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Abstract

Remote sensing is needed for better managing vegetation covers. Hence, three-dimensional 

(3D) radiative transfer (RT) modeling is essential for understanding remote sensing signals of 

complex 3D vegetation covers. Due to the complexity of 3D models, one-dimensional (1D) RT 

models are commonly used to retrieve vegetation parameters, e.g., leaf area index (LAI), from 

remote sensing data. However, 1D models are not adapted to actual vegetation covers because they 

abstract them as schematic 1D layers, which is not realistic. Much effort is devoted to the 

conception of 3D RT models that can consider the 3D architecture of vegetation covers. However, 

developing an efficient 3D RT model that works on large and realistic scenes is still a challenging 

task. Major difficulties are the intensive computational costs of 3D RT simulation and the 

acquisition of detailed 3D canopy structures. Therefore, 3D RT models usually only work on 

abstracted scenes or small realistic scenes. Scene abstraction may cause uncertainties, and the 

small-scale approach is not compatible with most satellite observations (e.g., MODIS). The 

computer graphics community provides the most accurate and efficient models (i.e., renderers). 

However, the initial renderer models were not designed for accurate RT modeling, which explains 

the difficulty to use them for remote sensing applications.

Recently emerged advanced techniques in computer graphics and light detection and ranging 

area (LiDAR) make it more possible to solve the above problems. 3D RT can be greatly accelerated 

due to the increasing computer power and improvement of rendering algorithms (e.g., ray-tracing 

acceleration and computational optimization). Also, 3D high-resolution information from LiDARs 

and photogrammetry become more accessible to reconstruct realistic 3D scenes. This approach 

requires new processing methods to combine 3D information and 3D RT models, which is of great 

importance for better remote sensing survey of vegetation.

This thesis is focused on 1) Development of a 3D RT model based on recent ray-tracing 

techniques and 2) Retrieval of 3D leaf volume density (LVD) for constructing 3D forest scenes.

This first chapter presents the development of an efficient 3D RT model, named LESS (LargE-

Scale remote sensing data and image Simulation framework). LESS makes full use of ray-tracing 

algorithms. Specifically, it simulates multispectral BRF and scene radiative budget with a weighted 

forward photon tracing method, and sensor images (e.g., fisheye images) or large-scale (e.g. 1 km2) 

spectral images are simulated with a backward path tracing method. In the forward mode, a “virtual 



ABSTRACT

X

photon” algorithm is used to simulate accurate BRF with few photons. The backward mode is used 

to simulate thermal infrared images and also atmosphere RT. LESS efficiency and accuracy were 

demonstrated with a model intercomparison and field measurements. In addition, LESS has an 

easy-to-use graphic user interface (GUI) to input parameters, construct and visualize 3D scenes.

3D forest reconstruction is done with a simulated LiDAR dataset to assess approaches that 

retrieve LVD from airborne LiDAR data. The dataset is simulated with the discrete anisotropic 

radiative transfer model (DART). First, a hybrid scene structuring scheme was designed to 

accelerate DART, and consequently to improve its potential for sensitivity studies. Then, an 

intensity-based method was designed for retrieving LVD. It only uses LiDAR ground returns with 

no assumption about canopy structures. In this thesis, the 3D forest scene is reconstructed through 

a voxel-based representation of canopies, which can be input into LESS. The comparison of LESS 

simulated and airborne hyperspectral images showed a good consistency.

LESS model can be used to validate other physical models, to develop parameterized models 

and to train neural networks. This thesis also provides a solution to fill the gap between 3D RT 

model and 3D canopy structures.
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Résumé

La télédétection est un outil majeur pour mieux gérer les couverts végétaux. De ce fait, la 

modélisation du transfert radiatif (TR) tridimensionnel (3D) est essentielle pour comprendre les 

mesures de télédétection des couverts végétaux. Les modèles de TR unidimensionnels (1D) sont 

souvent utilisés pour inverser les données de télédétection en termes de paramètres de la végétation. 

Cependant, ils ne sont pas adaptés à la complexité des couverts végétaux, car ils les simulent 

comme des couches homogènes, ce qui est irréaliste. Beaucoup de travaux sont donc consacrés à 

la conception de modèles de TR 3D adaptés à l'architecture 3D des couverts végétaux. Cependant, 

développer un modèle de TR 3D efficace pour de grandes scènes réalistes est un défi en termes de 

modélisation du TR et d’obtention de description réaliste du couvert végétal. Ainsi, les modèles 

de TR 3D actuels n'opèrent en général que sur des scènes très simplifiées ou des scènes réalistes 

de petite dimension inadaptées à la résolution de la plupart des capteurs satellites actuels (e.g., 

MODIS). Les modèles de la communauté "informatique graphique" (i.e., modèles de "rendu") sont 

les plus précis et les plus efficaces, mais ils n'ont pas été conçus pour une modélisation précise du 

TR. Ils sont donc peu employés pour les applications de télédétection.

Les progrès en infographie et puissance informatique permettent de beaucoup accélérer les 

modèles 3D de TR. De plus, les mesures 3D à haute résolution spatiale des LiDARs et caméras 

photogrammétriques deviennent plus accessibles pour reconstruire des couverts végétaux réalistes. 

Il est donc essentiel de développer des modèles de TR qui utilisent ces informations 3D.

Cette thèse est axée sur 1) le développement d'un modèle de TR 3D basé sur les techniques récentes 

de suivi de rayons et 2) la récupération de la densité volumique 3D des feuilles (LVD: leaf volume 

density) pour construire des scènes forestières. Elle présente le développement du modèle TR 3D 

LESS (LargE-Scale remote sensing data and image Simulation framework), basé sur les 

algorithmes de lancer de rayons. Ainsi, LESS simule des données BRF multi-spectrales avec une 

méthode de lancer de photons virtuels (i.e., pondérés) en mode "direct" (i.e., photons lancés depuis 

la source) et des images de capteur à petite échelle (e.g., images "fisheye") et grande échelle (e.g., 

1 km2) avec une méthode de lancer de photons en mode "inverse". Le mode inverse est aussi utilisé 

pour simuler des images infrarouges thermiques et le TR atmosphérique. Une comparaison entre 

modèles et une comparaison avec des mesures "terrain" ont démontré l'efficacité et la précision du 
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modèle LESS. De plus, une interface utilisateur graphique conviviale permet de saisir les 

paramètres d'entrée, et aussi de construire et de visualiser les scènes 3D.

La reconstruction de scènes 3D de forêt est réalisée avec un jeu de données LiDAR simulées avec 

le modèle de TR anisotrope discret (DART), afin d'évaluer diverses approches d'obtention du LVD 

à partir de données LiDAR aéroportées. Dans un premier temps, un schéma de structuration de 

scène hybride a été conçu pour accélérer DART dans a été développé pour permettre la réalisation 

d'études de sensibilité des paramètres nécessitant un grand nombre de simulations. Une méthode 

basée sur l'intensité LiDAR permet de calculer le LVD. Elle utilise uniquement les retours au sol 

des impulsions LiDAR sans hypothèse concernant l'architecture de la canopée, ce qui améliore 

considérablement l'adaptabilité de cette méthode. La scène forestière 3D est reconstruite via une 

représentation sous forme de voxels, adaptée au modèle LESS, ce qui a permis de vérifier que les 

images LESS correspondent bien aux images hyperspectrales disponibles. 

LESS peut être utilisé pour valider d'autres modèles physiques et pour entrainer des réseaux 

neuronaux. Cette thèse apporte une solution pour lier la modélisation 3D du TR et l'architecture 

3D des paysages. 
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1.1 Motivation

Forests cover approximately 31% of the land surface across the globe and play a prominent 

role in the global carbon cycle (Mitchard, 2018; Schlamadinger and Marland, 1996; Winjum et al., 

1992; Xie et al., 2008). Forests are highly complex and dynamic ecosystems that comprise various 

species and a large number of individual trees(Arnold et al., 2011; Bass et al., 2001). Besides, 

forests are an important natural resource, which is widely managed for biodiversity protection, 

wildlife habitat conservation, forest products and recreation (Twery and Weiskittel, 2013). 

Therefore, monitoring the status of the forests across the globe has great importance for 

understanding, utilizing and protecting the forests.

However, human activities (e.g., deforestation) have put great pressure on the environment, 

which changes the land cover significantly, and then influences the regional and global climatic 

system. These changes and the resulting effects need to be accessed regionally, as well as globally 

(Govaerts, 1996). 

Currently, satellite remote sensing is the only technology that allows one to monitor large 

land surface areas with long-term observations. Through the interpretation of satellite observations, 

we can assess the structure, distribution and functionalities of vegetation canopy either 

qualitatively or quantitatively. However, optical sensors aboard satellite platforms can only acquire 

data from a limited number of viewing directions and spectral bands although their signals depend 

on many factors such as the optical properties of the observed Earth surfaces, the atmosphere, the 

sensor spectral bands and viewing directions (Zhang et al., 2017), etc. Understanding radiation 

interaction with the observed Earth surfaces and the atmosphere is essential to retrieve Earth 

surface information from satellite observation data. For vegetation covers, this understanding is 

essential for inferring canopy status such as photosynthetically active radiation (PAR).

Through the interpretation of remotely sensed electromagnetic signals (reflected or emitted) 

to infer the surface status is the “inversion problem” in remote sensing (Figure 1). In general, an 

inversion procedure is used to determine the input parameters of a model so that model outputs 

match the available measurements. Ideally, the model is a mathematical relationship. However, 

due to their complexity, surface structures are usually difficult to be described with simple 

statistical parameters. It explains why structures are usually simplified in remote sensing models. 

For example, a one-dimensional (1D) radiative transfer (RT) model simulates a vegetation canopy 

as horizontal layers with randomly distributed leaves. Based on this simplification, many 1D 

models, partly derived from atmospheric RT theories, have been established (Kuusk, 2018) to 
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formulate relationships between bidirectional reflectance factor (BRF) and vegetation parameters 

(e.g., leaf area index (LAI), leaf angle distribution (LAD), leaf optical properties). Up to now, 1D 

RT models (e.g., SAIL, SCOPE) have been widely used in remote sensing for parameter retrieval. 

However, due to their high degree of abstraction of the Earth surfaces, 1D models are usually too 

inaccurate. For example, they cannot consider the large gaps between crowns and trees with 

different heights. It explains that three-dimensional (3D) RT models, which can present complex 

heterogeneous landscapes, are needed for accurate inversion of remote sensing data. 

Figure 1.1: Modeling and inversion scheme in remote sensing.

3D RT models use schematic geometric objects (e.g., ellipsoid), triangle mesh and / or voxels 

with turbid medium to describe 3D scenes. Ray-tracing or radiosity methods are commonly used 

to solve the RT equation (Disney et al., 2000; Gastellu-Etchegorry et al., 2004; Huang et al., 2013; 

Qi et al., 2019). They can simulate remote sensing data under arbitrary conditions, which is 

essential for linking remote sensing signals and realistic surface structures. It allows one to 

maximally use the information from multi-source remote sensing data and ease the “ill-posed” 

problem that has confronted remote sensing inversion for many years (Liang et al., 2016).. 

Nowadays, the potential of 3D RT models increases with the increasing availability of 3D data 

from various new sensors (e.g., LiDAR: light detection and ranging), provided that 3D RT models 

can use these 3D data. 

However, developing an efficient 3D radiative transfer model that can represent complex 3D 

landscapes is not an easy task due to the high heterogeneity of the Earth’s surface. To improve 

efficiency, current models usually work on small realistic scenes or simplify structures with 

simpler geometries. Although the computer graphics community provides the most accurate and 

efficient models (known as renderers), they were not designed specifically for performing 

scientific radiative transfer simulations. Thus, an efficient and adaptable 3D RT model that 
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works on large-scale and heterogeneous landscapes is important for RT modeling and is 

highly sought after by the remote sensing community.

Input data of 3D RT models are not always easy to obtain. Usually, realistic canopy structures, 

instead of simple statistical parameters, are needed. Obtaining detailed vegetation structures 

over large areas is also an important aspect for successful canopy modeling works, since 3D 

structures are the key parameter for 3D radiative transfer model. Due to the high complexity 

of vegetation canopies, traditional measurements, such as measuring LAI using LAI-2000, can 

give very coarse and two-dimensional (2D) parameters only, which is not compatible with 3D RT 

models. In recent years, LiDAR techniques, which can provide directly canopy 3D information, 

have been widely used to retrieve forest parameters and reconstruct 3D virtual scenes (Ackermann, 

1999; Bailey and Mahaffee, 2017; Bailey and Ochoa, 2018; Bremer et al., 2017; Calders et al., 

2018; Côté et al., 2009; Hancock et al., 2017; Müller-Linow et al., 2015; Qi et al., 2016). This is 

also one of the major topics of this thesis.

1.2 Scope and objectives

A number of problems associated to canopy RT modeling must be solved. “How to build an 

efficient 3D RT model that can handle large-scale forest landscapes? How to design the RT model 

to make it easily adaptable to various kinds of remote sensing data? How to validate the RT model? 

How can complex forest canopy be parameterized and input into the 3D RT model? What are the 

most effective parameters of the model?” etc. This thesis brings answers to these questions. For 

that, the objective has been 1) to develop a ray-tracing based 3D RT model (LESS: (LargE-Scale 

remote sensing data and image Simulation framework) that takes full advantage of the most 

advanced light transport algorithms of the computer graphics community and 2) to propose a 

voxel-based canopy parameterization scheme by using airborne LiDAR data.

For the development of 3D RT model, this thesis makes full use of the forward and backward 

ray-tracing modes to simulate different remote sensing data. Specifically, a forward photon tracing 

(FPT) is proposed to simulate bidirectional reflectance factor (BRF) and energy-balanced related 

data, e.g., downward and upward solar radiation (DSR/USR) in rugged terrain and incident 

fraction of photosynthetically active radiation (FPAR). In this mode, a virtual photon approach is 

used to accelerate BRF simulation with fewer photons. The backward path tracing (BPT) is used 

for simulating images; it only simulates the energy that exactly goes into the sensor, which saves 
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a lot of computation time. The BPT is also extended to simulate thermal infrared images with given 

temperature distribution and to simulate the RT of a plane-parallel atmosphere.

For the 3D canopy parameterization, we first studied the estimation of laser penetration index 

(LPI)/leaf area index (LAI) by using simulated airborne LiDAR data from the DART model 

(Discrete Anisotropic Radiative Transfer). In a first step, DART was accelerated with a specifically 

designed hybrid scene structure scheme, in order to speed up the simulation of multiple pulse 

LiDAR over large areas with many vegetation elements. The designed acceleration approach 

makes it possible to do sensitivity analysis with many DART simulations. It relies on two 

complementary methods: (1) removal of empty voxels from DART’s regular grids, using a 

bounding volume hierarchy (BVH), and (2) acceleration of ray-triangle intersection. Using the 

DART simulated dataset, we quantitatively analyzed several LPI/LAI estimation methods and 

found that the intensity-based method is the most appropriate one, which is then used to estimate 

3D leaf volume density (LVD). Finally, the estimated LVD is used to construct a forest scene and 

is input into the proposed 3D RT model (LESS) to simulate spectral images.

1.3 Outline of the thesis

Based on the objectives of this thesis, the chapters are organized as follows:

The first chapter introduces the fundamentals of the ray-tracing based 3D RT LESS model. 

The forward photon tracing and backward path tracing are presented. These modes were extended 

for simulating DSR/USR, FPAR and thermal infrared radiation. The use of the backward path 

tracing is also used for simulating RT in a plane-parallel atmosphere.

Chapter 2 is focused on the accuracy of LESS products. Because field BRF data are difficult 

to obtain, the major validation scheme is cross-validation with other RT models for the case of a 

few heterogeneous canopies from the RAMI model inter-comparison experiment (http://rami-

benchmark.jrc.ec.europa.eu/HTML/). The RAMI web site stores a few vegetation scenes and 

reference BRF values of these scenes. Because the RAMI web site does not store BRF images, the 

validation of LESS images is done with DART images of a realistic and complex forest scene. 

LESS FPAR and DSR are validated with field measurements. For atmosphere, LESS is compared 

to DART and MODTRAN (http://modtran.spectral.com/).

Chapter 3 presents a hybrid scene structuring scheme that was designed in order to accelerate 

DART. For that, the uniform grid approach of DART is replaced by an efficient data structure. The 

improvement is shown for a city and a forest scene, both simulated with many small triangles. 

http://rami-benchmark.jrc.ec.europa.eu/HTML/
http://rami-benchmark.jrc.ec.europa.eu/HTML/


CHAPTER 1. INTRODUCTION

6

Chapter 4 assesses several LPI/LAI inversion approaches, using the optimized DART model 

with a homogeneous and a heterogeneous canopy. The modeling approach and the implementation 

that convert full waveform data to discrete points are detailed. 

Chapter 5 introduces a voxel-based 3D forest scene reconstruction approach. It utilizes the 

inverted 3D LVD (cf. chapter 4) and the LESS model (cf. chapter 1). The comparison between 

LESS and airborne hyperspectral images of 1km forest scene are presented. 

Chapter 6 concludes the thesis by summarizing the major conclusions and pointing out 

perspectives and issues for further researches.

The relationships between the above chapters are visualized in Figure 2.

Figure 2: Relationships between different chapters



7

Chapter 2. LESS: Ray-tracing based 3D radiative transfer model

Chapter 2

LESS: Ray-tracing based 3D radiative 
transfer model

Summary

2.1  Research context ...................................................................................................... 8

2.2  General framework of LESS.................................................................................. 10

2.3  Fundamentals of ray-tracing .................................................................................. 11

2.4  3D scene description of LESS ............................................................................... 13

2.4.1  Geometrical description of 3D scene .......................................................... 13

2.4.2  Ray intersection with 3D scene................................................................... 14

2.5  Forward photon tracing.......................................................................................... 16

2.5.1  Real photon tracing algorithm..................................................................... 16

2.5.2  Virtual photon tracing algorithm................................................................. 18

2.6  Backward path tracing ........................................................................................... 19

2.6.1  First-order scattering ................................................................................... 20

2.6.2  Multiple scattering ...................................................................................... 21

2.7  Thermal infrared image simulation........................................................................ 22

2.8  Downward solar radiation simulation in rugged terrain ........................................ 23

2.9  Atmosphere simulation with backward path tracing.............................................. 24

2.9.1  Plane-parallel atmosphere model ................................................................ 24

2.9.2  Radiative transfer in participating media .................................................... 25

2.9.3  Radiative transfer in plane-parallel atmosphere.......................................... 27

2.10  Implementation and extension of LESS............................................................... 29

2.11  Concluding remarks ............................................................................................. 31



CHAPTER 2. LESS: RAY-TRACING BASED 3D RADIATIVE TRANSFER MODEL

8

This chapter describes the ray-tracing based 3D RT model LESS (LargE-Scale remote sensing 

data and image Simulation framework) that I developed. This model employs 2 methods. (1) A 

forward photon tracing method to simulate multispectral bidirectional reflectance factor (BRF) or 

radiative budget (e.g., downward solar radiation). Photons are weighted simulate more accurate 

BRF with fewer photons. (2) A backward path tracing method to generate sensor images (e.g., 

fisheye images) or large-scale (e.g. 1 km2) spectral images. It has been extended to simulate 

thermal infrared radiation by using an on-the-fly computation of the sunlit and shaded scene 

components. By extracting information from the photon trajectory, several kinds of remote sensing 

data, such as the fraction of photosynthetically active radiation (FPAR) and upward/downward 

radiation over rugged terrain, are simulated. Besides, the backward path tracing has been adapted 

to simulate atmosphere RT, which enables LESS to simulate a broad range of remote sensing 

datasets that can be used as benchmarks for various remote sensing applications (forestry, 

photogrammetry, etc.).

The chapter is presented in the paper:

“Qi, J., Xie, D., Yin, T., Yan, G., Gastellu-Etchegorry, J.-P., Li, L., Zhang, W., Mu, X., 

Norford, L.K., 2019. LESS: LargE-Scale remote sensing data and image simulation framework 

over heterogeneous 3D scenes. Remote Sensing of Environment 221, 695–706.”

2.1 Research context

Several 3D RT models that work with rather realistic landscapes were designed during the 

past decades (Kuusk, 2018). Although they differ from each other significantly, their algorithms 

are usually classified into two approaches for solving RT equations: (i) Radiosity; (ii) Ray tracing. 

Radiosity methods, e.g., DIANA (Goel et al., 1991), RGM (Qin and Gerstl, 2000) and RAPID 

(Huang et al., 2013), are adapted from thermal engineering. Surfaces are usually assumed to be 

lambertian and the outgoing radiation of each surface is equal to the sum of reflected, transmitted 

and emitted radiation. This equilibrium can be represented with an equation set, the solution of 

which gives the radiation distribution of the 3D scene. Borel et al. (1994) is one of the major 

contributors who applies the radiosity method to vegetation canopy modeling. The core of the 

radiosity method is to compute a “view factor” between any two scattering surfaces and to store it 

into a matrix that reaches an unmanageable dimension if the number of surfaces grows very large. 

To solve this problem, Huang et al. (2013) proposed the RAPID model, which uses porous objects 
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to represent tree crowns. This model enables RAPID to simulate large-scale landscapes. Although 

the view factor matrix computation is not very efficient, a major advantage of radiosity models is 

that BRF computation is very fast once the view factor matrix has been computed.

Ray tracing methods are more commonly used in 3D RT models, since they are more adaptive 

and scalable to complex scenes with many elements (Disney et al., 2000). Depending on objectives, 

ray tracing methods are implemented in “forward” or “backward” mode. In the forward mode, 

photons are traced from illumination sources to viewing directions, while backward mode traces 

rays from the sensor along the viewing direction to determine the 1st, 2nd, etc. scattering order 

points that contribute to the sensor. Forward mode is more suitable for calculating multi-angle 

BRFs simultaneously and radiative budget. For example, the DART model is entirely implemented 

in the forward mode (Gastellu-Etchegorry et al., 2015). Radiation is tracked along discretized 

directions (i.e, discrete ordinate method) and is collected if it leaves the simulated scene, which 

enables DART to simulate many products, such as BRF, radiative budget and photosynthetically 

active radiation (PAR), fluorescence, etc. Forward ray tracing is also used by Raytran (Govaerts 

and Verstraete, 1998), Rayspread (Widlowski et al., 2006), FLiES (Kobayashi and Iwabuchi, 2008) 

and FLIGHT (North, 1996). Raytran is a pure Monte-Carlo based model, which traces 

monochromic rays from light sources. In Raytran, virtual detectors collect rays above the scene 

and the BRF is estimated by the number of collected rays. Because it does not use any weighting 

mechanism (i.e., a ray is totally scattered or absorbed), the implementation of this model is 

relatively straightforward. However, it also makes Raytran less efficient, because many rays are 

usually necessary to produce a convergent result. When calculating BRF, the rays absorbed within 

the scene do not contribute to the detector, which is a waste of computation time. Besides, 

absorption and reflectance are wavelength dependent. Therefore, simulating multiband BRF is 

generally computationally intensive as new rays must be sent separately per band. The Rayspread 

model is an extension of Raytran as it introduces a secondary ray mechanism, which traces a series 

of rays towards the detector at each intersection point of the main photon trajectory. This approach 

saves a lot of time when calculating BRF because it uses a much smaller number of photons. To 

simulate multispectral data more efficiently, the librat model (Lewis, 1999) uses a “ray bundle” 

concept to simulate multiband BRF in a single ray path by updating the weight for each band 

according to the reflectance/transmittance at each intersected point.

However, despite its advantage in simulating multiple directional BRFs in a single simulation, 

forward tracing is usually less efficient in simulating a particular sensor image, mostly due to the 

tracking of energy that ultimately does not contribute to the simulated image. The efficiency is 

even lower when simulating very large scenes, of which only a small part is captured by the sensor. 
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The weakness of the forward mode, however, is the strength of the backward mode, since 

backward ray tracing traces only the rays that enter the sensor. It allows one to simulate sensor 

images of very large scenes with many landscape elements. DIRSIG (Goodenough and Brown, 

2012) is a typical representative of this kind of model, using backward path tracing to estimate 

surface-leaving radiance. This makes DIRSIG very efficient for performing hardware design and 

evaluating sensor configurations. Therefore, the ability to simulate remotely sensed signals in both 

forward and backward modes is an important feature for a modern and adaptive RT model.

The algorithms described above (i.e., radiosity and ray tracing) are classically used in 

computer graphics, especially for image rendering. In the computer graphics community, open-

source renderers such as PBRT (Pharr et al., 2016) and POV-Ray (Plachetka, 1998) have been 

developed for handling 3D scenes and tracing rays to find intersections, using optimized 

techniques such as the advanced acceleration data structures (e.g., bounding volume hierarchy 

(Mller and Fellner, 2000)) and the CPU-level optimizations (Purcell and Hanrahan, 2004) (e.g., 

Streaming SIMD Extensions 2 [SSE2]). However, these renderers are not universally applicable, 

because they are mostly focused on image rendering for human perception rather than on 

radiometric accuracy for scientific applications. For example, they usually work only with three 

broad spectral bands (RGB) or a few fixed spectral bands in the visible region, which is not adapted 

to hyperspectral data simulations. Developing novel remote sensing-specific models based on 

these renderers or reimplementation is a pragmatic solution. For instance, Auer et al. (2016) 

developed a 3D SAR simulator based on POV-Ray, which can simulate radar reflection effects of 

3D objects. Recently, DIRSIG has been re-designed and re-implemented, to adopt the latest 

advances of light transport algorithms emerged in the computer graphics community (Goodenough 

and Brown, 2017). DART model has integrated the ray tracing engine Embree (Wald et al., 2014), 

which is a collection of high-performance ray tracing kernels, to accelerate RT simulations.

2.2 General framework of LESS

The design of an operational 3D RT model requires numerous developments such as 3D scene 

description, illumination conditions, sensor configurations and RT modeling (Disney et al., 2000). 

A framework that considers all these aspects is an ideal tool to give accessibility to 3D RT 

simulation for most users. The LESS modeling framework has 6 major modules (Figure 2.1):

 Input Data Management module. It manages all the input parameters, including 3D landscape 

elements (e.g., trees), optical properties, observation geometries, etc. It offers a GUI and a set 
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of Python scripts for efficient input of parameters. Landscape elements in LESS are represented 

with geometric primitives (e.g., ellipsoid and cylinders) or triangle meshes. They are usually 

created by third-party software, such as Onyx Tree. 

