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patient data meta-analyses would help better assessing the effect of glucose control on macrovascular events. High-throughput genome sequencing technologies would help to identify both prognostic and theranostic biomarkers. Lastly, we proposed an extended version of the effect model, which allow to grasp the benefit-risk balance of a treatment, according to different biomarkers.

To conclude, assessing a mean and a stratified treatment effect should be conducted taking into account the global benefit-risk balance estimation.

RESUME

Défis de la médecine personnalisée basée sur les preuves, applications dans le diabète de type 2

La médecine basée sur les preuves requiert des essais cliniques randomisés, qui permettent d'estimer un effet moyen du traitement. La personnalisation de l'estimation de l'effet du traitement nécessite l'estimation du risque spontané de la maladie (biomarqueur pronostique), la recherche de facteurs modifiant l'effet du traitement (biomarqueur théranostique). Des critères de substitution sont également proposés, dont la mesure devrait permettre d'évaluer l'effet du traitement sur l'événement clinique. La prise en charge des patients présentant un diabète de type 2 repose sur les médicaments hypoglycémiants. Plusieurs d'entre eux ont été associés à différents effets indésirables graves. Des études évaluant leur bénéfice cardiovasculaire sont nécessaires. La prise en charge de ces patients inclue également la prise en charge de l'hypertension artérielle. Celle-ci est basée sur des médicaments antihypertenseurs, dont l'intensité est ajustée au niveau de pression artérielle recherché. Cette stratégie basée sur la cible soulève plusieurs questions. Enfin, plusieurs biomarqueurs prédictifs de différents effets des médicaments hypoglycémiants ont été étudiés chez des patients présentant un diabète de type 2, avec des résultats contrastés. Une difficulté majeure dans la validation de biomarqueur théranostique est la puissance statistique nécessaire pour détecter une interaction dans un essai clinique randomisé. L'objectif de cette thèse était d'estimer les effets moyens des traitements hypoglycémiants sur les complications cardiovasculaires ; d'évaluer un potentiel critère de substitution ; et d'étudier les caractéristiques des études cliniques évaluant des biomarqueurs théranostiques.

La première partie présente une méta-analyse en réseaux comparant les effets des hypoglycémiants contemporains chez des patients avec un diabète de type 2, sur la mortalité totale, cardiovasculaire et les évènements cardiovasculaires majeurs. Nous avons confirmé la supériorité des gliflozines et des agonistes du récepteur au GLP1 par rapport au traitement contrôle et aux inhibiteurs de la DPP4. Nous avons montré le besoin de comparaisons directes entre les différentes classes, notamment pour préciser la place de la metformine dans la stratégie thérapeutique. La deuxième partie présente une méta-régression évaluant l'association entre la diminution de la pression artérielle par des médicaments antihypertenseurs et les évènements cardiovasculaires majeurs. Nous avons confirmé la relation entre la baisse de la pression artérielle et le risque d'accident vasculaire cérébrale. Il n'y avait pas d'association avec la mortalité totale, la mortalité cardiovasculaire, les infarctus du myocarde. La troisième partie présente une comparaison statistique du plan expérimental en cross-over par rapport au plan en bras parallèle, concernant leur capacité à évaluer un marqueur théranostique. Nous avons montré que l'intérêt du cross-over, pour réduire le nombre de sujet nécessaire, dépend de la corrélation intra-sujet de la mesure du critère de jugement choisi, de façon similaire à l'estimation de l'effet propre du traitement.

Ce travail met en lumière le besoin de comparaisons des médicaments hypoglycémiants sur les complications cardiovasculaires, et la difficulté d'évaluer une balance bénéfice-risque d'un traitement. Des approches de méta-analyses sur données individuelles permettraient de mieux estimer l'impact du contrôle glycémique sur les complications cardiovasculaires. L'accès aux technologies de séquençage du génome à haut débit permettrait d'identifier des facteurs pronostiques et théranostiques. Finalement, nous proposons une extension du modèle d'effet, qui permet d'appréhender la balance bénéfice-risque d'un traitement en fonction de différents biomarqueurs.

L'évaluation d'un effet traitement moyen ou stratifié doit s'inscrire dans une vision globale de la balance bénéfice-risque du médicament concerné.

Mots clés

Médecine basée sur les preuves Médecine personnalisée Diabète de type 2 Pharmacologie clinique ABSTRACT Evidence based medicine requires randomized clinical trials for estimating a mean treatment effect. The personalization of this treatment effect needs prognostic biomarker for assessing the spontaneous risk of the disease and the absolute benefit of the treatment; and the search for potential theranostic biomarker, associated with a different relative treatment effect. Surrogate endpoints are also proposed, as their measure would reflect the treatment effect on the clinical outcome of interest. Taking care of patients with type 2 diabetes is based on hypoglycemic drugs. Several of them have been retrospectively associated with serious adverse events. They need to be assessed with cardiovascular outcome trials. Taking care of those patients also include handling other cardiovascular risk factor, as high blood pressure. Antihypertensive treatment is based on a "target to treat" strategy, which raise several questions. Finally, many theranostic biomarkers of the hypoglycemic drugs effect have been studied, with conflicting results. Statistical power is a high challenge in randomized trial looking for such interaction. We aimed to provide a mean treatment effect estimation of hypoglycemic drugs on cardiovascular outcomes and to explore potential tools for personalizing the treatment effect estimation.

The first part of this thesis reports a network meta-analysis assessing the contemporary hypoglycemic drugs in type 2 diabetes patients on overall mortality, cardiovascular mortality and major adverse cardiovascular events. We confirmed the superiority of SGLT2 inhibitors and of GLP1 receptor agonists compared to control and to DPP4 inhibitors. We also showed the need for direct comparison, especially for clarifying the position of metformin in the pharmacological strategy. The second part of this thesis reports a meta-regression analysis, assessing the association between the decrease in blood pressure through antihypertensive drugs and the risk of cardiovascular events. We confirmed the association between the blood pressure control and the risk of stroke, but did not find any association regarding overall mortality, cardiovascular mortality and myocardial infarction. The third part reports a statistical comparison of the parallel group design and the cross-over design, regarding their capacity to assess a potential theranostic biomarker. We showed that the advantage of the cross-over for reducing the sample size lead on the intra-subject correlation, as already known for estimating the treatment effect.

Finally, we highlighted the need for comparisons of hypoglycemic drugs for preventing macrovascular events. We emphasized pitfalls in estimating benefit-risk balance. Individual LIST OF FIGURES (Excluding figures included in articles and their supporting information) 
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SUBSTANTIAL FRENCH SUMMARY

La médecine basée sur les preuves permet de proposer au patient un traitement éprouvé.

L'établissement d'une causalité entre l'intervention thérapeutique et l'effet bénéfique recherché requiert des essais cliniques randomisés, qui permettent d'estimer un effet moyen du traitement.

La personnalisation de l'estimation de l'effet du traitement nécessite l'estimation du risque spontané de faire l'évènement clinique que l'on souhaite prévenir (biomarqueur 'pronostique'), la recherche de facteurs modifiant l'effet du traitement sur la survenu de cet événement clinique (biomarqueur 'prédictif' ou 'théranostique'). Des critères dit de substitution sont également proposés, dont la mesure devrait permettre d'évaluer l'effet du traitement sur l'événement clinique.

La prise en charge pharmacologique des patients présentant un diabète de type 2 repose sur les médicaments hypoglycémiants. L'efficacité des médicaments hypoglycémiants est initialement évaluée par leur effet hypoglycémiant, mais plusieurs d'entre eux ont par la suite été associés à différent effets indésirables graves. Ainsi, des études évaluant leur bénéfice cardiovasculaire sont nécessaires. De nombreux essais ayant été conduit avec différentes molécules, mais essentiellement sans comparateurs actifs, des approches de méta-analyse en réseau sont nécessaires pour obtenir une synthèse quantitative et comparative de leurs effets. La prise en charge des patients présentant un diabète de type 2 repose également sur la prise en charge des autres facteurs de risque cardiovasculaire, dont l'hypertension artérielle. La prise en charge de l'hypertension artérielle est basée sur des médicaments antihypertenseurs, dont l'intensité est ajustée au niveau de pression artérielle recherché. Cette stratégie basée sur la cible de pression artérielle soulève cependant plusieurs questions. Enfin, plusieurs biomarqueurs prédictifs de différents effets de traitement hypoglycémiants ont été étudiés chez des patients présentant un diabète de type 2, avec des résultats contrastés. Une difficulté majeure dans la validation de biomarqueur théranostique est la puissance statistique nécessaire pour détecter une interaction dans un essai clinique randomisé.

L'objectif de cette thèse était d'estimer les effets moyens des médicaments hypoglycémiants chez des patients ayant un diabète de type 2, sur les complications cardiovasculaires ; puis d'évaluer un potentiel critère de substitution utilisé dans cette population ; et enfin d'étudier les caractéristiques des études cliniques évaluant des biomarqueurs théranostiques de l'effet du traitement.

La première partie de cette thèse présente une méta-analyse en réseaux comparant les effets des hypoglycémiants contemporains sur la mortalité totale, cardiovasculaire et les évènements cardiovasculaires majeurs. Nous avons confirmé la supériorité des gliflozines et des agonistes du GLP1 par rapport au groupe contrôle et aux inhibiteurs de la DPP4. Nous avons également montré le besoin de comparaisons directes entre les différentes classes, notamment pour préciser la place de la metformine dans la stratégie thérapeutique par rapport aux gliflozines et agonistes du GLP1.

Cette partie est complétée d'une estimation de la balance bénéfice-risque d'une classe de médicament récents, les gliflozines, chez des patients présentant un diabète de type 2. Nous avons observé que, même en prenant en compte le risque d'amputation et le risque d'acido-cétose décrit avec ces médicaments, le bénéfice cardiovasculaire semblait rester cliniquement pertinent.

La deuxième partie de cette thèse présente une étude de méta-régression sur données agrégées, dont l'objectif était d'améliorer la caractérisation de l'association entre la diminution de la pression artérielle par des médicaments antihypertenseurs dans des essais cliniques randomisés et les évènements cardiovasculaires majeurs. Nous avons confirmé la relation entre la baisse de la pression artérielle et le risque d'accident vasculaire cérébrale, mais n'avons pas observé d'association pour les autres critères de jugements étudiés : la mortalité totale, la mortalité cardiovasculaire, les infarctus du myocarde.

La troisième partie de cette thèse présente une comparaison statistique du plan expérimental en cross-over par rapport au plan en bras parallèle, concernant leur capacité à identifier une interaction entre un marqueur théranostique et l'effet du traitement. Nous avons montré que l'intérêt du cross-over, pour réduire le nombre de sujet nécessaire, dépend de la corrélation intrasujet de la mesure du critère de jugement choisi, de façon similaire à l'estimation de l'effet propre du traitement. Cette partie inclue également une enquête de méta-recherche sur des études cliniques évaluant des biomarqueurs théranostiques pharmacogénétiques. Nous avons observé que les conclusions des études identifiées semblaient souvent excessives, au vu des méthodes rapportées.

Le travail de cette thèse a permis de mettre en lumière le besoin de comparaisons des effets des médicaments hypoglycémiants sur les complications cardiovasculaires. La difficulté d'évaluer la balance bénéfice-risque est également démontrée dans le contexte de différents médicaments hypoglycémiants. Des approches de méta-analyses sur données individuelles permettraient de mieux estimer l'impact du contrôle glycémique sur les complications cardiovasculaires. L'accès aux technologies de séquençage du génome à haut débit permettrait d'identifier des facteurs pronostiques et théranostiques, mais cela nécessite de contrôler non seulement les biais internes aux études mais également ceux liés à leur publication. Finalement, nous proposons une extension du modèle d'effet, permettant d'appréhender la balance bénéfice-risque d'un traitement en fonction de différents biomarqueurs.

Proposer une prise en charge personnalisée et fondée sur les preuves aux personnes présentant un diabète de type 2 reste un exercice difficile dans la pratique clinique quotidienne.

L'évaluation d'un effet traitement moyen ou stratifié à l'aide de biomarqueurs doit s'inscrire dans une vision globale de la balance bénéfice-risque du médicament concerné.

INTRODUCTION

The Evidence Based Medicine Claude Bernard already discussed, in 1865, the necessity to assess the efficacy of a treatment using experimental approaches [1]. Indeed, the recovery could be the simple natural evolution of a disease, and thus is not sufficient itself to prove the benefit of a treatment.

Assessment of a causality, for a treatment effect (TE) but also for epidemiology, requires a highly rigorous approach, as proposed in 1965 by Austin Bradeford Hill [2]. Since the first randomized trial in 1948 [3], the implementation of more and more comparative trials lead to the shift toward the evidence based medicine (EBM) paradigm [4].

Observational studies are prone to bias [5,6]. Empirical examples illustrate false positive conclusions regarding treatment effect through epidemiological studies, eventually invalidated by randomized clinical trial (RCT) [7]. RCTs allow to estimate the TE with a low risk of bias, and to infer causality [8]. The randomization allows to allocate the treatment independently of the subject and/or the care giver, in order to avoid confusion bias. Meta-epidemiological studies have showed the importance of the random allocation -and its quality-of the treatment in trial, and of the blinding, for avoiding bias in TE estimation [9,10]. Moreover, the use of a placebo, when possible, and the double blinding allow to avoid the placebo (and the nocebo) effect, and the intention to treat analysis allow to avoid the attrition bias, for example. However, RCTs also can be misleading.

Their evidence is limited to the studied population. As any inference process, they are subject to risk of false positive results, and to false negative results. In the last decades, number of publications of RCTs has increased exponentially, leading to evidence synthesis issues.

The systematic review and meta-analysis (MA) approach help to summarize the available evidences. They also help to quantify the TE estimation, and in more diversified treated population.

However, MA approaches also have their own limitations. The publication bias, which has been documented early [11], can lead to erroneous TE estimation [12]. The underlying hypothesis of a homogeneity of the TE across the included trials must also be assessed, and the statistical analysis should take into account the precision of the TE estimate from each trial [13]. MA were initially limited to the comparison of two kind of interventions, which needed to have been directly compared in RCTs, in a "head to head" fashion (direct comparison). Then, indirect comparison using a common comparator allow to develop mixed treatment comparison [14] and finally network meta-analysis (network MA) [15], allowing to compare multiple treatments at the same time. The figure 1 illustrates the principle of adjusted indirect comparison [14]. Those new approaches can help for estimating TE, but several conditions should be assessed. For example, it is of particular importance to verify the consistency between the direct comparison and the indirect comparison [16].

RCTs and MAs allow to estimate TE with a low risk of bias and improved precision. They are helpful for assessing beneficial effects, whose impact can be assessed on a priori defined outcomes, with enough statistical power. However, the TE estimation regarding the risk of adverse drug reaction (ADR) remains an issue: RCTs often lack of power for rare ADR, and as those are usually not the primary endpoint, the alpha risk is not controlled for multiple testing. Several frameworks help integrating the estimation of both the benefit and the risk of a treatment [17][18][19]. The assessment of the TE is based on the rejection of the null hypothesis of the absence of effect. Large group of subjects are needed to decrease the confidence interval of the TE estimation and to obtain enough statistical power for testing the a priori hypothesis. Indeed, the biological variability should be contained, in order to obtain a reliable TE estimation. Thus, estimation of the TE through RCT and MA is based on the averaging of the TE across large group of subjects and provide "only" a mean (with its confidence interval) of the TE, ignoring the heterogeneity of the TE [20] (see figure 2). Then, much criticisms haven been raised against EBM, for not taking into account the individual characteristics [21][22][23]. Austin Bradford Hill itself already stated that if RCT are helpful for determining the better treatment on average, they are limited for helping to choose a specific treatment for a specific subject [24].

Figure 2. Distribution of treatment effects across subjects in a hypothetical population, adapted

from Kravitz et al [20]. The X-axis represents the treatment benefit (arbitrary value). The mean treatment effect is indicated by the vertical green bar. Subjects to the right of the green bar derive a benefit greater than average, while those to the left derive less than an average benefit. Subjects in the red area even derive no effect from the treatment.

However, the EBM did not neglect to take into account the inter individual variability. First, its early definition includes "integrating individual clinical expertise and the best external evidence", as "even an excellent external evidence may be inapplicable to or inappropriate for an individual patient" [25]. The integration of both the research evidence, the clinical circumstances and the patient's preference were summarized in a now famous Venn Diagram, by Haynes et al.

[26] (Figure 3). Moreover, there is a growing area of research concerned about TE heterogeneity (HTE for Heterogeneity of TE) and personalized EBM [27,28].

Figure 3. A model for evidence based clinical decisions, adapted from Haynes et al [26] Biomarker and personalized estimation of a treatment's effect

In the last years, several definitions of the term "biomarker" have been proposed [29]. In 2001, the Biomarkers Definitions Working Group convened by the National Institutes of Health of the United States (U.S.) defined the biomarker as "A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention" [30]. The actual definitions used by the European Medicines Agency (EMA) is relatively large ("A biological molecule found in blood, other body fluids, or tissues that can be used to follow body processes and diseases in humans and animals") [31]. According to the U.S. Food and Drug Administration (FDA), a biomarker can be understood as any type of measure (molecular, histologic, radiographic, or physiologic) as an indicator of a biological process, but "is not an assessment of how an individual feels, functions, or survives" [32]. The Institute of Medicine (U.S.) proposed a three step approach to evaluate biomarker: i) assessment of the analytical performance ("Analytical Validation"); ii) assessment of the association with the clinical outcome/the disease ("Qualification"); and iii) assessment of its use in a specific context ("Utilization ") [33]. Biomarkers can be associated with i) the present state of the patient (« diagnostic biomarker ») and two future state of the patient: ii) the natural evolution of a subject and/or its disease (« prognostic biomarker »); and iii) the response to the treatment (« predictive biomarker » or « theranostic » biomarker or « effect modifier ») [34].

Personalization according to the spontaneous risk, prognostic biomarker

The benefit of a treatment is often expressed on the relative scale: risk ratio (RR), odds ratio (OR) or hazard ratio (HR). Those measures are helpful to pool the estimation of the TE from different trials. However, they do not take into account the spontaneous risk of the patient to develop the disease or the outcome of interest. Absolute measures of the TE, as the absolute risk reduction (ARR), or the Number needed to treat (NNT), allow to reflect the benefit of the treatment according to the patient risk [35]. The absolute measures of the TE should be expressed within the context of a defined time-lapse [36]. ARR and NNT are especially relevant for applying TE from RCT to individual patient encountered in the clinical practice [37]. Indeed, a high heterogeneity in the spontaneous risk of the outcome of interest in clinical trials samples has been observed using multivariable prediction tool [37]. Prognostic biomarkers can help to determine the prognostic of a patient, and therefore estimating the absolute benefit that could be expected from the treatment.

Prognostic biomarkers can be identified in retrospective studies, but prospective studies and replication are needed for their validation [34]. The concept of the "effect model" refers to the relationship between the risk of an outcome of interest under treatment, as a function of its spontaneous risk, as proposed by Boissel et al. [38]. L'Abbé et al. originally used this approach to explain heterogeneity between trial results [39]. Lubsen and Tijssen extended it with the integration of a constant risk of harm, to illustrate the net benefit from a treatment [40] (see figure 4). This allows for example to choose a threshold for treating or not a patient, according to its specific risk of the disease versus the risk of a drug adverse event [41,42]. The model was extended to integrate different risk of harm for individualizing the treatment indications [43,44]. Since then, several examples are available, illustrating the interest of taking into account the heterogeneity of the spontaneous risk of the outcome when assessing the treatment's benefit [28]. The estimation of the spontaneous risk of outcome can be modelled using multivariate models. To stratify the subjects included in their trial, Thune et al. used a prognostic score integrating the value of a dozen of clinical and/or electrocardiographic parameters [45]. They observed no benefit of the tested invasive strategy with primary angioplasty in the subjects identified as low risk by the prognostic score, but a significant decrease of mortality in the high-risk patients [45]. Prognostic score can also be modelled using omics data [46]. Similarly, prognostic score can be used for exploring the heterogeneity in risk of event which could be increased by the treatment. In a trial assessing dual antiplatelet therapy after percutaneous coronary intervention, Costa et al. stratified the population according to their bleeding risk, using a simple five variable risk score [47]. They observed an important change in the harm-benefit balance of the intervention [47]. Finally, two scores can be used to stratify patients both for the risk of a efficacy endpoint and for the risk of a safety endpoint [48,49]. Personalization according to the treatment's response, predictive / theranostic biomarker Heterogeneity of the TE usually reflects the modification of the TE on the relative scale, i.e. a different RR/HR/OR. Some authors refer to HTE on both the relative and the absolute scales [28].

We focus on effect modifier of the TE on the relative scale. If observational longitudinal cohorts of treated patients are adapted for claiming a prognostic biomarker, the demonstration of a theranostic value of a biomarker include its « effect modifier » characteristics, i.e. to demonstrate the interaction between the biomarker and the treatment effect. Such predictiveness of the treatment's effect would allow to identify which patient will benefit from the treatment. True « predictive » biomarker need rigorous experimental design to be claimed. Biomarkers are still often called « predictive » of the treatment effect, whenever they have been assessed in « treatment only » cohort [50]. At first, candidates could be identified in sub-group analysis of RCTs. However, sub-groups analyses are prone to false results (see following section). Then, the predictive value of the selected candidate should be validated in a « interaction trial », i.e. in an RCT in which the randomization is stratified according to the status of the biomarker [34]. Then, the treatment effect can be compared across the group of biomarker's statuses, to show the presence of a treatment effect in one group but not in the other. The example of ERCC1 (ERCC excision repair 1, endonuclease non-catalytic subunit) reminds the importance of the validation of the interaction through a stratified RCT. Briefly, several studies suggested that the tumoral expression of ERCC1 was a marker of efficacy of platinum-based chemotherapy in non-small cell lung cancer, but without using a stratified design [51]. Eventually, a stratified RCT was conducted, and did not observe any predictive value of this biomarker, whenever the tested treatment showed clinical benefit [52]. Indeed, such biomarker candidates should be confirmed -or refuted-with high level of proof, for avoiding potentially dramatic therapeutic abstention. However, this stringency brings sample size issues, as already described in the parallel group design [53,[START_REF] Reichmann | Impact of misspecifying the distribution of a prognostic factor on power and sample size for testing treatment interactions in clinical trials[END_REF].

