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Titre :  Formation des planètes observée avec ALMA: 
propriétés du gaz et de la poussière des disques 
protoplanétaires orbitant autour des étoiles jeunes de 
faible masse  

Résumé : 
Cette thèse porte sur l’étude des propriétés du gaz et de la poussière dans le disque 
protoplanétaire entourant l’étoile jeune triple de faible masse (∼1.2 MSun) GG Tau A. 
Comprendre les propriétés dynamiques, physiques et chimiques des systèmes 
stellaires multiples est nécessaire pour comprendre comment une planète peut se 
former et survivre dans ces environnements complexes. Les interactions 
gravitationnelles, dues à la multiplicité stellaire, créent une cavité centrale dans le 
disque protoplanétaire, la matière (gaz et poussières) se répartissant alors près des 
étoiles (disques internes) et en un anneau situé au delà de la cavité. Dans la cavité, 
le gaz et la poussière transitent sous la forme de filaments ("streamers") qui nourris- 
sent les disques internes permettant aux étoiles centrales (puis aux planètes) de se 
former.  

Ce travail consiste en l’analyse de l’émission de CO (12CO, 13CO et C18O) 
observée dans le domaine millimétrique/sub-millimétrique ainsi que des cartes de 
l’emission thermique de la poussière. L’émission de 12CO fournit des informations sur 
la couche moléculaire proche de l’atmosphère du disque, 13CO et C18O, qui sont 
moins abondants, apportent des informations sur des couches plus profondes. 
L’émission de la poussière permet de caractériser les propriétés du disque de pous- 
sières autour de ce même plan.  

Après avoir introduit le sujet, je présente l’analyse de la morphologie du 
disque de poussières et de gaz et de sa cinématique qui est dérivée de l’émission de 
CO. Je présente également un modèle de transfert radiatif de la partie dense du 
disque (l’anneau) réalisé à partir des donnés CO. La soustraction de ce modèle 
d’anneau aux données originales révèle l’émission ténue du gaz moléculaire située 
dans la cavité. Ainsi, je suis en mesure d’évaluer les propriétés des filaments de gaz 
à l’intérieur de cette cavité, telles que: la dynamique et les conditions d’excitation du 
gaz en- tourant les trois étoiles et la quantité de masse dans la cavité. Le disque 
externe est en rotation Keplerienne jusqu’au bord interne de l’anneau dense à ∼160 
ua. Le disque est relativement froid avec une température pour le gaz (CO) de 25 K 
et une température pour les poussières de 14 K à 200 ua environ des étoiles 
centrales. Les températures du gaz et de la poussière chutent très rapidement (r–1). 
La dynamique du gaz à l’intérieur de la cavité est dominée par la rotation 
Keplerienne, la contribution de mouvement de chute ("infall") étant évaluée à 
∼10−15% de la vitesse Keplerienne. La température du gaz est de l’ordre de 40 à 80 
K. La densité de colonne pour CO et la densité de H2 le long des “streamers”, 
proches des étoiles (environ 0.3’’− 0.5’’), sont de l’ordre de quelques 1017 cm–2 et 107 
cm–3, respectivement. La masse totale de gaz à l’intérieur de la cavité est de 
∼1.6×10–4 MSun et le taux d’accrétion est de l’ordre de 6.4×10–8 MSun yr–1. Ces 
résultats permettent de dresser la première vision un tant soit peu complète de la 
physique d’un système multiple jeune capable de former des planètes.  



La chimie dans l’anneau est aussi discutée. Je présente ainsi la première 
détection de H2S dans un disque protoplanétaire et les détections de DCO+, HCO+ et 
H13CO+ dans le disque de GG Tau A. Mon analyse des observations et la 
modélisation chimique associée suggèrent que notre compréhension de la chimie du 
soufre est encore incomplète. Dans GG Tau A, la détection de H2S a probablement 
été possible car le disque est plus massif (facteur ∼ 3 − 5) que les autres disques sur 
lesquels H2S a été recherché. Une telle masse rend le système adapté à la détection 
de molécules rares, faisant de lui un bon candidat pour étudier la chimie dans les 
disques protoplanétaires. 

Mots clés : disques protoplanétaires, étoiles jeunes, GG Tau A 

 
Title : Planetary formation seen with ALMA: gas and dust 
properties in protoplanetary disks around young low-mass 
stars  

Abstract :  
This thesis presents the analysis of the gas and dust properties of the protoplanetary 
disk surrounding the young low-mass (∼ 1.2 MSun) triple star GG Tau A. Studying 
such young multiple stars is mandatory to understand how planets can form and 
survive in such systems shaped by gravitational disturbances. Gravitational 
interactions linked to the stellar multiplicity create a large cavity around the stars, the 
matter (gas and dust) being either orbiting around the stars (inner disks) or beyond 
the cavity (outer disk). In between, the matter is streaming ("streamers") from the 
outer disk onto the inner disks to feed up the central stars (and possible planets).  

This work makes use of millimeter/sub-millimeter observations of rotational 
lines of CO (12CO, 13CO and C18O) together with dust continuum maps. While the 
12CO emission gives information on the molecular layer close to the disk atmosphere, 
its less abundant isotopologues (13CO and C18O) bring information much deeper in 
the molecular layer. The dust mm emission samples the dust disk near the mid-
plane.  

After introducing the subject, I present the analysis of the morphology of the 
dust and gas disk. The disk kinematics is derived from the CO analysis. I also 
present a radiative transfer model of the ring in CO isotopologues. The subtraction of 
this model from the original data reveals the weak emission of the molecular gas 
lying inside the cavity. Thus, I am able to evaluate the properties of the gas inside the 
cavity, such as the gas dynamics and excitation conditions and the amount of mass 
in the cavity. The outer disk is in Keplerian rotation down to the inner edge of the 
dense ring at ∼160 au. The disk is relatively cold with a CO gas temperature of 25 K 
and a dust temperature of ∼14 K at 200 au from the central stars. Both CO gas and 
dust temperatures drop very fast (∝r−1). The gas dynamics inside the cavity is 
dominated by Keplerian rotation, with a contribution of infall evaluated as ∼ 10 − 15% 
of the Keplerian velocity. The gas temperature inside the cavity is of the order of 40 − 
80 K. The CO column density and H2 density along the “streamers”, which are close 



to the binary components (around 0.3′′ − 0.5′′) are of the order of a few 1017 cm−2 and 
107 cm−3, respectively. The total mass of gas in- side the cavity is ∼1.6×10−4 MSun 
and the accretion rate is estimated at the level of 6.4×10−8 MSun yr−1. These new 
results provide the first quantitative global picture of the physical properties of a 
protoplanetary disk orbiting around a young low-mass multiple star able to create 
planets.  

I also discuss some chemical properties of the GG Tau A disk. I report the first 
detection of H2S in a protoplanetary disk, and the detections of DCO+, HCO+ and 
H13CO+ in the disk of GG Tau A. Our analysis of the observations and its chemical 
modelling suggest that our understanding of the S chemistry is still incomplete. In GG 
Tau A, the detection of H2S has been probably possible because the disk is more 
massive (a factor ∼ 3−5) than other disks where H2S was searched. Such a large 
disk mass makes the system suitable to detect rare molecules and to study cold- 
chemistry in protoplanetary disks.  

Keywords : protoplanetary disk, young star, GG Tau A  

 
Title: Sự hình thành hành tinh quan sát bởi ALMA: Tính 
chất khí và bụi trên đĩa tiền hành tinh quay quanh các ngôi 
sao có khối lượng thấp.  

Abstract :  
Chủ đề nghiên cứu của luận án là về tính chất của khí và bụi trên đĩa tiền hành tinh 
quanh một hệ đa sao có khối lượng ∼1.2 Msun, GG Tau A. Nghiên cứu các hệ đa sao 
trẻ là cần thiết để hiểu về sự hình thành và tồn tại của hệ hành tinh trong môi trường 
nhiễu loạn hấp dẫn. Tương tác hấp dẫn của hệ đa sao tạo nên một khoang rỗng lớn 
xung quanh các sao thành phần, vật chất (khí và bụi) của hệ có thể quay quanh từng 
sao đơn ("đĩa trong") và bên ngoài khoang rỗng, xung quanh cả hệ sao ("đĩa ngoài"). 
Ở giữa hai phần này của hệ, vật chất được truyền từ đĩa ngoài vào đĩa trong để nuôi 
dưỡng các sao ở trung tâm (hoặc có thể cả hành tinh).  

Nghiên cứu của luận án sử dụng các quan sát thiên văn vô tuyến ở bước 
sóng millimet/dưới-millimet phát ra bởi các phân tử CO (12CO, 13CO và C18O) và bụi. 
Phát xạ từ 12CO cung cấp thông tin về lớp phân tử gần với khí quyển của đĩa, các 
đồng phân kém phổ biến hơn (13CO và C18O) cung cấp thông tin nằm sâu hơn trong 
lớp phân tử của đĩa. Phát xạ mm của bụi giúp nghiên cứu các tính chất trên mặt 
phẳng giữa của đĩa.  

Sau khi giới thiệu về chủ đề và đối tượng nghiên cứu, tôi trình bày về hình thái 
và động học của đĩa khí và bụi của hệ sao. Tôi cũng trình bày mô hình truyền bức xạ 
của đĩa ngoài sử dụng các đồng phân của CO. Đĩa ngoài của hệ tuân theo chuyển 
động Kepler cho đến gần khoang rỗng, ∼160 au từ tâm sao, và tương đối lạnh. Nhiệt 
độ khí CO và bụi lần lượt là 25K và 14K tại khoảng cách 200au, và giảm nhanh khi 
khoảng cách tới tâm tăng, T ∝ r−1. Việc trừ mô hình đĩa ngoài từ số liệu ban đầu biểu 
lộ rõ ràng hơn phát xạ yếu của các phân tử khí trong khoang rỗng. Do đó, động học 



và điều kiện phát xạ của khí trong khoang rỗng có thể được đánh giá. Các phân tử 
khí bên trong khoang rỗng bị chi phối bởi chuyển động quay, với sự đóng góp nhỏ 
của chuyển động rơi được đánh giá vào cỡ 10–15% chuyển động Kepler. Nhiệt độ 
khí bên trong khoang rỗng trong khoảng 40–80 K, mật độ dài của khí CO và mật độ 
khối của H2 lần lượt là 1017cm−2 và 107cm−3. Tổng khối lượng khí trong khoang rỗng 
là ∼1.6×10−4 Msun, tốc độ truyền vật chất từ đĩa ngoài vào đĩa trong được tính vào 
khoảng ∼ 6.4×10−8 Msun yr−1. Các kết quả nghiên cứu này góp phần cung cấp một 
bức tranh tổng quát định lượng đầu tiên về tính chất vật lý của đĩa tiền hành tinh 
quay xung quanh một hệ đa sao trẻ có khối lượng thấp, nơi có khả năng hình thành 
hành tinh.  

Một vài tính chất hóa học của đĩa tiền hành tinh GG Tau A cũng được nghiên 
cứu trong luận án này. Tôi trình bày về sự phát hiện lần đầu tiên H2S trong đĩa tiền 
hành tinh, cũng như sự phát hiện lần đầu tiên DCO+, HCO+ và H13CO+ trong đĩa GG 
Tau A. Kết quả phân tích số liệu thực nghiệm và mô hình hóa học cho thấy sự hiểu 
biết của chúng ta về hóa học các phân tử có chứa sulfur trong đĩa là chưa hoàn 
thiện. Trong đĩa tiền hành tinh GG Tau A, khả năng phát hiện được phân tử hiếm 
như H2S có thể là nhờ vào khối lượng lớn của đĩa (lớn hơn khoảng 3–5 lần so với 
các đĩa tiền hành tinh nơi H2S đã từng được tìm kiếm). GG Tau A với đĩa tiền hành 
tinh có khối lượng lớn là thích hợp để tìm kiếm các phân tử hiếm và nghiên cứu về 
thành phần hóa học của đĩa có nhiệt độ thấp.  

Keywords: đĩa tiền hành tinh, sao trẻ, GG Tau A  
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Substantial summary
Understanding how planetary systems form is a major challenge of Astrophysics

in the 21st century. For this purpose, observing young low-mass stars, similar to
the Sun when it was in its infancy is a necessary step. Indeed, planets form from
the rotating disk of gas and dust orbiting around these young stars (also called T
Tauri stars). This disk is itself a residual from the molecular cloud which has formed
the central star, and so called protoplanetary disk. As a consequence, determining
the physics and chemistry at play in these protoplanetary disks has become an im-
portant domain of the modern astrophysics requesting both detailed observations
and sophisticated models. Thus constraining initial conditions leading to planetary
systems by making relevant comparisons with planet formation models requests
an observational evaluation of the physical properties (density, temperature, turbu-
lence, etc) and chemical evolution of the gas and dust disks surrounding T Tauri
stars. An important source of complexity for the observations resides in the fact that
the determination of these fundamental physical parameters is strongly degenerated
within a single observation. The role of the observer is therefore to define an observ-
ing strategy, e.g. by observing several molecules, which allows an accurate deriva-
tion of the physical properties by minimizing the impact of possible degeneracies.
Knowing the properties of the dust (nature, size, morphology) is essential to under-
stand the formation of planetary embryos but also the genesis of complex molecules.
Many organic molecules form onto grain surfaces where gaseous molecules freeze
out as soon as the temperature is cold enough (e.g. 17 K for CO) and interact with
molecules already trapped onto grains. This thesis investigates the properties of the
protoplanetary disk surrounding a triple low-mass stellar system, GG Tau A, using
interferometric observations of trace molecules such as 12CO, 13CO, C18O, DCO+,
HCO+ and H2S, and of multi-wavelength dust emission.

Chapter 1 introduces the topic and the current knowledge of protoplanetary
disks. The special case of protoplanetary disks surrounding binary systems is in-
troduced both for the theoretical studies and for the observations. The second part
of the Chapter presents the known properties on the GG Tau A system.

Chapter 2 summarizes some basic points about instruments, observations and
analysis methods used in the present study. It briefly introduces IRAM and ALMA
interferometers, the observations carried out with these facilities and data reduction.
It presents the principles of radio interferometry and deconvolution. It also recalls
the bases of radiative transfer, and a radiative transfer code (DiskFit) is introduced
at the end of the Chapter.

Chapter 3 is the first of three chapters that address the specific studies of the
protoplanetary disk GG Tau A. The results are published in Phuong et al. (2018b). It
presents an analysis of the morphology of the dust disk using 0.9 mm emission and
of the morpho-kinematics of the gas emissions observed with ALMA. The studies
confirm the geometry of the dust ring, with an inclination of 35◦ and a position
angle of∼ 7◦ as well as the sharp edge and narrow ring of the dust emission. Figure
10 shows the sky map of the dust emission, the radial dependence of the 0.9 mm
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FIGURE 1: Brightness of the dust ring continuum emission. Top left: sky
map, the black ellipse is the fit to 〈R〉 shown in the bottom left panel; the
yellow arrow points to the region of the "hot spot" observed by Dutrey
et al. (2014) and Tang et al. (2016) in 12CO(6–5) and 12CO(3–2) emis-
sions. Top right: The dependence on R of the brightness averaged over
position angle ϕ, together with the Gaussian best fit to the peak. Bottom
left: Dependence on ϕ of 〈R〉 calculated in the interval 1′′ < R < 2′′ (the
red line is the best fit to an elliptical tilted ring offset from the origin).
Bottom right: Dependence on ϕ of the disk plane continuum brightness
averaged over R in the interval 1′′ < R < 2′′. The red line shows the

mean value of the continuum brightness.

brightness in the sky plane, and the azimuthal dependence of the mean radius 〈R〉
which reveals the tilt angle of the disk and the azimuthal dependence of the 0.9 mm
brightness on the plane of the disk.

A study of 13CO(3–2) emission gives an upper limit of 0.24′′ (34 au) on the disk
scale height at a distance of 1′′ (140 au) from the central stars. The outer disk is in
Keplerian rotation with a rotation velocity reaching ∼ 3.1 km s−1 at 1′′ from the
central stars; an upper limit of 9% (at 99% confidence level) is placed on a possi-
ble relative contribution of infall velocity. Variations of the intensity across the disk
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FIGURE 2: Upper panels: Sky map (left) of the 13CO(3–2) integrated in-
tensity. The black arrow shows the position of the hot spot in 12CO(6–5)
(Dutrey et al., 2014) and 12CO(3–2) (Tang et al., 2016). Radial depen-
dence (middle) of the integrated intensity azimuthally averaged in the
disk plane. The red line is a fit using the same three Gaussians as in
Tang et al. (2016). Azimuthal dependence (right) of the integrated in-
tensity averaged across the disk (0.54′′ < r < 2′′). The red line shows
the mean intensity. Lower panels: Sky map of the mean Doppler ve-
locity (weighted by brightness) (left). Azimuthal dependence of mean
line Doppler velocity weighted by brightness (middle). Dependence on
r of 〈Vrot × r1/2〉 (brightness-weighted average); the lines are the best
power law fits with indices −0.63 for | sin ω| > 0.3 (red) and −0.48 for

| sin ω| > 0.707 (blue) (right).

area are studied in detail and confirm the presence of a “hot spot ” in the south-
eastern quadrant. However several other significant intensity variations, in partic-
ular a depression in the northern direction, are also revealed. Variations of the in-
tensity are found to be positively correlated to variations of the line width. Possible
contributions to the measured line width are reviewed, suggesting an increase of
the disk temperature and opacity with decreasing distance from the stars. Figure
11 (upper panels) shows the intensity map of 13CO(3–2) emission, the radial and
azimuthal dependence of the 13CO(3–2) intensity in the plane of the gas disk. The
radial dependence, described as the sum of three Gaussian functions, reveals unre-
solved substructures. The azimuthal dependence of the intensity shows a uniform
disk with an excess of emission in the southeastern quadrant, which corresponds to
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FIGURE 3: Upper panels: Radial dependence of the integrated bright-
ness temperature (for line emissions) and brightness temperature (for
continuum emission) in the disk plane. The grey bands show the dust
ring. The horizontal sticks indicate the angular resolutions. Lower pan-
els: Azimuthal dependence of the brightness temperatures integrated
over the ring 1.2′′ < r < 2.0′′. The left panels are for the three 12CO
emissions (J=6–5, 3–2 and 2–1), with CO(2–1) data taken from Dutrey
et al. (2014), the right panels show the less abundant CO isotopologues
(J=3–2) emissions and the continuum. Black arrows show the location
of the limb brightening peaks. The magenta vertical lines show the "hot

spot" location.

the “hot spot” observed in 12CO(6–5) by Dutrey et al. (2014). Figure 11 (lower pan-
els) displays the Doppler velocity map of the 13CO(3− 2) emission, the azimuthal
dependence of mean Doppler velocity 〈Vz〉 on the plane of the disk and the radial
dependence of 〈Vrot× r1/2〉. The velocity map shows the projection on the sky plane
of a circular disk rotating around an axis projecting as the minor axis of the intensity
elliptical disk. The azimuthal dependence of the mean Doppler velocity 〈Vz〉 is well
described by a cosine function, severely constraining a possible infall contribution.
The dependence of 〈Vrot × r1/2〉 on r provides evidence for Keplerian rotation. As
rotation cannot be revealed near the projection of the rotation axis, we exclude from
the analysis wedges of ± ∼ 17◦ (red) and ± ∼ 45◦ (blue), the latter giving evidence



ix

FIGURE 4: Left: Radial dependence of CO gas (red) and dust (black)
temperatures. The gas temperature is derived from the 12CO(3–2) anal-
ysis. Beyond 400 au, the CO temperature is extrapolated from the fit ob-
tained between 300 au and 400 au. The dust temperature is taken from
Dutrey et al. (2014) and extrapolated beyond a radius of 285 au. Right:
Radial dependence of the surface densities obtained from LTE analyses

of 13CO(3–2) (black) and C18O(3–2) (red).

for Keplerian motion with a power index of −0.48.

The second part of Chapter 3 presents an analysis of 12CO(J=2–1, 3–2, and 6–5)
and its isotopologues 13CO(3–2) and C18O(3–2). With an angular resolution better
than ∼ 50 au, these data provide evidence for radial and azimuthal inhomogeneity
of the outer disk. The azimuthal dependence of the line intensity in the plane of the
disk of the 12CO emissions shows the “hot spot” . It becomes less clear in the less
abundant isotopologues of 13CO and C18O (see Figure 3).

Chapter 4 presents a radiative transfer modelling of the 12CO, 13CO and C18O
(J=3–2) emissions. The results are published in Phuong et al. (2019, submitted to
A&A). This analysis is done in part in the uv plane in oder to reliably separate the
contributions of the cavity and outer circumbinary disk. Since 12CO(3–2) is optically
thick and easily thermalized, we use the line emission to probe the temperature of
the disk. The 13CO and C18O surface densities are derived assuming that the tem-
peratures of the isotopologues are the same as for 12CO emission. The temperature
and surface density profiles of these lines are displayed in Figure 4.

The subtraction of the best ring model (presented above) from the original uv
tables provides the best images of the gas emissions inside the cavity. The studies
of the kinematics inside the cavity reveal an infall contribution of ∼ 10% − 15%
of the Kelperian velocity. Figure 14 displays the position-velocity diagrams and the
azimuthal dependence of the de-projected Doppler velocity in 5 bins of 0.25′′ each.
The emissions of CO inside the cavity is defined by 6 bright blobs (see Figure 25).
The column density of CO obtained from a non-LTE analysis is of the order of ∼
1017 cm−2, with the temperature between 40 and 80 K and the H2 density of the
order of 107 cm−3. The total H2 mass inside the cavity is of the order of ∼ 10−4 M�
while the cumulative mass of the bright blobs is ∼ 10−5 M�. The gas mass will
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FIGURE 5: Left: Dependence of 〈Vz〉 ( km s−1) on azimuth ω (◦) in-
side the cavity. 12CO (3–2) is in black, 13CO (3–2) in red and C18O (3–
2) in blue. The red curve is a sine fit to the 13CO (3–2) data (see text).
C18O (3–2) data of significant intensity are only present in the bin
1.0′′ < r < 1.25′′. The magenta curves show the Keplerian velocity
expected around a single star of 1.36 M�. The green curve in panel (f)
shows the best fit velocity curve when infall motion is allowed. Right:
Position-velocity diagrams of the 13CO(3–2) emission inside the cavity
along the major axis (upper panel) and minor axis (lower panel). The
black curves show the Keplerian velocity expected around a single star
of 1.36 M�. Contour levels are spaced by 10 mJy/beam, with the zero
contour omitted. The white lines indicate the position of the inner edge
of the dust ring (180 au) and the black ones that of the inner radius of

the gas disk (169 au).

dissipate/accrete onto the Aa disk in about 2500 years, giving an accretion rate of
∼ 6.4× 10−8 M� yr−1.

Chapter 5 presents a study of the chemical content of the GG Tau A protoplan-
etary disk. The results are published in Phuong et al. (2018a). It presents the first
detection of H2S in a protoplanetary disk and the detection of other molecules, such
as DCO+, HCO+, and H13CO+ in the outer disk of GG Tau A. Figure 16 shows the
integrated intensity and velocity maps of the emissions. The DCO+/HCO+ ratio is
measured as ∼ 0.03 in the dense gas and dust disk of GG Tau A (at 250 au), a result
similar to that obtained for other disks (TW Hya and LkCa 15). A crude chemical
model of GG Tau A is presented and compared with observations. The detection
of the rare molecule H2S, in GG Tau A, which is not detected in other disks, such
as DM Tau and LkCa 15, suggests that this massive disk may be a good testbed to



xi

FIGURE 6: Integrated intensity of 12CO(3–2) (left) and 12CO(6–5) (right)
and blobs location. Each blob covers an area of one beam, except for B6
which covers half of it. The color scales are in units of (K km s−1). The
crosses mark the position of Aa and Ab1+Ab2, and the ellipse shows

the inner edge of the dust ring (180 au).

FIGURE 7: Upper panels: Integrated intensity maps. The color scales are
in units of (Jy beam−1 km s−1). The contour level step is 2σ. Lower panels:
Mean velocity maps. The contour level step is 0.5 km s−1. Beam sizes
are indicated. The ellipses show the locations of the inner (∼180 au)

and outer (∼260 au) edges of the dust ring.

study the chemical content of protoplanetary disks. I also present measurements of
the abundance of these molecules relative to 13CO and compare them with those
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observed in the disk of LkCa 15 and in the TMC–1 molecular cloud. Upper limits to
the abundance of other molecules such as, SO, SO2,C2S, and of c–C3H2, and HC3N
are also obtained.

Chapter 6 presents the general conclusion and the perspectives. Figure 26 sum-
marizes the properties (physics, chemistry and kinematics) of the GG Tau A sys-
tem and its environnement derived from the results presented in the thesis. More
and more planets are presently discovered orbiting around binary and multiple
stellar systems. Understanding how they form requires deep investigations of their
younger counterparts such as multiple TTauri stars. In this context, the present the-
sis presents the most complete study performed so far.
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FIGURE 8: Schematics of the global properties of the GG Tau A system.

In addition, ALMA Cycle 3 and Cycle 6 observations of CN, CO and CS emis-
sions are shown. CO data may suggest the presence of a spiral pattern, while the
CN and CS data rather suggest the presence of rings. Figure 27 displays the peak
brightness temperature map for CN (upper) and CS (lower) superimposed on the
CO peak brightness temperature map. These data contain important information
which deserves further studies.
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FIGURE 9: Upper panel: CN(2–1) peak brightness image (colour) over-
laid on the CO(2–1) peak brightness in contour. Lower panel: CS(5–4)
peak brightness image (colour) overlaid on the CO(2–1) peak brightness

in contour.
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Tóm tắt
Hiểu một cách cặn kẽ sự hình thành các hệ hành tinh là một thách thức lớn của

vật lý thiên văn trong thế kỷ 21. Quan sát các ngôi sao trẻ có khối lượng thấp, tương
tự như Mặt trời khi chúng còn ở giai đoạn sơ khai là một bước cần thiết để hiểu sự
hình thành của các hệ hành tinh. Thật vậy, các hành tinh được hình thành từ đĩa khí
và bụi quay quanh những ngôi sao trẻ này (được gọi là sao T Tauri). Đĩa vật chất
(khí và bụi) này, một phần còn lại của đám mây phân tử nơi mà ngôi sao trung tâm
hình thành, gọi là đĩa tiền hành tinh. Xác định tính chất vật lý và hóa học của đĩa
tiền hành tinh đã trở thành một lĩnh vực quan trọng của vật lý thiên văn hiện đại,
yêu cầu có các quan sát chi tiết và mô hình phức tạp. Do đó, ràng buộc những điều
kiện ban đầu dẫn đến hình thành hệ hành tinh bằng việc so sánh với các mô hình
lý thuyết yêu cầu các quan sát để có thể đánh giá tính chất vật lý (mật độ, nhiệt độ,
nhiễu loạn, vv) và sự phát triển hóa học của các đĩa khí và bụi quanh sao T Tauri.
Trên thực tế, việc xác định các tham số vật lý cơ bản này gặp phải hạn chế lớn với
chỉ một vài quan sát đơn lẻ. Do đó, vai trò của người quan sát là xác định chiến lược
quan sát phù hợp, ví dụ, quan sát một số phân tử, cho phép xác định chính xác tính
chất vật lý của đĩa vật chất. Biết các tính chất của bụi (mật độ, kích thước, hình thái)
là cần thiết không những để hiểu sự hình thành của phôi hành tinh mà còn để hiểu
nguồn gốc hình thành các phân tử phức tạp. Các phân tử hữu cơ phức tạp có thể
hình thành trên bề mặt các hạt bụi, nơi các phân tử khí đóng băng khi nhiệt độ đủ
thấp (ví dụ phân tử khí CO bị đóng băng trên bề mặt của các hạt bụi ngay khi nhiệt
độ đạt khoảng 17–20 K). Các phân tử khí bị dính vào bề mặt hạt bụi tương tác với
nhau tạo nên các phân tử mới phức tạp hơn. Luận án này nghiên cứu các tính chất
của khí và bụi trên đĩa tiền hành tinh quanh một hệ thống sao ba có khối lượng
thấp, GG Tau A, sử dụng các quan sát vạch phát xạ quay của các phân tử đánh dấu
như 12CO, 13CO, C18O, DCO+, HCO+ và H2S và phát xạ liên tục từ bụi ở nhiều bước
sóng khác nhau được quan sát bởi các hệ giao thoa vô tuyến.

Chương 1 của luận án giới thiệu chủ đề nghiên cứu và các hiểu biết hiện nay về
đĩa tiền hành tinh. Các nghiên cứu lý thuyết và quan sát đối với trường hợp đặc biệt
của các đĩa tiền hành tinh quay xung quanh các hệ sao đôi/nhiều sao cũng được giới
thiệu. Phần thứ hai của Chương 1 trình bày các hiểu biết cho đến nay về hệ thống
GG Tau A.

Chương 2 trình bày một số nét cơ bản về thiết bị quan sát, các quan sát và phương
pháp phân tích được sử dụng. Nội dung chương này giới thiệu ngắn gọn về hệ giao
thoa vô tuyến IRAM và ALMA, các quan sát được thực hiện với các hệ giao thoa
này và xử lý sơ bộ dữ liệu. Chương này cũng trình bày về nguyên tắc hoạt động của
giao thoa vô tuyến và việc chuyển đổi dữ liệu cũng như một số kiến thức cơ bản về
truyền bức xạ và về gói phần mềm (DiskFit) sử dụng cho việc mô hình hoá các dữ
liệu quan sát được dựa trên nguyên tắc truyền bức xạ.

Chương 3 đề cập đến các kết quả nghiên cứu cụ thể về hình thái và động học
của đĩa tiền hành tinh GG Tau A sử dụng quan sát phát xạ từ các đồng phân CO và
bụi bởi hệ giao thoa vô tuyến ALMA. Những kết quả của nghiên cứu này được công
bố trong Phuong et al. (2018b). Các nghiên cứu này xác nhận hình thái của vành bụi
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FIGURE 10: Phát xạ liên tục của vành bụi. Từ trái sang phải và từ trên
xuống dưới: Bản đồ cường độ phát xạ, hình elip màu đen là đường khớp
hàm tốt nhất giá trị trung bình của khoảng cách đến tâm sao trên mặt
phẳng bầu trời 〈R〉 theo góc vị trí ϕ (hình dưới bên trái); mũi tên màu
vàng chỉ vào vùng “điểm nóng“ được quan sát bởi Dutrey et al. (2014)
và Tang et al. (2016) với các phát xạ 12CO(6–5) và 12CO(3–2); sự phụ
thuộc vào R của độ sáng tính trung bình theo ϕ, cùng với đường khớp
hàm phù hợp nhất sử dụng hàm Gauss; sự phụ thuộc vào ϕ của 〈R〉
trong khoảng 1′′ < R < 2′′ (đường màu đỏ là hàm khớp với hàm elip
có độ nghiêng và sai lệch so với gốc toạ độ); sự phụ thuộc vào ϕ của độ
sáng phát xạ liên tục của mặt phẳng đĩa tính trung bình trên R trong
khoảng 1′′ < R < 2′′. Đường màu đỏ hiển thị giá trị độ sáng trung bình

phát xạ liên tục trên đĩa.

hẹp, có độ nghiêng 35◦ và góc vị trí∼ 7◦ cũng như sự suy giảm mật độ nhanh chóng
ở hai cạnh của vành bụi. Hình 10 (từ trái sang phải và từ trên xuống) cho thấy i) bản
đồ cường độ phát xạ bụi, ii) sự phụ thuộc vào khoảng cách đến tâm sao của độ sáng
trong mặt phẳng bầu trời, iii) sự phụ thuộc theo góc phương vị của bán kính trung
bình 〈R〉 cho thấy góc nghiêng của đĩa và iv) sự phụ thuộc theo góc phương vị của
độ sáng trên mặt phẳng đĩa.

Nghiên cứu với phát xạ 13CO(3–2) cho phép chúng tôi đưa ra giới hạn trên bề
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FIGURE 11: Hình trên: Bản đồ bầu trời của độ sáng tích phân theo vận
tốc của phát xạ 13CO(3–2). Mũi tên đen chỉ vào vị trí “điểm nóng“ (trái).
Sự phụ thuộc vào khoảng cách tới tâm của độ sánh tích phân, tính trung
bình trên toàn mặt phẳng đĩa. Đường màu đỏ là đường khớp hàm với
tổng 3 hàm Gauss giống như trong Tang et al. (2016) (giữa). Sự phụ
thuộc theo góc phương vị của độ sáng tích phân, tính trung bình theo
bán kính trên đĩa (0, 54′′ < r < 2′′). Đường màu đỏ hiển thị cường
độ trung bình (phải). Hình dưới: Bản đồ bầu trời của vận tốc Doppler
trung bình trọng số theo độ sáng (trái). Sự phụ thuộc theo góc phương
vị của vận tốc Doppler trung bình trọng số theo độ sáng (giữa). Phụ
thuộc vào khoảng cách đến tâm của 〈Vrot × r1/2〉; các đường thẳng là
đường khớp với tuyến tính bậc 1 cho chỉ số −0, 63 (đường màu đỏ, khi
giới hạn điều kiện | sin ω| > 0, 3) và −0, 48 (đường màu xanh, khi giới

hạn điều kiện | sin ω| > 0, 707) (phải).

dày đĩa tiền hành tinh này là 0,24′′ (34 au) ở khoảng cách 1′′ (140 au) từ tâm hệ sao.
Đĩa ngoài này chuyển động theo định luật Kepler với tốc độ quay ∼ 3.1 km s−1 tại
khoảng cách 1′′ (140 au) từ tâm hệ sao và giới hạn trên của vận tốc rơi so với thành
phần quay là 9% (với độ tin cậy 99%). Sự biến đổi của độ sáng trên đĩa cũng được
nghiên cứu chi tiết và xác nhận sự hiện diện của "điểm nóng" trong góc phần tư
phía đông nam của đĩa. Kết quả phân tích số liệu cũng cho thấy tồn tại vùng phát
xạ yếu hơn so với các khu vực khác ở phía bắc của đĩa. Sự biến đổi độ sáng được
chỉ ra có mối tương quan với biến đổi độ rộng vạch phổ. Các yếu tố đóng góp vào
việc làm rộng vạch phổ cũng được xem xét. Nghiên cứu cho thấy nhiệt độ và độ dày
quang học của vạch phát xạ 13CO(3–2) trên đĩa tăng khi khoảng cách tới tâm hệ sao



xvii

FIGURE 12: Hình trên: Sự phụ thuộc vào khoảng cách tới tâm của độ
sáng tích phân theo vận tốc (vạch phát xạ quay của phân tử) và độ
sáng (phát xạ liên tục từ bụi) trong mặt phẳng đĩa. Các đoạn thẳng
nằm ngang trong hình chỉ ra độ phân giải không gian tương ứng. Hình
dưới: Sự phụ thuộc theo góc phương vị của đại lượng tương ứng, tính
trung bình trong vành 1, 2′′ < r < 2.0′′. Các hình bên trái là biểu đồ của
ba vạch của 12CO (J=6–5, 3–2 và 2–1), với dữ liệu CO(2–1) được lấy từ
Dutrey et al. (2014), các hình bên phải là biểu đồ của vạch phát xạ J=3–2
của các đồng phân ít phổ biến hơn. Trong các hình phía trên, vùng màu
xám đánh dấu vành bụi. Trong các hình phía dưới, mũi tên màu đen
chỉ vị trí xảy ra hiệu ứng tăng cường sáng (limb brightening), các đường

màu tím giới hạn vị trí "điểm nóng".

giảm dần. Hình 11 (hàng trên, từ trái sang phải) trình bày bản đồ độ sáng phát xạ
13CO(3–2), sự phụ thuộc của độ sáng vào khoảng cách đến tâm và góc phương vị
trong mặt phẳng đĩa. Sự phụ thuộc vào khoảng cách đến tâm, được mô tả là tổng
của ba hàm Gauss, cho thấy các cấu trúc tinh tế chưa được phân giải với độ phân
giải hiện nay của quan sát này (∼50 au). Sự phụ thuộc theo góc phương vị của độ
sáng cho thấy đĩa tương đối đồng nhất có phát xạ vượt trội ở góc phần tư phía đông
nam, tương ứng với “điểm nóng ” được quan sát với 12CO(3–2) được báo cáo trong
Dutrey et al. (2014). Hình 11 (hàng dưới, từ trái sang phải) trình bày bản đồ vận
tốc Doppler của phát xạ 13CO(3–2), sự phụ thuộc theo góc phương vị của vận tốc
Doppler trung bình 〈Vz〉 trên mặt phẳng đĩa và sự phụ thuộc vào khoảng cách đến
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tâm của 〈Vrot × r1/2〉. Bản đồ vận tốc cho thấy bằng chứng của một đĩa khí quay.
Sự phụ thuộc theo góc phương vị của vận tốc Doppler trung bình 〈Vz〉 khớp tốt với
hàm cos xác nhận chuyển động quay của đĩa. Sự phụ thuộc của 〈Vrot × r1/2〉 vào r
mô tả chuyển động Kepler của đĩa (nếu đĩa chuyển động theo định luật Kepler thì
tích này là hằng số). Đường cong màu đỏ biểu thị phân bố của đại lượng này không
tính đến vùng ∼ 17◦ quanh bán trục nhỏ, khớp với hàm tuyến tính bậc 1 cho chỉ
số −0, 63 trong khi đường cong màu xanh biểu thị phân bố của đại lượng này bỏ
qua vùng ∼ 45◦ quanh bán trục nhỏ, cho kết quả của chỉ số khi khớp hàm là −0, 48,
hoàn toàn phù hợp với chuyển động Kepler.

FIGURE 13: Hình trái: Sự phụ thuộc vào khoảng cách tới tâm của nhiệt
độ khí CO (màu đỏ) và bụi (màu đen). Nhiệt độ khí được lấy từ kết
quả phân tích vạch phát xạ 12CO(3–2). Nhiệt độ bụi được lấy từ Dutrey
et al. (2014). Hình phải: Sự phụ thuộc vào khoảng cách tới tâm của mật

độ bề mặt của 13CO(–2), C18O(3–2)

Phần thứ hai của Chương 3 trình bày phân tích các vạch phát xạ phân tử 12CO
(J=2–1, 3–2 và 6–5) và các đồng phân của nó 13CO (3–2) và C18O (3–2). Với độ phân
giải góc tốt hơn ∼ 50 au, những dữ liệu này cho thấy bằng chứng về sự không đồng
nhất theo khoảng cách tới tâm sao và góc phương vị của đĩa ngoài của hệ tiền hành
tinh này. Sự phụ thuộc theo góc phương vị của cường độ phát xạ trong mặt phẳng
đĩa của phát xạ 12CO cho thấy sự hiện diện của “điểm nóng ” ở góc phần tư đông
nam. "Điểm nóng" này không thể hiện rõ trong các đồng phân ít phổ biến của CO
như 13CO và C18O (xem Hình 19).

Chương 4 trình bày mô hình truyền bức xạ của 12CO, 13CO và C18O (J=3–2).
Kết quả nghiên cứu của chương này đã được gửi đăng trên tạp chí Astronomy &
Astrophysics (Phuong et al. 2019). Công việc này được thực hiện một phần trong
mặt phẳng uv. Để nghiên cứu phát xạ của khí từ đĩa ngoài với sự phát xạ của khí
từ trong khoang rỗng một cách riêng biệt, tôi đã loại bỏ các thành phần CLEANed
bên trong khoang rỗng r < 160 au từ số liệu uv ban đầu và phân tích dữ liệu với
số liệu uv đã thay đổi (chỉ còn các phát xạ từ đĩa ngoài). Thành phần CLEANed là
thành phần data-cube tốt nhất mô tả phát xạ của nguồn được sử dụng trong quá
trình chuyển đổi số liệu từ mặt phẳng uv sang mặt phẳng bầu trời. Vì vạch phát xạ
phân tử 12CO(3–2) có độ dày quang học lớn và dễ bị nhiệt hóa, chúng tôi sử dụng
vạch này để tính nhiệt độ của đĩa giả sử mật độ bề mặt của 12CO(3–2) đủ lớn. Mật
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FIGURE 14: Hình trái: Sự phụ thuộc của 〈Vz〉 ( km s−1) vào góc phương
vị ω (◦) trong khoang rỗng. Phát xạ 12CO (3–2) được biểu diễn bởi
đường màu đen, 13CO (3–2) màu đỏ và C18O (3–2) màu xanh lam.
Đường cong màu đỏ biểu diễn đường khớp hàm của phát xạ 13CO (3–2)
với hàm sin. Các đường cong màu tía biểu diễn đường chuyển động Ke-
pler cho một sao đơn có khối lượng 1,36 M�. Đường cong màu xanh lá
cây trong bảng (f) biểu diễn hàm khớp với sự đóng góp của thành phần
vận tốc rơi so sánh với hàm khớp chỉ bao gồm thành phần chuyển động
quay, hai đường khớp được vẽ chồng lên số liệu của phát xạ 13CO. Hình
phải: Sơ đồ Vận tốc–Vị trí của phát xạ 13CO(3–2) trong khoang rỗng dọc
theo bán trục lớn (hình trên) và bán trục nhỏ (hình dưới). Các đường
cong màu đen biểu diễn đường chuyển động Kepler quanh ngôi sao
đơn có khối lượng 1,36 M�. Các đường đồng mức tương ứng với giá trị
10 mJy beam−1. Các đường thẳng màu trắng chỉ vị trí bán kính trong
của vành bụi (180 au) và các đường thẳng màu đen chỉ bán kính trong
của đĩa khí (169 au). Lưu ý rằng dữ liệu đã được được xoay 7◦ để bán

trục nhỏ của đĩa hướng đến phía bắc.

độ của 13CO và C18O được tính khi giả sử rằng phân bố nhiệt độ theo khoảng cách
tới tâm của 13CO và C18O giống với phân bố của 12CO trong mô hình để khớp với
số liệu. Sự phụ thuộc theo bán kính của nhiệt độ (khí và bụi) và mật độ bề mặt của
13CO và C18O được trình bày trong Hình 20.

Việc trừ mô hình "đĩa ngoài" tốt nhất (như đề cập ở trên) từ các số liệu uv ban đầu
làm nổi bật phát xạ yếu của khí bên trong khoang rỗng. Các nghiên cứu về động học
của khí trong khoang rỗng cho thấy khí trong khoang rỗng chủ yếu bị chi phối bởi
chuyển động quay, với một phần đóng góp nhỏ của chuyển động rơi (∼ 10%− 15%
độ lớn của vận tốc Kelper). Hình 14 trình bày bản đồ Vận tốc–Vị trí (P-V diagram)
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FIGURE 15: Bản đồ độ sáng tích phân theo vận tốc của 12CO(3–2) (trái)
và 12CO(6–5) (phải) và vị trí của các vùng sáng. Mỗi vùng sáng bao phủ
một diện tích beam, ngoại trừ vùng 6 chỉ bao phủ ∼ 50% diện tích
beam. Giá trị bảng màu được thể hiện trên mỗi hình và có đơn vị là

K km s−1.

FIGURE 16: Trên: Bản đồ cường độ phát xạ. Thang màu được biểu diễn
trong đơn vị Jy beam−1 km s−1. Mỗi đường đồng mức tương ứng với
2σ. Dưới: Bản đồ vận tốc. Mỗi đường đồng mức tương ứng với 0.5
km s−1. Kích thước beam được chỉ ra ở góc dưới của mỗi hình. Các
đường e-lip biểu diễn vị trí của bán kính trong (∼180 au) và bán kính

ngoài (∼260 au) của vành bụi.

và sự phụ thuộc theo góc phương vị của vận tốc Doppler trung bình trong 5 vành
tròn với độ rộng mỗi vành là 0, 25′′. Phần phát xạ mạnh của CO bên trong khoang
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rỗng được chia ra thành 6 vùng sáng (xem Hình 25). Phân tích non–LTE cho kết quả
về mật độ dài của CO trong các vùng sáng này là ∼ 1017 cm−2, nhiệt độ 40− 80 K
và mật độ H2 trong các vùng sáng này là 107 cm−3. Khối lượng H2 trong khoang
khoảng ∼ 10−4 M� trong khi tổng khối lượng của các vùng sáng là ∼ 10−5 M�.
Khối khí này sẽ biến mất (do bồi đắp vào đĩa trong của Aa) trong khoảng 2500 năm.
Do đó, tốc độ bồi tụ vật chất được tính vào khoảng ∼ 6.4× 10−8 M� yr−1.

Chương 5 trình bày nghiên cứu về thành phần hóa học của đĩa GG Tau A. Kết
quả nghiên cứu được công bố trong Phuong et al. (2018a). Nội dung chương này
trình bày việc lần đầu tiên phát hiện H2S trong một đĩa tiền hành tinh và sự phát
hiện các phân tử khác trong đĩa GG Tau A, DCO+, HCO+, và H13CO+. Hình 16
trình bày bản đồ cường độ phát xạ và vận tốc của các vạch phát xạ phân tử này.
Tỷ lệ DCO+/HCO+ trong đĩa khí và bụi mật độ cao (ở 250 au) được đánh giá vào
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FIGURE 17: Tính chất tổng quát của hệ sao GG Tau A.

khoảng 0.03, tương tự như trong các đĩa tiền hành tinh khác (TW Hya và LkCa 15).
Kết quả này bổ sung thêm bằng chứng về việc deuterium hóa xảy ra trong đĩa tiền
hành tinh GG Tau A. Chương 5 cũng trình bày một mô hình hóa học đơn giản của
GG Tau A và so sánh với các quan sát.

Việc H2S được phát hiện trong GG Tau A, trong khi nó không được phát hiện
trong các đĩa khác, có khối lượng thấp hơn GG Tau A khoảng 3–5 lần, như DM Tau
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và LkCa 15, cho thấy rằng đĩa tiền hành tinh với khối lượng lớn này có thể là một
đối tượng tốt để nghiên cứu thành phần và sự tiến hóa hóa học trong đĩa tiền hành
tinh. Tôi cũng trình bày độ phổ cập so với 13CO của các phân tử này trong đĩa GG
Tau A, và so sánh với đĩa LkCa 15 và trong đám mây phân tử TMC-1. Giới hạn trên
mật độ bề mặt của các phân tử khác không được phát hiện trong GG Tau A, như SO,
SO2, C2S và của c-C3H2 và HC3N cũng được đưa ra.

FIGURE 18: Trên: Bản đồ độ sáng đỉnh phát xạ của CN(2–1) (màu)
chồng lên bản đồ của CO(2–1) (biểu diễn bởi các đường đồng mức).
Dưới: Bản đồ độ sáng đỉnh phát xạ của CS(5–4) (màu) chồng lên bản

đồ của CO(2–1) (các đường đồng mức).

Chương 6 trình bày kết luận và triển vọng nghiên cứu tương lai. Hình 26 tóm
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tắt các thuộc tính (vật lý, hóa học và động học) của GG Tau A và môi trường xung
quanh nó được nghiên cứu trong luận án này. Ngày càng có nhiều ngoại hành tinh
được tìm thấy quanh các hệ sao đôi và đa sao. Do đó, việc hiểu cách chúng hình
thành yêu cầu các nghiên cứu kỹ về các đối tượng trẻ hơn như các hệ đa sao T Tauri.
Trong bối cảnh như vậy, luận án này trình bày một nghiên cứu đầy đủ nhất cho tới
nay về tính chất của một đĩa tiền hành tinh quanh hệ đa sao T Tauri.

Quan sát ALMA ở Chu kỳ 3 (Cycle 3) và Chu kỳ 6 (Cycle 6) các vạch phát xạ CN,
CO và CS được trình bày trong chương này. Dữ liệu CO mới cho thấy bằng chứng
của vùng phát xạ dạng xoắn ốc ở mức độ thấp. Các quan sát từ CN và CS cho thấy
cấu trúc vành, một trong số chúng trùng với các đặc trưng quan sát được từ CO
(xem Hình 27). Các quan sát mới này hứa hẹn cung cấp thêm nhiều thông tin thú vị
về đĩa tiền hành tinh quanh hệ sao ba GG Tau A.



xxiv

Résumé substantiel
Comprendre comment se forment les systèmes planétaires est un défi majeur de

l’astrophysique du 21me siècle. Pour cela observer les jeunes étoiles de faible masse,
semblables au Soleil quand il avait environ un million d’années est une étape fon-
damentale. En effet, les planètes se forment à partir du disque de gaz et de pous-
sières qui orbite autour de ces jeunes étoiles (également appelées étoiles TTauri).
Ce disque est lui même un résidu du nuage moléculaire qui a formé l’étoile cen-
trale, il est appelé disque protoplanétaire. En conséquence, déterminer la physique
et la chimie de ces disques est devenu un domaine important de l’astrophysique
qui demande à la fois des observations et des modèles sophistiqués. Contraindre les
conditions initiales menant à la formation des systèmes planétaires et les comparer
aux modèles passe par une évaluation observationnelle des propriétés physiques
(densité, température, turbulence, etc.) et de l’évolution chimique des disques. Une
source de limitation pour les observations réside dans le fait que la détermina-
tion de ces paramètres physiques fondamentaux est fortement dégénérée au sein
d’une observation unique. Le rôle de l’observateur est donc de définir une stratégie
d’observation, par exemple en observant plusieurs molécules, permettant une déter-
mination précise des propriétés physiques pour minimiser l’impact des dégénéres-
cences possibles. Connaitre les propriétés de la poussière (nature, taille, morpholo-
gie) est aussi important pour comprendre la formation des embryons planétaires
mais aussi la genèse des molécules complexes. De nombreuses molécules organiques
se forment sur les surfaces des grains où les molécules gazeuses condensent dès que
la température devient suffisamment basse (par exemple 17 K pour le CO) pour in-
teragir avec les molécules déjà piégées sur des grains.

Cette thèse étudie les propriétés du disque protoplanétaire entourant un sys-
tème stellaire triple de faible masse, GG Tau A, en utilisant des observations in-
terférométriques de molécules traces, telles que 12CO, 13CO, C18O, DCO+, HCO+ et
H2S, et l’émission thermique de la poussière observée à plusieurs longueurs d’onde.

Le chapitre 1 présente le sujet et les connaissances actuelles sur les disques pro-
toplanétaires. Le cas particulier des disques protoplanétaires entourant les systèmes
binaires est introduit à la fois pour les aspects théoriques et pour les observations.
La deuxième partie du chapitre présente les propriétés connues du système GG Tau
A.

Le chapitre 2 résume quelques points fondamentaux sur les instruments, les
observations et les méthodes d’analyse. Il présente brièvement les interféromètres
IRAM/NOEMA et ALMA, les observations effectuées avec ces instruments et la ré-
duction des données. Il expose également les principes de l’interféromètrie radio et
de la déconvolution. Il rappelle aussi les bases du transfert radiatif, et le code de
transfert radiatif DiskFit est introduit à la fin du chapitre.

