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RESUME 

Défis de la médecine personnalisée basée sur les preuves, applications dans le 

diabète de type 2 

 
La médecine basée sur les preuves requiert des essais cliniques randomisés, qui permettent 

d’estimer un effet moyen du traitement. La personnalisation de l’estimation de l’effet du traitement 

nécessite l’estimation du risque spontané de la maladie (biomarqueur pronostique), la recherche de 

facteurs modifiant l’effet du traitement (biomarqueur théranostique). Des critères de substitution 

sont également proposés, dont la mesure devrait permettre d’évaluer l’effet du traitement sur 

l’événement clinique. La prise en charge des patients présentant un diabète de type 2 repose sur les 

médicaments hypoglycémiants. Plusieurs d’entre eux ont été associés à différents effets 

indésirables graves. Des études évaluant leur bénéfice cardiovasculaire sont nécessaires. La prise 

en charge de ces patients inclue également la prise en charge de l’hypertension artérielle. Celle-ci 

est basée sur des médicaments antihypertenseurs, dont l’intensité est ajustée au niveau de pression 

artérielle recherché. Cette stratégie basée sur la cible soulève plusieurs questions. Enfin, plusieurs 

biomarqueurs prédictifs de différents effets des médicaments hypoglycémiants ont été étudiés chez 

des patients présentant un diabète de type 2, avec des résultats contrastés. Une difficulté majeure 

dans la validation de biomarqueur théranostique est la puissance statistique nécessaire pour détecter 

une interaction dans un essai clinique randomisé. L’objectif de cette thèse était d’estimer les effets 

moyens des traitements hypoglycémiants sur les complications cardiovasculaires ; d’évaluer un 

potentiel critère de substitution ; et d’étudier les caractéristiques des études cliniques évaluant des 

biomarqueurs théranostiques.  

La première partie présente une méta-analyse en réseaux comparant les effets des 

hypoglycémiants contemporains chez des patients avec un diabète de type 2, sur la mortalité totale, 

cardiovasculaire et les évènements cardiovasculaires majeurs. Nous avons confirmé la supériorité 

des gliflozines et des agonistes du récepteur au GLP1 par rapport au traitement contrôle et aux 

inhibiteurs de la DPP4. Nous avons montré le besoin de comparaisons directes entre les différentes 

classes, notamment pour préciser la place de la metformine dans la stratégie thérapeutique. La 

deuxième partie présente une méta-régression évaluant l’association entre la diminution de la 

pression artérielle par des médicaments antihypertenseurs et les évènements cardiovasculaires 
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majeurs. Nous avons confirmé la relation entre la baisse de la pression artérielle et le risque 

d’accident vasculaire cérébrale. Il n’y avait pas d’association avec la mortalité totale, la mortalité 

cardiovasculaire, les infarctus du myocarde. La troisième partie présente une comparaison 

statistique du plan expérimental en cross-over par rapport au plan en bras parallèle, concernant leur 

capacité à évaluer un marqueur théranostique. Nous avons montré que l’intérêt du cross-over, pour 

réduire le nombre de sujet nécessaire, dépend de la corrélation intra-sujet de la mesure du critère 

de jugement choisi, de façon similaire à l’estimation de l’effet propre du traitement.  

Ce travail met en lumière le besoin de comparaisons des médicaments hypoglycémiants sur 

les complications cardiovasculaires, et la difficulté d’évaluer une balance bénéfice—risque d’un 

traitement. Des approches de méta-analyses sur données individuelles permettraient de mieux 

estimer l’impact du contrôle glycémique sur les complications cardiovasculaires. L’accès aux 

technologies de séquençage du génome à haut débit permettrait d’identifier des facteurs 

pronostiques et théranostiques. Finalement, nous proposons une extension du modèle d’effet, qui 

permet d’appréhender la balance bénéfice—risque d’un traitement en fonction de différents 

biomarqueurs.  

L’évaluation d’un effet traitement moyen ou stratifié doit s’inscrire dans une vision globale 

de la balance bénéfice—risque du médicament concerné. 

 
 
Mots clés 
 
Médecine basée sur les preuves 
 
Médecine personnalisée  
 
Diabète de type 2  
 
Pharmacologie clinique  
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ABSTRACT 

Evidence based medicine requires randomized clinical trials for estimating a mean 

treatment effect. The personalization of this treatment effect needs prognostic biomarker for 

assessing the spontaneous risk of the disease and the absolute benefit of the treatment; and the 

search for potential theranostic biomarker, associated with a different relative treatment effect. 

Surrogate endpoints are also proposed, as their measure would reflect the treatment effect on the 

clinical outcome of interest. Taking care of patients with type 2 diabetes is based on hypoglycemic 

drugs. Several of them have been retrospectively associated with serious adverse events. They need 

to be assessed with cardiovascular outcome trials. Taking care of those patients also include 

handling other cardiovascular risk factor, as high blood pressure. Antihypertensive treatment is 

based on a “target to treat” strategy, which raise several questions. Finally, many theranostic 

biomarkers of the hypoglycemic drugs effect have been studied, with conflicting results. Statistical 

power is a high challenge in randomized trial looking for such interaction. We aimed to provide a 

mean treatment effect estimation of hypoglycemic drugs on cardiovascular outcomes and to 

explore potential tools for personalizing the treatment effect estimation.  

 The first part of this thesis reports a network meta-analysis assessing the contemporary 

hypoglycemic drugs in type 2 diabetes patients on overall mortality, cardiovascular mortality and 

major adverse cardiovascular events. We confirmed the superiority of SGLT2 inhibitors and of 

GLP1 receptor agonists compared to control and to DPP4 inhibitors. We also showed the need for 

direct comparison, especially for clarifying the position of metformin in the pharmacological 

strategy. The second part of this thesis reports a meta-regression analysis, assessing the association 

between the decrease in blood pressure through antihypertensive drugs and the risk of 

cardiovascular events. We confirmed the association between the blood pressure control and the 

risk of stroke, but did not find any association regarding overall mortality, cardiovascular mortality 

and myocardial infarction. The third part reports a statistical comparison of the parallel group 

design and the cross-over design, regarding their capacity to assess a potential theranostic 

biomarker. We showed that the advantage of the cross-over for reducing the sample size lead on 

the intra-subject correlation, as already known for estimating the treatment effect. 

 Finally, we highlighted the need for comparisons of hypoglycemic drugs for preventing 

macrovascular events. We emphasized pitfalls in estimating benefit—risk balance. Individual 
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patient data meta-analyses would help better assessing the effect of glucose control on 

macrovascular events. High-throughput genome sequencing technologies would help to identify 

both prognostic and theranostic biomarkers. Lastly, we proposed an extended version of the effect 

model, which allow to grasp the benefit—risk balance of a treatment, according to different 

biomarkers. 

 To conclude, assessing a mean and a stratified treatment effect should be conducted taking 

into account the global benefit—risk balance estimation. 

 

Key words 
 
Evidence-Based Medicine 
 
Personalized Medicine 
 
Type 2 Diabetes 
 
Clinical Pharmacology  
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SUBSTANTIAL FRENCH SUMMARY 

 

La médecine basée sur les preuves permet de proposer au patient un traitement éprouvé. 

L’établissement d’une causalité entre l’intervention thérapeutique et l’effet bénéfique recherché 

requiert des essais cliniques randomisés, qui permettent d’estimer un effet moyen du traitement. 

La personnalisation de l’estimation de l’effet du traitement nécessite l’estimation du risque 

spontané de faire l’évènement clinique que l’on souhaite prévenir (biomarqueur ‘pronostique’), la 

recherche de facteurs modifiant l’effet du traitement sur la survenu de cet événement clinique 

(biomarqueur ‘prédictif’ ou ‘théranostique’). Des critères dit de substitution sont également 

proposés, dont la mesure devrait permettre d’évaluer l’effet du traitement sur l’événement clinique.  

 

La prise en charge pharmacologique des patients présentant un diabète de type 2 repose sur 

les médicaments hypoglycémiants. L’efficacité des médicaments hypoglycémiants est initialement 

évaluée par leur effet hypoglycémiant, mais plusieurs d’entre eux ont par la suite été associés à 

différent effets indésirables graves. Ainsi, des études évaluant leur bénéfice cardiovasculaire sont 

nécessaires. De nombreux essais ayant été conduit avec différentes molécules, mais essentiellement 

sans comparateurs actifs, des approches de méta-analyse en réseau sont nécessaires pour obtenir 

une synthèse quantitative et comparative de leurs effets. La prise en charge des patients présentant 

un diabète de type 2 repose également sur la prise en charge des autres facteurs de risque 

cardiovasculaire, dont l’hypertension artérielle. La prise en charge de l’hypertension artérielle est 

basée sur des médicaments antihypertenseurs, dont l’intensité est ajustée au niveau de pression 

artérielle recherché. Cette stratégie basée sur la cible de pression artérielle soulève cependant 

plusieurs questions. Enfin, plusieurs biomarqueurs prédictifs de différents effets de traitement 

hypoglycémiants ont été étudiés chez des patients présentant un diabète de type 2, avec des résultats 

contrastés. Une difficulté majeure dans la validation de biomarqueur théranostique est la puissance 

statistique nécessaire pour détecter une interaction dans un essai clinique randomisé.  

 

L’objectif de cette thèse était d’estimer les effets moyens des médicaments 

hypoglycémiants chez des patients ayant un diabète de type 2, sur les complications 

cardiovasculaires ; puis d’évaluer un potentiel critère de substitution utilisé dans cette population ; 
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et enfin d’étudier les caractéristiques des études cliniques évaluant des biomarqueurs 

théranostiques de l’effet du traitement.  

  

La première partie de cette thèse présente une méta-analyse en réseaux comparant les effets 

des hypoglycémiants contemporains sur la mortalité totale, cardiovasculaire et les évènements 

cardiovasculaires majeurs. Nous avons confirmé la supériorité des gliflozines et des agonistes du 

GLP1 par rapport au groupe contrôle et aux inhibiteurs de la DPP4. Nous avons également montré 

le besoin de comparaisons directes entre les différentes classes, notamment pour préciser la place 

de la metformine dans la stratégie thérapeutique par rapport aux gliflozines et agonistes du GLP1. 

Cette partie est complétée d’une estimation de la balance bénéfice—risque d’une classe de 

médicament récents, les gliflozines, chez des patients présentant un diabète de type 2. Nous avons 

observé que, même en prenant en compte le risque d’amputation et le risque d’acido-cétose décrit 

avec ces médicaments, le bénéfice cardiovasculaire semblait rester cliniquement pertinent.  

 

La deuxième partie de cette thèse présente une étude de méta-régression sur données 

agrégées, dont l’objectif était d’améliorer la caractérisation de l’association entre la diminution de 

la pression artérielle par des médicaments antihypertenseurs dans des essais cliniques randomisés 

et les évènements cardiovasculaires majeurs. Nous avons confirmé la relation entre la baisse de la 

pression artérielle et le risque d’accident vasculaire cérébrale, mais n’avons pas observé 

d’association pour les autres critères de jugements étudiés : la mortalité totale, la mortalité 

cardiovasculaire, les infarctus du myocarde.  

 

La troisième partie de cette thèse présente une comparaison statistique du plan expérimental 

en cross-over par rapport au plan en bras parallèle, concernant leur capacité à identifier une 

interaction entre un marqueur théranostique et l’effet du traitement. Nous avons montré que 

l’intérêt du cross-over, pour réduire le nombre de sujet nécessaire, dépend de la corrélation intra-

sujet de la mesure du critère de jugement choisi, de façon similaire à l’estimation de l’effet propre 

du traitement. Cette partie inclue également une enquête de méta-recherche sur des études cliniques 

évaluant des biomarqueurs théranostiques pharmacogénétiques. Nous avons observé que les 

conclusions des études identifiées semblaient souvent excessives, au vu des méthodes rapportées. 
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Le travail de cette thèse a permis de mettre en lumière le besoin de comparaisons des effets 

des médicaments hypoglycémiants sur les complications cardiovasculaires. La difficulté d’évaluer 

la balance bénéfice—risque est également démontrée dans le contexte de différents médicaments 

hypoglycémiants. Des approches de méta-analyses sur données individuelles permettraient de 

mieux estimer l’impact du contrôle glycémique sur les complications cardiovasculaires. L’accès 

aux technologies de séquençage du génome à haut débit permettrait d’identifier des facteurs 

pronostiques et théranostiques, mais cela nécessite de contrôler non seulement les biais internes 

aux études mais également ceux liés à leur publication. Finalement, nous proposons une extension 

du modèle d’effet, permettant d’appréhender la balance bénéfice—risque d’un traitement en 

fonction de différents biomarqueurs.  

 

 Proposer une prise en charge personnalisée et fondée sur les preuves aux personnes 

présentant un diabète de type 2 reste un exercice difficile dans la pratique clinique quotidienne. 

L’évaluation d’un effet traitement moyen ou stratifié à l’aide de biomarqueurs doit s’inscrire dans 

une vision globale de la balance bénéfice—risque du médicament concerné. 
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INTRODUCTION 

 

The Evidence Based Medicine 
 

Claude Bernard already discussed, in 1865, the necessity to assess the efficacy of a 

treatment using experimental approaches [1]. Indeed, the recovery could be the simple natural 

evolution of a disease, and thus is not sufficient itself to prove the benefit of a treatment. 

Assessment of a causality, for a treatment effect (TE) but also for epidemiology, requires a highly 

rigorous approach, as proposed in 1965 by Austin Bradeford Hill [2]. Since the first randomized 

trial in 1948 [3], the implementation of more and more comparative trials lead to the shift toward 

the evidence based medicine (EBM) paradigm [4].  

 

Observational studies are prone to bias [5, 6]. Empirical examples illustrate false positive 

conclusions regarding treatment effect through epidemiological studies, eventually invalidated by 

randomized clinical trial (RCT) [7]. RCTs allow to estimate the TE with a low risk of bias, and to 

infer causality [8]. The randomization allows to allocate the treatment independently of the subject 

and/or the care giver, in order to avoid confusion bias. Meta-epidemiological studies have showed 

the importance of the random allocation – and its quality— of the treatment in trial, and of the 

blinding, for avoiding bias in TE estimation [9, 10]. Moreover, the use of a placebo, when possible, 

and the double blinding allow to avoid the placebo (and the nocebo) effect, and the intention to 

treat analysis allow to avoid the attrition bias, for example. However, RCTs also can be misleading. 

Their evidence is limited to the studied population. As any inference process, they are subject to 

risk of false positive results, and to false negative results. In the last decades, number of 

publications of RCTs has increased exponentially, leading to evidence synthesis issues.  

 

The systematic review and meta-analysis (MA) approach help to summarize the available 

evidences. They also help to quantify the TE estimation, and in more diversified treated population. 

However, MA approaches also have their own limitations. The publication bias, which has been 

documented early [11], can lead to erroneous TE estimation [12]. The underlying hypothesis of a 

homogeneity of the TE across the included trials must also be assessed, and the statistical analysis 

should take into account the precision of the TE estimate from each trial [13]. MA were initially 
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limited to the comparison of two kind of interventions, which needed to have been directly 

compared in RCTs, in a “head to head” fashion (direct comparison). Then, indirect comparison 

using a common comparator allow to develop mixed treatment comparison [14] and finally 

network meta-analysis (network MA) [15], allowing to compare multiple treatments at the same 

time. The figure 1 illustrates the principle of adjusted indirect comparison [14]. Those new 

approaches can help for estimating TE, but several conditions should be assessed. For example, it 

is of particular importance to verify the consistency between the direct comparison and the indirect 

comparison [16].  

RCTs and MAs allow to estimate TE with a low risk of bias and improved precision. They 

are helpful for assessing beneficial effects, whose impact can be assessed on a priori defined 

outcomes, with enough statistical power. However, the TE estimation regarding the risk of adverse 

drug reaction (ADR) remains an issue: RCTs often lack of power for rare ADR, and as those are 

usually not the primary endpoint, the alpha risk is not controlled for multiple testing. Several 

frameworks help integrating the estimation of both the benefit and the risk of a treatment [17-19].  

 

  

 

 

 

 

Figure 1. Indirect comparison principle, 

according to Bucher et al [14]. 

RCT: Randomized Clinical Trial; TTT: 

treatment ‘A’, ‘P’, ‘C’; RR: risk ratio. 

The solid arrows stand for the direct 

comparisons; the dashed arrow for indirect 

comparison. 
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The assessment of the TE is based on the rejection of the null hypothesis of the absence of 

effect. Large group of subjects are needed to decrease the confidence interval of the TE estimation 

and to obtain enough statistical power for testing the a priori hypothesis. Indeed, the biological 

variability should be contained, in order to obtain a reliable TE estimation. Thus, estimation of the 

TE through RCT and MA is based on the averaging of the TE across large group of subjects and 

provide “only” a mean (with its confidence interval) of the TE, ignoring the heterogeneity of the 

TE [20] (see figure 2). Then, much criticisms haven been raised against EBM, for not taking into 

account the individual characteristics [21-23]. Austin Bradford Hill itself already stated that if RCT 

are helpful for determining the better treatment on average, they are limited for helping to choose 

a specific treatment for a specific subject [24]. 

 

 
Figure 2. Distribution of treatment effects across subjects in a hypothetical population, adapted 

from Kravitz et al [20]. The X-axis represents the treatment benefit (arbitrary value). The mean 

treatment effect is indicated by the vertical green bar. Subjects to the right of the green bar derive 

a benefit greater than average, while those to the left derive less than an average benefit. Subjects 

in the red area even derive no effect from the treatment. 

 



 20 

However, the EBM did not neglect to take into account the inter individual variability. First, 

its early definition includes “integrating individual clinical expertise and the best external 

evidence”, as “even an excellent external evidence may be inapplicable to or inappropriate for an 

individual patient” [25]. The integration of both the research evidence, the clinical circumstances 

and the patient’s preference were summarized in a now famous Venn Diagram, by Haynes et al. 

[26] (Figure 3). Moreover, there is a growing area of research concerned about TE heterogeneity 

(HTE for Heterogeneity of TE) and personalized EBM [27, 28].  

 

 

 
 
Figure 3. A model for evidence based clinical decisions, adapted from Haynes et al [26] 
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Biomarker and personalized estimation of a treatment’s effect  
 

In the last years, several definitions of the term “biomarker” have been proposed [29]. In 

2001, the Biomarkers Definitions Working Group convened by the National Institutes of Health of 

the United States (U.S.) defined the biomarker as “A characteristic that is objectively measured 

and evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” [30]. The actual definitions used by the 

European Medicines Agency (EMA) is relatively large (“A biological molecule found in blood, 

other body fluids, or tissues that can be used to follow body processes and diseases in humans and 

animals”) [31]. According to the U.S. Food and Drug Administration (FDA), a biomarker can be 

understood as any type of measure (molecular, histologic, radiographic, or physiologic) as an 

indicator of a biological process, but “is not an assessment of how an individual feels, functions, 

or survives” [32]. The Institute of Medicine (U.S.) proposed a three step approach to evaluate 

biomarker: i) assessment of the analytical performance (“Analytical Validation”); ii) assessment of 

the association with the clinical outcome/the disease (“Qualification”); and iii) assessment of  its 

use in a specific context (“Utilization ”) [33]. Biomarkers can be associated with i) the present state 

of the patient (« diagnostic biomarker ») and two future state of the patient: ii) the natural evolution 

of a subject and/or its disease (« prognostic biomarker »); and iii) the response to the treatment 

(« predictive biomarker » or « theranostic » biomarker or « effect modifier ») [34]. 

 

Personalization according to the spontaneous risk, prognostic biomarker 
 

The benefit of a treatment is often expressed on the relative scale: risk ratio (RR), odds ratio 

(OR) or hazard ratio (HR). Those measures are helpful to pool the estimation of the TE from 

different trials. However, they do not take into account the spontaneous risk of the patient to 

develop the disease or the outcome of interest. Absolute measures of the TE, as the absolute risk 

reduction (ARR), or the Number needed to treat (NNT), allow to reflect the benefit of the treatment 

according to the patient risk [35]. The absolute measures of the TE should be expressed within the 

context of a defined time-lapse [36]. ARR and NNT are especially relevant for applying TE from 

RCT to individual patient encountered in the clinical practice [37]. Indeed, a high heterogeneity in 

the spontaneous risk of the outcome of interest in clinical trials samples has been observed using 

multivariable prediction tool [37]. Prognostic biomarkers can help to determine the prognostic of 
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a patient, and therefore estimating the absolute benefit that could be expected from the treatment. 

Prognostic biomarkers can be identified in retrospective studies, but prospective studies and 

replication are needed for their validation [34]. The concept of the “effect model” refers to the 

relationship between the risk of an outcome of interest under treatment, as a function of its 

spontaneous risk, as proposed by Boissel et al. [38]. L’Abbé et al. originally used this approach to 

explain heterogeneity between trial results [39]. Lubsen and Tijssen extended it with the integration 

of a constant risk of harm, to illustrate the net benefit from a treatment [40] (see figure 4). This 

allows for example to choose a threshold for treating or not a patient, according to its specific risk 

of the disease versus the risk of a drug adverse event [41, 42]. The model was extended to integrate 

different risk of harm for individualizing the treatment indications [43, 44]. Since then, several 

examples are available, illustrating the interest of taking into account the heterogeneity of the 

spontaneous risk of the outcome when assessing the treatment’s benefit [28]. The estimation of the 

spontaneous risk of outcome can be modelled using multivariate models. To stratify the subjects 

included in their trial, Thune et al. used a prognostic score integrating the value of a dozen of 

clinical and/or electrocardiographic parameters [45]. They observed no benefit of the tested 

invasive strategy with primary angioplasty in the subjects identified as low risk by the prognostic 

score, but a significant decrease of mortality in the high-risk patients [45]. Prognostic score can 

also be modelled using omics data [46]. Similarly, prognostic score can be used for exploring the 

heterogeneity in risk of event which could be increased by the treatment. In a trial assessing dual 

antiplatelet therapy after percutaneous coronary intervention, Costa et al. stratified the population 

according to their bleeding risk, using a simple five variable risk score [47]. They observed an 

important change in the harm—benefit balance of the intervention [47]. Finally, two scores can be 

used to stratify patients both for the risk of a efficacy endpoint and for the risk of a safety endpoint 

[48, 49]. 
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Figure 4. Effect model for the net benefit, adapted from Lubsen et al [40]. The X-axis represents 

the spontaneous risk of event (R0), the Y-axis the risk under treatment (R1). The grey diagonal 

stands for the absence of treatment effect (R0=R1). The blue line represents the treatment effect 

for the efficacy endpoint (top left). The orange line represents the risk of harm due to the treatment, 

here supposed constant (top right). Finally, benefit and harm are combined: the intersection with 

the diagonal is the threshold (green arrow) of basal risk of event from which the treatment display 

a net benefit (down).  



 24 

 

Personalization according to the treatment’s response, predictive / theranostic biomarker 
 

Heterogeneity of the TE usually reflects the modification of the TE on the relative scale, i.e. 

a different RR/HR/OR. Some authors refer to HTE on both the relative and the absolute scales [28]. 

We focus on effect modifier of the TE on the relative scale. If observational longitudinal cohorts 

of treated patients are adapted for claiming a prognostic biomarker, the demonstration of a 

theranostic value of a biomarker include its « effect modifier » characteristics, i.e. to demonstrate 

the interaction between the biomarker and the treatment effect. Such predictiveness of the 

treatment’s effect would allow to identify which patient will benefit from the treatment. True 

« predictive » biomarker need rigorous experimental design to be claimed. Biomarkers are still 

often called « predictive » of the treatment effect, whenever they have been assessed in « treatment 

only » cohort [50]. At first, candidates could be identified in sub-group analysis of RCTs. However, 

sub-groups analyses are prone to false results (see following section). Then, the predictive value of 

the selected candidate should be validated in a « interaction trial », i.e. in an RCT in which the 

randomization is stratified according to the status of the biomarker [34]. Then, the treatment effect 

can be compared across the group of biomarker’s statuses, to show the presence of a treatment 

effect in one group but not in the other. The example of ERCC1 (ERCC excision repair 1, 

endonuclease non-catalytic subunit) reminds the importance of the validation of the interaction 

through a stratified RCT. Briefly, several studies suggested that the tumoral expression of ERCC1 

was a marker of efficacy of platinum-based chemotherapy in non-small cell lung cancer, but 

without using a stratified design [51]. Eventually, a stratified RCT was conducted, and did not 

observe any predictive value of this biomarker, whenever the tested treatment showed clinical 

benefit [52]. Indeed, such biomarker candidates should be confirmed —or refuted—with high level 

of proof, for avoiding potentially dramatic therapeutic abstention. However, this stringency brings 

sample size issues, as already described in the parallel group design [53, 54]. 