Finally, one could model together the prognostic risk and integrate interaction terms with treatment effect [START_REF] Farooq | Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II[END_REF]. The SYNTAX trial compared two revascularization strategies. A risk score of the outcome of interest was modelled using eight variables as both prognostic variables and effect modifiers (in treatment interaction terms). Stratification using this score displayed important differences in TE [START_REF] Farooq | Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II[END_REF]. This could allow to target the most favorable treatment, according to the expected benefit and harm.

Regarding both prognostic and theranostic biomarkers, specific randomized trials assessing their clinical utility could be important for validation. The pharmacogenetic testing for warfarin dosing illustrates the difficulties for showing clinical utility [START_REF] Stergiopoulos | Genotype-guided vs clinical dosing of warfarin and its analogues: meta-analysis of randomized clinical trials[END_REF]. On the other hand, the predictive effect of the HLA-B*5701 genetic variant for hypersensitivity reaction to Abacavir illustrates a clear success in validating a clinical useful theranostic biomarker [START_REF] Mallal | HLA-B*5701 screening for hypersensitivity to abacavir[END_REF]. However, true biomarkers could fail to demonstrate a clinical utility if for example they are very rare in the studied population.

More research are needed in the exploration and validation of biomarker [34].

We did not discuss the targeted therapy. As they have been developed to treat a specific pathophysiological mechanism, the mutation they target are expected to be predictive of the TE.

However, the SHIVA trial failed to show a benefit when personalizing the treatment according to tumor molecular profiling, but outside their indications [START_REF] Tourneau | Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, openlabel, proof-of-concept, randomised, controlled phase 2 trial[END_REF]. Figure 5 (5.A and 5.B) summarizes different experimental designs and their interpretations. Warning about the sub-group analyses Sub-group analysis can be helpful for identifying biomarker, whose are needed for stratifying the patients, both for the spontaneous risk and/or the response to the treatment. Once a trial is conducted, sub-group are easily made, and can lead to new hypothesis. Such analyses are widely reported in clinical trials. However, sub-group analyses are at high risk of false positive results, through multiple testing without adjustment. Thus, most positive exploratory sub-groups analyses are false [28]. Positive confirmatory sub-groups are often overestimated [28]. Sub-groups analyses are prone to false negative results as well. Indeed, when a sub-groups analysis did not show any difference in TE, this would likely be because of a lack of statistical power for testing interaction [53]. Sub-groups analysis suggesting no TE in a particular population can lead to wrong therapeutic abstention [START_REF] Rothwell | Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation[END_REF]. Sub-groups analyses are also prone to spin of conclusion [START_REF] Wallach | Evaluation of Evidence of Statistical Support and Corroboration of Subgroup Claims in Randomized Clinical Trials[END_REF]. Some authors suggest to abandon "one-variable-at-a-time" sub-groups analysis, and move towards multiple variables risk model [28]. Finally, the research for biomarker should also fit in the hypothetico-deductive approach.

Personalization according to the treatment's response, surrogate endpoint A surrogate endpoint is a specific kind of biomarker: the effect of an intervention should be similar on the surrogate as on the clinical outcome of interest [START_REF] Ciani | Time to Review the Role of Surrogate End Points in Health Policy: State of the Art and the Way Forward[END_REF]. The FDA defines it as "a substitute for a direct measure of how a patient feels, functions, or survives. A surrogate endpoint

[…] is expected to predict that clinical benefit." [62]. Surrogate endpoint can be very helpful by reducing the sample size in early phase of drug development. However, careful examination of their validity in predicting the clinical benefit is highly needed. Many historic examples are available for illustrating failure in drug's evaluation because of false surrogate endpoints [START_REF] Fleming | Surrogate end points in clinical trials: are we being misled?[END_REF]. The figure 6, adapted from Fleming et al, illustrates the reasons for failure of surrogate endpoints [START_REF] Fleming | Surrogate end points in clinical trials: are we being misled?[END_REF].

Indeed, surrogate can be falsely negative, when the clinical outcome is in fact improved by the treatment, through another pathway [START_REF]A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group[END_REF]. But more importantly, several historic examples showed a well impact on the surrogate, but a negative effect, i.e. harmful, on clinical outcomes. After a myocardial infarct, a correlation was found between ventricular arrythmia and the risk of death.

Therefore, anti-arrhythmic drugs were widely prescribed in those patients: through their effect on ventricular arrythmia, they were supposed to be beneficial regarding mortality. Actually, the CAST trial eventually revealed their lethal effect in this population [START_REF] Echt | Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial[END_REF]. intervention in a given clinical situation, and cannot be extrapolated to another intervention [START_REF] Fleming | Biomarkers and surrogate endpoints in clinical trials[END_REF].

Moreover, assessing a treatment with a surrogate could be associated with an overestimation of the effect size of the TE [START_REF] Ciani | Comparison of treatment effect sizes associated with surrogate and final patient relevant outcomes in randomised controlled trials: meta-epidemiological study[END_REF]. In the oncologic area, it has recently been showed that most clinical trials evaluating surrogate found low correlation with survival [START_REF] Prasad | The Strength of Association Between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses[END_REF]. Finally, surrogacy imputation remains a current issue [START_REF] Buyse | Statistical evaluation of surrogate endpoints with examples from cancer clinical trials[END_REF]. Table 1. Hierarchy of evidence for surrogate end point validity, adapted from Ciani et al [START_REF] Ciani | Time to Review the Role of Surrogate End Points in Health Policy: State of the Art and the Way Forward[END_REF].

Furthermore, a recent epidemiological approach appears to be helpful for testing surrogacy [START_REF] Ference | Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel[END_REF][START_REF] Li | Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies[END_REF]. The Mendelian randomization use the hazard of the genetic distribution during the meiosis for providing robust information when assessing causality, like a 'natural randomization', under several hypotheses [START_REF] Smith | Mendelian randomization: genetic anchors for causal inference in epidemiological studies[END_REF]. Briefly, it searches for a relationship between a genetic factor and a clinical LDL targets [START_REF] Mach | ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk[END_REF]. First, many different approaches consistently showed the LDL as causal in CV disease, as mendelian randomization study [START_REF] Ference | Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis[END_REF]. Moreover, individual patient data meta analyses (IPD MA) confirmed a dose-dependent reduction in cardiovascular (CV) events with LDL lowering agents [START_REF] Treatment Trialists | Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials[END_REF], and the surrogacy of LDL has been documented [START_REF] Johnson | LDL-cholesterol differences predicted survival benefit in statin trials by the surrogate threshold effect (STE)[END_REF]. Finally, an individual variability in the LDL response to dietary and pharmacological treatments has been observed. Then, using LDL target would help to individualize the CV risk reduction [START_REF] Mach | ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk[END_REF]. However, pursuing a 'target to treat' raises several practical concerns for the physician. Would the physician treat a patient stratified at high risk of complications, but exhibiting otherwise a level of the surrogate endpoint at the recommended target? If a patient treated with the validated drug and dose appears to be below the target, should the physicians decrease the treatment, even if the lower dose has not been validated for reducing clinical outcomes? What are the adverse effects when the patient himself/herself show high stringency to get the lower he/she could, or display culpability and/or anxiety because he/she fell, he/she fails to reach the recommended number? Furthermore, the choice of the target itself raises several issues. Should an absolute value be used, as in the European guidelines [START_REF] Mach | ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk[END_REF], or a relative value of the reduction, as in the U.S guidelines [START_REF] Grundy | AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines[END_REF]? Even with the same scale, different guidelines recommend different absolute value [START_REF] Mach | ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk[END_REF][START_REF] Grundy | AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines[END_REF]: how to decide the optimal goal, how far should we get? Moreover, the European guidelines acknowledge themselves that "RCTs have not examined different LDL-C goals systematically, but felt that it was appropriate to look at the totality of the evidence" [START_REF] Mach | ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk[END_REF]. However, using extrapolation for assessing potential benefit expose the patient to an unknown -and potentially higher-risk of adverse event, which could negative the benefit-risk balance, as we will see in the following section, applied to type 2 diabetes. The question of the blood pressure level as a target is addressed in the article constituting the second part of this thesis.

EBM and personalized medicine in type 2 diabetes Pharmacology of type 2 diabetes and EBM Type 2 diabetes (T2D) is a public health issue. Its incidence is dramatically increasing in the world, from around 100 million people in 1980 to around 400 million in 2014 [START_REF]Newsroom/Fact sheets/Detail/Diabetes[END_REF]. This metabolic disease is characterized by hyperglycemia, as a consequence of a functional impairment in insulin secretion, insulin action or both [START_REF] Diabetes | Diagnosis and classification of diabetes mellitus[END_REF]. Its complex physiopathology implicates both genetic and environmental risk factors [START_REF] Stumvoll | Type 2 diabetes: principles of pathogenesis and therapy[END_REF]. Long term hyperglycemia is associated with an increased risk of micro-and macrovascular outcomes [START_REF]Newsroom/Fact sheets/Detail/Diabetes[END_REF]. Its management includes lifestyle health care, hypoglycemic treatment, control of other CV risk factors, weight loss medications and metabolic surgery [START_REF] Davies | Management of Hyperglycemia in Type 2 Diabetes[END_REF]. Up to now, the use of hypoglycemic drugs was justified regarding their effect on glycemic control. Many hypoglycemic drug classes are now available and can be classified according to their mechanism of action, as illustrated in figure 7. Metformin, the only biguanide available, represent the first line therapy for T2D [START_REF] Davies | Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)[END_REF]. Metformin decrease the insulinresistance, especially through its reduction of hepatic glucose production. Lactic acidosis is its more feared side effect; therefore, metformin is contraindicated in case of organ insufficiency. The other insulin-sensitizers are the thiazolidinediones (TZD, or glitazones): the rosiglitazone and the pioglitazone. They act as agonist of the Peroxisome Proliferator-Activated Receptors-gamma (PPAR-gamma) transcription factor. On another side, the incretinomimetics, named after the incretin effect, increase the secretion of insulin, but in a glucose dependent manner. They are represented by oral drugs, the DiPeptidyl Peptidase-4 inhibitors (DPP4 inhibitors), and injectable medications, the Glucagon Like Peptide 1 receptor agonists (GLP1 receptor agonists). Other insulin secretagogues are the sulfonylureas and the glinides, but they act independently of the available glucose. Then, they particularly exposed the patient to the risk of hypoglycemia and weight gain, as do the insulin analogs. Two other hypoglycemic drugs act on the input and the output of glucose:

the alpha glucosidase inhibitors decrease the intestinal absorption of glucose, and the Sodium-Glucose cotransporter 2 inhibitors (SGLT2 inhibitors) increase its renal excretion. Other drug classes are also available, depending on the country (Bile acid sequestrants, Dopamine-2 agonists).

The history of hypoglycemic drugs is full of illustrations of the need for EBM. Cardiovascular diseases remain the leading cause of death in people with DT2 [START_REF] Davies | Management of Hyperglycemia in Type 2 Diabetes[END_REF]. Thus, we focused here on the effect of glucose lowering drugs on prevention of macrovascular complications. However, assessing their effect on microvascular complications also is a matter of interest. Coca et al. showed that intensive glucose control was associated with a decreased risk of micro-and macroalbuminuria, but evidences regarding clinical renal outcomes (end stage renal disease, …) were lacking [START_REF] Coca | Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes[END_REF]. However, recent data suggests nephroprotection properties of the last hypoglycemic drug classes [START_REF] Garcia-Carro | The New Era for Reno-Cardiovascular Treatment in Type 2 Diabetes[END_REF], especially SGLT2 inhibitors [START_REF] Garofalo | SGLT2 Inhibitors: Nephroprotective Efficacy and Side Effects[END_REF] and GLP1 receptor agonists [START_REF] Kristensen | Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[END_REF]. Regarding the risk of retinopathy, Tang et al. recently observed an association between the decrease in glycated hemoglobin (HbA1c) and the risk of retinopathy in a meta-regression of RCT [START_REF] Tang | Comparisons of diabetic retinopathy events associated with glucoselowering drugs in patients with type 2 diabetes mellitus: A network meta-analysis[END_REF]. They also observed an increased risk of retinopathy with sulfonylureas compared to placebo and SGLT2 inhibitors using a network meta-analysis of RCT [START_REF] Tang | Comparisons of diabetic retinopathy events associated with glucoselowering drugs in patients with type 2 diabetes mellitus: A network meta-analysis[END_REF]. At last, evidence regarding neuropathy are still lacking [START_REF] Zoungas | Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials[END_REF].

During the 1960s, the UGDP trial [START_REF] Cornfield | The University Group Diabetes Program. A further statistical analysis of the mortality findings[END_REF] was one of the first RCTs conducted [START_REF] Blackburn | The University Group Diabetes Program 1961-1978: pioneering randomized controlled trial[END_REF]. Two decade before the CAST trial, the UGDP already illustrated the danger of intermediate endpoint.

Tolbutamide and phenformin were largely prescribed, as benefits were expected regarding their effect on blood glucose level. However, the UGDP trial showed an increased in mortality for both of them. A scientific debate has been ongoing for years, regarding the methodological toolinnovative at this time-as 'intention to treat' analysis they used, and the impact of disequilibria in baseline characteristics despite randomization [START_REF] Cornfield | The University Group Diabetes Program. A further statistical analysis of the mortality findings[END_REF][START_REF] Kilo | The crux of the UGDP. Spurious results and biologically inappropriate data analysis[END_REF]. Those unexpected results lead to a huge health scandal, even reaching the Supreme Court of the United States of America [START_REF] Blackburn | The University Group Diabetes Program 1961-1978: pioneering randomized controlled trial[END_REF]. Both tolbutamide and phenformin were eventually withdraw from the market.

In 1976, a few years after the release of the UGDP trial, the benfluorex obtained a market authorization in France, as add on therapy for hyperlipidemia and for diabetes with obesity [START_REF] Mullard | Mediator scandal rocks French medical community[END_REF].

Indeed, the appetite suppressant properties of this amphetamine derivative was used as weight control treatment, also in an off-label fashion. Already in 1996, an increased risk of pulmonary hypertension was observed with other amphetamine related weight control drugs, fenfluramine [START_REF] Abenhaim | Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group[END_REF], leading to its removal. However, the benfluorex remained on the market. Another decade after, Frachon et al showed an increase in risk of unexplained valvular heart disease associated with the use of benfluorex in a case control study [START_REF] Frachon | Benfluorex and unexplained valvular heart disease: a case-control study[END_REF]. Finally, three decades after its authorization, the benfluorex was withdrawn in France [START_REF] Mullard | Mediator scandal rocks French medical community[END_REF]. As benfluorex and fenfluramine, other drugs seem to cause valvular heart disease through their agonist action on 5-HT2B serotoninergic receptors [START_REF] Szymanski | Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group[END_REF].

In 1998, the UKPDS 34 trial found a decrease in the risk of death associated with the use i.e. accepting an increase in risk of MACE of 80% compared to placebo, as "safe". Fortunately, most of those trials were also powered enough for testing superiority.

Since 2015, the last hypoglycemic drugs, the SGLT2 inhibitors and the GLP1 receptor agonists, eventually showed clinical benefits on macrovascular events in RCTs [105-107]. The first article included in this thesis and its protocol (Appendix 1) summarize the recent developments in CVOT of hypoglycemic drugs and their meta-analyses. Finally, the assessment of the intensification of glycemic control with recent RCTs (ACCORD, ADVANCE and the VADT trials)

[108-110], highlighted the necessity of personalizing the glycated hemoglobin (HbA1c) target according to the patient.

Personalizing health care in type 2 diabetes

International guidelines of T2D management include more and more personalized perspective [START_REF] Davies | Management of Hyperglycemia in Type 2 Diabetes[END_REF]111]. First, the clinical characteristics of the patient should be considered for proposing a tailored care [START_REF] Davies | Management of Hyperglycemia in Type 2 Diabetes[END_REF]. Indeed, patients with previous CV disease especially will benefit from SGLT2 inhibitors and/or GLP1 receptor agonist. If the patient is fragile regarding the risk of hypoglycemia, incretin, SGLT2 inhibitor or TZD, if available, should be considered. If the need of the patient is to control or to lose weight, GLP1 agonist or SGLT2 inhibitor will be helpful. Socioeconomic arguments are also relevant, depending on the country, and can lead to prefer sulfonylurea or TZD [START_REF] Davies | Management of Hyperglycemia in Type 2 Diabetes[END_REF]. Finally, a new debate arise regarding the respective place of metformin and SGLT2 inhibitors or GLP1 receptor agonist, with conflicting recommendations [START_REF] Davies | Management of Hyperglycemia in Type 2 Diabetes[END_REF]111]. The personalized HbA1c target will be discussed in the surrogate section.

Prognostic factor for personalizing treatment in type gastrointestinal adverse effects of metformin, the CYP2C9 with the risk of hypoglycemia when using sulfonylureas. However, the available evidence for pharmacogenomics of ADR in T2D

remains restricted [125]. Finally, the level of evidence for assessing effect modifier of hypoglycemic drugs remains limited.

Surrogate in type 2 diabetes

At last but not least, HbA1c is used as a surrogate for personalizing diabetes care. The last European guidelines recommend to differentiate HbA1c target according to the patients characteristics, for example from "6.0-6.5%" in young people with a recent DT2 and no CV disease-"if achieved without significant hypoglycemia"-, to 8 even 9% in elderly patients with 

PROBLEMATIC AND OBJECTIVE

Personalized and evidence-based medicine in type 2 diabetes remains a challenge. We aimed to provide a mean treatment effect estimation of hypoglycemic drugs on cardiovascular outcomes; and exploring potential tools for personalizing the treatment effect estimation. This thesis is structured in three parts: i) estimating a mean TE, ii) assessing a surrogate, iii) evaluating trials designed for effect modifier assessment. We worked at a meta-research level and at a clinical trial level.

Several hypoglycemic drugs are now available, with different level of proof of their efficacy on CV outcomes. However, how they compared to each other remain unclear. We aimed to provide a global assessment of each contemporary hypoglycemic drug classes. Using all the available evidence through a network meta-analysis approach would help to estimate the mean TE of each hypoglycemic drug classes, compared to control and to each other. This part is presented in the first published article of the thesis. This part is completed by an assessment of the benefit-risk balance of the SGLT2 inhibitors.

Taking care of patient with T2D include taking care of the other CV risk factor. High blood pressure (BP) remains an issue in patients with T2D, with conflicting recommendations regarding the level of BP to target. We aimed to update and extend the characterization of the relationship between BP control and CV outcomes in T2D. Using all the available evidence through a metaregression analysis approach would help to assess a surrogate endpoint at a meta level. This part is presented in the second published article of this thesis.

Finally, identification of theranostic biomarker in clinical trial is highly limited by the need for statistical power to detect such interaction. Power of sub-group analyses is already well described for parallel group (PG) design. Pros and cons of cross-over (CO) design compared to parallel group is already well known for estimating the TE. We aimed to assess the pros and cons of the CO design compared to the PG design for testing such theranostic biomarker. This part is presented in the third published article of this thesis. This part is completed by a short metaepidemiological survey assessing the reporting in pharmacogenetic studies.

FIRST PART.

MEAN TREATMENT EFFECT ESTIMATION OF HYPOGLYCEMIC DRUG CLASSES

The first part is divided in two sections.

In the first section, we applied state of the art meta-analytic approach to take into account all the available evidence for comparing several drug classes, i.e. a network meta-analysis, which help to integrate both direct and indirect comparisons. Applying this tool to hypoglycemic drug classes, it allows us to provide mean TE estimation for different outcomes of interest:

-Efficacy and safety outcomes: 

o

RESEARCH ARTICLE

GLUcose COntrol Safety & Efficacy in type 2 DIabetes, a systematic review and NETwork meta-analysis were overall mortality, cardiovascular mortality, and MACE. Severe adverse events and severe hypoglycemia were also recorded. 175,966 patients in 34 trials from 1970 to 2018 were included. No trials evaluating glinides or alpha glucosidase inhibitors were found. 17 trials included a majority of patients with previous cardiovascular history, 16 trials a majority of patients without. Compared to control, SGLT-2 inhibitors were associated with a decreased risk of overall mortality (OR = 0.84 [95% CrI: 0.74; 0.95]), SGLT-2 inhibitors and GLP-1 agonists with a decreased risk of MACE (OR = 0.89 [95% CrI: 0.81; 0.98] and OR = 0.88 [95% CrI: 0.81; 0.95], respectively). Compared to DPP-4 inhibitors, SGLT-2 inhibitors were associated with a decreased risk of overall mortality (OR = 0.82 [95% CrI: 0.69; 0.98]), GLP-1 agonists with a decreased risk of MACE (OR = 0.88 [95% CrI: 0.79; 0.99]). Insulin was also associated with an increased risk of MACE compared to GLP-1 agonists (OR = 1.19 [95% CrI: 1.01; 1.42]). Insulin and sulfonylureas were associated with an increased risk of severe hypoglycemia. In the trials including a majority of patients without previous CV history, the comparisons of SGLT-2 inhibitors, metformin and control did not showed significant differences on primary outcomes. We limited our analysis at the therapeutic class level.