Le chapitre 3 est le premier des trois chapitres qui traitent de l’étude spécifique
du disque protoplanétaire GG Tau A. Les résultats sont publiés dans Phuong et al.
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FIGURE 19: Emission continue de l’anneau de poussières. De gauche à
droite et de haut en bas: la carte du ciel, l’ellipse noire correspond à 〈R〉
(valeur moyenne de R) indiquée dans le panneau inférieur gauche; la
flèche jaune indique la région du point chaud (”hot spot”) observée
par Dutrey et al. (2014) et Tang et al. (2016) en 12CO(6-5) et 12CO(3-2);
la dépendance en R de la brillance moyennée sur ϕ, avec le meilleur
ajustement gaussien au pic; la dépendance en ϕ de 〈R〉 est calculée
dans l’intervalle 1′′ < R < 2′′ (la courbe rouge correspond le mieux
à l’anneau elliptique incliné et décalé par rapport à l’origine); et la
dépendance en ϕ de la brillance du continuum moyenné sur R dans
l’intervalle 1′′ < R < 2′′. La ligne rouge indique la valeur moyenne de

la brillance du continuum.

(2018b). Il présente une analyse de la morphologie du disque de poussières en util-
isant une carte obtenue à 0.9 mm et une étude morpho-cinématique du gaz (CO)
observé avec ALMA. Les études confirment l’étroitesse de l’anneau de poussières,
son inclinaison de 35◦ et son angle de position de ∼ 7◦ ainsi que la présence d’un
bord interne net. La figure 19 montre l’émission de l’anneau de poussières, la dépen-
dance radiale de la brillance, la dépendance azimutale pour le CO et la dépendance
azimutale de la brillance à 0.9 mm.

L’étude réalisée avec 13CO(3–2) donne une limite supérieure de 0.24′′ (34 au) pour
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FIGURE 20: Haut: Carte du ciel de l’intensité intégrée de le émission
de la transition 13CO(3–2). La flèche noire indique la position du point
chaud en 12CO(6–5) (Dutrey et al., 2014) et 12CO(3–2) (Tang et al., 2016)
(gauche). Dépendance en r de l’intensité intégrée moyennée de manière
azimutale dans le plan du disque. La ligne rouge est un ajustement util-
isant les mêmes trois Gaussiennes que dans Tang et al. (2016) (milieu).
Dépendance azimutale de l’intensité intégrée moyennée sur le disque
(0.54′′ < r < 2′′). La ligne rouge indique l’intensité moyenne (droite).
Bas: Carte du ciel indiquant la vitesse Doppler moyenne (pondérée
par l’intensité) (gauche). Dépendance azimutale de la vitesse Doppler
moyenne pondérée par l’intensité (milieu). Dépendance de 〈Vrot r1/2〉
en fonction de r (moyenne pondérée par l’intensité); les lignes sont
la meilleure loi de puissance, elle correspond aux indices −0.63 pour
| sin ω| > 0.3 (rouge) et −0.48 pour | sin ω| > 0.707 (bleu) (right.)

l’echelle de hauteur apparente du disque à une distance de 1′′ (140 au) des étoiles
centrales. Le disque externe est en rotation Keplerienne avec une vitesse de rota-
tion atteignant ∼ 3.1 km s−1 à 1′′ des étoiles centrales; une limite supérieure de 9 %
(avec un niveau de confiance de 99%) est placée sur une possible vitesse de chute
("infall") vers les étoiles. Les variations d’intensité à travers la zone du disque sont
étudiées en détail et confirment la présence d’un point chaud dans le quadrant sud-
est. Plusieurs autres variations d’intensité significatives, notamment une dépression
dans la direction nord, sont également révélées. La corrélation des intensités ob-
servées aux variations de la largeur de raie est aussi étudiée. Les contributions pos-
sibles à la largeur de raie mesurée sont examinées, suggérant une décroissance de la
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FIGURE 21: Haut: Dépendance radiale de la brillance de température
intégrée. Les barres horizontales indiquent la résolution. Bas: Dépen-
dance azimutale de la brillance de température intégrée sur l’anneau
1.2′′ < r < 2.0′′. Les panneaux de gauche montrent les trois émissions
de 12CO (J = 6–5, 3–2 et 2–1), avec les données de CO (2–1) extraites
de Dutrey et al. (2014), les panneaux du milieu montrent les émissions
des isotopologues de CO moins abondants (J = 3–2) et les panneaux de
droite montrent les transitions CS (7–6) et CS (3–2) et le continuum. Les
flèches noires indiquent l’emplacement des pics le long du grand axe
du disque. Les lignes verticales magenta dans les panneaux supérieurs
indiquent le bord intérieur de l’anneau de poussières, dans les pan-

neaux inférieurs, elles montrent l’emplacement du point chaud.

température et de l’opacité du disque avec la distance aux étoiles. La figure 20 (pan-
neaux du haut) montre la carte d’intensité de l’émission 13CO (3–2), les variations
radiales et azimutales de l’intensité de 13CO(3–2) . La dépendance radiale révèle des
sous-structures non résolues. La dépendance azimutale de l’intensité suggère un
disque uniforme avec un excès d’émission dans le quadrant sud-est (correspondant
au “point chaud ”observé par Dutrey et al. (2014)) et qui pourrait correspondre à
une planète en formation. La figure 20 (panneaux inférieurs) montre la carte des
vitesses de l’émission 13CO(3–2), la dépendance azimutale de la vitesse moyenne
〈Vz〉 ainsi que la dépendance radiale du produit 〈Vrot × r1/2〉. L’étude de la carte
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FIGURE 22: Gauche: Dépendance radiale de la température du gaz (CO)
en rouge et des poussières en noir. La température du gaz est dérivée
de l’analyse 12CO (3 − 2). La température des poussières provient de
Dutrey et al. (2014). Droite: Dépendance radiale des densités de surface
dérivées de 13CO, C18O (J=3− 2) et de CS (J=7− 6( et (J=3− 2). La den-
sité de surface de CS présentée est obtenue en prenant la température

déduite de la poussière.

des vitesses confirme que le disque tourne autour de son axe principal. La dépen-
dance azimutale de la vitesse moyenne 〈Vz〉 est correctement ajustée par une fonc-
tion cosinus confirmant la rotation du disque, ceci permettant également de placer
une limite supérieure sur le mouvement de chute. Comme attendu, la dépendance
de 〈Vrot × r1/2〉 sur r montre que la meilleure loi de vitesse du disque est Kepleri-
enne. La courbe bleue présente la distribution réduite à ∼ 45◦ autour du petit axe,
correspondant à un indice pour la vitesse de −0.48, ce qui est parfaitement Keple-
rien (−0.5).

La deuxième partie du chapitre 3 présente l’analyse des données 12CO (J=2–1,
3–2, et 6–5) et de ses isotopologues 13CO (3− 2) et C18O (3− 2), et de CS (6–5) et
CS (3–2). Avec une résolution lineaire supérieure à ∼ 50 au, ces données révèlent
des inhomogénéités radiales et azimutales dans le disque externe. La dépendance
azimutale de l’intensité des émissions de 12CO montre le “point chaud”. Il est moins
visible dans les données 13CO et C18O et disparaît pratiquement dans les émissions
de CS (voir la figure 21).

Le chapitre 4 présente une modélisation du transfert radiatif pour les données
12CO, 13CO et C18O (J=3− 2), et CS (J=7− 6). Il est publié dans Phuong et al. (2019,
A&A). Ce travail est partiellement effectué dans le plan de Fourier. Pour mieux sé-
parer l’émission du gaz dans l’anneau de celle du gaz dans la cavité, j’ai procédé par
itérations. J’ai d’abord étudié le disque externe et l’anneau. J’ai ensuite soustrait le
meilleur modèle de l’anneau et du disque externe pour étudier le gaz dans la cavité.
Puisque 12CO (J=3− 2) est optiquement épais et facilement thermalisé, cette raie per-
met de déterminer la température cinétique dans le disque. Les densités de surface
du gaz sont ensuite déduites des données optiquement plus minces 13CO et C18O en
utilisant la température déduite de CO. Les densités de surface de CS sont calculées
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FIGURE 23: Gauche: Dépendance de 〈Vz〉 ( km s−1) en fonction de
l’azimut ω (◦) dans la cavité. 12CO(3 − 2) est en noir, 13CO(3 − 2) en
rouge et C18O(3 − 2) en bleu. La courbe rouge est un ajustement des
données 13CO(3 − 2) par une fonction sinus. Nous utilisons un blanc
s’il n’y a pas de bonnes données disponibles (bruit) dans le disque. La
courbe magenta montre la courbe Keplerienne attendue pour une étoile
centrale de 1.36 M�. Droite: Diagrammes position-vitesse de l’émission
13CO(3–2) dans la cavité le long de l’axe principal (panneau supérieur)
et de l’axe secondaire (panneau inférieur). La courbe noire montre la

vitesse keplerienne attendue autour d’une étoile de 1.36 M�.

en partant de 2 hypothèses extrêmes: i) l’émission de CS provient de la même alti-
tude que l’émission de CO et a donc son profil de température; ii) l’émission de CS
provient plutôt de plus profond dans le disque (∼ 1 échelle de hauteur au dessus du
plan médian) et cette couche de gaz doit donc être à une température plus proche
de celle de la poussière située près du plan médian. Les profils de température et de
densité de surface mesurés sont résumés dans la figure 22.

La soustraction du meilleur modèle d’anneau (présenté ci-dessus) des données
originales (dans le plan de Fourier) fournit les meilleures images possible des émis-
sions de CO et CS à l’intérieur de la cavité. L’étude de la cinématique de la cavité
révèle une vitesse de chute du gaz dans la cavité qui est de ∼ 10% − 15% de la
vitesse Kepleriennne locale. La figure 23 montre les diagrammes position-vitesse et
la dépendance azimutale de la vitesse déprojectée dans 5 cellules de taille ∆r = 0.25′′

chacun. Les émissions de CO à l’intérieur de la cavité peuvent être définies par des
condensations (ou "blobs") brillantes (voir la figure 24). L’analyse non-LTE de ces
condensations indique que la densité de colonne de CO est de ∼ 1017 cm−2, la tem-
pérature varie de 40 à 80 K et la densité de H2 est de l’ordre de ∼ 107 cm−3. La
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FIGURE 24: Intensité intégrée de 12CO(3 − 2) (gauche) et 12CO(6 − 5)
(droite). Chaque "blob" couvre un lobe interférométrique à l’exception

de B6, qui ne couvre que ∼ 50% d’un lobe.

masse totale de H2 à l’intérieur de la cavité est estimée à ∼ 10−4 M� alors que la
masse cumulée des condensations est de ∼ 10−5 M�. La masse de gaz va se dis-
siper / s’accréter sur le disque Aa en environ 2500 ans, cela correspond à un taux
d’accrétion de ∼ 6.4× 10−8 M� an−1

Le chapitre 5 présente une étude du contenu chimique du disque protoplané-
taire GG Tau A. Les résultats sont publiés dans Phuong et al. (2018a). Il présente la
première détection de H2S dans un disque protoplanétaire et la détection d’autres
molécules, telles que DCO+, HCO+, et H13CO+ dans le disque externe de GG Tau
A. Le rapport DCO+/HCO+ (à 250 au) est mesuré (∼ 0.03). Il est identique à ceux
observés dans des disques similaires comme ceux entourant TW Hya et LkCa 15. Les
abondances des molécules par rapport à 13CO sont calculées et comparées à celles
observées dans le disque de LkCa 15 et le nuage moléculaire TMC-1. Les deux dis-
ques ont des abondances similaires. Les limites supérieures (en densité de colonne)
des autres molécules telles que, SO, SO2,C2S, et de c–C3H2, et HC3N sont également
présentées. Un modèle chimique du disque de GG Tau A est aussi discuté et com-
paré aux observations. La comparaison montre que la chimie du soufre n’est pas
encore bien comprise. La détection de H2S dans le disque de GG Tau A est facilitée
par la grande masse du disque (comparée aux autres disques où H2S a été cherché).
Le disque de GG Tau A apparait comme un bon candidat pour étudier le contenu
chimique des disques protoplanétaires.

Le chapitre 6 présente la conclusion générale. En particulier, la figure 26 résume
les propriétés de GG Tau A et de son environnement (physique, chimie et cinéma-
tique) obtenues grâce à cette thèse. De plus en plus de planètes autour des étoiles
binaires ou multiples (50% des étoiles galactiques) sont découvertes, il est impor-
tant de comprendre comment ces systèmes planétaires peuvent se former et évoluer.
Cette thèse y contribue en présentant l’étude la plus complète effectuée à ce jour
d’un tel système stellaire.
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FIGURE 25: Haut: Cartes d’intensité intégrée. L’échelle de couleurs est
dans l’unité de (Jy beam−1 km s−1). Les contours sont à 2σ. Bas: Cartes
des gradients de vitesse. Les contours sont par pas de 0,5 km s−1. Les
tailles des lobes sont indiquées. Les ellipses indiquent les rayons in-

térieur (∼180 au) et extérieur (∼260 au) de l’anneau de poussières.
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FIGURE 26: Un schéma de l’ensemble GG Tau A. Les propriétés globales
sont présentées.

Puis le chapitre présente les perspectives découlant de ces résultats nouveaux et
de nouvelles observations ALMA (cycle 3 et cycle 6) de CN, CO et CS non analysées.
Les cartes à fort rapport signal/bruit de l’émission de CO(2–1) montrent la présence
de bras spiraux à bas niveau dans la partie externe du disque. Elles pourraient être
liées à des perturbations gravitationnelles dues à la présence du "point chaud" fa-
vorisant alors l’hypothèse de la planète en formation. Les nouvelles observations CN
et CS font aussi apparaitre plusieurs structures annulaires dans l’anneau. L’analyse
de ces nouvelles données s’avère donc très prometteuse, elle permettra en particulier
de contraindre la dynamique du disque externe et de l’anneau et ses liens potentiels
avec le "point chaud".
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FIGURE 27: Haut: Superposition des cartes de brillance de CN(2–1) en
couleur et de CO(2–1) en contour. Bas: Superposition des cartes de bril-

lance de CS(5-4) en couleur et de CO(2–1) en contour
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dle) of the integrated intensity azimuthally averaged in the disk plane.
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3 Upper panels: Radial dependence of the integrated brightness temper-
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4 Left: Radial dependence of CO gas (red) and dust (black) tempera-
tures. The gas temperature is derived from the 12CO(3–2) analysis.
Beyond 400 au, the CO temperature is extrapolated from the fit ob-
tained between 300 au and 400 au. The dust temperature is taken from
Dutrey et al. (2014) and extrapolated beyond a radius of 285 au. Right:
Radial dependence of the surface densities obtained from LTE analy-
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5 Left: Dependence of 〈Vz〉 ( km s−1) on azimuth ω (◦) inside the cavity.
12CO (3–2) is in black, 13CO (3–2) in red and C18O (3–2) in blue. The
red curve is a sine fit to the 13CO (3–2) data (see text). C18O (3–2) data
of significant intensity are only present in the bin 1.0′′ < r < 1.25′′.
The magenta curves show the Keplerian velocity expected around a
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3.3 Continuum emission. Left: Dependence on ϕ of < R > calculated in
the interval 1′′ < R < 2′′. The red line is the best fit to an elliptical
tilted ring offset from the origin (see text). Right: Dependence on ϕ of
the disk plane continuum brightness averaged over R in the interval
1′′ < R < 2′′. The red line shows the mean value. . . . . . . . . . . . 46
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sian fit to the noise peak. Right: Doppler velocity spectrum weighted
by brightness and integrated over 8′′ × 8′′ (blue); the red histogram is
obtained from the original by symmetry about the origin. . . . . . . . 47
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Chapter 1

Introduction

1.1 Overview

Stars form from small fractions of the dust and gas contained in relatively dense and
cool molecular clouds. Once a protostar core has condensed, a disk forms around
it as a consequence of angular momentum conservation. In the early phase of star
formation, the disk rapidly funnels material onto the central protostar, but as the
surrounding molecular gas gets depleted, the accretion rate decreases and a small
quantity of material remains in the disk that will live a few million years, allowing
planets to form (hence the name “protoplanetary” disks).

FIGURE 1.1: Schematic of the formation process of protoplanetary disks
and of the corresponding Spectral Energy Distributions. The figure is

adapted from Greene (2001) and Dauphas and Chaussidon (2011).

Young Stellar Objects (YSOs) cover a broad range of temperatures, hot in the
central protostar and cold in the outer disk; they radiate over a wide range of wave-
lengths, from microns to millimetres: they can be observed with infrared and radio
telescopes. Depending on the value of the slope of the Spectral Energy Distribu-
tion (SED) αIR between about 2 and 25µm, one distinguishes between four classes of
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YSOs: 0, I, II and III (Lada and Wilking, 1984; Lada, 1987; Andre, Ward-Thompson,
and Barsony, 1993). Figure 1.1 summarises the main properties of YSOs, the evolu-
tion of their morpho-kinematics and of the SED. Of course, YSOs cannot be uniquely
defined by their SED class: in particular, Robitaille et al. (2006) have shown that a
face-on Class II YSO has a similar SED as an average Class I object, while an edge-on
Class I YSO may have the same characteristics as a Class 0 one. The reason is that
YSOs with highly inclined disks are strongly obscured and can be misinterpreted
as more embedded and hence, less evolved objects. Therefore, it is essential to ob-
serve and resolve a YSO at multiple wavelengths in order to fully characterize its
evolutionary stage.

Studies of exo-planets have shown that planets cover a broad range of both orbit
parameters and chemical composition. These are related to the properties of the pro-
toplanetary disks from which they are born. Therefore, the study of the gas and dust
properties of protoplanetary disks reveals the mechanisms governing the formation
of planets and the features that they display. Moreover, recent exo-planet surveys
carried out with the Kepler Space Telescope reveal that planets can form and sur-
vive in binary systems, whether in circumbinary or circumstellar orbits (Welsh et
al., 2012). The formation conditions in these systems differ from those around sin-
gle stars. Theoretical studies of disk evolution predict that a T Tauri binary, at an
age of about 1 Myr, should be surrounded by two inner disks, located inside the
Roche lobes and an outer ring or disk located outside the outer Lindblad resonances
(Artymowicz et al., 1991). For a binary system of low or moderate eccentricity, the
stable zone is typically located beyond the 3:1 or 4:1 resonances (Artymowicz and
Lubow, 1994). The outer radii of these inner disks, as well as the inner radius of the
circumbinary (outer) disk, are defined by tidal truncation.

1.2 The disk structure

Forming from molecular clouds, protoplanetary disks are made up of 99% gas and
1% dust. H2 is the most abundant species, followed by He and trace molecules such
as CO, CS, ... (e.g. X(CO/H2)=8 × 10−4, X(CS/H2)=1 × 10−8, Ohishi, Irvine, and
Kaifu, 1992). Inside disks, the temperature is governed by dust, which is directly
heated by radiation from the central star and accretion shocks (matter falling down
from the inner disk onto the star, see Figure 1.2).

Studies of protoplanetary disks show that they are flared and display important
vertical and radial density and temperature gradients. The external layer is directly
illuminated by the stellar UV radiation and dominated by photo-dissociation reac-
tions, while molecules stick to dust grains in the cold internal mid-plane. Figure 1.2
shows a schematic of a flared and layered disk and Figure 1.3 shows the distribution
of gas and dust density and temperature within such a disk.

The following descriptions of the structure of a protoplanetary disk (density and
temperature profiles) are mostly taken and summarized from Armitage and Valen-
cia (2010), I will only cite specific articles when needed.
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FIGURE 1.2: Schematic picture of the flared and layered structure of a
protoplanetary disk. The left hand side of the picture shows the distri-
bution and evolution of the dust. The right hand side shows the molec-
ular distribution and the dominant chemical processes in each layer.

The figure is taken from Henning and Semenov (2013).

FIGURE 1.3: Upper panels: Gas (left) and dust (right) density distribu-
tions in protoplanetary disks. Lower panels: Gas (left) and dust (right)
temperature distributions in protoplanetary disk. The four distribu-
tions are the result of a model calculation. The Figure is adapted from

Cleeves, Bergin, and Adams (2014).



4 Chapter 1. Introduction

1.2.1 Density profile

Vertical structure

As a first good approximation a disk can be modelled as an optically thick disk
heated by stellar radiation and supported by gas pressure in hydrostatic equilib-
rium. One can then approximate the optically thick interior of the disk as isother-
mal, with sound velocity cs and pressure P = ρ c2

s . The sound velocity is related to
temperature via c2

s = kBT/µmH, where kB is Boltzmann’s constant, mH the mass of
a hydrogen atom.

In cylindrical coordinates, the condition for vertical hydrostatic equilibrium is,

dP
dz

= −ρ gz = −
GM?

r2 + z2 sin θ × ρ (1.1)

where M? is the stellar mass, and sin θ = z/r. For z� r,

gz =
GM?z

r3 ' Ω2z (1.2)

where Ω =
√

GM?/r3 is the Keplerian orbital velocity at the midplane, then:

c2
s

dρ

dz
= −Ω2ρz (1.3)

which integrates to give,
ρ(z) = ρ0 exp[−z2/2h2] (1.4)

where ρ0 is the density at mid-plane and h = cs/ΩK is the vertical scale height of
the disk.

Defining the surface density as Σ =
∫

ρ dz, the central density is,

ρ0 =
1√
2π

Σ
h

(1.5)

The above equations define the vertical structure of the simplest disk model
(isothermal, with Gaussian density profile). If the temperature is not uniform, the
density departs from a Gaussian profile. If the disk is accreting, the gravitational po-
tential energy, which is thermalized in the optically thick interior, requires a vertical
temperature gradient dT/dz < 0 in order to be transported to the disk photosphere
and radiated out. Integration of Equation 1.1 gives

ρ = ρ0 exp[
r2

h2 ((1 + z2/r2)−1/2 − 1)] (1.6)

When h/r does not exceed ∼ 0.05, protoplanetary disks are geometrically thin
and the density profile is Gaussian to a very good approximation. It is only when
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disk winds extend beyond z ∼ r, and when the disk is massive, Mdisk/M? > 0.5 h/r,
that the effect of the vertical gravity gradient needs to be taken into account.

Radial structure

In the radial direction, the gravitational attraction by the star is counteracted by the
pressure force (in the case of the gas) and by the centrifugal force; the combined
hydrostatic and centrifugal equilibrium equation reads

v2

r
=

GM?

r2 +
1
ρ

∂p
∂r

(1.7)

As the pressure decreases outward, ∂p/∂r < 0, implying v < vKepler. In disks, the
gas is moving around the central protostar slower than the dust and planets, a result
of the contribution of the pressure term. The gradient is small and can be approxi-
mated by:

v2

r
≈ Ω2 r− c2

s /r = Ω2 r( 1− c2
s

Ω2 r2 ) = Ω2 r( 1− h2

r2 )

v = vKepler

√
1− h2

r2

(1.8)

The deviation from strict Keplerian rotation, vKepler =
√

GM?/r is of the order of
(h/r)2 and its value is small. For a disk having h/r = 0.03 at 1 au,the velocity differs
from Keplerian by only 0.25% (Armitage and Valencia, 2010).

Dust particles grow inside the disks, and large particles dynamically decouple
from the gas and move toward the mid-plane. As a consequence, we have larger
particles near the mid-plane and smaller particles further out vertically. Contrary to
gas molecules, they are not affected by the radial pressure gradient that causes the
mismatch in velocity: as a result, they develop a differential velocity with respect to
the gas that causes aerodynamic drag. Assuming an axisymmetric vertically isother-
mal disk supported against gravity by gas pressure, the vertical density profile of the
disk in equilibrium can then be written as:

rΩ2
g(r,z) =

GM?

(r2 + z2)3/2 z +
1
ρ

∂p
∂r

(1.9)

where Ωg(r,z) is the gas angular velocity.

A disk is often characterized by the values of the power indices p and q describ-
ing the radial profiles of the surface density and of the temperature, Σ ∝ r−p and
T ∝ r−q. The angular velocity of the gas at equilibrium is approximated by:
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rΩ2
g(r,z) ≈ ΩK,mid[1−

1h2

4r2 (q + 2p + 3 + q
h2

r2 )] (1.10)

where ΩK,mid is the mid-plane Keplerian value; the vertical dependence of the
Keplerian velocity reads

ΩK ≈ ΩK,mid(1−
3
4

z2

r2 ) (1.11)

The deviation from Keplerian rotation in this case becomes,

Ωg −ΩK ≈ −
1h2

4r2 (q + 2p + 3 + q
h2

r2 )ΩK,mid (1.12)

The Keplerian velocity depends on the enclosed disk mass Mdisk as

v′K ≈ vK(1 +
Mdisk
M?

)1/2 (1.13)

1.2.2 Temperature profile

We consider here the case where the dust opacity is high enough for the disk to be
optically thick to both stellar radiation and to its own re-emitted radiation, which
displays therefore a thermal spectrum. It is then a pure geometry problem to de-
termine how much stellar radiation each annulus of the disk intercepts, and what
equilibrium temperature, T, is obtained.

We consider the temperatures of gas and dust on the surface layer of the disk.
Surface layers being both optically thin and of low density, one needs to account
explicitly for the heating and cooling processes and to allow for the possibility that
dust and gas are too weakly coupled to maintain the same temperature.

A disk whose temperature is set by stellar irradiation is said to be “passive ”. We
write the radial dependence of the temperature of the blackbody disk emission as
F(r). Modelling the star as a sphere of radius R and constant brightness I, we use
spherical coordinates centred on the star. The stellar flux passing through a sphere
of radius r is,

F =
∫

I? sin θ cos φdΩ (1.14)

where dΩ is the solid angle element. Solving the above equation for the flux com-
ing from the upper half of the star, meaning −π/2 < φ < π/2 and 0 < θ <
sin−1(R?/R) and substituting dΩ = sinθ dθ dφ one obtains,

F = I?[sin−1(R?/r)− (R?/r)
√

1− (R?/r)2] (1.15)
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A star with effective temperature T? has brightness I? = (1/π)σT4
? , where σ is

the Stefan-Boltzman constant. Setting F equal to the one-side disk emission σ T4
disk

the temperature profile is given by,

(
Tdisk
T?

)4

=
1
π
[sin−1(R?/r)− (R?/r)

√
1− (R?/r)2] (1.16)

In the approximation where geometrically (R?/r) � 1, we obtain Tdisk ∝ r−3/4

for the power-law temperature profile of a flat, thin and passive disk. This implies
a radial dependence of the sound velocity of the form, cs ∝ r−3/8, and a disk thick-
ness (h/r) ∝ r1/8. We therefore predict that the disk becomes geometrically thicker
("flaring") at larger radii.

More detailed calculations of dust emission from passive disks require consid-
erations of two additional physical effects: the effect of the disk thickness as mea-
sured by the gas scale height increasing to larger radii, and the effect of small dust
grains that are directly exposed to stellar radiation emitting as dilute rather than
true blackbodies, with a higher temperature. An illustrative analytic model that in-
corporates these effects was developed by Chiang and Goldreich (1997) by consid-
ering a disk with surface density Σ = 103(r/1 au)−3/2 g cm−2 around a star having
M? = 0.5 M�, T = 4000 K, and R? = 2.5 R�. Within about 100 au, their solution re-
produces only half of the bolometric luminosity of the disk emitted as a blackbody
at the temperature T ≈ 150(r/1 au)−3/7 K. This solution uses a two-layer approxi-
mation to dust continuum radiative transfer for a passive, hydrostatic disk. The full
radiative transfer solution requires numerical treatment.

1.3 Planet formation in protoplanetary disks

1.3.1 The formation of planets

The first step toward planet formation is the growth of interstellar dust particles into
larger aggregates and eventually planetesimals. Dust grains are thought to grow
from sub-µm sizes to µm size particles in the dense regions of molecular clouds
and cores, but the growth from micron size particles to pebbles and kilometre size
bodies must occur in the high densities reached in the mid-planes of protoplanetary
disks.

The evolution of solids inside a circumstellar disk is governed by transport and
collisional processes, which are strongly related. Transport processes typically de-
pend on particle size, hence on the collisional evolution of the particles, while in
turn, collisions between particles are driven by dynamics.

Interstellar dust particles of size 0.1− 1µm are in Brownian motion and feel the
friction with the gas inside protoplanetary disks. The smaller dust particles, when
colliding at the proper velocity, stick together and grow in size: dust grains of sizes
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smaller than 10µm interact with each other, stick together and grow. Larger grains,
of sizes 100− 800µm, when colliding with smaller grains, bounce away if the latter
is larger than 10µm. Two equal-size particles larger than 1 mm generally fragment
when they collide but may also experience various types of interaction with some
of the final products being larger than the original particles. In particular, owing to
mass-transfer, a meter-size rock can grow in collisions if the partner is smaller than
200µm. Windmark et al. (2012) state that the key to growing large bodies is therefore
to sweep through smaller particles faster than one can get eroded or fragmented.

In protoplanetary disks, the snow-line defines the distance from the central star
beyond which ices of molecular compounds condense while metals stay in the gas
phase. The snow-line marks the transition between the inner warmer regions where
terrestrial rocky planets can form to the cooler outer region where Jovian gaseous
planets can form.

1.3.2 Interaction between the planets and disks

When a planet forms inside a protoplanetary disk, its gravitational field exerts a
tidal torque on the gas and dust in the disk. This allows for angular momentum
transfer between planet and disk and results in the migration of the planet. The
density wave launched by the planet modifies the density of the disk and may open
a gap in the disk surface density. Its radius, width and level of gas/dust depletion
carry information about the planet properties. Viscosity affects both the width and
the depth of the gap. Numerical simulations show that the width of the gap depends
on the planet mass Mp and the orbital radius Rp (Crida and Morbidelli, 2007) as:

W ∼ C× Rp × (
Mp

3M?
)1/3 (1.17)

1.4 Gas composition of protoplanetary disks

To simplify, the chemistry of protoplanetary disks can be divided into two regions,
the inner (warm) and outer (cold) disks. The transition is defined by the snow-line
location (see Section 1.3). Two important snow-line locations are defined by H2O
(∼ 100 K) or CO (∼ 20 K). The contents of the inner disk are best characterized by IR
spectroscopy whereas the outer disk is the domain of (sub)mm observations.

Figure 1.4 shows a schematic view of a standard protoplanetary disk with vari-
ous molecules tracing different regions of the disk. The left hand side of the figure
shows the corresponding instruments suitable for such studies.
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1.4.1 Gas in the inner disk

The inner region of protoplanetary disks (< 30 au)is resolved by IR observations
but mostly limited to continuum emission and is unresolved in the (sub)mm do-
main for molecular line observations. Using VLTI long-baseline interferometer mea-
surements, Kraus et al. (2009) detected the near-IR emission from a Herbig Ae star,
resolving the circumstellar environment down to distances from the central star
smaller than 1 au. Herschel observations of molecular lines such as H2O, CO, [O
I], OH, CH+ and [C II] from T Tauri and Herbig Ae/Be disks are reported by sev-
eral authors (Meeus et al., 2012; Riviere-Marichalar et al., 2012; Riviere-Marichalar
et al., 2013; Fedele et al., 2012). Thermo-chemical models with a disk structure de-
rived from continuum observations suggest that these lines probe internal as well
as external disk layers (e.g. Woitke et al., 2010; Bruderer et al., 2012).

FIGURE 1.4: Chemical composition of protoplanetary disks: tracers and
instruments. The figure is taken from van Dishoeck (2014).

1.4.2 Gas in the outer disk

Thanks to high sensitivity interferometer arrays such as ALMA and NOEMA, the
gas content of nearby protoplanetary disks starts to be imaged. Recently, two ma-
jor projects have studied the chemistry of protoplanetary disks: Chemistry In Disk
(CID) using the IRAM 30-m telescope and NOEMA and DISCS using the Submil-
limeter Array (SMA). They have shown how different molecules trace different phys-
ical and chemical conditions. For example, 12CO, the most abundant molecule after
H2, is a good tracer of temperature while its less abundant isotopologues, 13CO,
C18O, C17O, or other molecules such as CS, are good tracers of density, in particu-
lar when probing high density environments. HCO+, N2H+ and CH+ are used to
study ionization; HD, DCO+, DCN, H2D+ are used to trace deuterium; CN, HCN,
HNC are good photochemistry tracers. The outer region of protoplanetary disks dis-
plays a flared and layered structure with important vertical and radial gradients of
temperature and density.
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Each layer of the outer disk hosts different chemical reactions in different phys-
ical conditions, resulting in different chemical compositions. The external layer, di-
rectly illuminated by stellar and interstellar radiation, is referred to as photon dom-
inated region (PDRs) hosting PDR-like chemistry. In this layer, photochemistry is
particularly important and depends on the strength and shape of the radiation field.
T Tauri stars emit intense non-thermal UV radiation from the accretion shock, while
the hotter Herbig Ae/Be stars produce larger amount of thermal UV radiation. For
example, at a distance of about 100 au from the central star, a T Tauri star pro-
duces a total UV flux of ∼ 100− 1000 G0 compared with 105 G0 for a Herbig Ae/Be
star, G0 being the value of the interstellar radiation flux (ISRF) as estimated by
Habing and Draine, 108 photon cm−2 s−1. Photodissociation acts differently on dif-
ferent molecules. For example, Lyman α photons selectively dissociate HCN and
H2O molecules, while CO and H2 are unaffected. The latter are instead dissociated
by the FUV radiation at wavelengths of 91 and 110 nm respectively.

The internal layer adjacent to the external layer is shielded from the stellar and
interstellar radiation field and has temperatures of ∼ 30 − 70 K, warm enough to
allow gas-phase and gas-grain reactions to proceed. Therefore, this layer is referred
to as "molecular layer". The temperature of 30− 70K is warm enough to protect CO
gas from freeze-out while H2O stays frozen onto dust grains, removing oxygen from
the gas phase: the mean C/O ratio is high, close to unity or even higher, leading
to C-based chemistry in the molecular layer. Deeper inside the disk, in the mid-
plane, where mm and cm size dust grains settle, the disk temperature is even lower,
resulting in molecular freeze-out on grain surfaces: the CO freeze-out temperature is
∼ 17 K. For example, the CO snowline in the disk of HD 163296 appears at ∼ 150 au
from the central star (Qi et al., 2011; Mathews et al., 2013a).

In the mm/sub-mm domain, several molecules have been detected in T Tauri
disks; CO, 13CO, C18O, C17O, CN, CS, H2CO, CCH, DCN, HCO+, H13CO+, DCO+,
N2H+, HC3N, CH3CN, HD, C3H2, C2H2, OH, SO, CH+, N2D+, NH3, CH3OH, H13CN,
HC15N, C15N, HCOOH and H2CS (Dutrey, Guilloteau, and Guelin, 1997; Thi et al.,
2001; Qi et al., 2008; Dutrey et al., 2011; Chapillon et al., 2012; Bergin et al., 2013; Qi
et al., 2013; Huang and Öberg, 2015; Öberg et al., 2015; Walsh et al., 2016; Guilloteau
et al., 2016; Salinas et al., 2016; Guzmán et al., 2015; Hily-Blant et al., 2017; Favre et
al., 2018; Le Gal et al., 2019). Figure 1.5 shows an example of observed molecules in
TW Hya, an archetype of a protoplanetary disk around a single star.

1.5 Observing the dust in protoplanetary disks

For decades, the properties of the dust in protoplanetary disks have been studied us-
ing the associated Spectral Energy Distributions (SED). For example, Beckwith et al.
(1990) studied 86 pre-main-sequence stars in the Taurus-Auriga star forming region;
their study, using the IRAM 30 m telescope at 1.3 mm wavelength has produced im-
portant information on the evolution of disks in star forming regions.



1.5. Observing the dust in protoplanetary disks 11

FIGURE 1.5: Submillimeter spectroscopy of molecular rotational lines
in the chemically rich, nearby TW Hydra disk. These observations,
made with the Submillimeter Array (SMA), are at a range of resolu-
tions, shown in the lower left corner of each panel. (Williams and Cieza,

2011).
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FIGURE 1.6: Intensity maps of 1.25 mm dust emission from protoplane-
tary disks observed in DSHARP (Andrews et al., 2018).
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High resolution interferometers have added significant results: such is the case
of the DSHARP (ALMA Large Program: Disk Substructures at High Angular Reso-
lution Project, PI: Sean M. Andrews) project that mapped the dust of protoplanetary
disks using ALMA. It surveyed a sample of twenty nearby protoplanetary disks at
1.25 mm wavelength. As illustrated in Figure 1.6, it revealed ubiquitous detailed
substructures (with angular resolution of 35 mas or 5 au) at disk radii ranging be-
tween 5 au and 150 au. The most common pattern is made of concentric bright rings
separated by dark gaps. Spiral features are less common; they are seen in single
host stars (IM Lup, Elias 27, and WaOph 6), with complex patterns superimposed
on rings and gaps, and in multiple stars (HT Lup and AS 205), the disks around
the primary stars showing clear double-arm spirals, indicating a strong dynamical
interaction.

Azimuthal inhomogeneity is rare in this sample, only seen in HD 143006 and,
very weakly, in HD 163296. The sizes and amplitudes of the rings suggest that they
are formed by dust being trapped into axi-symmetric gas pressure bumps.

A recent series of hydrodynamics simulations by Zhang et al. (2018) suggest that
dynamical interactions between low-mass planets (sub-Jupiter) and the local disk
material are plausible explanations of the observed ring/gap substructures.

1.6 Protoplanetary disks around binary and multiple
systems

1.6.1 Theoretical considerations

On average, about 30% of stars form in binary or multiple systems (Reipurth et al.,
2007). In multiple systems, in addition to viscosity (possibly caused by turbulences
or magnetic fields), the gravity tidal process is the major actor in shaping the close-
by stellar environment (Artymowicz et al., 1991). When the binary periodicity is a
multiple of the disk rotation periodicity, resonances play an important role. In sum-
mary, binary disk coupling, as angular momentum transport, proceeds through vis-
cous and resonant torques, the latter being dominant (e.g. Artymowicz and Lubow,
1994).

Models of disk evolution predict that a binary T Tauri aged 1 Myr should be
surrounded by two inner circumstellar (CS) disks, located inside the Roche lobes
rotating around the individual components and an outer circumbinary (CB) ring
or disk located outside the L2 and L3 Lagrangian points (see Figure 1.7) and in
Keplerian rotation around the binary system (Artymowicz et al., 1991). The outer
radius of the CS disks and the inner radius of CB disk are tidally truncated. The inner
radius of the CB disk is defined by the outer Lindblad resonance beyond which the
gravitational potential becomes undisturbed, at a distance of ∼ 2 major-axes of the
binary orbit. Lubow and Artymowicz (1997) have shown that the inner radius of the
CB disk depends on the eccentricity of the binary system and increases with it.
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Hydrodynamical simulations show the complex environment of binary systems.
For example, Pierens and Nelson (2013a) modelled two systems, Kepler 34 and Ke-
pler 35, which have a mass ratio of about unity but very different eccentricities, 0.52
for the former and 0.14 for the latter (see Figure 1.7). In both systems, the CB disk is
offset with respect to the centre of mass of the binary because the binary has trans-
ferred part of its eccentricity to the CB disk. In a second paper, Pierens and Nelson
(2013b) have shown that eccentricity plays a more important role in shaping the
environment than the mass ratio does, the CB disk eccentricity being independent
from the mass ratio of the central binary. The simulations also show accretion arms
("streamers") fuelling material from the CB into the CS disks.

FIGURE 1.7: Left: Two-dimensional representation of the Roche poten-
tial of two stars with a mass ratio of 1 to 4 with its five Lagrangian
points. The bold line represents the edge of the Roche lobe. Reproduced
from Frank, King, and Raine (2002). Middle & Right: Hydrodynamical
simulations of the binary systems Kepler 34 and Kepler 35 (Pierens and
Nelson, 2013b). x and y are given in au, the density decreases from red

to blue.

1.6.2 Summary: what to observe?

The arguments developed in the previous sections have shown what can be ob-
served in an archetypal binary T Tauri system such as GG Tau: i) the circumstellar
disks rotating around the individual components, ii) the cavity and the “stream-
ers” feeding gas from the outer disk onto the inner disks, and iii) the circumbinary
ring or disk. CB disks have been observed around several close binary systems and
found to be rather similar to the circumstellar disks observed around single stars.
But only a few circumbinary disks have been observed around wide binaries, with
separations between 10 and 100 au, such as GG Tau A (Dutrey, Guilloteau, and Si-
mon, 1994; Guilloteau, Dutrey, and Simon, 1999; Dutrey et al., 2014; Tang et al.,
2016), UY Aur (Close et al., 1998; Duvert et al., 1998), and L 1551 NE (Takakuwa et
al., 2014; Takakuwa et al., 2017); in such cases, “streamers” and circumstellar discs
have been observed (Dutrey et al., 2014; Tang et al., 2014; Takakuwa et al., 2014;
Takakuwa et al., 2017). Figure 1.8 shows a schematic illustration of the environment
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of a typical young binary system, indicating the origin of gas and dust emissions
expected from the disk.

FIGURE 1.8: A schematic picture of a typical binary T Tauri system
showing its components and associated gas and dust emissions. A pos-
sible planet in formation is shown opening a gap in the circumbinary

disk (Dutrey et al., 2016).

Many open questions remain in the study of protoplanetary disks around
multiple systems, such as:

• Gas kinematics in the gravitationally perturbed cavity.

• The formation of circumstellar disks in the gravitationally perturbed environ-
ment.

• Gas and dust properties and gas kinematics in conditions favourable for the
forming of planets.

1.7 GG Tau A - an interesting binary system

GG Tau A is one of the few disks for which all features relevant to the dynamics
of a multiple protostar system have been observed and measured. They include the
close environment of the protostars (within 30 au), the circumbinary disk, the cavity
and the “streamers ”. A very detailed review of the properties of the triple system is
given in Dutrey et al. (2016).
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1.7.1 Existing observations

The stars

Leinert et al. (1991), using a near infrared speckle interferometer, discovered that GG
Tau is a hierarchical quadruple system in the Taurus-Auriga star forming region,
with two binaries GG Tau A in the north and GG Tau B in the south, separated by
10′′ (1400 au). The northern component, GG Tau A is resolved as a binary, GG Tau Aa
and GG Tau Ab, with a separation of 35 au. The southern component, GG Tau B is
another binary, GG Tau Ba and GG Tau Bb, separated by ∼ 200 au. The system has
then be studied by several teams at different wavelengths (infrared, mid-infrared,
visible, (sub) mm) and with different instruments. Table 1.1 summarises the main
characteristics of the system. The northern component, GG Tau A is more massive
and has been studied in more detail than GG Tau B. Some detailed information
about GG Tau A, which is the main object studied in this thesis, is summarised
below.

TABLE 1.1: Main characteristics of GG Tau

GG Tau A GG Tau B

Spectral index Aa: K7 Ba: M5

White et al. (1999)Ab: M0.5 Bb: M7

Mass Aa: 0.78± 0.1 M� Ba: 0.12± 0.02M�
Ab: 0.68± 0.03M� Bb: 0.044± 0.006M�
Ab1: 0.6± 0.03M� Di Folco et al. (2014)Ab2: 0.30± 0.05M�

Major axis 32.4 au Beust and Dutrey (2005)Eccentricity 0.34

In the 1990s, GG Tau A was found to be surrounded by a dense gas and dust ring
extending from 180 au to 260 au and an outer Keplerian disk reaching out to 800 au
(Dutrey, Guilloteau, and Simon, 1994). Using CO emission observations, Guilloteau,
Dutrey, and Simon (1999) evaluated the dynamical mass of the system as 1.28 ±
0.07 M�, consistent with the mass derived from HST observations by White et al.
(1999), 1.46± 0.1 M� (the derived spectral indices are K7 for GG Tau Aa and M0.5
for GG Tau Ab). Hartigan and Kenyon (2003) analyzed spectrocopy data from HST,
derived spectral types M0 for GG Tau Aa and M2 for GG Tau Ab, resulting in a
binary mass of 0.98 M� (MAa = 0.60 M� and MAb = 0.38 M�). Recently, Di Folco
et al. (2014) discovered that GG Tau Ab is in fact itself a binary, Ab1/Ab2, separated
by 4.5 au, with an orbital period of 16 years (see Figure 1.10 lower left panel) making
GG Tau A a triple system. The measured IR flux gives the spectral type of the third
component, GG Tau Ab2, as M3, adding 0.3 M� to the system, making the spectral
mass consistent with the dynamical mass derived by Guilloteau, Dutrey, and Simon
(1999) using 13CO(2–1) observations from the IRAM array.
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FIGURE 1.9: Upper left panel: Intensity map of the 1.3 mm continuum
emission and velocity maps of the 13CO(2–1) line emission at v = 5.55
(blue contours), 6.30 (white contours) and 7.05 km s−1 (red contours)
(Guilloteau, Dutrey, and Simon, 1999). Upper right panel: NIR image
from scattered light emission obtained by Roddier et al. (1996). Lower
left panel: The triple star system and the circumstellar warm dust, as
observed by Di Folco et al. (2014). The spectra show silicate emission at
10 µm observed in Aa and Ab (Skemer et al., 2011). Lower right panel:
Intensity map of CO(6–5) emission (green) superimposed on the map
of dust emission at mm wavelength (yellow contours) and at NIR (white
contours), and the emissions of H2 at FUV (dark blue) and at NIR (red).

The figures are from Dutrey et al. (2016).

The circumbinary disk

The circumbinary disk surrounding GG Tau A has been observed by several teams:
Skrutskie et al. (1993) using the Nobeyama single dish telescope; Kawabe et al.
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(1993), using the Nobeyama Milliliter Array to observe the CO(1–0) emission; Simon
and Guilloteau (1992) using the IRAM interferometer to observe the dust emission,
Dutrey, Guilloteau, and Simon (1994) and Guilloteau, Dutrey, and Simon (1999) to
observe CO, 13CO and dust emissions. More recently ALMA observations of the CO
gas and dust emissions have been reported at high angular resolution of∼ 50 au, by
Dutrey et al. (2014) and Tang et al. (2016). These observations revealed that the outer
disk is made of a dense gas and dust ring, extending from 180 au to 260 au (contain-
ing 70% of the total disk mass of 0.15 M�), and an outer CO gas disk reaching out
to 800 au. Guilloteau, Dutrey, and Simon (1999) evaluated the 13CO gas temperature
in the disk as ∼ 20(r/300 au)−0.9 K, while the dust temperature was derived from
multi-wavelength dust emissions at 0.45, 1.3 and 3.4-mm and found of the order of
∼ 14(r/200 au)−1.1 K (Dutrey et al., 2014).

The circumstellar disks

The material surrounding the protostars was first described by Guilloteau, Dutrey,
and Simon (1999) using the 1.3-mm continuum emission observed with the IRAM
interferometer. They measured an unresolved flux of about 10 mJy toward the cen-
tral stars. Later, with better angular resolution of 0.45′′, Piétu et al. (2011) at 267 GHz,
Dutrey et al. (2014) at 690 GHz with an angular resolution of 0.3′′ and Tang et al.
(2016) at 330 GHz with an angular resolution of ∼ 0.35′′ have confirmed that the
emission is centred on the Aa star. Dutrey et al. (2014) observed the inner disk or-
biting Aa using CO(6–5) and continuum observations; they evaluate the mass of the
circumstellar disk as at least 10−3 M�; assuming an accretion rate of 10−8 M� yr−1,
the Aa disk would dissipate in less than 3.104 − 105 years, without external replen-
ishment. Yang et al. (2017) observations in H-band also revealed the presence of
a circumstellar disk around Aa. The emission of silicate grains at wavelengths be-
tween 5 and 34 µm, detected using Spitzer/IRS, has been reported and analysed by
Forrest et al. (2004) and Sargent et al. (2006) and Furlan et al. (2006). A model us-
ing 252 K astrosilicate grains suggests that the emission emanates from the inner
regions (r ∼ 1 au) of the circumstellar disk(s). The presence of two distinct silicate
features in the first spatially resolved MMTAO observations of Skemer et al. (2011)
demonstrates that at least two CS disks are present.

The cavity and “streamers”

The earlier measurement of the radius of GG Tau A cavity, at 1.3 mm wavelength, has
been later confirmed by NIR scattered light observations using the Canada-France-
Hawii Telescope (CFHT) by Roddier et al. (1996) (see Figure 1.10 upper right panel);
they measured a radius of 180 au, larger than theoretically expected (∼ 80 au, or
twice the major-axis of the binary orbit Artymowicz et al., 1991); the cavity has been
observed to host both diffuse gas and dust. NIR scattered light images show some
low brightness emission inside the dynamically cleared area (Roddier et al., 1996;
Itoh et al., 2002). Several H2 lines have been also observed, providing evidence for
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material in-falling onto the inner CS disks (Thi et al., 2001; Beck et al., 2012). Yang et
al. (2017) observed a northern “streamer” arc close to Ab in a scattered light image.
The maps of CO(2–1), (3–2) and (6–5) observed by IRAM and ALMA interferometers
also show significant amount of emissions inside the cavity; the position of the peak
brightness in CO(2–1) and (6–5) emissions coincides with that of hot H2 emission
(∼ 1500 K) observed by Beck et al. (2012) (see Figure 1.10 lower right panel). Using
a non-LTE radiative transfer code to analyse the CO data, these authors obtain a
temperature at the peak position of the order of 35 to 70 K.

The hot spot

Dutrey et al. (2014) have shown the presence of a south-eastern hot spot on the outer
edge of the dense ring, at a distance of∼ 260 au from the central stars, both in CO(2–
1) and CO(6–5) emissions. They estimated the temperature of the hot spot to be 40 K,
a factor 2 higher than in its surroundings. The authors suggested that it might signal
the presence of an unknown (already formed) embedded companion that is still
actively accreting material from the circumbinary disk. The possible presence of a
planet is still an open question.

FIGURE 1.10: Intensity map of CO(6–5) emission. The spectra shown in
the two inserts display the CO(6–5) emission at the hot spot location

(east) and onto Aa (Dutrey et al., 2016).
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1.7.2 Simulations of the GG Tau A system

Radiative transfer simulation

In order to reconstruct the observation features of GG Tau A at infrared wavelengths,
Brauer et al. (2019) used the Monte-Carlo code POLARIS (Reissl et al. 2016; Brauer
et al. 2017) to model dust emission. The most recent infrared observations of GG Tau
A reported by Yang et al. (2017) shows the circumstellar disks around both Aa and
Ab (see Figure 1.11). The authors identified 6 remarkable positions seen in most GG
Tau A IR images (Duchêne et al., 2004).