 3D Landscape Construction module. It includes several sub-processors to convert different 

types of data into a format that the RT Model module can use. For example, the sub-module 

Terrain Processor converts the DEM (digital elevation model) image into a triangle mesh or a 

height field. Usually, a height field is more efficient in terms of computation time and memory 

than a triangle mesh (Tevs et al., 2008). The sub-module Optical Data Processor calculates the 

reflectance and transmittance of different landscape elements by interpolating spectra of the 

spectral database (provided by LESS or imported by users), according to the user-defined bands. 

 Visualization module. It is intended for 2D and 3D displays of the simulated landscape. It helps 

users to interactively explore the created scene and allows them to verify the correctness of the 

constructed 3D landscape before the actual computation.

 RT Model module. It is the key module of the LESS framework. It uses a parallelized ray tracing 

method to simulate the interaction between the solar radiation and landscape elements based on 

the previously constructed 3D scene and the sensor configuration. It contains several RT models, 

e.g., forward photon tracing and backward path tracing, to meet different simulation purposes.

 Parallel Computing module. It offers the ability to run LESS on a Local Server or a Cluster, 

which enables LESS to simulate large-scale areas.

 Products Processing module. It contains tools to post-process LESS outputs. For example, 

radiance images, combined with sun / sky irradiance, can be converted into BRF images.

Figure 2.1: Framework architecture of LESS.

2.3 Fundamentals of ray-tracing

In computer graphics, ray-tracing is a rendering technique that generates 2D images from 3D 

scenes by sending rays and simulating their physical interactions with virtual objects. The radiance 
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leaving a point 𝑞𝑞 in direction 𝜔𝜔𝑜𝑜 can be expressed with a rendering equation (Kajiya, 1986):

𝐿𝐿𝑜𝑜(𝑞𝑞,𝜔𝜔𝑜𝑜) = 𝐿𝐿𝑒𝑒(𝑞𝑞,𝜔𝜔𝑜𝑜) + � 𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)
4𝜋𝜋

𝐿𝐿𝑖𝑖(𝑞𝑞,𝜔𝜔𝑖𝑖)|cos 𝜃𝜃𝑖𝑖|𝑑𝑑𝜔𝜔𝑖𝑖 (2-1)

where 𝐿𝐿𝑜𝑜(𝑞𝑞,𝜔𝜔𝑜𝑜) is the outgoing radiance from point 𝑞𝑞 along direction 𝜔𝜔𝑜𝑜; 𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) is the 

Bidirectional Scattering Distribution Function (BSDF) of the intersected surface, which 

determines the outgoing radiance along direction 𝜔𝜔𝑜𝑜 at point 𝑞𝑞 induced by incoming radiance 

along incident direction 𝜔𝜔𝑖𝑖 ; 𝐿𝐿𝑖𝑖(𝑞𝑞,𝜔𝜔𝑖𝑖)  is the incoming radiance; 𝜃𝜃𝑖𝑖  is the angle between 𝜔𝜔𝑖𝑖 

and the surface normal and 𝐿𝐿𝑒𝑒(𝑞𝑞,𝜔𝜔𝑜𝑜) is an emission term (e.g., thermal emission). In short, the 

outgoing radiance is the sum of emitted and scattered radiance (Figure 2.2). 

A complete ray-tracing process usually includes the following steps:
 Geometrical description of the 3D scene. The structures of the 3D scene should be explicitly 

expressed. Landscape elements are usually represented with geometric objects, triangle meshes 

and voxels with turbid media.

 Generation of rays. Rays are generated from light sources and propagate into the virtual scene. 

The sun and atmosphere are typical light sources. Some ray-tracing techniques send rays from 

sensors instead of light sources, which is more commonly used for simulating images only.

 Intersection test between ray and scene. Intersection test is the core of ray-tracing and also 

the most time-consuming process, since a scene may contain millions of elements and testing 

each ray for each element is impractical. To improve efficiency, some acceleration techniques 

are used, such as the bound volume hierarchy (BVH).

 Radiance calculation. By recording the energy change at each intersection point, the radiance 

recorded by sensors can be known explicitly. Besides, the ray trajectory also provides the 

possibilities to query other information, e.g., FPAR. 

Figure 2.2: ray-tracing process.
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2.4 3D scene description of LESS

2.4.1 Geometrical description of 3D scene

An accurate description of the 3D scene is the fundamental step for conducting reliable 

radiative transfer simulations. Generally, geometric objects are expressed with math equations, 

which could ease the ray-object intersection by solving analytic equations. However, it is usually 

used to represent some simple elements only, such as tree crowns. FLIGHT model (North, 1996) 

is a typical 3D model that uses geometric objects filled with turbid media to simulate 3D scenes. 

The concept “turbid medium” is from atmospheric science, but the difference is that turbid medium 

in remote sensing of vegetation is described with a group of parameters that are related to canopies, 

e.g., leaf volume density (LVD), LAD, leaf reflectance and transmittance.

Compared to geometric objects and turbid medium, a triangle mesh is more appropriate to 

accurately describe complex and heterogeneous vegetation canopies, since realistic canopies 

cannot be simply represented by statistical parameters. Triangle mesh uses millions of small 

triangles to represent the object’s surfaces. Usually, the more the number of triangles is bigger and 

the better the representation of the original object, but it needs more computational resources.

LESS uses triangle mesh as its major scene description scheme for obtaining very accurate 

simulations. Figure 2.3 shows a complex forest with more than 10 million triangles. It appears 

that each single leaf is composed of several small triangles in order to simulate complex leaf shapes.

Figure 2.3: Forest described with triangle mesh in LESS.

A triangle has three vertices, thus, a natural storage approach is to store the three vertices per 
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triangle, which means that 3N vertices need to be stored if N triangles exist. It results in redundant 

information, since one vertex may belong to several triangles. A more efficient way is to store all 

vertices in an array, and to store the vertex indices of each triangle in another array. Hence, vertices 

XYZ are stored in a vertex array and vertex indices are stored in an index array (Figure 2.4).

Figure 2.4: Storage of triangle mesh in LESS.

2.4.2 Ray intersection with 3D scene

A 3D scene may contain hundreds and thousands of objects, and each object may be 

composed of millions of small triangles. To find the intersection point of an incident ray, the 

intersected small triangle should first be found. The naive implementation is to test all the triangles 

in the scene one by one, which gives a time complexity of O(n).

However, an incident ray may be intersected with objects that are close to its trajectory only. 

Triangles far from the raypath can be safely removed from the list of possible intersecting triangles. 

This selection / removal approach can be achieved with the so-called object bounding box. A 

bounding box is simply a cube that tightly surrounds the object (Figure 2.5). If a ray does not 

intersect with the bounding box, it does not intersect the object itself, and there is no need to test 

a possible intersection. Since the ray-box intersection is usually much efficient than ray-object 

intersection, this method can efficiently find the intersected object. 

Despite the high efficiency of ray-box intersection, we still do not want to test all object 

bounding boxes with a ray one by one, especially for scenes with a large number of objects. Usually, 

an acceleration structure is used here to skip some boxes, which has been widely used in computer 

graphics, such as KD-Tree and BVH. For each intersected object, if it contains too many triangles, 

a second level of acceleration structure is usually used. Now, the basic unit is a single triangle.

http://www.baidu.com/link?url=SRIyRbKk8c84KHEy2tljCBsb8lRHIKI4Ze6wC7t6yB4QAlUbMevH_csAMXkQbyoeKB7ADXZWD1Q6LTWInz5lJjZbZmeJcwPY4RGjRSICIW6t-0OFG0enOsindWWr8Tol
http://www.baidu.com/link?url=SRIyRbKk8c84KHEy2tljCBsb8lRHIKI4Ze6wC7t6yB4QAlUbMevH_csAMXkQbyoeKB7ADXZWD1Q6LTWInz5lJjZbZmeJcwPY4RGjRSICIW6t-0OFG0enOsindWWr8Tol
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Figure 2.5: Acceleration structure for the ray-object intersection.

Let us consider a complex forest with many single trees, each one having many triangles. In 

Figure 2.6, the forest scene has more than 100,000 single trees, and each tree has more than 1 

million triangles. If the triangle vertices are represented with float number, the memory used by 

this scene may exceed 1000 GB, which is impossible for most common computers. To handle this 

kind of situation, an “instancing” technique is commonly used. This method only stores several 

single trees in memory, and then “clones” them to different places by storing the transform matrix 

only for each instanced tree. Since the single tree is not actually copied, this method saves a lot of 

computer memory and time for copying data. Unfortunately, this approach is not adapted for 

simulating 3D radiative budget, at least per triangle.

Figure 2.6: Complex forest with many single trees.
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2.5 Forward photon tracing

2.5.1 Real photon tracing algorithm

Forward photon tracing (FPT) traces photon packets with the power 𝑃𝑃(𝜆𝜆) into the scene 

from light sources. The initial power 𝑃𝑃0(𝜆𝜆) of each packet is determined by the power of light 

sources and the number 𝑁𝑁 of generated packets. When generating photon packet in a scene with 

multiple light sources, a light source is randomly chosen according to the importance weight 𝑤𝑤𝑘𝑘, 

which is proportional to the power of each light source, i.e., 𝑤𝑤𝑘𝑘 = 𝐿𝐿𝑘𝑘(𝜆𝜆)
∑ 𝐿𝐿𝑘𝑘(𝜆𝜆)𝐾𝐾
𝑘𝑘=1

 with 𝐿𝐿𝑘𝑘(𝜆𝜆) being 

the power of light source 𝑘𝑘  and 𝐾𝐾  being the number of light sources. This mechanism 

guarantees that a light source with larger power has more sampled photon packets. The initial 

power of each packet, in terms of watt (W), is given as

𝑃𝑃0(𝜆𝜆) =
∑ 𝐿𝐿𝑘𝑘(𝜆𝜆)𝐾𝐾
𝑘𝑘=1

𝑁𝑁
(2-2)

When a photon packet enters the scene along a path defined by its origin and direction of 

propagation, the occurrence of an intersection with landscape elements is tested. If an intersection 

occurs, the power of this packet is scaled according to the optical properties of the intersected 

surface, i.e., the reflectance or transmittance. For a packet with 𝑄𝑄 times of scattering before it 

escapes from the scene, the power becomes:

𝑃𝑃𝑄𝑄(𝜆𝜆) = 𝑃𝑃0(𝜆𝜆) ∙��𝜋𝜋𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖,𝜔𝜔𝑜𝑜,𝜆𝜆)/𝑝𝑝𝑞𝑞�
𝑄𝑄

𝑞𝑞=1

(2-3)

where 𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖,𝜔𝜔𝑜𝑜,𝜆𝜆)  is the bidirectional scattering distribution function (BSDF) at the 𝑞𝑞th 

intersection point during its trajectory. 𝜔𝜔𝑖𝑖 and 𝜔𝜔𝑜𝑜 are the incident and outgoing directions of a 
photon packet, respectively. 𝑝𝑝𝑞𝑞 is the probability that the photon is reflected or transmitted (e.g., 

0.5). Since in LESS, surfaces are Lambertian, the BSDF is the bidirectional reflectance distribution 

function (BRDF) or bidirectional transmittance distribution function (BTDF), depending on 
relative configurations of 𝜔𝜔𝑖𝑖,, surface normal 𝜔𝜔𝑛𝑛 and 𝜔𝜔𝑜𝑜.

𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜, 𝜆𝜆) =
1
𝜋𝜋
�
𝜌𝜌⊥,𝜆𝜆 ∙ sgn(𝜔𝜔𝑛𝑛 ∙ 𝜔𝜔𝑖𝑖) + 𝜏𝜏𝜆𝜆 ∙ sgn(−𝜔𝜔𝑛𝑛 ∙ 𝜔𝜔𝑖𝑖) if 𝜔𝜔𝑜𝑜 ∙ 𝜔𝜔𝑛𝑛 ≥ 0
𝜌𝜌⊤,𝜆𝜆 ∙ sgn(−𝜔𝜔𝑛𝑛 ∙ 𝜔𝜔𝑖𝑖) + 𝜏𝜏𝜆𝜆 ∙ sgn(𝜔𝜔𝑛𝑛 ∙ 𝜔𝜔𝑖𝑖) if 𝜔𝜔𝑜𝑜 ∙ 𝜔𝜔𝑛𝑛 < 0 (2-4)

where sgn(𝑥𝑥) = �1, x ≥ 0
0, x < 0; 𝜌𝜌⊥,𝜆𝜆

𝜋𝜋
 and 𝜌𝜌⊤,𝜆𝜆

𝜋𝜋
 are the upper and bottom surface BRDF, respectively; 

𝜏𝜏𝜆𝜆
𝜋𝜋

 is the BTDF. In LESS, the transmittances of the surface from both the upper and the bottom 
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side are assumed to be identical. The outgoing direction of a photon packet after scattering is 

determined by randomly sampling the BSDF function. For Lambertian surfaces, the model chooses 

a random direction in the outgoing hemisphere. Since a single photon trajectory can be used to 

simulate BRF for any wavelength by updating the power according to the spectral 

reflectance/transmittance, for simplicity, the symbol 𝜆𝜆 is omitted below. 

A photon packet is collected by the sensor if it exits the scene through the scene top boundary. 

Lateral boundary effects are considered to simulate horizontally infinite scenes with a repetitive 

pattern. As shown in Figure 2.7, the photon packet which exits from the lateral boundaries will re-

enter the scene from the opposite side with the same photon direction until it escapes through the 

top boundary of the scene. When the scattering order of a packet exceeds an user-defined threshold 

(e.g., 5), the propagation of the packet is randomly stopped according to the “Russian roulette” 

mechanism (Kobayashi and Iwabuchi, 2008), which terminates the trajectory of a packet with a 

probability 𝑝𝑝 (e.g., 5%). If the packet survives, its power will be multiplied by 1
1−𝑝𝑝

.

Figure 2.7: Forward photon tracing.

The collection of the escaped photon packets is achieved by placing a virtual hemisphere 

above the scene (Govaerts and Verstraete, 1998). The hemisphere (Figure 2.8) is partitioned into 

𝑁𝑁𝑃𝑃 surface elements (SE) with equal area 𝛥𝛥𝛥𝛥 = 2𝜋𝜋
𝑁𝑁𝑃𝑃

, using the partition scheme of a disk via the 

equal area projection (i.e., ∆𝛺𝛺 = 𝛥𝛥𝛥𝛥). Zenith angles are defined (Beckers and Beckers, 2012) with:

𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑖𝑖−1 −
2

𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑒𝑒𝑎𝑎𝑎𝑎
sin

𝜃𝜃𝑖𝑖−1
2 �

𝜋𝜋
𝑘𝑘𝑖𝑖−1

,𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑖𝑖−1 �
𝑟𝑟𝑖𝑖
𝑟𝑟𝑖𝑖−1

�
2

(2-5)

where (𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑖𝑖−1) defines a zenith range on the hemisphere with 𝜃𝜃0 = 𝜋𝜋
2
; 𝑘𝑘𝑖𝑖 is the total number of 

SEs for a zenith angle 𝜃𝜃𝑖𝑖 with 𝑘𝑘0 = 𝑁𝑁𝑃𝑃; 𝑟𝑟𝑖𝑖 is the radius corresponding to 𝜃𝜃𝑖𝑖 with 𝑟𝑟𝑖𝑖 = 2 sin 𝜃𝜃𝑖𝑖
2

 

for a unit sphere due to the equal area projection; 𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑒𝑒𝑎𝑎𝑎𝑎 is the aspect ratio of each SE, which is 
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approximately enforced to 1. For each zenith range, it has 𝑘𝑘𝑖𝑖−1 − 𝑘𝑘𝑖𝑖 SEs with equal area.

Figure 2.8: Unit hemisphere partition. The hemisphere is projected onto the horizontal plane as a disk using 

equal area projection. 

When a photon packet exits the scene, the outgoing SE (solid angle) is determined by the 

photon direction only, i.e., the hemisphere is placed at an infinite position. The BRF in this SE can 

be estimated with (Govaerts and Verstraete, 1998):

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 =
𝜋𝜋𝑃𝑃𝑖𝑖𝐴𝐴

∆𝛺𝛺𝑖𝑖 ∙ cos 𝜃𝜃𝑖𝑖𝑎𝑎 ∙ 𝑃𝑃𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑒𝑒
(2-6)

where 𝑃𝑃𝑖𝑖𝐴𝐴 is the power (watt) of all the captured photons in SE 𝑖𝑖, i.e., 𝑃𝑃𝑖𝑖𝐴𝐴 = ∑ 𝑃𝑃𝑄𝑄𝑃𝑃𝑄𝑄∈∆𝛺𝛺𝑖𝑖 ; ∆𝛺𝛺𝑖𝑖 =

2𝜋𝜋
𝑁𝑁𝑃𝑃

 is the solid angle of each SE; 𝜃𝜃𝑖𝑖𝑎𝑎 is the central zenith angle of solid angle ∆𝛺𝛺𝑖𝑖; 𝑃𝑃𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑒𝑒 is the 

power of all the direct incident photon packets on a reference plane at the top of the scene, i.e., the 

incident radiation at the top of the scene. Once the power in each SE is determined, the scene 

albedo is computed as:

𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑜𝑜 =
∑ 𝑃𝑃𝑖𝑖𝐴𝐴
𝑁𝑁𝑃𝑃
𝑖𝑖=1
𝑃𝑃𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑒𝑒

(2-7)

2.5.2 Virtual photon tracing algorithm

The real photon approach estimates BRF by using small SEs on the sphere. More photon 

packets are needed to reduce the variance when smaller SEs are used. To solve this problem, a 

virtual photon approach, similar to the virtual direction in DART model (Yin et al., 2015), 

secondary ray in Rayspread model (Widlowski et al., 2006) or some “local estimates” methods 

(Antyufeev and Marshak, 1990; Marchuk et al., 1980), is introduced. If a packet is intercepted by 

an object (e.g., a tree) in the scene without complete absorption, the packet will be scattered in a 

direction which is randomly sampled by the BSDF function, and a virtual photon packet will be 
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sent to each of the defined virtual directions. The possible scattered energy, in terms of intensity 

(W ∙ sr−1), is calculated as
𝐼𝐼 = 𝑉𝑉 ∙ 𝑃𝑃𝑞𝑞−1 ∙ 𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑣𝑣) ∙ cos < 𝜔𝜔𝑣𝑣,𝜔𝜔𝑛𝑛 > (2-8)

where 𝑃𝑃𝑞𝑞−1 is the power of the incident photon packet at the 𝑞𝑞th intersection point along its 

trajectory; 𝜔𝜔𝑣𝑣 is a virtual direction; 𝑉𝑉 is a visibility factor that is equal to zero if a landscape 

element occludes the virtual photon packet, and equal to 1 otherwise. When sending the occlusion 

testing rays, the lateral boundary effect is also considered (Figure 2.9). The final BRF is then: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝑣𝑣 =
𝜋𝜋𝐼𝐼𝑣𝑣𝐴𝐴

cos 𝜃𝜃𝑣𝑣 ∙ 𝑃𝑃𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑒𝑒
(2-9)

where 𝐼𝐼𝑣𝑣𝐴𝐴 is the power per unit solid angle (W ∙ sr−1) in virtual direction 𝑣𝑣 and 𝜃𝜃𝑣𝑣 is the zenith 

angle of the virtual direction. An advantage of calculating a directional BRF using the virtual 

photon approach is that the BRF is estimated for an infinitely small solid angle (Thompson and 

Goel, 1998), which is the real directional BRF of a scene.

Figure 2.9: Virtual photon approach to calculate BRF.

2.6 Backward path tracing

Instead of tracing photon packets from light sources, backward path tracing sends rays from 

sensors into the scene. The ray directions are controlled by sensor configurations (field of view, 

position, orientation, etc.). The main task of this ray-tracing algorithm is to establish a connection, 

which is called “path”, between light sources and sensors and to determine the radiance incident 

onto the sensor.
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2.6.1 First-order scattering

When a ray leaves the sensor and finds its first intersection point 𝑞𝑞 with the virtual scene, 

the scattered radiation from direct incident radiation of light sources should be calculated. This is 

called first-order scattering. Since a scene may have both sun and atmosphere emitters, rays are 

randomly sent from them. When a ray reaches point 𝑞𝑞, a light source is randomly chosen between 
sun and atmosphere (Figure 2.10). Their probabilities are 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑 and 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑑𝑑, respectively. Usually, 

we can set 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑 = 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑑𝑑 = 0.5  or set the value according to their emitting power, i.e., 𝑤𝑤𝑘𝑘 =
𝐿𝐿𝑘𝑘(𝜆𝜆)

∑ 𝐿𝐿𝑘𝑘(𝜆𝜆)𝐾𝐾
𝑘𝑘=1

. According to the chosen light source, the scattering is calculated differently:

 If sun has been chosen. A ray is sent from 𝑞𝑞 along negative sun direction and finds a 

point 𝑞𝑞′. If the ray bas been blocked between 𝑞𝑞𝑞𝑞′, then the sun does not directly contribute 

to point 𝑞𝑞 . Otherwise, the incident irradiance from the sun can be calculated as 
𝐸𝐸𝑎𝑎𝑖𝑖𝑑𝑑/𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛  , where 𝐸𝐸𝑎𝑎𝑖𝑖𝑑𝑑  is sun irradiance of a surface perpendicular to the sun 

direction and 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛  is the probability that the sun generates a ray in this direction. 

Since the sun direction is fixed, we have: 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛 = 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑 ∙ 1.

 If atmosphere has been chosen. A random direction in the upper hemisphere is created 

and a ray is sent from 𝑞𝑞 along this generated direction to find the intersection point 𝑞𝑞′ 

with atmosphere, which is represented as a hemisphere in LESS. If this ray is not blocked, 
the atmosphere radiance is 𝐼𝐼𝑎𝑎𝑖𝑖𝑑𝑑𝑑𝑑/𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 , where 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎  is the probability that the 

randomly generated ray is in this direction, i.e., 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑑𝑑
𝑎𝑎𝑜𝑜𝑎𝑎𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎

𝜋𝜋
  with 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎 

being the angle between surface normal and the generated ray.

The incident radiation will be scattered into direction 𝜔𝜔𝑜𝑜, no matter which light source has 

been chosen. Since surfaces in LESS are Lambertian, thus, the possibility to generate a ray with 

specific direction 𝜃𝜃  can be expressed as 𝑎𝑎𝑜𝑜𝑎𝑎𝜃𝜃
𝜋𝜋

 , i.e., 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑜𝑜𝑎𝑎𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎
𝜋𝜋

  and 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑠𝑠𝑛𝑛 = 𝑎𝑎𝑜𝑜𝑎𝑎𝜃𝜃𝑎𝑎𝑠𝑠𝑠𝑠
𝜋𝜋

 . This 

means that we have sampled both the light sources and the BSDF functions, which is usually called 

multiple importance sampling. The combined probability is (Veach, 1997):

𝑝𝑝𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛 =
𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛 2

𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛 2 + 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑠𝑠𝑛𝑛 2 ,   𝑝𝑝𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 2

𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 2 + 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 2 (2-10)

The final contribution from the sun can be expressed as:
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𝐿𝐿𝑎𝑎𝑠𝑠𝑛𝑛 =
𝐸𝐸𝑎𝑎𝑖𝑖𝑑𝑑

𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛 ∙ 𝑝𝑝𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛 ∙ 𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) ∙ cos𝜃𝜃𝑎𝑎𝑠𝑠𝑛𝑛

=
𝐸𝐸𝑎𝑎𝑖𝑖𝑑𝑑 cos 𝜃𝜃𝑎𝑎𝑠𝑠𝑛𝑛

𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑
∙ 𝑝𝑝𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛 ∙ 𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)

(2-11)

and the contribution from the atmosphere can be calculated as:

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐼𝐼𝑎𝑎𝑖𝑖𝑑𝑑𝑑𝑑

𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑝𝑝𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) ∙ cos𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎

=
𝜋𝜋𝐼𝐼𝑎𝑎𝑖𝑖𝑑𝑑𝑑𝑑
𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑑𝑑

∙ 𝑝𝑝𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑓𝑓(𝑞𝑞,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)
(2-12)

Figure 2.10: Scattering calculation in backward path tracing.

2.6.2 Multiple scattering

To calculate multiple scattering (Figure 2.11), a new ray is launched from point 𝑞𝑞 with a 

direction that randomly samples the BSDF. If this ray intersects the scene at a point 𝑞𝑞1, the same 

procedure for calculating radiation from light sources at point 𝑞𝑞 is applied to 𝑞𝑞1. The outgoing 

radiance at point 𝑞𝑞1 along the randomly selected direction is the incoming radiance of 𝑞𝑞 along 

direction 𝜔𝜔1. The multiple scattering procedure is performed recursively until reaching the user 

specified maximum scattering order (e.g., 5). To prevent energy loss due to the stop of scattering, 

the random cut-off technique (“Russian roulette”) used in FPT is also applied to the sensor ray.

When simulating a horizontally infinite scene, the lateral boundary effect is considered for 

both the sensor ray and the illumination ray. At each intersected point (𝑞𝑞𝑖𝑖), an illumination ray, 

which is built by randomly sampling a point 𝑞𝑞𝑒𝑒 on the emitter, is sent towards the emitter. If this 

ray traverses the lateral boundary of the scene, it is also reintroduced into the scene to test whether 

the intersected point is occluded by other landscape elements or not.
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Figure 2.11: Backward path tracing and multiple scattering calculation.

2.7 Thermal infrared image simulation

When simulating thermal infrared radiation, the object itself, instead of the sun, becomes an 

“emitter”, which emits thermal radiation according to Planck's law and its emissivity. Thermal 

emission from the sun is neglected, which is usually the case for applications in the thermal 

infrared domain. However, the modeling is not adapted to wavelengths around 3-7µm where sun 

irradiance and Earth thermal exitance have the same order of magnitude. However, the presence 

of sun radiation will greatly influence the temperature distribution of objects due to the shadows 

cast between them. Scene elements are classified into four components with specific temperatures, 

i.e., sunlit soil, shaded soil, sunlit leaves and shaded leaves (Figure 2.12). The determination of 

these four components is computed on the fly instead of a precomputing step. This on-the-fly 

approach avoids the storage of emission points, which can greatly reduce the memory usage, 

especially for scenes with a large number of leaves. As a comparison DART pre-computes the 

temperature, which requires some extra computation, but allows to consider a continuous range of 

temperatures instead of 4 temperature values only.
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Figure 2.12: Thermal infrared image simulation using backward path tracing.