Introduction

Type 2 diabetes (T2D) is a public health issue, with a dramatically increasing incidence in the world. Cardiovascular diseases (CVD) are the main cause of mortality in T2D patients. Many hypoglycemic drugs are currently available; their benefits have been evaluated with conflicting results. Network meta-analysis allows several treatments to be compared through direct and indirect comparisons. Previous network meta analyses on hypoglycemic drugs were focused on intermediate outcomes, such as glycated hemoglobin (HbA1c), or did not compare the effect of the drugs on mortality or major adverse cardiovascular events (MACE) in the absence of data [1]. Since then, new clinical trials assessing SGLT-2 inhibitors or GLP-1 receptor agonists showed promising results on mortality or on cardiovascular outcomes (EMPARE-G-OUTCOME [2], CANVAS-Program [3], LEADER [4], SUSTAIN-6 [5]), allowing Zheng et al to show a lower mortality rate with SGLT-2 inhibitors or GLP-1 receptor agonists compared to control or DPP-4 inhibitors, mainly in secondary cardiovascular prevention [6]. The last international consensus recommends SGLT-2 inhibitors or GLP-1 receptor agonists for patients with clinical cardiovascular disease; metformin remains the first-line therapy for glucose lowering medication [7]. However, the last cardiovascular outcome trial assessing a GLP-1 receptor agonists did not showed a decreased risk of overall mortality [8]. Following the recently published DECLARE TIMI 58 trial [9], a meta-analysis suggested a potential benefit of SGLT-2 inhibitors in primary cardiovascular prevention, but did not include GLP-1 receptor agonists or metformin [10]. Most of hypoglycemic drugs have not been directly compared in head to head clinical trials. Up to now, no comparison of all the new and the old hypoglycemic drugs is available on major cardiovascular outcomes. The purpose of this study was to compare all the currently available hypoglycemic drug classes on major adverse cardiovascular events (MACE) and on mortality in patients with T2D, through a network meta-analysis approach of randomized clinical trials.

Protocol registration number

PROSPERO CRD42016043823

Methods

Methods have been previously described [11]. This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and its extension for reviews incorporating network meta-analyses (S1 Fig) [12].

Search strategy and selection criteria

Randomized clinical trials (RCTs), double-blind or open, including patients with type 2 diabetes, evaluating a specific contemporary hypoglycemic drug through clinically relevant outcomes (as primary or secondary outcomes) have been included. Clinically relevant outcomes considered here were: overall mortality, cardiovascular mortality, MACE (myocardial infarction-MI-, acute coronary syndrome, or stroke) and diabetic microangiopathy (new or worsening) that is clinically symptomatic or leading to a therapeutic intervention such as surgery, photocoagulation, or dialysis. Trials which used drugs which have been withdrawn from the market (such as phenphormin and tolbutamide) were not included. Trials comparing drugs of the same therapeutic class and glucose lowering treatment intensifications without specific drugs were excluded. English language published trials were searched in PubMed and Central databases, without time restriction, up to March 2016 (see S1 Table ). Unpublished and other on-going trials were searched through references of published meta-analyses, ClinicalTrials.gov, congress abstracts. On-going trials of potential interest were followed until November 2018 for final results. The study selection, data extraction and risk of bias assessment were performed by at least two independent reviewers (GG and SR, GN, FaG, AG or TL), consensus was reached in the case of disagreements. Studies were first screened on the basis of their titles and abstracts, then included based on the full text. The quality of the studies was assessed using the Cochrane Collaboration's tool for assessing risk of bias in RCTs [13]. Summary estimates of the treatment effect and summary of patients' characteristics (age, gender, cardiovascular risk factors) were extracted.

Outcomes of the meta-analysis

Primary outcomes of this analysis were: overall mortality, cardiovascular mortality, and major adverse cardiovascular events (MACE: cardiovascular death, non-fatal MI, and non-fatal stroke), as described in the protocol [11]. For MACE, proxies have been used for 10 studies among the 27 trials with available data (see S2 Table ). Diabetic microangiopathy was a prespecified secondary outcome, but its reporting in the included studies was heterogeneous and not available in many studies. Instead, detailed results on macrovascular outcomes (all and non-fatal MI, all and non-fatal stroke) were retrieved. Serious adverse events and severe hypoglycemia were also reported as secondary outcomes. For Serious adverse events, reported definitions are presented in supplementary S3 Table.

Data analysis

Each drug (including each drug dose) was analyzed according to its therapeutic class: biguanide (metformin), alpha glucosidase inhibitors, sulfonylureas, glitazones, glinides, insulin, DPP-4 inhibitors, GLP-1 receptor agonists, and SGLT-2 inhibitors. Placebo, diet control and active control without specific drug classes were considered together as control treatment. A random Bayesian network meta-analysis model was used [14]. The prior distribution was chosen as non-informative, the posterior distribution was estimated using Markov Chain Monte Carlo method [15]. The treatment effect estimate was presented for the network estimation and for the direct comparison, when available, through odds ratio (OR) and its 95% credible interval (95% CrI). Ranking probability and the surface under the cumulative ranking (SUCRA) values were estimated for ranking the drug classes [16]. Sensitivity analyses after considering only double-blind studies and according to two potential effect modifiers, high versus low baseline cardiovascular risk and high versus low glycemic contrast during the study, were conducted. The level of baseline cardiovascular risk of the trial was defined using the proportion of subjects with previous cardiovascular events. Trials below the mean proportion across all trials defined the subset of trials of 'low cardiovascular risk'; trials above the mean proportion defined the subset of trials of 'high cardiovascular risk'. Glycemic contrast during the study was defined by the HbA1c difference across arms of the trial. Trials below the mean HbA1c difference across all trials defined the subset of trials of "low glycemic contrast", trials above the mean HbA1c difference defined the subset of trials of "high glycemic contrast". Heterogeneity was analyzed using the I 2 . Inconsistency of the network was searched for, using the Node-splitting analysis of inconsistency of the Gemtc package [17]. Analyses have been conducted using R [18] (version 3.3.1) and JAGS [19] with the Gemtc package [17] (version 0.8-2). Meta package [20] was used to illustrate the treatment effect at the trial level.

Results

Bibliographic search and included trials

The bibliographic search retrieved 3,459 citations. The selection process is presented in Fig 1 .  Thirty-four trials with 175,966 patients were included [2-5, 8, 9, 21-46]. We did not retrieve trials evaluating alpha glucose inhibitors or glinides. UKPDS34 [25] was considered as two trials, UKPDS34a and UKPDS34b [47]. For UGDP [23], UKPDS33 [24] and TIDE [37] trials, arms with the same drug class were summed up. For UGDP, the tolbutamide group was not included. For the ORIGIN study [36], in which more than 80% of subjects had T2D, only data from the T2D sub-group were used when available, data of the whole trial otherwise. The CANVAS-program [3] was considered as two trials, CANVAS and CANVAS-R. Indeed, given a marked difference in the baseline risk between the two cohorts, their pooling was subject to the Simpson's paradox. We were unable to obtain results of the PPAR study [21] despite having contacted the authors. Data of the recent trial CARMELINA were limited to the public information [22].

Baseline characteristics of included trials are presented in Table 1. Included trials were published over a span of 48 years (from 1970 to 2018). Percentage of males ranged from 29 to 77.6%, percentage of patients i) with high blood pressure or receiving antihypertensive drugs ranged from 11.6 to 95.1%, ii) with dyslipidemia or receiving statins treatment ranged from 0.1 to 92.8% (low use of lipid lowering drugs in UKPDS), iii) receiving antiplatelet treatment ranged from 40. ). SUCRA values suggested that SGLT-2 inhibitors have the higher probability to be the most efficient treatment (SUCRA = 0.86). SUCRA values for metformin and GLP-1 receptor agonists were relatively similar (0.72 and 0.67, respectively). SUCRA values, summary of the network treatment estimates for each pair of comparisons and for the direct treatment estimates, when available, are summarized in Table 2. UKPDS.33 [24] (see previous description) The diagonal contains the drug class and its SUCRA value. Treatment effect are OR with its 95% credible interval. Above the diagonal: estimates from the network metaanalysis, OR < 1 is in favor of the column; below the diagonal: estimates from the direct comparison, when available, OR <1 is in favor of the row. https://doi.org/10.1371/journal.pone.0217701.t002 50 higher probability to be the most efficient treatment (SUCRA = 0.8), followed by GLP-1 receptor agonists and metformin (0.63 and 0.55, respectively). SUCRA values, network and direct comparisons are summarized in Table 3.

GLITAZONES

Major adverse cardiovascular events (MACE). Twenty-seven studies contributed to the analysis for MACE, including 17,188 MACEs. Details regarding the number of events are presented in S5 Table . Each active drug class had direct comparisons against control. The comparison network and forest plot of the direct comparisons are shown in supplementary S3C Fig_Network, S3C Fig_DPP-4_I VERSUS CONTROL, S3C Fig_GLITAZONES VERSUS CON-TROL, S3C Fig_GLP-1_A VERSUS CONTROL, S3C Fig_INSULIN VERSUS CONTROL, S3C Fig_METFORMIN VERSUS CONTROL, S3C Fig_SGLT-2_I VERSUS CONTROL, S3C Fig_SULFONYLUREA VERSUS CONTROL, S3C Fig_SULFONYLUREA VERSUS GLI-TAZONES, S3C Fig_INSULIN VERSUS SULFONYLUREA, S3C Fig_METFORMIN VERSUS SULFONYLUREA. Compared to control, only SGLT-2 inhibitors and GLP-1 receptor agonists were associated with a decreased risk of MACE (OR = 0.89 [95% CrI: 0.81; 0.98] and OR = 0.88 [95% CrI: 0.81; 0.95], respectively). Compared to DPP-4 inhibitors, only GLP-1 receptor agonists were associated with a decreased risk of MACE (OR = 0.88 [95% CrI: 0.79; 0.99]). Insulin was also associated with an increased risk of MACE compared to GLP-1 receptor agonists (OR = 1.19 [95% CrI: 1.01; 1.42]). SUCRA values suggested GLP-1 receptor agonists have the higher probability to be the most efficient treatment (SUCRA = 0.76), followed by metformin and SGLT-2 inhibitors (SUCRA values: 0.75 and 0.71, respectively). SUCRA values, network and direct comparisons are summarized in Table 4. Ranking probability curve for MACE is presented in the supplementary S4 Fig.

Secondary outcomes

Regarding the risk of MI, metformin was almost associated with a decreased risk of non-fatal MI compared to control (OR = 0.66 [95% CrI: 0.44; 1]). Regarding the risk of stroke, glitazones were associated with a decreased risk of all strokes compared to control and DPP-4 inhibitors (OR = 0.74 [95% CrI: 0.57; 0.95] and OR = 0.72 [95% CrI: 0.52; 0.98], respectively); sulfonylureas and SGLT-2 inhibitors were associated with an increased risk of stroke compared to 

Statistical assessment

Convergences were reached for all the analyses. Residual deviance was globally acceptable (for overall mortality, ratio of Dbar/number of data points was 1.074). Heterogeneity of the treatment effect was globally low (I 2 for overall mortality: 8%). Network consistency was globally satisfying. For overall mortality, the network estimation of metformin against sulfonylurea was inconsistent with the direct comparison (see discussion).

Sensitivity analyses

When restricting the analysis to double-blinded studies only, the decreased risk of overall mortality with SGLT-2 and of MACE with SGLT-2 and GLP-1 agonist remained, but treatment estimation were not interpretable for metformin and sulfonylureas due to inconsistency. The diagonal contains the drug class and its SUCRA value. Treatment effect are OR with its 95% credible interval. Above the diagonal: estimates from the network metaanalysis, OR < 1 is in favor of the column; below the diagonal: estimates from the direct comparison, when available, OR <1 is in favor of the row. https://doi.org/10.1371/journal.pone.0217701.t004
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The mean prevalence of previous cardiovascular history at baseline across all trials was 54.9% +/-29.4 (see supplementary S4 Table ). There were 17 trials in the subgroup with a majority of patient with previous CV history ('high CV risk' subgroup), and 16 trials in the subgroup with a majority of patient without previous CV history ('low CV risk' subgroup). There was no trial comparing metformin to control in the 'high CV risk' subgroup. There were no GLP-1 receptor agonist trials and no DPP-4 inhibitor trials in the 'low CV risk' subgroup. The beneficial effects of SGLT-2 inhibitors and of GLP-1 receptor agonists remained in the 'high CV risk' subgroup. In the trials including a majority of patients without previous CV history, the comparisons of SGLT-2 inhibitors, metformin and control did not showed significant differences on primary outcomes. Compared to control, risk of overall mortality, CV mortality and of MACE, with SGLT-2 inhibitors, was: OR = 0. The mean difference of HbA1c during the follow up was -0.43% +/-0.22. Available data for defining the glycemic contrast was unfortunately heterogeneous between studies, limiting the exploration of this potential effect modifier.

Discussion

Main findings

Our study confirms the beneficial effects of SGLT-2 inhibitors and GLP-1 receptor agonist on MACEs with at least two positive independent trials. SGLT-2 inhibitors only were associated with a decreased risk of overall mortality compared to control and to DPP-4 inhibitors. GLP-1 agonists were only associated with a decreased risk of major adverse cardiovascular events compared to control, DPP-4 inhibitors and insulin. Metformin did not showed any benefits on mortality or major adverse cardiovascular events. Glitazones were associated with a decreased risk of stroke, insulin with an increased risk of serious adverse events, insulin and sulfonylureas with an increased risk of severe hypoglycemia. In the subgroup of trials including 
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a majority of patients without previous cardiovascular history, the comparisons of SGLT-2 inhibitors, metformin and control did not showed significant differences on those outcomes. This subgroup did not include trials assessing GLP-1 agonists.

Strengths of the study

Several hypoglycemic drug classes are now available. However, only a few direct comparisons between active treatments are available. New hypoglycemic drug classes especially have been compared only to placebo for their effect on cardiovascular outcomes. Thus, in order to compare all the hypoglycemic drug classes, network meta-analyses are needed for taking into account the information from both direct and indirect comparisons. We included any hypoglycemic drug classes, old or new, whose have been assessed for major cardiovascular outcomes, for the first time in the same network meta-analysis. We also included the last powerful trials. Moreover, we conducted subgroup analyses according to the prevalence of previous CV history in each trials. Our study helps to summarize the results of clinical trials in type 2 diabetes, focusing on major cardiovascular outcomes. Regarding the SGLT-2 inhibitors, the decrease in overall mortality with SGLT-2 inhibitors is mainly driven by the EMPAREG OUT-COME trial [2]. Moreover, a potential warning signal has been observed for peripheral amputations [48]. The CANVAS Program was the pooling of the CANVAS trial and the CANVAS R trial [49]. Those trials were initially planned separately. After an unplanned interim analysis of the CANVAS trial, those two trials have been joined together to increase the power, both trials having very similar design and inclusion criteria. This has been well explicated and justified before the publication of the final results [49]. However, the results regarding overall and cardiovascular mortality are presented on the full dataset, including data which have been used for the interim analysis. Surprisingly, the effect of GLP-1 receptor agonists was no more significant for overall mortality, with the recently published HARMONY OUTCOME trial [8]. Regarding the other classes, the effect of metformin was consistent with previous meta-analyses [47]. The beneficial effect of glitazones regarding the risk of stroke has already been described [50]. The neutral effect of DPP-4 inhibitors on cardiovascular events was consistent with previous meta-analyses [51]. The increased risk of severe hypoglycemia with sulfonylureas and insulin was also consistent with their mechanism of action and previous knowledge [52]. The increased risk of severe adverse event with insulin is based on the data of ORIGIN [36]; we found neither severe adverse event data for UGDP [53] nor UKPDS 33 [24]. Therefore our results mostly reflect the increased risk of hypoglycemia as described in the ORIGIN trial. We did not assess the specific risk of cardiac insufficiency. Unfortunately, we did not find any studies evaluating alpha glucosidase inhibitors or glinides on such major clinical outcome.

Previous network meta-analyses [START_REF] Reichmann | Impact of misspecifying the distribution of a prognostic factor on power and sample size for testing treatment interactions in clinical trials[END_REF][START_REF] Farooq | Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II[END_REF][START_REF] Stergiopoulos | Genotype-guided vs clinical dosing of warfarin and its analogues: meta-analysis of randomized clinical trials[END_REF][START_REF] Mallal | HLA-B*5701 screening for hypersensitivity to abacavir[END_REF] did not include both the old and the new hypoglycemic drug classes and the last powerful trials (EXSCEL [45], HARMONY OUTCOME [8], DECLARE TIMI 58 [9] and CARMELINA [22]). Above all, our results differ slightly from the network meta-analysis of Zheng et al [6], as the GLP-1 agonist were no more associated with a decrease in overall mortality, due to the latest HARMONY OUTCOME trial. Moreover, our results challenge the recently suggested benefit of SGLT-2 inhibitors in primary cardiovascular prevention [10], as we did not showed a significant effect of SGLT-2 inhibitors compared to control and metformin on major CV outcomes, in trials including a majority of patients without previous CV history.

Limitations

Our study has some limitations. We included double-blinded and open clinical trials, which lead to a risk of bias. Unfortunately, there were many open trials in T2D in the last decades.

54

However, the sensitivity analysis restricted to the double-blinded studies was consistent with the main results. We included trials from 1970 to 2018. New hypoglycemic drugs were not assessed in the same medical context as old hypoglycemic drugs. The research of glycemic equipoise between arms in the recent trials could interfere with the interpretation of the results. Old hypoglycemic drugs have also been evaluated mostly in subjects with a shorter duration of type 2 diabetes, while the complications occur after several years of hyperglycemia. We limited our analysis on macroangiopathy. They are not the only complications of T2D patients, but they are the main cause of death in this population. We planned to address microvascular complications, but their reporting was not homogenous enough to allow the analysis. We also limited our analysis at the therapeutic class level. Treatment effect heterogeneity within classes has been described notably for glitazones and sulfonylureas, and our analysis could hide specific molecular effects by averaging the drug class effect. Pooling rosiglitazone and pioglitazone trials could have hidden some beneficial effect of pioglitazone [START_REF] Tourneau | Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, openlabel, proof-of-concept, randomised, controlled phase 2 trial[END_REF] because of the negative cardiovascular effects of rosiglitazone [START_REF] Rothwell | Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation[END_REF]. Moreover, the sulfonylureas were mainly studied through the ADVANCE study [30], which compared a specific sulfonylurea against active hypoglycemic drugs including other sulfonylureas. Unfortunetaly, available data did not allow assessing the specific molecular effect. We planned to use the SUCRA values for ranking the drugs, but it does not take into consideration the upper bound of the credible interval. Thus it resulted for example in a better ranking of Metformin compared to SGLT-2 inhibitors for MACE, whereas metformin's effect was not significant. Slight inconsistency has been observed for metformin. This seems to be due to the direct comparison of metformin against sulfonylureas in the SPREAD DIMCAD trial [38]. Moreover, some drug classes have not been studied in certain populations (no DPP-4 inhibitors or GLP-1 agonist trials in the 'low CV risk' subgroup), which limit the assessment of the transitivity assumption. Sensitivity analysis did not allow identification of glycemic contrast during the trials as potential effect modifiers. Previous meta-regression looking for an association between HbA1c decrease and clinical events showed conflicting results [START_REF] Wallach | Evaluation of Evidence of Statistical Support and Corroboration of Subgroup Claims in Randomized Clinical Trials[END_REF][START_REF] Ciani | Time to Review the Role of Surrogate End Points in Health Policy: State of the Art and the Way Forward[END_REF]. Unfortunately, the reporting of the glycemic exposure in included trials was not well standardized, and the available data were heterogeneous.

Implications

SGLT-2 inhibitors and GLP-1 receptor agonists are recommanded for patients with clinical cardiovascular disease [7]. It has been recently suggested that SGLT-2 inhibitors could also be helpful in primary CV prevention [10], but metformin remained the first-line therapy for glucose lowering medication in the last international guidelines [7]. Our study challenges the suggested benefit of SGLT-2 inhibitors in primary cardiovascular prevention, as we did not observe significant difference on overall mortality or MACE between SGLT-2 inhibitors, metformin and control. Thus, our results showed the need for direct comparisons of SGLT-2 inhibitors, GLP-1 agonists and metformin, notably in primary cardiovascular prevention. Moreover, integration in network meta-analysis of supplementary active direct comparisons as the CAROLINA trial [62] will be helpful to better compare the hypoglycemic drugs. Integration of other comparison of SGLT-2 inhibitors to placebo as the VERTIS CV trials [START_REF] Fleming | Surrogate end points in clinical trials: are we being misled?[END_REF] will also be helpful, as the effect of SGLT-2 on mortality is mostly driven by the EMPAREG-OUTCOME, and as the decrease in overall mortality with GLP-1 agonist was no more significant with the HARMONY OUT-COMES trial. Likewise, further meta-analyses are needed for assessing the relative effect of glucose lowering drugs on microangiopathy, and for assessing the heterogeneity in the treatment effect within therapeutic classes. Finally, it would be interesting to model the cost efficiency of hypoglycemic drugs with those treatment effect estimations.
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Conclusion

Hypoglycemic drugs are used to control glycaemia and reduce diabetic complications in tens of millions of people worldwide. This study helps to summarize factual knowledge of those therapeutic classes on major clinical outcomes. SGLT-2 inhibitors and GLP-1 receptor agonists appear to have the most beneficial effects on MACE, especially in type 2 diabetic patients with previous cardiovascular diseases. First part -Second section. Benefit-risk balance assessment of SGLT2 inhibitors

The following has been submitted for a fast response to the British Medical Journal (BMJ). The BMJ's fast response are "electronic comments to the editor". The editor did not select it for letter article: the following has not been published in the BMJ. However, it does contribute to illustrate the work achieved during this thesis.

It can be found here: https://www.bmj.com/content/363/bmj.k4365/rr-1

This work is NOT a published article in the British Medical Journal. This work is an "electronic comments to the editor" regarding the following article:

"Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study", BMJ 2018; 363 doi: https://doi.org/10.1136/bmj.k4365 [149].

Supporting information

Forest plot of the effect of SGLT2 inhibitors on risk of amputation (up) and of diabetic ketoacidosis (down).

The diamonds in the forest plot stand for the estimate (OR and its 95%CI) using direct metaanalysis with both fixed and random model; the squares stand for the TE estimate in the corresponding trial.

Comparison of the absolute difference of safety and efficacy events, with SGLT2 inhibitors compared to placebo. 