FIGURE 1.11: The H-band observations of GG Tau A. The number (1)–
(6) indicate the remarkable features. The Figure is taken from Brauer

et al. (2019)

Their model consists of three stars GG Tau Aa, Ab1 and Ab2 with Ab1 and
Ab2 considered as a binary. All star properties (such as, effective temperature, lu-
minosity, visual extinction, inclination, position angle and size of the circumstel-
lar/circumbinary disks) are taken from the literature. The power index describing
the radial distributions of the density in the circumstellar disks is assumed to be the
same as for minimum mass solar nebulae (Hayashi, 1981). Compact, homogeneous
and spherical grains are taken to consist of 62.5% silicate and 37.5% graphite. The
grain size distribution reaches up to 0.5 µm in the disk mid-plane.

The model favours circumstellar disks around Aa and Ab1 coplanar with the
circumbinary disk, but perpendicular to it around Ab2. The Spectral Energy Dis-
tribution and polarization intensity agree well with observations. Figure 1.12 left
shows the dust mass distribution of their model and Figure 1.12 right shows their
best result.
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FIGURE 1.12: Left: The dust mass density distribution of the GG Tau
A model. Right: Polarized intensity map of GG Tau A simulated with
circumstellar disks as described in the text. The figure is taken from

Brauer et al. (2019).

Hydrodynamical simulation

FIGURE 1.13: An example of hydrodynamical simulation of the GG Tau
A system. The simulation is for a system with a major axis of 62 au and

eccentricity of e = 0.3 (Nelson and Marzari, 2016).

Nelson and Marzari (2016) using the VINE code (Wetzstein et al., 2009) have
simulated the evolution of a binary system based on GG Tau A observations. They
ignore the binarity of GG Tau Ab. The initial conditions (density, temperature) were
chosen to be the same as the observations reported by Guilloteau, Dutrey, and Si-
mon (1999). To study the respective impact of the morphology of the dense ring and
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of the low density outer disk, the authors perform two series of simulations: 1) the
whole mass (0.12 M�) is contained in the dense ring and 2) 70% of mass is con-
tained in the dense ring, the rest being in the outer disk. They find that after 3 orbits
(∼ 6500 years) the total mass transport is ∼ 15% in the first model and ∼ 5% in the
second model. Using this mass transport rate and an outer disk mass of ∼ 0.04 M�,
they find that the entire disk could be generated this way in less than 104 years. Fi-
nally, they found that both self-gravity and tidal truncation should contribute to the
formation of spiral patterns (see Figure 1.13). They interpret the sharp features of the
ring as the manifestation of such a spiral structure, the low density outer disk being
an excretion disk created by the outward mass flux generated by the spiral arms as
they propagate outwards. They conclude that GG Tau A is a coplanar system with
eccentricity of e = 0.3 and major axis of a = 62au.
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Chapter 2

Observations, data reduction and
radiative transfer

2.1 Radio interferometry

2.1.1 General

A radio telescope is characterised by

i) the sensitivity, the ability to measure weak sources of radio emission, propor-
tional to the area and efficiency of the antenna and the sensitivity of the radio re-
ceiver used to amplify and detect the signal and

ii) the angular resolution, the ability to distinguish two neighbour sources, namely
fine details in the sky; it is approximately equal to the ratio between the wavelength
of observation (λ) and the diameter of the antenna (D) (θ = λ/D). This implies
that larger telescopes provide better images but building a large single dish has
some limitations, in particular in terms of installation, movement, etc. Interferom-
eters make it possible to cope with these difficulties while providing much better
resolution than single dish telescopes.

An interferometer measures the interference pattern produced by multiple aper-
tures. An interferometer has N antennas providing N(N − 1)/2 baselines that give
independent information and therefore produce much more detailed images than a
single dish telescope. In other words, a radio interferometer can be thought of as a
single telescope with a very large but incompletely-filled aperture, of diameter equal
to the maximum spacing, or baseline, between any two of its components. This large
“synthesized” aperture is only sampled at the locations at which an element exists,
and this is aided by the rotation of the Earth which effectively moves the elements
with respect to the source being observed, hence increasing the sampling. The size
of the “synthesized” aperture dictates the resolution or (“beam size”) of the array;
the larger the aperture, the smaller the resolution.
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FIGURE 2.1: Two-element inteferometer.

The interference pattern measures the complex visibility which has the form of a
Fourier transform:

V = |V|eiΦV =
∫

Sky
A(σ)I(σ)e−2πνb.σ/cdΩ (2.1)

where σ is the unit vector along the pointing direction, b is the baseline vector,
A is the antenna power pattern, and I is the sky brightness distribution.

Let (u, v, w) be the coordinates of the baseline vector, in units of the observing
wavelength ν, in a frame of the delay tracking vector ~d0, and (l, m, z) are the coordi-
nates of the source vector ~d in this frame. Then

νB.d/c = ul + vm + wz
νB.d0/c = w

z =
√

1− l2 −m2

and dΩ =
dldm

z
=

dldm√
1− l2 −m2

(2.2)
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Thus,

V(u, v, w) =
∫ ∫

A(l, m)I(l, m)e−2iπ(ul+vm+w(
√

1−l2−m2−1)) dldm√
1− l2 −m2

(2.3)

With I(l, m) = 0 when x2 + y2 ≥ 1 If (x, y) are sufficiently small, we can make the
approximation

(
√

1− l2 −m2 − 1)w ' 1
2
(x2 + y2)w ' 0 (2.4)

and Eq (2.3) becomes

V(u, v) =
∫ ∫

A′(l, m)I(l, m)e−2iπ(ul+vm)dldm (2.5)

with A′(l, m) = A(l, m)/
√

1− l2 −m2

 Image plane

    uv plane 
(Fourier plane)

FIGURE 2.2: Interferometric coordinate transformation in interferome-
ter measurement. Upper: In image (l, m, v) plane, Lower: In a Fourier or

(u, v) plane.

The interference pattern is directly related to the source brightness I(l, m). In
particular, for small fields of view, the complex visibility, V(u, v) is the 2D Fourier
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transform of the brightness on the sky, I(l, m) mutiplied by the antenna power pat-
tern A(l, m). Deconvolution techniques then must be applied to recover the true sky
brightness distribution.

2.1.2 Imaging and deconvolution

Imaging

An interferometer measures the visibility function

V(u, v) =
∫ ∫

A(l, m)I(l, m)e−2iπ(ul+vm)dldm (2.6)

over an ensemble of points (ui, vi), i = 1, n where A(l, m) is the power pattern
of the antennas and I(l, m) the sky brightness distribution. The ensemble of the
visibility measurements is called a uv table.

The imaging process consists in determining as well as possible the sky bright-
ness I(x, y). Since Equation (2.6) is a convolution, the imaging process will involve
deconvolution techniques.

Let S(u, v) be the sampling (or spectral sensitivity) function defined over the
ensemble of the n baseline for which there exists a visibility measurement

S(u, v) 6= 0↔ ∃i ∈ 1, nsuchthat(ui, vi) = (u, v)
S(u, v) = 0↔ ∃i ∈ 1, nsuchthat(ui, vi) 6= (u, v)

(2.7)

The spectral sensitivity function S contains information on the relative weights of
each visibility, usually derived from noise predicted from the system temperature,
antenna efficiency, integration time and bandwidth.

We define

Iw(x, y) =
∫ ∫

S(u, v)W(u, v)V(u, v)e2iπ(ul+vm)dudv (2.8)

where W(u, v) is an arbitrary weighting function. Since the Fourier Transform of a
product of two functions is the convolution of the Fourier Transform of the function,
Iw(l, m) can be identified with

Iw(l, m) = (A(l, m)I(l, m)) ∗ ∗(Dw(l, m)) (2.9)

where
Dw(l, m) =

∫ ∫
S(u, v)W(u, v)e2iπ(ul+vm)dudv = ˆSW (2.10)

is called the dirty beam, and is directly dependent on the choice of weighting function
W, as well as on the spectral sensitivity function S. I(l, m) is usually call dirty image.
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Fourier Transform, which allows to directly derive Iw from the measured visi-
bilities V and spectral sensitivity function S, and Deconvolution, which allows to
derive the sky brightness I from Iw, are thus two key issues in imaging.

Fourier Transform

The simplest approach would be to directly compute sin and cos functions for all
combinations of visibilites and pixels in the image (Direct Fourier Transform). How-
ever, this process is straight but slow. In practice, we use Fast Fourier Transform
(FFT) because of its definite speed advantage. This method requires to regrid the
visibilities on a regular grid to be able to perform a 2−D FFT. This gridding process
will introduce some distortion in the dirty image and dirty beams, which should be
corrected.

FIGURE 2.3: Schematic diagram of the CLEAN process

Weighting and Tapering

At the uv table creation, the sampling function is defined as

S(u, v) =
1

σ2(u, v)
(2.11)
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where the noise σ is computed from system temperature, bandwidth, integration
time, and system efficiency (including quantization and decorrelation)

σ(u, v) =
JI Tsys

ηQ
√

2∆ν tint
(2.12)

where JI is the antenna temperature to flux density conversion factor: JI = 2k/ηA A
The weights W(u, v) can be freely chosen. The selection of weights is usually decom-
posed in two slightly different processes, called Weighting and Tapering.

• Weighting deals with the local variations of weights for each grid cell after the
gridding process

• Tapering consists in apodizing the uv coverage by T(u, v) = exp(−(u2 +
v2)/t2) where t is a tapering distance. This is corresponding to smoothing the
data in the image plane (convolution by a Gaussian). This process can give less
weight to long baselines, so degrading angular resolution.

Depending on science goal, one can choose to use different weighting type: Nat-
ural weighting, Uniform weighting or Robust weighting. Their main properties, ad-
vantages and disadvantages are summarized below:

• Natural weighting

W(u, v) = 1/σ2 in occupied (u, v) cells, where σ2 is the noise variance, and
W(u, v) = 0 everywhere else.

It maximizes point source sensitivity.

Generally, it gives more weight to short baselines (low spatial frequencies),
so angular resolution is degraded.

• Uniform weighting

W(u, v) is inversely proportional to the local density of (u, v) points. The
sum of weights in a (u, v) cell is a constant and 0 for empty cells.

It fills the (u, v) plane more uniformly and the dirty beam sidelobes are
lower.

It gives more weight to long baselines (high spatial frequencies), so angular
resolution is enhanced.

It downweights some data, so the point source sensitivity is degraded.

It also can create troubles with sparse sampling: cells with few data points
have same weight as cells with many data points.

• Robust (Briggs) weighting

Variant of uniform weighting that avoids giving too much weight to (u, v)
cells with low natural weight.
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The software implementations differ: W(u, v) = 1√
1+S2

N/S2
thresh

; SN is the

natural weight of the cell and Sthresh is a threshold.

With a high threshold, the weighting is chosen to be natural, with a low thresh-
old, the weighting is chosen to be uniform.

An adjustable parameter allows for continuous variation between maxi-
mum point source sensitivity and high resolution.

Deconvolution

The first imaging step leads to a convolution equation whose solution is the con-
volution product of the sky brightness distribution (apodized by the interferometer
primary beam) by the dirty beam.

To derive the astronomically meaningful image, i.e ideally the sky brightness,
a deconvolution is required. Deconvolution is always a non-linear process, and re-
quires to impose some contraints on the solution, or in other words to add some
information, to better select plausible solutions.

The standard deconvolution technique, CLEAN relies on such a qualitative con-
straint: it assumes that the sky brightness is essentially an ensemble of point sources.
The algorithm which derives from such an assumption is straightforward. It is a sim-
ple "matching pursuit".

Schwartz (1978) showed that the Clean algorithm is equivalent to a least squares
fit of sinusoids to visibilities in the case of no noise.

2.1.3 ALMA and NOEMA interferometers

Among existing radio interferometers, ALMA – the Atacama Large Millimeter/submillimeter
Array – is the most powerful in the world and NOEMA – the NOrthern Extended
Millimeter Array – is the most advanced in the Northern Hemisphere.

ALMA, the Atacama Large Millimeter/submillimeter Array

ALMA, the Atacama Large Millimeter/submillimeter Array, is a (sub)millimetre in-
terferometer installed on the Chajnantor plateau in the Atacama Desert of northern
Chile, at 5000 m above sea level. ALMA consists of 66 high-precision antennas: fifty
12 m diameter antennas in the main Array (12 m Array), twelve 7 m diameter anten-
nas in the 7 m Array (ALMA Compact Array –ACA), and four 12 m diameter an-
tennas in the Total Power Array. ALMA covers the frequency range of 31–950 GHz,
corresponding to wavelengths of 9.6 to 0.3 mm. The antennas can be arranged into
10 configurations, yielding projected baselines ranging from about 15 m to 16 km.
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With the longest baseline of 16 km, ALMA can produce images with angular reso-
lution of ∼ 0.01′′. With high sensitivity and angular resolution, ALMA has opened
a new window for answering many major scientific questions.

FIGURE 2.4: The ALMA Compact Array.

NOEMA, the NOrthern Extended Millimeter Array

NOEMA, the NOrthern Extended Millimeter Array, is a (sub)mm array located in
the French Alps on the wide and isolated Plateau de Bure at an altitude of 2550 m,
previously known as Plateau de Bure Interferometer, the PdBI array which included
six 15 m-diameter antennas. NOEMA is being upgraded with the goal to double the

FIGURE 2.5: The NOrthern Extended Millimeter Array equipped with
10 antennas.

number of antennas from six to twelve and to upgrade the receiver from 3 bands of
8 GHz width to 4 bands of 16 GHz width in each polarisation mode. Ultimately, the
correlator will cover 2 frequency bands of 16 GHz per polarisation. NOEMA will be
able to cover the frequency range of 70 to 375 GHz, corresponding to wavelengths of
3 to 0.8 mm. With twelve movable antennas, NOEMA will reach a maximal baseline
of 1.6 km, providing images with an angular resolution as high as∼ 0.1′′. Currently,
NOEMA operates with 10 antennas, all equipped with new receivers.
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At the Taurus or Rho Ophiuchi distance (150 pc which is the distance of closest
low-mass star forming regions, with the exception of TW Hya), such instruments are
mandatory to observe small and weak sources such as protoplanetary disks of size
0.5− 3′′. At 150 pc, 1′′ is 150 au or about 5 times the size of Solar System (Neptune-
Sun is ∼30 au). The distance of Jupiter to the Sun is ∼ 0.03′′ at the same distance.

2.2 GG Tau A observations with interferometry

2.2.1 ALMA observations

GG Tau A has been observed in three operation cycles of the ALMA interferometer:
Cycle 0 (2011), Cycle 1 (2012) and Cycle 3 (2015).

Cycle 0 observations: Observations were carried out in Band 9 on August 13th,
2012 with 22 antennas, providing projected baselines ranging from 20 m to 344 m.
The spectral band was chosen to cover the emission of the molecular line CO(6–5)
and the continuum underneath. Dutrey et al. (2014) give details about observations
and data reduction.

Cycle 1 observations: Observations were carried out in Band 7 on November 18th

and 19th, 2013 with 29 antennas, providing projected baselines ranging from 15 m
to 1282 m. The frequency setup covered the lines of 12CO(3–2) and 13CO(3–2) and
CS(7–6). Details about these observations are given in Tang et al. (2016).

Cycle 3 observations: Observations were carried out in Band 7 on September 25th

and 30th, 2016 in configuration C40–6 with 39 antennas, providing projected base-
lines ranging from 16 m to 3049 m. Spectral line windows of 58.6 MHz width were
chosen to cover the lines of 13CO(3–2) and C18O(3–2) and CS(7–6) with a channel
width of∼0.14 MHz (∼ 0.1 km s−1). The continuum was observed around 330.15 GHz
and 342.00 GHz. These are described in detail in the present chapter.

2.2.2 NOEMA observations

GG Tau A has been observed by NOEMA and by the PdBI for about two decades
in order to study the morphology and kinematics, the gas and dust properties and
the chemical content of the disk. I list below observations that are presented in the
thesis.

HCO+(1–0) was observed between Jan 1997 and Apr 1997 with six antennas. De-
tails about the observations can be found in Guilloteau, Dutrey, and Simon (1999).

DCO+ (3–2) was observed with the PdBI interferometer in December 2013 and
April 2014 with six antennas. The total on-source integration time was ∼ 5 hours.
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Baselines ranging between 15 m and 176 m provide a beam of 1.76′′× 1.23′′, PA=17◦.
Phase and amplitude calibrations were performed using QSO 0507+179 and 0446+112,
while the flux calibration was carried out using QSO 3C84 (flux 10.3 Jy at 216.1 GHz)
and MWC 349 (flux 1.6 Jy at 216.1 GHz).

H2S 1(1,0)-1(0,1) & H13CO+ (2-1): Observations were carried out on 23 December,
2017 using the D configuration with nine antennas. The total on-source integration
time was 5.2 hours. Baselines ranging between 24 m and 176 m provide a beam of
2.50”× 1.9”, PA=15◦. Phase and amplitude calibrations were performed using QSO
B0507+179 and B0446+113. Flux calibration was carried out using QSO MWC349 as a
reference (flux 1.4 Jy at 170.3 GHz). The full 7.74 GHz upper and lower sidebands of
the new PolyFiX correlator were covered at 2 MHz channel spacing. The emission of
molecular lines of H2S 1(1,0)-1(0,1), H13CO+ (2-1), and also of CCS, SO2, SO, HC3N,
and c-C3H2 have been observed with high spectral resolution (62.5 kHz).

2.3 Data reduction

2.3.1 The ALMA data reduction

The ALMA Cycle 0 and Cycle 1 observations have been reduced and reported in
Dutrey et al. (2014) and Tang et al. (2016). For the present thesis, I use the available
uv-tables to produce clean images with different beam sizes, suitable for each spe-
cific study. For example, the CO(6–5) data collected in Cycle 0 and the CO(3–2) data
collected in Cycle 1 were reduced using GILDAS1 to get a beam size of 0.35′′× 0.31′′,
PA=104◦ and 0.34′′ × 0.28′′, PA=−89◦ respectively.

Here, I describe in some detail the reduction of the Cycle 3 observations that
was made in Bordeaux in May, 2017. The observations were made in two blocks,
under good weather conditions. Figure 2.6 shows the time variation of the water
vapour level during the two observation blocks. The two blocks have been merged
and calibrated using the standard ALMA calibration script in the CASA2 software
package (Version 4.7.0). The phase and bandpass calibrator is QSO J0510+1800. The
amplitude/flux are calibrated using J0522-3627. The calibrated data were re-gridded
in velocity to the LSR frame using the “cvel” task, and exported through UVFITS
format to the GILDAS package for imaging and de-convolution. Figure 2.7 shows
the Fourier coverage.

Continuum emission and proper motion

Continuum emission is observed in two windows, one centred at 330.15 GHz and
the other at 342.00 GHz. As the 330.15 GHz continuum window includes emission

1https://www.iram.fr/IRAMFR/GILDAS/
2https://casa.nrao.edu
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FIGURE 2.6: Time dependence of the water vapour level measured near
each antenna during 2 blocks of observations on Sep 25th and 30th, 2016.

The curves are polynomial fits to the means.

FIGURE 2.7: uv coverage of the ALMA observations of GG Tau A Cycle
3 observations. The red and black colours correspond to data that were
observed on Sep 25th and 30th, 2016 (left). The corresponding dirty beam

is shown in the (right) panel.

lines of HNCO and CH3CN, these were flagged by the uv_ filter task in GILDAS
and their weights and visibilities were set to zero. The continuum uv data sets were
produced using the uv_continuum task which rescales all visibilities and u, v co-
ordinates to the mean observing frequency, and concatenates the resulting (single-
channel) visibilities into a uv data set. The continuum was self-calibrated using the
selfcal task in GILDAS. Self-calibration means that the source itself is used to cali-
brate the instrument when it is bright enough (Signal-to-Noise Ratio, SNR, greater
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than 100).

Proper motion

The origin of coordinates at RA=4h 32m 30.3s and DEC=17◦ 31′ 40” corresponds
to year 2000. GG Tau has significant proper motion: Ducourant et al. (2005) quote
[17, −19] mas per year, while Frink et al. (1997) quote [11,−28] mas per year. These
measurements essentially refer to GG Tau Aa, which is the brightest of the three
stars. They need to be corrected in order to obtain the proper motion of the centre
of mass of the system, which we assume to be in the centre of the continuum ring.
We fitted the continuum emission as the sum of a Gaussian (for the circumstellar
disk around Aa) and an elliptical ring (for the dust ring) in the uv plane (Guilloteau,
Dutrey, and Simon, 1999; Piétu et al., 2011). The apparent motion of the ring gives a
proper motion of [9,−23] mas per year, that we applied to all our data set, meaning
we recenter all the images on the center of the ring.

Continuum imaging

The DIRTY beam and DIRTY map have been produced with a pixel size of 0.05′′×
0.05′′, and a map size of 512× 512 pixels using the task uv_map which inverse Fourier
transforms the visibility data (uv–data) and creates a raw image data cube. The
CLEAN image was then produced by deconvolving the Point-Spread Function from
the DIRTY image using Hogbom algorithm and natural weighting (Hogbom and
Brouw, 1974). Deconvolution was done down to a threshold of about one rms noise
level. The obtained beam size is 0.19′′ × 0.13′′, PA=12◦. Figure 2.8 shows the clean
image of the continuum at 330 GHz.

Line emissions

We use the centre of the continuum image as origin of coordinates for the study of
the line emissions, meaning that we apply the proper motion of [9,−23] mas per
year to 13CO(3–2), C18O(3–2) and CS(7–6) uv tables. The data are self-callibrated
using uv_cal task in GILDAS which applies a calibration gain table obtained from
the continuum self-calibration to a uv table.

13CO(3–2) The 13CO(3–2) emission was observed in Cycle 1 and again in Cycle 3
with the 12-m Array and the same spectral resolution of 0.1 km s−1. We merged the
two uv tables using the uv_merge task in GILDAS, which merges two uv tables of
identical spectral characteristics to form a single output uv table.

CS(7–6): The CS(7–6) emission was observed in Cycle 1 with channel spacing of
∼ 0.4 km s−1, and in Cycle 3 with channel spacing of ∼ 0.1 km s−1. We resampled
Cycle 3 observations to have the same channel spacing as for Cycle 1 observation
and then merged both uv tables using uv_merge task in GILDAS. These data will be
analyzed together with CS(5–4) data observed in Cycle 6 (2018).
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FIGURE 2.8: Continuum intensity map. The beam size is indicated at
the lower left corner. The color scale is in units of Jy beam−1.

C18O(3–2): The C18O(3–2) emission was observed only in Cycle 3 with a channel
spacing of ∼ 0.1 km s−1.

For each molecular line emission, we produced two sets of data, with and with-
out continuum subtraction. The continuum was subtracted using the uv_subtract
task in GILDAS which fits a constant to the real and imaginary parts of the visibil-
ity data of the line-free (i.e. continuum only) channels in each spectral window and
subtracted that contribution from the original uv table.

In each uv table, the DIRTY beam and DIRTY map have been obtained using a
pixel size of 0.03× 0.03 arcsec2, and a map size of 1024× 1024 pixels, the visibilities
being weighted with either natural or robust weighting (RBriggs=0.3). We CLEANed
the images down to a threshold of about one rms noise level.

To reduce the bias of the non-linearity process of deconvolution, we clean only
the area where the emission is exceeding some threshold (i.e a few times higher
than the rms noise level) in the individual channel map. Traditionally, astronomers
choose to clean either the whole map or in the area of strong emission define from
the integrated DIRTY image. The Figure 2.9 shows an example of such masking in
some channel maps of 13CO(3–2) data.

The data have been analyzed either in the uv plane or in the image plane, de-
pending on the goal. We present their maps (integrated intensity and velocity) in
the following chapter.
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FIGURE 2.9: Channel map of the unmasked regions (shown in red) of
13CO(3–2) emission, where the SNR exceeds the applied threshold.
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2.3.2 The NOEMA data reduction

In an attempt to study S-bearing species in the GG Tau A system, we searched for
H2S, SO, SO2 and C2S in the disk (2015, project S15AV and 2017, project W17BA).
The data have been reduced in Grenoble in March 2017 (S15AV) and in December
2017 (W17BA) and have been calibrated using the pipeline in GILDAS.

We checked the pipeline calibration report and redid the individual calibration
for each baseline when needed. In the observations, we included lines of H2S 1(1,0)–
1(0,1), H13CO+ (2–1), and also of CCS, SO2, SO, HC3N, and c-C3H2. We have de-
tected the H2S 1(1,0)–1(0,1) and H13CO+(2–1) with SNR≥5, while the other lines re-
mained undetected. The imaging and deconvolution of H2S 1(1,0)–1(0,1) and H13CO+

(2–1) have been done with natural weighting using Hogbom algorithm and cleaned
down to about one rms noise level. The uv tables of detection and non–detection
lines are then used for further analysis. The maps of the detected line emissions are
presented in the following Chapter 5.

Table 2.1 lists all the existing GG Tau data that have been observed using the
ALMA, PdBI and NOEMA interferometers.

TABLE 2.1: ALMA and NOEMA observations of GG Tau A.

(1) (2) (3) (4) (5)

ALMA observations
12CO(6–5) 691.473 0.35′′ × 0.31′′, PA=104◦ 0.11 ALMA#2011.0.00059.S
12CO(3–2) 345.795 0.34′′ × 0.28′′, PA=−89◦ 0.11 ALMA#2012.1.00129.S

C18O(3–2) 329.330 0.19′′ × 0.14′′, PA=19◦ 0.11 ALMA#2015.1.00224.S

13CO(3–2) 330.588 0.22′′ × 0.16′′, PA=15◦ 0.11
ALMA#2012.1.00129.S

ALMA#2015.1.00224.S

CS(7–6) 324.883 0.23′′ × 0.16′′, PA=−161◦
0.43 ALMA#2012.1.00129.S

0.11 ALMA#2015.1.00224.S

NOEMA observations

HCO+(1–0) 89.188 4.57′′ × 2.55′′, PA=−38◦ 0.30 PdBI: 1997

DCO+(3–2) 216.112 1.76′′ × 1.23′′, PA=17◦ 0.10 NOEMA:X06B

H13CO+(2–1) 173.507 2.50′′ × 1.90′′, PA=15◦ 0.25 NOEMA:W17BA

H2S 1(1,0)–1(0,1) 168.763 2.50′′ × 1.90′′, PA=15◦ 0.25 NOEMA:W17BA

Note. (1)–Transition, (2)–Frequency (GHz), (3)–Beam, (4)–Spectral resolution ( km s−1), (5)–
Facilities and project code
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2.4 Data analysis strategy

I have preformed two different types of analysis:

1) In order to study the morphology and kinematics of the system, I work in the
image-plane limiting the study to measurements of the effective emissivity (namely
ignoring issues of scale height, of flaring, of optical thickness and of temperature
and assuming the source to be a thin disk). The goal of this study is to determine the
global properties of the system.

2) In addition, I performed a radiative transfer modelling of the circumbinary
disk with the aim to study molecular density and temperature profiles of the outer
disk and to reveal as well as possible the gas emission inside the cavity of the system.
These studies use a radiative transfer code to mimic a flaring protoplanetary disk
with vertical and radial gradients of gas/dust density and temperature. The model
is built in the image-plane and compared with the observations in uv-plane in order
to avoid the non-linear effects introduced by the deconvolution process.

The following section, Section 2.4.1, introduce the radiative transfer equation and
its solutions in Local Thermal Equilibrium (LTE) and non-LTE conditions as used in
the radiative transfer code DiskFit (Section 2.4.2).

2.4.1 Radiative transfer equation

The specific intensity Iν, defined as the amount of energy passing through a surface
normal to the path, per unit of time, surface, bandwidth (measured in frequency
units) and solid angle is conserved along its path as long as no local absorption
or emission process takes place; it is evaluated along the direction of motion. The
transfer equation for radiation propagating over a distance ds can then be written as

dIν

ds
= jν − αν Iν (2.13)

where jν and αν are the emission and absorption/extinction coefficients respectively.

Defining the optical depth as dτν = αν ds and the source function Sν = jν/αν, the
equation (2.13) can be re-written as:

dIν

dτ
= −Iν + Sν (2.14)

Both dust and gas can contribute to emission and absorption of radiation. The
dust emission and absorption are given by:

jdust
ν = αdust

ν Bν(Tdust)

αdust
ν = κνρdust

(2.15)
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where Bν(Tdust) is the Planck function of a black body emission at the dust temper-
ature Tdust, κν is the dust opacity, and ρdust is the density of the dust. The emission
and absorption of the molecular gas is due to the spectral line transition between an
upper level u and a lower lever l with energy hν,

jgas
ν =

hν

4π
nu AulΦ(ν)

α
gas
ν =

hν

4π
(nlBlu − nuBul)Φ(ν)

(2.16)

where ni is the level population of the level i, Aij and Bij are the Einstein coefficients
(Wilson, Rohlfs, and Hüttemeister, 2009) for the transition from level i to level j, and
Φ(ν) is the normalised line profile of the transition.

Bul =
c3

8πhν3 Aul

Blu =
gu

gl
Bul =

gu

gl

c3

8πhν3 Aul

(2.17)

where gi is the statistical weight of level i.

For optically thick emissions and assuming Local Thermal Equilibrium (LTE),
the specific intensity is equal to the Planck black body brightness distribution inde-
pendently of the material:

Iν = Bν(T) (2.18)

In many cases, molecular emissions are non-LTE, even in the case of CO molecules:
although the excitation seems always to be close to LTE, there exists a level J (J > 3)
for which the value of the Einstein A coefficient is large enough for the population
to be subthermal. Solving radiative transfer problems in non-LTE conditions is diffi-
cult because of the interdependence of the molecular level populations and the local
radiation field, requiring iterative solution methods and making some simplifying
assumptions.

If we only take into account the global properties of the medium, the calculation
can be greatly simplified by introducing a geometrically averaged escape probability β,
the probability that a photon will escape the medium from where it was created.
This probability depends only on the optical depth τ and is related to the intensity
within the medium, and independent of the radiation field. It can be written as,

Jvul = Svul(1− β) (2.19)

For a given direction, defined by the direction cosine, µ, and frequency, ν, the
optical depth τ is:

τ(ν, r, µ) =
∫

α(r, s, µ)φ(ν− ν0 +
v0 s

c
dvs

ds
)ds (2.20)
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where α is the standard absorption coefficient, and φ is the normalized line shape
function (a Gaussian function in most cases).

Assuming the value of the gradient dvs/ds to be a constant a0, and writing x =
ν− ν0 +

ν0
c a0

s
c , the optical depth τ can be expressed as

τ(ν, r, µ) = α(r)
c

a0 ν0

∫
φ(x)dx (2.21)

The escape probability averaged over the line and solid angle is,

β(r) =
∫ ∫

φ(x) exp(−τ(x, r, µ))dµ dx (2.22)

Changing the variable y =
∫

φ(x)dx and using normalization
∫

φ(x)dx = 1, we
obtain,

β =
1
2

∫ 1− exp(−τ(r, µ))

τ(r, µ)
dµ (2.23)

where τ(r, µ) = (α(r)c)/v0a(r, µ)

For a plane parallel geometry (slab):

βslab =
1− e−3τ

3τ
(2.24)

In a static, spherically symmetric and homogeneous medium, dv(r)/dr = 0, the
escape probability becomes:

βsphere =
1.5
τ
[1− 2

τ2 + (
2
τ
+

2
τ2 )e

−τ] (2.25)

When there exists a velocity gradient that is large compared to the width of the
velocity distribution at a given point, the LVG (Large Velocity Gradient) approxima-
tion, first introduced by Sobolev (1957) can be used. In this case:

βLVG =
1
τ

∫ τ

0
e−τ′dτ′ =

1− e−τ

τ
(2.26)

2.4.2 DiskFit

DiskFit is a radiative transfer code which simulates dust and molecular line (CO,CS,
...) observations of a disk at mm/sub-mm wavelength. It models a flared disk with
piece-wise radial power laws for the temperatures and surface densities. It produces
a disk image, that can be compared with observations and solves the radiative trans-
fer equation by a simple step by step integration along the line of sight (z) for a grid
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of projected position (x, y) at each point zi.

Ji+1(ν) = (Si − Ji(ν))× (1− exp(−dτi)) + Ji(ν) (2.27)

This image is then Fourier transformed to the uv-plane in order to allow for a di-
rect comparison with the observed visibilities. The difference between the predicted
model visibilities and the observed ones is minimized using a modified Levenberg–
Marquardt method, and the error bars are derived from the covariance matrix.

χ2 =
Σi[(Reobsi − Remodi)

2 + (Imobsi − Immodi)
2]

Σ i
(2.28)

In DiskFit, a protoplanetary disk is characterised by the following parameters:

5 parameters to describe the disk geometry:

X0, Y0 (radian) the star position
Vdisk (km s−1) the LSR (systemic) velocity of the disk
PA (◦) the position angle of the projection of the disk axis on the sky plane
i (◦) the inclination of the disk w.r.t the sky plane

8 parameters to describe the relevant physical quantities: The rotation velocity
(V), temperature (T), surface density (Σ), and pressure scale height (h) that control
the line emission are parameterized using radial power laws:

a(r) = a0(r/Ra)
−ea (2.29)

where a0 and ea correspond to the values taken by a(r) at the reference radius Ra.
Here, a stands for V, T, Σ, and h)

The scale height, h is used to calculate the Gaussian density distribution n(r, z):

n(r, z) =
Σ(r)

h(r)
√

π
exp

[
− (z/h(r))2

]
(2.30)

2 parameters to describe the edges of the disk: The outer, Rout and inner Rin radii
of the emission region.

2 parameters to describe the line profile: The local line width, dV, and a radial
power index ev used to model the effect of turbulence.

Additional information about DiskFit can be found in (Dartois, Dutrey, and Guil-
loteau, 2003; Piétu, Dutrey, and Guilloteau, 2007). I had the opportunity to con-
tribute to the development of a more friendly interface for DiskFit users.
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Chapter 3

Morphology and kinematics of the
disk surrounding GG Tau A1

3.1 Introduction

The present section studies the morphology and kinematics of the GG Tau A system
using ALMA observations of (sub)millimeter emissions from the dust (continuum),
and from various CO isotopologues. They include a first set of ALMA Cycle 1 ob-
servations of the dust emission at 0.9 mm and of the 13CO(3–2) emission with an
angular resolution of 0.35′′, the latter exploring detailed properties of the gas disk,
such as scale height at the inner edge, azimuthal dependence of the emission, Kep-
lerian rotation of the gas, contribution of infalling gas toward the circumbinary disk.
Possible contributions to the measured line width are discussed together with their
correlation to the morpho-kinematics, suggesting an increase of the disk tempera-
ture and opacity when approaching the stars.

A second set of ALMA observations (Cycle 3) is used to refine the study of
the 13CO(3–2) emission using a better angular resolution (∼ 0.15′′) and to observe
emissions from the 12CO(3–2). Together with archived observations of 12CO(6–5),
and 12CO(2–1), these data allow for a detailed investigation of the properties and
morpho-kinematics of the outer disk. The radial dependence of the emission re-
veals inhomogeneity structures at the angular resolution of 0.15′′ and its azimuthal
dependence displays important differences between different molecules, which are
critically discussed.

1The content of this Chapter is mostly adapted from 2 papers:
1) Phuong, N.T.; Diep, P.N.; Dutrey, A.; Chapillon, E.; Darriulat, P.; Guilloteau, S.; Hoai, D.T; Nhung,
P.T; Tang, Y-W; Thao, N.T.; Tuan-Anh, P., 2018RAA, 18, 31P, DOI: 10.1088/1674-4527/18/3/31
2) Phuong, N.T.; Dutrey, A.; Diep, P.N; Guilloteau, S.; Chapillon, E.; Di Folco, E.; Tang, Y-W.; Pietu,
V.; Bary, J.; Beck, T.; Hersant, F.; Hoai, D.T.; Hure, J.M.; Nhung, P.T.; Pierens, A.; Tuan-Anh, P., 2019,
submitted to A&A
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3.2 Geometry of the dust ring

3.2.1 Morphology of the dust ring

Figure 3.1 (left) maps the brightness of the 0.9 mm emission. It shows an elliptical
ring surrounding a central source. The right panels show the projections on the x
(right ascension offset) and y (declination offset) axes of the central source intensity
integrated over y and x respectively. Gaussian fits give mean values of 0.06′′ and
−0.13′′ and FWHM values of 0.40′′ and 0.33′′ in x and y respectively, comparable to
the beam size of (0.39′′ × 0.29′′): the central source is unresolved.

FIGURE 3.1: Brightness of the dust ring continuum emission. Left: sky
map; the black ellipse is the fit to 〈R〉 shown in Figure 3.3; the yellow ar-
row points to the region of the hot spot observed by Dutrey et al. (2014)
and Tang et al. (2016) in 12CO(6–5) and 12CO(3–2) emissions. Middle and
right: projections on the x and y axes of the central source brightness
integrated over y and x respectively. The lines show Gaussian best fits.

Figure 3.2 (left) displays the x and y projections of the continuum brightness in-
tegrated over y and x respectively. It requires the distance R′ to the central source
to exceed 0.5′′ (R′ =

√
(x− 0.06)2 + (y + 0.13)2), thereby excluding its contribu-

tion. The corresponding mean values of x and y are −0.05′′ and −0.09′′ respec-
tively, showing that the ring is shifted north-west by ∼ 0.12′′ with respect to the
central source. The position and width measurements illustrated in Figure 3.1 and
Figure 3.2 are accurate to be better than 0.02′′, using the residual of the fits to es-
timate measurement errors: they are dominated by systematics rather than simply
by thermal noise. However, the angular separation between GG Tau Aa and Ab is
0.25′′: depending on what is being talked about, the position of the “centre” may
vary by some ±0.1′′. Figure 3.2 (right) displays the dependence on R =

√
x2 + y2 of

the continuum brightness averaged over position angle ϕ = 90◦ − tan−1(y/x) (mea-
sured counter-clockwise from north), again excluding the central source by requir-
ing R′ > 0.5′′. A Gaussian fit to the peak gives a mean of 1.45′′ ± 0.02′′ and a σ of
0.27′′ ± 0.02′′ where the uncertainties account for the dependence on the interval of
R over which the fit is performed. Retaining a σ value of 0.27′′ and subtracting the
beam size in quadrature gives a de-convolved FWHM of 0.53′′ ± 0.04′′. Tang et al.
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(2016) quote a value of 0.54′′ for a square box fit, becoming 0.51′′ for a Gaussian fit,
in excellent agreement with the present result.

FIGURE 3.2: Continuum brightness of the dust ring emission projected
on the x (left) and y (middle) axes and integrated over y and x respec-
tively. The right panel shows its distribution as a function of R, aver-
aged over ϕ, together with the Gaussian best fit to the peak. In all three

panels pixels having R′ < 0.5′′ are excluded.

Figure 3.3 (left) displays the dependence on ϕ of the mean value of R, 〈R〉,
weighted by the radial average of the brightness across the ring over the interval
1′′ < R < 2′′. A fit of the dependence of 〈R〉 on ϕ as an ellipse of semi-major and
semi-minor axes a0 and b0 and offset by ∆x and ∆y has been made to first order in
the offsets and in the ellipticity:

R =
[cos2(ϕ− ϕ0)

a2
0

− 2
∆x√
a0b0

cos(ϕ− ϕ0)

a2
0

+
sin2(ϕ− ϕ0)

b2
0

− 2
∆y√
a0b0

sin(ϕ− ϕ0)

b2
0

]−1/2

(3.1)

It gives a0 = 1.62′′ and b0 = 1.38′′, position angle of the major axis ϕ0 = 97◦

and small offsets ∆x = −0.07′′ and ∆y = −0.05′′, at the level of measurement
uncertainties. This confirms the good centreing of the ring on the origin of co-
ordinates and the aspect ratio corresponds to a tilt with respect to the sky plane
θ = cos−1(1.38/1.62) = 32◦± 4◦ of a circular ring about the rotated (by 7.0◦) x axis.

These results confirm the values quoted by Tang et al. (2016): 1.63′′ instead of
1.62′′ for a0, 7.5◦ instead of 7.0◦ for the position angle and 36.4◦ instead of 32◦ for
the tilt with respect to the sky plane, the latter being measured to no better than
±4◦. The values quoted for the tilt by Dutrey et al. (2014) are 37◦ ± 1◦ for 12CO(6–5)
and 35.0◦ ± 0.2◦ for the dust. Figure 3.3 (right) displays the dependence on position
angle ϕ of the continuum brightness averaged over R in the interval 1′′ < R < 2′′.
Here we have used the fact that the ratio between the beam area in the sky plane
and its de-projected value in the disk plane is equal to 〈R〉/a0. In the disk plane the
brightness is uniform over the disk circumference and equal to 16.0 mJy beam−1 to
within ±8.5% (rms).
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FIGURE 3.3: Continuum emission. Left: Dependence on ϕ of < R >
calculated in the interval 1′′ < R < 2′′. The red line is the best fit to an
elliptical tilted ring offset from the origin (see text). Right: Dependence
on ϕ of the disk plane continuum brightness averaged over R in the

interval 1′′ < R < 2′′. The red line shows the mean value.

3.3 Morphology and kinematics of the gas disk obtained
from observations of the 13CO(3–2) emission

3.3.1 Morphology

General features

Figure 3.4 (left) displays the brightness distribution over the data cube elements.
A Gaussian fit to the noise peak gives a mean of −0.19 mJy beam−1 and a σ of 7.2
mJy beam−1 (0.56 K). Figure 3.4 (right) displays the Doppler velocity (Vz) spectrum
integrated over 8′′ × 8′′, with a double-horn profile typical of a rotating volume. It
is centred to better than 0.1 km s−1. In what follows, throughout the Chapter, we
restrict the Doppler velocity range to |Vz| < 2 km s−1 unless specified otherwise.

Figure 3.5 displays the sky maps of the velocity-integrated brightness, or inte-
grated intensity (left), and of the mean Doppler velocity (right). The map of the
integrated intensity shows a clear disk of gas surrounding the central stars and hav-
ing morphology similar to the dust morphology, indicating a concentric circular gas
disk having the same inclination as the dust ring on the sky plane. It displays no
central emission, with an abrupt inner cut-off at 1′′; there is no significant emis-
sion inside an ellipse scaled down from the dust ellipse by a factor 3, meaning a
de-projected radius of 1.62′′/3 = 0.54′′. The velocity map excludes the region inside
the scaled-down ellipse where noise dominates. It displays a clear velocity gradient
along the major axis of the ellipse, as expected from rotation of the tilted disk about
its axis. Note that an infalling (rather than rotating) gas would display instead a gra-
dient along the minor axis of the ellipse. In general adding some infall motion would
cause the axis of the velocity gradient to deviate from the major axis, the more so
the larger the relative contribution of infall.
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FIGURE 3.4: Left: Line brightness distribution (Jy beam−1); the red curve
is a Gaussian fit to the noise peak. Right: Doppler velocity spectrum
weighted by brightness and integrated over 8′′ × 8′′ (blue); the red his-

togram is obtained from the original by symmetry about the origin.

FIGURE 3.5: Left: Sky map of the 13CO(3− 2) integrated intensity. The
black arrow shows the position of the hot spot in 12CO(6− 5) (Dutrey
et al., 2014) and 12CO(3− 2) (Tang et al., 2016). Right: Sky map of the
mean Doppler velocity (weighted by brightness) excluding the region
contained in the scaled-down ellipse shown in the left panel. In both
panels R < 2.5′′ and the black ellipses are the best fit to the distribution
of < R > in the continuum data and its scaled-down version (by a

factor 3).
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Figure 3.6 shows the projections on the x and y axes and r-dependence, averaged
over ϕ = 90◦ − tan−1(y/x), of the integrated intensity, where r is the de-projected
value of R in the disc plane (see Figure 3.8). Here, de-projection assumes a tilt angle
of 32◦ and a position angle of the disk axis of 7◦, as for the dust. In all panels we
exclude the central region where noise dominates by requiring r > 0.54′′. When
compared with the dust (continuum) ring, the gas (line) ring is broader and peaks
at smaller radii. The mean values of x and y are 0.02′′ and −0.10′′ respectively. A fit
to the integrated intensity distribution as a function of r as a sum of three Gaussians
is shown in the right panel of the figure. The means and widths of the Gaussians are
fixed to the values obtained by Tang et al. (2016) when fitting the western half of the
gas disc.

FIGURE 3.6: Line emission. Left and middle: Continuum brightness
(blue, arbitrary normalisation) and line integrated intensity (red) pro-
jected on the x (left) and y (middle) axes in the region of r > 0.54′′.
Right: r-dependence of the integrated intensity averaged azimuthally
in the disk plane. The red line is a fit using the same three Gaussians as

in Tang et al. (2016).

Figure 3.7 displays the mean value of R, < R >, weighted by the brightness
across the ring over the interval 0.54′′ < r < 2′′. A fit of the dependence of < R >
on ϕ as an ellipse gives semi-major and semi-minor axes a0 = 1.45′′ and b0 = 1.19′′,
position angle of the major axis ϕ0 = 97.8◦ and small offsets ∆x = 0.02′′ and ∆y =
0.07′′. The position angle and aspect ratio (0.82 instead of 0.85) are very similar to
the dust result, but the size of the ellipse is scaled down by a factor 87%. The tilt
angle is now 35◦, compared with 32◦ for the dust.

Another estimate of the tilt geometry is obtained from the map of the mean
Doppler velocity (Figure 3.7, middle). In a ring defined as 0.54′′ < r < 2′′, a fit of
the form < Vz >= V0 − ∆V cos(ϕ− ϕ0) gives V0 = 0.05 km s−1, ∆V = 1.73 km s−1

and ϕ0 = 97.8◦, again in excellent agreement with the value obtained from the dust
fit, ϕ0 = 97.0◦; this provides evidence against a significant infall contribution. The
values quoted by Dutrey et al. (2014) are 97◦ ± 2◦ for 12CO(6− 5) and 96.5◦ ± 0.2◦

for the dust. The value of ∆V, 1.73 km s−1 corresponds to a mean rotation velocity of
∆V/ sin θ ∼ 3.3 km s−1. Figure 3.7 (right) displays the dependence on ϕ of the disk
plane integrated intensity averaged across the ring in the interval 0.54′′ < r < 2′′. It
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FIGURE 3.7: Line emission. Left: Mean value of R, < R >, weighted by
the brightness across the disk over the interval 0.54 < r < 2 arcsec. The
red line is the result of the fit described in the text. Middle: Dependence
on ϕ of the mean line Doppler velocity (brightness-weighted); the red
line is the result of the fit described in the text. Right: Dependence on ϕ
of the disk plane integrated intensity averaged across the disk (0.54′′ <

r < 2′′). The red line shows the mean value.

FIGURE 3.8: Geometry. Left: in the (y, z) plane; middle: in the sky plane
(x, y); right: in the disk plane (x, ζ)

has a mean value of 0.39 Jy beam−1 km s−1 and fluctuates around it with an rms of
17%, showing a significant excess at the south-east quadrant (ϕ = 100◦ − 150◦). Ta-
ble 3.1 summarises the geometry parameters of the dust and 13CO(3− 2) emissions.

TABLE 3.1: Geometry parameters.

Projection on
x and y Ellipse fitted to 〈R〉 vs ϕ

〈x〉 〈y〉 a0 b0 ϕ0 ∆ x ∆ y θ
(′′) (′′) (′′) (′′) (◦) (′′) (′′) (◦)

Dust Central source
Ring

0.06
−0.05

−0.13
−0.09

-
1.62

-
1.38

-
97.0

-
−0.07

-
−0.05

-
32

13CO(3-2) Disk 0.02 −0.01 1.45 1.19 97.8 0.02 0.07 35
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Disk thickness and integrated intensity variations across the disk: generalities

In the following two sections we use new coordinates obtained from those of the pre-
ceding sections by a rotation of angle 8◦ about the z axis. To within 1◦, this brings
the new x axis on the major axes of the ellipses found in the preceding sections as
best describing the ϕ dependence of both 〈R〉 and the Doppler velocity. Moreover,
unless otherwise explicitly specified, we assume a tilt θ = 35◦ of the disk plane as
a reasonable compromise between values obtained in both earlier and the present
studies, for both gas and dust observations. In practice, we use 99 × 99 pixels of
0.06′′ × 0.06′′ on the sky map, covering (99× 0.06′′)× (81× 0.0733′′) ∼ 6′′ × 6′′ in
the disk plane (0.0733′′ = 0.06′′/ cos 35◦). To each pixel (x, y) we associate disk coor-
dinates ζ = y/ cos θ, r =

√
x2 + ζ2 and ω = 90◦ − tan−1(ζ/x). Here disk plane and

disk coordinates are simply defined by this transformation, implying no assumption
on the disk being actually thin and flat.

Estimate of the disk thickness obtained from the sharpness of the disk inner
edge Tang et al. (2016) have commented on the sharpness of the inner edge of the
13CO(3− 2) emission and on the smallness of the vertical temperature gradient, the
inner edge of the disk being directly exposed to stellar light and casting a shadow
on the outer disk. Here, we compare the value of the smearing of the inner edge of
the disk map near the major axis of the ellipse with its value near the minor axis.
To a good approximation, the effect of disk thickness essentially cancels for the for-
mer while, for the latter, it scales with the product of the disk thickness by the sine
of the tilt angle. The optical thickness of the line is not expected to strongly affect
this result. We consider four angular sectors in the disk plane, each 60◦ wide and
centred on the axes of the ellipse (see Figure 3.9). In each sector, we study the ra-
dial dependence of the integrated intensity, both in the disk plane (r) and in the sky
plane (R).

The result is displayed in Figure 3.10. In order to evaluate the sharpness of the
inner edge of the gas disk, we fit a Gaussian to the rise of each distribution, between
0.5′′ and 1.5′′ in r. In R, we use the same interval of 0.5′′ to 1.5′′ for the sectors centred
on the major axis of the ellipse but a scaled-down (by a factor cos 35◦=0.82) interval
of 0.41′′ to 1.23′′ for the sectors centred on the minor axes in order to account for
the effect of the tilt. The mean and σ values (dispersions, a factor 2.35 smaller than
FWHM values also commonly quoted in the literature) obtained for the Gaussian
best fits are listed in Table 3.2.

The r–distributions show identical σ values, to within ±10 mas, in the four an-
gular sectors. A contribution from the disk thickness would cause these values to
be larger in the minor-axis sectors than in the major-axis sectors: it is already clear
that a significant contribution from the disk thickness is excluded. At variance with
the distributions as a function of r, the distributions as a function of R show sig-
nificantly different σ values for the major-axis sectors, ∼ 0.33′′, and the minor-axis
sectors, ∼ 0.28′′, a factor 85% smaller. Similarly, the ratio between the mean values
of the Gaussians (listed as “scaling factor” in the table) are equal for the two sectors



3.3. Morphology and kinematics of the gas disk obtained from observations of the
13CO(3–2) emission

51

0o

180o

270o90o

FIGURE 3.9: Integrated intensity map in the sectors used for the study
of the disk thickness.