If a sensor ray is intersected in the scene (i.e., 𝑞𝑞 in the scene), an emission term at this point 

is added. To determine the emission power, an occlusion ray is traced towards the sun. If this point 

is directly illuminated, i.e., the occlusion ray intersects nothing, the temperature of the sunlit 

component is used. Otherwise it uses the temperature of the shaded component. The emitted 

radiation is calculated by using Planck’s law with local emissivity. In addition to the emitted power, 

a reflected power goes into the sensor. This is due to the reflexion of thermal emission by other 

objects in the scene or sky radiation. In order to consider this part of the power, a random point on 

a randomly selected emitter (including the sky) is sampled (e.g., 𝑞𝑞𝑒𝑒 in Figure 2.12). When this 

point is not on the sky, the emission power is determined by sending an occlusion ray towards the 

sun. The contribution of power from this point is calculated by using the BSDF defined at point 𝑞𝑞 

if this point is not occluded by other objects. This procedure can be recursively repeated, which is 

the same as the procedure described in section 1.6 except for the emission term. Finally, a thermal 

infrared image, which records the radiance value, can be simulated.

2.8 Downward solar radiation simulation in rugged terrain

The terrain impacts local downward solar radiation (Yan et al., 2016), due to the change of 

incident angle between solar direction and local surface normal. Besides, surrounding terrains 

scatter radiation and also block some radiation from sun and sky (Wen et al., 2018). To 

quantitatively analyze these impacts, several models that simulate rugged terrains have been 

designed (Dozier and Frew, 1990; Li et al., 1999; Wang et al., 2005). Monte-Carlo ray-tracing 

models are usually the most accurate and are well adapted to simulate any complex terrains, 
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especially in presence of vegetation. LESS uses forward photon tracing to simulate the upward / 

downward solar radiation in complex terrains (Figure 2.13). The scene is first divided into regular 

grids, each of them representing a pixel, and solar irradiance is calculated per pixel during the 

simulation. If a photon that exits 𝑃𝑃1  intersects 𝑃𝑃2 , the upward/downward solar radiation is 

calculated according to the spatial relationship between 𝑃𝑃1 and 𝑃𝑃2:

 If 𝑃𝑃1 and 𝑃𝑃2 belong to different pixels (here: Pixels 4 and 2), one records the upward solar 

radiation at exiting pixel (Pixel 4) and downward solar radiation at entering pixel (Pixel 2);

 If 𝑃𝑃1 and 𝑃𝑃2 belong to the same pixel. No radiation is needed to be recorded, since this is 

internal scattering in a pixel;

 If photon leaves from 𝑃𝑃1 but without further intersection, we only record the upward solar 

radiation for the exiting pixel.

Figure 2.13: Solar radiation in rugged terrain.

2.9 Atmosphere simulation with backward path tracing

2.9.1 Plane-parallel atmosphere model

Approximately, atmosphere can be abstracted as being one-dimensional, but with different 

optical properties for each horizontal layer (Figure 2.14). Apart clouds, the atmosphere is made of 

gasses and aerosols with densities that decrease with altitude. For each layer, the optical properties 
of which can be described with 6 parameters: extinction coefficient of gases 𝛽𝛽𝑤𝑤𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 , single-

scattering albedo of gases 𝜔𝜔𝑤𝑤𝑎𝑎𝑎𝑎, scattering phase function of gases 𝑃𝑃𝑤𝑤𝑎𝑎𝑎𝑎, extinction coefficient of 

aerosols 𝛽𝛽𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎  , single-scattering albedo of aerosols 𝜔𝜔𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎 , scattering phase function of 

aerosols 𝑃𝑃𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎 . During the simulation, these parameters are combined together in order to 
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compute weighted optical properties per layer:

𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 = 𝛽𝛽𝑤𝑤𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 (2-13)

𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎 =
𝛽𝛽𝑤𝑤𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 ∙ 𝜔𝜔𝑤𝑤𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 ∙ 𝜔𝜔𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎

𝛽𝛽𝑤𝑤𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 (2-14)

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 =
𝛽𝛽𝑤𝑤𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 ∙ 𝜔𝜔𝑤𝑤𝑎𝑎𝑎𝑎 ∙ 𝑃𝑃𝑤𝑤𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 ∙ 𝜔𝜔𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎 ∙ 𝑃𝑃𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎

𝛽𝛽𝑤𝑤𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 ∙ 𝜔𝜔𝑤𝑤𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 ∙ 𝜔𝜔𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎
(2-15)

Gas scattering is simulated with the Rayleigh scattering phase function, while aerosol 

scattering is simulated with Henyey-Greenstein phase function (Henyey and Greenstein, 1941): 

𝑃𝑃𝑤𝑤𝑎𝑎𝑎𝑎(cos𝜃𝜃) =
3

16𝜋𝜋
(1 + cos2𝜃𝜃) (2-16)

𝑃𝑃𝑎𝑎𝑒𝑒𝑑𝑑𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎(cos𝜃𝜃) =
1

4𝜋𝜋
1 − 𝑔𝑔2

(1 + 𝑔𝑔2 + 2𝑔𝑔 cos 𝜃𝜃)3/2 (2-17)

where 𝜃𝜃 is the phase angle, which indicates the angle between incident ray and scattering ray; 𝑔𝑔 

is a anisotropy factor that ranges from -1 to 1. When g > 0, the dominant scattering is forward 

scattering, while for g < 0, backward scattering is dominant.

Figure 2.14: Structures of plane parallel atmosphere.

2.9.2 Radiative transfer in participating media

2.9.2.1 Fundamentals

During its propagation in participating media, light is absorbed or scattered by the particles 

in the media, which modifies light intensity. As illustrated in Figure 2.15, an incident radiation 

with radiance 𝐿𝐿(0,Ω) that enters the media at positon 𝑡𝑡 = 0, becomes 𝐿𝐿(𝑑𝑑,Ω) when it reaches 
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position 𝑡𝑡 = 𝑑𝑑. The final radiance 𝐿𝐿(𝑑𝑑,Ω) has three components: directly transmitted radiance 

from 𝐿𝐿(0,Ω), self-emitted radiance due to media along the ray path from 𝑡𝑡 = 0 to 𝑡𝑡 = 𝑑𝑑, and 

in-scattering radiance due to scattering of radiation from media outside the ray path:

Directly transmitted radiance. It depends on direct transmittance 𝑒𝑒∫ −𝛽𝛽(𝑎𝑎)𝑎𝑎𝑎𝑎𝑑𝑑
0  over [0, d]:

𝐿𝐿𝑎𝑎𝑖𝑖𝑑𝑑(d, Ω) = 𝐿𝐿(0,Ω)𝑒𝑒∫ −𝛽𝛽(𝑎𝑎)𝑎𝑎𝑎𝑎𝑑𝑑
0 (2-18)

where 𝛽𝛽(t)  is the extinction coefficient at position 𝑡𝑡  of the media. In the atmosphere, 

𝛽𝛽(t) = 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎(𝑡𝑡).

 Self-emitted radiance. At any position 𝑡𝑡, the media emits thermal radiance that is absorbed 

and scattered during its propagation to 𝑑𝑑. 

𝐿𝐿𝑒𝑒(d, Ω) = � 𝛽𝛽(t)[1 −ω(t)]. 𝐿𝐿𝑒𝑒(𝑡𝑡,Ω). 𝑒𝑒∫ −𝛽𝛽(𝑎𝑎′)𝑎𝑎𝑎𝑎𝑑𝑑
𝑎𝑎 ′𝑑𝑑𝑡𝑡

𝑎𝑎

0
(2-19)

where ω(t) is the single-scattering albedo at position 𝑡𝑡. 𝐿𝐿𝑒𝑒(t,Ω) is the emitted radiance at 

positon t. In the atmosphere, ω(t) = 𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎.

 In-scattering radiance. It is the out-scattering energy of surrounding media that has been 

scattered in direction Ω. It is related to the phase function and single scattering albedo, i.e.,

𝐿𝐿𝑎𝑎(d, Ω) = � 𝛽𝛽(t)ω(t)� 𝑃𝑃(𝑡𝑡,Ω,Ω′)𝐿𝐿(t,Ω′)𝑑𝑑Ω′
4𝜋𝜋

𝑒𝑒∫ −𝛽𝛽(𝑎𝑎′)𝑎𝑎𝑎𝑎𝑑𝑑
𝑎𝑎 ′𝑑𝑑𝑡𝑡

𝑎𝑎

0

(2-20)

where 𝑃𝑃(𝑡𝑡,Ω,Ω′) is the phase function at position 𝑡𝑡; 𝐿𝐿(t,Ω′) is the incident radiation in 

direction Ω′ by surrounding media.

In short, the outgoing radiance is:

𝐿𝐿(𝑑𝑑,Ω) = 𝐿𝐿(0,Ω)𝑇𝑇(𝑑𝑑) + � 𝑇𝑇(𝑑𝑑 − t)[𝜎𝜎𝑎𝑎(t)𝐿𝐿𝑒𝑒(𝑡𝑡,Ω) + 𝜎𝜎𝑎𝑎(t)𝐿𝐿𝑖𝑖𝑛𝑛(𝑡𝑡,Ω)]𝑑𝑑𝑡𝑡
𝑎𝑎

0
(2-21)

where 𝜎𝜎𝑎𝑎(𝑡𝑡) = 𝛽𝛽(t)[1 −ω(t)]  is an emission coefficient; 𝜎𝜎𝑎𝑎(t) = 𝛽𝛽(t)ω(t)  is a scattering 

coefficient; 𝑇𝑇(𝑡𝑡) = 𝑒𝑒∫ −𝛽𝛽(𝑎𝑎′)𝑎𝑎𝑎𝑎𝑎𝑎
0 ′is the transmittance along [0,t]. For homogeneous media, which is 

not the case of atmosphere, the extinction coefficient 𝛽𝛽(t)  is a constant.  𝐿𝐿𝑖𝑖𝑛𝑛(𝑡𝑡,Ω) =

∫ 𝑃𝑃(𝑡𝑡,Ω,Ω′)𝐿𝐿(t,Ω′)𝑑𝑑Ω′4𝜋𝜋  Then: 𝑇𝑇(𝑡𝑡) = 𝑒𝑒−𝛽𝛽𝑎𝑎.

Figure 2.15: Radiative transfer in participant media.



2.9 ATMOSPHERE SIMULATION WITH BACKWARD PATH TRACING

27

2.9.2.2 General solution of radiative transfer equation in homogeneous media

To solve the radiative transfer equation (2-21), the integral must be computed. According to 

importance sampling theory (Appendix A), a density function which is approximately proportional 
to 𝑇𝑇(𝑑𝑑 − t)[𝜎𝜎𝑎𝑎(t)𝐿𝐿𝑒𝑒(𝑡𝑡,𝜔𝜔) + 𝜎𝜎𝑎𝑎(t)𝐿𝐿𝑖𝑖𝑛𝑛(𝑡𝑡,𝜔𝜔)] should be chosen, in order to get lower variance. In 

homogeneous media 𝑇𝑇(𝑡𝑡) can be analytically expressed as 𝑒𝑒−𝛽𝛽𝑎𝑎. Thus, the density function can 

be 𝑝𝑝(𝑡𝑡) = 𝑐𝑐.𝑇𝑇(𝑡𝑡) with 𝑐𝑐 being a constant. It leads to:
𝐿𝐿(𝑑𝑑,Ω) = 𝐿𝐿(0,Ω)𝑇𝑇(𝑑𝑑)

+ �
𝑇𝑇(𝑑𝑑 − t)
𝑝𝑝(𝑡𝑡)

[𝜎𝜎𝑎𝑎(t)𝐿𝐿𝑒𝑒(𝑡𝑡,Ω) + 𝜎𝜎𝑎𝑎(t)𝐿𝐿𝑖𝑖𝑛𝑛(𝑡𝑡,Ω)]𝑝𝑝(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑎𝑎

0

(2-22)

The equation ∫ 𝑝𝑝(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1+∞
0  allows one to get the constant 𝑐𝑐:

c =
1

∫ 𝑇𝑇(𝑡𝑡)𝑑𝑑𝑡𝑡+∞
0

=
1

∫ 𝑒𝑒−𝛽𝛽𝑎𝑎𝑑𝑑𝑡𝑡+∞
0

= 𝛽𝛽 (2-23)

The density function 𝑝𝑝(𝑡𝑡) = 𝛽𝛽𝑒𝑒−𝛽𝛽𝑎𝑎  also represents the possibility that a scattering (or 

absorption) event occurs at position 𝑡𝑡, i.e., 𝑝𝑝𝑎𝑎𝑠𝑠𝑎𝑎 = 𝛽𝛽𝑒𝑒−𝛽𝛽𝑎𝑎. If no scattering (or absorption) event 

occurs during [0, d], the probability is:

𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎 = 1 −� 𝛽𝛽𝑒𝑒−𝛽𝛽𝑎𝑎𝑑𝑑𝑡𝑡
𝑎𝑎

0
= 𝑒𝑒−𝛽𝛽𝑎𝑎 (2-24)

To sample 𝑝𝑝(𝑡𝑡) , an inverse transform sampling method can be used (Morlet, 1983). This 

method first computes the cumulative distribution function (CDF):

𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = � 𝛽𝛽𝑒𝑒−𝛽𝛽𝑎𝑎′𝑑𝑑𝑡𝑡′
𝑎𝑎

0
= 1 − 𝑒𝑒−𝛽𝛽𝑎𝑎 (2-25)

It results that the randomly sampled 𝑡𝑡 is

𝑡𝑡 = −
ln(1 − 𝜉𝜉)

𝛽𝛽
(2-26)

where 𝜉𝜉 is a uniformly distributed random variable with 𝜉𝜉 ∈ [0,1].

2.9.3 Radiative transfer in plane-parallel atmosphere

Since backward path tracing is more efficient in simulating images than forward photon 

tracing, the atmosphere RT is simulated in backward mode. It allows one to simulate images with 

atmospheric effects, and also diffuse radiation with fish-eye sensors.

Figure 2.16 illustrates how backward path tracing algorithm is used to simulate atmosphere 

RT. When a ray enters the atmosphere, a scattering event may occur. The position of this event is 

determined by the free path that is randomly sampled from the density function. Since a 3D scene 
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may contain other types of landscape elements, such as terrain, the radiance recorded by the sensor 

is computed differently depending if the ray is blocked before the atmosphere scattering event.

Ray not blocked during the free path. Radiance is determined by the phase function and 

probability that atmosphere scattering occurs successfully. Suppose a ray starts from A and 

is scattered at B (Figure 2.16), the radiance induced by the sun and scattered into A is:
   𝐿𝐿𝐵𝐵→𝐴𝐴 = 𝑇𝑇𝐴𝐴𝐵𝐵 ∙ 𝛽𝛽𝐵𝐵ω𝐵𝐵 ∙ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 ∙ 𝐸𝐸𝑎𝑎𝑖𝑖𝑑𝑑𝑇𝑇𝐵𝐵+∞/𝑝𝑝𝑎𝑎𝑠𝑠𝑎𝑎𝐴𝐴𝐵𝐵 (2-27)

where 𝑇𝑇𝐴𝐴𝐵𝐵 is the transmittance between [A, B]; 𝐸𝐸𝑎𝑎𝑖𝑖𝑑𝑑 is solar irradiance; 𝑇𝑇𝐵𝐵+∞ is the total 

transmittance from point B to the top of the atmosphere along negative sun direction; 𝑝𝑝𝑎𝑎𝑠𝑠𝑎𝑎𝐴𝐴𝐵𝐵  

is the probability that the ray starts from A and is scattered at B.

Ray is blocked during the free path. The radiance from point C to B (Figure 2.16) is: 

𝐿𝐿𝐶𝐶→𝐵𝐵 = 𝑇𝑇𝐵𝐵𝐶𝐶 ∙ 𝑓𝑓(𝐶𝐶,Ω𝑖𝑖 ,Ω𝑜𝑜) ∙ 𝐸𝐸𝑎𝑎𝑖𝑖𝑑𝑑𝑇𝑇𝐵𝐵+∞/𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝐵𝐵𝐶𝐶 (2-28)

where 𝑓𝑓(𝐶𝐶,Ω𝑖𝑖 ,Ω𝑜𝑜) is the BSDF at point C; 𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝐵𝐵𝐶𝐶  is the probability that a ray starts from 

B, but fails to induce a atmosphere scattering event.

The above process can be repeated to calculate multiple scattering, with the procedure 

described in section 2.6.

Figure 2.16: Simulating radiative transfer in atmosphere with backward path tracing.

(a) Radiative transfer simulation in atmosphere; (b) Volume scattering; (c) Surface scattering.

Equations (2-27) and (2-28) show that free paths 𝑝𝑝𝑎𝑎𝑠𝑠𝑎𝑎 and 𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎 are important terms that 

need to be calculated during the simulation. For atmosphere, although each layer can be treated as 

homogeneous media, different layers usually have different optical properties. Thus, the method 



2.10 IMPLEMENTATION AND EXTENSION OF LESS

29

described in homogeneous media cannot be directly applied, due to the inhomogeneous optical 

properties. To get the free path, we sample the optical depth instead of sampling free path directly, 

i.e., 𝜏𝜏𝑒𝑒 = − ln(1 − 𝜉𝜉). Further, we find a point 𝐴𝐴𝑛𝑛 (Figure 2.17) in the propagation direction of 

the ray that starts from 𝐴𝐴1, ensuring that the cumulated optical depth is 𝜏𝜏𝑒𝑒. Since the atmosphere 

scattering event only occurs at point 𝐴𝐴𝑛𝑛, but fails for other layers, thus, the probability is: 

𝑝𝑝𝑎𝑎𝑠𝑠𝑎𝑎
𝐴𝐴1𝐴𝐴𝑠𝑠 = 𝑝𝑝𝑎𝑎𝑠𝑠𝑎𝑎

𝐴𝐴𝑠𝑠−1𝐴𝐴𝑠𝑠 ∙�𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎
𝐴𝐴𝑖𝑖−1𝐴𝐴𝑖𝑖

𝑛𝑛−1

𝑖𝑖=2

= 𝛽𝛽𝑛𝑛−1 ∙ 𝑒𝑒−∑ 𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖𝑠𝑠−1
𝑖𝑖=1 (2-29)

𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎
𝐴𝐴1𝐴𝐴𝑠𝑠 = �𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎

𝐴𝐴𝑖𝑖−1𝐴𝐴𝑖𝑖
𝑛𝑛

𝑖𝑖=2

= 𝑒𝑒−∑ 𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖𝑠𝑠−1
𝑖𝑖=1 (2-30)

where 𝛽𝛽𝑖𝑖 is the extinction coefficient for layer 𝑖𝑖; 𝑑𝑑𝑖𝑖 is the path length in 𝑖𝑖th layer.

Figure 2.17: Free path sampling in plane parallel atmosphere.

2.10 Implementation and extension of LESS

The ability to complete different simulation tasks is an important aspect of a 3D model 

(Disney et al., 2000). The implementation of LESS is based on an open source ray-tracing code 

named Mitsuba (Jakob, 2010), which provides a flexible plugin architecture. It abstracts most of 

the components associated in the Radiative Transfer Model module into different groups of plugins: 

samplers, cameras, light sources, BRDFs, shapes, etc. This architecture makes it possible for 

developers to extend LESS with new functionalities without knowing and recompiling the whole 

system. For example, a circular fisheye camera that captures energy from a 180º field of view is 

implemented in LESS (Figure 2.18). To implement this camera, the developer must simply project 

the random samples from the image plane, which is provided automatically by LESS, into 



CHAPTER 2. LESS: RAY-TRACING BASED 3D RADIATIVE TRANSFER MODEL

30

spherical coordinates (Camera Ray). The radiance that follows the ray can be automatically 

computed by functions provided by LESS.

Figure 2.18: Implementation of a circular fisheye camera. (a) The projection diagram of a circular 

fisheye camera; (b) An example of simulated fisheye image using LESS.

Currently, both the forward (FPT) and backward (BPT) modes have been implemented in 

LESS. The BPT approach only considers the power that directly enters the sensor, avoiding several 

redundant computations. Thus, it has advantages over the FBT approach, which launches rays from 

the light source when only images in a few observation angles are needed. This advantage also 

benefits the simulation of various sensors (e.g. spherical camera and LAI-2000) because it can 

consider only the landscape within its field of view if a very large scene is provided. However, 

BPT is not suitable for simulating the energy distribution over the entire scene. In this case, FPT 

is needed. An advantage of LESS is that it offers a flexible system architecture that allows 

developers to implement new functionalities. Since most of the components in RT Core are plugins, 

for example, integrator, which is one of the main plugins and controls how rays are tracked and 

how radiances are calculated, is easy to be implemented without changing other components of 

the system. This allows for the development of a new integrator plugin that can work in forward 

mode, making energy distribution simulation possible. 

A limitation of the current LESS version is that the simulation of thermal radiation is not 

available in forward mode, since it is highly computationally demanding and is also confronted 

with significant sampling errors (Bailey et al., 2016), especially for the scenes with a large number 

of elements. Because BPT only simulates images, thus, studying radiative budget with thermal 

emission is difficult for LESS. This means that more sophisticated approaches must be devised to 

deal with this problem, for example, using reverse ray-tracing while sensing rays from the leaf 

itself instead of the sensors (Bailey, 2018). Another possible future extension of LESS is the 
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utilization of graphics processing units (GPUs), which has been greatly improved in recent years. 

It has also been successfully applied to the 3D radiative transfer modeling to improve the 

computational efficiency (Bailey et al., 2014; Malik et al., 2017).

2.11 Concluding remarks

A large-scale remote sensing data and image simulation framework (LESS) was designed and 

implemented. It provides (1) a set of tools (including a GUI) to ease the management of input 

parameters and the creation of 3D mock-ups, and (2) a flexible 3D RT model that can simulate 

BRF, BT and also large-scale spectral images. The number of spectral bands is not limited. 

Through an on-the-fly computation of the sunlit and shaded scene components, LESS can simulate 

thermal infrared images with high efficiency and low memory usage. Although we mainly focus 

on vegetation scenes in this paper, LESS can also be applied to simulating remote sensing data 

over other kinds of real scenes, e.g., complex terrains, roads and buildings. LESS can also simulate 

remote sensing images with different spatial resolutions and multi or hyperspectral bands.

Due to the flexible system architecture, future developments of LESS will focus on the 

addition of new simulation capabilities for LiDAR and the atmosphere. The long-term goal of 

LESS is to provide a more user-friendly 3D RT simulation tool. The software can be downloaded 

from http://lessrt.org/. It can run on Windows and Linux operating systems and has been released 

as open-source (GNU GPLv3).

http://lessrt.org/
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3.1 BRF validation

3.1.1 Model intercomparison

To evaluate the accuracy of LESS, we compared it with other models over several different 

homogeneous and heterogeneous canopies from the RAMI website. The LESS BRFs in principal 

and cross-principal planes are calculated with two approaches: forward photon tracing (FPT) and 

backward path tracing (BPT). For BPT, BRF image is generated per direction and the mean value 

is the BRF. The number of rays in each pixel for BPT is set to 128, which has been proven to be 

substantial for most of the heterogeneous scenes (J. Qi et al., 2017). For FPT, virtual photon is 

used to estimate the directional BRF, while the total number of photons is determined by the scene 

area and illumination photon density, which is set to 0.02 m here. Three types of landscapes are 

considered: discrete floating sphere canopies, random spherical and cylindrical canopies and 

realistic forest stand. LESS simulation of brightness temperature was also compared to simulations 

of the 4SAIL model (Verhoef et al., 2007).

3.1.1.1 Discrete floating sphere canopies

Discrete floating sphere scene is a 100 × 100 m square heterogeneous scene from RAMI 31 

made of 15 spheres (radius = 10 m). Each sphere is composed of 49999 uniformly distributed disc-

shaped leaves. The LAI of each sphere is 5. LESS BRFs in red and near-infrared (NIR) bands are 

compared with reference BRFs (ROMCREF) provided by the ROMC. The reference BRFs 

correspond to averaged results of other models, such as RAYTRAN (Govaerts and Verstraete, 

1998), Rayspread (Widlowski et al., 2006) and FLIGHT (North, 1996). To simulate BRFs using 

LESS, the 3D scene, in the format of RAMI was first converted to Wavefront OBJ File Format. 

Specifically, the disc-shaped leaves are converted into squares with the same leaf area. The sun 

zenith angle (SZA) used in the simulations is set to 20° and 50°.

Figure 3.1 shows RAMI and LESS BRFs in the principal plane. LESS BRFs are simulated 

with the FPT and BTP modes with differences smaller than 0.0005 and 0.001 for red and NIR 

bands, respectively. Compared to other models, LESS BRFs are very close, with a root mean 

square error (RMSE) equal to 0.0002 and 0.003 for red and NIR bands, respectively. LESS slightly 

                                                
1 http://rami-

benchmark.jrc.ec.europa.eu/HTML/RAMI3/EXPERIMENTS3/HETEROGENEOUS/FLOATING_SPHERES/SOLAR_DOMAI

N/DISCRETE/DISCRETE.php
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overestimates the hotspot in the NIR, with a maximum difference of 0.01.

Figure 3.1: Comparison of LESS and RAMI BRFs for a discrete floating sphere scene.

(a) Principal plane, red, SZA = 20º; (b) Principal plane, NIR, SZA = 20º; (c) Principal 

plane, red, SZA = 50º; (d) Principal plane, NIR, SZA = 50º.

3.1.1.2 Hybrid spherical and cylindrical canopies

This hybrid scene 2  is a 270 × 270 m square scene composed of randomly distributed 

spherical and cylindrical crowns. They consist of 31999 and 17999 uniformly distributed leaves, 

respectively. The LAI for the spherical and cylindrical canopy is 5, and the SZA is 20°. In order to 

test the ability of LESS to simulate lateral effects, the simulation was carried out for a 30 × 30 m 

subplot, a 90 × 90 m subplot and a 270 × 270 m subplot (Figure 3.2).

Results (Figure 3.3) show that LESS BRFs match very well the RAMI BRFs for any viewing 

zenith angle (VZA), for all the three subplots: the RMSE is less than 0.001.

                                                
2 http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI3/EXPERIMENTS3/HETEROGENEOUS/REAL_ZOOM-

IN/REAL_ZOOM-IN.php
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Figure 3.2: Different simulation resolution of the hybrid scene.

Figure 3.3: Comparison of LESS and RAMI BRFs for a hybrid spherical and cylindrical scene.

(a) Principal plane, NIR, SZA = 20º, Resolution = 270 m; (b) Principal plane, NIR, SZA = 20º, 

Resolution = 90 m; (c) Principal plane, NIR, SZA = 20º, Resolution = 30 m.

3.1.2 Model validation with field measurements

To validate LESS with field measurements, a published dataset from an old aspen (OA) forest 

in Prince Albert National Park, Canada, was used (J. M. Chen et al., 1997; Leblanc et al., 1999). 

