 , 4 6 2] ,

10 [" 2018−11−15 T 1 0 : 4 5 : 0 0 " , 27 , 2315 , 4 3 5] ,
11 [" 2018−11−15 T 1 1 : 0 0 : 0 0 " , 30 , 2299 , 458]
12]
13 }

Listing 3.3 – Example of composition results after execution

3.8 Summary

In this chapter, we proposed a solution for verifying the behavior of stati-
cally composed RESTful services (resources) before execution. This is done
to enable composition designers (end-users) to detect erroneous behavior be-
fore actual composition run, and avoid unnecessary composition execution.
The solution, which is related to the verification process of the static resource
composition in the StARC framework (see Figure 1.10), is based on Colored
Petri Nets (CPN), (i.e., a language for the modeling and validation of concur-
rent and distributed system). In the chapter, we first exposed our CPN-based
formalism to model the behavior of resources with their composition. And
then, we showed how the verification of composition behavior properties
that we identified important to consider (i.e., Reachability, Liveness, and In-
teroperability) can be applied based on our formal defined model. The work
has been illustrated in CPN tools to verify a composition scenario that was
defined in the context of the BEMServer Web platform (presented in Chap-
ter 1), proving the applicability of our proposed model. A prototype has been
also implemented (within the context of SIBEX project) to verify resource
compositions built using data collection and pre-processing resources. This
is done through the development of different engines used for: modeling,
validating, converting, storing and executing new composed resources.

In the next chapter, we tackle the challenge of resource discovery in hy-
brid environments (connecting static and dynamic resources), while consid-
ering resource location (whenever they are exposed by objects).

75

Chapter 4

Automatic Location-aware
Resource Discovery for
Hybrid Web Environments

"Discovery is the journey; insight is the
destination"

Gary Hamel

RESTful services (resources) have seen their popularity rising and have
shown their potential in composing reliable Web-scale environments (Web
applications, Web platforms, Web of Things (WoT), etc.). However, discover-
ing the necessary resources for a composition is becoming more challenging.
This is due to: (1) the growing number of published Web resources, (2) the
highly dynamic nature of the WoT environment, in which connected objects
(devices) exposed as resources, can be connected/disconnected at different
instances, and (3) the different locations of the connected objects affecting the
accuracy of the collected data. In this chapter, we present an automatic re-
source discovery, that can be applicable in hybrid Web environments (provid-
ing static linked resources established to be always available, and dynamic
resources, that can be connected to and removed from the environment at dif-
ferent time periods). The solution is part of the automatic resource composi-
tion presented in the proposed StARC framework (see Chapter 1). In the pro-
posed solution, we define a formal representation that models the resources
(static and dynamic) in a single graph, and allows the discovery of several
resources realizing the same required function using adapted graph-based
algorithms. The algorithms use semantic annotations integrated within re-
source descriptions expressed with Hydra. We also propose a 3-dimensional
indexing schema that considers object location for resource discovery, and
enhances resource search in large resource environments. Experiments were
conducted to evaluate the performance of our solution and showed good re-
sults on 4 aspects: dynamicity, multiplicity, efficiency, and scalability.

76
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

4.1 Introduction

Nowadays, a plethora of Web environments (Web applications, Web plat-
forms, etc.), publish their functions as RESTful services (resources) that fol-
low the REST architectural style principles (see Section 2.1.2). As the Web has
become a major medium of communication, integrating objects (e.g., smart
devices) into the Web and taking advantage of its open standards (e.g., REST
and HTTP), has created an emerging trend: the Web of Things (WoT) [17].
In the WoT, objects can be (i) stationary (having invariant location), or (ii)
mobile (their position changes over time), and are abstracted as resources. A
resource, identifiable by a URI, is either (i) static, established to be always
connected to the environment, or (ii) dynamic, connected to and removed
from the Web environment at different time periods. Figure 4.1 shows the
relations between the type of resources provided by the connected objects
and published Web applications. In many cases, a single resource is not

Figure 4.1 – Type of resources exposed by connected objects and Web
applications

sufficient to satisfy specific user’s requests, and often, resources need to be
combined forming a composition that achieves the desired results. How-
ever, discovering the necessary resources for a composition remains a chal-
lenge, and is becoming even more complex due to: (1) the large number of
resources connected to the Web [115], (2) the highly dynamic nature of the
WoT resources [11], and (3) the mobility aspect of the resources exposed by
objects. Lately, automatic resource discovery has emerged as an active re-
search area [80], where several challenges still need to be addressed:

• Discover dynamic resources connected at runtime: With respect to the
HATEOAS [45] principle, hypermedia resources’ links are included in
resources’ responses, during their design, to define the next possible re-
sources to call, thus, forming a graph of linked resources. This allows
automated tools to navigate through resources’ links to discover the up-
coming appropriate resources. However, dynamic resources connected
at runtime are not linked to the existing graph resources, making their
discovery a challenging task.

• Identify k-resources for a same required function: Due to WoT dy-
namic aspect, dynamic resources may be unavailable for execution, even
if they were initially identified during the discovery process. Also,
sometimes, there are demands that require the coverage of several con-
nected resources in order to be processed correctly. Thus, finding other
resources providing the same required function is important to fulfill
more efficiently user’s requests. With the existing of huge number of

4.1. Introduction 77

resources in large Web-based environments, and to ensure a better per-
formance in terms of response time, it is essential to allow the identifi-
cation of k-resources (k ∈ N), instead of discovering all the resources
realizing the same required function (where k=0).

• Identify the suitable WoT resources based on their object location: In
mobile environments, where objects may continuously move in space,
considering objects location is important to select the most interesting
ones according to a user’s request, to collect relevant data and provide
accurate results. Nevertheless, with the existing of many installed con-
nected objects in the Web environment, identifying the most suitable
ones for user request, is a challenging task. As such, it requires process-
ing spatial queries [38, 55] (e.g., Range type [18] to identify objects in
a specific region; KNN type [67] to locate the K nearest neighbors (ob-
jects); and Range-KNN [100] to identity the K nearest objects falling into
a specific region).

• Make resource discovery process fast: Numerous resources can con-
nect to the Web, forming a large-scale Web resource environment. This
makes resource discovery a complex process, especially when dealing
with demands that require fast responses. Therefore, discovering re-
sources in an improved response time is necessary to enhance discovery
process performance and satisfy user’s requests in an effective manner.

Resource discovery has received much attention in the literature and in dif-
ferent domains (Web services [23, 109, 6], sensor networks [57, 73], cloud of
things [1], etc.). The works related to the Web service domain as in [23, 63, 6]
focused on the discovery of resources exposed by Web applications, without
considering the dynamicity and location of resources that can be exposed by
objects. Also, these approaches do not consider k-resources discovery for the
same required function. The other works [57, 86], which belong to other do-
mains as sensor networks [52], cloud of things [1], and fog computing [70],
handled the discovery of dynamic resources exposed by objects and consid-
ered their location. This is done without covering their possible linking on
the functional level, allowing them to be combined with other resources pro-
vided by other objects and by Web applications exposing static resources.
Moreover, several approaches have proposed machine-readable REST ser-
vice descriptions [4, 21] to allow automatic resource discovery. However,
these descriptions do not consider resources’ dynamicity.

To cope with the aforementioned limitations, we propose in this chapter
a graph-based approach for automating k-Resources discovery. Our solution
is generic that can be applicable in hybrid Web environments providing static
linked resources described through a hypermedia-based language (i.e., Hy-
dra [64] in this thesis), and connecting dynamic resources. In our work, we
define a formal representation that models the resources (both dynamic and
static) into one single Web resource graph, and extends Hydra to describe
dynamic resources and locate the resources exposed by objects. We also de-
fine a 3-dimensional indexing schema that maps the resources, supporting
HATEOAS [45], to their provided functions and to their relative objects loca-
tion (whenever they are exposed by objects). The schema is used to identify
the necessary data collection resources in the required location, and make

78
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

resource discovery fast, especially in large-scale Web environments. Our
proposed solution allows the integration of several graph-based algorithms
adapted to crawl the Web resource graph, and is able to find k-resources re-
alizing the same required function.

The remainder of this chapter is structured as follows. Section 4.2 presents
a scenario to motivate our work, and discusses the main challenges. Sec-
tion 4.3 presents related works, and shows the originality of our approach.
Section 4.4 details our automatic resource discovery solution for hybrid Web
environments. Section 4.5 evaluates the performance of the solution. Finally,
Section 4.6 concludes the chapter.

4.2 Motivating Scenario and Challenges

Our motivating scenario is illustrated within the BEMServer Web platform,
presented in Chapter 1, which exposes several static resources for data col-
lection, data preparation, and data processing. In the scenario, we assume
that BEMServer is extended to allow the connection of: (1) stationary objects,
Os, and mobile objects, Om, providing static/dynamic resources. In this case,
BEMServer acts as a hybrid Web environment connecting both static and dy-
namic resources. Following HATEOAS [45], static resources are linked to-
gether based on their provided functions defined in a function graph (see
Definition 6), forming a resource oriented directed graph. The links between
the resources are included in each resource description, which is expressed
in Hydra [64] and registered in a triplestore-based repository. As for dy-
namic resources (i.e., mainly exposed by building occupants devices), they
are accessible through their URIs, without being registered into the repos-
itory given their dynamic aspect. Thus, the BEMServer platform is a hy-
brid environment that copes with registered and non-registered resources,
as shown in Figure 4.2. Several requests occur in the extended BEMServer

Figure 4.2 – BEMServer, an example of hybrid Web environment

platform. We consider that a building manager wants to predict the heating
energy consumption of a specific building zone for the upcoming two hours.
To express his demand, he can send 2 different requests in which he specifies
the desired function, "EDP" (Energy Demand Prediction):

1. A context aware request, rca, in which he desires to get the prediction
results using temperature data collected from the 3 nearest devices to
where he is standing in his office, with a 2 meters (m) range.

4.2. Motivating Scenario and Challenges 79

2. A non-context aware request, rnca, in which he desires to get the predic-
tion results based on temperature data collected from devices in the con-
ference room A, independently from his current location, as he might be
working from abroad.

Figure 4.3 – The dependencies between the required functions neces-
sary to realize "EDP" function

To satisfy building manager demand, it is important to identify the neces-
sary resources that provide the functions required to realize "EDP" (see Fig-
ure 4.3), and corresponding to the specified zone. However, several chal-
lenges arise:

• Discover external resources: The dynamic nature of the BEMServer
platform, in which external resources can be added and removed dy-
namically, as om4 and om7 in Figure 4.4, makes it difficult for the build-
ing manager to identify the suitable resources answering his request.
This is also a complex task even for the automated tools that navigate
through resources links to identify the next resources to call, since dy-
namic resources are not linked to the existing static resources. Thus, to
identify both dynamic and static resources (e.g., a resource provided by
the smart-phone of the building manager to capture the ambient tem-
perature, and an energy consumption prediction resource embedded
within the BEMServer platform), it is important to link them to a re-
source model.

Figure 4.4 – Dynamicity nature of connected resources

• Identify k-resources providing the same required function: When a
dynamic resource exposed by, for instance, om4 as depicted in Figure 4.4
to collect the ambient temperature, is identified during resource discov-
ery (at instant t), it may be disconnected due to a reboot operation of

80
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

the object (at instant t+n). Thus, the provided required function of the
resource (i.e., "ATC" function as shown in Figure 4.3) will not be cov-
ered. Also, in some cases, the coverage of several resources at once, as
collecting the temperature of a big conference room (as conference room
A) from different locations using os1, os2, and os5 at instant t, might be
necessary. For these reasons, finding k-resources providing the same
required function is essential.

• Discover the data collection resources based on their object location.
To have accurate data necessary for user’s demand, identifying the re-
sources that are (i) the nearest to the building manager standing point
in his office (if his request is rca), or (ii) located in the conference room
A (if his request is rnca), is important. Nevertheless, with the existence
of several connected objects having different locations, identifying the
most suitable ones to use, is a challenging task. As such, and as il-
lustrated in Figure 4.5, om5 exposes a resource that provides one of the
required data collection function, "ATC", but it is not positioned in the
conference room A. Thus, it will be inefficient for the processing of rnca

at both instants t and t+n. However, at instant t, there are 6 objects (os1,
os2, os5, om3, om4, and om7) satisfying "ATC" in the conference room A,
and thus, they can answer rnca more efficiently. As for rca, which we
assume in this scenario is of type Range-KNN, where it is required to
identity the K nearest objects (K=3 in this case) to the building manager
falling into a specific region (R=2m), at instant t, os1, om3, and om4 are
the most appropriate to use. However, at t+n, os1, om3, and om6 are more
convenient, since om4 has been disconnected and a new object, om6, is
connected.

Figure 4.5 – Examples of rnca and rca in BEMServer

• Speed-up resource discovery: Finding the suitable resources in a huge
Web environment connecting many resources with an acceptable re-
sponse time, is important to answer user’s request efficiently. For in-
stance, the faster the energy consumption prediction of a building is,
the quicker the analysis of the predicted results are, and thus, the per-
formance of systems and devices installed within the building are well
managed. Therefore, speeding-up resource discovery within large Web
environments, is necessary, but also is a complex task. As such, when
the building contains many resources exposed by objects, including the

4.3. Related Work 81

conference room A, where the building manager desires to predict the
energy consumption (see Figure 4.6), locating the suitable resources is
challenging, as many objects are installed in different locations.

Figure 4.6 – A Web environment connecting many resources exposed
by connected objects

To cope with these challenges, we propose a solution for the discovery
of static resources supporting HATEOAS, and connected dynamic resources.
The solution considers the location of stationary and mobile objects expos-
ing data collection resources (static or dynamic), and identifies the other
required resources by following hypermedia resources links with support
to HATEOAS. This is done by modeling, first, the resources in a single re-
source graph, and then, defining an indexing schema that maps resources
to their provided functions and corresponding locations (if they are exposed
by objects). The indexing schema is used to identify the most appropriate
resources from which the discovery process will start its search. Our solu-
tion allows to use several graph-based algorithms adapted to explore Hydra-
based resource descriptions enriched by semantic annotations, and identifies
k-resources for the same required function necessary for user’s requests.

4.3 Related Work

Our work relates mainly to Web resource discovery research area, but also to
Web resource description. As such, in order to allow a more autonomous
usage of Web resources, including resource discovery, it is necessary that
the client knows what are the available resources, what are their capabil-
ities (e.g., provided functions), and how they can be invoked (e.g., HTTP
method). Therefore, with the aim to reduce the coupling between the client
and the resource, a machine understandable resource description is required.
In this section, we provide a literature overview on the different existing
REST-based approaches relevant to both resource description and discovery

82
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

fields. Though there are few discovery and description approaches related
to the Web service domain supporting RESTful services comparing to SOAP-
based approaches, since REST is an emerging technology, our analysis can
show the originality of our solution. During the review, we compared the
existing works according to the following criteria:

- Dynamicity: denotes the ability to describe or identify suitable resources
for a user’s request in a dynamic environment connecting both dynamic
and static resources.

- Location-aware: refers to the ability to specify resources position (when-
ever they are exposed by mobile/stationary objects) or identify the mot
appropriate ones according to their location.

- Multiplicity: is the ability to discover several resources providing the
same required function necessary to realize user’s request.

- Efficiency and Scalability: refer to the ability to identify resources with
acceptable response time in: (1) large Web environments providing a
huge number of resources, and (2) diverse Web environments connect-
ing resources with many different and diverse functions.

We note that resource description approaches were only evaluated according
to the Dynamicty and Location-aware criteria.

4.3.1 Resource Description

The authors in [92] present a method called called SemREST (Semantic RE-
Source Tagging) that enriches REST service descriptions with semantic anno-
tations. These annotations provide meaning to what the resource represents,
making thus, Client-Service interaction more generic and autonomous. The
descriptions are expressed using OpenAPI specification (widely known as
Swagger) that is a definition standard proposed by Open API Initiative1 to
describe RESTful Web APIs2. As the resources are semantically linked, the
method allows service discovery and composition. As such, the semantic
resource graph could be generated and host on service side or third party
service registry for the clients to query required resources. Nevertheless, the
work does not handle dynamic resources or considers resources exposed by
objects. Also, it covers the resources callable via "GET" method. In the future,
the authors will consider the rest of HTTP verbs, and explore the integration
of their method with approaches as Hydra.

Authors in [4], present a model called Resource Linking Language (ReLL)
that allows providers to represent RESTful services, with emphasis on the
hypermedia characteristic and linked data. The approach provides a natu-
ral mapping from the graph-oriented world of RESTful services (resources
interlinked by links found in resource representations) to the graph-based
model of RDF. Despite from being a rich data format that provides a formal
definition of resources and links, it does not support the dynamic aspect of

1https://www.openapis.org/
2https://swagger.io/

https://www.openapis.org/
https://swagger.io/

4.3. Related Work 83

resources and link them to the existing related resources. In addition, it is not
dedicated to describe resources exposed by objects.

In [71], an approach that adds semantic annotations to API descriptions
at semantic level is proposed. To achieve this goal, authors have extended
the Open API Initiative (OAI) specification to create comprehensive APIs
description with semantic meaning by linking their properties to concepts
in shared vocabularies. The approach focuses on the emerging concept of
API Profiling to add descriptive information of data semantics by address-
ing Dublin Core Application Profile (DCAP) guidelines 3. However, the work
does not consider dynamic resources nor even resource exposed by objects.

In [8] an approach called EXPRESS is presented offering semantic RESTful
Web services by exploiting semantic Web resources through a RESTful inter-
face with minimum of design and development overhead. The resources that
EXPRESS exploits are entities described semantically in an OWL ontology.
As such, a service provider using EXPRESS provides an OWL file describ-
ing the provided resources. This is done through an EXPRESS deployment
engine to generate URIs for classes, instances and properties. However, the
work does not handle the description of dynamic resources, which can be
exposed by mobile or stationary objects.

A framework for semantic description of RESTful Web APIs is presented
in [99]. The framework is based on annotations added to the application code
that associate resources, properties and operations with terms semantically
described by vocabularies and ontologies. It allows the generation of repre-
sentations containing hypermedia controls, which is an important factor for
developing clients that are more implementation-independent and resilient
to server-side changes. The work is based on the JAX-RS (Java API for REST-
ful Services) specification that defines a group of APIs for developing Web
Services following the REST architectural style principles. These APIs pro-
vide a set of annotations that allows regular Java classes to be exposed as
resources. Similar to our work, the resources are represented using JSON-LD
media type, which provides support for linked data and hypermedia con-
trols, and Hydra Vocabulary enabling the specification of operations that
modify resource state. Nevertheless, the framework does not support dy-
namic resources description, nor even the description of resources exposed
by mobile/stationary objects.

In [21], authors define for each resource a Hydra-based descriptor that
contains meta-data, mainly about: (i) the HTTP operation used to invoke
the resource, (ii) the necessary inputs and the provided outputs, and (iii) in-
formation about other related resources w.r.t. the HATEOAS principle. The
descriptors are designed as resources following the REST principles. Thus,
each descriptor has a specific URI, which can be accessed after calling the cor-
respondent resource URI (though HEAD or GET operation), from the HTTP
resource response Header. Figure 4.7 shows how a resource descriptor URI
can be accessed.

3https://www.dublincore.org/specifications/dublin-core/profile-guidelines/

https://www.dublincore.org/specifications/dublin-core/profile-guidelines/

84
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

Figure 4.7 – Access to a resource descriptor URI

In order to get the content description of a resource descriptor, a GET
operation on the descriptor URI is made. Semantic annotations are integrated
into these descriptors in [23], on the resources HTTP operations, and their
links to other resources, to automate the resource discovery process. In the
work, semantic annotations on resources links can be:

• isSimilar: denoting that the resources provide a similar function, though
they may vary in terms of non-functional properties.

• isComplementary: denoting that the 2 resources are complementary,
and thus, they can be combined in the same process to answer user’s
needs.

• isIncompatible: meaning that the 2 resources are incompatible, and
therefore, they cannot be involved together in the same process.

However, the descriptions represent only static resources and do not con-
sider resources exposed by objects. In our work, we extended the annotated
Hydra-based descriptors presented in [23], in order to allow the descriptions
of both static and dynamic resources, while also considering the location of
an object exposing a resource.

4.3.2 Resource Discovery

In [23], a resource discovery approach is proposed. It uses a BFS-based al-
gorithm (Breadth First Search) [19] to discover resources, and explores the
semantically annotated resource descriptions defined in [21] to determine if
a resource suits the required functions. Apart from neglecting the dynamicity
aspect of resources and resources exposed by mobile/stationary objects, the
discovery process finds one resource for each required function, and thus,
prevents the identification of other resources providing similar functions.
This is an important criteria to consider in dynamic Web environments, as
it is possible to identify more qualified resources to answer user’s request,
and substitute resources in case of non-availability. Moreover, the proposed
discovery algorithm requires a given initial resource URI from the end user
in order to be able to crawl the resource graph. Such task is not obvious
for non-expert users. In our work, end-users express their demands simply
through a single function selected from a given list. Also, our solution allows

4.3. Related Work 85

the use of different graph-based algorithms (i.e., Breadth First Search (BFS)
and Depth First Search (DFS) [97]) to traverse the resource graph, and opti-
mizes resource discovery using an indexing schema that maps resources to
their provided functions.

In [109], a Web service description and interaction approach for auto-
matic Web service discovery called RESTdesc, is proposed. The approach
is based on Notation3 RDF (Resource Description Framework) syntax to de-
scribe REST services, and uses operational semantics of Notation3 in order
to allow a flexible discovery. Although it respects the HATEOAS principle,
the description does not allow the discovery of dynamic resources, and re-
sources exposed by objects are not covered. Moreover, the solution is used
to crawl the related resources without identifying more than one resource
for a required task, and depends from a complex logic language, Notation3,
which is a superset of RDF. Notation3 is difficult to use, even for expert users,
compared to Hydra (the language adopted in our solution) that is expressed
through JSON, a comprehensible and easy to learn format for humans.

In [6], services are described through RAD (REST API Description), which
is a format that considers the REST uniform interface constraint, including
the hypermedia as the engine of application state. RAD is implemented in
JSON to allow the generation of human readable documentation, and in Mi-
crodata that can be embedded in the HTML service description. In Micro-
data or JSON implementation, services descriptions are parsed to generate a
graph that captures state transitions in an activity layer, as well as resources,
transitions, and response semantics in a semantic layer. Using graph queries,
the graph is traversed for service discovery and composition. However, the
approach does not support dynamic resources that can be exposed by ob-
jects. Moreover, the solution requires that the user knows the Schema.org
data model, which has been extended with a set of concepts to semantically
annotate resource descriptions. Also, user needs are expressed through a
graph query that requires knowledge from end-users.

Authors in [63] present an ontology-based approach for personalized REST-
ful Web service discovery. The approach is based on the use of a profile on-
tology that highlights users experience with the services, by capturing their
feedback and those of similar users. A collaborative filtering is also pro-
posed to recommend services based on their utility to the users. The filtering
method used filters returned services with respect to a predicted utility (or
satisfaction) value of the returned service, based on the opinions of the users.
Though it is an original work that takes into account users experience and
feedback for resources discovery, the work is not dedicated to discover dy-
namic resources that can be exposed by objects. Moreover, efficiency/scala-
bility tests performance are to be examined.

Authors in [58] propose RESTDoc, a combination of Microformats-style
markup and RDFs, to provide a comprehensive framework for describing,
discovering and composing RESTful services. In the approach, semantic
annotations are added into the already existing documentation of RESTful

86
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

services expressed in HTML code, and extensions are integrated to link the
services w.r.t. the HATEOAS principle, enabling thus, automatic resource
discovery and composition. The work distinguishes between two differ-
ent aspects of the RESTful service discovery: (1) discovery as you browse,
which concerns client-side browsers and relies on HTML Link elements on
a Web site to point to other resource descriptions, and (2) automated discov-
ery, which refers to the ability of a service to access and link to other related
resources in the same application domain. Contrary to RESTDoc, in our solu-
tion, the resource description is separated from the resource representation,
and is located in what we called a descriptor. This can facilitate the design
task for developers. Also, the work is not dedicated to handle dynamic re-
sources or resources exposed by mobile/stationary objects.

Although dynamic resource discovery is not handled in the Web service
domain, it is an active research area in other domains, as sensor networks [57,
73] and fog computing [95, 70]. Also, considering the location of resources
exposed by objects has been the focus of many works as the ones related to
cloud of things [86] and mobile cloud computing [127], allowing the discov-
ery of resources based on their location and context properties (e.g., Accu-
racy, Precision, and Response time). However, these solutions mainly focus
on the discovery of resources exposed by mobile devices that communicate
with their existing neighbors, independently from their provided functions,
neglecting thus, their possible relations with other resources exposed by ob-
jects and Web applications. Contrary to such approaches, our work combines
existing linked resources (established to be always available on the Web) and
connected dynamic resources into one semantic-based single graph model
based on their provided functions. A part from allowing the discovery of
both resource types (static and dynamic), our model enables the combination
of resources according to their provided functions to create new composed
resources realizing complex user’s request.

