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Contexte disciplinaire des travaux

Cette thèse s’inscrit à l’interface de deux disciplines et instituts : l’informatique (INS2I) et
la biologie (INEE). Elle est née de la rencontre entre des informaticiens intéressés par la bi-
ologie – et le traitement de grands volumes de données génomiques en temps contraint – et
d’une biologiste intéressée par l’évolution des séquences complexes, i.e. répétées/dupliquées.
L’explosion des technologies de séquençage haut-débit de troisième génération (type linked
et long-read) va d’ici peu modifier notre rapport à la partie « complexe » du génome. Elles
vont en effet offrir la possibilité d’analyser cette fraction d’ADN, restée jusque là inaccessible
par le séquençage des shorts-reads.

Cette généralisation du séquençage des longs fragments et l’amélioration continue des
techniques d’assemblage nous donneront l’accès à de nombreux génomes complets – régions
complexes incluses – que nous pourrons comparer afin d’adresser ou ré-adresser des questions
fondamentales liées à l’évolution des espèces. Dans ce contexte, ces travaux ont dû répondre à
3 défis : (i) l’appropriation du contexte biologique et sa maîtrise par un informaticien de for-
mation, (ii) le développement d’un outil économe en ressource (temps de calcul et mémoire)
permettant ainsi d’extraire les larges duplications d’un grand nombre de génomes totaux, (iii)
l’application de cet outil à une question de biologie évolutive fondamentale.

Pour arriver à une co-construction de l’outil répondant à la fois aux contraintes computa-
tionnelles et aux spécifications de la problématique biologique, ces travaux se sont déroulés à
temps partagé entre deux laboratoires toulousains, l’IRIT (Institut de Recherche en Informa-
tique de Toulouse – CNRS UMR5505) et le laboratoire AMIS (Anthropologie Moléculaire
et Imagerie de Synthèse – CNRS UMR5288).
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Résumé

Le séquençage de nombreux génomes au cours de ces dernières décennies a permis de dé-
couvrir que la majorité d’entre eux recèle une large proportion de séquences dupliquées, et
ce à diverses échelles. Parmi ces duplications, les DS (duplications segmentaires) sont d’un
intérêt particulier de par l’influence qu’elles exercent dans les mécanismes de création de vari-
ation génétique. Ces zones, historiquement difficiles à séquencer, commencent à devenir plus
facilement accessibles grâce à l’amélioration ou au développement des techniques idoines.

Pour faciliter l’exploitation in silico de ces nouveaux flux de données numériques, nous
avons développé ASGART, un programme efficace, rapide, dédié à la détection précise des
zones dupliquées dans des fragments d’ADN.Nous présentons ensuite quelques résultats prélim-
inaires obtenus grâce à ASGART, en particulier dans le domaine de l’évolution des chromo-
somes sexuels.
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Abstract

The large number of newly sequenced genomes during these last decades highlighted the
large proportion of duplicated sequences – at many scales and scopes – they nearly all contain.
Among these duplications, SDs (segmental duplications) are especially important, as they
play a major role during the creation of genetic variation, both at the species and at the
individual level. These areas, while historically difficult to sequence, are starting to be more
easily accessible thanks to both the improvement of existing processes and the development
of new ones.

To ease in silico exploration of these new datasets, we developed ASGART, a fast and
efficient tool designed toward precise mapping of duplicated areas in DNA fragments. We
also present a few preliminary results obtained thanks to ASGART, mostly in the field of the
sex chromosomes evolutionary patterns.
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Introduction

The idea of transmitting phenotypic traits from parents to their offspring through an inher-
itable vessel appeared as a side effect of the Theory of Evolution. DNA, its physical embod-
iment, was first isolated in 1869 by Friedrich Miescher. Its chemical structure, two comple-
mentary strings of nucleobases arranged in a double helix, was decrypted in 1953 by Watson,
Crick, Franklin and Goslin; and the first genome sequenced – i.e. translated from its physical
embodiment to a long string of letters representing its nucleobases – was the one of the Φ

X174 bacteriophage, by Sanger and its team in 1977 [110].
This première was the starting point of a sequencing spree that persists to this day and

saw dozen of increasingly complex and long genomes being sequenced, opening wide the
gates to the fields of genetics and genomics. If a milestone was reached in 2001 with the first
sequencing of an hybrid human genome [138], efforts are being pursued and sequencing
technologies have continuously improved [48] to enhance the incoming data, both from a
quantitative and a qualitative perspective.

Among the countless discoveries spawned by the studies of generated data, the high pro-
portional quantity of duplicated fragments in virtually all studied genomes, from fishes[125,
126] to human[114, 12] through plants[88, 18, 19], was surprising. These duplications can
be found at every scale, from a few nucleotides to whole genomes, and in counts ranging
from a pair of duplicons to thousands of them. A classification for these duplications arose,
depending on their duplicons length and count, their position, their biological role, and other
characteristics.

Among these, our study will focus on segmental duplications (SDs). We found SDs to
be an alluring subject, mainly due to the role they play in evolutionary matters[71]. This
large class of duplications sits at a sweet spot regarding their length and mutation rate that
makes them a major source of variation, both at the species and at the individual level. From
a species perspective, it allows them to better adjust to their environment by the apparition
of beneficial phenotypical variations.

But statistically, most of mutations tend to be nefarious to the individuals carrying them.
Thus, SDs are of clinical interest from an individual perspective, as they are linked to several
health concerns of various seriousness, including but not restricted to, reduced fertility or
sterility[100], autism[73, 87, 108], Parkinson disease[102, 59], Charcot-Marie-Tooth syn-
drome[98], Alzheimer disease[103], and various cancers[26, 142] – this field being under-
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standably mostly developed around the human species. SDs study is thus relevant both for
fundamental, evolutionary fields, and applied, clinical ones.

Naturally, an SD can only be studied when having access both to the string of nucleotides
its duplicons aremade of, and to the location of these duplicons in the concerned genome. The
former to determine their composition and the kind of genetic features they may encompass,
the latter to understand their dynamic among the genome. Two broad categories of methods,
with their respective pros and cons, can be used to map duplications embedded in a DNA
fragment.

First, the in vitromethods act directly on actual genetic material. They, by nature, require
a lab and the afferent logistics, as well as large quantity of high quality generic material,
making them difficult to use. Second, in silico methods use computers to work on sequenced
DNA fragments – the numerical representations of the physical molecule. Thus, they are
twofold in their mode of operation: first, the concerned DNA must be sequenced by an
hybrid hardware/software platform; then the resulting numerical dataset is analyzed by a
software tool to gather the desired information. In contrast to in vitro solutions, in silico ones
offer several advantages. They are cheaper, they do not require sampling apparatus and high
quality biological material to extract, purify and store DNA (or, more precisely, they only
need this step to be performed once before the sequencing process), are generally less time-
consuming, and, last but not least, they are comparatively easily and cheaply reproducible.

Now that sequencing technologies are improving and starting to offer cheap, fast, high-
precision coverage of sequenced genomes[48, 66, 77], the development of software tools
especially dedicated to the de novo mapping of duplications is the next logical step. If some
tools, such as WGAC [13], WSSD [12], or Vmatch [135], are aimed toward SDs mapping,
they are typically unwieldy on large datasets, either due to the complexity of their pipelines
and to the requirement for in vitro ressources, or to their intrinsic complexity.

To overcome this situation, we developed ASGART; a precise, fast, and efficient programs
set dedicated to the discovery of medium- to large-scale duplications up to the multi-genome
scale. ASGART is designed to make full use of the available hardware resources thanks to its
parallel algorithm, that can take advantage of both multi-CPUs and multi-machines setups.
It also features a simple command-line interface, as well as a web application, for an easy
interaction. Finally, it makes use of standard data formats, both for inputs and outputs, to
ensure a satisfying interoperability with the existing applications.

In this document, we will first present the biological, evolutionary background relevant
to SDs research, and detail the roles they play according to the current state of the art. Wewill
then focus on ASGART inner working after a review of the currently available bioinformatics
tools in the domain. From there, following the presentation of several benchmarking studies,
we will detail some preliminary results concerning SDs from an evolutionary perspective –
obtained mostly thanks to ASGART – then conclude on some future development leads.
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Chapter 1

Hominoids, Evolution &
Segmental Duplications

1.1 Variation Creation and Repeated Sequences

Thanks to the recent progresses in sequencing technologies, genomes of individuals of every
member of the hominoids family1 have been sequenced at least to a draft level of quality.
These new data provide an overview of an unprecedented chronological depth on the his-
tory of the human genome, as well as on the mechanisms driving variation and speciation
concerning the hominoids.

A first observation has been the confirmation of the consistent presence in large pro-
portions of repeated sequences of various scales and characteristics, akin to those that have
been found in nearly all sequenced eukaryotes genomes to date2[19, 125, 12, 126, 18, 114,
88]. These peculiar sequences families – be them low-complexity and high-repeat counts, or
high-complexity and low-repeat counts – appear to be both disproportionally affecting and
affected by recombination hotspots and other breakpoints.

Another result stemming from the comparison of these genomes shed light on the main
ways of differenciation between these species. First, from a genetic perspective, a large ma-
jority of the coding sequences is nearly exactly conserved between these species. Thus, most
of the difference is resulting from alteration not of the coding sequences of the genes them-
selves, but rather of their expression and regulation networks. Divergences in intronic and
intergenic sequences thus explain most of the differences between hominoids. Second, at a
smaller scale and from a genomic point of view, single nucleotide variations are utterly rare3.
Most of the differenciation between once similar sequences is accounted for by larger scale
events, mostly indels or rearrangements.

1Namely, the human, the chimpanzee, the gorilla and the orangutan.
2According to previous empirical observations, the actual quantity of such sequences is probably underesti-

mated due to the challenges of sequencing and assembling duplicated sequences.
3An explanation for that could be the often deleterious consequences of such events.
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16 CHAPTER 1. HOMINOIDS, EVOLUTION & SEGMENTAL DUPLICATIONS

The main mechanism at work behind the genesis of these events is recombination, which
can be found in two major forms: either allelic or non-allelic. The former one generally
results in symmetric (or nearly symmetric) outcomes, where the two sequences involved ex-
change an equivalent quantity of genetic material. But the latter will typically end up in
asymmetric exchanges generating indels in the concerned sequences, with a strand gain-
ing material and the other one losing an equivalent quantity. If allelic recombination is a
common side-effect of homologous chromosomes pairing during the meiose, non-allelic re-
combination (or NAHR) is triggered under more restrictive conditions. It requires highly
homologous but non-allelic sequences as a substrate as well as a failure of correction systems
from the cell machinery to succesfully take place[1].

The dynamics that duplicated sequences typically assume as substrate during recombi-
nation events (Figure 1.1), combined to their presence in large quantities across the whole
genome, make them major players in the aforementioned observations – both as subjects and
catalysts – at scales varying from a few basepairs to several thousands at once. As subjects,
their high rates of mutation per generation compared to the genome average testify of their
volatility and thus their large sensitivity to variation creation processes, potentially affecting
the surrounding genetic material as well. As catalysts, their repetitive nature combined with
their layout make them an excellent substrate for incidents in recombination, leading to a
dominant influence in e.g. NAHR or replication error events.

(a)

(b)

(i) (ii) (iii)

(iv) (v) (vi) (vii)

Figure 1.1: (a) homologous recombination resulting in a crossover event; (b) duplicated
sequences are used as a substrate for non-allelic homologous recombination and lead to
indel or large-scale rearrangement events.

Within the hominoids clade in general and for the human in particular, Segmental Du-
plications (SDs) – a class of repeated sequences – appear to play a capital role in genome
plasticity and evolutionary dynamics. They exhibit characteristics, both in size, layout and
content, that make them ideal to partake in events of significant phenotypic consequences.
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We chose them as the focus of our study for their twofold consequences: first, as key elements
in the evolutionary stories of these species; second, for the role they have concerning human
health – both of these being the two faces of the same coin, i.e. their capacity to catalyze
variation creation.
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1.2 Segmental Duplications

1.2.1 Definition

Segmental Duplications (SDs) are defined as several repeated units (not necessarily on a single
chromosome), not transposons, at least 1Kbp long and presenting more than 90% of sequence
identity between each repeated unit (or duplicon)[114, 10]. Known to be mostly present in
human and African great apes genomes since their divergence from the Asian great apes,
they are rather recent and, for the human, make up ca. 5% of the genome. Their origin
is still unclear, and different models have been proposed to explain the origins[11, 85] of
pericentromeric and subtelomeric SDs origins on the one hand, and, on the other hand,
interstitial SDs.

By their very nature, SDs spread highly similar DNA fragments across thewhole genome,
in opposition to most other families of duplications, whose duplicons are organised in a tan-
dem fashion. They represent a good substrate for NAHR, displaying a very high tendency to
generate polymorphic inversions, insertions, and deletions – up to a ten-fold increase com-
pared to the average[114, 41, 35, 10]. Given the scale of the variations they may catalyze, they
play a role not only in structural variation, at the scale of the individual, but also, more gener-
ally, on the evolution of the species as a whole – a well-known example being the acquisition
of trichromatic vision by the primates[32].

1.2.2 Dynamic & Consequences

Two peculiar cases in which SDs play a major role have been discussed in the literature,
pointing to the potential further implications of this kind of duplicated sequences in peculiar
dynamics: (i) the specific distribution of SDs in hominoids, and (ii) their dynamics in sex
chromosomes.

Hominoids SDs

A first surprise that arose from the study of SDs was the considerable divergence between
hominoids SDs and other mammals SDs.

Spatial Distribution First, hominoid-specific SDs differ from other SDs by their lay-
out[85]. From studies on the most well-sequenced non-hominoid mammal genomes (namely
the dog, the cow and the mouse), most of the SDs are found arranged in large tandem array
zones, mostly gathered in subtelomeric and pericentromeric areas of their chromosomes.

In addition to the class of pericentromeric and subtelomeric SDs that they share with
other mammals, they also feature so-called duplication blocks 4. These blocks, instead of the
simpler tandem arrays layout of pericentromeric and subtelomeric SDs, exhibit an intricate

4Ca. 400 of them are currently identified in the human genome.
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structure. It seems to be the result of several rounds of duplications of the ancestral sequences
together with the addition and embedding of DNA fragments of other origins5. The end
result is a complex pattern of Russian nesting dolls duplicated duplications blocks specific to
hominoids[65].

Like tandem SDs, these blocks tend to be mainly gathered in subtelomeric6 and peri-
centromeric7 regions, although a large amount of them (ca. 30%) is located on other parts
of the chromosomes, distributed without an apparent pattern across the genome[10]. Inter-
estingly, pericentromeric and subtelomeric blocks seem to have evolved differently than the
other ones[63].

Content The hominoid-specific blocks of SDs also differ regarding their content. Whereas
the SDs shared by all mammals generally contain mostly tandem-like structures of relatively
simple, non coding sequences, these hominoid-specific blocks exhibit a far greater variety
of content. They include the original duplicated blocks as well as more recent sequences,
and can generally be found in both direct and reversed and/or complemented forms. More-
over, they are often (especially the intrachromosomal ones) enriched in non-expressed coding
DNA and pseudogenes, usually in the form of disabled or degenerated intron and exon se-
quences. Hominoids-specific SDs contains more genetic material that has – or had once –
coding properties, compared to the ones shared by all mammals, that are typically tandem
arrays devoid of coding material [85].

These two axis of differenciation suggests two distinct evolutionary patterns for homi-
noid SDs: first an older one, shared with the other mammals for the pericentromeric and
subtelomeric tandem-like SDs. Then a second one, specific to the hominoids, for their in-
trachromosomal duplications blocks. SDs falling within this second category are enriched
in coding, or once coding, segments, and offer an improved genome plasticity to the con-
cerned species[99, 51, 92]. They play a marked role in variation creation[10, 85], resulting
in a fundamental shift in the dynamic of this kind of SDs compared to the other ones.

Sex Chromosomes Evolution: Acquisition of Chromosome-Specific Structures

In addition to the previously detailed particularities, primates exhibit an other specificity con-
cerning their SDs. Publication of detailed maps of sex chromosomes of the human (both
X[101] and Y [118]), the chimpanzee [56], and the macaca [57] have highlighted unusually
large quantities of SDs on these chromosomes compared to the other ones in their genomes.
Due to the role they play in sex determination, sex chromosomes are highly-valuable targets
for the study of the explosion of SDs content in primates lineage.

Primates sex chromosomes have spawned from an ancestral pair of autosomes, when the
emergence of a male-favorable allele (SRY) inhibited local recombination for this pair of

5E.g. retrotransposons or Alu sequences.
6For the human, ca. 40% of these blocks are situated in subtelomeric areas.
7Still for the human, ca. 30% of these blocks find themselves in pericentromeric areas.



1.2. SEGMENTAL DUPLICATIONS 21

chromosomes and sparked the XY sex-determination system in mammals. Through several
large-scale inversions from the short to the long arm, this inhibition progressed in five waves
along the two chromosomes, resulting in their current state: two distinct chromosomes with
distinct evolutive histories and pressures, recombining only on their extremities (the PARs)
and otherwise evolving mostly independently [76].

They still share a set of housekeeping genes stemming from the proto-sex autosome that
require a stoechiometric dosage, forcing a presence on both of them. But otherwise, they
now display different gene content, with the Y chromosome only keeping a stable set of 34
genes [7] out of the 640 it once shared with the X [58].

The Y Chromosome: Both Conservative and Dynamic? As an haploid DNA frag-
ment exclusively transmitted from father to son through male lineages, the Y chromosome is
a unique feature in the human genome. Besides this peculiar transmission system, its archi-
tecture is also remarkable, as (i) 15% of the chromosome still displays a very high homology
with the X chromosome (Figure 1.2, pseudo-autosomal & X-transposed), and (ii) large SDs
account for 35% of its sequence (Figure 1.2, Ampliconic). Roughly half (in base pairs count)
of these SDs constitute eight large palindromes (Figure 1.3, Figure 1.2), P1-8. Not only are
these palindromic SDs very long 8, they also feature extreme identity rates between their
arms, from 99.94% to 99.997%.

Male specific (MSY)

Centromere

Heterochromatin

AmpliconicOther

Pseudo-autosomal

X degenerated

X transposed

P1P2P3

IR2

P4P5P6

P7

P8

Figure 1.2: The composition of the human Y chromosome[118].

As a whole, the SDs of the Y chromosome contains a large numbers of genes (60 of
the 78 genes known on the chromosome) involved in male fertility, many of them being
multi-copies located on the duplicons of the SDs.

But despite duplicated sequences being a supposedly very favorable substrate for a high
genetic activity through recombination [14], the human Y chromosome seems to display a
highly preserved base structure [127], hinting towards a strong selective pressure to conserve
this template.

8The arms of the longest palindrome, P1, are ca. 1.45Mbp long.
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Figure 1.3: A palindromic sequence (a): the two arms, minus two mismatches ((i) A-C
instead of A-T and (ii) T-G instead of T-A) are the reverse complement of each other, and
thus can recombine together (b) if the chromatin were to fold in a favorable position. They
are separated by a spacer, pictured in pink.