This dataset has also been used to validate other 3D models, such as RAPID. Thus, we also include 

RAPID model in this comparison (Huang et al., 2013). The OA forest site is mainly composed of 

old aspen trees with a height around 21.5 m and a 2 m high hazelnut understory. The LAI of the 

aspen tree and hazelnut understory is 1.5 and 0.5, respectively. Major structural and optical 

properties of this site are summarized in Table 3.1. Since the detailed structures of the trees are 

unknown, the OA crown was modeled as an ellipsoid with semi-major axis equal to 3.5 m and 

semi-minor axis equal to 1.5 m, and filled with randomly distributed leaves. The OA trees inside 

the plot are assumed to follow a Poisson distribution. The number of trees is controlled by the stem 

density (850 stems/ha), which is then used to derive the number of leaves inside a crown from the 
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LAI value and leaf size (10 × 10 cm square). The Hazelnut tree crown is more homogeneous 

(clumping index = 0.98) than the OA tree crown. It is modeled as a sphere with radius equal to 1 

m. The in-situ BRF was measured by the POLDER (POLarization and Directionality of the Earth’s 

Reflectances) instrument, which was mounted on a C-130 airplane on May 26, 1994. Because of 

the low LAI value in this site, the anisotropic effect of the soil was also considered by integrating 

the Soilspect model (Jacquemoud et al., 1992) in LESS. The parameters of the soil model are 

adopted from Huang et al. (2013). 

Table 3.1: Structural and optical properties of the OA forest site.

Components LAI
Tree 

height
Crown 
Height

Density
(stems/ha)

Optical property (red/NIR)

Reflectance Transmittance

Old Aspen 1.5 21.5m 7m 850 0.08/0.5 0.07/0.4

Hazelnut 0.5 2m 2m 6000 0.08/0.5 0.07/0.4

Ground 
(Soilspect)

h = 0.1245; b = 1.2999; c = 0.3087;𝑏𝑏′ = 0.1673; 𝑐𝑐′ = −0.0013
𝜔𝜔𝑑𝑑𝑒𝑒𝑎𝑎 = 0.24; 𝜔𝜔𝑁𝑁𝑁𝑁𝐵𝐵 = 0.38

Figure 3.4 shows the LESS, RAPID and POLDER BRFs. Overall, LESS shows similarly 

simulated BRF shapes in both the principal and cross-principal planes. The R2 in the principal 

plane between LESS and POLDER is 0.9 and 0.91 for the red and the NIR band, respectively. The 

corresponding RMSEs equal to 0.0019 and 0.024, respectively. In the cross-principal plane, the 

correlation coefficients between LESS and POLDER are 0.91 and 0.002 for red and NIR band, 

respectively. Despite the low correlation in the NIR band, the RMSE is still small (0.0029 and 

0.013). This low correlation is also found in the comparison campaign in Huang et al. (2013). An 

underestimation in the backscattering direction for both LESS and RAPID models(Figure 3.4c). 

It can be due to several factors, and in particular the unknown structure of the canopy. The tree 

crown is modeled as homogeneous crown in the LESS simulation, while the distribution of 

individual trees is assumed to be Poisson distribution. Also, the parameters used to describe the 

ground anisotropic scattering are those of a nearby site where no POLDER data was collected.
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Figure 3.4: Comparison with field measurements and RAPID model. (a) red, principal plane; (b) red, 

cross-principal plane; (c) NIR, principal plane; (d) NIR, cross-principal plane.

3.2 Image simulation of realistic forest stand

LESS was also assessed with a realistic forest scene, HET09_JBS_SUM from RAMI 

website3, through a pixel-wise comparison with a DART simulated image. This scene is a complex 

forest scene that contains seven species of 18 individual tree objects distributed in a 100 ×100 m 

plot. Each tree has detailed structure information. Figure 3.5 and Table 3.2 show the scene 

structural and optical properties. The nadir BRF image in the NIR band with a spatial resolution 

of 20 cm was simulated both by DART and LESS (BPT). We carried out the vegetation simulation 

in both triangle and turbid medium modes in DART. In the turbid mode, the leaves in each voxel 

were automatically converted into turbid medium according to local leaf area and leaf angle 

distribution. Since only one image is simulated, the number of discrete directions in DART was 

set to 10. Figure 3.6a ~ c illustrate the simulated BRF images of DART and LESS, respectively. 

It can be observed that these three images keep almost the same spatial pattern, even at the fine 

scale of small branches. To compare them more quantitatively, the pixel-wise scatter plots 

presented in Figure 3.6d and Figure 3.6f indicate that LESS is consistent with DART and show 

                                                
3 http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/EXPERIMENTS4/ACTUAL_CANOPIES/ 

JARVSELJA_SUMMER_BIRCHSTAND/JARVSELJA_SUMMER_BIRCHSTAND.php

http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/EXPERIMENTS4/ACTUAL_CANOPIES/


3.2 IMAGE SIMULATION OF REALISTIC FOREST STAND

39

R-squared value of 0.92 for both the triangle mode and turbid mode. We also compared the results 

under the resolution of 1 m (Figure 3.6e and Figure 3.6g), which shows that the R-squared value 

of BRF increases to 0.99 and 0.97, respectively. This increase is explained by the fact that the 

number of rays per pixel increases if the resolution decreases, which leads to more accurate BRFs.

A significant difference between LESS and DART is the usage of computational resources 

(Table 3.3). LESS uses an “instance” technique, which only keeps one copy of each object in 

memory, and stores the geometric transforms of all individual trees, while DART copies each 

object to every position in the current version (“instance” functionality will be available in new 

DART version). This indicates that DART takes more memory: 236 GB and 93GB for triangle and 

turbid mode, compared to 5 GB of LESS. As a forward-tracking model, DART computes the scene, 

radiative budget and images for any number of viewing directions within a single simulation. Here, 

only five images, corresponding to 5 upward directions, are simulated. On the other hand, LESS 

(BPT) only computes the radiance which goes in one specific direction by using reverse tracking 

(viewing direction). Here, LESS (BPT) computes only one image and no radiative budget. The 

computation time is much smaller: 0.6 h for LESS, 3 h for DART turbid mode and 14.1 h for 

DART triangle mode. Even if DART computation time has been recently divided by a factor 3, 

LESS’s smaller requirement of computational resources makes it appropriate for simulating large-

scale (e.g. > 1 km) high-resolution images with explicitly described trees.

Figure 3.5: Scene description of HET09_JBS_SUM.
(a) 2D positions of each tree; (b) 3D view of HET09_JBS_SUM.
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Table 3.2: Optical properties of landscape elements
Element 𝜌𝜌𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑 𝜏𝜏𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑 𝜌𝜌𝑎𝑎𝑑𝑑𝑎𝑎𝑛𝑛𝑎𝑎ℎ 𝜌𝜌𝑎𝑎𝑑𝑑𝑠𝑠𝑛𝑛𝑎𝑎𝑘𝑘 Number
ACPL 0.426 0.478 0.378 0.378 16
TICO 0.439 0.462 0.378 0.378 205
ALGL 0.500 0.383 0.378 0.378 226
BEPE 0.446 0.458 0.378 0.547 465
POTR 0.411 0.493 0.378 0.447 78
FREX 0.513 0.378 0.378 0.378 30
PIAB 0.445 0.370 0.378 0.378 39

ground 𝜌𝜌𝑤𝑤𝑑𝑑𝑜𝑜𝑠𝑠𝑛𝑛𝑎𝑎 = 0.339
ACPL: Acer platanoides; TICO: Tilia cordata; ALGL: Alnus glutinosa; 
BEPE : Betula pendula; POTR : Populus tremuloides; FREX : Fraxinus 
excelsior; PIAB : Picea abies.
𝜌𝜌𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑: leaf reflectance    𝜌𝜌𝑎𝑎𝑑𝑑𝑎𝑎𝑛𝑛𝑎𝑎ℎ: branch reflectance
𝜏𝜏𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑: leaf transmittance  𝜌𝜌𝑎𝑎𝑑𝑑𝑠𝑠𝑛𝑛𝑎𝑎𝑘𝑘: bark reflectance

Figure 3.6: Pixel-wise comparison between LESS and DART.

(a) NIR BRF image of DART in triangle mode; (b) NIR BRF image of DART in turbid mode; (c) 

NIR BRF image of LESS; (d) Scatter plot between DART (triangle mode) and LESS with 0.2 m 

spatial resolution; (e) Scatter plot between DART (triangle mode) and LESS with 1 m spatial 

resolution; (f) Scatter plot between DART (turbid mode) and LESS with 0.2 m spatial resolution; (g) 

Scatter plot between DART (turbid mode) and LESS with 1 m spatial resolution.
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Table 3.3: Computational resources usage (for the resolution of 0.2 m)

Resources DART (Triangle) DART (Turbid) LESS

Memory usage 236 GB 93 GB 5 GB

Time 14.1 hours 3.0 hours 0.6 hours

Computing Platform: Intel Xeon E5-2687W, 40 cores, 500 GB memory

3.3 Thermal infrared simulation

Two homogeneous scenes with LAI = 1 and LAI = 3 are built for the comparison of simulated 

directional BTs with 4SAIL model. The canopy height and leaf size are set to 1 m and 0.03 m. 

Figure 3.7 illustrates the simulated BTs in principal and cross-principal planes and shows that 

LESS simulated BTs are well matched with 4SAIL simulated BTs (R2=0.99). The RMSE for 

LAI=1 and LAI=3 are 0.087 K and 0.075 K, respectively.

Figure 3.7: Comparison of simulated directional BTs over homogeneous scenes.

(a) LAI = 1, principal plane; (b) LAI = 1, cross-principal plane; (c) LAI = 3, principal plane; (d) LAI = 3, cross-

principal plane. The temperatures of sunlit soil, shaded soil, sunlit leaves and shaded leaves are 320.65 K, 306.65 

K, 299.65 K and 296.65 K, respectively. The emissivity values of soil and leaves are 0.97 and 0.99, respectively. 

The leaf angle distribution is spherical.
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3.4 FPAR simulation

A field-measured FPAR dataset of three crops (winter wheat, JD-I corn and JD-II corn) was 

used to validate the accuracy of LESS for simulating vertical profile of FPAR (Xie et al., 2010). 

The study is located at Xiaotangshan experiment site, Beijing, China. This dataset was measured 

at in April 27, 2008 and August 29, 2010 for winter wheat and corn, respectively. Measurements 

took place in a winter wheat plot and two corn plots with different growing stages (Corn-I and 

Corn-II). Leaf and ground spectra were measured using a spectroradiometer (ASD FieldSpec3, 

Analytical Spectral Devices, USA). The structural parameters, such as LAI, crop height and row 

spacing, were also measured, as illustrated in Table 3.4. The optical properties of the three crops 

and the ground are illustrated in Figure 3.8

The FPAR was measured with a SUNSCAN canopy analysis system. For winter wheat (corn), 

at each 16 cm (20 cm) position, an upward and downward PAR were measured. Then the FPAR at 

a height 𝐻𝐻 is calculated as:

𝐶𝐶𝑃𝑃𝐴𝐴𝐹𝐹(𝐻𝐻) =
𝑃𝑃𝐴𝐴𝐹𝐹↓(𝐻𝐻0) − 𝑃𝑃𝐴𝐴𝐹𝐹↓(𝐻𝐻) + 𝑃𝑃𝐴𝐴𝐹𝐹↑(𝐻𝐻) − 𝑃𝑃𝐴𝐴𝐹𝐹↑(𝐻𝐻0)

𝑃𝑃𝐴𝐴𝐹𝐹↓(𝐻𝐻0)
(3-1)

where 𝑃𝑃𝐴𝐴𝐹𝐹↓(𝐻𝐻0) is the downward PAR at top of the canopy; 𝑃𝑃𝐴𝐴𝐹𝐹↓(𝐻𝐻) is the downward PAR 

at height 𝐻𝐻; 𝑃𝑃𝐴𝐴𝐹𝐹↑(𝐻𝐻) is the upward PAR at height 𝐻𝐻; 𝑃𝑃𝐴𝐴𝐹𝐹↑(𝐻𝐻0) is the upward PAR at top of 

the canopy. Three measurement sites were chosen in the winter wheat plot, and two kinds of 

measurement scheme were performed at each height position, i.e., along row (PZ8-S) and cross 

row (PZ8-C). For the two corn plots, only one measurement site was chosen for each one. Similarly, 

an along-row and a cross-row measurement were performed. Thus, there were 6 FPAR profiles for 

winter wheat, and 2 profiles for each of the two corns.

According to the measured parameters, the structures of the winter wheat and corns were built, 

which are shown in Figure 3.9. Figure 3.8 shows the simulated FPAR and field-measured FPAR 

profiles. It can be depicted that the FPAR profiles of winter wheat have similar trends along with 

the change of the height. At the same height level, there are some differences among different 

measurements, especially at the top of the canopy, which may be caused by the different structures 

at different sampled sites in the field. Similarly, the measurements at the same position are also 

diverse for corns. However, the simulated FPAR profiles for both winter wheat and corns are 

consistent with field measurements, and the simulated FPAR values are between the minimum and 

maximum values of the measurements, which indicates that LESS successfully parameterized the 

crop canopy and gives accurate simulated FPARs.
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Table 3.4: structural properties of winter wheat and corn

Crop LAI Row spacing Crop height
Winter wheat 3.62 18 cm 48 cm

Corn-I 3.82 60 cm 134 cm
Corn-II 3.24 60 cm 106 cm

(a)                                      (b)

Figure 3.8: Optical properties of crops and ground: (a) Winter wheat；(b) Corn.

(a)                                   (b)

Figure 3.9: 3D display of the winter wheat and corn: (a) Winter wheat; (b) Corn.

  (a)                      (b)                       (c)

Figure 3.10: Simulated FPAR and field-measured FPAR profiles.

(a) FPAR of winter wheat; (b) FPAR of Corn-I; (c) FPAR of Corn-II.
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3.5 Downward solar radiation in complex rugged terrain

A field-measured dataset of downward solar radiation (DSR) in rugged terrain is used in this 

study to evaluate the accuracy of LESS for simulating DSR. This dataset is measured at 

Yuelaingshan experiment site in Chengde (42.05778N, 117.0656E), China. As shown in Figure 

3.11, four measurement sites were chosen at different positions: hilltop (Station1), East slope 

(Station2), South slope (Station3) and West slope (Station4). For each measurement site, a 

shortwave radiometer (CNR4) was used to measure the DSR. For Station1, another radiometer 

(RMR100) that can measure the direct solar radiation and diffuse solar radiation is used. All the 

radiometer is mounted approximately parallel with the local slope. Since measurements of Station1 

are seldom influenced by terrain, they were used to specify Bottom Of Atmosphere (BOA) 

irradiance in LESS. The terrain used in the simulation was extracted from the stereo images of ZY-

3, which gives a resolution of 12.5 m.

Figure 3.11: The study area for downward solar radiation validation.

Figure 3.12 illustrates the simulation results and field measurements during a whole day from 

5:18 to 6:48. It can be seen that the simulation results are highly consistent with field measurements. 
The RMSE value of Station2, Station3 and Station4 are 33.7 Wm-2μm-1、14.6 Wm-2μm-1 and 

22.9 Wm-2μm-1, respectively. For Station2 (East slope), simulated DSR is a bit higher than field 

measurements after 12:00, while Station3 (South slope) and Station4 (West slope) give 

overestimation around 12:00. This inconsistency may be caused by the uncertainties of field 

measurements and terrain data. For example, the radiometer may not be parallel with the slope, 

and the extracted DEM may be different from local terrain structures due to the coarse resolution 

DEM data. In addition, Station2 (East slope) first reaches maximum value around 10:30, while 

Station3 (South slope) and Station4 (West slope) reaches maximum value around 12:00 and 14:00, 
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respectively. This is consistent with the change of solar azimuth angle during a day. Besides, there 

are abrupt changes of DSR for Station2 (East slope) around 18:00, Station3 (South slope) around 

6:30 and Station4 (West slope) around 7:30, due to the occlusion of terrains. In conclusion, LESS 

successfully captures the influences of terrains on DSR, and the simulated DSR is consistent with 

field measurements.

Figure 3.12: Downward solar radiation validation with field measurements.

3.6 Atmosphere simulation

To evaluate the accuracy of LESS for simulating atmosphere, we chose the US Standard 

atmosphere model from MODTRAN and DART model as references. The downward direct 

radiation and diffuse radiation are simulated for comparison. The parameters used in these 

simulations are indicated in Table 3.5.

Figure 3.13 shows the downward direct solar radiation and diffuse radiation at the bottom of 

atmosphere for LESS, DART and MODTRAN. It can be seen that the LESS simulated results are 

close to both DART and MODTRAN. For direct solar radiation, LESS is exactly the same as 

DART, while shows a bit difference with MODTRAN. The reason is that the atmospheric profiles 

that are input into LESS is extracted from the simulation results of DART. The R-squared value 

between LESS and MODTRAN is 0.99, the RMSE is 31.3Wm-2μm-1. For diffuse radiation that 

is induced by atmosphere scattering, LESS, DART and MODTRAN show some differences, 

especially around wavelength 500 nm. However, the RMSE between LESS and MODTRAN is 

only around 9.6 Wm-2μm-1. DART is a bit higher than MODTRAN, while LESS is between them. 

This comparison demonstrates that the atmosphere simulation in LESS is comparable with DART 

and MODTRAN.
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Table 3.5: Parameters for atmosphere simulation
Parameter Value

Solar zenith angle 30°
Altitude 0km
Aerosols Rural VIS=23km
Julian Day 93

Figure 3.13: Downward direct solar radiation and atmosphere radiation.

3.7 Concluding remarks

The accuracy of LESS has been assessed against other models, using RAMI virtual scenes, 

LESS proved to be comparable with most 3D radiative transfer models. Besides, it was shown that 

the forward photon tracing and backward path tracing give nearly the same results, which stresses 

the self-consistency between the algorithms that are implemented in LESS. For the image 

simulation, LESS give results that are close to DART simulated images, but with much higher 

computational efficiency and lower memory usage. For other types of simulation, LESS has also 

been validated with other well-known models as well as field measurements. In conclusion, LESS 

is a multifunctional 3D radiative transfer model and gives reliable simulation results.

http://www.baidu.com/link?url=16NFzwJftrGqqb_iLryATxd4U_giTxNz6t7hhYOF8uLNLUgDukoldWYs8rQ9B9uOq_bFGfT2dTAs_CIox1HFBU27rE5J_TH11Kxit4Bj4tDAVy8RrghxXks4lf3R9yO6
http://www.baidu.com/link?url=pSixS9KabkZA0RF_wRSoQiq6Jzxn62PRWA_c_IwrV1Oq673YfRzmF_CHYWaz7_kciSSdmKOTwDEqKys93u3AgAHvHlDHHdmXsklYL74U0QPaKr76pS4OAdSE-B_JAbej
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Many scientific domains (e.g., urbanism, agriculture, forestry, etc.) require accurate remote 

sensing (RS) products, which requires RS models that simulate satellite acquisitions with increased 

radiometric accuracy. Three-dimensional (3D) radiative transfer models are the most accurate RS 

models. However, developing such a new model from scratch up is not an easy task. A practical 

solution is to modify existing models. DART is one of the most comprehensive physics-based 

models (Gastellu-Etchegorry et al., 2004) that has been developed since 1992. It can simulate the 

3D radiative transfer budget and various remote sensing acquisitions (e.g. LiDAR, 

spectroradiometer and solar-induced fluorescence, etc.) over the whole optical domain, including 

the atmosphere. Compared to other models, DART can work on scenes that are simulated with any 

combinations of triangles and fluids, including the so-called turbid medium that is often used for 

giving a statistical representation of vegetation.

However, a major problem that confronts DART is the relative low simulation efficiency. If 

it could be accelerated to simulate more complex and large scenes, it will be important for current 

DART users, since DART is a mature 3D radiative transfer model that has been widely used in the 

world (NASA, ESA and a lot of universities) to simulate various types of products.

 In this chapter, a hybrid scene structuring approach, which is widely used in the computer 

graphics community, is proposed to accelerate the radiative transfer simulations while keeping the 

scene as realistic as possible. In a first step, a 3D description of the Earth landscape with equal-

sized voxels is optimized to keep only non-empty voxels (i.e., voxels that contains triangles, fluids 

or turbid medium) and managed using a bounding volume hierarchy (BVH) to reduce memory 

usage and computation time. For any voxel that contains triangles, within-voxel BVHs are also 

created to accelerate the ray-triangle intersection tests. The hybrid scheme is implemented in the 

Discrete Anisotropic Radiative Transfer (DART) model by integrating the Embree ray-tracing 

kernels developed at Intel. The dual BVH implementation allows one to avoid the limitation of the 

Embree floating precision that is not adapted to the simulation of large Earth landscapes. In this 

chapter, the performance of the hybrid algorithm is compared with the original uniform grid 

approach implemented in DART for a 3D city scene and a forest scene.

The chapter is presented in the paper:

“Qi, J.*, Yin, T., Xie, D., Chavanon, E., Laret, N., Guilleux, J., Gastellu-Etchegorry, J., 

Hybrid Scene Structuring for Accelerating 3D Radiative Transfer Simulations. Submitted to 

Computers & Geosciences” (under review).
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4.1 Research context

The applications of radiative transfer models vary from structural (Myneni et al., 1997) and 

biophysical parameter retrieval (Sehgal et al., 2016) of vegetation to urban radiation flux studies 

(Landier et al., 2016). For vegetation monitoring, much attention has been paid to radiative transfer 

modeling and numerous physical models have been developed in the past decades to describe the 

interactions between solar radiation and complex canopies (Myneni and Ross, 2012). Compared 

to one-dimensional (1D) models (e.g., SAIL (Verhoef, 1984)), which treat the canopy as a 

horizontally homogeneous medium, three-dimensional (3D) radiative transfer (RT) models can 

take into account the highly heterogeneous Earth surfaces. Accurate and efficient 3D models are 

essential tools for deriving accurate parameters from remote sensing measurements (Gastellu-

Etchegorry et al., 2004). This is notably true as 3D information is more and more available with 

the development of 3D acquisition technology. For example, LiDAR (Light Detection And 

Ranging) is more and more used in forest studies for measuring the vegetation 3D attributes (Ben-

Arie et al., 2009; Lefsky et al., 2002), which are important input parameters for 3D radiative 

transfer models. However, a drawback of 3D RT models is that they are more difficult to 

parameterize, especially for some LUT (look up table)-based inversion methods of RS acquisitions. 

For example, hundreds of thousands of simulations and representative of different environmental 

and instrumental conditions may be needed to build an invertible LUT database (Banskota et al., 

2015). Thus, the consideration of computational efficiency becomes crucial in this kind of 

applications. In particular, 3D RS models should take advantages of the techniques developed in 

the computer graphics domain to optimize the computation. The poor efficiency is mainly because 

RS models are designed to simulate RS acquisitions that are very accurate in terms of radiometry, 

and not simply realistic from the human point of view conversely to most computer graphics 

algorithms.

In 3D RT models, the complex landscape elements are described with triangle meshes, 

geometrical objects and turbid media. Triangle meshes can be used to simulate very precise 3D 

structures (e.g. position of each leaf), while turbid media can be used to simulate the canopy 

structure with statistical parameters (e.g., LVD: Leaf Volume Density and LOD: Leaf Orientation 

Distribution). To simulate large and complex scenes, the triangle and turbid elements in 3D space 

must be organized into efficient computer data structures to avoid unmanageable computer 

constraints in terms of volume memory and computation time (Disney et al., 2000), e.g., the 

algorithm that tests all objects one by one to determine if an intersection occurs is too 
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computationally expensive to simulate complex scenes (McNeill et al., 1992). Most of the RT 

models rely on a space subdivision technique to avoid some redundant computations. With space 

subdivision, objects which are located in a subspace (or voxel) which is not intersected by a ray 

can be directly excluded from the intersection tests, which can significantly increase the efficiency 

when handling scenes with a large number of elements. The space subdivision often partitions the 

space into hierarchical subspaces (or voxels), where the scene elements are located (Glassner, 

1984). This very important technique is heavily used in some ray-tracing (Discrete-Ordinate or 

Monte-Carlo) based RT models for achieving computationally efficient ray-object intersections 

(Gastellu-Etchegorry et al., 2015; Govaerts and Verstraete, 1998; Jianbo Qi et al., 2017). 

Up to now, various space subdivision approaches have been implemented, including uniform 

grid (Cleary and Wyvill, 1988), BSP (Binary Space Partitioning) tree (Sung and Shirley, 1992), 

octree (Glassner, 1984) and BVH (Bounding Volume Hierarchies) (Lauterbach et al., 2009) etc. 

Because the performances of these approaches usually depend on the specific scene structures, no 

single technique can be universally the best (Mller and Fellner, 2000). A uniform grid is well suited 

for homogeneous scenes, i.e., landscape elements are relatively uniformly distributed in space, 

while other approaches, such as BVH, are better for inhomogeneous scenes. These facts lead us to 

develop a hybrid scene structure which can combine the advantages of a uniform grid and BVH 

tree, which is also self-adaptive to different scene structures.

4.2 Uniform grid in DART

DART uses the discrete-ordinate ray-tracing method to simulate the propagation and 

interaction of radiation in the “Earth-Atmosphere” scene (Figure 4.1), which is represented as a 

3D array of rectangular voxels. The tracked radiation is along N directions that discretize the 4π 
space. Each direction Ω𝑖𝑖 is associated with a solid angle ∆Ω𝑖𝑖 with ∑ ∆Ω𝑖𝑖𝑁𝑁

𝑖𝑖=1 = 4π sr (Yin et al., 

2013). The 3D scene contains two major parts: the atmosphere and the Earth scene. Its usefulness 

is illustrated here with its so-called “reflectance mode”, where sun is the only radiation source. At 

the beginning, the propagation of radiation in the atmosphere is simulated (Grau and Gastellu-

Etchegorry, 2013), which gives the direct sun irradiance and diffuse atmospheric radiation that 

reach the voxels of the top of the Earth scene at the bottom of atmosphere (BOA). Then, this so-

called BOA radiation illuminates the Earth scene. A typical Earth scene usually can contain 

landscape elements, such as trees, grass, houses and water. These elements are represented with 

any combination of triangles, fluids and turbid media.
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Figure 4.1: Radiative transfer modeling in the “Earth-Atmosphere” scene of DART. The scene of DART is 

divided into two parts: Earth and Atmosphere. 

As presented in Figure 4.1, DART partitions the Earth scene into equal-sized voxels, which 

are used to organize the landscape elements (triangles, fluids and turbid media). Equal-sized voxels 

are mandatory for simulating the 3D radiative budget (e.g., absorbed radiation) of Earth landscapes. 