4.3.3 Evaluation Summary

Table 4.1 shows the evaluation summary of existing resource description and
discovery approaches related to the Web service domain, based on the re-
quired criteria. The works related to resource description are only evaluated
according to the Dynamicity and Location-aware aspects. This explains the
grey cases of these approaches relative to the rest of the criteria. As it is
shown in the table, where we used "-" symbol to express a lack of a criterion
coverage, none of the approaches within Web service domain are dedicated
to describe dynamic resources exposed by mobile/stationary objects. For the
multiplicity criterion, the resources discovery approaches mainly focus on
the discovery of one resource for each required function, since resources are
always available in the Web environment, contrary to a dynamic one. As
for the efficiency/scalability, the current approaches lack in evaluating their
work in large Web environments consisting of many resources with diverse
functions.

4.4. Automatic Location-aware Approach for k-resources Discovery 87

Table 4.1 – Evaluation of existing works related to the Web service
domain and used for resource description and discovery w.r.t. the

identified criteria
Dynamicity Location-aware Multiplicty Efficiency/Scalability

[92] - -
[4] - -
[71] - -
[8] - -
[99] - -

Resource Description
Approaches

[21] - -
[23] - - - -
[109] - - - -

[6] - - - -
[63] - - - -

Resource Discovery
Approaches

[58] - - - -

4.4 Automatic Location-aware Approach for k-resources Dis-
covery

In this section, we present our solution to discover automatically k-resources
(i.e., static and/or dynamic) responding to user’s request, r (see Definition 7),
while considering data collection objects location. In the request, the user
specifies his desired function, f (such as "EDP" function). f is selected from
a generated list of functions that can be provided by the available resources
connected to the Web environment at the current instant.

4.4.1 General Overview

Before elaborating on our approach, we define a function graph, FG, con-
taining the functions provided by the available connected resources, RES,
and their dependencies (if they exist). FG is a directed acyclic graph, such
that:

Definition 6. FG = (F, O), where:

• F is the set of all the functions provided by RES. Formally, F={ fi} / fi ∈ res
and res ∈ RES, with res denoting a resource.

• O = {<} ∪ φ, is a binary order relation on F. Such binary relation is a subset
of F × F linking two functions when one precedes another in the ordering. As
such, if f1 precedes f2, it is denoted as f1 < f2. FG can also include functions
that are not dependent of any other, we refer to these functions as "terminal".

As for the user’s request, r, it is a spatial query that can be:

1. Context aware, rca, in which the processing considers the requesting
device location at the time of request.

2. Non-context aware, rnca, whose processing is independent from the re-
questing device position.

In this work, rca = rca
range|rca

knr|r
ca
rknr, such that:

• rca
range is a range query

88
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

Figure 4.8 – Overview of the resource discovery approach

• rca
knr is a K Nearest Resource (KNR) query, where the nearest resources

are provided by the nearest objects to the requesting device location

• rca
rknr is a Range-K Nearest Resource (R-KNR) query

More formally, we define r as:

Definition 7. r = (f , P, k), where:

• f, a mandatory element, is the user’s requested function. f ∈ F, with F ∈ FG.

• P, is the set of parameters necessary for the execution of f, such that P =⋃N∗
i=1 {pi}, with pi = (key:value), and where: key denotes the parameter name,

and value is the parameter value given by the user. In P, we define: (i) a lo-
cation, Loc, such that Loc = (Location:value) with value refers to the desired
location (e.g., conference room A and office), and (ii) a scope, S, representing a
range, with S∈ R+. Using Loc and S, the user can specify whether his request
depends from data collection objects that are: (1) located in Loc, or (2) situated
in a given Loc and covering a certain S, or (3) positioned in S bounded via a
circle centered by the user requesting device location, with a specific radius.

• k ∈N, is the number of the nearest objects used for data collection at the time
of request. k denotes also the number of the discovered resources providing
functions other than data collection. If k=0, all resources fulfilling the depen-
dent functions necessary to realize f, as defined in FG, will be discovered.

Figure 4.8 shows the resource discovery solution adaptive to discover k
static and/or dynamic resources necessary to answer the user’s requested f
defined in r. The solution covers the discovery process of the automatic re-
source composition in the StARC framework (see Figure 1.10). Using FG,
the Request Analyzer (RA) component finds the set of functions F’ (F’ ⊂ F)
required to realize f. Resource search consists in finding the available con-
nected Web resources matching F’. For this aim, we first represent all re-
sources (static and dynamic) into one single graph, denoted as RG (see Def-
inition 8), which originally contains linked static resources. To add the dy-
namic resources in RG, we define a virtual resource, vres, for each function

4.4. Automatic Location-aware Approach for k-resources Discovery 89

f in F, and link it to the existing static resources realizing the same function.
Each vres contains the connected dynamic resources answering its correspon-
dent function (this facilitates the integration of new functions exposed by dy-
namic resources in the environment). Using RG, the Discovery Process (DP)
component runs a graph algorithm to identify the resources matching F’. The
algorithm type is specified by the solution administrator from a library of
graph-based algorithms. In our work, BFS and DFS have been implemented.
Resource discovery can be (1) basic, where the algorithm starts crawling RG
from the root, or (2) enhanced, where the algorithm starts RG traversal from
resources pointed by a defined indexing schema. Such schema maps the set
of available linked resources described with Hydra, to their provided func-
tions defined in FG and to their locations (whenever they are exposed by
objects). It allows identifying: (i) the resources providing data collection
functions (if required for user’s request) in the necessary location (defined
in a location map), or (ii) the resource(s) from which DP will begin crawling
the Web resource graph, i.e., RES, when no data collection functions are re-
quired. Thus, the indexing schema returns the appropriate resources from
which the discovery algorithm will begin its search, instead of traversing the
resources of RG starting from the graph root.

4.4.2 Static and Dynamic Resource-based Graph

With respect to HATEOAS, Web resources are linked together, forming a re-
source graph, RG. RG contains at least static resources established to be al-
ways available on the Web. However, the Web is a hybrid environment that
allows connecting dynamic resources. Given their dynamic aspect, these re-
sources are not linked to RG, thus, making their discovery a challenging task.
To address this challenge, we define a virtual resource, vres, for each function
f in F (F ∈ FG). A vres can be permanent, vresp, or temporary, vrest. The vresp

contains the connected dynamic resources realizing its related function that
exists in F, and is linked to the static resources providing that same function
via the "isSimilar" relation. As such, if a static resource provides both f1 and
f2, it will be linked to the virtual resources, vresp

1 and vresp
2 , defined for each

of these functions respectively. And, when a dynamic resource, resd, provid-
ing f is connected, it will be included in the vresp defined for f. Thus, we ob-
tain a resource oriented directed graph, RG, combining dynamic and static
resources. Mainly, the connected dynamic resource of RG provides a func-
tion that exists in F. However, if resd realizes a function that is not included
in F, it will be added in a temporary virtual resource, vrest, defined specif-
ically to the new function. vrest disappears when all of its related dynamic
resources are disconnected, contrary to the vresp, which is always present in
RG. vrest is linked to vresp through "isRelated" relation. Such linking is based
on the dependencies between vresp and vrest related functions4. The process
of linking dynamic resources to static ones in a single graph is illustrated in
Figure 4.9.

An example of the relations between the different types of resources based
on the dependencies of the functions required to realize a function (i.e., "EDP"

4Currently the new functions are added randomly in FG. Their real dependencies with other func-
tions will be explored in subsequent work

90
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

Figure 4.9 – Flowchart of the process linking dynamic resources to
static ones

standing for Energy Demand Prediction) is shown in Figure 4.10. In the ex-
ample, we assume that a resource provides one single function.

Figure 4.10 – An example model of the relations between the re-
sources used to predict energy demand

Another example of linked static and dynamic resources, using defined
permanent virtual resources, is presented in Figure 4.11. The example con-
sists on the resources used to predict the air temperature values based on
3 main functions defined in the function graph, FG: ATC (Air Temperature
Collection), TCC (Temperature Conversion to Celsius), and ATP (Air Tem-
perature Prediction). As represented in Figure 4.11, the defined permanent
virtual resources for each required function (ATC, TCC and ATP), are linked
to static resources via the "isSimilar" relation, and to dynamic resources via
the "contains" relation. As for the static resources providing these different
functions, they are related through the "isComplementary" relation based on
their order dependencies defined in FG.

4.4. Automatic Location-aware Approach for k-resources Discovery 91

Figure 4.11 – An example model linking static and dynamic resources
used to predict air temperature values

Formally, we define RG as:

Definition 8. RG = (RES, Root, REL, f, g, t), where:

• RES is the set of all the static, dynamic, and virtual resources connected to the
Web environment. RES = RESS ∪ RESD ∪ RESV , with:

◦ RESS=
{

ress
i∈N

}
, is the set of static resources

◦ RESD=
{

resd
i∈N

}
, is the set of dynamic resources

◦ RESV=VRESP ∪VREST, is the set of permanent and temporary virtual
resources, with VRESP=

{
vresp

i∈N

}
and VREST=

{
vrest

i∈N

}
• Root ∈ RES, is the set of any resource, res, that is not being pointed by any

other resource in the graph. In this work, such set is formed by static resources.

• REL = R ∪ C ∪ T, is the set of relations linking the resources to each other,
where:

◦ R refers to the relations used to link static resources to other resources,
i.e., static or permanent virtual.
R = {',<}, where ‘'’ denotes "isSimilar" relation, and ‘<’ denotes
"isComplementary" relation
◦ C refers to the "contains" relation, such that C = {∈}. It is used to link

virtual resources to dynamic resources
◦ T refers to the "isRelated" relation used to link permanent virtual re-

sources to temporary virtual ones providing new functions not included
in FG, with T = {→}

• f is the function linking static resources together, and static resources to per-

manent virtual resources, using R, such that f: RESS R7→ RESS|RESS R7→
VRESP

92
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

• g is the function relating virtual resources to dynamic resources, using C, such

that g:RESV C7→ RESD

• t is the function relating permanent virtual resources to temporary ones, using

T, with t:VRESP T7→ VREST

A resource, res, can be static, dynamic or virtual (permanent or tempo-
rary), and is defined as:

Definition 9. res = ress | resd | vresp | vrest

Each static/dynamic resource is formally represented as:

Definition 10. ress|d = (c, id, loc, F, L), where:

• c, is the context Web address referring to terms linked to existing data models
(e.g., ontologies [85]). Such terms are used to link res properties to concepts
defined in their correspondent data models.

• id, refers to the URI Web address used to invoke ress|d

• loc, is the location of the object exposing ress|d. It is equal to null if it is not
the case, i.e., exposed by a Web application.

• F =
⋃N∗

i=1 {fi}, designates the set of functions provided by res, such that: fi =
(n, I, O, m), and where:

◦ n, refers to fi name
◦ I, denotes the input(s) of fi

◦ O, denotes the output(s) of fi

◦ m, is the HTTP verb used to call fi

• L refers to the set of linked resources (if they exist) to ress|d. It is always Null
for resd, however, it can be defined for each ress as L =

⋃N∗
i=1 {li}, where:

◦ li = (res. f , r), with res. f is the function provided by the linked res, such
that res = ress|vresp, and r ∈ R (with R ∈ REL)

A permanent/temporary virtual resource is defined as:

Definition 11. vresp|t = (id, f, D, L), where:

• id, refers to the URI Web address used to invoke vres and access its correspon-
dent dynamic resources

• f = (n, GET) refers to the function related to vres, with:

- n is the name of the function defined for vres
- GET refers to the HTTP verb used to call vres

• D designates the set of dynamic resources supporting the same function defined
for vres, with D=

{
resd

i∈N

}
, resd

i∈N ∈ RESD, and vres contains D through
"C" relation (C ∈ REL).

4.4. Automatic Location-aware Approach for k-resources Discovery 93

• L refers to the set of linked resources (if they exist) to vresp|t. It is always Null
for vrest, however, it can be defined for each vresp as L =

⋃N∗
i=1 {li}, where:

◦ li = (vrest. f , r), such that vrest. f is the function provided by the linked
vrest, and r ∈ T

In our work, RESS and RESD provide the initial functions defined in FG,
while VREST answers newly added functions.

Based on the resource definitions, we extended Hydra to allow the de-
scriptions of dynamic and virtual resources, and to add the location of both
dynamic and static resources (whenever they are exposed by objects). In the
descriptions, shown in Appendix K, the term "Operation" denotes the pro-
vided function by the resource, and the term "function" refers to a function
defined in FG. The inputs and outputs of an operation are included in the
"expects" and "returns" fields respectively. They are represented as key:value
pair, where key is the term mapped to a specific data model, and value is the
concept to which each input and output is referring to.

4.4.3 Indexing Schema for an Enhanced Resource Search

Exploring graphs like the Web environment requires graph traversal algo-
rithms that traverse RG nodes (i.e., resources) to find the appropriate ones
realizing user’s request. The most popular algorithms are Depth First Search
(DFS) and Breadth First Search (BFS) [97]. We conducted several tests to com-
pare both BFS and DFS. The results, available in Appendix J, show that the
performance of each algorithm depends on the functions distribution and the
localization of the requested function in FG. Originally, the resource discov-
ery algorithm starts from the resource(s), included within RG Root (see Defi-
nition 8), leading to a huge response time when dealing with large graphs. To
optimize the time of the resource discovery, we define an indexing schema
that maps (i) the resources (i.e., RESS, RESD, and VREST if they exist) to
their provided functions, and (ii) static/dynamic resources used for collect-
ing data to their locations (whenever they are exposed by objects). In order
to identify data collection resources suitable for the requested location in r,
we assume that there is a location map describing the geographic area of the
targeted environment. Such description is based on different levels of loca-
tion granularity defined in a geographic hierarchy. For example, in our mo-
tivating scenario related to smart buildings domain, we consider that Zone
isPartO f−→ Floor

isPartO f−→ Building, with Zone, Floor, and Building are types of
location (i.e., subclasses of Location), as illustrated in Figure 4.12-(a). The
location value presented in the description of each data collection resource
exposed by an object refers to the smallest location granularity, i.e., a specific
zone, Zi, with i ∈N in our case. We suppose that object’s location is updated
periodically based on a predefined time interval.

To identify the resources realizing user’s request, and locate the suitable
data collection objects, we use the indexing schema, IdS, that consists of 3 di-
mensions: Functions, Resources, and Locations, as presented in Figure 4.12-
(b). IdS is formally defined as:

Definition 12. IdS = (o, F, R, L), where:

94
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

Figure 4.12 – An example of a geographic hierarchy VS The indexing
schema

• o, is the origin positioned at (0, 0, 0). It denotes a special resource containing
the set of the static resources, and the dynamic resources used for data collec-
tion. o denotes also an empty function provided by the resources, and the set of
the smallest location granularity.

• F={x}, is the abscissa axis values referring to the indices of the functions re-
alized by the static resources, and the data collection functions provided by
the dynamic ones. Each x has a fsignature consisting of the functions indices
required to realize f, as defined in FG, such that:

◦ fsignature = {x′}, where x’ ∈ F, x’ 6=x, and ∃ x’ ∈ fsignature with
x’.fsignature=∅ denoted as "terminal".

• R={y}, is the ordinate axis values referring to the set of the static resources,
and the dynamic resources providing data collection functions. Only y repre-
senting a static resource has a rsignature, which consists of the resources in-
dices related to it via semantic relations, i.e., isSimilar and isComplementary,
and such that:

◦ rsignature={y′}, with y’∈ R and y’ 6=y

• L={z}, is the applicate axis values referring to the smallest location granular-
ity set (e.g., zone) of the objects exposing static/dynamic resources for collecting
data.

IdS is used by the discovery process to identify the resources providing
the terminal functions that are not dependent of any other (in this work, they
are data collection functions), and relative to the necessary location for r.

4.4. Automatic Location-aware Approach for k-resources Discovery 95

Figure 4.13 – IdS linking resources to their functions and used to iden-
tify the initial resources necessary to realize "EDP" function

As shown in Figure 4.13, where we assume that all resources are within
the same required location, f7 (referring to the "EDP" function) is preceded
by 6 functions, {1, 2, 3, 4, 5, 6}5. Based on the analysis of these functions’ sig-
natures, f1 ("ATC" function) and f2 ("CTC" function) are terminals. The re-
sources realizing such two functions are res1, res2, res4, and res7 (circled in
red), and will act as initial resources from which the discovery algorithm will
begin its process, instead of starting from the graph Root.

Figure 4.14 – IdS linking resources to their functions and used to iden-
tify the initial resources necessary to realize "ATP" function

Another example of using the indexing schema is illustrated in Figure 4.14.
The example consists on identifying the resources from which the resource
discovery process will begin its search, in order to find the necessary re-
sources used to predict air temperature values. As shown in Figure 4.14,
where we consider that all of the necessary resources are within the required

5Refers respectively to the ATC, CTC, MVD, OVD, MVI, and OVI functions

96
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

location, the "ATP" (Air Temperature Prediction) function depends of two
other functions: "TCC" and "ATC". From the analysis made on the fsigna-
tures of these two functions, only "ATC" is terminal. The resources realizing
"ATC" are res1 and res4 (circled in red), and will act as initial resources from
which the discovery algorithm will start its process.

In appendix L, we show the performance evaluation of IdS construction
while considering the resources in the same location. The results show that
the response time and memory usage increase with the evolution of both
functions and resources numbers. Such evolution is huge when the num-
ber of functions and resources is high. Thus, updating the IdS dynamically
without regenerating it again is an improvement that we seek to do in the
future.

4.4.4 Resources Discovery Process

Our discovery solution identifies static and/or dynamic resources, and adapts
several graph-based algorithms for RG traversal, while considering resources
location (whenever they are exposed by objects). The algorithm to be used is
given as input to the resource discovery process based on a library of algo-
rithms (i.e., BFS or DFS in this work). Algorithm 2 presents the pseudo code
of the defined discovery process having the following entry data:

− algoType (string): denotes the algorithm type to be used

− f (string): is the user’s requested function

− k (integer): is the maximum number (defined in user’s request) of the
discovered resources providing identical functions

The output is the discovered array, containing the pairs [f, id] that corre-
spond to the discovered resources necessary to realize f. During the discov-
ery process, several main functions are used:

• IdS(string,integer), identifies the data collection functions required for
f and gets the relative resources corresponding to the specified location
in r, using the geographic hierarchy and the indexing schema.

• funResMap(array of [string, array of string]), is called to generate an
array of [string, string] that maps each resource to its provided function.

• getResDesc(string), is called to access the description of a resource,
identified by its id (i.e., URI), and retrieve the related resources that can
be traversed next.

• discover(array of string), traverses the resource Web graph starting from
a set of identified resource to discover the rest of the resources necessary
to realize f. Its pseudo code is presented in Algorithm 3.

• functionMatch(string, string), checks if two functions are identical.

DP starts by identifying the resources realizing the data collection func-
tions necessary to f, and located in the required location, using the IdS(f,k)
function (line 8). The data collection functions with their relative identified

4.4. Automatic Location-aware Approach for k-resources Discovery 97

Algorithm 2 : Pseudo code of the Discovery Process (DP)
1 algoType string
2 input: f string
3 input: k integer
4 output: discovered array of [string, string]
5 dataCollectionRes: array of [string, array of string] // contains the data collection functions relative to f with their resources corresponding to

the required location
6 resToExploreNext: array of string
7 discRes: array of [string, string]
8 dataCollectionRes = IdS(f,k) // gets k resources for each data collection function required for f in the necessary location
9 discovered = funResMap(dataCollectionRes)

10 foreach func in dataCollectionRes do
11 foreach id in dataCollectionRes[func][1] do
12 Descriptor desc = getResDesc(id) // get the description of a resource using its id
13 if not id.L.empty() then
14 resToExploreNext.insert(id.L) // insert the next related resources to id, as defined in its description in resToExploreNext

15 if dataCollectionRes[func][1].empty() then
16 outputMessage ("no resources are identified in the required location")

17 discRes = discover(algoType, resToExploreNext) // start resource graph traversal from the resources in resToExploreNext to discover other
required resources providing the necessary functions

18 discovered.insert(discRes)
19 return discovered

resources are added into the dataCollectionRes array. funResMap(dataColl-
ectionRes) function is used to map each function to its identified resource,
and store the results in the discovered array (line 9). For each data collec-
tion function, func, in dataCollectionRes, DP retrieves the corresponding
resource description (expressed in Hydra in this work) using the getRes-
Desc(id) function (line 12) to get the linked resources ids that will be tra-
versed next. These ids, stored in the resToExploreNext array (line 13), are
later used by the discover(algoType, resToExploreNext) function, presented
in Algorithm 3, to identify the resources providing the other required func-
tions. When there are no resources providing a data collection function in
the required location, a message will be sent (lines 15-16). Once the neces-
sary resources are inserted into resToExploreNext array, they will be used by
the discover(algoType, resToExploreNext) function to traverse the resource
graph, and identify the rest of the resources necessary to answer f (line 17).
All of the discovered resources realizing the required functions are saved in
the returned discovered array (line 19).

Based on the given algoType, the discover function, presented in Algo-
rithm 3, runs the corresponding algorithm (runAlgoType(algoType)) that
will explore RG starting from the resources included in the resToExploreNext
array. currentId refers to the resource that is being processed, which is ini-
tially the first resource of the resToExploreNext array. For each unvisited
resource, the algorithm gets the relative Hydra description through getRes-
Desc() (line 12). If the operation function matches one of the functions in
F’ using the functionMatch() (line 14), the algorithm checks whether the re-
source is virtual or static (lines 15 to 20). When it is virtual, the ids of the dy-
namic resources included in the description (line 16) are inserted with their
relative function in the discRes array. When it is static, the corresponding
resource id is stored in the discRes array with the relative function (line 21).
If the number of the discovered resources realizing the current function is
equal to k (lines 18 and 22), the function is removed from F’. Such number is
calculated using the resFound() that we implemented apart. To explore other
resources, the algorithm follows the resource semantic annotated links (lines
24 to 26).

98
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

Algorithm 3 : Pseudo code of discover(agloType, resToExploreNext) function
1 algoType string
2 input: resToExploreNext array of string // set of resources from which RG traversal will start
3 output: discRes array of [string, string]
4 visited: array of string
5 F’: array of string // contains the non data collection functions required to realize f as defined in FG
6 currentId = resToExploreNext[0]
7 F’= FunG(f) // Gets the required non data collection necessary to answer f
8 runAlgoType(algoType): // the execution of the algorithm corresponding to the given algoType
9 while not F’.empty() do

10 if not currentId in visited then
11 visited.insert(currentId)
12 Descriptor desc = getResDesc(currentId) foreach operation in desc.Operation do
13 foreach f in F’ do
14 if functionMatch(operation.function, f) then
15 if not desc.RESD.empty() then

// the description contains a collection of dynamic resources
16 foreach adhoc in desc.RESD do
17 discRes.insert([f, id])
18 if resFound(discRes, f) = K then
19 F’.remove(f)

20 else
21 discRes.insert([f, currentId])
22 if resFound(discRes, f) = K then
23 F’.remove(f)

24 foreach link in desc.Link do
25 if (link.relationType = isSimilar or link.relationType = isComplementary or link.relationType = isRelated) then
26 resToTraverse.insert(link.entrypoint) // stores the resources linked to the current traversed resource

27 currentId = resToTraverse.selectNext() // selects the next resource to traverse

28 else
29 currentId = resToExploreNext.next()

30 return discRes;

4.5 Evaluation and Discussion

In this section, we evaluate the performance of our resource discovery solu-
tion in different function and resource graphs topologies, by varying differ-
ent parameters, such as: the number of functions, the number of resources
providing, each, one function included in FG, and the number of the needed
data collection resources in the required location. The tests are divided into
two main scenarios. In the first scenario, we considered that all resources are
located within the same necessary location for user’s request, and studied
our approach performance in 2 different forms: (1) basic, where the search
starts from the resource(s) included in the graph Root of RG, and (2) en-
hanced, where the search starts from the resource(s) pointed by IdS. This
is done without considering the best algorithm type to use at each function
graph topology (as it is not the purpose of this work). Therefore, we only
show the experiments using one algorithm type, i.e, the BFS. In the second
scenario, we focused on analyzing the approach according to the "Location"
dimension, while varying (i) the number of the needed data collection re-
sources in the required location, (ii) the number of locations relative to r (rnca),
and (iii) the number of the required data collection functions provided by re-
sources located in the necessary location. To consider worst case scenarios,
all of the tests consist of dynamic resources providing functions existing in
FG, regardless of whether they were originally defined or newly added.