TABLE 3.2: Estimating the thickness of the gas disk from the sharpness
of its inner edge projected on the sky plane. All values (except the scal-

ing factors) are in arcsec.

North East South West

r fit 〈r〉
σ

1.15
0.32

1.31
0.34

1.24
0.33

1.34
0.32

R fit 〈R〉
σ

0.99
0.28

1.29
0.34

1.08
0.28

1.32
0.32

R fit, beam subtracted σ 0.24 0.31 0.24 0.29

R fit, de-projected Scaling factor
σ

0.86
0.29

0.98
0.31

0.87
0.29

0.99
0.29

of a same axis of the ellipse, but again 85% smaller for sectors centred on the mi-
nor axis than for those centred on the major axis. The latter are very slightly smaller
than unity, as expected from the 60◦ angular widths of the sectors. The consistency
between these numbers suggests an interpretation of the σ values measured in the R
distributions as the sum of three terms added in quadrature: i) a beam contribution
of 0.14′′ on both the minor- and major-axis sectors (calculated from the known beam
parameters); ii) a contribution from the intrinsic smearing of the disk emission, σ0,
caused by effects such as density variations and contributing in each sector a value σ0
scaled down by the scaling factors listed in the table; iii) an additional contribution
σ1 due to the disk thickness and contributing only to the minor-axis sectors. After
subtraction of the beam contribution and correction for de-projection, one obtains
values of σ of 0.29′′ for the minor-axis sectors and ∼ 0.30′′ for the major-axis sectors.
A contribution σ1 due to the disk thickness would cause the former to exceed the
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FIGURE 3.10: Disk thickness. Dependence on r (upper panels) and on
R (lower panels) of the line integrated intensity averaged in 60◦ wide
angular sectors centred on the ellipse axes. In each case, the leftmost
panel is for minor-axis sectors and the rightmost panel for major-axis
sectors. The central values of ω (upper panels) and ϕ (lower panels) are

indicated in the inserts for each sector.

latter, at variance with what is observed. From the consistency between the num-
bers, we estimate an uncertainty of ∼ 0.02′′ on the Gaussian σs. To 95% confidence
level (2σ) we obtain an upper limit for σ1 of

√
(0.29 + 2× 0.02)2 − 0.302 = 0.14′′,

corresponding to a scale height H(r) ∼ 0.14/ sin 35◦ = 0.24′′ (34 au) at r ∼ 1′′ (140
au) where the Keplerian velocity is ∼ 3 km s−1; at 30 K, the sound velocity is ∼ 0.5
km s−1 and hydrostatic equilibrium implies H(r) = 0.5/3 = 0.17′′ compared with
the 0.24′′ upper limit obtained above. We have checked that this result is indepen-
dent of the width of the angular sectors (using 40◦ instead of 60◦ lowers the Gaus-
sian σ’s by ∼ 0.01′′). Depending on the interval chosen to calculate the Gaussian σ’s
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lower values of the σ1 upper limit may be obtained, as low as 0.10′′ instead of 0.14′′.
We conservatively prefer to retain the latter value as our final result.

FIGURE 3.11: 13CO(3 − 2) map in the disk plane of the difference be-
tween the integrated intensity and its value averaged over ω at the same
r. The black circles show the maxima of the Gaussians describing the
mean radial integrated intensity distribution, r=1.22′′ and 1.87′′ respec-
tively. The red circle corresponds to the mean value of r in the dust map

(1.62′′).

Integrated intensity variations across the disk In order to better understand the
nature of the integrated intensity variations displayed in Figure 3.7 (right), we dis-
play in Figure 3.11 the map in the disk plane of the difference between the measured
integrated intensity and its value averaged over ω at the same value of r (as obtained
from Figure 3.6, right). This map provides a measure of the lack of rotational sym-
metry of the integrated intensity in the disk plane. It gives strong evidence for an
excess associated with the “hot spot” observed by Dutrey et al. (2014) and Tang
et al. (2016) and for a northern depression of similar amplitude. Both excess and
depression reach their maxima at a distance from the central stars corresponding
to the gap between the maxima of the two first Gaussians describing the mean ra-
dial distribution of the integrated intensity (these Gaussians peak at r=1.22′′ and
1.87′′ respectively). It is also in this gap that the continuum dust emission peaks
(at r = 1.62′′). However, both excess and depression extend to larger values of r,
particularly the former that extends out to r ∼ 2.5′′.
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3.3.2 Kinematics

Keplerian rotation

Calling Vrot and Vf all the components of the disk plane velocity respectively perpen-
dicular and parallel to the disk radius, the Doppler velocity reads Vz = sin θ(Vrot sin ω+
Vf all cos ω) for each data-cube element (x, y, Vz). To a good approximation, Vf all can
be neglected and we can calculate Vrot = Vz(sin θ sin ω)−1 for each data-cube el-
ement, leaving for later the task to reveal a possible small Vf all contribution. Vrot
becomes trivially singular along the ζ axis. We require accordingly | sin ω| to exceed
0.3 when calculating Vrot. As sin−1(0.3) = 17.5◦, this is not much of a loss.

Figure 3.12 displays the dependence on ω and r of Vz averaged (using bright-
ness as weight) over 0.8′′ < r < 2.5′′ and over ω respectively. Averaging Vz requires
some care in dealing with the noise: the interval used for averaging must be sym-
metric with respect to the mean value obtained as a result, which requires relaxing
the condition |Vz| < 2 km s−1 usually applied in the analysis. The ω-dependence is
perfectly described by a sine wave of amplitude 1.43 km s−1. Adding a cosine term
does not change the coefficient of the sine term and insignificantly improves the
value of χ2. Its amplitude is 0.05 km s−1, only 2.6% of the amplitude of the sin ω
term, corresponding to a shift of 1.9◦ in ω. As a check of the correctness of the pro-
cedure, we compare this result with what is obtained when requiring a 3-σ cut on
each data-cube element; the amplitudes of the sine and cosine waves become 1.40
and 0.04 km s−1 respectively.

FIGURE 3.12: Distributions on ω (left) and r (right) of the Doppler
velocity respectively averaged over 0.8 < r < 3.2 arcsec and over
ω. In the left panel, the line shows the best fit result, of the form

−1.43 sin ω + 0.05 cos ω km s−1.

Assuming a 3◦ uncertainty on ω, corresponding to half a beam sigma at a dis-
tance of 1.3′′, we obtain a 3-σ upper limit (99% confidence level) of 9% on the ratio
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Vf all/Vrot. As a function of r, averaging over ω would cause 〈Vz〉 to cancel if sym-
metry with respect to the ζ axis were perfect. It is indeed found very small, at the
level of 0.05 km s−1 as soon as r exceeds the peak of the radial integrated intensity
distribution at r ∼ 1.3′′.

Similarly, the dependence on ω and r of Vrot averaged respectively (using bright-
ness as weight) over 0.8′′ < r < 2.5′′ and over ω (| sin ω| > 0.3) is displayed in Figure
3.13. The left panel shows the distribution of 〈Vrot × r1/2〉 on r, which would be con-
stant if the rotation were Keplerian. A fit in the interval 1.1′′ < r < 2.5′′ gives a power
index of −0.63 instead of the Keplerian −0.5 and < Vrot >= 3.0 km s−1 at r = 1′′.
The middle panel illustrates the difficulty to measure Vrot reliably due to its singu-
larity on the ζ axis. As remarked earlier, the binarity of the central star prevents the
position of the “center”to be defined to better than some ±0.1′′ (more exactly such
a definition requires modelling properly the binary configuration). Shifting the ori-
gins of x and y on the sky map by 1 pixel size (±0.06 arcsec) changes the value of ω
and therefore of Vrot. The result displayed in the middle panel shows the importance
of the effect. As a result, increasing the | sin ω| cut from 0.3 to 0.707 (sin 45◦) makes
the < Vrot × r1/2 > distribution Keplerian with a power index of −0.51 instead of
−0.63, the rotation velocity at r = 1′′ increasing from 3.0 to 3.1 km s−1 (left panel).
We show in the right panel the map of Vrot r1/2 in the disk plane. It is uniform except
for increases near the ω limits in the north-west and south-east directions. These are
largely artefacts due to the difficulty of calculating reliably Vrot near the ζ axis. Note
that Dutrey et al. (2014) quote a Vrot value of 3.4± 0.1 km s−1 for 12CO(6-5) emission
with an index of −0.5± 0.1 at r = 100 au; this corresponds to 2.9 km s−1 at r = 1′′,
consistent with the 3.0 km s−1 observed here for 13CO(3-2) emission.

FIGURE 3.13: Left: Dependence on r of 〈Vrot× r1/2〉 (brightness-weighted
average); the lines are the best power law fits with indices −0.63 for
| sin ω| > 0.3 (red) and −0.48 for | sin ω| > 0.707 (blue). Middle: De-
pendence on ω of 〈Vrot〉 (averaged in the interval 0.8′′ < r < 2.5′′)
calculated using the nominal origin of coordinates on the sky plane
(black histogram) or by shifting the origin by ±0.06′′ in either x or
y (red and blue histograms). Right: De-projected map of 〈Vrot × r1/2〉

(| sin ω| > 0.3).
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Line width

Figure 3.14 displays the dependence of the brightness on the difference dVz be-
tween the values of Vz measured in a given pixel and their mean values in that
same pixel. The mean is calculated using brightness as a weight and the histogram
is summed over all pixels in the interval 0.8′′ < r < 2.5′′. A Gaussian fit gives a σ-
value of 0.23 km s−1.

FIGURE 3.14: Dependence of the brightness on the difference dVz be-
tween measured values of Vz their mean values in the pixel. Summing
is over all pixels in the interval 0.8′′ < r < 2.5′′. The curve is a Gaussian

fit.

Several quantities, added in quadrature, are expected to contribute to σvz: Kep-
lerian shear σK associated with both beam size and disk thickness, the instrumental
resolution σI and the thermal broadening σT, possibly including a turbulence con-
tribution (Teague et al., 2016), and opacity broadening, στ.

Averaged over ω, the Keplerian shear at r = 1.5′′ reads, from the derivative of a
power law, σK = 0.6〈|Vz|〉σr/r where 0.6 stands for the power index of the radial Vrot
distribution (it would be 0.5 in a pure Keplerian case). Here, σr is the sum in quadra-
ture of the σ’s of beam, 0.21′′, and of the disk thickness multiplied by tan θ = 0.7,
0.11′′. Hence, σr ∼

√
0.212 + 0.112 = 0.24′′ and

σK = 0.6× sin(35◦)× 3.1× 1.5−0.6 × (2/π)× σr/1.5 = 0.09 km s−1. Taking the FWHM
of the instrumental resolution as one velocity bin gives σI ∼ 0.05 km s−1. Thermal
broadening proper reads

√
2kT/Mco where k is Boltzmann constant, T the temper-

ature and Mco the mass of the 13CO molecule; at T = 18 K (Tang et al., 2016) it
amounts again to some 0.10 km s−1. Opacity tends to flatten the line profile and its
effect is an effective broadening of ∼

√
ln(τ), where τ is the line opacity (Piétu,

Dutrey, and Guilloteau, 2007). Tang et al. (2016) show that 13CO(3-2) and 12CO(3-2)



3.3. Morphology and kinematics of the gas disk obtained from observations of the
13CO(3–2) emission

57

have similar brightness, implying that τ(13CO) is significantly above unity. Using
both 13CO(3-2) and 12CO(3-2), we estimate its value to be τ ∼ 10, meaning an effec-
tive broadening of ∼1.5 and a joint contribution of ∼ 0.15 km s−1 for thermal and
opacity broadening. A possible additional source of broadening could be the effect
of noise. However, using a 3-σ cut to select the data, which must underestimate the
measured value of σvz, we obtain 0.20 instead of 0.23 km s−1, showing that noise can
be neglected within our estimated uncertainty of ±0.03 km s−1.

Adding the estimated contributions in quadrature gives a total contribution of√
0.052 + 0.092 + 0.152 = 0.18 km s−1 compared with 0.23± 0.03 km s−1 measured:

there is not much room left for additional contributions and turbulence is small
(highly subsonic) in this disk.

Important additional information on the line width can be obtained from a study
of the variations of σvz over the disk plane. To this end we consider three r intervals,
0.4′′ wide, covering between 1.3′′ and 2.5” and 24 ω-intervals, 15◦ wide, covering
between 0 and 360◦. The dependence on ω of the integrated intensity is shown in
Figure 3.15 (left) for each r-interval separately. The hot spot sticks out at values of ω
that increase from ∼ 120◦ in the low r-interval to ∼ 150◦ in the high r-interval. The
middle panel shows the dependence on ω of the normalized value of Vz averaged in
each r-ω bin separately; more precisely a fit of the form 〈Vz〉 = −a sin ω − b cos ω
is performed in each r-ω bin separately and the normalization is made by dividing
each of the three distributions by the corresponding value of a (respectively 1.46,
1.27 and 1.18 km s−1, namely ∼ 1.78 km s−1 divided by 〈r〉1/2). The values of b are
between 0.02 and 0.03 km s−1 and can be neglected: all three normalized histograms
are well described by a sine wave. The right panel displays the dependence on ω
of σvz: in each r-ω interval the σ of a Gaussian fit to the peak of the Doppler ve-
locity spectrum is plotted after normalization to its value averaged over ω in the
corresponding r-interval (0.258, 0.210, and 0.181 km s−1 respectively).

As a function of ω, the line width fluctuates relatively less than the integrated in-
tensity. Moreover, there is no sign of a sine wave contribution that would signal the
effect of Keplerian shear, confirming the conclusion that was reached above. While
the “hot spot” dominates the variations of the integrated intensity, its presence is
barely visible as an increase of the line width; conversely, sharper line width ex-
cesses at ω ∼ 60◦ and 320◦ are visible on the velocity-integrated distribution as less
marked excesses. The depressions at ω ∼ 0◦, 90◦ and 270◦ are also associated with
lower values of the line width. The correlation between σvz and fluctuations of the
integrated intensity f is illustrated in Figure 3.16. In each (r, ω) bin we define ∆σ
and ∆ f as the difference between the values of σvz and f and their mean in the r
interval: ∆σ = σvz/ < σvz > −1 and ∆ f = f / < f > −1. A clear positive correla-
tion is evidenced from the best linear fit, ∆σ = 0.32 ∆ f . Note that the correlation is
even slightly stronger if one excludes the hot spot region, the corresponding Pearson
coefficients being respectively 0.25 and 0.32. From the low-r interval to the high-r in-
terval the ω-averaged line width (σ) decreases by a factor 0.70 while the amplitude
of the Vz sine wave decreases only by a factor 0.81. A possible explanation may be
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FIGURE 3.15: Left: Dependence on ω of the integrated in-
tensity for 1.3′′ < r < 1.7′′ (blue), 1.7′′ < r < 2.1′′ (red) and
2.1′′ < r < 2.5′′ (black); Middle: dependence on ω of the value of
〈Vz〉 in each of the three r-intervals (black histograms); here, 〈Vz〉 has
been divided by 1.46, 1.27 and 1.18 km s−1 respectively, making the
three histograms nearly identical; the red curve is a sine wave. Right:
dependence of σvz on ω, for each r-interval separately; in each r-ω bin,
a Gaussian fit is performed to the peak of the Vz spectrum, giving a
σ-value that averages to respectively 0.258, 0.210 and 0.181 km s−1; the
plotted histograms are normalized to these respective average values;
in addition, for clarity, they are shifted up by respectively 0, 0.5 and
1. The red curve, a sixth degree polynomial fit to the distribution of
the central r-interval, is shown to guide the eye. In the left and right
panels the arrows point in the direction of increasing r and indicate
remarkable features: the black arrow shows the hot spot as defined
from the left panel, the blue and red arrows show peaks of the line

width as defined from the right panel.

an increase of the temperature and opacity with decreasing r. An increase of tem-
perature and opacity from (T, τ)=(18 K, 5) at r ∼ 2.3 arcsec to (36 K, 10) at r ∼ 1.5
arcsec would imply an effective thermal broadening increasing from ∼ 0.13 km s−1

to about 0.21 km s−1. Adding in quadrature σK and σI contributions of respectively
0.09 and 0.05 km s−1 would give respectively 0.15 and 0.23 km s−1, compared with
0.18 and 0.26 km s−1 being measured.

The fact that the ω-dependence of 〈Vz〉 is very well described by a simple sine
wave in each of the three intervals implies that the observations are consistent with
Vrot being independent of ω. It shows again that the fluctuations of Vrot r1/2 observed
in Figure 3.12 are affected by very large uncertainties. Indeed, very good fits to the
measured Vz sky map are obtained by assuming a purely Keplerian rotation velocity.
On the contrary, we estimate that the uncertainty attached to both 〈Vz〉 and σvz is of
the order of only 0.02 km s−1, making the discussion of the line width in terms of
σvz more reliable than in terms of Vrot dispersion.
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FIGURE 3.16: Correlation between the normalized relative fluctuations
of the line width ∆ σ and the integrated intensity ∆ f (see text). The
line is the best fit to the data, ∆ σ = 0.32∆ f . The blue points are for

105◦ < ω < 165◦ (hot spot).

3.4 Multiline studies

3.4.1 Radial and azimuthal dependence of the emission of CO iso-
topologues across the disk

The Section uses observations of (sub)millimetre emissions of different molecules:
12CO(6–5), 12CO(3–2), 12CO(2–1), 13CO(3–2) and C18O(3–2). The 12CO(6–5), 12CO(3–2)
and 12CO(2–1) data have been reported in Dutrey et al. (2014) and Tang et al. (2016).

Figure 3.17 shows the integrated intensity and velocity maps of 13CO(3–2) (left)
and C18O(3–2) (right). In these figures, the continuum has been subtracted. The ve-
locity maps suggest rotation inside the disk.

The 13CO(3–2) emission extends out to 550 au, while the C18O(3–2)emission is
mostly visible in the dense ring.

Figure 3.18 (upper panels) shows the radial profile of all the integrated emission
for all lines after de-projection to the disk plane. The de-projection has been done
assuming a position angle of the minor disk axis of 7◦ and an inclination of 35◦.

The 12C16O emission covers a broad region around the central binary, r ≤ 6′′

(800 au), peaking at the centre. Some of the differences between the three CO tran-
sitions may result from calibration effects and different uv coverages. In particular,
short spacings are missing in the CO(6− 5) transition data because of the high fre-
quency, making it less sensitive to extended structures.
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FIGURE 3.17: Upper panel: 13CO(3–2) integrated intensity map (left, con-
tour spacing of 0.01 Jy/beam km s−1 (3 σ) with zero level omitted) and
velocity map (right). Lower panel: C18O(3–2) integrated intensity map
(left, contour spacing of 0.01 Jy/beam km s−1, 2 σ) and velocity map
(right). The beams are indicated in the lower left corner of each inten-
sity map. The contour level spacing in velocity maps is 0.5 km s−1. The
continuum has been subtracted. The white ellipses indicate the inner

and outer edges of the dust ring.

Figure 3.18 (lower panels) displays the azimuthal dependence (in the disk plane)
of the peak brightness and velocity integrated brightness in the ring (1.2′′ ≤ r ≤
2′′) for CO, 13CO, C18O, and the 0.85 mm continuum emissions. The azimuth ω in
the disk mid-plane is measured counter-clockwise from the minor axis (north). The
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FIGURE 3.18: Upper panels: Radial dependence of the integrated bright-
ness temperature in the disk plane. In the right panel, the continuum
histogram shows the brightness temperature. The horizontal sticks in-
dicate the angular resolutions. The grey bands delineate the dust ring.
In the lower panels. Lower: The azimuthal dependence of the same
quantities averaged over the ring 1.2′′ < r < 2.0′′. The left panels
display the three 12CO emissions (J=6–5, 3–2 and 2–1), the latter being
taken from Dutrey et al. (2014); the right panels show the less abundant
CO isotopologues (J=3–2) emissions. Black arrows show the location of
the limb brightening peaks and magenta lines show the "hot spot" lo-

cation.
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significant enhancement in the south-eastern quadrant for 12C16O corresponds to
the “hot spot” observed by Dutrey et al. (2014), that may reveal a possible planet in
formation (labelled “hp” for “ hypothetical planet” in the figure). The "hot spot" is
much less visible in the other CO isotopologues.

In Figure 3.18 we also notice the existence of two peaks in CO isotopologues.
Their azimuth does not exactly correspond to the location of the limb brightening
effects (at 90 and 270◦, in the disk reference frame) that naturally result from the
increased velocity coherence length in an inclined rotating disk.

3.4.2 CO gas kinematics in the outer disk

We expect different emissions to display identical Doppler velocity distributions in
a given pixel to the extent that the radial ranges probed along the line of sight are the
same. To check on this, Figure 3.19 compares the mean Doppler velocities measured
in a same pixel for different lines. Each pixel contribution is weighted by the geo-
metrical mean (I1 I2)

1/2 of the velocity integrated intensities I1 and I2 measured in
the pixel for each of the two lines. The mean values of the central velocity are indeed
very small, −0.02 and 0.01 km s−1; their σ’s are 0.08 and 0.15 km s−1 for 12CO(3–2)
vs 13CO(3–2) and 12CO(3–2) vs 12CO(6–5) respectively.

FIGURE 3.19: Distribution of the difference between the measurements
of the mean Doppler velocity in a same pixel for 12CO (3–2) vs 13CO (3–

2) (left) and for 12CO (3–2) vs 12CO (6–5) (right).

These figures show remarkable overall agreement of the mean Doppler veloc-
ities between the three sets of observations, to better than 0.02 km s−1 on average,
and more generally between all line observations. This is different from what is ob-
served for the intensity of the emission. Indeed, the latter depends on the excitation
energy, on the gas temperature, on the optical thickness and is sensitive to azimuthal
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inhomogeneity. On the contrary the rotation velocity is the same for all as long as
the regions probed along the line of sight are the same. For example, comparing the
12CO(3− 2) and 13CO(3− 2) data, we find that they can accommodate a∼ 0.06′′ shift
in y, meaning some 10 au vertically (i.e. parallel to the disk axis), but not much more.
Moreover, a remarkable result is that the dominance of rotation extends inside the
ring as will be shown in the following Chapter.

FIGURE 3.20: Dependence on r of Vrot × r1/2 (weighted by the bright-
ness and averaged in r bins of 0.15′′) of 12CO(3–2) (black), 13CO(3–2)
(red) and C18O(3–2) (blue) emissions. The horizontal bars indicate the
radial range over which the mean value is calculated for each transition.

The grey shaded area cover the dense dust ring.

We calculate the rotation velocity Vrot = Vz(sin θ sin ω)−1 for each data cube ele-
ment separately, neglecting a possible in-fall contribution on the basis of the results
obtained in the preceding section and excluding the region | sin ω| < 0.707. The
result is illustrated in Figure 3.20, which shows the dependence of 〈Vrot × r1/2〉 on
r, which should be constant for the three CO isotopologues if the rotation is Ke-
plerian. There is a good overall agreement between the three isotopes, showing
that the outer ring and disk are in Keplerian rotation beyond about 180 au. Con-
stant fits to these histograms perform in a radial range where the SRN is large
enough, give Vrot ≈ 2.94 km s−1, standard deviation (σ) of 0.14 km s−1 of the resid-
uals from the mean for CO, 2.98 km s−1 (σ = 0.04 km s−1) for 13CO and 2.81 km s−1

(σ = 0.07 km s−1) for C18O, at ≈ 1.0′′. The formal errors on these mean values will
be 2 to 3 times smaller, depending on the number of independent points, which is
not a simple value given our averaging method. The CO data show deviations from
the mean which are not random, since they occur on a radial scale of ≈ 0.8′′, more
than twice the resolution.

We conservatively use the standard deviation as the error on the mean, and de-
rive a mean weighted value of 2.94± 0.03 km s−1 for the Keplerian speed at 1′′, i.e.
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3.48± 0.04 km s−1 at 100 au, in agreement with previous, less precise determinations
(e.g. Dutrey et al. (2014) found 3.4± 0.1 km s−1). Taking into account the uncertainty
on the inclination, ±2◦, this corresponds to a total stellar mass of 1.36± 0.07 M�.

3.4.3 The “hot spot”

Figure 3.21 displays the sky maps of the intensities measured in the ring 1′′ < r <
2′′, where the “hot spot” is present. All three emissions display a south-eastern
excess for 120◦ < ω < 210◦, which corresponds to the “hot spot” position in Dutrey
et al. (2014) and Tang et al. (2016). But they also show an excess at opposite azimuth
(not at the same radius as the “hot spot”): it suggests distinguishing between four
quadrants centred on 15◦, 105◦, 195◦ and 285◦ respectively. Moreover, the excess is
limited to lower values of r in the western quadrant while it is tailing to higher values
of r in the eastern quadrant. Accordingly, we split each quadrant in two regions,
1′′ < r < 1.5′′ and 1.5′′ < r < 2′′ respectively. The line profiles display no difference
between the 4 quadrants of a same sub-ring. Table 3.3 lists the associated line widths
(rms values), which are indeed equal within errors.

 ||| | | | |||

FIGURE 3.21: Sky maps of intensities measured in the ring 1′′ < r < 2′′

for 12CO(3–2) (left), 13CO(3–2) (middle) and 12CO(6–5) (right). The lines
show the eight regions used to draw Table 3.3.

However, a different picture emerges if we account for the strong radial depen-
dence of the intensity by mapping, for each pixel, the difference between the mea-
sured intensity and the mean intensity measured at that radius (averaged over az-
imuth). Then, as illustrated in Figure 3.22, much better evidence for the hot spot is
revealed. The east-west excess (or north-south depression) revealed in Figure 3.21
for 1′′ < r < 1.5′′ is therefore probably unrelated to the “hot spot” but rather a
geometrical effect associated with the disk thickness. However, Figure 3.22 also pro-
vides clear evidence for a northern depression, which is as deep as the hot spot is
high.
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TABLE 3.3: rms values ( km s−1) of the line widths measured in each of
8 regions depicted in Figure 3.21.

Transition [60◦, 150◦]∗ [150◦, 240◦] [240◦, 330◦] [−30◦, 60◦]

1′′ < r < 1.5′′
12CO (3− 2) 0.36 0.40 0.39 0.39
13CO (3− 2) 0.24 0.25 0.25 0.23
12CO (6− 5) 0.24 0.26 0.39 0.31

1.5′′ < r < 2′′
12CO (3− 2) 0.28 0.28 0.33 0.28
13CO (3− 2) 0.21 0.19 0.21 0.20
12CO (6− 5) 0.26 0.16 0.17 0.14

∗"hot spot" region

FIGURE 3.22: Sky maps of the difference between the measured in-
tensity and its azimuthal average at the same radius for each of
12CO(3–2) (left), 13CO(3–2) (middle) and 12CO(6–5) (right). The circle
x2 + y2 = 1 arcsec2 is excluded. Stars locate the Dutrey et al. (2014) “hot

spot”.

TABLE 3.4: Line properties in the hot spot ellipse and its symmetric with
respect to the origin of coordinates (GG Tau A)

Hot spot ellipse Diametrically opposite ellipse
〈Vz〉 rms(〈Vz〉) 〈Vz〉 rms(〈Vz〉)

( km s−1) ( km s−1)
12CO (3− 2) −1.3 0.27 1.1 0.38
13CO (3− 2) −1.3 0.22 1.1 0.24
12CO (6− 5) −1.2 0.25 1.6 0.28

Defining the “hot spot” region as an ellipse centred at (x, y) = (1.5,−0.7) with
semi-axes of (0.4′′, 0.6′′), we compare in Table 3.4 the line widths measured in the
“hot spot” ellipse and in the diametrically opposite ellipse centred at (x, y) = (−1.5, 0.7).

Our analysis suggest that there is no detectable excess of turbulence at the “hot
spot” location.
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3.5 Summary

The present analysis contributes additional information to the morphology and kine-
matics of the gas and dust disk surrounding the GG Tau A triple protostar. It reveals
the presence of concentric dust and gas rings sharing a same axis projecting on the
sky plane∼ 7◦ east of north. In the approximation where both rings are flat and thin,
their inclination angles with respect to the sky plane are respectively 32◦ and 35◦.
The gas ring is broader than the dust ring and peaks at smaller distance (typically
87%) to the central stars. The de-projected radial dependence of the line emission
displays maxima at ∼ 1.2′′ and 1.9′′ from the central stars, bracketing the mean dust
ring radius of ∼ 1.6′′. It cuts-off sharply at a mean distance of ∼ 1 arcsec, cancelling
completely below ∼ 0.54 arcsec. Azimuthal rms variations of the dust and gas emis-
sions in the disk plane are measured at the respective levels of ∼ ±9% and ±17%.
Strong evidence is obtained for the rotation of the tilted gas disk about its axis dom-
inating the kinematics.

A detailed study of the properties of the gas disk has been presented, adding
significant new contributions to the earlier analyses of Tang et al. (2016). From the
azimuthal dependence of the sharpness of the inner edge of the disk, a 95% confi-
dence level upper limit of 0.24′′ (34 au) has been placed on its scale height H(r) at a
distance of 1′′ (140 au) from the central stars. At 30 K, hydrostatic equilibrium would
imply H(r)/r ∼ 0.17′′, consistent with this observation.

Variations of the integrated intensity across the disk area have been studied in
detail and found to confirm the presence of a hot spot in the south-eastern quad-
rant. However several other significant fluctuations, in particular a depression in
the northern direction, have also been revealed. On average, the rms relative az-
imuthal variation of the integrated intensity reaches ∼ 17%. The radial dependence
of the integrated intensity is modulated with enhancements at r ∼ 1.2′′ and 1.9′′,
bracketing the dust ring (∼ 1.6′′). It is also between these radial integrated intensity
enhancements that both the hot spot and the northern depression are observed to
peak (their effects nearly cancelling each other when averaged over ω).

The study of the gas kinematics has given evidence for a strong dominance of ro-
tation about the disk axis. The Doppler velocity gradient being perpendicular to the
projection of the disk axis on the sky plane allows placing a 99% confidence upper
limit of 9% on the ratio between a possible infall velocity and the rotation velocity.
The difficulty of evaluating reliably the rotation velocity close to the sky plane pro-
jection of the disk axis has been discussed. Taking it in proper account, the rotation is
observed to be Keplerian with a power index of∼ −0.51 across most of the disk area.
At r = 1′′, the rotation velocity reaches ∼ 2.94± 0.03 km s−1, i.e. 3.48± 0.04 km s−1

at 100 au, in agreement with previous, less precise determinations (e.g. Dutrey et al.
(2014) quoted 3.4± 0.1 km s−1 at 100 au). Taking into account the uncertainty on the
inclination, this corresponds to a total stellar mass of 1.36± 0.06 M�. No significant
correlation has been found between the azimuthal inhomogeneity of the rotation
velocity and of the observed integrated intensity (hot spot and northern depression)
but a radial modulation of the rotation velocity reminiscent of that observed for the



3.5. Summary 67

intensity has been observed, with maxima at ∼ 1.4′′ and ∼ 2.1′′.

The dependence of the linewidth on r and ω has been studied. It shows little de-
pendence on ω but increases from 0.18 km s−1 to 0.26 km s−1 when r decreases from
2.3′′ to 1.5′′. As the contributions of Keplerian shear and instrumental spectral res-
olution taken together should not exceed some 0.11 km s−1, a possible explanation
may be a factor 2 decrease of the disk surface temperature and opacity, reaching re-
spectively 36 K and 10 at r = 1.5′′. Relative variations of the line width over the disk
area have been found to be correlated with relative variations of the integrated in-
tensity, the former being about a third of the latter. At least qualitatively, this result
would also support the presence of a temperature gradient, the CO(3–2) emission
ladder peaking at temperatures higher than the average disk temperature.
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3.A Channel maps

FIGURE 3.23: Channel maps of 13CO(3–2), Beam 0.22”× 0.16”, PA=16◦.
The noise level is 2.4 mJy beam−1. The colour scale is indicated in the

upper right panel. The cross is centred on the centre of the map.

FIGURE 3.24: Channel maps of C18O(3–2), Beam 0.19”× 0.14”, PA=19◦.
The noise level is 4.8 mJy beam−1. The colour scale is indicated in the

upper right panel. The cross is centred on the centre of the map.
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Chapter 4

Gas properties from the outer disk to
the central cavity1

This Chapter presents the study of the gas properties in the ring, the outer disk
and inside the cavity of GG Tau A using ALMA observations of the (sub)mm CO
(12CO,13CO, C18O) emissions. A radiative transfer modelling of the outer disk using
DiskFit in Local Thermal Equilibrium (LTE) condition is presented, providing infor-
mation about the molecular surface density and the gas temperature profile in the
circumbinary disk. The morpho-kinematics of the gas inside the cavity is studied us-
ing observations of CO emissions which are analysed assuming non-LTE conditions.
I also discuss the total amount of gas and the accretion rate inside the cavity.

4.1 Local Thermal Equilibrium Modelling of the cir-
cumbinary disk

4.1.1 Continuum fit

The CO emission being at least partially optically thick, I cannot simply separate the
contribution of CO and continuum emissions (Weaver, Isella, and Boehler, 2018).
To determine the continuum properties, we fitted the continuum using the broad-
band, line-free, spectral window data following the procedure described in Dutrey
et al. (2014). The radial dependence of the emission of the circumstellar disk of Aa
is fitted as a Gaussian and subtracted. The radial dependence of the emission of the
ring is then fitted using a simple power law distribution for the surface density and
the temperature with sharp inner and outer edges, assuming a spatially constant
dust absorption coefficient that depends on frequency κν = κν0(ν/ν0) (see also Ta-
ble 4.2). The results of the common fit performed using 1.3 mm and 0.8 mm data

1The content of this Chapter is mostly adapted from the paper:
1) Phuong, N.T.; Dutrey, A.; Diep, P.N; Guilloteau, S.; Chapillon, E.; Di Folco, E.; Tang, Y-W.; Pietu,
V.; Bary, J.; Beck, T.; Hersant, F.; Hoai, D.T.; Hure, J.M.; Nhung, P.T.; Pierens, A.; Tuan-Anh, P., 2019,
submitted to A&A



70 Chapter 4. Gas properties from the outer disk to the central cavity

are summarised in Table 4.2. The 1.3 mm continuum emission is from Dutrey et al.
(2014).

The goal of this continuum modelling is that residual emission after model fit-
ting becomes small compared to the noise level in the spectral line data, so that the
continuum does not introduce any significant bias in the combined fit for spectral
lines described in the next Section. Adjusting only the surface density is enough for
this. The residuals, such as those due to the azimuthal variations, or the shallow
outer edge of the brightness distribution, are well below 1 K in brightness.

TABLE 4.1: System geometric and kinematic parameters

Parameter Value
(x0, y0) (0,0) Center of dust ring
PA(◦) 7 PA of disk rotation axis
i(◦) −35 Inclination
VLSR (km s−1) 6.40 Systemic velocity
V0 (km s−1) 3.37 Keplerian Rotation velocity at 100 au
dV (km s−1) 0.3 Local line width

Note.The values are taken as fixed value which are derived from the available literatures.

TABLE 4.2: Dust ring parameters

Parameter Value
Inner radius (au) 193 Dutrey et al. (2014)Outer radius (au) 285
Abs. Coefficient 0.02× (ν/230GHz) Dutrey et al. (2014)
Kν (cm2/g)
Temperature (K) 14× (r/200 au)−1 Dutrey et al. (2014)
Surface density (cm−2) 5.6 1024 × (r/200 au)−1.4 Fitted

This continuum model is then used to fit the uv table containing both the line
and continuum observations.

4.1.2 CO isotopologues

We first analyze the CO isotopologue data without subtracting the continuum. The
parameters labelled as "fixed" in Tables 4.1 and 4.2 are used as fixed input parame-
ters of the model.

Tang et al. (2016) showed that the radial profile of the intensity of the 13CO emis-
sion could be reasonably well described by a superposition of 3 Gaussians (see their
Figure 3c). Thus, assuming a single power law radial profile is not a good approxi-
mation for the CO emissions. Therefore, we fit the data assuming piece-wise, contin-
uous power laws (linear in log-log space) for the surface density and temperature.
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The parameters of the Gaussian decomposition from Tang et al. (2016) are used to
define the radial knots, at 160, 200, 260, 300 and 400 au for 12CO and 13CO data. For
the case of C18O we use 4 knots at 160, 200, 260, 300 au because of its lesser extension.

While the outer disk can be modelled as Keplerian, this is not the case for the
gas inside the cavity, which, however, contributes to a significant fraction of the total
CO emission. In the image plane, there is no clear separation for the gas between
the ring and the cavity, contrary to the continuum emission. Moreover, when fitting
inside the uv-plane, one cannot separate the contribution of the cavity from that of
the outer disk. To cope with this difficulty, we first subtract the clean components
located inside the cavity (up to a radius of 160 au) from the original uv tables (this
also removes the continuum contribution of Aa) and the modified uv tables are then
modelled with a Keplerian disk truncated at short radii (see Chapter 2, Figure 2.3
for the description of deconvolution process and the Clean components definition).

The following strategy has been adopted to combine the information provided
by the 12CO and 13CO data. In a first step, we estimate the radial distribution of
the temperature by fitting the 12CO line using a given assumed value of the surface
density. The value of this surface density is not critical, as long as it is large enough
to produce sufficient optical thickness. We then use the temperature profile derived
from 12CO to fit the 13CO data and determine the associated surface density, taking
advantage of the lower optical thickness of this line. The 12CO surface density is
then obtained by simply scaling the 13CO surface density by the known isotopic
ratio 12CO/13CO (70, Milam et al., 2005). Two iterations are enough for the process
to converge. The method makes the implicit assumption that the 12CO and 13CO
layers are at the same temperature. This hypothesis is consistent with the results
obtained by Tang et al. (2016), who found that the vertical temperature gradient
around 200-400 au should be small in order to reproduce the observed 12CO/13CO
line ratio.

A common inner radius of 169 au is applied to all molecular distributions. This
radius is here only to obtain a good model for the ring and outer disk: it should not
be interpreted as the physical gas edge of the cavity. Constraining the inner gas edge
is not possible because of the clean component removal, which may contaminate the
emissions around 160 au. The outer radii are evaluated for each isotopologue sep-
arately. The small difference between our adopted Keplerian rotation law and that
suggested by the analysis in Chapter 3 has negligible impact on the fitted parameters
(within the error bars).

I obtained this way a common model of the ring and outer disk which gives a sat-
isfactory description of the emission of the different CO isotopologues. Subtracting
this model from the original data gives us the emissions inside the cavity. Figure 4.1
maps the residuals from the original uv data after subtraction of the contributions
of the best fit outer disk model and of the Aa continuum emission.

As expected, most of the left-over emission comes from the cavity for the 12CO
and 13CO emissions. As the model does not allow for azimuthal inhomogeneities,
they are enhanced in the residuals of the ring and outer disk. The best fit results are
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12CO(3–2)

C18O(3–2)

13CO(3–2)

FIGURE 4.1: Integrated intensity of (residual) emissions after sub-
tracting the best disk models. Upper left panel: 12CO(3–2). The restor-
ing beam of 0.34′′ × 0.28′′, PA = −89◦ is indicated in the lower
left corner. Upper right panel: 13CO(3–2). The restoring beam is
0.22′′ × 0.16′′, PA = 16◦. Lower panel: C18O(3–2). The restoring beam is
0.19′′ × 0.14′′, PA = −167◦. The contour level is 5σ for 12CO(3–2) map
and 3σ for 13CO(3–2), and C18O(3–2) maps . The ellipses show the in-

ner and outer edges of the dust ring at 180 au and 260 au.
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1.5 2.0 2.5 3.0 3.5 4.0

Radius (arcsec)

FIGURE 4.2: Radial dependence of CO gas (red) and dust (black) tem-
perature. The gas temperature is the best fit to the present data, ex-
trapolated beyond 400 au using the power law found between 300 and
400 au. The dust temperature is from Dutrey et al. (2014) up to 300 au,

extrapolated further out.

illustrated in Figures 4.2 and 4.3, and listed in Table 4.3. The uncertainties have been
estimated from the dispersion of results obtained in the process of searching for the
best fit. They are of the order of 1 to 2 K on the temperatures and of 20% to 30%
on the surface densities. An important and robust result is the strong decrease of
the gas temperature with increasing distance from the stars, from ∼ 27 K at 180 au
to ∼ 11 K at 400 au. Assuming constant flaring (h(r) proportional to r) we obtain
scale heights at r = 200 au of 24 au for 12CO(3–2) and 23 au for 13CO(3–2). In hydro-
static equilibrium, this corresponds to a temperature of ∼ 15 K, consistent with the
dust temperature obtained by Dutrey et al. (2014). The final fits use a fixed value of
the ratio h(r)/r = 24/200 = 0.12. The values obtained for the outer disk radii are
∼370 au for C18O(3–2), ∼550 au for 13CO(3–2) and > 600 au for 12CO(3–2), the latter
two values being poorly constrained by the fit due to the steep radial decrease of the
temperature.

4.1.3 Discussion

Temperature distribution in the outer disk

The present analysis confirms that most of the outer disk of GG Tau A is very cold
(see Figure 4.2), giving a gas temperature in agreement with the value of 20 K at
300 au obtained by Guilloteau, Dutrey, and Simon (1999) from 13CO data. The agree-
ment between these two values derived from independent 12CO and 13CO analysis
supports the assumption of a limited vertical temperature gradient in the CO layer,
as already noted by Tang et al. (2016). A power law fit to the radial dependence of
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TABLE 4.3: Temperature of 12CO(3–2) and surface density of 13CO(3–2)
and C18O(3–2) - nominal model after CLEANed component removal at

r < 160 au.

(1) (2) (3) (4) (5) (6) (7) )
r Tk

13CO C18O Ratio
(au) (K) (K) (K) 1015 cm−2

160 27.2 0.17 [26,28] 39± 2 6.7± 0.6 5.8± 0.8
200 27.4 0.11 [25,28] 18± 1 5.5± 0.4 3.3± 0.4
260 19.7 0.07 [19,21] 9.7± 0.3 2.1± 0.1 4.6± 0.4
300 18.0 0.03 [17,19] 6.8± 0.1 0.39± 0.02 17± 1
400 10.7 0.02 [10,11] 2.8± 0.03 – –

Note. (1) Knot radius. (2) Temperature derived from 12CO(3–2) and (3) its formal error from
the fit and (4) estimated confidence interval from the minimizations. (5-6) molecular column
density, (7) 13CO/C18O surface density ratio.

1.5 2.0 2.5 3.0

Radius (arcsec)

FIGURE 4.3: Comparison of the surface densities from the LTE analysis.

the temperature gives a power index between −1.0 and −1.3, in agreement with the
value of −1 obtained by Guilloteau, Dutrey, and Simon (1999). From the analysis of
the continuum images at wavelengths between 3 and 0.45 mm, Dutrey et al. (2014)
measured a similar power index for the dust temperature, characteristic of the large
grains that the mid-plane is hosting. The steep radial decrease of the temperature is
most likely due to the stellar light being blocked by the inner dense ring, the outer
regions of the disk being in its shadow.
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Gas distribution and homogeneity of the outer ring

The model gives a surface density ratio between 13CO and C18O of ∼ 17 beyond
300 au, 2.5 times larger than the nominal isotopic ratio of 7 (Milam et al., 2005; Wil-
son, 1999), suggesting selective photodissociation (van Dishoeck and Black, 1988),
but also confirming that in the outer disk the emissions are optically thin. On the
contrary, inside the densest part of the ring (200− 260 au), the measured ratio is of
the order of 3− 5. Chemical effects such as selective photodissociation and fraction-
ation that occurs through isotope exchange between CO and C+ (Watson, Anicich,
and Huntress, 1976) and enhances 13CO at temperatures about 20–30 K, would both
tend to enhance this ratio above the double isotopic (16O/18O)/(12C/13C) ratio. Thus
the simplest explanation for a low value is partially optically thick 13CO(3–2) emis-
sion. However, our model should account for the opacity if the disk was as smooth as
assumed. Hence, we conclude that the GG Tau disk and ring deviates significantly
from the smooth, non stratified, azimuthally symmetric structure that we adopted.

The radial dependence of the observed emission of the molecular lines, 13CO(3–2)
and C18O(3–2), illustrated in the upper panels of Figure 3.18, does not obey a sim-
ple power law but displays some irregularities, in particular in the form of a bump
near 2′′. After subtracting the best fit azimuthally symmetric outer disk model, Fig-
ure 4.1 reveals important azimuthal inhomogeneity: the hot spot is enhanced in the
12CO(3–2) map and in the other maps the ring and outer disk display an east-west
enhancement or equivalently north-south depletion. This is particularly clear for
the optically thinner transitions of C18O(3–2), suggesting radial density variations
in the molecular layer. The azimuthal inhomogeneity observed in Figure 4.1 is real,
instrumental effects such as resulting from velocity coherence length and convolu-
tion using an elongated beam being properly accounted for by the model. All these
evidences point to the existence of radial and azimuthal sub-structures that remain
unresolved (at least radially) at our 30 au linear resolution.

4.2 Analysis of the gas inside the cavity

Having built a reasonable model of the ring and outer disk, we can subtract its con-
tribution to the measured visibilities in order to obtain the contribution of the emis-
sion of the gas contained in the cavity. CLEANed maps of the residual emission have
been shown in Figure 4.1. The present section studies the properties of the gas inside
the cavity using the residual map.

4.2.1 The dynamics inside the cavity

Figure 4.4 displays the azimuthal dependence of 〈Vz/sin(i)〉 averaged over r in 5
rings, each 0.25′′ wide, for each CO isotopologue inside the region 0 < r < 1.25′′.
Azimuth and radius are defined in the disk plane. Sine wave fits to the 13CO(3–2)
data, of the form Vz/ sin(i) = Vz0 sin ω, are made in each ring separately. Good fits
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are obtained, indicating that the gas kinematics inside the cavity is dominated by
rotation. The amplitude is however smaller than for Keplerian rotation of a thin
disk, the more so at the lower values of r. The 12CO(3–2) and 13CO(3–2) amplitudes
agree for 1′′ < r < 1.25′′, but differ at the lower values of r. The C18O(3–2) populate
only a narrow interval of r, preventing a reliable interpretation.

Furthermore, a better fit is obtained by taking into account the contribution of
infall using a radial velocity Vz/ sin(i) = Vf all cos ω + Vrot sin ω. The results are
presented in Table 4.4: Vf all > 0 corresponds to infall motions. Table 4.4 thus in-
dicates that the gas in the cavity is moving inwards to the centre at velocities about
0.3 km s−1, which is about 10− 15% of the Keplerian velocity. Since infall and ro-
tation motions have different radial dependence, the finite beamsize has different
impact on the infall velocity than on the apparent rotation velocity, which, in this
specific case, is small.

TABLE 4.4: Infall and rotation velocity of the gas inside the cavity.

Ring VKep Vrot Vf all Vf all
Vrot

Vf all
VKep( km s−1) ( km s−1) ( km s−1)

(a) - 0.34 0.04 12% -
(b) - 0.79 0.21 27% -
(c) 3.63 0.98 0.30 31% 8%
(d) 3.07 1.08 0.38 28% 12%
(e) 2.71 1.27 0.48 38% 18%

Direct evidence for infall is also presented in Figure 4.5 that shows position-
velocity diagrams of the 13CO(3− 2) emission inside the cavity along the major and
minor axes of the disk. The PV diagram along the major axis shows Keplerian ro-
tation down to the inner edge of the 13CO(3–2) emission, at ∼ 1.1′′ (∼ 160 au). The
PV diagram along the minor axis displays a north–south asymmetry that reveals an
infall contribution of some 0.2 km s−1 in Vz, namely∼ 0.3− 0.4 km s−1 de-projected.

4.2.2 Gas properties

Using the 12CO(6–5) data from Dutrey et al. (2014) and the (residual) 12CO(3− 2)
data smoothed to a similar angular resolution (0.35′′ × 0.30′′). I identify 2 domi-
nant features in the gas streamers (Dutrey et al., 2014) that I separate in 5 bright
“blobs” for simplifying the analysis and a 6th one connecting blobs 2 and 4, brighter
in CO(6–5) (see Figure 4.6). Integrated line flux and line widths were derived for
each blob by fitting a Gaussian to the line profile. To determine the physical condi-
tions, we use a non-LTE escape probability radiative transfer code implemented in
DiskFit. It uses escape probability formulation of Elitzur (1992), β = [1− exp(−τ)]/τ,
a single collision partner, H2, and Gaussian line profiles.
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FIGURE 4.4: Dependence of 〈Vz〉 ( km s−1) on azimuth ω (◦) inside the
cavity. 12CO (3–2) is in black, 13CO (3–2) in red and C18O (3–2) in blue.
The red curve is a fit of a sine function to the 13CO (3–2) data (see
text). C18O (3–2) data of significant intensity are only present in the bin
1.0′′ < r < 1.25′′. The magenta curves show the Keplerian velocity ex-
pected around a single star of 1.36 M�. The green curve in panel (f)

shows the best fit velocity curve when infall motion is allowed.
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FIGURE 4.5: Position-velocity diagrams of the 13CO(3–2) emission in the
cavity along the major axis (left) and minor axis (right). The black curves
show the expected Keplerian velocity around a single star of 1.36 M�.
Contour levels are spaced by 10 mJy/beam, with the zero contour omit-
ted. The white lines indicate the position of the dust ring inner edge

(180 au) and the black lines that of the gas disk inner radius (169 au).

FIGURE 4.6: Integrated intensity map of 12CO(3–2) (left) and 12CO(6–5)
(right) and blobs position and sizes.
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TABLE 4.5: Blob positions with maximum brightness temperatures and
their corresponding velocities for CO transitions.

Blob properites CO(3-2) CO(6-5) 13CO(3-2)
(1) (2) (3) (4) (5) (6a) (6b) (7) (7) (6c) (5) (7)
1 (0.27, 0.3) 0.45 4.3 6.2 26.5 32.7 6.2 32.7 6.9 5.5 2.4
2 (−0.09, 0.36) 0.37 6.1 7.5 38.2 25.2 7.0 27.8 2.3 8.3 1.5
3 (−0.45, 0.36) 0.58 3.8 7.4 32.5 26.2 7.8 31.0 0.2 7.9 3.3
4 (0.09,−0.15) 0.17 – 4.7 21.4 20.5 5.3 24.2 2.3 5.4 1.7
5 (0.45,−0.18) 0.48 4.2 4.2 30.5 17.9 5.3 24.8 8.8 4.9 2.6
6 (0, 0.1) 0.12 – 6.5 10.4 5.3 11.5 21.8 2.3 5.4 1.3

Note. (1) Blob, (2) Position (arcsec, arcsec), (3) Distance from central mass (arcsec), (4) Ke-
plerian velocity ( km s−1), (5) Peak velocity ( km s−1), (6x) Brightness at peak velocity of
12CO(3− 2) (K), (7) Brightness at their own peak velocity given in column (5) (K).