For each triangle, a triangle-voxel intersection test (Akenine-Möller, 2005) is performed to 

determine the voxel that contains it. The turbid medium is just a set of descriptive statistical 

parameters (e.g., LVD, LOD for vegetation), and it usually fills the whole voxel. To store this 

information in memory for radiation tracking, a list of voxels is first created. The length of this list 

is equaled to the number of voxels in the scene. For each voxel, DART stores a list of references 

of all the triangles which intersect this voxel and a list of turbid media that are in the voxel (Figure 

4.2). 

The radiative transfer with the Earth scene (landscape) starts by tracing rays from the BOA 

illumination plane to the scene. Figure 4.2 illustrates the case of a ray that enters a voxel at the 

entry point A and then crosses five voxels. When a ray enters a voxel, ray-triangle tests are 

performed sequentially for all the triangles inside the voxel. Intersection occurs for the closest 

triangle that intersects the incident ray. Usually, the order of the intersections is not known. Thus, 

a sorting algorithm is performed, which may require large computation time if too many triangles 

are inside the voxel. If the ray intersects a triangle, scattering is computed using the optical 

properties of this triangle. If present, turbid media is taken into account, both for transmittance and 

scattering, including within voxel single and multiple scattering. If no triangle intersection is found, 

the ray crosses the voxel, and an exit point (e.g. point B in Figure 4.2) will be calculated by a ray-
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plane intersection algorithm (Hughes and Foley, 2014). Then, it is very straightforward to find the 

next voxel that the ray will enter, because the exit face of the current voxel is also the entry face 

of the next voxel. It is a major advantage of the uniform grid partitioning technique. Only objects 

that belong in part or in total are taken into account. However, this step-by-step algorithm cannot 

skip empty spaces (e.g. voxel 4, 8 and 9 in Figure 4.2), which may lead to many redundant 

computations in highly heterogeneous scenes with large empty gaps. This uniform voxel approach 

may also consume a lot of memory, since all the voxels (empty or non-empty) need to be created.

Figure 4.2: Space subdivision and data structure.

4.3 Hybrid scene structuring

4.3.1 Voxel-level ray tracking

DART uses the voxel as the basic unit to calculate the transferred energy in the Earth scene. 

This approach is also adopted in our new hybrid scene approach, since voxels can also support the 

turbid medium, which makes it possible to simulate triangle and turbid medium simultaneously in 

a single scene. The voxels in the 3D space are categorized into three groups: non-empty voxel, 

empty voxel, and null voxel (Figure 4.3). The non-empty voxel is the voxel that contains triangles 

or fluids/turbid media. The empty voxel contains nothing and is on the side of the scene. It is 

created in the voxel list because it is used for setting up the source rays and storing radiation that 

exits the Earth scene. The null voxel only has its position in 3D space but it is not created in 

memory. This approach reduces the memory usage especially if the 3D scene contains many empty 

spaces (e.g. landscape with topography). 

To skip the empty spaces (null voxels) during the ray tracing method, the empty and non-

empty voxels are organized using a BVH tree, which is well adapted to non-uniform geometry 
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distributions. The BVH used in this study is a binary tree that structures the bounding volumes of 

all the voxels into a hierarchy structure. As shown in Figure 4.3b, it first creates a root node that 

represents the bounding volume of the whole scene. Then all the voxels are divided into two sides 

around the midpoint along the longest scene axis (e.g. the x axis). For each side, a bounding volume 

containing the voxels inside it is created. In the BVH tree, these two bounding volumes are the 

child nodes of the root. This partitioning process is recursively repeated until a level such that the 

“leaf” node of this level only contains a small number of voxels (e.g. 1 or 2).

To track rays in this hybrid scene, the algorithms of uniform grid and BVH are combined. 

This is illustrated here with a ray that enters a voxel (i.e., voxel 2) on the side of the simulated 

earth scene (Figure 4.3a). Then, the computation of the exit point gives the next possible voxel 

(i.e., voxel 8). If the next voxel is a null voxel, the BVH algorithm is used to determine the next 

non-null voxel (i.e., voxel 21). For that, the BVH algorithm tests if the ray intersects the bounding 

volume of the root node. If there is an intersection, the algorithm tests the occurrence of 

intersection with child nodes. At the leaf node, the ray will test ray-voxel intersection with all the 

voxels, one by one, inside the node using a ray-box intersection algorithm (Williams et al., 2005). 

This binary search scheme is very efficient for finding voxels that are far from the current voxel. 

However, it is less efficient if the next cell is very close, since the BVH top-down algorithm 

searches from the root node to leaf node for ray. Thus, as long as a ray meets non-null voxels, the 

grid tracking method is used. This mechanism makes the model to choose tracking scheme 

automatically, and it can adapt to different scene structures without user intervention.

(a)                                   (b)

Figure 4.3: The proposed hybrid scene structuring scheme.

(a) The structure of a typical scene with non-uniform geometry distribution; (b) The corresponding BVH tree 

which organizes all the non-null voxels.



CHAPTER 4. HYBRID SCENE STRUCTURING FOR ACCELERATING 3D RADIATIVE TRANSFER

54

4.3.2 Within-voxel ray tracking

In the hybrid structuring scheme, the triangles are not directly managed by BVH but 

organized by voxels. When a ray hits a voxel, the algorithm tests the intersection with all the 

triangles one by one. For some applications (e.g., large voxel size), each voxel may contain many 

triangles (e.g., 106 triangles). Hence, testing triangle intersection one by one may also slow down 

the radiative transfer process. Thus, if the number of triangles in a voxel exceeds a threshold, a 

BVH tree (so called within-voxel BVH) is created inside this voxel to organize all the triangles 

directly. In that case, during ray tracking, the test of triangle intersection if calculated with the 

BVH tree instead of the plain list of triangles. Figure 4.4 shows a simple 1 m× 1m scene, which 

contains only one voxel with N randomly distributed triangles. The number N takes the value 1, 5, 

10, 50, 100, 200, 400 and 800. The illumination density is set to 106 rays per square meter, which 

gives a total number of 106 rays. The total intersection time is measured, which is shown in Figure 

4.4b. It can be seen that the total time increases linearly with the increase of N if the within-voxel 

BVH algorithm is not used, while it is nearly constant if the within-voxel BVH is used. When N 

is as low as 10, the time is nearly the same. It explains that the number 10 is used as a threshold to 

indicate whether a BVH tree should be created in a voxel, which avoids creating BVH trees for 

voxels that contain only a few triangles (i.e., less than 10). This approach is useful because the 

BVH tree also consumes memory.

 
(a)                              (b)

Figure 4.4: Simulation time varies with the number of triangles in one voxel.

(a) 1 m × 1 m scene with randomly distributed triangles; (b) Simulation time under a different number of triangles.

4.3.3 Implementation

The hybrid structuring scheme was implemented in DART using a ray tracing library named 
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Embree (Wald et al., 2014), which is a collection of high-performance ray tracing kernels and is 

optimized for Intel® processors with support for SSE and AVXs (AVX, AVX2, and AVX-512) 

instructions. A user-defined geometry that represents the voxel needs to be defined to build the 

voxel level BVH. The shape of this voxel geometry is specified through two callback functions: 

RtcVoxelBoundsFunc and RtcVoxelIntersectionFun. They are registered to Embree by 

rtcSetGeometryBoundsFunction and rtcSetGeometryIntersectFunction, respectively. The bounds 

function RtcVoxelBoundsFunc calculate the bounding box of the voxel geometry, and its code is 

illustrated in Listing 1. The geometryUserPtr, which is a user pointer set by 

rtcSetGeometryUserData, provides the accessibility to member functions of the geometry (e.g., 

getLowestCornerX() gets the X coordinate of the lowest corner). The intersection function 

RtcVoxelIntersectionFun is called to determine the real intersection point when a ray intersects the 

bounding box of the geometry. This function is implemented with a ray-box intersection algorithm 

(Williams et al., 2005), since voxels in DART are simply boxes with the same dimensions.

When the number of triangles within a voxel exceeds a threshold (e.g., 10), a BVH tree which 

manages all the triangles inside the voxel is built. In DART, a triangle may belong to different 

voxels. To avoid copying a triangle several times, we store all the triangles from the whole scene 

in a vertex array, as illustrated in Figure 2.4 (Chapter 2). Each voxel only stores a list of references 

to the triangles contained. Thus, all the within-voxel BVHs can share the same vertex array in 

memory by calling the function rtcSetSharedGeometryBuffer provided by Embree. 

Due to floating-point precision problems, a ray scattered by a triangle can be intercepted again 

by the same triangle. This self-intersection can significantly decrease radiation scattering if it is 

not well handled. Here, an intersection filtering mechanism is used to avoid this self-intersection 

problem. By registering a call back function RTCTriangleFilterFunc (Listing 2), through the 

function rtcSetGeometryIntersectFilterFunction provided by Embree, an intersection is first set 

"valid" if intersection occurs. Then, if self-intersection occurs, the tag "geomID" is set to "invalid”, 

which implies that the ray will ignore this intersection and continue to find other potential 

intersections. The geometryUserPtr here is still set by rtcSetGeometryUserData, but it represents 

a list of triangles. When a ray is initialized, the previously intersected triangle preItsTriangle will 

be provided, which is used in the RTCTriangleFilterFunc function to determine whether the ray 

intersects it again.
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Listing 1: Sample bounds function code of the voxel geometry

void RtcVoxelBoundsFunc(const struct RTCBoundsFunctionArguments *args){

const Voxel * voxel = (const Voxel *) args->geometryUserPtr;

RTCBounds *bounds_o = args->bounds_o;

    bounds_o->lower_x = voxel->getLowestCornerX();

    bounds_o->lower_y = voxel->getLowestCornerY();

    bounds_o->lower_z = voxel->getLowestCornerZ();

    bounds_o->upper_x = voxel->getHighestCornerX();

    bounds_o->upper_y = voxel->getHighestCornerY();

    bounds_o->upper_z = voxel->getHighestCornerZ();

}

Listing 2: Intersection filtering function code

void RTCTriangleFilterFunc(const RTCFilterFunctionNArguments * args){

     vector<Triangle*> * triList = (vector<Triangle *> *) (args->geometryUserPtr);

     RTCRay *ray = (RTCRay*) args->ray;

int* valid = args->valid;

     RTCHit* hit = (RTCHit*) args->hit;

IntersectContext* context = (IntersectContext*)args->context;

     Triangle * preItsTriangle = (Triangle *)context->userPtr;

     if((*preItsTriangle) == (*(triList->at(hit->primID)))){

    hit->geomID = RTC_INVALID_GEOMETRY_ID;

    ray->tfar = embree::inf;

    valid[0] = 0;

}

}

4.4 Radiation tracking

When a ray enters a non-empty voxel (i.e., a voxel contains triangles or turbid media), 

scattering may occur. Figure 4.5 illustrates the scattering process inside the non-empty voxels. For 

a turbid voxel, suppose an incident ray with radiant power 𝑊𝑊𝑖𝑖𝑛𝑛𝑎𝑎(𝛺𝛺𝑖𝑖) enters the cell from direction 

𝛺𝛺𝑖𝑖.Then the transmitted radiation which exits the voxel is
𝑊𝑊𝑎𝑎𝑑𝑑𝑎𝑎𝑛𝑛𝑎𝑎(𝛥𝛥𝛥𝛥,𝛺𝛺𝑖𝑖) = 𝑊𝑊𝑖𝑖𝑛𝑛𝑎𝑎(𝛺𝛺𝑖𝑖) ⋅ 𝑇𝑇(𝛥𝛥𝛥𝛥,𝛺𝛺𝑖𝑖) (4-1)
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where𝑇𝑇(𝛥𝛥𝛥𝛥,𝛺𝛺𝑖𝑖) is the transmittance along segment 𝛥𝛥𝛥𝛥 within the cell, it is calculated as:
𝑇𝑇(𝛥𝛥𝛥𝛥,𝛺𝛺𝑖𝑖) = 𝑒𝑒−𝐺𝐺(𝛺𝛺𝑖𝑖)⋅𝑠𝑠𝑓𝑓⋅𝛥𝛥𝑎𝑎 (4-2)

where 𝐺𝐺(𝛺𝛺𝑖𝑖) = ∫
𝑤𝑤𝑓𝑓(𝛺𝛺𝑓𝑓)
2𝜋𝜋

�𝛺𝛺𝑑𝑑 ⋅ 𝛺𝛺𝑖𝑖�𝑑𝑑𝛺𝛺𝑑𝑑2𝜋𝜋 , which is the leaf projection coefficient for direction 𝛺𝛺𝑖𝑖, 

𝛺𝛺𝑑𝑑 is the leaf normal orientation vector, 𝑤𝑤𝑓𝑓(𝛺𝛺𝑓𝑓)
2𝜋𝜋

 is the normalized leaf angle distribution function, 

and𝑢𝑢𝑑𝑑 is the foliage volume density. Thus, the total intercepted radiation within the voxel is 

𝑊𝑊𝑁𝑁𝑛𝑛𝑎𝑎(𝛺𝛺𝑖𝑖) = 𝑊𝑊𝑖𝑖𝑛𝑛𝑎𝑎(𝛺𝛺𝑖𝑖) ⋅ [1 − 𝑇𝑇(𝛥𝛥𝛥𝛥,𝛺𝛺𝑖𝑖)] . Scattering events may happen anywhere along the 

interval[0,𝛥𝛥𝛥𝛥]. To make it simpler, two scattering points (SP) are defined along 𝛥𝛥𝛥𝛥: one is for 

upward scattering, and the other one is for downward scattering. The angular distribution of the 

scattered radiation is determined by the phase function of medium defined in this cell, which is 

given by

𝑃𝑃(𝛺𝛺𝑖𝑖 ,𝛺𝛺𝑎𝑎)
4𝜋𝜋

=
∫

𝑔𝑔𝑑𝑑(𝛺𝛺𝑑𝑑)
2𝜋𝜋 �𝛺𝛺𝑑𝑑 ⋅ 𝛺𝛺𝑖𝑖�𝑓𝑓(𝛺𝛺𝑑𝑑,𝛺𝛺𝑖𝑖 → 𝛺𝛺𝑎𝑎)𝑑𝑑𝛺𝛺𝑑𝑑2𝜋𝜋

∫
𝑔𝑔𝑑𝑑(𝛺𝛺𝑑𝑑)

2𝜋𝜋 �𝛺𝛺𝑑𝑑 ⋅ 𝛺𝛺𝑖𝑖�𝑑𝑑𝛺𝛺𝑑𝑑2𝜋𝜋

(4-3)

where 𝑓𝑓(𝛺𝛺𝑑𝑑,𝛺𝛺𝑖𝑖 → 𝛺𝛺𝑎𝑎) denotes the leaf scattering phase function. For a Bi-Lambertian leaf facet, 

it is determined by the leaf diffuse reflectance (𝜌𝜌𝑑𝑑𝑑𝑑𝑜𝑜𝑛𝑛𝑎𝑎 and 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 for front and back reflectance, 

respectively) and transmittance (τ for both sides). Thus, the scattered radiation in direction 𝛺𝛺𝑎𝑎 is 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎(𝛺𝛺𝑎𝑎) = 𝑊𝑊𝑖𝑖𝑛𝑛𝑎𝑎(𝛺𝛺𝑖𝑖) ⋅ [1 − 𝑇𝑇(𝛥𝛥𝛥𝛥,𝛺𝛺𝑖𝑖)] ⋅ 𝑃𝑃(𝛺𝛺𝑖𝑖,𝛺𝛺𝑎𝑎)
4𝜋𝜋

. This radiation will be attenuated again during its 

way from the SP to the border of the cell, which gives the first-order scattering radiation outside 
the cell 𝑊𝑊𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎(𝛺𝛺𝑎𝑎) = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎(𝛺𝛺𝑎𝑎) ⋅ 𝑇𝑇(𝛥𝛥𝛥𝛥𝑖𝑖 ,𝛺𝛺𝑎𝑎) . When the radiation transfers from the SP to the 

outside of the cell, it will be scattered again, the total intercepted radiation for each direction 𝛺𝛺𝑎𝑎 
is 𝑊𝑊𝑁𝑁𝑛𝑛𝑎𝑎−𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎(𝛺𝛺𝑎𝑎) = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎(𝛺𝛺𝑎𝑎) ⋅ [1 − 𝑇𝑇(𝛥𝛥𝛥𝛥𝑖𝑖 ,𝛺𝛺𝑎𝑎)]. Since each scattering event will produce N new 

rays, the number of rays becomes unmanageable for higher order scattering events. Therefore, we 

approximate all higher order (≥ 2) scatterings with only one scattering point, which is defined as 

the center of the cell, and then a phase function 𝑃𝑃ℎ(𝛺𝛺𝑖𝑖,𝛺𝛺𝑎𝑎)
4𝜋𝜋

  which can describe the angular 

distribution of all the higher scattering is defined. The detailed derivation of this phase function 

can be found in the Appendix of (Gastellu-Etchegorry et al., 1996). 

After the calculation of first-order and multi-order within cell scattering, the scattered 

radiation may exit the cell from any positions of the six faces, and they will enter the next non-

empty voxel or exit the scene. To track the rays which exit the current voxel, each voxel is divided 

into n3 sub voxels, and each voxel face is divided into n2 sub-faces. Actually, there are n2.m2 sub-

faces where m is used to improve the geometry of the scattered rays. All the J rays that exit the 
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same sub-face along the same direction are grouped as an unique exit point (𝑃𝑃𝐸𝐸 ), which is 
calculated from all the exit points (𝑃𝑃1,…,𝑃𝑃𝐽𝐽) weighted by their respective energy (𝑊𝑊𝑗𝑗)

𝑃𝑃𝐸𝐸 =
∑ 𝑃𝑃𝑗𝑗 .𝑊𝑊𝑗𝑗
𝐽𝐽
𝑗𝑗=1

∑ 𝑊𝑊𝑗𝑗
𝐽𝐽
𝑗𝑗=1

(4-4)

where 𝑊𝑊𝑗𝑗 is the flux of the ray exit from 𝑃𝑃𝑗𝑗. This approach greatly reduces the number of rays. 

This number of rays is always smaller than the number of sub-faces, and in many cases much 

smaller.

For any voxel that contains triangles or parts of triangles, if a ray-triangle intersection point 

occurs, the scattered radiation is determined by the bidirectional reflectance distribution function 

(BRDF) of the triangle. 
Any ray 𝑊𝑊𝑖𝑖,𝑗𝑗(Ω𝑣𝑣) that exits the top scene through the voxel 𝑉𝑉(𝑖𝑖, 𝑗𝑗,𝑘𝑘𝑎𝑎𝑜𝑜𝑝𝑝) along the direction 

(Ω𝑣𝑣, ΔΩ𝑣𝑣) is stored at the top level of the top cells, in order to create a 2D power distribution (i.e., 

image creation) per DART upward discrete direction. If the sun is the unique source of radiation, 
the total power per voxel 𝑉𝑉(𝑖𝑖, 𝑗𝑗,𝑘𝑘𝑎𝑎𝑜𝑜𝑝𝑝) is transformed into radiance 𝐿𝐿𝑖𝑖,𝑗𝑗(Ω𝑣𝑣) along direction Ω𝑣𝑣:

𝐿𝐿𝑖𝑖,𝑗𝑗(Ω𝑣𝑣) =
𝑊𝑊𝑖𝑖,𝑗𝑗(Ω𝑣𝑣)

Δ𝑥𝑥.Δ𝑦𝑦. 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑣𝑣.ΔΩ𝑣𝑣
(4-5)

where 𝛥𝛥𝑥𝑥 and 𝛥𝛥𝑦𝑦 are the x and y dimensions of the cell, respectively. 𝜃𝜃𝑣𝑣 is the zenith angle of 

observation. 𝛥𝛥𝛺𝛺𝑣𝑣 is the associated solid angle along direction 𝛺𝛺𝑣𝑣.

Figure 4.5: Radiation tracking in non-empty voxels.
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4.5 Experiments

4.5.1 BASEL city scene

BASEL is a full 3D city model of the Basel city (Switzerland), which was adapted in the 

frame of the European Union funded H2020 project UrbanFluxes (http://urbanfluxes.eu/). It has a 
size of 7 km × 6.5 km with 1593457 triangles. One of the goals of this project was to address 

the challenge of mapping and mitigating urban heat by using Earth observation (EO) to identify 

urban energy budget (UEB) spatial patterns. For that, DART was used to simulate a time series of 

maps of the radiative budget with the help of satellite images and urban geometric databases 

(Landier et al., 2016). The approach required to run thousands of DART simulations with changing 

parameters (e.g., sun direction), which stressed the usefulness of the hybrid algorithm to reduce 

computation time and memory. Since the city scene mainly consists of houses simulated with 

triangles, there are large empty spaces between houses and inside the houses (Figure 4.6). This is 

ideal for testing the acceleration performance of the new scene structuring scheme. The trees 

included in this scene are represented as a pure turbid medium, which is described with a set of 

statistical parameters (LAD, LOD, etc.). Thus, the dimensions of voxels will influence the shapes 

of the simulated trees. For example, if voxels are too large (e.g. 10 m), trees may be only 

represented by a single voxel or totally removed from the scene if this tree only occupies less than 

20% of a voxel. To get a reasonable representation of trees, the dimensions of voxel should be 

relatively small (e.g., 0.5 m). However, the realistic description of scene elements (i.e., very small 

voxels) and computation time are to some extent contradictory. As illustrated in Figure 4.6 (c)-(d), 

a 100 m × 100 m subzone, which is composed of 3236 triangles, was selected to quantify the 

computational performance of the hybrid algorithm under different resolutions. 

 
(a)                            (b)

http://urbanfluxes.eu/
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(c)                           (d)

Figure 4.6: The BASEL scene under different voxel resolution.

(a) Overview of the BASEL scene; (b) 3D view of a part of the scene; (c) Voxelization of the scene in 5 m 

resolution; (d) Voxelization of the scene in 10 m resolution.

4.5.2 RAMI forest scene

We consider a heterogeneous forest scene, named Järvselja Birch Stand (Summer), that was 

used by the RAMI experiment (http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-

IV.php), in order to inter-compare radiation transfer models (Widlowski et al., 2013). This scene 

contains 7 species of different trees. 1059 individual trees of these species are distributed in a 100 

m × 100 m plot. Because these trees are extremely well simulated and due to the limitation of 

computational resources, a 20 m × 20 m subplot was chosen for testing. 

Figure 4.7 shows the 2D and 3D view of this subplot. Since all the elements in this scene 

(branches and leaves) are converted into triangle mesh, this subplot has more than 51,000,000 

triangles. The bidirectional reflectance factor (BRF) image at nadir was simulated under different 

resolutions (0.1 m, 0.25 m and 0.5 m). The corresponding computation time and memory (RAM) 

were also recorded for hybrid and uniform structuring schemes.

http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-IV.php
http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-IV.php
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(a)                             (b)

Figure 4.7: The tree positions and 3D structures of the RAMI forest scene.

(a) 2D view of the 20 m × 20m subplot; (b) 3D view of this subplot.

4.6 Results and Discussion

The simulations were carried out under near-infrared bands (800 nm). Simulation accuracy, 

computation time and memory usage of the hybrid scene structuring approach and the original 

uniform approach are compared for the city of BASEL (Figure 4.8) and the RAMI forest scene 

(Figure 4.9). In both cases, there is no bias in accuracy at all spatial resolutions. The averaged 

RMSE is 0.0001 and 0.0056 for Basel city scene and the forest scene, respectively. Conversely to 

the uniform approach, the accuracy of the hybrid approach is nearly independent of the voxel 

resolution. For Basel city, simulations are accelerated by 1.4×, 1.7× and 3.7× for 1 m, 0.5 m and 

0.25 m voxel resolutions, respectively (Table 4.1). This decrease in computer time is mainly due 

to the removal of the null voxels, which are more numerous at small resolutions (e.g., 0.25 m). It 

also improves memory usage because the null voxels are not created in the memory.

(a)                          (b)                          (c)

Figure 4.8: Accuracy comparison of the hybrid and uniform approaches when simulating RS images of Basel at 

three spatial resolutions: 1 m (a), 0.5 m (b) and 0.25 m (c).
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Table 4.1: Computational resources used by simulating BASEL scene

BASEL scene Null voxel 

(%)

Time (s) Memory (GB)

Resolution Uniform Hybrid Speedup Uniform Hybrid Decrease

1 m 85.6% 21 15 1.4× 0.18 0.17 6%

0.5 m 91.3% 161 94 1.7× 0.86 0.56 35%

0.25 m 95.2% 2000 540 3.7× 5.4 2.7 50%

For RAMI (Table 4.2), the hybrid approach reduces the computation time from 67 hours to 

15 minutes (258.5× speedup) when the resolution is set to 0.5 m. The main factor that influences 

the computation time in this situation is the ray-triangle intersection within a voxel. Under coarser 

resolution (e.g., 0.5 m), there are many more triangles in a voxel. The uniform approach tests the 

intersection for all triangles within a voxel for each incident ray, and then sorts the order according 

to the distance to the origin of the ray. In hybrid mode, a ray can find the closest intersected triangle 

directly without sorting, which can significantly accelerate the simulation when there are many 

triangles. With better spatial resolutions, the average number of triangles in each voxel decreases, 

the time used by a uniform approach also decreases. This can be confirmed by the results in Table 

4.2. When voxel resolution changes from 0.5 m to 0.1 m, the speedup deceases from 258.5× to 

4.9×. As for the memory, the reduction due to the removal of null voxels does not overcome the 

memory increase caused by within BVH data structures. Actually, 1181824, 193580 and 36081 

within-voxel BVHs are built for resolution 0.1 m, 0.25 m and 0.5 m, respectively. It can be seen 

that using less within BVHs is better, in terms of memory usage, than using more BVHs to manage 

the same number of triangles. It stresses that for triangle-based scenes, best improvements are 

obtained for coarser voxel resolutions. 

  (a)                         (b)                        (c)

Figure 4.9: Accuracy comparison of the hybrid and uniform approaches when simulating RS images of RAMI 

forest scene at three spatial resolutions: 0.5m (a), 0.25m (b) and 0.1 (c).
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Table 4.2: Computational resources used by simulating RAMI forest scene.