Although the MSY is not subject to traditional homologous recombination that would
help in preserving its integrity, it seems to be the seat of frequent non-allelic homologous re-
combination events[104]. As recombination can happen on non-allelic sequences displaying
a high identity rate, the large SDs of the MSY and its fragments homologous to the X are
both good targets for recombination to take place; respectively endogenously between SDs
duplicons, or exogenously with the X. Coherent with this background, high gene conversion
rates have been observed on the human Y chromosome, with some of these events covering
up to 10kbp at once with an occurrence rate of 2.9-8.4×10-4 events per bp per generation
[52] – to be compared with the conversion tract lengths of a few hundreds bp observed until
then in meiotic division [62].

Taken together, these multiple peculiarities of the human Y chromosome hint towards a
chromosome whose lack of an homologue to recombine with is compensated by an increase
in activity of both NAHR and gene conversion – both endogenously within the SDs and
exogenously with the X. Combined with a seemingly strong selective pressure, it results in a
dynamic chromosome having exploited SDs to maintain the integrity of the important genes.

Now, the question is to determine whether, given their phylogenetic proximity and the
fact their genomes share a quick enrichment in SDs, other primates Y chromosomes follow
a similar scheme. It is already known that macacas and chimpanzees Y chromosome ex-
hibit palindromic structures akin to the human ones, but further studies on these species are
hampered by lacks in sequencing and duplications mapping technologies.
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Gene Conversion

Recombination typically leads to formation of heteroduplexes; i.e. parts of a chromosome where the sister
chromatides exhibit non-complementary DNA sequences. The cellular repair mechanisms triggered by
these mismatches may result in gene conversion, another DNA shuffling mechanism[1].

The mismatching loci in the heteroduplexes will be excised from one of the sister chromatide, the other
one being used as a template to synthesize DNA to fill the gap resulting from the excision. The choice of
the strand being excised is seemingly random (although gene conversion tends to favor increasing the GC
content of the genome[33]), so it may either fixate the external material acquired from the homologous
chromosome during recombination or actually repair the chromosome to its original state. Depending on
the conversion direction, the event will find itself either fixated in the gametes, or just cancelled. Gene
conversion results in a non-reciprocal genetic information exchange from one of the chromosome to the
other, on lengths typically ranging from 10 to 10,000bp. It is a highly active process in recombination
hotspots or among paralogous sequences sharing a high identity rate[121].

(ii)

(iii)

(i)

Example of the gene conversion process. (i) This chromosome features an heteroduplex region, high-
lighted by the red frame. In the first scenario (ii), the repair mechanism used the first sister chromatide
featuring the original state of the region as model for repair; thus, the variation introduced is lost. In the
second scenario (iii), the new foreign fragment is used as a template, and the gene conversion occurs as the
new version is fixated on the chromosome pair.
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Chapter 2

Segmental Duplications Mapping

Given the important role played by SDs in recombination dynamics, it is no surprise that
they represent a hot topic; both from an applied perspective (mainly health, e.g. personalized
medicine or research) and from a more fundamental one (e.g. phylogenetic markers, recom-
bination prediction, modeling of gene evolution, etc.). But in order to be able to study SDs,
they must be mapped onto the studied genome. Once their position is known, their DNA se-
quences can be extracted and they can be compared with other genomic components, such as
genes position, regulatory network, recombination hotspots, and so forth. But problems that
may be, although tedious, easy to solve on small datasets, may become exponentially more
complex on longer one. Detecting highly – but not exactly – similar fragments of DNA in
or across genomes, whose typical size are in the magnitude of several billions of bases pairs,
is actually a real challenge.

The traditional approaches used to be in vitro ones, as they can work directly on the DNA
molecules without the need for the complex phase of sequencing, a process that used to be
expensive, error prone, and time-consuming – and still is, although in smaller proportions.
However, in vitro methods suffer from several practical drawbacks:

• laboratory, personnel, and the logistical tail requires are maintenance-heavy and costly;

• an access to the source DNA material is needed, which is not necessarily easy;

• their reproducibility is rather low, due to their analog nature;

• parallelization and automatization opportunities are close to zero;

• they offer a crude resolution, typically up to a few thousands base pairs.

Therefore, the use of computer programs to process genetic data appeared immediately
after the first sequencing processes were designed, as their digitization allowed for the devel-
opment of automatized, parallel, unsupervised programs to operate on these data.

25
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In silico methods regroup all processes able to find duplications based only on computer-
based processing of sequencedDNA, therefore not including hybrid methods, like computer-
driven post-processing of FISH images. However, as these methods work on sequenced,
digitalized DNA, they of course depend on the quality and precision of the sequencing pro-
cess. Unfortunately, there are no ideal sequencing pipelines today able to, being given any
DNA macromolecule, output an exact transcription of its nucleotide sequence – despite steady
progress in the field. A description of common sequencing methods and their compromises
will help understand the challenges and peculiarities of working on sequenced DNA, that are
reflected in many bioinformatics subfields.

2.1 DNA Sequencing

2.1.1 Current State

DNA sequencing is the field of research dedicated to develop and improve means of trans-
lation from DNA macromolecules to digital sequences of letters matching the base pairs of
the DNA. As of today, none of them can actually process long DNA fragments at once, and
most popular techniques of the last decade focus on sequencing shorter overlapping reads
that are then linked together to form an assembly of the longer sequenced fragment (Fig-
ure 2.1). These shotgun sequencing1 methods are mainly characterized by their reads length.
Depending on their technical characteristics, sequencing methods can be used either as de
novomethod, to sequence new genomes, or to sequence genomes of individuals of species for
which a reference genome is already available and on which the reads can be mapped.

DNA sequencing was pioneered by Frederick Sanger and his team in the late seventies
and their method[109] was the foundation for the first generation of sequencing methods.
This generation was architectured around the partial sequencing of multiple amplified frag-
ments of the target sequence. Each one would be amplified many times and see its nucleotides
determined individually by a partial polymerization of the denatured molecule with marked
terminators nucleobases. Once all of these fragments had been independently sequenced,
they would be chained together thanks to their overhanging parts to form the final result.

Many technical improvements were gradually introduced, and eventually allowed for the
first sequencing of an hybrid human genome assembled from multiple donors in 2001. This
method allows for precise sequencing of reads up to a few hundreds bases long, after which
errors rate increase too fast for accurate sequencing. However, it is slow, costly, and neither
fast nor easily parallelizable. It is still in use today in the same conceptual shape, mainly for
de novo sequencing thanks to its relatively long average read length.

The ever increasing need for faster and cheaper sequencing means gave birth to what is
commonly referred as the New Generation Sequencing (NGS) technologies, or high through-
put sequencing, due to their extremely fast working speed when compared to older processes.

1Comparing the spread of the countless short reads to the dispersion pattern of a shotgun.
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ATCGCAGTCAGGACGAGTGATGCCGCCCCGGTATGGTATATATCGGTCAAGTCGCGACGTCGACTGACGCATGACGTDNA fragment to be sequenced

Final sequenced fragment ATCGCAGTCAGGACGAGTGATGCCGCCCCGGTATGGTATATATCGGTCAAGTCGCGACGTCGACTTACGCATGACGT

        CAGGACGAGTGATGC

            ACCAGTGATGCCGCCCCGG

ATCGCAGTCAGGACGA

                                           CGGTCAAGTCGCGACG

Assembly of multiple read

                          CCTGGTATGGTATATATCGG

                                                        ACGTCGACTTACGCATGACGT

Sequencing error resulting in an

error in the assembled sequence

Sequencing error corrected

during assembly process

Read length

3× coverage Abnormally high coverage:

artefact or repetition?

                                            GGTCAAGTCGCGA

                                              TCAAGTCGCGAC

                                           CGGTCAAGTCGCGA

                                           CGGTCAAGTCGCGAC

Figure 2.1: Overview of the sequencing process. A DNA fragment is, due to technical lim-
itations, not sequenced at once; but rather sampled by multiple overlapping short reads, that
are then stitched back together in an assembly thanks to their overhang. As the generation
of these reads is never flawless, they all may contain errors. These errors can be fixed e.g. by
choosing the consensus when coverage is sufficient. But if a sequencing error happens in a
poorly-covered region, there is often no way to detect and fix it. Assembly algorithms have
difficulty telling apart dulications from artefacts in coverage due to the short read length. This
figure is but a schematic representation for clarity sake; the actual process entails hundreds
of thousands or millions of short reads spanning between dozens and hundreds nucleobases
(depending on the method), and the coverage ranges typically in the dozen.
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These methods take advantage of the already sequenced, assembled genomes to focus on
speed, parallelization, and cost-reduction. Instead of aiming for the sequencing of a few rela-
tively long fragments and assembling the resulting genome from there, they rather focus on
producing really quickly millions of short reads (typically up to 100bp) and produce the final
result either by aligning them on a known reference genome (which is more than often ob-
tained through Sanger sequencing), or by linking them together thanks to their overlapping
parts.

Therefore, they are mostly useful to study structural variations or genomes that are close
enough to an already sequenced one. For instance, a team working on the ancestral form of a
species could sequence ancient DNA and assemble the resulting reads thanks to the current-
era species genome, as they are expected to be very close. The most common method is
Illumina’s sequencing by synthesis[60, 48], although other methods offering different com-
promises between precision, cost, speed, throughput, and other characteristics exist, such as
pyrosequencing[96], ion sequencing[61], and others[48].

2.1.2 Toward Third Generation Sequencing

All NGS methods follow the same meta process, i.e. produce thousands or millions of tiny
reads, that are then aligned to a reference genome. Although these methods marked a great
leap forward in sequencing availability and affordability, they are handicapped by the short
length of their reads. It often restrains their use to cases where a reference genome, either
from the same species or from a very closely related organisms, is available to make sense of
the millions of available reads that would otherwise be next to impossible to assemble.

Indeed, a difficulty arises from the limited length of the reads, that make them not adapted
for studying or sequencing duplicated areas of the genome de novo . They are arduous to
assemble correctly, as assembly programs will have a hard time determining if highly similar
reads are actually different and part of different duplicons, or just random higher coverage of a
single area. Therefore, the need for sequencing processes resulting in longer reads arose. The
existence of such a process would greatly simplify and improve reference genome assemblies
and drastically enhance current assemblies of highly duplicated areas of these genomes.

Even if there is currently no solution completely solving these problems, two promis-
ing approaches, while not flawless, offer enthusiasming perspectives. Oxford Nanopore and
SMRT, additionally to offering reads lengths flirting with the dozen of thousands of base
pairs, also work closely to the natural in-vivo speed with a single molecule of DNA, therefore
bypassing the long and expensive phase of amplification of the previous methods: with these
new tools, one just needs an isolated and purified molecule of DNA. Although it will still have
to be broken down in multiple fragment if it exceeds the maximal read length, it will mark a
tremendous improvement and simplification over 2nd generation methods.
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2.2 Formalizing Duplications Detection

As previously detailed, segmental duplications are strongly suspected to play a very active
role in some species evolutionary story. But as mentioned earlier, they are only a single
type of duplicated sequences among many others: although this study focus only on SDs, all
duplications have a role to play; be it in evolutionary studies, genetics, health or forensics.

Thus, repeated sequences detection is an old domainwithin the frame of genome analyses.
From a theoretical perspective, all repeats of a string S defined on an alphabet Σ can be
formalized in the same way (Figure 2.2), as a set of n non-intersecting subsequences {si} of
length li, and separated by a set of n− 1 distances di. To comply to the biological definition
of an SD, each of these subsequences should also exhibit an identity rate with each other
greater than a given threshold h, either directly, or once reversed and complemented to
account for palindromic SDs. It is assumed that although a genome is typically physically
split in chromosomes, it can be, once sequenced, considered as a connex, unified search space
of a single large string. Chromosomes are then modeled as a set of indices pointing inside
this large string.

S

si

li

di

identity ≥ h

si+1

li+1

Figure 2.2: Schematization of two duplicons i and i+1 of a duplications family, according
to our proposed modelization of duplications.

The many different kinds of repeats – as well as their sub-variants – can all be described
by this model. Whole chromosomes duplications, for instance, are modeled with n = 2,
h = 100%, d = 0 (assuming the duplicated chromosomes are put next to each other in
the sequenced genome), l1 = l2, and Σ being the standard nucleobases alphabet. On the
other side of the scale spectrum, a microsatellites family would be described, using the same
S and Σ, with a count of repetitions n ranging from the dozens to the hundreds, a set {li}
of a handful of basepairs, a set of distances {di} scoring from zero to one, and a distance
threshold h between the duplicons close or equal to zero.

Table 2.1: The range of values accessible to the parameters of the model we present.

Nomenclature Characteristic Experimemtal domain

Σ Alphabet DNA, RNA, proteins

n Duplicons count 2 – 1000+

li Duplicons length (char.) 2 – 1,000,000+

hi identity rate (%) 100 – ∼70

di Distance (bp) 0 – 1,000,000+
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From these examples, one can see the first challenges any implementation will soon meet:
the multiple classes of repetitions cover a large range for each of these model parameters,
as shown in Table 2.1. A duplication can be made from two to thousands of duplicons,
either directly following each other or wildly spread across a genome, either identical or
degenerated, from wildly varying sizes, and so forth. Moreover, the search space itself (i.e.
S and Σ) can take many forms, from small prokaryotes genomes of a few dozens thousands
basepairs to large eukaryotes ones, ranging in several billions basepairs; or even on small
proteins encoded in the protein alphabet.

If it would be theoretically possible to design a “master” algorithm able to encompass all
of the use cases and detect any kind of duplications in any source material, it would however
reach algorithmic complexities levels that would make it close to useless for any real-world
application. Thankfully, the many distinct classes of duplications may be leveraged to form
a partition of the solution space, allowing for the development of algorithms and programs
specialized in one or several of these partitions only, and thus able to make use of optimization
methods that would conflict with other partitions constraints – should they all be satisfied at
once.

Let us now focus on the problem space relevant to our project, namely the search of
duplications in mammals and prokaryotes genomes; i.e. strings built from the nucleobases
alphabet, typically ranging in the billions of basepairs. We found two main computational
classes (although each of them could be split further) of duplications in this search space. It
should be noted that these classes were built around computational concerns, and although
they form a partition of the solution space as biological classes do, they do not coincide with
them.

The first class contains the duplications made, according to our model, of repetitive areas
exhibiting large repeat numbers (from the dozens to the thousands), small lengths (from a few
basepairs to a few dozens), small to nonexistant gaps between each other, and a very high
identity rate, equal or close to 100%. In a biological perspective, such repeats will encompass
microsatellites, minisatellites, satellites, poly-A tails, STRs, and other high-frequency, low
amplitude repeat classes. Historically, these kinds of repeats were the first to be discovered
and studied in the then-newly sequenced genomes, as their high frequency and identity rate
made them easily discernible with a naked eye.

The second class contains longer, more disparate repeats. Following our model, they
would be made of relatively low numbers (two to a few dozens) of large repeats (a few hun-
dreds basepairs up to several hundreds thousands basepairs) separated by large areas of ge-
netic material (from a few hundreds basepairs to several chromosomes) and display falling
identity rates, down to 70% in the most degenerated cases, e.g. pseudogenes. Interestingly
enough though, experimental observations showed that the discrepancies between duplicons
accounting for these low identity rates tend to be grouped, be it in islands of clustered alter-
ations or large insertions or deletions on some of the duplicons, the remaining parts exhibiting
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far higher local identity rates. This peculiarity is paramount to the establishment and opti-
mization of the later-detailed “seed-and-extend” strategy used by many duplications finder,
including the one we present in this document. This class overlaps with several biological
classes, including but not restricted to, LINEs, SINEs, SDs, gene families, and so forth. Due
to the looseness of their criteria, their detection and mapping raise several computational
challenges, as the large dimensions of the search space involved leads to a dramatic drop of
performance when confronted with real-world datasets. However, SDs are a member of this
class (Table 2.2), and so we must tackle the challenges it implies to pursue our study.

Table 2.2: Formalization of the SDs according to our model. Description of microsatellites
according to the same model is presented for contrast.

Characteristic Microsatellites SDs
Alphabet DNA DNA
Duplicons count 5 – 50 2 – 10+
Duplicons length (bp) 1-10 1000 – 1,000,000+
Identity rate (%) ~100 >90
Distance (bp) 0 1000s – 1,000,000+

2.3 Algorithmic Components

Algorithms typically rely on the reuse of already existing building blocks to avoid duplicat-
ing efforts and focus on their own goals by leveraging prior work. In accordance with this
principle, a number of fundamental theoretical concepts, algorithms and data structures are
shared among the many duplications finders currently published.

2.3.1 Distances

In our modeling of duplicated sequences, we introduced the biological concept of identity
rate between sequences, which is formalized thanks to the mathematical concept of distance.
A distance is a function d defining a (generally scalar) distance between any pair of elements
(x, y) of a given set, satisfying the following conditions:

• d(x, y) ≥ 0;

• d(x, y) = d(y, x);

• d(x, z) ≤ d(x, y) + d(y, z);

• d(x, y) = 0 ⇔ x = y.

The last point might be troubling, as two distinct duplicons formed of the exact same DNA
string will have their distance equal to zero. It is, indeed, true that their representation as



2.3. ALGORITHMIC COMPONENTS 33

strings are identical; however, the biological objects they represent are not. It should thus be
noted than a zero distance, or a 100% identity rate, between two duplicons only means that
they belong to the same equivalence class under the relation d(x, y) = 0 and that their string
representations are equals, although the two duplicons mamay be different biological objects.

Hamming Distance

A first distance used in the study of repetition is the Hamming distance[53]. It is defined as
the sum of differing characters in two strings defined on the same alphabet, and can obviously
be used only on strings of identical lengths. The biological identity rate is computed from
this distance by 100-complementing it and then weighing it by the length of the strings.
Practically, it can only be used on repetitions where nearly every duplicon is expected to be
of the same length than the others, this restriction limiting its use mainly to STRs and other
microsatellites structures. In our context, i.e. the study of SDs, where the length of every
duplicon is not expected to be identical to its brethren2, this metric is not usable.

Levenshtein Distance

When measuring the distance between strings of variable length, the most common metric
is the Levenshtein distance[105]. It is defined as the minimal number of single-characters
alterations required to transform one of the string into the other. Akin to the Hamming
distance, it is often weighed by the length of the shortest string and 100-complemented to
obtain the identity rate. Its fundamental difference with the Hamming distance is that it
takes into account all types of single-character edits, whereas Hamming’s only accounts for
substitution, i.e. changing a character into another one inside the considered alphabet (Table
2.3); all of its other characteristics are mere consequences of this feature.

Table 2.3: Comparison of the Hamming and Levenshtein distances over several sets of DNA
strings. Mismatches contributing to the distance are marked in bold.

ATTG ATTAC ATTA

ATTC AATTA ATA

ATTG ATTAC
Hamming ATTC AATTA Undef.

1 4

ATTG -ATTAC ATTA
Levenshtein ATTC AATTA- AT-A

1 2 1

To do so, Levenshtein distance also reckons indels in addition to substitution. This seem-
2Mostly due to the aforementioned clusters of indels.
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ingly slight difference makes it very polyvalent, but also far more complex to compute. It is
generally not directly used for duplications detections out of obvious concerns regarding the
complexity of its computations, but is generally the go-to tool to refine the results, after they
have been found with a heuristic method.