ASSESSMENT OF THE BLOOD PRESSURE AS A SURROGATE

In the second part, we used a meta-regression approach of aggregates data of randomized clinical trials for characterizing the relationship between the reduction of blood pressure and the cardiovascular risk, with antihypertensive treatment, in patients with type 2 diabetes. This could help assessing surrogate endpoint for personalizing the treatment effect estimation.

Introduction

High blood pressure (BP) is a major cardiovascular (CV) risk factor and, in the general population, the CV benefits of antihypertensive drugs may be partially explained by the different BP values achieved [1]. Indeed, BP decrease has been proposed as a surrogate endpoint of risk of stroke [2]. When BP is reduced, it appears to influence mainly the risk of stroke compared with other CV outcomes [3]. However, even for stroke, systolic BP (SBP) reduction explains only half of the risk reduction in the general population [4]. In the past, based on a subgroup analysis of the Hypertension Optimal Treatment (HOT) trial in diabetes patients, more stringent BP targets were recommended for patients with type 2 diabetes (T2D) compared with the general population [5,6]. However, as this BP target for the diabetes population became a subject of debate [7][8][9], eventually the same BP target as for the general population was proposed [10,11]. Yet, since those Aim. -Recent US recommendations indicate a target blood pressure (BP) of 130/80 mmHg for patients with type 2 diabetes (T2D). Our aim was to characterize the association between risk of cardiovascular events and differences in BP decreases in randomized trials of a T2D population. Methods. -A systematic search was made for randomized clinical trials assessing the effects of antihypertensive treatments in T2D patients on mortality, and fatal and non-fatal cardiovascular events, using a meta-regression technique to explore the influence of BP decreases on treatment effects. Results. -A total of 88,503 patients from 44 randomized trials were included. There was no significant association between BP decreases and risk of all-cause or cardiovascular mortality, cardiovascular events or myocardial infarction. However, stroke risk was influenced by BP decreases: compared with no reduction, a 10-mmHg reduction in systolic BP was associated with a relative odds ratio (OR) decrease of 33% (OR: 0.67, 95% CI: 0.54-0.82), and a 5-mmHg diastolic BP reduction was associated with a relative OR decrease of 38% (OR: 0.62, 95% CI: 0.50-0.76). Restricting the analysis to double-blind studies did not change the results for diastolic BP. recommendations were made, meta-analyses have shown some discrepancies among BP targets for CV prevention in T2D patients. Bangalore et al. [12] described an association between more intensive treatment targeting an SBP of 135 mmHg and a decrease in macrovascular events, while Reboldi et al. [13] confirmed that BP reduction appeared to lower the risk of stroke, but not the risk of myocardial infarction. A meta-analysis by Emdin et al. [14] suggested a decrease in risk of mortality for every 10-mmHg SBP reduction, whereas Brunstro ¨m and Carlberg [15] reported an increased risk of CV death, but no benefit when baseline SBP was < 140 mmHg. In the general population, it has been suggested that lowering SBP to < 130 mmHg might be beneficial [16,17], but other meta-analyses found conflicting results [18]. Recently, the American College of Cardiology (ACC) and American Heart Association (AHA) recommended reducing BP to < 130/80 mmHg for patients with T2D [19].

Conclusion

The meta-regression approach investigates whether particular covariates (potential effect modifiers) might explain some of the differences in treatment effects observed across multiple studies [20,21], and explores whether any of the considered outcomes are influenced by BP changes [22]. In T2D populations, recent studies have focused on the influence of either baseline BP or achieved BP in intensive-treatment groups [12,15], or used a standardized approach (log of the risk of outcome multiplied by [10 mmHg/ systolic BP reduction]) [14] which could bias the results [23]. In a previous study of differences in baseline and achieved BP in activetreatment vs control groups in T2D populations, outcomes were limited to myocardial infarction and stroke [13]. Our present study updates that exploration with more recent trials, and extends the analysis to overall and CV mortality as well as CV events.

Thus, the purpose of this study was to characterize the association between intensity of BP reduction and magnitude of clinical benefit on several CV events in T2D patients.

Material and methods

As no protocol has been previously published, the present study is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Appendix A.1; see supplementary materials associated with this article online).

Eligibility criteria

Only studies fulfilling the inclusion criteria described below, following the PICO (population/problem, intervention/exposure, comparison, outcome) framework, were eligible for inclusion in our analysis.

Participants

Only patients aged ! 18 years with T2D were included. The diagnosis of T2D had to have been established using either standard criteria or, if necessary, the author's definition. Studies that included patients on dialysis, patients with solid organ transplants, pregnant women, patients with impaired glucose tolerance or impaired fasting glucose, or the metabolic syndrome only, were excluded.

Interventions

Eligible interventions were any antihypertensive drugs, such as beta-blockers, angiotensin-converting enzyme (ACE) inhibitors, sartans (angiotensin receptor blockers), calcium-channel blockers, diuretics and intensive antihypertensive treatments. In trials combining the intervention of interest with another intervention, only data for the intervention of interest were included if the subgroup met our inclusion criteria. For example, in the Action in 

Comparisons

All comparisons against a control group (placebo, active treatment, usual care) were included.

Outcomes

Trials designed to evaluate CV events as either their primary or secondary endpoints were included, whereas trials reporting CV events for safety purposes only were not. The considered outcomes were: total deaths; CV deaths; CV events (CVEs); all myocardial infarctions (MIs; fatal, non-fatal); all strokes (fatal, non-fatal); major microvascular events; and major combined macrovascular and microvascular events.

Study design

Only parallel-group randomized clinical trials (RCTs) were included.

Outcomes of meta-analysis

Outcomes of this analysis were total deaths, CV deaths, CVEs, all MIs (fatal, non-fatal), all strokes (fatal, non-fatal), major microvascular events, and major combined macrovascular and microvascular events.

Information sources and search strategy

Published trials were identified through a computerized search of: (i) Medline (PubMed, www.pubmed.org, from inception to 1 March 2016); (ii) Embase (www.embase.com); and (iii) the Cochrane Central Register of Controlled Trials (CENTRAL). Our search terms comprised disease terms, a study design filter and drug terms. The study design filters were designed to identify placebo-controlled or head-to-head RCTs using a combination of index and free-text terms. The PubMed database was searched using a specific sensitive strategy (as described by Haynes et al. [24]), including type of ''randomized clinical trial'' and MeSH terms (Appendix A.2; see supplementary materials associated with this article online). Unpublished trials were searched for in: (i) abstracts and presentations from appropriate conferences (using the ISI Web of Knowledge database that indexes conference proceedings); (ii) reference lists from studies, reviews and metaanalyses obtained from the PubMed search; and (iii) the Internet, including websites dedicated to the dissemination of results from clinical trials (Medscape) and the US Food and Drug Administration (FDA), and those maintained by drug manufacturers, including product information sheets. Also included were trials published only in abstract form to limit the influence of potentially relevant trials unpublished when completed. When an abstract from proceedings and a full paper referred to the same trial, only the full article was included in our analysis. When two or more papers used the same data, only the most complete report was used.

Study selection, data collection and risk of bias assessment in individual studies

Study selection was performed by three independent reviewers (M.C., G.G., H.H.L.), among whom a consensus had to be reached in cases of disagreement. The study flow diagram (Appendix A.3; see The blinding design of the study was also evaluated.

Statistical methods

Our analysis used weighted meta-regression of the logarithm (log) of the odds ratio (OR) against differences in BP reduction, defined as the difference in BP change (expressed as mmHg) during the trial (final value minus baseline value) between activetreatment and control (active control or placebo, depending on the study) groups. If not available, the difference in final BP values was used.

Also used were the restricted maximum likelihood (REML) estimator [25], weighted log OR and an additive between-study variance component (e 2 ) to take into account residual heterogeneity, such that yi = log(ORi) = N(a + bxi, si + e 2 ), where si is the variance of the log OR within trial i, e 2 is the between-study variance, b is the slope and represents change in the log OR of the considered endpoint per each 1-unit change in BP reduction xi, and a is the log OR at a BP reduction of zero (intercept). The weight of the trials was defined as vi = 1/si. EASYMA [26] with R [27] software was used in our analyses. For each CV outcome, the analysis was run twice [for SBP and for diastolic BP (DBP) values]. Sensitivity analyses restricted to double-blind studies only were also conducted. No correction for multiple testing was applied.

Risk of publication bias

Funnel plots were used to assess the risk of publication bias [28].

Results

A total of 44 RCTs, involving a total of 88,503 patients, were included in our analysis. ACE inhibitors were used as either first or second line treatment in 20 arms, calcium-channel blockers in 16 arms, sartans in 12, beta-blockers in 12 and diuretics in 11. Nonspecific intensive strategies were also included (four trials). The average study sample size was 1948 patients (range: 140), and the first study was published in 1992. Among our RCTs, 28 were double-blind, 13 were unblended (open), and three were open, but blinded when assessing the outcome (not taken into account in the sensitivity analysis). Three trials were unpublished. Table 1 summarizes the main characteristics of the included trials.

Meta-regression showed a significant relationship between SBP reduction and the log(OR) of stroke, but not for the other outcomes (total mortality, CV mortality, CVEs and MIs). Equations and P values of regression are summarized in Table 2. The effect of SBP reduction on the log(OR) of those outcomes is illustrated in Fig. 1. The significant (P = 0.01) relationship between risk of stroke and SBP reduction was log(OR) = À 0.0192 + (0.0386 Â [SBP reduction]). Compared with no BP reduction, every 10-mmHg SBP reduction was associated with a relative 33% decrease in risk of stroke [OR: 0.67, 95% confidence interval (CI): 0.54-0.82].

Meta-regression also revealed a significant relationship between DBP and the log(OR) of stroke, but not for the other outcomes (total mortality, CV mortality, CVEs, MIs). Equations and P values of regression are summarized in Table 2. The effect of DBP reduction on the log(OR) of those outcomes is illustrated in Fig. 2. The significant (P = 0.001) relationship between risk of stroke and DBP reduction was log(OR) = À 0.0013 + (0.0969 Â [DBP reduction]). Compared with no BP reduction, every 5-mmHg reduction in DBP was associated with a relative 38% decrease in risk of stroke (OR: 0.62, 95% CI: 0.50-0.76).

Regarding microvascular outcomes, their reporting in the eligible studies did not allow for meta-regression analysis to be conducted. Sensitivity analyses were restricted to double-blind studies and so included only 28 trials. The relationship between DBP reduction and the log(OR) of stroke remained significant (P = 0.04) with no correction for multiple testing (Appendix A.4; see supplementary materials associated with this article online). Funnel plots showed no evidence of potential publication biases (Appendix A.5; see supplementary materials associated with this article online).

Discussion

Decreases in BP do not appear to influence the risk of all-cause or CV mortality, CVEs or MIs. Our present results suggest, however, that lowering BP does affect the risk of stroke. This association was observed with both SBP and DBP reductions, but persisted on sensitivity analyses restricted to double-blind RCTs for DBP only. In fact, our findings confirm the results of Reboldi et al. [13], albeit extended to total and CV deaths, and CVEs. In a T2D patient population, Bangalore et al. [12] suggested a linear relationship between stroke risk and achieved SBP in the intensive-treatment group, while Brunstro ¨m et al. [15] suggested an increased risk of CV mortality with baseline SBP < 140 mmHg. Emdin et al. [14] suggested an association between lowering SBP and decreases in mortality, CV disease, coronary heart disease and stroke. However, for their results, they standardized risk according to BP-lowering (log of risk was multiplied by [10 mmHg/SBP reduction]) [14], which may have overestimated the overall effect, as recently described [23]. For this reason, Brunstro ¨m et al. [15] proposed that, before using such a standardized approach, a linear relationship within trials between different risk factors (differences in BP evolution) and treatment effects on the outcome of interest should be determined first. Our study suggested that such a relationship was observed only for risk of stroke, and not for risk of mortality or risk of CVEs.

Our study has some limitations. Open clinical trials were included, resulting in a risk of bias. Unfortunately, open trials of diabetes were common during the last few decades. Also, our analysis focused on severe clinical outcomes that were 
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Please cite this article in press as: Grenet G, et al. Association between difference in blood pressure reduction and risk of cardiovascular events in a type 2 diabetes population: A meta-regression analysis. Diabetes Metab (2019), https://doi.org/10.1016/ j.diabet.2019.05.003 mostly CV-related and not the only complications found in T2D patients, but nonetheless representative of the main causes of death in such a population. In addition, it was not possible to explore the risk of haemorrhagic vs ischaemic stroke or CV risk at baseline, and microvascular complications were not explored due to a lack of data. Furthermore, the definition of outcomes may have differed across the included studies, with some studies reporting the number of non-fatal strokes and others the number of fatal strokes. Moreover, exact details concerning BP evolution across different treatment groups were not always available, leading to a smaller number of analyzed studies. Likewise, it was not possible to take into account the heterogeneity of BP Fig. 2. Regression plot of the odds ratio (OR; log scale) for each outcome against differences in diastolic blood pressure (DBP). Each black point represents a comparison (size varies according to weight); the solid line represents the meta-regression line, the dashed line its 95% confidence interval, and the dotted line the null effect on outcome (OR = 1). TotD: total deaths; CVD: cardiovascular deaths; CVE: cardiovascular events; MI: myocardial infarction. measurements. Our study could only analyze aggregate data and could not explore individual patients' data. Thus, the possibility that the association between the OR of stroke and BP decreases might be due to an ecological bias cannot be excluded. Also, metaregression approaches are not protected against confusion bias, and meta-analyses at the individual data level would be helpful in future studies. On the other hand, false-negative results for the other outcomes due to a lack of power also cannot be excluded. Finally, it has been observed that BP variability itself could be a predictor of risk of stroke [29].

Recent recommendations of the ACC and AHA [19] have revealed some disagreement with the recent Position Statement of the American Diabetes Association [30] regarding BP targets in patients with T2D. Indeed, our present results and the current literature appear to suggest heterogeneity of organ sensitivity to BP decreases. This observation could lead to BP targets being adapted according to the individual patient's characteristics with a personalized medicine perspective. For example, the association between stroke and BP appears to be stronger in Asian populations, leading Park et al. [31] to propose a specific BP target of 130/ 80 mmHg in Asians.

Conclusion

Our present study confirms the potential association between BP-lowering and risk of stroke, but not for other CV events in a T2D population. Nevertheless, our findings contribute towards clarifying the effect of BP decreases in reducing CV risk in T2D patients, and quantitative estimates of this association could lead to more precise models of the public-health benefits of BP-lowering treatments in such a patient population.

Sensitivity analysis restricted to blinded trials only

Summary of meta-regression of log(OR) of outcomes for systolic (SBP) and diastolic blood pressure (DBP) reductions

In equations, 'X' stands for differences in blood pressure reduction in mmHg; CV: cardiovascular; MI: myocardial infarction The third part is divided in two sections.

In the first section, we developed a statistical comparison of two experimental designs for testing theranostic biomarker, in the case of a stratified randomization. This could help designing clinical trial for testing candidate effect modifier, which would allow to stratify the treatment effect estimation.

In the second section, we report a meta-epidemiological survey assessing pharmacogenetic studies. We provided a critical appraisal of the reporting of pharmacogenetic associations in RCT and assess the quality of the methodology for claiming predictive effect of a genetic variant. This section presents the poster communication summarizing this survey. 

| INTRODUCTION

Biomarkers can be useful in the personalized medicine perspective. Prognostic biomarkers help predict the course of a disease in a defined population, irrespective of treatment, whereas predictive biomarkers or effect modifiers are needed to predict the effect of a specific treatment. 1 Such theranostic biomarkers can help identifying responder patients before prescribing a drug. Randomized trials are the best setting to search for such identification, as they assess the treatment effect with the lowest risk of bias compared to other designs. Indeed, the randomization process allows inferring causality for the treatment effect. Trials are often limited disadvantages of crossover versus parallel-group design to identify predictive biomarkers. The treatment effect, the effect of a binary biomarker and their interaction were modelled using a linear model. The intra-subject correlation in the crossover design was taken into account through an intra-class correlation coefficient. The variance-covariance matrix of the parameters was derived and compared. For both trial designs, the variance of the parameter estimating an interaction between the treatment effect and a potential predictive biomarker corresponds to the variance of the parameter estimating the treatment effect, multiplied by the inverse of the frequency of the candidate biomarker. The ratio of the variance of the interaction parameter in the crossover to the variance estimated in the parallel-group design depends on the complement of the intra-class correlation coefficient. When planning a clinical trial including a search for candidate biomarker, the frequency of the candidate biomarker helps design the sample size, and the intra-subject correlation of the outcome should be taken into account for choosing between parallel-group and crossover designs.

K E Y W O R D S
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to the demonstration of the existence of an effect, whereas target therapies have stimulated the conduct of trials specifically designed for testing such interaction. Different designs of randomized trials are available, with specific pros and cons. 2 The crossover (CO) design can decrease the number of subjects needed for estimating the treatment effect, as already described. 3-7 Indeed, the treatment effect is estimated through intra-subject comparison in the CO design, usually leading to a decreased variability of the measure of the outcome. However, the advantages of the CO design, compared to parallel-group (PG) design, for identifying an interaction between the treatment effect and a potential predictive biomarker have not yet been documented, despite the increase in publications regarding the predictive biomarkers area. 1,8-10 Moreover, some literature studied the sample size determination for subgroup analysis for testing treatment interactions in the PG trial design, 11,12 yet less is known regarding the CO design. The objective of this study was to examine the pros and cons of the CO trial compared to the PG trial, for assessing a binary predictive biomarker, in terms of number of subjects needed.

| METHODS

The materials and methods section describes (a) the delimitation of the study, (b) the linear model we used and (c) the design matrix in each design.

| Delimitations of the study

In order to compare the statistical power of each design, with the same point estimate of the parameter reflecting the interaction in both designs, we compared the variance of those estimates. Using a Wald test for testing the parameter of the interaction, the statistical power of each design is related to the variance of the estimation of the parameter of the interaction. We focused on a simple situation: a two arms PG trial and a two periods CO trial, with a 1:1 randomization, and a well-balanced frequency of the biomarker in both arms of the trial. The treatment effect and the biomarker effect were modelled with a linear regression. We analysed the variance-covariance matrix of the regression parameter for each design, which allowed us to compare the variance of the estimate of the interaction parameter under each of the two designs, according to their respective samples.

| Linear model

In order to compare the two designs, for each subject 'i' receiving treatment 'j', we used the same model, including a continuous variable 'y' for the outcome assessing the effect of the tested treatment 't' ignoring baseline measurement, a binary variable 'b' reflecting the presence (b = 1) or the absence (b = 0) of the potential biomarker:

i Є {1, …, N}, N: number of included subjects: N PG in the PG trial, N CO in the CO trial. In both designs, we restricted our work to the hypothesis of no drop-out. j Є {0, 1}, 0 for the control treatment, 1 for the tested treatment. It should be noted that, in the CO design, each subject receives both treatment, that is has one measure of y for j = 0 and one other measure of y for j = 1. On the other hand, in the PG trial, each subject receives only one treatment, that is has only one measure of y, with j = 0 or j = 1.

y ij : outcome measure of the subject 'i' receiving treatment 'j', β 0 : control treatment effect, β 1 : difference between tested and control treatment effects, β 2 : prognostic effect of the potential biomarker, β 3 : predictive effect of the potential biomarker, u 0i ~ N (0, 2 0 ), 2 0 standing for the inter-subject variability, ɛ ij ~ N (0, 2 ), 2 standing for the intra-subject variability, 2 = ( 2 0 + 2 ). Table 1 synthesizes the cell mean model, using q the frequency of b = 0, p the frequency of b = 1.

| Design matrix

| In the parallel-group trial design

In the PG trial, the design matrix X PG (N PG , 4) is:

| In the crossover trial design

In the CO trial, the design matrix X co includes a pair of row for each subject: one period with the tested treatment, one period with the control treatment. Considering that the treatment sequence order is randomized, we limited our analysis to the hypothesis of the absence of period effect. Considering an ideal CO trial with an adapted washout period, we also restricted our work to the hypothesis of the absence of carryover effect. X co (2N co , 4) is defined as:

(1)

y ij = 0 + 1 t ij + 2 b i + 3 t ij × b i + ( u 0i + ∈ ij ) X PG = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 b 1 0 . . . . . . . . 1 0 b N PG ∕2 0 1 1 b N PG ∕2+1 b N PG ∕2+1 . . . . . . . . 1 1 b N PG b N PG ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ | 3
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The study was conducted in accordance with the Basic & Clinical Pharmacology & Toxicology policy for experimental and clinical studies. 13 

| RESULTS

The results section shows the variance-covariance matrix of the coefficients in each design, the comparison of the variance of the estimation of the interaction parameter, an application to a special case of interest, the comparison of the statistical power.

3.1 | Variance-covariance matrix of the coefficients Details on the matrix calculation are available in Appendix A.

| In the parallel-group design

In the PG trial, the variance-covariance matrix of the fixed coefficients, V(β), estimated with the ordinary least squares method 14 

is V (β) = σ 2 (X PG t X PG ) -1 .
For the model presented in Equation ( 1) and using the previous definition of the design matrix X PG :

| In the crossover design

In the CO trial, we first need to define the variance-covariance matrix of the outcome measure, Σ, for taking into account the intra-subject correlation. Assuming that the variance of all responses is identical ( 2 = ( 2 0 + 2 )) and the within-subject covariances are equal, with a pair of column for each subject, Σ (2 N CO , 2 N CO ) is 6 : 'ρ' standing for the intra-subject correlation in the CO design, defined as the intra-class correlation coefficient

= 2 0 ∕ ( 2 0 + 2 )
. Then, the variance-covariance matrix of the fixed coefficients V(β) in the CO design, estimated with the generalized least squares method, 13 

is V ( ) = (X t CO -1 X CO ) -1 .
Using the previous model defined in Equation ( 1) and the definition of the design matrix X CO :

| Comparison of the variance of the estimation of the interaction parameter

The variance of the fixed coefficients estimating the treatment effect and of the fixed coefficients estimating the interaction in both trial designs is summarized here:
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T A B L E 1 Cell mean model of the linear regression assessing the treatment effect and the potential predictive effect of a candidate biomarker (PG: parallel group, CO: crossover)

Treatment

PG design and first period of the CO Second period of the CO Biomarker -Biomarker + Biomarker -

Biomarker + t = 0 y i,0 = β 0 (qN/2) y i,1 = β 0 + β 2 (pN/2) y i,0 = β 0 (qN/2) y i,1 = β 0 + β 2 (pN/2) t = 1 y i,0 = β 0 + β 1 (qN/2) y i,1 = β 0 + β 1 + β 2 + β 3 (pN/2) y i,0 = β 0 + β 1 (qN/2) y i,1 = β 0 + β 1 + β 2 + β 3 (pN/2)
N: number of included subject, p: prevalence of the potential theranostic biomarker in the included population (+) (q = 1-p), t = 0: control group, t = 1: tested treatment group.