4.5.1 Environment Setups

The function and resource graphs are dynamically generated based on sim-
ulations, where we varied several criteria, i.e., number/order of functions,

4.5. Evaluation and Discussion 99

number/type of resources, number of resources (k) providing the same func-
tion. This is done to study our approach in different functions/resources
graphs topologies. In the tests6, conducted on a Linux Debian (64 bits) virtual
machine, with 1 dedicated Intel® Core™ i7-46000 CPU @ 2.10GHz 2.70GHz
processor and 1 GB RAM, we show the algorithm response time (in millisec-
onds) based on an average of 5 sequential executions.

4.5.2 Scenario 1: Basic Search vs Enhanced Search Evaluation

Due to the lack of standard benchmark to evaluate existing related works [23,
109, 6], we propose the following criteria for our resource discovery approach
evaluation:

• Dynamicity: the ability to identify appropriate resources for a user’s
request in a dynamic environment connecting both dynamic and static
resources

• Multiplicity: the ability to discover k-resources responding to the same
required function

• Efficiency: the ability to identify suitable resources in a large Web envi-
ronment with acceptable response time

• Scalability: the ability to identify resources in large graphs containing
resources that provide numerous different functions

For each aspect, we generated results by running the basic and the enhanced
search forms of the BFS algorithm. For the dynamic aspect, the tests were
executed on 5 resource graphs containing, each, 200 resources, based on a
FG with 20 ordered functions. The number of dynamic and static resources
varies from a graph to another with the variation of k. As such, the graph
consisting of 200 static resources ([200,0]), contains 10 resources (k=10) for
each function in FG. However, graph [100,100] includes 5 static and dynamic
resources (k=5 for each type) realizing the same function. The aim of the
tests was to find 1-resource for each function required to answer a function
dependent of 6 other functions. Figure 4.15-(a) shows that the presence of dy-
namic resources reduces the response time of the resource discovery in both
algorithm forms. This is explained by the existence of virtual resources from
which the algorithm can access several dynamic resources realizing the same
function at once.
In the dynamicity aspect tests, in particularly where RG contains only 200
static resources [200,0], the response time of the executed resource discovery
process in its enhanced form, is the same as the response time of the resource
discovery proposed in the work [23]. This is due to the fact that in [23], where
dynamic resources are not considered, it is assumed that the user knows the
URL of the first resource from which the discovery process sill start, thus
the similarity with the enhanced search in our case. However, in our solu-
tion, the end-user expresses his request through a single function, which is
selected form a list of functions provided by the available resources in the
Web environment at the current instance.

6The prototype code is available online: http://tinyurl.com/y7e78n24

100
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

Figure 4.15 – Performance results

4.5. Evaluation and Discussion 101

For the multiplicity aspect, we built a graph of 400 resources (200 static
and 200 dynamic), and run our tests while varying k. Figure 4.15-(b) shows
that the response time increases with the evolution of k in both algorithm
forms. This is due to the additional resources that the discovery process will
have to find realizing a single required function. However, the results are
more satisfactory using the enhanced search.

For the efficiency aspect, Figure 4.15-(c) shows that the response time of
the enhanced search is better than the basic one, when increasing the number
of resources from 200 to 100007. This highlights the utility of the indexing
schema in large Web graphs.

As for the scalability aspect, we fixed the number of resources to 10000,
and varied the number of functions (from 50 to 2000). In the first 3 tests,
RG graphs consist of k dynamic and static resource for each function, with
k decreasing from 100, 10, and 5 respectively. In the rest 2 tests, k is de-
fined unequally between static and dynamic resources of the RG graphs. As
such, when the number of functions is 2000, RG graph includes 2 dynamic
resources (k=2) and 3 static resources (k=3) for each function. Figure 4.15-(d)
shows an increase in the response time with the evolution of the functions
number with the basic search. This is due to the variety of resources provid-
ing numerous functions that are different from the required ones. However,
the response time decreases in the enhanced search. This is explained by the
reduction of the number of resources providing the necessary functions re-
lated to user’s request, since the functions number increases while the total
resources number is fixed.
Figure 4.15-(a) results highlight the benefit of defining virtual resources con-
taining dynamic resources realizing the same function. It facilitates and speeds-
up the access to k-resources at once during resource discovery. The tests in
Figures 4.15-(b), 4.15-(c) and 4.15-(d) show that the time curve in both algo-
rithm forms generally increases with the evolution of the functions number,
the resources number, and the similar resources number, k. Except for the
scalability aspect, and with the enhanced search, the time curve decreases.
This is due to the fixed number of resources while increasing the number
of the provided functions, which leads to a decrease in the number of re-
sources providing the required functions necessary to realize user’s request.
Our experiments prove that using our indexing schema optimizes resource
discovery in all graphs setups. This can be seen through the difference be-
tween the results of the basic and the enhanced searches, especially when the
resources number is high (10000 resources) as shown in Figures 4.15-(c) and
4.15-(d).

4.5.3 Scenario 2: Discovery Evaluation based on Resource Location

In the tests of the second scenario, we identify all the resources responding to
the required functions necessary for r, where k=0. As such, all the resources
providing the required data collection functions within the needed location
are discovered, along with all the resources realizing the other required func-
tions. In the experiments, the generated FG consists of 50 ordered functions.
The response time covers the search in IdS for the necessary data collection

7Each graph contains the same exact number of static/dynamic resources

102
Chapter 4. Automatic Location-aware Resource Discovery for

Hybrid Web Environments

resources, and the traversal of the resources links, using BFS, to identify the
other required resources. Figure 4.16 shows the generated results of the re-
source discovery performance in 3 different cases. The tests in the first case
were executed on a resource graph containing 2000 resources (1000 static and
1000 dynamic). The data collection resources were distributed on 12 different
locations. With the aim to identify the resources needed to answer a given
function, we varied the number of the resources providing the required data
collection function within the needed location. The results in Figure 4.16-
(a) show that the response time increases with the evolution of the number
of relative data collection resources existing in the required location. This is
due to the growing number of the necessary resources in the needed location,
and to the increasing number of the HATEOAS links to be traversed, which
are included in the description of each identified data collection resources. In

Figure 4.16 – Performance results of the resource discovery

the second case, we built 5 graphs of 4000 resources containing, each, 2000
static and 2000 dynamic, and run the tests while varying the number of the
required locations. Each location contained several resources, including 20
resources providing the required data collection function for r. The results
in Figure 4.16-(b) show that the increasing number of locations relative to r
leads to an evolution in response time during resource discovery. This is due
to the growing number of resources to discover in the different locations, and
the time taken to crawl their HATEOAS links. In the third case, a graph of
2000 resources (1000 static and 1000 dynamic), is generated, and data col-
lection resources were distributed on 12 different locations. In the tests, we
varied the number of data collection functions required in the needed loca-
tion. Each function is provided by 40 resources. The results in Figure 4.16-(c)
show an evolution in the response time with the growing number of required
functions. This is explained by the increase number of resources that are to
be identified providing the necessary functions. The generated graphs in all
cases show a positive linear curve, denoting that the time of resource discov-
ery process increases linearly with the number of resources in the required
location, the number of locations relative to r, and the number of required
data collection functions. The results also highlight the important increase of

4.6. Summary 103

response time with the growing number of locations relative to r, comparing
to the other graph curves.

4.6 Summary

In this chapter, we proposed an automatic location-aware solution for k-
resources discovery in hybrid Web environments connecting: (1) static re-
sources that are established to be always available and respect the HATEOAS
principle, and (2) dynamic resources, which can be connected to and re-
moved form the environment at different instances. The solution, which cov-
ers the resource discovery process of the automatic resource composition in
the StARC framework, consists of a formal representation that models the re-
sources (both dynamic and static) in one single resource graph. The resource
graph can be traversed by several graph-based algorithms adapted to fol-
low the semantic annotations integrated in the descriptions (expressed with
Hydra vocabulary) of the traversed resources, to discover the necessary k-
resources realizing the same required function. In the approach, we defined
an original 3-dimensional indexing schema that maps the resources to their
provided functions and corresponding location (whenever they are exposed
by objects). As shown in our conducted experiments, the indexing schema
allows identifying data collection resources based on their location. It also
enhances resource search in large Web environments to avoid crawling the
resource graph from the Root and causing big search time. This has been
proved in the evaluation of our solution performance on 4 aspects: dynamic-
ity, multiplicity, efficiency, and scalability.

In the next chapter, we tackle the challenge of selecting the appropriate re-
sources from the ones identified during resource discovery, to form the suit-
able compositions realizing user’s request in hybrid Web environments.

104

Chapter 5

QoR-based Resource Selection for
Hybrid Web Environments

"Imagine the possibilities"

Ralph Marston

As many resources are being published on the Web, selecting the appro-
priate ones to form a composition of resources satisfying user different needs
is becoming a challenging task. This is due to: (1) the growing number of
resources providing identical functions, which calls for the use of Quality of
Resource (QoR) to distinguish between them, and (2) the transient nature of
resource availability in hybrid environments connecting not only static re-
sources (established to be always available) but also dynamic resources, that
can be connected/disconnected at different instances. In this chapter, we
present a QoR-driven approach for resource selection that can be applicable
in hybrid environments. The proposed selection solution is the next process
to be considered after the discovery process, which is relative to the auto-
matic resource composition in the StARC framework (presented in Chap-
ter 1). It allows selecting the appropriate resources to form i-compositions
(with i ∈ N∗), offering different implementation alternatives, taking into
account resource availability, QoR constraints, matching of resources Input-
s/Outputs and user different needs (e.g., compositions with the highest QoR,
and compositions having acceptable QoR but formed in satisfactory delays).
Experiments are conducted in different environments setups (i.e., different
resource and function graphs topologies) to study the performance of our
work, and analysis are made to evaluate our resources/compositions’ qual-
ity model against existing ones.

5.1. Introduction 105

5.1 Introduction

In this chapter, we present our proposed resource selection approach, which
is the next step to consider after the k-resources discovery solution presented
in Chapter 4. Similar to the discovery approach, resource selection can be
applicable in hybrid Web environments providing:

• Static resources, i.e., established to be always available on the Web.
These resources can be exposed by Web applications, connected WoT
objects [17] (stationary or mobile) as smart devices, etc.

• Dynamic resources, i.e., exposed by stationary/mobile WoT objects,
that can be connected to and removed from the environment at different
instances.

As many resources can be identified during resource discovery, selecting the
suitable ones to form a composition that satisfies user needs is becoming a
complex task. As such, several challenges arise:

1. Selection of the appropriate resource for a function: With the growing
number of resources responding to the same function, selecting the ap-
propriate one, while considering user constraints (if they are given), is
a non-trivial task for end-users. For this matter, taking into account the
Quality of Resource (QoR) attributes used to differentiate resources hav-
ing identical functions [116], is important to select the suitable resource
for a function. The increasing number of candidate resources and their
various QoR attributes [59] (e.g., Availability and Cost) require an au-
tomatic approach that facilitates the task for end-users, and accelerates
the selection process. Also, during selection, considering the matching
of the input and output (I/O) parameters of the related resources, is es-
sential to generate composition solutions that fit efficiently users needs.

2. Forming different composition alternatives: In hybrid Web environ-
ments connecting dynamic resources, the selected resource(s) for a com-
position may be unavailable for execution (disconnected from the envi-
ronment). In order to avoid repeating the discovery and selection pro-
cesses to form new suitable composition, providing i-compositions (i
∈N∗), i.e., a set of compositions having different implementation alter-
natives, during resource selection becomes important. These composi-
tions achieve the workflow (representing the dependencies between dif-
ferent functions to be satisfied by multiple resources) that is necessary
for user’s request by using, each, a different set of resources. This gives
the possibility to substitute a composition that misses a resource (due
to a disconnection from the environment for instance) by another one
consisting of available resources. Thus, a selection approach that con-
siders resource dynamicity is necessary. Furthermore, in some cases,
users require optimal composition having the highest possible scores,
others may need optimistic composition having acceptable scores ob-
tained in more satisfactory delays, and in other cases, users ask for so-
lutions having acceptable scores while considering resource dynamic-
ity (whenever a dynamic resource is unavailable during a composition
execution, there is always another composition consisting of available

106 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

resources that can take over). Therefore, forming compositions that are
adaptive to different user needs becomes essential.

In the literature, many approaches (i.e., REST-based and SOAP-oriented) ad-
dressed service selection [22, 25, 114, 96]. Some works [22, 114, 120] were
based on Quality of Services (QoS) to select the most suitable ones accord-
ing to user constraints or preferences, without taking into account I/O ser-
vice matching and service dynamicity. Others [96, 66] dealt with the service
selection problem as an AI planning problem aiming at finding a sequence
of services starting from given inputs and leading to the desired outputs,
without considering service matching on the functional level, their QoS, and
dynamicity. Also, and to the best of our knowledge, none of the existing
service composition approaches [41, 24], is adaptive to form several types of
compositions realizing different user needs (e.g., optimal compositions hav-
ing the highest scores, optimistic compositions having acceptable scores but
obtained in more satisfactory delays, etc.).

To address the aforementioned challenges and existing limitations, we
present, in this chapter, a QoR-driven resource selection approach that forms
i-compositions in hybrid Web environments (connecting static and dynamic
resources). To do so, we first propose a formal QoR-based graph that mod-
els the identified resources (static and dynamic) during resource discovery,
with their relations. In the model, where the nodes represent the discov-
ered resources and arcs represent resource relations based on their provided
functions, we define a QoR score for each resource, and a quality score for
each possible composition. Then, we define a selection strategy adaptor that
forms i-compositions based on user QoR constraints and I/O matching of re-
lated resources, while considering resource dynamicity and user’s requested
composition type (e.g., optimal compositions having the highest scores, and
optimistic compositions having acceptable scores but obtained in more satis-
factory delays). Resource selection is automatic, i.e., based on semantic anno-
tations integrated within resource descriptions expressed using Hydra [64] in
our work.

The rest of the chapter is organized as follows. Section 5.2 motivates our
work, and describes the main challenges and needs. Section 5.3 discusses
related work and shows the originality of our solution. Section 5.4 details
our resource selection approach. Section 5.5 evaluates the performance of
the proposed solution and compare our defined QoR model against existing
works. Finally, Section 5.6 concludes the chapter.

5.2 Motivation, Challenges and Needs

We motivate our work with a scenario illustrated in the BEMServer Web-
based management platform of HIT2GAP and SIBEX projects. In the sce-
nario, we assume that BEMServer, and apart from connecting static resources,
is extended to allow connecting dynamic resources exposed by objects. Sev-
eral requests can occur in such Web platform. We consider a building man-
ager that wants to predict the temperature of a specific building zone. To
express his demand, specified by "ATP" (Air Temperature Prediction) func-
tion, he can send 2 different requests, as explained before in Section 4.4 of
Chapter 4: (1) a context aware request, rca, in which the prediction results

5.2. Motivation, Challenges and Needs 107

depends from data collected from the 3 nearest devices in his office (with a
2m range), and (2) a non-context aware request, rnca, in which the required
data is collected from devices located in the conference room A, indepen-
dently from the building manager position. In the example, we consider that
the required resources providing the needed functions to realize "ATP", have
been already identified during resource discovery.

Figure 5.1 – rnca and rca examples in BEMServer

To satisfy building manager demand, several challenges should be ad-
dressed, as illustrated in Figure 5.1:

1. Select the appropriate resources to form a suitable composition. When
several resources are identified responding to the same required func-
tion as "ATC" (Air Temperature Collection), selecting the appropriate
ones among all others (os1, om3, and om4 for rca at instant t) is not an ob-
vious task for end-users, as the building manager. For this matter, QoR
plays an essential role to select the suitable resources. For instance, as
shown in Table 5.1, object os1 is better than om3 and om4 as it has: (i) full
battery capacity denoting a full availability, (ii) continuous connectivity
to the environment (since it is static), (iii) cost free when using it, and
(iv) high usage rate (i.e., it has been invoked many times). Consider-
ing these non functional aspects (QoR), allows selecting the appropriate
resources among other candidates. As many candidate resources may

Table 5.1 – Quality aspects of the ATC objects
Battery Capacity

(Availability)
Continuous Connectivity

(i.e., 0 if static and 1 if dynamic) Cost Rate

os1 100 0 0 65
os2 90 0 10 60
os5 80 0 25 60
om3 75 1 0 60
om4 65 1 75 20
om5 70 1 0 75
om6 41 1 0 50
om7 45 1 10 10

be connected to the BEMServer with various QoR, resource selection re-
quires an automatic approach that facilitates and accelerates the task for
end-users. Such approach should also consider the suitable I/O match-
ing between the linked resources. This is done to: (1) guarantee efficient
composition results, and (2) allow forming other potential compositions

108 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

by replacing dynamic resources unavailable for composition execution
with other resources that can be suitably linked to the rest of resources
in the composition. Moreover, in some cases, the building manager may
require:

(a) Prediction results using the most qualified resources among oth-
ers. In this case, the resources to be selected are the ones having
the highest values of quality aspects, and independently of the se-
lection response time, since the building manager may desire to
adjust the conference room A temperature necessary for a meeting
that will start in the late afternoon. As such, and as per Figure 5.1,
among the ATC objects located in the conference room A at t+n for
rnca, os1 is the most qualified object to use, as it has the highest
quality aspects values (see Table 5.1).

(b) Fast but good prediction results. In this case, and as the building
manager might be feeling very hot in his office, he needs fast pre-
diction results to regulate his office temperature at instant t using
rnca. This is done by selecting the first resource realizing his de-
mand without the need to check others. Though requiring fast re-
sults, it is important that the resources to be selected have minimal
quality aspects values (e.g., Availability > 75, Continuous connec-
tivity, Cost 6 25, and Rate > 60), guarantying good predictions. In
this context, and based on Table 5.1, os2 has good quality values,
therefore if it is identified first before the other objects, it will be
selected.

(c) Good and always available results. In this case, the building man-
ager requires to have results using resources with good quality as-
pect values, but at anytime of his request, i.e., even if dynamic re-
sources are disconnected from the Web platform there are always
other resources that can take over. Thus, the ATC object that will
be selected should be always connected to the environment (i.e.,
static) at both instants t and t+n, and having good quality aspects.
As such, using rnca, all three static objects at t and t+n, i.e., os1, os2,
and, os5, have good quality aspects, thus, the first one identified
will be selected.

In other particular cases, and for each of these previous requirements,
he may need to have:

• Trusted results, generated by only static resources already pro-
vided by the Web platform (e.g., os1, os2, and os5).

• Cost free results, using resources without any charge (i.e., Cost = 0
as os1, om3, om5, and om6).

• Effective results, using resources with high availability rate (e.g.,
os1, os2, os5, and om3).

• Efficient results, using resources that have been used several times
in other scenarios (e.g., os1 and om5).

• Qualified results, using resources having the highest QoR values
(e.g., os1).

5.3. Related Work 109

• Reliable results, using resources that can be linked in the most
proper way (i.e., best I/O matching between the related resources).

Thus, it is necessary to consider user needs and constraints, and adapt
resource selection accordingly.

2. Form several composition alternatives. Selected dynamic resource(s)
for a composition may be unavailable during execution. As such, for
rnca and at instant t, 5 mobile objects providing "ATC" are positioned in
the conference room A. If om4 provides the appropriate resource among
these objects, it will be selected to take part in the composition. How-
ever, at t+n, om4 is disconnected, and thus, the composition will miss a
resource if the composition execution time is > t+n. The same applies
to rca for which om4 is no longer available. To avoid repeating both
resource discovery and selection processes, to form a new suitable solu-
tion with available resources, it is important to identify i-compositions
during resource selection, with i ∈N∗.

To address these challenges and respond to the different user needs, we
propose a QoR-driven resource selection solution adapted to: (i) different
requested composition types (e.g., Optimal, Optimistic and Optimistic Cost-
free), and (ii) user constraints expressed in spatial queries. Our selection ap-
proach considers I/O matching between the related resources and resource
dynamicity (when it is necessary), to form the required i-compositions.

5.3 Related Work

As we are handling resource selection to form i-compositions, we present in
this section different approaches related to such research area. Due to the
few works covering REST services, our review concerns several approaches
that we considered interesting to our work, independently from the proto-
col/technology used for Web services implementation. In the review, we
categorized the service selection approaches into three groups: (1) QoS-based
approaches that consider QoS, (2) I/O similarities-based approaches that rely
on services I/O matching, and (3) k-services compositions approaches that
form k-compositions (i.e., more than one solution). During the survey, we
compare the approaches according to the following criteria:

- QoS-based: denotes the ability to consider quality of service attribute(s)
during service selection. It is an essential factor that helps in distin-
guishing services providing identical functions.

- Consider I/O matching: is the ability to consider the inputs/outputs
matching of related services. This is important to ensure an efficient
matching between services, and thus reliable composition results.

- Dynamicity-aware: denotes the ability in considering resource dynamic
aspect, and allowing thus the possibility to substitute a composition in-
cluding unavailable resources with another one.

110 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

- Generate different compositions types: is the ability to form several
compositions types that fit different user needs, e.g., optimal composi-
tions having the highest scores, optimistic solutions having acceptable
scores but obtained in more satisfactory delays, etc.

5.3.1 QoS-based Approaches

In [22], a quality-driven solution for selecting semantically described REST-
ful services is presented. The approach uses a set of quality attributes (i.e.,
Performance, Availability, and Reputation) incorporated into each resource
description expressed with Hydra, and implements a skyline-based algo-
rithm that reduces the set of candidates for a given task. The selection phase
aims at selecting the best candidate for each task to obtain an overall QoS
that matches with the user’s QoS profile. In the work, resource selection is
done at the same time of resource discovery, but in different configurations:
(1) On the fly selection, in which the selection process is executed at the same
time as the resource discovery goes on, and (2) N-periodic selection, during
which the launching of the selection process is done every time there are N
new candidates identified for a given task.

In [25], a heuristic-based approach is proposed to solve the QoS-aware
Web Service composition problem. The solution aims at maximizing the QoS
of the overall Web Service composition, while considering preferences and
constraints defined by the user. In the work, a heuristic called H1_RELAX_IP
is proposed that uses a backtracking algorithm on the results computed by
a relaxed integer program. The evaluation of H1_RELAX_IP have revealed
good results compared to a linear integer programming based solution with
regard to the computation time, especially while increasing the number of
candidate Web Services and process tasks. Moreover, two meta-heuristics
have been defined to improve H1_IP_RELAX results: (1) H2_SWAP, which
tries to find a composition having a higher QoS by randomly replacing Web
Services of the execution plan calculated by H1_IP_RELAX, and (2) H3_SIM_
ANNEAL, which temporarily accepts worse solutions during the optimiza-
tion process to be able to leave local optima and possibly find the global
optimum. The solution supports only sequential Web service compositions.

Authors in [126] propose a resource selection approach that considers de-
sign preference in cloud manufacturing system. The solution presents a QoS
ontology from which customers express their preference, and providers de-
clare the policy they are using. In the work, the resource are described with
five QoS properties: Cost, Time, Reliability, Availability, and Reputation. The
Reputation value is calculated based on data provided as a feedback from
resource users, e.g., very high, high, normal, low, and verylow. In order to
quantify such given data, the proposed solution defines a QoS computation
model based on a fuzzy theory using a triangular fuzzy number [10]. Based
on the defined model, the particle swarm optimization (PSO) [14] algorithm
is applied to select the service composition.

In [114], an approach for a service selection based on both qualitative and
quantitative user QoS preference with services trust properties is presented.

5.3. Related Work 111

The solution is applicable in Big Data Web environments consisting of mas-
sive migrated services to the cloud, i.e., business applications. In the work,
user preferences are of three aspects: (1) quantitative QoS property, (2) condi-
tional preference on qualitative QoS property (i.e., they are not expressed in
numerical value), and (3) the relative importance about one QoS property to
another. The proposed service selection approach consists first on handling
inconsistent quantitative QoS properties by normalizing them in a range of
[0,1]. Second, QoS match degree calculation for each quantitative/qualita-
tive QoS property of the candidate services by integrating also trust with
user constraints. And finally, defining a linear weighting function to rank
how each service matches the user’s requirements through a Multi-objective
Constrained Model.

In [120], several algorithms with different techniques have been devel-
oped for QoS-aware service selection. The algorithms are based on the ar-
tificial bee colony (ABC) [61], an implementation of swarm intelligence that
is used in solving several real-world problems, especially the numerical op-
timization problems. Using an approximate approach for the neighborhood
search of ABC, the developed algorithms enable an effective local search in
the discrete space of service selection, in a way that is analogical to the search
in a continuous space.