 

Finally, one could model together the prognostic risk and integrate interaction terms with 

treatment effect [55]. The SYNTAX trial compared two revascularization strategies. A risk score 

of the outcome of interest was modelled using eight variables as both prognostic variables and 

effect modifiers (in treatment interaction terms). Stratification using this score displayed important 
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differences in TE [55]. This could allow to target the most favorable treatment, according to the 

expected benefit and harm.  

 

Regarding both prognostic and theranostic biomarkers, specific randomized trials assessing 

their clinical utility could be important for validation. The pharmacogenetic testing for warfarin 

dosing illustrates the difficulties for showing clinical utility [56]. On the other hand, the predictive 

effect of the HLA-B*5701 genetic variant for hypersensitivity reaction to Abacavir illustrates a 

clear success in validating a clinical useful theranostic biomarker [57]. However, true biomarkers 

could fail to demonstrate a clinical utility if for example they are very rare in the studied population. 

More research are needed in the exploration and validation of biomarker [34].  

 

We did not discuss the targeted therapy. As they have been developed to treat a specific 

pathophysiological mechanism, the mutation they target are expected to be predictive of the TE. 

However, the SHIVA trial failed to show a benefit when personalizing the treatment according to 

tumor molecular profiling, but outside their indications [58]. Figure 5 (5.A and 5.B) summarizes 

different experimental designs and their interpretations.  
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Fig 5.A. Designs not assessing a treatment – biomarker interaction per se. 
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Fig 5.B. Designs assessing a treatment – biomarker interaction (see the “Warning about the sub-

group analyses” section for the assessment of an interaction with the sub-group analysis).  

 

Figure 5. Different designs assess different types of biomarkers. “+” refers to the presence of the 

biomarker, “-“ to its absence.  
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Warning about the sub-group analyses 
 

Sub-group analysis can be helpful for identifying biomarker, whose are needed for 

stratifying the patients, both for the spontaneous risk and/or the response to the treatment. Once a 

trial is conducted, sub-group are easily made, and can lead to new hypothesis. Such analyses are 

widely reported in clinical trials. However, sub-group analyses are at high risk of false positive 

results, through multiple testing without adjustment. Thus, most positive exploratory sub-groups 

analyses are false [28]. Positive confirmatory sub-groups are often overestimated [28]. Sub-groups 

analyses are prone to false negative results as well. Indeed, when a sub-groups analysis did not 

show any difference in TE, this would likely be because of a lack of statistical power for testing 

interaction [53]. Sub-groups analysis suggesting no TE in a particular population can lead to wrong 

therapeutic abstention [59]. Sub-groups analyses are also prone to spin of conclusion [60]. Some 

authors suggest to abandon “one-variable-at-a-time” sub-groups analysis, and move towards 

multiple variables risk model [28]. Finally, the research for biomarker should also fit in the 

hypothetico-deductive approach. 

 
Personalization according to the treatment’s response, surrogate endpoint  
 

A surrogate endpoint is a specific kind of biomarker: the effect of an intervention should be 

similar on the surrogate as on the clinical outcome of interest [61]. The FDA defines it as “a 

substitute for a direct measure of how a patient feels, functions, or survives. A surrogate endpoint 

[…] is expected to predict that clinical benefit.” [62]. Surrogate endpoint can be very helpful by 

reducing the sample size in early phase of drug development. However, careful examination of 

their validity in predicting the clinical benefit is highly needed. Many historic examples are 

available for illustrating failure in drug’s evaluation because of false surrogate endpoints [63]. The 

figure 6, adapted from Fleming et al, illustrates the reasons for failure of surrogate endpoints [63]. 

Indeed, surrogate can be falsely negative, when the clinical outcome is in fact improved by the 

treatment, through another pathway [64]. But more importantly, several historic examples showed 

a well impact on the surrogate, but a negative effect, i.e. harmful, on clinical outcomes. After a 

myocardial infarct, a correlation was found between ventricular arrythmia and the risk of death. 

Therefore, anti-arrhythmic drugs were widely prescribed in those patients: through their effect on 

ventricular arrythmia, they were supposed to be beneficial regarding mortality. Actually, the CAST 
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trial eventually revealed their lethal effect in this population [65]. There are numbers of 

publications about the evaluation of candidate biomarker for being surrogate endpoint [61, 63, 66-

69]. The FDA defines three levels of surrogate, according to their level of proof: “Candidate”, 

“Reasonably likely”, “Validated” [62]. Ciani et al. recently summarized a hierarchy of evidence 

for surrogate validations, see Table 1 [61]. It should be noted that a surrogate must not be 

considered as ‘validated’ itself, i.e. in general, but always in a specific context, for a specific 

intervention in a given clinical situation, and cannot be extrapolated to another intervention [67]. 

Moreover, assessing a treatment with a surrogate could be associated with an overestimation of the 

effect size of the TE [70]. In the oncologic area, it has recently been showed that most clinical trials 

evaluating surrogate found low correlation with survival [71]. Finally, surrogacy imputation 

remains a current issue [72].  

 

Figure 6. Reasons for failure of surrogate end points, adapted from Fleming et al [63] 

(up left: surrogate is not in the pathway of the disease; up right:  the treatment affects the pathway 

of the surrogate, but other pathways exist; down left: the treatment acts through another pathway; 

down right: the treatment acts through mechanisms of action independent of the disease process 

and the surrogate. Dotted lines illustrate mechanisms of action that might exist). 
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Table 1. Hierarchy of evidence for surrogate end point validity, adapted from Ciani et al [61]. 

 

 

 

Furthermore, a recent epidemiological approach appears to be helpful for testing surrogacy 

[73, 74]. The Mendelian randomization use the hazard of the genetic distribution during the meiosis 

for providing robust information when assessing causality, like a ‘natural randomization’, under 

several hypotheses [75]. Briefly, it searches for a relationship between a genetic factor and a clinical 

outcome of interest. The genetic factor should be known to be associated with an intermediate 

outcome of interest, a modifiable risk factor of the disease, but should not be directly associated 

with the clinical outcome. Therefore, if the genetic factor and the clinical outcome are associated, 

this would be through the intermediate outcome, thus supporting its causality in the occurrence of 

the clinical outcome of interest [76]. 

 

Level of 

evidence 
Requirement Source of evidence 

1 

Treatment effect on surrogate 

corresponds to treatment effect on 

final outcome 

Randomized controlled trials showing that 

changes in the surrogate are associated with 

commensurate changes in the final outcome 

2 
Consistent association between 

surrogate and final outcome 
Epidemiological/observational studies 

3 

Biological plausibility of relation 

between surrogate and final 

outcome 

Pathophysiological studies and 

understanding of the disease process 
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The blood level of Low-Density Lipoprotein cholesterol (LDL) illustrates well the difficulty 

of using surrogate endpoint for personalizing the clinical practice, despite all the evidences 

accumulated in this area. The recent guidelines of the European Society of Cardiology (ESC) and 

the European Atherosclerosis Society (EAS) for the management of dyslipidemias recommend 

LDL targets [77]. First, many different approaches consistently showed the LDL as causal in CV 

disease, as mendelian randomization study [78]. Moreover, individual patient data meta analyses 

(IPD MA) confirmed a dose-dependent reduction in cardiovascular (CV) events with LDL 

lowering agents [79], and the surrogacy of LDL has been documented [80]. Finally, an individual 

variability in the LDL response to dietary and pharmacological treatments has been observed. Then, 

using LDL target would help to individualize the CV risk reduction [77]. However, pursuing a 

‘target to treat’ raises several practical concerns for the physician. Would the physician treat a 

patient stratified at high risk of complications, but exhibiting otherwise a level of the surrogate 

endpoint at the recommended target? If a patient treated with the validated drug and dose appears 

to be below the target, should the physicians decrease the treatment, even if the lower dose has not 

been validated for reducing clinical outcomes? What are the adverse effects when the patient 

himself/herself show high stringency to get the lower he/she could, or display culpability and/or 

anxiety because he/she fell, he/she fails to reach the recommended number? Furthermore, the 

choice of the target itself raises several issues. Should an absolute value be used, as in the European 

guidelines [77], or a relative value of the reduction, as in the U.S guidelines [81]? Even with the 

same scale, different guidelines recommend different absolute value [77, 81]: how to decide the 

optimal goal, how far should we get? Moreover, the European guidelines acknowledge themselves 

that “RCTs have not examined different LDL-C goals systematically, but felt that it was 

appropriate to look at the totality of the evidence” [77]. However, using extrapolation for assessing 

potential benefit expose the patient to an unknown —and potentially higher— risk of adverse event, 

which could negative the benefit—risk balance, as we will see in the following section, applied to 

type 2 diabetes. The question of the blood pressure level as a target is addressed in the article 

constituting the second part of this thesis.  
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EBM and personalized medicine in type 2 diabetes 
 
Pharmacology of type 2 diabetes and EBM 

 
Type 2 diabetes (T2D) is a public health issue. Its incidence is dramatically increasing in 

the world, from around 100 million people in 1980 to around 400 million in 2014 [82]. This 

metabolic disease is characterized by hyperglycemia, as a consequence of a functional impairment 

in insulin secretion, insulin action or both [83]. Its complex physiopathology implicates both 

genetic and environmental risk factors [84]. Long term hyperglycemia is associated with an 

increased risk of micro- and macrovascular outcomes [82]. Its management includes lifestyle health 

care, hypoglycemic treatment, control of other CV risk factors, weight loss medications and 

metabolic surgery [85]. Up to now, the use of hypoglycemic drugs was justified regarding their 

effect on glycemic control. Many hypoglycemic drug classes are now available and can be 

classified according to their mechanism of action, as illustrated in figure 7. Metformin, the only 

biguanide available, represent the first line therapy for T2D [86]. Metformin decrease the insulin-

resistance, especially through its reduction of hepatic glucose production. Lactic acidosis is its 

more feared side effect; therefore, metformin is contraindicated in case of organ insufficiency. The 

other insulin-sensitizers are the thiazolidinediones (TZD, or glitazones): the rosiglitazone and the 

pioglitazone. They act as agonist of the Peroxisome Proliferator-Activated Receptors-gamma 

(PPAR-gamma) transcription factor. On another side, the incretinomimetics, named after the 

incretin effect, increase the secretion of insulin, but in a glucose dependent manner. They are 

represented by oral drugs, the DiPeptidyl Peptidase-4 inhibitors (DPP4 inhibitors), and injectable 

medications, the Glucagon Like Peptide 1 receptor agonists (GLP1 receptor agonists). Other insulin 

secretagogues are the sulfonylureas and the glinides, but they act independently of the available 

glucose. Then, they particularly exposed the patient to the risk of hypoglycemia and weight gain, 

as do the insulin analogs. Two other hypoglycemic drugs act on the input and the output of glucose: 

the alpha glucosidase inhibitors decrease the intestinal absorption of glucose, and the Sodium-

Glucose cotransporter 2 inhibitors (SGLT2 inhibitors) increase its renal excretion. Other drug 

classes are also available, depending on the country (Bile acid sequestrants, Dopamine-2 agonists). 

The history of hypoglycemic drugs is full of illustrations of the need for EBM. 
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Figure 7. The main hypoglycemic drug classes. 

AT: adipose tissue. Alpha-G-I: alpha glucosidase inhibitor. DPP4-I: DPP4 inhibitors. GLP1-A: 

GLP1 receptor agonists. SGLT2-I: SGLT2 inhibitors.   

 

Cardiovascular diseases remain the leading cause of death in people with DT2 [85]. Thus, 

we focused here on the effect of glucose lowering drugs on prevention of macrovascular 

complications. However, assessing their effect on microvascular complications also is a matter of 

interest. Coca et al. showed that intensive glucose control was associated with a decreased risk of 

micro- and macroalbuminuria, but evidences regarding clinical renal outcomes (end stage renal 

disease, …) were lacking [87]. However, recent data suggests nephroprotection properties of the 

last hypoglycemic drug classes [88], especially SGLT2 inhibitors [89] and GLP1 receptor agonists 

[90]. Regarding the risk of retinopathy, Tang et al. recently observed an association between the 

decrease in glycated hemoglobin (HbA1c) and the risk of retinopathy in a meta-regression of RCT 

[91]. They also observed an increased risk of retinopathy with sulfonylureas compared to placebo 
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and SGLT2 inhibitors using a network meta-analysis of RCT [91]. At last, evidence regarding 

neuropathy are still lacking [92]. 

 

During the 1960s, the UGDP trial [93] was one of the first RCTs conducted [94]. Two 

decade before the CAST trial, the UGDP already illustrated the danger of intermediate endpoint. 

Tolbutamide and phenformin were largely prescribed, as benefits were expected regarding their 

effect on blood glucose level. However, the UGDP trial showed an increased in mortality for both 

of them. A scientific debate has been ongoing for years, regarding the methodological tool – 

innovative at this time— as ‘intention to treat’ analysis they used, and the impact of disequilibria 

in baseline characteristics despite randomization [93, 95]. Those unexpected results lead to a huge 

health scandal, even reaching the Supreme Court of the United States of America [94]. Both 

tolbutamide and phenformin were eventually withdraw from the market.  

 

In 1976, a few years after the release of the UGDP trial, the benfluorex obtained a market 

authorization in France, as add on therapy for hyperlipidemia and for diabetes with obesity [96]. 

Indeed, the appetite suppressant properties of this amphetamine derivative was used as weight 

control treatment, also in an off-label fashion. Already in 1996, an increased risk of pulmonary 

hypertension was observed with other amphetamine related weight control drugs, fenfluramine 

[97], leading to its removal. However, the benfluorex remained on the market. Another decade 

after, Frachon et al showed an increase in risk of unexplained valvular heart disease associated with 

the use of benfluorex in a case control study [98]. Finally, three decades after its authorization, the 

benfluorex was withdrawn in France [96]. As benfluorex and fenfluramine, other drugs seem to 

cause valvular heart disease through their agonist action on 5-HT2B serotoninergic receptors [99]. 

 

In 1998, the UKPDS 34 trial found a decrease in the risk of death associated with the use 

of metformin [100]. Since, this biguanide has become the first pharmacological line of diabetes 

treatment guidelines. However, the same UKPDS 34 trial also observed an increased risk of death 

with the use of metformin on top of sulfonylureas [100]. Despite these conflicting results, 

metformin and sulfonylureas remind an important combination in the therapeutic strategy for many 

decades, still recommended in second line in France by official guidelines of the French National 
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Authority for Health (HAS for ‘Haute Autorité de Santé) (on top of lifestyle care) [101]. Finally, 

the example of the UKPDS 34 trial illustrated a possible citation bias [102].  

 

In 2007, a meta-analysis showed a cardiotoxicity associated with the rosiglitazone [103], 

which was then withdrawal from the market in France. Then, public authority required to 

demonstrate cardiovascular safety for hypoglycemic agents [104]. The area of CardioVascular 

Outcomes Trials (CVOT) was really opened with the DPP4 inhibitors. Non inferiority trials against 

placebo was the design of choice. Non-inferiority trial against placebo regarding Major Adverse 

Cardiovascular Events (MACEs) is highly paradoxical, given the acceptation of a loss of efficacy 

inherent to the choice of a non-inferiority margin. Initially, the non-inferiority margin was 1.8 [104], 

i.e. accepting an increase in risk of MACE of 80% compared to placebo, as “safe”. Fortunately, 

most of those trials were also powered enough for testing superiority.  

 

Since 2015, the last hypoglycemic drugs, the SGLT2 inhibitors and the GLP1 receptor 

agonists, eventually showed clinical benefits on macrovascular events in RCTs [105-107]. The first 

article included in this thesis and its protocol (Appendix 1) summarize the recent developments in 

CVOT of hypoglycemic drugs and their meta-analyses. Finally, the assessment of the 

intensification of glycemic control with recent RCTs (ACCORD, ADVANCE and the VADT trials) 

[108-110], highlighted the necessity of personalizing the glycated hemoglobin (HbA1c) target 

according to the patient.  

 

Personalizing health care in type 2 diabetes 
 

International guidelines of T2D management include more and more personalized 

perspective [85, 111]. First, the clinical characteristics of the patient should be considered for 

proposing a tailored care [85]. Indeed, patients with previous CV disease especially will benefit 

from SGLT2 inhibitors and/or GLP1 receptor agonist. If the patient is fragile regarding the risk of 

hypoglycemia, incretin, SGLT2 inhibitor or TZD, if available, should be considered. If the need of 

the patient is to control or to lose weight, GLP1 agonist or SGLT2 inhibitor will be helpful. Socio-

economic arguments are also relevant, depending on the country, and can lead to prefer 

sulfonylurea or TZD [85]. Finally, a new debate arise regarding the respective place of metformin 
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and SGLT2 inhibitors or GLP1 receptor agonist, with conflicting recommendations [85, 111]. The 

personalized HbA1c target will be discussed in the surrogate section.  

 

Prognostic factor for personalizing treatment in type 2 diabetes 
 

One way to personalize diabetes care is to stratify the spontaneous risk of outcome, for 

assessing absolute benefit of treatment [112]. Vijan et al. simulated the absolute benefit of 

intensified glucose control, by applying the relative risk reduction (RRR) of several outcomes – 

micro- and macro vascular–, observed in RCT, on virtual population [113]. They modelled the 

absolute benefit for a reduction of the HbA1c from 8.5% to 7% in different phenotypes: from 

diagnosis of T2D at 45 years old to diagnosis at 75 years old. Their simulation suggested that less 

than 1% of patients diagnosed at 65 years old, or older, would have benefit for microvascular 

outcomes within their lifetime. However, the number needed to treat (NNT) for non-fatal 

myocardial infarction (MI) remained more consistent across the phenotypes. They also discussed 

the time horizon needed to benefit from intensive glucose control. The UKPDS 33 trial observed a 

benefit on microvascular endpoint after ≈ 9 years of intensive treatment [114]. On the other hand, 

patients hospitalized for heart failure for the first time exhibit a 70% 5-year mortality rate [115, 

116]. Thus, taking into account the global prognostic of the patient can help to prevent 

overtreatment [112]. Moreover, the risk of adverse event also exhibits some diversity. Therefore, 

estimating the personalized risk of safety endpoint can help to better estimate the individualized 

benefit—harm balance of a treatment in a group of patient [28]. The IRIS trial showed a decrease 

in risk of recurrent ischemic event (MI or stroke) with pioglitazone (in non-diabetic patients but 

with insulin resistance), but with an increased risk of fracture [117]. Viscoli et al. proposed a simple 

score of fracture’s risks, to discriminate subject at high versus low risk of fracture, and estimated 

the effect of pioglitazone within fracture risk strata. Pioglitazone prevented six CV events per 

serious fracture in the low risk of fracture strata. However, pioglitazone prevented only one CV 

event per serious fracture in the high risk of fracture strata [118]. 

 
Theranostic factor for personalizing treatment in type 2 diabetes 
 

Around half of newly treated patients with metformin do not reach sufficient response to 

HbA1c target [119]. One other way to personalize diabetes care is to use predictive/theranostic 
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biomarker of the TE. Such TE modifier may be available at different level. At the clinical level, a 

short duration of diabetes could be predictive of the glycemic response to metformin [119], lower 

body mass index (BMI) could be associated with greater glycemic response to sulfonylureas [120], 

obesity seems to be associated with a greater HbA1c reduction with TZD [120]. Surprisingly, a 

lower BMI may be associated with an improved glycemic response to metformin [119]. Similarly, 

an Individual Patient Data Meta-Analysis of the liraglutide clinical trial program only observed a 

non-clinically relevant association between baseline BMI and HbA1c reduction for liraglutide at 

1.8mg [121]. At the biological level, biomarkers of higher insulin resistance appear to be associated 

with a decrease in glycemic response to DPP4 Inhibitors [122]. The HbA1c and blood fasting 

glucose at the introduction of DPP4 inhibitor also seems to explain the variability in HbA1c 

response to DPP4 inhibitors [123]. Such effect modifier may also be found at the genome level. 

With the new genome sequencing technology, there is a growing interest in pharmacogenomics, 

i.e. the search for genetic variants associated with therapeutic responses [124]. Several genetic 

variants have been identified in pharmacogenomics of hypoglycemic drugs [125-127]. Regarding 

efficacy, heritability could be responsible for around one third of the absolute HbA1c decrease with 

metformin [128]. Genes of the organic cation transporter family (OCTs), a drug transporter, the 

gene of an ATM serine/threonine kinase (associated with ataxia telangiectasia), and loci in the 

SLC2A2 gene (coding for the GLUT2 glucose transporter) have been associated with glycemic 

response to metformin [127]. Regarding sulfonylureas also, genes implicated both in the 

pharmacokinetics and genes implicated in the pharmacodynamics of the sulfonylureas have been 

associated with differential glycemic response: CYP2C9, a cytochrome P450 implicated in the 

metabolism of sulfonylureas; and genetic variants of the different sub-units ABCC8 and KCNJ11 

of the ATP-sensitive potassium channel to which the sulfonylureas are targeted [127]. Some 

variants are also described as potentially implicated in the metabolic response to DPP4 inhibitors 

and GLP1 Receptor agonist [127]. Several genes have been associated with the safety of 

hypoglycemic drugs: the SLC22A1 gene (an OCT drug transporter) may be related to the 

gastrointestinal adverse effects of metformin, the CYP2C9 with the risk of hypoglycemia when 

using sulfonylureas. However, the available evidence for pharmacogenomics of ADR in T2D 

remains restricted [125]. Finally, the level of evidence for assessing effect modifier of 

hypoglycemic drugs remains limited.   
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Surrogate in type 2 diabetes 
 

At last but not least, HbA1c is used as a surrogate for personalizing diabetes care. The last 

European guidelines recommend to differentiate HbA1c target according to the patients 

characteristics, for example from “6.0—6.5%” in young people with a recent DT2 and no CV 

disease—“if achieved without significant hypoglycemia”—, to 8 even 9% in elderly patients with 

multiple comorbidities, limited life expectancy [111]. The prognostic effect of HbA1c on mortality 

has been confirmed in large epidemiologic study [129] and meta-analyses of observational data 

[130, 131]. Some mendelian randomization studies have recently assessed the relationships 

between diabetes and/or glycemic exposure and long-term CV events, supporting the causality of 

long-term hyperglycemia exposure and macrovascular outcomes. Ahmad et al. observed a small 

association between multiple genetic variants associated to T2D and Coronary Heart Disease (CHD) 

risk [132]. Ross et al. reported a relationship between nine genetic variants associated with HbA1c 

and risk of Coronary Artery Disease (CAD) [133]; Leong et al. reported similar results using 50 

genetic variants associated to HbA1c [134]. The translation of intensive glucose control effect in 

type 1 diabetes [135] to type 2 diabetes patients remains unclear. However, the demonstration of 

its theranostic value and clinical utility in type 2 diabetes has been discussed [136, 137]. 

Intensification trials have showed conflicting results. The ADVANCE trial suggested a reduction 

in new or worsening nephropathy, mainly in microalbuminuria, when achieving 6.5 versus 7.3% 

of HbA1c [108]. The VADT trial also suggested beneficial effect only on progression of 

albuminuria when achieving 6.9% of HbA1c versus 8.4%. However, the ACCORD trial observed 

an increase in mortality when pursuing a HbA1c target below 6.0% (achieved: 6.4% versus 7.5%) 

[110]. Meta-analyses of the intensification trials showed some macro-vascular benefit: around 15% 

decrease of the risk of non-fatal MI for a decrease of 1% of the HbA1c, and a decrease of 

microalbuminuria; but with an increased risk of hypoglycemia [138, 139]. Meta-regression using 

aggregated data of RCT showed conflicting results regarding the association between HbA1c 

reduction and CV risk reduction [137, 140]. A recent meta-regression including both the last CVOT 

up to February 2019 and intensive glucose control trials suggested an association between HbA1c 

decrease and risk of MACE [141]. However, meta-regression on aggregated data exhibits several 

limits, including the ecological bias. Indeed, correlations observed in meta-regressions should be 

seen as observational and do not have the level of evidence of RCT for assessing causality, 

especially using aggregate data [142]. A recent Individual Patient Data Meta-analysis suggested 
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benefits of HbA1c decrease on microvascular events, but mainly on intermediate endpoints [92]. 

Furthermore, the long term follows up of UKPDS [143] (and of DCCT/EDIC trials in type 1 

diabetes [144]) have suggested a long term beneficial effect of glucose control even after the period 

of intensive glucose control. This has led to the hypothesis of a legacy effect, i.e. a metabolic 

memory, translating the early glucose control in prolonged benefits. However, the last follow up 

of intensive glucose control in DT2 did not confirmed such post-treatment effect [145]. Withdrawal 

RCT would help to better assess the potential of such “delayed surrogate” [146].  
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PROBLEMATIC AND OBJECTIVE 

 
Personalized and evidence-based medicine in type 2 diabetes remains a challenge. We 

aimed to provide a mean treatment effect estimation of hypoglycemic drugs on cardiovascular 

outcomes; and exploring potential tools for personalizing the treatment effect estimation. This 

thesis is structured in three parts: i) estimating a mean TE, ii) assessing a surrogate, iii) evaluating 

trials designed for effect modifier assessment. We worked at a meta-research level and at a clinical 

trial level.  