In both study designs, the variance of the parameter estimating an interaction between the treatment effect and a potential predictive biomarker is the product of the variance of the parameter estimating the treatment effect, multiplied by the inverse of the frequency of the candidate biomarker. The variance of the estimation of the interaction in the two designs can be compared by calculating their ratio: leading to:

The ratio of the variance of the interaction parameter in the CO to the variance estimated in the PG design depends on the complement of the intra-class correlation coefficient, multiplied by the ratio of their respective sample sizes.

The ratio of the Wald statistic is:

The Wald statistic in the CO design can be expressed according to the variance of the interaction parameter of the PG design:

3.3 | Application to the special case where

N PG = 2N co
In the PG trial,N PG ∕2 subjects are exposed to the tested treat- ment; in the CO trial, N co are exposed to the tested treatment. We now declined the comparison in the special case where N PG = 2 N co , in order to consider the same number of subjects exposed to the tested treatment in a trial. This also allows equating the number of measurements taken in the two designs. In this case, the variances of β 3 estimations in both designs are equal if (1 -ρ) = 1.

| Comparison of the statistical power

Considering the credible alternative hypothesis * 3 , specified for the power (P) calculation to detect the interaction in the PG (P PG ) and in the CO (P CO ) trials, P PG and P CO are defined by: ϕ being the standard normal cumulative distribution function of an N (0, 1) distribution.

| Comparison of the sample size

The type 1 error rate, α, being fixed, the numbers of patients included in each design in order to reach the same statistical power '1-β' are:

As * 3 estimation is independent of the study design:

To summarize, for both trial designs, the variance of the parameter estimating an interaction between the treatment effect and a potential predictive biomarker corresponds to the variance of the parameter estimating the treatment effect, multiplied by the inverse of the frequency of the candidate biomarker. The ratio of the variance of the interaction parameter in the crossover to the variance estimated in the parallelgroup design depends on the complement of the intra-class correlation coefficient. For the same power when testing an interaction, the gain in terms of reduced needed sample size with the CO compared to the PG design depends on the complement of the intra-class correlation coefficient.

| DISCUSSION

The discussion section summarizes the interesting findings and the limits of the study, and highlights some issues for further research.

The search for theranostic biomarkers will help the development of the personalized medicine. However, such interactions on the treatment effect are not easy to demonstrate; large sample sizes are often required. In the same way, the CO design could help assessing a treatment with less exposed subjects in the experimental arm, and it could also help identify

var( 1CO ) = 2( 2 0 + 2 ) (1 -)∕ [ N CO (1 -p) ] = 2 2 ∕[N CO (1 -p)] var( 3CO ) = 2( 2 0 + 2 ) (1 -)∕ [ N CO p (1 -p) ] = 2 2 ∕[N CO p(1 -p)] var( 3CO )∕var( 3PG ) = (2 2 ∕ [ N CO p (1 -p) ] )∕ [ (4( 2 0 + 2 )∕ [ N PG p (1 -p) ] ) ] var( 3CO ) = var( 3PG ) × (1 -) × N PG ∕ ( 2 N CO ) [ 2 3CO ∕var( 3co ) ] ∕ [ 2 3PG ∕var( 3PG ) ] = [ 2 3CO ∕2 2 ∕ [ N CO p (1 -p) ]] ∕ [ 2 3PG ∕4( 2 0 + 2 )∕ [ N PG p (1 -p) ]] = [ 2 3CO ∕ 2 3PG ] × [ 2 N CO ∕N PG ] × [ 1 ∕(1 -) ] 2 3CO ∕var( 3CO ) = 2 3CO ∕ [ var( 3PG ) × (1 -) × N PG ∕ ( 2 N CO )] = [ 2 3CO ∕var( 3PG ) ] × [ 2 N CO ∕N PG ] × [ 1 ∕(1 -) ] P PG ≈ 1 - [ * 3 ∕ √ [ 4 2 ∕ [ N PG p (1 -p) ]] -z ∕2 ] ≈ 1 - [ * 3 √ [ N PG p (1 -p) ] ∕2 -z ∕2 ] P CO ≈ 1 - [ * 3 ∕ √ [ 2 2 (1 -)∕ [ N CO p (1 -p) ]] -z ∕2 ] ≈ 1 - [ * 3 ∕ √ [ 4 2 (1 -)∕ [ N PG p (1 -p) ]] -z ∕2 ] ≈ 1 - [ * 3 ∕ √ [ N PG p (1 -p) ] ∕ [ 2 √ (1 -) ] -z ∕2 ] N PG ≈ 4 2 (z 1-+ z 1-) 2 ∕ * 2 3 N CO ≈ 2 2 (1 -) (z 1-+ z 1-) 2 ∕ * 2 3 N CO ∕N PG = [ (1 -)∕2 ] | 5 GRENET ET AL.
such theranostic biomarkers. We compared the variances of the interaction estimates according to the trial design; this led to quantifying the potential gain in statistical power (eg in terms of number of subjects needed) with the CO trial, compared to the PG trial. We showed how the variance of the parameter estimating an interaction depends on the variance of the parameter estimating the treatment effect, and the frequency of the candidate biomarker, in both designs. We showed that the frequency of the candidate biomarker impacts the variance of the interaction estimate similarly in both design. Thus, the gain in its estimation with the CO design depends on the intra-subject correlation, as previously known for the treatment effect estimation. 4 The estimation of the variance of the interaction effect in the CO design decreases compared to the PG design, as the intra-class correlation increases. In the special case where N PG = 2N CO , which corresponds to the same number of subjects exposed to the tested treatment, and/or the same number of measurements of the outcome, both trials are equivalent if the intra-class correlation is null, but the CO design is more effective as the intra-class correlation increases. Comparing the CO and the PG designs for estimating the treatment effect, Brown showed that the ratio of variance of the treatment effect estimation was the complement of the intra-class correlation. 4 We completed those results by showing a similar impact of the intra-class correlation on the estimation of the interaction. Kenward and Jones reported an intra-subject correlation typically between 0.5 and 0.9 in 15 crossover data sets. 15 Thus, around 5%-25% of the sample size needed in a PG trial could be enough for identifying the same interaction in a CO design. Our results are consistent with previous analyses on the treatment effect estimation that did not compare both designs regarding the predictive biomarker interaction.

There are, however, several limits to our study. Firstly, we restricted our analysis to a simple model, without considering baseline measurement of the outcome variable, which would increase the precision of the estimation in both designs. 16 Moreover, we did not take into account any carry-over effect or any drop-out rates. Carry-over is a major concern of CO study, but does not exist in PG trial. Its impact on the treatment effect estimation has already been well studied. 4 Its impact on the comparison of CO versus PG has already been described, for the treatment effect estimation. 7 Naturally, the presence of a carry-over effect would negatively impact the power of a CO study. However, our aim was to compare the theoretical properties of both designs themselves. Then, we needed to avoid multiple sources of difference between designs. For example, we defined the same linear model at the beginning of our analysis. Taking into account a carry-over effect would have introduced a supplementary difference in the comparison. Thus, a difference in statistical power could have resulted from the properties of the designs and/or from the carry-over effect. In a similar way, taking into account a drop-out rate would have a more negative impact on the statistical power of the CO, as each subject is measured twice in this design. This has already been described for the estimation of the treatment effect. 7 Again, we wanted to focus on the properties of both designs themselves and then needed to avoid other source of difference. Of course, those methodological choices limit the extrapolability of our results in real life. Then, further research is needed on this topic. We also restricted our work to the hypothesis of a well-balanced frequency of the biomarker in both arms of the trial. Finally, our study can help when planning clinical trials, both for the estimation of the sample size for interaction testing and for the choice of the design between CO and PG. However, it should be kept in mind that the estimation of the statistical power would be a simple approximation, and could be less than expected, depending on the observed values of the drop-out rate and the intra-subject correlation in real clinical trials.

| CONCLUSION

Clinical trials remain essential, as they allow to assess the treatment effect and to identify potential predictive biomarkers. In the personalized medicine perspective, for the construction of individual prediction model, it is needed to know the properties of those estimators and the power of a clinical trial for identifying them. We showed the relationship between the intra-subject correlations and the potential gain of the CO design for identifying such interaction. An a priori estimation of the frequency of the candidate biomarker and of the intra-subject correlation is advisable for choosing the optimal experimental design.

|
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APPENDIX A

In the parallel-group trial design:

In the crossover trial design, Σ -1 is defined as (see Piantadosi, Clinical Trials: A Methodologic Perspective, Wiley. 2005): These last few years, research in personalized medicine increased as the cost of genotyping decreased. Hence, the following of reporting guidelines may enhance the quality and the harmonization of published studies. Our aim was to describe the quality of the reporting in published pharmacogenetics associations in randomized clinical trials. This permits assessing the need for complementary specific reporting guidelines.

X t PG X PG = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ N PG N PG ∕2 pN PG pN PG ∕2 N PG ∕2 N PG ∕2 pN PG ∕2 pN PG ∕2 pN PG pN PG ∕2 pN PG pN PG ∕2 pN PG ∕2 pN PG ∕2 pN PG ∕2 pN PG ∕2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (X t PG X PG ) -1 = 2∕ [ N PG (1 -p) ] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 -1 -1 1 -1 2 1 -2 -1 1 1∕p -1∕p 1 -2 -1∕p 2/p ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ Σ -1 = 1 / [σ 2 (1-ρ ²)] 1 -ρ 0 -ρ 1 0 1 -ρ -ρ 1 (X t CO -1 ) = 1 ∕ [ 2 (1 -2 ) ] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 - 1 - … 1 - 1 - - 1 … - 1 0 0 … 1 - 1 - 0 0 … - 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (X t CO -1 X CO ) = N CO ∕ [ 2 (1 - 2 ) ] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ (1 -) * 2 (1 -) (1 -)p2 (1 -)p (1 -) 1 (1 -)p p (1 -)p2 (1 -)p (1 -)p2 (1 -)p (1 -)p p (1 -)p p ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (X t CO -1 X CO ) -1 = 2 ∕ [ N CO (1 -) ] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 ( -1) -1 (1 -) ( -1) 2(1 -) (1 -) -2(1 -) -1 (1 -) 1 ∕p ( -1)∕p 1 - -2(1 -) ( -1)∕p 2(1 -)/p ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 91 
We observed a low control of the alpha risk and frequent spin of conclusion. It can bias the interpretation of the litterature. We also showed a lack of reporting of crucial items in pharmacogenetics publications, despite the existing guidelines 1 . This limits the comparability of studies and showed the need for specific reporting guidelines. Full-text articles excluded, with reasons n=89

We extracted the data for several items of interest and provided a critical appraisal regarding the design of the study, the management of multiple testing the presence of a spin of conclusion and several items of the Strengthening the Reporting of Genetic Association studies (STREGA) guidelines 1 .

QUALITY ASSESSMENT OF PUBLISHED PHARMACOGENETIC ASSOCIATION IN RANDOMIZED CLINICAL TRIALS, A SYSTEMATIC REVIEW

The following table summarizes the reporting of the studies and our critical appraisal. The first section of the first part of this thesis highlighted the need for direct comparisons of hypoglycemic drugs. Indeed, if the network meta-analysis approach helped to compare the DPP4 inhibitors to GLP1 receptor agonist and SGLT2 inhibitors, more statistical power is likely needed for assessing metformin to GLP1 agonist receptor and SGLT2 inhibitors. Moreover, GLP1 receptor agonists and SGLT2 inhibitors have been mainly tested in secondary CV prevention, but metformin in primary CV prevention. This become of a special interest since the last European guidelines, which challenge the first line therapy position of the metformin in particular population [111].

Likewise, only one CVOT compared an 'old' hypoglycemic drug, a sulfonylurea, to a 'new' one, a DPP4 inhibitor [150]. Unfortunately, its result was not available at the time of our study. It should also be noted that no results of the assessment of the alpha glucosidase inhibitor and the glinides on major cardiovascular events have been found to be available. Finally, since the first submission of the manuscript of our meta-analysis to PLOS ONE, four CVOT studies [150-153] have been published. Implementing living cumulative meta-analysis would be helpful for providing up to date synthesis of the evidence [154].

Challenges in the mean benefit-risk balance estimation

High level of evidence is needed when assessing efficacy. The level of proof regarding safety should be adapted as well. The pioglitazone was withdrawal from the French market, after a safety signal regarding a potential to increase the risk of bladder cancer [155]. A few years after, the safety signal seems not to be truly confirmed, and complementary arguments for its benefits have been observed [156]. Thus, some authors are calling for a come-back of pioglitazone, taking into account its several benefits and risks [157].

In the same way, a safety alert has been notified regarding potential pancreatic adverse events of GLP1 receptor agonists [158]. However, a recent meta-analysis of the powerful randomized CVOT did not observed such harm; and did confirm its CV benefits [START_REF] Kristensen | Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[END_REF]. Moreover, patients with T2D have a higher spontaneous risk of pancreatitis, compared to the general population [159]. Thus, a patient with T2D may have a pancreatitis when being treated by GLP1 receptor agonist, without causal relationships between the two. Following the right "primum non nocere" principle, the US Food and Drug Administration and the European Medicines Agency stated that, "Although the totality of the data that have been reviewed provides reassurance, pancreatitis will continue to be considered a risk associated with these drugs […]" [160]. GLP1 receptor agonist should be stopped in case of pancreatitis [161]. Thus, some patients may lose the highly proved CV benefits of those drugs for a very hypothetical risk. In contrast, the DPP4 inhibitors did not showed CV benefits, but have been associated with a significant increased risk of acute pancreatitis in CVOT [105]. Nevertheless, the two summary of product characteristics are very similar, regarding the risk of pancreatitis [161,162]. Indeed, the level of proof required for assessing a drug depends on the level of proof of its benefit-risk balance, globally, and not separately.

In 2019, the French National Authority for Health estimated that the benefit-risk of the empagliflozin was not in favor of its use [163], notably due to a potential risk of lower limb imputation, Fournier gangrene, and ketoacidosis. As illustrated in the second section of the first part of this thesis, the CV benefits of SGLT2 inhibitors probably exceed their risks. Several methods are available for benefit risk assessment, especially at the trial level [18,164]. RCTs allow a non-biased estimation of the benefit but remain limited for safety assessment. Integrating data from different type of studies for estimating the benefit-risk balance at a meta-analytic level remains a challenge [165].

Perspectives of evidence based personalized medicine in type 2 diabetes

Surrogate and 'treat to target' strategy

The second part of this thesis highlighted some difficulties in assessing surrogate endpoint using meta-regression approach. The limitation of the analysis to the aggregate data of each trial exposed the result to the ecological bias. Individual Patient Data Meta-analysis (IPD-MA) can help to overcome this issue [166]. Indeed, it allow to unravel subject-heterogeneity and study- In T2D field, a collaborative group has already published an IPD-MA focused on impact of glucose control on microvascular complications [START_REF] Zoungas | Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials[END_REF], yet IPD-MA regarding macrovascular complications remains needed. Moreover, different surrogate candidates are potentially actionable.

The glucose control was traditionally assessed using the HbA1c level, but the new technology as the Continuous Glucose Monitoring System allow using other measures of glucose variability in the future [171]. Apart from the blood pressure, and the LDL level, albuminuria may also be a surrogate of interest, as recently suggested for end stage renal disease [172]. Interestingly, some drugs impact several surrogates simultaneously: for example, the SGLT2 inhibitors and the GLP1 receptor agonists also decrease arterial blood pressure [173,174]. However, although we observed an association between the decrease of blood pressure through antihypertensive drug and the risk of stroke, the SGLT2 inhibitors do not seems to decrease the risk of stroke in our meta-analysis and other [175].

The level of proof of the target-based strategies remains restricted. Hard target such as 6.0% of HbA1c [111] in primary cardiovascular prevention in healthy people are extrapolated goals and may be associated with more harm than benefit [110]. They should be taken very cautiously, the "primum non nocere" principle applying first. Moreover, the numerical value of the target itself should not become an absolute treatment's goal, and lifestyle cardiovascular risk factor should be addressed in priority. However, the higher prognostic effect of an elevated HbA1c above 8% legitimates a therapeutic intervention, even based on limited level of evidence, except for patients exhibiting particular fragility.

Theranostic biomarker: perspectives in the genomic medicine The level of proof regarding mean benefit effects of pharmacological treatments have increased. However, so-called "predictive" biomarkers are still often assessed with a low level of proof. One increasing challenge is the availability of efficient medicine, but whose use would be The blue and orange double-sided arrows represent the absolute effect (difference in risk between treated and untreated group) of the treatment for efficacy and safety event, respectively, for different level of prognostic factor. The net benefit could be calculated by their difference. On the right: the green and red circles and lines stand for the estimation in presence of an effect modifier; the large green and red arrows simply explicit the change in relative risk of events under treatment with the presence of the theranostic biomarker.

Evidence based personalized medicine for patients with type 2 diabetes remains challenging in everyday clinical practice. There is still need for improvement, even if, fortunately, the progress in health care had allow a decrease in diabetes complication over the year [190]. One role of the physician is to inform the patient of the risk of the natural evolution of the disease, of the benefitrisk balance of the treatment, and of the uncertainties regarding both of them, in order to allow the person to make his/her own choice, taking into account his/her own belief.

Using a network meta-analysis approach, we showed that only the SGLT2 inhibitors and the GLP1 receptor agonist displayed a high level of proof for reducing cardiovascular events, challenging the place of metformin. However, the use of SGLT2 inhibitors and GLP1 receptor agonist is constrained because of safety signal of lower level of evidence. Using a meta-regression approach, we explored the impact of a surrogate on cardiovascular outcomes, highlighting the limits of the "target to treat" strategy for personalizing the treatment intensity. Finally, we provided a statistical comparison of two experimental designs for assessing theranostic biomarkers, which could help conducting clinical research in the future.

Assessing a mean and a stratified treatment effect should be conducted taking into account the global benefit-risk balance estimation. The personalized medicine may also extend to the integration of the individual gut microbiome in clinical care [191]. The recent development in machine learning may also help to further identify theranostic biomarker [192], as recently illustrated in the search for predictive factor of mortality under intensive glucose control in the ACCORD trial [193] 

A B S T R A C T

The aim of this study was to propose a ranking of the currently available antidiabetic drugs, regarding vascular clinical outcomes, in patients with type 2 diabetes, through a network meta-analysis approach. Randomized clinical trials, regardless of the blinding design, testing contemporary antidiabetic drugs, and considering clinically relevant outcomes in patients with type 2 diabetes mellitus will be included. The primary outcomes of this analysis will be overall mortality, cardiovascular mortality, and major cardiovascular events. Diabetic microangiopathy will be a secondary outcome. Adverse events, hypoglycemia, weight evolution, bariatric surgery, and discontinuation of the treatment will also be recorded. Each drug will be analyzed according to its therapeutic class: biguanide, alpha-glucosidase inhibitors, sulfonylureas, glitazones, glinides, insulin, DPP-4 inhibitors, GLP-1 analogs, and gliflozins. The treatment effect of each drug class will be compared using pairwise meta-analysis and a Bayesian random model network meta-analysis. Sensitivity analyses will be conducted according to the quality of the studies and the glycemic control. The report will follow the PRISMA checklist for network metaanalysis. Results of the search strategy and of the study selection will be presented in a PRISMA compliant flowchart. The treatment effects will be summarized with odds ratio (OR) estimates and their 95% credible intervals. A ranking of the drugs will be proposed. Our network meta-analysis should allow a clinically relevant ranking of the contemporary antidiabetic drugs.

I N T R O D U C T I O N

Type 2 diabetes (T2D) is a public health issue, with a dramatically increasing incidence in the world.

Cardiovascular diseases (CVD) are the main cause of mortality in patients with T2D. Many antidiabetic drugs are currently available. The benefit of some of these drugs on patients' outcomes has been evaluated Since the last published international guidelines [4], new antidiabetic drugs have become available. These drugs help control glycemia, but their impact on cardiovascular complications is not clear. Two powerful trials -SAVOR [5] and TECOS [6]-calculated their sample size for superiority regarding cardiovascular events but without observing any major difference in HbA1c control between the intervention and the placebo groups. Another trial-EXAMINE [7]-calculated their sample size for noninferiority but with an observed small glycemic control difference. All three trials did not show any specific effect of DPP4 inhibitors compared with placebo on neither major cardiovascular events nor mortality. Gliflozin showed promising results on cardiovascular outcomes in one powerful clinical trial [8]. Two powerful clinical trials have recently shown a beneficial effect of GLP1 agonist on cardiovascular events (LEADER [9] and SUSTAIN 6 [10]).

New tools for indirect and mixed treatment comparisons, such as network meta-analyses, have become available. Traditional meta-analyses use direct ('headto-head') comparisons between two treatments compared within the same clinical trials. When no direct comparisons are available, indirect comparisons allow the comparison of two treatments through a third common comparator. Although direct comparisons remain the gold standard in treatment evaluation, indirect comparisons can also add to the information provided by direct comparisons, by improving the treatment effect estimate (mixed treatment comparison). In most cases, results of indirect comparisons are consistent with results obtained by direct comparisons [11]. Network meta-analyses allow to compare several treatments, through direct and indirect comparisons. In the treatment network graph, nodes (points) stand for the treatments and edges (lines between the points) for the available direct comparisons.