Discussion: Although, these approaches take into account QoS attributes
and user constraints/preferences, they do not consider I/O matching be-
tween the linked services, and service dynamicity. Moreover, they are not
adapted to generate different composition types to realize different user needs.

5.3.2 I/O similarities-based Approaches

The work in [96], presents a graph-based framework for automatic service
composition, by focusing on the I/O semantic parameter matching of ser-
vices. Starting from a given user requirements in terms of inputs and ex-
pected outputs, the framework produces a service composition graph that is
generated on the basis of the relevant services matching user requirements.
The generated graph contains all possible service compositions that satisfy
user’s request. In the work, different techniques (e.g., the interface domi-
nance optimisation allowing to substitute the original services of the graph
by abstract interfaces that capture the functionality of the dominant or equiv-
alent services) are used to group and reduce the number of services, and an
optimal search is performed over the reduced graph to identify the optimal
composition.

In [66], a formal model, i.e., Causal Link Matrix (CLM), is provided for
an AI planning-oriented service composition. It pre-computes the I/O se-
mantic similarity between a finite set of services, according to causal links,
which are logical dependencies among input and output parameters of dif-
ferent services. Inputs and outputs parameters are concepts in an ontology.
The CLM, which aims at storing all valid causal links between the existing
services, consists on columns, rows and entries. The columns of the CLM are

112 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

labelled by the inputs parameters of the services and the concepts describ-
ing the desired goal, and the rows are labelled by the inputs of the services.
Each entry is defined as a set of pairs (S, score), where score is the semantic
matching degree between an output parameter of S (whose input matches
the corresponding row concept) and the corresponding column concept. The
work also proposes a regression-based approach that uses the CLM to iden-
tify the services matching the required goal concepts.

The work in [15] proposes a solution for a semantic Web service compo-
sition. It formalizes the composition problem using a directed acyclic graph
(DAG) representation of services that can be composed to obtain the desired
service. As such, the composition problem is defined as finding automat-
ically a DAG of semantically matched services in terms of inputs/outputs
and pre-conditions/post-conditions, to realize user’s request expressed with
a set of inputs, pre-conditions, outputs, and post-conditions. Services are
described semantically in an ontology, i.e., OWL-S1. The work proposes a
methodology to compute the trust rating of the composition solutions based
on individual ratings of service providers. An automatic generation of OWL-
S descriptions of the new composite service is also presented to allow the ex-
ecution and the registration of the composition.

Discussion: Although the aforementioned approaches consider I/O ser-
vices matching (on the semantic level), they do not consider the functional
aspect of the related services, nor even QoS attributes. Also, these works
are not intended to be applied in hybrid Web environments that provide dy-
namic services.

5.3.3 k-service Compositions Approaches

A top-k automatic service composition solution is presented in [41]. The so-
lution consists of three phases. First, the prepossessing phase, in which the
services are transformed into rules formed, each, by the inputs, outputs and
QoS of a service. From these rules, a rule repository is constructed. The sec-
ond phase is service filtering that reduces the set of the services candidates.
The filtering is based on the I/O semantic matching between services, start-
ing from a set of inputs given by the user. The final step is related to the
top-compositions identification approach, which adopts the idea of MapRe-
duce, by mapping the top-k service compositions into multiple tasks that
can be executed in parallel. The output of each parallel task are the gener-
ated solution subgraphs. The generation of these subgraphs is done using
a backtracking algorithm based on Depth First Search [97]. A central agent
then merges the generated solution subgraphs for each concept of the user’s
requested outputs, to produce the final top-compositions. The solution con-
siders one quality of service, i.e., response time.

In [24], an approach for composing the top-k DaaS (Data as a Service)
services is proposed to answer user fuzzy preference queries. The latter are

1https://www.w3.org/Submission/OWL-S/

https://www.w3.org/Submission/OWL-S/

5.3. Related Work 113

based on fuzzy terms (e.g., "cheap" for service price), and expressed in a mod-
ified version of SPARQL. In the solution, different constraints inclusion meth-
ods are used to compute the matching degrees between the services’ fuzzy
constraints (describing each service) and the fuzzy preferences involved in
the user query. A fuzzy score is associated for each service using the Fuzzy-
Pareto-Dominance method [13], to rank/order the services. The scores com-
puted are then leveraged to compute each composition and find the top-k
ones. The work focuses on fuzzy constraints rather than some given quality
of service.

In [56], an algorithm called Key-Path-Based Loose (KPL), is used to ad-
dress top k query of QoS-aware automatic service composition. KPL is ex-
tended to support multiple QoS measurements, and uses generated directed
acyclic graphs representing, each, a composition. Each composition has an
overall QoS score computed based on its atomic constituent services. In the
work, the compositions are generated by worsening the optimal QoS, with-
out identifying all possible composition alternatives that guarantee the opti-
mal QoS.

Discussion: Although these works produce several service compositions,
and consider QoS attributes, they are not designed to handle service dynam-
icity, nor the generation of different composition types answering user needs.
Also, only in [41] I/O matching and QoS attributes are used in the same ap-
proach.

5.3.4 Evaluation Summary

Table 5.2 shows the evaluation summary of existing service selection ap-
proaches based on the identified criteria. We used "+" symbol to express a
positive coverage for a criterion, and "-" symbol to express a lack of a cri-
terion coverage. As seen in the table, each category of approaches covers
mainly one criterion, with the exception of the work [41] that considers both
QoS attributes and I/O matching of services.

Table 5.2 – Evaluation of existing service selection approaches w.r.t.
the identified criteria

QoS-based Consider I/O Matching Dynamic-aware
Generate Different

Compositions Types
[22] + - - -
[25] + - - -
[126] + - - -
[114] + - - -

QoS-based Approaches

[120] + - - -
[96] - + - -
[66] - + - -

I/O Similarities-based
Approaches

[15] - + - -
[41] + + - -
[24] + - - -

k-service Compositions
Approaches

[56] + - - -

114 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

5.4 A QoR-driven Resource Selection for i-compositions

5.4.1 General Overview

Figure 5.2 shows the process overview of our resource selection approach,
relative to the automatic resource composition in the StARC framework. The
solution is used to form i-compositions responding to user’s request, and
adapted to user’s request type. The latter includes one of the following de-
sired compositions types: (i) optimal, denoting the compositions having the
highest scores, (ii) optimistic, referring to the compositions having accept-
able scores, i.e., > a specific computed threshold (see Section 5.4.4), or (iii)
hybrid, denoting compositions having acceptable scores but whose dynamic
aspect is considered, guaranteeing the existence of a composition at any in-
stance. The composition types can be followed optionally by other subtypes
(e.g., trusted, denoting that only static resources can be part of the composi-
tions, and cost-free, denoting that cost-free resources can be involved in the
compositions). The user’s request, r, defined in Chapter 4 (see Definition 7),
is extended in this chapter to include user constraints, C. Thus, we obtain the
new formal definition of r as:

Definition 13. r = (f , P, k, C), where:

• f, P, and k are the same as in Definition 7

• C, is the given user constraints according to which, i-compositions are ob-
tained. C = Qc ∪ i∪W ∪ d, with:

◦ Qc = Qres
c ∪ Q f

c , refers to the set of constraints given to the resources
(Qres

c) and to their provided functions (Q f
c), with Qres

c =
⋃n

i=1
{

qres
i
}

,

and Q f
c =

⋃m
j=1

{
q f

j

}
, and where:

- n is the number of attributes used to describe a resource and m the
number of attributes describing its provided functions. In this work,
we use 4 basic attributes: "Dynamicity" and "Availability" to de-
scribe a resource, and "Cost" and "Usage" to describe resource func-
tions.

- qres
i |q

f
j = [mini|j-maxi|j], where mini|j, maxi|j are, respectively,

the minimum and maximum values desired by the user for qres
i or q f

j .
User constraints values can be given to the basic attributes, and for
other attributes that can be added later on in resource descriptions.

◦ i ∈ N∗, is the desired number of the formed compositions. By default
i=1, and can be only specified for optimal and optimistic compositions
main types. For the hybrid composition type, the number of solutions
depends from resource dynamicity aspect of the formed compositions (see
Section 5.4.4).
◦ W =

{
wqor, wio

}
, are the weights given respectively to the score of the

resources and their I/O matching, while computing compositions score
(see Section 5.4.3). wqor, wio ∈ R+ and are bounded by [0, 1]. By
default, W = {1, 1}.

5.4. A QoR-driven Resource Selection for i-compositions 115

◦ d, is the degree value rate (in %) of a computed threshold, T (see Sec-
tion 5.4.4), that refers to the minimal acceptable score of the i-compositions,
i.e., optimal and hybrid.

Figure 5.2 – Overview of the resource selection approach

To briefly describe our resource selection solution, we present in Figure 5.2,
the framework overview of the Selection Process (SP). SP is executed when
there are several candidate resources identified during resource discovery,
for at least one required function necessary to realize user’s request. The re-
quired functions form a Workflow Model, WM, as defined in the function
graph, FG (see Definition 6). During the process, the resources realizing an
identical function are grouped into the same resource group, RG. Each re-
source of a RG can be linked to the resources included in the RG related to
the next function (as defined in WM), forming a Directed Resource Acyclic
Graph, DRAG. Using a graph algorithm, SP traverses DRAG to compute
the I/O matching of the linked eligible resources (whose QoR values respect
user constraints defined in Qc), and form the necessary compositions. How-
ever, in order to satisfy user different requested composition types (e.g., opti-
mal compositions having the highest scores, and optimistic compositions ob-
tained in more satisfactory delays), we define a Selection Strategy Adaptor
(SSA) that adapts to user needs to form the required i-set of resource com-
positions. SSA allows not only to produce optimal compositions having the
highest scores, but also compositions having acceptable score, i.e., > a com-
puted threshold, T (see Section 5.4.4, obtained in more satisfactory delays.
Such threshold is computed for each of the desired composition types: opti-
mistic and hybrid.

5.4.2 Preliminaries

Before elaborating on our resource selection approach, we extend in this sec-
tion, the static/dynamic resource definition, ress|d (see Definition 10 in Chap-
ter 4). This is done to include the set of quality attributes, Qres, describing the
non-functional properties of a resource, and the set of attributes describing its
providing functions. As such, ress|d formal definition is extended as follows:

Definition 14. ress|d = (c, id, loc, F, L, Qres), with:

116 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

• c, id, loc, and L are the same as in Definition 10

• F =
⋃N∗

i=1 {fi}, is the set of functions provided by res. fi = (n, I, O, m, Q f),
where:

◦ n, refers to fi name
◦ I, denotes the input(s) of fi

◦ O, denotes the output(s) of fi

◦ m, is the HTTP verb used to call fi

◦ Q f =
⋃N∗

i=1 {(q fi : v fi)}, refers to the set of quality attributes related to
fi, with q fi the name of the attribute (e.g., Cost and Usage), and v fi ∈
R+

• Qres =
⋃N∗

i=1 {(qresi : vresi)}, is the set of attributes related to res, with
qresi the name of the attribute (e.g., Dynamicity and Availability), and vresi
∈ R+.

In the literature, we find various QoR attributes, e.g., Availability, Usabil-
ity, Cost, that are used to differentiate resources with identical functions [116].
In this thesis, we consider 4 basic attributes, where some are directly related
to the resource itself (Qres), and others related to each of its provided func-
tions (Q f):

• Dynamicity, is the quality aspect of whether the resource is always
available (static) or not (dynamic). It is either equal to 0, i.e., the re-
source is static, or equal to 1, i.e., the resource is dynamic. In r, users
can specify if they want to have dynamic and/or static resource in the
i-compositions. As such, for the maximum and minimum values given
to the "Dynamicity" attribute, qres

1 , in user constraints, Qres
c :

– If qres
1 = [1-0], only static resources can be part of the compositions

– If qres
1 = [1-1], static and/or dynamic resources can be part of the

compositions
– If qres

1 = [0-1], only dynamic resources can be part of the composi-
tions

• Availability, is the degree (%) to which a resource is operational or
ready for immediate use. For resources provided by stationary/mobile
objects, it denotes the battery capacity of these objects.

• Cost, is the amount of money to pay, in a specific currency, to use a func-
tion of a resource. It can be defined by the resource provider (i.e., the
organization or person that developed the resource) and/or by the ob-
ject provider (i.e., the person connecting the object to the environment).

• Usage, is a value that is incremented every time a resource function
is used. By default it is equal to 0. For each dynamic resource, and
to avoid the re-initialization of the usage attribute when being discon-
nected from the Web, we define a TTL (Time To Live) value denoting
the maximum amount of time during which a dynamic resource can be
disconnected before the usage attribute value decrements by 1.

5.4. A QoR-driven Resource Selection for i-compositions 117

QoR are classified into 2 groups [9]: (i) maximization attributes, whose values
should be maximized, i.e., the higher the value the higher the quality (e.g.,
Availability), and (ii) minimization attributes, whose values should be min-
imized, i.e., the higher the value the lower the quality (e.g., Cost). QoR are
used to compute, for each provided resource function, a global score that is
defined as: score(res f) = ∑N∗

i=1 {vresi}+∑N∗
i=1 {v fi}, such that vresi (except-

ing the "Dynamicity" attribute value) and v fi are normalized using equation
(5.1) or (5.2) presented below. In fact, and due to the different QoR dimen-
sions and units, normalizing their values is necessary for the calculation of
score(res f). As in [81], equations (5.1) and (5.2) are used to normalize a QoR
value, qi, with qi = qresi|q fi, and q

′
i=1 if max(qi)− min(qi)=0. max(qi)

and min(qi) refers respectively to the maximum and minimum values of qi
among the resources in DRAG.

q
′
i =

qi−min(qi)

max(qi)−min(qi)
(5.1) q

′
i =

max(qi)− qi

max(qi)−min(qi)
(5.2)

Based on the presented res definition, we extend Hydra-based resource
description in this chapter, as shown Listing 5.1, to include resource QoR
values.

1 {
2 " @context " : " h t t p : //www. h2g . eu/h2g/resdesc/contex t . j s o n l d " ,
3 " @id " : " h t t p : //www. h2g . eu/resdesc/getairtemp .md" ,
4 " l o c a t i o n " : " Z1 " ,
5 " Operation " : [{
6 " method " : "GET" ,
7 " expects " : [" h 2 g : s t a r t d a t e " , " h2g:enddate "] ,
8 " re turns " : [" schema:DateTime " , " schema:Float "] ,
9 " func t ion " : "ATC" ,

10 " Qf " : [{
11 " Cost " : " 1 5 "
12 } , {
13 " Usage " : " 4 "
14 }]
15 }] ,
16 " Link " : [{
17 " entrypoint " : " h t t p : //www. h2g . eu/predairtemp " ,
18 " method " : "GET" ,
19 " re la t ionType " : " isComplementary " ,
20 " func t ion " : "ATP"
21 }] ,
22 " Qres " : [{
23 " Dynamicity " : " 0 "
24 } , {
25 " A v a i l a b i l i t y " : " 7 5 "
26 }]
27 }

Listing 5.1 – Extended Hydra with QoR attributes

5.4.3 Formal modeling of a QoR-based Resource Graph

The functions required for user’s request define with their dependencies, a
Workflow Model, WM, with WM⊂ FG. Based on the functions order in WM,
the resources identified during the discovery process are linked together,

118 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

forming a Directed Resource Acyclic Graph, DRAG. Formally, DRAG is de-
fined as:

Definition 15. DRAG = (DRES, Rel, fDRES, fRel), where:

• DRES, is the set of the discovered static and dynamic resources obtained from
the resource discovery process (see Chapter 4).

• Rel, is the set of relations linking the resources to each other.

• fDRES, is the function computing the score of each resource function based on
QoR values (e.g., Availability and Cost), included in our study in Hydra-based
resources description.

• fRel, is the function linking the resources together based on WM, and comput-
ing their link score based on their I/O similarities.

The resources discovered for the same function, form a resource group,
RG f , relative to that function, where: RG f =

⋃m
i=1

{
res(f ,i)

}
, with m is the

number of candidate resources realizing function f, and res(f ,i) refers to the
resource resi providing f. A resource composition, RC, consists of a set of
resources included, each, in a different RG f , where: RC =

⋃n
f=1

{
res(f ,i)

}
,

such that n is the number of functions in WM, and i ∈ m, with m denotes
the number of resources in the correspondent RG f . During selection, I/O
matching between linked eligible resources is computed, forming the score
link of these resources. Such score is calculated as: sim(res(f ,i), res(f ′,j)) =

∑U
u=1 ∑V

v=1 sim(outres(f ,i)
u , inres(f ′,j)

v), with:

• res(f ,i), res(f ′,j), denote resources that belong, respectively, to RG f and
RG f ′ , where f precedes f’ in WM

• outres(f ,i)
u , is an output of res(f ,i), and U is the number of res(f ,i) outputs

• inres(f ′,j)
v , is an input of res(f ′,j), and V is the number of res(f ′,j) inputs

In our work, we consider that the matching score between an output of a
res and an input of another, is computed using a similarity measure func-
tion between keywords (as Jaccard measure [84]), and such that sim(res(f ,i),
res(f ′,j)) ∈ [0, 1].
Each RC in DRAG has a score, score(RC), computed using (i) the score of
each involved resource providing the needed function, score(res f), and (ii)
the score of the link relating each 2 eligible resources, such that: score(RC) =
Score(RES) + Score(Rel), where:

• Score(RES) = ∑n
f=1 score(res(f ,i)), is the sum of the scores of the in-

volved resources realizing the required functions, such that: n is the to-
tal number of functions in WM and i ∈ m, with m denotes the number
of candidate resources in the correspondent RG f .

• Score(Rel) = ∑ sim(res(f ,i), res(f ′,j)), is the sum of I/O similarity scores
of each 2 eligible linked resources in RC, where: f precedes f’ in WM, i∈
[1,m] and j∈ [1,m’], with m and m’ denoting the numbers of resources
in RG f and RG f ′ respectively.

5.4. A QoR-driven Resource Selection for i-compositions 119

Score(RES) and Score(Rel) can be multiplied, each, by a weight value defined
in W in user request’s, r (see Definition 13), allowing users to assign them a
priority during compositions score calculation.

An example of a DRAG formed by discovered resources is given in Fig-
ure 5.3. As per the illustrated Figure, and based on the Workflow model
showing the dependencies between the required functions to realize f5, the
identified resources during resource discovery process are grouped into the
same group relative to their provided same function. Each resource has
a score computed according to the set of the quality attributes values re-
lated to its provided necessary function, i.e., v fi, and the attributes related
to the resource itself, i.e., vresi (see Definition 14). Also, each link relat-
ing two resources (e.g., res3,2 and res5,2) has a similarity measure score (e.g.,
sim(res(3, 2), res(5,2)) between res3,2 and res5,2). A score(RC) is assigned to
each possible resource composition in DRAG, which is represented by a path
(see the red circled resources in Figure 5.3) linking one resource belonging,
each, to different resource group.

Figure 5.3 – An example of a DRAG showing the scores defined for
each of the involved resources, their I/O matching, and each possible

composition

During selection, DRAG can be traversed by a graph-based algorithm
(e.g., BFS and DFS [19]) to form the compositions with the highest scores,
whenever they are requested by the user in the given request type (i.e., op-
timal). However, in order to allow: (i) retrieving potential solutions having
acceptable scores with more satisfactory delays without computing all com-
positions scores (i.e., composition type = optimistic), and (ii) guaranteeing
the existence of a composition despite resource dynamicity (i.e., composition
type = hybrid), SP uses the Selection Strategy Adaptor (SSA) described next,
to form i-compositions satisfying different user needs.

120 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

5.4.4 Selection Strategy Adaptor for i-compositions

In order to satisfy different user needs, we define a Selection Strategy Adap-
tor (SSA) that allows the generation of 3 main compositions types:

1. Optimal, refers to the compositions having the highest score(RC). Ex-
amples of such compositions, highlighted in grey, are shown in Ta-
ble 5.3.

Table 5.3 – Examples of 3 optimal compositions having the highest
scores

f1 f2 f3 f4 f5 Score(RC)
resd

1,1 ress
2,1 resd

3,1 ress
4,1 resd

5,2 65
ress

1,1 ress
2,2 resd

3,2 resd
4,2 ress

5,2 64
ress

1,2 ress
2,2 resd

3,1 resd
4,2 ress

5,2 64
ress

1,1 ress
2,1 resd

3,1 resd
4,2 ress

5,2 50
- - - - - -

ress
1,2 ress

2,2 ress
3,1 ress

4,1 ress
5,1 10

2. Optimistic, designates compositions having acceptable score(RC) based
on a computed minimum threshold. Examples of optimistic composi-
tions having a score > 50, are highlighted in grey in Table 5.4.

Table 5.4 – Examples of 4 optimistic compositions having acceptable
score > 50

f1 f2 f3 f4 f5 Score(RC)
resd

1,1 ress
2,1 resd

3,1 ress
4,1 resd

5,2 55
ress

1,1 ress
2,2 resd

3,2 resd
4,2 ress

5,1 32
ress

1,2 ress
2,2 resd

3,1 resd
4,2 ress

5,2 51
resd

1,2 ress
2,2 ress

3,1 ress
4,1 ress

5,1 10
- - - - - -

ress
1,2 ress

2,1 ress
3,1 ress

4,1 resd
5,1 50

3. Hybrid, denotes compositions having acceptable score(RC) based on
a minimum threshold, and whose resources dynamicity is taken into
account to guarantee, at any instance, the existence of an available com-
position, i.e., it includes available resources that provide all the neces-
sary functions for r. Table 5.5 shows examples of compositions having
acceptable score > 50, including one consisting of only static resources.
This is done to ensure that even if some dynamic resources are not avail-
able for execution (e.g., resd

1,1 in the first composition), there is a resource
composition whose resources are always available (i.e., static).

For each of these compositions types, we define the following subtypes that
can be given optionally:

(A) Trusted, refers to compositions having only static resources that are al-
ready provided by the Web environment, i.e., their Dynamicity=0.

(B) Cost-free, designates compositions that consist of resources used with-
out any charge, i.e., their Cost=0.

5.4. A QoR-driven Resource Selection for i-compositions 121

Table 5.5 – Examples of 4 hybrid compositions having acceptable
score > 50, including one (the latest) consisting of static resources

f1 f2 f3 f4 f5 Score(RC)
resd

1,1 ress
2,1 resd

3,1 ress
4,1 resd

5,2 55
ress

1,1 ress
2,2 resd

3,2 resd
4,2 ress

5,1 32
ress

1,2 ress
2,2 resd

3,1 resd
4,2 ress

5,2 51
resd

1,2 ress
2,2 ress

3,1 ress
4,1 ress

5,1 10
- - - - - -

ress
1,2 ress

2,1 ress
3,1 ress

4,1 ress
5,1 54

(C) Efficient, denotes compositions that include resources with high nor-
malized usage value, i.e., their Usage > 0.75.

(D) Effective, refers to compositions containing resources with high nor-
malized availability value, i.e., their Availability > 0.75.

(E) Qualified, denotes compositions in which the score of each involved re-
source providing the needed function, score(res f) > [(n× 0.75) + (m×
0.25)], where n is the number of QoR maximization attributes relative to
each resource and its provided needed functions (with the exception of
the "Dynamicity" attribute), and m is the number of QoR minimization
attributes (e.g., Cost).

(F) Reliable, designates compositions whose Score(Rel) > (l× 0.75), with l
refers to the number of dependencies links between the required func-
tions defined in WM.

Table 5.6 – QoR values of optimistic and hybrid compositions sub-
types

Dynamicity Availability Cost Usage
Trusted 0 > 0.5 6 0.25 > 0.5
Cost-free 0 | 1 > 0.5 0 > 0.5
Efficient 0 | 1 > 0.5 6 0.25 > 0.75
Effective 0 | 1 > 0.75 6 0.25 > 0.5
Qualified 0 | 1 > 0.75 6 0.25 > 0.75
Reliable 0 | 1 > 0.5 6 0.25 > 0.5

The composition subtypes are defined according to either a specific QoR
attribute value, or a set of QoR attributes values, or I/O similarity scores.
However, and in addition to these constraints, both optimistic and hybrid
composition types should respect other QoR attributes constraints, as de-
fined in Table 5.6. This is done to ensure having compositions with an ac-
ceptable score(RC), and thus, good compositions results. For (A)-(E) com-
positions subtypes preceded by optimistic or hybrid types, Score(Rel) > (l
× 0.5), with l referring to the number of dependencies links between the re-
quired functions defined in WM. As for the optimal compositions, they have
the maximum values of score(RC).