 

Several hypoglycemic drugs are now available, with different level of proof of their efficacy 

on CV outcomes. However, how they compared to each other remain unclear. We aimed to provide 

a global assessment of each contemporary hypoglycemic drug classes. Using all the available 

evidence through a network meta-analysis approach would help to estimate the mean TE of each 

hypoglycemic drug classes, compared to control and to each other. This part is presented in the 

first published article of the thesis. This part is completed by an assessment of the benefit—risk 

balance of the SGLT2 inhibitors.  

 

Taking care of patient with T2D include taking care of the other CV risk factor. High blood 

pressure (BP) remains an issue in patients with T2D, with conflicting recommendations regarding 

the level of BP to target. We aimed to update and extend the characterization of the relationship 

between BP control and CV outcomes in T2D. Using all the available evidence through a meta-

regression analysis approach would help to assess a surrogate endpoint at a meta level. This part is 

presented in the second published article of this thesis. 

 

Finally, identification of theranostic biomarker in clinical trial is highly limited by the need 

for statistical power to detect such interaction. Power of sub-group analyses is already well 

described for parallel group (PG) design. Pros and cons of cross-over (CO) design compared to 

parallel group is already well known for estimating the TE. We aimed to assess the pros and cons 

of the CO design compared to the PG design for testing such theranostic biomarker. This part is 

presented in the third published article of this thesis. This part is completed by a short meta-

epidemiological survey assessing the reporting in pharmacogenetic studies.  
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FIRST PART.  

MEAN TREATMENT EFFECT ESTIMATION OF HYPOGLYCEMIC 

DRUG CLASSES 

 
 
The first part is divided in two sections.  

 

In the first section, we applied state of the art meta-analytic approach to take into account all the 

available evidence for comparing several drug classes, i.e. a network meta-analysis, which help to 

integrate both direct and indirect comparisons. Applying this tool to hypoglycemic drug classes, it 

allows us to provide mean TE estimation for different outcomes of interest:  

- Efficacy and safety outcomes:  

o Overall mortality, 

o Cardiovascular mortality, 

- Efficacy outcomes:  

o Major Adverse Cardiovascular Events (MACE), 

o Myocardial infarction, 

o Stroke, 

- Safety outcomes: 

o Serious hypoglycemia, 

o Serious adverse events.  

 

In the second section, we completed this part with a benefit—risk balance estimation of the SGLT2 

inhibitors.  
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First part – first section. Distinct assessments of benefit and risk: a network meta-analysis 
 
 
 
 

 

This section reports the original research “GLUcose COntrol Safety & Efficacy in type 2 DIabetes, 

a NETwork meta-analysis (GLUCOSE DINET)”. The protocol was previously registered in the 

PROSPERO database (CRD42016043823) [147]. The published article of the rational and design 

of the study is available in appendix 1 [148].  
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Aurore Gouraud1, Fabrice Bonnet9, Michel Cucherat1,2, Philippe Moulin10,
François Gueyffier1,2

1 Service de Pharmacotoxicologie, Hospices Civils de Lyon, Lyon, France, 2 Université Lyon 1, CNRS,
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Abstract

Background

The last international consensus on the management of type 2 diabetes (T2D) recommends

SGLT-2 inhibitors or GLP-1 agonists for patients with clinical cardiovascular (CV) disease;

metformin remains the first-line glucose lowering medication. Last studies suggested

beneficial effects of SGLT-2 inhibitors or GLP-1 agonists compared to DPP-4 inhibitors, in

secondary CV prevention. Recently, a potential benefit of SGLT-2 inhibitors in primary CV

prevention also has been suggested. However, no comparison of all the new and the old

hypoglycemic drugs is available on CV outcomes. We aimed to compare the effects of old

and new hypoglycemic drugs in T2D, on major adverse cardiovascular events (MACE) and

mortality.

Methods and findings

We conducted a systematic review and network meta-analysis of clinical trials. Randomized

trials, blinded or not, assessing contemporary hypoglycemic drugs on mortality or MACE in

patients with T2D, were searched for in Medline, the Cochrane Central Register of Con-

trolled Trials (CENTRAL), and ClinicalTrials.gov. References screening and data extraction

were done by multiple observers. Each drug was analyzed according to its therapeutic

class. A random Bayesian network meta-analysis model was used. The primary outcomes
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were overall mortality, cardiovascular mortality, and MACE. Severe adverse events and

severe hypoglycemia were also recorded.

175,966 patients in 34 trials from 1970 to 2018 were included. No trials evaluating gli-

nides or alpha glucosidase inhibitors were found. 17 trials included a majority of patients

with previous cardiovascular history, 16 trials a majority of patients without. Compared to

control, SGLT-2 inhibitors were associated with a decreased risk of overall mortality (OR =

0.84 [95% CrI: 0.74; 0.95]), SGLT-2 inhibitors and GLP-1 agonists with a decreased risk of

MACE (OR = 0.89 [95% CrI: 0.81; 0.98] and OR = 0.88 [95% CrI: 0.81; 0.95], respectively).

Compared to DPP-4 inhibitors, SGLT-2 inhibitors were associated with a decreased risk of

overall mortality (OR = 0.82 [95% CrI: 0.69; 0.98]), GLP-1 agonists with a decreased risk of

MACE (OR = 0.88 [95% CrI: 0.79; 0.99]). Insulin was also associated with an increased risk

of MACE compared to GLP-1 agonists (OR = 1.19 [95% CrI: 1.01; 1.42]). Insulin and sulfo-

nylureas were associated with an increased risk of severe hypoglycemia. In the trials includ-

ing a majority of patients without previous CV history, the comparisons of SGLT-2 inhibitors,

metformin and control did not showed significant differences on primary outcomes. We lim-

ited our analysis at the therapeutic class level.

Conclusions

SGLT-2 inhibitors and GLP-1 agonists have the most beneficial effects, especially in T2D

patients with previous CV diseases. Direct comparisons of SGLT-2 inhibitors, GLP-1 ago-

nists and metformin are needed, notably in primary CV prevention.

Trial registration

PROSPERO CRD42016043823.

Introduction

Type 2 diabetes (T2D) is a public health issue, with a dramatically increasing incidence in the
world. Cardiovascular diseases (CVD) are the main cause of mortality in T2D patients. Many
hypoglycemic drugs are currently available; their benefits have been evaluated with conflicting
results. Network meta-analysis allows several treatments to be compared through direct and
indirect comparisons. Previous network meta analyses on hypoglycemic drugs were focused
on intermediate outcomes, such as glycated hemoglobin (HbA1c), or did not compare the
effect of the drugs on mortality or major adverse cardiovascular events (MACE) in the absence
of data [1]. Since then, new clinical trials assessing SGLT-2 inhibitors or GLP-1 receptor ago-
nists showed promising results on mortality or on cardiovascular outcomes (EMPARE-
G-OUTCOME [2], CANVAS-Program [3], LEADER [4], SUSTAIN-6 [5]), allowing Zheng
et al to show a lower mortality rate with SGLT-2 inhibitors or GLP-1 receptor agonists com-
pared to control or DPP-4 inhibitors, mainly in secondary cardiovascular prevention [6]. The
last international consensus recommends SGLT-2 inhibitors or GLP-1 receptor agonists for
patients with clinical cardiovascular disease; metformin remains the first-line therapy for glu-
cose lowering medication [7]. However, the last cardiovascular outcome trial assessing a GLP-
1 receptor agonists did not showed a decreased risk of overall mortality [8]. Following the
recently published DECLARE TIMI 58 trial [9], a meta-analysis suggested a potential benefit
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of SGLT-2 inhibitors in primary cardiovascular prevention, but did not include GLP-1 recep-
tor agonists or metformin [10]. Most of hypoglycemic drugs have not been directly compared
in head to head clinical trials. Up to now, no comparison of all the new and the old hypoglyce-
mic drugs is available on major cardiovascular outcomes. The purpose of this study was to
compare all the currently available hypoglycemic drug classes on major adverse cardiovascular
events (MACE) and on mortality in patients with T2D, through a network meta-analysis
approach of randomized clinical trials.

Protocol registration number

PROSPERO CRD42016043823

Methods

Methods have been previously described [11]. This meta-analysis was conducted following the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement
and its extension for reviews incorporating network meta-analyses (S1 Fig) [12].

Search strategy and selection criteria

Randomized clinical trials (RCTs), double-blind or open, including patients with type 2 diabe-
tes, evaluating a specific contemporary hypoglycemic drug through clinically relevant out-
comes (as primary or secondary outcomes) have been included. Clinically relevant outcomes
considered here were: overall mortality, cardiovascular mortality, MACE (myocardial infarc-
tion–MI–, acute coronary syndrome, or stroke) and diabetic microangiopathy (new or wors-
ening) that is clinically symptomatic or leading to a therapeutic intervention such as surgery,
photocoagulation, or dialysis. Trials which used drugs which have been withdrawn from the
market (such as phenphormin and tolbutamide) were not included. Trials comparing drugs of
the same therapeutic class and glucose lowering treatment intensifications without specific
drugs were excluded.

English language published trials were searched in PubMed and Central databases, without
time restriction, up to March 2016 (see S1 Table). Unpublished and other on-going trials were
searched through references of published meta-analyses, ClinicalTrials.gov, congress abstracts.
On-going trials of potential interest were followed until November 2018 for final results. The
study selection, data extraction and risk of bias assessment were performed by at least two
independent reviewers (GG and SR, GN, FaG, AG or TL), consensus was reached in the case
of disagreements. Studies were first screened on the basis of their titles and abstracts, then
included based on the full text. The quality of the studies was assessed using the Cochrane Col-
laboration’s tool for assessing risk of bias in RCTs [13]. Summary estimates of the treatment
effect and summary of patients’ characteristics (age, gender, cardiovascular risk factors) were
extracted.

Outcomes of the meta-analysis

Primary outcomes of this analysis were: overall mortality, cardiovascular mortality, and major
adverse cardiovascular events (MACE: cardiovascular death, non-fatal MI, and non-fatal
stroke), as described in the protocol [11]. For MACE, proxies have been used for 10 studies
among the 27 trials with available data (see S2 Table). Diabetic microangiopathy was a pre-
specified secondary outcome, but its reporting in the included studies was heterogeneous and
not available in many studies. Instead, detailed results on macrovascular outcomes (all and
non-fatal MI, all and non-fatal stroke) were retrieved. Serious adverse events and severe
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hypoglycemia were also reported as secondary outcomes. For Serious adverse events, reported
definitions are presented in supplementary S3 Table.

Data analysis

Each drug (including each drug dose) was analyzed according to its therapeutic class: bigua-
nide (metformin), alpha glucosidase inhibitors, sulfonylureas, glitazones, glinides, insulin,
DPP-4 inhibitors, GLP-1 receptor agonists, and SGLT-2 inhibitors. Placebo, diet control and
active control without specific drug classes were considered together as control treatment. A
random Bayesian network meta-analysis model was used [14]. The prior distribution was cho-
sen as non-informative, the posterior distribution was estimated using Markov Chain Monte
Carlo method [15]. The treatment effect estimate was presented for the network estimation
and for the direct comparison, when available, through odds ratio (OR) and its 95% credible
interval (95% CrI). Ranking probability and the surface under the cumulative ranking
(SUCRA) values were estimated for ranking the drug classes [16]. Sensitivity analyses after
considering only double-blind studies and according to two potential effect modifiers, high
versus low baseline cardiovascular risk and high versus low glycemic contrast during the
study, were conducted. The level of baseline cardiovascular risk of the trial was defined using
the proportion of subjects with previous cardiovascular events. Trials below the mean propor-
tion across all trials defined the subset of trials of ‘low cardiovascular risk’; trials above the
mean proportion defined the subset of trials of ‘high cardiovascular risk’. Glycemic contrast
during the study was defined by the HbA1c difference across arms of the trial. Trials below the
mean HbA1c difference across all trials defined the subset of trials of “low glycemic contrast”,
trials above the mean HbA1c difference defined the subset of trials of “high glycemic contrast”.
Heterogeneity was analyzed using the I2. Inconsistency of the network was searched for, using
the Node-splitting analysis of inconsistency of the Gemtc package [17]. Analyses have been
conducted using R [18] (version 3.3.1) and JAGS [19] with the Gemtc package [17] (version
0.8–2). Meta package [20] was used to illustrate the treatment effect at the trial level.

Results

Bibliographic search and included trials

The bibliographic search retrieved 3,459 citations. The selection process is presented in Fig 1.
Thirty-four trials with 175,966 patients were included [2–5, 8, 9, 21–46]. We did not retrieve
trials evaluating alpha glucose inhibitors or glinides. UKPDS34 [25] was considered as two tri-
als, UKPDS34a and UKPDS34b [47]. For UGDP [23], UKPDS33 [24] and TIDE [37] trials,
arms with the same drug class were summed up. For UGDP, the tolbutamide group was not
included. For the ORIGIN study [36], in which more than 80% of subjects had T2D, only data
from the T2D sub-group were used when available, data of the whole trial otherwise. The
CANVAS-program [3] was considered as two trials, CANVAS and CANVAS-R. Indeed, given
a marked difference in the baseline risk between the two cohorts, their pooling was subject to
the Simpson’s paradox. We were unable to obtain results of the PPAR study [21] despite hav-
ing contacted the authors. Data of the recent trial CARMELINA were limited to the public
information [22].

Baseline characteristics of included trials are presented in Table 1. Included trials were pub-
lished over a span of 48 years (from 1970 to 2018). Percentage of males ranged from 29 to
77.6%, percentage of patients i) with high blood pressure or receiving antihypertensive drugs
ranged from 11.6 to 95.1%, ii) with dyslipidemia or receiving statins treatment ranged from
0.1 to 92.8% (low use of lipid lowering drugs in UKPDS), iii) receiving antiplatelet treatment
ranged from 40.2 to 98.3%, and percentage of current smokers at inclusion ranged from 10.2
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to 49.6%. Mean age ranged from 53+/-8.5 to 69+/-7.1 years, mean duration of diabetes from
around 0 (UKPDS) to 14.7+/-9.5 years, mean HbA1c at inclusion from 6.3+/-1.3 to 8.8
+/-1.7%, mean body mass index (BMI) at inclusion from 23.9+/-3.1 to 32.5+/-6.3 kg.m-2. 20
(59%) trials were double-blinded. The summary of the risk of bias assessments and details for
each study are presented in supplementary S2 Fig. Only 12 and seven trials provided details on
clinical retinopathy and clinical nephropathy, respectively (18 trials for nephropathy when
including biological outcomes).

Primary outcomes

Overall mortality. Thirty studies contributed to this analysis, including 12,203 deaths.
Each active drug class had direct comparisons with control. The comparison network and for-
est plots of the direct comparisons are shown in supplementary S3A Fig_Network, S3A
Fig_DPP-4_I VERSUS CONTROL, S3A Fig_GLITAZONES VERSUS CONTROL, S3A
Fig_GLP-1_A VERSUS CONTROL, S3A Fig_INSULIN VERSUS CONTROL, S3A Fig_MET-
FORMIN VERSUS CONTROL, S3A Fig_SGLT-2_I VERSUS CONTROL, S3A Fig_SULFO-
NYLUREA VERSUS CONTROL, S3A Fig_SULFONYLUREA VERSUS GLITAZONES, S3A
Fig_INSULIN VERSUS SULFONYLUREA, S3A Fig_METFORMIN VERSUS SULFONYL-
UREA. SGLT-2 inhibitors only were associated with a decreased risk of overall mortality com-
pared to control (OR = 0.84 [95% CrI: 0.74; 0.95]) and compared to DPP-4 inhibitors
(OR = 0.82 [95% CrI: 0.69; 0.98]). SUCRA values suggested that SGLT-2 inhibitors have the
higher probability to be the most efficient treatment (SUCRA = 0.86). SUCRA values for met-
formin and GLP-1 receptor agonists were relatively similar (0.72 and 0.67, respectively).
SUCRA values, summary of the network treatment estimates for each pair of comparisons and
for the direct treatment estimates, when available, are summarized in Table 2.

Fig 1. Flow diagram of bibliographic search (following PRISMA guidelines).

https://doi.org/10.1371/journal.pone.0217701.g001
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Table 1. Baseline characteristics of included trials.

Year of
publication

Blinding Male HBP Lipd APT Smoker Age (year) Diabetes duration
(year)

HbA1c BMI

DPP-4_I VERSUS CONTROL

CARMELINA [22] 2018 DB 62.9 95.1 71.8 68.3 10.2 65.8 (9.1) 14.7 (9.5) 7.9 (1.0) 31.3
(5.3)

EXAMINE [35] 2013 DB 67.8 83 90.4 97.2 13.7 61 7.2 8 (1.1) 28.7

SAVOR.TIMI.53 [40] 2013 DB 66.9 81.8 71.2 75.2 13.4 65 (8.6) 10.3 8 (1.4) 31.1
(5.6)

TECOS [42] 2015 DB 70.7 78.4 79.5 78.2 11.4 65.5 (8) 11.6 (8.1) 7.2 (0.5) 30.2
(5.6)

GLITAZONES VERSUS CONTROL

J.SPIRIT [44] 2015 O NA NA NA NA NA NA NA NA NA

Kaku.2009 [32] 2009 O 62.5 69 71 NA 45.2 58 NA 7.6 26.7

Lee.2013 [39] 2013 NA 73.6 57 73.5 98.3 49.6 61.1 (9.1) 5.8 (6.7) 7.8 (1.7) 23.9
(3.1)

PROactive [27] 2005 DB 66.1 75.4 42.9 83.9 13.8 61.8 8 8.1 (1.41) 30.9
(4.8)

PROFIT.J [41] 2014 O 64.6 60.8 43.6 NA NA 69 (7.1) 11.3 (8.9) 7.4 (0.9) 24.2
(3.3)

RECORD [31] 2009 O 51.6 65.6 34.1 NA 15.7 58.4 (8.2) 7.1 (4.9) 7.9 (0.7) 31.5
(4.7)

TIDE [37] 2012 DB 58.8 88.2 76.4 55.4 12.5 66.4 (6.6) 8.8 (6.8) 7.4 (0.9) 30.6
(5.3)

GLP-1_A VERSUS CONTROL

ELIXA [43] 2015 DB 69.3 76.3 92.8 97.5 11.7 60.2 (9.6) 9.3 (8.2) 7.7 (1.3) 30.1
(5.7)

EXSCEL [45] 2017 DB 62 90.3 73.5 63.6 11.6 62⇤ 12 (7;18)⇤ 8(7.3;8.9)⇤ 31.8⇤

HARMONY [8] 2018 DB 69 86.5 84.1 77.1 15.8 64.2 (8.7) 14.1 (8.8) 8.7 (1.5) 32.3
(5.9)

LEADER [4] 2016 DB 64.2 92.3 75.6 67.7 NA 64.3 (7.2) 12.8 8.7 32.5
(6.3)

SUSTAIN.6 [5] 2016 DB 60.7 93.5 76.5 NA NA 64.6 (7.4) 13.9 (8.1) 8.7 (1.5) NA

INSULIN VERSUS CONTROL

ORIGIN [36] 2012 O 65 79.5 53.8 69.2 12.4 63.5 (7.8) 5.4 (6) 6.4 29.9
(5.2)

UGDP [23] 1970 NA 29 32.3 13.1 NA NA NA NA NA NA

UKPDS.33 [24] 1998 O 62 11.6 0.1 NA 31 54 (8) 0 6.3 (1.3) 27.3
(5.1)

METFORMIN VERSUS CONTROL

COSMIC [26] 2005 O 49.4 NA NA NA NA 58.5 (13) 4.8 (6) NA NA

HOME [33] 2009 DB 45.6 43 16.1 NA 24.9 61.5 (10.5) NA 7.9 (1.2) 30 (5)

UKPDS.34a [25] 1998 O 46.5 15.5 0.2 NA 25 53 (8.5) 0 7.2 (1.5) 31.7
(4.8)

UKPDS.34b [25] 1998 O 60 24.5 0.2 NA 26.5 58.5 (8.5) 0 7.5 (1.8) 29.5
(5.5)

SGLT-2_I VERSUS CONTROL

CANVAS [3] 2017 DB 66.1 87.6 72.3 71.6 17.9 62.4 (8) 13.4 (7.5) 8.2 (0.9) 32.1
(6.2)

CANVASR [3] 2017 DB 62.8 91.7 76.9 75.1 17.7 64 (8.4) 13.7 (7.9) 8.3 (1) 31.9
(5.7)

DECLARE.TIMI.58 [9] 2018 DB 62.6 NA 75 61.1 NA 64 (6.8) 11 (6;16)⇤ 8.3 (1.2) 32 (6)

EMPAREG [2] 2015 DB 71.4 95 81.1 NA NA 63.1 (8.7) NA 8.1 (0.8) 30.6
(5.2)

SULFONYLUREA VERSUS CONTROL

ADVANCE [30] 2008 O 57.5 75.1 NA NA NA 66 (6) 8 (6.3) 7.5 (1.6) 28 (5)

UKPDS.33 [24] (see previous description)

GLITAZONES VERSUS SULFONYLUREA

(Continued)
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Cardiovascular mortality. Twenty-seven studies contributed to the analysis for cardio-
vascular mortality, including 6,221 cardiovascular deaths. Each active drug class had direct
comparisons against control. The comparison network and forest plots of the direct compari-
sons are shown in supplementary S3B Fig_Network, S3B Fig_DPP-4_I VERSUS CONTROL,
S3B Fig_GLITAZONES VERSUS CONTROL, S3B Fig_GLP-1_A VERSUS CONTROL, S3B
Fig_INSULIN VERSUS CONTROL, S3B Fig_METFORMIN VERSUS CONTROL, S3B
Fig_SGLT-2_I VERSUS CONTROL, S3B Fig_SULFONYLUREA VERSUS CONTROL, S3B
Fig_SULFONYLUREA VERSUS GLITAZONES, S3B Fig_INSULIN VERSUS SULFONYL-
UREA, S3B Fig_METFORMIN VERSUS SULFONYLUREA. No significant differences were
observed in the network comparisons. SUCRA values suggested SGLT-2 inhibitors have the

Table 1. (Continued)

Year of
publication

Blinding Male HBP Lipd APT Smoker Age (year) Diabetes duration
(year)

HbA1c BMI

APPROACH [34] 2010 DB 67.9 80.1 75.9 83.2 16.6 61 (8.7) 4.8 7.2 (0.8) 29.6
(5.4)

PERISCOPE [29] 2008 DB 67.4 86.8 81.2 90.1 15.3 59.9 (9.2) 5.9 7.4 (1) 32 (5.2)

Giles.2008 [28] 2008 DB 73.6 NA NA NA NA 63.8 (9.7) 11.8 (9.3) 8.8 (1.7) 29.6
(5.3)

PPAR.Study [21] NA O NA NA NA NA NA NA NA NA NA

TOSCA.IT [46] 2017 O 58.5 70 57.3 40.2 17.6 62.3 (6.5) 8.4 (5.7) 7.7 (0.5) 30.3
(4.5)

INSULIN VERSUS SULFONYLUREA

UKPDS.33 [24] (see previous description)

METFORMIN VERSUS SULFONYLUREA

SPREAD.DIMCAD [38] 2013 DB 77.6 69.4 63.9 83.5 37.5 63.3 5.6 (5.1) 7.6 (1.7) 25.1 (3)

“_i” stands for inhibitor, “_a” stands for agonist. Percentages from the whole trial (or the mean of the arms if not available) for high blood pressure or antihypertensive

drugs (HBP), dyslipidemia or statines (Lipd), antiplatelet treatment (APT) and current smoker (Smoker); mean and standard deviation from the whole trial (or the

mean of the arms if not available) for age, diabetes duration, baseline HbA1c and baseline body mass index (BMI, kg.m-2). When mean and standard deviation were not

available, median and interquartile range (IQR) were used, indicated with “⇤”).

https://doi.org/10.1371/journal.pone.0217701.t001

Table 2. Treatment effect estimates for overall mortality.

control ; 0.2 1.02
(0.89;1.15)

0.93
(0.79;1.09)

0.9
(0.81;1)

0.96
(0.83;1.09)

0.86
(0.67;1.1)

0.84
(0.74;0.95)

0.95
(0.83;1.09)

1.02
(0.89;1.15)

dpp4_i ; 0.16 0.91
(0.74;1.12)

0.88
(0.75;1.05)

0.94
(0.78;1.12)

0.84
(0.64;1.12)

0.82
(0.69;0.98)

0.93
(0.77;1.13)

0.88
(0.46;1.39)

glitazones ; 0.53 0.97
(0.8;1.18)

1.03
(0.83;1.27)

0.93
(0.69;1.25)

0.91
(0.73;1.11)

1.03
(0.84;1.25)

0.89
(0.81;1)

glp1_a ; 0.67 1.07
(0.88;1.25)

0.96
(0.73;1.26)

0.94
(0.79;1.1)

1.06
(0.88;1.26)

0.96
(0.82;1.1)

insulin ; 0.42 0.9
(0.68;1.2)

0.88
(0.74;1.06)

0.99
(0.84;1.2)

0.97
(0.63;1.53)

metformin ; 0.72 0.98
(0.74;1.3)

1.11
(0.83;1.46)

0.84
(0.67;1.05)

sglt2_i ; 0.86 1.13
(0.94;1.37)

0.94
(0.83;1.07)

0.89
(0.56;1.4)

1.01
(0.81;1.25)

2.28
(0.64;8.63)

sulfonylureas ; 0.44

The diagonal contains the drug class and its SUCRA value. Treatment effect are OR with its 95% credible interval. Above the diagonal: estimates from the network meta-

analysis, OR < 1 is in favor of the column; below the diagonal: estimates from the direct comparison, when available, OR <1 is in favor of the row.

https://doi.org/10.1371/journal.pone.0217701.t002
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higher probability to be the most efficient treatment (SUCRA = 0.8), followed by GLP-1 recep-
tor agonists and metformin (0.63 and 0.55, respectively). SUCRA values, network and direct
comparisons are summarized in Table 3.