Forest Scene Null voxel 

(%)

Time (s) Memory (GB)

Resolution Uniform Hybrid Speedup Uniform Hybrid Increase

0.5 m 57.0 244311 945 258.5× 23.5 28.1 16%

0.25 m 69.7 31622 1221 25.9× 25.6 32.4 21%

0.1 m 84.9 14277 2911 4.9× 41.2 57.4 28%

4.7 Concluding remarks

In this chapter, a hybrid scene structuring scheme has been proposed to accelerate the radiative 

transfer process in complex landscapes. This approach utilizes the BVH to skip large empty areas 

between voxels and also to accelerate ray-triangle intersection inside a voxel. Compared to the 
uniform approach, the hybrid approach usually can reduce the computation time by 2× ~ 3× in 

city scenes, and more than 100 in forest scenes. In terms of accuracy, it is worth noting, that a 

hybrid algorithm allows one to avoid an important limitation of the Embree ray-tracing kernels 

library: all geometry is managed with float coding which implies important limitations in terms of 

accuracy for remote sensing applications over large landscapes. The hybrid algorithm escapes the 

limitation by using a double BVH algorithm for voxels and for triangles within the voxels. 

The hybrid algorithm opens up new opportunities for allowing DART to derive very accurate 

remote sensing products for many scientific domains such as forestry, agriculture, urbanism, etc. 

For example, it allows one to use DART to simulate a time series of maps for urban radiative 

budget. The inversion of satellite images is another major domain of application, because it usually 

requires the simulation of hundred thousands of simulations. 

Finally, it is worth noting that a recent DART improvement allows one to avoid the problem 

of trees simulated with turbid medium as mentioned above. Indeed, instead of being filled with 

turbid medium, the tree crowns can be filled with triangles that have the same LAD and LOD as 

the actual trees. This approach is expected to combine the advantages that were noted for the urban 

scene and the forest scene.
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Canopy radiative transfer modeling is a complex process that combines the solution of the 

radiative transfer equations, as well as the canopy structure parameterization. The latter is 

important for understanding the interaction between solar radiation and vegetation canopies. 

Airborne LiDAR is one of the ideal tools to achieve this goal. Compared with terrestrial LiDAR, 

airborne LiDAR can acquire three-dimensional (3D) information of forest over large areas in a 

relatively short time. Airborne LiDAR data, nowadays, has been widely used to retrieve forest 

structure parameters, such as leaf area index (LAI).

However, using airborne LiDAR data to retrieve forest parameters requires a full 

understanding of the physical interactions between the emitted laser pulse and targets (e.g., leaves, 

branches and ground). Current methods to estimate the laser penetration index (LPI) and the LAI 

from airborne laser scanner (ALS) systems rely on point number-based (PNB) or intensity-based 

(IB) empirical approaches, developed using exponential or linear correlations with ground 

measurements of gaps, LAI, and clumping. These empirical approaches are not universal, and 

therefore necessitate site-specific parameterizations, as opposed to more physical retrieval 

methods, based on radiative transfer theory, which take into account specific attributes of the 

LiDAR instrument and the environmental conditions.

In this chapter, we develop an approach for a radiometric interpretation of LiDAR point cloud 

data generated from Gaussian Decomposition (GD) based on a combination of radar remote 

sensing theory and the radiative transfer models. We investigated a diversity of metrics for LiDAR 

point “intensity” definitions, including the peak, the standard deviation, the integral of Gaussian 

profiles, and the derived apparent reflectance. After a comparative review of the existing LPI and 

effective LAI estimation approaches with ALS data, we present a sensitivity study with various 

configurations for both homogeneous and heterogeneous forest 3-D scenes using a new GD point 

cloud modeling module developed for the latest version of the discrete anisotropic radiative 

transfer (DART) model. Initial modeling results show that the PNB methods become inappropriate 

to capture the within-crown gaps for LAI estimation as footprint size increases, and the methods 

using point intensity defined using either the integral of Gaussian profile or apparent reflectance 

can potentially be used to accurately estimate the LAI with a broad range of configurations and 

without any ground-based measurements.

The chapter is presented in the paper:

“Yin, T.*, Qi, J*., Cook, B., Morton, D., Gastellu-Etchegorry, J.-P., Wei, S., Physical 

modeling and interpretation of leaf area index measures derived from LiDAR point clouds. 

Submitted to Remote Sensing of Environment.” (under review).
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5.1 Research context

LiDAR devices usually use the time-of-flight technique to generate precise range 

measurements based on the reflected signals of laser pulses. Lidar systems are typically 

categorized according to the platform and corresponding laser footprint diameter [i.e., spaceborne: 

larger than 10 m (Abdalati et al., 2010; Dubayah and Drake, 2000), airborne: 10-100 cms (Asner 

et al., 2012; Cook et al., 2013; Hyde et al., 2006) and terrestrial: tiny footprint down to a few mms 

(Côté et al., 2009)] and the detector system for recording return energy (e.g., discrete return, 

waveform, online-waveform processed point, and photon counting). Among all of them, waveform 

LiDAR stores the most comprehensive information for each pulse due to the entire radiometric-

temporal energy profiles, which has been used for derivation of forest biophysical parameters 

(Hmida et al., 2017; Koetz et al., 2006) and for tree segmentations/classifications (Reitberger et 

al., 2009, 2008). A waveform can be converted into discrete points by deconvolution, thresholding, 

zero-crossing, or Gaussian Decomposition (Wagner et al., 2004), etc., or theoretically into photon 

counting point by modeling acquisition of a single photon detector (Yin et al., 2016). All these 

possibilities explain the increasing development of waveform LiDAR models in the past years 

(Gastellu-Etchegorry et al., 2016; North et al., 2010; Sun and Ranson, 2000) that accurately 

simulate the temporal radiometric amplitude profile under various instrumental (beam width, 

divergence, acquisition rate…), environmental (flight altitude, look angle range, terrain slope…), 

and vegetation (foliar reflectivity, leaves distribution…) configurations.

Despite the comprehensive information retrieved from the waveform, efficient storage of 

LiDAR data is critical for a tremendous number of pulses, especially for ALS and TLS (terrestrial 

laser scan) acquisitions with pulse repetition frequencies up to hundreds of kHz. Compared to the 

waveform, discrete points are easier to be managed and processed, but they cause uncertainties 

(Anderson et al., 2016). A point is usually stored with its position associated with an “intensity” 

value, which should be correlated with return power. However, precise radiometric information 

can be difficult to extract, especially for proprietary onboard processing systems that tend to be a 

black box for LiDAR user.

Converting waveform into points by using self-developed algorithms is a solution that helps 

to understand the background of point generation and to avoid misuse of different definitions, such 

as “intensity”. Among these algorithms, Gaussian Decomposition (GD) techniques were 

developed to approximately describe the waveform as a combination of Gaussian profiles defined 
by time shift centroid (𝑡𝑡0), peak amplitude (𝑃𝑃�) and temporal standard deviation (𝑐𝑐𝑝𝑝): 𝑃𝑃(𝑡𝑡) = 𝑃𝑃� ⋅
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𝑒𝑒
−(𝑎𝑎−𝑎𝑎0)2

𝑎𝑎𝑝𝑝2  (Wagner et al., 2006). Depending on the specific LiDAR device and on the user’s choice, 
the “intensity” could be a quantity correlated with 𝑃𝑃�, 𝑐𝑐𝑝𝑝, 𝑃𝑃� ⋅ 𝑐𝑐𝑝𝑝 (Milenković et al., 2017), or the 

target’s reflectivity [i.e., a product from Riegl’s V-line series (Ullrich and Pfennigbauer, 2011)]. 
𝑃𝑃� ⋅ 𝑐𝑐𝑝𝑝 (proportional to the integral of the profile) is correlated with the scattering cross-section 

parameter in the radar equation, which depends on the size, reflectivity, and orientation of an ideal 

target. Although these idealized concepts and the waveform radiometric calibration (Wagner, 2010) 

have been discussed previously, the physical interpretation of each quantity under realistic 

conditions has not been completely addressed (e.g. oblique target, influences of footprint size, 

target size and background terrain, as well as the merged Gaussian profile by a cluster of leaf 

targets, etc.). For actual devices (e.g., Riegl), the radiometric validity of the output reflectivity still 

requires reference-target calibration at various distances (Pfennigbauer and Ullrich, 2010).

LiDAR point cloud data are regularly used to estimate the laser penetration index (LPI) and 

Plant / Leaf Area Index (PAI/LAI) over vegetation. Given the influence of ambiguous coefficients 

and residual radiometric issues, there is considerable controversy over point cloud inversion 

methods. For example, the accuracy of TLS inversions is affected by partial hits that depend on 

laser beam size and leaf size, and the estimation precision depends on the pulse density (Grau et 

al., 2017). For ALS, the point density within an area or a volume is usually used to estimate the 

LAI (Korhonen et al., 2011; Morsdorf et al., 2006; Solberg, 2010; Solberg et al., 2009, 2006) or 

the Leaf Volume Density (LVD) (Schneider et al., 2014). More recently, the ambiguous “intensity” 

information from LiDAR points also began to be employed (She-Zhou et al., 2013). However, 

most studies are empirical, and therefore lack a theoretical underpinning that would enable a 

universal application of the inversion method under various instrumental and environmental 

conditions. The direct computation of LPI and ln(𝐿𝐿𝑃𝑃𝐼𝐼−1)  (canopy interceptions described by 

Beer Lambert’s law) from these approaches are divergent, and the validations of these approaches 

were built on regressions with ground measurements using TLS, LAI2200 or hemispherical 

cameras (exponent correlation of estimated LPI with reference LPI and linear correlation with 

reference LAI). The linear LAI correlations showed promising accurate fittings (high 𝐹𝐹2 and low 

RMSE) but the fitting slopes either overestimated or underestimated results without an explicit 

radiometric linkage to the leaf size, angle distribution, occlusion, and clumping. Furthermore, each 

of the past empirical studies focused only on a single test site (limited environmental configuration) 

with a specific LiDAR device (fixed instrumental configuration) and very few airborne flights 

(limited experimental configurations). A general lack of rigorous sensitivity studies could raise 

questions regarding the accuracy and limitations of each approach: e.g., can current methods be 
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applied universally? 

To physically understand the LiDAR point data and the inversion methods, a robust 

radiometric linkage should be built for various quantities that are involved in the point data 

processing, and a model should be developed to efficiently generate LiDAR point data and 

evaluate the inversion approaches and the sensitivity. The radiative transfer model (RTM) based 

on ray tracing is a suitable tool due to the least approximation in both the realistic scene 

representation and the temporal-spatial radiometric interactions. During recent years, many 

waveform RTMs have been developed based on the extension of existing credible models, 

including FLIGHT (North et al., 2010), DIRSIG (Goodenough and Brown, 2017), RAYTRAN 

(Govaerts and Verstraete, 1998), LIBRAT (Disney et al., 2009), FLiES (Kobayashi and Iwabuchi, 

2008) and DART (Gastellu-Etchegorry et al., 2016). These RTMs have shown their capabilities in 

modeling large footprint LiDAR waveform of a single pulse (Widlowski et al., 2013). Among them, 

the DART LiDAR module has recently been extended to adapt multi-pulse mode (Yin et al., 2016), 

which can efficiently simulate ALS and TLS waveform data.

5.2 Theoretical background

The radiometric theories and the modeling in DART are presented in this section. The 

nomenclature of in radar remote sensing are adapted for LiDAR signal representation (Wagner, 

2010; Wagner et al., 2006). For the other parts, we use the classical radiative transfer nomenclature. 

Detailed scientific and technical aspects of the DART waveform LiDAR module were described 

in (Gastellu-Etchegorry et al., 2015, 2016, Yin et al., 2016).

5.2.1 LiDAR pulse

DART has improved the modeling of LiDAR realistic acquisition geometry and energy 

distribution. For a LiDAR device, two Gaussian profiles are usually defined:

1. The 1-D temporal convolution of the transmitted pulse and the receiver response function:

𝛥𝛥𝑎𝑎 = �̂�𝛥𝑒𝑒
− 𝑑𝑑2
2𝑎𝑎𝑎𝑎2 (5-1)

2. The 2-D energy profile 𝑃𝑃𝑎𝑎(𝛽𝛽) within the footprint cone such that the ratio to the central 

maximum (𝑃𝑃�𝑎𝑎,𝛽𝛽) is 0.5 (i.e., FWHM), 1/e2 or 1/e. The energy distribution within the 

circular boundary can be expressed as:

𝑃𝑃𝑎𝑎(𝛽𝛽) = 𝑃𝑃�𝑎𝑎,𝛽𝛽𝑒𝑒
− 𝛽𝛽2

2𝑎𝑎 𝛽𝛽 
2 (5-2)
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where 𝛽𝛽 represents the angular offset from the pulse direction and 𝑐𝑐𝛽𝛽 is the standard 

deviation of the angular divergence within footprint. The energy distribution is preserved 

along the cone path while the footprint area increases. The half divergence of the cone is 

represented by 𝛽𝛽𝑎𝑎. The reception is defined with telescope area 𝐴𝐴𝑎𝑎 = 𝜋𝜋𝐷𝐷𝑟𝑟2

4
.

This configuration guarantees that the energy spread within the footprint area (radius 𝑟𝑟𝑑𝑑𝑝𝑝 =

𝐹𝐹 ⋅ 𝑡𝑡𝑎𝑎𝑡𝑡 𝛽𝛽𝑎𝑎 + 𝑎𝑎𝑙𝑙
2

) is precisely defined, where R is the sensor-to-target range and dl is the beam 

cross-section diameter at the “exit gate” of the laser generator. 𝑑𝑑𝑎𝑎 is negligible for the airborne 

and spaceborne platform, but it has a critical influence on TLS footprint dimension.

5.2.2 Point cloud from Gaussian Decomposition

DART uses Gaussian Decomposition (GD) (Wagner et al., 2006) to extract points from 

simulated waveform data. If there are 𝑁𝑁 echoes, then the temporal energy profile recorded by the 

receiver 𝑃𝑃𝑑𝑑(𝑡𝑡) can be approximated as:

𝑃𝑃𝑑𝑑(𝑡𝑡) = �𝑃𝑃�𝑖𝑖𝑒𝑒
−(𝑎𝑎−𝑎𝑎𝑖𝑖)2

2𝑎𝑎𝑝𝑝,𝑖𝑖
2

𝑁𝑁

𝑖𝑖=1

(5-3)

For each Gaussian profile, 𝑡𝑡𝑖𝑖 is the temporal centroid to derive the point position; 𝑃𝑃�𝑖𝑖 is the 

time-gated peak amplitude expressed as:

𝑃𝑃�𝑖𝑖 =
𝜎𝜎𝑖𝑖

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑖𝑖4𝑐𝑐𝑝𝑝,𝑖𝑖
(5-4)

where 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎  is a calibration constant with pre-defined instrumental and experimental 

configurations; 𝜎𝜎𝑖𝑖 the radar back-scattering differential cross-section described as:

𝜎𝜎𝑖𝑖 =
4𝜋𝜋
𝛺𝛺�
𝜌𝜌𝑎𝑎,𝑖𝑖𝐴𝐴𝑎𝑎,𝑖𝑖 (5-5)

where 𝛺𝛺�   represent an effective solid angle in which all reflected powers are assumed to be 
uniformly distributed; 𝜌𝜌𝑎𝑎,𝑖𝑖 the target apparent reflectance and 𝐴𝐴𝑎𝑎,𝑖𝑖 the footprint area at a distance 

𝐹𝐹𝑖𝑖 along the pulse direction 𝐴𝐴𝑎𝑎,𝑖𝑖 = 𝜋𝜋𝐵𝐵𝑖𝑖
2𝛽𝛽𝑎𝑎

2

4
 (neglecting 𝑑𝑑𝑎𝑎). 

We define the apparent reflectance 𝜌𝜌𝑎𝑎,𝑖𝑖 as the ratio of reflected radiant flux from a surface 

over a perpendicular Lambertian surface with reflectance = 1, which can be considered similar to 

the biconical reflectance factor of passive sensors with the same incident and view direction 

(Schaepman-Strub et al., 2006), but it is associated with every return from a pulse. Following this 

definition, 𝛺𝛺� = ∫ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑑𝑑𝛺𝛺2𝜋𝜋 = 𝜋𝜋; and
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𝜎𝜎𝑖𝑖 = 𝜋𝜋𝜌𝜌𝑎𝑎,𝑖𝑖𝐹𝐹𝑖𝑖2𝛽𝛽𝑎𝑎2 (5-6)

In Eq. (5-3), 𝑐𝑐𝑝𝑝,𝑖𝑖 can be expressed as:

𝑐𝑐𝑝𝑝,𝑖𝑖 = �𝑐𝑐𝑎𝑎2 + 𝑐𝑐𝑖𝑖2 (5-7)

where 𝑐𝑐𝑖𝑖 represents the additional broadening from an oblique surface or a cluster of leaves that 

cannot be distinguished in a single return. 𝑐𝑐𝑎𝑎 is an instrument-specific constant unless the temporal 
profiles of every transmitted pulse are known (Mallet and Bretar, 2009). sp,i ≈ ss  if ss ≫ si 

(negligible footprint size compared to the corresponding distance of the pulse duration). The ability 

of GD to distinguish different targets depends on several variables including target size, surface 

angle, gap size, and acquisition frequency, etc.

For each point output, the subjected results are categorized into five types of “intensity” values 

(DART implementation described in Appendix A):

1. Peak Amplitude by fast detection 𝑃𝑃�𝑖𝑖 (without GD): The corresponding peak amplitude 

determined by zero-crossing.

2. Fitted Peak Amplitude 𝑃𝑃�𝑖𝑖 (with GD): Non-linear least-square minimization and curve-
fitting (Newville et al., 2016) is used to determine 𝑡𝑡𝑖𝑖, 𝑃𝑃�𝑖𝑖 and 𝑐𝑐𝑝𝑝,𝑖𝑖. 

3. Standard Deviation 𝑐𝑐𝑝𝑝,𝑖𝑖 (GD) (unit: number of bins). 

4. Integral 𝐼𝐼𝑖𝑖 (GD) described by Milenković et al. (2017):

𝐼𝐼𝑖𝑖 =  �𝑃𝑃�𝑖𝑖𝑒𝑒
−(𝑎𝑎−𝑎𝑎𝑖𝑖)2

2𝑎𝑎𝑝𝑝,𝑖𝑖
2

𝑑𝑑𝑡𝑡 = √2𝜋𝜋 ⋅ 𝑃𝑃�𝑖𝑖 ⋅ 𝑐𝑐𝑝𝑝,𝑖𝑖
(5-8)

𝐼𝐼𝑖𝑖 corresponds to the total return power of each Gaussian profile, which could be linked 

to 𝜎𝜎𝑖𝑖 by

𝜎𝜎𝑖𝑖 =
𝐼𝐼𝑖𝑖𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑖𝑖4

√2𝜋𝜋
(5-9)

5. Apparent reflectance 𝜌𝜌𝑎𝑎,𝑖𝑖 (GD) : By substituting Eq.(5-9) into Eq. (5-6), we get 𝜌𝜌𝑎𝑎,𝑖𝑖 

as a function of 𝐼𝐼𝑖𝑖:

𝜌𝜌𝑎𝑎,𝑖𝑖 =
𝐼𝐼𝑖𝑖𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑖𝑖2

𝜋𝜋√2𝜋𝜋 ⋅ 𝛽𝛽𝑎𝑎2
(5-10)

𝜌𝜌𝑎𝑎,𝑖𝑖  is physically equivalent to the LiDAR backscattering coefficient provided in 

Wagner (2010) and Milenković et al. (2017). The additional 𝜋𝜋 ⋅ 𝛽𝛽𝑎𝑎2 in the denominator 

converts it to a more intuitive reflectance value. Comparing with the cross-section, the 

backscattering coefficient was suggested for waveform radiometric calibration due to 

the normalization relative to the footprint area.
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5.2.3 DART workflow of point cloud modeling

Figure 5.1 shows the workflow for simulating LiDAR points. Initially, DART reads the 3-D 

scene (i.e., abstract description or field of 3-D objects) with user-defined experimental 

configurations for LiDAR acquisition (e.g., altitude, platform trajectory, pulse divergence, scan 

density, control points, etc.). The stages enclosed in the dashed box are DART internal processes. 

DART uses a quasi-Monte Carlo Ray Tracing approach to model the waveform for each pulse 

(Gastellu-Etchegorry et al., 2016). DART-simulated waveforms can be directly exported or 

processed with GD before being exported:

 Output exportation to LAS 

The DART-simulated waveforms are stored as a binary file. In the next step, this binary file 

can be converted into standard LiDAR data formats to adapt the existing processing software. 

Previous work documented the output conversion into the sorted pulse data (SPD) format 

(Gastellu-Etchegorry et al., 2016). Here, we implement an approach that processes the binary file 

into LAS 1.3 point cloud through GD based on laspy library. The points are stored in the LAS file, 

with the possibility to export the waveforms to another WDP file that is linked to each decomposed 

point (Header description in (ASPRS, 2009), point type 1 or 4). The file is supported by existing 

LAS visualization or processing software, e.g., CloudCompare (Girardeau-Montaut, 2011). 

 Internal waveform processing 

Waveforms are decomposed into points in DART code that are saved as matrices in a text file. 

Each line represents a point. Columns store 3D position and “intensity” information including peak 
amplitude (𝑃𝑃�), temporal standard deviation (𝑐𝑐𝑝𝑝,𝑖𝑖), integral (∝ 𝑃𝑃� ⋅ 𝑐𝑐𝑝𝑝,𝑖𝑖), return index, number of 

returns per pulse, etc. This text file can be imported into CloudCompare for further processing.

Figure 5.1: Workflow of DART outputs: discrete points in text format or discrete points with associated 

waveforms in LAS format.



5.3 REVIEW OF THE METHODS IN LPI ESTIMATION

73

The dual output option provides great flexibilities in different applications. For example, 

Option 1 supports the validation of algorithms that work with ALS waveform data in LAS format. 

Option 2 may be preferable for numerous points in TLS simulations instead of waveforms. In that 

case, storing waveforms in a binary file would require tremendous unnecessary computer memory 

and hard disk space. Also, users may want to investigate the sensitivity of various input 
instrumental variables (𝑑𝑑𝑎𝑎 , 𝛽𝛽𝑑𝑑𝑝𝑝 ,…) or various output intensity selections (𝑃𝑃�,𝜎𝜎 , or 𝑃𝑃� ⋅ 𝜎𝜎 …) for 

different applications (e.g., classification, LAD inversion, etc.).

5.3 Review of the methods in LPI estimation

The LPI is usually defined as the percentage of the power that passes through a vegetation 

volume:
𝐿𝐿𝑃𝑃𝐼𝐼 = 𝑒𝑒−𝐺𝐺⋅𝜔𝜔⋅𝐿𝐿𝐴𝐴𝑁𝑁/ cos𝜃𝜃 (5-11)

where G is the unit leaf area projection along the pulse direction; 𝜔𝜔 the clumping index to convert 

from effective LAI into actual LAI (Jing M Chen et al., 1997); 𝜃𝜃 is the zenith angle of the incident 

power that passes the vegetation.

The DART simulated point cloud is applied for sensitivity studies in LPI and Plant Area Index 

/ Leaf Area Index (LAI) estimation using ALS. The current approaches equally divide the scene 

into grids and aggregate information (point number or intensity) within each grid area and convert 

results into a raster map. If all the LiDAR pulse direction are assumed to be nadir, and only the 

vegetation and ground returns are classified for the 2D mapping, then 𝜃𝜃 = 0°. This is also the 

assumption for all existing empirical approaches to generate LPI/LAI map. The effective LAI is: 
𝐿𝐿𝐴𝐴𝐼𝐼𝑒𝑒𝑑𝑑𝑑𝑑 = 𝜔𝜔 ∙ 𝐿𝐿𝐴𝐴𝐼𝐼. Explicitly, the LPI can be sampled by either the area fraction or power fraction 

of ground returns:

𝐿𝐿𝑃𝑃𝐼𝐼 =
𝑃𝑃𝑎𝑎,𝑤𝑤 

𝑃𝑃𝑎𝑎,𝑤𝑤 + 𝑃𝑃𝑎𝑎,𝑣𝑣
=

𝐴𝐴𝑤𝑤
𝐴𝐴𝑤𝑤 + 𝐴𝐴𝑣𝑣

=

𝐼𝐼𝑤𝑤 ⋅ 𝐹𝐹𝑤𝑤2
𝜌𝜌𝑎𝑎,𝑤𝑤

𝐼𝐼𝑤𝑤 ⋅ 𝐹𝐹𝑤𝑤2
𝜌𝜌𝑎𝑎,𝑤𝑤

+ 𝐼𝐼𝑣𝑣 ⋅ 𝐹𝐹𝑣𝑣2
𝜌𝜌𝑎𝑎,𝑣𝑣

(5-12)

where 𝑃𝑃𝑎𝑎,𝑤𝑤  and 𝑃𝑃𝑎𝑎,𝑣𝑣 are the total incident LiDAR power onto the ground and leaves, respectively; 

𝐴𝐴𝑤𝑤 and 𝐴𝐴𝑣𝑣 are the cover area of ground and leaves, respectively; 𝐼𝐼, 𝐹𝐹 and 𝜌𝜌𝑎𝑎 are aggregated 

values within the footprint. 𝑃𝑃𝑎𝑎,𝑤𝑤   and 𝑃𝑃𝑎𝑎,𝑣𝑣  cannot be directly estimated from LiDAR data. 