Based on user’s request type, i-compositions are formed to answer his
request. The i value (∈ N∗) can be determined by the user in r, for the 2
main types: optimal and optimistic. As for hybrid compositions, i depends
from the resources dynamic aspect. As such, when optimal compositions
are required, SSA computes all possible compositions scores and retrieves

122 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

the i-compositions having the best scores. When optimistic compositions are
needed, SSA stops forming compositions until having i-compositions with
acceptable scores. If hybrid compositions are required, SSA generates the so-
lutions having acceptable scores, and stops until having a composition con-
taining only static resources, guaranteeing thus the existence of a composi-
tion at any instance. Moreover, and in case optimal compositions subtypes
are needed (e.g., optimal trusted, optimal cost-free, and optimal qualified), a
filtering process is necessary before score(RC) calculations. Such filtering is
based on specific constraints defined for the different composition subtypes:

• Optimal Trusted: Only static resources are used.

• Optimal Cost-free: Resources (static or dynamic) having Cost = 0 are
used.

• Optimal Efficient: Resources (static or dynamic) having Max(Usage)
are used, with Max(Usage) refers to the maximum value of the Usage
attribute among the resources in DRAG.

• Optimal Effective: Resources (static or dynamic) having Max(Availabi-
lity) are used, with Max(Availability) refers to the maximum value of
the Availability attribute among the resources in DRAG.

• Optimal Qualified: Compositions having max(Score(RES)) are returned.

• Optimal Reliable: Compositions having max(Score(Rel)) are retrieved.

If the user defines in his request, r, constraints that do not align with the
designated composition subtype constraints, the latter are considered.
When optimistic or hybrid compositions are required, the SSA applies sev-
eral steps:

1. Compute the minimum score of an acceptable composition. A com-
position is considered acceptable, if its score(RC) is > a specific Thresh-
old, T. Based on user’s request type (i.e., optimistic, optimistic effective,
hybrid, hybrid cost-free, etc.), SSA computes the necessary T. When op-
timistic or hybrid composition types are requested (without subtypes),
T is defined as:
T = [(n× Avg(Qc)) + (l× 0.5)]× (d/100), where:

• n is the total number of functions in WM.
• Avg(Qc) are the average of the normalized user QoR constraints de-

fined in r for each resource (excepting the "Dynamicity" attribute).
If Qc are not given, the average of each QoR is calculated according
to their maximum values among DRAG resources.

• l, is the number of the dependencies links between WM functions.
We consider that there is, at least, an I/O similarity match (=0.5)
between any two linked resources.

• d, is the composition acceptance degree value (in %) given by the
user in r.

5.4. A QoR-driven Resource Selection for i-compositions 123

If optimistic or hybrid composition types are succeeded by a subtype
(e.g., trusted, cost-free, efficient, etc.) in user’s request type, T is repre-
sented as: Tsubtype = [(n× Q) + (l× s)]× (d/100), with Q denoting
the minimum values of the attributes as defined in Table 5.6 (excepting
the "Dynamicity" attribute), and s ∈ [0,1] refers to the minimum I/O
similarity matching score between any two linked resources. s = 0.75
whenever subtype = reliable, and s = 0.5 for the rest of subtype values.

2. Compute the score of each composition formed by eligible resources.
To do so, a generator is used to get the possible compositions with-
out score calculation. Table 5.7 shows some examples of generated RC
where each corresponds to a set of resources achieving the required
workflow. During RC generation, the following conditions are per-
formed:

Table 5.7 – Examples of generated compositions achieving, each, the
required workflow without score calculation,

f1 f2 f3 f4 f5

resd
1,1 ress

2,1 resd
3,1 ress

4,1 resd
5,2

ress
1,1 ress

2,1 resd
3,1 resd

4,2 ress
5,2

- - - - -
ress

1,2 ress
2,2 ress

3,1 ress
4,1 ress

5,2

(i) If a resource in RC is not eligible, it is registered in array, arr_notEl,
and another possible RC is generated

(ii) If all the resources of RC are eligible, score(RC) is computed. If
score(RC) > T, RC is saved into the suitable compositions array,
arr_suitRC, if not, another possible RC is generated

Table 5.8 – Examples of returned i-compositions with score calcula-
tion

f1 f2 f3 f4 f5 Score(RC)
resd

1,1 ress
2,1 resd

3,1 ress
4,1 resd

5,2 > T
ress

1,1 ress
2,1 resd

3,1 resd
4,2 ress

5,2 > T
- - - - - >

ress
1,2 ress

2,2 ress
3,1 ress

4,1 ress
5,2 > T

While analyzing each RC, if a resource is in arr_notEl, another possi-
ble RC is generated. If not, conditions (i) and (ii) are tested. When
optimistic compositions are required, the generator stops when hav-
ing i-compositions respecting T. However, when hybrid solutions are
needed, the generator stops when having a composition that respects T,
and contains only static resources, i.e., always available in the environ-
ment.

SSA results are the set of RC included in arr_suitRC. An example of returned
suitable compositions with score calculation (where type = hybrid) is shown
in Table 5.8.

Figure 5.4 shows the flowchart of the selection process and its related SSA,
to form i-compositions based on the given user’s request and request type.

124 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

Figure 5.4 – Flowchart of the selection process and its related
Selection Strategy Adaptor

5.5. Evaluation and Discussion 125

5.5 Evaluation and Discussion

In this section, we first evaluate the performance of our resource selection
approach in different environment setups (e.g., varying the number of can-
didate resources per function, and varying the number of required functions
in the workflow). Then, we compare our QoR model to existing works.

5.5.1 Resource Selection Performance Evaluation

In the experiments conducted for the resource selection performance eval-
uation, the function and resource graphs2 are dynamically generated based
on simulations. The tests were applied on a Linux Debian (64 bits) virtual
machine, with 1 dedicated Intel® Core™ i7-46000 CPU @ 2.10GHz 2.70 GHz
processor and 1 GB RAM. In the results, we show the response time (in mil-
liseconds) of the resource selection process (without including resource dis-
covery time), based on an average of 5 sequential executions.

During the tests, we evaluated our selection approach performance by
considering that the requested composition type = hybrid, to focus on re-
sources dynamcity aspect while forming the compositions. The evaluation
consists on mainly two cases: (1) varying the number of resources (dynamic
and static) per function in DRAG, and (2) varying the number of functions
required in WM. For each of the two cases, we applied several scenarios:

(i) All static resources in DRAG are eligible

(ii) 50% of the static resources in DRAG are eligible

(iii) All DRAG resources are dynamic and eligible

For (i) and (ii), the first generated possible compositions (without score calcu-
lation) include only dynamic resources, thus, the selection process will con-
tinue generating compositions until having one with score(RC) > T (with d
= 100%), and consisting of only static resources. In the best case scenarios,
static resources are traversed first, and the selection process responds more
rapidly. This is shown in Table 5.9 results. For (iii), and since DRAG consists
of eligible dynamic resources, the score of each possible composition is cal-
culated, and all compositions are returned. This case is almost similar to the
case where type = optimal, in which all possible compositions are computed,
however, i-compositions with the i-top scores are retrieved. In the tests, FG
consists of 50 functions, each resource has 2 inputs and 2 outputs, and user
QoR constraints are given to the Dynamicity, Availability, Cost, and Usage
attributes. Moreover, in the experiments, static and dynamic resources can
be part of the compositions (i.e., qres

1 related to the Dynamicity attribute con-
straint = [1-1] in Qres

c), and the related resources can be linked (we assumed
that the I/O similarity score between a resource and another related one is >
1).

2Resource graph is used only for resource discovery

126 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

Table 5.9 – Response time (in ms) of SP while varying resource num-
ber per function (m), and number of required functions (n)

n = 2 n = 3 n = 4 n = 5
m = 5 61.7 106 152 214
m = 20 105 172 261 332

In Figure 5.5, where the workflow consists of 3 functions, response time
evolves with the growing number of resources. Comparing Figure 5.5-(a) to
Figure 5.5-(b), response time increments less significantly with the existence
of static eligible resources, as the selection process stops when having a com-
position of static resources. Figure 5.5-(b) represents the worst case scenario
(when type = hybrid), where DRAG contains only dynamic resources that are
eligible. Thus, all compositions scores are computed, leading to an important
response time with the evolution of resources number.

Figure 5.5 – Selection results while varying the number of resources

In the tests results of Figure 5.6-(a), in which the number of resources
per function is fixed to 5, the response time increases with the number of re-
quired functions in WM. Similar to the first case (see Figure 5.5), the selection
process is faster when there are static eligible resources, as the selection pro-
cess stops before the generation of the rest of the possible compositions. As
for Figure 5.6-(b), response time evolves significantly, since DRAG contains
dynamic eligible resources, thus, all compositions scores are calculated.

The results highlight the importance of the existence of static eligible re-
sources in DRAG (when type = hybrid), as the selection process stops when
having a composition consisting of static resources with an acceptable score.
When dynamic resources exist, the response time of the selection process in-
creases, since their dynamic aspect is taken into consideration, as they might
be unavailable for execution. The results also show that the growing number
of resources affects more the response time, comparing to the evolution of
the number of functions.

Figure 5.6 – Selection results while varying the number of functions

5.5. Evaluation and Discussion 127

5.5.2 Comparison with Existing QoS Models

In this section, we analyze QoS model of existing works [22, 25, 114, 120], and
compare them to our QoR model. This is done independently from the num-
ber and type of the quality attributes used, since our solution can support
various attributes as long as they are presented in resource descriptions.

The work in [22] uses 3 attributes: Performance: [0-10], Availability: [0-
100], and Reputation: [0-5]. Based on user constraints, a service s1 is chosen
over a candidate service s2 if all of s1's QoS are equal or better than s2's QoS,
preventing thus having compositions with acceptable overall QoS in satis-
factory delays. Also, and apart from neglecting I/O matching of the linked
services, by applying our threshold formula(s), a service with a high attribute
value (Availability = 90) and a very low value for another one (Performance
= 2) will be selected over a service with acceptable values for both attributes
(Availability = 70 and Performance = 6), since QoS are not normalized.

In [25], several QoS are used to describe services as Response Time and
Availability. Contrary to our work, user constraints are given to the global
composition (e.g., the overall response time should be < 50s) and not to each
service, thus, aggregation functions are used for every QoS parameter. More-
over, weights are given to each QoS while computing the composition score.
However, in our approach, user constraints are given to each of the involved
services, and weights are assigned to (i) the global services score, Score(RES),
and (ii) the overall I/O services matching score, Score(Rel), which is not con-
sidered in [25].

In [114], a service has a score based on the sum of weighted utility func-
tions relative to each QoS attribute. Similar to our work, QoS are normalized
and user constraints are given to every service in a composition. However,
the work does not define a global composition score, as the service of a spe-
cific task (i.e. function) with the highest score is selected. Also, the work does
not consider I/O matching of the related services.

The work in [120] defines an overall composition formula that is based on
a function, fi, related to the composite value of an attribute i. The quality
attributes are normalized and each fi of an attribute can be multiplied by a
weight. The goal of the approach is to obtain a composition solution that
maximizes the overall formula. However, the work does not consider I/O
matching score.

In Table 5.10, we show the summary evaluation of existing works accord-
ing to the following service/composition quality related criteria:

- QoS Normalization, denotes if the considered QoS attributes during
selection are normalized.

- Overall Composition Score, denotes whether an overall score is com-
puted and assigned to each possible composition.

- Service Score, denotes whether a score is computed and assigned to
each service.

- I/O Matching, denotes if the I/O matching of the related services in a
composition is taken into account.

128 Chapter 5. QoR-based Resource Selection for Hybrid Web Environments

- Weights, denotes if weights are assigned to each QoS attribute during
composition/service score calculation.

In the comparison, we used "+" symbol to express a positive coverage for
a criterion, and "-" symbol to express a lack of a criterion coverage.

Table 5.10 – Summary evaluation of existing works w.r.t. the service/
composition quality related criteria

Approaches QoS Normalization Overall Composition Score Service Score I/O Matching Weights
[22] - - - - -
[25] + + - - +

[114] + - + - +
[120] + + - - +

5.6 Summary

In this chapter, we presented a QoR-driven resource selection approach re-
lated to the selection process of the automatic resource composition in the
StARC framework. The proposed solution can be applicable in hybrid Web
environments providing static resources (established to be always available),
and dynamic resources (connected/disconnected at different instances). It al-
lows to form several compositions alternatives based on different requested
compositions types (i.e., Optimal, Optimistic, and Hybrid), and subtypes
(e.g., Trusted, Cost-free, and Qualified) given by the users to answer their
different needs. For this aim, we provided a formal graph representation of
the resources identified in the resource discovery process (previously pre-
sented in Chapter 4), and defined a score for each resource (i.e., a graph
node), and each possible composition (i.e., a graph path). Using the formal
graph, we proposed a Selection Strategy Adaptor that allows forming sev-
eral composition alternatives (i-compositions with ∈ N∗) answering user’s
requests. This is done while considering user QoR constraints (i.e., Dynam-
icity, Cost, Availability, and Usage), resource Inputs/Outputs matching and
dynamicity (whenever it is required). Several tests have been conducted to
study the performance of our proposed solution in different environment se-
tups (varying the number of candidate resources providing a similar required
function, and the number of functions in the workflow needed to realize use
demand). Analysis have been also made to compare our QoR model with
existing works.

129

Chapter 6

Conclusion

"The best way to predict the future is to
create it"

Abraham Lincoln

6.1 Recap

In this thesis, we presented a framework for static and automatic RESTful
service (resource) composition. In the framework, entitled StARC1, we fo-
cused on the: (1) behavior verification of static resource compositions (built
manually by the user), (2) automatic resource discovery, and (3) automatic
resource selection. In our work, the verification approach is adopted in Web
environments providing static resources (established to be always available),
whereas both automatic discovery and selection approaches can be appli-
cable in hybrid Web environments connecting also dynamic resources (i.e.,
connected to/removed from the Web at different instances). The proposed
solutions are generic and can be applicable in different Web environments
domains. However, in this thesis, we motivated our work using scenarios il-
lustrated in the smart buildings domain to help building actors in managing
their buildings energy behavior. This is done by allowing them to create new
composed resources that can answer complex needs requiring the combina-
tion of several resources together.

In Chapter 1, we started by defining the context of the thesis, by giv-
ing first an insight on the World Wide Web, i.e., its main developments and
technologies: (i) the Web services concept (including resources following the
REST principles), (ii) the Web of Things (where objects are exposed as re-
sources), and (iii) the Service-Oriented Architecture (SOA) with a real-world
SOA-based architecture example related to two projects: HIT2GAP and SIBEX.
Then, we presented the scope of the thesis, including the collaborators and
the main objectives. A motivating scenario illustrated in the HIT2GAP/SIBEX
service-oriented platform (the BEMServer), was presented, through which
the thesis addressed 3 main research challenges: (1) the verification of a static
resource composition behavior before execution, (2) the automatic resource

1It stands for Static and Automatic Resource Composition

130 Chapter 6. Conclusion

discovery in hybrid Web environments connecting static and dynamic re-
sources, (3) the automatic resource selection to form the suitable composi-
tions in hybrid Web environments. The contributions of the thesis were pre-
sented in a generic framework, entitled StARC, and detailed in the remaining
chapters.

In Chapter 2, we presented some background information for the full un-
derstanding of the context of our work. We first gave preliminaries about
Web services, the main protocol/principles supported during their imple-
mentation, and how they can be semantically be described so their prop-
erties (provided functions, Inputs/Outputs, etc.) can be understandable to
machines. Then, we presented a review on the existing languages used to
describe RESTful services (the type of services supported in this thesis) also
known as resources, with a focus on hypermedia-driven languages as Hydra
vocabulary (the one adopted in our work to describe the resources).

In Chapter 3, we proposed a solution for the verification of static resource
composition (built manually by the user) before being executed. For this aim,
we defined a formal model used to map the behavior of resources with their
composition to Colored Petri Nets (CPN) (i.e., a graphical oriented language
for design, specification, simulation and verification of systems). Based on
the defined CPN-based model, we were able to use CPN behavioral prop-
erties (i.e., Interoperability to check if the linked resources are compatible
according the their related Input/Output data types, Reachability to ensure
that the final desired state is reachable, and Liveness to ensure that all re-
sources can be executed during composition execution), to verify resource
compositions behavior before their execution. The approach has been exper-
imented in CPN tools to verify a composed resource illustrated in the build-
ing energy management domain, proving the applicability of our proposed
CPN-based model to verify resource compositions. In the chapter, we also
presented a prototype that has been developed in the context of the SIBEX
project to verify building-oriented resource compositions before execution.
The prototype allows modeling, validating, converting, and executing ver-
ified composed resources, through different implemented engines. Several
tests have been conducted to validate the correct execution of the different
developed engines including the validation engine that, based on our de-
fined CPN-based model, allows verifying resource compositions.

However, currently the developed prototype is a standalone module that
runs independently of the BEMServer platform, as it allows composing re-
sources using resources hosted outside the platform. This is due mainly to
the lack of support of the necessary REST principles while implementing the
resources provided by the BEMServer during the development phase. In the
future, we seek to integrate the prototype within the BEMServer, so it en-
ables the creation of new composed resources using the resources embedded
within the platform, including the advanced services.

In Chapter 4, we presented an automatic location-aware resource discov-
ery for hybrid Web environments connecting: (1) static linked resources (es-
tablished to be always available) following the HATEAOS principle, and (2)

6.1. Recap 131

dynamic resources that can be connected to and removed form the environ-
ment at different instances. For this aim, we proposed a formal model repre-
sentation that links resources (i.e., dynamic and static) in one single resource
graph. This is done by defining virtual resources that can be connected to
static resources, and hold dynamic ones. The resource graph can be traversed
by several adapted graph-based algorithms (i.e., BFS and DFS in our work)
to discover k-resources (k∈N) for each required function for user’s request.
This is done using semantic annotations integrated in the resource descrip-
tions (expressed with Hydra vocabulary in this thesis). In the chapter, we
also defined an original 3-dimensional indexing schema that maps the re-
sources to their provided functions and location (whenever they are exposed
by objects). The indexing schema is used to identify data collection resources
based on their location, and enhance resource search in large Web environ-
ments. Several tests were conducted to evaluate the solution performance
in different Web environment setups (e.g., varying the number of resources,
varying the number of required functions for user’s request, etc.), and on 4
aspects: dynamicity, multiplicity, efficiency, and scalability. The results high-
light the importance of using the indexing schema, especially in large Web
environments, to enhance resource discovery response time.

Nevertheless, currently the proposed resource discovery approach is not
integrated within the BEMServer. In fact, it has been tested in simulated
Web environments based on dynamically generated function and resource
graphs, having different configurations in terms of: number of resources,
number of required functions, and the number of resources providing simi-
lar functions. Moreover, in the experiments, we have considered that each
resource provides one single function. Therefore, in the future, we plan
to increase the number of functions provided by the resources, and study
the resource discovery performance while considering several parameters
simultaneously, rather than focusing on one parameter (e.g., number of re-
sources) for each aspect (i.e., dynamicity, multiplicity, efficiency, and scala-
bility). Also, in the current approach, the algorithm type (i.e., BFS or DFS in
this work) to be used by the resource discovery process, is specified manu-
ally. The results available in Appendix J show that the performance of each of
these algorithms depends on the functions’ distribution and the localization
of the requested function in the function graph. Thus, we intend to propose
dynamically the most suitable algorithm according to the current function
graph topology. As for the indexing schema, the experiments presented in
appendix L show that the response time and memory usage increase with
the evolution of both functions and resources numbers. Such evolution is
important when the number of functions and resources is high. Therefore,
updating the indexing schema dynamically without regenerating it again is
an improvement that we seek to do in the future.

In Chapter 5, we have proposed an automatic resource selection approach
that can be applicable in hybrid Web environments connecting static and dy-
namic resources. In the approach, we first defined a formal model that links
the identified resources during the resource discovery process in a directed
acyclic graph, based on their providing functions. Then, we presented a se-
lection strategy adaptor that allows selecting the appropriate resources to

132 Chapter 6. Conclusion

form several alternative compositions with different types answering user
different needs (e.g., optimal compositions having the highest scores, opti-
mistic compositions having acceptable scores but obtained in more satisfac-
tory delays, etc.). The selection process takes into consideration user QoR
constraints, resource I/O matching of related resources, and resource dy-
namicity. Several tests have been conducted to study and evaluate the perfor-
mance of our proposed automatic resource solution in different environment
setups (e.g., varying the number of resource candidates and the number of
required functions answering user’s request). Also, analysis were made to
compare our QoR model with existing works.

Nevertheless, and similar to the automatic resource discovery approach,
resource selection is not integrated within the BEMServer platform. As such,
it has been tested in simulated Web environments based on dynamically gen-
erated function and resource graphs. Furthermore, currently, we have eval-
uated our selection approach performance according to one requested com-
position type (i.e., Hybrid), without considering any composition subtypes
(e.g., trusted, cost-free, qualified, etc.). This will be handled in the future.
Also, our proposed resource selection consists, in its current version, on ver-
ifying resource eligibility (if they respect user QoR constraints) before they
can be allowed to be used to form the needed compositions. Such verifica-
tion is impacting negatively the response time of the selection process. Thus,
we seek to integrate the resource eligibility verification during resource dis-
covery. As such, no resource that is not eligible can pass to the selection
process. In addition, in the current selection approach, we consider the sim-
ilarity measure between the I/O of the linked resources, without taking into
account their matching on the semantic level. The latter is an important cri-
teria to consider in the future, to ensure an efficient resource compositions
involving semantically linked resources.

6.2 Future Works

There are several steps that we can apply in the future to further (i) validate,
(ii) improve, and (iii) extend the proposed contributions of this thesis. These
steps are discussed next on the basis of the several identified limitations.

6.2.1 Integrate the Static/Automatic Resource Composition in Real-world
Environments

In Chapter 3, we presented our approach for the verification of static resource
compositions behavior. Although we have developed a prototype imple-
menting the Colored Petri Net-based model that we defined, the prototype is
a standalone module that uses data collection and pre-processing resources
hosted outside of the BEMServer Web platform (see Section 1.1.1.3 in Chap-
ter 1). In the future, we seek to integrate the prototype as a service in the
Management level of the BEMServer, so it enables the creation of new com-
posed resources using the resources provided by the platform, including the
advanced services. In order to allow such integration, the resources of the
BEMServer should: (i) follow the REST principles (i.e., they are identified by
a Web address, a URI, and callable through HTTP methods (e.g., GET, POST,

6.2. Future Works 133

PUT, and DELETE), and (ii) be described using the Hydra Vocabulary (e.g.,
provided functions, inputs/outputs, etc.).

As for the automatic resource composition aspect, we plan to test the
proposed automatic resource discovery and selection solutions in real Web
environments providing: static and dynamic resources. To allow such inte-
gration, it is essential that the provided Web resources support HATEOAS,
which consists on linking resources together based on their providing func-
tions forming one resource graph.

6.2.2 Extend the Automatic Resource Discovery

In Chapter 4, we presented our automatic static and dynamic resource dis-
covery solution, while considering resource location (whenever it is exposed
by an object). We aim to extend the resource discovery approach, by inte-
grating/adapting other graph algorithms (besides BFS and DFS that were
considered in this work), as A star (A∗) and Best First Search [97], to explore
the resource graph and identify the required resources in a better response
time. Moreover, we plan to consider the semantic matching between the
required functions necessary for user request and the functions of the tra-
versed resources in the resource graph, rather than testing their exact match,
as it is the case in the current approach. Also, in our proposed resource dis-
covery solution, the new functions provided by dynamic resources are ran-
domly linked to the existing function graph. In the future, we seek to study
the measures that define the dependencies between the new and the existing
functions.

6.2.3 Improve the Automatic Resource Selection Performance

In Chapter 5, we provided a solution for selecting automatically the appro-
priate static/dynamic resources to form suitable and different compositions
alternatives answering user’s request. This is done by taking into account
user QoR constraints, resources I/O matching and resource dynamicity. The
proposed resource selection is executed after the resource discovery process.
In order to improve the performance of the selection process, we seek to
launch the selection process in parallel with resource discovery when two
compositions types are requested: Optimistic (i.e., compositions having ac-
ceptable scores) and Hybrid (i.e., compositions having acceptable scores and
including one consisting only on static resources). This can improve the se-
lection performance in terms of response time.