Needleman-Wunsch Algorithm

The complexity of the computation of the Levenshtein distance is high, both in terms of time
and memory consumption. The most used algorithm, the Needleman-Wunsch algorithm
[94], as well as its local-alignment aimed alter ego, Smith-Waterman [140], are based on
dynamic programming.

To compute the mathematically optimal alignment of two string S1 and S2 (example
Table 2.4), respectively n1 and n2 bp long, a matrix M ∈ R

n1+1×n2+1 is created. It is
then recursively filled according to a scoring system accounting for matches, substitutions,
and gaps opening and closing (Equation 2.1), with S(x, y) being the score penalty for the
substitution of nucleotide x to a nucleotide y, and d the score penalty for opening a gap. The
first argument of the max function corresponds to the introduction of a (mis)match in the
final alignment, the second argument to the introduction of an insertion in the first string,
and the last argument to the introduction of an insertion in the second string – or, conversely,
of a deletion in the first string.

The algorithm may be fitted more precisely to different tasks by playing on the scoring
system, e.g. by using different penalties for different nucleotides mismatches or adapting the
gap penalty to the problem at hand.



















M0j = d× j

Mi0 = d× i

Mij = max(Mi−1,j−1 + S(S1i, S2j),Mi,j−1 + d,Mi−1,j + d)

(2.1)

Table 2.4: Example of the Needleman-Wunsch algorithm being used to compute the op-
timal alignments of the sequences ACAA and ACTGA. The circled numbers mark the cells
used to compute the final alignment, i.e. ACA-A/ACTGA.

A C A A

0 -1 -2 -3 -4

A -1 1⃝ 0 -1 -2

C -2 0 2⃝ 1 0

T -3 -1 1 1⃝ 0

G -4 -2 0 0⃝ 0

A -5 -3 -1 1 1⃝
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To find the optimal alignment(s) from this point, a path is carved through M from the
bottom-right-most cell, moving one cell at a time, to the left, top, or top-left cell, depending
on which one was used in Equation 2.1 to compute the current cell value. In cases of branch-
ing, the multiple nascent alignments can be independantly explored. Finally, the definitive
aligned sequence(s) are built from this (or these) paths.

Both computational and space resulting complexities are O(n1 × n2) for the first widely
used algorithm, Needleman’s and Wunsch’s[94].

A later improvement, Hirschberg’s algorithm[54], further enhanced byMyers andMiller[93],
decreases memory consumption complexity to O(min(n1, n2)). But although its computa-
tional asymptotical complexity remains unchanged, it tends to, unfortunately, behave worse
than its predecessor on real-world data[36].

2.3.2 Seed-And-Extend

Evenwith these improvements, looking for similar areas in or across whole assembled genomes
by directly comparing their subsequences according to the Levenshtein distance is unfortu-
nately not within the realm of possible with the available algorithms and hardware – and this
situation is not expected to significantly improve[8].

Thus, heuristic algorithms are needed to solve the problem in acceptable computational
and space complexities. Naturally, an heuristic algorithm is never as good as an exact one;
but a peculiarity of the observed duplications in the already studied genomes across many
organisms points to a clue that heuristic algorithms might obtain excellent results despite
their imperfection.

As mentioned before, studying large duplications shows that mismatches and indels be-
tween their duplicons are not equally distributed among the length of the duplicons, but
tend to be gathered in relatively large islands of indels, the major remaining parts of the
duplicons being close to identical. Thus, a common solution adopted by many duplications
finding programs is to look for closely similar substrings in the reference string thanks to a
faster, heuristic algorithm. These restricted areas are then clustered and further processed
with more precise, albeit costlier, methods offering a better resolution on these subsets of the
solution space.

2.3.3 Data Structures

With its challenges stemming from similarity finding and strict or loose string matching,
many subfields of bioinformatics (and, especially, duplications finding) intersects strongly
with stringology. Besides the aforementioned distances, quite a few data structures stemming
from there proved to be of great usefulness.
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Suffix Trees

As previously mentioned, a common basis for loose duplications finding algorithms is the
seed-and-extend strategy. The underlying concept is quite simple, and close to divide-and-
conquer. It splits the problem in two sub-problems: the first one is to identify exactly match-
ing substrings of the reference genome; the second one is to cluster or link together these
identical substrings to detect islands in the source material exhibiting a circumstantially low
distance between each others, working on a drastically reduced subset of the problem space.
During the first phase, searching for identical regions requires fast algorithms using little
memory, as it is performed on the full problem space – which might scale up, in the case
relevant to our study, to the multi-genome dimension.

A commonly encountered structure filling these criteria is the suffix tree. A suffix tree[141]
(an example is featured in Figure 2.3) is a tree encoding all the suffixes of a given reference
string. It is built so that, starting from the number n found on one of the leafs, tracing the
path back to the root while concatenating in reverse order the strings found along the edges
will build the nth suffix of S, or S[n...].

Many methods to build such a tree from a reference string have been developed [86, 5,
136, 68, 69], but they all result in a tree satisfying the following criteria:

• every edge is labeled with a substring of the original string;

• every leaf contains the index in the reference string of the string created when con-
catenating letters found on edges from the root to this leaf;

• every node has at least two children;

• there are exactly as many leafs as there are characters in the indexed string.

24

$ CA$

0

13

$ CA$

5

$ CA

A

MACACA$

CA

Figure 2.3: Simple suffix tree for the word “Macaca”. A dollar sign has been concatenated
to mark the end of the indexed string.

Once a query, or needle, string is established, searching for all its occurrences in the
reference string is done with a simple tree traversal (Figure 2.4), whose time complexity is
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O(n) regarding the length of the query string. If the construction of the tree itself might
be costly, what matters is that its final spatial complexity is linear regarding the size of the
reference sequence, and that its time of construction is small compared to the whole running
time of the duplications finding program using it, conditions that are satisfied thanks to the
most recent progresses in the matter[37, 116].

24

$ CA$

0

?

13

$ CA$

5

$ CA

A

MACACA$

CA

Figure 2.4: An example search of all the occurrences of “ACA” in the reference string
“MACACA” using a suffix tree. Starting from the root, edges forming the query string
“ACA” (teal) are followed, ending at the node marked with a red quotation mark. From
there, the recursive exploration (in purple) of all children nodes to their end yields the position
(in orange) and content (in crimson) of all substrings starting with “ACA” in the reference
string, namely ACA$ starting at position 3, and ACACA$ starting at position 1 (the dollar sign is
used as an end-of-string marker).

But however efficient they are, suffix trees suffer from some inherent flaws that make
them costly, as well as suboptimal in our case. First, the tree requires at least as many nodes as
there are nucleotides in the referenceDNA string. And each node stores some data, such as e.g.
the letter it refers to, pointers to its children, potentially to its father, and so forth. Therefore,
this payload size is a linear coefficient multiplying by so much the memory consumption of
the tree regarding the length of the reference string.

Moreover, a tree traversal, although an algorithmic very efficient operation, hides a major
flaw concerning current most-used CPU architectures: random accesses in the large memory
block(s) in which the tree is stored are very cache-unfriendly operations, preventing the
program to use the CPU at the best of its capacities. The situation concerning these problems
was improved by the development of the suffix arrays [84], a derivative of suffix trees. They
are a very simple data structure, a flat array the size of the reference string, where each cell
contains the ith prefix of the reference string taken in lexicographic order.

Suffix Arrays

Although they offer less opportunities of use than the suffix trees, they retain the main func-
tionality required in our context, i.e a fast search for exactly matching substrings of a large
reference string. A suffix array is made of the indices of all the suffixes of a string, but sorted
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lexicographically (example Table 2.5).

Table 2.5: The suffix array for the word “Macaca”. Typically, out of memory concerns,
only the second column (i.e. the actual suffix array) is stored; the elements of the third one
are built on the fly when needed.

Index Suffix Array Corresp. substring in reference

0 5 A

1 3 ACA

2 1 ACACA

3 4 CA

4 2 CACA

5 0 MACACA

In a perspective limited to exact substrings matching, they kill two birds in one stone.
First, they only need exactly one word (typically a 32bits one, enough to index genomes
up to ~4.29Gbp) per nucleotide in the indexed genomes. Second, they have a more cache-
friendly behavior than the suffix trees, as they are more compact than the suffix trees and are
typically linearly stored in memory. Thus, a larger part of them can fit in the same number
of cache lines. However, this peculiarity would be close to useless if a search operation were
to access random parts of the whole array. But a search operation on a suffix array is typically
made through a binary search algorithm. The binary search algorithm (a type of dichotomic
search) starts at the middle of a sorted array, and compares the element there to the target
with a boolean function defined on the space of the array elements. Depending on the result,
it will then reiterate the same operation either on the remaining top or bottom half of the
array when the comparison is respectively “less than” or “greater than”. Once the searched
element has been found, adjacent elements are tested for equality and included in the result
accordingly.

Binary search time complexity is logarithmic [40] and the algorithm is rather cache-
friendly: the first queries hit far away parts of the array, but the geometrically decreasing
size of the partitions allows a better use of the cache lines. Of course, if the binary search in
the array is cache friendly itself, it implies no such thing for the element-to-query compar-
isons needed at each step of the search. But these comparisons being simple string-to-string
comparisons on relatively small strings (typically ten to twenty characters), they can be ac-
celerated thanks to the use of SIMD operations, found in instructions sets such as SSE or AVX
for x86-64 or NEON for ARM, available on any reasonably recent CPU.

Suffix arrays and suffix trees both feature O(n) space consumption. However, thanks
to the lower overhead of storing an array compared to a tree, suffix arrays practically use
far less memory than suffix trees, up to a ×20 factor depending on how the tree storage is
implemented – which has an impactful gain when working on real-world large datasets. Re-
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garding time search, for a query m letters long, suffix trees feature an O(m) complexity,
whereas suffix arrays features an O(logn) one, thanks to the algorithmic efficiency of the
binary search. However, typical real-world applications within our context (i.e. long du-
plications search through seed-and-extend strategies) will typically feature huge numbers of
searches of relatively small strings (typically in the range of the dozen of characters). In this
frame, the asymptotic complexity is not as relevant as the corner case of small strings search,
in which both suffix trees and suffix arrays seem to perform well enough. On a side note, this
is expected, as the logarithm of the length of the human genome is n ≈ 21.9 and that using
k-mers of m = 20bp are common; in this case, the asymptotical complexities are thus nearly
equal. Thus, at genomic scales, the lower memory consumption of suffix arrays is a neat gain.

Table 2.6: An example search of all the occurrences of “ACA” in the reference string
“MACACA” using a suffix array. A binary search (first column) is performed on the suf-
fix array (third column), using as a comparison operation the lexicographical comparison
between the reference query on the one hand, and the substring of the reference string start-
ing at the considered position. The binary search yields the range [1-2] (second column),
corresponding to the elements [3, 1] in the suffix array, pointing to the substrings of the
reference query (ACA starting at pos. 3 and ACACA starting at pos. 1) starting with “ACA”.

Comparison result Index Suffix Array Corresp. substring in reference

< 0 5 A

= 1 3 ACA
= 2 1 ACACA
> 3 4 CA

> 4 2 CACA

> 5 0 MACACA

The last aspect to discuss is the spatial and computational complexities of the array con-
struction. Although it is an interesting question and improvements are still being intro-
duced[80], what really matters in our use case is that algorithms featuring linear complexity
(in relation to the reference string length) in both computational and spatial complexities are
available, which is indeed the case[90]. Obviously, any improvement is most welcome, but
as in our use case, the construction time is relatively short compared to the total run time, ad-
vantages concerning the latter are, albeit welcome, not as relevant as advantages concerning
the former.

2.4 Existing Tools

After this overview of the common foundations shared by many programs dedicated to du-
plications searching, let focus now on a tour of the existing programs, and detail why we
developed a new solution for our use case in spite of the current offering.
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2.4.1 Global Alignment Analysis

A popular method to deal with duplications is the analysis of global DNA material alignment
with locally developed, roughly described and often unpublished programs. They all seem
to follow the same general scheme. First, given a sequenced DNA strand, it is run through
a local alignment software, that is designed to look for local similarities inside a DNA string
by performing an alignment of the string with itself. Such programs include, among oth-
ers, BLAST[3] and its variants[4, 21, 97, 81], and aligners like MUMMER[28], YASS[95],
or LAST[67]. Then, the resulting data can either be plotted as a dotplot and be processed
manually, or by a custom script to gather the found areas in similarity islands. This overview
does not detail the differences between the many use cases requiring such a pipeline. One
may be looking for gene families, traces of ancient chromosome duplications, degenerated
pseudogenes, and so forth, resulting in many different constraints and technical choice. Such
an example is the use of the nucmer[91, 27] alignment tool, shipped with the MUMmer tools
suite[75] and that may be diverted from its intended use of genome alignment to detect sim-
ilarities inside a given input.

WGAC is the most used, published [13], pipeline for SDs mapping. It first filters out com-
mon repeats thanks to RepeatMasker[119], before aligning the remaining sequences against
themselves. From this alignment, it differentiates the unique DNA material from the dupli-
cated one. Common repeats are then reintroduced to produce the final result.

But the bottleneck all these methods share is the need for an alignment of the input
sequence. If this method can scale without too much problem with DNA strands up to a
few hundreds thousands basepairs long, their squared asymptotical computational complexity
make them fall flat at larger scales. Thus, these methods are not fit for our use case for this
very reason, as we need a solution that may scale up to multiple genomes.

2.4.2 Database-Based Tools

RepeatMasker[119] and its improvements[16] or wrappers[22] have another strategy. They
call upon experimentally established database of known repetitions of many scales, then im-
plement an approximate string matching algorithm to locate exact or slightly degenerated
occurrences of the sequences contained in the database in the concerned genome.

Outside of any technical concerns, the main reason we cannot use these tools for SDs
mapping is that they only work as well as their database is exhaustive. But as we wish to map
duplications de novo, i.e. without any prior knowledge on them outside of the constraints we
set on their length and identity rate, we cannot restrict ourselves to working with duplications
similar to the ones that are already known. In fact, these kinds of tools are not designed
for duplications discovery; their main intended use case is to mask known and low-signal
repetitions from studied DNA to avoid confusing or slowing down other tools, further down
the processing pipeline.
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2.4.3 NGS Data Processing

Another class of tools and methods is designed for the search of duplicated areas from raw
sequencing data[13, 12, 31, 124, 9]. As previously detailed, NGS technologies typically pro-
duce humongous numbers of overlapping small reads of the sequenced DNA strand. The
average number of reads covering a given position in the final assembled genome, the cov-
erage, generally ranges in the few dozens for an ideal sequencing run. However, duplicated
sequences will tend to confuse assembly programs, leading to highly repetitive areas being
underestimated, misassembled and merged together in smaller areas than the real ones, but
exhibiting a disproportionally high coverage.

Several programs, some of them typically delivered as part of the sequencing machines
and their processing pipeline, can exploit this information to detect the repeated areas. How-
ever, they can only detect highly repetitive areas, with a period of repetition of the same
magnitude than the reads length and are rather imprecise for various reasons. First, they
indirectly work at the read scale, around 100bp. Second, they typically implement statisti-
cal methods based on the variation of the coverage signal: if high variations can realistically
be safely detected and attributed to repetitions, it is hard to determine whether variations
of smaller amplitude should be attributed to repeated areas with a lower repeat count or to
other artefacts during the sequencing process. Conversely, low copy-number repeats will
only produce a weak signal and thus may easily go undetected. Finally, once they have de-
tected duplications, it is hard to map them to their actual position in the genome. Last but
not least, they require access to the very large dataset of raw sequencing data, as well as to
computational facilities dimensioned to the processing of this quantity of data. Naturally,
although they do not fit our own use case, these tools r canonical use, i.e. helping in the
assembly of the sequenced genomes.

The most used published pipeline, WSSD [12] locally align all the original reads against
the final assembled genome, and search for regions exhibiting a significantly higher coverage
than the rest of the genome. These regions are then deemed as putative SDs. Its complexities,
both computational and spatial, are obviously huge; moreover, it requires an access to the
original sequencing reads, a typically very large and unwieldy dataset.

2.4.4 Short Repeat Searchers

The tools we put in this category are designed to detect repetitions falling in the first partition
of the problem space we proposed: short, numerous repeats, sequential or close to sequential.
Although they do not target the duplications we are looking for, we still mention at least
some of them, if only for their ubiquity or for the originality of their approach. Moreover,
even if they can not be used for the direct detections of the SDs we are looking for, they may
prove useful later on. Ineed, as we previously noticed, SDs – especially in primates – come in
several classes and contain different types of genetic material. Thus, being able to identify the
content of micro-repetitions inside these macro-repetitions is very helpful when considering
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SDs from a biological perspective.

Tandem Repeat Finder (TRF)[17] is one of the first tool developed for de novo generic
detection of tandem arrays, or tandem duplications. It does not require any previous infor-
mation on the period, count, or content of the repetitions to detect, and work under the
Levenshtein distance – although it is not explicitly mentioned in the accompanying paper.
It works by sliding a window across the reference DNA string to find exact matches close
enough from each other to be considered as duplicons. It then makes use of a probabilistic
modelization based on a Bernoulli distribution of mismatches between duplicons to find the
non-exactly matching duplicons. However, its ability to detect sequential repeats according
to the Levenshtein distance is also its curse, as it leads to a large complexity of the algorithm,
making it unpractical for the detection of repetitions with large units.

mreps[70] features a better computational complexity allowing it to run on larger se-
quences, but at the cost of only being able to detect repetitions according to the Hamming
distance, i.e. without neither insertions nor deletions between the duplicons, only substitu-
tions. It finds all the duplicons matching with up to k mismatches, then applies an heuristic
processing on this dataset to find the most fitting period, and then filters out the statistically
insignificant repeats. The process is repeated for all k up to a user-set upper boundary K 3.
The results of every iteration are then merged together to form the final result.

Spectral Repeat Finder (SRF)[113] takes a novel approach, in which the studied DNA
string is considered as a time series, i.e. a discrete signal. From this perspective, SRF com-
putes the power spectrum of its discrete Fourier transform over a window sliding along the
input string. In these spectrograms, noticeable peaks might point to repeat with a number
of basepairs per duplicon equal to the corresponding period4. From there, a closer look at
the sequences that triggered the peak detection with an heuristic method will determine the
repeated unit within these windows. Not only is this method very easily parallelizable (both
on CPU and GPU), but it also offers an elegant solution to finding repeated areas under the
Levenshtein distance (rather than the more constraining Hamming one) thanks to the per-
missivity resulting from the mapping of the problem from the discret space of stringology to
the continuous one of signal processing. Some drawbacks are the quick fading of the signal
for repetitions with low copy counts, the difficulty to realistically work on very large win-
dows, and the inability to detect non-tandem repeat, whose signal would appear aperiodic.

PRAP[22] is designed to detect repetitions in prokaryote genomes. Rather than develop-
ing a whole new tool from the ground up, the authors designed a convenient wrapper around

3That should be quite small, as the kind of repetitions searched by mreps typically ranges in the dozens of
basepairs per duplicons.