Many glucose-lowering treatments are currently available. Regarding cardiovascular prevention, the choice can be difficult for physicians due to a lack of direct comparisons. Network meta-analyses can help summarize all available evidence. A bibliographic search (on PubMed) for meta-analyses in type 2 diabetes resulted in more than 900 references, which decreased to more than 200 references when mortality or cardiovascular outcome was specified, and to around 30 for the specific use of a network meta-analysis approach. Several network meta-analyses of antidiabetic drugs have already been conducted. However, they focus on specific drug classes [12,13], on intermediate outcome such as glycated hemoglobin (HbA1c) or blood lipid level controls rather than mortality, cardiovascular diseases and diabetic complications, and/or on specific questions (second-or third-line therapy) [14][15][16][17], as illustrated in Table I.

One network meta-analysis published in 2011 tried to compare hypoglycemic drugs on mortality and cardiovascular events focusing only on second-line therapy. They did not find enough data to proceed to the analysis [15]. One recent network meta-analysis, published in 2016, was conducted on mortality and cardiovascular events, but did not include the last three powerful trials EMPAREG, LEADER, and SUSTAIN 6 [18]. We believe that the last available trials will add enough information to the overall comparison of these drugs on hard clinical judgment.

The purpose of this study was to propose a ranking of the currently available antidiabetic drugs, regarding vascular clinical outcomes, in patients with T2D, through a network meta-analysis approach.

M E T H O D S

Eligibility criteria

Only studies fulfilling the inclusion criteria, described below following the PICOS structure, will be eligible for this meta-analysis.

Participants

Only subjects aged 18 and over with T2D will be included. The diagnosis of T2D should have been established using standard criteria or, if necessary, by the definition of T2D given by the author in the corresponding clinical trial. Exclusion criteria are dialysis, transplantation, pregnancy, impaired glucose tolerance, 

Comparisons

All comparisons between active treatments and vs. placebo, as monotherapy or add-on, will be included.

Comparisons within the same therapeutic class will be excluded (see 'Planned method of analyses').

Outcomes

Only studies with clinically relevant outcomes (as primary or secondary outcomes) will be included. Clinically relevant outcomes considered here are as follows: overall mortality, cardiovascular mortality, major cardiovascular events, and diabetic microangiopathy (new or worsening). Major cardiovascular events considered here are as follows: myocardial infarction or acute coronary syndrome, stroke, and arteriopathy of the lower limbs. Diabetic microangiopathy considered here includes the following: retinopathy, nephropathy, and neuropathy. All these outcomes should be clinically relevant, that is, clinically symptomatic, or leading to a therapeutic intervention such as surgery, photocoagulation, or dialysis. HbA1c, blood glucose, and fructosamine level, isolated serum creatinine or albuminuria changes, weight, body mass index (BMI), and hip/waist ratio will not be considered as clinically relevant outcomes. Efficacy and/or safety studies will be included.

Study design

Only parallel-group randomized controlled trials (RCTs) will be included, regardless of the blinding design.

Outcomes of the meta-analysis

The primary outcomes of this analysis will be overall mortality, cardiovascular mortality, and major GLUCOSE DINET protocol 118 cardiovascular events. Diabetic microangiopathy will be a secondary outcome. Their definitions are given in the 'Outcome' section. Adverse events, hypoglycemia, weight evolution, bariatric surgery, and discontinuation of the treatment will also be recorded.

Information sources and search strategy English-language RCTs will be searched in PubMed and Central databases, without time restriction. EMBASE will not be used as Halladay et al. showed that the expected gain is only modest [19]. Complementary sources will be used, especially to identify unpublished trials: reference lists of published meta-analyses, ClinicalTrials.gov, EU Clinical Trials Register, the Food and Drug Administration (FDA) website, and experts' knowledge.

The search strategy will be defined by (i) patient's condition (i.e., T2D), (ii) studied drugs (i.e., antidiabetics), (iii) measured outcomes, and (iv) study design. For the latter, the specific search strategy of RCTs defined in the Cochrane Handbook will be used [20]. We will exclude literature reviews. Each parameter will be defined by several MeSH terms and/or free text in titles and abstracts. The search strategy will be available in the appendix.

Study selection, data collection process, and risk of bias assessment in individual studies

The study selection, data extraction, and risk of bias assessment will be carried out by at least two independent reviewers. In case of disagreements, consensus will be reached with a third person. Studies will be screened on the basis of their titles and abstracts. Eligible studies will then be reviewed on their full texts. For each excluded study, reason(s) for exclusion will be given.

Extracted data items will include the following: quality items, characteristics of the studies and their patients, and the outcomes of interest. Authors will be contacted in case of missing data. The quality of the studies will be assessed using the Cochrane Collaboration's tool for assessing risk of bias in RCTs [21]. A summary of the quality assessment will be available in the appendix.

Geometry of the network

The structure of the network will be illustrated through a network graph, indicating the number of available RCTs for each direct comparison.

Summary measures

OR with its 95% credible interval will be the principal summary measure for the primary and secondary outcomes. Additional summary measures will include the ranking of the therapeutic classes.

Planned method of analysis Each drug (including each drug dose) will be analyzed according to its therapeutic class: biguanide, alpha-glucosidase inhibitors, sulfonylureas, glitazones, glinides, insulin, DPP-4 inhibitors, GLP-1 analogs, and gliflozins. The treatment effect of each drug class will be compared using pairwise meta-analyses and a Bayesian random model network meta-analysis [22]. A random model will be used due to the expected heterogeneity between trials. The prior distribution will be chosen as noninformative. The posterior distribution will be estimated using a Markov chain Monte Carlo method [23].

Network assessment

Inconsistency of the network will be searched for, using local and global approaches [24]. Distribution of the treatment effect modifiers across the comparisons will be evaluated to assess the transitivity assumption [24].

Drug ranking

According to their probability of being at each rank of efficacy, the different drug classes will be ranked using the surface under the cumulative ranking curve (SUCRA) [25].

Additional analyses Sensitivity analyses will be conducted according to the quality of the studies (especially open vs. blinded RCTs), according to the glycemic control (RCTs in which achieved HbA1c blood levels were different vs. RCTs without difference in HbA1c between the intervention group and the control group), and according to the level of cardiovascular risk at baseline. If treatment effect modifiers are identified, subgroup analyses will be conducted.

Risk of bias across studies

A funnel plot will be used to assess the risk of publication bias, with corresponding measures of the probability of lack of publication bias.

Software

Analyses will be conducted using R [26] and WinBUGS [27] software. The report will follow the PRISMA checklist for network meta-analyses [28]. Results of the search strategy and the study selection will be presented in a PRISMA compliant flowchart [29]. Study characteristics will be summarized, as shown in Table II. Treatment effects will be summarized with OR estimates and their 95% credible intervals. A ranking of the therapeutic classes will be proposed.

D I S C U S S I O N

Type 2 diabetes has an increasing public health impact in the world. Network meta-analyses are still exploratory analyses, but they allow the use of all available information, thus leading to more informed drug prescriptions. A very interesting question in this network meta-analysis will be the ranking of metformin, regarding the recent results for gliflozins and GLP1 agonists.

The main potential limit of this analysis will possibly be the lack of data, as inconsistency between direct and indirect comparisons seems to be higher with fewer trials [11]. Moreover, when a meta-analysis showed no effect, a lack of power, in terms of number of subject and/or duration of the studies, is still one of the possible explanations. The meta-analysis is then helpful as it shows the insufficiency of the available data used to prescribe drugs.

One other limit is the inclusion of open clinical trials leading to a risk of bias. Unfortunately, the frequency of open trials in diabetes mellitus in the last decades is high. However, a sensitivity analysis is planned to investigate the impact of those open trials in our analysis.

Other limits are the potential effect modifiers, like the possible difference in the cardiovascular baseline risk of the included subjects. For example, patients were at high cardiovascular risk in LEADER and EMPAREG but not in UKPDS. Moreover, there was no difference in glycemic control between the groups in some studies. Those possible effect modifiers will be investigated using sensitivity analyses instead of integrating those parameters in the model. The interpretation of complex models remains a difficult issue, and we do not expect to have enough data.

We focus on severe clinical outcomes, mainly cardiovascular. They are not the only complications of patients with T2D, but they are the main cause of death in this population. We also plan to look at microvascular complications, but those outcomes could be subject to reporting bias in cardiovascular trials.

We limit our study at the therapeutic class level for this first analysis, but it would be interesting to look at the heterogeneity in the treatment effect within therapeutic classes in further analyses, notably for glitazones and sulfonylureas.

C O N C L U S I O N

Up to now, there is no clear picture to help us distinguish which of these therapeutic classes are most contributing to the prevention of complications in diabetes. These drugs are used to control glycemia and reduce diabetic complications in tens of millions of people 
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Describe results from investigations of inconsistency. This may include such information as measures of model fit to compare consistency and inconsistency models, P values from statistical tests, or summary of inconsistency estimates from different parts of the treatment network.
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Risk of bias across studies 22

Present results of any assessment of risk of bias across studies for the evidence base being studied. 9-10

Results of additional analyses 23

Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression analyses, alternative network geometries studied, alternative choice of prior distributions for Bayesian analyses, and so forth).

11-12

DISCUSSION

Summary of evidence 24

Summarize the main findings, including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy-makers).

14-15

Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias). Comment on the validity of the assumptions, such as transitivity and consistency. Comment on any concerns regarding network geometry (e.g., avoidance of certain comparisons).

16-17

Conclusions 26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.

17-18

FUNDING Funding 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. This should also include information regarding whether funding has been received from manufacturers of treatments in the network and/or whether some of the authors are content experts with professional conflicts of interest that could affect use of treatments in the network. The diamond in the forest plot stands for the network estimation of the TE (OR and its 95%CI) ('Network's line); the squares stand for i) the TE estimate in the corresponding trial (on line with its name), and ii) the TE estimate using direct meta-analysis with both fixed and random model 
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Objectives Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes and study design (PICOS).
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Protocol and registration

Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address) and, if available, provide registration information including registration number.

6
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Figure 1 .

 1 Figure 1. Indirect comparison principle, according to Bucher et al [14]. RCT: Randomized Clinical Trial; TTT: treatment 'A', 'P', 'C'; RR: risk ratio. The solid arrows stand for the direct comparisons; the dashed arrow for indirect comparison.

Figure 4 .

 4 Figure 4. Effect model for the net benefit, adapted from Lubsen et al [40]. The X-axis represents the spontaneous risk of event (R0), the Y-axis the risk under treatment (R1). The grey diagonal stands for the absence of treatment effect (R0=R1). The blue line represents the treatment effect for the efficacy endpoint (top left). The orange line represents the risk of harm due to the treatment,here supposed constant (top right). Finally, benefit and harm are combined: the intersection with the diagonal is the threshold (green arrow) of basal risk of event from which the treatment display a net benefit (down).

Fig 5 .

 5 Fig 5.A. Designs not assessing a treatment -biomarker interaction per se.

Figure 5 .

 5 Figure 5. Different designs assess different types of biomarkers. "+" refers to the presence of the biomarker, "-" to its absence.

Figure 6 .

 6 Figure 6. Reasons for failure of surrogate end points, adapted from Fleming et al [63] (up left: surrogate is not in the pathway of the disease; up right: the treatment affects the pathway of the surrogate, but other pathways exist; down left: the treatment acts through another pathway; down right: the treatment acts through mechanisms of action independent of the disease process and the surrogate. Dotted lines illustrate mechanisms of action that might exist).

Figure 7 .

 7 Figure 7. The main hypoglycemic drug classes. AT: adipose tissue. Alpha-G-I: alpha glucosidase inhibitor. DPP4-I: DPP4 inhibitors. GLP1-A: GLP1 receptor agonists. SGLT2-I: SGLT2 inhibitors.

  i.e. the search for genetic variants associated with therapeutic responses[124]. Several genetic variants have been identified in pharmacogenomics of hypoglycemic drugs[125][126][127]. Regarding efficacy, heritability could be responsible for around one third of the absolute HbA1c decrease with metformin[128]. Genes of the organic cation transporter family (OCTs), a drug transporter, the gene of an ATM serine/threonine kinase (associated with ataxia telangiectasia), and loci in the SLC2A2 gene (coding for the GLUT2 glucose transporter) have been associated with glycemic response to metformin[127]. Regarding sulfonylureas also, genes implicated both in the pharmacokinetics and genes implicated in the pharmacodynamics of the sulfonylureas have been associated with differential glycemic response: CYP2C9, a cytochrome P450 implicated in the metabolism of sulfonylureas; and genetic variants of the different sub-units ABCC8 and KCNJ11 of the ATP-sensitive potassium channel to which the sulfonylureas are targeted[127]. Some variants are also described as potentially implicated in the metabolic response to DPP4 inhibitors and GLP1 Receptor agonist [127]. Several genes have been associated with the safety of hypoglycemic drugs: the SLC22A1 gene (an OCT drug transporter) may be related to the

  multiple comorbidities, limited life expectancy[111]. The prognostic effect of HbA1c on mortality has been confirmed in large epidemiologic study[129] and meta-analyses of observational data[130, 131]. Some mendelian randomization studies have recently assessed the relationships between diabetes and/or glycemic exposure and long-term CV events, supporting the causality of long-term hyperglycemia exposure and macrovascular outcomes. Ahmad et al. observed a small association between multiple genetic variants associated to T2D and Coronary Heart Disease (CHD) risk [132]. Ross et al. reported a relationship between nine genetic variants associated with HbA1c and risk of Coronary Artery Disease (CAD) [133]; Leong et al. reported similar results using 50 genetic variants associated to HbA1c [134]. The translation of intensive glucose control effect in type 1 diabetes [135] to type 2 diabetes patients remains unclear. However, the demonstration of its theranostic value and clinical utility in type 2 diabetes has been discussed [136, 137].Intensification trials have showed conflicting results. The ADVANCE trial suggested a reduction in new or worsening nephropathy, mainly in microalbuminuria, when achieving 6.5 versus 7.3% of HbA1c[108]. The VADT trial also suggested beneficial effect only on progression of albuminuria when achieving 6.9% of HbA1c versus 8.4%. However, the ACCORD trial observed an increase in mortality when pursuing a HbA1c target below 6.0% (achieved: 6.4% versus 7.5%)[110]. Meta-analyses of the intensification trials showed some macro-vascular benefit: around 15% decrease of the risk of non-fatal MI for a decrease of 1% of the HbA1c, and a decrease of microalbuminuria; but with an increased risk of hypoglycemia[138, 139]. Meta-regression using aggregated data of RCT showed conflicting results regarding the association between HbA1c reduction and CV risk reduction[137, 140]. A recent meta-regression including both the last CVOT up to February 2019 and intensive glucose control trials suggested an association between HbA1c decrease and risk of MACE[141]. However, meta-regression on aggregated data exhibits several limits, including the ecological bias. Indeed, correlations observed in meta-regressions should be seen as observational and do not have the level of evidence of RCT for assessing causality, especially using aggregate data[142]. A recent Individual Patient Data Meta-analysis suggested benefits of HbA1c decrease on microvascular events, but mainly on intermediate endpoints[START_REF] Zoungas | Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials[END_REF].Furthermore, the long term follows up of UKPDS [143] (and of DCCT/EDIC trials in type 1 diabetes [144]) have suggested a long term beneficial effect of glucose control even after the period of intensive glucose control. This has led to the hypothesis of a legacy effect, i.e. a metabolic memory, translating the early glucose control in prolonged benefits. However, the last follow up of intensive glucose control in DT2 did not confirmed such post-treatment effect[145]. Withdrawal RCT would help to better assess the potential of such "delayed surrogate"[146].

o

  Serious adverse events.In the second section, we completed this part with a benefit-risk balance estimation of the SGLT2 inhibitors. First part -first section. Distinct assessments of benefit and risk: a network meta-analysis This section reports the original research "GLUcose COntrol Safety & Efficacy in type 2 DIabetes, a NETwork meta-analysis (GLUCOSE DINET)". The protocol was previously registered in the PROSPERO database (CRD42016043823) [147]. The published article of the rational and design of the study is available in appendix 1 [148].

  2 to 98.3%, and percentage of current smokers at inclusion ranged from 10.2 47 to 49.6%. Mean age ranged from 53+/-8.5 to 69+/-7.1 years, mean duration of diabetes from around 0 (UKPDS) to 14.7+/-9.5 years, mean HbA1c at inclusion from 6.3+/-1.3 to 8.8 +/-1.7%, mean body mass index (BMI) at inclusion from 23.9+/-3.1 to 32.5+/-6.3 kg.m -2 . 20 (59%) trials were double-blinded. The summary of the risk of bias assessments and details for each study are presented in supplementary S2 Fig. Only 12 and seven trials provided details on clinical retinopathy and clinical nephropathy, respectively (18 trials for nephropathy when including biological outcomes). Primary outcomes Overall mortality. Thirty studies contributed to this analysis, including 12,203 deaths. Each active drug class had direct comparisons with control. The comparison network and forest plots of the direct comparisons are shown in supplementary S3A Fig_Network, S3A Fig_DPP-4_I VERSUS CONTROL, S3A Fig_GLITAZONES VERSUS CONTROL, S3A Fig_GLP-1_A VERSUS CONTROL, S3A Fig_INSULIN VERSUS CONTROL, S3A Fig_MET-FORMIN VERSUS CONTROL, S3A Fig_SGLT-2_I VERSUS CONTROL, S3A Fig_SULFO-NYLUREA VERSUS CONTROL, S3A Fig_SULFONYLUREA VERSUS GLITAZONES, S3A Fig_INSULIN VERSUS SULFONYLUREA, S3A Fig_METFORMIN VERSUS SULFONYL-UREA. SGLT-2 inhibitors only were associated with a decreased risk of overall mortality compared to control (OR = 0.84 [95% CrI: 0.74; 0.95]) and compared to DPP-4 inhibitors (OR = 0.82 [95% CrI: 0.69; 0.98]

Fig 1 .

 1 Fig 1. Flow diagram of bibliographic search (following PRISMA guidelines). https://doi.org/10.1371/journal.pone.0217701.g001

49

  Cardiovascular mortality. Twenty-seven studies contributed to the analysis for cardiovascular mortality, including 6,221 cardiovascular deaths. Each active drug class had direct comparisons against control. The comparison network and forest plots of the direct comparisons are shown in supplementary S3B Fig_Network, S3B Fig_DPP-4_I VERSUS CONTROL, S3B Fig_GLITAZONES VERSUS CONTROL, S3B Fig_GLP-1_A VERSUS CONTROL, S3B Fig_INSULIN VERSUS CONTROL, S3B Fig_METFORMIN VERSUS CONTROL, S3B Fig_SGLT-2_I VERSUS CONTROL, S3B Fig_SULFONYLUREA VERSUS CONTROL, S3B Fig_SULFONYLUREA VERSUS GLITAZONES, S3B Fig_INSULIN VERSUS SULFONYL-UREA, S3B Fig_METFORMIN VERSUS SULFONYLUREA. No significant differences were observed in the network comparisons. SUCRA values suggested SGLT-2 inhibitors have the

  92 [95% CrI: 0.55; 1.57], OR = 0.99 [95% CrI: 0.29; 3.28], OR = 0.94 [95% CrI: 0.55; 1.6], respectively. Compared to control, risk of overall mortality, CV mortality and of MACE, with metformin, was: OR = 0.94 [95% CrI: 0.67; 1.41], OR = 1.08 [95% CrI: 0.57; 2.43], OR = 0.97 [95% CrI: 0.57; 1.56], respectively. Compared to metformin, risk of overall mortality, of CV mortality and of MACE, with SGLT-2 inhibitors was: OR = 0.99 [95% CrI: 0.5; 1.78], OR = 0.93 [95% CrI: 0.21; 3.29], OR = 0.96 [95% CrI: 0.48; 2.09], respectively.

B. 1 :

 1 Risk of bias assessment, for each included study (L: low risk of bias, U: unclear, H: high. Sequence generation, 2: Allocation concealment, 3: Blinding of participants, 4: Blinding of outcome, 5: Attrition bias, 6: Reporting bias, 7: Other risk of bias) Network figures and forest plots of direct comparisons for Major Adverse Cardiovascular Events Only the network figure and the forest plots for the Major Adverse Cardiovascular Events (MACEs) are displayed here. The network figure and the forest plots for the other primary outcomes are provided in Appendix 2. Network figure Each node represents a drug class, each edge a direct comparison. This network included 27 randomized trials. On 168 068 subjects, 17 188 presented the outcome.Forest plots of the Major Adverse Cardiovascular Events (MACE) for each direct comparisonThe diamond in the forest plot stands for the network estimation of the TE (OR and its 95%CI) ('Network's line); the squares stand for i) the TE estimate in the corresponding trial (on line with its name), and ii) the TE estimate using direct meta-analysis with both fixed and random model ('Fixed' and 'Random', respectively). 'W' stands for the weight of each trial in the corresponding direct meta-analysis. each drug classes to be ranked best treatment (rank = 1) to the last effective (rank = 8), for major adverse cardiovascular events (MACE).

  Diabetes and Vascular Disease: Preterax and Diamicron Modified-Release Controlled Evaluation (ADVANCE) trial, only data from the antihypertensive groups were considered and, in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), only data from the diabetes subgroup were included.

Fig. 1 .

 1 Fig.1. Regression plots of the odds ratio (OR; log scale) for each outcome against differences in systolic blood pressure (SBP). Each black point represents a comparison (size varies according to weight); the solid line represents the meta-regression line, the dashed line its 95% confidence interval, and the dotted line the null effect on outcome (OR = 1). TotD: total deaths; CVD: cardiovascular deaths; CVE: cardiovascular events; MI: myocardial infarction.

  Third part -Second section. Meta-epidemiology in pharmacogenetic Quality assessment of published pharmacogenetic association in randomized clinical trials This poster communication has been an e-Poster at the Drug Information Association (DIA) Euro-meeting, edition 2019.