6.2.4 Propose an Automatic Resource Orchestration Approach

For the automatic resource composition aspect, we have proposed solutions
for both automatic resource discovery and selection, without considering re-
source composition execution held by the Execution Process of the StARC
framework. Therefore, in the future, we intend to ensure automatically the
correct interaction between the selected resources forming the suitable com-
position(s) for their execution. In this context, resource orchestration process
takes part [88], where the involved resources are controlled by a single end-
point central process (another resource). To ensure an automatic resource
orchestration, a semantic approach that links correctly the resource outputs

134 Chapter 6. Conclusion

to the next related resource inputs is important. Such approach should also
guarantee the correct linking between a resource and parallel ones, and vice
versa.

135

Appendix A

WSDL 2.0 Example

1 <?xml version=" 1 . 0 " encoding=" utf−8" ?>
2 < d e s c r i p t i o n
3 xmlns = " h t t p : //www. w3 . org/ns/wsdl "
4 targetNamespace = " h t t p : //jenkov . com/MyService "
5 xmlns : tns = " h t t p : //jenkov . com/MyService "
6 xmlns :s tns = " h t t p : //jenkov . com/MyService/schema "
7 xmlns:wsoap = " h t t p : //www. w3 . org/ns/wsdl/soap "
8 xmlns:soap = " h t t p : //www. w3 . org /2003/05/soap−envelope "
9 xmlns:wsdlx = " h t t p : //www. w3 . org/ns/wsdl−extens ions " >

10 <documentation>
11 This i s the web s e r v i c e documentation .
12 </documentation>
13 <types>
14 <xs:schema
15 xmlns:xs = " h t t p : //www. w3 . org /2001/XMLSchema"
16 targetNamespace = " h t t p : //jenkov . com/MyService/schema "
17 xmlns = " h t t p : //jenkov . com/MyService/schema ">
18 <xs :e lement name = " l a t e s t T u t o r i a l R e q u e s t "
19 type = " t yp e L at e s t T ut o r ia l Re q ue s t "/>
20 <xs:complexType name = " t yp e La t es t T ut o r i a lR e q ue s t ">
21 <xs :sequence>
22 <xs :e lement name = " date " type=" x s : d a t e "/>
23 </xs :sequence>
24 </xs:complexType>
25 <xs :e lement name = " l a t e s t T u t o r i a l R e s p o n s e " type = " x s : s t r i n g "/

>
26 <xs :e lement name = " inval idDateError " type = " x s : s t r i n g "/>
27 </xs:schema>
28 </types>
29 < i n t e r f a c e name = " l a t e s t T u t o r i a l I n t e r f a c e ">
30 < f a u l t name = " inva l idDateFaul t " element = "

s t n s : i n v a l i d D a t e E r r o r "/>
31 <operat ion name = " l a t e s t T u t o r i a l O p e r a t i o n "
32 pat tern = " h t t p : //www. w3 . org/ns/wsdl/in−out "
33 s t y l e = " h t t p : //www. w3 . org/ns/wsdl/ s t y l e / i r i "
34 wsdlx : sa fe = " t rue ">
35 <input messageLabel = " In " element = " s t n s : l a t e s t T u t o r i a l R e q u e s t "

/>
36 <output messageLabel = " Out " element = "

s t n s : l a t e s t T u t o r i a l R e s p o n s e " />
37 < o u t f a u l t messageLabel = " Out " r e f =" t n s : i n v a l i d D a t e F a u l t " />
38 </operat ion>
39 </ i n t e r f a c e >
40 <binding name = " latestTutor ia lSOAPBinding "
41 i n t e r f a c e = " t n s : l a t e s t T u t o r i a l I n t e r f a c e "
42 type = " h t t p : //www. w3 . org/ns/wsdl/soap "
43 wsoap:protocol = " h t t p : //www. w3 . org /2003/05/soap/bindings/HTTP/"

>
44 < f a u l t r e f =" t n s : i n v a l i d D a t e F a u l t " wsoap:code=" soap:Sender "/>

136 Appendix A. WSDL 2.0 Example

45 <operat ion r e f = " t n s : l a t e s t T u t o r i a l O p e r a t i o n "
46 wsoap:mep = " h t t p : //www. w3 . org /2003/05/soap/mep/soap−response "/>
47 </binding>
48 < s e r v i c e
49 name = " l a t e s t T u t o r i a l S e r v i c e "
50 i n t e r f a c e = " t n s : l a t e s t T u t o r i a l I n t e r f a c e ">
51 <endpoint name = " l a t e s t T u t o r i a l E n d p o i n t "
52 binding = " tns : la tes tTutor ia lSOAPBinding "
53 address = " h t t p : //jenkov . com/ l a t e s t T u t o r i a l "/>
54 </ s e r v i c e >
55 </ d e s c r i p t i o n >

137

Appendix B

WADL Example

1 < a p p l i c a t i o n xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
2 xsi : schemaLocat ion=" h t t p : //wadl . dev . java . net /2009/02 wadl . xsd "
3 xmlns : tns=" urn:yahoo:yn " xmlns:yn=" urn:yahoo:yn " xmlns:ya="

urn:yahoo:api "
4 xmlns:xsd=" h t t p : //www. w3 . org /2001/XMLSchema"
5 xmlns=" h t t p : //wadl . dev . java . net /2009/02 ">
6 <grammars>
7 <include hre f=" NewsSearchResponse . xsd "/>
8 <include hre f=" Error . xsd "/>
9 </grammars>

10

11 <resources base=" h t t p : //api . search . yahoo . com/NewsSearchService/V1/">
12 <resource path=" newsSearch ">
13 <method name="GET" id=" search ">
14 <request>
15 <param name=" appid " type=" x s d : s t r i n g " s t y l e =" query " required

=" t rue "/>
16 <param name=" query " type=" x s d : s t r i n g " s t y l e =" query " required

=" t rue "/>
17 <param name=" type " s t y l e =" query " default=" a l l ">
18 <option value=" a l l "/>
19 <option value=" any "/>
20 <option value=" phrase "/>
21 </param>
22 <param name=" r e s u l t s " s t y l e =" query " type=" x s d : i n t " default="

10 "/>
23 <param name=" s t a r t " s t y l e =" query " type=" x s d : i n t " default=" 1 "

/>
24 <param name=" s o r t " s t y l e =" query " default=" rank ">
25 <option value=" rank "/>
26 <option value=" date "/>
27 </param>
28 <param name=" language " s t y l e =" query " type=" x s d : s t r i n g "/>
29 </request>
30 <response s t a t u s =" 200 ">
31 < r e p r e s e n t a t i o n mediaType=" a p p l i c a t i o n /xml " element="

y n : R e s u l t S e t "/>
32 </response>
33 <response s t a t u s =" 400 ">
34 < r e p r e s e n t a t i o n mediaType=" a p p l i c a t i o n /xml " element="

y a : E r r o r "/>
35 </response>
36 </method>
37 </resource>
38 </resources>
39 </ a p p l i c a t i o n >

138

Appendix C

HAL Example

1 {
2 " _ l i n k s " : {
3 " s e l f " : {
4 " hre f " : " h t t p : //www. h2g . eu/h2g/resource/geta i r tempera ture "
5 }
6 } ,
7 " _embedded " : {
8 " next " : {
9 " _ l i n k s " : {

10 " s e l f " : {
11 " hre f " : " h t t p : //www. h2g . eu/h2g/resource/predheatengcons "
12 }
13 }
14 }
15 } ,
16 " Operation " : [{
17 " method " : "GET" ,
18 " expects " : [" s t a r t d a t e " , " enddate "] ,
19 " re turns " : [" DateTime " , " F l o a t "] ,
20 " func t ion " : "ATC"
21 }]
22 }

139

Appendix D

SIREN Example

1 {
2 " c l a s s " : [" d a t a c o l l e c t i o n "] ,
3 " p r o p e r t i e s " : {
4 " data " : " a i r temperature "
5 } ,
6 " e n t i t i e s " : [] ,
7 " a c t i o n s " : [
8 {
9 "name" : " ge ta i r tempera ture " ,

10 " t i t l e " : " Get Air Temperature " ,
11 " method " : "GET" ,
12 " hre f " : " h t t p : //www. h2g . eu/h2g/resource/geta i r tempera ture " ,
13 " type " : " a p p l i c a t i o n /x−www−form−urlencoded " ,
14 " f i e l d s " : [{
15 "name" : " s t a r t d a t e " ,
16 " type " : " datetime "
17 } ,
18 {
19 "name" : " enddate " ,
20 " type " : " datetime "
21 }
22]
23 }
24] ,
25 " l i n k s " : [{
26 " r e l " : [" s e l f "] ,
27 " hre f " : " h t t p : //www. h2g . eu/h2g/resource/geta i r tempera ture "
28 } ,
29 {
30 " r e l " : [" next "] ,
31 " hre f " : " h t t p : //www. h2g . eu/h2g/resource/predheatengcons "
32 }
33]
34 }

140

Appendix E

MASON Example

1 {
2 " ID " : 1 ,
3 " T i t l e " : " Get Air Temperature " ,
4 " Descr ipt ion " : "A resource t h a t c o l l e c t s the a i r temperature " ,
5 "@meta" : { } ,
6 " @controls " : {
7 " s e l f " : {
8 " hre f " : " h t t p : //www. h2g . eu/h2g/resource/geta i r tempera ture "
9 } ,

10 " i s : n e x t " : {
11 " t i t l e " : " Energy Heat P r e d i c t i o n " ,
12 " d e s c r i p t i o n " : " P r e d i c t s bui lding energy heat " ,
13 " hre f " : " h t t p : //www. h2g . eu/h2g/resource/predheatengcons "
14 }
15 }
16 } }

141

Appendix F

Resource Composition Modeling

1 {
2 " composition " : {
3 "name" : " Conversion and alignment of c o l l e c t e d data " ,
4 " d e s c r i p t i o n " : " This composition c o l l e c t s data from bldg A,

convert them to the desired unit , and a l i g n them on a same
frequency (expressed in s e cs) " ,

5 " v a r i a b l e s " : [" s t a r t D a t e " , " endDate "] ,
6 " resources " : [{
7 " u r l " : " h t t p : //s ibex/measures " ,
8 " method " : "GET" ,
9 "name" : " measures " ,

10 " param " : [{
11 " type " : " internalTemp "
12 } ,
13 {
14 " zoneid " : " BldgA "
15 } ,
16 {
17 " s t a r t d a t e " : " s t a r t D a t e "
18 } ,
19 {
20 " enddate " : " endDate "
21 }
22] ,
23 " output " : "A"
24 } ,
25 {
26 " u r l " : " h t t p : //s ibex/measures " ,
27 " method " : "GET" ,
28 "name" : " measures " ,
29 " param " : [{
30 " type " : " powerEnergy "
31 } ,
32 {
33 " zoneid " : " BldgA "
34 } ,
35 {
36 " s t a r t d a t e " : " s t a r t D a t e "
37 } ,
38 {
39 " enddate " : " endDate "
40 }
41] ,
42 " output " : "B"
43 } ,
44 {
45 " u r l " : " h t t p : //s ibex/measures " ,
46 " method " : "GET" ,
47 "name" : " measures " ,

142 Appendix F. Resource Composition Modeling

48 " param " : [{
49 " type " : " l i g h t R a d i a t i o n "
50 } ,
51 {
52 " zoneid " : " BldgA "
53 } ,
54 {
55 " s t a r t d a t e " : " s t a r t D a t e "
56 } ,
57 {
58 " enddate " : " endDate "
59 }
60] ,
61 " output " : "C"
62 } ,
63 {
64 " u r l " : " h t t p : //s ibex/dataconversion " ,
65 " method " : "GET" ,
66 "name" : " Data conversion " ,
67 " param " : [{
68 " data " : "A" ,
69 " uni t " : " c e l s i u s "
70 }] ,
71 " output " : "D"
72 } ,
73 {
74 " u r l " : " h t t p : //s ibex/dataconversion " ,
75 " method " : "GET" ,
76 "name" : " Data conversion " ,
77 " param " : [{
78 " data " : "B " ,
79 " uni t " : "KWH"
80 }] ,
81 " output " : "E"
82 } ,
83 {
84 " u r l " : " h t t p : //s ibex/dataconversion " ,
85 " method " : "GET" ,
86 "name" : " Data conversion " ,
87 " param " : [{
88 " data " : "C" ,
89 " uni t " : " wattPerSqMeter "
90 }] ,
91 " output " : " F "
92 } ,
93 {
94 " u r l " : " h t t p : //s ibex/datalignment " ,
95 " method " : "GET" ,
96 "name" : " dataAlignment " ,
97 " param " : [{
98 " data " : "D"
99 } ,

100 {
101 " frequency " : " 9 0 0 "
102 }
103] ,
104 " output " : "G"
105 } ,
106 {
107 " u r l " : " h t t p : //s ibex/datalignment " ,
108 " method " : "GET" ,
109 "name" : " dataAlignment " ,
110 " param " : [{

Appendix F. Resource Composition Modeling 143

111 " data " : "E"
112 } ,
113 {
114 " frequency " : " 9 0 0 "
115 }
116] ,
117 " output " : "H"
118 } ,
119 {
120 " u r l " : " h t t p : //s ibex/datalignment " ,
121 " method " : "GET" ,
122 "name" : " dataAlignment " ,
123 " param " : [{
124 " data " : " F "
125 } ,
126 {
127 " frequency " : " 9 0 0 "
128 }
129] ,
130 " output " : " I "
131 } ,
132 {
133 " u r l " : " h t t p : //s ibex/merge3data " ,
134 " method " : "GET" ,
135 "name" : " Merge 3 data " ,
136 " param " : [{
137 " data " : "G"
138 } ,
139 {
140 " data " : "H"
141 } ,
142 {
143 " data " : " I "
144 }
145] ,
146 " output " : " J "
147

148 }
149] ,
150 " goal " : " J "
151 }
152 }

144

Appendix G

Hydra-based Composed Resource
Description

1 {
2 " @context " : {
3 " @vocab " : " h t t p : //www. w3 . org/ns/hydra/core # " ,
4 " schema " : " h t t p : //schema . org /" ,
5 " i fcTC1 " : " h t t p : //www. buildingsmart−tech . org/ifcOWL/IFC2X3_TC1 /" ,
6 " i f c F i n a l " : " h t t p : //www. buildingsmart−tech . org/ifcOWL/

IFC2X3_Final /" ,
7 " zoneid " : " i f c T C 1 : g l o b a l I d _ I f c R o o t " ,
8 " sbxBI " : " h t t p : //s ibex/sbxBI /" ,
9 " sbxOcc " : " h t t p : //s ibex/sbxOccupant /" ,

10 " sbxProp " : " h t t p : //s ibex/sbxProperty /" ,
11 " ssn " : " h t t p s : //www. w3 . org/TR/vocab−ssn /" ,
12 " qudt " : " h t t p : //quadt . org/schema/qudt /" ,
13 " type " : " ssn:SOSAResult " ,
14 " timestamp " : " schema:DateTime " ,
15 " s t a r t d a t e " : " schema:DateTime " ,
16 " enddate " : " schema:DateTime " ,
17 " updatedDate " : " schema:DateTime " ,
18 " frequency " : " sbxProp:Frequency " ,
19 " uni t " : " qudt :Unit " ,
20 " q u a l i t y " : " schema:Float " ,
21 " Workflow " : " C o l l e c t i o n " ,
22 " resources " : " C o l l e c t i o n " ,
23 " data " : " schema:Text " ,
24 " goal " : " schema:Text " ,
25 " id " : " s c h e m a : i d e n t i f i e r " ,
26 " u r l " : " schema:url " ,
27 " acronym " : " schema:Text " ,
28 " value " : " schema:Float " ,
29 " tabCol lVal " : {
30 " @id " : " tabCol lVal " ,
31 " @container " : " @set " ,
32 " @values " : [
33 { " @type " : " q u a l i t y " } ,
34 { " @type " : " timestamp " } ,
35 { " @type " : " updatedDate " } ,
36 { " @type " : " value " }]
37 } ,
38 " tabValues " : {
39 " @id " : " tabValues " ,
40 " @container " : " @set " ,
41 " @values " : [
42 { " @type " : " timestamp " } ,
43 { " @type " : " value " }]
44 } ,
45 " tabValues2 " : {

Appendix G. Hydra-based Composed Resource Description 145

46 " @id " : " tabValues2 " ,
47 " @container " : " @set " ,
48 " @values " : [
49 { " @type " : " timestamp " } ,
50 { " @type " : " value " }]
51 } ,
52 " tabValues3 " : {
53 " @id " : " tabValues3 " ,
54 " @container " : " @set " ,
55 " @values " : [
56 { " @type " : " timestamp " } ,
57 { " @type " : " value " }]
58 } ,
59 " tabTimestamp " : {
60 " @id " : " tabTimestamp " ,
61 " @container " : " @set " ,
62 " @values " : [
63 { " @type " : " i n i t D a t e " } ,
64 { " @type " : " endDate " }]
65 }
66 } ,
67 " @id " : " h t t p : //s ibex/usecase1 " ,
68 " @type " : " composed " ,
69 " d e s c r i p t i o n " : " This composed resource c o v e r t s s e v e r a l time data to

the necessary uni t and a l i g n them to the same frequency " ,
70 " t i t l e " : " Data preparat ion f o r the energy consumption p r e d i c t i o n

module " ,
71 " operat ion " : [{
72 " method " : "GET" ,
73 " expects " : {
74 " s t a r t D a t e " : " " ,
75 " endDate " : " "
76 } ,
77 " re turns " : { " tabValues " : [" "] }
78 }] ,
79 " Workflow " : {
80 " members " : [{
81 " @id " : " h t t p : //s ibex/measures " ,
82 " method " : "GET" ,
83 " expects " : [{
84 " type " : " Temperature "
85 } ,
86 {
87 " zoneid " : " BldgA "
88 } ,
89 {
90 " s t a r t d a t e " : " s t a r t D a t e "
91 } ,
92 {
93 " enddate " : " endDate "
94 }
95] ,
96 " re turns " : [{
97 " data " : "A"
98 }]
99 } ,

100 {
101 " @id " : " h t t p : //s ibex/measures " ,
102 " method " : "GET" ,
103 " expects " : [{
104 " type " : " PowerEnergy "
105 } ,
106 {

146 Appendix G. Hydra-based Composed Resource Description

107 " zoneid " : " BldgA "
108 } ,
109 {
110 " s t a r t d a t e " : " s t a r t D a t e "
111 } ,
112 {
113 " enddate " : " endDate "
114 }
115] ,
116 " re turns " : [{
117 " data " : "B"
118 }]
119 } ,
120 {
121 " @id " : " h t t p : //s ibex/measures " ,
122 " method " : "GET" ,
123 " expects " : [{
124 " type " : " LightRadiat ion "
125 } ,
126 {
127 " zoneid " : " BldgA "
128 } ,
129 {
130 " s t a r t d a t e " : " s t a r t D a t e "
131 } ,
132 {
133 " endate " : " endDate "
134 }
135] ,
136 " re turns " : [{
137 " data " : "C"
138 }]
139 } ,
140 {
141 " @id " : " h t t p : //s ibex/dataconversion " ,
142 " method " : "GET" ,
143 " expects " : [{
144 " data " : "A"
145 }] ,
146 " re turns " : [{
147 " data " : "D"
148 }]
149 } ,
150 {
151 " @id " : " h t t p : //s ibex/dataconversion " ,
152 " method " : "GET" ,
153 " expects " : [{
154 " data " : "B"
155 }] ,
156 " re turns " : [{
157 " data " : "E"
158 }]
159 } ,
160 {
161 " @id " : " h t t p : //s ibex/dataconvers ionr " ,
162 " method " : "GET" ,
163 " expects " : [{
164 " data " : "C"
165 }] ,
166 " re turns " : [{
167 " data " : " F "
168 }]
169 } ,

Appendix G. Hydra-based Composed Resource Description 147

170 {
171 " @id " : " h t t p : //s ibex/datalignment " ,
172 " method " : "GET" ,
173 " expects " : [{
174 " data " : "D"
175 } ,
176 {
177 " frequency " : " 9 0 0 "
178 }
179] ,
180 " re turns " : [{
181 " data " : "G"
182 }]
183 } ,
184 {
185 " @id " : " h t t p : //s ibex/datalignment " ,
186 " method " : "GET" ,
187 " expects " : [{
188 " data " : "E"
189 } ,
190 {
191 " frequency " : " 9 0 0 "
192 }
193] ,
194 " re turns " : [{
195 " data " : "H"
196 }]
197 } ,
198 {
199 " @id " : " h t t p : //s ibex/datalignment " ,
200 " method " : "GET" ,
201 " expects " : [{
202 " data " : " F "
203 } ,
204 {
205 " frequency " : " 9 0 0 "
206 }
207] ,
208 " re turns " : [{
209 " data " : " I "
210 }]
211 } ,
212 {
213 " @id " : " h t t p : //s ibex/Merge3data " ,
214 " method " : "GET" ,
215 " expects " : [{
216 " data " : "G"
217 } ,
218 {
219 " data " : "H"
220 } ,
221 {
222 " data " : " I "
223 }
224] ,
225 " re turns " : [{
226 " data " : " J "
227 }]
228 }
229] ,
230 " goal " : " J "
231 }
232 }

148

Appendix H

SIBEX Resource Description using
Hydra

1 {
2 " @context " : {
3 " @vocab " : " h t t p : //www. w3 . org/ns/hydra/core # " ,
4 " schema " : " h t t p : //schema . org /" ,
5 " i fcTC1 " : " h t t p : //www. buildingsmart−tech . org/ifcOWL/IFC2X3_TC1 /" ,
6 " i f c F i n a l " : " h t t p : //www. buildingsmart−tech . org/ifcOWL/

IFC2X3_Final /" ,
7 " regionId " : " i f c T C 1 : g l o b a l I d _ I f c R o o t " ,
8 " sbxBI " : " h t t p : //s ibex/sbxBI /" ,
9 " sbxOcc " : " h t t p : //s ibex/sbxOccupant /" ,

10 " sbxProp " : " h t t p : //s ibex/sbxProperty /" ,
11 " ssn " : " h t t p s : //www. w3 . org/TR/vocab−ssn /" ,
12 " qudt " : " h t t p : //quadt . org/schema/qudt /" ,
13 " type " : " ssn:SOSAResult " ,
14 " timestamp " : " schema:DateTime " ,
15 " s t a r t d a t e " : " schema:DateTime " ,
16 " enddate " : " schema:DateTime " ,
17 " updatedDate " : " schema:DateTime " ,
18 " frequency " : " sbxProp:Frequency " ,
19 " uni t " : " qudt :Unit " ,
20 " q u a l i t y " : " schema:Float " ,
21 " Workflow " : " C o l l e c t i o n " ,
22 " resources " : " C o l l e c t i o n " ,
23 " data " : " schema:Text " ,
24 " goal " : " schema:Text " ,
25 " id " : " s c h e m a : i d e n t i f i e r " ,
26 " zoneid " : " s c h e m a : i d e n t i f i e r " ,
27 " u r l " : " schema:url " ,
28 " acronym " : " schema:Text " ,
29 " value " : " schema:Float " ,
30 " tabCol lVal " : {
31 " @id " : " tabCol lVal " ,
32 " @container " : " @set " ,
33 " @values " : [
34 { " @type " : " q u a l i t y " } ,
35 { " @type " : " timestamp " } ,
36 { " @type " : " updatedDate " } ,
37 { " @type " : " value " }]
38 } ,
39 " tabValues " : {
40 " @id " : " tabValues " ,
41 " @container " : " @set " ,
42 " @values " : [
43 { " @type " : " timestamp " } ,
44 { " @type " : " value " }]
45 } ,

Appendix H. SIBEX Resource Description using Hydra 149

46 " tabValues2 " : {
47 " @id " : " tabValues2 " ,
48 " @container " : " @set " ,
49 " @values " : [
50 { " @type " : " timestamp " } ,
51 { " @type " : " value " }]
52 } ,
53 " tabValues3 " : {
54 " @id " : " tabValues3 " ,
55 " @container " : " @set " ,
56 " @values " : [
57 { " @type " : " timestamp " } ,
58 { " @type " : " value " }]
59 } ,
60 " tabTimestamp " : {
61 " @id " : " tabTimestamp " ,
62 " @container " : " @set " ,
63 " @values " : [
64 { " @type " : " i n i t D a t e " } ,
65 { " @type " : " endDate " }]
66 }
67 } ,
68 " resources " : [{
69 " @id " : " h t t p : //s ibex/measure " ,
70 " @type " : " d a t a C o l l e c t i o n " ,
71 " d e s c r i p t i o n " : " This resource al lows data c o l l e c t i o n " ,
72 " t i t l e " : " Get Measures " ,
73 " operat ion " : [{
74 " method " : "GET" ,
75 " expects " : {
76 " type " : " " ,
77 " zoneid " : " " ,
78 " s t a r t d a t e " : " " ,
79 " enddate " : " "
80 } ,
81 " re turns " : { " tabCol lVal " : [" "] } ,
82 " acronym " : "DC"
83 }] ,
84 " Workflow " : " "
85 } ,
86 {
87