Depending on the expression behind the two right-side equal signs, the ALS-based inversion of 

LPI is categorized into either point-number-based (PNB) or intensity-based (IB).
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5.3.1 Point number based (PNB) methods

Assume the pulses are equally or randomly distributed within the area, then the number of 
returns from leaves (𝑁𝑁𝑣𝑣) and ground (𝑁𝑁𝑤𝑤) serve as statistical samplings of 𝐴𝐴𝑣𝑣 and 𝐴𝐴𝑤𝑤. Given a 

small footprint size such that only one return is retrieved from each pulse, and a large pulse density 

to get a convergent value with a low variance, the LPI is expressed as:

𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑁𝑁𝑤𝑤

𝑁𝑁𝑤𝑤 + 𝑁𝑁𝑣𝑣
(5-13)

where 𝑁𝑁𝑤𝑤 and 𝑁𝑁𝑣𝑣 are the total point number of ground and vegetation, respectively. Monitoring 

larger regions with ALS requires higher altitude which makes footprint size larger and increases 

the chance of partial hits. Multi-return LiDAR can capture several returns while a pulse penetrates 
through a canopy. 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 describes the sampling of 𝐴𝐴𝑣𝑣 and 𝐴𝐴𝑤𝑤 for only single-return LiDAR, 

but it has also been studied for multi-return LiDARs (Hu et al., 2018; She-Zhou et al., 2013). To 

balance the weight of each return from a pulse, Fleck et al. (2012) and Schneider et al. (2014) 

proposed the weighted LPI expression below:

𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 =
𝑁𝑁𝑤𝑤,1 + 1

2𝑁𝑁𝑤𝑤,2 + 1
3𝑁𝑁𝑤𝑤,3 + 1

4𝑁𝑁𝑤𝑤,4 …

𝑁𝑁𝑎𝑎,1 + 1
2𝑁𝑁𝑎𝑎,2 + 1

3𝑁𝑁𝑎𝑎,3 + 1
4𝑁𝑁𝑎𝑎,4 …

(5-14)

where Nt,i = Ng,i + Nv,i is the total number of returns per pulse with i=1, 2, 3… returns (𝑁𝑁𝑎𝑎,𝑖𝑖 =

𝑖𝑖 ), and 𝑁𝑁𝑤𝑤,𝑖𝑖  is the respective number of ground returns. For 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 , equal weights are 

assigned to each pulse and a weight of 1/𝑖𝑖 is assigned to each point. In old systems which record 

either 2 returns or 4 returns in maximum (Lovell et al., 2003; Solberg, 2010; Solberg et al., 2006), 

LPIs were also estimated by using either the first or the last returns:

𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 =
𝑁𝑁𝑤𝑤,𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜 + 𝑁𝑁𝑤𝑤,𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎

𝑁𝑁𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜 + 𝑁𝑁𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎
(5-15)

𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑁𝑁𝑤𝑤,𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜 + 𝑁𝑁𝑤𝑤,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑁𝑁𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜 + 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(5-16)

where 𝑁𝑁𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎  and 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  are the numbers of first and last returns, respectively; 𝑁𝑁𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜  is the 

number of pulses with only one return generated from a single target (e.g., 𝑁𝑁𝑤𝑤,𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜 is the number 

of pulses that directly hit the ground) or from merged multiple points with indistinguishable targets 
(e.g., Nv,only is the number of pulses that hit a dense vegetation cluster). 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 tends to inform 

on between-crown gaps, whereas 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  informs on both the between-crown gaps and the 
within-crown gaps. Usually, 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 underestimates and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 overestimates the penetration. 
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To balance that, 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ based on the average number of first and last returns (Solberg et al., 

2009) was stated as being more appropriate:

𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ =
𝑁𝑁𝑤𝑤,𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜 + 0.5(𝑁𝑁𝑤𝑤,𝑓𝑓𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎 + 𝑁𝑁𝑤𝑤,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎)
𝑁𝑁𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜 + 0.5(𝑁𝑁𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 + 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

(5-17)

It is critical to note that the numbers N in the denominators in Eq. (5-13)-(5-17) correspond to 

laser pulses that produce at least one return. Pulses that do not give returns are filtered.

5.3.2  Intensity based (IB) methods

5.3.2.1 With prior knowledge of vegetation and ground

Theoretically, the intensity-based LPIs are more sensitive to LAI and LAD. However, the IB 
methods were much less addressed due to the uncertain definition (𝑃𝑃� , 𝐼𝐼 , 𝑐𝑐𝑝𝑝,𝑖𝑖 , or 𝜌𝜌𝑎𝑎 ) and 

measurements. Here, 𝐼𝐼 is assumed to be the intensity output. If we define the distance-weighted 

integral of Gaussian profile 𝐼𝐼′ = 𝐼𝐼 ⋅ 𝐹𝐹2, Eq. (5-12) becomes:

𝐿𝐿𝑃𝑃𝐼𝐼𝑁𝑁𝐵𝐵,𝛾𝛾 =
∑ 𝐼𝐼𝑤𝑤′

∑ 𝐼𝐼𝑤𝑤′ + 𝛾𝛾 ⋅ ∑ 𝐼𝐼𝑣𝑣′
(5-18)

where all 𝐼𝐼′ are cumulated within the square area; 𝛾𝛾 = 𝜌𝜌𝑎𝑎,𝑔𝑔

𝜌𝜌𝑎𝑎,𝑣𝑣
 is the apparent reflectance ratio of 

ground and leaf that are statistically aggregated. 
𝜌𝜌𝑎𝑎,𝑤𝑤 and ρa,v can be derived from the natural reflectivity measurements of the ground (𝜌𝜌𝑛𝑛,𝑤𝑤) 

and the leaf (𝜌𝜌𝑛𝑛,𝑣𝑣). If the variation in the elevation slopes within the area is negligible and the 
surface is Lambertian, 𝜌𝜌𝑎𝑎,𝑤𝑤 = 𝜌𝜌𝑛𝑛,𝑤𝑤 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑤𝑤, where 𝜃𝜃𝑤𝑤 is averaged over the area. The estimation 

of 𝜃𝜃𝑤𝑤 relies the terrain model reconstruction using the ground returns (Zhang et al., 2016). ρa,v 

is linked to the back-scattering transfer function 𝑇𝑇(𝛺𝛺𝑖𝑖) and the reflectivity of the leaf (𝜌𝜌𝑛𝑛,𝑣𝑣) by 

𝜌𝜌𝑎𝑎,𝑣𝑣 = 𝜌𝜌𝑛𝑛,𝑣𝑣 ∙ 𝑇𝑇(𝛺𝛺𝑖𝑖) = 𝜌𝜌𝑛𝑛,𝑣𝑣 ∙
∫

𝑔𝑔�𝛺𝛺𝑓𝑓�
2𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃𝑓𝑓,𝑖𝑖 𝑑𝑑𝛺𝛺𝑓𝑓2𝜋𝜋

∫
𝑔𝑔�𝛺𝛺𝑓𝑓�

2𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑓𝑓,𝑖𝑖 𝑑𝑑𝛺𝛺𝑓𝑓2𝜋𝜋

(5-19)

where 𝑤𝑤�𝛺𝛺𝑓𝑓�
2𝜋𝜋

 is the leaf angle distribution (LAD) of a leaf cluster; 𝜃𝜃𝑑𝑑,𝑖𝑖 is the angle between leaf normal 

and 𝛺𝛺𝑖𝑖. Thus, we get 

𝛾𝛾 =
𝜌𝜌𝑛𝑛,𝑤𝑤 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑤𝑤
𝜌𝜌𝑛𝑛,𝑣𝑣 ⋅ 𝑇𝑇(𝛺𝛺𝑖𝑖) (5-20)

𝛾𝛾  was usually considered as a constant for simplicity. For example, Lefsky et al. (1999) 

proposed 𝛾𝛾 = 0.5 for LiDAR devices with 1064 nm wavelength. The same value was also used 

at 1550nm (She-Zhou et al., 2013). For the ideal configuration {horizontal terrain, vertical pulse 

incidence, spherical leaf angle distribution}, we get 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 = 1 and T(Ωi) = 2/3, which gives:
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γideal =
3 ⋅ ρn,g

2 ⋅ ρn,v (5-21)

where 𝜌𝜌𝑛𝑛,𝑤𝑤 and 𝜌𝜌𝑛𝑛,𝑣𝑣 can be retrieved from ground measurements as prior values. Eq. (5-21) is a 
general expression for any wavelength with measured ρn,g/ρn,v.

5.3.2.2 Without prior knowledge

Without any assumption, the four unknowns in Eq. (5-20) can vary a lot across the area, so 

the constant assumption of 𝛾𝛾 is imprecise. Indeed, the denominator of Eq. (5-18) represents the 

cumulated ground intensity as if there is no vegetation, as 𝛾𝛾 is the factor to calibrate vegetation 

intensities into ground intensities. Milenković et al. (2017) proposed an alternative method for full 

waveform LiDAR, which utilizes the pure-ground pulse (pulses that generate only ground returns). 

All the pulses and the return intensities were classified into three types: pure-ground (intensity 

𝐼𝐼′𝑤𝑤
𝑝𝑝𝑠𝑠𝑑𝑑𝑒𝑒), pure-vegetation, and vegetation-ground (with ground return intensity Ig,v). The returns of 

2nd and 3rd types were associated with the nearest 1st types (defined as 𝐼𝐼𝑣𝑣𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 and 𝐼𝐼𝑤𝑤,𝑣𝑣
𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎). 

Then Eq. (5-18) becomes:

𝐿𝐿𝑃𝑃𝐼𝐼𝑁𝑁𝐵𝐵,𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 =
∑ 𝐼𝐼′𝑤𝑤

𝑝𝑝𝑠𝑠𝑑𝑑𝑒𝑒 + ∑ 𝐼𝐼′𝑤𝑤,𝑣𝑣

∑ 𝐼𝐼′𝑤𝑤
𝑝𝑝𝑠𝑠𝑑𝑑𝑒𝑒 + ∑ 𝐼𝐼′𝑤𝑤,𝑣𝑣

𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 + ∑ 𝐼𝐼′𝑣𝑣𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎
(5-22)

A great advantage of 𝐿𝐿𝑃𝑃𝐼𝐼𝑁𝑁𝐵𝐵,𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 compared to 𝐿𝐿𝑃𝑃𝐼𝐼𝑁𝑁𝐵𝐵,𝛾𝛾 is that the prior measurement of 𝛾𝛾 

is unnecessary, but 𝐿𝐿𝑃𝑃𝐼𝐼𝑁𝑁𝐵𝐵,𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 relies on the pure-ground pulses, which requires large gaps to 
increase the probability of pure-ground pulses. Another critical assumption is that 𝜌𝜌𝑎𝑎,𝑤𝑤 for both 

the pure-vegetation and the vegetation-ground pulses are approximately equal to 𝜌𝜌𝑎𝑎,𝑤𝑤  of the 

nearest pure-group pulses. Considering the 𝜌𝜌𝑎𝑎,𝑤𝑤 calculation, 𝜌𝜌𝑛𝑛,𝑤𝑤 could vary due to understory 

defoliations and wastes, and 𝜃𝜃𝑤𝑤  could be influenced by insufficient sampling, whereas more 

samples (including ground returns of vegetation-ground pulses) can be used for calculating 𝜃𝜃𝑤𝑤,𝑖𝑖 

(from terrain model reconstruction) in 𝐿𝐿𝑃𝑃𝐼𝐼𝑁𝑁𝐵𝐵,𝛾𝛾 estimation.

5.4 Comparative study of LPI/LAI estimation approaches using DART

In practice, the estimated LPI is not directly used to estimate LAI. Instead, it is correlated with 

the ground-measured penetration index that may be equivalent to gap fraction/transmittance of a 

vertical direction or within a certain solid angle near nadir or the LAI or effective LAI derived 

from LAI-2000 or hemispherical camera images. Reference and estimated LPI and LAI are linked: 
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𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑 = 𝐿𝐿𝑃𝑃𝐼𝐼𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐿𝐿𝐴𝐴𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑 = 𝛼𝛼 𝛥𝛥𝑡𝑡 �
1

𝐿𝐿𝑃𝑃𝐼𝐼𝑒𝑒𝑎𝑎𝑎𝑎
� = 𝛼𝛼𝐺𝐺𝜔𝜔 ⋅  𝐿𝐿𝐴𝐴𝐼𝐼𝑒𝑒𝑎𝑎𝑎𝑎 (5-23)

where 𝑐𝑐 and 𝛼𝛼 are the exponents and linear fitting coefficients with the reference values for the 

estimated LPI and LAI, respectively. In this section, the simulated point clouds of various critical 

parameters are studied and inter-compared with the LPI/LAI estimation approaches in Section 5.3.

The DART scene is a 3D array of cells that contain the Earth’s elements (i.e., turbid medium, 

facets, fluids). Vegetation can be simulated either as facets or as turbid medium. If needed, for 

example if the number of facets is very large, facets used for simulating vegetation can be 

converted into turbid medium, with statistical information (LVD, LAD, leaf dimension and 

element shape, etc.) determined per cell. Two approaches are possible for creating scenes with 

vegetation (e.g., trees) that is simulated with facets. 1) DART imports 3D elements, possibly very 

complex, that are created elsewhere. 2) DART directly creates 3D elements with schematic shapes 

(e.g., tree with ellipsoidal crown) and homogeneously or randomly filled with facets with user 

defined LAI, LAD, etc. Here, the later approach is used to create a homogeneous scene and an 

heterogeneous scene and to study their surface interactions with LiDAR pulses. With this, DART 

can conveniently set up the ideal reference parameters and compare with the inversion results.

We use the configurations of Riegl VQ-480i (Table 5.1), which is a multi-returns device with 

online waveform processing. To simulate realistic ALS flight, we compute the position of each 

pulse according to flight height, moving speed, pulse repetition rate, and scanning speed, etc. The 

average pulse density is estimated with 𝑃𝑃𝐵𝐵𝐵𝐵
2𝑣𝑣𝐵𝐵⋅𝑎𝑎𝑎𝑎𝑛𝑛30∘ 

 where the pulse repetition frequency PRF and 

the flight speed 𝑣𝑣 are assumed to be constants. As we are interested in ideal configurations, the 
incident zenith angle of each pulse is manually modified to be 0° (𝜃𝜃𝑤𝑤,𝑖𝑖 = 0) for each incident pulse. 

At 1550 nm, leaf and ground reflectance are set to 0.34 (general leaf) and 0.24 (brown moss), 

respectively.
Table 5.1: LiDAR parameters used in DART simulations.

Parameter Value Parameter Value

Wavelength 1550nm Cross-track FOV ±30°

Laser sampling interval 1 ns Scanning Speed 100 lines/second

Laser beam divergence 0.3 mrad Laser PRF 200 kHz

5.4.1 Homogeneous scene

The test scene consists of a square vegetation plot and a flat ground surface (Figure 5.2). Each 
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leaf is represented by a square (5 cm × 5 cm). The plot has a height of 10m with 2m space below 

the canopy, which facilitates the classification of ground returns and vegetation returns. The leaves 

within the canopy volume (22 m × 22 m × 10 m) have a spherical angle distribution. Therefore, 

we set 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 = 1, 𝐺𝐺 = 1/2, 𝜔𝜔 = 1, and 𝑇𝑇(𝛺𝛺𝑖𝑖) = 2/3 in Eq. (5-11) and (5-21). 

The simulated surface is 22m × 22m to avoid boundary effects. In this study, the sensor 

height 𝐹𝐹 varies from 50 m to 1000 m. The corresponding footprint diameter varies from 0.015 m 

to 0.30 m. 𝐼𝐼𝑖𝑖  is recorded for each point decomposed from the simulated waveforms. LPI is 

calculated for each 2m × 2m area. The average LPI and the standard deviation over the whole 
region are computed and compared with the reference LPI estimated by Eq. (5-11), i.e., 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑 =

𝑒𝑒−0.5𝐿𝐿𝐴𝐴𝑁𝑁𝑟𝑟𝑟𝑟𝑓𝑓. The footprint diameter (∝ 𝐹𝐹) and 𝐿𝐿𝐴𝐴𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑 are the variables for this study.

Figure 5.2: Illustration of 3D Homogeneous test scene

5.4.2 Heterogeneous scene

The heterogeneous scene (100 m × 100 m) is aimed to test the influences of large gaps between 

tree crowns on the LiDAR-derived PAI (Figure 5.3). An equal number of ellipsoidal and conical 

crowns (327 each) are randomly distributed. The height and diameter of the crowns are 12 m and 

3.6 m, respectively. Two simulations were conducted under different LVDs, which are constantly 

set to 0.25 and 0.5 for each crown. This makes the LAI for the whole scene equal to 1 and 2, 

respectively. The LiDAR data is simulated with a flight altitude 𝐹𝐹 =1000 m and a 0.30 m footprint 
diameter. The LPI is calculated with a 10 m × 10 m plot area. In this case, 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑 cannot be 

directly estimated due to the inhomogeneous distribution of leaves. Instead, the radiation received 

by the ground surface is estimated using a tremendous amount of nadir incident rays. DART can 

map the fraction map of intercepted irradiance by the ground to the total top-of-scene irradiance 
as 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑 for each area. The associated LAI map is also computed.
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Figure 5.3: The heterogeneous scene. It is made of randomly distributed trees with ellipsoidal and conical 

crowns.

5.5 Results and analyses

5.5.1 Homogeneous scene

The estimations from both PNB ( 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎, 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 , 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ ) and IB 

(𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06, 𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎) methods are illustrated in Figure 5.4 with varying LAI (1 - 6) and footprint 

diameter (0.015m − 0.30m). The dashed line gives the reference LPI value, and the shaded region 

of each line represents the variance of LPI estimation. 𝛾𝛾 = 1.06 is the ideal value computed from 

Eq. (5-21) for the IB methods.  𝐼𝐼′𝑤𝑤
𝑝𝑝𝑠𝑠𝑑𝑑𝑒𝑒  can be precomputed precisely with known LiDAR 

configuration and ground reflectance. For the PNB methods, 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 always gives the minimum 

underestimation and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 always gives the maximum overestimation. The estimations of the 

other approaches are in-between these two values with the following trend: 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ >
𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 ≈ 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 > 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎, which is consistent with past works. As reference LAI increases, 

at first, the methods tend to underestimate the reference value, and then tend to overestimate it. 

For a fixed LAI, it could be depicted that for infinitesimal footprint size (much smaller than the 

leaf dimension), all the estimations converge to the reference value because only one return from 
either vegetation or ground could be retrieved for each pulse (𝑁𝑁𝑤𝑤,𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 = 𝑁𝑁𝑤𝑤,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0;𝑁𝑁𝑤𝑤 =
𝑁𝑁𝑤𝑤,𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜). This is also the reason why TLS can measure the gap fraction more precisely (Danson et 

al., 2007). The total number of returns are illustrated in Figure 5.5a. The average number of returns 

per pulse converges to 1 as footprint size tends to 0.
𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎  and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ  synchronously converge to 1, 0, and 0.5 respectively with 

increasing footprint size. 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 depicts the large gaps relying on the number of the pure-ground 
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pulses, whereas 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  depicts small gaps within the canopy replying on the number of 

vegetation-ground pulses. From the case of infinitesimal footprint size, as footprint size becomes 

larger, the chance of getting vegetation-ground pulse grows in 2 ways:
 The initial pure-ground pulse becomes vegetation-ground pulse, which reduces 𝑁𝑁𝑤𝑤,𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜, 

but increases 𝑁𝑁𝑤𝑤,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  with the same amount of points. Under this condition, the 

numerator of Eq. (5-15) becomes smaller (decreasing 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎), but the numerator of Eq. 

(5-16) keeps constant (no effect on 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). 

 The original pure-vegetation pulse becomes vegetation-ground pulse, which reduces 
𝑁𝑁𝑣𝑣,𝑜𝑜𝑛𝑛𝑎𝑎𝑜𝑜 but increase 𝑁𝑁𝑤𝑤,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 with the same amount of points. This condition does not 

affect 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎, but increases 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.
It should be noticed that although 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ balances the underestimation of 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 and the 

overestimation of 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, it does not support the arguments that 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ gives a more accurate 

estimation, and further that 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ can directly estimate LAI without ground measurements as 

mentioned by Hu et al. (2018). The number of ground returns per pulse is shown in Figure 5.5b. 

The trend, as expected is coherent with the convergence of LPIs estimated by these three 

approaches. As the footprint diameter increases, every pulse tends to produce a ground return, so 

the value converges to 1. As the LAI increases, the convergence becomes slower because of the 

reduced probability of energy penetrating through the canopy. 
On the other hand, the other two PNB methods 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 performs similarly 

except for the cases with smaller footprint sizes where 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 is a bit closer to 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑 than 

𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎. The saturation speeds of these two approaches are much slower than for the other three 

approaches because all returns are counted. The average number of returns per pulse shown in 
Figure 5.5a converges together with 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎. Given a large enough pulse density 

to compute the LPI with statistically low variance, the speed of LPI convergence relies on the size 

of within-crown gaps that is determined by two factors: the ratio of footprint diameter over the 

leaf dimension, and the LAI under homogeneous environment. The former parameter determines 

the probability of a pulse’s capability in generating multiple returns in leaf interactions. The later 

parameter determines the number of returns that could be generated for each pulse. For actual 

LiDAR acquisition over a homogeneously dense forest, the footprint size should be controlled 

within a domain such that as LAI decreases, the LPI estimation does not converge to a constant 

value (e.g., 1, 0.5, 0, etc.). Otherwise, the sensitivity will vanish. The estimation of this domain 

requires a complete understanding of the leaf dimension, leaf density, and device configurations. 
Therefore, from the sensitivity study above 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 are theoretically preferable 

comparing with the other three approaches for a broader acceptable range of the value of footprint 
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size and LAI.
The two IB methods 𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 are much closer to the LPIref than the PNB 

methods. They are generally consistent with the reference LPI at any footprint size, except 
for 𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06 , which underestimates the LPI when footprint size is smaller than 0.1 m. Since 

𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06 depends on the statistic parameters of vegetation (i.e. LAD), it requires that each pulse 

should cover a considerable number of leaves. When footprint size is too small, this method will 

produce biases. For 𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎, it only considers the ground returns and performs well for all the 

footprint sizes, regardless of the structural and optical properties of vegetation. Indeed, IB methods 

are more adaptable for various LAIs because they well depict the within-crown gaps in the scene. 

In contrast, under certain cases, some PNB methods are not sensitive to LAI change. As LAI 

increases, the intensity of ground returns becomes weaker than vegetation returns, but it can still 

produce a point. Thus, the average number of returns for different LAIs converges to the same 

value in Figure 5.5.
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Figure 5.4: LPI estimated by different methods with various LAI and footprint diameter.

(a)                                       (b)

Figure 5.5: Average discrete returns for all pulses.

(a) Average number of returns under different footprint size; (b)Average number of ground returns.

It should be noted that 𝐿𝐿𝐴𝐴𝐼𝐼𝑒𝑒𝑑𝑑𝑑𝑑 = 𝐿𝐿𝐴𝐴𝐼𝐼 in the simulated scene because 𝜔𝜔 = 1. The product 

𝛼𝛼𝐺𝐺 derived from Eq. (5-11) serves as the linear correlation coefficient that links the 𝐿𝐿𝐴𝐴𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑 with 

the estimated 𝐿𝐿𝐴𝐴𝐼𝐼𝑒𝑒𝑎𝑎𝑎𝑎. This correlation is studied for various LPI estimation approaches. For ideal 

fitting, 𝑐𝑐 = 1, 𝛼𝛼 = 2, and 𝛼𝛼 ⋅ 𝐺𝐺 = 1. In this experiment, three footprint diameters (0.03m, 0.15m 

and 0.30m) are chosen for the evaluation of linear correlation using the same dataset presented in 

Figure 5.4. From the subfigures, for 0.03 m footprint size that mimics a TLS configuration, the 

evaluations of all the approaches are not saturated. For 0.30 m footprint size of a regular ALS 
configuration, 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 , 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ  become saturated, and 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎  and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 

are not saturated for small LAI, but saturated for large LAI. Figure 5.6 (for LPIs) and Figure 5.7 

(for LAIs) illustrate the scatterplot of the references and the estimations using different methods. 
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For tiny footprint size in subfigures (a), both the exponential and the linear correlations are well-

established for all the approaches. Indeed, the footprint diameter at this level is close to the TLS 
measurements. An almost 1:1 relationship for LPI (𝑐𝑐𝛾𝛾=1.06 = 0.95 ,𝑐𝑐𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 = 1.02 ) and LAI 

([𝛼𝛼𝐺𝐺]𝛾𝛾=1.06 = 0.95 , [𝛼𝛼𝐺𝐺]𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 = 1.02) is observed for IB methods (𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎). 
For PNB methods, the 𝑐𝑐 coefficient for 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 are closed to 1 (𝑐𝑐𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 =

1.15  and 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 = 1.16 ) while the other PNB methods might provide either an underestimation 
(𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 3.38 ,  𝑐𝑐𝑎𝑎𝑜𝑜𝑎𝑎ℎ = 1.67 ) or an overestimation (𝑐𝑐𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 = 0.37 ). In Figure 5.7a, the linear 

regressions of PNB methods do not pass through the origin. The LAI correlations are almost linear 

for the PNB methods for LAI values > 1 and converge to the origin with varying 𝑐𝑐 as LAI value 

approaching 0, which is caused by the boundary partial hit effect due to the non-negligible ratio of 

footprint size over leaf size with small total LAI value. It shows that the configuration of TLS can 

capture the correlation of within-crown gaps with tiny footprint laser.

(a)                                          (b)

Figure 5.6: The relationship between LiDAR derived LPI and Reference LPI.

 (a) Footprint size = 0.03 m; (b) Footprint size = 0.3 m.
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 (a)                                      (b)

Figure 5.7: Reference LAI plotted against lnLPI-1.
(a) Footprint size = 0.03 m; (b) Footprint size = 0.3 m; 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are excluded in (b), since their 

ln (𝐿𝐿𝑃𝑃𝐼𝐼−1) values are always equal to infinity and 0, respectively. 

The comparison results of PNB methods infer that multi-return LiDAR can more accurately 

estimate the leaf penetration and leaf area than single-return LiDAR, and that he pulse-weighted 
approaches (𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎  and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ ) are more precise than the point-weighted approaches 

(𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎). The fitted coefficient of 𝛼𝛼𝐺𝐺 of 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 using modeling approaches can correct LAI 

measured from single-return TLS data (Béland et al., 2011).

For larger footprint size (0.15 m and 0.30m), IB methods still maintain a 1:1 correspondence. 

However, all the PNB methods show an ill-performed sensitivity for both LPI and LAI fittings 

(almost vertical lines) which become even worse as footprint size increases. 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ shows a 
negligible variation as LAI changes. Non-linear correlation can be observed for 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 and 

𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎  with LAI<3 (0.15 m footprint) and LAI<1.5 (0.30 m footprint). As LAI increases, 
𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎  and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎  get saturated gradually. This effect is explained by the merging of 

Gaussian profiles with large LAI, which makes the PNB methods inappropriate for capturing 

within-crown small gaps, but they can still be used for larger gaps in a heterogeneous scene as 

illustrated below. 

5.5.2 Heterogeneous scene

A major part of the heterogamous scene is occupied by empty space between tree crowns.  

Conversely to the last section, the work is focused on the landscape-scale areas (10 m × 10 m), 
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large enough such that large crown gaps always exist. By assuming that each area consists of a 

homogeneous vegetation part with mean LAI and an empty part if the vertical canopy cover 

fraction within each area is defined as 𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎, we get an approximated expression for the LPI in the 

heterogeneous scene:
𝐿𝐿𝑃𝑃𝐼𝐼 =  𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒−𝐺𝐺⋅𝜔𝜔⋅𝐿𝐿𝐴𝐴𝑁𝑁/𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣 + (1 − 𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎) (5-24)

where LAI represents the landscape scale, and LAI/𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎 is the LAI of the canopy cover. It should 

be noted that ω represents only the within-crown clumping index, and ln (𝐿𝐿𝑃𝑃𝐼𝐼−1) is not linear 

with LAI, although the past publications tested exponent relation for the estimated LPI and linear 

relation for estimated ln (𝐿𝐿𝑃𝑃𝐼𝐼−1) as described in Eq. (5-23).