Non-LTE best fit solutions were found by sampling the χ2 surface defined as the
quadratic sum of the difference between the measured brightness temperatures and
the computed values, for ranges of H2 density of 102− 1010 cm−3, 12CO column den-
sity of 1013 − 1019 cm−2, and kinetic temperature of 3− 100 K using 50 steps of each
parameter. We assume the standard isotopic ratios 12C/13C= 70 (Milam et al., 2005)
and 16O/18O= 550 (Wilson, 1999) for the relative abundances of the isotopologues.
12CO constrains the temperature, and 13CO the column densities. Owing to its faint-
ness, the C18O(3− 2) data bring little additional information. Given the low critical
densities of the observed transitions, we only obtain a lower limit to the density. The
blob parameters are presented in Table 4.6.

Typically, we find high CO column densities around a few ∼ 1017 cm−2 and tem-
peratures in the range 40–80 K, with a lower limit on the density of the order of
105 cm−3.

For blob 6, the faintest region that we analyze with this method, the problem
is marginally degenerated, with two separate solutions: i) a high column density
(∼ 1017 cm−2), low temperature (∼ 20 K) and ii) a low column density (∼ 1015 cm−2)
and high temperature (> 80 K). Since this region is between Aa and Ab, the material
is wrapped up because of the stars rotation, the second solution (which is also that
of lowest χ2) is more likely. Table 4.6 summarizes all the results of blobs properties.
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4.2.3 Evaluation of the mass of gas contained in the cavity

Knowing the molecular column density in each blob, one can estimate the blob mass
assuming a molecular abundance relative to H2 (the lower limit on the H2 density is
not significant to directly constrain the mass).

One can also derive the total amount of gas in the cavity from the integrated flux
of the optically thin lines of 13CO(3–2) and C18O(3–2). The 12CO(3–2) emission, being
partially optically thick, will yield a lower limit. In the optically thin approximation,
the integrated flux and the column density of the upper level of a given transition
are related by:

W =
gu

γu
Nu (4.1)

where, W =
∫

Tb dv is the integrated brightness inside the cavity (R < 160 au),
gu = 2J + 1 is the statistical weight and Nu is the column density of the upper level,
γu = hc3 Aul

8π kBν2 (the Einstein coefficient Aul is taken from Lambda database2). I assume
that the gas temperature T is 40 K everywhere inside the cavity and I calculate the
total column density Ntotal of a given molecule:

Ntotal =
Nu

Z
exp

(−Eu

kB T

)
(4.2)

where, Z is the partition function and Eu is the energy of the upper state.

The CO abundance was taken from those measured in the molecular cloud TMC-
1 by Ohishi, Irvine, and Kaifu (1992), and I use standard isotopic ratios for the iso-
topologues (13CO and C18O). Table 4.7 summarizes the results.

TABLE 4.7: Mass of gas inside the cavity

Location Integrated Flux H2 mass Abundance
(Jy km s−1 ( M�) (w.r.t H2)

Cavity (12CO) 11.4± 0.8 6.1± 0.4× 10−6 8.0× 10−5

Cavity (13CO) 3.8± 0.1 1.6± 0.1× 10−4 †
Cavity (C18O) 0.5± 0.2 1.6± 0.8× 10−4 ‡

Note. † X[13CO]=X[12CO]/70 and ‡ X[C18O]=X[12CO]/550 (see text).

The H2 masses derived from 13CO(3–2) and C18O(3–2) are similar which con-
firms that these lines are optically thin while the 12CO emission is optically thick.

2https://home.strw.leidenuniv.nl/ moldata/
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4.2.4 Discussion

Gas kinematics

From Figure 3.20, the rotation appears sub-Keplerian at radii smaller than about
0.8′′. This could be the signature of the tidal forces generated by the Aa/Ab binary.
However, it is partly an effect of the intensity drop in the cavity, combined with
the finite angular resolution. Since the signal intensity increases with radius in the
cavity, the intensity weighted mean velocity is biased towards the values obtained
at the largest radii, i.e. the gas apparently rotates at smaller velocities. A proper
modelling of the angular resolution effect, accounting for the observed brightness
distribution, would be required to remove this artefact and figure out whether the
gas is rotating at the expected Keplerian speed or not. On the other hand, we find
clear evidence for infall motions in the cavity, at velocities about 10 − 15% of the
Keplerian speed, proving that material is accreting onto the inner disks orbiting the
central stars. This is consistent with the infall value found for L 1551 NE, a younger
binary system (Takakuwa et al., 2017). However, our sensitivity is insufficient to
make detailed comparison with hydro-dynamical models.

In summary, we find that the gas starts to exhibit non-Keplerian motion (at least
infall motion, and/or slower than Keplerian rotation) at r ≈ 160 au, somewhat
smaller than the inner edge of the dust ring (193 au). This difference in radius is
expected when dust trapped in the high pressure bump occurring in the dense ring
is considered (e.g. Cazzoletti et al., 2017). The 160 au radius remains however much
larger than the radius at which tidal disturbances are expected in a binary system,
which is about 2.5-3 times the orbit semi-major axis (Artymowicz and Lubow, 1996).
Given the current separations of Aa and Ab, about 35 au, we would expect devia-
tions from Keplerian motions to only appear below about 100 au, unless the orbit is
very eccentric. High eccentricity seems unlikely given the measured orbital param-
eters (Beust and Dutrey, 2005), who also mentioned that underestimated astromet-
ric uncertainties could play an important role. Following Beust and Dutrey (2005),
Köhler (2011) and Nelson and Marzari (2016) showed that this apparent contradic-
tion could be solved if one assumes that the orbital plane of the stars is very different
from the (common) plane of the ring and outer disks. A similar result was found by
Aly, Lodato, and Cazzoletti (2018) who indicate that an inclination difference of 30◦

could remain stable over the (circumbinary) disk lifetime. However, Brauer et al.
(2019) found the circumstellar disk around Aa and one of the disks around Ab1
or Ab2 must be co-planar with the circumbinary ring and disk, making the mis-
aligned orbit proposition unlikely, since the alignment of the circumstellar disks is
more controlled by the gravitational interactions with the stars than with the (much
less massive) outer disk. The cavity size puzzle thus remains.
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Gas temperature

Our non-LTE analysis, in agreement with the study by Dutrey et al. (2014), shows
that the gas inside the cavity is warm, with temperatures ranging from 30 to 80 K.
In the bright blobs, near the stars, we derived a kinetic temperature of the order of
40− 50 K at about 30− 60 au from the central stars. It is important to mention that
such temperatures are well above the CO freeze out temperature.

Amount of gas

From the non-LTE analysis of the bright blobs, we measured a few 1017 cm−2 for
the CO column density with the exception of blobs 4 and 6 which have a lower
column density of (3− 6) 1016 cm−2. We also obtained a lower limit on the H2 den-
sity of the order of (1− 10) 104 cm−3 for all blobs. However, a more stringent con-
straint can be obtained from the blob column density given in Table 4.6. Follow-
ing the analysis presented in Section 4.1, we derived the thickness of the blobs
(hblob = (rblob/200 au)) to be of the order of the average value of h(r), 5 to 10 au. The
H2 density, calculated from the measured column density using ρH2 = NH2/

√
2π × h

(see more detail in Chapter 1, Eq (1.5)), is ∼ 107 cm−3.

The cumulative mass of the blobs is ∼ 1.2× 10−5 M�. The total gas mass inside
the cavity was estimated from the integrated flux of the optically thin CO isotopo-
logues to be ∼ 1.6× 10−4 M�, assuming standard CO abundance (see Table 9). The
13CO and C18O values perfectly agree suggesting that both the 13CO and C18O emis-
sions are essentially optically thin. Therefore, the total mass of the gas inside the cav-
ity appears a factor 10 larger than the cumulative blob mass. This only relies on the
assumption of similar molecular abundances in these regions, which is reasonable
given their similar temperatures. Thus a significant fraction of the gas in the cavity
does not reside in the dense blobs but in diffuse features.

The values assumed for the CO abundance, taken equal to those observed in
TMC-1, appear reasonable given the relatively high temperature in the cavity. How-
ever, lower values might result from C and O still being locked on grains in the form
of more complex molecules such as CO2 and CH4 (Reboussin et al., 2015). A proper
quantification of such a process would require a complete chemical study following
the physical and chemical evolution of the gas and solid phases throughout the disk.

Nevertheless, an absolute minimum value for the gas mass in the cavity can be
obtained if we accept that the CO abundance cannot exceed the Carbon cosmic abun-
dance expected in cold molecular clouds (3.4× 10−4 Hincelin et al., 2011a). In this
case, we obtain the minimum mass by correcting the previous value by the factor of
∼ 0.2. This leads to a lower limit of∼ 0.3× 10−4 M� for the total gas mass inside the
cavity.

In any case, the mass of gas in the cavity is only a very small fraction of the total
disk mass (0.15 M�) which is estimated from the dust emission.
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Mass accretion rate

The gas in the cavity is unstable and will accrete onto the GG Tau A disks on a
timescale of a few (∼4–5) orbital binary periods (Maddison’s talk 20013), that is es-
timated to be around 600 years, see Beust and Dutrey (2005).

A similar timescale, about 2500 yrs, is obtained independently from the ratio
of the cavity radius to the measured infall velocity. This gives an accretion rate of
6.4× 10−8 M� yr−1 if we assume the canonical mass value of ∼ 1.6× 10−4 M�.

The accretion rate on GG Tau Aa+Ab, measured in year 2000 using the Hα line,
is about ∼ 2 × 10−8 M� yr−1 (Hartigan and Kenyon, 2003), a factor 3 lower than
our estimate. The difference may be partly explained by variable accretion inside
the cavity and onto the central star(s) associated to non steady state dynamics. In a
binary star, the accretion rate process is modulated by the eccentricity, being more
efficient at the pericenter with a delay which depends to first order on the eccentric-
ity (Artymowicz and Lubow, 1996; Günther and Kley, 2002). The two values of the
accretion rates reflect different aspects of a highly variable process depending how
and when these rates are measured. The fair agreement between both results shows
that the GG Tau A disk can be sustained by accretion through the cavity on a long
timescale.

4.3 Summary

We report new observations of the emission of CO isotopologues from the close
environment of GG Tau A. We study the ring by performing a LTE analysis and
we perform a non-LTE analysis for the gas clumps observed inside the cavity. We
investigate the gas kinematics in the outer disk and inside the cavity.

The outer disk doesn’t not display a uniform brightness distribution but reveals
the presence of sub-structures. The bright hot spot seen in 12CO is marginally seen
in 13CO and C18O suggesting a temperature effect. A northern depression of similar
importance is observed in the 13CO(3–2) data with an angular resolution of 50 au
(see Chapter 3).

The gas temperature derived from the optically thick CO line displays a radial
gradient similar to that of the dust (r−1). The temperature of 20 K (CO snowline) is
reached at ∼ 300 au.

The total amount of mass inside the cavity derived from 13CO is 1.6× 10−4 M�,
assuming standard CO abundance, and must exceed 0.4× 10−4 M�.

The gas streamers inside the cavity have been studied using 6 different blobs.
A non-LTE analysis reveals physical conditions similar to those observed in warm
molecular clouds: CO column densities around a few 1017 cm−2, temperatures in the
range of 40− 80 K, and H2 density in the dense parts of the order of 107 cm−3.

3https://www.atnf.csiro.au/whats_on/workshops/mm_science2001/talks/Maddison.pdf
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The kinematics of the outer disk is Keplerian beyond a radius of 180 au, enclosing
a mass of the order of 1.36 M�. The kinematics of the gas streamers is more complex
than expected for such a binary system. In particular, the gas starts to display non-
Keplerian motions for radii smaller than ∼ 160 au.

The gas inside the cavity shows infall motion of about 10% of the Keplerian ve-
locity allowing the central stars to accrete material from the dense ring.

The average mass flow rate of the gas through the cavity is ∼ 6× 10−8 M� yr−1,
a value compatible with the stellar accretion rate measured using the Hα line, and
sufficient to replenish the circumstellar disks.
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4.A Best ring model results reveal the emission inside
the cavity
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FIGURE 4.7: From top to bottom, 12CO, 13CO and C18O J=3–2 maps.
Left: Integrated intensity map. Middle: Best ring model intensity map.
Right: Emission inside cavity measured as the difference between ob-

servations and ring model.
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4.B χ2 maps on excitation condition parameters plane

FIGURE 4.8: χ2 maps in the (nH2, CD), (nH2, Tex) and (CD, Tex) planes
calculated for 12CO J=6–5 and J=3–2 (left), for 12CO J=6–5 and J=3–2
and 13CO J=3–2 (right). Upper panels are for blob B1, central panels for

B2 and lower panels for B3.
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FIGURE 4.9: χ2 maps in the (nH2, CD), (nH2, Tex) and (CD, Tex) planes
calculated for 12CO J=6–5 and J=3–2 (left), for 12CO J=6–5 and J=3–2
and 13CO J=3–2 (right). Upper panels are for blob B4, central panels for

B5 and lower panels for B6.
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Chapter 5

Chemical content of GG Tau A1

In a recent attempt to investigate the chemical content of protoplanetary disks, we
observed several molecular emission lines at∼ 2 mm wavelength. The present chap-
ter presents the main results of this survey.

5.1 Published survey

In order to search for S-bearing species in protoplanetary disks, we observed H2S,
C2S, SO2 and SO emissions from GG Tau A. This resulted in the first detection of
H2S in a protoplanetary disk. The other molecules were not detected. We also ob-
served C-bearing species and detected HCO+, DCO+, and H13CO+ molecular lines,
while c-C3H2 and HC3N remained undetected. However, the survey provided an
estimated upper limit (3σ) to the surface densities of the undetected molecules (see
Table 5.2 and 5.3).

5.1.1 Results

Figures 5.1 and 5.2 show integrated intensity maps and velocity maps of the detected
lines, H2S 1(1,0) – 1(0,1), H13CO+ (2–1), DCO+(3–2), and HCO+(1–0) respectively.

The velocity maps show a clear signature of rotation about the minor axis.

H2S 1(1, 0)− 1(0, 1) is detected with a peak SNR≥4 in several channels. Most of
the line emission originates from the dense ring between 180 and 260 au and extends
up to 500 au. The east-west asymmetry correspond to a difference of only 2σ.

HCO+(1– 0) and H13CO+(2–1) emissions are detected with high SNR (≥ 7). The
emission of HCO+(1–0) appear as extended as the CO emission out to∼800 au (Guil-
loteau, Dutrey, and Simon, 1999). The optically thin emission from the J=2–1 line of

1The content of this chapter is published in Phuong, N. T.; Chapillon, E.; Majumdar, L.; Dutrey,
A.; Guilloteau, S.; Piétu, V.; Wakelam, V.; Diep, P. N.; Tang, Y.-W.; Beck, T.; Bary, J., 2018A&A,616L,5P,
DOI: 10.1051/0004-6361/201833766
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FIGURE 5.1: Upper panels: Integrated intensity map of H2S 1(1,0)–1(0,1)
(left) and H13CO+(2–1) (right) emissions. The colour scale at the top is in
units of Jy beam−1 km s−1, the contour levels step is 2σ. Lower panels:
Velocity map of H2S 1(1,0)–1(0,1) (left) and H13CO+(2–1) (right) emis-
sions. The colour scale at the top is in units of km s−1, the contour levels

step is 0.5 km s−1.
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FIGURE 5.2: Upper panels: Integrated intensity map of DCO+(3–2) (left)
and HCO+(1–0) (right) emissions. The colour scale at the top is in units
of Jy beam−1 km s−1, the contour levels step is 2σ. Lower panels: Ve-
locity map of DCO+(3–2) (left) and HCO+(1–0) (right) emissions. The
colour scale at the top is in units of km s−1, the contour levels step is

0.5 km s−1.
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the H13CO+ isotopologue peaks on the dense ring and extends to ∼500 au. An east-
west asymmetry is also seen in the H13CO+ integrated intensity map. In contrast,
the DCO+(3–2) emission, detected at SNR≥ 7, peaks just outside of the dense ring,
near 280 au. This suggests some radially varying deuteration in the colder part of
the outer disk.

5.1.2 Comparison between observations and chemical model pre-
dictions

Observed column density

The data were analyzed in the uv plane using the radiative transfer code DiskFit,
which compares the observed visibilities with visibilities predicted by a model of
the emission (Piétu, Dutrey, and Guilloteau, 2007, and Chapter 2). We use a power
law radial dependence of the physical parameters that govern line emission (Dutrey,
Guilloteau, and Simon, 1994; Piétu, Dutrey, and Guilloteau, 2007).

TABLE 5.1: GG Tau A parameters

Geometry Law
Inclination 35◦ V(r) = 3.4 ( r

100 au)
−0.5 (km s−1)

Orientation 7◦ T(r) = 25 ( r
200 au)

−1 (K)
Systemic velocity 6.4 km s−1 Σ(r) = Σ250 (

r
250 au)

−1.5 (cm−2)

Because of the relatively low SNR associated with these data, quantities such as
inclination, orientation, velocity and temperature power laws are taken from pre-
vious studies (Dutrey, Guilloteau, and Simon, 1994; Dutrey et al., 2014; Guilloteau,
Dutrey, and Simon, 1999, and our Table 5.1). We only vary the molecular surface
density parameter Σ250. Results are presented in Table 5.2 for the detected molecules
and Table 5.3 lists the 3σ upper limits for undetected molecules.

Predicted column density from the chemical model

To model the chemistry in the dense and cold ring of GG Tau A, we use the gas-
grain chemical model Nautilus (Ruaud, Wakelam, and Hersant, 2016). This model
simulates chemistry in three phases, i.e. gas phase, grain surface and grain mantle,
along with possible exchanges between the different phases. The reference chemical
network is deuspin.kida.uva.2016 (Majumdar et al., 2017), which includes ∼ 1100
species both in gas and solid phases linked together via ∼ 12000 reactions, with
the updates in sulfur chemistry from Vidal et al., 2017. The disk structure is simi-
lar to that used in Wakelam et al., 2016. In addition to disk parameters from Table
5.1, we assume a stellar UV flux of fUV200AU = 375 χ0 at 200 au, where χ0 is in the
units of the Draine (1978) interstellar UV field, based on what is observed in T Tauri
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TABLE 5.2: Observed and predicted surface densities of detected
molecules (cm−2)

Molecule Observed? Predicted†
(derived from DiskFit) (from Nautilus)

HCO+(1-0) 1.5 ± 0.04 ×1013 2.2 ×1012

H13CO+ (2-1) 5.3 ± 0.3×1011 (-)
DCO+ (3-2) 3.9 ± 0.2 ×1011 7.0 ×1010

H2S 1(1,0) - 1(0,1) 1.3 ± 0.1 ×1012 3.4 ×1013

CS(3-2) 2.2 × 1013 1.4 ×1013

? Observed surface density at 250 au is derived using DiskFit.
† Species surface density in the gas phase at 250 au predicted with Nautilus.
(−) Our model does not include carbon isotope chemistry.

TABLE 5.3: Observed and predicted surface densities of non-detected
molecules (cm−2)

Molecule Observed? Predicted†
(derived from DiskFit) (from Nautilus)

CCS <1.7 × 1012 7.2 ×1010

SO2 <1.5 ×1012 6.0 ×1012

SO <1.1 × 1012 1.5 ×1013

HC3N < 3.2 ×1011 5.7 ×1011

c-C3H2 < 2.7 ×1011 2.4 ×1012

? Observed surface density at 250 au is derived using DiskFit.
† Species surface density in the gas phase at 250 au predicted with Nautilus.

stars (Bergin et al., 2004). Previous observations (Tang et al., 2016) revealed a limited
vertical temperature gradient at a radius of ∼ 250− 300 au, thus we introduced a
small vertical temperature gradient with the mid-plane temperature equal to 20 K at
250 au, increasing to 30 K at three scale heights.

To compute the chemistry, we first calculated the chemical composition of the gas
and ices of the parent cloud, assuming conditions for a dense cloud with an age of
∼106 yr and then ran the model for another 106 yr following Wakelam et al. (2016).
For the parent cloud, initially all the elements are in atomic form (see Table 1, Vidal
et al., 2017) except for hydrogen and deuterium, which are initially in H2 and HD
forms, respectively (Majumdar et al., 2017).

To discuss the observations of H2S, CS, DCO+, and HCO+ emissions, we com-
pared the observed column densities with those predicted in the ring at a radius of
250 au.

We explored various initial C/O ratios, ortho to para ratios (OPR) for H2, initial
sulfur abundances X(S), grain sizes, and UV flux. According to Bergin et al. (2016),
CCH emission can only be explained with a gas-phase C/O ratio larger than 1. This
represents a scenario in which oxygen is depleted on the grains before the formation
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FIGURE 5.3: Best model of H2S, CS, DCO+, and HCO+ in the GG Tau
A ring derived from Nautilus. The z/H ratio (which measures the scale

height) is shown vs. surface density.

of the disk and driven to the midplane of the disk. In other words, oxygen would
not participate in the chemistry in the region where CCH is observed. Semenov et al.
(2018) found that the column densities of SO and SO2 drop by factors of ∼100 and
500, respectively, when C/O changes from 0.46 to 1.2, whereas column densities of
H2S do not change as the species contains neither C nor O. We stick to the standard
C/O ratio of 0.7 in our model (Hincelin et al., 2011b; Wakelam et al., 2016; Majumdar
et al., 2017), which gives a reasonably good agreement for DCO+, CS, CCS, HC3N,
and SO2.

Best model: Results are therefore presented for C/O = 0.7, OPR=3, X(S)=8 × 10−8

and a grain size of 0.1 µm. Other models lead to larger disagreement with the data.
Figures 5.3 and 5.4 show the predicted vertical distribution of the molecules, and Ta-
bles 5.2 and 5.3 compares the predicted surface densities to the observational results
derived using DiskFit.

5.1.3 Discussion

Relative molecular abundance in disks and in parent cloud: The measured H2S
column density is a factor of three greater than the upper limits quoted by Dutrey
et al. (2011) for DM Tau, LkCa 15, MWC 480, and GO Tau, probably reflecting the
larger disk mass of GG Tau A. However, the CS to H2S abundance ratio of ∼20 in
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FIGURE 5.4: Best model of CCS, c-C3H2, HC3N, SO, and SO2 in the GG
Tau A ring, derived from Nautilus, using our best knowledge of the GG
Tau disk. The z/H ratio (which measures the scale height) is shown vs.

surface density.

GG Tau A may be the same than in other similar disks. The upper limit on HC3N is
about half the values reported in LkCa 15, MWC 480, and GO Tau by Chapillon et al.
(2012).

To make relevant abundance comparisons, we use 13CO as a reference since H2
column densities are difficult to measure accurately. The results for the disks of GG
Tau A, LkCa15 and the dark cloud TMC-1 are given in Table 5.4. LkCa15 is a T Tauri
star similar to GG Tau A: its disk exhibits a central cavity of radius 50 au (Piétu
et al., 2006) and has a mass on the order of ∼ 0.028 M� (Guilloteau et al., 2011).
Determining the uncertainties is difficult because the abundances were obtained
from different studies. Therefore, we assume errors of 30% in the cases of LkCa 15
and TMC-1.

For GG Tau A, we take a 13CO column density, derived from our observations, at
250 au of Σ250=1.13× 1016 cm−2 (Phuong et al., 2019 submitted). For LkCa 15, Punzi
et al. (2015) found an HCO+ abundance relative to 13CO of 15× 10−4, Huang et al.
(2017) gave abundance ratios of DCO+/HCO+ and DCO+/H13CO+ of 0.024 and
1.1, respectively, and Dutrey et al. (2011) gave an upper limit of H2S relative to CO
of 10−6, which we convert to 13CO using an isotopic ratio 12C/13C∼ 60 (Lucas and
Liszt, 1998).

In the TMC-1 dark cloud, Ohishi, Irvine, and Kaifu (1992) determined a 12CO
abundance relative to H2 of 8 × 10−5 or 1.3 × 10−6 for 13CO. The abundance of
HCO+, H2S (upper limit) (Omont, 2007), H13CO+, and DCO+ (Butner, Lada, and
Loren, 1995) relative to H2 are then used to get the abundances relative to 13CO. In
L134N, the abundances of these species are similar, but H2S has been detected with
an abundance ratio of 60× 10−5 (Ohishi, Irvine, and Kaifu, 1992), similar to the up-
per limit obtained in TMC-1. Thus, the disks appear to have very similar relative
abundances, suggesting similar chemical processes at play, while the dense cores
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TABLE 5.4: Molecular abundance relative to 13CO (X[mol]/X[13CO] × 105)

TMC-1? LkCa 15 GG Tau
HCO+ 600± 180(1) 150± 35(3) 130± 12

H2S < 45(1) < 7(4) 11± 3
H13CO+ 15± 4 (2) 5± 1.5 (5) 4.7± 0.3
DCO+ 30± 9 (2) 4.5± 1.4 (5) 3.5± 0.15

? 13CO abundance is derived from CO abundance in Ohishi, Irvine, and Kaifu (1992),
(1)Omont (2007), (2)Butner, Lada, and Loren (1995), (3)Punzi et al. (2015), (4)Dutrey et al. (2011),
(5)Huang et al. (2017).

differ significantly.

Chemistry of Sulfur-bearing species: In the chemical modelling, we found that
H2S peaks around three scale heights. The main reason behind this is the rapid for-
mation of H2S on the grain surface via the hydrogenation reaction of HS, i.e., grain-
H + grain-HS→grain-H2S. Once H2S is formed on the surface, it is then chemically
desorbed to the gas phase. Almost 80% of the H2S comes from surface reactions.
The contribution of the gas-phase reaction H3S++e−→ H + H2S is about 20%. Be-
low three scale heights, H2S depletes rapidly on the grains because of the increase in
density and decrease in temperature. At the same altitude, CS is formed in the gas
phase via the dissociative recombination reactions of HCS+, H2CS+, H3CS+, and
HOCS+.

The modeled CCS and SO2 column densities (shown in Table 5.3 and in Figure
5.4) are low, explaining their non-detection but the SO column density is overpre-
dicted. The CCS molecule peaking above z/H=3 is caused by the gas phase for-
mation proceeding via S + CCH→ H + CCS and HC2S+ + e− → H + CCS reactions.
SO2 is made from the OH + SO reaction around this location, whereas SO comes
from the S + OH reaction.

We found that the UV field has a negligible impact on the H2S desorption and
mildly affects the SO/H2S ratio. The key parameter in the model is the initial S
abundance. Even with the low value of 8× 10−8, the chemical model overpredicts
H2S and SO by about an order of magnitude, but is compatible with CS and the
current limits on SO2 and CCS.

In our model, the molecular layer is very thin and located three scale heights
above the disk plane. This is different from what is observed in CS in the Flying
Saucer (Dutrey et al., 2017), where CS appears closer to one scale height. The differ-
ence may be due to the larger mass of the GG Tau disk (0.15 M�). On one side, the
high densities limit the UV radiation penetration (which drives the active chemistry)
to the uppermost layers, while closer to the midplane, the even higher densities lead
to more efficient sticking on dust grains.

Our results suggest that the H2S chemistry on the surface of the grains is prob-
ably improperly accounted for, even with our three-phase model. They also suggest
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that a significant amount of H2S might transform in some more complex unobserved
sulfur-bearing species (Dutrey et al., 2011; Wakelam et al., 2005). Indeed, measure-
ments of S-bearing species in comet 67P performed by ROSETTA indicate a solar
value for the S/O elemental ratio (Calmonte et al., 2016). H2S accounts for about half
of the S budget in the comet, suggesting that the transformation of H2S into other
compounds in ices is limited. The nearly constant H2S/H2O ratio also suggests that
H2S does not evaporate alone, but in combination with water (Jiménez-Escobar and
Muñoz Caro, 2011).

Chemistry of DCO+: The measured HCO+/H13CO+ ratio is about 30, smaller
than the standard isotopic ratio (12C/13C=70, Milam et al., 2005), suggesting par-
tially optically thick emission for the HCO+(1− 0) line. The measured DCO+/HCO+

ratio, ∼ 0.03 over the disk, is comparable to the average value (∼0.04; van Dishoeck,
Thi, and van Zadelhoff, 2003) derived in the disk of TW Hydra of mass of∼ 0.06 M�
(Bergin et al., 2013), and in the disk of LkCa 15 (ratio of ∼0.024, Huang et al., 2017).
These values are three orders of magnitude higher than the cosmic D/H ratio in
the local ISM of 1.5× 10−5 (Linsky et al., 2006), showing clear evidence for ongoing
deuterium local enrichment in protoplanetary disks.

HCO+ formation and deuteration is controlled by CO as well as by H2D+ and
H+

3 ions. These ions are mostly sensitive to the X-ray flux, while UV radiation and
cosmic rays play a limited role. The balance of H2D+ and H+

3 is controlled by the
temperature sensitive reaction, H+

3 +HD ⇀↽ H2D++H2+232 K (Millar, Bennett, and
Herbst, 1989). Upon fractionation of H+

3 , proton exchange reactions transfer the D
enhancement to more complex gaseous species. One of the key reactions of this kind
in protoplanetary disks is the interaction with CO to produce DCO+ in the low tem-
perature regime (T≈ 10 − 30 K). Because of the temperature dependence, DCO+

is expected to be enhanced around the CO snow-line interface, as illustrated by the
ring structure observed in HD 163296 (Mathews et al., 2013b). Our model somewhat
underpredicts the HCO+ content. At 250 au, HCO+ peaks at three scale heights,
where the molecular layer is warm (∼ 30 K) and forms mainly from the reaction of
CO on ortho-H+

3 . At this altitude, DCO+ forms from the isotope exchange reaction
between HCO+ and D because the gas temperature is still high. Closer to the disk
midplane, the ortho-H2D+ + CO pathway remains inefficient because of the strong
CO depletion that results from high densities and low temperature in the dense
ring (180 au–260 au). DCO+ emission is observed to peak just outside the dense ring
(∼300 au), at the CO snow-line location (we measured here Tk = 20 K from CO ob-
servations, see Chapter 4 for details). This behaviour is also observed by Mathews
et al. (2013b) in HD 163296 disk. Higher angular resolution DCO+ data are needed
to go deeper into the analysis.

Other observed species: We also presented integrated column densities of HC3N
and c-C3H2 in Table 5.3 and Figure 5.4. The modeled column densities of HC3N
and c−C3H2 are overpredicted. The high column density of HC3N above three
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scale heights is due to its rapid formation via the CN + C2H2→ H + HC3N reac-
tion, whereas c−C3H2 forms from the CH + C2H2 reaction, photodissociation of
CH2CCH and dissociative recombination of C3H5

+.

5.2 Summary

Using NOEMA, we have observed the GG Tau A outer disk in several molecules. We
report the first detection of H2S in a protoplanetary disk.

We clearly detect HCO+, H13CO+, DCO+, and H2S. HCO+ emission is extended,
H13CO+ and H2S emissions peak inside the dense ring at ∼ 250 au, while DCO+

emission arises from the outer disk beyond a radius of 300 au.

Our three-phase chemical model fails to reproduce the observed column densi-
ties of S-bearing molecules, even with low S abundance and C/O = 0.7, suggesting
that our understanding of S chemistry on dust grains is still incomplete.

The detection of H2S in GG Tau A is likely facilitated by the large disk mass in
comparison with similar disks. When abundance ratios are measured, they appear
similar to those found in other disks like LKCa 15.
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5.A Channel maps

FIGURE 5.5: Channel maps of H2S 1(1,0) - 1(0,1) emission. The colour
scale is in units of Jy beam−1. The contour spacing is 5 mJy beam−1

which corresponds to 1σ or 0.04 K. The beam (2.55”× 1.90”, PA=14◦) is
shown in the lower corner of each channel map.

FIGURE 5.6: Channel maps of H13CO+ (2-1) emission. The colour scale
is in units of Jy beam−1. The contour spacing is 12 mJy beam−1 which
corresponds to 2σ or 0.11 K. The beam (2.50”× 1.85”, PA=15◦) is shown

in the lower conner of each channel map.
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FIGURE 5.7: Channel maps of DCO+ (3-2) emission. The colour scale
is in units of Jy beam−1. The contour spacing is 18 mJy beam−1 which
corresponds to 2σ or 0.22 K. The beam (1.76”× 1.23”, PA=17◦) is shown

in the lower conner of each channel map.

FIGURE 5.8: Channel maps of HCO+ (1-0) emission. The colour scale is
in units of Jy beam−1. The contour spacing is 25 mJy beam−1 which cor-
responds to 2σ or 0.33 K. The beam (4.57”× 2.55”, PA=−38◦) is shown

in the lower conner of each channel map.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

During my thesis, I have studied the gas and dust morphology of a protoplanetary
disk surrounding a young triple protostar, GG Tau A. I investigated its kinematics
and physical structure using the mm wavelength emission of molecular lines such
as 12CO, 13CO, C18O, HCO+, H13CO+, DCO+ and of H2S observed by ALMA and
NOEMA.

This analysis confirms the results of earlier studies of the morphology of the GG
Tau A system to which it contributes significant additional information. The triple
star system is surrounded by a dense gas and dust ring extending from 180 au to
260 au and a gas disk extending out to 800 au (in CO). The best angular resolution
observations of 0.15′′ reveal that the circumbinary disk likely consists of unresolved
ring(s) and sub-structures. I presented the analyses of the gas emitted by the cir-
cumbinary disk and by the cavity separately. 1) By removing the emission from the
central cavity, I modelled the outer disk and evaluated its physical properties, such
as surface density and temperature profiles. 2) Subtraction of the outer disk model
prediction from the original data provides an image of emission inside the cavity
that is not contaminated by the circumbinary disk emission and allows for a study
of the dynamical and physical properties of the gas. 3) A first attempt at describing
the chemistry at stake in the circumbinary disk has been presented.

The main results are summarised below.

6.1.1 Gas properties in the outer disk

I have evaluated the radial and azimuthal dependence of the morpho-kinematics
and physical properties of the gas in the disk using a radiative transfer code.

The analysis reveals the presence of two concentric rings (one dominated by
dust and the other dominated by gas) sharing a same axis projecting on the sky
plane∼ 7◦ east of north and inclined with respect to the line of sight by respectively
32± 4◦ (dust) and 35± 4◦ (gas). While sharing approximately a same inner edge at
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∼180 au, their outer extensions are significantly different: 260 au for the dust and
800 au for the gas.

Variations of the integrated intensity across the disk area have been studied and
found to confirm the presence of a “hot spot” in the south-eastern quadrant of the
disk studied by Dutrey et al. (2014) and Tang et al. (2016).

Inner Disks: 
NIR dust, H2, warm CO

10 μm Si feature, 
sub-mm CO & dust

CO snow-line 
Tk=20 K (DCO+ peak) 

Disk Accretion, 
shocked Gas & Dust: 

molecular tracers, e.g. H2

Streamers:  
warmer CO

molecular rotational lines
CO, CS, CN, DCO+, HCO+, H2S

180260 800 
𝑇"#$ = 27 𝑟

200𝑎𝑢
–-
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200𝑎𝑢
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Inner Disks: 
NIR dust, H2, warm CO

10 μm Si feature Near side

Far side

NORTH

SOUTH

FIGURE 6.1: Schematic summary of the observations and analyses of
the GG Tau A system presented in the thesis.

The study of the gas kinematics is dominated by Keplerian rotation around the
disk axis. The Doppler velocity gradient along the disk major axis on the sky plane
allows for a measurement of an upper limit of 9% on the ratio between a possible
in-fall velocity and the rotation velocity (at 99% confidence level). The rotation ve-
locity reaches 3.48± 0.04 km s−1 at 100 au, in agreement with previous, less precise
determinations (e.g. Dutrey et al. (2014) quoted 3.4± 0.1 km s−1 at 100 au). This cor-
responds to a total stellar mass of 1.36± 0.07 M�.

The dependence of the line width on r and ω has been also studied. It shows a lit-
tle dependence on ω but increases from 0.18 km s−1 to 0.26 km s−1 when r decreases
from 2.3′′ to 1.5′′. As the contributions of the Keplerian shear and the instrumental
spectral resolution taken together should not exceed some 0.11 km s−1, a possible
explanation may be a factor 2 decrease of the disk surface temperature and opacity
between these two locations.

The gas temperature derived from the optically thick CO line displays a steep
decrease (∝ r−1), as for the dust. I measured a gas temperature of 27 K at 200 au
and the temperature of the CO snowline (20 K) is reached at ∼ 300 au, where we
detect the maximum of emission of DCO+. Mathews et al. (2013b) also observed a
maximum of emission of DCO+ from HD 163296 at the same snowline temperature.
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Assuming constant flaring (h(r) proportional to r) we obtain a scale height at
r = 200 au of 24 au for 12CO(3–2) and 23 au for 13CO(3–2). In hydrostatic equilibrium,
this corresponds to a temperature of ∼ 15 K, consistent with the dust temperature
obtained by Dutrey et al. (2014).

The large mass of the GG Tau A disk, compared to that of other similar disks,
has made it possible to reveal the presence of H2S. When abundance ratios have
been measured, they are similar to those found in other disks like that of LkCa 15. A
chemical model has been used to predict the abundance of C-bearing and S-bearing
species. Disagreements of a factor ∼ 7 in the former and a factor of ∼ 25 in H2S
have been found, suggesting that our understanding of the related chemistry is still
incomplete.

A summary of the main results presented in the present thesis is sketched in
Figure 6.1.

6.1.2 Gas inside the cavity

Subtracting the outer ring and disk model from the original data has produced im-
ages of the gas emission inside the cavity. These CLEANed images allowed for the
study of the gas dynamics and properties (CO, 13CO, and C18O).

Near side
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NCO = 1017 cm–2

nH2  = 107cm–3

CO streamers

CAVITY
Mgas=1.6×10–4 Msun
Macc=6.4×10–8 Msun/yr

Far side

NORTH

SOUTH

FIGURE 6.2: Schematic summary of the gas properties inside the GG
Tau A cavity.
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The CO emission inside the cavity appears brighter in the regions surrounding
GG Tau Aa and Ab, which can be approximated by 6 blobs. A non-LTE analysis
reveals physical conditions similar to those found in warm molecular clouds with
CO column densities around a few ∼ 1017 cm−2, temperatures in the range of 40−
80 K. The H2 density in the dense part is estimated to be 107 cm−3.

Assuming an average temperature of 40 K inside the cavity, the total mass inside
the cavity derived from the 13CO observations is 1.6× 10−4 M�, assuming standard
CO abundance and isotopic ratio.

The gas starts to exhibit non-Keplerian motion below r ∼160 au, where it reveals
infall with a velocity of about 10% of the Keplerian velocity. The average mass accre-
tion rate of the gas inside the cavity is ∼ 6× 10−8 M� yr−1, a value compatible with
the stellar accretion rate measured using the Hα line, and sufficient to replenish the
circumstellar disks.

Figure 6.2 summarizes the gas properties inside the GG Tau A cavity.

6.2 New Observations

New maps of the emission of CN, CO, and CS lines have been produced using
ALMA Cycle 3 and Cycle 6 observations. Evidence for the “hot spot”, as reported
by Dutrey et al. (2014) and Tang et al. (2016) in CO emission, and indications of
“spiral/ring” features have been revealed. I present here first images of these data
which will be analysed in the future.

6.2.1 CO observations

CO(2–1) emission was observed in ALMA Cycle 6 with an angular resolution of
∼ 0.3′′, together with CS(5–4) and CN(2–1) line emissions. CO(2–1) intensity and
velocity maps are shown in Figure 6.3. A region of strong emission is visible in the
north-western quadrant, at opposite azimuth to the “hot spot”and at about the same
radius. At larger distances from the star (r > 250 au), one may see some indication
for the possible presence of two spiral arms, one originating from the “hot spot” and
the other from its azimuthally opposite location, connecting the material of the ring
to the outer disk. These features are better seen in the map of the peak brightness
temperature shown in Figure 6.4. Confirmation of the presence of such features re-
quires further analysis.

6.2.2 CN observations

CN(3–2) and CN(2–1) have been observed by ALMA in 2015 (Cycle 3) and 2018
(Cycle 6) with angular resolutions of ∼ 0.15′′ and ∼ 0.3′′ respectively. Figure 6.5
and Figure 6.6 display the related intensity and velocity maps. The intensity maps
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FIGURE 6.3: CO(2–1) line emission. Left: Integrated intensity map
(Jy beam−1 km s−1). The contour level is 25 mJy beam−1 km s−1, which
is about eight times the rms noise level of ∼ 3 mJy beam−1 km s−1.
Right: Velocity map ( km s−1). The contour spacing is 0.5 km s−1. The

colour scales are shown on the top.

FIGURE 6.4: CO(2–1) line emission. Map of the peak brightness temper-
ature (K). The colour scale is shown on the top and contour spacing is

of 1.5 K
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show enhanced emission in the dense ring from ∼ 180 au to ≤ 260 au. A possible
“ring” pattern is revealed in the maps of the CN(2–1) extended emission, both for
the integrated intensity (Figure 6.6 left) and for the peak brightness temperature
(Figure 6.7). CN emission, being excited by UV photons, is likely to be confined to
the upper molecular layer.

FIGURE 6.5: CN(3–2) line emission. Left: Integrated intensity map
(Jy beam−1 km s−1). Right: Velocity map ( km s−1).

6.2.3 CS observations

The emission of the CS(5–4) transition was observed by ALMA in 2018 (Cycle 6) with
an angular resolution of 0.3′′. Figure 6.8 shows intensity and velocity maps. CS(5–4)
emission, like CN emission, peaks on the dense ring (∼ 180 to 260 au). It is less ex-
tended than CS(3–2) emission but more extended than CS(7–6) emission (for which
data exist but are not yet published). This is likely due to the excitation conditions
in the disk. The peak brightness temperature map (Figure 6.9) also reveals possible
ring-like structures. One ring is seen at radii between 1′′ and 1.5′′ (in the dense ring,
∼150 au to 230 au); another possible incomplete ring may be seen around ∼ 2′′ (in
the outer disk, ∼ 300 au).
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FIGURE 6.6: CN(2–1) line emission. Left: Integrated intensity map
(Jy beam−1 km s−1). The contour level is 5 mJy beam−1 km s−1, about
three times the rms noise level of ∼ 1.5 mJy beam−1 km s−1. Right: Ve-
locity map ( km s−1). The contour spacing is 0.5 km s−1. Colour scales

are shown on top.

FIGURE 6.7: CN(2–1) line emission. Map of the peak brightness temper-
ature (K). The colour scale is shown on top and the contour spacing is

1 K



108 Chapter 6. Conclusion and Perspectives

FIGURE 6.8: CS(5–4) line emission. Left: Integrated intensity map
(Jy beam−1 km s−1). The contour level is 5 mJy beam−1 km s−1, about
three times the rms noise level of ∼ 1.5 mJy beam−1 km s−1. Right: Ve-
locity map ( km s−1). The contour spacing is 0.5 km s−1. Colour scales

are shown on top.

FIGURE 6.9: Peak brightness temperature (K) map of CS(5–4) emission.
The colour scale is shown on top and the contour spacing is 1 K
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6.3 Comparative study of the new observations and per-
spectives

Figure 6.10 shows the map of CO emission overlaid on the maps of CN (upper panel)
and CS (lower panel) emissions.

Using CO observations, Dutrey et al. (2014) measured a “hot spot” temperature
twice as high as in its surrounding. Here, the “hot spot” is also observed in CN
emission, a molecule sensitive to photodissociation, and in CS emission, a molecule
residing deeper inside the disk. Therefore, the “hot spot” is likely to host both a
higher temperature and a higher density than its surrounding.

The “ring”/“possible spiral” patterns are seen in the emission of molecules trac-
ing the uppermost layer of the protoplanetary disk (CN and CO) as well as of molecules
tracing denser gas layers (CS) at lower altitude. The origin of the structures may be
due to gravitational perturbations caused by an unseen planet (Dong et al., 2018),
which would also explain the presence of the “hot spot”.

This early look at the new data points to a number of analyses that will deserve
to be made in depth and that promise to provide important new information.

I will apply the method developed in Chapter 4 to the study of the new CN and
CS observations. This will allow for further investigation of the properties of the
outer disk and of the gas inside the cavity. Additonal information on the physical
and dynamical properties of the “hot spot” will be obtained, allowing for a refined
understanding of its nature.

The new CS(5–4) observations will be analyzed together with the earlier CS(3–2)
and CS(7–6) observations in order to further study the properties of the gas inside
the dense ring. A non-LTE analysis will provide an estimate of the gas mass of the
ring and of the gas-to-dust ratio.

In order to investigate the chemical composition of the cold disk of GG Tau A, I
have submitted a NOEMA proposal to observe the gas at 3 mm wavelength. This sur-
vey will include emission from the following molecules: HNC, HC3N, C3H2, N2H+,
N2

+, DCN, HCN, CS, CCH, DCO+, H13CO+, and C18O. The proposal was accepted
and observations will soon be made. They will provide one of the most complete
view of the chemistry in a cold T Tauri binary disk. This survey on a circumbi-
nary disk will be an excellent addition to the ALMA Large program on (single) T
Tauri and Herbig Ae disk chemistry (The Chemistry of Planet Formation, PI: Karin
Oberg).

Finally, the Jame Webb Space Telescope, currently under construction at NASA,
will mean major progress in the investigation of the gas properties in the inner
disk(s) of GG Tau A at infrared wavelengths and in the search for possible plan-
ets. I will contribute to the preparation of a project dedicated to the study of the
environment of GG Tau A using this instrument.
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FIGURE 6.10: Upper panel: Map of the CN(2–1) peak brightness temper-
ature (colour) overlaid over that of CO(2–1) shown as contours. Lower
panel: Map of the CS(5–4) peak brightness temperature (colour) overlaid

over that of CO(2–1) shown as contours
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Abstract Observations by the Atacama Large Millimetre/sub-millimetre Array of the dust continuum

and 13CO(3–2) millimetre emissions of the triple stellar system GG Tau A are analysed, giving evidence

for a rotating gas disc and a concentric and coplanar dust ring. The present work complements an earlier

analysis (Tang et al.) by exploring detailed properties of the gas disc. A 95% confidence level upper

limit of 0.24′′ (34 au) is placed on the disc scale height at a distance of 1′′ (140 au) from the central

stars. Evidence for Keplerian rotation of the gas disc is presented, with the rotation velocity reaching

∼3.1 km s−1 at 1′′ from the central stars, and a 99% confidence level upper limit of 9% is placed

on relative contribution from a possible in-fall velocity. Variations of the intensity across the disc area

are studied in detail and confirm the presence of a hot spot in the south-eastern quadrant. However

several other significant intensity variations, in particular a depression in the northern direction, are

also revealed. Variations of the intensity are found to be positively correlated to variations of the line

width. Possible contributions to the measured line width are reviewed, suggesting an increase of the disc

temperature and opacity with decreasing distance from the stars.

Key words: protoplanetary disks — stars: low-mass — stars: individual (GG Tau A)

1 INTRODUCTION

GG Tau A is a triple stellar system, 1 to 5 million years

old, located at 140 pc in a hole in the Taurus-Auriga star

forming region. The separation between the main star

GG Tau Aa and the close binary GG Tau Ab (Ab1-Ab2)

is 35 au while the separation between GG Tau Ab1 and

Ab2 is only 4.5 au (Di Folco et al. 2014). GG Tau A is

surrounded by an envelope of gas and dust with a ring

extending from ∼180 to 260 au and an outer disc extend-

ing up to∼800 au from the central stars with an estimated

mass of ∼0.15 solar masses (Dutrey et al. 1994). There is

neither known molecular outflow nor jets associated with

GG Tau A. Additional information about the system can

be found in the review by Dutrey et al. (2016) and from

references therein. In particular, high resolution Atacama

Large Millimetre/sub-millimetre Array (ALMA) obser-

vations of 12CO(6–5) emission and underlying contin-

uum (Dutrey et al. 2014) have suggested possible planet

formation. The present article uses ALMA data of the
13CO(3–2) emission and underlying continuum that have

been presented earlier by Tang et al. (2016) together with
12CO(3–2) observations. Contrary to 12CO(3–2) emis-

sion, which extends down to small distances from the
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central stars, 13CO(3–2) emission is limited to an outer

ring having an inner edge radius of ∼ 1′′. The present

analysis aims at complementing that of Tang et al. (2016)

by providing new detailed information on the properties

of the gas disc.

2 OBSERVATIONS AND DATA REDUCTION

The observations used in the present article were made

in cycle 1 of ALMA operation (2012.1.00129.S) on

2013 November 18 and 19 in three blocks (Tang et al.

2016). The time spent on source was 1.84 hours. The

number of antennas was 28, with the longest base-

line being 1284.3 m. The three blocks of continuum

data have been merged and calibrated by the ALMA

staff and the 13CO(3–2) data have been calibrated us-

ing CASA1 and GILDAS2. The origin of coordinates at

RA=4h32m30.3s and DEC=17◦ 31′ 40′′ corresponds to

year 2000. Between 2000 and the time of observation,

the source has moved by 0.24′′ east and 0.26′′ south

(proper motion of [17, −19] mas per year taken from

the SIMBAD3 database); the data have been corrected

accordingly.

The continuum emission was observed at ∼0.9 mm

wavelength over frequencies covering from 330.655 to

344.426 GHz. The beam size (full width at half maxi-

mum, FWHM) is 0.39× 0.29 arcsec2 with a position an-

gle (measured from north to east) of 56◦. The 13CO(3–

2) emission was self-calibrated. The beam size (FWHM)

is 0.37× 0.31 arcsec2 with a position angle of 80◦. The

present analysis is performed in the image plane and

we evaluate the uncertainty on position measurements

due to noise to be typically below 0.01′′, depending on

the signal to noise ratio. However, it is often dominated

by systematics and needs to be evaluated for each case

separately. The spectral resolution (channel) has been

smoothed to 0.11 km s−1 and the Doppler velocity cov-

ers between −2 and 15 km s−1. Here, Doppler velocities

are defined as the difference between the measured ve-

locity and a systemic velocity of 6.38± 0.02 km s−1 as

used by Dutrey et al. (2014) for 12CO(6–5) about which

the profile is symmetric.