88 " @id " : " h t t p : // s ibex/blankdetec t ion " ,
89 " @type " : " preprocess ing " ,
90 " d e s c r i p t i o n " : " This resource d e t e c t s the missing values " ,
91 " t i t l e " : " Blanks Detect ion " ,
92 " operat ion " : [{
93 " method " : "GET" ,
94 " expects " : { " tabValues " : [" "] } ,
95 " re turns " : { " tabTimestamp " : [" "] } ,
96 " acronym " : "BD"
97 }] ,
98 " Workflow " : " "
99 } ,

100 {
101

102 " @id " : " h t t p : //s ibex/ o u t l i e r d e t e c t i o n " ,
103 " @type " : " preprocess ing " ,
104 " d e s c r i p t i o n " : " This resource d e t e c t s o u t l i e r values " ,
105 " t i t l e " : " O u t l i e r s Detect ion " ,
106 " operat ion " : [{
107 " method " : "GET" ,
108 " expects " : { " tabValues " : [" "] } ,

150 Appendix H. SIBEX Resource Description using Hydra

109 " re turns " : { " tabTimestamp " : [" "] } ,
110 " acronym " : "OD"
111 }] ,
112 " Workflow " : " "
113 } ,
114 {
115 " @id " : " h t t p : // s ibex/ d a t a i n t e r p o l a t i o n " ,
116 " @type " : " preprocess ing " ,
117 " d e s c r i p t i o n " : " This resource i n t e r p o l a t e s on blanks/ o u t l i e r s

" ,
118 " t i t l e " : " Data I n t e r p o l a t i o n " ,
119 " operat ion " : [{
120 " method " : "GET" ,
121 " expects " : { " tabTimestamp " : [" "] ,
122 " tabValues " : [" "] } ,
123 " re turns " : { " tabValues " : [" "] } ,
124 " acronym " : " DI "
125 }] ,
126 " Workflow " : " "
127 } ,
128 {
129 " @id " : " h t t p : //s ibex/sumdata " ,
130 " @type " : " preprocess ing " ,
131 " d e s c r i p t i o n " : "Sum data over a period " ,
132 " t i t l e " : "Sum Data " ,
133 " operat ion " : [{
134 " method " : "GET" ,
135 " expects " : { " tabValues " : [" "] } ,
136 " re turns " :
137 {
138 " value " : " "
139 } ,
140 " acronym " : "SD"
141 }] ,
142 " Workflow " : " "
143 } ,
144 {
145 " @id " : " h t t p : //s ibex/ s u b s t r a c t d a t a " ,
146 " @type " : " preprocess ing " ,
147 " d e s c r i p t i o n " : " Su bt r ac t data over a period " ,
148 " t i t l e " : " Su bt r ac t Data " ,
149 " operat ion " : [{
150 " method " : "GET" ,
151 " expects " : { " tabValues " : [" "] } ,
152 " re turns " :
153 {
154 " value " : " "
155 } ,
156 " acronym " : " SsD "
157 }] ,
158 " Workflow " : " "
159 } ,
160 {
161 " @id " : " h t t p : //s ibex/compmeandata " ,
162 " @type " : " preprocess ing " ,
163 " d e s c r i p t i o n " : "Compute mean value over a period " ,
164 " t i t l e " : "Compute Mean Value " ,
165 " operat ion " : [{
166 " method " : "GET" ,
167 " expects " : { " tabValues " : [" "] } ,
168 " re turns " :
169 {
170 " value " : " "

Appendix H. SIBEX Resource Description using Hydra 151

171 } ,
172 " acronym " : "CMD"
173 }] ,
174 " Workflow " : " "
175 } ,
176 {
177 " @id " : " h t t p : //s ibex/compmediandata " ,
178 " @type " : " preprocess ing " ,
179 " d e s c r i p t i o n " : "Compute median value over a period " ,
180 " t i t l e " : "Compute Median Value " ,
181 " operat ion " : [{
182 " method " : "GET" ,
183 " expects " : { " tabValues " : [" "] } ,
184 " re turns " :
185 {
186 " value " : " "
187 } ,
188 " acronym " : "CMdD"
189 }] ,
190 " Workflow " : " "
191 } ,
192 {
193 " @id " : " h t t p : //s ibex/datapercentage " ,
194 " @type " : " preprocess ing " ,
195 " d e s c r i p t i o n " : "Compute data percentage " ,
196 " t i t l e " : "Compute data percentage " ,
197 " operat ion " : [{
198 " method " : "GET" ,
199 " expects " : { " tabValues " : [" "] ,
200 " tabValues2 " : [" "] ,
201 " i n i t D a t e " : " " ,
202 " endDate " : " " } ,
203 " re turns " :
204 {
205 " value " : " "
206 } ,
207 " acronym " : "DP"
208 }] ,
209 " Workflow " : " "
210 } ,
211 {
212 " @id " : " h t t p : //s ibex/ d a t a m u l t i p l i c a t i o n " ,
213 " @type " : " preprocess ing " ,
214 " d e s c r i p t i o n " : " Data M u l t i p l i c a t i o n " ,
215 " t i t l e " : " Data M u l t i p l i c a t i o n " ,
216 " operat ion " : [{
217 " method " : "GET" ,
218 " expects " : { " tabValues " : [" "] ,
219 " tabValues2 " : [" "]
220 } ,
221 " re turns " : { " tabValues " : [" "] } ,
222 " acronym " : "DM"
223 }] ,
224 " Workflow " : " "
225 } ,
226 {
227 " @id " : " h t t p : //s ibex/disaggregate " ,
228 " @type " : " preprocess ing " ,
229 " d e s c r i p t i o n " : " Data Disaggregat ion " ,
230 " t i t l e " : " Data Disaggregat ion " ,
231 " operat ion " : [{
232 " method " : "GET" ,
233 " expects " : {

152 Appendix H. SIBEX Resource Description using Hydra

234 " tabValues " : [" "] } ,
235 " re turns " :
236 { " tabValues " : [" "] } ,
237 " acronym " : " DisD "
238 }] ,
239 " Workflow " : " "
240 } ,
241 {
242 " @id " : " h t t p : //s ibex/aggregate " ,
243 " @type " : " preprocess ing " ,
244 " d e s c r i p t i o n " : " Data Aggregation " ,
245 " t i t l e " : " Data Aggregation " ,
246 " operat ion " : [{
247 " method " : "GET" ,
248 " expects " : {
249 " tabValues " : [" "] } ,
250 " re turns " :
251 { " tabValues " : [" "] } ,
252 " acronym " : "AgD"
253 }] ,
254 " Workflow " : " "
255 } ,
256 {
257 " @id " : " h t t p : //s ibex/datalignment " ,
258 " @type " : " preprocess ing " ,
259 " d e s c r i p t i o n " : " Align s i n g l e time−s e r i e s data on the same

frequency " ,
260 " t i t l e " : " Data Alignment " ,
261 " operat ion " : [{
262 " method " : "GET" ,
263 " expects " : { " tabValues " : [" "] ,
264 " frequency " : " "
265 } ,
266 " re turns " :
267 { " tabValues " : [" "] } ,
268 " acronym " : "DA"
269 }] ,
270 " Workflow " : " "
271 } ,
272 {
273 " @id " : " h t t p : //s ibex/conversion " ,
274 " @type " : " preprocess ing " ,
275 " d e s c r i p t i o n " : " Convert data measures " ,
276 " t i t l e " : " Data Conversion " ,
277 " operat ion " : [{
278 " method " : "GET" ,
279 " expects " : { " tabValues " : [" "] ,
280 " uni t " : " "
281 } ,
282 " re turns " :
283 { " tabValues " : [" "] } ,
284 " acronym " : "DCv"
285 }] ,
286 " Workflow " : " "
287 } ,
288 {
289 " @id " : " h t t p : //s ibex/merge2Data " ,
290 " @type " : " preprocess ing " ,
291 " d e s c r i p t i o n " : " Merge two time s e r i e s data " ,
292 " t i t l e " : " Merge 2 data " ,
293 " operat ion " : [{
294 " method " : "GET" ,
295 " expects " : { " tabValues " : [" "] ,

Appendix H. SIBEX Resource Description using Hydra 153

296 " tabValues2 " : [" "]
297 } ,
298 " re turns " :
299 { " tabValues " : [" "] } ,
300 " acronym " : "MG2"
301 }] ,
302 " Workflow " : " "
303 } ,
304 {
305 " @id " : " h t t p : //s ibex/merge3Data " ,
306 " @type " : " preprocess ing " ,
307 " d e s c r i p t i o n " : " Merge three time s e r i e s data " ,
308 " t i t l e " : " Merge 3 data " ,
309 " operat ion " : [{
310 " method " : "GET" ,
311 " expects " : { " tabValues " : [" "] ,
312 " tabValues2 " : [" "] ,
313 " tabValues3 " : [" "]
314 } ,
315 " re turns " :
316 { " tabValues " : [" "] } ,
317 " acronym " : "MG3"
318 }] ,
319 " Workflow " : " "
320 }
321

322]
323 }

154

Appendix I

Prototype APIs

1. GET the description of all the resources

Table I.1 – Request to get resources description
Method URL Filters
GET /resources/description resourceType

Type Parameters Values
HEAD UserID string
HEAD SourceID string
HEAD ProxyToken string
HEAD Options List[string]

Table I.2 – Response for getting resources description
Status Response Values

200

[
resource{

URL,
type,
description,
title,
method,
inParameters[

inName,
Type],

inFixParameters[
inFixName,
Type],

outParameters [
outName,
Type],

workflow // optional }
]

string
string
string
string
string

string
string

string
string

string
string
list[string]

400 {" bad request ":"Invalid options."}
401 {" unauthorized ":"Invalid proxy token."}
401 {" unauthorized ":"Unknown user."}
401 {" unauthorized ":"Unknown source."}
404 {" unknown service type ":serviceType}
500 {" error ":"Internal error."}

Appendix I. Prototype APIs 155

2. Create a resource composition

Table I.3 – Request to create a resource composition
Method URL
POST /resources/composition

Type Parameters Values
HEAD UserID string
HEAD SourceID string
HEAD ProxyToken string
HEAD Options List[string]

POST

{
"composition":{

"name",
"description",
"variables":[],
"resources":[{

"url": "",
"method": "",
"name": "",
"param": [{"key": "value"},
{etc.}],
"output": ""

}],
"goal": ""

}
}

string
string
List[string]

string
string
string
List[string]

string

string

Table I.4 – Response for creating a resource composition
Status Response
201 {"compID": compID}
400 {" bad request ":"Invalid options."}
400 {" bad request ":"Invalid type."}
401 {" unauthorized ":"Invalid proxy token."}
401 {" unauthorized ":"Unknown user."}

403

{
ValidationResults:{

Reachability,
Liveness,
Interoperability

}
}

boolean
boolean
boolean

500 {" error ":"Internal error."} 500

156 Appendix I. Prototype APIs

3. Store the resource composition

Table I.5 – Request to store the resource composition
Method URL
POST /resources/description

Type Parameters Values
HEAD UserID string
HEAD SourceID string
HEAD ProxyToken string
HEAD Options List[string]

200

[
resource{

URL,
description,
title,
method,
inParameters[

inName,
Type],

inFixParameters[
inFixName,
Type],

outParameters [
outName,
Type],

workflow // optional }
]

string
string
string
string

string
string

string
string

string
string
list[string]

400 {" bad request ":"Invalid options."}
401 {" unauthorized ":"Invalid proxy token."}
401 {" unauthorized ":"Unknown user."}
401 {" unauthorized ":"Unknown source."}
404 {" unknown service type ":serviceType}
500 {" error ":"Internal error."}

Table I.6 – Response for storing the resource composition
Status Response
201 {"compositionID": compositionID}
400 {" bad request ":"Invalid options."}
400 {" bad request ":"Invalid type."}
401 {" unauthorized ":"Invalid proxy token."}
401 {" unauthorized ":"Unknown user."}
500 {" error ":"Internal error."}

Appendix I. Prototype APIs 157

4. Execute the resource composition

Table I.7 – Request to execute the resource composition
Method URL
GET /resources/composition/compositionID

Type Parameters Values
HEAD UserID string
HEAD SourceID string
HEAD ProxyToken string
HEAD Options List[string]

Table I.8 – Response for executing the resource composition
Status Response Values

200

{
CompositionResults:{

compositionURL,
values[data]

}
}

string
List[string]

400 {" bad request ":"Invalid options."}
401 {" unauthorized ":"Invalid proxy token."}
401 {" unauthorized ":"Unknown user."}
401 {" unauthorized ":"Unknown source."}
404 {" unknown composition ":"compositionID."}
500 {" error ":"Internal error."}

158

Appendix J

Comparative Results between DFS
and BFS

In this appendix, we present and analyze several tests to compare the per-
formance of both DFS (Depth First Search) and BFS (Breadth First Search) in
terms of response time (ms), while searching for a resource providing a spe-
cific function. The experiments were conducted on a simulated graph of 2000
resources (i.e., 1000 static and 1000 dynamic), providing functions defined in
two different function graphs:

• Horizontally distributed (Figure J.1), in which 1000 functions are de-
fined in a directed acyclic function graph distributed horizontally. The
function graph consists of 50 branches, each, with 20 ordered functions.

• Vertically distributed (Figure J.2), in which 1000 functions are defined
in a directed acyclic graph distributed vertically. The function graph
consists of 50 dependent functions vertically connected to 2 branches
with 450 vertically ordered functions, each.

Figure J.1 – Horizontally distributed function graph

As illustrated in Figure J.1, when the functions exist in the lower left side
of the function graph, such as f60, f119, and f312, DFS is faster than the BFS.
This is due to the exploration of the graph resources in a small number of
branches of 20 functions, each, with DFS, while in BFS the exploration is done
in an important number of levels consisting of 50 functions, each. However,

Appendix J. Comparative Results between DFS and BFS 159

when the functions are in the upper right side of the function graph, as f503
and f701, BFS is better than DFS, since it reaches the required function by
crawling less number of levels comparing to the number of branches. As for
the f915, which is located in the lower right side of the function graph, BFS is
still better than DFS, but the difference is not important comparing to the two
tests applied for the previous functions (i.e., f503 and f701) because there is a
big number of branches and levels to cross for both DFS and BFS respectively.

Figure J.2 – Vertically distributed function graph

In Figure J.2, DFS is faster than BFS when searching for a resource an-
swering a function that is located in the upper left of the function graph, as
f100 and f212. The reason is that DFS traverses a single branch and reaches
a function with a lower depth comparing to its total big depth, while BFS
crawls the graph by levels and thus it moves from a long branch to another
before reaching the required function. Nevertheless, BFS is better than DFS
when searching for resources providing functions f441, f501 and f607. These
functions exist in the upper right of the second branch, thus, they can be
reached faster when crawling the graph by levels instead of moving deeper
in the first branch with DFS. As for f950, DFS is faster than BFS, but still both
algorithms time responses are high comparing to the other tests. This is due
to the function existence in the lower right side of the function graph, lead-
ing to a big number of levels for the BFS, and to an important depth of both
branches for the DFS.

The results show that the performance of each algorithm depends on the
functions distribution and the localization of the requested function in the
function graph, FG. Currently, the algorithm type used to traverse the re-
source graph is specified by the solution administrator. In a later phase, it
will be calculated dynamically based on the function graph topology.

160

Appendix K

Hydra Vocabulary Extended

1 { " @context " : " h t t p : //www. h2g . eu/contex t . j s o n l d " ,
2 " @id " : " h t t p : //www. h2g . eu/resdesc/res−getairtemp .md" ,
3 " l o c a t i o n " : " Zone1 " ,
4 " Operation " : [{
5 " method " : "GET" ,
6 " expects " : [" h 2 g : s t a r t d a t e " , " h2g:enddate "] ,
7 " re turns " : [" schema:DateTime " , " schema:Float "] ,
8 " func t ion " : "ATC" }] ,
9 " Link " : [{

10 " entrypoint " : " h t t p : //www. h2g . eu/res−gethumidity " ,
11 " method " : "GET" ,
12 " re la t ionType " : " isComplementary " ,
13 " func t ion " : "EDP"
14 }]
15 }

Listing K.1 – Static resource description

1 {
2 " @context " : " h t t p : //www. h2g . eu/contex t . j s o n l d " ,
3 " @id " : " h t t p : //www. h2g . eu/resdesc/resd−getairtemp .md" ,
4 " l o c a t i o n " : " Zone1 " ,
5 " Operation " : [{
6 " method " : "GET" ,
7 " expects " : [" h 2 g : s t a r t d a t e " , " h2g:enddate "] ,
8 " re turns " : [" schema:DateTime " , " schema: F l o a t "] ,
9 " func t ion " : "ATC" }]

10 }

Listing K.2 – Dynamic resource description

1 {
2 " @context " : " h t t p : //www. h2g . eu/contex t . j s o n l d " ,
3 " @id " : " h t t p : //www. h2g . eu/resdesc/vresp−getairtemp .md" ,
4 " Operation " : {
5 " method " : "GET" ,
6 " func t ion " : "ATC"
7 } ,
8 " C o l l e c t i o n " : {
9 "member" : [{

10 " @id " : " h t t p : //www. h2g . eu/resd−getairtemp "
11 }]
12 } ,
13 " Link " : [{
14 " entrypoint " : " h t t p : //www. h2g . eu/vrest−gethumidity " ,
15 " method " : "GET" ,
16 " re la t ionType " : " i s R e l a t e d " ,
17 " func t ion " : "HC"
18 }]

Appendix K. Hydra Vocabulary Extended 161

19 }

Listing K.3 – Permanent virtual resource description

1 {
2 " @context " : " h t t p : //www. h2g . eu/contex t . j s o n l d " ,
3 " @id " : " h t t p : //www. h2g . eu/resdesc/vresp−getairtemp " ,
4 " Operation " : { " method " : "GET" , " func t ion " : "ATC" } ,
5 " C o l l e c t i o n " : {
6 "member" : [{ " @id " : " h t t p : //www. h2g . eu/resd−getairtemp1 " } ,
7 { " @id " : " h t t p : //www. h2g . eu/resd−getairtemp2 " }]
8 }
9 }

Listing K.4 – Temporary virtual resource description

162

Appendix L

Performance Evaluation of the
Indexing Schema Construction

In this appendix, we evaluate the performance of constructing the indexing
schema, IdS, by assuming that all resources exposed by objects are withing
the same location. Thus, only 2 dimensions i.e., Functions and Resources,
are used. To this end, we conducted several experiments using different
functions and resources graphs setups, and evaluated the IdS construction
in terms of response time (ms) and memory usage (kb). The tests were done
on a Linux Debian (64 bits) virtual machine, with 1 dedicated Intel® Core™
i7-46000 CPU @ 2.10GHz 2.70GHz processor and 1 GB RAM.

The construction of IdS consisted of:

• Retrieving the set of functions defined in FG with their corresponding
signature (i.e., fsignature) based on the functions dependencies.

• Traversing the existing resource graph containing the static/dynamic
resources to get their provided functions with their related resources
(i.e., rsignature).

• Linking each function to the set of the resources realizing it.

Figure L.1 and Figure L.2 illustrate respectively the response time and the
memory usage of the tests conducted while varying the number of functions
defined in FG. The number of the static resource in these tests is 1000. As
shown in both figures, the response time and the memory usage increase
with the evolution of the number of functions. This is due to the calculations
required to get the necessary signature of each function, and to link each
function to the set of static resource matching it.

Appendix L. Performance Evaluation of the Indexing Schema Construction 163

Figure L.1 – The indexing time of the tests conducted while varying the num-
ber of functions

Figure L.2 – The indexing memory usage of the tests conducted while vary-
ing the number of functions

Figure L.3 and Figure L.4 show respectively the response time and the
memory usage of the tests conducted while varying the number of static re-
sources. In these tests the number of functions is 500. As it is seen in both
figures, the response time and the memory usage increase when augmenting
the number of resources. This is explained by the graph resource traversal to
get the provided function of each resource with its related resources, and to
the linking of each function to the set of resources answering it.

164 Appendix L. Performance Evaluation of the Indexing Schema Construction

Figure L.3 – The indexing time of the tests conducted while varying the num-
ber of resources

Figure L.4 – The indexing memory usage of the tests conducted while vary-
ing the number of resources

The experiments show that increasing the number of functions and re-
sources affects the construction of the indexing schema in terms of response
time and memory usage. However, these two aspects increase more with
the growth of the resources number comparing to the functions number. In
our work, the indexing schema is generated every time there is a change
within the function graph (i.e., add/remove functions and change in the
functions dependencies) or the resource graph (i.e., connect/disconnect static
resources). Nevertheless, the indexing time shown in Figure L.1 has an ex-
ponential curve with the increase number of functions. The same graph
pace appears in Figure L.3 and Figure L.4 related to the indexing time and
indexing memory usage respectively, while increasing the resources num-
ber. These curves show that updating the indexing schema by regenerating
it from the start requires lot of time and memory space when both func-
tions number and resources number are relatively high. Although in real
Web-based environments the number of resources does not normally exceed
10000, nor even the provided function are 1000, we seek in future works to

Appendix L. Performance Evaluation of the Indexing Schema Construction 165

improve the indexing schema performance construction by updating it dy-
namically without regenerating it from scratch every time, and thus, avoid-
ing huge response time and lot of memory space.

166

Bibliography

[1] Mohammad Aazam and Eui-Nam Huh. “Fog computing and smart gateway
based communication for cloud of things”. In: 2014 International Conference on
Future Internet of Things and Cloud. IEEE. 2014, pp. 464–470.

[2] Ben Adida. “RDFa in XHTML: Syntax and Processing W3C Recommenda-
tion”. In: http://www. w3. org/TR/rdfa-syntax/ (2008).

[3] Ahmed Al Amoodi and Elie Azar. “Impact of Human Actions on Building
Energy Performance: A Case Study in the United Arab Emirates (UAE)”. In:
Sustainability 10.5 (2018), p. 1404.

[4] Rosa Alarcon and Erik Wilde. “From RESTful services to RDF: connecting the
web and the semantic web”. In: arXiv preprint arXiv:1006.2718 (2010).

[5] Rosa Alarcon, Erik Wilde, and Jesus Bellido. “Hypermedia-driven RESTful
service composition”. In: International Conference on Service-Oriented Comput-
ing. Springer. 2010, pp. 111–120.

[6] Rosa Alarcon et al. “REST web service description for graph-based service
discovery”. In: International Conference on Web Engineering. Springer. 2015,
pp. 461–478.

[7] Fernando Luis Almeida. “Concept and Dimensions of Web 4.0”. In: Interna-
tional Journal of Computers & Technology 16.7 (2017), pp. 7040–7046.

[8] Areeb Alowisheq, David E Millard, and Thanassis Tiropanis. “EXPRESS: EX-
Pressing REstful semantic services using domain ontologies”. In: International
Semantic Web Conference. Springer. 2009, pp. 941–948.

[9] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. “Selecting skyline
services for QoS-based web service composition”. In: Proceedings of the 19th
international conference on World wide web. ACM. 2010, pp. 11–20.

[10] M Clement Joe Anand and Janani Bharatraj. “Theory of Triangular Fuzzy
Number”. In: Proceedings of NCATM 2017 (2017), p. 80.

[11] Meriem Aziez, Saber Benharzallah, and Hammadi Bennoui. “Service discov-
ery for the Internet of Things: Comparison study of the approaches”. In: 2017
4th International Conference on Control, Decision and Information Technologies
(CoDIT). IEEE. 2017, pp. 0599–0604.

[12] Franz Baader, Ian Horrocks, and Ulrike Sattler. “Description logics as ontol-
ogy languages for the semantic web”. In: Mechanizing mathematical reasoning.
Springer, 2005, pp. 228–248.

[13] Oumayma Bahri, Nahla Ben Amor, and Talbi El-Ghazali. “New Pareto ap-
proach for ranking triangular fuzzy numbers”. In: International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems. Springer. 2014, pp. 264–273.

[14] Qinghai Bai. “Analysis of particle swarm optimization algorithm”. In: Com-
puter and information science 3.1 (2010), p. 180.

BIBLIOGRAPHY 167

[15] Srividya Bansal et al. “Generalized semantic Web service composition”. In:
Service Oriented Computing and Applications 10.2 (2016), pp. 111–133.

[16] Mike Barlow. Real-time big data analytics: Emerging architecture. " O’Reilly Me-
dia, Inc.", 2013.