Major adverse cardiovascular events (MACE). Twenty-seven studies contributed to the
analysis for MACE, including 17,188 MACEs. Details regarding the number of events are pre-
sented in S5 Table. Each active drug class had direct comparisons against control. The compari-
son network and forest plot of the direct comparisons are shown in supplementary S3C
Fig_Network, S3C Fig_DPP-4_I VERSUS CONTROL, S3C Fig_GLITAZONES VERSUS CON-
TROL, S3C Fig_GLP-1_A VERSUS CONTROL, S3C Fig_INSULIN VERSUS CONTROL,
S3C Fig_METFORMIN VERSUS CONTROL, S3C Fig_SGLT-2_I VERSUS CONTROL,
S3C Fig_SULFONYLUREA VERSUS CONTROL, S3C Fig_SULFONYLUREA VERSUS GLI-
TAZONES, S3C Fig_INSULIN VERSUS SULFONYLUREA, S3C Fig_METFORMIN VERSUS
SULFONYLUREA. Compared to control, only SGLT-2 inhibitors and GLP-1 receptor agonists
were associated with a decreased risk of MACE (OR = 0.89 [95% CrI: 0.81; 0.98] and OR = 0.88
[95% CrI: 0.81; 0.95], respectively). Compared to DPP-4 inhibitors, only GLP-1 receptor ago-
nists were associated with a decreased risk of MACE (OR = 0.88 [95% CrI: 0.79; 0.99]). Insulin
was also associated with an increased risk of MACE compared to GLP-1 receptor agonists
(OR = 1.19 [95% CrI: 1.01; 1.42]). SUCRA values suggested GLP-1 receptor agonists have the
higher probability to be the most efficient treatment (SUCRA = 0.76), followed by metformin
and SGLT-2 inhibitors (SUCRA values: 0.75 and 0.71, respectively). SUCRA values, network
and direct comparisons are summarized in Table 4. Ranking probability curve for MACE is pre-
sented in the supplementary S4 Fig.

Secondary outcomes

Regarding the risk of MI, metformin was almost associated with a decreased risk of non-fatal
MI compared to control (OR = 0.66 [95% CrI: 0.44; 1]). Regarding the risk of stroke, glitazones
were associated with a decreased risk of all strokes compared to control and DPP-4 inhibitors
(OR = 0.74 [95% CrI: 0.57; 0.95] and OR = 0.72 [95% CrI: 0.52; 0.98], respectively); sulfonyl-
ureas and SGLT-2 inhibitors were associated with an increased risk of stroke compared to

Table 3. Treatment effect estimates for cardiovascular mortality.

control ; 0.24 0.99
(0.8;1.19)

0.92
(0.71;1.21)

0.89
(0.76;1.05)

0.95
(0.7;1.3)

0.91
(0.65;1.27)

0.83
(0.69;1)

0.92
(0.74;1.16)

0.99
(0.85;1.14)

dpp4_i ; 0.31 0.94
(0.68;1.32)

0.9
(0.71;1.18)

0.96
(0.68;1.4)

0.92
(0.63;1.36)

0.84
(0.65;1.11)

0.93
(0.7;1.28)

0.91
(0.4;2.07)

glitazones ; 0.51 0.96
(0.71;1.31)

1.03
(0.69;1.53)

0.98
(0.64;1.5)

0.9
(0.64;1.23)

0.99
(0.71;1.39)

0.89
(0.78;1.02)

glp1_a ; 0.63 1.07
(0.76;1.5)

1.02
(0.7;1.47)

0.94
(0.72;1.18)

1.03
(0.78;1.37)

0.93
(0.73;1.19)

insulin ; 0.43 0.95
(0.61;1.49)

0.87
(0.61;1.24)

0.96
(0.7;1.34)

1.15
(0.5;3)

metformin ; 0.55 0.92
(0.62;1.34)

1.01
(0.69;1.5)

0.83
(0.61;1.12)

sglt2_i ;
0.8

1.1
(0.83;1.5)

0.9
(0.75;1.08)

0.79
(0.27;2.15)

0.76
(0.61;0.95)

1.72
(0.54;5.52)

Sulfonylureas ; 0.53

The diagonal contains the drug class and its SUCRA value. Treatment effect are OR with its 95% credible interval. Above the diagonal: estimates from the network meta-

analysis, OR < 1 is in favor of the column; below the diagonal: estimates from the direct comparison, when available, OR <1 is in favor of the row.

https://doi.org/10.1371/journal.pone.0217701.t003
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glitazones (OR = 1.53 [95% CrI: 1.13; 2.15] and OR = 1.45 [95% CrI: 1.06; 2.03], respectively).
Insulin was associated with an increased risk of severe adverse events compared to all the com-
parison except the sulfonylureas: increased risk with insulin compared to control, DPP-4
inhibitors, glitazones, GLP-1 receptor agonists (OR = 1.32 [95% CrI: 1.05; 1.68], OR = 1.44
[95% CrI: 1.05; 1.97], OR = 1.37 [95% CrI: 1.04; 1.81], OR = 1.43 [95% CrI: 1.11; 1.85], respec-
tively), decreased risk with metformin and SGLT-2 inhibitors compared to insulin (OR = 0.7
[95% CrI: 0.5; 0.99] and OR = 0.67 [95% CrI: 0.51; 0.87], respectively). Insulin and sulfonyl-
ureas both were associated with an increased risk of severe hypoglycemia compared to all the
other comparison except the metformin: i) increased risk with insulin compared to control,
DPP-4 inhibitors, glitazones, GLP-1 receptor agonists (OR = 3.44 [95% CrI: 1.76; 7.25],
OR = 2.92 [95% CrI: 1.22; 7.64], OR = 2.99 [95% CrI: 1.17; 7.97], OR = 4.14 [95% CrI: 1.95;
10.13], respectively), ii) decreased risk with SGLT-2 inhibitors compared to insulin (OR = 0.23
[95% CrI: 0.08; 0.59]), iii) increased risk with sulfonylureas compared to control, DPP-4 inhib-
itors, glitazones, GLP-1 receptor agonists and SGLT-2 inhibitors (OR = 2.9 [95% CrI: 1.68;
6.25], OR = 2.45 [95% CrI: 1.18; 6.61], OR = 2.52 [95% CrI: 1.22; 6.32], OR = 3.49 [95% CrI:
1.82; 8.94], OR = 3.71 [95% CrI: 1.62; 11] respectively). For secondary outcomes, treatment
effect estimates against control are summarized in Table 5.

Statistical assessment

Convergences were reached for all the analyses. Residual deviance was globally acceptable (for
overall mortality, ratio of Dbar/number of data points was 1.074). Heterogeneity of the treat-
ment effect was globally low (I2 for overall mortality: 8%). Network consistency was globally
satisfying. For overall mortality, the network estimation of metformin against sulfonylurea was
inconsistent with the direct comparison (see discussion).

Sensitivity analyses

When restricting the analysis to double-blinded studies only, the decreased risk of overall mor-
tality with SGLT-2 and of MACE with SGLT-2 and GLP-1 agonist remained, but treatment
estimation were not interpretable for metformin and sulfonylureas due to inconsistency.

Table 4. Treatment effect estimates for major adverse cardiovascular events (MACE).

control ; 0.21 0.99
(0.91;1.08)

0.9
(0.79;1.03)

0.88
(0.81;0.95)

1.05
(0.9;1.21)

0.85
(0.65;1.11)

0.89
(0.81;0.98)

0.93
(0.81;1.06)

0.98
(0.92;1.05)

dpp4_i ; 0.26 0.9
(0.78;1.07)

0.88
(0.79;0.99)

1.05
(0.89;1.25)

0.85
(0.65;1.14)

0.9
(0.79;1.02)

0.94
(0.8;1.1)

0.86
(0.58;1.17)

glitazones ; 0.66 0.98
(0.83;1.14)

1.17
(0.95;1.42)

0.94
(0.71;1.27)

0.99
(0.83;1.16)

1.04
(0.87;1.22)

0.87
(0.74;1)

glp1_a ; 0.76 1.19
(1.01;1.42)

0.97
(0.73;1.29)

1.01
(0.9;1.15)

1.06
(0.91;1.24)

1.04
(0.93;1.17)

insulin ; 0.12 0.81
(0.6;1.11)

0.85
(0.71;1.01)

0.89
(0.72;1.09)

0.97
(0.65;1.44)

metformin ; 0.75 1.05
(0.79;1.39)

1.09
(0.82;1.44)

0.89
(0.79;0.99)

sglt2_i ; 0.71 1.04
(0.89;1.23)

0.93
(0.81;1.08)

0.87
(0.54;1.3)

1.62
(0.77;3.47)

sulfonylureas ; 0.53

The diagonal contains the drug class and its SUCRA value. Treatment effect are OR with its 95% credible interval. Above the diagonal: estimates from the network meta-

analysis, OR < 1 is in favor of the column; below the diagonal: estimates from the direct comparison, when available, OR <1 is in favor of the row.

https://doi.org/10.1371/journal.pone.0217701.t004
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The mean prevalence of previous cardiovascular history at baseline across all trials was
54.9% +/- 29.4 (see supplementary S4 Table). There were 17 trials in the subgroup with a majority
of patient with previous CV history (‘high CV risk’ subgroup), and 16 trials in the subgroup with
a majority of patient without previous CV history (‘low CV risk’ subgroup). There was no trial
comparing metformin to control in the ‘high CV risk’ subgroup. There were no GLP-1 receptor
agonist trials and no DPP-4 inhibitor trials in the ‘low CV risk’ subgroup. The beneficial effects of
SGLT-2 inhibitors and of GLP-1 receptor agonists remained in the ‘high CV risk’ subgroup. In
the trials including a majority of patients without previous CV history, the comparisons of SGLT-
2 inhibitors, metformin and control did not showed significant differences on primary outcomes.
Compared to control, risk of overall mortality, CV mortality and of MACE, with SGLT-2 inhibi-
tors, was: OR = 0.92 [95% CrI: 0.55; 1.57], OR = 0.99 [95% CrI: 0.29; 3.28], OR = 0.94 [95% CrI:
0.55; 1.6], respectively. Compared to control, risk of overall mortality, CV mortality and of
MACE, with metformin, was: OR = 0.94 [95% CrI: 0.67; 1.41], OR = 1.08 [95% CrI: 0.57; 2.43],
OR = 0.97 [95% CrI: 0.57; 1.56], respectively. Compared to metformin, risk of overall mortality, of
CV mortality and of MACE, with SGLT-2 inhibitors was: OR = 0.99 [95% CrI: 0.5; 1.78],
OR = 0.93 [95% CrI: 0.21; 3.29], OR = 0.96 [95% CrI: 0.48; 2.09], respectively.

The mean difference of HbA1c during the follow up was -0.43% +/- 0.22. Available data for
defining the glycemic contrast was unfortunately heterogeneous between studies, limiting the
exploration of this potential effect modifier.

Discussion

Main findings

Our study confirms the beneficial effects of SGLT-2 inhibitors and GLP-1 receptor agonist on
MACEs with at least two positive independent trials. SGLT-2 inhibitors only were associated
with a decreased risk of overall mortality compared to control and to DPP-4 inhibitors. GLP-1
agonists were only associated with a decreased risk of major adverse cardiovascular events
compared to control, DPP-4 inhibitors and insulin. Metformin did not showed any benefits
on mortality or major adverse cardiovascular events. Glitazones were associated with a
decreased risk of stroke, insulin with an increased risk of serious adverse events, insulin and
sulfonylureas with an increased risk of severe hypoglycemia. In the subgroup of trials including

Table 5. Summary of treatment effect compared to control for secondary outcomes.

All.MI Non.fatal.MI All.Stroke Non.fatal.Stroke SAE Sev.Hypo

dpp4_i 0.95
(0.78;1.15)

1.01
(0.85;1.2)

1.03
(0.85;1.26)

0.92
(0.69;1.21)

0.92
(0.75;1.12)

1.18
(0.67;2.06)

glitazones 1.18
(0.78;1.78)

0.91
(0.74;1.11)

0.74
(0.57;0.95)

0.78
(0.55;1.11)

0.97
(0.83;1.12)

1.15
(0.58;2.33)

glp1_a 0.91
(0.79;1.02)

0.94
(0.83;1.05)

0.89
(0.77;1.04)

0.88
(0.73;1.06)

0.93
(0.85;1.01)

0.83
(0.52;1.23)

insulin 0.98
(0.79;1.2)

0.95
(0.68;1.31)

0.99
(0.8;1.19)

0.71
(0.43;1.14)

1.32
(1.05;1.68)

3.44
(1.76;7.25)

metformin 0.8
(0.6;1.1)

0.66
(0.44;1)

0.73
(0.46;1.1)

0.62
(0.36;1.03)

0.93
(0.73;1.19)

1.34
(0.31;5.63)

sglt2_i 0.88
(0.72;1.07)

0.87
(0.73;1.04)

1.07
(0.88;1.31)

1.04
(0.82;1.31)

0.88
(0.77;1.01)

0.78
(0.39;1.55)

sulfonylureas 0.87
(0.65;1.16)

0.93
(0.76;1.13)

1.13
(0.95;1.39)

1.02
(0.8;1.28)

1.03
(0.86;1.17)

2.9
(1.68;6.25)

MI: myocardial infarction; SAE: serious adverse events; Sev.hypo: severe hypoglycemia; “_i” stands for inhibitor, “_a” stands for agonist.

https://doi.org/10.1371/journal.pone.0217701.t005
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a majority of patients without previous cardiovascular history, the comparisons of SGLT-2
inhibitors, metformin and control did not showed significant differences on those outcomes.
This subgroup did not include trials assessing GLP-1 agonists.

Strengths of the study

Several hypoglycemic drug classes are now available. However, only a few direct comparisons
between active treatments are available. New hypoglycemic drug classes especially have been
compared only to placebo for their effect on cardiovascular outcomes. Thus, in order to com-
pare all the hypoglycemic drug classes, network meta-analyses are needed for taking into
account the information from both direct and indirect comparisons. We included any hypo-
glycemic drug classes, old or new, whose have been assessed for major cardiovascular out-
comes, for the first time in the same network meta-analysis. We also included the last powerful
trials. Moreover, we conducted subgroup analyses according to the prevalence of previous CV
history in each trials. Our study helps to summarize the results of clinical trials in type 2 diabe-
tes, focusing on major cardiovascular outcomes. Regarding the SGLT-2 inhibitors, the
decrease in overall mortality with SGLT-2 inhibitors is mainly driven by the EMPAREG OUT-
COME trial [2]. Moreover, a potential warning signal has been observed for peripheral ampu-
tations [48]. The CANVAS Program was the pooling of the CANVAS trial and the CANVAS
R trial [49]. Those trials were initially planned separately. After an unplanned interim analysis
of the CANVAS trial, those two trials have been joined together to increase the power, both tri-
als having very similar design and inclusion criteria. This has been well explicated and justified
before the publication of the final results [49]. However, the results regarding overall and car-
diovascular mortality are presented on the full dataset, including data which have been used
for the interim analysis. Surprisingly, the effect of GLP-1 receptor agonists was no more signif-
icant for overall mortality, with the recently published HARMONY OUTCOME trial [8].
Regarding the other classes, the effect of metformin was consistent with previous meta-analy-
ses [47]. The beneficial effect of glitazones regarding the risk of stroke has already been
described [50]. The neutral effect of DPP-4 inhibitors on cardiovascular events was consistent
with previous meta-analyses [51]. The increased risk of severe hypoglycemia with sulfonyl-
ureas and insulin was also consistent with their mechanism of action and previous knowledge
[52]. The increased risk of severe adverse event with insulin is based on the data of ORIGIN
[36]; we found neither severe adverse event data for UGDP [53] nor UKPDS 33 [24]. Therefore
our results mostly reflect the increased risk of hypoglycemia as described in the ORIGIN trial.
We did not assess the specific risk of cardiac insufficiency. Unfortunately, we did not find any
studies evaluating alpha glucosidase inhibitors or glinides on such major clinical outcome.

Previous network meta-analyses [54–57] did not include both the old and the new hypogly-
cemic drug classes and the last powerful trials (EXSCEL [45], HARMONY OUTCOME [8],
DECLARE TIMI 58 [9] and CARMELINA [22]). Above all, our results differ slightly from the
network meta-analysis of Zheng et al [6], as the GLP-1 agonist were no more associated with a
decrease in overall mortality, due to the latest HARMONY OUTCOME trial. Moreover, our
results challenge the recently suggested benefit of SGLT-2 inhibitors in primary cardiovascular
prevention [10], as we did not showed a significant effect of SGLT-2 inhibitors compared to
control and metformin on major CV outcomes, in trials including a majority of patients with-
out previous CV history.

Limitations

Our study has some limitations. We included double-blinded and open clinical trials, which
lead to a risk of bias. Unfortunately, there were many open trials in T2D in the last decades.
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However, the sensitivity analysis restricted to the double-blinded studies was consistent with
the main results. We included trials from 1970 to 2018. New hypoglycemic drugs were not
assessed in the same medical context as old hypoglycemic drugs. The research of glycemic
equipoise between arms in the recent trials could interfere with the interpretation of the
results. Old hypoglycemic drugs have also been evaluated mostly in subjects with a shorter
duration of type 2 diabetes, while the complications occur after several years of hyperglycemia.
We limited our analysis on macroangiopathy. They are not the only complications of T2D
patients, but they are the main cause of death in this population. We planned to address micro-
vascular complications, but their reporting was not homogenous enough to allow the analysis.
We also limited our analysis at the therapeutic class level. Treatment effect heterogeneity
within classes has been described notably for glitazones and sulfonylureas, and our analysis
could hide specific molecular effects by averaging the drug class effect. Pooling rosiglitazone
and pioglitazone trials could have hidden some beneficial effect of pioglitazone [58] because of
the negative cardiovascular effects of rosiglitazone [59]. Moreover, the sulfonylureas were
mainly studied through the ADVANCE study [30], which compared a specific sulfonylurea
against active hypoglycemic drugs including other sulfonylureas. Unfortunetaly, available data
did not allow assessing the specific molecular effect. We planned to use the SUCRA values for
ranking the drugs, but it does not take into consideration the upper bound of the credible
interval. Thus it resulted for example in a better ranking of Metformin compared to SGLT-2
inhibitors for MACE, whereas metformin’s effect was not significant. Slight inconsistency has
been observed for metformin. This seems to be due to the direct comparison of metformin
against sulfonylureas in the SPREAD DIMCAD trial [38]. Moreover, some drug classes have
not been studied in certain populations (no DPP-4 inhibitors or GLP-1 agonist trials in the
‘low CV risk’ subgroup), which limit the assessment of the transitivity assumption. Sensitivity
analysis did not allow identification of glycemic contrast during the trials as potential effect
modifiers. Previous meta-regression looking for an association between HbA1c decrease
and clinical events showed conflicting results [60, 61]. Unfortunately, the reporting of the gly-
cemic exposure in included trials was not well standardized, and the available data were
heterogeneous.

Implications

SGLT-2 inhibitors and GLP-1 receptor agonists are recommanded for patients with clinical car-
diovascular disease [7]. It has been recently suggested that SGLT-2 inhibitors could also be help-
ful in primary CV prevention [10], but metformin remained the first-line therapy for glucose
lowering medication in the last international guidelines [7]. Our study challenges the suggested
benefit of SGLT-2 inhibitors in primary cardiovascular prevention, as we did not observe signif-
icant difference on overall mortality or MACE between SGLT-2 inhibitors, metformin and con-
trol. Thus, our results showed the need for direct comparisons of SGLT-2 inhibitors, GLP-1
agonists and metformin, notably in primary cardiovascular prevention. Moreover, integration
in network meta-analysis of supplementary active direct comparisons as the CAROLINA trial
[62] will be helpful to better compare the hypoglycemic drugs. Integration of other comparison
of SGLT-2 inhibitors to placebo as the VERTIS CV trials [63] will also be helpful, as the effect of
SGLT-2 on mortality is mostly driven by the EMPAREG-OUTCOME, and as the decrease in
overall mortality with GLP-1 agonist was no more significant with the HARMONY OUT-
COMES trial. Likewise, further meta-analyses are needed for assessing the relative effect of glu-
cose lowering drugs on microangiopathy, and for assessing the heterogeneity in the treatment
effect within therapeutic classes. Finally, it would be interesting to model the cost efficiency of
hypoglycemic drugs with those treatment effect estimations.
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Conclusion

Hypoglycemic drugs are used to control glycaemia and reduce diabetic complications in tens
of millions of people worldwide. This study helps to summarize factual knowledge of those
therapeutic classes on major clinical outcomes. SGLT-2 inhibitors and GLP-1 receptor ago-
nists appear to have the most beneficial effects on MACE, especially in type 2 diabetic patients
with previous cardiovascular diseases.
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Supporting information 
 
Some supporting information are provided in the Appendix 2.  
 
Risk of bias assessment (A: summary, B: details). 
 

 
 
 
 
A. Summary of risk of bias assessment. 
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B.  Risk of bias assessment, for each included 

study  

(L: low risk of bias, U: unclear, H: high.  

1: Sequence generation, 2: Allocation 

concealment, 3: Blinding of participants, 4: Blind-

ing of outcome, 5: Attrition bias, 6: Reporting 

bias, 7: Other risk of bias) 
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Network figures and forest plots of direct comparisons for Major Adverse Cardiovascular Events  
 
Only the network figure and the forest plots for the Major Adverse Cardiovascular Events (MACEs) 

are displayed here. The network figure and the forest plots for the other primary outcomes are 

provided in Appendix 2. 

 
Network figure 
 
Each node represents a drug class, each edge a direct comparison. This network included 27 

randomized trials. On 168 068 subjects, 17 188 presented the outcome.  
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Forest plots of the Major Adverse Cardiovascular Events (MACE) for each direct comparison 
 
The diamond in the forest plot stands for the network estimation of the TE (OR and its 95%CI) 

(‘Network’s line); the squares stand for i) the TE estimate in the corresponding trial (on line with 

its name), and ii) the TE estimate using direct meta-analysis with both fixed and random model 

(‘Fixed’ and ‘Random’, respectively). ‘W’ stands for the weight of each trial in the corresponding 

direct meta-analysis.  

 
DPP-4_I VERSUS CONTROL 

 
GLITAZONES VERSUS CONTROL 
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GLP-1_A VERSUS CONTROL 

 
INSULIN VERSUS CONTROL 
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METFORMIN VERSUS CONTROL 

 
SGLT-2_I VERSUS CONTROL 
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SULFONYLUREA VERSUS CONTROL 

 
SULFONYLUREA VERSUS GLITAZONES 
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Probability curves of each drug classes to be ranked best treatment (rank = 1) to the last effective 
(rank = 8), for major adverse cardiovascular events (MACE).  
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First part – Second section. Benefit—risk balance assessment of SGLT2 inhibitors 
 
 

 

 

The following has been submitted for a fast response to the British Medical Journal (BMJ). The 

BMJ’s fast response are “electronic comments to the editor”. The editor did not select it for letter 

article: the following has not been published in the BMJ. However, it does contribute to illustrate 

the work achieved during this thesis.  