1 http://casa.nrao.edu
2 https://www.iram.fr/IRAMFR/GILDAS
3 http://simbad.harvard.edu/simbad/sim-fbasic

3 GENERAL FEATURES

3.1 Continuum Data

Figure 1 (left) maps the brightness of the continuum

emission. It shows an elliptical ring surrounding a cen-

tral source. The right panels show the projections on the

x (right ascension offset) and y (declination offset) axes

of the central source intensity integrated over y and x re-

spectively. Gaussian fits give mean values of 0.06′′ and

−0.13′′ and FWHM values of 0.40′′ and 0.33′′ in x and y

respectively, similar to the beam size: the central source

is unresolved.

Figure 2 (left) displays the x and y projec-

tions of the continuum brightness integrated over y

and x respectively. It requires the distance R′ =√
(x − 0.06)2 + (y + 0.13)2 to the central source to ex-

ceed 0.5′′, thereby excluding its contribution. The corre-

sponding mean values of x and y are −0.05′′ and −0.09′′

respectively, showing that the ring is shifted north-west

by ∼0.12′′ with respect to the central source. The posi-

tion and width measurements illustrated in Figure 1 and

Figure 2 are accurate to better than 0.02′′, using the resid-

uals of the fits to estimate measurement errors. They are

dominated by systematics rather than simply by thermal

noise. However, the angular separation between GG Tau

Aa and Ab is 0.25′′: depending on what is being talked

about, the position of the “centre” may vary by some

±0.1′′.

Figure 2 (right) displays the dependence on R =√
x2 + y2 of the continuum brightness averaged over

position angle ϕ = 90◦ − tan−1(y/x) (measured from

north to east), again excluding the central source by re-

quiring R′ > 0.5′′. A Gaussian fit to the peak gives a

mean of 1.445′′ ± 0.015′′ and a σ of 0.266′′ ± 0.015′′

depending on the interval of R over which the fit is per-

formed. Retaining a σ value of 0.266′′ and subtracting

the beam size in quadrature gives a de-convolved FWHM

of 0.528′′ ± 0.035′′. Tang et al. (2016) quote a value of

0.54′′ for the de-projected and de-convolved width of a

uniform ring. The effect of de-projection is negligible

and the correction factor for Gaussian to square box fit

is
√
2π/2

√
2 ln 2 = 1.06, bringing the Tang et al. (2016)

value down to 0.51′′ to be compared with the present

result of 0.528′′ ± 0.035′′. This is a very good agree-

ment given that the ring is neither uniform nor perfectly

Gaussian and that possible wings of faint emission be-
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Fig. 1 Brightness of the dust ring continuum emission. Left: sky map; the black ellipse is the fit to 〈R〉 shown in Fig. 3; the yellow

arrow points to the region of the hot spot observed by Dutrey et al. (2014) and Tang et al. (2016) in 12CO(6–5) and 12CO(3–2)

emissions respectively. Middle and right: projections on the x and y axes of the central source brightness integrated over y and x
respectively. The lines show Gaussian best fits.

Fig. 2 Continuum brightness of the dust ring emission projected on the x (left) and y (middle) axes and integrated over y and x
respectively. The right panel shows its distribution as a function of R, averaged over ϕ, together with the Gaussian best fit to the

peak. In all three panels pixels having R′ < 0.5′′ are excluded.

Fig. 3 Continuum emission. Left: Dependence on ϕ of 〈R〉 calculated in the interval 1′′ < R < 2′′. The red line is the best fit to

an elliptical tilted ring offset from the origin (see text). Right: Dependence on ϕ of the disc plane continuum brightness averaged

over R in the interval 1′′ < R < 2′′. The red line shows the mean value.
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yond 1.8′′ would affect differently the two fitting proce-

dures.

Figure 3 (left) displays the mean value of R, 〈R〉,
weighted by the radial average of the brightness across

the ring over the interval 1′′ < R < 2′′. A fit of the

dependence of 〈R〉 on ϕ as an ellipse of semi-major and

semi-minor axes a0 and b0 respectively and offset by ∆x

and ∆y has been made to first order in the offsets and in

the ellipticity:

r =
(cos2(ϕ− ϕ0)

a20
− 2

∆x√
a0b0

cos(ϕ− ϕ0)

a20

+
sin2(ϕ− ϕ0)

b20
− 2

∆y√
a0b0

sin(ϕ− ϕ0)

b20

)−1/2

.

(1)

It gives a0 = 1.62′′ and b0 = 1.38′′, position

angle of the major axis ϕ0 = 97◦ and small offsets

∆x = −0.07′′ and ∆y = −0.05′′, at the level of mea-

surement uncertainties. This confirms the good centering

of the ring on the origin of coordinates and the aspect

ratio corresponds to a tilt with respect to the sky plane

θ = cos−1(1.38/1.62) = 32◦ ± 4◦ of a circular ring

about the rotated (by 7.0◦) x axis.

These results confirm the values quoted by Tang

et al. (2016): 1.63′′ instead of 1.62′′ for a0, 7.5◦ instead

of 7.0◦ for the position angle and 36.4◦ instead of 32◦ for

the tilt with respect to the sky plane, with the latter being

measured to no better than ±4◦. The values quoted for

the tilt by Dutrey et al. (2014) are 37◦ ± 1◦ for 12CO(6–

5) and 35.0◦ ± 0.2◦ for the dust.

Figure 3 (right) displays the dependence on position

angle ϕ of the continuum brightness averaged over R

in the interval 1′′ < R < 2′′. Here we have used the

fact that the ratio between the beam area in the sky plane

and its de-projected value in the disc plane is equal to

〈R〉 /a0. In the disc plane the brightness is uniform over

the disc circumference and equal to 16.0 mJy beam−1 to

within ±8.5% (rms).

3.2 13CO(3–2) Line Emission

Figure 4 (left) displays the brightness distribution over

the data cube. A Gaussian fit to the noise peak gives a

mean of −0.19mJy beam−1 and a σ of 7.2 mJy beam−1

(0.56 K). Figure 4 (right) displays the Doppler veloc-

ity (Vz) spectrum integrated over 8 × 8 arcsec2, with a

double-horn profile typical of a rotating volume. It is cen-

tred to better than 0.1 km s−1. In what follows, through-

out the article, we restrict the Doppler velocity range to

|Vz | < 2 km s−1 unless specified otherwise.

Figure 5 displays the sky maps of the velocity-

integrated brightness, or integrated intensity, and of the

mean Doppler velocity. The map of the integrated inten-

sity shows a clear ring of gas surrounding the central stars

and having morphology similar to the dust morphology,

indicating a concentric circular gas disc having the same

inclination as the dust ring on the sky plane. It displays

no central emission, with an abrupt inner cut-off at ∼ 1′′;
there is no significant emission inside an ellipse scaled

down from the dust ellipse by a factor ∼3, meaning a

de-projected radius of ∼ 1.62/3 = 0.54′′. The velocity

map excludes the region inside the scaled-down ellipse

where noise dominates. It displays a clear velocity gradi-

ent along the major axis of the ellipse, as expected from

rotation of the tilted disc about its axis. Note that an in-

falling (rather than rotating) disc would display instead

a gradient along the minor axis of the ellipse. In general

adding some in-fall motion to rotation would cause the

axis of the velocity gradient to deviate from the major

axis, the more so the larger the relative contribution of

in-fall.

Figure 6 is the equivalent for the line of Figure 2

for the continuum except that Figure 2 is for the contin-

uum and Figure 6 is for the line: projections on the x and

y axes and r-dependence, averaged over ϕ, of the inte-

grated intensity, where r is now the de-projected value

of R in the disc plane (see Fig. 8). Here, de-projection

assumes a tilt angle of 32◦ and a position angle of the

disc axis of 7◦, as found for the dust. In all panels we

exclude the central region where noise dominates by re-

quiring r > 0.54′′. When compared with the dust (con-

tinuum) ring, the gas (line) ring is broader and peaks at

smaller radii. The mean values of x and y are 0.02′′ and

−0.10′′ respectively. A fit to the integrated intensity dis-

tribution as a function of r as a sum of three Gaussians

is shown in the right panel of the figure. The means and

widths of the Gaussians are fixed to the values obtained

by Tang et al. (2016) when fitting the western half of the

gas disc.

Figure 7 (left) displays the mean value of R, 〈R〉,
weighted by the radial average of the brightness across

the ring over the interval 0.54′′ < r < 2′′. A fit of the

dependence of 〈R〉 on ϕ as an ellipse gives semi-major

and semi-minor axes a0 = 1.45′′ and b0 = 1.19′′ respec-

tively, position angle of the major axis ϕ0 = 97.8◦ and

small offsets ∆x = 0.02 and ∆y = 0.07′′. The position
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Fig. 4 Left: Line brightness distribution (Jy beam−1); the red curve is a Gaussian fit to the noise peak. Right: Doppler velocity

spectrum weighted by brightness and integrated over 8 × 8 arcsec2 (blue); the red histogram is obtained from the original by

symmetry about the origin.

Fig. 5 Left: Sky map of the 13CO(3–2) integrated intensity. The black arrow shows the position of the hot spot in 12CO(6–5)

(Dutrey et al. 2014) and 12CO(3–2) (Tang et al. 2016). Right: Sky map of the mean Doppler velocity (weighted by brightness)

excluding the region contained in the scaled-down ellipse shown in the left panel. In both panels, R < 2.5′′ and the black ellipses

are the best fits to the distribution of 〈R〉 in the continuum data and its scaled-down version (by a factor 3).

angle and aspect ratio (0.82 instead of 0.85) are very sim-

ilar to the dust result, but the size of the ellipse is scaled

down by a factor 87%. The tilt angle is now 35◦, com-

pared with 32◦ for the dust.

Another estimate of the tilt geometry is obtained

from the map of the mean Doppler velocity (Fig. 7, mid-

dle). In a ring defined as 0.54′′ < r < 2′′, a fit of the form

〈Vz〉 = V0 −∆V cos(ϕ − ϕ0) gives V0 = 0.05 km s−1,

∆V = 1.73 km s−1 and ϕ0 = 97.8◦, again in excel-

lent agreement with the value obtained from the dust fit,

ϕ0 = 97.0◦; this provides evidence against a significant

in-fall contribution. The values quoted by Dutrey et al.

(2014) are 97◦ ± 2◦ for 12CO(6–5) and 96.5◦ ± 0.2◦ for

the dust. The value of ∆V , 1.73 km s−1, corresponds to

a mean rotation velocity of ∼ ∆V/ sin θ ∼ 3.3 km s−1.

Figure 7 (right) displays the dependence on ϕ of the

disc plane integrated intensity averaged across the ring

in the interval 0.54′′ < r < 2′′. It has a mean value of

0.39 Jy beam−1 km s−1 and fluctuates around it with an

rms of 17%. We summarise the geometry parameters of

the dust and 13CO(3–2) emission in Table 1.
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Fig. 6 Line emission. Left and middle: Continuum brightness (blue, arbitrary normalisation) and line integrated intensity (red)

projected on the x (left) and y (middle) axes in the region of r > 0.5′′ . Right: r-dependence, averaged over ϕ, of the integrated

intensity in the disc plane. The red line is a fit using the same three Gaussians as in Tang et al. (2016).

Fig. 7 Line emission. Left: Mean value of R, 〈R〉, weighted by the radial average of the brightness across the disc over the interval

0.54′′ < r < 2′′. The red line is the result of the fit described in the text. Middle: Dependence on ϕ of the mean line Doppler

velocity (brightness-weighted); the red line is the result of the fit described in the text. Right: Dependence on ϕ of the disc plane

integrated intensity averaged across the disc (0.54′′ < r < 2′′). The red line shows the mean value.

Fig. 8 Geometry. Left: in the (y, z) plane; middle: in the sky plane (x, y); right: in the disc plane (x, ζ).

4 DETAILED PROPERTIES OF THE GAS DISC

In the present section we use new coordinates obtained

from those of the preceding sections by a rotation of an

angle of 8◦ about the z axis. To within 1◦, this brings

the new x axis on the major axes of the ellipses found

in the preceding sections as best describing the ϕ depen-

dences of both 〈R〉 and the Doppler velocity. Moreover,

unless otherwise explicitly specified, we assume a tilt of

θ = 35◦ for the disc plane as a reasonable compromise

between values obtained in both earlier and the present

studies, for both gas and dust observations. In practice,

we use 99× 81 pixels of 0.06× 0.06 arcsec2 on the sky
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Table 1 Geometry Parameters

Projection on

x and y
Ellipse fitted to the 〈R〉 vs ϕ

〈x〉 〈y〉 a0 b0 ϕ0 ∆ x ∆ y θ

(′′) (′′) (′′) (′′) (◦) (′′) (′′) (◦)

Dust
Central source

Ring

0.06

−0.05

−0.13

−0.09

-

1.62

-

1.38

-

97.0

-

−0.07

-

−0.05

-

32

13CO(3–2) Disc 0.02 −0.01 1.45 1.19 97.8 0.02 0.07 35

map, covering (99×0.06)×(81×0.0733)∼ 6×6 arcsec2

in the disc plane (0.0733 = 0.06/ cos35◦). To each

pixel (x, y) we associate disc coordinates ζ = y/ cos θ,

r =
√
x2 + ζ2 and ω = 90◦ − tan−1(ζ/x). Here “disc

plane” and “disc coordinates” are simply defined by this

transformation, implying no assumption on the disc be-

ing actually thin and flat.

4.1 Estimate of the Disc Thickness Obtained from

the Sharpness of the Disc Inner Edge

Tang et al. (2016) have commented on the sharpness of

the inner edge of the 13CO(3–2) emission and on the

smallness of the vertical temperature gradient, with the

inner edge of the disc being directly exposed to stellar

light and casting a shadow on the outer disc. Here, we

compare the value of the smearing of the inner edge of

the disc map near the major axis of the ellipse with its

value near the minor axis. To a good approximation, the

effect of disc thickness essentially cancels for the for-

mer while, for the latter, it scales with the product of disc

thickness by sine of the tilt angle. The optical thickness

of the line is not expected to strongly affect this result.

We consider four angular sectors in the disc plane, each

60◦ wide and centred on the axes of the ellipse. In each

sector, we study the radial dependence of the integrated

intensity, both in the disc plane (r) and in the sky plane

(R). The result is displayed in Figure 9. In order to eval-

uate the sharpness of the inner edge of the gas disc, we fit

a Gaussian to the rise of each distribution, between 0.5′′

and 1.5′′ in r. In R, we use the same interval of 0.5′′

to 1.5′′ for the sectors centred on the major axis of the

ellipse but a scaled-down (by a factor cos 35◦ = 0.82)

interval of 0.41′′ to 1.23′′ for the sectors centred on the

minor axes in order to account for the effect of tilt. The

mean and σ values (dispersions, a factor 2.35 smaller

than FWHM values also commonly quoted in the liter-

ature) obtained for the Gaussian best fits are listed in

Table 2.

The distributions as a function of r show identi-

cal σ values, to within ±10mas, in the four angular

sectors. A contribution from the disc thickness would

cause these values to be larger in the minor-axis sec-

tors than in the major-axis sectors: it is already clear

that a significant contribution from the disc thickness is

excluded. At variance with the distributions as a func-

tion of r, the distributions as a function of R show sig-

nificantly different σ values for the major-axis sectors,

∼0.33′′, and the minor-axis sectors, ∼0.28′′, a factor

85% smaller. Similarly, the ratio between the mean val-

ues of the Gaussians (listed as “scaling factor” in the ta-

ble) are equal for the two sectors of a same axis of the

ellipse, but again 85% smaller for sectors centred on the

minor axis than for those centred on the major axis. The

latter are very slightly smaller than unity, as expected

from the 60◦ angular widths of the sectors. The consis-

tency between these numbers suggests an interpretation

of the σ values measured in the R distributions as the

sum of three terms added in quadrature: i) a beam con-

tribution of 0.14′′ on both the minor- and major-axis sec-

tors (calculated from the known beam parameters); ii) a

contribution from the intrinsic smearing of the disc emis-

sion, σ0, caused by effects such as density variations and

contributing in each sector a value σ0 scaled down by

the scaling factors listed in the table; iii) an additional

contribution σ1 due to the disc thickness and contribut-

ing only to the minor-axis sectors. After subtraction of

the beam contribution and correction for de-projection,

one obtains values for σ of 0.29′′ for the minor-axis sec-

tors and ∼0.30′′ for the major-axis sectors. A contribu-

tion σ1 due to the disc thickness would cause the former

to exceed the latter, at variance with what is observed.

From the consistency between the numbers, we estimate

an uncertainty of ∼0.02′′ on the Gaussian σs. To a 95%

confidence level (2σ) we obtain an upper limit for σ1

of
√
(0.29 + 2× 0.02)2 − 0.302=0.14′′, corresponding

to a scale height H(r) ∼ 0.14/ sin35◦ = 0.24′′ (34 au)
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Table 2 Estimating the thickness of the gas disc from the sharpness of its inner edge

projected on the sky plane. All values (except the scaling factors) are in arcsec.

North East South West

r fit
〈r〉
σ

1.15

0.32

1.31

0.34

1.24

0.33

1.34

0.32

R fit
〈R〉
σ

0.99

0.28

1.29

0.34

1.08

0.28

1.32

0.32

R fit, beam subtracted σ 0.24 0.31 0.24 0.29

R fit, de-projected
Scaling factor

σ

0.86

0.29

0.98

0.31

0.87

0.29

0.99

0.29

Fig. 9 Line emission. Dependence on R (left panels) and on r (right panels) of the line integrated intensity averaged in 60◦ wide

angular sectors centred on the ellipse axes. In each case, the leftmost panel is for minor-axis sectors and the rightmost panel for

major-axis sectors. The central values of ω are indicated in the inserts for each sector.

Fig. 10 Line emission. Map in the disc plane of the difference between the integrated intensity and its value averaged over ω at the

same r. The black circles show the maxima of the Gaussians describing the mean radial integrated intensity distribution, r = 1.22′′

and 1.87′′ respectively. The red circle corresponds to the mean value of r in the dust map (1.62′′).

at r ∼ 1′′ (140 au) where the Keplerian velocity is ∼
3 km s−1; at 30 K, the sound velocity is ∼ 0.5 km s−1 and

hydrostatic equilibrium implies H(r) = 0.5/3 = 0.17′′

compared with the 0.24′′ upper limit obtained above. We

have checked that this result is independent of the width

of the angular sectors (using 40◦ instead of 60◦ lowers

the Gaussian σs by ∼ 0.01′′). Depending on the inter-

val chosen for calculation, the Gaussian σ’s lower values

of the σ1 upper limit may be obtained, as low as 0.10′′

instead of 0.14′′. We conservatively prefer to retain the

latter value as our final result.
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4.2 Integrated Intensity Variations across the Disc

In order to better understand the nature of the integrated

intensity variations displayed in Figure 7 (right), we dis-

play in Figure 10 the map in the disc plane of the differ-

ence between measured integrated intensity and its value

averaged over ω at the same value of r (as obtained from

Fig. 6, right). This map provides a measure of the lack of

rotational symmetry of the integrated intensity in the disc

plane. It gives strong evidence for an excess associated

with the hot spot observed by Dutrey et al. (2014) and

Tang et al. (2016) and for a northern depression of similar

amplitude. Both excess and depression reach their max-

ima at a distance from the central stars corresponding to

the gap between the maxima of the two first Gaussians

describing the mean radial distribution of the integrated

intensity (these Gaussians peak at r = 1.22′′ and 1.87′′

respectively). It is also in this gap that the continuum dust

emission peaks (at r = 1.62′′). However, both excess and

depression extend to larger values of r, particularly the

former that extends out to r ∼ 2.5′′.

4.3 Gas Kinematics

Calling Vrot and Vfall the components of the disc

plane velocity respectively perpendicular and parallel

to the disc radius, the Doppler velocity reads Vz =

sin θ(Vrot sinω−Vfall cosω) for each data-cube element

(x, y, Vz). To a good approximation, Vfall can be ne-

glected and we can calculate Vrot = Vz(sin θ sinω)
−1

for each data-cube element, leaving for later the task

of revealing a possible small Vfall contribution. Vrot be-

comes trivially singular along the ζ axis. We require ac-

cordingly | sinω| to exceed 0.3 when calculating Vrot. As

sin−1(0.3) = 17.5◦, this is not much of a loss.

Figure 11 displays the dependence on ω and r of

Vz averaged (using brightness as weight) over 0.8′′ <

r < 2.5′′ and over ω respectively. Averaging Vz requires

some care in dealing with the noise: the interval used for

averaging must be symmetric with respect to the mean

value obtained as a result, which requires relaxing the

condition |Vz | < 2 km s−1 usually applied in the anal-

ysis. The ω-dependence is perfectly described by a sine

wave of amplitude −1.43 km s−1. Adding a cosine term

does not change the coefficient of the sine term and in-

significantly improves the value of χ2. Its amplitude is

−0.05 km s−1, only 2.6% of the amplitude of the sinω

term, corresponding to a shift of −1.9◦ in ω. As a check

of the correctness of the procedure, we compare this re-

sult with what is obtained when requiring a 3σ cut on

each data-cube element; the amplitudes of the sine and

cosine waves become −1.40 and −0.04 km s−1 respec-

tively.

The negative sign of the best-fit cosine term means

radial expansion, and in-fall would give a positive sign.

Assuming a 3◦ uncertainty on ω, corresponding to half

a beam sigma at a distance of 1.3′′, we obtain a 3σ

upper limit (99% confidence level) of 9% on the ratio

Vfall/Vrot. As a function of r, averaging over ω would

cause 〈Vz〉 to cancel if symmetry with respect to the ζ

axis were perfect. It is indeed found to be very small, at

the level of −0.05 km s−1 as soon as r exceeds the peak

of the radial integrated intensity distribution at r ∼ 1.3′′.

Similarly, the dependence on ω and r of Vrot av-

eraged respectively (using brightness as weight) over

0.8′′ < r < 2.5′′ and over ω (| sinω| > 0.3) is dis-

played in Figure 12. The left panel shows the distribution

of 〈Vrot r
1/2〉 on r, which would be constant if the rota-

tion were Keplerian. A fit in the interval 1.1′′ < r < 2.5′′

gives a power index of −0.63 instead of the Keplerian

−0.5 and 〈Vrot〉 = 3.0 km s−1 at r = 1′′. The middle

panel illustrates the difficulty in measuring Vrot reliably

due to its singularity on the ζ axis. As remarked ear-

lier, the binarity of the central star prevents the position

of the “centre” from being defined to better than some

±0.1′′ (more exactly such a definition requires modelling

properly the binary configuration). Shifting the origins

of x and y on the sky map by ±1 pixel size (±0.06′′)
changes the value of ω and therefore of Vrot. The result

displayed in the middle panel shows the importance of

the effect. As a result, increasing the | sinω| cut from

0.3 to 0.707 (sin 45◦) makes the
〈
Vrot r

1/2
〉

distribution

Keplerian with a power index of −0.51 instead of −0.63,

and the rotation velocity at r = 1′′ increases from 3.0 to

3.1 km s−1 (left panel). We display, in the right panel,

the map of Vrot r
1/2 in the disc plane. It is uniform ex-

cept for increases near the ω limits in the north-west and

south-east directions. These are largely artefacts due to

the difficulty in calculating a reliable Vrot near the ζ

axis. Note that Dutrey et al. (2014) quote a Vrot value

of 3.4 ± 0.1 km s−1 for 12CO(6–5) emission with an in-

dex of −0.5 ± 0.1 at r = 100 au; this corresponds to

2.9 km s−1 at r = 1′′, consistent with the 3.0 km s−1 ob-

served here for 13CO(3–2) emission.
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Fig. 11 Distributions on ω (left) and r (right) of the Doppler velocity respectively averaged over 0.8′′ < r < 3.2′′ and over ω. In

the left panel, the line shows the best fit result of the form −1.43 sinω + 0.05 cosω = −1.43 sin(ω − 1.9◦) km s−1.

Fig. 12 Left: Dependence on r of 〈Vrot r
1/2〉 (brightness-weighted average); the lines are the best power law fits with indices

−0.63 for | sin ω| > 0.3 (red) and −0.51 for | sinω| > 0.707 (blue). Middle: Dependence on ω of 〈Vrot〉 (averaged in the interval

0.8′′ < r < 2.5′′) calculated using the nominal origin of coordinates on the sky plane (black histogram) or by shifting the origin

by ±0.06′′ in either x or y (red and blue histograms respectively). Right: De-projected map of 〈Vrot r
1/2〉 (| sinω| > 0.3).

Fig. 13 Dependence of the brightness on the difference dVz between measured values of Vz and their mean value in the associated

pixel. Summing is over all pixels in the interval 0.8′′ < r < 2.5′′ . The curve is a Gaussian fit.
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4.4 Line Width

Figure 13 displays the dependence of the brightness on

the difference dVz between the values of Vz measured in

a given pixel and their mean values in that same pixel.

The mean is calculated using brightness as a weight and

the histogram is summed over all pixels in the inter-

val 0.8′′ < r < 2.5′′. A Gaussian fit gives a σ-value of

0.23 km s−1.

Several quantities, added in quadrature, are expected

to contribute to σvz : Keplerian shear σK associated with

both beam size and disc thickness, the instrumental res-

olution σI and the thermal broadening σT , possibly in-

cluding a turbulence contribution (Teague et al. 2016),

and opacity broadening, στ .

Averaged over ω, the Keplerian shear at r =

1.5′′ reads, from the derivative of a power law,

σK = 0.6 〈|Vz |〉σr/r where 0.6 stands for the power in-

dex of the radial Vrot distribution (it would be 0.5 in

a pure Keplerian case). Here, σr is the sum in quadra-

ture of the σs of the beam, 0.21′′, and of the disc thick-

ness multiplied by tan θ = 0.7, 0.11′′. Hence, σr ∼√
0.212 + 0.112 = 0.24′′ and σK = 0.6 × sin(35◦) ×

3.1 × 1.5−0.6 × (2/π) ×σr/1.5 = 0.09 km s−1. Taking

the FWHM of the instrumental resolution as one velocity

bin gives σI ∼ 0.05 km s−1. Thermal broadening proper

reads
√

2kT/Mco where k is Boltzmann constant, T the

temperature and Mco the mass of the 13CO molecule; at

T = 18K (Tang et al. 2016) it amounts again to some

0.10 km s−1. Opacity tends to flatten the line profile and

its effect is an effective broadening of ∼
√
ln(τ), where

τ is the line opacity (Piétu et al. 2007). Tang et al. (2016)

show that 13CO(3–2) and 12CO(3–2) have similar bright-

ness, implying that τ (13CO) is significantly above unity.

Using both 13CO(3–2) and 12CO(3–2), we estimate its

value to be τ ∼ 10, meaning an effective broadening of

∼1.5 and a joint contribution of ∼ 0.15 km s−1 for ther-

mal and opacity broadening. A possible additional source

of broadening could be the effect of noise. However, us-

ing a 3σ cut to select the data, which must underestimate

the measured value of σvz , we obtain 0.20 instead of

0.23 km s−1, showing that noise can be neglected within

our estimated uncertainty of ±0.03 km s−1.

Adding the estimated contributions in quadrature

gives a total contribution of
√
0.052 + 0.092 + 0.152 =

0.18 km s−1 compared with 0.23 ± 0.03 km s−1 mea-

sured: there is not much room left for additional contri-

butions and turbulence is small (highly subsonic) in this

disc.

Important additional information on the line width

can be obtained from a study of the variations of σvz

over the disc plane. To this end we consider three r

intervals, 0.4′′ wide, covering between 1.3′′ and 2.5′′

and 24 ω-intervals, 15◦ wide, covering between 0◦ and

360◦. The dependence on ω of the integrated intensity

is shown in Figure 14 (left) for each r-interval sepa-

rately. The hot spot sticks out at values of ω that in-

crease from ∼ 120◦ in the low r-interval to ∼ 150◦

in the high r-interval. The middle panel shows the de-

pendence on ω of the normalized value of Vz averaged

in each r-ω bin separately; more precisely a fit of the

form 〈Vz〉 = −a sinω − b cosω is performed in each

r-ω bin separately and the normalization is made by di-

viding each of the three distributions by the correspond-

ing value of a (respectively 1.46, 1.27 and 1.18 km s−1,

namely ∼ 1.78 km s−1 divided by 〈r〉1/2). The values of

b are between 0.02 and 0.03 km s−1 and can be neglected.

All three normalized histograms are described well by a

sine wave. The right panel displays the dependence on

ω of σvz : in each r-ω interval the σ of a Gaussian fit to

the peak of the Doppler velocity spectrum is plotted after

normalization to its value averaged over ω in the corre-

sponding r-interval (0.258, 0.210, and 0.181 km s−1 re-

spectively).

As a function of ω, the line width fluctuates rela-

tively less than the integrated intensity. Moreover, there

is no sign of a sine wave contribution that would sig-

nal the effect of Keplerian shear, confirming the conclu-

sion that was reached above. While the hot spot domi-

nates the variations of the integrated intensity, its pres-

ence is barely visible as an increase of the line width;

conversely, sharper line width excesses at ω ∼ 60◦ and

320◦ are visible on the velocity-integrated distribution as

less marked excesses. The depressions at ω ∼ 0◦, 90◦

and 270◦ are also associated with lower values of the line

width. The correlation between σvz and fluctuations of

the integrated intensity f is illustrated in Figure 15. In

each (r, ω) bin we define ∆σ and ∆f as the difference

between the values of σvz and f and their mean in the r

interval: ∆σ = σvz/ 〈σvz〉 − 1 and ∆f = f/ 〈f〉 − 1.

A clear positive correlation is evidenced from the best

linear fit, ∆σ = 0.32∆f . Note that the correlation is

even slightly stronger if one excludes the hot spot re-

gion, with the corresponding Pearson coefficients being

respectively 0.25 and 0.32. From the low-r interval to the
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Fig. 14 Left: Dependence on ω of the integrated intensity for 1.3′′ < r < 1.7′′ (blue), 1.7′′ < r < 2.1′′ (red) and

2.1′′ < r < 2.5′′ (black); Middle: dependence on ω of the value of 〈Vz〉 in each of the three r-intervals (black histograms); here,

〈Vz〉 has been divided by 1.46, 1.27 and 1.18 km s−1 respectively, making the three histograms nearly identical; the red curve is

a sine wave. Right: dependence of σvz on ω, for each r-interval separately; in each r-ω bin, a Gaussian fit is performed to the

peak of the Vz spectrum, giving a σ-value that averages to respectively 0.258, 0.210 and 0.181 km s−1; the plotted histograms are

normalized to these respective average values; in addition, for clarity, they are shifted up by respectively 0, 0.5 and 1. The red curve,

a sixth degree polynomial fit to the distribution of the central r-interval, is shown to guide the eye. In the left and right panels the

arrows point in the direction of increasing r and indicate remarkable features: the black arrow shows the hot spot as defined from

the left panel; the blue and red arrows show peaks of the line width as defined from the right panel.

Fig. 15 Correlation between the normalized relative fluctuations of the line width ∆σ and the integrated intensity ∆ f (see text).

The line is the best fit to the data, ∆σ = 0.32∆ f . The blue points are for 105◦ < ω < 165◦ (hot spot).

high-r interval the ω-averaged line width (σ) decreases

by a factor 0.70 while the amplitude of the Vz sine wave

decreases only by a factor 0.81. A possible explana-

tion may be an increase of the temperature and opac-

ity with decreasing r. An increase of temperature and

opacity from (T, τ )=(18 K, 5) at r ∼ 2.3′′ to (36 K, 10)

at r ∼ 1.5′′ would imply an effective thermal broaden-

ing increasing from ∼ 0.13 km s−1 to about 0.21 km s−1.

Adding in quadrature σK and σI contributions of respec-

tively 0.09 and 0.05 km s−1 would give respectively 0.15

and 0.23 km s−1, compared with 0.18 and 0.26 km s−1

being measured.

The fact that the ω-dependence of 〈Vz〉 is very well

described by a simple sine wave in each of the three in-

tervals implies that the observations are consistent with

Vrot being independent of ω. It shows again that the fluc-

tuations of Vrot r
1/2 observed in Figure 11 are affected

by very large uncertainties. Indeed, very good fits to the

measured Vz sky map are obtained by assuming a purely

Keplerian rotation velocity. On the contrary, we estimate

that the uncertainty attached to both 〈Vz〉 and σvz is of

the order of only 0.02 km s−1, making the discussion of

the line width in terms of σvz more reliable than in terms

of Vrot dispersion.
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5 SUMMARY

In summary, the present analysis confirms the results ob-

tained earlier by Tang et al. (2016). It reveals the presence

of concentric dust and gas rings sharing the same axis

projecting on the sky plane ∼ 7◦ east of north. In the

approximation where both rings are flat and thin, their

inclination angles with respect to the sky plane are re-

spectively 32◦ and 35◦. The gas ring is broader than the

dust ring and peaks at smaller distance (typically 87%)

to the central stars. The de-projected radial dependence

of the line emission displays maxima at ∼ 1.2′′ and 1.9′′

from the central stars, bracketing the mean dust ring ra-

dius of ∼ 1.6′′. It cuts-off sharply at a mean distance of

∼ 1′′, cancelling completely below ∼ 0.54′′. Azimuthal

rms variations of the dust and gas emissions in the disc

planes are measured at the respective levels of ∼ ±9%

and ±17%. Strong evidence is obtained for the rotation

of the tilted gas disc about its axis dominating the kine-

matics.

A detailed study of the properties of the gas disc has

been presented, adding significant new contributions to

the earlier analysis of Tang et al. (2016). From the az-

imuthal dependence of the sharpness of the inner edge

of the disc, a 95% confidence level upper limit of 0.24′′

(34 au) has been placed on its scale height H(r) at a dis-

tance of 1′′ (140 au) from the central stars. At 30 K, hy-

drostatic equilibrium would imply H(r)/r ∼ 0.17, con-

sistent with this observation.

Variations of the integrated intensity across the disc

area have been studied in detail and found to confirm

the presence of a hot spot in the south-eastern quadrant.

However several other significant fluctuations, in particu-

lar a depression in the northern direction, have also been

revealed. On average, the rms relative variation of the in-

tegrated intensity reaches only ∼ 17%. The radial de-

pendence of the integrated intensity is modulated with

enhancements at r ∼ 1.2′′ and 1.9′′, bracketing the dust

ring (∼ 1.6′′). It is also between these radial integrated

intensity enhancements that both the hot spot and the

northern depression are observed to peak (their effects

nearly cancelling each other when averaged over ω).

The study of the gas kinematics has given evidence

for a strong dominance of rotation about the disc axis.

The Doppler velocity gradient being perpendicular to the

projection of the disc axis on the sky plane allows plac-

ing a 99% confidence upper limit of 9% on the ratio be-

tween a possible in-fall velocity and the rotation velocity.

The difficulty of evaluating reliably the rotation velocity

close to the sky plane projection of the disc axis has been

illustrated and commented upon. Taking this in proper

account, the rotation is observed to be Keplerian with a

power index of ∼ −0.51 across most of the disc area.

At r = 1′′, the rotation velocity reaches ∼ 3.1 km s−1,

in agreement with the value measured by Dutrey et al.

(2014) for 12CO(6–5). No significant anomaly can be re-

vealed in regions of important integrated intensity varia-

tion such as the hot spot and the northern depression.

Finally, the dependence of the line width on r and

ω has been studied. It shows little dependence on ω and

increases as r decreases: the σ of the line, σvz , increases

from ∼ 0.18 km s−1 to ∼ 0.26 km s−1 when r decreases

from 2.3′′ to 1.5′′. As the contributions of Keplerian

shear and instrumental spectral resolution taken together

should not exceed some 0.11 km s−1, a possible explana-

tion may be a factor ∼ 2 decrease of the disc surface tem-

perature and opacity, reaching respectively 36 K and 10

at r = 1.5′′. Relative variations of the line width over the

disc area have been found to be strongly correlated with

relative variations of the integrated intensity, the former

being about a third of the latter. At least qualitatively, this

result would also support the presence of a temperature

gradient, the CO(3–2) emission ladder peaking at tem-

peratures higher than the average disc temperature.

These new results contribute significant additional

information and complement the earlier conclusions

reached by Dutrey et al. (2014) and Tang et al. (2016).

However, considerations on optical thickness, which are

discussed in detail by Tang et al. (2016), are not repeated

here. Moreover, interpretations of the observed variations

of the integrated intensity as signalling the formation of

a planet or of a new companion star remain valid sug-

gestions that would require detailed modelling to be val-

idated. However, this is beyond the scope of the present

work.
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ABSTRACT

Context . Studying molecular species in protoplanetary disks is very useful to characterize the properties of these objects, which are
the site of planet formation.
Aims. We attempt to constrain the chemistry of S-bearing molecules in the cold parts of circumstellar disk of GG Tau A.
Methods. We searched for H2S, CS, SO, and SO2 in the dense disk around GG Tau A with the NOrthem Extended Millimeter
Array (NOEMA) interferometer. We analyzed our data using the radiative transfer code DiskFit and the three-phase chemical model
Nautilus.
Results. We detected H2S emission from the dense and cold ring orbiting around GG Tau A. This is the first detection of H2S
in a protoplanetary disk. We also detected HCO+, H13CO+, and DCO+ in the disk. Upper limits for other molecules, CCS, SO2,
SO, HC3N, and c-C3H2 are also obtained. The observed DCO+/HCO+ ratio is similar to those in other disks. The observed column
densities, derived using our radiative transfer code DiskFit, are then compared with those from our chemical code Nautilus. The
column densities are in reasonable agreement for DCO+, CS, CCS, and SO2. For H2S and SO, our predicted vertical integrated
column densities are more than a factor of 10 higher than the measured values.
Conclusions. Our results reinforce the hypothesis that only a strong sulfur depletion may explain the low observed H2S column
density in the disk. The H2S detection in GG Tau A is most likely linked to the much larger mass of this disk compared to that in other
T Tauri systems.

Key words. protoplanetary disks – molecular data – astrochemistry – stars: individual: GG Tau

1. Introduction

Understanding the physical and chemical structure of
protoplanetary disks is needed to determine the initial con-
ditions of planet formation. Studies of protoplanetary disks have
led to a global picture in which disks are flared and layered with
important vertical, radial density, and temperature gradients.
The uppermost layer is directly illuminated by stellar UV and
dominated by photodissociation reactions, while molecules
stick to dust grains in the very cold midplane. In between
there is a rich molecular layer (Kenyon & Hartmann 1987;
van Zadelhoff et al. 2001). Studies of the gas content rely on
trace molecules because H2 is not detectable at the temp-
eratures of disks. So far, the molecules that have been
detected in T Tauri disks are CO, 13CO, C18O, C17O, CN, CS,

H2CO, CCH, DCN, HCO+, H13CO+, DCO+, N2H+, HC3N,
CH3CN, HD, C3H2, C2H2, OH, SO, CH+, N2D+, NH3,
CH3OH, H13CN, HC15N, C15N, and HCOOH (Dutrey et al.
1997, 2011; Thi et al. 2001; Qi et al. 2008, 2013; Chapillon et al.
2012; Bergin et al. 2013; Huang & Öberg 2015; Öberg et al.
2015; Walsh et al. 2016; Guilloteau et al. 2016; Salinas et al.
2016; Guzmán et al. 2015; Hily-Blant et al. 2017; Favre et al.
2018).

More than a dozen S-bearing species have been observed
in dense cloud cores; they are chemically active and
often used as chemical clocks in low-mass star forming
regions (Buckle & Fuller 2003; Wakelam et al. 2004a,b). Some
S-bearing species, CS, SO, SO2, and H2S, are observed in Class
0 and Class I sources (Dutrey et al. 2011; Guilloteau et al. 2013,
2016) while CS, the second main reservoir of sulfur in the gas

Article published by EDP Sciences L5, page 1 of 6
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Fig. 1. Upper: Integrated intensity maps. The color scale is in the unit of (Jy beam−1 km s−1). Contour level step is 2σ. Lower: Velocity maps.
Contour level step is 0.5 km s−1. Beam sizes are indicated. The ellipses show the location of inner (∼180 au) and outer (∼260 au) radii of the dust
ring.

Table 2. Observed and predicted surface densities (cm−2)

Detection Non-detection
Molecule Observed? Predicted† Molecule Observed? Predicted†

(derived from DiskFit) (from Nautilus) (derived from DiskFit) (from Nautilus)
HCO+(1-0) 1.5 ± 0.04 ×1013 2.2 ×1012 CCS <1.7 × 1012 7.2 ×1010

H13CO+ (2-1) 5.3 ± 0.3×1011 (-) SO2 <1.5 ×1012 6.0 ×1012

DCO+ (3-2) 3.9 ± 0.2 ×1011 7.0 ×1010 SO <1.1 × 1012 1.5 ×1013

H2S 1(1,0) - 1(0,1) 1.3 ± 0.1 ×1012 3.4 ×1013 HC3N < 3.2 ×1011 5.7 ×1011

CS(3-2) 2.2 × 1013# 1.4 ×1013 c-C3H2 < 2.7 ×1011 2.4 ×1012

Notes. ? Observed surface density at 250 au is derived using DiskFit. # Phuong et al., in prep.
† Species surface density in the gas phase at 250 au predicted with Nautilus. (−) Our model does not include carbon isotope chemistry.

Fig. 2. Best model of H2S, CS, DCO+, and HCO+ in the GG Tau A ring derived from Nautilus. The surface density is shown vs. the z/H ratio
(z/H=1 means 1 scale height).
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Fig. 1. Upper row: integrated intensity maps. The color scale is in the unit of (Jy beam−1 km s−1). Contour level step is 2σ. Lower row: velocity
maps. Contour level step is 0.5 km s−1. Beam sizes are indicated. The ellipses show the location of inner (∼180 au) and outer (∼260 au) radii of the
dust ring.

phase (Vidal et al. 2017) is the only S-bearing molecule detected
in disks around T Tauri stars.

We report the first detection of H2S in a disk around a T Tauri
star, GG Tau A. GG Tau, located at 150 pc in Taurus-Auriga star
forming region (Gaia Collaboration 2016, 2018), is a hierarchi-
cal quintuple system with the GG Tau A triple star (separation
∼5 and 38 au; Di Folco et al. 2014) surrounded by a dense ring
located between 180 and 260 au and a large disk extending out
to 800 au (see Dutrey et al. 2016; and references therein). The
disk is massive (0.15 M�) and cold; it has a dust temperature of
14 K at 200 au, a kinetic temperature derived from CO analysis
of ∼20 K at the same radius (Dutrey et al. 2014; Guilloteau et al.
1999), and little or no vertical temperature gradient in the molec-
ular layer (Tang et al. 2016). The large size, low temperature,
and large mass make GG Tau A disk an ideal laboratory to search
for cold molecular chemistry.

Besides the H2S detection, we also report detections of
HCO+, DCO+, and H13CO+ and discuss the upper limits of CCS,
SO2, SO, c-C3H2, and HC3N.

2. Observations and results

2.1. Observations

The H2S 1(1,0)–1(0,1) observations were carried out with the
NOrthem Extended Millimeter Array (NOEMA) on 23, Decem-
ber 2017 using D configuration with nine antennas. The total
on source integration time is 5.2 h. Baselines ranging between
24 m and 176 m provide an angular resolution of 2.50′′ × 1.9′′,
PA = 15◦. Phase and amplitude calibrations were performed
using 0507+179 and 0446+112. Flux calibration was carried
out using MWC349 as a reference (flux 1.6 Jy at 170.3 GHz).
The full 7.74 GHz upper and lower sidebands of the new

PolyFiX correlator were covered at 2 MHz channel spacing, and
high spectral resolution (62.5 kHz) windows covered lines of
H2S 1(1,0)–1(0,1), H13CO+ (2–1), CCS, SO2, SO, HC3N, and
c-C3H2.

DCO+ (3–2) was observed with PdBI interferometer (now
known as NOEMA) in December 2013 and April 2014 with
six antennas at an angular resolution of 1.76′′ × 1.23′′,
PA = 17◦. Phase and amplitude calibrations were performed
using 0507+179 and 0446+112, while the flux calibration was
carried out using 3C84 and MWC 349.

The HCO+(1–0) data are from Guilloteau et al. (1999) and
are processed in this work with a resolution of 4.57′′ × 2.55′′, at
PA =−38◦. We used the GILDAS1 software package to reduce
the data. Images were produced using natural weighting and
Hogbom algorithm. The continuum emission is subtracted from
the line maps.

2.2. Results

Figure 1 shows integrated intensity maps (upper panels)
and velocity maps (lower panels) of the detected lines,
H2S 1(1,0)–1(0,1), H13CO+ (2–1), DCO+(3–2), and HCO+(1–
0). The velocity maps show a clear signature of Keplerian rota-
tion. Channel maps are presented in Appendix A.

H2S 1(1, 0)−1(0, 1) is clearly detected with a peak
S/N& 4 in several channels. Most of the line emission orig-
inates from the dense ring between 180 and 260 au and extends
up to .500 au. The weak east-west asymmetry is unlikely to be
significant given the limited signal-to-noise ratio (S/N).

HCO+(1–0) and H13CO+(2–1) are detected with high
S/N(≥7). HCO+(1–0) is as extended as the CO emission out
1 https://www.iram.fr/IRAMFR/GILDAS/
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Table 1. GG Tau parameters.

Geometry Law

Inclination 35◦ V(r) = 3.4 ( r
100 au )−0.5 (km s−1)

Orientation 7◦ T (r) = 25 ( r
200 au )−1 (K)

Systemic velocity 6.4 km s−1 Σ(r) = Σ250 ( r
250 au )−1.5 (cm−2)

to ∼800 au (Guilloteau et al. 1999). The optically thin emis-
sion from the J = 2–1 line of the H13CO+ isotopolog peaks on
the dense ring and extends to ∼500 au. On the contrary, the
DCO+(3–2) emission, detected at S/N≥ 7, peaks just outside of
the dense ring, near 280 au, suggesting radially varying deuter-
ation. Other sulfur-bearing species, SO, SO2, CCS, and carbon-
bearing species HC3N and c-C3H2, are not detected.

3. Data analysis

3.1. DiskFit modeling

We assume the physical parameters that govern line emission to
vary as power laws of the radii (Dutrey et al. 1994; Piétu et al.
2007). The data were analyzed inside the uν plane using the
radiative transfer code DiskFit, which uses χ2 minimization
technique, comparing the observed visibilities to visibilities pre-
dicted by ray tracing (Piétu et al. 2007).

The source parameters such as geometry (inclination, orien-
tation, and systemic velocity), velocity, and temperature power
laws are kept constant as they are well known from previous
studies (Dutrey et al. 1994, 2014; Guilloteau et al. 1999 and our
Table 1). Only the molecule surface density parameter Σ250 was
varied during the minimization process. Results are presented in
Table 2 with 3σ upper limits for undetected molecules.

3.2. Nautilus modeling

To model the chemistry in the dense and cold ring of GG Tau A,
we used the gas-grain chemical model Nautilus (Ruaud et al.
2016). This model simulates chemistry in three phases, i.e.,
gas phase, grain surface, and grain mantle, along with possible
exchanges between the different phases. The reference chemical
network is deuspin.kida.uva.2016 (Majumdar et al. 2017)
with the updates in sulfur chemistry from Vidal et al. (2017). The
disk structure is similar to that used in Wakelam et al. (2016). In
addition to disk parameters from Table 1, we assume a stellar UV
flux of fUV200AU = 375 χ0 at 200 au, where χ0 is in the units of the
Draine (1978) interstellar UV field, based on what is observed
in T Tauri stars (Bergin et al. 2004). Based on the observation
(Tang et al. 2016), we introduced a small vertical temperature
gradient with Tk = 30 K at three scale heights.

To compute the chemistry, we first calculated the chemical
composition of the gas and ices of the parent cloud, assuming
conditions for a dense cloud with an age of ∼106 yr and then
ran the model for another 106 yr (Wakelam et al. 2016). For
the parent cloud, initially all the elements are in atomic form
(see Table 1, Vidal et al. 2017) except for hydrogen and deu-
terium, which are initially in H2 and HD forms, respectively
(Majumdar et al. 2017).

We present the trends of the chemistry inside the ring at a
radius of 250 au in order to explain the observed column densi-
ties of H2S, CS, DCO+, and HCO+. We explored various initial
C/O ratios, ortho to para ratios for H2 (OPR), initial sulfur abun-
dances X(S), grain sizes, and UV flux. According to Bergin et al.
(2016), CCH emission can only be explained with a gas-phase

C/O ratio larger than 1. This represents a scenario in which oxy-
gen is depleted on the grains before the formation of the disk and
driven to the midplane of the disk. In other words, oxygen would
not participate in the chemistry in the region where they observe
CCH. Semenov et al. (2018) found that the column densities of
SO and SO2 drop by factors of ∼100 and 500, respectively, when
C/O changes from 0.46 to 1.2, whereas column densities of H2S
do not change as the species contains neither C nor O. We stick to
the standard C/O ratio of 0.7 in our model (Hincelin et al. 2011;
Wakelam et al. 2016; Majumdar et al. 2017), which gives a rea-
sonably good agreement for DCO+, CS, CCS, HC3N, and SO2.

Results are therefore presented for C/O = 0.7, OPR = 3,
X(S) = 8× 10−8 and a grain size of 0.1 µm. Other models lead
to larger disagreement with the data. Figure 2 and Appendix B
show the predicted vertical distribution of the molecules, and
Table 2 compares the predicted surface densities to the observa-
tional results derived using DiskFit.

4. Discussion

4.1. Comparison with other sources

The measured H2S column density is a factor of three greater
than the upper limits quoted by Dutrey et al. (2011) for DM Tau,
LkCa 15, MWC 480, and GO Tau, probably reflecting the larger
disk mass of GG Tau A. However, the CS to H2S abundance
ratio of ∼20 in GG Tau A may still be similar in all sources. The
upper limit on HC3N is about two times lower than the detections
reported in LkCa 15, MWC 480, and GO Tau by Chapillon et al.
(2012).

To make relevant abundances comparisons, we use 13CO as
a reference since H2 column densities are difficult to accurately
determine. The results for the disks of GG Tau A and LkCa15
and the dark cloud TMC-1 are given in Table 3. LkCa15 is a T
Tauri star similar to GG Tau A: its disk exhibits a central cavity
of radius 50 au (Piétu et al. 2006) and has a mass on the order of
∼0.028 M� (Guilloteau et al. 2011). Determining the uncertain-
ties is difficult because the abundances were obtained from dif-
ferent studies. Therefore, we assume errors of 30% in the cases
of LkCa 15 and TMC-1.

For GG Tau A, we take a 13CO column density, derived from
observations, at 250 au of Σ250 = 1.13× 1016 cm−2 (Phuong et al.,
in prep). For LkCa 15, Punzi et al. (2015) found HCO+ abun-
dance relative to 13CO of 15× 10−4, Huang et al. (2017) gave
abundance ratios of DCO+/HCO+ and DCO+/H13CO+ of 0.024
and 1.1, respectively, and Dutrey et al. (2011) gave an upper
limit of H2S relative to CO of 10−6, which we convert to 13CO
using an isotopic ratio 12C/13C∼60 (Lucas & Liszt 1998).