[17] Payam Barnaghi, Amit Sheth, and Cory Henson. “From data to actionable
knowledge: Big data challenges in the web of things [Guest Editors’ Intro-
duction]”. In: IEEE Intelligent Systems 28.6 (2013), pp. 6–11.

[18] Ricardo J Barrientos et al. “Range query processing in a multi-GPU environ-
ment”. In: 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications. IEEE. 2012, pp. 419–426.

[19] Scott Beamer, Krste Asanović, and David Patterson. “Direction-optimizing
breadth-first search”. In: Scientific Programming 21.3-4 (2013), pp. 137–148.

[20] Sean Bechhofer. “OWL web ontology language reference, W3C Recommen-
dation”. In: http://www. w3. org/TR/owl-ref/ (2004).

[21] Mahdi Bennara, Michael Mrissa, and Youssef Amghar. “An approach for
composing RESTful linked services on the web”. In: Proceedings of the 23rd
International Conference on World Wide Web. ACM. 2014, pp. 977–982.

[22] Mahdi Bennara, Michael Mrissa, and Youssef Amghar. “Linked Service Se-
lection Using the Skyline Algorithm”. In: International Conference on Model
and Data Engineering. Springer. 2016, pp. 88–97.

[23] Mahdi Bennara, Michael Mrissa, and Youssef Amghar. “Semantic-Enabled
and Hypermedia-Driven Linked Service Discovery”. In: International Confer-
ence on Model and Data Engineering. Springer. 2016, pp. 108–117.

[24] Karim Benouaret, Djamal Benslimane, and Allel Hadjali. “Top-k web services
compositions: A fuzzy-set-based approach”. In: ACM-Symp. on Applied Com-
puting (SAC). 2011, pp. 1038–1043.

[25] Rainer Berbner et al. “Heuristics for qos-aware web service composition”.
In: 2006 IEEE International Conference on Web Services (ICWS’06). IEEE. 2006,
pp. 72–82.

[26] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The original design and
ultimate destiny of the World Wide Web by its inventor. DIANE Publishing Com-
pany, 2001.

[27] Tim Berners-Lee, James Hendler, Ora Lassila, et al. “The semantic web”. In:
Scientific american 284.5 (2001), pp. 28–37.

[28] Tim Berners-Lee et al. “World-wide web: the information universe”. In: Inter-
net Research (2010).

[29] L Blanes et al. “Integration of Fault Detection and Diagnosis with Energy
Management Standard ISO 50001 and Operations and Maitenance of HVAC
Systems”. In: Clima 2013 (2013).

[30] Dan Brickley. “RDF vocabulary description language 1.0: RDF schema”. In:
http://www. w3. org/TR/rdf-schema/ (2004).

[31] Ethan Cerami. Web services essentials: distributed applications with XML-RPC,
SOAP, UDDI & WSDL. " O’Reilly Media, Inc.", 2002.

[32] Richard Chbeir et al. “OntoH2G: A Semantic Model to Represent Building
Infrastructure and Occupant Interactions”. In: International Conference on Sus-
tainability in Energy and Buildings. Springer. 2018, pp. 148–158.

168 BIBLIOGRAPHY

[33] Sofiane Chemaa, Raida Elmansouri, and Allaoua Chaoui. “Web services mod-
eling and composition approach using object-oriented petri nets”. In: arXiv
preprint arXiv:1304.2080 (2013).

[34] Roberto Chinnici et al. “Web services description language (wsdl) version 2.0
part 1: Core language”. In: W3C recommendation 26.1 (2007), p. 19.

[35] Nupur Choudhury. “World wide web and its journey from web 1.0 to web
4.0”. In: International Journal of Computer Science and Information Technologies
5.6 (2014), pp. 8096–8100.

[36] Erik Christensen et al. Web services description language (WSDL) 1.1. 2001.

[37] World Wide Web Consortium et al. “RDF 1.1 concepts and abstract syntax”.
In: (2014).

[38] Rone Ilídio Da Silva, Daniel Fernandes Macedo, and José Marcos S Nogueira.
“Spatial query processing in wireless sensor networks–A survey”. In: Infor-
mation Fusion 15 (2014), pp. 32–43.

[39] C Dechsupa, W Vatanawood, and A Thongtak. “Formal verification of web
service orchestration using colored petri net”. In: Proceedings of the interna-
tional MultiConference of Engineers and Computer Scientists. 2016.

[40] Gero Decker et al. “RESTful petri net execution”. In: International Workshop on
Web Services and Formal Methods. Springer. 2008, pp. 73–87.

[41] Shuiguang Deng et al. “Top-k Automatic Service Composition: A Parallel
Method for Large-Scale Service Sets”. In: IEEE Transactions on Automation Sci-
ence and Engineering 11.3 (2014), pp. 891–905.

[42] Ivan Di Pietro, Francesco Pagliarecci, and Luca Spalazzi. “Semantic Annota-
tion for Web Service Processes in Pervasive Computing”. In: Pervasive Com-
puting. Springer, 2009, pp. 289–311.

[43] Ivano Alessandro Elia, Nuno Laranjeiro, and Marco Vieira. “Test-Based Inter-
operability Certification for Web Services”. In: 2015 45th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks. IEEE. 2015, pp. 196–
206.

[44] Andrea Ferrara. “Web services: a process algebra approach”. In: Proceedings
of the 2nd international conference on Service oriented computing. ACM. 2004,
pp. 242–251.

[45] Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures. Vol. 7. University of California, Irvine Irvine,
USA, 2000.

[46] Roy T Fielding and Richard N Taylor. “Principled design of the modern Web
architecture”. In: ACM Transactions on Internet Technology (TOIT) 2.2 (2002),
pp. 115–150.

[47] Wan Fokkink. Introduction to process algebra. springer science & Business Me-
dia, 2013.

[48] Martin Garriga et al. “RESTful service composition at a glance: A survey”. In:
Journal of Network and Computer Applications 60 (2016), pp. 32–53.

[49] Vijay Gehlot and Carmen Nigro. “An introduction to systems modeling and
simulation with colored petri nets”. In: Proceedings of the Winter Simulation
Conference. Winter Simulation Conference. 2010, pp. 104–118.

[50] Marc J Hadley. “Web application description language (WADL)”. In: (2006).

BIBLIOGRAPHY 169

[51] Rachid Hamadi and Boualem Benatallah. “A Petri net-based model for web
service composition”. In: Proceedings of the 14th Australasian database conference-
Volume 17. Australian Computer Society, Inc. 2003, pp. 191–200.

[52] Guangjie Han et al. “Localization algorithms of wireless sensor networks: a
survey”. In: Telecommunication Systems 52.4 (2013), pp. 2419–2436.

[53] Sok-Min Han et al. “Using Pi-calculus to Model Dynamic Web Services Com-
position Based on the Authority Model”. In: New Review of Information Net-
working 22.2 (2017), pp. 111–123.

[54] Antonio Garrote Hernández and María N Moreno García. “A formal defini-
tion of RESTful semantic web services”. In: Proceedings of the First International
Workshop on RESTful Design. ACM. 2010, pp. 39–45.

[55] Haibo Hu, Jianliang Xu, and Dik Lun Lee. “A generic framework for mon-
itoring continuous spatial queries over moving objects”. In: Proceedings of
the 2005 ACM SIGMOD international conference on Management of data. ACM.
2005, pp. 479–490.

[56] Wei Jiang, Songlin Hu, and Zhiyong Liu. “Top K query for QoS-aware au-
tomatic service composition”. In: IEEE Transactions on Services Computing 7.4
(2013), pp. 681–695.

[57] Simon Jirka, Arne Bröring, and Christoph Stasch. “Discovery mechanisms for
the sensor web”. In: Sensors 9.4 (2009), pp. 2661–2681.

[58] Davis John and MS Rajasree. “Restdoc: Describe, discover and compose rest-
ful semantic web services using annotated documentations”. In: International
journal of Web & Semantic Technology 4.1 (2013), p. 37.

[59] Katawut Kaewbanjong and Sarun Intakosum. “Qos attributes of web ser-
vices: A systematic review and classification”. In: Journal of Advanced Man-
agement Science Vol 3.3 (2015).

[60] Lara Kallab et al. “HIT2GAP: Towards a better building energy manage-
ment”. In: Energy Procedia 122 (2017), pp. 895–900.

[61] Dervis Karaboga and Bahriye Akay. “A comparative study of artificial bee
colony algorithm”. In: Applied mathematics and computation 214.1 (2009), pp. 108–
132.

[62] Jacek Kopeckỳ, Karthik Gomadam, and Tomas Vitvar. “hrests: An html mi-
croformat for describing restful web services”. In: 2008 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence and Intelligent Agent Technology. Vol. 1.
IEEE. 2008, pp. 619–625.

[63] Sana Ben Abdallah Ben Lamine et al. “An ontology-based approach for per-
sonalized RESTful Web service discovery”. In: Procedia computer science 112
(2017), pp. 2127–2136.

[64] Markus Lanthaler and Christian Gütl. “Hydra: A Vocabulary for Hypermedia-
Driven Web APIs.” In: LDOW 996 (2013).

[65] Jonathan Douglas Lathem et al. “SA-REST: BRING THE POWER OF SE-
MANTICS TO REST-BASED WEB SERVICES Electronic Version Approved”.
In: (2007).

[66] Freddy Lécué and Alain Léger. “A formal model for semantic web service
composition”. In: International semantic web conference. Springer. 2006, pp. 385–
398.

170 BIBLIOGRAPHY

[67] Jae Moon Lee. “Fast k-nearest neighbor searching in static objects”. In: Wire-
less Personal Communications 93.1 (2017), pp. 147–160.

[68] Li Li and Wu Chou. “Design and describe REST API without violating REST:
A Petri net based approach”. In: 2011 IEEE International Conference on Web
Services. IEEE. 2011, pp. 508–515.

[69] Dongsheng Liu et al. “Modeling workflow processes with colored Petri nets”.
In: computers in industry 49.3 (2002), pp. 267–281.

[70] Wei Liu et al. “Adaptive resource discovery in mobile cloud computing”. In:
Computer Communications 50 (2014), pp. 119–129.

[71] Meherun Nesa Lucky et al. “Enriching API descriptions by adding API pro-
files through semantic annotation”. In: International Conference on Service-Oriented
Computing. Springer. 2016, pp. 780–794.

[72] Alexander Maedche and Steffen Staab. “Ontology learning for the semantic
web”. In: IEEE Intelligent systems 16.2 (2001), pp. 72–79.

[73] Raluca Marin-Perianu, Hans Scholten, and Paul Havinga. “Prototyping ser-
vice discovery and usage in wireless sensor networks”. In: 32nd IEEE Confer-
ence on Local Computer Networks (LCN 2007). IEEE. 2007, pp. 841–850.

[74] Brian McBride. “The resource description framework (RDF) and its vocabu-
lary description language RDFS”. In: Handbook on ontologies. Springer, 2004,
pp. 51–65.

[75] Deborah L McGuinness, Frank Van Harmelen, et al. “OWL web ontology
language overview”. In: W3C recommendation 10.10 (2004), p. 2004.

[76] Sheila A McIlraith, Tran Cao Son, and Honglei Zeng. “Semantic web ser-
vices”. In: IEEE intelligent systems 16.2 (2001), pp. 46–53.

[77] Daniel Mihályi and Valerie Novitzká. “What about linear logic in computer
science”. In: Acta Polytechnica Hungarica 10.4 (2013), pp. 147–160.

[78] María V Moreno, Miguel A Zamora, and Antonio F Skarmeta. “User-centric
smart buildings for energy sustainable smart cities”. In: Transactions on emerg-
ing telecommunications technologies 25.1 (2014), pp. 41–55.

[79] A Moreno-Munoz et al. “Distributed DC-UPS for energy smart buildings”.
In: Energy and Buildings 43.1 (2011), pp. 93–100.

[80] Debajyoti Mukhopadhyay and Archana Chougule. “A survey on web ser-
vice discovery approaches”. In: Advances in Computer Science, Engineering &
Applications. Springer, 2012, pp. 1001–1012.

[81] Yohei Murakami, Donghui Lin, and Toru Ishida. Services Computing for Lan-
guage Resources. Springer, 2018.

[82] Tadao Murata. “Petri nets: Properties, analysis and applications”. In: Proceed-
ings of the IEEE 77.4 (1989), pp. 541–580.

[83] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. “An analysis of
public rest web service apis”. In: IEEE Transactions on Services Computing (2018).

[84] Suphakit Niwattanakul et al. “Using of Jaccard coefficient for keywords sim-
ilarity”. In: Proceedings of the international multiconference of engineers and com-
puter scientists. Vol. 1. 6. 2013, pp. 380–384.

[85] Natalya F Noy. “Semantic integration: a survey of ontology-based approaches”.
In: ACM Sigmod Record 33.4 (2004), pp. 65–70.

BIBLIOGRAPHY 171

[86] Luiz Henrique Nunes et al. “Multi-criteria IoT resource discovery: a com-
parative analysis”. In: Software: Practice and Experience 47.10 (2017), pp. 1325–
1341.

[87] In Lih Ong, Pei Hwa Siew, and Siew Fan Wong. “A five-layered business
intelligence architecture”. In: Communications of the IBIMA (2011).

[88] Hye-young Paik et al. “Web Service Composition: Overview”. In: Web Service
Implementation and Composition Techniques. Springer, 2017, pp. 149–158.

[89] Mike P Papazoglou and Willem-Jan Van Den Heuvel. “Service oriented archi-
tectures: approaches, technologies and research issues”. In: The VLDB journal
16.3 (2007), pp. 389–415.

[90] Peter F Patel-Schneider. “OWL web ontology language semantics and ab-
stract syntax, W3C Recommendation”. In: http://www. w3. org/TR/2004/REC-
owl-semantics-20040210/ (2004).

[91] Cesare Pautasso. “RESTful web services: principles, patterns, emerging tech-
nologies”. In: Web Services Foundations. Springer, 2014, pp. 31–51.

[92] Cong Peng and Guohua Bai. “Using Tag based Semantic Annotation to em-
power Client and REST Service Interaction”. In: COMPLEXIS 2018. 2018,
pp. 64–71.

[93] Franck Pommereau. “SNAKES: a flexible high-level petri nets library (tool
paper)”. In: International Conference on Applications and Theory of Petri Nets and
Concurrency. Springer. 2015, pp. 254–265.

[94] Anass Rachdi, Abdeslam En-Nouaary, and Mohamed Dahchour. “Liveness
and reachability analysis of BPMN process models”. In: Journal of computing
and information technology 24.2 (2016), pp. 195–207.

[95] Zeineb Rejiba et al. “F2C-aware: Enabling discovery in Wi-Fi-powered fog-
to-cloud (F2C) systems”. In: 2018 6th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud). IEEE. 2018, pp. 113–
116.

[96] Pablo Rodriguez-Mier et al. “An integrated semantic web service discovery
and composition framework”. In: IEEE transactions on services computing 9.4
(2015), pp. 537–550.

[97] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited, 2016.

[98] Khouloud Salameh et al. “OntoH2G: A Semantic Model to Represent Build-
ing Infrastructure and Occupant Interactions”. In: Sustainability in Energy and
Buildings 2018: Proceedings of the 10th International Conference in Sustainability
on Energy and Buildings (SEB’18). Vol. 131. Springer. 2018, p. 148.

[99] Ivan Luiz Salvadori and Frank Siqueira. “A framework for semantic descrip-
tion of restful web apis”. In: 2014 IEEE International Conference on Web Services.
IEEE. 2014, pp. 630–637.

[100] Zhou Shao, David Taniar, and Kiki Maulana Adhinugraha. “Range-kNN queries
with privacy protection in a mobile environment”. In: Pervasive and Mobile
Computing 24 (2015), pp. 30–49.

[101] Amit P Sheth, Karthik Gomadam, and Jon Lathem. “SA-REST: Semantically
interoperable and easier-to-use services and mashups”. In: IEEE Internet Com-
puting 11.6 (2007), pp. 91–94.

172 BIBLIOGRAPHY

[102] Manu Sporny et al. “JSON-LD 1.0”. In: W3C Recommendation 16 (2014), p. 41.

[103] Jun Sun et al. “PAT: Towards flexible verification under fairness”. In: Interna-
tional Conference on Computer Aided Verification. Springer. 2009, pp. 709–714.

[104] Murata Tadao. “Petri nets: properties, analysis and applications”. In: Proceed-
ings of the IEEE 77.4 (1990).

[105] Maurice H Ter Beek, Antonio Bucchiarone, and Stefania Gnesi. “Formal meth-
ods for service composition”. In: Annals of Mathematics, Computing & Telein-
formatics 1.5 (2007), pp. 1–10.

[106] Baojun Tian and Yanlin Gu. “Formal modeling and verification for web ser-
vice composition”. In: Journal of software 8.11 (2013), pp. 2733–2738.

[107] Thanh Tung Tran. “Verification of timed automata: reachability, liveness and
modelling”. PhD thesis. Université de Bordeaux, 2016.

[108] Balaji Varanasi and Sudha Belida. “HATEOAS”. In: Spring REST. Springer,
2015, pp. 165–174.

[109] Ruben Verborgh et al. “Description and interaction of restful services for au-
tomatic discovery and execution”. In: 2011 FTRA International workshop on Ad-
vanced Future Multimedia Services (AFMS 2011). Future Technology Research
Association International (FTRA). 2011.

[110] Ruben Verborgh et al. “Survey of semantic description of REST APIs”. In:
REST: Advanced Research Topics and Practical Applications. Springer, 2014, pp. 69–
89.

[111] Tiziano Villa et al. Synthesis of finite state machines: logic optimization. Springer
Science & Business Media, 2012.

[112] Nikolaos S Voros, Wolfgang Mueller, and Colin Snook. “An Introduction to
Formal Methods”. In: UML-B Specification for Proven Embedded Systems Design.
Springer, 2004, pp. 1–20.

[113] Henry Vu, Tobias Fertig, and Peter Braun. “Verification of Hypermedia Char-
acteristic of RESTful Finite-State Machines”. In: Companion Proceedings of the
The Web Conference 2018. International World Wide Web Conferences Steering
Committee. 2018, pp. 1881–1886.

[114] Hongbing Wang et al. “Effective bigdata-space service selection over trust
and heterogeneous QoS preferences”. In: IEEE Transactions on Services Com-
puting 11.4 (2015), pp. 644–657.

[115] Jian Wang et al. “A web service discovery approach based on common topic
groups extraction”. In: IEEE Access 5 (2017), pp. 10193–10208.

[116] Lijuan Wang, Jun Shen, and Jianming Yong. “A survey on bio-inspired algo-
rithms for web service composition”. In: Proceedings of the 2012 IEEE 16th In-
ternational Conference on Computer Supported Cooperative Work in Design (CSCWD).
IEEE. 2012, pp. 569–574.

[117] Sanjiva Weerawarana et al. Web services platform architecture: SOAP, WSDL,
WS-policy, WS-addressing, WS-BPEL, WS-reliable messaging and more. Prentice
Hall PTR, 2005.

[118] Ian H Witten et al. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2016.

BIBLIOGRAPHY 173

[119] Xi Wu and Huibiao Zhu. “Formalization and analysis of the REST architec-
ture from the process algebra perspective”. In: Future Generation Computer
Systems 56 (2016), pp. 153–168.

[120] Xiaofei Xu et al. “Novel artificial bee colony algorithms for QoS-aware service
selection”. In: IEEE Transactions on Services Computing 12.2 (2016), pp. 247–
261.

[121] YanPing Yang, QingPing Tan, and Yong Xiao. “Verifying web services com-
position based on hierarchical colored petri nets”. In: Proceedings of the first
international workshop on Interoperability of heterogeneous information systems.
ACM. 2005, pp. 47–54.

[122] Ting Yuan et al. “Formalization and Verification of REST on HTTP Using
CSP”. In: Electronic Notes in Theoretical Computer Science 309 (2014), pp. 75–
93.

[123] Liangzhao Zeng et al. “QoS-aware middleware for web services composi-
tion”. In: IEEE Transactions on software engineering 30.5 (2004), pp. 311–327.

[124] Xia Zhao. “A linear logic approach to RESTful web service modelling and
composition”. In: (2013).

[125] Xia Zhao, Enjie Liu, and Gordon J Clapworthy. “A two-stage restful Web ser-
vice composition method based on linear logic”. In: 2011 IEEE Ninth European
Conference on Web Services. IEEE. 2011, pp. 39–46.

[126] Hao Zheng, Yixiong Feng, and Jianrong Tan. “A fuzzy QoS-aware resource
service selection considering design preference in cloud manufacturing sys-
tem”. In: The International Journal of Advanced Manufacturing Technology 84.1-4
(2016), pp. 371–379.

[127] Bowen Zhou et al. “A context sensitive offloading scheme for mobile cloud
computing service”. In: 2015 IEEE 8th International Conference on Cloud Com-
puting. IEEE. 2015, pp. 869–876.

[128] Ivan Zuzak, Ivan Budiselic, and Goran Delac. “A finite-state machine ap-
proach for modeling and analyzing restful systems”. In: Journal of Web En-
gineering 10.4 (2011), p. 353.

	Acknowledgements
	Abstract
	Introduction
	Context
	Insight on the Web Environment: Developments and Technologies
	Web Services
	Web of Things
	Smart Buildings: An Example of Web Connected Environments

	Service Oriented Architecture (SOA)
	SOA-based Project Examples in the Smart Buildings Domain

	Thesis Scope
	Collaboration
	Objectives

	Motivating Scenario and Research Challenges
	Proposal: StARC Framework
	Contributions and Publications
	Verification of Static Resource Composition
	Automatic Location-aware Resource Discovery
	Automatic QoR-based Resource Selection

	Report Organization

	Background
	Web Services: Technology and Semantics
	SOAP-based Services
	REST-based Services
	Semantic Web Languages
	RDF, RDF-S
	OWL
	JSON-LD Format

	Resource Description
	The Web Services Description Language (WSDL)
	The Web Application Description Language (WADL)
	Web Page Annotations-based Languages
	Hypermedia-based Languages
	Evaluation Summary

	Summary

	Verification of Static Resource Compositions Behavior
	Introduction
	Motivation and Problem Statement
	Related Work
	Petri Net-based Approaches
	FSM-based Approaches
	Linear Logic-based Approaches
	Process Algebra-based Approaches
	Semantic-based Approaches
	Verification of SOAP-based Services
	Evaluation Summary

	Preliminaries: Colored Petri Nets
	CPN-based Approach for RESTful Service Composition Verification
	General Overview
	Resource Generic Interface
	Colored Petri Nets-based Formal Composition Model
	Composition Behavioral Properties in CPN

	Experimental Illustration
	Developed Prototype
	Engines Specifications
	Modeling Engine
	Validation Engine
	Conversion Engine
	Execution Engine

	Data Model for RESTful Services
	Implemented APIs
	Tests
	Syntax Checking
	Behavior Properties Verification

	Summary

	Automatic Location-aware Resource Discovery for Hybrid Web Environments
	Introduction
	Motivating Scenario and Challenges
	Related Work
	Resource Description
	Resource Discovery
	Evaluation Summary

	Automatic Location-aware Approach for k-resources Discovery
	General Overview
	Static and Dynamic Resource-based Graph
	Indexing Schema for an Enhanced Resource Search
	Resources Discovery Process

	Evaluation and Discussion
	Environment Setups
	Scenario 1: Basic Search vs Enhanced Search Evaluation
	Scenario 2: Discovery Evaluation based on Resource Location

	Summary

	QoR-based Resource Selection for Hybrid Web Environments
	Introduction
	Motivation, Challenges and Needs
	Related Work
	QoS-based Approaches
	I/O similarities-based Approaches
	k-service Compositions Approaches
	Evaluation Summary

	A QoR-driven Resource Selection for i-compositions
	General Overview
	Preliminaries
	Formal modeling of a QoR-based Resource Graph
	Selection Strategy Adaptor for i-compositions

	Evaluation and Discussion
	Resource Selection Performance Evaluation
	Comparison with Existing QoS Models

	Summary

	Conclusion
	Recap
	Future Works
	Integrate the Static/Automatic Resource Composition in Real-world Environments
	Extend the Automatic Resource Discovery
	Improve the Automatic Resource Selection Performance
	Propose an Automatic Resource Orchestration Approach

	WSDL 2.0 Example
	WADL Example
	HAL Example
	SIREN Example
	MASON Example
	Resource Composition Modeling
	Hydra-based Composed Resource Description
	SIBEX Resource Description using Hydra
	Prototype APIs
	Comparative Results between DFS and BFS
	Hydra Vocabulary Extended
	Performance Evaluation of the Indexing Schema Construction
	Bibliography