It can be found here: https://www.bmj.com/content/363/bmj.k4365/rr-1  
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This work is NOT a published article in the British Medical Journal. This work is an “electronic 

comments to the editor” regarding the following article: 

“Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register 

based cohort study”, BMJ 2018; 363 doi: https://doi.org/10.1136/bmj.k4365 [149]. 
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Supporting information 
 
Forest plot of the effect of SGLT2 inhibitors on risk of amputation (up) and of diabetic 
ketoacidosis (down).  
 
The diamonds in the forest plot stand for the estimate (OR and its 95%CI) using direct meta-

analysis with both fixed and random model; the squares stand for the TE estimate in the 

corresponding trial. 

 
 
 
Comparison of the absolute difference of safety and efficacy events, with SGLT2 inhibitors 
compared to placebo. 
  

Absolute difference in rate per 1000 patients-year  
Amputation Diabetic ketoacidosis MACE Hospitalization for heart failure 

CANVAS Program 2,9* 0,3 -4,6* -3,2* 
DECLARE TIMI 58 0,3 0,4* -1,6 -2,3* 

EMPAREG OUTCOME 0,1 0,1 -6,5* -5,1* 
 

Table. Absolute difference in rate per 1000 patients-year of safety and efficacy outcomes  
(MACE: major adverse cardiovascular events, * p<0.05) 

 
  

Risk of diabetic ketoacidosis

Risk of amputation

Study

Fixed effect model
Random effects model
Heterogeneity: I2 = 77%, τ2 = 0.081, p = 0.01

CANVAS.P
DECLARE.TIMI
EMPAREG

Events

132
123
 88

Total

19056

 5795
 8574
 4687

Experimental
Events

 53
113
 43

Total

15249

 4347
 8569
 2333

Control

0.5 1 2

Risk Ratio RR

1.26
1.27

1.87
1.09
1.02

95%−CI

[1.06; 1.50]
[0.88; 1.84]

[1.36; 2.56]
[0.84; 1.40]
[0.71; 1.46]

(fixed)

100.0%
−−

30.1%
46.8%
23.1%

Weight
(random)

−−
100.0%

33.0%
36.2%
30.8%

Weight

Study

Fixed effect model
Random effects model
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SECOND PART.  

ASSESSMENT OF THE BLOOD PRESSURE AS A SURROGATE  

 
 

 
 
 
 
In the second part, we used a meta-regression approach of aggregates data of randomized clinical 

trials for characterizing the relationship between the reduction of blood pressure and the 

cardiovascular risk, with antihypertensive treatment, in patients with type 2 diabetes. This could 

help assessing surrogate endpoint for personalizing the treatment effect estimation.  
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Introduction

High blood pressure (BP) is a major cardiovascular (CV) risk
factor and, in the general population, the CV benefits of

antihypertensive drugs may be partially explained by the different
BP values achieved [1]. Indeed, BP decrease has been proposed as a
surrogate endpoint of risk of stroke [2]. When BP is reduced, it
appears to influence mainly the risk of stroke compared with other
CV outcomes [3]. However, even for stroke, systolic BP (SBP)
reduction explains only half of the risk reduction in the general
population [4]. In the past, based on a subgroup analysis of the
Hypertension Optimal Treatment (HOT) trial in diabetes patients,
more stringent BP targets were recommended for patients with
type 2 diabetes (T2D) compared with the general population
[5,6]. However, as this BP target for the diabetes population
became a subject of debate [7–9], eventually the same BP target as
for the general population was proposed [10,11]. Yet, since those
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Aim. – Recent US recommendations indicate a target blood pressure (BP) of 130/80 mmHg for patients
with type 2 diabetes (T2D). Our aim was to characterize the association between risk of cardiovascular
events and differences in BP decreases in randomized trials of a T2D population.
Methods. – A systematic search was made for randomized clinical trials assessing the effects of
antihypertensive treatments in T2D patients on mortality, and fatal and non-fatal cardiovascular events,
using a meta-regression technique to explore the influence of BP decreases on treatment effects.
Results. – A total of 88,503 patients from 44 randomized trials were included. There was no significant
association between BP decreases and risk of all-cause or cardiovascular mortality, cardiovascular events
or myocardial infarction. However, stroke risk was influenced by BP decreases: compared with no
reduction, a 10-mmHg reduction in systolic BP was associated with a relative odds ratio (OR) decrease of
33% (OR: 0.67, 95% CI: 0.54–0.82), and a 5-mmHg diastolic BP reduction was associated with a relative OR
decrease of 38% (OR: 0.62, 95% CI: 0.50–0.76). Restricting the analysis to double-blind studies did not
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Conclusion. – A reduction in BP lowers the risk of stroke, but does not appear to affect the risk of other
cardiovascular events in a T2D population.
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recommendations were made, meta-analyses have shown some
discrepancies among BP targets for CV prevention in T2D patients.
Bangalore et al. [12] described an association between more
intensive treatment targeting an SBP of 135 mmHg and a decrease
in macrovascular events, while Reboldi et al. [13] confirmed that
BP reduction appeared to lower the risk of stroke, but not the risk of
myocardial infarction. A meta-analysis by Emdin et al. [14]
suggested a decrease in risk of mortality for every 10-mmHg
SBP reduction, whereas Brunström and Carlberg [15] reported an
increased risk of CV death, but no benefit when baseline SBP
was < 140 mmHg. In the general population, it has been suggested
that lowering SBP to < 130 mmHg might be beneficial [16,17], but
other meta-analyses found conflicting results [18]. Recently, the
American College of Cardiology (ACC) and American Heart
Association (AHA) recommended reducing BP to < 130/80 mmHg
for patients with T2D [19].

The meta-regression approach investigates whether particular
covariates (potential effect modifiers) might explain some of the
differences in treatment effects observed across multiple studies
[20,21], and explores whether any of the considered outcomes are
influenced by BP changes [22]. In T2D populations, recent studies
have focused on the influence of either baseline BP or achieved BP
in intensive-treatment groups [12,15], or used a standardized
approach (log of the risk of outcome multiplied by [10 mmHg/
systolic BP reduction]) [14] which could bias the results [23]. In a
previous study of differences in baseline and achieved BP in active-
treatment vs control groups in T2D populations, outcomes were
limited to myocardial infarction and stroke [13]. Our present study
updates that exploration with more recent trials, and extends the
analysis to overall and CV mortality as well as CV events.

Thus, the purpose of this study was to characterize the
association between intensity of BP reduction and magnitude of
clinical benefit on several CV events in T2D patients.

Material and methods

As no protocol has been previously published, the present study
is reported according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA; Appendix A.1;
see supplementary materials associated with this article online).

Eligibility criteria

Only studies fulfilling the inclusion criteria described below,
following the PICO (population/problem, intervention/exposure,
comparison, outcome) framework, were eligible for inclusion in
our analysis.

Participants
Only patients aged ! 18 years with T2D were included. The

diagnosis of T2D had to have been established using either
standard criteria or, if necessary, the author’s definition. Studies
that included patients on dialysis, patients with solid organ
transplants, pregnant women, patients with impaired glucose
tolerance or impaired fasting glucose, or the metabolic syndrome
only, were excluded.

Interventions
Eligible interventions were any antihypertensive drugs, such as

beta-blockers, angiotensin-converting enzyme (ACE) inhibitors,
sartans (angiotensin receptor blockers), calcium-channel blockers,
diuretics and intensive antihypertensive treatments. In trials
combining the intervention of interest with another intervention,
only data for the intervention of interest were included if the
subgroup met our inclusion criteria. For example, in the Action in

Diabetes and Vascular Disease: Preterax and Diamicron Modified-
Release Controlled Evaluation (ADVANCE) trial, only data from the
antihypertensive groups were considered and, in the Antihyper-
tensive and Lipid-Lowering Treatment to Prevent Heart Attack
Trial (ALLHAT), only data from the diabetes subgroup were
included.

Comparisons
All comparisons against a control group (placebo, active

treatment, usual care) were included.

Outcomes
Trials designed to evaluate CV events as either their primary or

secondary endpoints were included, whereas trials reporting CV
events for safety purposes only were not. The considered outcomes
were: total deaths; CV deaths; CV events (CVEs); all myocardial
infarctions (MIs; fatal, non-fatal); all strokes (fatal, non-fatal);
major microvascular events; and major combined macrovascular
and microvascular events.

Study design
Only parallel-group randomized clinical trials (RCTs) were

included.

Outcomes of meta-analysis

Outcomes of this analysis were total deaths, CV deaths, CVEs,
all MIs (fatal, non-fatal), all strokes (fatal, non-fatal), major
microvascular events, and major combined macrovascular and
microvascular events.

Information sources and search strategy

Published trials were identified through a computerized search
of: (i) Medline (PubMed, www.pubmed.org, from inception to
1 March 2016); (ii) Embase (www.embase.com); and (iii) the
Cochrane Central Register of Controlled Trials (CENTRAL). Our
search terms comprised disease terms, a study design filter and
drug terms. The study design filters were designed to identify
placebo-controlled or head-to-head RCTs using a combination of
index and free-text terms. The PubMed database was searched
using a specific sensitive strategy (as described by Haynes et al.
[24]), including type of ‘‘randomized clinical trial’’ and MeSH
terms (Appendix A.2; see supplementary materials associated
with this article online). Unpublished trials were searched for in:
(i) abstracts and presentations from appropriate conferences
(using the ISI Web of Knowledge database that indexes conference
proceedings); (ii) reference lists from studies, reviews and meta-
analyses obtained from the PubMed search; and (iii) the Internet,
including websites dedicated to the dissemination of results from
clinical trials (Medscape) and the US Food and Drug Administra-
tion (FDA), and those maintained by drug manufacturers,
including product information sheets. Also included were trials
published only in abstract form to limit the influence of
potentially relevant trials unpublished when completed. When
an abstract from proceedings and a full paper referred to the same
trial, only the full article was included in our analysis. When two
or more papers used the same data, only the most complete report
was used.

Study selection, data collection and risk of bias assessment in
individual studies

Study selection was performed by three independent reviewers
(M.C., G.G., H.H.L.), among whom a consensus had to be reached in
cases of disagreement. The study flow diagram (Appendix A.3; see
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Table 1
Characteristics of the trials included in the meta-regression analysis.

Trial Blinding Sample size (N) Treatment 1 Treatment 2

ABCD 2V, 2006 Assessmenta 66 vs 63 Intensive DBP control
(< 75 mmHg) with valsartan

Moderate BP control (DBP 80–90 mmHg,
SBP < 140 mmHg), placebo

ABCD Hypertension, 1998 Double 235 vs 235 Nisoldipine Enalapril
ABCD Normotensives, 1993 Open 237 vs 243 Intensive (10 mmHg below

baseline) DBP control
Moderate (80–89 mmHg) DBP control

ACCOMPLISH Double 1432 vs 1410 Benazepril + amlodipine Benazepril + hydrochlorothiazide
ACCORD BP, 2010 Open 2363 vs 2371 Intensive Standard
ACTION Double 565 vs 545 Nifedipine Placebo
ADVANCE Double 5569 vs 5571 Low-dose fixed combination of

perindopril + indapamide
Placebo

ALLHAT (amlodipine vs chlor) Double 2664 vs 4498 Amlodipine Chlorthalidone
ALLHAT (lisi vs chlor) Double 2431 vs 4498 Lisinopril Chlorthalidone

Trial Blinding Sample size (N) Treatment 1 Treatment 2

ASCOT (subgroup), 2008 Double 2565 vs 2572 Amlodipine + added perindopril Atenolol + added thiazide
CAPP Assessmenta 309 vs 263 Captopril Thiazide diuretic or beta-blocker
Chan, 1992 Double 50 vs 52 Enalapril Nifedipine
DETAIL Double 120 vs 130 Telmisartan Enalapril
DIABHYCAR Double 2443 vs 2469 Ramipril Placebo
DREAM Open 2623 vs 2646 Ramipril Placebo
EUROPA (PERSUADE substudy) Double 721 vs 781 Perindopril Placebo
FACET Open 191 vs 189 Amlodipine Fosinopril
Fogari et al., 2002 Open 103 vs 104 Amlodipine Amlodipine + fosinopril
Fogari et al., 2002 Open 102 vs 104 Fosinopril Amlodipine + fosinopril
GEMINI Double 498 vs 737 Carvedilol Metoprolol
GUARD, 2008 Double 166 vs 166 Benazepril + amlodipine Benazepril + hydrochlorothiazide

Trial Blinding Sample size (N) Treatment 1 Treatment 2

HOPE Double 1808 vs 1759 Ramipril Placebo
HOT Open 499 vs 500 Target DBP ! 80 mmHg Target DBP ! 90 mmHg
IDNT (irbesartan vs amlodipine) Double 579 vs 567 Irbesartan Amlodipine
IDNT amlodipine Double 567 vs 569 Amlodipine Placebo
IDNT irbesartan Double 579 vs 569 Irbesartan Placebo
INSIGHT Double 649 vs 653 Nifedipine Co-amilozide hydrochlorothiazide + amiloride
INVEST (subgroup), 2003 Open 3169 vs 3231 Calcium antagonist strategy

(verapamil sustained-release)
Non-calcium antagonist strategy (atenolol)

IPDM Double 195 vs 201 Irbesartan Placebo
JMIC-B Open 199 vs 173 Nifedipine ACEI
LIFE Double 586 vs 609 Losartan Atenolol
MERIT-HF Double 495 vs 490 Metoprolol Placebo

Trial Blinding Sample size (N) Treatment 1 Treatment 2

NAGOYA HEART, 2011 Open 575 vs 575 BP-lowering based on valsartan BP-lowering based on amlodipine
NORDIL Open 351 vs 376 Diltiazem Thiazide diuretic or beta-blocker

at step 1
ORIENT Double 288; 289 Olmesartan Placebo
PROFESS Double 2840 vs 2903 Telmisartan Placebo
PROGRESS (diabetic subgroup) Double 393 vs 368 Perindopril Placebo
RENAAL Double 751 vs 762 Losartan Placebo
ROADMAP Double 2232; 2215 Olmesartan Placebo
SANDS Open 252 vs 247 Aggressive SBP control ! 115 mmHg

(DBP ! 75 mmHg)
Standard SBP control ! 130 mmHg
(DBP ! 85 mmHg)

SCAT Double 25 vs 25 Enalapril Placebo
SCOPE (diabetic subgroup),

2003
Double 313 vs 284 Candesartan Control

SHEP Double 283 vs 300 Chlorthalidone + atenolol
or reserpine

Placebo

Trial Blinding Sample size (N) Treatment 1 Treatment 2

SOLVD Double 646 vs 664 Enalapril Placebo
STOP-2 (ACEI vs CCB) (diabetic subgroup), 2000 Assessmenta 235 vs 231 ACEI Calcium antagonists
STOP-2 ACEI (diabetic subgroup), 2000 Assessmenta 235 vs 253 ACEI Conventional (diuretic or beta-blocker)
STOP-2 CCB (diabetic subgroup), 2000 Assessmenta 231 vs 253 Calcium antagonists Conventional (diuretic or beta-blocker)
Syst-Eur (diabetic subgroup), 1999 Double 252 vs 240 Calcium-channel blocker Placebo
UKPDS 38 Open 758 vs 390 Target < 150/85 mmHg

(captopril or atenolol
as main treatment)

Target < 180/105 mmHg (avoiding
ACEIs or beta-blockers)

UKPDS 39 Open 400 vs 358 Captopril Atenolol

DBP/SBP: diastolic/systolic blood pressure; BP: blood pressure; ACEI: angiotensin-converting enzyme inhibitor.
a Open design with blinded assessment of outcomes; number of subjects in each group the same as in treatment description.
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supplementary materials associated with this article online) shows
that detailed inclusion criteria, treatment type and duration of
follow-up were extracted (as available) from each individual study.
The blinding design of the study was also evaluated.

Statistical methods

Our analysis used weighted meta-regression of the logarithm
(log) of the odds ratio (OR) against differences in BP reduction,
defined as the difference in BP change (expressed as mmHg) during
the trial (final value minus baseline value) between active-
treatment and control (active control or placebo, depending on
the study) groups. If not available, the difference in final BP values
was used.

Also used were the restricted maximum likelihood (REML)
estimator [25], weighted log OR and an additive between-study
variance component (e2) to take into account residual heteroge-
neity, such that yi = log(ORi) = N(a + bxi, si + e2), where si is the
variance of the log OR within trial i, e2 is the between-study
variance, b is the slope and represents change in the log OR of the
considered endpoint per each 1-unit change in BP reduction xi, and
a is the log OR at a BP reduction of zero (intercept). The weight of
the trials was defined as vi = 1/si.

EASYMA [26] with R [27] software was used in our analyses. For
each CV outcome, the analysis was run twice [for SBP and for
diastolic BP (DBP) values]. Sensitivity analyses restricted to
double-blind studies only were also conducted. No correction
for multiple testing was applied.

Risk of publication bias

Funnel plots were used to assess the risk of publication bias [28].

Results

A total of 44 RCTs, involving a total of 88,503 patients, were
included in our analysis. ACE inhibitors were used as either first or
second line treatment in 20 arms, calcium-channel blockers in
16 arms, sartans in 12, beta-blockers in 12 and diuretics in 11. Non-
specific intensive strategies were also included (four trials). The
average study sample size was 1948 patients (range: 50–11,140), and
the first study was published in 1992. Among our RCTs, 28 were
double-blind, 13 were unblended (open), and three were open, but
blinded when assessing the outcome (not taken into account in the
sensitivity analysis). Three trials were unpublished. Table 1
summarizes the main characteristics of the included trials.

Meta-regression showed a significant relationship between SBP
reduction and the log(OR) of stroke, but not for the other outcomes
(total mortality, CV mortality, CVEs and MIs). Equations and P
values of regression are summarized in Table 2. The effect of SBP
reduction on the log(OR) of those outcomes is illustrated in
Fig. 1. The significant (P = 0.01) relationship between risk of
stroke and SBP reduction was log(OR) = ! 0.0192 + (0.0386 " [SBP

reduction]). Compared with no BP reduction, every 10-mmHg SBP
reduction was associated with a relative 33% decrease in risk of
stroke [OR: 0.67, 95% confidence interval (CI): 0.54–0.82].

Meta-regression also revealed a significant relationship between
DBP and the log(OR) of stroke, but not for the other outcomes (total
mortality, CV mortality, CVEs, MIs). Equations and P values of
regression are summarized in Table 2. The effect of DBP reduction
on the log(OR) of those outcomes is illustrated in Fig. 2. The
significant (P = 0.001) relationship between risk of stroke and DBP
reduction was log(OR) = ! 0.0013 + (0.0969 " [DBP reduction]).
Compared with no BP reduction, every 5-mmHg reduction in
DBP was associated with a relative 38% decrease in risk of stroke
(OR: 0.62, 95% CI: 0.50–0.76).

Regarding microvascular outcomes, their reporting in the
eligible studies did not allow for meta-regression analysis to be
conducted. Sensitivity analyses were restricted to double-blind
studies and so included only 28 trials. The relationship between
DBP reduction and the log(OR) of stroke remained significant
(P = 0.04) with no correction for multiple testing (Appendix A.4;
see supplementary materials associated with this article online).
Funnel plots showed no evidence of potential publication biases
(Appendix A.5; see supplementary materials associated with this
article online).

Discussion

Decreases in BP do not appear to influence the risk of all-cause
or CV mortality, CVEs or MIs. Our present results suggest, however,
that lowering BP does affect the risk of stroke. This association was
observed with both SBP and DBP reductions, but persisted on
sensitivity analyses restricted to double-blind RCTs for DBP only. In
fact, our findings confirm the results of Reboldi et al. [13], albeit
extended to total and CV deaths, and CVEs. In a T2D patient
population, Bangalore et al. [12] suggested a linear relationship
between stroke risk and achieved SBP in the intensive-treatment
group, while Brunström et al. [15] suggested an increased risk of CV
mortality with baseline SBP < 140 mmHg. Emdin et al. [14]
suggested an association between lowering SBP and decreases
in mortality, CV disease, coronary heart disease and stroke.
However, for their results, they standardized risk according to
BP-lowering (log of risk was multiplied by [10 mmHg/SBP
reduction]) [14], which may have overestimated the overall effect,
as recently described [23]. For this reason, Brunström et al. [15]
proposed that, before using such a standardized approach, a linear
relationship within trials between different risk factors (differen-
ces in BP evolution) and treatment effects on the outcome of
interest should be determined first. Our study suggested that such
a relationship was observed only for risk of stroke, and not for risk
of mortality or risk of CVEs.

Our study has some limitations. Open clinical trials were
included, resulting in a risk of bias. Unfortunately, open trials of
diabetes were common during the last few decades. Also,
our analysis focused on severe clinical outcomes that were

Table 2
Summary of meta-regression of log(OR) of outcomes for systolic (SBP) and diastolic blood pressure (DBP) reductions.

Outcome Comparisons (N) Equation P

SBP DBP SBP DBP SBP DBP

Total deaths 26 25 ! 0.142 + (! 0.0094)* X ! 0.1408 + (! 0.0205)* X 0.423 0.437
CV deaths 17 16 ! 0.1118 + (! 0.0094)* X ! 0.158 + (! 0.0416)* X 0.645 0.327
CV events 21 21 ! 0.0839 + (0.0109)* X ! 0.0736 + (0.0293)* X 0.372 0.249
MI 25 24 ! 0.1101 + (! 0.0023)* X ! 0.1392 + (! 0.0175)* X 0.887 0.609
Stroke 27 26 ! 0.0192 + (0.0386)* X ! 0.0013 + (0.0969)* X 0.01* 0.001*

In equations, ‘‘X’’ stands for difference in blood pressure reduction in mmHg; CV: cardiovascular; MI: myocardial infarction. *Nominal P < 0.05.
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mostly CV-related and not the only complications found in T2D
patients, but nonetheless representative of the main causes of
death in such a population. In addition, it was not possible to
explore the risk of haemorrhagic vs ischaemic stroke or CV risk at
baseline, and microvascular complications were not explored due
to a lack of data. Furthermore, the definition of outcomes may

have differed across the included studies, with some studies
reporting the number of non-fatal strokes and others the number
of fatal strokes. Moreover, exact details concerning BP evolution
across different treatment groups were not always available,
leading to a smaller number of analyzed studies. Likewise, it was
not possible to take into account the heterogeneity of BP

Fig. 2. Regression plot of the odds ratio (OR; log scale) for each outcome against differences in diastolic blood pressure (DBP). Each black point represents a comparison (size
varies according to weight); the solid line represents the meta-regression line, the dashed line its 95% confidence interval, and the dotted line the null effect on outcome
(OR = 1). TotD: total deaths; CVD: cardiovascular deaths; CVE: cardiovascular events; MI: myocardial infarction.

Fig. 1. Regression plots of the odds ratio (OR; log scale) for each outcome against differences in systolic blood pressure (SBP). Each black point represents a comparison (size
varies according to weight); the solid line represents the meta-regression line, the dashed line its 95% confidence interval, and the dotted line the null effect on outcome
(OR = 1). TotD: total deaths; CVD: cardiovascular deaths; CVE: cardiovascular events; MI: myocardial infarction.
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measurements. Our study could only analyze aggregate data and
could not explore individual patients’ data. Thus, the possibility
that the association between the OR of stroke and BP decreases
might be due to an ecological bias cannot be excluded. Also, meta-
regression approaches are not protected against confusion bias,
and meta-analyses at the individual data level would be helpful in
future studies. On the other hand, false-negative results for the
other outcomes due to a lack of power also cannot be excluded.
Finally, it has been observed that BP variability itself could be a
predictor of risk of stroke [29].

Recent recommendations of the ACC and AHA [19] have
revealed some disagreement with the recent Position Statement of
the American Diabetes Association [30] regarding BP targets in
patients with T2D. Indeed, our present results and the current
literature appear to suggest heterogeneity of organ sensitivity to
BP decreases. This observation could lead to BP targets being
adapted according to the individual patient’s characteristics with a
personalized medicine perspective. For example, the association
between stroke and BP appears to be stronger in Asian populations,
leading Park et al. [31] to propose a specific BP target of 130/
80 mmHg in Asians.

Conclusion

Our present study confirms the potential association between
BP-lowering and risk of stroke, but not for other CV events in a T2D
population. Nevertheless, our findings contribute towards clarify-
ing the effect of BP decreases in reducing CV risk in T2D patients,
and quantitative estimates of this association could lead to more
precise models of the public-health benefits of BP-lowering
treatments in such a patient population.

Ethics

Ethics approval and consent to participate: not applicable.
Consent for publication: not applicable.

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial or not-for-profit sectors.