From

  October 2015 to October 2018, we systematically searched for Randomized, Controlled, Pharmacogenetics Clinical Studies, reporting a clinical outcome in Human, in PubMed. References were screened based on Title/Abstract, then on the full text. The following flowchart shows the results of the study selection.38 Randomized Control Trials (RCT) were included. The sample sizes ranged from 22 to 3956. Medical area of the studies were:

DISCUSSION

  Mean treatment benefit-risk balance estimationNeed for comparisons of hypoglycemic drugs

  heterogeneity for estimating the TE [167]. Different approaches are proposed for conducting IPD-MA [167, 168]. If necessary, both IPD and aggregate data could be integrated in the analysis [169]. Finally, network MA and IPD-MA methods can be combined, for searching treatment-covariate interaction in a multiple treatment comparison [170].

  misled by false indications and/or counter-indications. In the last decade, the emergence of new gene sequencing technology had allowed an intensive search for genetic biomarker, nurturing the hope for a genomic/predictive/personalized medicine [176]. However, the use of omics data lead to the risk of false positive results and an optimism bias [177]. The burden of publication in this area contribute to the reproducibility crisis [178-180]. Publication bias has been showed both for genetic association studies [181] and observational studies assessing adverse drug event [182]. Publication bias in pharmacogenetic studies is therefore highly suspected. Also, the use of multiple screening can lead to overdiagnosis [183]. Indeed, EBM's principles are not only still valid in the genomic area but highly needed [184, 185]. Research is ongoing looking at validation's tool of such effect modifier [186]. 36 criteria for claiming effect modification has been reported so far, of which test for interaction, a priori hypothesis and providing a causal explanation were frequently reported [186]. Finally, genomic can help both for better estimating the risk of a disease or an outcome of a subject [187] and identifying subjects exhibiting specific responses to drugs [124, 188]. Using polygenic scores [189] would help individualizing the treatment benefit-risk balance estimation. The figure 8 extended the effect model to schematize the impact of different prognostic and theranostic factors on the TE estimation.

Figure 8 .

 8 Figure 8. Effect model for a personalized benefit-risk balance estimation.X-axis: spontaneous risk of event (R0); Y-axis: risk of event under treatment (R1). Each circle stands for the estimate of one trial, regarding one endpoint. Blue and orange are estimation of efficacy and safety endpoints, respectively. The grey diagonal represents the absence of treatment effect (R0=R1). The blue and the orange line represent the meta-analyses of studies for each event,their slope being the treatment effect on the relative scale. On the left: the blue and orange onesided arrows represent different prognostic factor for efficacy and safety endpoints, respectively.
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  2016 Soci et e Franc ßaise de Pharmacologie et de Th erapeutique Fundamental & Clinical Pharmacology R E S U L T S

  cardiovascular events, n (%) Patients without previous cardiovascular events, with diabetic microangiopathy, n (%) Patients without previous cardiovascular events, without diabetic microangiopathy, n (%) Patients with high blood pressure (treated or not), n (%) Patients with dyslipidemia (treated or not), n (%) Patients with antiplatelet treatment, n (%) Current smoker at inclusion (%) Mean baseline HbA1c level (SD), % Mean change in HbA1c level (SD), % Mean baseline BMI level (SD), kg/m 2 Mean change in weight (SD), kg DB, double blinded; SB, single blinded; O, open; SD, standard deviation. ª 2016 Soci et e Franc ßaise de Pharmacologie et de Th erapeutique Fundamental & Clinical Pharmacology GLUCOSE DINET protocol 120 worldwide, and in over two million in France. Our network meta-analysis should allow a clinically relevant drug ranking of the contemporary antidiabetic therapeutic classes.

A

  B B R E V I A T I O N S BMI -body mass index CV -cardiovascular CVD -cardiovascular diseases FDA -Food and Drug Administration HbA1c -glycated hemoglobin OR -odds ratio PICOS -participants, interventions, control, outcome, study design PRISMA -preferred reporting items for systematic reviews and meta-analyses RCTs -randomized clinical trials SUCRA -surface under the cumulative ranking curve T2D -type 2 diabetes UKPDS -UK Prospective Diabetes Study R E F E R E N C E S 1 Boussageon R., Bejan-Angoulvant T., Saadatian-Elahi M. et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ (2011) 343 d4169. 2 Hemmingsen B., Lund S.S., Gluud C. et al. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ (2011) 343 d6898. 3 Buehler A.M., Cavalcanti A.B., Berwanger O. et al. Effect of tight blood glucose control versus conventional control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Cardiovasc. Ther. (2013) 31 147-160. 4 Inzucchi S.E., Bergenstal R.M., Buse J.B. et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia (2012) 55 1577-1596. 5 Scirica B.M., Bhatt D.L., Braunwald E. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. (2013) 369 1317-1326.

20 124S3

 20 Fig. Network figures for the primary outcomes and forest plots of the direct comparisons A. Overall mortality This network included 30 randomized trials. On 168 332 subjects, 12 203 presented the outcome. S3A Fig_Network: 125 Forest plots of the overall mortality for each direct comparison:

(

  'Fixed' and 'Random', respectively). 'W' stands for the weight of each trial in the corresponding direct meta-analysis. This network included 27 randomized trials. On 152 642 subjects, 6 221 presented the outcome.

  Safety & Efficacy in type 2 DIabetes, a systematic review and NETwork meta-analysis, Annual Meeting of French Society of Pharmacology and Therapeutics, 2018 -Association between difference in blood pressure reduction and risk of cardiovascular events in a type 2 diabetes population: A meta-regression analysis, Annual Meeting of French Society of Pharmacology and Therapeutics, 2019 -Minoxidil versus placebo in the treatment of arterial wall hypertrophy in children with Williams Beuren Syndrome: a randomized controlled trial., International meeting on Williams-Beuren syndrome, 2017 Poster Communications -Quality assessment of published pharmacogenetic association in randomized clinical trials, e-poster at the Drug Information Association (DIA) Euro-meeting, edition 2019 -A review of genetic variants related to edema risk using PPAR agonists in type 2 diabetes, e-poster at the Drug Information Association (DIA) Euro-meeting, edition 2018 -Diphoterine® in therapeutic care of chemical burn: to recommend or not to recommend? French Society of Clinical Toxicology, 2019 -Toxicité cardiaque du paracétamol? French Society of Clinical Toxicology, 2018 -GLUcose COntrol Safety & Efficacy in type 2 DIabetes, a systematic review and NETwork meta-analysis, Congress of the European Association for Clinical Pharmacology and Therapeutics, 2019 (EACPT2019)
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 1 Hierarchy of evidence for surrogate end point validity ................................................... 30

		ABBREVIATIONS
	ADR	: Adverse Drug Reaction
	ARR	: Absolute Risk Reduction
	BMI	: Body Mass Index
	BMJ	: British Medical Journal
	BP	: Blood Pressure
	CAD	: Coronary Artery Disease
	CHD	: Coronary Heart Disease
	CI	: Confidence Intervalle
	CO	: Cross-Over
	CV	: Cardiovascular
	CVOT	: Cardiovascular Outcomes Trials
	DPP4 inhibitors	: DiPeptidyl Peptidase-4 inhibitors
	EAS	: European Atherosclerosis Society
	EBM	: Evidence Based Medicine
	EMA	: European Medicines Agency
	ERCC1	: ERCC excision repair 1, endonuclease non-catalytic subunit
	ESC	: European Society of Cardiology
	F.N.A.H.	: French National Authority for Health
	FDA	: U.S. Food and Drug Administration
	GLP1 receptor agonists : Glucagon Like Peptide 1 receptor agonists
	HAS	: Haute Autorité de Santé
	HbA1c	: Glycated Hemoglobin
	HR	: Hazard Ratio
	HTE	: Heterogeneity of Treatment Effect
	IPD MA	: Individual Patient Data Meta Analyses
	LDL	: Low-Density Lipoprotein cholesterol
	MA	: Meta-Analysis
	MACEs	: Major Adverse Cardiovascular Events

Table 1 . Baseline characteristics of included trials.

 1 

	Year of	Blinding	Male	HBP	Lipd	APT	Smoker	Age (year)	Diabetes duration	HbA1c	BMI
	publication								(year)		
	DPP-4_I VERSUS CONTROL										
	CARMELINA [22]	DB	62.9	95.1	71.8	68.3	10.2	65.8 (9.1)	14.7 (9.5)	7.9 (1.0)	31.3
											(5.3)
	EXAMINE [35]	DB	67.8	83	90.4	97.2	13.7	61	7.2	8 (1.1)	28.7
	SAVOR.TIMI.53 [40]	DB	66.9	81.8	71.2	75.2	13.4	65 (8.6)	10.3	8 (1.4)	31.1
											(5.6)
	TECOS [42]	DB	70.7	78.4	79.5	78.2	11.4	65.5 (8)	11.6 (8.1)	7.2 (0.5)	30.2
											(5.6)
	GLITAZONES VERSUS CONTROL										
	J.SPIRIT [44]	O	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Kaku.2009 [32]	O	62.5	69	71	NA	45.2	58	NA	7.6	26.7
	Lee.2013 [39]	NA	73.6	57	73.5	98.3	49.6	61.1 (9.1)	5.8 (6.7)	7.8 (1.7)	23.9
											(3.1)
	PROactive [27]	DB	66.1	75.4	42.9	83.9	13.8	61.8	8	8.1 (1.41)	30.9
											(4.8)
	PROFIT.J [41]	O	64.6	60.8	43.6	NA	NA	69 (7.1)	11.3 (8.9)	7.4 (0.9)	24.2
											(3.3)
	RECORD [31]	O	51.6	65.6	34.1	NA	15.7	58.4 (8.2)	7.1 (4.9)	7.9 (0.7)	31.5
											(4.7)
	TIDE [37]	DB	58.8	88.2	76.4	55.4	12.5	66.4 (6.6)	8.8 (6.8)	7.4 (0.9)	30.6
											(5.3)
	GLP-1_A VERSUS CONTROL										
	ELIXA [43]	DB	69.3	76.3	92.8	97.5	11.7	60.2 (9.6)	9.3 (8.2)	7.7 (1.3)	30.1
											(5.7)
	EXSCEL [45]	DB	62	90.3	73.5	63.6	11.6	62 ⇤	12 (7;18) ⇤	8(7.3;8.9) ⇤	31.8 ⇤
	HARMONY [8]	DB	69	86.5	84.1	77.1	15.8	64.2 (8.7)	14.1 (8.8)	8.7 (1.5)	32.3
											(5.9)
	LEADER [4]	DB	64.2	92.3	75.6	67.7	NA	64.3 (7.2)	12.8	8.7	32.5
											(6.3)
	SUSTAIN.6 [5]	DB	60.7	93.5	76.5	NA	NA	64.6 (7.4)	13.9 (8.1)	8.7 (1.5)	NA
	INSULIN VERSUS CONTROL										
	ORIGIN [36]	O	65	79.5	53.8	69.2	12.4	63.5 (7.8)	5.4 (6)	6.4	29.9
											(5.2)
	UGDP [23]	NA	29	32.3	13.1	NA	NA	NA	NA	NA	NA
	UKPDS.33 [24]	O	62	11.6	0.1	NA	31	54 (8)	0	6.3 (1.3)	27.3
											(5.1)
	METFORMIN VERSUS CONTROL										
	COSMIC [26]	O	49.4	NA	NA	NA	NA	58.5 (13)	4.8 (6)	NA	NA
	HOME [33]	DB	45.6	43	16.1	NA	24.9	61.5 (10.5)	NA	7.9 (1.2)	30 (5)
	UKPDS.34a [25]	O	46.5	15.5	0.2	NA	25	53 (8.5)	0	7.2 (1.5)	31.7
											(4.8)
	UKPDS.34b [25]	O	60	24.5	0.2	NA	26.5	58.5 (8.5)	0	7.5 (1.8)	29.5
											(5.5)
	SGLT-2_I VERSUS CONTROL										
	CANVAS [3]	DB	66.1	87.6	72.3	71.6	17.9	62.4 (8)	13.4 (7.5)	8.2 (0.9)	32.1
											(6.2)
	CANVASR [3]	DB	62.8	91.7	76.9	75.1	17.7	64 (8.4)	13.7 (7.9)	8.3 (1)	31.9
											(5.7)
	DECLARE.TIMI.58 [9]	DB	62.6	NA	75	61.1	NA	64 (6.8)	11 (6;16) ⇤	8.3 (1.2)	32 (6)
	EMPAREG [2]	DB	71.4	95	81.1	NA	NA	63.1 (8.7)	NA	8.1 (0.8)	30.6
											(5.2)
	SULFONYLUREA VERSUS CONTROL										
	ADVANCE [30]	O	57.5	75.1	NA	NA	NA	66 (6)	8 (6.3)	7.5 (1.6)	28 (5)

Table 1 .

 1 (Continued) 

		Year of	Blinding	Male	HBP	Lipd	APT	Smoker	Age (year)	Diabetes duration	HbA1c	BMI
		publication								(year)		
	APPROACH [34]	2010	DB	67.9	80.1	75.9	83.2	16.6	61 (8.7)	4.8	7.2 (0.8)	29.6
												(5.4)
	PERISCOPE [29]	2008	DB	67.4	86.8	81.2	90.1	15.3	59.9 (9.2)	5.9	7.4 (1)	32 (5.2)
	Giles.2008 [28]	2008	DB	73.6	NA	NA	NA	NA	63.8 (9.7)	11.8 (9.3)	8.8 (1.7)	29.6
												(5.3)
	PPAR.Study [21]	NA	O	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TOSCA.IT [46]	2017	O	58.5	70	57.3	40.2	17.6	62.3 (6.5)	8.4 (5.7)	7.7 (0.5)	30.3
												(4.5)
	INSULIN VERSUS SULFONYLUREA										
	UKPDS.33 [24]	(see previous description)									
	METFORMIN VERSUS SULFONYLUREA										
	SPREAD.DIMCAD [38]	2013	DB	77.6	69.4	63.9	83.5	37.5	63.3	5.6 (5.1)	7.6 (1.7)	25.1 (3)

"_i" stands for inhibitor, "_a" stands for agonist. Percentages from the whole trial (or the mean of the arms if not available) for high blood pressure or antihypertensive drugs (HBP), dyslipidemia or statines (Lipd), antiplatelet treatment (APT) and current smoker (Smoker); mean and standard deviation from the whole trial (or the mean of the arms if not available) for age, diabetes duration, baseline HbA1c and baseline body mass index (BMI, kg.m-2). When mean and standard deviation were not available, median and interquartile range (IQR) were used, indicated with " ⇤ "). https://doi.org/10.1371/journal.pone.0217701.t001

Table 2 . Treatment effect estimates for overall mortality.
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	control ; 0.2	1.02	0.93	0.9	0.96	0.86	0.84	0.95
		(0.89;1.15)	(0.79;1.09)	(0.81;1)	(0.83;1.09)	(0.67;1.1)	(0.74;0.95)	(0.83;1.09)
	1.02	dpp4_i ; 0.16	0.91	0.88	0.94	0.84	0.82	0.93
	(0.89;1.15)		(0.74;1.12)	(0.75;1.05)	(0.78;1.12)	(0.64;1.12)	(0.69;0.98)	(0.77;1.13)
	0.88		glitazones ; 0.53	0.97	1.03	0.93	0.91	1.03
	(0.46;1.39)			(0.8;1.18)	(0.83;1.27)	(0.69;1.25)	(0.73;1.11)	(0.84;1.25)
	0.89			glp1_a ; 0.67	1.07	0.96	0.94	1.06
	(0.81;1)				(0.88;1.25)	(0.73;1.26)	(0.79;1.1)	(0.88;1.26)
	0.96				insulin ; 0.42	0.9	0.88	0.99
	(0.82;1.1)					(0.68;1.2)	(0.74;1.06)	(0.84;1.2)
	0.97					metformin ; 0.72	0.98	1.11
	(0.63;1.53)						(0.74;1.3)	(0.83;1.46)
	0.84						sglt2_i ; 0.86	1.13
	(0.67;1.05)							(0.94;1.37)
	0.94		0.89		1.01	2.28		sulfonylureas ; 0.44
	(0.83;1.07)		(0.56;1.4)		(0.81;1.25)	(0.64;8.63)		

Table 3 . Treatment effect estimates for cardiovascular mortality.

 3 The diagonal contains the drug class and its SUCRA value. Treatment effect are OR with its 95% credible interval. Above the diagonal: estimates from the network metaanalysis, OR < 1 is in favor of the column; below the diagonal: estimates from the direct comparison, when available, OR <1 is in favor of the row. https://doi.org/10.1371/journal.pone.0217701.t003 51 glitazones (OR = 1.53 [95% CrI: 1.13; 2.15] and OR = 1.45 [95% CrI: 1.06; 2.03], respectively). Insulin was associated with an increased risk of severe adverse events compared to all the comparison except the sulfonylureas: increased risk with insulin compared to control, DPP-4 inhibitors, glitazones, GLP-1 receptor agonists (OR = 1.32 [95% CrI: 1.05; 1.68], OR = 1.44 [95% CrI: 1.05; 1.97], OR = 1.37 [95% CrI: 1.04; 1.81], OR = 1.43 [95% CrI: 1.11; 1.85], respec-

	control ; 0.24	0.99	0.92	0.89	0.95	0.91	0.83	0.92
		(0.8;1.19)	(0.71;1.21)	(0.76;1.05)	(0.7;1.3)	(0.65;1.27)	(0.69;1)	(0.74;1.16)
	0.99	dpp4_i ; 0.31	0.94	0.9	0.96	0.92	0.84	0.93
	(0.85;1.14)		(0.68;1.32)	(0.71;1.18)	(0.68;1.4)	(0.63;1.36)	(0.65;1.11)	(0.7;1.28)
	0.91		glitazones ; 0.51	0.96	1.03	0.98	0.9	0.99
	(0.4;2.07)			(0.71;1.31)	(0.69;1.53)	(0.64;1.5)	(0.64;1.23)	(0.71;1.39)
	0.89			glp1_a ; 0.63	1.07	1.02	0.94	1.03
	(0.78;1.02)				(0.76;1.5)	(0.7;1.47)	(0.72;1.18)	(0.78;1.37)
	0.93				insulin ; 0.43	0.95	0.87	0.96
	(0.73;1.19)					(0.61;1.49)	(0.61;1.24)	(0.7;1.34)
	1.15					metformin ; 0.55	0.92	1.01
	(0.5;3)						(0.62;1.34)	(0.69;1.5)
	0.83						sglt2_i ;	1.1
	(0.61;1.12)						0.8	(0.83;1.5)
	0.9		0.79		0.76	1.72		Sulfonylureas ; 0.53
	(0.75;1.08)		(0.27;2.15)		(0.61;0.95)	(0.54;5.52)		

Table 5 .
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Table 4 . Treatment effect estimates for major adverse cardiovascular events (MACE).
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	control ; 0.21	0.99	0.9	0.88	1.05	0.85	0.89	0.93
		(0.91;1.08)	(0.79;1.03)	(0.81;0.95)	(0.9;1.21)	(0.65;1.11)	(0.81;0.98)	(0.81;1.06)
	0.98	dpp4_i ; 0.26	0.9	0.88	1.05	0.85	0.9	0.94
	(0.92;1.05)		(0.78;1.07)	(0.79;0.99)	(0.89;1.25)	(0.65;1.14)	(0.79;1.02)	(0.8;1.1)
	0.86		glitazones ; 0.66	0.98	1.17	0.94	0.99	1.04
	(0.58;1.17)			(0.83;1.14)	(0.95;1.42)	(0.71;1.27)	(0.83;1.16)	(0.87;1.22)
	0.87			glp1_a ; 0.76	1.19	0.97	1.01	1.06
	(0.74;1)				(1.01;1.42)	(0.73;1.29)	(0.9;1.15)	(0.91;1.24)
	1.04				insulin ; 0.12	0.81	0.85	0.89
	(0.93;1.17)					(0.6;1.11)	(0.71;1.01)	(0.72;1.09)
	0.97					metformin ; 0.75	1.05	1.09
	(0.65;1.44)						(0.79;1.39)	(0.82;1.44)
	0.89						sglt2_i ; 0.71	1.04
	(0.79;0.99)							(0.89;1.23)
	0.93		0.87			1.62		sulfonylureas ; 0.53
	(0.81;1.08)		(0.54;1.3)			(0.77;3.47)		

Table 5 . Summary of treatment effect compared to control for secondary outcomes.