4Although a repeat of enough duplicons will always result in a peak, the reciprocal is not true.
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several existing tools: MegaBLAST[143], RECON[78], VisCoSe[120], RepeatMasker[119],
and Artemis[106]. PRAP is designed to work on prokaryotes genomes and so is tuned to
their peculiarities. It uses an approach that could not scale to the dimensions of the primates
genomes concerned by our project (especially due to the necessity of MegaBLAST-ing the
studied genome against itself ). However, it highlights an important point. A tool should,
besides its technical capacities, always take care of offering a convenient handling to its users
and be interoperable with its surrounding ecosystem.

Red[46] is another original approach: it uses machine learning to detect highly repeti-
tive areas in a reference DNA string. Schematically, Red works in three phases. In the first
one, a score is assigned to each nucleotide in the reference query, equal to the numbers of
occurrences in the genome of k-mers identical to the one starting at its position5; the signal
obtained over the whole genome is then smoothed using a gaussian blur, i.e. a convolution
of a gaussian curve. In a second phase, the resulting signal is used to mark each nucleotide
as either being, or not, part of a duplicated area depending on the local smoothed score. A
HMM automaton featuring four outputs (high/low probability of the current nucleobase to
be in a non-repeated/repeated area) is then fed this crude segmenting to train on. In the third
phase, the automaton is run on the whole genome to give a better, more precise segmenting
of the sequence between repeated and non-repeated areas. Akin to SRF, this method al-
lows the detection of repeats under the Levenshtein distance, thanks to the translation of the
problem to a continuous space. On the upside, Red is very fast and massively parallelizable;
and when compared with other methods, it offers excellent results according to the author’s
benchmarks. On the downsides, it relies on a high count (to form a statistically significant
peak in the signal) of spatially close (for the signal to live through the blurring operation)
duplications for an effective detection.

Similarity Chaining-Based Approaches many other tools have the same goal, e.g.
PILER[34], DUST[89], etc. However, they all display the same conceptual bottleneck that
prevents their use at the multi-genomic scale. As they rely on the exploration of the results
of a local alignment program, they display an indirectly high complexity, penalizing their
global runtime by too much to be realistically usable for large genomes studies.

2.4.5 Long Duplications Searchers

In the previous section, we have described tools that offer a good overview of the field, either
for their ubiquity, their legacy, their large use or the innovativeness of the approach regarding
the detection of high frequency, low amplitude, high repeat count regions in a given DNA
string.

5
k is typically chosen in the order of magnitude of the dozen.
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Let us now focus on programs designed to work on the subset of the solution space of
duplications finding relevant to our study, i.e. the detection of large amplitude, irregular, low
repetition count and degenerated repeats. To the knowledge of the author, the published
large-scale studies dedicated to the segmental duplications (or other large duplications)[19,
13, 12, 24, 23, 114, 10, 115, 85, 45, 144] never used a pure digital approach on the assembled
studied genomes. Methods used are typically statistical analysis of the reads coverage during
assembly (WGAC[13] and WSSD[12]), in vitro methods (and the consequent low resolu-
tion), whole genome comparison, either with BLAST and its derivatives or by dotplots, or a
combination of all of the above. But although there are not many of them, some tools have
been designed to detect long, sparse repeats.

Long Repeat Finders This family of programs is conceptually very close to the afore-
mentioned alignment-based ones; their main difference being that they target longer dupli-
cations and are thus processing local alignment results according to this goal. A representa-
tive member of the long repeat finders programs family, OSFinder[50] is designed for the
detection of orthologous segments among chromosomes or genomes. It follows a four steps
algorithm: first, anchors, or seeds, i.e. short, nearly identical, orthologous segments must be
fed to the algorithm. They can be found by BLASTing the reference query against itself
or a target, by manually finding orthologous genes among the studied sequences, or other
similar methods let at the discretion of the user. In a second time, these anchors are processed
to detect the collinear ones, i.e. those following a similar distribution in the same direction.
They are then chained together, before being output as orthologous segments.

Other programs from the same family, e.g. ReD6[6](not to be mistaken with the afore-
mentioned Red), DAGchainer[49], RECON[15], or Cinteny[117] follow a similar global
scheme: chain together in larger regions the seeds provided by another program. Among
them, the peculiarity of OSFinder is the use of a Markov chain model to automatically dis-
criminate really orthologous segments from “accidentally” similar segments, in order to avoid
an hypersensitivity of the results to algorithm settings defined by the user, which would re-
sult in imprecise results. Both orthologous segments and tandem gene arrays are close to SDs
in our classification of duplications, they only exhibit typically lower identity rate and repeat
counts. So the mapping of SDs with programs designed to detect these kind of repeats would
theoretically be possible.

However, a common constraint of these families of programs (although we only men-
tioned a few of them, it remains true for the others the author knows of ) is that they first need
to be fed anchors for the joining algorithms to work on. A first solution to find anchors is
to use known shared elements among the duplicated units, e.g. orthologous genes or known
preserved sequences. A second one is to perform a BLAST (or another aligner) of the query
sequence against itself, and use its result as anchors. But none of these solutions is usable in

6ReD is aimed toward the detection of tandem gene array rather than orthologous segments, but the two
tasks are computationally extremely close.
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the case of de novo SDs mapping; the former because it would require a priori knowledge
concerning the content of the SDs to be found, and the latter because if running BLAST on
a relatively short genome (e.g. theA. thaliana genome mentioned in ReD publication) is easy,
doing so between several mammals genomes would not scale nicely. Therefore, we can not
use these families of programs in our use case, as they either require discouraging computing
times or a priori knowledge concerning the searched duplications.

Vmatch[135] is an unpublished, recently open-sourced, set of programs whose manual is
available on the author’s website. It is designed – among other tasks irrelevant in our context –
for the detection of similar matches among sequences, and their subsequent clustering in du-
plications families. Vmatch includes algorithms from several older tools (that we thus will not
detail individually here), including but not restricted to REPuter[74] and RepeatFinder[139],
respectively used for the matches detection, and for their subsequent clustering in matches
families.

In a typical workflow of SDs mapping, two subsystems of Vmatch would be used. First,
the sequence would be searched for high similarity, non-exact matches thanks with the suc-
cessor of the REPuter algorithm included in Vmatch. Then, this long list of two-armed fuzzy
matches would be clustered together using the algorithm described in the RepeatFinder pa-
per.

The REPuter algorithm for detection of highly similar matches in a reference string first
starts by finding exact maximal repeats, using a suffix tree of the input string. Although
REPuter can extend exact matches under both the Hamming and Levenshtein distances,
only the latter is of interest to us due to the presence of indels in SDs duplicons. To this end,
REPuter uses an algorithm featuring anO(n+z×k3) (n being the length of the input string,
z the number of seeds and k the maximal number of errors) computational complexity. It
extends both ends of each seed, while ensuring that the local alignments of these extensions
stay under a k errors threshold. This computational complexitymay remain tolerable on large
datasets as long as the identity rate stays very high (and so, k3 stays low) and the number of
matches to extend is not too high compared to the length of the input string.

Once these matches are found, they have to be clustered together for two reasons. First,
SDs are often found in families of more than two elements; and this grouping carry crucial
biological information that would be lost if they were to be only reported in pairs. Second,
assuming a k set to 100, SDs featuring larger numbers of errors would not be found. Or,
given that SDs are defined with an identity rate proportional to their length and not with
an absolute number of errors, longer SDs will typically exhibit larger total number of errors:
if a 1,000bp long SDs family cannot contains more than 100 errors between its duplicons, a
100,000bp one could display up to 1,000 errors between its duplicons. Hence, longer SDs
will be cut in several smaller pseudo-SDs, that will need to be clustered in their larger actual
parent.

According to its documentation, Vmatch uses an algorithm based on RepeatMasker,
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which is built around four main steps. First, all the matches fed to the algorithm are sorted,
first according to their first coordinate, then their second. Then, all matches either overlap-
ping or closer to each other than a given threshold are merged together in a virtual segments
table. In a third time, the matches are attributed class identifiers that are then echoed on the
virtual segments they are part of, these classes being merged if they are involved in the same
virtual segment. Once this third step is done, the fourth and last one is to BLAST all the vir-
tual segments against each other, merging again classes exhibiting a close enough E-value.
Outside of the BLAST step, this algorithm has an asymptotical computational complexity of
O(p2), p being the number of matches. But given that the number of matches is arguably
linearly increasing with the length of the input string, the computing time is expected to
asymptotically grows roughly in the square of the input sequence length. Combined to the
asymptotically lower (O(n)), but still practically present computing time of the BLAST step,
it adds up to a very time-consuming algorithm.

Vmatch was the most promising tools of all the ones we tried, and worked well on small
datasets (i.e. up to a few dozen of millions of basepairs). However, if the program used
to search for matches continued to scale up without much difficulty on larger datasets, the
one clustering the matches found in duplications families soon showed its limit due to its
computational complexity.

Moreover, none of the Vmatch sub-tools used in our pipeline was implemented in a par-
allel manner. Therefore, we were not able to make the best use of our computing resources,
as its memory usage prevented running more than a few instances of Vmatch on different
datasets at once, resulting in a dramatic underuse of available CPU power. Therefore, we
decided to develop our own program to tackle the problem at hand.

2.5 Objectives

2.5.1 Computational

As seen previously, the tool fitting the best the problem of the large search space of duplica-
tions mapping in genome (Table 2.7) proved to be Vmatch. However, although it displayed
no marked difficulty to pre-process large datasets, its clustering abilities – a feature required
for our study – proved to be too weak. Moreover, Vmatch is relatively memory-hungry
and is not able use efficiently modern CPUs, as it is capable neither of multi-threaded nor
multi-process operation.

We therefore decided that the best course of action was to develop a new tool that would
be designed for the detection of reasonably degenerated, long, non-tandem repeated se-
quences, taking into account the past experiences and satisfying the trifecta of:

• de novo duplications detection, without any a priori knowledge on the duplicons to
detect;
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Table 2.7: Summary table of the projection of the considered tools characteristics on our
requirements.
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Target Sequences
size 1kbp – 1Mbp ✓ ✓ ✓ ✓

repartition Scattered ✓ ✓ ✓ ✓

degeneration ≥ 90% ✓ ✓ ✓ ✓ ✓ ✓

de novo Yes ✓ ✓ ✓ ✓ ✓ ✓

clustered Yes ✓

Algorithm
comp. complexity Genome scale ✓ ✓ ✓

mem. complexity ∝ O(n) ✓ ✓ ✓ ✓ ✓

parallel Yes (✓)

• ability to work efficiently at genomic scales, with the implied use of parallelization and
distribution;

• tunability to multiple search criteria, depending on the precise use case.

We also wanted this future piece of software to be easy to handle and transparent for
the users, i.e. it should “just work”, not be cumbersome to use, and it should blend in their
pipeline without hassle. This implied two main design concepts.

On the one hand, from an ergonomic point of view, the program has to be easy to use,
and well documented, providing examples and a clear manual. When used, it should give a
straightforward return on the current process, what was done, or what error happened.

On the other hand, from a technical perspective, it should use common formats for input
and output, and should thus be easily integrated in any pipeline. And last, it should be reliable
during runs, so that the user would not wait pointlessly for several hours to discover the run
being thrashed by a memory access fault, a concurrency error, or other mishaps.

2.5.2 Biological

Segmental duplications are supposed to play a large role in the creation of variation in primate
genomes, thanks to their peculiar layout and composition. But their role is not limited to
variation creation. Indeed, studies of the human Y chromosome strongly suggest that they
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play a role in preserving the integrity of major genes implicated in reproduction, that would
otherwise be threatened by the absence of homologous recombination on the Y chromosome
for lack of a sister chromosome. However, study of SDs is currently limited by the lack of
adapted sequencing technology that would be able to sequence without ambiguity these high
identity, strongly repeated sequences.

From the review of the promising new generation of sequencing technologies, it is ex-
pected that newly, precisely sequenced long fragments of previously nearly inaccessible parts
of the genome will start to flow in large quantities, thanks to the ever-decreasing price and
difficulty of sequencing, combined with the potential discoveries that will not miss to be
fueled by this newly-found trove of data.

It is accepted that SDs play a major role in the dynamics observed on the human Y chro-
mosome. The gene conversion happening between them acts similarly to homologous re-
combination, and with the same consequences: giving the haploid Y chromosome the oppor-
tunity to create variation at the individual level, while preserving its integrity at the species
scale.

From there, we want to determine whether this phenomenon is observable in the other
species close to the human. Is a bias toward SDs enrichment systematically exhibited in XY
chromosomes? If so, are the ZW chromosomes, from the eponymous sex-determination
system, sharing the same bias? As the ZW sex-determination system exhibits a similar kary-
otypic differenciation between males and females (albeit reversed), it might be subject to the
same constraints, and thus have a similar solution. Finding such enrichment in SDs in other
haploid chromosomes would be a strong hint towards NAHR and gene conversion among
SDs playing a crucial role as a substitute to recombination in various evolutionary mecha-
nisms.

To this end, we intend to expose the SDs content of the currently sequenced sex chromo-
somes publicly available in databanks, as a first step towards answering this larger question.
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ASGART

3.1 Introduction

ASGART (A Segmental duplications Gathering and Refining Tool) is the new program we
developed [30]. It is designed from the ground up for the detection of long, sparse duplica-
tions, and aims to be as easy to use and as user-friendly as possible, all the while leveraging
efficiently the underlying hardware. The challenges faced were manyfold.

The first one, naturally, is to develop an algorithm that answers the biological problem at
hand. This requires a thorough understanding of the problem, from which an algorithmic
solution can be built.

The second one is to implement the designed algorithm in order to take advantage of
the available computing resources. The current trend in CPU evolution is for cores number
to increase, while the individual performances of these core tend, comparatively, to improve
slower than they used to. This trend is attributable to many factors, but the main ones are
(i) a need to keep the thermal enveloppe small enough to be dissipated; (ii) the restrictions in
size imposed by the need to keep the chip in sync; (iii) the increasing technical difficulties in
thinning the engraving width of these devices. Therefore, the best current bet to develop a
piece of software that must be able to efficiently use current and upcoming chips is to design
parallel algorithms. Moreover, modern supercomputers generally tend to follow a clustered
architecture, where multiple compute nodes are unified behind a single software point of
access, and parallelizable programs will generally be able to use more of these nodes at once,
thus reducing the effective computing time.

Third, interoperability and ergonomy are a must. It is important to ease the work of the
final users by abiding by the standards of the field regarding input and output formats, so that
programs can be chained together in compute pipelines. The more seamless the process is,
the more the user will be able to focus on its actual work instead of struggling with format
conversions. Also, a tool should ideally feature a low entry bar, letting users use it without
hassle, while still letting more possibilities available through advanced options.

Last, data exploitation and exploration are a challenge in themselves. With the very large

49



50 CHAPTER 3. ASGART

dataset typically featured in genetic study, especially at the sequence level, a simple analyse
by a human alone is nearly impossible. Therefore, programs should provide a way to display
their results to the user, in a format adapted to the problem at hand.

3.2 Algorithm

Let us now focus on the algorithm we devised to answer the problem. The core concept
behind ASGART’s algorithm is simple. Given a minimal identity rate and length charac-
terizing a segmental duplication, there is a minimal length such that two substrings of this
length in each of the duplicons exactly match (Figure 3.1).

l

d

Figure 3.1: Illustration of the worst possible case for mismatches repartition, where mis-
matches (represented as red wedges) are homogeneously laid out in the duplicon. For a min-
imal duplicon length of l bp and h identity rate, the worst spreading case is one mismatch
every d = (100− h)× l

100
bp on the duplicons.

For example, given a minimal length of 100 bases and an identity rate of 90%, it is guar-
anteed that there is at least a 9bp long substring common two by two between the units
the segmental duplication. However, in actual cases, dissimilarities between repeated units
tend to be grouped in clusters of indels, and SNPs are seldom homogeneously distributed
among repeated units. Thus, ASGART’s strategy is to, first, gather duplications between
two fragments by looking for subsequences from the first fragment that exactly match other
fragments in the second subsequence. It then clusters them together to find the repeated units
composing the SD, according to the scheme detailed below:

1. pre-process DNA fragments in an efficient data structure;

2. gather identical k-mers from the two fragments;

3. merge and cluster these identical substrings together to form families of segmental
duplications.

3.2.1 Definitions

Before delving deeper in the algorithm, let us set up a few formal definitions to present the
kind of data ASGART will be working with.

We define a string S as a sequence of letters from an alphabet Σ. For instance, the
alphabet for DNA is ΣDNA = {A,T,G,C,N} 1. The ith letter within a string S is denoted
S[i].

1The N letter is used to denote a base that the sequencing process could not determine.
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A substring – or segment – from the ith to the jth letter of a string S is denoted S[i, j].
The identity rate between two strings is defined as the 100-complement of the ratio

between the Levenshtein (or edit) distance of these strings and the length of the shortest
string. For example, two 100 bp long strings differing at ten loci have a 90% identity rate.

A duplications family of length l and minimal identity rate h is a set of strings at least
l bases long, so that each has an identity rate of at least h with the others: SD = {Si, h|i ∈

J1;nK} is defined by then repeated units – or arms, or duplicons –Si and theminimal identity
rate h between each pair of repeated units.

The distance between two sets of segments SS1 = {SS1i = S1[ai, bi], i ∈ J1, nK}

and SS2 = {SS2j = S2[aj , bj ], j ∈ J1,mK} is defined by

dSS(SS1, SS2) = min
i,j

(dS(SS1i , SS2j )) (3.1)

where the distance between two strings S1 and S2 is defined by

dS(S1, S2) = dS(S1[a1, b1], S2[a2, b2]) =







max(0, a2 − b1) if a2 > a1

max(0, a1 − b2)otherwise
(3.2)

It can intuitively be understood as the either 0 if the considered segments are overlapping
or contiguous, or the number of basepairs between the two of them otherwise.

3.2.2 Pre-Processing

As inputs, ASGART takes:

• two DNA fragments, denoted A of size Asize and B of size Bsize;

• a probing size psize;

• a maximal gap size gsize.

ASGART features other options, but they are irrelevant to the core algorithm. Both psize

and gsize influence the granularity of the results, and must be set by the user according to the
characteristics of the duplications they are looking for, namely their length and their mini-
mal identity rate. The two input fragments are actually an abstraction due to the algorithm
internal methodology, so e.g. if the user wishes to look for duplications inside a single DNA
fragment, the two fragments A and B will actually be identical. Similarly, if the user wishes
to look for reversed and/or complemented duplications, ASGART will proceed as if the two
input fragments were the input fragment and its reversed and/or complemented self, though
a single FASTA file is used.

As output, ASGARTgives a list of duplicons composing the duplications families spanning
the two fragments, in the output format chosen by the user.
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At first, a suffix array of B is created thanks to the divsufsort library[90] – which is,
according to our trials, the most performant one currently available.

In order to trade memory use for performances, we build an index of the positions of
all the possible 8-mers in the suffix array. Thus, any binary search ASGART will do starts
directly in a partition of the suffix array a 256th the size of the whole array, for a memory
cost of ~6MB, that we deem negligible compared to the improvement in performances. We
chose 8-mers because they can be very easily converted to and from 64 bits words with a
simple operation of memory reinterpretation, and thus are very easily hashed with this simple
method to index the cache.