Contribution

M.C. proposed the idea of the review, and made substantial
contributions to the conception and design of the protocol. M.C.,
G.G. and H.H.L. performed the study search and selection, and
contributed to the data acquisition and analyses. G.G. wrote the
article. M.C., H.H.L., F.G., T.B.-A., S.E., P.M., R.B. and B.K. have been
involved in revising the manuscript critically for important
intellectual content.

All authors read and approved the final manuscript.

Disclosure of interest

G.G. has received support for travel to scientific meetings from
Novo Nordisk and Eli Lilly.

H.H.L. was receiving a salary from Claude Bernard Lyon
1 University (scholarship of French Ministry of Higher Education
& Research) for her three-year PhD at the UMR 5558 CNRS.

M.C. has received consulting fees from Boehringer Ingelheim
and Sanofi, and speaker honoraria from Sanofi.

In the last five years, F.G. received fees for his institution from
Portola Pharmaceuticals for central reading of ultrasound records,
from Neurochlore for DSMB coordination, from Erytech Pharma for

modelling projects, and from RCTs and Steve Consultant for
exploring the French social security database.

P.M.(1) or his institution (2) has received honoraria (talks and/
or trials and/or consultancies) or support for travel to scientific
meetings(3) from Novo Nordisk1, MSD1, Amgen2, AMT/Chiesi2,
AstraZeneca/BMS2, Eli Lilly2, MSD2, Novo Nordisk2, Novartis2,
Olympus2, Pierre Fabre2, Regeneron2, Sanofi2, Servier2, AstraZe-
neca3, Boeringher Ingelheim3, BMS3, Janssen3, MSD3, Eli Lilly3
and Sanofi3.

The authors T.B.-A., S.E., R.B., B.K. declare that they have no
competing interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.diabet.2019.05.003.

References

[1] Staessen JA, Wang GJ, Thijs L. Cardiovascular protection and blood pressure
reduction: a meta-analysis. Lancet 2001;358:1305–15.

[2] Lassere MN, Johnson KR, Schiff M, Rees D. Is blood pressure reduction a valid
surrogate endpoint for stroke prevention? An analysis incorporating a sys-
tematic review of randomised controlled trials, a by-trial weighted errors-in-
variables regression, the surrogate threshold effect (STE) and the Biomarker-
Surrogacy (BioSurrogate) Evaluation Schema (BSES) BMC Med Res Methodol
2012;12:27.

[3] Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, et al. Blood
pressure, stroke, and coronary heart disease part 2, Short-term reductions in
blood pressure: overview of randomised drug trials in their epidemiological
context. Lancet 1990;335:827–38.

[4] Boissel JP, Gueyffier F, Boutitie F, Pocock S, Fagard R. Apparent effect on blood
pressure is only partly responsible for the risk reduction due to antihyperten-
sive treatments. Fundam Clin Pharmacol 2005;19:579–84.

[5] Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, et al. Primary
prevention of cardiovascular diseases in people with diabetes mellitus: a
scientific statement from the American Heart Association and the American
Diabetes Association. Circulation 2007;115:114–26.

[6] Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al.
2007 Guidelines for the management of arterial hypertension: the task force
for the management of arterial hypertension of the European Society of
Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hyper-
tens 2007;25:1105–87.

[7] Zanchetti A, Grassi G, Mancia G. When should antihypertensive drug treat-
ment be initiated and to what levels should systolic blood pressure be
lowered? A critical reappraisal. J Hypertens 2009;27:923–34.

[8] Mancia G. Effects of intensive blood pressure control in the management of
patients with type 2 diabetes mellitus in the Action to Control Cardiovascular
Risk in Diabetes (ACCORD) trial. Circulation 2010;122:847–9.

[9] Deedwania PC. Blood pressure control in diabetes mellitus: is lower always
better, and how low should it go? Circulation 2011;123:2776–8.

[10] Mancia G, Fagard G, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al.
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Supporting information 
 
Some supporting information are provided in the Appendix 3.  
 
Flow diagram of the systematic review 
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Assessment of publication bias: funnel plot.  
 
X-axis: treatment effect estimation log (OR), Y-axis: standard error of the estimation. Each point 

stand for a trial. SBP/DBP: systolic/diastolic blood pressure; TotD: total deaths; CVD: 

cardiovascular deaths; CVE: cardiovascular event; MI: myocardial infarction  
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Sensitivity analysis restricted to blinded trials only 
 
Summary of meta-regression of log(OR) of outcomes for systolic (SBP) and diastolic blood 

pressure (DBP) reductions 

 

 
 
In equations, ‘X’ stands for differences in blood pressure reduction in mmHg; 

CV: cardiovascular; MI: myocardial infarction 

 
 
 
 
  

 Comparisons (n) Equation p value 

Outcome SBP DBP SBP DBP SBP DBP 

Total deaths 19 18 -0.069 + (0.0135) * X -0.0736 + (0.0307) * X 0.529 0.539 

CV deaths 11 10 0.0265 + (0.0383) * X -0.1142 + (-0.0078) * X 0.409 0.943 

CV events 16 16 -0.0475 + (0.0279) * X -0.0618 + (0.0493) * X 0.133 0.152 

MI 18 17 0.0134 + (0.0335) * X -0.0501 + (0.0427) * X 0.248 0.51 

Stroke 19 18 -0.0331 + (0.0327) * X -0.0223 + (0.0805) * X 0.135 0.04 
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THIRD PART.  

TRIALS ASSESSING THERANOSTIC BIOMARKER: DESIGNS 

AND REPORTING. 

 
 
The third part is divided in two sections.  

 

In the first section, we developed a statistical comparison of two experimental designs for 

testing theranostic biomarker, in the case of a stratified randomization. This could help designing 

clinical trial for testing candidate effect modifier, which would allow to stratify the treatment effect 

estimation.  

 

In the second section, we report a meta-epidemiological survey assessing pharmacogenetic 

studies. We provided a critical appraisal of the reporting of pharmacogenetic associations in RCT 

and assess the quality of the methodology for claiming predictive effect of a genetic variant. This 

section presents the poster communication summarizing this survey. 
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Third part – First section. Comparison of two experimental designs for testing theranostic 

biomarkers 
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1 |  INTRODUCTION

Biomarkers can be useful in the personalized medicine per-
spective. Prognostic biomarkers help predict the course of 

a disease in a defined population, irrespective of treatment, 
whereas predictive biomarkers or effect modifiers are needed 
to predict the effect of a specific treatment.1 Such theranos-
tic biomarkers can help identifying responder patients before 
prescribing a drug. Randomized trials are the best setting 
to search for such identification, as they assess the treat-
ment effect with the lowest risk of bias compared to other 
designs. Indeed, the randomization process allows inferring 
causality for the treatment effect. Trials are often limited 
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Abstract
Pros and cons of crossover design are well known for estimating the treatment effect 
compared to parallel‐group design, but remain unclear for identifying and estimating 
an interaction between a potential biomarker and the treatment effect. Such ‘pre-
dictive’ biomarkers, or ‘effect modifiers’, help to predict the response to specific 
treatments. The purpose of this report was to better characterize the advantages and 
disadvantages of crossover versus parallel‐group design to identify predictive bio-
markers. The treatment effect, the effect of a binary biomarker and their interaction 
were modelled using a linear model. The intra‐subject correlation in the crossover 
design was taken into account through an intra‐class correlation coefficient. The vari-
ance‐covariance matrix of the parameters was derived and compared. For both trial 
designs, the variance of the parameter estimating an interaction between the treat-
ment effect and a potential predictive biomarker corresponds to the variance of the 
parameter estimating the treatment effect, multiplied by the inverse of the frequency 
of the candidate biomarker. The ratio of the variance of the interaction parameter in 
the crossover to the variance estimated in the parallel‐group design depends on the 
complement of the intra‐class correlation coefficient. When planning a clinical trial 
including a search for candidate biomarker, the frequency of the candidate biomarker 
helps design the sample size, and the intra‐subject correlation of the outcome should 
be taken into account for choosing between parallel‐group and crossover designs.
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to the demonstration of the existence of an effect, whereas 
target therapies have stimulated the conduct of trials specifi-
cally designed for testing such interaction. Different designs 
of randomized trials are available, with specific pros and 
cons.2 The crossover (CO) design can decrease the number 
of subjects needed for estimating the treatment effect, as al-
ready described.3-7 Indeed, the treatment effect is estimated 
through intra‐subject comparison in the CO design, usually 
leading to a decreased variability of the measure of the out-
come. However, the advantages of the CO design, compared 
to parallel‐group (PG) design, for identifying an interaction 
between the treatment effect and a potential predictive bio-
marker have not yet been documented, despite the increase 
in publications regarding the predictive biomarkers area.1,8-10 
Moreover, some literature studied the sample size determina-
tion for subgroup analysis for testing treatment interactions 
in the PG trial design,11,12 yet less is known regarding the 
CO design. The objective of this study was to examine the 
pros and cons of the CO trial compared to the PG trial, for 
assessing a binary predictive biomarker, in terms of number 
of subjects needed.

2 |  METHODS

The materials and methods section describes (a) the delimi-
tation of the study, (b) the linear model we used and (c) the 
design matrix in each design.

2.1 | Delimitations of the study
In order to compare the statistical power of each design, 
with the same point estimate of the parameter reflecting 
the interaction in both designs, we compared the variance 
of those estimates. Using a Wald test for testing the param-
eter of the interaction, the statistical power of each design 
is related to the variance of the estimation of the parameter 
of the interaction. We focused on a simple situation: a two 
arms PG trial and a two periods CO trial, with a 1:1 rand-
omization, and a well‐balanced frequency of the biomarker 
in both arms of the trial. The treatment effect and the bio-
marker effect were modelled with a linear regression. We 
analysed the variance‐covariance matrix of the regression 
parameter for each design, which allowed us to compare 
the variance of the estimate of the interaction parameter 
under each of the two designs, according to their respective 
samples.

2.2 | Linear model
In order to compare the two designs, for each subject ‘i’ re-
ceiving treatment ‘j’, we used the same model, including a 
continuous variable ‘y’ for the outcome assessing the effect 

of the tested treatment ‘t’ ignoring baseline measurement, a 
binary variable ‘b’ reflecting the presence (b = 1) or the ab-
sence (b = 0) of the potential biomarker:

i Є {1, …, N}, N: number of included subjects: NPG in the 
PG trial, NCO in the CO trial. In both designs, we restricted 
our work to the hypothesis of no drop‐out.

j Є {0, 1}, 0 for the control treatment, 1 for the tested 
treatment. It should be noted that, in the CO design, each sub-
ject receives both treatment, that is has one measure of y for 
j = 0 and one other measure of y for j = 1. On the other hand, 
in the PG trial, each subject receives only one treatment, that 
is has only one measure of y, with j = 0 or j = 1.

yij: outcome measure of the subject ‘i’ receiving treatment ‘j’,
β0: control treatment effect,
β1: difference between tested and control treatment effects,
β2: prognostic effect of the potential biomarker,
β3: predictive effect of the potential biomarker,
 u0i  ~  N (0, !2

0
), !2

0
 standing for the inter‐subject 

variability,
ɛij ~ N (0, !2

"
), !2

"
 standing for the intra‐subject variability, 

!2 = (!2
0
+!2

"
).

Table 1 synthesizes the cell mean model, using q the fre-
quency of b = 0, p the frequency of b = 1.

2.3 | Design matrix

2.3.1 | In the parallel‐group trial design
In the PG trial, the design matrix XPG (NPG, 4) is:

2.3.2 | In the crossover trial design
In the CO trial, the design matrix Xco includes a pair of row 
for each subject: one period with the tested treatment, one 
period with the control treatment. Considering that the treat-
ment sequence order is randomized, we limited our analysis 
to the hypothesis of the absence of period effect. Considering 
an ideal CO trial with an adapted washout period, we also 
restricted our work to the hypothesis of the absence of carry‐
over effect. Xco (2Nco, 4) is defined as:

(1)yij= !0+ !1tij+ !2bi+ !3tij×bi+
(
u0i+ ∈ij

)

XPG =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 b1 0

. . . .

. . . .

1 0 bNPG∕2 0

1 1 bNPG∕2+1 bNPG∕2+1

. . . .

. . . .

1 1 bNPG
bNPG

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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The study was conducted in accordance with the Basic & 
Clinical Pharmacology & Toxicology policy for experimen-
tal and clinical studies.13

3 |  RESULTS

The results section shows the variance‐covariance matrix of the 
coefficients in each design, the comparison of the variance of 
the estimation of the interaction parameter, an application to a 
special case of interest, the comparison of the statistical power.

3.1 | Variance‐covariance matrix of the 
coefficients
Details on the matrix calculation are available in Appendix A.

3.1.1 | In the parallel‐group design
In the PG trial, the variance‐covariance matrix of the fixed 
coefficients, V(β), estimated with the ordinary least squares 
method 14  is V (β)  =  σ2  (XPG

t XPG)−1. For the model pre-
sented in Equation (1) and using the previous definition of 
the design matrix XPG:

3.1.2 | In the crossover design
In the CO trial, we first need to define the variance‐covariance 
matrix of the outcome measure, Σ, for taking into account the 
intra‐subject correlation. Assuming that the variance of all 
responses is identical (!2 = (!2

0
+!2

"
)) and the within‐subject 

covariances are equal, with a pair of column for each subject, 
Σ (2 NCO, 2 NCO) is 6 :

‘ρ’ standing for the intra‐subject correlation in the CO 
design, defined as the intra‐class correlation coefficient 
! ="2

0
∕
(
"2

0
+"2

#

)
. Then, the variance‐covariance matrix of the 

fixed coefficients V(β) in the CO design, estimated with the 
generalized least squares method,13  is V (!) = (Xt

CO
!
−1 XCO)−1. 

Using the previous model defined in Equation (1) and the defi-
nition of the design matrix XCO:

3.2 | Comparison of the variance of the 
estimation of the interaction parameter
The variance of the fixed coefficients estimating the treat-
ment effect and of the fixed coefficients estimating the inter-
action in both trial designs is summarized here:

XCO =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 b1 0

1 b1 b1

. . . .

. . . .

1 0 bi 0

1 1 bi bi

. . . .

. . . .

1 0 bNCO
0

1 0 bNCO
bNCO

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

V(!)=2"2∕[NPG(1− p)]

⎡
⎢
⎢
⎢
⎢⎣

1 − 1 − 1 1

− 1 2 1 − 2

− 1 1 1∕p − 1∕p

1 − 2 − 1∕p 2/p

⎤
⎥
⎥
⎥
⎥⎦

Σ = σ2

1 ρ

0 ρ 1   

0   1 ρ
ρ 1 

V (!) = "2∕
[
NCO (1− p)

]
⎡
⎢
⎢
⎢
⎢⎣

1 (#− 1) − 1 (1− #)

(#− 1) 2(1− #) (1− #) − 2(1− #)

− 1 (1− #) 1∕p (#− 1)∕p

1− # − 2(1− #) (#− 1)∕p 2(1 - !)/p

⎤
⎥
⎥
⎥
⎥⎦

var(!1PG) = 4("2
0
+ "2

#
)∕

[
NPG (1− p)

]

var(!3PG) = 4("2
0
+ "2

#
)∕

[
NPG p (1 − p)

]

T A B L E  1  Cell mean model of the linear regression assessing the treatment effect and the potential predictive effect of a candidate biomarker 
(PG: parallel group, CO: crossover)

Treatment

PG design and first period of the CO Second period of the CO

Biomarker − Biomarker + Biomarker − Biomarker +
t = 0 yi,0 = β0

(qN/2)
yi,1 = β0 + β2
(pN/2)

yi,0 = β0
(qN/2)

yi,1 = β0 + β2
(pN/2)

t = 1 yi,0 = β0 + β1
(qN/2)

yi,1 = β0 + β1 + β2  + β3
(pN/2)

yi,0 = β0 + β1
(qN/2)

yi,1 = β0 + β1 + β2  + β3
(pN/2)

N: number of included subject, p: prevalence of the potential theranostic biomarker in the included population (+) (q = 1−p), t = 0: control group, t = 1: tested treatment group.
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In both study designs, the variance of the parameter es-
timating an interaction between the treatment effect and a 
potential predictive biomarker is the product of the variance 
of the parameter estimating the treatment effect, multiplied 
by the inverse of the frequency of the candidate biomarker. 
The variance of the estimation of the interaction in the two 
designs can be compared by calculating their ratio:

leading to:

The ratio of the variance of the interaction parameter in 
the CO to the variance estimated in the PG design depends 
on the complement of the intra‐class correlation coefficient, 
multiplied by the ratio of their respective sample sizes.

The ratio of the Wald statistic is:

The Wald statistic in the CO design can be expressed ac-
cording to the variance of the interaction parameter of the 
PG design:

3.3 | Application to the special case where 
NPG = 2Nco
In the PG trial,NPG∕2 subjects are exposed to the tested treat-
ment; in the CO trial, Nco are exposed to the tested treatment. 
We now declined the comparison in the special case where 
NPG = 2 Nco, in order to consider the same number of subjects 
exposed to the tested treatment in a trial. This also allows 
equating the number of measurements taken in the two de-
signs. In this case, the variances of β3  estimations in both 
designs are equal if (1 − ρ) = 1.

3.4 | Comparison of the statistical power
Considering the credible alternative hypothesis !∗

3
, specified for 

the power (P) calculation to detect the interaction in the PG 
(PPG) and in the CO (PCO) trials, PPG and PCO are defined by:

ϕ being the standard normal cumulative distribution func-
tion of an N (0, 1) distribution.

3.5 | Comparison of the sample size
The type 1 error rate, α, being fixed, the numbers of patients 
included in each design in order to reach the same statistical 
power ‘1−β’ are:

As !∗
3
 estimation is independent of the study design:

To summarize, for both trial designs, the variance of the 
parameter estimating an interaction between the treatment 
effect and a potential predictive biomarker corresponds to 
the variance of the parameter estimating the treatment effect, 
multiplied by the inverse of the frequency of the candidate 
biomarker. The ratio of the variance of the interaction param-
eter in the crossover to the variance estimated in the parallel‐
group design depends on the complement of the intra‐class 
correlation coefficient. For the same power when testing an 
interaction, the gain in terms of reduced needed sample size 
with the CO compared to the PG design depends on the com-
plement of the intra‐class correlation coefficient.

4 |  DISCUSSION

The discussion section summarizes the interesting findings 
and the limits of the study, and highlights some issues for 
further research.

The search for theranostic biomarkers will help the devel-
opment of the personalized medicine. However, such interac-
tions on the treatment effect are not easy to demonstrate; large 
sample sizes are often required. In the same way, the CO de-
sign could help assessing a treatment with less exposed sub-
jects in the experimental arm, and it could also help identify 

var(!1CO) = 2("2
0
+ "2

#
) (1−$)∕

[
NCO (1−p)

]

= 2"2
#
∕[NCO(1−p)]

var(!3CO) = 2("2
0
+ "2

#
) (1−$)∕

[
NCO p (1−p)

]

= 2"2
#
∕[NCO p(1−p)]

var(!3CO)∕var(!3PG) =

(2 "2
#
∕
[
NCOp (1 − p)

]
)∕

[
(4("2

0
+ "2

#
)∕

[
NPGp (1 − p)

]
)
]

var(!3CO)=var(!3PG)× (1 − ")×NPG∕
(
2 NCO

)

[
!2

3CO
∕var(!3co)

]
∕
[
!2

3PG
∕var(!3PG)

]

=
[
!2

3CO
∕2 "2

#
∕
[
NCO p (1 − p)

]]
∕
[
!2

3PG
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such theranostic biomarkers. We compared the variances of 
the interaction estimates according to the trial design; this 
led to quantifying the potential gain in statistical power (eg 
in terms of number of subjects needed) with the CO trial, 
compared to the PG trial. We showed how the variance of 
the parameter estimating an interaction depends on the vari-
ance of the parameter estimating the treatment effect, and 
the frequency of the candidate biomarker, in both designs. 
We showed that the frequency of the candidate biomarker 
impacts the variance of the interaction estimate similarly in 
both design. Thus, the gain in its estimation with the CO de-
sign depends on the intra‐subject correlation, as previously 
known for the treatment effect estimation.4  The estimation 
of the variance of the interaction effect in the CO design de-
creases compared to the PG design, as the intra‐class correla-
tion increases. In the special case where NPG = 2NCO, which 
corresponds to the same number of subjects exposed to the 
tested treatment, and/or the same number of measurements 
of the outcome, both trials are equivalent if the intra‐class 
correlation is null, but the CO design is more effective as 
the intra‐class correlation increases. Comparing the CO and 
the PG designs for estimating the treatment effect, Brown 
showed that the ratio of variance of the treatment effect es-
timation was the complement of the intra‐class correlation.4  
We completed those results by showing a similar impact of 
the intra‐class correlation on the estimation of the interaction.

Kenward and Jones reported an intra‐subject correlation 
typically between 0.5 and 0.9 in 15 crossover data sets.15 
Thus, around 5%‐25% of the sample size needed in a PG trial 
could be enough for identifying the same interaction in a CO 
design. Our results are consistent with previous analyses on 
the treatment effect estimation that did not compare both de-
signs regarding the predictive biomarker interaction.

There are, however, several limits to our study. Firstly, we 
restricted our analysis to a simple model, without considering 
baseline measurement of the outcome variable, which would 
increase the precision of the estimation in both designs.16  
Moreover, we did not take into account any carry‐over effect or 
any drop‐out rates. Carry‐over is a major concern of CO study, 
but does not exist in PG trial. Its impact on the treatment ef-
fect estimation has already been well studied.4  Its impact on 
the comparison of CO versus PG has already been described, 
for the treatment effect estimation.7  Naturally, the presence of 
a carry‐over effect would negatively impact the power of a CO 
study. However, our aim was to compare the theoretical proper-
ties of both designs themselves. Then, we needed to avoid mul-
tiple sources of difference between designs. For example, we 
defined the same linear model at the beginning of our analysis. 
Taking into account a carry‐over effect would have introduced 
a supplementary difference in the comparison. Thus, a differ-
ence in statistical power could have resulted from the properties 
of the designs and/or from the carry‐over effect. In a similar 
way, taking into account a drop‐out rate would have a more 

negative impact on the statistical power of the CO, as each sub-
ject is measured twice in this design. This has already been 
described for the estimation of the treatment effect.7  Again, 
we wanted to focus on the properties of both designs them-
selves and then needed to avoid other source of difference. Of 
course, those methodological choices limit the extrapolability 
of our results in real life. Then, further research is needed on 
this topic. We also restricted our work to the hypothesis of a 
well‐balanced frequency of the biomarker in both arms of the 
trial. Finally, our study can help when planning clinical trials, 
both for the estimation of the sample size for interaction testing 
and for the choice of the design between CO and PG. However, 
it should be kept in mind that the estimation of the statistical 
power would be a simple approximation, and could be less than 
expected, depending on the observed values of the drop‐out 
rate and the intra‐subject correlation in real clinical trials.

5 |  CONCLUSION

Clinical trials remain essential, as they allow to assess the 
treatment effect and to identify potential predictive biomark-
ers. In the personalized medicine perspective, for the con-
struction of individual prediction model, it is needed to know 
the properties of those estimators and the power of a clinical 
trial for identifying them. We showed the relationship be-
tween the intra‐subject correlations and the potential gain of 
the CO design for identifying such interaction. An a priori 
estimation of the frequency of the candidate biomarker and 
of the intra‐subject correlation is advisable for choosing the 
optimal experimental design.
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APPENDIX A
In the parallel‐group trial design:

In the crossover trial design, Σ−1 is defined as (see 
Piantadosi, Clinical Trials: A Methodologic Perspective, 
Wiley. 2005):
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Third part – Second section. Meta-epidemiology in pharmacogenetic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Quality assessment of  published pharmacogenetic association in randomized clinical trials 
 
This poster communication has been an e-Poster at the Drug Information Association (DIA) Euro-meeting, edition 2019. 
 

These last few years, research in personalized medicine increased as the
cost of genotyping decreased. Hence, the following of reporting
guidelines may enhance the quality and the harmonization of published
studies. Our aim was to describe the quality of the reporting in
published pharmacogenetics associations in randomized clinical trials.
This permits assessing the need for complementary specific reporting
guidelines.

We observed a low control of the alpha risk and frequent spin of conclusion. It can bias the
interpretation of the litterature. We also showed a lack of reporting of crucial items in
pharmacogenetics publications, despite the existing guidelines1. This limits the comparability of
studies and showed the need for specific reporting guidelines.

From October 2015 to October 2018, we systematically searched for
Randomized, Controlled, Pharmacogenetics Clinical Studies, reporting a
clinical outcome in Human, in PubMed. References were screened based
on Title/Abstract, then on the full text. The following flowchart shows the
results of the study selection.