In the TMC-1 dark cloud, Ohishi et al. (1992) determined
12CO abundance relative to H2 of 8× 10−5 or 1.3× 10−6 for
13CO. The abundance relative to H2 of HCO+, H2S (upper limit;
Omont 2007), H13CO+, and DCO+ (Butner et al. 1995) are then
used to get the abundances relative to 13CO. In L134N, the abun-
dances of these species are similar, but H2S has been detected
with an abundance ratio of 60× 10−5 (Ohishi et al. 1992), similar
to the upper limit obtained in TMC-1. Thus, the disks appear to
have very similar relative abundances, suggesting similar chem-
ical processes at play, while the dense core differs significantly.

4.2. Sulfur-bearing species

In the chemical modeling, we found that H2S peaks around
three scale heights. The main reason behind this is rapid for-
mation of H2S on the grain surface via the hydrogenation
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Table 2. Observed and predicted surface densities (cm−2).

Detection Non-detection

Molecule Observeda Predictedc Molecule Observeda Predictedc

(derived from DiskFit) (from Nautilus) (derived from DiskFit) (from Nautilus)
HCO+(1–0) 1.5± 0.04× 1013 2.2× 1012 CCS <1.7× 1012 7.2× 1010

H13CO+ (2–1) 5.3± 0.3×1011 (–) SO2 <1.5× 1012 6.0× 1012

DCO+ (3–2) 3.9± 0.2× 1011 7.0× 1010 SO <1.1× 1012 1.5× 1013

H2S 1(1,0)–1(0,1) 1.3± 0.1× 1012 3.4× 1013 HC3N <3.2× 1011 5.7× 1011

CS(3–2) 2.2× 1013b 1.4× 1013 c-C3H2 <2.7× 1011 2.4× 1012

Notes. (a)Observed surface density at 250 au is derived using DiskFit. (b)Phuong et al., in prep. (c)Species surface density in the gas phase at 250 au
predicted with Nautilus. (−) Our model does not include carbon isotope chemistry.

N.T. Phuong et al.: First detection of H2S in a protoplanetary disk

Fig. 1. Upper: Integrated intensity maps. The color scale is in the unit of (Jy beam−1 km s−1). Contour level step is 2σ. Lower: Velocity maps.
Contour level step is 0.5 km s−1. Beam sizes are indicated. The ellipses show the location of inner (∼180 au) and outer (∼260 au) radii of the dust
ring.

Table 2. Observed and predicted surface densities (cm−2)

Detection Non-detection
Molecule Observed? Predicted† Molecule Observed? Predicted†

(derived from DiskFit) (from Nautilus) (derived from DiskFit) (from Nautilus)
HCO+(1-0) 1.5 ± 0.04 ×1013 2.2 ×1012 CCS <1.7 × 1012 7.2 ×1010

H13CO+ (2-1) 5.3 ± 0.3×1011 (-) SO2 <1.5 ×1012 6.0 ×1012

DCO+ (3-2) 3.9 ± 0.2 ×1011 7.0 ×1010 SO <1.1 × 1012 1.5 ×1013

H2S 1(1,0) - 1(0,1) 1.3 ± 0.1 ×1012 3.4 ×1013 HC3N < 3.2 ×1011 5.7 ×1011

CS(3-2) 2.2 × 1013# 1.4 ×1013 c-C3H2 < 2.7 ×1011 2.4 ×1012

Notes. ? Observed surface density at 250 au is derived using DiskFit. # Phuong et al., in prep.
† Species surface density in the gas phase at 250 au predicted with Nautilus. (−) Our model does not include carbon isotope chemistry.

Fig. 2. Best model of H2S, CS, DCO+, and HCO+ in the GG Tau A ring derived from Nautilus. The surface density is shown vs. the z/H ratio
(z/H=1 means 1 scale height).
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Fig. 2. Best model of H2S, CS, DCO+, and HCO+ in the GG Tau A ring derived from Nautilus. The surface density is shown vs. the z/H ratio
(z/H = 1 means 1 scale height).

reaction of HS, i.e., grain-H + grain-HS→ grain-H2S. Once H2S
is formed on the surface, it is then chemically desorbed to the
gas phase. Almost 80% of the H2S comes from the surface
reactions, whereas the contribution of the gas-phase reaction
H3S++e−→H + H2S is about 20%. Below three scale heights,
H2S depletes rapidly on the grains because of the increase in
density and decrease in temperature. At the same altitude, CS is
formed in the gas phase via the dissociative recombination reac-
tions of HCS+, H2CS+, H3CS+, and HOCS+.

The modeled CCS and SO2 column densities (shown in
Table 2 and in Appendix B) are low, explaining their non-
detection but the SO column density is overpredicted. The
CCS molecule shows its peak above z/H = 3 and is due
to the gas phase formation via S + CCH→H + CCS and
HC2S+ + e−→H + CCS reactions. SO2 is made from the
OH + SO reaction around this location, whereas SO comes from
the S + OH reaction.

We found that the UV field has a negligible impact on the
H2S desorption and mildly affects the SO/H2S ratio. The key
parameter in the model is the initial S abundance. Even with the
low value, 8 × 10−8, the chemical model overpredicts H2S and
SO by about an order of magnitude, but is compatible with CS
and the current limits on SO2 and CCS.

In our models, the molecular layer is very thin and situated
high above the disk plane at three scale heights. This is at odds
with the observations of CS in the Flying Saucer (Dutrey et al.
2017), where CS appears closer to one scale height. The differ-
ence may be due to the larger mass of the GG Tau disk (0.15 M�).
On one side, the high densities limit the UV radiation penetration

(which drives the active chemistry) to the uppermost layers,
while closer to the midplane, the even higher densities lead to
more efficient depletion on dust grains.

Our results suggest that chemistry for H2S on the grain sur-
faces is likely not properly taken into account even with our
three-phase model and that a significant amount of H2S should
change in some more complex sulfur-bearing species, limit-
ing the overall desorption of S-bearing molecules (Dutrey et al.
2011; Wakelam et al. 2005). Indeed, measurements of S-bearing
species in comets 67P performed by ROSETTA indicate a
solar value for the S/O elemental ratio within 2σ errors
(Calmonte et al. 2016). H2S accounts for about half of the S bud-
get in the comet, suggesting that transformation of H2S to other
compounds in ices is limited. The nearly constant H2S/H2O ratio
also suggests that H2S does not evaporate alone, but in combina-
tion with water (Jiménez-Escobar & Muñoz Caro 2011).

4.3. Chemistry of DCO+ and other observed species

Chemistry of DCO+. The measured HCO+/H13CO+ ratio is
about 30, suggesting partially optically thick emission for
HCO+(1−0) line. The measured DCO+/HCO+ ratio, ∼0.03
over the disk, is comparable to the averaged value (∼0.04;
van Dishoeck et al. 2003) derived in the disk of TW Hydra
of mass of ∼0.06 M� (Bergin et al. 2013), and in the disk of
LkCa 15 (ratio of ∼0.024, Huang et al. 2017.) This shows clear
evidence of ongoing deuterium enrichment.

HCO+ formation and deuteration is controlled by CO as
well as H2D+ and H+

3 ions. These ions are mostly sensitive
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Table 3. Molecular abundance relative to 13CO (X[mol]/X[13CO] × 105).

TMC-1a LkCa 15 GG Tau

HCO+ 600 ± 180(1) 150 ± 35(3) 130 ± 12
H2S <45(1) <7(4) 11 ± 3

H13CO+ 15 ± 4 (2) 5 ± 1.5 (4) 4.7 ± 0.3
DCO+ 30 ± 9 (2) 4.5 ± 1.4 (4) 3.5 ± 0.15

Notes. (a)13CO abundance is derived from CO abundance in Ohishi et al.
(1992), (1)Omont (2007), (2)Butner et al. (1995), (3)Punzi et al. (2015),
(4)Dutrey et al. (2011), (5)Huang et al. (2017).

to the X-ray flux, while UV radiation and cosmic rays play
a limited role, and their balance is controlled by the temper-
ature sensitive reaction H+

3 +HD
 H2D++H2. Because of the
temperature dependences, DCO+ is expected to be enhanced
around the CO snow-line, as illustrated by the ring structure in
HD 163296 (Mathews et al. 2013). Our model somewhat under-
predicts the HCO+ content. At 250 au, HCO+ peaks at three
scale heights, where the molecular layer is warm (∼30 K) and
forms mainly from the reaction of CO + ortho-H3

+. At this alti-
tude, DCO+ forms from the isotope exchange reaction between
HCO+ and D because the gas temperature is still high. Closer to
the disk midplane, the ortho-H2D+ + CO pathway remains inef-
ficient because of the strong CO depletion that results from high
densities. Lower densities just outside the dense ring may lead
to lower CO depletion and a more efficient DCO+ formation,
explaining the DCO+ peak there.

Other observed species. We also presented integrated
column densities of HC3N and c-C3H2, in Table 2 and
Appendix B. The modeled column densities of HC3N and
c-C3H2 are overpredicted. The high column density of HC3N
above three scale heights is due to its rapid formation via
CN + C2H2→H + HC3N reaction, whereas c-C3H2 forms from
the CH + C2H2 reaction, photodissociation of CH2CCH and dis-
sociative recombination of C3H5

+.

5. Summary

Using NOEMA, we have observed the GG Tau A outer disk in
several molecules. We report the first detection of H2S in a pro-
toplanetary disk.

We clearly detect HCO+, H13CO+, DCO+, and H2S. HCO+

emission is extended, H13CO+ and H2S emissions peak inside
the dense ring at ∼250 au, while DCO+ emission arises from the
outer disk beyond a radius of 300 au, perhaps as a result of com-
petition between CO depletion and high temperatures.

Our three-phase chemical model fails to reproduce the
observed column densities of S-bearing molecules, even with
low S abundance and C/O = 0.7, suggesting that our understand-
ing of S chemistry on dust grains is still incomplete.

Comparisons with other disks indicate that the detection of
H2S appears to be facilitated by the large disk mass, but that the
relative abundance ratios remain similar. This indicates that GG
Tau A could be a good test bed for chemistry in disks.
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Fig. A.1. Channel maps H2S 1(1,0) - 1(0,1) emission. The color scale is
in the unit of Jy beam−1. The contour spacing is 10 mJy beam−1, which
corresponds to 2σ or 0.08 K. The beam (2.55” × 1.90”, PA=14◦) is in-
serted in the lower corner of each channel map.

Fig. A.2. Channel maps H13CO+ (2-1) emission. The color scale is in
the unit of Jy beam−1. The contour spacing is 12 mJy beam−1, which
corresponds to 2σ or 0.11 K. The beam (2.50” × 1.85”, PA=15◦) is in-
serted in the lower corner of each channel map.

Fig. A.3. Channel maps DCO+ (3-2) emission. The color scale is in the
unit of Jy beam−1. The contour spacing is 18 mJy beam−1, which corre-
sponds to 2σ or 0.22 K. The beam (1.76” × 1.23”, PA=17◦) is inserted
in the lower corner of each channel map.

Fig. A.4. Channel maps HCO+ (1-0) emission. The color scale is in
the unit of Jy beam−1. The contour spacing is 25 mJy beam−1, which
corresponds to 2σ or 0.33 K. The beam (4.57” × 2.55”, PA=−38◦) is
inserted in the lower corner of each channel map.

Appendix B: Vertical integrated molecule column
densities

Fig. B.1. Best model of CCS, c-C3H2, HC3N, SO, and SO2 in the GG
Tau A ring, derived from Nautilus, using our best knowledge of the GG
Tau disk.
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Fig. A.1. Channel maps H2S 1(1,0)–1(0,1) emission. The color scale is
in the unit of Jy beam−1. The contour spacing is 10 mJy beam−1, which
corresponds to 2σ or 0.08 K. The beam (2.55′′ × 1.90′′, PA = 14◦) is
inserted in the lower corner of each channel map.
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Fig. A.2. Channel maps H13CO+ (2–1) emission. The color scale is in
the unit of Jy beam−1. The contour spacing is 12 mJy beam−1, which
corresponds to 2σ or 0.11 K. The beam (2.50′′ × 1.85′′, PA = 15◦) is
inserted in the lower corner of each channel map.
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ABSTRACT

Context. GG Tau A is the prototype of the young triple T Tauri star surrounded by a massive and extended Keplerian outer disk. The
central cavity is not devoid of gas and dust and at least GG Tau Aa exhibits its own mm disk of gas and dust. Its observed properties
make this source an ideal laboratory to investigate planet formation in multiple young solar-type stars.
Aims. We use new ALMA 13CO and C18O(3–2) observations obtained at high angular resolution (∼ 0.2′′) together with previous
CO(3–2) and (6–5) ALMA data and continuum maps at 1.3 and 0.8 mm to determine the gas properties (temperature, density, kine-
matics) in the outer ring and in the cavity.
Methods. By deprojecting, we study the radial and azimuthal gas distribution and its kinematics. We also apply a new method to
improve the deconvolution of the CO data and in particular better quantify the gas emission inside the cavity. Using DiskFit, we
finally perform LTE and non-LTE studies in order to determine the excitation conditions and relevant physical parameters inside the
ring and in the central cavity.
Results. Residual emission after removing a smooth disk model indicates unresolved structures at our angular resolution, probably in
the form of irregular rings or spirals. The outer disk is cold, with a temperature < 20 K beyond 250 au, and dropping quickly (∝ r−1).
The kinematics of the gas inside the cavity reveals infall motions at about 10% of the Keplerian speed. We derive the amount of gas in
the cavity, and find that the brightest clumps, which contain about 10% of this mass, have kinetic temperatures 40− 80 K, CO column
densities of a few 1017 cm−2, and H2 densities around 107 cm−3.
Conclusions. Although the gas in the cavity is only a small fraction of the disk mass, the mass accretion rate throughout the cavity is
comparable or higher than the stellar accretion rate, and thereby sufficient to sustain the circumstellar disks on a long timescale.

Key words. Stars: circumstellar matter – Protoplanetary disks – Stars: individual (GG Tau A) – Radio-lines: stars

1. Introduction

In more than two decades of studying exoplanets, nearly 4,000
exoplanets have been found. More than 10% of these planets
are detected in binary or higher hierarchical systems (Roell et al.
2012). The general picture of planet formation is well agreed that
they are formed in a protoplanetary disk surrounding its proto-
star within a few million years after the collapse phase. However,
the detailed formation conditions and mechanisms are still de-
bated.

Welsh et al. (2012) observations with the Kepler space tele-
scope reveal that planets can form and survive in binary systems,
in circumbinary or circumstellar orbits. The formation condi-
tions in these systems differ from those around single stars.
Theoretical studies of disk evolution predicts that the stars in
a T Tauri binary of about 1 Myr should be surrounded by two

Send offprint requests to: Nguyen Thi Phuong,
e-mail: thi-phuong.nguyen@u-bordeaux.fr

inner disks, located inside the Roche lobes and an outer ring or
disk located outside the outer Lindblad resonances (Artymowicz
et al. 1991). For a binary system of low or moderate eccentricity,
the stable zone is typically located beyond the 3:1 or 4:1 reso-
nance (Artymowicz & Lubow 1994). The outer radii of these in-
ner disks, as well as the inner radius of the circumbinary (outer)
disk, are defined by tidal truncation. At (sub)mm wavelengths,
circumbinary disks have been observed in many systems, and
in some of these, e.g. L 1551 NE, UY Aur and GG Tau A
(Takakuwa et al. 2014; Tang et al. 2014; Dutrey et al. 2014),
the circumstellar disk(s) are also detected. Studying the gas and
dust properties in these environments is a necessary step to un-
derstand the formation of planets in the binary/multiple systems.

The subject of this paper is a detailed study of gas and dust
properties of the GG Tau A system. GG Tau A, located in the
Taurus-Auriga star forming region consists of a single star GG
Tau Aa and a close binary GG Tau Ab1/Ab2 with separations
of 35 au and 4.5 au on the plane of the sky respectively (Dutrey
et al. 2016; Di Folco et al. 2014). Although the GAIA results
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suggest a value of 150 pc (Gaia Collaboration et al. 2016, 2018),
we use a distance of 140 pc for comparison with previous works.

The triple star is surrounded by a Keplerian disk that which
is innerly tidally truncated at ∼180 au, and comprises a dense
gas and dust ring extending from about 180 au up to 260 au and
an outer disk extending out to ∼ 800 au (Dutrey et al. 1994).
The disk is inclined at about 35◦, with a rotation axis at PA 7◦,
and the Northern side towards us (Guilloteau et al. 1999). The
disk is one of the most massive of the Taurus region, ∼0.15 M�,
∼10% of the total mass of the stars. A 10% mass ratio should
lead to small deviation (about 5%) to the Keplerian law (Huré
et al. 2011).

The outer disk is relatively cold with the dust and gas (de-
rived from 13CO analysis) temperatures of 14 K and 20 K at
200 au, respectively (Dutrey et al. 2014; Guilloteau et al. 1999).
More information about the triple system can be found in Dutrey
et al. (2016) and the references therein.

In this paper, we present a study about the gas properties in
the ring, the outer disk and inside the cavity of GG Tau A us-
ing sub-mm observations carried out by the ALMA. The paper
is organized as follows. Section 2 describes the observations and
data reduction. The observation results are presented in Section
3, while the radiative transfer modelling of the outer disk is pre-
sented in Section 4. The properties of the cavity (excitation con-
ditions, mass, dynamics) are derived in Section 5. The gas and
dust properties in the circumbinary disk and inside the tidal cav-
ity are discussed in Section 6. Section 7 summarizes the main
results.

2. Observations and data reduction

Table 1 lists the observational parameters of our data sets, spec-
tral sampling, angular resolution and brightness sensitivity, for
all observed molecular lines.

GG Tau A was observed with the ALMA Band 9 dur-
ing Cycle 0 (2011.0.00059.S) and Band 7 during Cycle 1
(2012.1.00129.S) and Cycle 3 (2015.1.00224.S). Anne Dutrey
is the PI of the 3 projects.

Cycle 0 Observations were made on August 13th, 2012. The
spectral windows covered the 12CO(6–5) line (see Dutrey et al.
2014, for details of the data reduction). This data was processed
here with a restoring beam of 0.35′′ × 0.31′′, PA=104◦.

Cycle 1 Observations were taken on November 18th and 19th,
2013. The spectral windows covered the lines of 12CO(3–2),
13CO(3–2) at high spectral resolution (0.11 km s−1). The de-
tails of data reduction are given in Tang et al. (2016). The
12CO(3–2) images were obtained here with a restoring beam of
0.34′′ × 0.28′′, PA=−89◦ while the 13CO(3–2) data are merged
with new data acquired in Cycle 3.

Cycle 3 Observations were carried on September 25th and
30th, 2016 with 37 and 38 useful antennas in configuration C40-
6. The projected baselines range from 16 m to 3049 m, and the
total time on source is 1.4 hours. The spectral set up covered the
lines of 13CO(3–2) and C18O(3–2) at 330.588 and 329.330 GHz
in two windows, each covering 58.89 MHz bandwidth with a
high spectral resolution of 141 kHz (∼ 0.11 km s−1).

The continuum was observed in two separate windows,
one centred at 330.15 GHz with 1875 MHz bandwidth and the
other centred at 342.00 GHz with 117 MHz bandwidth. Data
was calibrated in CASA1 software (Version 4.7.0). The quasar

1 https://casa.nrao.edu/

J0510+1800 is used for phase and bandpass calibration. The ab-
solute amplitude calibration was done using J0522-3627 (flux
∼ 3.84 Jy at 343.5 GHz at the time of observations). The cal-
ibrated data was regrided in velocity to the LSR frame using
the “cvel” task, and exported through UVFITS format to the
GILDAS2 package for further data processing.

The origin of coordinates at RA=4h 32m 30.3s and
DEC=17◦ 31′ 40′′ corresponds to year 2000. GG Tau has signif-
icant proper motions: Ducourant et al. (2005) cite [17, −19] mas
per year, while Frink et al. (1997) give [11,−28] mas per year.
These measurements are however affected by the multiplicity of
the star. To re-align our observations, we assumed the contin-
uum ring is centered on the center of mass of the system. We fit-
ted the continuum emission with the sum of a circular Gaussian
(for the circumstellar disk around Aa) and an elliptical ring (for
the dust ring) in the uv plane (Guilloteau et al. 1999; Piétu et al.
2011). The apparent motion of the ring gives a proper motion of
[9,−23] mas per year, that we applied to all our data set.

The imaging and deconvolution was done with natural
weighting, hogbom algorithm and the images are cleaned down
to the rms noise level. Channel maps of the observed lines are
presented in Appendix A, Figs.A.1-A.2.

3. Results

3.1. Continuum emission

Fig.1 shows the continuum emission at 330 GHz derived from
the Cycle 3 data. It reveals emission from the Aa disk and the
ring structure detected in previous observations (see Dutrey et al.
2016, and references therein), but the ring is now clearly re-
solved. The ring is not azimuthally symmetric (after taking into
account the limb brightening effect along the major axis), but
displays a ∼ 15 − 20% stronger emission at PA ≈ 240◦ − 260◦.
The outer edge is clearly shallower than the steep inner edge,
confirming that some dust remains beyond the ∼ 260 au outer
edge of the ring, as initially mentionned by Dutrey et al. (1994).
As in previous studies (e.g. Guilloteau et al. 1999; Piétu et al.
2011), a compact, unresolved emission is detected in the direc-
tion of the single star Aa, but no emission originates from the
Ab1/Ab2 close binary system.

A detailed study of the continuum emission is beyond the
scope of this paper and deferred to subsequent work.

3.2. Images of line emission

Figure 2 shows the integrated intensity and the velocity maps
of 13CO(3–2) (left) and C18O(3–2) (right). In these figures,
the continuum has been subtracted. The velocity fields suggest
Keplerian rotation inside the disk.

The 13CO(3–2) emission extends out to 550 au, while the
C18O(3–2) is mostly visible in the dense ring.

3.2.1. Intensity variations

Figure 3 (upper panels) shows the radial profiles of the integrated
brightness of the lines and of the peak brightness of the contin-
uum emission, averaged over the entire azimuthal direction, af-
ter de-projection to the disk plane. The de-projection has been
done assuming a position angle of the minor disk axis of 7◦ and
an inclination of 35◦ (Dutrey et al. 2014; Phuong et al. 2018b).

2 https://www.iram.fr/IRAMFR/GILDAS/
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Table 1. List of observations

Spectral line Frequency Energy level Channel spacing Beamsize Noise
(GHz) (K) (km/s) (K) ALMA project

12CO J = 6→5 691.473 33.2 0.106 0.35′′ × 0.31′′, PA=104◦ 1.8 2011.0.00059.S
12CO J = 3→2 345.795 16.6 0.106 0.34′′ × 0.28′′, PA=91◦ 0.7 2012.1.00129.S
13CO J = 3→2 330.588 15.9 0.110 0.22′′ × 0.16′′, PA=15◦ 0.7 2012.1.00129.S, 2015.1.00224.S
C18O J = 3→2 329.330 15.8 0.110 0.19′′ × 0.14′′, PA=19◦ 1.9 2015.1.00224.S

Continuum 330.15 – – 0.19′′ × 0.14′′, PA=190◦ 0.03 2015.1.00224.S

Notes. Col.3 gives the upper state Energy level.

Fig. 1. Continuum image at 330 GHz. The beam size of
0.19′′ × 0.14′′,PA = 190◦ is indicated in the lower left corner.
The contour levels are 0.5, 1, 2, 4, 8 and 16 mJy beam−1. The noise
level is 0.06 mJy beam−1. The red ellipses indicate the inner and outer
edges of the dense dust ring at 180 au and 260 au, respectively (e.g.
Guilloteau et al. 1999). The positions of the Aa star and Ab close
binary are indicate by the crosses. The inset shows an enlarged view of
the Aa/Ab surroundings.

See also Phuong et al. (2018b) for the detail information of de-
projection description.

The 12C16O emission covers a broad region around the cen-
tral binary, r > 6′′ (800 au), peaking at the centre. Some of the
differences between the three transitions of CO may result from
calibration effects and different uv coverage. In particular, short
spacings are missing in the CO(6–5) transition data because of
its high frequency, making it less sensitive to extended struc-
tures.

Figure 3 (lower panels) displays the azimuthal dependence
(in the disk plane) of the peak brightness and velocity integrated
brightness in the ring (1.2′′ ≤ r ≤ 2′′) for CO, 13CO, C18O

and the 0.85 mm continuum emissions. The azimuth ω in the
disk mid-plane is measured counterclockwise from the minor
axis (north). The significant enhancement in the south-eastern
quadrant for 12C16O corresponds to the “hot spot” discovered by
Dutrey et al. (2014), that may reveal a possible planet in forma-
tion (labelled “hp” for “ hypothetical planet” in the figure). It is
much less visible in the other CO isotopologues.

3.2.2. CO gas kinematics in the outer disk

For a thin disk, the line of sight velocity is given by
Vz = sin i(Vrot sinω + V f all cosω) where i is the disk inclination,
Vrot the rotation velocity and V f all the infall velocity, and ω is
the azimuth in the disk plane. We can neglect the infall mo-
tions, as Phuong et al. (2018b) studies at angular resolution of
∼ 0.35′′ have placed an upper limit of 9% on it with respect to
the rotation. We used the intensity weighted images of the line
of sight velocity Vz shown in Fig.2 and for each pixel calculate
Vz(sin i sinω)−1. We then azimutally averaged these values for
all pixels at the same radius (using a 0.15′′ radial binning) such
that | sinω| to > 0.7 (i.e. avoiding pixels around the minor axis)
to derive Vrot.

Figure 4 shows the dependence of 〈Vrot (r/1′′)1/2〉 on r,
which would be constant for the three CO isotopologues if the
rotation is Keplerian.

There is a good overall agreement between the three iso-
topes, showing that the outer ring and disk are in Keplerian ro-
tation beyond about 180 au. A constant fit to these histograms
gives Vrot ≈ 2.94 km s−1, with a standard deviation (σ) of
0.14 km s−1 of the residuals from the mean for CO, 2.98 km s−1

(σ = 0.04 km s−1) for 13CO and 2.81 km s−1 (σ = 0.07 km s−1)
for C18O, at ≈ 1.0′′ (the integration ranges are illustrated in
Fig.4).

The formal errors on these mean values will be 2 to 3 times
smaller, depending on the number of independent points, which
is not a simple value given our averaging method. However,
the CO data show deviations from the mean which are not ran-
dom, since they occur on a radial scale of ≈ 0.8′′, more than
twice the resolution. We thus conservatively use the standard
deviation as the error on the mean. Using the 3 independent
measurements from CO, 13CO and C18O, we derive a mean
weighted value of 2.94 ± 0.03 km s−1 for the Keplerian rotation
speed at 1′′, i.e. 3.48 ± 0.04 km s−1 at 100 au, in agreement with
previous, less precise determinations (e.g. Dutrey et al. (2014)
found 3.4 ± 0.1 km s−1). Taking into account the uncertainty on
the inclination, ±2◦, this corresponds to a total stellar mass of
1.36 ± 0.07 M�.

The apparent lower than Keplerian velocities at radii smaller
than about 0.8′′ will be discussed in Sec.6.3.
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Fig. 2. Upper: 13CO(3–2) integrated intensity map (left, contour spacing 0.01 Jy/beam km s−1 (3 σ) with zero level omitted) and velocity map
(right). Lower: C18O(3–2) integrated intensity map (left, contour spacing 0.01 Jy/beam km s−1, 2 σ) and velocity map (right). The beams are
indicated at lower left corner in each intensity map. The contour level spacing in velocity maps is 0.5 km s−1. The continuum has been subtracted.
The white ellipses indicate the inner and outer edges of the dust ring.

4. Disk Modelling

We use the DiskFit tool (Piétu et al. 2007) to derive the bulk
properties of the ring and outer disk. The disk model is that of
a flared disk with piece-wise power laws for the temperatures
and surface densities. We assume sharp inner and outer radii.
The temperature is vertically isothermal, and the vertical den-
sity profile is a Gaussian, n(r, z) = n0(r) exp(−(z/H(r))2), with
a scale height following a simple power law H(r) = h0(r/R0).
For spectral lines, we assume that the velocity field is Keplerian,
v(r) = V0(r/R0)−0.5, and use a constant local linewidth δV . The
lines are assumed to be at LTE: the derived temperatures thus
indicate excitation temperatures. The emission from the disk is
computed using a ray-tracing method. The difference between
the predicted model visibilities and the observed ones is mini-

mized using a Levenberg–Marquardt method, and the error bars
are derived from the covariance matrix.

A more detailed description of the DiskFit tool and our
adopted fitting method is given in Appendix B. The fit param-
eters are summarized in Table B.1.

4.1. Continuum fit

The CO emission being at least partially optically thick, we
cannot simply separate the contribution of CO and contin-
uum (Weaver et al. 2018). To determine the continuum prop-
erties, we fitted the continuum using the broad-band, line-free,
spectral window data. We followed the procedure described in
Dutrey et al. (2014), who derived dust properties using 1.3 mm
and 0.45 mm continuum. We first subtracted a Gaussian source
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Fig. 3. Upper: The radial dependence of the integrated brightness temperature (for lines) and brightness temperature (for continuum emission)
in the disk plane. The horizontal sticks indicate the angular resolutions. Lower: The azimuthal dependence of the same quantities averaged over
the ring of 1.2′′ < r < 2.0′′. The left panels show the plot of the three 12CO emissions (J=6–5, 3–2 and 2–1) (see Dutrey et al. 2014; Tang et al.
2016, for the intensity maps of these emissions), the right panels show the less abundant CO isotopologues (J=3–2) emissions. The grey region
delineates the dust ring in the upper panels. In the lower panels, black arrows show the location of the limb brightening peaks and the magenta
lines show the hot spot location.

Fig. 4. Dependence on r of Vrot × r1/2 (weighted by the brightness and
averaged in bins of 0.15′′) of 12CO(3–2) (black), 13CO(3–2) (red) and
C18O(3–2) (blue) emissions. The horizontal bars indicate over which
radius range the mean value is computed for each transition. The grey
shaded area indicates the dense dust ring boundaries.

model of the emission from the circumstellar disk of Aa. The
emission from the ring was then fit by a simple power law distri-
bution for the surface density and temperature, with sharp inner
and outer edges (see also Appendix B), assuming a spatially con-
stant dust absorption coefficient that scales with frequency ν as
νβ. We simultaneously fit the 1.3 and 0.8 mm data (the 1.3 mm
dust emission is from Dutrey et al. 2014). The results of the con-
tinuum fit are given in Table 3.

Table 2. System geometric and kinematic parameters

Parameter Value
(x0, y0) (0,0) Center of dust ring
PA(◦) 7 PA of disk rotation axis
i(◦) −35 Inclination
VLSR 6.40 Systemic velocity
V0 (km s−1) 3.37 Keplerian Rotation velocity at 100 au
dV (km s−1) 0.3 Local line width

Notes. Values derived from previous papers and verified with these new
CO isotopologues data.
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Table 3. Dust ring parameters

Parameter Value/Law
Inner radius (au) 193 fixed
Outer radius (au) 285 fixed
Abs. Coefficient κν (cm2/g) 0.02 × (ν/230GHz)+1 fixed
Temperature (K) 14 × (r/200 au)−1 fixed
Surface density (cm−2) 5.6 1024 × (r/200 au)−1.4 Fitted

Notes. Fixed values are taken from Dutrey et al. (2014).

4.2. CO isotopologues

We analyze the CO isotopologue data without removing the con-
tinuum. The parameters specified in Tables 2 - 3 are used as fixed
input parameters for our modelling.

While the outer disk is well represented by a Keplerian disk,
the emission from the cavity does not follow such a simple
model. Yet it contributes to a significant fraction of the total
emission from CO. However, since the fit is made by minimiz-
ing in the visibility (Fourier) plane, we cannot separate the cavity
from the outer disk contributions in this process.

Thus, to avoid biasing our results for the ring and disk pa-
rameters, we adopted a specific strategy. We first subtracted the
Clean components located inside the cavity (up to a radius of
160 au) from the original uv tables (this also removes the con-
tinumum from Aa). The residual uv tables are then analyzed us-
ing an innerly truncated Keplerian disk model as described in
details in Appendix B.

Since the radial profiles of the emission from CO and 13CO
are not well represented by a power law (see Fig.3, and Fig.3
of Tang et al. 2016), our disk model assumes piece-wise, con-
tinuous power laws (linear in log-log space) for the surface den-
sity and temperature. We used knots at 160, 200, 260, 300 and
400 au. The knots are chosen to reflect both slope changing in
the radial profile of the line emissions and the sharp edges of
the dust ring based on our previous studies (Dutrey et al. 1994;
Guilloteau et al. 1999), and to allow a good estimate for the prop-
erties of the bulk of the gas in the ring and outer disk.

The following strategy has been adopted to fit in parallel the
12CO and 13CO data. In a first step, we determine the tempera-
ture by fitting the 12CO line. The surface density of CO is not
a critical value here: as CO is largely optically thick, we just
need to use a high enough CO surface density to ensure this.
We then used this temperature profile to fit the 13CO data and
determine the 13CO surface density, since this line is partially
optically thin. The derived surface density is then multiplied by
the isotopic ratio 12CO/13CO (70, Milam et al. 2005) to specify
the CO surface density to iterate on the temperature determina-
tion using the 12CO data. The process converges quickly (in 2
iterations).

Our method makes the underlying assumption that the 12CO
and 13CO layers are at the same temperature. This hypothesis
is consistent with the results from Tang et al. (2016), who found
that the vertical temperature gradient around 200−400 au should
be small to reproduce the observed 12CO/13CO line ratio.

A fixed inner radius of 169 au provided a good compromise
to represent all molecular distributions. This radius is here only
to obtain a good model for the ring and outer disk: it should
not be over-interpreted as the physical edge of the cavity. We
also determined independently the outer radii for each CO iso-
topologue, and verified the best fit value for the inclination and
systemic velocity. The small difference between our adopted
Keplerian rotation law and that suggested by the analysis in

Sec.3.2.2 has negligible impact on the fitted parameters. For the
C18O, we used only 4 knots to derive the surface density profile.

With this process, we find a reasonable model of the ring and
outer disk in all CO isotopologues. Figure 5 shows the residuals
from the original uv data after removal of the best fit outer disk
models and of Aa continuum source. As expected, most of the
left-over emission is coming from the cavity, but some azimuthal
asymmetries are still visible in the dense ring. The best fit results
and formal errors are summarized in Table 4. Since significant
deviations from the best fit model do exist (e.g. azimuthal vari-
ations), the results must be interpreted with caution. The formal
errors underestimate the uncertainties on the physical parame-
ters. We thus also quote a confidence interval for the tempera-
tures in Table 4, based on the dispersion of values found during
our minimization studies: surface densities are typically uncer-
tain by 20− 30%, but the steep decrease in temperature between
200 and 300 au, and then to 400 au and beyond is a robust result.
The surface density profile around 180 − 200 au is poorly con-
strained, due to the removal of emission inside 160 au, and the
insufficient angular resolution at this level. However, the vari-
ations in the fitted surface densities between 169 au (the inner
truncation radius) and 180 au suggests a very dense inner edge.

In spite of its limitations, our approach leads to some robust
conclusions. Beyond a radius of about 200 au, we confirm that
the CO gas is cold with temperatures dropping from about 27 K
at 180 au to 11 K at 400 au (see Fig.6).

We note that the scale height of 24 au at 200 au which was
found to represent well the CO isotopologue emissions (see
Appendix B) corresponds to a kinetic temperature of 15 K un-
der the hydrostatic equilibrium hypothesis. This is in reasonable
agreement with the dust temperature derived by Dutrey et al.
(2014).

The outer radius of the disk is 370 au in C18O, about 550 au
in 13CO and greater than 600 au in 12CO. The last two radii are
less constrained than that of C18O because the temperature drops
steeply with radius. The primary beam attenuation does not af-
fect significantly these results.

Table 4. Temperature derived from 12CO(3–2) and surface density from
13CO(3–2) and C18O(3–2)

(1) (2) (3) (4) (5) (6) (7) )
r Tk

13CO C18O Ratio
(au) (K) (K) (K) 1015 cm−2

160 27.2 0.17 [26,28] 39 ± 2 6.7 ± 0.6 5.8 ± 0.8
200 27.4 0.11 [25,28] 18 ± 1 5.5 ± 0.4 3.3 ± 0.4
260 19.7 0.07 [19,21] 9.7 ± 0.3 2.1 ± 0.1 4.6 ± 0.4
300 18.0 0.03 [17,19] 6.8 ± 0.1 0.39 ± 0.02 17 ± 1
400 10.7 0.02 [10,11] 2.8 ± 0.03 – –

Notes. Nominal model fit after removal of Clean Components for r <
160 au. (1) Knot radius. (2) Temperature derived from 12CO(3–2) and
(3) its formal error from the fit and (4) estimated confidence interval
from the minimizations. (5-6) molecular surface density, (7) 13CO/C18O
surface density ratio.

5. Analysis of the gas inside the cavity

With a good first order model for the spectral line emission in the
ring and outer disk (i.e. beyond 169 au), we can now find a better
representation of the emission coming from the gas in the cav-
ity. For this purpose, we subtract our best ring+disk model (pre-
sented in Sec. 4) from the original visibilities. CLEANed images
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Fig. 5. The integrated intensity of (residual) emissions after subtracting the best ring+disk models. Left: 12CO(3–2). The restoring beam of 0.34′′ ×
0.28′′,PA = −89◦ is indicated in the lower left corner. Middle: 13CO(3–2). The restoring beam is 0.22′′ × 0.16′′,PA = 16◦. Right: C18O(3–2). The
restoring beam is 0.19′′ × 0.14′′,PA = −167◦. The contour level is 0.07 Jy beam−1 (5σ) for 12CO(3–2) map and ∼0.2 Jy beam−1 (3σ) for 13CO(3–2)
and C18O(3–2) maps, the zero level is omitted. The ellipses show the inner and outer edges of the dust ring at 180 and 260 au.

Fig. 6. Radial dependence of CO gas (red) and dust (black) tempera-
ture. The gas temperature is derived from 12CO(3–2) analysis. Beyond
400 au, CO temperature is extrapolated from the fitted law in the range
of 300−400 au. The dust temperature is taken from Dutrey et al. (2014).
Beyond a radius of 285 au, the dust temperature corresponds to an ex-
trapolation.

of this residual emission, which mostly comes from the cavity,
were produced for the three CO isotopologues (12CO, 13CO and
C18O J=3–2). Figure 5 presents the residual maps obtained. In
this section, we study the properties of the gas inside the cavity
using these residual maps.

5.1. The dynamics inside the cavity

To study the gas dynamics inside the cavity, we plot in Fig.8 the
azimuthal dependence of 〈Vz/ sin(i)〉 in 5 rings of width 0.25′′
each of 12CO(3–2) (black), 13CO(3–2) (red) and C18O(3–2)
(blue) emissions in the region 0 < r < 1.25′′. Azimuth
and radius are defined in the disk plane, i.e. deprojected from
the disk inclination. In each ring, we fitted the azimuthal de-
pendency of 〈Vz/ sin(i)〉 of the 13CO with a sine function
Vz/ sin(i) = Vz0 sinω. This sine function is presented as the
smooth red curve and the amplitude Vz0 is mentioned on top of

Fig. 7. Comparison of the surface densities from the LTE analysis.

each panel. The good fit for the 13CO(3–2) indicates that the
gas inside the cavity is dominated by rotation. The amplitude is
however smaller than that of the Keplerian rotation, but this is
most likely a result of the finite resolution of the observations
combined with the very inhomogeneous brightness distribution.
The dynamics of the three lines are in very good agreement for
1′′ < r < 1.25′′, but differ in the region with r < 1′′. In par-
ticular, the 12CO(3–2) departs from the 13CO(3–2) in the region
0.25′′ < r < 1′′ (boxes (b,c,d) in Fig.8) because of the bright
localized emission regions seen in CO.

However, a better fit is obtained by taking into account
the contribution of a radial (from the disk center) velocity
Vz/ sin(i) = V f all cosω + Vrot sinω as shown in the lower right
panel of Fig.8. The results are presented in Table 5: V f all > 0
corresponds to infall motions. Table 5 thus indicates that the gas
in the cavity is moving inwards to the center at velocities about
0.3 km s−1, which is about 10 − 15% of the Keplerian velocity.
Since infall and rotation motions have different radial and az-
imuthal dependencies, the finite beamsize has a different impact
on the infall velocity than on the apparent rotation velocity.
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Table 5. Infall and rotation the gas inside the cavity.

Ring VKep Vrot V f all V f all
Vrot

V f all
VKep( km s−1) ( km s−1) ( km s−1)

(a) - 0.34 0.04 12% -
(b) - 0.79 0.21 27% -
(c) 3.63 0.98 0.30 31% 8%
(d) 3.07 1.08 0.38 28% 12%
(e) 2.71 1.27 0.48 38% 18%

Notes. The rings (a)...(e) are defined in the Figure 8

Fig. 8. Dependence of 〈Vz〉 ( km s−1) on the azimuth ω (◦) in the cavity.
12CO (3–2) is in black, 13CO (3–2) in red and C18O (3–2) in blue. The
red curve is a fit of a sine function to the 13CO (3–2) data (see text). We
use a blanking if there is no good data available (no emission) in the
ring. The magenta curves show the expected Keplerian velocity around
a single star of 1.36 M�. The green curve in the panel (f) shows the best
fit velocity curve when infall motions are allowed, superimposed on the
13CO velocity.

A direct illustration of the infall motions is given in Fig.9 that
shows position-velocity (PV) diagrams of the 13CO(3–2) emis-
sion in the cavity along the major and minor axis of the disk.
The PV diagram along the major axis shows the Keplerian rota-
tion until the inner edge of the 13CO(3–2) emission, at ∼ 1.1′′
(160 au). The PV diagram along the minor axis shows an asym-
metry between the north and the south consistent with the de-
rived infall motion of ∼ 0.3−0.4 km s−1 at the same (deprojected)
radius (the PV diagrams being presented in the sky plane).

5.2. Gas properties

Using the (residual) 12CO(3–2) data and the 12CO(6–5) data
from Dutrey et al. (2014), for which the emission outside of
the cavity is negligible, smoothed to a similar angular resolu-
tion (0.35′′ × 0.30′′), we identify 2 dominant features that we
arbitrarily separate in 5 bright “blobs” to simplify the analysis
and the 6th one connecting blobs 2 and 4, brighter in CO(6–5)
(see Fig.10). The blobs are likely unresolved at this spatial reso-
lution. Integrated line flux and line widths were derived for each
blob by fitting a Gaussian into the line profile. Velocities and

Fig. 9. Position-velocity diagrams of the 13CO(3–2) emission in the cav-
ity along the major axis (upper panel) and minor axis (lower panel). The
black curves show the expected Keplerian velocity around a single star
of 1.36 M�. Contour levels are spaced by 10 mJy/beam, with the zero
contour omitted. The white lines indicate the position of the dust ring
inner edge (180 au) and the black ones that of the gas disk inner radius
(169 au). Note that the data has been rotated by 7◦ to align with the disk
axis, so that cardinal directions are approximate.

line width derived from the CO (3–2) were used to determine
the 13CO and C18O line intensities.

To determine the physical conditions, we use a non-
LTE escape probability radiative transfer code implemented in
DiskFit. It uses escape probability formulation of Elitzur (1992),
β = [1 − exp(−τ)]/τ, a single collision partner, H2, and Gaussian
line profiles. Non-LTE best fit solutions were found by sampling
the χ2 surface defined as the quadratic sum of the difference be-
tween the measured brightness temperatures and the computed
values of the CO (6–5), CO (3–2), 13CO (3–2) and C18O (3–2)
transitions, for ranges of H2 density of 102 − 1010 cm−3, 12CO
column density of 1013 − 1019 cm−2, and kinetic temperature of
3 − 100 K using 50 steps of each parameter. We assume the
standard isotopic ratios 12C/13C= 70 (Milam et al. 2005) and
16O/18O= 550 (Wilson 1999) for the relative abundances of the
isotopologues. 12CO constrain the temperature, and 13CO the
column densities. Owing to its faintness, the C18O(3–2) data
bring little information. Given the low critical densities of the
observed transitions, we only obtain a lower limit to the density.
The blob parameters are presented in Table 6.

Typically, we find high CO column densities around a few
∼ 1017 cm−2 and temperatures in the range 40–80 K, with a lower
limit on the density of the order of 105 cm−3. For the blob 6,
the faintest region we analyze with this method, the problem
is marginally degenerate, with two separate solutions: i) a high
column density (∼ 1017 cm−2), low temperature (∼ 20 K) and
(ii) a low column density (∼ 1015 cm−2) and high temperature
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Table 6. Brighter blobs properties

Blob Position Radius dv H2 density N Tkin Mass (nLTE) Mass (12CO Flux) Mass (13CO Flux)

(′′,′′) (′′) ( km s−1) (cm−3) (cm−2) (K) ( M�) ( M�) ( M�)

(1) ( 2) (3) (4) (5) (6) (7) (8) (9) (10)

1 (0.27, 0.36) 0.45 2.5 > 5.0 104 (2.1+0.6
−0.7) 1017 40 ± 5 (2.1+0.6

−0.7) 10−6 (3.1 ± 0.1) 10−7 (1.9 ± 0.1) 10−6

2 (−0.09, 0.36) 0.37 2.7 > 1.0 104 (1.4+0.7
−0.5) 1017 50 ± 5 (1.3+0.7

−0.5) 10−6 (4.5 ± 0.1) 10−7 (2.3 ± 0.1) 10−6

3 (−0.45, 0.36) 0.58 2.1 > 5.0 104 (2.6+1.0
−1.00) 1017 40 ± 5 (2.5+1.0

−1.0) 10−6 (3.2 ± 0.2) 10−7 (1.1 ± 0.1) 10−6

4 (0.09, −0.15) 0.17 6.2 > 1.0 105 (6.3+2.1
−1.4) 1016 80 ± 10 (6.3+2.1

−1.4) 10−7 (6.9 ± 0.1) 10−7 (2.5 ± 0.2) 10−6

5 (0.45, −0.18) 0.48 2.5 > 1.0 104 (2.2+1.0
−0.8) 1017 40 ± 5 (2.2+1.0

−0.8) 10−6 (3.9 ± 0.1) 10−7 (1.7 ± 0.1) 10−6

6 (0, 0.1) 0.12 6.1 > 1.0 104 (4.0+1.4
−1.4) 1016 80 ± 10 (4.0+1.4

−1.4) 10−7 (3.4 ± 0.1) 10−7 (2.8 ± 0.1) 10−6

Notes. (1) Blob, (2) Offset from ring center, (3) Distance from center, (4) line-width ( km s−1), (5) H2 density, (6) CO column density, (7) kinetic
temperature, (8) H2 mass derived from the CO column density (nLTE analysis), (9) H2 mass derived from the 12CO flux and (10) H2 mass derived
from the 13CO flux.

Fig. 10. Integrated intensity map of 12CO(3–2) (upper) (this work and
Tang et al. 2016) and 12CO(6–5) (lower) (from Dutrey et al. 2014)
and blobs position and sizes. The crosses mark the position of Aa and
Ab1+Ab2, and the ellipse is the inner edge of the dust ring (180 au).

(> 80 K). Given that this region is between Aa and Ab, the sec-
ond solution (which is also that of lowest χ2) is more probable.

5.3. Gas masses

The lower limit on the density obtained from the non-LTE analy-
sis being insufficient to provide any useful constraint on the blob
masses, we use another method to do so. We estimate the blob
mass from the derived molecular column density and blob size,
assuming a molecular abundance relative to H2, as described be-
low.

In the same way, we also derive the total amount of gas in
the cavity, from the integrated flux of the optically thin lines of
the 13CO(3–2) and C18O(3–2). For this purpose, we integrate the
emission out to a radius of 160 au.

In the optically thin approximation, the integrated flux and
the column density of the upper level of a given transition are
related by:

W =
gu

γu
Nu (1)

where, W =
∫

Tb dv is the integrated brightness inside the cavity
(R < 160 au), gu = 2J + 1 is the statistics weight and Nu is
the column density of the upper level, γu = hc3Aul

8π kBν2 (the Einstein
coefficient Aul is taken from Lamda database3). Guided by the
results of the non-LTE analysis, we assume the gas temperature
T is 40 K everywhere inside the cavity and calculate the total
column density Ntotal of a given molecule:

Ntotal =
Nu

Z
exp

(−Eu

kB T

)
(2)

where, Z is the partition function and Eu is the energy of the
upper state. The 12CO(3–2) emission, being partially optically
thick, will yield a lower limit.

CO abundance was taken from those measured in TMC-1 by
Ohishi et al. (1992), and we assumed a standard isotopic ratio
for the isotopologues (13CO and C18O). Results are in Cols 9-10
of Table 6 for the blobs, and Table 7 summarizes the results for
the cavity.

The H2 mass derived from 13CO(3–2) and C18O(3–2) are
similar which confirms that these lines are optically thin while
the 12CO emission is optically thick.

3 https://home.strw.leidenuniv.nl/ moldata/
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Table 7. Mass of gas inside the cavity

Location Integrated Flux H2 mass Abundance
(Jy km s−1) ( M�) (w.r.t H2)

Cavity (12CO) 11.4 ± 0.8 6.1 ± 0.4 × 10−6 8.0 × 10−5

Cavity (13CO) 3.8 ± 0.1 1.6 ± 0.1 × 10−4 †
Cavity (C18O) 0.5 ± 0.2 1.6 ± 0.8 × 10−4 ‡

Notes. † X[13CO]=X[12CO]/70 and ‡ X[C18O]=X[12CO]/550 (see text).

6. Discussion

Fig.11 is a schematic layout summarizing the properties of the
GG Tau A system. Numbers quoted in this schematic view are
discussed in the following section.

Inner Disks: 
NIR dust, H2, warm CO

10 μm Si feature, 
sub-mm CO & dust

CO snow-line 
Tk=20 K (DCO+ peak) 

decide

Disk Accretion, 
shocked Gas & Dust: 

molecular tracers, e.g. H2

Streamers:  
warmer CO

molecular rotational lines
CO, CS, DCO+, HCO+, H2S

180260 800 
!"#$ = 27 (

200*+
–-

!./$0 = 14 (
200*+

–-
300 

Inner Disks: 
NIR dust, H2, warm CO

10 μm Si feature Near side

Far side

NORTH

SOUTH

Near side

Inner Disks: 
sub-mm CO & dust

BLOBS
Tkin =  40–80 K 
NCO = 1017 cm–2

nH2  = 107cm–3

CO streamers

CAVITY
Mgas=1.6×10–4 Msun
Macc=6.4×10–8 Msun/yr

Far side

NORTH

SOUTH

Fig. 11. A schematic view of the GG Tau system. Colored text indicates
results obtained from other publications, in particular magenta is from
Phuong et al. (2018a); see Dutrey et al. (2016) for a review of other
references. Black text are for results from this work.