3.2.3 Clustering and Gathering

Sweepstart Expand SparseGrow

Filter

smatch = ∅

smatch 6= ∅

c > Asize − psize

smatch 6= ∅

smatch = ∅

c > Asize − psize

smatch = ∅

smatch 6= ∅

dSS > gsize

c
≤
A
siz

e −
p
siz

e

c > Asize − psize

Figure 3.2: ASGART finite-state automaton schematic representation.

The gathering of high similarity zones and their subsequent clustering in SDs is the heart
of ASGART. From a suffix array of B, a finite state automaton (detailed in Figure 3.2) will
scan A, store and merge identical k-mers among the two fragments, and position and cluster
them in proto-SD according to the probing size and the maximal gap length provided by
the user. The automaton contains four states: Sweep, Expand, Sparse Grow and Filter. An
illustrated example of our algorithm is shown in Figure 3.3.

ASGART is implemented as an infinite loop, where the code of one of the state is executed
at each iteration. The executed state is set in the global variable state, that each state must thus
update depending on the transition condition. We will now detail the pseudo-code found in
each of these states. Please note that for clarity purposes, the pseudo-code illustrating each of
these states does not include DNA strands length checks and other similarly technical details.
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Figure 3.3: A schematic example of an ASGART job. Each differently colored segment is
coming from a different step in the automaton. (1) After a first successful Sweep, a k-mer in
A has three matches found on B. (2) A second segment on A, contiguous to the first, has two
matches on B close to the existing ones. Those are not contiguous to the existing matches
from the previous step, but they are still close enough to be kept. (3) No contiguous k-mer
to the last one on A having matches close enough to current matches set on B, the automaton
switches to Sparse Grow state, until it finds one having matches on B close to the current set.
(4) After having spending some steps in Sparse Grow, a match on B for the k-mer on A is
eventually found. But it either does not have a match close to the current set or it is too far
away; therefore, the automaton switches to the Filter state. (5) After the Final state, the third
and last set of matches on B has been discarded, as it is too short with regards to the settings
defined by the user. The other set of matches is marked as being duplications of the part on
A.
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Setup

At the start, a few global variables of the automaton are set up and initialized, then the au-
tomaton is started in the Sweep state.

GLOBAL c ← -1 # So that we start at A[0] instead of A[1]
GLOBAL matches ← [] # The current set of matches
GLOBAL proto_sds ← [] # The progressively final list of duplication families
GLOBAL state ← Sweep # The state in which the automaton is

The parameters set by the user are g_size, the maximal gap size, and p_size, the probing
length. Some helper functions will be used in the pseudo-code, namely:

d_SS(x, y) మయ Set Segment ౱> Set Segment ౱> Integer is the implementation of the aforemen-
tioned distance dSS (Equation 3.1);

filter(duplicons) మయ Set Segment ౱> Set Segment takes a set of duplicons as its input, removes
the duplicons not satisfying the criteria set by the user, and returns this result.

search_for_kmer(kmer, target) మయ String ౱> String ౱> Set Segment uses the previously men-
tioned suffix array to return a set of all the k-mers in target exactly matching the
argument kmer;

merge_matches(currents, news) మయ Set Segment ౱> Set Segment ౱> Set Segment depending on a
runtime argument, this function behaves differently. When ASGART works in non-
interleaved mode (the default one), i.e. assumes that there are no nested duplications,
merge_matches iterates over the segments in news. For each given segment newi in news, if
theres is one segment currentj in currents close enough to it (i.e. dSS(newi, currentj) <
gsize), both are merged and currentj is replaced by currentj ∪newi in currents. When
in interleaved mode, merge_matches also iterates over news. If the current segment has a
close neighbor in currents, the behavior stays the same and they are merged together.
But otherwise, the current segment will be appended to currents, with a tag branding
it as a sub-duplication families starting at the current position of the cursor instead of
being ignored.

Sweep

In the Sweep state, the automaton will move a cursor c along A, while probing B for k-
mers psize bp long identical to the one starting at c on A. If a non-empty set of substrings
{B[xi, xi + psize], i ∈ J1, NK} matching A[c, c + psize] are found, this set of matches smatch

is stored and the automaton switches to the Expand state.
Otherwise, the exploration continues by increasing the cursor value until either it finds a

non-empty set of matches or reaches the end of the fragment. This state corresponds to the
search for the first matching parts of a duplicated family repeated units.
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SWEEP:
c ← c + 1
matches ← search_for(A[c, c + p_size], B)
if matches not empty then

state ← Expand
else

state ← Sweep
end if

Expand

In the Expand state, the automaton expands a potential proto-SD detected during the Sweep
state. The cursor c traverses A while the distance dSS between the set of the matches in
B of the probing k-mer and the current set of matches smatch is smaller than gsize. Matches
found are successively merged in smatch. When there are no more matches of the current
probing k-mer on B, or if the distance dSS to the current set of matches is greater than gsize,
the automaton switches to the Sparse Grow state. If the end of A is reached, the automaton
switches to the Filter state. This state is dedicated to the gathering of either exactly matching
portions of future duplications or handling deletions in the repeated units on B.

EXPAND:
c ← c + 1
new_matches ← search_for(A[c, c + p_size], B)
if d_SS(matches, new_matches) ౠౡ g_size then

matches ← merge_matches(matches, new_matches)
state ← Expand

else
state ← SparseGrow

end if

Sparse Grow

The Sparse Grow state is reached when the current set of matches is not immediately expand-
able. The cursor c will traverse A until a non-empty set of matches for the current probing
k-mer is found in B. If the distance dSS between the matches of the probing k-mer and the
current set of matches is smaller than gsize, the sets are merged and the automaton switches
back to the Expand state. The automaton switches to the Filter state if the distance exceeds
gsize or when the end of A is reached, i.e., c > Asize. The Sparse Grow state also handles
deletions in the repeated units on A.

SPARSE GROW:
gap_size ← gap_size + 1
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if gap > g_size then
state ← Filter

else
new_matches ← search_for(A[c, c + p_size], B)
if d_SS(matches, new_matches) ౠౡ g_size then

matches ← merge_matches(matches, new_matches)
state ← Expand

else
state ← SparseGrow

end if
end if

Filter

In the Filter state, ASGART extracts a substring of fragment A and a corresponding set of
matching segments of fragment B. These data are merged and filtered to ensure they satisfy
the minimal length constraint set by the user. The automaton then switches back to the
Sweep state if it did not reach A end.

FILTER:
proto_sds ← append(proto_sds, filter(matches))
state ← Sweep

3.2.4 Complexity

A major metric for algorithms geared toward large dataset analysis is their complexity. The
computational (respectively memory) complexity describes the asymptotical behavior of the
compute time (respectively memory) consumption as a function of the length of the input.
Formally, given a function g(x) that is non-zero for sufficiently large values of x, a function
f is said to be f = O(g) ⇔ limx→∞|f

g
(x)| < ∞. It can be computed for e.g. the worst and

average case, and is a good indicator of how the use of resources scales in relation to the input
data size.

It was critical that ASGART complexity was low enough to work properly at the ge-
nomic scale on common hardware. From a memory point of view, ASGART consumes
non-negligible amounts of memory at some points. First, the reading of the input FASTA
files is directly proportional to their size. Then memory is allocated to build the suffix array
of the second strand, that is also directly proportional to its length. Thus, ASGART memory
complexity is Cmemory = O(n) + 2×O(m) ∼ O(max(m,n)), where n and m are the re-
spective lengths of the two input strands. ASGART memory use is thus linearly proportional
to its inputs size, which is a favorable result. This result stems from the fact that ASGART
needs to store the two input strands, as well as the suffix array of the second strand, whose
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size is directly proportional to the size of the strand itself.

The second complexity indicator relevant to us is time complexity, that reflects the asymp-
totical growth of computation time as a function of the input lengths. ASGART probabilistic
time complexity is equal toCtime = O(n×(log(n)+s2)), where n is the length of the largest
input, and s the probabilistic cardinal of the matches set, i.e. the expected numbers of identi-
cal k-mers. This result is intuitively understood as a step in the Sweep state has a complexity
of log(n) (for a binary search) and a step in the Expand or Sparse Grow state has a complex-
ity of log(n) + s2 (a binary search plus the merging of the found segments). Each of them
happening up to n times, the final complexity is Ctime = O(n× (log(n) + log(n) + s2)) =

O(n× (log(n) + s2))

Obtaining a run time estimate from this formula is nearly impossible in a real-world
application. Because of the impossibility to find probabilistic estimates on one genome, all
the more all ot them, computing a theoretical approximation of s is out of reach. Let us
consider, for instance, the genomes of the human and the zebrafish, that are roughly of the
same size (respectively 3Gbp and 2.9Mbp). The most repeated 20-mer of the human genome
is 20 × A, present 448,024 times. For the zebrafish, the most common one is a tandem, 10 ×
TA (and its alter ego, 10 × AT), occuring 2,686,477 times, so roughly six times more – although
the zebrafish genome is shorter than the human one. As such measures can only be obtained
a posteriori, we cannot practically refine further this complexity estimation.

So, when ASGART will search for duplications in genome containing duplications of a
very-short period (a few bp) and made of tremendous number of duplicons, some k-mers
will be present in absurdly high counts, and ASGART will stutter. We propose two solutions
to limit this problem. The first one is run-time parameter allowing the users to set an upper
limit to the number of matches for a k-mer, over which concerned k-mers are ignored by
the automaton. The second one is, like advised by many other tools, to first mask the highly
repeated subsets of the concerned dataset with e.g. RepeatMasker, Red or SRF, before running
ASGART.

3.3 Implementation

First and foremost, ASGART2 as well as its online version3 are freely available under the
GPLv3 license. After this overview of the algorithm, let us now examine what were the
multiple technical choices we made to have an implementation that would satisfy the con-
straints as best as possible.

2https://github.com/delehef/asgart
3https://asgart.irit.fr
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3.3.1 Constraints

Data Scale

First and foremost, ASGART must be able to work on data that will rise up to the genome
scale. As we envision to explore segmental duplications with an approach combining both
genomics (single species) and phylogenetic (multiple species) ideas, ASGART has to be able to
map these duplications on sequences that may range from chromosomal sizes (a few millions
basepairs) to genome-scale (a few billions basepairs). Moreover, as a phylogenetic approach
obviously implies the comparison of several species, ASGART must be able to work seamlessly
at the multi-genomic scale.

From a computing perspective, this constraint is the capacity to work on two input se-
quences, each of them susceptible to go up to the genome scale. The genome scale represents
an order of magnitude of the gigabyte, accepting an encoding of one nucleotide by byte4.

OS

Naturally, ASGART must run on any OS commonly used in bioinformatics settings. The
most used are probably GNU/Linux distributions, typically RHEL or its free derivative Cen-
tOS on the computing clusters, and Ubuntu on the personal workstations. However, macOS
tends to be quite popular on laptops, therefore ASGART must also be able to run on this
OS. And although Windows’ use tends to be dwarfed by these two others OSs, it is still not
a negligible one and not making our software available on it might hamper its accessibil-
ity for quite a large number of potentially interested users. Therefore, we set down on the
{GNU/Linux, macOS, Windows} triplet as our domain constraint regarding the portability
of the language stack.

Hardware

ASGART should be able to use at its best any machine. Thus, it should make the best use of
available hardware parallelism opportunities. This means exploiting multi-core CPU as well
as being able to share a given workload among multiple machines.

However, the technologies used should be easily available or easily set up by novice users
of the three main OSes (GNU/Linux, macOS, Windows) used in a bioinformatics context,
so that ASGART can be usable without external assistance, and we offer precompiled binaries
to reach this goal. On the downside, this constraint prevents us from using some common
facilities such as e.g. MPI.

4A nucleotide could be encoded on only three bits (taking into account the sequencing uncertainty N nu-
cleotide), therefore fitting two nucleotides in a byte. However, the gain in memory use was deemed unworthy
compared to the increased time cost of reads in our current use case.
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I/O Formats

Input One format is mainly used in bioinformatics for storing assembled DNA sequences,
the FASTA format, that was born from the eponymous piece of software[82], one of the first
alignment software to be developed. A FASTA file is made of a succession of paired headers
and sequences data. The headers are made of one line starting with a greater-than sign,
while sequences are stored as strings of A, T, G and C and other characters following the ASCII
encoding, corresponding to the nucleobases of the sequence. However, there is no strictly
formulated normalization for the structuring of meta-informations in the header. De facto
sub-standards have emerged, based on the use of various separators and reference to external
nomenclatures, but there is no general, standardized way to store meta-informations with
the sequences themselves.

For instance, the presence or not of a space after the leading greater-than sign, whether
a sequence string can be cut on several lines, whether blank lines are allowed, the semantics
of upper- and lower-case nucleobases, etc. may differ in interpretation depending on the
concerned program.

Therefore, the FASTA parser has to be permissive enough to acknowledge all of these
corner cases, or at least fail with a precise error message, so that the user may at least under-
stand how to fix their malformed input data.

Output The existing formats for storing genomic features are not many. The most widely
used ones, by a large margin, are the GFF formats[43, 44]. However, there are two exten-
sively used versions of these formats: the legacy GFF2 format, and the more recent GFF3.
Although GFF3 is a superset of GFF2 and offers more functionalities, it has not yet replaced
it due to the quantity of applications still producing and consuming this legacy format.

If the GFF formats are useful for interoperation with other bioinformatics tools, they
are intrinsically a rather poor format from a computer science point of view. In a nutshell,
they store one feature5 and their properties per line in tabulation-separated fields, plus some
headers at the beginning of the file. They also include a simple id/key mechanism to allow
fields to refer to other ones, although with strong limitations on how it can be done while
respecting the standard. However, in our case – storing the information relative to a family
of SDs (which are represented as a group of features in the GFF format) –, there are no way
to elegantly store data for the whole family.

Two possibilities exist to overcome this: either accept as a convention to store data con-
cerning the whole family in only the first member, or repeat the information for every mem-
ber. This flaw alone would not be a showstopper, but the real obstacle is the non-existence
of this format outside of bioinformatics. As a computer scientist, one may like to use al-
ready well-established, dedicated tools to perform any kind of operations on a dataset, be it
e.g. through jq[129] or SQL[133] queries, Python or other scripting language, data mining

5A feature is a noticeable part of a genome; that may be a gene, a satellite, an exon, etc.
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tools, etc. But the GFF formats are often not supported in these tools, due to it being a relative
niche compared to widely used formats such as to JSON, YAML, XML, etc.

Therefore, we decided to support three output formats: the GFF 2 and 3 formats for
interoperation with the existing bioinformatics ecosystem, and JSON for interoperation with
more classical computer sciences tools.

Input Data & Settings

As explained before, we need ASGART to find duplications in assembled DNA sequences
without any a priori information, in order to avoid any bias in the features found. We are
following an exploratory approach, and, therefore, we expect to work on newly sequenced
data, for which only sequencing results and informations are available. Moreover, it is not
established that SDs will be displaying common features across species, or at which point. So,
a strictly de novo approach is required, as it would be unwise to rely on existing databases.

Moreover, such an approach allows for a better reproducibility of the obtained results, as
the only variable parts are the input data and the settings chosen by the user. Consequently,
ASGART has to be isotropic regarding the input sequences and should not use any of their
metadata (e.g. known genes, methylation patterns, …).

DNA strands As input, ASGART naturally requires the two DNA strands between which
duplications will be searched. To look for duplications within a single DNA strand, the same
strand is used twice. ASGART will automatically detect such a case and, while acting as if
the two identical strands were logically distinct, still only read and instantiate it once, thus
limiting the memory use and sparing I/O and parsing time that would be wasted if it were
to store and process twice the same exact data.

The strands must be in the FASTA format. Although ASGART is relatively permissive
on its formatting and accepts, for the sake of convenience, files that should not be accepted if
the format definition was strictly applied, it is still recommended that users follow the FASTA
format conventions for obvious interoperability concerns.

Settings As described above, ASGART has several settings that allow the user to deter-
mine the precision and the scope of the search. In addition to the fundamental, algorithmic
parameters, we added some “service” parameters, that while not influencing the course of the
algorithm, change the behavior of the program in terms of interaction with the system, for
instance where to write result files, how many threads to use, and so on. Their detailed list is
available in the documentation.

User Experience

Safety is a primary concern: the user must be able to trust his tools. To build this trust, we
think that three principles should be followed.
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First, the program must be thoroughly documented, its options clearly described, and
examples of use for most common cases highlighted for the user. For a user who is not
necessarily as familiar with the command line as developersmay be, simple explained examples
may go a long way to help them get started.

Secondly, a clear indication of what is going on (especially during run times that may span
for dozen of hours), featuring progress indicators or estimation of remaining time, is always
a welcome addition. This way, the users may get an idea of the adequacy of the computing
power at their disposal to the task at hand, and they will not worry about a program that may
seem frozen, but is actually just working in the background without any kind of feedback to
indicate its current state. Also, the perspective assuming that the user has thoroughly read all
the manual and understood all the intricacies of the program is making a disservice to both
the user and the developer; the first one probably ending frustrated by his experience with
the program, and the second one seeing the technically interesting tools developed ending
up unused due to frictions in user experience.

Thirdly, the program itself must be safe, i.e. it must either run correctly to its end or
fail with handled, explicit errors, and could go up to the length of proposing solutions to fix
arising problems. In no way should it abnormally terminate on memory errors, concurrency
issues, or other intrinsic problems rising from implementation errors.

3.3.2 Technical Choices

Language Selection

We settled on using Rust, a language backed by the Mozilla Foundation, designed as a safe,
high-level, strongly-typed, high-performance language. Its strict compiler is designed to
prevent whole categories of potential runtime errors at compile-time – mostly memory ones.
Thanks to its use of the LLVM backend6, its performances are virtually equal to C++ ones.
In our own benchmarks comparing our first prototype, written in C++, and our first Rust
version, both had similar performances. If Rust fundamentally offers only one really new
feature (namely its memory management model), we were interested by the peculiar set of
features it combined.

First and foremost, Rust is designed as a low-level, high performances language. To this
end, Rust uses no runtime outside of its standard library; it uses LLVM as its compiler backend,
therefore leveraging this high quality, highly optimizing backend to offer final performances
in the same magnitude as C or C++. To ease interaction with existing codebases, it features
a trivial FFI with the C ABI}, so it can easily link with or be linked with C, C++, etc. code
objects following it.

Secondly, Rust provides a large set of features, usually encountered in functional lan-
guages. It features a strong type system, helping the developer to improve the safety of its

6Originally developed for the clang C/C++ compiler.
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program. In addition to the guaranties stemming from such a system, it also allows idioms
that are common in e.g. Haskell or Caml, such as sum & product type, or pattern matching
and deconstruction as first class citizens. Similarly, closures, lambda function and functions
themselves are first class citizens, meaning they can be manipulated like any other native
object of the language.

Thirdly, Rust features a strict memory model. Thanks to its pervasive use of precise
memory semantics and a thorough analysis of the lifetime of every constituent of the program,
the compiler features a stage called “borrow-checking”. This stage ensures the memory safety
of the program, detectingmany race conditions, use-after-free, concurrentmodifications, use
of reference outside of scope, use of uninitialized memory, etc. The strong guarantees offered
by the borrow-checker may force to rewrite some part of the code to ensure that it won’t
be triggered by questionable code7. If it may be inconvenient during the development, it
forces developers to think about the interdependencies and lifetimes of their structures, and
eventually leads to safer programs without the runtime overhead of a tracing GC.