38 Randomized Control Trials (RCT) were included. The sample sizes ranged from 22 to
3956. Medical area of the studies were:

I N T R O D U C T I O N

M E T H O D S

R E S U LT S

C O N C L U S I O N

Records identified

through PubMed

database searching

n=330

Records after

duplicates removed

n=289

Records screened on 

Title/Abstract

n=127

Records excluded n=162

Full-text articles 

assessed on full text

n=38

Studies included in 

qualitative synthesis

n=38

No control: n=7    

No Patient included: n=1

No gene interaction n=2

Not Randomized: n=15

No clinical outcome: n=25

Review/Meta-analysis: n=11

Protocol: n=2

No full text: n=26

Full-text articles excluded, with reasons

n=89

We extracted the data for several items of
interest and provided a critical appraisal
regarding the design of the study, the
management of multiple testing the
presence of a spin of conclusion and
several items of the Strengthening the
Reporting of Genetic Association studies
(STREGA) guidelines1.

QUALITY ASSESSMENT OF PUBLISHED PHARMACOGENETIC 
ASSOCIATION IN RANDOMIZED CLINICAL TRIALS, 

A SYSTEMATIC REVIEW

The	following table	summarizes the	reporting of	the	studies and	our critical appraisal.

Cardiovascular system

Oncology

Addiction Neurology

Immune modulation/

internal medicine

Rhumatology

Nephrology

Infectiology

Psychiatry

Critical	Appraisal	of	the	reviewers Clearly reported Unclear or	not	
reported

DESIGN

Type	of	biomarker	study	design

Strategy design																									 26,3% 100,0% 0,0%
Interaction	design																						 0,0% 0,0% 0,0%
Controlled sub-group	analysis 50,0% 0,0% 100,0%
Nested	cohort	in	Clinical	Trial	 23,7% 11,1% 88,9%	

Post	Hoc	or	a	priori	hypothesis
A	priori																																							 60,5% 39,1% 60,9%
Post	hoc																																							 23,7% 66,7% 33,3%
Unclear 15,8% 0,0% 100,0%

Blinding

Double	Blind 42,1% 100,0% 0,0%
Single	Blind																										 15,8% 100,0% 0,0%
Open	Label	 15,8% 100,0% 0,0%
Unclear 26,3% 0,0% 100,0%

STATISTICS
Risk	α	managment Only	23,7%	controlled	the	risk	α 55,3% 44,7%
GENETICS (STREGA Recommandations)

Statement	of	the	number	of	report
First	report																												 73,7% 39,3% 60,7%
Replication study 2,6% 100,0% 0,0%
Unclear 23,7% 0,0% 100,0%

Hardy	Weinberg	equilibrium On	the	22 studies	considering	the	HWE,	
only	5 studies	reported	the	method	used 57,9% 42,1%

Genotyping method
7,9% assessed	one	genetic	variant	
89,5% assessed	several	genetic	variant
2,6%	assessed	the	whole	genom analysis

84,2% 15,8%

SPIN OF CONCLUSION 76,3%

J.Quéméneur,	S.Guernouche,	N.Khalfallah,	G.	Grenet
Department	of	Pharmacotoxicology,	Hospices	Civils de	Lyon, University of	Lyon,	FRANCE

1.	PLoS Med.	2009;6(2):e22.	PMID:	19192942



DISCUSSION  

 
Mean treatment benefit—risk balance estimation  

 
 

Need for comparisons of hypoglycemic drugs  
 

The first section of the first part of this thesis highlighted the need for direct comparisons 

of hypoglycemic drugs. Indeed, if the network meta-analysis approach helped to compare the DPP4 

inhibitors to GLP1 receptor agonist and SGLT2 inhibitors, more statistical power is likely needed 

for assessing metformin to GLP1 agonist receptor and SGLT2 inhibitors. Moreover, GLP1 receptor 

agonists and SGLT2 inhibitors have been mainly tested in secondary CV prevention, but metformin 

in primary CV prevention. This become of a special interest since the last European guidelines, 

which challenge the first line therapy position of the metformin in particular population [111]. 

Likewise, only one CVOT compared an ‘old’ hypoglycemic drug, a sulfonylurea, to a ‘new’ one, 

a DPP4 inhibitor [150]. Unfortunately, its result was not available at the time of our study. It should 

also be noted that no results of the assessment of the alpha glucosidase inhibitor and the glinides 

on major cardiovascular events have been found to be available. Finally, since the first submission 

of the manuscript of our meta-analysis to PLOS ONE, four CVOT studies [150-153] have been 

published. Implementing living cumulative meta-analysis would be helpful for providing up to date 

synthesis of the evidence [154].  

 

Challenges in the mean benefit—risk balance estimation 
 

High level of evidence is needed when assessing efficacy. The level of proof regarding 

safety should be adapted as well. The pioglitazone was withdrawal from the French market, after 

a safety signal regarding a potential to increase the risk of bladder cancer [155]. A few years after, 

the safety signal seems not to be truly confirmed, and complementary arguments for its benefits 

have been observed [156]. Thus, some authors are calling for a come-back of pioglitazone, taking 

into account its several benefits and risks [157].  
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In the same way, a safety alert has been notified regarding potential pancreatic adverse 

events of GLP1 receptor agonists [158]. However, a recent meta-analysis of the powerful 

randomized CVOT did not observed such harm; and did confirm its CV benefits [90]. Moreover, 

patients with T2D have a higher spontaneous risk of pancreatitis, compared to the general 

population [159]. Thus, a patient with T2D may have a pancreatitis when being treated by GLP1 

receptor agonist, without causal relationships between the two. Following the right “primum non 

nocere” principle, the US Food and Drug Administration and the European Medicines Agency 

stated that, “Although the totality of the data that have been reviewed provides reassurance, 

pancreatitis will continue to be considered a risk associated with these drugs […]” [160]. GLP1 

receptor agonist should be stopped in case of pancreatitis [161]. Thus, some patients may lose the 

highly proved CV benefits of those drugs for a very hypothetical risk. In contrast, the DPP4 

inhibitors did not showed CV benefits, but have been associated with a significant increased risk 

of acute pancreatitis in CVOT [105]. Nevertheless, the two summary of product characteristics are 

very similar, regarding the risk of pancreatitis [161, 162]. Indeed, the level of proof required for 

assessing a drug depends on the level of proof of its benefit—risk balance, globally, and not 

separately.  

 

In 2019, the French National Authority for Health estimated that the benefit—risk of the 

empagliflozin was not in favor of its use [163], notably due to a potential risk of lower limb 

imputation, Fournier gangrene, and ketoacidosis. As illustrated in the second section of the first 

part of this thesis, the CV benefits of SGLT2 inhibitors probably exceed their risks. Several 

methods are available for benefit risk assessment, especially at the trial level [18, 164]. RCTs allow 

a non-biased estimation of the benefit but remain limited for safety assessment. Integrating data 

from different type of studies for estimating the benefit—risk balance at a meta-analytic level 

remains a challenge [165].  
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Perspectives of evidence based personalized medicine in type 2 diabetes 
 

Surrogate and ‘treat to target’ strategy  
 

The second part of this thesis highlighted some difficulties in assessing surrogate endpoint 

using meta-regression approach. The limitation of the analysis to the aggregate data of each trial 

exposed the result to the ecological bias. Individual Patient Data Meta-analysis (IPD-MA) can help 

to overcome this issue [166]. Indeed, it allow to unravel subject-heterogeneity and study-

heterogeneity for estimating the TE [167]. Different approaches are proposed for conducting IPD-

MA [167, 168]. If necessary, both IPD and aggregate data could be integrated in the analysis [169]. 

Finally, network MA and IPD-MA methods can be combined, for searching treatment-covariate 

interaction in a multiple treatment comparison [170].  

 

In T2D field, a collaborative group has already published an IPD-MA focused on impact of 

glucose control on microvascular complications [92], yet IPD-MA regarding macrovascular 

complications remains needed. Moreover, different surrogate candidates are potentially actionable. 

The glucose control was traditionally assessed using the HbA1c level, but the new technology as 

the Continuous Glucose Monitoring System allow using other measures of glucose variability in 

the future [171]. Apart from the blood pressure, and the LDL level, albuminuria may also be a 

surrogate of interest, as recently suggested for end stage renal disease [172]. Interestingly, some 

drugs impact several surrogates simultaneously: for example, the SGLT2 inhibitors and the GLP1 

receptor agonists also decrease arterial blood pressure [173, 174]. However, although we observed 

an association between the decrease of blood pressure through antihypertensive drug and the risk 

of stroke, the SGLT2 inhibitors do not seems to decrease the risk of stroke in our meta-analysis 

and other [175]. 

 

The level of proof of the target-based strategies remains restricted. Hard target such as 6.0% 

of HbA1c [111] in primary cardiovascular prevention in healthy people are extrapolated goals and 

may be associated with more harm than benefit [110]. They should be taken very cautiously, the 

“primum non nocere” principle applying first. Moreover, the numerical value of the target itself 

should not become an absolute treatment’s goal, and lifestyle cardiovascular risk factor should be 

addressed in priority. However, the higher prognostic effect of an elevated HbA1c above 8% 
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legitimates a therapeutic intervention, even based on limited level of evidence, except for patients 

exhibiting particular fragility.    

 
 
Theranostic biomarker: perspectives in the genomic medicine 
 

The level of proof regarding mean benefit effects of pharmacological treatments have 

increased. However, so-called “predictive” biomarkers are still often assessed with a low level of 

proof. One increasing challenge is the availability of efficient medicine, but whose use would be 

misled by false indications and/or counter-indications. In the last decade, the emergence of new 

gene sequencing technology had allowed an intensive search for genetic biomarker, nurturing the 

hope for a genomic/predictive/personalized medicine [176]. However, the use of omics data lead 

to the risk of false positive results and an optimism bias [177]. The burden of publication in this 

area contribute to the reproducibility crisis [178-180]. Publication bias has been showed both for 

genetic association studies [181] and observational studies assessing adverse drug event [182]. 

Publication bias in pharmacogenetic studies is therefore highly suspected. Also, the use of multiple 

screening can lead to overdiagnosis [183].  

 

Indeed, EBM’s principles are not only still valid in the genomic area but highly needed [184, 

185]. Research is ongoing looking at validation’s tool of such effect modifier [186]. 36 criteria for 

claiming effect modification has been reported so far, of which test for interaction, a priori 

hypothesis and providing a causal explanation were frequently reported [186]. Finally, genomic 

can help both for better estimating the risk of a disease or an outcome of a subject [187] and 

identifying subjects exhibiting specific responses to drugs [124, 188]. Using polygenic scores [189] 

would help individualizing the treatment benefit—risk balance estimation. The figure 8 extended 

the effect model to schematize the impact of different prognostic and theranostic factors on the TE 

estimation.   
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Figure 8. Effect model for a personalized benefit—risk balance estimation. 

X-axis: spontaneous risk of event (R0); Y-axis: risk of event under treatment (R1). Each circle 

stands for the estimate of one trial, regarding one endpoint. Blue and orange are estimation of 

efficacy and safety endpoints, respectively. The grey diagonal represents the absence of treatment 

effect (R0=R1). The blue and the orange line represent the meta-analyses of studies for each event, 

their slope being the treatment effect on the relative scale. On the left: the blue and orange one-

sided arrows represent different prognostic factor for efficacy and safety endpoints, respectively. 

The blue and orange double-sided arrows represent the absolute effect (difference in risk between 

treated and untreated group) of the treatment for efficacy and safety event, respectively, for 

different level of prognostic factor. The net benefit could be calculated by their difference. On the 

right: the green and red circles and lines stand for the estimation in presence of an effect modifier; 

the large green and red arrows simply explicit the change in relative risk of events under treatment 

with the presence of the theranostic biomarker.   
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CONCLUSION  

 

 

Evidence based personalized medicine for patients with type 2 diabetes remains challenging 

in everyday clinical practice. There is still need for improvement, even if, fortunately, the progress 

in health care had allow a decrease in diabetes complication over the year [190]. One role of the 

physician is to inform the patient of the risk of the natural evolution of the disease, of the benefit—

risk balance of the treatment, and of the uncertainties regarding both of them, in order to allow the 

person to make his/her own choice, taking into account his/her own belief.  

 

Using a network meta-analysis approach, we showed that only the SGLT2 inhibitors and 

the GLP1 receptor agonist displayed a high level of proof for reducing cardiovascular events, 

challenging the place of metformin. However, the use of SGLT2 inhibitors and GLP1 receptor 

agonist is constrained because of safety signal of lower level of evidence. Using a meta-regression 

approach, we explored the impact of a surrogate on cardiovascular outcomes, highlighting the 

limits of the “target to treat” strategy for personalizing the treatment intensity. Finally, we provided 

a statistical comparison of two experimental designs for assessing theranostic biomarkers, which 

could help conducting clinical research in the future.  

 

Assessing a mean and a stratified treatment effect should be conducted taking into account 

the global benefit—risk balance estimation. The personalized medicine may also extend to the 

integration of the individual gut microbiome in clinical care [191]. The recent development in 

machine learning may also help to further identify theranostic biomarker [192], as recently 

illustrated in the search for predictive factor of mortality under intensive glucose control in the 

ACCORD trial [193]. 
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ABSTRACT

The aim of this study was to propose a ranking of the currently available antidia-
betic drugs, regarding vascular clinical outcomes, in patients with type 2 diabetes,
through a network meta-analysis approach. Randomized clinical trials, regardless
of the blinding design, testing contemporary antidiabetic drugs, and considering
clinically relevant outcomes in patients with type 2 diabetes mellitus will be
included. The primary outcomes of this analysis will be overall mortality, cardio-
vascular mortality, and major cardiovascular events. Diabetic microangiopathy will
be a secondary outcome. Adverse events, hypoglycemia, weight evolution, bariatric
surgery, and discontinuation of the treatment will also be recorded. Each drug will
be analyzed according to its therapeutic class: biguanide, alpha-glucosidase inhibi-
tors, sulfonylureas, glitazones, glinides, insulin, DPP-4 inhibitors, GLP-1 analogs,
and gliflozins. The treatment effect of each drug class will be compared using pair-
wise meta-analysis and a Bayesian random model network meta-analysis. Sensitiv-
ity analyses will be conducted according to the quality of the studies and the
glycemic control. The report will follow the PRISMA checklist for network meta-
analysis. Results of the search strategy and of the study selection will be presented
in a PRISMA compliant flowchart. The treatment effects will be summarized with
odds ratio (OR) estimates and their 95% credible intervals. A ranking of the drugs
will be proposed. Our network meta-analysis should allow a clinically relevant
ranking of the contemporary antidiabetic drugs.

INTRODUCT ION

Type 2 diabetes (T2D) is a public health issue, with a

dramatically increasing incidence in the world.

Cardiovascular diseases (CVD) are the main cause of
mortality in patients with T2D. Many antidiabetic

drugs are currently available. The benefit of some of

these drugs on patients’ outcomes has been evaluated
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in meta-analyses with conflicting results. Several meta-

analyses of intensive vs. standard blood glucose control
have shown a decrease in nonfatal myocardial infarc-

tion and no conclusive effect on overall or cardiovascu-

lar mortality [1–3]. The effect of metformin on
cardiovascular (CV) prevention, recommended as the

first-line drug in all guidelines for T2D glucose-lower-

ing therapy, has been challenged. The results of meta-
analyses depend on whether they include the UK

Prospective Diabetes Study (UKPDS 34) group of non-

obese patients treated with sulfonylureas alone. With-
out this group, metformin is found to reduce CV events

but does not if it is included in the meta-analyses. No

convincing results are available regarding the impact
of insulin or sulfonylureas on cardiovascular outcomes.

Since the last published international guidelines [4],

new antidiabetic drugs have become available. These
drugs help control glycemia, but their impact on cardio-

vascular complications is not clear. Two powerful trials

—SAVOR [5] and TECOS [6]—calculated their sample
size for superiority regarding cardiovascular events but

without observing any major difference in HbA1c con-

trol between the intervention and the placebo groups.
Another trial—EXAMINE [7]—calculated their sample

size for noninferiority but with an observed small glyce-

mic control difference. All three trials did not show any
specific effect of DPP4 inhibitors compared with placebo

on neither major cardiovascular events nor mortality.

Gliflozin showed promising results on cardiovascular
outcomes in one powerful clinical trial [8]. Two power-

ful clinical trials have recently shown a beneficial effect
of GLP1 agonist on cardiovascular events (LEADER [9]

and SUSTAIN 6 [10]).

New tools for indirect and mixed treatment compar-
isons, such as network meta-analyses, have become

available. Traditional meta-analyses use direct (‘head-

to-head’) comparisons between two treatments com-
pared within the same clinical trials. When no direct

comparisons are available, indirect comparisons allow

the comparison of two treatments through a third com-
mon comparator. Although direct comparisons remain

the gold standard in treatment evaluation, indirect

comparisons can also add to the information provided
by direct comparisons, by improving the treatment

effect estimate (mixed treatment comparison). In most

cases, results of indirect comparisons are consistent
with results obtained by direct comparisons [11]. Net-

work meta-analyses allow to compare several treat-

ments, through direct and indirect comparisons. In the
treatment network graph, nodes (points) stand for the

treatments and edges (lines between the points) for the

available direct comparisons.
Many glucose-lowering treatments are currently

available. Regarding cardiovascular prevention, the

choice can be difficult for physicians due to a lack of
direct comparisons. Network meta-analyses can help

summarize all available evidence. A bibliographic

search (on PubMed) for meta-analyses in type 2 dia-
betes resulted in more than 900 references, which

decreased to more than 200 references when mortality

or cardiovascular outcome was specified, and to
around 30 for the specific use of a network meta-ana-

lysis approach. Several network meta-analyses of

antidiabetic drugs have already been conducted. How-
ever, they focus on specific drug classes [12,13], on

intermediate outcome such as glycated hemoglobin

(HbA1c) or blood lipid level controls rather than
mortality, cardiovascular diseases and diabetic compli-

cations, and/or on specific questions (second- or

third-line therapy) [14–17], as illustrated in Table I.
One network meta-analysis published in 2011 tried

to compare hypoglycemic drugs on mortality and car-

diovascular events focusing only on second-line ther-
apy. They did not find enough data to proceed to the

analysis [15]. One recent network meta-analysis, pub-

lished in 2016, was conducted on mortality and car-
diovascular events, but did not include the last three

powerful trials EMPAREG, LEADER, and SUSTAIN 6

[18]. We believe that the last available trials will add
enough information to the overall comparison of these

drugs on hard clinical judgment.
The purpose of this study was to propose a ranking

of the currently available antidiabetic drugs, regarding

vascular clinical outcomes, in patients with T2D,
through a network meta-analysis approach.

METHODS

Eligibility criteria
Only studies fulfilling the inclusion criteria, described
below following the PICOS structure, will be eligible for

this meta-analysis.

Participants
Only subjects aged 18 and over with T2D will be

included. The diagnosis of T2D should have been estab-

lished using standard criteria or, if necessary, by the
definition of T2D given by the author in the corre-

sponding clinical trial. Exclusion criteria are dialysis,

transplantation, pregnancy, impaired glucose tolerance,
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impaired fasting glucose, and metabolic syndrome

without T2D. For studies including patients with T2D
and other types of population, if data are available,

only the T2D subgroup will be included.

Interventions
Eligible interventions will be any contemporary antidia-

betic drugs, that is, biguanide, alpha-glucosidase inhibi-

tors, sulfonylureas, thiazolidinediones (pioglitazone and
rosiglitazone), glinides, insulin, DPP-4 inhibitors, GLP-1

analogs, and gliflozins. Drugs which are not on the mar-

ket any longer (as, for example, phenformin and tolbu-
tamide) will be excluded. For factorial designs, only data

of the intervention of interest will be included. Glucose-

lowering treatment intensification without specific drugs
and acute interventions will not be included.

Comparisons

All comparisons between active treatments and vs. pla-
cebo, as monotherapy or add-on, will be included.

Comparisons within the same therapeutic class will be

excluded (see ‘Planned method of analyses’).

Outcomes

Only studies with clinically relevant outcomes (as pri-

mary or secondary outcomes) will be included. Clinically
relevant outcomes considered here are as follows: overall

mortality, cardiovascular mortality, major cardiovascu-

lar events, and diabetic microangiopathy (new or wors-
ening). Major cardiovascular events considered here are

as follows: myocardial infarction or acute coronary syn-

drome, stroke, and arteriopathy of the lower limbs. Dia-
betic microangiopathy considered here includes the

following: retinopathy, nephropathy, and neuropathy.

All these outcomes should be clinically relevant, that is,
clinically symptomatic, or leading to a therapeutic inter-

vention such as surgery, photocoagulation, or dialysis.

HbA1c, blood glucose, and fructosamine level, isolated
serum creatinine or albuminuria changes, weight, body

mass index (BMI), and hip/waist ratio will not be consid-

ered as clinically relevant outcomes. Efficacy and/or
safety studies will be included.

Study design

Only parallel-group randomized controlled trials (RCTs)
will be included, regardless of the blinding design.

Outcomes of the meta-analysis
The primary outcomes of this analysis will be overall

mortality, cardiovascular mortality, and majorT
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cardiovascular events. Diabetic microangiopathy will

be a secondary outcome. Their definitions are given in
the ‘Outcome’ section. Adverse events, hypoglycemia,

weight evolution, bariatric surgery, and discontinua-

tion of the treatment will also be recorded.

Information sources and search strategy
English-language RCTs will be searched in PubMed and

Central databases, without time restriction. EMBASE will

not be used as Halladay et al. showed that the expected
gain is only modest [19]. Complementary sources will be

used, especially to identify unpublished trials: reference

lists of published meta-analyses, ClinicalTrials.gov, EU
Clinical Trials Register, the Food and Drug Administra-

tion (FDA) website, and experts’ knowledge.

The search strategy will be defined by (i) patient’s con-
dition (i.e., T2D), (ii) studied drugs (i.e., antidiabetics),

(iii) measured outcomes, and (iv) study design. For the

latter, the specific search strategy of RCTs defined in the
Cochrane Handbook will be used [20]. We will exclude

literature reviews. Each parameter will be defined by sev-
eral MeSH terms and/or free text in titles and abstracts.

The search strategy will be available in the appendix.

Study selection, data collection process, and risk
of bias assessment in individual studies
The study selection, data extraction, and risk of bias
assessment will be carried out by at least two indepen-

dent reviewers. In case of disagreements, consensus will

be reached with a third person. Studies will be screened
on the basis of their titles and abstracts. Eligible studies

will then be reviewed on their full texts. For each

excluded study, reason(s) for exclusion will be given.
Extracted data items will include the following: quality

items, characteristics of the studies and their patients,

and the outcomes of interest. Authors will be contacted
in case of missing data. The quality of the studies will be

assessed using the Cochrane Collaboration’s tool for

assessing risk of bias in RCTs [21]. A summary of the
quality assessment will be available in the appendix.

Geometry of the network
The structure of the network will be illustrated through
a network graph, indicating the number of available

RCTs for each direct comparison.

Summary measures
OR with its 95% credible interval will be the principal
summary measure for the primary and secondary

outcomes. Additional summary measures will include

the ranking of the therapeutic classes.

Planned method of analysis
Each drug (including each drug dose) will be analyzed

according to its therapeutic class: biguanide, alpha-glu-

cosidase inhibitors, sulfonylureas, glitazones, glinides,
insulin, DPP-4 inhibitors, GLP-1 analogs, and gliflozins.

The treatment effect of each drug class will be com-

pared using pairwise meta-analyses and a Bayesian
random model network meta-analysis [22]. A random

model will be used due to the expected heterogeneity

between trials. The prior distribution will be chosen as
noninformative. The posterior distribution will be esti-

mated using a Markov chain Monte Carlo method

[23].

Network assessment
Inconsistency of the network will be searched

for, using local and global approaches [24]. Distribu-
tion of the treatment effect modifiers across the com-

parisons will be evaluated to assess the transitivity

assumption [24].

Drug ranking
According to their probability of being at each rank of

efficacy, the different drug classes will be ranked using

the surface under the cumulative ranking curve
(SUCRA) [25].

Additional analyses
Sensitivity analyses will be conducted according to the

quality of the studies (especially open vs. blinded
RCTs), according to the glycemic control (RCTs in

which achieved HbA1c blood levels were different vs.

RCTs without difference in HbA1c between the inter-
vention group and the control group), and according

to the level of cardiovascular risk at baseline. If treat-

ment effect modifiers are identified, subgroup analyses
will be conducted.

Risk of bias across studies
A funnel plot will be used to assess the risk of publica-
tion bias, with corresponding measures of the probabil-

ity of lack of publication bias.

Software
Analyses will be conducted using R [26] and WinBUGS
[27] software.
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RESULTS

The report will follow the PRISMA checklist for net-
work meta-analyses [28]. Results of the search strategy

and the study selection will be presented in a PRISMA

compliant flowchart [29]. Study characteristics will be
summarized, as shown in Table II. Treatment effects

will be summarized with OR estimates and their 95%

credible intervals. A ranking of the therapeutic classes
will be proposed.