6.1. Temperature distribution in the outer disk

Our analysis confirms that most of the outer disk of GG Tau
A is very cold (see Fig.6). The gas temperature derived here
agrees with the value found by Guilloteau et al. (1999) from
13CO only, 20 K at 300 au. The agreement between values de-
rived independently from 12CO and 13CO supports our assump-
tion of a limited vertical temperature gradient in the CO layer, as
already mentioned by Tang et al. (2016). A power law fit to this
temperature profile gives a radial dependency of r−1− r−1.3, con-
firming the previous exponent value of −1 derived by Guilloteau
et al. (1999). Dutrey et al. (2014) also found a similar exponent
for the dust temperature from the analysis of dust images be-
tween 3 and 0.45 mm using a simple power law. Since this study

is based on multi-wavelength continuum resolved observations
from 3 up to 0.45 mm, the derived dust temperature is character-
istic of the large grains which have likely settled down around
the mid-plane. It is then reasonable to consider that this tem-
perature traces the mid-plane dust temperature. This steep radial
slope of the temperatures is most likely due to the stellar light
being blocked by the inner dense ring, while the rest of the disk
remains then in its shadow.

6.2. Gas distribution and smoothness of the outer ring

Global properties Our canonical (smooth) model (Sec.4.2)
shows that the ratio of the 13CO and C18O column densities be-
yond r > 300 au is of the order of 17 (see Table 4) above the
standard isotopic ratio of 7, suggesting selective photodissocia-
tion (e.g. van Dishoeck & Black 1988), but also confirming that
in the outer disk the emissions are optically thin.

On the contrary, inside the densest part of the ring (200 −
260 au), the measured ratio is of the order of 3 − 5. Chemical
effects such as selective photodissociation and fractionation that
occurs through isotope exchange between CO and C+ (Watson
et al. 1976) and enhances 13CO at temperatures about 20-30
K, would both tend to enhance this ratio above the double iso-
topic (16O/18O)/(12C/13C) ratio. Thus the simplest explanation
for a low value is partially optically thick 13CO(3–2) emission.
However, our model should account for the opacity if the disk
was as smooth as assumed. Hence, we conclude that the GG Tau
disk and ring deviates significantly from the smooth, non strati-
fied, azimuthally symmetric structure we adopted.

Smoothness versus unresolved structures The radial pro-
file (see Fig.3 upper panels) of the observed molecular lines,
12CO(3–2), 13CO(3–2), C18O(3–2) does not appear smooth.
After subtracting the best (smooth) outer disk model, Figure
5 reveals some extra emission located in rings, at specific az-
imuths. This is particularly clear for the optically thinner tran-
sitions of the C18O(3–2), suggesting radial density variations
in the molecular layer (at about 1 scale height). Contrary to
the gas, the dust emission is hardly seen in the outer disk (ra-
dius > 260 au), but mostly concentrated in the ring (radius
200 − 260 au).

The azimuthal dependence of the integrated brightness of the
12C16O emission (Fig.3 lower left panel) shows strong excesses
at specific azimuth. The excess seen in the south-east quadrant
is consistent with the hot spot location quoted by Dutrey et al.
(2014). This “hot spot” remains visible, though less clearly in
13CO and C18O. This indicates that it is mostly a temperature
enhancement, rather than an overdensity region.

In the residual maps (Fig.5), other azimuthal variations are
also visible. Our smooth model removes any azimuthally sym-
metric emission so that apparent effects resulting from velocity
coherence length and convolution with elongated beam-shape
are properly eliminated. The observed residuals thus reveal in-
trinsic structures.

All these evidences point to the existence of radial and az-
imuthal sub-structures that remain unresolved (at least radially)
at our 30 au linear resolution.

6.3. Properties of the gas inside the cavity

Kinematics From Fig.4, the rotation appears sub-Keplerian at
radii smaller than about 0.8′′. This could be the signature of the
tidal forces generated by the Aa/Ab binary. Unfortunately, this
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is largely an effect of the intensity drop in the cavity, combined
with the finite angular resolution. Since the signal intensity in-
creases with radius in the cavity, the intensity weighted mean ve-
locity is biased towards the values obtained at the largest radii,
i.e. the gas apparently rotates at smaller velocities. A proper
modeling of the angular resolution effect, accounting for the ob-
served brightness distribution, would be required to remove this
artefact and figure out whether the gas is rotating at the expected
Keplerian speed or not.

On the other hand, we find clear evidence for infall motions
in the cavity (see Sec.5.1), at velocities about 10 − 15% of the
Keplerian speed, proving that material is accreting onto the inner
disks orbiting the central stars. This is consistent with the infall
value found for L 1551 NE, a younger binary system (Takakuwa
et al. 2017). However, our sensitivity is insufficient to make de-
tailed comparison with hydro-dynamics models.

In summary, we find that the gas starts to exhibit non-
Keplerian motions (at least infall motions, and perhaps slower
than Keplerian rotation) at r ≈ 160 au, somewhat smaller than
the inner edge of the dust ring (193 au). This difference in radii is
expected when dust trapping in the high pressure bump occuring
in the dense ring is considered (e.g. Cazzoletti et al. 2017). The
160 au radius remains however much larger than the radius at
which tidal disturbances are expected in a binary system, which
is about 2.5-3 times the orbit semi-major axis (Artymowicz &
Lubow 1996). Given the current separations of Aa and Ab,
about 35 au, we would expect deviations from Keplerian mo-
tions would only appear inside about 100 au, unless the orbit is
very eccentric. High eccentricity appears unlikely given the mea-
sured orbital parameters (Beust & Dutrey 2005), who also men-
tioned than underestimated astrometric errorbars could play an
important role. Following Beust & Dutrey (2005), Köhler (2011)
and Nelson & Marzari (2016) showed that this apparent contra-
diction could be solved if one assumes that the orbital plane of
the stars is very different from the (common) plane of the ring
and outer disks. A similar result was found by Aly et al. (2018)
who indicate that an inclination difference of 30◦ could remain
stable over the (circumbinary) disk lifetime. However, Brauer
et al. (2019) found the circumstellar disk around Aa and one of
the disks around Ab1 or Ab2 must also be co-planar with the
circumbinary ring and disk, making the mis-aligned orbit propo-
sition unlikely, since the alignment of the circumstellar disks is
more controlled by the gravitational interactions with the stars
than with the (much less massive) outer disk. The cavity size
puzzle thus remains.

Gas temperature Our non-LTE analysis, in agreement with the
study from Dutrey et al. (2014), shows that the gas inside the
cavity is warm, with temperatures ranging from 30 to 80 K. In
the bright blobs, near the stars, we derived a kinetic temperature
of the order of 40 − 50 K at about 30 − 60 au from the central
stars. It is important to mention that such temperatures are well
above the CO freeze out temperature.

Amount of gas From our non-LTE analysis of the bright blobs,
we found ∼ a few 1017 cm−2 for the CO column density with the
exception for blobs 4 and 6 which have a lower column density
of ∼ (3 − 6) 1016 cm−2. We also obtained a lower limit on the
H2 density of the order of ∼ (1 − 10) 104 cm−3 for all blobs.
However, a more stringent constraint can be obtained from the
blob masses given in Table 6, because the thickness of the blobs
is of the order of the scale height H(r), 5 to 10 au at this distance
to the stars. This leads to densities about 107 cm−3.

The cumulative mass of the blobs is ∼ 1.2×10−5 M�. We also
estimated the total gas mass inside the cavity from the integrated
flux of the optically thin CO isotopologues. We found a mass of
∼ 1.6 × 10−4 M�, assuming standard CO abundance (see Table
7). The 13CO and C18O values perfectly agree suggesting that
both the 13CO and C18O emissions are essentially optically thin
in the cavity.

Therefore, the total mass of the gas inside the cavity appears
a factor 10 larger than the cumulative blob mass. This only relies
on the assumption of similar molecular abundances in these re-
gions, which is reasonable given their similar temperatures. Thus
a significant fraction of the gas in the cavity does not reside in
the dense blobs but in diffuse features.

Determining the absolute value of the gas mass inside the
cavity is more challenging. On one hand, our assumed value for
the CO abundance, that observed in TMC-1, appears reasonable
given the relative high temperature in the cavity. However, lower
values might result from C and O still being locked on grains
in the form of more complex or less volatile molecules (CO2
and CH4, see Reboussin et al. (2015)). A proper quantification
of such a process would require a complete chemical study fol-
lowing the physical and chemical evolution of the gas and solid
phases throughout the disk.

Nevertheless, an absolute minimum value for the gas mass
in the cavity can be obtained if we assume the CO abundance
cannot exceed the Carbon cosmic abundance expected in cold
molecular clouds (3.4 × 10−4 Hincelin et al. 2011). In this case,
we obtain the minimum mass by correcting the previous value by
the factor of ∼ 0.2. This leads to ∼ 0.3 × 10−4 M� for the total
gas mass inside the cavity.

In any case, the mass of gas in the cavity is only a very small
fraction of the total disk mass (0.15 M�) which is estimated from
the dust emission.

Mass accretion rate The gas in the cavity is unstable and
will accrete onto the GG Tau A disks on a timescale of a few
(∼4) orbital binary periods, that is estimated to be around 600
years, see Beust & Dutrey (2005). A similar timescale, about
2500 yrs, is given independently by the ratio of cavity radius
to the measured infall velocities. This gives an accretion rate of
∼ 6.4 × 10−8 M� yr−1 if we assume the canonical mass value.

The accretion rate on GG Tau Aa+Ab, measured in year
2000 using the Hα line, is about ∼ 2× 10−8 M� yr−1 (Hartigan &
Kenyon 2003), a factor 3 lower than our estimate. The small dif-
ference may be partly explained by variable accretion inside the
cavity and onto the central star(s) associated to non steady state
dynamics. In a binary star, the accretion rate process is mod-
ulated by the eccentricity, being more efficient at the pericen-
ter with a delay which depends at zero order of the eccentricity
(Artymowicz & Lubow 1996; Günther & Kley 2002). The two
values of the accretion rates reflect different aspects of a highly
variable process depending how and when these rates are mea-
sured. The fair agreement between both results shows that the
GG Tau A disk can be sustained by accretion through the cavity
on a long timescale.

7. Summary

We report new observations of CO isotopologues with ALMA
of the close environment of GG Tau A. We study the ring by
performing a LTE analysis and we perform non-LTE analysis for
the gas clumps observed inside the cavity, we also investigate the
gas kinematics in the outer disk and inside the cavity.
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– The ring and outer disks do not exhibit a smooth distribu-
tion but likely consist of a series of unresolved substructures
with some azimuthal variations, particularly in the dense in-
ner ring. The bright hot spot seen in 12CO is marginally seen
in 13CO and in C18O, suggesting a temperature effect.

– The gas temperature derived from the optically thick CO line
has a sharp decrease (r−1), as for the dust. The temperature
of 20 K (CO snowline) is reached at ∼ 300 au.

– The total amount of mass inside the cavity derived from
13CO is (1.6 ± 0.1) × 10−4 M�, assuming standard CO abun-
dance.

– The gas streamers inside the cavity can be essentially de-
fined by 6 blobs. A non-LTE analysis reveals that their con-
ditions are similar with CO column densities around a few
∼ 1017 cm−2, temperatures in the range 40 − 80 K, and H2
density in the dense parts of the order of 107 cm−3.

– The kinematics of the whole structure (outer ring + cavity)
appears in Keplerian rotation around a 1.36 M� system for
radii beyond ∼ 1.2” or 180 au. The kinematics of the gas
streamers and blobs appear more complex than it is expected
for such a binary system. In particular, the gas starts to ex-
hibit non-Keplerian motions for radii smaller than ∼ 160 au.

– The gas inside the cavity shows infall motions of about 10%
of the Keplerian velocity allowing the central stars to accrete
material from the dense ring.

– The average mass flow rate of the gas through the cavity is
∼ 6 × 10−8 M� yr−1, a value compatible with the stellar ac-
cretion rate measured using the Hα line, and sufficient to re-
plenish the circumstellar disks.
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Appendix A: Channel maps

We present in Figs.A.1-A.2 the Cleaned channel maps produced without subtracting the continuum emission.

Fig. A.1. Channel maps of 13CO(3–2), Beam 0.22” × 0.16”, PA=16◦. The noise level is 2.4 mJy beam−1. The colour scale is indicated in the upper
right panel. The cross is centred on the centre of the map.

Fig. A.2. Channel maps of C18O(3–2), Beam 0.19” × 0.14”, PA=19◦. The noise level is 4.8 mJy beam−1. The colour scale is indicated in the upper
right panel. The cross is centred on the centre of the map.
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Appendix B: Disk model fitting

We use the DiskFit tool (Piétu et al. 2007) to derive physical parameters of rotating circumstellar disks.

Principles: DiskFit computes the spatial distribution of the emission coming from spectral lines (and dust) as a function of fre-
quency (related to the line rest frequency and source Doppler velocity) for a given azimutally symmetric disk model.

In its basic form, as described in Piétu et al. (2007), the disk model assumes that the relevant physical quantities which control
the line emission vary as power law as function of radius, and, except for the density, do not depend on height above the disk plane.
The exponent is taken as positive if the quantity decreases with radius:

a(r) = a0(r/Ra)−ea

If dust emission is negligible, for each molecular line, the disk is thus described by the following parameters :

– X0,Y0, the star position, and Vdisk, the systemic velocity.
– PA, the position angle of the disk axis, and i the inclination.
– V0, the rotation velocity at a reference radius Rv, and v the exponent of the velocity law. With our convention, v = 0.5 corresponds

to Keplerian rotation. Furthermore, the disk is oriented so that the V0 is always positive. Accordingly, PA varies between 0 and
360◦, while i is constrained between −90◦ and 90◦.

– Tm and qm, the temperature value at a reference radius RT and its exponent.
– dV , the local line width, and its exponent ev.
– Σm, the molecular surface density at a radius RΣ and its exponent pm
– Rout, the outer radius of the emission, and Rin, the inner radius.
– hm, the scale height of the molecular distribution at a radius Rh, and its exponent eh: it is assumed that the density distribution is

Gaussian, with

n(r, z) =
Σ(r)

h(r)
√
π

exp
[
− (z/h(r))2

]
(B.1)

(note that with this definition, eh < 0 in realistic disks)

thus giving a grand total of 17 parameters to describe a pure spectral line emission.
All these parameters can actually be constrained for each observed line, under the above assumption of power laws. This comes

from two specific properties of proto-planetary disks: i) the rapid decrease of the surface density with radius, and ii) the known
kinematic pattern. In particular, we can derive both the temperature law (Tm, qm) and the surface density law (Σm, pm) when there is
a region of optically thick emission (in the inner parts) while the outer parts is optically thin.

If dust emission is not negligible, it can also be accounted for in the emission process. Again assuming simple power laws, this
adds up 6 new parameters, namely 2 for the dust temperature, 2 for the dust surface density, plus the inner and outer radii of the
dust distribution. Note that the absolute value of the dust surface density is degenerate with that of the dust absorption coefficient.
Surface density and temperature may also be degenerate if the dust emission is optically thin and in the Rayleigh Jeans regime. Dust
emission being in general weak compared to the observed spectral lines, an inaccurate model of the dust will have limited effects.

Power laws are good approximation for the velocity, temperature (see, e.g. Chiang & Goldreich 1997), and thus to the scale
height prescription. For molecular surface density, the approximation may be less good because of chemical effects.

We refer to Piétu et al. (2007) for a more thorough discussion about the interpretation of the model parameters. We recall
however that the temperature derived in such a way for a molecule is the excitation temperature of the transition, and that the
surface density is derived assuming this temperature also represents the rotation temperature of the rotational level population.

From the disk model, an output data cube representing the spatial distribution of the emitted radiation as a function of velocity
is generated by ray-tracing. From this model data cube, DiskFit computes the model visibilities on the same (u, v) sampling as the
observed data, and derives the corresponding χ2:

χ2 = Σi (M(ui, vi) − O(ui, vi))2 /Wi

where M is the model visibility at the (ui, vi) Fourier plane coordinate, O the observed visibility, and Wi the visibility weight,
computed from the observed system temperature, antenna efficiency, integration time and correlation losses.

A Levenberg-Marquardt method (with adaptive steps adjusted according to the estimated parameter error bars) is then used to
minimize the χ2 function upon the variable parameters.

Error bars are computed from the covariance matrix. As described by Piétu et al. (2007), although there are many parameters
in the model, they are in general well decoupled provided the angular resolution is sufficient. Thus the covariance matrix is well
behaved, but assymetric error bars are not handled (assymetric error bars often happen for the outer radius, even leading to lower
limits only in case of insufficient sensitivity).

Broken power laws The basic power law model above is insufficient to represent the emission from the GG Tau A disk, because
of strong and non monotonic radial variations of the line brightness in CO and 13CO.

Instead of representing the whole emission by unique temperature and surface density power laws over the whole extent of the
disk, we thus break them into multiple power laws, each applying to different annuli. Such a broken power law is fully characterized
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by the values of the temperature and surface density at the knot radii, i.e. the radii that separate consecutive annuli. Given the knot
position, the power law exponent can be derived from the ratio of values at consecutive knots. For the innermost annulus (between
the inner radius and the first knot) and outermost annulus (between the last knot and the outer radius), we simply assume the same
exponent as in their respective neighbors.

This representation gives us more flexibility in the shape of the distribution. However, the finite spatial resolution (even accouting
for the super-resolution provided by the Keplerian nature of the rotation), as well as sensitivity issues, limit the possible number
of knots. In practice, we could use 4 or 5 knots to represent the narrow dense ring and the shallower outer disk in CO and other
molecules.

This finer radial profile representation also breaks our ability to determine both the temperature and the surface density in each
annulus, as these two quantities are degenerate if the line is optically thin (unless the annulus is very wide). 4

We thus used the CO J=3-2 line to derive the temperature, and used this temperature law as fixed input parameters to derive
molecular surface densities.

B.1. Best fit model

We obtained our best fit model using the following method. Figure B.1 displays the integrated intensity maps derived from Figs.A.1-
A.2 and from the best fit model, as well as that of the residuals, that are dominated by emission in the cavity. Note that the continuum
emission from Aa has been removed in these residuals.

Geometric parameters All data sets were recentered on the dust ring center.
We verified by fitting that the geometric parameters are consistent with values derived from previous studies. In particular, we

verified that the ring center position (X0 = 0,Y0 = 0) is also consistent with the kinematic center of the Keplerian rotating disk.
The typical errors on these parameters (±0.01” for the position, ±1 − 2◦ for PA and i, ±0.03 km s−1 for Vsys and V0) are much

too small to affect in any substantial way the derived temperatures and surface densities. Similarly, the small difference between the
rotation velocity derived in Sec.3.2.2 and the adopted value has no significant impact.

Dust model The dust properties and dust temperature law were adopted from Dutrey et al. (2014). Only the dust surface density
was adjusted, to compensate to first order flux calibration errors. Although the model is not perfect (in particular it does not represent
the ∼ 15% azimutal brightness variations), the residuals are small enough to have negligible influence on the results derived for the
observed molecules.

Temperature law The temperature law is derived from the fit to the CO data, and used for other molecules as fixed input parameters.
To better model the ensemble, we assumed the CO column density (which is not well constrained by the CO data because of the
high optical depth) is equal to 70 times the 13CO column density.

Scale height We assumed the scale height exponent was eh = −1, i.e. h(r) = Hm(r/rh). The scale height was fitted independently
for CO and 13CO data, leading to a consistent value of 23 au at rh = 100 au, which was used as a fixed parameter in the final fit for
all spectral lines.

Nominal fit Table B.1 summarizes the adopted fixed parameters for our final best fit. Since the coupling between these parameters
and the fitted ones (temperatures and surface densities) are small, fixing these parameters does not affect the derived values and
errorbars of the fitted parameters.

4 In the optically thick case, the temperature is well constrained, but the surface density can only be constrained from the opticall thin line wings.
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Table B.1. Fitting parameters

Geometric parameters
Parameter Value Status
(x0, y0) (0,0) Center of dust ring Verified
PA(◦) 7 PA of disk rotation axis Verified
i(◦) −35 Inclination Verified
VLSR 6.40 Systemic velocity Verified
V0 (km s−1) 3.37 Keplerian Rotation velocity at 100 au Verified
dV (km s−1) 0.3 Local line width Fixed
H0 24 Scale height at 200 au Verified

Dust ring parameters
Rin 193 au Inner radius fixed
Rout 285 au Outer radius fixed
Kν (cm2/g) 0.02 × (ν/230GHz)+1 Abs. Coefficient fixed
T (r) (K) 14 × (r/200 au)−1 Temperature fixed
Σ(H2)(r) (cm−2) 5.6 1024 × (r/200 au)−1.4 Surface density Fitted

Line parameters
Rin 169 au Inner radius Verified
Rknots see results Knot positions Fixed
T (r) (K) see results Temperature law fitted from CO
Σ((X))(r) (cm−2) see results Molecule X surface density Fitted
Rout(X) see results Outer radius for Molecule X Fitted

Notes. Fixed values are taken from Dutrey et al. (2014). Verified values were used as fixed parameters in the last fitting step, but as free parameters
in intermediate fits to verify their impact.
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Fig. B.1. From top to bottom, 12CO(3–2), 13CO(3–2) and C18O(3–2). Left: The integrated intensity map. Middle: The
best ring and outer disk model intensity map. Right: Residual emission inside cavity (original data minus best fit model).
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1 Scientific Justification

Dust Traps in young Disks With the advent of ALMA, detailed observations of the dust emission
around TTauri stars have revealed the presence of dust rings around many systems, which are
sometimes asymmetric such as that of Oph IRS 48 (Van der Marel et al., 2013). These systems
exhibit a central cavity where the dust is strongly depleted, while CO gas is still present (Van der
Marel et al., 2015). Most of the mm continuum emission is confined in a ring encircling the central
cavity. This is seen in transition disks (Andrews et al., 2011) but also around binary systems such
as HD142527 (Casassus et al., 2015). The existence of such cavities is expected to result from
gravitational tidal interactions due to the central binary or to an unseen planet residing inside the
cavity. The presence of the dust ring is reinforced by the fact that large dust grains which dominate
the mm continuum can remain trapped at large distance from the central star, at the outer gas
pressure maximum resulting from these tidal interactions (Pinilla et al., 2012). Hydrodynamical
models have also shown that asymmetric pressure bumps can form due to anticyclonic vortices
or Rossby instabilities (Zhu and Stone, 2014, Lovelace et al., 1999). Quantifying the amount of
dust trapping would provide a clear test of our understanding of these mechanisms. This has been
attempted so far by comparing the distribution of optically thin tracers, such as CO isotopologues,
to that of dust.

For example, Boehler et al., 2017 have performed a study of the asymmetric bumps observed in
the circumbinary ring of HD 142527. After correcting for the opacity of the CO lines, and assuming
a CO/H2 abundance ratio of 6 10−5, they found a gas-to-dust ratio at the maximum of the ’mm’ dust
emission of about 1.65 while the mean value across the ring is of the order 3-5.

Tracing the gas mass in protoplanetary disks: The method presented above has a major
problem: the CO line opacity is very high meaning that the method only traces the CO near the
disk surface. Studying TW Hya, Zhang et al 2017 have shown that to really characterize the bulk
of the gas near the mid-plane, rarer optically thinner isotopologues, such as 13C18O, have to be
observed. With the exception of TW Hya located at 56 pc, this necessitates very long integration
times. Moreover, assuming that the CO-to-dust ratio can be properly determined at the location
of the CO layer, the CO-to-H2 ratio can be still uncertain by a factor 2 to 10 (Favre et al., 2013,
Reboussin et al., 2014) due to chemical effects. This can significantly affect the gas-to-dust ratio and
the mass determination, at the end. In a recent study of the Flying Saucer edge-on disk,
Dutrey et al 2017 directly confirmed, by tomography that in a disk, the CO layer is
typically located 3-5 scale heights above the mid-plane. If we want to characterize the bulk
of the dense gas, we need to find an abundant, easy to detect, gas tracer which emission peaks deeper
in the disk, relatively protected from the UV flux to minimize chemical effects. This is exactly the
case of CS: in the Flying Saucer disk, the optically thin CS J=5-4 layer is observed around 1 scale
height or less. This makes CS the best molecule to trace the high density H2 gas in a disk. This is
not surprising because due to its high dipole moment, CS is recognized and utilized as a high density
tracer to study molecular clouds and dense cores. This is opposite to CO that, because of its very
low dipole moment, is easily thermalized and thus only a good tracer of the gas temperature (Dartois
et al 2003). As CS is relatively strong in protoplanetary disks (Guilloteau et al 2016), its use as a
density tracer will become an important tool in the near future.

Therefore, we propose here an approach that does not rely on molecular abundances,
but directly measure the density and mass from the excitation conditions of the CS
molecule. Studying the CS excitation conditions using several lines of CS will allow us
to recover the mass of gas and in a second step the gas-to-dust ratio.
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Figure 1: ALMA and IRAM images of GG Tau A (Dutrey et al., 2016) IRAM data: CO
J=2-1 (Guilloteau and Dutrey 2001) and CS J=3-2 integrated areas and 1.3mm map. ALMA data:
CO and 13CO J=3-2 and CO J=6-5 (Dutrey et al., 2014) and CS J=7-6 (Phuong et al., 2018, in
prep) integrated areas, 0.8 and 0.45mm maps. The ellipses display the location of Aa, the inner (180
au) and outer (260 au) radii of dust emission.

GG Tau A, a unique target: Located at 140 pc in Taurus cloud, GG Tau A is a young (about
1-3 Myr old) hierarchical triple system consisting of a single star GG Tau Aa and a close binary GG
Tau Ab (named Ab1 and Ab2 and separated by 4.5 au , DiFolco et al., 2014). GG Tau Aa and
Ab are separated by 35 au in the plane of sky. The triple star is surrounded by an outer Keplerian
disk of gas and dust which consists of a ring extending from ∼180 au up to ∼260 au and a larger
disk of outer radius ∼ 800 au (Dutrey et al., 1994). The central cavity is not completely devoid of
dust as suggested by scattered light images (e.g. Roddier et al., 1996) and contains gas as revealed
by observation of 12CO J=2-1 (Guilloteau and Dutrey 2000). Beck et al., 2012 also reported the
existence of very hot (∼ 1000 K) H2 gas around the stars. ALMA Band 9 (CO and continuum images
at angular resolution 0.2′′) analyzed with existing PdBI observations (Dutrey et al., 2014, and Fig.1)
revealed the presence into the cavity of a streamer of CO gas resolved in several fragments and falling
onto the central stars. Moreover, the Band 7 CO observations (project 2012.1.00129.S, Tang et al.,
2016) also reveal the presence of a local hot spot while the 13CO J=3-2 data strongly suggests the
existence of an unresolved/embedded gap at the ring outer edge (∼ 260 au) which also corresponds
to the radius of the hot spot. Together with evidence for local heating at the hot spot location, this
reinforces the hypothesis of an accreting planet at the hot spot location (Tang et al, 2016).

Thus the dense and massive dust ring, extending from 180 to 260 au, appears to be confined by
gravitational tidal interactions due to the proto-planet on one side and to the central triple star on
the other side. Simultaneous modeling of the 3, 1.3 and 0.5mm images provides the determination
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Figure 2: ALMA simulated non-LTE CS emissions of the GG Tau A ring CS J=5-4 (left)
and CS J=7-6 (right) brightness distributions (K) simulated using DiskFit, assuming the best model
derived from CO, CS and dust existing images. The angular resolution is set to 0.3′′. The CS J=7-6
samples the inner ring while the CS J=5-4 is observed in the whole ring, as expected from the
observed physical conditions.

of the dust (mid-plane) temperature. The disk is cold with a dust temperature of 14 K at 200 au
and about 8 K at 300 au (Dutrey et al., 2014). Its total mass (gas and dust) estimated from the mm
dust images is 0.13 M� and assuming standard dust absorption coefficient (Beckwith et al., 1990)
with a gas-to-dust ratio of 100 (although Andrews et al., 2014, using additional 7-cm VLA data,
suggest different dust properties that lead to lower dust masses). Such a mass is high compared to
the stellar mass of 1.28 M� and the ring may be partly self-gravitating.

The properties mentioned above make the ring a perfect candidate for an almost perfectly symmet-
ric ’mm’ dust trap. We propose to use a multi-line study of CS to derive the gas density,
and thus study potential variations of the dust-to-gas ratio as a function of radius in
this azimuthally symmetric disk.

2 Immediate objectives and Proposal:

Our primary goal is to image the disk and ring in CS J=5-4 at an angular resolution of 0.3′′. These
data will perfectly complement the existing CS J=7-6 data from ALMA at 0.4′′ (project 2012.1.129.S)
and 0.1′′ (2015.1.00224.S) and the CS J=3-2 data at 1′′ resolution from NOEMA. Figure 1 presents
the observations, and clearly reveals that the emissions of the two transitions have different spatial
distributions. The J=3-2 line extends up to a radius of 400 au, while the high excitation transition
of J=7-6 is mostly seen in the dense inner ring at radius less than 300 au. This is confirmed by
the modeling of the CS J=3-2 and CS J=7-6 (Phuong et al 2018, in prep.) and our preliminary
study of the excitation conditions of the CS lines inside the ring+disk (see Fig. 2 our first non-LTE
models). The three transitions sample different excitation conditions, and have different critical
densities ranging from a few 105 to about 108 cm−3. The high J transitions of CS (J=5-4 and J=7-6)
are located around one scale height above mid-plane. They can be sub-thermally excited in the outer
disk and are mostly observed in the inner, denser part of the ring (Dutrey et al., 2017, Phuong et
al., 2018 in prep). On the contrary, the CS J=3-2 is observed in the ring and in the outer disk.

With the CS J=5-4 observed at about the same angular resolution as that of the CS J=7-6, we will
be able to fully characterize the gas density inside the ring (see Fig.2) while with the CS J=3-2, we
will be able to study the outer disk (see also Fig.1). Figure 2 presents a non-LTE simulation of the
CS J=5-4 emission of the ring using our current knowledge of the gas ring+disk system (obtained
using the nLTE version of DiskFit, Pietu et al (2007)). A good estimate from the gas temperature
has been already derived from previous CO and 13CO analyses (Tang et al., 2016 andGuilloteau et
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al., 1999). More recently, using new 12CO, 13CO and C18O ALMA (2015.1.00224.S) observations,
Phuong et al 2018 (in prep.) have analyzed the ring+outer disk properties. They confirmed that
beyond a radius of 230 au, the gas disk is very cold, with a steep slope in r−1. Tang et al., 2016 also
found that there is no vertical temperature gradient in the molecular layer. The CO gas is at 20 K
at 300 au, compared to a dust temperature of 14 K. As a consequence, the kinetic temperature of
the CS emitting layer is expected to be around or slightly below 20 K. The dust temperature of 14
K can be seen as an absolute lower limit, being the temperature of ’mm’ dust emitting layer lying
onto the mid-plane because of dust settling. These two values will allow us to bracket the excitation
conditions of CS. Even getting a lower limit on the density would allow us to exclude low gas-to-dust
ratios. Since this method measures the density, the result does not rely on any assumption about
the molecular abundances, and hence on chemical modeling.

Finally, last but not least, the choice of CS is also dictated by the fact that new
accurate collisions rates with H2 have been calculated by Denis-Alpizar et al., 2012,
2013, 2018.

We also include in the setup the CN J=2-1 which has been already detected by Dutrey et al., 1997
in GG Tau. CN is ubiquitous in TTauri disks (Guilloteau et al., 2013), presumably coming from the
photo-dissociation layer above the mid-plane (Cazzoletti et al 2018). Because of its sensitivity to
the UV field, it should provide a clear determination of the inner edge of the ring, where the gas is
directly exposed to the UV radiation from the central triple star.

The setup also includes the CO J=2-1 line that can be observed for free, and would improve our
knowledge of the temperature along the gas streamers in the cavity (Dutrey et al., 2014).

For CO, CN and CS lines, a final spectral resolution of 0.1-0.2 km/s will be enough to retrieve the
kinematic information (but the observations will be obtained with ∼0.05 km/s sampling to allow
study of turbulence using the method of Guilloteau et al., 2012) while an angular resolution of 0.3′′

is needed. We request a total observing time of about 6.2 hours.

Team Strengths Our team includes experts in millimeter interferometry working on observations
of protoplanetary disks and relevant modeling (gas and dust). We have developed tools dedicated
to the analysis of mm observations (molecules and dust) of protoplanetary disks, such as DiskFit
(Pietu et al., 2007, Boehler et al., 2013).

Potential for Publicity This project will provide the first robust measurement of the gas-to-
dust ratio inside a disk. Moreover, ALMA observations of GG Tau made by our team have already
provided attractive images: see http://www.eso.org/public/news/eso1434/.

References Andrews et al., 2011, ApJ, 742, 5. Andrews et al., 2014, ApJ, 787, 148. Beck et al.,
2012, ApJ, 754, 72. Beckwith et al., 1990 AJ, 99, 924. Boehler et al., 2013, MNRAS, 431, 1573.
Boehler et al., 2017, ApJ, in press. Casassus et al., 2015, ApJ, 812, 126. Cazzoletti et al., 2018, AA,
609, 93. Dartois et al., 2003, AA, 399, 773. Denis-Alpizar et al., 2012, 2013, J. Chem. Physics, 137
& 139. Denis-Alpizar et al 2018, MNRAS, submitted DiFolco et al., 2014, AA, 565, 2. Dutrey et
al., 1994, AA, 286, 149. Dutrey et al., 1997, AA, 317, L55. Dutrey et al., 2014, Nature , 514, 600.
Dutrey et al., 2016, AA Review, 24, 5. Favre et al., 2013, ApJ, 776, 38. Guilloteau et al., 1999, AA,
348, 570. Guilloteau and Dutrey 2000, ASPCS, 219, 645. Guilloteau and Dutrey 2001, Proceedings
of IAU symposium 200. Guilloteau et al., 2012, AA, 548, 70. Guilloteau et al., 2013, AA, 549, 92.
Guilloteau et al., 2016, AA, 592, 124. Lovelace et al., 1999, ApJ, 513, 805. Phuong et al 2018, in
prep. Pietu et al., 2007, AA, 467, 163. Pinilla et al., 2012, AA, 538, 114. Roddier et al., 1996, ApJ,
463, 326. Reboussin et al., 2014, MNRAS, 440, 3557. Tang et al., 2016, ApJ, 820, 19. Van der Marel
et al., 2013, AA, 556, 76. Van der Marel et al., 2015, ApJ, 810, 7. Zhu and Stone 2014, APJ, 759.
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The choice of the spectral correlator has been done to ensure enough spectral resolution for CS. Spectral windows have 
been optimized to cover lines that are potentially detectable in this long integration. 
A wide band continuum window is available for calibration.  

Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line ...

The angular resolution 0.3'' is enough to resolve out the ring which has a width of about 0.7''. 
Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We use a spectral resolution of 0.2 km/s to calculate the sensitivity. 
We request a rms of 0.5 K based on the observed brightness of the CS 7-6 and 3-2 which are partly optically thin, 
even in the ring and sub-thermally excited.    

The CO, CS and CN lines use a spectral averaging of 1, to allow further studies of turbulence. 
The wideband pseudo-continuum mode is left in FDM with spectral average 1 to allow serendipitous measurements of 
possible emission from lines of H2CO or SO2 in this frequency range. 
The remaining spectral line windows use an averaging a factor of 2 or 4 to limit the overall data rate.

Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity ca...
 

SG-1



Summer 2019 - NOEMA Proposal Management System 1/4

IRAM
300, rue de la Piscine
38406 Saint-Martin-d Hères (France)
Fax: (33/0) 476 42 54 69

Registration n°: P351980
Date: 12-MAR-2019

PROPOSAL FOR THE NOEMA INTERFEROMETER

Title: GG Tau A: a 3mm Large spectral Survey in the densest binary TTauri disk

PIs: Anne Dutrey (FR), Thi Phuong Nguyen (FR)
CoIs: Edwige Chapillon (IRAMF), Stephane Guilloteau (FR), Vincent Pietu (IRAMF), Tracy Beck (US)
(invited), Ya-Wen Tang (TW), Jeffrey Bary (US) (invited), Audrey Coutens (FR), DIEP PHAM NGOC (VN),
Liton Majumdar (US), Emmanuel Di Folco (FR), Otoniel Denis-Alpizar (CL)

Proposal category: Standard
Scientific category: Disks around low-mass stars

Total requested time: 24.0 (PolyFiX)

Abstract:
Multiple systems represent a substantial fraction of stars and exo-planets can form and evolve  either in
circumstellar or circumbinary orbits. Contrary to disks around single stars, the accretion in a binary star
proceeds through the warm dynamically unstable zone which delineates the area inside the circumbinary
disk and outside the Roche Lobes.

Continuation: W17BA
Proposal history:
This proposal is partly the continuation of project W17BA

Sources:
Id Epoch RA DEC Vlsr (km/s) Setups 

GG_Tau J2000 04:32:30.346 17:31:40.642 6.4 1, 2, 3 edit/delete



Anne Dutrey, Thi Phuong Nguyen, GG Tau A: a 3mm Large spectral Survey in the densest binary TTauri disk

Summer 2019 - NOEMA Proposal Management System 2/4

Technical sheet "70GHz":

Summary
Point source detection with lines & continuum on 1 source(s).
Total observing time: 8.00 hours
Track fractions: Any: 100.0 %

Instrumental tuning

Source properties for lines
Expected signal: 80.0 mJy/beam   Sensitivity: 4.4 mJy/beam (0.250 km/s)  SNR: 18
Expected line width: 3.0 km/s

Source properties for continuum
Expected signal: 1000.0 mJy/beam   Sensitivity: 11.2 microJy/beam (15488.0 MHz x 2 polar)  SNR: 89273

Technical sheet "80GHz":

Summary
Point source detection with lines & continuum on 1 source(s).
Total observing time: 8.00 hours
Track fractions: Any: 100.0 %

Instrumental tuning

Source properties for lines
Expected signal: 80.0 mJy/beam   Sensitivity: 4.5 mJy/beam (0.250 km/s)  SNR: 18
Expected line width: 2.54248235 km/s

Source properties for continuum



Anne Dutrey, Thi Phuong Nguyen, GG Tau A: a 3mm Large spectral Survey in the densest binary TTauri disk

Summer 2019 - NOEMA Proposal Management System 3/4

Expected signal: 1000.0 mJy/beam   Sensitivity: 10.1 microJy/beam (15488.0 MHz x 2 polar)  SNR: 99179

Technical sheet "90GHz":

Summary
Point source detection with lines & continuum on 1 source(s).
Total observing time: 8.00 hours
Track fractions: Any: 100.0 %

Instrumental tuning

Source properties for lines
Expected signal: 80.0 mJy/beam   Sensitivity: 4.8 mJy/beam (0.211 km/s)  SNR: 17
Expected line width: 3.0 km/s

Source properties for continuum
Expected signal: 1000.0 mJy/beam   Sensitivity: 11.6 microJy/beam (15488.0 MHz x 2 polar)  SNR: 86400



Anne Dutrey, Thi Phuong Nguyen, GG Tau A: a 3mm Large spectral Survey in the densest binary TTauri disk

Summer 2019 - NOEMA Proposal Management System 4/4

BLA
NK P

AGE



GG Tau A: a 3mm large spectral survey in the
densest binary TTauri disk

P.I.: Anne Dutrey, Thi Phuong Nguyen

1 Science Context

Multiple systems represent a substantial fraction of stars and exo-planets can form and evolve either in
circumstellar or circumbinary orbits (e.g. Welsh et al. 2012). Theory of disk evolution (Artymowicz et
al. 1991) predicts that a binary TTauri star about 1 Myr old should be surrounded by two inner disks,
located inside the Roche lobes and an outer ring or disk located outside the outer Lindblad resonances.
The outer radii of inner disks, as well as the inner radius of circumbinary (outer) disk, are delineated by
tidal truncation while the survival of inner accretion disks on a timescale allowing for planet formation
necessitates that matter inflows from the outer to the inner circumstellar disks through streaming gas and
dust (the so-called streamers). Determining the physical and chemical gas properties throughout
their pathway from the outer disk to the inner disks is a necessary step to understand how
planets can form in such gravitationally disturbed environnement, and eventually how they
can differ from planets formed around single stellar systems. So far, outer disks and streamers
have only been imaged in a few objects such as GG Tau A, L1551 NE or UY Aur (Dutrey et al. 2014,
Takakuwa et al. 2014, Tang et al. 2014).

The GG Tauri A system: With a spectacular large and dense outer disk, GG Tau A appears as a
unique laboratory. It consists of a triple star (Aa-Ab1/b2) with respective separation of 35 and 4.5 au (Di
Folco et al. 2014). The outer CO and dust disk which surrounds GG Tau A is in Keplerian rotation (Dutrey
et al. 1994. The outer disk consists of a ring extending from radius r ∼ 180 to 260 au surrounded by a
large gaseous outer disk extending up to ∼ 800 au. NOEMA and ALMA CO images show a puzzling hot
spot at the outer edge of the dust ring (Fig.2) presumably an indirect evidence for an embedded companion
that is still accreting material from the outer disk (Dutrey et al 2014, Tang et al. 2016). Moreover, the
inner disk orbiting Aa, detected with ALMA in CO 6-5 and in continuum, is massive enough to form a
Jupiter-like planet (10−3 M� , Dutrey et al. 2014).

Gas and Dust properties from the inner disks to the outer ring: Figure 1 is a schematic of the
GG Tau system. The cavity is not completely devoid of gas and dust as shown by scattered light and 12CO
J=2-1 images (Roddier et al. 1996, Guilloteau and Dutrey 2000). The CO J=6-5 gas (Fig.2) mostly resides
inside the cavity, and is fragmented in several clumps transiting from the outer disk onto the central stars.
Using Subaru, Yang et al. 2016 have recently observed an arc connecting the outer ring and the central
star in polarized dust image that corresponds to the CO streamer. Non-LTE analysis of the CO fragments
reveal a warm cavity with a kinetic temperature ranging from 30 -70 K (Dutrey et al. 2014, Phuong et
al. 2019, in prep.). These temperatures are well above the CO freeze out temperature of 17 K. Beck et al.
2012 also reported the existence of very hot (∼ 1000-1500 K) H2 filaments near the stars (within 0.1′′). On
the contrary, the outer disk is very cold with temperatures of the order of T ∼ 10 − 26 K for the CO gas
(Fig.2, Phuong et al. 2019) and dust temperature of TD(r) = 14 × (r/200au)−1 K around the mid-plane,
where the large ’mm’ dust particles are located. With NOEMA, we started investigating the molecular
content of the system, detecting H2S for the first time in a disk (Phuong et al 2018). Fig.4 shows that
the H2S emission arises from the ring. This new detection is an argument for a massive ring, significantly
more massive than other TTauri disks with a mass of ∼ 0.15 M� (Dutrey et al 1994, Guilloteau et al 1999,
Phuong et 2018). For example, the well known TW Hya disk has a total mass of the order of 0.06 M�.

Dynamically, part of the matter transiting from the cold and dense outer disk, where chemical coupling
between the dust and the gas is important, is then injected into a warm cavity, where thermal desorption
can occur, before being incorporated into the inner disk of Aa.

2 Proposal

Investigating how the gas and dust transiting from the outer disk onto the inner disks is chemically processed
and changed during its transit towards the central disks is a key problem to evaluate how planets formed
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in multiple systems can differ from those formed around single stars. This is a long term project and as
a first step, we propose here to make an unbiased spectral survey of the molecules observed in the outer
disk in order to measure their molecular abundances. This survey will provide a robust molecular database
which 1/ can be compared to abundances observed in disks orbiting single stars (e.g. using the ALMA
Large Program led by K. Öberg) and 2/ can serve as a reference to study the gas properties in the cavity
and in the inner disk orbiting Aa (using ALMA).

The choice of the 3mm band is scientifically motivated because it covers the J=1-0 transitions of many
molecules, which are critical in determining the relative abundances at the low temperatures prevailing in
the GG Tau disk. By comparison with previously detected transitions, it will provide excitation conditions
for the most abundant species.

Being the most massive disk and fairly extended, GG Tau A is the best candidate for such a study.
With its specific geometry and (well known) temperatures, there is no mixing of areas presenting strong
chemical variations due to different physical conditions. This allows a proper derivation of molecular
(relative) abundances even at moderate angular resolution.

So far, the molecules detected in the GG Tau disk are CO, 13CO, C18O, CN, CS, H2CO, CCH, HCO+,
H13CO+, DCO+, HCN and H2S (Dutrey et al 1997, Phuong et al 2018). Good upper limits on CCS, SO2,
SO, HC3N and c-C3H2 are also reported (Phuong et al 2018). Phuong et al 2018 have started to measure
molecular abundances relative to 13CO (Table 1). The GG Tau ring appears similar to the cold outer disk
of LkCa15. The disk surrounding LkCa15 is in fact a transition disk with an inner cavity of radius about
25 au, i.e. it has the same geometry than the GG Tau A disk, but on a smaller scale. This may partly
explain their chemical similarities. A deeper comparison requests the detection of other species.

Other molecules detected around single TTauri or Herbig Ae disks are HNC, HC3N, CH3CN, HD,
C3H2, C2H2, OH, SO, CH+, N2D

+, NH3, CH3OH, H13CN and N2H
+.

After H2S, it is unlikely to expect the detection of new species with NOEMA but several species observed
in disks such as HNC, HC3N, C3H2, N2H

+ and maybe N2D
+ and DCN could be detected in GG Tau. This

will provide one of the most (if not the most) complete view of the chemistry in a cold TTauri disk. This
will be an excellent complement, on a different kind of object (circumbinary disk), of the ALMA Large
program on (single)TTauri and Herbig A disk chemistry currently running on ALMA.

Searching for deuterated species such as DCN or N2D
+ is very well suited because the disk is very cold.

DCO+ has been already observed at 2mm using NOEMA by Phuong et al. 2018 (Fig.4) who found ratios
of DCO+/HCO+ and DCO+/H13CO+ of the order of 0.024, as in the case of LkCa15 and TW hydra.

Finally, observations of HCN, CS, CCH, DCO+, H13CO+ and C18O in the 3mm band will allow a
proper determination of the excitation conditions since all these species have been resolved either in the 2,
1.3 or 0.9 mm bands with ALMA or NOEMA/PdBI.

3 Technical justification

Using Polyfix with 3 tunings, the 3mm band can offer a wide frequency coverage, allowing for detections of
species already detected in the GG Tau disk at higher frequency or in other disks. Our setups also overlap
in frequency in order to obtain a sqrt(2) gain in sensitivity for particularly promising species.

At 2mm, the H2S line was detected during summer period in about 5 hours on source. We propose to
make three transits (one for each tuning), either C or D. Additional integration time could also be obtained
under conditions of unstable phases, since self-calibration is possible on the dust disk at this frequency.

The final angular resolution of about 3− 5′′ is also well suited, being comparable to the size of the dust
disk and that of the H2S emission.

The detection of H2S, with a column density of 1.3× 1012cm−2 at radius 300 au demonstrates that this
project is feasible with NOEMA. Using Nautilus, Majumdar et al have started to investigate the outer disk
chemistry (see also Phuong et al 2018). Their predicted column densities for HCN, HC3N, c-C3H2, SO and
CCS are of the order of a few 1012cm−2, making the project feasible.
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4 Supporting material

Inner	  Disks:	  	  
NIR	  dust,	  H2,	  warm	  CO	  

10	  μm	  Si	  feature,	  	  
sub-‐mm	  CO	  &	  dust	  

Disk	  AccreBon,	  	  
shocked	  Gas	  &	  Dust:	  	  

molecular	  tracers,	  e.g.	  SO,	  H2	  

Streamers:	  	  	  
warmer	  CO,	  H2,	  dust	  	  

Outer	  Disk,	  Dust:	  	  
opBcal,	  NIR	  scaJered	  light	  

mm/sub-‐mm	  thermal	  emission	  
Jet:	  free-‐free	  emission,	  	  

forbidden	  atomic	  lines,	  e.g.	  [Fe	  II]	  

Stars	  and	  Stellar	  AccreBon:	  
UV,	  opBcal	  and	  NIR	  conBnuum,	  

atomic	  emission,	  e.g.	  Hα	


Outer	  Disk,	  Gas:	  	  
molecular	  rotaBonal	  lines,	  

mostly	  cold	  CO	  

Figure 1: From Dutrey et al. 2016, a
scheme showing the dust and gas distribu-
tion around a young low-mass binary star
similar to GG Tau A.

Figure 2: ALMA 12CO J=6-5 data:
From Dutrey et al. (2014, 2016). The lo-
cations of Aa and Ab are indicated by stars.
The two ellipses show the position of the dust
ring. The CO J=6-5 velocity gradient in con-
tours (blue, black and red) is superimposed
to the CO integrated area (color scale). From
east to west, black velocity contours corre-
spond to 6-6.4 and 6.8 km/s. The first blue
contour near Aa is at 5.6 km/s. This cor-
responds to the centroid velocity of the CO
J=6-5 accretion shock, the CS J=3-2 and
H2S emissions shown Fig.3. The two spectra
display the CO J=6-5 at the hot spot location
(east) and onto Aa. This spectrum shows
that there is a contribution from the circum-
stellar disk but also a broad line emission
maybe resulting from the accretion shock or
a weak contribution from an outflow associ-
ated to the southern jet (Fig.3).
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Table 1: Molecular abundance relative to 13CO (X[mol]/X[13CO] × 105) from Phuong et al 2018.

TMC-1? LkCa 15 GG Tau

HCO+ 600 ± 180(1) 150 ± 35(3) 130 ± 12

H2S < 45(1) < 7(4) 11 ± 3

H13CO+ 15 ± 4 (2) 5 ± 1.5 (4) 4.7 ± 0.3

DCO+ 30 ± 9 (2) 4.5 ± 1.4 (4) 3.5 ± 0.15

Figure 3: From Phuong et al 2019, in prep.
Radial dependence of CO gas (red) and
dust (black) temperature. The gas tem-
perature is derived from the CO analyses.
The dust temperature is taken from Dutrey
et al 2014.

Figure 4: From Phuong et al
2018. Upper: Integrated inten-
sity maps of NOEMA observa-
tions. The colour scale is in
the unit of (Jy beam−1 km s−1).
Contour level step is 2σ. Lower:
Velocity maps. Contour level
step is 0.5 km s−1. Beam sizes
are indicated. The ellipses
display the location of inner
(∼180 au) and outer (∼260 au)
radii of the dust ring.
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