Last but not least, Rust ships with Cargo, an integrated build tool fulfilling several roles
at once:

Build system although one can directly call rustc, the Rust compiler, Cargo will automat-
ically build a project, from the compilation to the linking steps, in a single command.
This will work on all the platforms officially supported by Rust, ensuring a trivially
portable compilation system on these8.

Dependencies manager all Rust dependencies of a program built with Cargo must be
specified, and Cargo manage them automatically on a per project basis9, thanks to
a central repositories. Of course, one can still provide a custom location for a depen-
dency, be it a git repository, a local directory, etc.

Test suite Cargo also provides an integrated testing system. When invoked, it will build
the project and run all functions marked as test functions10 and provides a report on
successes and failures. These test functions are backed with numerous features from
the standard library dedicated to testing, such as various types of asserting functions.

Settings

ASGART works on the two FASTA or multiFASTA files given by the user. However, it also
accepts many other technical and circumstantial options.

The options relative to the core algorithm itself, namely the maximal gap size and the
length of the probing k-mer. They are respectively set to 100 and 20bp by default. The user

7Or put this code in unsafe blocks, inside which the borrow-checker is disabled.
8Tier 1 platforms include GNU/Linux, macOS, Windows, both 32 and 64bits
9Thus not polluting the global space and removing the need for isolation mechanisms, such as Python

virtualenv.
10Which are obviously pruned from release builds.
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may also set the minimal length of the members of a duplications family members, which
defaults to 1000bp. Another option lets the user set the maximal cardinal of a duplications
family. Indeed, as was said before, genomes typically contain a large quantity of relatively
small duplicated areas. Therefore, trying to explore dozen of thousands of potential duplicons
actually limited to a few k-mers of some extremely common structure, like AT satellites or
poly-A tails, is not only useless, but extremely costly. As SDs families generally amount to
the low dozen duplicons, the user may wish not to lose time exploring putative proto-SDs
numbering in the dozen of thousands.

Regarding the input, the user can reverse and/or complement one of the input files, to
look for reversed and/or complemented duplications. One of the input may also be trimmed,
when the user does not wish to scan it in its entirety – this feature being particularly useful
to slice input data to share the workload among multiple compute nodes. For performances
concerns, the user can set whether or not ASGART will skip masked sequences, and set
the maximal numbers of matches to take into account. Given that the average SDs families
cardinal ranges in the magnitude of the dozen, it is typically safe to ignore k-mers with more
than one hundred matches.

Finally, the technical options include mostly classical housekeeping features: output for-
mat, output file naming, number of threads to use, etc.

These options are detailed in the documentation, and a list of them with some additional
details is available when launching ASGART with the universal -h/--help argument.

Parallelization

As mentioned in the requirements, being able to exploit all the parallel capacities of the plat-
form ASGART is running on was mandatory. A strong advantage of the ASGART algorithm
is that it is massively parallel: as the input strings are only needed in read access, strand A can
be cut in as many part as needed, and each of these parts can be processed independently by
a single thread.

That was the course adopted: we use a thread pool (defaulting to as many threads as
there are cores available, but this behavior can be altered by the user) that is fed with parts of
the input data (typically, a million base pairs long), whose results are collected, then merged
once all of the threads have finished, following a classical divide and conquer, or map & fold,
scheme.

As will be detailed later, this way of parallellizing ASGART leads to an efficient scaling in
performances following the number of used cores – which is expected, given that there are
nearly no need for synchronization nor for memory exclusion mechanisms. Moreover, there
is nearly no memory overhead, given that the only thread-local data are the coordinates of
the duplicons being collected, whose size is negligible (typically a few kilobytes) compared
to the input data and the suffix array of the B strand (generally in the order of the gigabytes).
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Output

Independently of the output format chosen by the user, the data that will be saved are the
same:

• the algorithmic parameters that were given to ASGART for the run;

• a map of the FASTA files given in input, i.e. a list of each fragment and their coor-
dinates, so that other tools may map duplicons to DNA fragments without needing
access to the original FASTA files, which may be too large to be conveniently used;

• a list of all the duplications found by ASGART. Each of them will be characterized by
a list of its duplicons, each of them being described by its position, in which file, and
its length in base pairs.

Although ASGART can write results to JSON, GFF2 and GFF3 files, JSON is used as the
default output format. It is a format that is easily readable by a human, but also extremely easy
to integrate in any pipeline, as mature parsers for JSON exist for practically every language
under the sun. Last but not least, it can be efficiently compressed for storage.

3.4 User Interaction

3.4.1 Interface

ASGART ships with two different interfaces for the end user, a command-line one and a
web-based one. The CLI program is intended for either quick run on personal computers,
or for long, intensive ones on e.g. compute clusters or servers. The web interface is designed
to let several users access concurrently a centralized computing unit. It is divided in two
parts; a web interface allowing users to submit jobs and allowing administrators to monitor
them on the one hand; and a worker queue consuming the jobs and running them where
specified in their configuration on the other hand. Thus, the web interface can be deployed
on a frontal node, while dispatching the actual computations in other machines, e.g. over ssh.

CLI

The canonical interface for ASGART is the CLI application. CLI applications offer the most
interesting set of features for scientific computing. They are easily deployed, as one does not
require a whole graphical library as a dependency; they can run on an headless server, which
is a major advantage when using remote hardware, such as a computing cluster; and they
can adapt their level of verbosity and interactivity depending on runtime options or outputs
(console or pipe).

ASGART’s CLI tries to be informative and helpful (Figure 3.4), with an output colorized
according to the importance of the concerned information, a few details on the current state
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of the program, and a progress bar allowing the user to follow the progression of the com-
putation. It adapts its output depending on whether its standard output is a terminal or a
pipe. So, it can be used as a pipe source without filling it with useless output, such as ANSI
sequences for colors or animated progress bar. This feature lets it be transparently informa-
tive when being run interactively, while not polluting e.g. log files with useless informations
when run in a job queue.

Figure 3.4: A screenshot of a successful ASGART run on the human Y chromosome.

Web Interface

The web platform is nowadays the most used solution to offer an easy access to a service.
Compared to native applications, it offers a set of standard APIs that are available on every
major platform, providing a consistent cross-platform experience to the user. And the ease to
deploy and update applications thanks to the centralized nature of the application distribution
process, as well as the easy access from the user perspective, are major advantages.

Therefore, we offer a web-based interface for ASGART. It runs on the BEAM VM,
featuring the Elixir language and the Phoenix web framework. We had several motives to
chose the BEAM platform. First, BEAM is a robust, mature VM, being used for decades;
so using this technology is a safe bet concerning future development. Second, the BEAM
VM is based on the actor model, and thus features many facilities for concurrent and parallel













Chapter 4

Results & Discussion

4.1 Benchmarking

As soon as the program was implemented, the first concern was to ensure its actual correctness
on non-trivial data, and we used two methods in parallel to this end. The first one was to
compare our result on actual genetic material to wet-lab studies on the same topic; and the
second, to generate great quantities of artificial DNA seeded with segmental duplications,
and measure ASGART performances compared both to the exactly-known list of made-up
duplications on the one hand, and to the result of other comparable programs on the other
hand, in precision, in running time and in memory use.

4.1.1 Artificial DNA

As a benchmark, we wanted to test ASGART precision compared to its main concurrents re-
garding the located duplications. To this end, we developed a simple DNA generator. This
generator spawns artificial DNA fragment containing a variable number of non-interlaced
duplications, each of them with their own length, number of duplicons, and degree of di-
vergence between its duplicons (which is represented by varying identity rate), modeled by
random alteration of the duplicons – be them insertions and deletions of various scopes, or
simple point mutations. All of these parameters can, naturally, be set before generating the
duplications-enriched fragment.

We settled on using artificial sequences ranging from 10,000 to 100,000bp (that allow for
a limited run time when running numerous automated tests), containing duplications made
of one to five duplicons, ranging from 1,000bp to 20,000bp, each of these duplicons exhibit-
ing an identity rate from 90% to 99.99% with its brethren, these two last settings reflecting
the bulk of the duplications found in real life data. We decided to compare ASGART to three
tools representative of the current practices: a fast aligner, LAST[67]; a sequence searcher,
MUMmer, combined with its post-processing script nucmer[29, 91], and the previously de-
tailed Vmatch, all of them being used according to their manuals.
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detailed later, we excluded MUMmer/nucmer. It should be noted that LAST results would
not be directly usable in a real-world case, as LAST only produces a list of two-pronged
alignments and does not cluster them, thus masking the underlying families. As a source
of reference SDs, we used the reference track available at the UCSC genome browser[134],
curated from the study of the human SDs by Bailey et al.[13].

For each of these comparisons. The considered chromosome is split in 1,000bp long
windows, that are then each tested for intersection with a duplicon of an SDs family from
either benchmarked tool A and B. We define the score of A compared to B as A/B = nA∩B

nB
,

and, symetrically, the score of B compared to A as B/A = nA∩B

nA
; where nA is the number of

windows intersecting with a duplicon as found by A, nB the number of windows intersecting
with a duplicon as found byB, andnA∩B the number ofwindows intersectingwith a duplicon
as found by A and a duplicon as found by B. As the SDs are defined as being at least 1,000bp
long, the use of 1,000bp-long window ensure a precise comparison of tools.

ASGART and Vmatch results were properly aligned to ensure the absence of false posi-
tives, LAST guarantees the absence of them1, and the reference track is assumed to be curated.

Human Chromosomes

The Human Y Chromosome The humanY chromosome is a well studied subject, mostly
due to its peculiar evolutionary pathway and its palindromes-rich structure, whose main du-
plicated areas range from a few thousands basepairs to over a million. Being a well docu-
mented source of natural data, it was deemed an excellent reference dataset for featuring a
wide range of precisely mapped duplications varying in length, orientation, spacing, com-
position, etc. The human Y chromosome is relatively short, at ca. 50Mbp long. As a whole
chromosome, it is both long enough to be biologically significant and short enough to be
processed it in a negligible time (ca. 12 seconds of wall-clock time on a 5th generation i5,
down to ca. 3 seconds when using the four cores), and so could be used as a dataset for
automated testing.

When compared to the reference track, ASGART displays a score of 94.48%. Symetri-
cally, the reference track exhibits a sensitivity of 76.96% when compared to ASGART results.
It should be noted that the areas ASGART misses are mostly situated around large duplications
clusters, which are detected nevertheless.

In comparison, Vmatch scores a score of 89.55% compared to the reference track, while
the reference track itself displays a score of 78.02% with regards to Vmatch results. LAST
does not go over a 73.82% score.

When compared to Vmatch, ASGART scores a score of 89.67% on Vmatch duplications,
and Vmatch obtains a score of 82.97% on ASGART results. These low numbers should be
taken in their context, as the large clusters of SDs are correctly detected by both Vmatch
and ASGART. A majority of the divergence can be explained by the flawed determining of

1As it aligns all its results by definition.







76 CHAPTER 4. RESULTS & DISCUSSION

large mismatches between duplicons within an SD family are typically found on the extrem-
ity and in clusters inside the duplicons. Although contributing to lower ASGART score, this
flaw is not crucial in real-world workflow, as a conservative preventive extension of a few
thousands baisepairs of the duplicons pre-alignment is enough to mitigate its consequences.

Table 4.1: Scores of ASGART compared to the reference track, Vmatch compared to the
reference track, LAST compared to the reference track, and the reference track compared to
ASGART. Best scores are in bold.

Chr. 11 Chr. X Chr. Y

ASGART/reference 76.09% 75.12% 94.48%
Vmatch/reference 77.47% 73.05% 89.55%

LAST/reference 55.53% 51.06% 52.0%

Reference/ASGART 34.19% 25.52% 75.96%

Second, ASGART uses a definition of identity rate between duplicons different than the
ones from the reference track: if ASGART counts indels as mismatches, the reference track
ignores them when computing the identity rate between duplicons.

When compared to the state of the art, it appears that although ASGART and Vmatch
results never coincide exactly, ASGART exhibits a satisfying score compared to Vmatch re-
sults, whereas the opposite is not necessarily true. Regardless of performance concerns, we
can thus safely assumes that ASGART will allow its users to uncover new duplications clusters
that would not have been found if using Vmatch.

Cross-Species Comparison

We then extended the test to a panel of chromosomes (Figure 4.6, Table 4.2) from several
model organisms to gather data representative of larger scope studies. As we now want to
compare these tools in an exploratory role, we compare ASGART performances to those
of Vmatch and LAST (and vice-versa) rather than to established database. We selected the
chromosome 22 of the zebrafish (Danio rerio), the chromosome 2 of arabidopsis (Arabidopsis
thaliana), the previosuly studied chromosome Y of the human, and the chromosome 3 of the
fruitfly (Drosophila melanogaster).

A noticeable result is the low score of ASGARTwhen processing arabidopsis chromosome
2. After further inspection, it turns out that most of the missed duplications are mostly made
of numerous satellite-type duplications, that are skipped on purpose by ASGART due to their
very high number of identical k-mers. Although it strongly impacts the score, it is irrelevant
in our context as we focus on detection of SDs made of more complex DNA material.

Despite this anomaly, ASGART displays scores equivalent or greater than the other tools
when they are compared to ASGART, which hints toward ASGART generally detecting a
higher number of SDs. This hypothesis is supported by the larger numbers of duplications
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found by ASGART compared to Vmatch (Figure 4.7) and LAST (Figure 4.8).
Moreover, if it is not reflected in these numbers, ASGART is more efficient in finding

longer and better clustered duplications families. During our tests, we typically observe a
number of families one or two order of magnitudes larger for Vmatch or LAST compared
to ASGART. A better linking of longer duplicons is an asset for genomic studies, as it gives
a better overview of both the structure and the evolutionary path of the concerned frag-
ments, and thus concentrate more information than a more scattered interpretation of the
same underlying genetic material.

(i)

(iii)

(iv)

(ii)

0Mb 10Mb 20Mb 30Mb 40Mb 50Mb

0Mb 10Mb 20Mb 30Mb 40Mb 50Mb

Figure 4.7: Comparison of the duplications found by ASGART and Vmatch in (i) the chro-
mosome 22 of the zebrafish (Danio rerio), (ii) the chromosome 2 of arabidopsis (Arabidop-
sis thaliana), (iii) the chromosome Y of the human; (iv) the chromosome 3 of the fruitfly
(Drosophila melanogaster). Duplications found by both ASGART and Vmatch are shown in
blue; duplications found by ASGART only are shown in green; duplications found by Vmatch
only are shown in red. (For practicality reasons, the graph is made with 10,000bp-long win-
dows)

(i)

(iii)

(iv)

(ii)

0Mb 10Mb 20Mb 30Mb 40Mb 50Mb

0Mb 10Mb 20Mb 30Mb 40Mb 50Mb

Figure 4.8: Comparison of the duplications found by ASGART and LAST in (i) the chro-
mosome 22 of the zebrafish (Danio rerio), (ii) the chromosome 2 of arabidopsis (Arabidop-
sis thaliana), (iii) the chromosome Y of the human; (iv) the chromosome 3 of the fruitfly
(Drosophila melanogaster). Duplications found by both ASGART and LAST are shown in
blue; duplications found by ASGART only are shown in green; duplications found by LAST
only are shown in red. (For practicality reasons, the graph is made with 10,000bp-long win-
dows)

Similarly to what has been observed in the previous benchmark, ASGART and Vmatch
both agree on large SDs clusters, and only slighty diverge on their fringe (Vmatch e.g. better
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extending some palindrome of the human Y chromosome). The main source of difference
is found in isolated SDs: although both programs typically share a common set of results,
ASGART tend to be more sensible to small-scale SDs than Vmatch (e.g. in the chromosome
22 of the zebrafish or the chromosome 2 of the fruitfly). But from a large-scale, structural,
perspective, both tools exhibit similar results.

The differences between ASGART and LAST results on the same panel of chromosomes
can mostly be attributed to the functional divergence of the two programs. Outside of per-
formance concerns, ASGART exhibits better results than LAST in large duplications clusters
(typically, the human Y chromosome), whereas LAST shines in the areas enriched in high-
frequency, low-signal repetitions (e.g. the chromosome 2 of A. Thaliana).

4.1.3 Performances Benchmarking

The next step was to compare ASGART performances to its competitors on a larger scale.
To this end, we selected a panel of chromosomes within several genomes, discriminated on
three criteria.

Firstly, we settled on using sequencing data from so-called reference genomes, so that the
sequenced data had the best chances to be of high quality, which is of a great importance, es-
pecially when it comes down to duplication detection, for the reasons detailed earlier. More-
over, they are the most well studied genomes, hence have their duplications covered best in
existing literature, which gives us a solid base for further comparisons.

Secondly, we chose to take chromosomes whose sizes would cover the spectrum of chro-
mosome sizes of the considered species, so a “large” chromosome, a “medium” chromosome,
and a “small” chromosome were chosen. Thus, we could get a general idea of resources
consumption scaling regarding chromosomes sizes depending on the species.

Thirdly, whenever possible, we added an haploid sexual chromosome. Due to the diffi-
culty of sequencing such chromosomes and the fact that not every reference genome have
them (as species may use other mechanisms for sex determination), they were naturally not
always available. But having haploid chromosomes in our panel allows us to get a first idea of
the variation in duplicated content between autosomes and sex chromosomes.

Eventually, we selected:

• chromosomes 1, 10, 21 & Y for the human (homo sapiens);

• chromosomes 1, 7, 19 & Y for the mouse (mus musculus);

• chromosomes 4, 17 & 22 for the zebrafish (danio rerio);

• chromosomes 3, 2, 4 & Y for drosophila melanogaster;

• chromosomes 1, 2 & 4 for arabidopsis thaliana.
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N Table 4.3: Performance comparison of CPU time and memory usage of ASGART, LAST and MUMmer on chromosomes of various sizes and from
different species – OoM means Out of Memory, italic values are the best of their category. It should be noted that the indicated CPU times are user
time; thanks to its parallelization, ASGART can decrease its wall-clock time with the number of available cores.