 5 MI: myocardial infarction; SAE: serious adverse events; Sev.hypo: severe hypoglycemia; "_i" stands for inhibitor, "_a" stands for agonist. https://doi.org/10.1371/journal.pone.0217701.t005

		All.MI	Non.fatal.MI	All.Stroke	Non.fatal.Stroke	SAE	Sev.Hypo
	dpp4_i	0.95	1.01	1.03	0.92	0.92	1.18
		(0.78;1.15)	(0.85;1.2)	(0.85;1.26)	(0.69;1.21)	(0.75;1.12)	(0.67;2.06)
	glitazones	1.18	0.91	0.74	0.78	0.97	1.15
		(0.78;1.78)	(0.74;1.11)	(0.57;0.95)	(0.55;1.11)	(0.83;1.12)	(0.58;2.33)
	glp1_a	0.91	0.94	0.89	0.88	0.93	0.83
		(0.79;1.02)	(0.83;1.05)	(0.77;1.04)	(0.73;1.06)	(0.85;1.01)	(0.52;1.23)
	insulin	0.98	0.95	0.99	0.71	1.32	3.44
		(0.79;1.2)	(0.68;1.31)	(0.8;1.19)	(0.43;1.14)	(1.05;1.68)	(1.76;7.25)
	metformin	0.8	0.66	0.73	0.62	0.93	1.34
		(0.6;1.1)	(0.44;1)	(0.46;1.1)	(0.36;1.03)	(0.73;1.19)	(0.31;5.63)
	sglt2_i	0.88	0.87	1.07	1.04	0.88	0.78
		(0.72;1.07)	(0.73;1.04)	(0.88;1.31)	(0.82;1.31)	(0.77;1.01)	(0.39;1.55)
	sulfonylureas	0.87	0.93	1.13	1.02	1.03	2.9
		(0.65;1.16)	(0.76;1.13)	(0.95;1.39)	(0.8;1.28)	(0.86;1.17)	(1.68;6.25)

59 54 .
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  . -A reduction in BP lowers the risk of stroke, but does not appear to affect the risk of other cardiovascular events in a T2D population.
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	2 Diabetes.
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Table 1

 1 Characteristics of the trials included in the meta-regression analysis.

	Trial	Blinding	Sample size (N)	Treatment 1	Treatment 2
	ABCD 2V, 2006	Assessment a	66 vs 63		Intensive DBP control	Moderate BP control (DBP 80-90 mmHg,
					(< 75 mmHg) with valsartan	SBP < 140 mmHg), placebo
	ABCD Hypertension, 1998	Double	235 vs 235		Nisoldipine	Enalapril
	ABCD Normotensives, 1993	Open	237 vs 243		Intensive (10 mmHg below	Moderate (80-89 mmHg) DBP control
					baseline) DBP control
	ACCOMPLISH	Double	1432 vs 1410		Benazepril + amlodipine	Benazepril + hydrochlorothiazide
	ACCORD BP, 2010	Open	2363 vs 2371		Intensive	Standard
	ACTION	Double	565 vs 545		Nifedipine	Placebo
	ADVANCE	Double	5569 vs 5571		Low-dose fixed combination of	Placebo
					perindopril + indapamide
	ALLHAT (amlodipine vs chlor)	Double	2664 vs 4498		Amlodipine	Chlorthalidone
	ALLHAT (lisi vs chlor)	Double	2431 vs 4498		Lisinopril	Chlorthalidone
	Trial	Blinding	Sample size (N)	Treatment 1	Treatment 2
	ASCOT (subgroup), 2008	Double	2565 vs 2572	Amlodipine + added perindopril	Atenolol + added thiazide
	CAPP	Assessment a	309 vs 263	Captopril	Thiazide diuretic or beta-blocker
	Chan, 1992	Double	50 vs 52		Enalapril	Nifedipine
	DETAIL	Double	120 vs 130	Telmisartan	Enalapril
	DIABHYCAR	Double	2443 vs 2469	Ramipril	Placebo
	DREAM	Open	2623 vs 2646	Ramipril	Placebo
	EUROPA (PERSUADE substudy)	Double	721 vs 781	Perindopril	Placebo
	FACET	Open	191 vs 189	Amlodipine	Fosinopril
	Fogari et al., 2002	Open	103 vs 104	Amlodipine	Amlodipine + fosinopril
	Fogari et al., 2002	Open	102 vs 104	Fosinopril	Amlodipine + fosinopril
	GEMINI	Double	498 vs 737	Carvedilol	Metoprolol
	GUARD, 2008	Double	166 vs 166	Benazepril + amlodipine	Benazepril + hydrochlorothiazide
	Trial	Blinding	Sample size (N)	Treatment 1	Treatment 2
	HOPE	Double	1808 vs 1759		Ramipril	Placebo
	HOT	Open	499 vs 500		Target DBP 80 mmHg	Target DBP 90 mmHg
	IDNT (irbesartan vs amlodipine)	Double	579 vs 567		Irbesartan	Amlodipine
	IDNT amlodipine	Double	567 vs 569		Amlodipine	Placebo
	IDNT irbesartan	Double	579 vs 569		Irbesartan	Placebo
	INSIGHT	Double	649 vs 653		Nifedipine	Co-amilozide hydrochlorothiazide + amiloride
	INVEST (subgroup), 2003	Open	3169 vs 3231		Calcium antagonist strategy	Non-calcium antagonist strategy (atenolol)
					(verapamil sustained-release)
	IPDM	Double	195 vs 201		Irbesartan	Placebo
	JMIC-B	Open	199 vs 173		Nifedipine	ACEI
	LIFE	Double	586 vs 609		Losartan	Atenolol
	MERIT-HF	Double	495 vs 490		Metoprolol	Placebo
	Trial	Blinding	Sample size (N)	Treatment 1	Treatment 2
	NAGOYA HEART, 2011	Open	575 vs 575		BP-lowering based on valsartan	BP-lowering based on amlodipine
	NORDIL	Open	351 vs 376		Diltiazem	Thiazide diuretic or beta-blocker
						at step 1
	ORIENT	Double	288; 289		Olmesartan	Placebo
	PROFESS	Double	2840 vs 2903		Telmisartan	Placebo
	PROGRESS (diabetic subgroup)	Double	393 vs 368		Perindopril	Placebo
	RENAAL	Double	751 vs 762		Losartan	Placebo
	ROADMAP	Double	2232; 2215		Olmesartan	Placebo
	SANDS	Open	252 vs 247		Aggressive SBP control 115 mmHg	Standard SBP control 130 mmHg
					(DBP 75 mmHg)	(DBP 85 mmHg)
	SCAT	Double	25 vs 25		Enalapril	Placebo
	SCOPE (diabetic subgroup),	Double	313 vs 284		Candesartan	Control
	2003				
	SHEP	Double	283 vs 300		Chlorthalidone + atenolol	Placebo
					or reserpine
	Trial		Blinding	Sample size (N)	Treatment 1	Treatment 2
	SOLVD		Double	646 vs 664	Enalapril	Placebo
	STOP-2 (ACEI vs CCB) (diabetic subgroup), 2000	Assessment a	235 vs 231	ACEI	Calcium antagonists
	STOP-2 ACEI (diabetic subgroup), 2000	Assessment a	235 vs 253	ACEI	Conventional (diuretic or beta-blocker)
	STOP-2 CCB (diabetic subgroup), 2000		Assessment a	231 vs 253	Calcium antagonists	Conventional (diuretic or beta-blocker)
	Syst-Eur (diabetic subgroup), 1999		Double	252 vs 240	Calcium-channel blocker	Placebo
	UKPDS 38		Open	758 vs 390	Target < 150/85 mmHg	Target < 180/105 mmHg (avoiding
						(captopril or atenolol	ACEIs or beta-blockers)
						as main treatment)
	UKPDS 39		Open	400 vs 358	Captopril	Atenolol
	DBP/SBP: diastolic/systolic blood pressure; BP: blood pressure; ACEI: angiotensin-converting enzyme inhibitor.

a Open design with blinded assessment of outcomes; number of subjects in each group the same as in treatment description. G. Grenet et al. / Diabetes & Metabolism xxx (2018) xxx-xxx 3 G Model DIABET-1096; No. of Pages 7 Please cite this article in press as: Grenet G, et al. Association between difference in blood pressure reduction and risk of cardiovascular events in a type 2 diabetes population: A meta-regression analysis. Diabetes Metab (2019), https://doi.org/10.1016/ j.diabet.2019.05.003 supplementary materials associated with this article online) shows that detailed inclusion criteria, treatment type and duration of follow-up were extracted (as available) from each individual study.

Table 2

 2 Summary of meta-regression of log(OR) of outcomes for systolic (SBP) and diastolic blood pressure (DBP) reductions.

	Outcome	Comparisons (N)		Equation		P	
		SBP	DBP	SBP	DBP	SBP	DBP
	Total deaths CV deaths CV events MI Stroke	26 17 21 25 27	25 16 21 24 26	À 0.142 + (À 0.0094) * X À 0.1118 + (À 0.0094) * X À 0.0839 + (0.0109) * X À 0.1101 + (À 0.0023) * X À 0.0192 + (0.0386) * X	À 0.1408 + (À 0.0205) * X À 0.158 + (À 0.0416) * X À 0.0736 + (0.0293) * X À 0.1392 + (À 0.0175) * X À 0.0013 + (0.0969) * X	0.423 0.645 0.372 0.887 0.01 *	0.437 0.327 0.249 0.609 0.001 *
	In equations, ''X'' stands for difference in blood pressure reduction in mmHg; CV: cardiovascular; MI: myocardial infarction.		

* Nominal P < 0.05. G. Grenet et al. / Diabetes & Metabolism xxx (2018) xxx-xxx 4 G Model
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Appraisal of the reviewers Clearly reported Unclear or not reported DESIGN Type of biomarker study design

  

	Addiction		Neurology		Nephrology
	Oncology		Psychiatry		Rhumatology
	Cardiovascular system	Immune modulation/	Infectiology
			internal medicine	
		Critical Strategy design		26,3%	100,0%	0,0%
		Interaction design	0,0%	0,0%	0,0%
		Controlled sub-group analysis	50,0%	0,0%	100,0%
		Nested cohort in Clinical Trial	23,7%	11,1%	88,9%
		A priori		60,5%	39,1%	60,9%
	Post Hoc or a priori hypothesis	Post hoc		23,7%	66,7%	33,3%
		Unclear		15,8%	0,0%	100,0%
		Double Blind		42,1%	100,0%	0,0%
	Blinding	Single Blind Open Label		15,8% 15,8%	100,0% 100,0%	0,0% 0,0%
		Unclear		26,3%	0,0%	100,
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Table I

 I Characteristics of recent network meta-analysis on hypoglycemic drugs in type 2 diabetes (not exhaustive).

	Comments	Monotherapy, or added to metformin or added to	metformin and sulfonylurea. Do not include EMPAREG,	LEADER, SUSTAIN 6	Third-line therapy (added to metformin and sulfonylurea)	Second-line therapy (added to metformin)		Protocol (registered in Prospero)	indirect judgement criteria	Dual combinations ofantidiabetic drugs	Second-line therapy (added to metformin)	Second-line therapy (added to metformin)	Third-line therapy (added to metformin and sulfonylurea).	Not enough data for mortality and cardiovascular disease; in	second-line therapy
	N of included RCT	301			20	62		in process	NA (full text not accessible)	18	6	39	18	49	
			. .]												
	Outcomes	Cardiovascular mortality, all-cause mortality,	serious adverse events, myocardial infarction, stroke [.		HbA1c, blood pressure, genital or urinary infections	HbA1c, body weight, blood pressure, hypoglycemia,	urinary, and genital tract infection	HbA1c, fasting blood glucose	HbA1c, hypoglycemia	Change in LDL, HDL, triglyceride, and total cholesterol	HbA1c, weight, blood pressure, hypoglycemia	HbA1C, hypoglycemia, body weight.	HbA1C, hypoglycemia, body weight.	HbA1c, body weight, hypoglycemia, quality of life,	long-term diabetes-related complications, serious	adverse drug events, and mortality
	PMID year 1st author	27434443 2016 Palmer			26104021 2015 Mearns	25919293 2015 Mearns		25762228 2015 Jia	25109773 2014 Zintzaras	24805140 2014 Dai	24237939 2014 Goring	22486990 2012 Liu	21576535 2011 Gross	22046219 2011 McIntosh		N, number; RCT, randomized clinical trial.
	ª 2016 Soci et e Franc ßaise de Pharmacologie et de Th erapeutique
	Fundamental & Clinical Pharmacology						

Table II

 II Characteristics of included studies.

Table. Search strategy used for Medline

  

	Patients	"diabetes mellitus, type 2"[MeSH Terms]
		OR type 2 diabetes mellitus[Title/Abstract]
		OR type 2 diabetes[Title/Abstract]
		OR "diabetes mellitus"[MeSH Terms]
		OR "diabetes mellitus"[Title/Abstract]
		OR "non-insulin-dependent diabetes mellitus"[Title/Abstract]
		OR "non insulin dependent diabetes mellitus"[Title/Abstract]
		OR "NIDDM"[Title/Abstract]
		AND
	Intervention	hypoglycaemic agents[Title/Abstract]
		OR hypoglycemic agents[Pharmacological Action]
		OR "hypoglycemic agents"[MeSH Terms]
		OR "hypoglycemic agents"[Title/Abstract]
		OR "hypoglycemic agent"[Title/Abstract]
		OR "glycaemic control"[Title/Abstract]
		OR "glycemic control"[Title/Abstract]
		OR "glucose control"[Title/Abstract]
		AND
	Type of study	(randomized controlled trial[pt]
		OR controlled clinical trial[pt]
		OR randomized[tiab]
		OR placebo[tiab]
		OR "clinical trials as topic"[MeSH Terms:noexp]
		OR randomly[tiab]
		OR trial[ti])
		NOT (animals[mh] NOT humans[mh])
		AND
	Outcome	"mortality"[Subheading]
		OR mortality[Title/Abstract]
		OR "mortality"[MeSH Terms]
		OR "cardiovascular diseases"[MeSH Terms]
		OR "cardiovascular diseases"[Title/Abstract]
		OR "cardiovascular disease"[Title/Abstract]
		NOT
	Type of studies	review[Publication Type]
	excluded	OR meta analysis[Publication Type]
		OR meta-analysis[Publication Type]

S3 Table. Reported definitions of the serious adverse event (SAE) outcome used for each trial

  . AE: adverse event. SAE: serious adverse events life-threatening, permanently or substantially disabling events, resulted in permanent or significant disability or incapacity, required or prolonged hospitalization, important event that jeopardized the patient or required intervention to prevent a serious outcome, a congenital abnormality, a cancer, an overdose of medication, or drug dependency or drug abuse. SAE (death, a life-threatening episode, hospitalization or prolongation of existing hospitalization, a persistent or substantial disability or incapacity, or an event otherwise considered to be an important medical event)

	SUSTAIN.6	S4
	TECOS		NA
	Study TIDE		Severe/serious adverse events reported definitions Total, Serious Adverse Events
	ADVANCE TOSCA.IT		Hospitalization SAE (death, a life-threatening episode, hospital admission or prolongation of existing hospital admission, or a persistent
	APPROACH		NA or substantial disability)
	CANVAS UGDP		NA (Event rate per 1000 patient/year for the CANVAS Programme) NA
	CANVASR UKPDS.33		NA (Event rate per 1000 patient/year for the CANVAS Programme) NA
	CARMELINA UKPDS.34a	NA NA
	COSMIC Any fatal, DECLARE TIMI Serious adverse event UKPDS.34b NA
	ELIXA		MedDRA version 15.0
	EMPAREG		Any SAE
	EXAMINE		Any SAE
	EXSCEL		Any SAE
	HARMONY		Serious Adverse Events by System Organ Class in subjects who took at least one dose of study drug in Appendix
			(Malignancies included in
			Neoplasms)
	HOME		NA
	J-SPIRIT		NA
	LEADER		SAE
	ORIGIN		Aside from hypoglycemia and cancer, SAE were captured if considered related to a study drug.
	PERISCOPE		Total, SAE
	Kaku.2009		"Other SAE"
	Lee.2013		NA
	Giles.2008		SAE (>1.5%)
	PPAR.Study		NA
	PROactive		Any SAE, non-endpoint events
	PROFIT-J		NA
	RECORD		NA
	SAVOR.TIMI.53	NA
	SPREAD-		NA
	DIMCAD	
			138

Table. Baseline cardiovascular (CV) risk groups (Grp) for the sensitivity analysis

  . 'H' stands for "high cardiovascular risk at baseline", 'L' for "low cardiovascular risk at baseline".ACS: acute coronary syndrome, STEMI: ST elevation myocardial infarction, NSTEMI: non-ST elevation myocardial infarction, AP: angina pectoris, PCI: percutaneous coronary intervention, CABG: coronary artery bypass graft, TIA: transient ischemic attack, MI: myocardial infarction.

	SPREAD-			
	DIMCAD	H	58.6	History of myocardial infarction
	CARMELINA	H	57	Defined as albuminuria and prevalent macrovascular disease
	DECLARE.TIMI.			17,160 patients, including 10,186 without atherosclerotic
	58	L	40.6	cardiovascular disease
	APPROACH	L	38	A total of 38% presented with acute coronary syndrome
	TIDE INTRODUCTION	L	34.5	Cardiovascular disease
	ADVANCE	L	32.2	History of major macrovascular disease
	HOME	L	31.7	HOME 2002 : Diabetic complications Cardiovascular : 31.7%
	Study PROFIT-J	CV Grp L	CV history (%) 31.6	CV history definitions silent cerebral infarction. Ohter previous CV disease: unknown
	ELIXA PERISCOPE	H L	99.8 28.2	Qualifying ACS event: NSTEMI, STEMI, Unstable angina Prior myocardial infarction
	EXAMINE RECORD	H L	99.7 17.4	Myocardial infarction, Unstable angina requiring hospitalization Ischaemic heart disease at baseline
	Pio.post.stent.Lee TOSCA.IT	L	11	Previous cardiovascular disease
	.2013 J-SPIRIT	H L	99.2 10	Stable AP, Unstable AP, NSTEMI, STEMI Previous stroke (previous MI : 0)
	EMPAREG UGDP	H L	99 10	Established cardiovascular disease History of angina pectoris or of significant ECG abnormality
				Previous myocardial infarction, Previous stroke, Symptomatic History of CV events (Stroke excluding TIA, angina pectoris,
	PROactive Pio.Kaku.2009	H L	85.4 8.5	peripheral arterial obstructive disease myocardial infarction and coronary intervention procedure)
	SAVOR.TIMI.53 H UKPDS.33 L	78.6 NA	Established atherosclerotic disease early diabetes
	UKPDS.34a	L	NA	Prior cardiovascular disease (Myocardial infarction, >50% coronary early diabetes
	TECOS UKPDS.34b	H L	74 NA	stenosis, Prior PCI, CABG) early diabetes
	EXSCEL COSMIC	H L	73.1 NA	Prior CV event at randomization type 2 diabetic patients suboptimally controlled on diet or sulfonylurea
	LEADER PPAR.Study	H NA NA 72.4	Established cardiovascular disease NA
	CANVAS1 Mean	H	72.2 54.9	History of atherosclerotic vascular disease in CANVAS_P
	CANVASR	H	72.2	History of atherosclerotic vascular disease in CANVAS_P
	S.D		29.4	
				*Any of myocardial infarction, coronary artery bypass grafting,
	Median		58.8	percutaneous coronary intervention, or at least 50% stenosis of
	HARMONY	H	70.6	coronary artery on angiography
	PioGLy.mCD.GI			
	LES.2008	H	68.1	NA
				established
	SUSTAIN.6	H	58.8	cardiovascular disease without chronic kidney disease
	ORIGIN_tot	H	58.8	Prior cardiovascular event
				140
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5-6

METHODS

Protocol and registration 5

Indicate whether a review protocol exists and if and where it can be accessed (e.g., Web address); and, if available, provide registration information, including registration number.

6

Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. Clearly describe eligible treatments included in the treatment network, and note whether any have been clustered or merged into the same node (with justification).

6

Information sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.

6-7

Search 8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.

S1 Table

Study selection 9

State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).

6-7

Data collection process 10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.

6-7

Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.

7

Geometry of the network S1

Describe methods used to explore the geometry of the treatment network under study and potential biases related to it. This should include how the evidence base has been graphically summarized for presentation, and what characteristics were compiled and used to describe the evidence base to readers.

S3 Appendix

Risk of bias within individual studies 12

Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.

7

Summary measures 13

State the principal summary measures (e.g., risk ratio, difference in means). Also describe the use of additional summary measures assessed, such as treatment rankings and surface under the cumulative ranking curve (SUCRA) values, as well as modified approaches used to present summary findings from meta-analyses.

7-8

Planned methods of analysis 14 Describe the methods of handling data and combining results of studies for each network meta-analysis. This should include, but not be limited to: 

7--8

Assessment of Inconsistency

S2

Describe the statistical methods used to evaluate the agreement of direct and indirect evidence in the treatment network(s) studied. Describe efforts taken to address its presence when found.

7-8

Risk of bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).

7

Additional analyses 16 Describe methods of additional analyses if done, indicating which were pre-specified. This may include, but not be limited to, the following: 

8

RESULTS

Study selection 17

Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.

Fig 1

Presentation of network structure

S3

Provide a network graph of the included studies to enable visualization of the geometry of the treatment network.

S3 Appendix

Summary of network geometry

S4

Provide a brief overview of characteristics of the treatment network. This may include commentary on the abundance of trials and randomized patients for the different interventions and pairwise comparisons in the network, gaps of evidence in the treatment network, and potential biases reflected by the network structure.

9

Study characteristics 18

For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. 

Results of individual studies 20

For all outcomes considered (benefits or harms), present, for each study: 1) simple summary data for each intervention group, and 2) effect estimates and confidence intervals. Modified approaches may be needed to deal with information from larger networks.

S5 Table

Synthesis of results 21

Present results of each meta-analysis done, including confidence/credible intervals. In larger networks, authors may focus on comparisons versus a particular comparator (e.g. placebo or standard care), with full findings presented in an appendix. League tables and forest plots may be considered to summarize pairwise comparisons. If additional summary measures were explored (such as treatment rankings), these should also be presented. 

S2 Table. Definitions of the major adverse cardiovascular events (MACE) outcome

TITLE

Title

Identify the report as a systematic review, meta-analysis, or both. 1

ABSTRACT

Structured summary

Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.

Information sources Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.

7

Search Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. Appendix A.1

Study selection

State the process for selecting studies (i.e., screening, eligibility, included in systematic review and, if applicable, included in the meta-analysis).

8

Data collection process Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.

Data items

List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.

8

Risk of bias in individual studies

Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.

Summary measures

State the principal summary measures (e.g., risk ratio, difference in means). 8

Synthesis of results

Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I 2 ) for each meta-analysis.

143

Section/topic # Checklist item Reported on page # Risk of bias across studies Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).

8

Additional analyses Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.

8

RESULTS

Study selection

Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.

Appendix B Study characteristics

For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.

Table 1 Risk of bias within studies Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).

Table 1 Results of individual studies For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.

NA Synthesis of results

Present the main results of the review. If meta-analyses are done, include for each, confidence intervals and measures of consistency Table 2 Risk of bias across studies Present results of any assessment of risk of bias across studies (see Item 15).

Table 1

Additional analysis Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).

Table A.3

DISCUSSION

Summary of evidence

Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).

11

Limitations Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).

11-12

Conclusions Provide a general interpretation of the results in the context of other evidence, and implications for future research.

12 FUNDING Funding Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. 
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