DISCUSS ION

Type 2 diabetes has an increasing public health

impact in the world. Network meta-analyses are still

exploratory analyses, but they allow the use of all
available information, thus leading to more informed

drug prescriptions. A very interesting question in this

network meta-analysis will be the ranking of met-
formin, regarding the recent results for gliflozins and

GLP1 agonists.

The main potential limit of this analysis will possibly
be the lack of data, as inconsistency between direct

and indirect comparisons seems to be higher with

fewer trials [11]. Moreover, when a meta-analysis
showed no effect, a lack of power, in terms of number

of subject and/or duration of the studies, is still one of

the possible explanations. The meta-analysis is then
helpful as it shows the insufficiency of the available

data used to prescribe drugs.

One other limit is the inclusion of open clinical trials
leading to a risk of bias. Unfortunately, the frequency

of open trials in diabetes mellitus in the last decades is

high. However, a sensitivity analysis is planned to
investigate the impact of those open trials in our analy-

sis.
Other limits are the potential effect modifiers, like the

possible difference in the cardiovascular baseline risk of

the included subjects. For example, patients were at
high cardiovascular risk in LEADER and EMPAREG but

not in UKPDS. Moreover, there was no difference in

glycemic control between the groups in some studies.
Those possible effect modifiers will be investigated using

sensitivity analyses instead of integrating those param-

eters in the model. The interpretation of complex mod-
els remains a difficult issue, and we do not expect to

have enough data.

We focus on severe clinical outcomes, mainly car-
diovascular. They are not the only complications of

patients with T2D, but they are the main cause of

death in this population. We also plan to look at
microvascular complications, but those outcomes

could be subject to reporting bias in cardiovascular

trials.
We limit our study at the therapeutic class level for

this first analysis, but it would be interesting to look at
the heterogeneity in the treatment effect within thera-

peutic classes in further analyses, notably for glitazones

and sulfonylureas.

CONCLUS ION

Up to now, there is no clear picture to help us distin-

guish which of these therapeutic classes are most con-

tributing to the prevention of complications in diabetes.
These drugs are used to control glycemia and reduce

diabetic complications in tens of millions of people

Table II Characteristics of included studies.

Study i

Year

Blinded (DB, SB, O)

Line therapy (1, 2, 3)

Mean of follow-up, years

Group Intervention Control Total

Drug

Patients, n

Male, n (%)

Mean age (SD), years

Mean diabetes duration (SD), years

Patients with previous cardiovascular

events, n (%)

Patients without previous

cardiovascular events, n (%)

Patients without previous

cardiovascular events, with

diabetic microangiopathy, n (%)

Patients without previous

cardiovascular events,

without diabetic microangiopathy, n (%)

Patients with high blood

pressure (treated or not), n (%)

Patients with dyslipidemia

(treated or not), n (%)

Patients with antiplatelet

treatment, n (%)

Current smoker at inclusion (%)

Mean baseline HbA1c level (SD), %

Mean change in HbA1c level (SD), %

Mean baseline BMI level (SD), kg/m2

Mean change in weight (SD), kg

DB, double blinded; SB, single blinded; O, open; SD, standard deviation.
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worldwide, and in over two million in France. Our net-

work meta-analysis should allow a clinically relevant
drug ranking of the contemporary antidiabetic thera-

peutic classes.
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Appendix 2. Complementary supporting information of the network meta-analysis 
GLUCOSE DINET 

 
S1 Checklist. PRISMA network meta-analysis checklist of GLUCOSE DINET. 

 
Section/Topic Item 

# 
Checklist Item Reported 

on Page # 
TITLE    

Title 1 Identify the report as a systematic review incorporating a network meta-analysis (or related form of meta-
analysis).  

1 

    
ABSTRACT    

Structured summary  2 Provide a structured summary including, as applicable:  
Background: main objectives 
Methods: data sources; study eligibility criteria, participants, and interventions; study appraisal; and 
synthesis methods, such as network meta-analysis.  
Results: number of studies and participants identified; summary estimates with corresponding 
confidence/credible intervals; treatment rankings may also be discussed. Authors may choose to 
summarize pairwise comparisons against a chosen treatment included in their analyses for brevity. 
Discussion/Conclusions: limitations; conclusions and implications of findings. 
Other: primary source of funding; systematic review registration number with registry name. 

3 

    
INTRODUCTION    

Rationale  3 Describe the rationale for the review in the context of what is already known, including mention of why a 
network meta-analysis has been conducted.  

5 

Objectives  4 Provide an explicit statement of questions being addressed, with reference to participants, interventions, 
comparisons, outcomes, and study design (PICOS).  

5-6 

    
METHODS    

Protocol and 
registration  

5 Indicate whether a review protocol exists and if and where it can be accessed (e.g., Web address); and, if 
available, provide registration information, including registration number.  

6 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years 
considered, language, publication status) used as criteria for eligibility, giving rationale. Clearly describe 
eligible treatments included in the treatment network, and note whether any have been clustered or 
merged into the same node (with justification).  

6 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to 
identify additional studies) in the search and date last searched.  

6-7 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it 
could be repeated.  

S1 Table 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if 
applicable, included in the meta-analysis).  

6-7 

Data collection 
process  

10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any 
processes for obtaining and confirming data from investigators.  

6-7 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any 
assumptions and simplifications made.  

7 

Geometry of the 
network 

S1 Describe methods used to explore the geometry of the treatment network under study and potential biases 
related to it. This should include how the evidence base has been graphically summarized for 
presentation, and what characteristics were compiled and used to describe the evidence base to readers. 

S3 
Appendix  

Risk of bias within 
individual studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether 
this was done at the study or outcome level), and how this information is to be used in any data synthesis.  

7 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means). Also describe the use of 
additional summary measures assessed, such as treatment rankings and surface under the cumulative 
ranking curve (SUCRA) values, as well as modified approaches used to present summary findings from 
meta-analyses. 

7-8 

Planned methods of 
analysis 

14 Describe the methods of handling data and combining results of studies for each network meta-analysis. 
This should include, but not be limited to:   

• Handling of multi-arm trials; 
• Selection of variance structure; 
• Selection of prior distributions in Bayesian analyses; and 
•  Assessment of model fit.  

7--8 

Assessment of 
Inconsistency 

S2 Describe the statistical methods used to evaluate the agreement of direct and indirect evidence in the 
treatment network(s) studied. Describe efforts taken to address its presence when found. 

7-8 
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Risk of bias across 
studies  

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, 
selective reporting within studies).  

7 

Additional analyses  16 Describe methods of additional analyses if done, indicating which were pre-specified. This may include, 
but not be limited to, the following:  

• Sensitivity or subgroup analyses; 
• Meta-regression analyses;  
• Alternative formulations of the treatment network; and 
• Use of alternative prior distributions for Bayesian analyses (if applicable).  

8 

RESULTS    
Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 

exclusions at each stage, ideally with a flow diagram.  
Fig 1 

Presentation of 
network structure 

S3 Provide a network graph of the included studies to enable visualization of the geometry of the treatment 
network.  

S3 
Appendix 

Summary of 
network geometry 

S4 Provide a brief overview of characteristics of the treatment network. This may include commentary on the 
abundance of trials and randomized patients for the different interventions and pairwise comparisons in 
the network, gaps of evidence in the treatment network, and potential biases reflected by the network 
structure. 

9 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up 
period) and provide the citations.  

Table 1 

Risk of bias within 
studies  

19 Present data on risk of bias of each study and, if available, any outcome level assessment.  S2 
Appendix 

Results of individual 
studies  

20 For all outcomes considered (benefits or harms), present, for each study: 1) simple summary data for each 
intervention group, and 2) effect estimates and confidence intervals. Modified approaches may be needed 
to deal with information from larger networks. 

S5 Table 

Synthesis of results  21 Present results of each meta-analysis done, including confidence/credible intervals. In larger networks, 
authors may focus on comparisons versus a particular comparator (e.g. placebo or standard care), with 
full findings presented in an appendix. League tables and forest plots may be considered to summarize 
pairwise comparisons. If additional summary measures were explored (such as treatment rankings), these 
should also be presented. 

Table 2 

Exploration for 
inconsistency 

S5 Describe results from investigations of inconsistency. This may include such information as measures of 
model fit to compare consistency and inconsistency models, P values from statistical tests, or summary of 
inconsistency estimates from different parts of the treatment network. 

10 

Risk of bias across 
studies  

22 Present results of any assessment of risk of bias across studies for the evidence base being studied.  9-10 

Results of additional 
analyses 

23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression 
analyses, alternative network geometries studied, alternative choice of prior distributions for Bayesian 
analyses, and so forth).  

11-12 

    

DISCUSSION    

Summary of 
evidence  

24 Summarize the main findings, including the strength of evidence for each main outcome; consider their 
relevance to key groups (e.g., healthcare providers, users, and policy-makers).  

14-15 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete 
retrieval of identified research, reporting bias). Comment on the validity of the assumptions, such as 
transitivity and consistency. Comment on any concerns regarding network geometry (e.g., avoidance of 
certain comparisons). 

16-17 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future 
research.  

17-18 

    

FUNDING    
Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of 

funders for the systematic review. This should also include information regarding whether funding has 
been received from manufacturers of treatments in the network and/or whether some of the authors are 
content experts with professional conflicts of interest that could affect use of treatments in the network. 

20 
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S3 Fig. Network figures for the primary outcomes and forest plots of the direct comparisons 

A. Overall mortality 

This network included 30 randomized trials. On 168 332 subjects, 12 203 presented the outcome.  

S3A Fig_Network:  
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Forest plots of the overall mortality for each direct comparison:  

The diamond in the forest plot stands for the network estimation of the TE (OR and its 95%CI) 

(‘Network’s line); the squares stand for i) the TE estimate in the corresponding trial (on line with 

its name), and ii) the TE estimate using direct meta-analysis with both fixed and random model 

(‘Fixed’ and ‘Random’, respectively). ‘W’ stands for the weight of each trial in the corresponding 

direct meta-analysis. 

S3A Fig_DPP-4_I VERSUS CONTRO

S3A Fig_GLITAZONES VERSUS CONTROL 
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S3A Fig_GLP-1_A VERSUS CONTROL 

 
S3A Fig_INSULIN VERSUS CONTROL 
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S3A Fig_METFORMIN VERSUS CONTROL 

 
S3A Fig_SGLT-2_I VERSUS CONTROL 
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S3A Fig_SULFONYLUREA VERSUS CONTROL 

 
S3A Fig_SULFONYLUREA VERSUS GLITAZONES 
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B. Cardiovascular mortality 

This network included 27 randomized trials. On 152 642 subjects, 6 221 presented the outcome.  

S3B Fig_Network:  
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Forest plots of the cardiovascular mortality for each direct comparison:  

 
S3B Fig_DPP-4_I VERSUS CONTROL 

 
S3B Fig_GLITAZONES VERSUS CONTROL 
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S3B Fig_GLP-1_A VERSUS CONTROL 

 
S3B Fig_INSULIN VERSUS CONTROL 
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S3B Fig_METFORMIN VERSUS CONTROL 

 
S3B Fig_SGLT-2_I VERSUS CONTROL 
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S3B Fig_SULFONYLUREA VERSUS CONTROL 

 
S3B Fig_SULFONYLUREA VERSUS GLITAZONES 
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S1 Table. Search strategy used for Medline 

 
 

 
 
 
 

Patients "diabetes mellitus, type 2"[MeSH Terms]  
OR type 2 diabetes mellitus[Title/Abstract]  
OR type 2 diabetes[Title/Abstract]  
OR "diabetes mellitus"[MeSH Terms] 
OR "diabetes mellitus"[Title/Abstract]  
OR "non-insulin-dependent diabetes mellitus"[Title/Abstract]  
OR "non insulin dependent diabetes mellitus"[Title/Abstract]  
OR "NIDDM"[Title/Abstract]  
AND 

Intervention hypoglycaemic agents[Title/Abstract]  
OR hypoglycemic agents[Pharmacological Action]  
OR "hypoglycemic agents"[MeSH Terms]  
OR "hypoglycemic agents"[Title/Abstract]  
OR "hypoglycemic agent"[Title/Abstract]  
OR "glycaemic control"[Title/Abstract]  
OR "glycemic control"[Title/Abstract]  
OR "glucose control"[Title/Abstract]  
AND  

Type of study (randomized controlled trial[pt]  
OR controlled clinical trial[pt]  
OR randomized[tiab]  
OR placebo[tiab]  
OR "clinical trials as topic"[MeSH Terms:noexp]  
OR randomly[tiab]  
OR trial[ti])  
NOT (animals[mh] NOT humans[mh])  
AND 

Outcome "mortality"[Subheading]  
OR mortality[Title/Abstract]  
OR "mortality"[MeSH Terms]  
OR "cardiovascular diseases"[MeSH Terms]  
OR "cardiovascular diseases"[Title/Abstract]  
OR "cardiovascular disease"[Title/Abstract]  
NOT 

Type of studies 
excluded  

review[Publication Type]  
OR meta analysis[Publication Type]  
OR meta-analysis[Publication Type] 
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S2 Table. Definitions of the major adverse cardiovascular events (MACE) outcome for each 

trial. When not available, proxy was used as defined in the table. CV: cardiovascular, MI: 

myocardial infarction, SAE: serious adverse event, PCI: percutaneous coronary intervention, HF: 

heart failure 

Study "MACE" 
outcome "MACE" outcome reported definitions 

ADVANCE MACE CV death and non-fatal MI and non-fatal stroke 

APPROACH MACE CV death, non-fatal MI, or non-fatal stroke 

CANVAS MACE CV mortality, non-fatal MI, non- fatal stroke 

CANVASR MACE CV mortality, non-fatal MI, non- fatal stroke 

CARMELINA MACE CV mortality, non-fatal MI, non- fatal stroke 

COSMIC proxy SAE Cardiac disorders, including coronary artery disease, chest pain, congestive 
cardiac failure, myocardial infarction +/- cerebrovascular accident? 

DECLARE 
TIMI 58 MACE CV death, myocardial infarction, or ischemic stroke 

ELIXA proxy Death from CV causes, non-fatal stroke, non-fatal MI, or unstable angina 

EMPAREG MACE Death from CV causes, non-fatal MI, or non-fatal stroke 

EXAMINE MACE Death from CV causes, non-fatal MI, or non-fatal stroke 

EXSCEL MACE Death from CV causes, non-fatal MI, or non-fatal stroke 

HARMONY MACE Death from CV causes, non-fatal MI, or non-fatal stroke 

HOME proxy CV intervention (peripheral arterial reconstruction, percutaneous transluminal 
coronary angioplasty, and coronary artery bypass graft) 

J-SPIRIT NA  

LEADER MACE Death from CV causes, non-fatal  (including silent)  MI, or non-fatal stroke 

ORIGIN MACE CV death, non-fatal MI, non-fatal stroke 

PERISCOPE MACE CV death, non-fatal MI, or non-fatal stroke 

Kaku.2009 proxy Death, acute MI  excluding silent MI, or stroke 

Lee.2013 proxy Death, MI, re-PCI TLR (target lesion revascularisation), and TVR (target vessel 
revascularization), stent thrombosis 

Giles.2008 proxy CV mortality and hospitalization or ER (emergency room) visit for HF 

PPAR.Study NA  
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PROactive proxy Death, non-fatal MI  excluding silent MI, stroke 

PROFIT-J proxy All death, non-fatal stroke, non-fatal MI 

RECORD MACE CV death, MI, or stroke 

SAOR. 
TIMI.53 MACE CV death, non-fatal MI, or non-fatal ischemic stroke 

SPREAD-
DIMCAD proxy 

Non-fatal MI, non-fatal stroke or arterial revascularization by percutaneous 
transluminal coronary angioplasty  (PTCA)  or by coronary artery bypass graft, 
death from a CV cause, and death from any cause   

SUSTAIN.6 MACE Death from CV causes, non-fatal MI, or non-fatal stroke  

TECOS proxy CV death, non-fatal MI, non-fatal stroke, or hospitalization for unstable angina 

TIDE MACE MI, stroke or CV death 

TOSCA.IT proxy All-cause mortality, non-fatal MI (including silent MI), non-fatal stroke, 
unplanned coronary revascularization 

UGDP NA  

UKPDS.33 NA  

UKPDS.34a NA  
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S3 Table. Reported definitions of the serious adverse event (SAE) outcome used for each 

trial. AE: adverse event. SAE: serious adverse events 

Study Severe/serious adverse events reported definitions 

ADVANCE Hospitalization 

APPROACH NA 

CANVAS NA (Event rate per 1000 patient/year for the CANVAS Programme) 

CANVASR NA (Event rate per 1000 patient/year for the CANVAS Programme) 

CARMELINA NA 

COSMIC Any fatal, life-threatening, permanently or substantially disabling events, resulted in permanent or significant disability or 
incapacity, required or prolonged hospitalization, important event that jeopardized the patient or required intervention to 
prevent a serious outcome, a congenital abnormality, a cancer, an overdose of medication, or drug dependency or drug 
abuse. 

DECLARE TIMI Serious adverse event 

ELIXA MedDRA version 15.0 

EMPAREG Any SAE 

EXAMINE Any SAE 

EXSCEL Any SAE 

HARMONY Serious Adverse Events by System Organ Class in subjects who took at least one dose of study drug in Appendix 
(Malignancies included in 
Neoplasms) 

HOME NA 

J-SPIRIT NA 

LEADER SAE 

ORIGIN Aside from hypoglycemia and cancer, SAE were captured if considered related to a study drug. 

PERISCOPE Total, SAE 

Kaku.2009 "Other SAE" 

Lee.2013 NA 

Giles.2008 SAE (>1.5%) 

PPAR.Study NA 

PROactive Any SAE, non-endpoint events 

PROFIT-J NA 

RECORD NA 

SAVOR.TIMI.53 NA 

SPREAD-
DIMCAD 

NA 
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SUSTAIN.6 SAE (death, a life-threatening episode, hospitalization or prolongation of existing hospitalization, a persistent or 
substantial disability or incapacity, or an event otherwise considered to be an important medical event) 

TECOS NA 

TIDE Total, Serious Adverse Events 

TOSCA.IT SAE (death, a life-threatening episode, hospital admission or prolongation of existing hospital admission, or a persistent 
or substantial disability) 

UGDP NA 

UKPDS.33 NA 

UKPDS.34a NA 

UKPDS.34b NA 
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S4 Table. Baseline cardiovascular (CV) risk groups (Grp) for the sensitivity analysis. ‘H’ 

stands for “high cardiovascular risk at baseline”, ‘L’ for “low cardiovascular risk at baseline”. 

ACS: acute coronary syndrome, STEMI: ST elevation myocardial infarction, NSTEMI: non- ST 

elevation myocardial infarction, AP: angina pectoris, PCI: percutaneous coronary intervention, 

CABG: coronary artery bypass graft, TIA: transient ischemic attack, MI: myocardial infarction. 

 
 
 

Study 
CV 
Grp 

CV history 
(%) CV history definitions 

ELIXA H 99.8 Qualifying ACS event: NSTEMI, STEMI, Unstable angina 

EXAMINE H 99.7 Myocardial infarction, Unstable angina requiring hospitalization 

Pio.post.stent.Lee
.2013 H 99.2 Stable AP, Unstable AP, NSTEMI, STEMI 

EMPAREG H 99 Established cardiovascular disease 

PROactive H 85.4 
Previous myocardial infarction, Previous stroke, Symptomatic 
peripheral arterial obstructive disease 

SAVOR.TIMI.53 H 78.6 Established atherosclerotic disease 

TECOS H 74 
Prior cardiovascular disease (Myocardial infarction, >50% coronary 
stenosis, Prior PCI, CABG) 

EXSCEL H 73.1 Prior CV event at randomization 

LEADER H 72.4 Established cardiovascular disease 

CANVAS1 H 72.2 History of atherosclerotic vascular disease in CANVAS_P 

CANVASR H 72.2 History of atherosclerotic vascular disease in CANVAS_P 

HARMONY H 70.6 

*Any of myocardial infarction, coronary artery bypass grafting, 
percutaneous coronary intervention, or at least 50% stenosis of 
coronary artery on angiography 

PioGLy.mCD.GI
LES.2008 H 68.1 NA 

SUSTAIN.6 H 58.8 
established 
cardiovascular disease without chronic kidney disease 

ORIGIN_tot H 58.8 Prior cardiovascular event 
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SPREAD-
DIMCAD H 58.6 History of myocardial infarction 

CARMELINA H 57 Defined as albuminuria and prevalent macrovascular disease 

DECLARE.TIMI.
58 L 40.6 

17,160 patients, including 10,186 without atherosclerotic 
cardiovascular disease 

APPROACH L 38 A total of 38% presented with acute coronary syndrome 

TIDE L 34.5 Cardiovascular disease 

ADVANCE L 32.2 History of major macrovascular disease 

HOME L 31.7 HOME 2002 : Diabetic complications Cardiovascular : 31.7% 

PROFIT-J L 31.6 silent cerebral infarction. Ohter previous CV disease: unknown 

PERISCOPE L 28.2 Prior myocardial infarction 

RECORD L 17.4 Ischaemic heart disease at baseline 

TOSCA.IT L 11 Previous cardiovascular disease 

J-SPIRIT L 10 Previous stroke (previous MI : 0) 

UGDP L 10 History of angina pectoris or of significant ECG abnormality 

Pio.Kaku.2009 L 8.5 
History of CV events (Stroke excluding TIA, angina pectoris, 
myocardial infarction and coronary intervention procedure) 

UKPDS.33 L NA early diabetes 

UKPDS.34a L NA early diabetes 

UKPDS.34b L NA early diabetes 

COSMIC L NA type 2 diabetic patients suboptimally controlled on diet or sulfonylurea 

PPAR.Study NA NA NA 

Mean  54.9  

S.D  29.4  

Median  58.8  
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Appendix 3. Complementary supporting information of the meta-regression 

 
 

Appendix A.2 

Search strategy 

 

PubMed – specific strategy: 

(“Antihypertensive Agents” [MeSH Terms]) AND (“Hypertension” [MeSH Terms] AND 

“Diabetes Mellitus” [MeSH Terms]) AND (Randomized Controlled Trial[ptyp]) 

 

PubMed – sensible strategy: 

(Antihypertensive Agents [MeSH Terms] OR Antihypertensive Agents [TIAB] OR 

Antihypertensive Agents [TIAB] OR Antihypertensive Agents [TIAB] OR Antihypertensive 

Drugs [TIAB] OR Antihypertensive Drugs [TIAB] OR Antihypertensives [TIAB] OR 

Antihypertensives [TIAB] OR Antihypertensive Drugs [TIAB] OR Antihypertensives [TIAB]) 

AND (Hypertension [MeSH Terms] OR Hypertension [TIAB] OR High Blood Pressure [TIAB] 

OR High Blood Pressures [TIAB] OR Diabetes Mellitus [MeSH Terms] OR Diabetes Mellitus 

[TIAB]) AND (“clinical” [TIAB] AND “trial” [TIAB]) OR “clinical trials” [MeSH Terms] OR 

“clinical trial” [Publication Type] OR “random*” [TIAB] OR “random allocation” [MeSH 

Terms] OR “therapeutic use” [MeSH subheading]) 



Appendix A.1 PRISMA 2009 checklist  

Section/topic  # Checklist item  page #  
TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, 
interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic 
review registration number.  

2 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  4 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes 
and study design (PICOS).  

5 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address) and, if available, provide registration 
information including registration number.  

6 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, 
publication status) used as criteria for eligibility, giving rationale.  

6 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) 
in the search and date last searched.  

7 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.  Appendix A.1 
Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review and, if applicable, included in the 

meta-analysis).  
8 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining 
and confirming data from investigators.  

8 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications 
made.  

8 

Risk of bias in individual 
studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the 
study or outcome level), and how this information is to be used in any data synthesis.  

8 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  8 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2) for 
each meta-analysis.  

8 
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Section/topic  # Checklist item  Reported 
on page #  

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within 
studies).  

8 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were 
pre-specified.  

8 

RESULTS   
Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, 

ideally with a flow diagram.  
Appendix 
B 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the 
citations.  

Table 1 

Risk of bias within studies  19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  Table 1 
Results of individual studies  20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) 

effect estimates and confidence intervals, ideally with a forest plot.  
NA 

Synthesis of results  21 Present the main results of the review. If meta-analyses are done, include for each, confidence intervals and measures of 
consistency 

Table 2 

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  Table 1 
Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).  Table A.3 
DISCUSSION   
Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups 

(e.g., healthcare providers, users, and policy makers).  
11 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified 
research, reporting bias).  

11-12 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.  12 

FUNDING   
Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic 

review.  
13 
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