Species Chr Size(Mbp) CPU Time (s) Memory (GB)
ASGART Vmatch LAST MUMmer ASGART Vmatch LAST MUMmer

H. Sapiens 1 241 2,380 8,471 12,996 OoM 2.9 3.1 9.8 OoM

10 130 953 4,662 6,320 OoM 1.6 1.6 4.9 OoM

21 46 203 1,302 1,528 67778 0.6 0.8 1.3 12

Y 56 32 716 1,101 14205 0.6 0.9 1.1 3.6

M. Musculus 1 190 2,728 9,878 6,920 OoM 2.3 2.4 3.4 OoM

7 141 1,089 6,440 4,807 OoM 2.3 1.8 3.4 OoM

19 60 146 2,225 1,087 OoM 0.8 0.8 1 OoM

Y 89 604 4,932 OoM 1.1 1.8 1.8 OoM

D. Rerio 4 76 611 13,151 2,050 OoM 0.9 1 3.7 OoM

17 53 738 2,171 1,630 OoM 0.7 0.6 3.3 OoM

22 39 694 1,740 760 OoM 0.5 0.5 1.9 OoM

D. Melanogaster 3 32 75 2,220 1,113 423 0.37 0.39 1.9 4.9

2 25 34 1,382 489 115 0.32 0.28 0.4 9.5

4 1.4 0.54 71 19 6.4 0.04 0.02 0.9 1.3

Y 3.6 2.6 469 195 23.4 0.06 0.07 0.2 3.5

A. Thaliana 1 30 22.5 1,324 163 2173 0.41 0.36 0.5 0.3
2 20 12.7 880 76 317 0.27 0.23 0.3 0.3

4 19 16.5 771 90 622 0.25 0.22 0.3 0.25
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This panel established, we screened each of these chromosomes with ASGART, Vmatch,
LAST (being a representative aligner used as a matches source for other duplication finders,
and thus present a minimal constraint on their total resource consumptions) and MUM-
mer/nucmer. All these tests were run on the same computer, and we recorded user time
instead of wall-clock time consumption. Thus, it should be noted that ASGART wall-clock
time consumption on four cores was roughly a quarter of the recorded user time. The results
of this study are available in Table 4.3, and feature a few noticeable points.

First, and most important for us, ASGART is the winner – sometimes close – in nearly
all of these tests when it comes down to resource consumption. But if being the fastest is a
welcome advantage, what is more interesting is consuming less memory. Indeed, memory
consumption is often the main problem when processing large datasets. If CPU consumption
problems can be “solved” – for liberal interpretation of solved – by waiting longer for a result,
memory resources are hard-capped; so the lesser a program consume, the better it will be
able to cope with larger data. And it is obvious that nucmer, falling short of memory on a
32GB system for single chromosomes, is unfit for whole-genome studies. Similarly, Vmatch
and LAST prove to be far slower that ASGART in worst cases, with ratio going over 10 in
favor of ASGART on most extreme test cases. This does not take into account ASGART
multithreading capacities, that can reduce wall-clock time, on the one hand, and the running
time of the duplicon families gathering scripts needed to post-process raw LAST results in a
usable form on the second hand.

Secondly, the variety in the content of duplications between all these screened chromo-
somes is reflected by the apparent lack of simple relationship between the size of the chro-
mosome and the resources used, regarding both CPU time (Figure 4.9) and memory (Figure
4.10). Thus, whatever the tool, it is not really possible to estimate the time needed to screen a
chromosome before screening it, which may complicate the case of users running exploratory
screening in resource-limited environments.

4.1.4 Parallel Scaling

Besides single-core performances, efficient scaling over the number of available core was a
main goal of ASGART to ease scaling over large datasets. ASGART implements paralleliza-
tion by slicing the first input strand in chunks of a fixed size. These slices are then concur-
rently and individually processed as so many single-thread jobs by ASGART. The partial
results are then merged, in a classical application of the map and fold strategy. This approach
allows a parallelism implementation with few synchronization steps and close to no writable
shared memory, making it safe and easy to implement.

However, as the slicing is spatial (over the length of the inputs) and not temporal (over
the total computation time), an optimal use of the available threads for the whole duration
of the computation can not be ensured. Indeed, all the chunks will not take to same time to
be processed. This discrepancy may lead to a few threads processing the more complex areas
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Figure 4.13: Running profile of ASGART when using 1Mbp long (top) and 3Mbp long
(bottom) chunks. The first plateau is the single-threaded preprocessing step.
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ously mentioned reference species (instead of a selected panel of chromosomes) while keeping
track of the consumed resources. The repetitions-rich and coding DNA-poor telomeric and
pericentromeric regions were not masked (as it is usually done), to keep the study as exhaus-
tive as may be. The process was run on Eos, CALMIP’s supercomputer[20]. Eos is a cluster
of compute nodes, each of the 612 of them being equipped with two 10-cores Intel Xeon
E5-2680@2.8GHz and 64GB of RAM. However, due to limitations in the queuing mecha-
nisms, managed by Slurm, we could only use 20 of these nodes at once. Parallelization was
done on two levels. On a first level, the twenty available physical cores were used on every
node. We voluntarily limited ourselves to twenty threads matching the twenty physical cores
instead of the forty logical cores for a simple reason: our use of Eos was billed according to
user time consumption, and the acceleration resulting from the use of logical cores was, albeit
noticeable, more limited than the one coming from the use of physical cores. Therefore, it
made sense to prefer an increase in wall-clock time rather than in time billed.

On a second level, the input genomes were cut in twenty equally long parts (as many
as simultaneously available nodes), each of them processed on a different compute node, the
resulting twenty partial results beingmerged afterward. All these segmentationswere slightly
overhanging, so that no duplications family that would have fell right on a seam would be
lost. The results of this study are synthesized in Table 4.4.

As already observed when working on single chromosomes, the time spent processing
each of these genomes does not exhibit any coherent relationship between the size of the
genome in base pairs and the user CPU time used. That discrepancy was expected (see 3.2.4),
as it is already known that if all known genomes contain large quantities of duplications, the
proportion of them relatively to the total size of the genome vary largely from one species to
the other, as well as their characteristics. The zebrafish is well-known for its repetition- and
duplications-rich genome and it shows in our result, as it required nearly as much CPU time
as the human genome, for a genome length less than half as short.

Another remark is the relatively low amount of memory used compared to single chro-
mosome processing: whereas ASGART needs 2.8GB to process the single first chromosome
of the human genome, we only needed 9GB to process the whole human genome. The trick
here is that instead of comparing, at once on a single machine, the whole human genome
to itself, the inputs were split. Indeed, we split each machine job in a few dozen subjobs by
dividing the human genome in slightly overlapping 100Mbp chunks, against which the hu-
man genome was successively compared. The results were then concatenated in a single one,
equivalent to the comparison of the whole genome against itself. An important detail here is
that it is cheaper in memory to compare the human genome to a chunk of it rather than the
opposite, as ASGART builds a suffix array of the second fragment; and the suffix array size is
directly proportional to the size of the underlying string. Thus, combining these two tricks
allows us to keep a comparatively low memory usage. In any case, the RAM consumption
follows a nearly linear scaling (Figure 4.14). This was expected, as the bulk of RAM that
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Table 4.4: Characteristics of segmental duplications mapped in the 5 model organisms studied.

H. Sapiens M. Musculus D. Rerio D. Melanogaster A. Thaliana

Analyzed genome size 2.9GB 2.7GB 1.4GB 134MB 119MB

Chromosomes (2N) 23 20 25 4 5

User CPU time 371h 263h 311h 241s 481s

Peak memory usage 9GB 8GB 4GB 1.7GB 1.4GB

Intra-chr (mean(stdev)) 5.69(2.92)% 10.13(19.5)% 4.75(5.72)% 6.81(2.19)% 1.97(0.79)%

Inter-chr (mean(stdev)) 4.09(2.75)% 5.39(1.13)% 7.36(1.79)% 4.98(1.13)% 1.78(0.13)%

SDs (all, in Mbp) 187 265 115.8 5.4 2.98

SDs (>20 Kbp, in Mbp) 70.8 70.5 2.78 0.28 0.29

SDs (%genome) 6.5 9.8 8.64 6.32 2.5
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ASGART consumes is used to store the input strands and their suffix array, that are obviously
linearly increasing with the length of the input strands.
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Figure 4.14: ASGART memory consumption compared to the processed genome length.

Globally, SDs represent less than 10% of every genome surveyed, with a minimum of
~2.5% observed in Arabidopsis thaliana, and a maximum of ~8.6% in Mus musculus. Con-
cerning the human genome, this number is close to what is mentioned in the previous estima-
tions[85]. Indeed, if this study mentions a lower rate of duplications in the human genome, it
also mentions the limitations of the methods used then and conjectures an actual duplication
rate closer to 6 to 7%. Our result of a global duplication rate a bit over 6.5% is coherent with
this forecasting.

It is interesting to note that for all studied genomes with the exception of the zebrafish,
intra-chromosomal duplications occur at a higher rate than inter-chromosomal duplications.
This is coherent with SDs generally arising from non-allelic homologous recombination,
that, when successful, takes place in an overwhelming majority of cases on a single chromo-
some.

Large SDs tend to be uncommon compared to smaller ones, with the relatively lower
content of large SDs being owned by, once again, the zebrafish. It is, again, coherent with
NAHR generally occurring on small part of the chromosome, duplications thus growing
rarer when their size increases.

To summarize, this small study results are twofold. First, they confirm that ASGART
is able to find to an excellent degree of precisions the duplications already detected in wet
lab and published in the literature, both in position and in characteristics. Secondly, these
results can now be obtained with cheap hardware requirement. A few hundred hours of user
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is established that gene conversion between duplicons can rescue these altered structures by
reinstating them to their previous state, using other duplicons as a template. And as most of
the alterations of these structures lead to male sterility, the one escaping the repairing sieve
of gene conversion end up purged by selection. This results in a glaring uniformity of MSY
structure in men[14, 127].

Concerning the advantages imparted by this specificity, two parallel explanations may
be proposed. The first one calls upon the genes regulation system, and explains the stability
of the duplicons count by the need to keep a correct dosage of the genes they encompass.
The linkage of dosage imbalance of some of these genes with troubles such as male fertility
troubles or autism are clues on which this idea lays.

Another benefit of the highly similar duplicons scattered on the Y chromosome is the
ompensation of the meiotic inactivation. As previously mentioned, the Y chromosome can
only recombine with its paired chromosome – the X chromosome – on the comparatively
tiny PARs. But, by exhibiting such alluring substrates for NAHR such as the palindromes
arms and other repeated structures, the Y chromosome can, in some way, recombine with
itself, thus generating variation in its own genetic material. Without this mechanism, the Y
chromosome would be hard-pressed to find a way to create variation in the MSY region.

There is currently no indication to whether these mechanisms are human-only, shared
with the mammalian clade, or even with other species using similar sex-determination sys-
tems, such as the Z/W system. Therefore, we set on using ASGART to map palindromic
duplications in other species, mammals or not, whose sex chromosomes have been sequenced.
We want to statistically compare the duplications content rated between the autosomes and
the sex chromosomes. The final goal would be to determine whether the mechanisms already
known for the human Y chromosome might be extrapolated to sex chromosomes of other
mammals, or even to other species featuring a chromosome-based sex-determination system,
such as species exhibiting the Z/W chromosomes.

To this end, we ran ASGART on all of the sequenced genomes containing sex chromo-
somes available either through the NCBI or Ensembl databases (bos indicus, 1.0; cynoglossus
semilaevis, Cse v1.0; chlorocebus sabaeus, 1.1; drosophila melanogaster, BDGP6; gallus gallus,
GRCg6a; macaca mulatta, Mmul 8.0.1; pan troglodytes, Clint PTRv2; rattus norvegicus, Rnor
6.0 and sus scrofa, Sscrofa 11.1). This dataset amounted to ten species having both their X/Z
and Y/W sex chromosomes sequenced, and 25 species having only the X/Z one sequenced
(Table 4.5).

Table 4.5: Repartition of the species with sequenced sex chromosome we mapped.

Sex chr. available Species count Mammals Birds Fishes Insects

Both X&Y or Z&W 10 5 3 1 1

Only X or Z 25 20 4 0 1
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We plotted the distribution of the palindromic duplications content found by ASGART
for the autosomes of each species using the standard box plot representation, on top of which
we superimposed two points, for the X/Z and Y/W sex chromosomes (Figure 4.20).

If in an overwhelming number of cases, the sex chromosomes score high, or the highest,
in relative palindromic content, drosophila melanogaster is the only case where one of them
is scoring very low, under the autosome average. We are not sure why this species is alone
in exhibiting this behavior, but outside of the simplest explanation that the X chromosome
of the drosophila has indeed a low palindrome content, we have two other hypothesis. First,
this peculiarity may be the consequence of the large usage of the drosophila as a widely bred
model organism, and the subsequent highly inbred nature of the lab individuals, including
the ones used for the genome sequencing and resulting in a drifted genome compared to
the outbred lineages. Or it may be the direct consequence of the difficulty of sequencing
duplicated sequences, that would result in an underrepresentation of the duplicons content of
this chromosome.
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Figure 4.20: Boxplot of the palindromic content ratio observed in the species for which
both of the sex chromosomes were sequenced. Drosophila melanogaster and Pan troglodytes Y
chromosomes content were artificially capped at 10% for the sake of readability; they actu-
ally contain respectively 25.88% and 40.61% of palindromic content according to ASGART
results.

These results show that, like in the human case, sex chromosomes of these other species
are typically enriched in palindromic duplications when compared to their autosomes. The
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door is now open to a more thorough exploration of this dataset.

4.3.2 Ongoing Work: Fertility Genes & SDs

From these preliminary results, we are exploring several leads. First, the duplications of the
human Y chromosome contain many crucial genes, linked e.g. with male fertility and cere-
bral development. If the currently accepted hypothesis is that this arrangement ensures the
integrity and the conservation of these genes over time thank to gene conversion, we would
like to explore the gene content of palindromic duplications for the other sex chromosomes
to determine what kind of gene sets they encompass, and if they are comparable to the hu-
man one. A strong correlation would be another clue hinting toward the confirmation of
palindromes as structures ensuring the conservation of important genes in male lineages.

Second, the sequencing of the sex chromosomes, especially when they have a high con-
tent in duplicated sequences, is known to be complex and obtaining precise results is arduous.
Therefore, we would like to explore more deeply the data contained in the so-called unplaced
sequences and unlocalized sequences available for most of the sequenced species. These frag-
ments are typically highly duplicated, and exploring the relations between their duplicated
sequences and the one found in sex chromosomes could prove interesting. We chose to ex-
plore more in depth the results concerning sus scrofa, chosen at random among the species
whose both sex chromosomes have been sequenced. In this peculiar case (Figure 4.21), some
interesting points can be listed.

First, concerning the link between the Y chromosome, unlocalized sequence and un-
placed sequence sequences, a first point is that, for sus scrofa, the entirety of unlocalized se-
quence sequences are belonging to the Y chromosome. And, as can be seen on the the figure,
a consistent fraction of these fragments map to highly duplicated fragments of the Y chro-
mosomes, mostly around the 7Mbp, 20Mbp and 40Mbp marks. This situation reflects the
difficulty in assembling sex chromosomes and their highly duplicated content. Similarly to
what was discovered through the subsequent sequencing and assembling of the human and
mouse genomes, it suggests a global underestimation of the quantity of duplicated Y-linked
sequences, and we expect to see the count of duplications discovered in newly sequenced or
assembled genomes to strongly increase with the improvement of sequencing technologies.
When it comes down to the unplaced sequences, although they may come from any chro-
mosome in the genome, some of them exhibit large number of similarity among all of the
Y chromosome, with no striking predominance in the highly-duplicated areas – contrary to
the unlocalized sequence fragments.

Second, as is the case for the human Y chromosome, large palindromic areas tend to
strongly correlate with the position of coding genes (especially around the 10Mbp and 40Mbp
marks). This observation strengthens the hypothesis stipulating that palindromes may tend
to be, as in the human Y chromosome, strong, evolutionary stable structures that preserve the
integrity of their genetic payload. Further similar comparisons on the other species should





Chapter 5

Perspectives

Although ASGART is now functional, there are still several ways of improvement we would
like to pursue, both a from a computer sciences perspective and a biology perspective.

5.1 Computer Sciences

5.1.1 Algorithmic Improvements

Suffix Tree Compression

For now, ASGART is implemented using simple, uncompressed suffix trees. Such structures
are ideal as long as enough memory is available, as they allow for a fast access. However, we
want to develop ASGART to compare not only two genomes, but many at once, the memory
use of suffix arrays will become a consideration.

To alleviate this issue, we plan to implement the FM-index[39] structure following ex-
isting work[79] and make this feature available through a command-line switch. Thus, users
will be able to make their own choice between the better performances and cache-friendliness
of a flat suffix array, versus the lower memory use of an FM-index. Moreover, work has al-
ready been done on porting string matching using FM-index on FPGA[38]. In our global
perspective of trying to improve ASGART performances through hardware acceleration, be
it with GPGPU or FPGA, this work would make a good inspiration source.

Better Extension Priming

It has been established[52] that divergences between the arms of a palindromic SD tend to
be laid out following an increasing gradient starting from the spacer. By extrapolating this
observation to SDs in general, we can expect their duplicons to exhibit a very high identity
rate in their middle part, and mostly differ at their extremities.

For now, ASGART is seeding its search with exactly matching k-mers. To improve AS-
GART precision in adequation with this biological observation, we would like to implement

97
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partial matching in the Sweep state with e.g. a Levenshtein automaton[112] before going back
(for performance concerns) to exactly matching k-mers once the duplicons family detection
has been primed. This compromise should allow ASGART to exhibit a better precision on
duplicons extremities.

5.1.2 GPGPU

ASGART is currently only using CPUs as a computing unit to do its work. However, GPUs
offer great amount of computing power distributed among thousands of cores for relatively
low prices when compared to CPU. GPGPU is now a well established domain of applications
of these chips and is being largely relied on by, for instance, deep learning, physical simulation
or image processing programs. Unfortunately, very few bioinformatics tools make use of this
kind of hardware. Therefore, we would like to make part of ASGART algorithm, namely
the finite state automaton, run on GPGPU.

This would offer a strong improvement to ASGART for the following motives. First,
the exploration of the DNA by the finite state automaton is an intrinsically massively parallel
task, as was shown by the nearly trivial implementation of the parallelization on CPU. More-
over, our parallel implementation does not need a lot of synchronization work between the
execution threads, and, it does not require any complex operations, as it is basically made of
comparison and simple arithmetic operations. Therefore, it should not prove too hard to be
ported to GPU.

Secondly, ASGART is practically only CPU-bound during most of its execution, there-
fore the high parallelization opportunity offered by a GPU should ideally reflect in the wall-
clock time; even if each core of a GPU is dramatically less powerful compared to a CPU
one, the globally higher flops of a GPGPU should be practically fully exploited thanks to
ASGART being massively parallel.

Thirdly, GPGPU clusters are typically cheaper than similar CPU computing clusters
with identical computing powers.

As a pure-CPU version remains mandatory, a drawback of a GPU implementation would
be the need to maintain two concurrent codebases. Indeed, kernels (pieces of code running
on the GPU) are either developed using a C-like language, (typically when using OpenCL
[132]) or intertwined with standard C or C++ code (although with some restrictions) when
using CUDA [25].

5.1.3 UX, UI & Post-Processing

There are several directions in which we could improve the user experience of ASGART,
that we detail below.
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Graphical Interface

CLI application are only available to people already familiar with the use of a virtual terminal.
For the other users, the development of a simple GUI application front-end for ASGART
should help. Such an application should naturally be cross-platform, as ASGART itself is
multiplatform. However, the performance imperatives should not be as acute as for ASGART
itself, as the front-end basically just has to help the user providing the correct set of options
and input data to ASGART, launch it, and finally present the progress and result to the user.
Therefore, we believe that the use of a language running on the JVM and leveraging the
graphical libraries offered by this platform, or using the web platform, should prove to be a
good equilibrium between robustness, ease of distribution, and ease of development.

Post Processing

For now, the post-processing stage of ASGART is relatively poor. It only offers two main
possibilities; first, the user can fetch ASGART result in one of the supported output formats,
namely JSON, GFF2, and GFF3, and use them as they see fit. Second, these results may be
fed to the companion tool shipped with ASGART, that can export the duplications families
satisfying some filtering criteria and export this set, along with some complementary infor-
mation, be it as a CSV file, or plotted in one of the available type of graphs. Even though
this is a first step, we feel that a far more comprehensive tool suite should allow for smoother
interactions between the user, as well as for a more pleasant exploratory work, ideally with
interactive capacities.

It could prove useful to extend the not-yet published, prototype-grade application we
already have developped (Figure 5.1) into a fully-fledged workshop dedicated to duplications
families exploratory research. Desirable functions would be potential storage in a remote
relational database to share data with other users; multiple formats of import and export to
allow for a smooth interoperation with already existing tools and support of custom tracks
visualization to let users integrate e.g. gene tracks, masking tracks, transcription tracks, etc.

We identified two main obstacles to the visualization of large datasets. The first lays in the
scale of the data. The mere process of rendering so many elements in itself might prove very
resource-intensive, and the limited resolution of display devices inevitably leads either to an
erasure or overload of details in high scale overviews. The second resides in the visualization
system: it is hard to provide a clear overview of huge datasets spanning a large space, such as
the billions of basepairs of a genome.

Currently available tools [134, 130, 128, 2, 137] typically tackle these difficulties by of-
fering a relatively tiny small-scale window on the dataset, typically in the order of the few
thousands of bases to the few hundreds of thousands of base pairs. It is sometimes combined
to a larger-scale view with elided details for coarse browsing. Unfortunately, such small
windows are inappropriate for an expressive visualization of datasets such as a duplications
families, that tend to spread across a whole chromosome, a whole genome, or even several
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Figure 5.1: A screenshot of the viewer currently being developed along ASGART. At the
top, a view of the selected duplicons. At the bottom, a node-based interface[131] allow for
the user to easily apply and combine multiple filters on a dataset.
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genomes when it comes to multi-species studies. Moreover, in their current implementa-
tion, they typically offer a lagging user experience, with high refresh times on every position
change.

To improve the current situation, a solution to consider could be the use of a tiling sys-
tem, akin to map visualization systems such as e.g. OpenStreetMaps, combined to a system
of progressive level of detail (as used in computer games for a long time). Potentially imple-
mented on GPU, these methods could allow for a smooth, progressive visualization system
able to go smoothly and seamlessly from the genome to the base pair scale.

Web Interface

Users and Quotas For now, all jobs are run anonymously. If extremely convenient for
the end user, it is a crucial lack of flexibility for the system administrator. There is no way
to increase or decrease the data size quota for every user, or to orchestrate the job queue
according to a priority system, for instance. There are also practically no available adminis-
tration or monitoring tool, be it e.g. to get an overview of the current working queue, keep
the resource usage in check, or manage users. Improving these aspects is a sine qua none
condition to transform the crude interface of today to a production-grade product ready to
be deployed in labs.

Testing Web development is well known to be a brittle landscape. Browsers may tend to
interpret creatively the standards of the W3C, the quantity of different browsers and their
versions roaming the web is tremendous, and there are always so subtle discrepancies there
and there, that can lead to a web application running perfectly on some browser, and failing
miserably on some other one. For instance, as we learned during the development of the cur-
rent result visualization interface, the performances of the SVG rendering engines between
Gecko and Blink are uncomfortably divergent, and Safari simply ignores some constraints
on the <input> HTML element from the HTML5 norm.

Thus, we consider that the current organically developed solution is not (yet) a reliable
foundation: it should be corseted by tests; a first test suite to palliate the intrinsic flaws of
JavaScript when it comes down to its generous dynamic typing and lack of compile-time
errors and warnings; and a second one to ensure a correct rendering on – at least – the most
common web rendering engines.

Post-Processing For now, ASGART features two data processing solutions. On the one
hand, a post-processing and static visualization tool is distributed with ASGART itself. On
the other hand, another visualization application is embedded in the webapp of ASGART.
Therefore, there are two incompatible visualization codebases, one in Rust and the second
in JavaScript; the first one targeting static SVG files, the second a dynamic, but still SVG-
based, web page. The obvious course of action here is to merge together these two suites,
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and potentially the hypothetical workshop aforementioned, in a single codebase available to
all users and providing all the necessary functions.

5.2 Biology

The current trend in the development of new sequencing technologies is geared toward the
production of long, linked reads. By drastically simplifying the assembly of whole genomes
compared to the current methods, they should soon make readily available high-quality se-
quencing of repeated parts of genomes, especially conerning their duplicated parts. More-
over, the process should be both much easier to go through and so for a fraction of the cost
of the current alternatives, sharply decreasing the entry cost of duplication studies and fur-
thering its translation from in-vivo to in-silico methods.

The unlocking of such new datasets should allow for a better understanding of duplicated
areas in general, and of SDs in particular; both among and across species. However, the most
used today SDs detection and mapping tools are unable to scale to the genome size and over.
We developed ASGART to address this issue and now propose a program able to map SDs
in assembled sequences up to the multi-genomic scale. In addition to the already previously
mentioned uses of SDs, we see several immediate applications for better genomic SDs maps.

5.2.1 Hot Zones Demarcation

In many contexts (e.g. population genetics, evolution rate computations, genetic drift estima-
tion or gene selection studies), abnormally active zones of a genome are typically red herrings,
skewing the final result while not necessarily adding much information. Therefore, these
zones are generally preemptively masked in the concerned DNA fragments before being
processed, in order to avoid these issues. For the most well-known genomes, masking anno-
tation tracks are freely available to discriminate these hot zones from their counterpart. For
de novo masking however, the main solutions are to mask already known sequences (thanks
e.g. to RepeatMasker and its database) and to remove satellite-like zones, that are known for
their dynamism (e.g. with TRF).

But these methods do not cover the whole spectrum of hot points: as previously detailed,
SDs are known, at least in the mammals, for being strongly correlated with areas of high ac-
tivity in genomes. And, especially in the primates, they are highly active areas comparatively
to single-copy parts of the genome. But due to scale issues, they cannot efficiently be masked
neither with existing tools, nor by the use of databases – as SDs sequences vary wildly from
species to species. ASGART can be used to detect SDs de novo in DNA fragment to mask
them, allowing users – when combined with the previously mentioned methods – to establish
a more complete map of the stable, single-copy parts of a genome.

This approach has been used, for instance, in a recently published study[107] exploring
the discrepancies observed between human mutation rates compared to other primates. AS-
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GART is also used towards the same goal in theHearvolution project1, an ongoing pluridisci-
plinary study gathering geneticists, anthropologists, mathematicians and computer scientists
to establish the main drive of hearing evolution within the primates species.

5.2.2 SDs Dynamics

SDs are also a rich field of studies by themselves, and we envision two main direction of
studies we would like to pursue; the first one being an exploration of the enrichment of
sex chromosomes in SDs, and the second one concerning the role that SDs may play in
understanding gene conversion better.

Haploid Chromosomes & SDs

From a genetic perspective, it has been determined for the human that large palindromic
SDs blocks in the Y chromosome act in two ways to palliate the absence of recombination
(for the lack of a partner). By actively maintaining a very high identity rate between arms,
gene conversion will homogenize duplicated genes located on the arms of a palindrome, and
thus create diversity by potentially spreading mutations arising on only one of the arm to the
second one. By doing so, gene conversion ensures a parallel evolution of the gene families
located on palindromes. In the case of a deleteriousmutation, it would be counter-selectioned,
and so never transmitted to the second arm. In the end, gene conversion acts as a mean of
preserving the integrity of these crucial genes, involved in fertility and cerebral development,
and ensure their parallel evolution. Therefore, the question arises to find out whether this
mechanism is human-specific, or if other species use a similar method to compensate the lack
of recombination on their haploid sex chromosomes.

We would like to determine first if the dynamic observed in the human Y chromosome
is particular to the human, or if it can also be found in other mammals sharing the same
sex-determination system. In addition to the XY sex-determination systems used by the
mammals, other sex-determination systems resulting in a haploid sex chromosome in the
karyotypes of the individuals of one of the sex arose in a convergent evolution phenomenon.
These other XYs (homogametic females, heterogametic males) and ZWs (heterogametic fe-
males, homogametic males) sex-determination systems should expose their individuals to the
same problems than the humans. Determining whether these species are relying on the same
dynamic to protect the genes their haploid sex chromosome carries or if they created another
one would be the next step.

Gene Conversion Characterization

In addition to e.g. homologous recombination, gene conversion is a major mechanism to take
into account when considering evolutionary mechanisms. Not only does gene conversion

1This project is hosted within the UPS/CNRS UMR5288 unit.
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differs in result from homologous recombination by spawning asymmetrical genetic material
exchanges, it may also takes place in areas shut to other recombination methods, such as e.g.
the telomeric areas[123]. These two main differences clearly put gene conversion dynamic
apart from [non-]homologous recombination one.

However, the erasure of history inherent to gene conversion asymmetrical consequences
makes it an elusive phenomenon to study. From the current understanding, it appears that
gene conversion takes different characteristics depending on the species concerned, and on
the event location within this species genome[52, 83, 42] – be it e.g. in its frequency, its typical
tract length, or its GC-bias.

As previously detailed, primates SDs are an excellent substrate for gene conversion due to
the high homology rate between their duplicons, their content, and their widespread repar-
tition within a genome. As a consequent number of SDs families dating back to the SDs
explosion after the split between New-World and Old-World monkeys are shared among
primates genomes, building a phylogenetic tree of these SDs families should be envisionable.
This tree might prove to be an efficient tool to try reconstruct the history of these sequences,
and, implicitly, to establish the profile of gene conversion events that happened between these
sequences.

Eventually, such a study would, combined to the existing ones, lay the foundations for a
better characterization of gene conversion characteristics within the family of the primates,
marking a first milestone before extending the question towards more species.

Что бог, мол, с ними, с генами, бог с ними, хромосомами,

Мы славно поработали и славно отдохнём!

To Hell with these molecules, and genes and chromosomes with them,

We worked well and it is time we take a good rest!

В. Высоцкий, Товарищи учёные (Comrades Scientists)



Glossary

de novo sequencing

De novo sequencing refers to the sequencing of a genome ex nihilo, without the help of
a reference assembly. 26

ABI

Application Binary Interfaces define how binary objects should interact. They are
typically needed when objects originally wrote in different languages should commu-
nicate. 63

allele

An allele is one of the observed variants of a gene in species. 21

autosome

Autosomes are chromosomes found in pair of similar members. In the cases found in
this document, they are synonym with non-sex chromosomes. 92, 93

Bernoulli distribution

A BᴇRNᴏᴜᴌᴌI distribution models a random variable taking either value 1 with a prob-
ability p or 0 with probability 1− p. 42

bp

bp, for base pairs, is the standard unit to measure the length of DNA sequences. One
bp correspond to a nucleotide on each strand of a DNA molecule, or one nucleotide
on a denatured DNA strand. 18, 19, 21–23, 28, 29, 32, 34, 38, 39, 41, 46, 47, 52, 53,
56, 59, 64, 69, 73–75, 81, 87–90, 94, 107–109

cache line

Cache lines, or cache blocks, are fixed size blocks that are, for all practical purposes, the
smallest addressable unit of a CPU cache. 38

105
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chromatide

In eukaryote genomes, a chromosome is made of two sister chromatides, one from
each parent. 23

clade

A clade groups, from a phylogenetic perspective, all species sharing a common ancestor.
16, 92

CLI

Command-Line Interface is a mode of user/program interaction based around the use
of a command-based interface inside a standard shell, by opposition to e.g. graphical
application. 66

CNV

Copy Number Variation are sequences that are found in a different number of copies
among the individual of a species. 18

coding sequence

A coding sequence of a genome encode part of a synthesizable. 15, 20

complemented

A complemented sequence has seen all of its nucleotides replaced with their comple-
mentary ones, following the A/T and G/C pairs. 20, 30, 53, 65, 69

CUDA

CUDA is a closed, proprietary GPGPU API developed by Nvidia and thus restricted
to this brand GPUs; despite these drawbacks, if offers a more comfortable use thanks
to the possibility to interleave CPU and GPU code in C++. 98

denatured

A denatured DNA molecule has only one strand left instead of two. 26, 29

duplicon

Duplicon is a name given to the members of a same duplication family. 11, 12, 19, 21,
22, 28, 30–33, 35, 42, 45–47, 52, 53, 59, 64–66, 69, 73, 74, 80, 91–94, 97, 98, 100

E-value

The E-value, or expected value, of an alignment is the probability for it to happen by
chance between unrelated sequences. 46
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exon

Exons are parts of genes that directly code for a part of the protein the gene they belong
to encode. 20, 61

FFI

A Foreign Function Interface is a facility of a programming language by which it
might call on routines or functions written in another one. 63

format

A format describe how to store a certain kind of information in a digital way. 29,
51–53, 60–62, 65, 66, 68, 69

GC

A Garbage Collector is a runtime component of a programming language automati-
cally handling memory management tasks. 64

GPGPU

General Purpose GPU refers to using a GPU not for graphical purposes, but for more
general computational purposes. 98

great ape

See hominoid. 19

HMM

A Hidden Markov Model attempts to statistically modelize a system by assuming it
might be represented by a numbers of states linked by transitions. 43

hominoid

Hominoids, or humanoids, or great apes, or hominids, or hominidae, are a family
grouping the species of gorillas, chimpanzees, humans and oragutans. 15

homologous

Homologous refer to the same locus, but on the sister chromatide. 16, 22, 23, 48, 88

housekeeping gene

Housekeeping genes are a set of genes required for basic cell machinery and practically
ubiquitously expressed. 21

identity rate

The identity rate is a measure, in percent, of how similar two sequences are. 23, 30–33,
40, 45, 46, 52, 53, 73
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indel

An indel, short for insertion/deletion, is the addition or the removal of a substring from
a string. 33–35, 45, 52, 97

intron

Introns are parts of genes that are not part of the final protein. They typically serve for
regulation purposes. 20

LINE

LINEs, for Long INterspersed Elements, are a type of retrotransposons making up to
20% of the human genome. They are typically around 7kbp long. 18, 32

locus

A locus is a precise position within a genome. 18, 23, 53, 109

masked sequence

Masked sequences are typically represented in FASTA file by writing them in lower-
case letters. 65

meiose

Meiose is a type of cell-division from which four haploid cells are created from a parent,
diploid cell; it is typically used for the creation of gametes. 16

microsatellite

Microsatellites are made of numerous repetitions of a single pattern, ranging from 1 to
5 bp, each with a very high homology rate with the others. 30–33

minisatellite

Minisatellites are made of numerous repetitions of a single pattern, ranging from 5 to
50 bp, each with a very high homology rate with the others. 31

multiFASTA

MultiFASTA is an extension of the FASTA format allowing to store several sequences
in a single file. 64

non-allelic

Non-allelic events take place between similar sequences that are not alleles, /i.e./ do not
have the same locus. 16, 22, 88
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OpenCL

OpenCL is the only open standard for a GPGPU API, designed by the Kronos groups
(including but not restricted to Apple, Intel, AMD, Nvidia and Google). 98

orthologous

Orthologous sequences are different sequences, but descending from a common an-
cestor sequence. 44, 45

OTP

The Open Telecom Platform was the base of the Ericsson telephony offer, and so pri-
oritized stability, high-availability, massive concurrency, code hot-reload and failure
tolerance. 67

PAR

The PseudoAutosomal Regions are homologous areas of the X and Y chromosomes
where recombination akin to the one happening on autosome pairs still takes place.
21, 92

paralogous

Paralogous sequences are sequences within a species genome that share a common
ancestor and diverged from each other. 23

pericentromeric

Pericentromeric sequences are flanking the centromere of a chromosome. 19, 20, 86

poly-A tail

poly-A tails are long sequences of adenine nucleobases sometimes found at the end of
coding sequences. 31, 64

polymerization

In this context, polymerization is the reaction during which a DNA strand is built out
of free-standing nucleotides. 26, 29

primate

The order of the primates group mostly monkeys and lemuriformes. 19–22, 42, 43

pseudogene

A pseudogene is a degenerated gene that is not expressed anymore, typically due to
mutations making it unfunctional. 20, 31, 40
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recombination

Recombination is the process bywhich geneticmaterial is exchangedwithin the genome.
It is the main drive of genetic variation creation. 15, 16

reference genome

A reference genome is well-known genome that is especially studied for various rea-
sons, ranging from historical ones to peculiar characteristics of the species it comes
from through being often used as experimentation species. 79

retrotransposon

See transposon. 18, 20

satellite

Satellites are made of successive repetitions of a single pattern, each with a very high
homology rate with the others. 31, 61

SIMD

Single-Instruction, Multiple-Data instruction sets expose hardware facilities to apply
an operation to several elements at once in a parallel fashion. 38

SINE

SINEs, for Short Interspersed Nuclear Elements, are a type of transposons making up
/ca./ 10% of the human genome. They are typically a few hundred bp long. 18, 32

SNP

Single-Nucleotide Polymorphisms are structural variations occuring at a single, known
locus. 52

speciation

Speciation is the process giving birth to several species (typically two) from the splitting
of a single one. 15

STR

Short Tandem Repeats are DNA sequences made of numerous repeats of a simple pat-
tern typically a few bp long. 31, 33

structural variation

Structural variations are differences in genome that are observed between individuals
of the same species. 18, 19, 28, 109

subtelomeric

Subtelomeric sequences are flanking the telomeres of a chromosome. 19, 20
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tandem array

A tandem array is a linear repetition of multiple duplicons sharing a very high identity
rate. 19, 42

thread

A thread, or execution unit, is a concurrently executed unit of code. On multicore
CPUs, the execution is also typically parallel. 47, 62, 65, 86, 98

transposon

Transposons (or /transposable elements/) are sequences of a genome able to change
their position in the genome using the cell machinery; whether they do with or with-
out going through a RNA transcription stage splits the transposons from the retro-
transposons. 19

unlocalized sequence

Unlocalized sequences are scaffolds (intermediary sequencing results, standing between
the read and the assembled sequence) for which the host chromosome is known, but
that could not be placed on it. 94, 95

unplaced sequence

Unplaced sequences are scaffolds (intermediary sequencing results, standing between
the read and the assembled sequence) for which neither their host chromosome, nor
their position in the genome, could be determined. 94, 95

user time

User time is the cumulated amount of time that the CPU(s) spent on a program from
its start to its stop. 80, 81, 86

wall-clock time

The wall-clock time is the actual time that a program takes to run from start to stop.
75, 80, 81, 86, 88, 98

ZMW well

Zero-Mode Wavelength wells have a microscopic width and are smaller than visible
light wavelength, preventing it to enter the well as it can not finds an electromagnetic
mode inside it. 29
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minisatellite, 31
mouse, 19, 80, 81, 87–89, 91, 94
multiFASTA, 64

non-allelic, 16, 22, 88

112



INDEX 113

OpenCL, 98
orangutan, 15
orthologous, 44, 45
OTP, 67

palindrome, 21–23, 30, 69, 75, 89–95
paralogous, 23
pericentromeric, 19, 20, 86
phylogeny, 22, 25, 59
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