Figure 5.8 shows the correlation between LiDAR-derived LPIs and the reference values (both 

LPI and LAI) under different LAIs, with the same larger footprint size used in the study of the 

homogeneous scene (0.3 m). The reference LPIs are also evaluated by using DART radiative 

budget of the ground. For LPI correlation (Figure 5.8a and Figure 5.8c), 𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎  and 
𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06 are constantly consistent with Reference LPI. 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎, as expected, shows an almost 

equal fit with the fraction of vertical crown cover (𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎) (red scatter in Figure 5.8a and Figure 

5.8c), therefore can give an estimation of 𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎. The underestimation is because of the multiple 

returns at the boundary of the crown, where less first returns from the ground are acquired 
comparing with a LiDAR with smaller footprint size. Compared to the LPI, 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 shows a 

larger underestimation, since 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎  fails to characterize the small gaps within the crown. 

𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 tends to give a closer correlation than 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎, because it can detect the weighted 

points at the crown boundaries to mitigate the multiple-return effect. 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  provides a very 

strong overestimation and rather saturated values with low sensitivity. 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ  averages the 
inaccuracy of both 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. Most of the estimated results are diverse but can be 

approximated to follow Eq. (5-23) except for 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . As illustrated in Table 5.2, the fitted 

parameter c is 18.87 (LAI = 2) or even cannot get a value (LAI = 1), since pulse always produces 

a ground return in this simulation. 

In Figure 5.8b and Figure 5.8d, all estimated ln (𝐿𝐿𝑃𝑃𝐼𝐼−1) from various approaches can be 

observed to be linearly correlated with the reference LAI calculated within each grid. It can be 
observed that estimations using all the multiple returns (𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 , 𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06 , and 

𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎) are higher correlated than the approaches using partially the points (𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎, 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 

and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ). 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ has the highest correlation among the three approaches. Due to the non-

linearity, there is not any explicit analytical value for the linear fitting slope in this study. However, 
the linear fitted scattered points of computed ln�𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑−1 � ⋅ 𝐺𝐺−1  is added in Figure 5.8b and 
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Figure 5.8d as the reference. Results show that the two IB methods give results that are very closed 

to the references. With this study, although violating Eq. (5-24), the linear regressions show 

relatively acceptable fittings in our study range, which verifies the linear fitting of ground-

measured gap fraction for LAI map generation in the past publications.
When LAI changes from 2 to 1, 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 shows a underestimation with 𝑐𝑐𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 varies 

from 0.93 to 0.61. This is mainly caused by the change of the average number of returns from 

within-crown pulses. This has already been discussed in the homogeneous case described in 
section 5.5.1, where the conclusion is that 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 is not sensitive to the changes of LAIs, 

and only gives satisfied results at some specific LAI values. It can also be noted that 𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 is 

not sensitive to the changes of LAI, and the results are nearly the same for LAI = 2 and LAI = 1.

Table 5.2: Fitted parameter c of Eq. (5-23) and R-squared value

LAIs Value LPIall LPIweighted LPIfirst LPIlast LPIboth LPIγ=1.06 LPInearest

LAI=3
c 0.41 0.93 0.65 18.87 1.61 0.97 1.00

R2 0.90 0.89 0.79 0.48 0.83 0.90 0.90

LAI=1
c 0.27 0.61 0.42 - 1.09 0.98 1.00

R2 0.90 0.84 0.78 - 0.77 0.95 0.95

(a)                             (b)
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(c)                              (d)

Figure 5.8: Reference LAI plotted against lnLPI-1 for a scene with discrete tree crowns.

(a) Relationship between reference LPI and LiDAR-derived LPI with LAI = 2; 𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎 is the fraction of vertical 

crown cover estimated from DART simulation. (b) The relationship between Reference LAI and ln (𝐿𝐿𝑃𝑃𝐼𝐼−1) ∙

𝐺𝐺−1 with LAI = 2; (c) Relationship between reference LPI and LiDAR-derived LPI with LAI = 1; (d) The 

relationship between Reference LAI and ln (𝐿𝐿𝑃𝑃𝐼𝐼−1) ∙ 𝐺𝐺−1 with LAI = 1.

5.6 Influences of varied leaf dimensions

In a forest, individual leaf dimensions can vary a lot due to tree species and growing stages, 

e.g., from millimeter scale of coniferous trees to centimeter scale of broad-leaved trees. Even for 

the same LAI and same footprint size, different leaf dimension will influence the estimated LPI. 

Figure 5.9 shows the relative error of LiDAR-derived LPIs under different footprint sizes and 

square leaf dimensions of the homogeneous scene. The LAI is fixed at 3. LPI estimated by PNB 

is sensitive to the footprint size and the leaf dimensions. Overall, relatively smaller ALS footprint 

size and larger leaf dimensions produce lower errors, due to the increased fractions of pure-ground 
and pure-vegetation pulses. Only 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎  (best-performing PNB method) and 𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06 

are studied here. For IB methods, e.g., 𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06  in Figure 5.9b, is less sensitive to leaf 

dimensions. Even though smaller leaf dimension improves the accuracy, this is not significant. We 

define a factor 𝑟𝑟 as the ratio of footprint size over the leaf size to characterize the changes of 
accuracy. Figure 5.9c and Figure 5.9d plot the relative error against  𝑟𝑟  for 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 

and 𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06, respectively. It can be seen that 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 gets closer to the reference if r is 

approaching 1.0, which can also be confirmed by Figure 5.4 (LAI = 2). If footprint size equals 
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0.05, which is the leaf size, 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 approximately equals the reference LPI. This suggests 

that 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 (and other PNB methods) is sensitive to the footprint size and leaf dimension 

when it is used to estimate small within-crown gaps.  𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06 gets stable if r is larger than 6, 

which ensures that a LiDAR pulse covers at least several leaves. 

(a)

(b)
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(c)                              (d)

Figure 5.9: The accuracy of LiDAR-derived LPI against footprint size and leaf dimension.
(a) 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎; (b) 𝐿𝐿𝑃𝑃𝐼𝐼𝛾𝛾=1.06; (c) 𝐿𝐿𝑃𝑃𝐼𝐼𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑒𝑒𝑎𝑎 relative error vs. the radio of footprint size and leaf dimension; 

(d) 𝐿𝐿𝑃𝑃𝐼𝐼γ=1.06 relative error vs. the radio

5.7 Influences of instrumental detection threshold

In addition to the experimental and environmental variables that can influence the LPI 

estimation result, the instrumental variables can also play a crucial part. For actual devices, the 

parameters that determine whether a return can be detected by a LiDAR device are R and 𝜌𝜌𝑎𝑎 due 

to the sensor capability. In this section, the points produced by GD are filtered with threshold ρa >
0.9%. This is an empirical value retrieved from the point cloud generated by Riegl 480i.

Figure 5.10 illustrates the LPI calculated by the filtered point cloud under different LAIs for 

the homogeneous scene (LAI = 1, 3, 4, 6). Compared to the unfiltered LPIs Figure 5.4, the filtered 

LPIs have a larger variance, especially for IB methods under lower LAIs. When LAI is small, the 

vegetation return usually has lower 𝜌𝜌𝑎𝑎  which may be filtered out. This causes the LPI to be 

overestimated by 𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎, since some energy from vegetation backscattering has been removed. 

For PNB methods, the estimated LPIs are slightly lower than the ones from the unfiltered point 

cloud, because the average number of returns has been reduced by 2 (Figure 5.11) approximately. 

Figure 5.11 indicates also that the average number of ground returns decrease with the increase of 

the LAI, which means there are more pure vegetation pulses.

For the heterogeneous scene, the filtering process changes the LiDAR-derived LPI slightly, as 

illustrated in Figure 5.12. 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑜𝑜𝑎𝑎ℎ become closer to reference LPI, because some 

ground returns from vegetation-ground pulses have been filtered out due to its low reflectance, 

which makes the influence of inaccuracy estimation of within crown gaps smaller for 𝐿𝐿𝑃𝑃𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 
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𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 is not affected by this filtering process, since it mainly affects the pulse with multiple 

returns within crowns.

Figure 5.10: LPI estimated by different methods with filtered point cloud

(a)                                  (b)

Figure 5.11: Average discrete returns after filtering for the homogeneous scene.

(a) Average number of returns under different footprint size; (b) average number of ground returns.
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(a)                                  (b)

(c)                               (d)

Figure 5.12: Reference LAI plotted against lnLPI-1 for heterogeneous scene after filtering.

(a) Relationship between Reference LPI and LiDAR-derived LPI with LAI = 2; (b) Relationship between 

Reference LAI and ln(𝐿𝐿𝑃𝑃𝐼𝐼−1) ∙ 𝐺𝐺−1  under footprint size 0.3 m with LAI = 2; (c) Relationship between 

Reference LPI and LiDAR-derived LPI with LAI = 1; (d) Relationship between Reference LAI and 

ln(𝐿𝐿𝑃𝑃𝐼𝐼−1) ∙ 𝐺𝐺−1 under footprint size 0.3 m with LAI = 1.

5.8 Further discussion and perspectives

The analyses based on simulations in Section 5.5 show that the IB methods in estimating LPI 

and effective LAI are more precise and less influenced by the variations of footprint size, LAI, 

vegetation cover, and leaf dimensions than the PNB methods. For the homogeneous scene, 
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modeling results show that IB methods can estimate 𝐿𝐿𝐴𝐴𝐼𝐼𝑒𝑒𝑑𝑑𝑑𝑑 directly without necessarily linear 

correlation with ground measurements. It also has the flexibility for a wide range of instrumental, 

experimental and environmental configurations. This flexibility cannot be achieved by PNB 

methods unless the footprint size is infinitesimally small, which corresponds to TLS configuration. 

As footprint size grows, the estimated LPI from PNB methods becomes insensitive to the LAI 

variation. This is in contrary with the statement from Hu et al. (2018) that PNB methods are 

sensitive to the variation of path length and clumping within a tree crown. 

For the heterogeneous scene of larger landscape-scale study, PNB methods are sensitive to the 

large gaps, the IB methods can still capture the precise LPI with existing gaps of various size. We 

have also shown that 𝐼𝐼𝑖𝑖 and 𝜌𝜌𝑎𝑎 are the only suitable quantities for inversion, instead of 𝑃𝑃�𝑖𝑖. For 

the estimation of the LAI, the analyses of the fitting coefficient 𝛼𝛼 is not completely addressed 

although the approximated analytical expression is provided (Eq. (5-24)). The within crown leaf 

clumping index other than 1 and the leaf angle distribution other than random are not studied in 

this work. In practice, the intensity values measured by actual LiDAR device also have more 

unresolved uncertainties than point number. In addition to the issues regarding quantity definition 

and the radiometric calibration, a LAS file stores the intensity values as 8-bit or 16-bit digital 

numbers, and this discretization may introduce further precision issues. Furthermore, not all 

LiDAR device can produce an “intensity” value that is suitable for the IB methods. Traditional 

LiDAR has 𝑃𝑃� as the intensity output. Recent Riegl devices using the online waveform processing 
technique provides separately 𝑃𝑃� , 𝑐𝑐𝑝𝑝,𝑖𝑖  and “reflectivity” (could be 𝜌𝜌𝑎𝑎 ) as output options 

(Pfennigbauer and Ullrich, 2010; Ullrich and Pfennigbauer, 2011). However, it was also mentioned 
that the pulse broadening and system response on 𝑐𝑐𝑝𝑝,𝑖𝑖 are too weak to be measured (Pfennigbauer 

et al., 2013). For the IB methods, the constant 𝛾𝛾  assumption in estimating LPIλ  heavily 

dependents on the statistically convergent LAD and consistent natural reflectivity ratio of leaf and 

ground. The understory vegetation and fallen leaves can influence the ground reflectivity. The 

𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎  is a more practical approach. The possible sources of bias are insufficient pure ground 

pulses and an abrupt change of the ground property or slope which influences the nearest pure-

ground pulse. 

For the scientific community, we also endeavor to address the following two practical 

questions mentioned below: 

1. Is it possible to estimate LAI only from ALS data without or with fewer ground 

measurements? 

Based on the results, the answer could be potentially positive. In this work, we solve the 

dependency of the linear fitting coefficients. For homogeneous vegetation, we have shown that 
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LAI can be estimated with presumed G and 𝜔𝜔 (index of only within-crown clumping). For the 

heterogeneous scene, according to Eq. (5-24), the computations of 𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎𝑒𝑒−𝐺𝐺⋅𝐿𝐿𝐴𝐴𝑁𝑁𝑟𝑟𝑓𝑓𝑓𝑓  (influence by 

within-crown small gaps) and 1 − fvc  (influenced by between-crown large gaps) could be 

separated, so the between-crown clumping effect is removed. To achieve that, 𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎  should be 

estimated first, following by the estimation of 𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎𝑒𝑒−𝐺𝐺⋅𝐿𝐿𝐴𝐴𝑁𝑁𝑟𝑟𝑓𝑓𝑓𝑓   using the IB methods. This 

approach can be generally similar to Hu et al. (2018) approach, except that IB method should be 

used instead of PNB method which has proved insensitive to LAI variation and inseparable from 

linear correlation with ground measurements. The trickiest part is indeed the footprint size 
configuration. From our analyses in Section 5.5.2,  𝐿𝐿𝑃𝑃𝐼𝐼𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑎𝑎 can give an accurate estimate 𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎 

with a proper footprint size. Therefore, we state that the ultimate setting of footprint size should 

be larger than the within-crown gaps but smaller than the holes and the between-crown gaps. 

Fortunately, because most recent ALS data satisfy this condition (e.g. Cook et al., 2013), LAI can 

be directly mapped. However, it is also important to note that an accurate LAI estimate relies on 

accurate estimates of 𝜔𝜔 and 𝐺𝐺.

2. What can we do with a specific ALS LiDAR device and the existing data?

All ALS data are diverse due to the specific experimental and environmental configurations. 

The acquisition methods, configurations, and the point processing algorithms from different 

manufacturers are also quite diverse. The most appropriate ways to understand the capability of a 

device or inverse of an existing data with known configurations is to go through physical modeling 

instead of directly applying a specific approach that was only verified on a single experiment. 

In a nutshell, we present a relatively robust and complete study of LiDAR point cloud in terms 

of theory, comparative review and sensitivity studies. There are interconnected through DART 

model. We only investigated ALS points in estimating LPI and effective LAI by DART simulations. 

However, the applications can also be extended to the limitations and structural/sensor influence 

of the TLS points, e.g., the partial hit effect. The point cloud module has been implemented in the 

latest DART release (Version higher than 5.7.0). The recent development of DART LiDAR module 

now supports the conversion of DART simulated waveforms into point clouds with the storage of 

waveforms and point cloud data in the standard LAS LiDAR data format. These advances help to 

bridge the gap between simulated data and current data processing software, with the goal to 

improve the usage of LiDAR points for assessing the accuracy of ALS and TLS inversions.
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5.9 Concluding remarks

This chapter gives a comprehensive insight to modeling discrete point cloud from waveform 

data and its application in estimating laser penetration index (LPI) and leaf area index (LAI). The 

comparative study shows that point number based method (PNB) are insensitive to LAI changes 

and is only valid for some LAI range, while intensity based (IB) methods are more appropriate to 

describe large gaps as well as small within crown gaps, especially the 𝐿𝐿𝑃𝑃𝐼𝐼𝑛𝑛𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎 method that 

only considers the ground returns. However, the unknown “intensity” value type provided by 

various LiDAR instruments prevents the usage of intensity information, since not all of them are 

suitable for IB methods. A more practical way is to use the GD method, described in this chapter, 

to extract the wanted information from waveform data. In conclusion, accurate estimation of 

LPI/LAI is important for extract structural information from LiDAR data, which serves as a basis 

for a voxel-based reconstruction that is described in the following chapter.
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The above chapters have proposed an efficient 3D radiative transfer model named LESS and 

have investigated different methods to accurately estimate laser penetration index (LPI)/ leaf area 

index (LAI). The LAI is an important parameter for radiative transfer modeling, however, 2D LAI 

is usually not compatible with 3D radiative transfer models. This chapter bridges the gaps between 

the canopy structure and the 3D radiative transfer model by proposing a voxel-based 3D leaf 

volume density (LVD) inversion method. The inversion is heavily based on the conclusions that 

has been drawn in Chapter 5, i.e., intensity based LPI estimation approach is usually more reliable 

and adaptable to different forests. Using the inverted 3D LVD matrix, a 1km forest scene is 

reconstructed and input into LESS to simulate spectral images that are then compared to airborne 

hyperspectral images.

The chapter is presented in the paper:

“Qi, J., Yin, T., Xie, D., Yan, G., Pang, Y., Liu, Q., Gastellu-Etchegorry, J.-P., Voxel-based 

3D Estimation of Plant Area Density from Airborne LiDAR Data using Ray-tracing Algorithm. 

Forests.” (under review).

6.1 Research context

3D structural information is an important input parameter for 3D radiative transfer modeling, 

which provides the ability to upscale leaf-level observations (e.g., leaf reflectance) to canopy-level 

observations (Schneider et al., 2014). However, how the canopy structure is parametrized is still 

an open question, due to the complexity of plants. To construct a realistic forest scene, individual 

tree based approach is usually used (Calders et al., 2018; Côté et al., 2009; Jianbo Qi et al., 2017; 

Qi et al., 2016). This approach first constructs individual trees with detailed structures from 

terrestrial LiDAR data (Bailey and Ochoa, 2018; Calders et al., 2018; Wang et al., 2014) or from 

plant simulation software (e.g., Onyx TREE: www.onyxtree.com). Using these individual trees, 

realistic forests can be reconstructed by combining spatial information, such as tree position, 

crown diameter and tree height, etc. A benefit of the individual tree approach is that the constructed 

forest scene has very precise structures from leaf scale to canopy scale. However, it is difficult to 

reconstruct a scene that is identical to an actual forest. Indeed, it is nearly impossible to reconstruct 

every individual tree in a forest, especially for large-scale areas and because the number of already 

reconstructed trees is limited.

To mitigate the problem raised by the individual tree approach, voxel-based reconstruction 

approach is proposed, which has been proved to be more accurate to represent an existing forest 

http://www.onyxtree.com/
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plot from airborne LiDAR data (Schneider et al., 2014). Compared with terrestrial laser scanning 

(TLS) data, which usually works on individual tree or plot level but with high scanning resolution, 

airborne laser scanning (ALS) data can cover large areas in relative short time. However, the 

obtained point cloud accuracy is usually not as high as TLS data, which makes difficult to 

distinguish branches from leaves with ALS data. Hence, the inverted LVD is also called plant 

volume density (PVD) (Hosoi and Omasa, 2006). The contradiction is that 3D radiative transfer 

models usually need high resolution (e.g., 1 m) PVD information to provide reliable simulations, 

which requires the derivation of high resolution 3D PVD from relatively low-density ALS point 

cloud.

A few attempts have been made (Lin and West, 2016; Schneider et al., 2014; Song et al., 2011) 

in previous studies to achieve that goal. They use the number of ground echoes (also called “return”) 

and vegetation echoes to characterize the transmittance, which is then related to PVD by Beer’s 

law (Yang et al., 1993). However, as demonstrated in Chapter 5, point number based (PNB) 

methods are usually not adequate to describe fine-scale gaps within leaves, especially for the low 

density and large footprint ALS data. Instead, intensity, in terms of energy, has advantages in 

characterizing small gaps because a single pulse already covers at least several leaves, which can 

be used to evaluate transmittance by using the backscattered energy.

When using LiDAR data intensity for estimating PAD, several factors, such as pulse target 

reflectance, should be carefully considered because some of them (e.g., ground reflectance) are 

spatially varying. To deal with this problem, some studies use an empirical ratio between ground 

and vegetation reflectance to derive canopy transmittance (Lefsky et al., 1999; She-Zhou et al., 

2013). Recently, Milenković et al. (2017) proposed a method that only considers ground echoes, 

without a-priori knowledge of the vegetation structural and optical properties.

Another crucial factor that needs to be considered when dealing with ALS data is the pulse 

incident angle, which may influence the ALS-derived PVD and is often overlooked (Liu et al., 

2018). For ALS, scanning angles can be larger than 20°, which gives an obvious oblique incident 

pulse when penetrating the canopy. For voxel-based PVD inversion, an individual pulse may enter 

through one voxel and exit from another neighboring voxel. Thus, the column-based PVD 

inversion may produce uncertainties. On the other hand, path lengths inside voxels depend on the 

scanning angle. One way to quantify the effect of incident angle is to trace rays according to the 

direction of each pulse using ray-tracing technique. This is a useful tool to analyze light regime 

(Bittner et al., 2012), radiative transfer (Disney et al., 2000) and sensor configurations (Zhao et al., 

2015). Kükenbrink et al. (2017) proposed a ray-tracing based method to quantify the occluded 

volume in ALS acquisitions and also analyzed its dependency on pulse density, flight strip overlap, 
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etc. To obtain voxel-level PAD, rays should be traced into uniformly distributed voxels. This can 

be achieved by using a voxel traversal algorithm (Amanatides et al., 1987), which can provide all 

the intersected voxels along a ray and the corresponding path length passing each voxel.

In this chapter, we propose an approach to estimate voxel-level PVD from ALS intensity 

measurements using a ray-tracing algorithm. We first (i) establish the formula to calculate the total 

transmittance of a voxel, which depends on the incident energy at each echo. Then (ii) a ground 

echo based method is developed to calculate the incident energy, and (iii) PAD of each voxel was 

estimated by the ray-tracing algorithm. We also compare the ALS-derived PAD with TLS 

measurements at the same plot. Finally, a forest scene is constructed based on the estimated PVD 

and is input into LESS.

6.2 Study area and material

6.2.1 Study area

The study area is located in the Genhe Forestry Reserve (120°12′ to 122°55′E, 50°20′ to 52°30 

N), Greater Khingan of Inner Mongolia, Northeastern China. This site has slight topography (80% 

of the slopes are less than 15°) and a mean altitude of 1000 m. Forests occupy 75% of the whole 

area. The dominate tree species are Dahurian Larch (Larix gmelinii (Rupr.) Rupr) and white birch 

(Betula platyphylla Suk).

6.2.2 ALS and TLS dataset

ALS data was collected by a RIEGL LMS-Q680i system, which is onboard on a Yun-12 

aircraft. This system operates at wavelength of 1550 nm with a beam divergence of 0.5 mrad. It 

uses a rotation scanning system with an angle range of ±30°. This flight was flown over the study 

area with a 1000 m above ground level (AGL) in August, 2016. The final point density, considering 

flight line overlapping, is around 9 points/m2. The data used in this study covers an area of 500 m 

× 500 m. The ALS data is first classified into ground and non-ground parts using the cloth 

simulation filter (CSF) (Zhang et al., 2016), which is used to determine the ground echo for each 

pulse. In this study, echoes lower than 0.5 m are assumed to be ground echoes.

A 30 m × 30 m forest plot mainly composed of larch trees was chosen in this study area. TLS 

data was acquired on 13th, August, 2016 by a Leica ScanStation C10 scanner that operates at 532 

nm, with a 4.5 mm spot size at range of 50 m. Five scanning positions were selected: one in the 

plot center and four on the outside of the four edges. The scanning resolution was 0.03°. Data from 
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the five positions were referenced in a common coordinate system using the Cyclone software 

(Leica GeoSystems) and ground control points.

6.2.3 Optical dataset

Optical properties of leaves, branches and ground are also needed to construct a realistic 3D 

landscape. These datasets were measured by a spectroradiometer (ASD FieldSpec3, Analytical 

Spectral Devices, USA) equipped with an integrating sphere. The measurements were performed 

on August, 2016. Twenty samples of birch and larch leaves from different height and different 

places in the forest were collected and immediately measured. Since the leaf size of larch tree is 

very small, we placed them side by side and glued them together to measure them with ASD. The 

reflectance of barks was also measured by collecting samples from different heights of a tree. The 

ground reflectance was measured in 20 randomly selected sites in the forest, including bare soil 

and grassland.

6.3 Voxel-based 3D PVD inversion

6.3.1  Single voxel PVD

Beer’s law was used to estimate the PVD per voxel because it links the total transmittance to 

plant area density:
𝑇𝑇(𝛺𝛺) = 𝑒𝑒−𝜌𝜌𝑓𝑓⋅𝐺𝐺(𝛺𝛺)⋅𝛥𝛥𝑎𝑎(𝛺𝛺) (6-1)

where 𝑇𝑇(𝛺𝛺)  is the directional transmittance along direction 𝛺𝛺 ; 𝜌𝜌𝑑𝑑  is the plant area density 

[𝑚𝑚2/𝑚𝑚3 ]; 𝛥𝛥𝛥𝛥(𝛺𝛺)  is the path length through a voxel. 𝐺𝐺(𝛺𝛺) = ∫ 𝑤𝑤(𝛺𝛺𝐿𝐿)
2𝜋𝜋

|𝛺𝛺 ⋅ 𝛺𝛺𝐿𝐿|𝑑𝑑𝛺𝛺𝐿𝐿2𝜋𝜋   is leaf 

projection coefficient for direction 𝛺𝛺, with 𝑤𝑤(𝛺𝛺𝐿𝐿)
2𝜋𝜋

 the leaf angle distribution. In this study, the leaf 

angle distribution is assumed to be spherical (𝑔𝑔(𝛺𝛺𝐿𝐿) = 1) which gives 𝐺𝐺(𝛺𝛺) = 0.5. 

Let a voxel 𝑗𝑗 that is crossed by several pulses (Figure 6.1). If pulses have an infinitely small 

diameter, its total transmittance can be calculated as:

𝑇𝑇𝑗𝑗 =
𝐼𝐼𝑗𝑗𝑜𝑜𝑠𝑠𝑎𝑎

𝐼𝐼𝑗𝑗𝑖𝑖𝑛𝑛
=

𝐼𝐼𝑗𝑗𝑜𝑜𝑠𝑠𝑎𝑎

∑ 𝐼𝐼𝑗𝑗,𝑘𝑘
𝑖𝑖𝑛𝑛𝑃𝑃

𝑘𝑘=1
(6-2)

where 𝐼𝐼𝑗𝑗𝑖𝑖𝑛𝑛 is the total energy that is incident onto voxel 𝑗𝑗, and 𝐼𝐼𝑗𝑗𝑜𝑜𝑠𝑠𝑎𝑎 is the total outgoing energy. 

𝐼𝐼𝑗𝑗𝑖𝑖𝑛𝑛 is composed of energy from different pulses with energy equal to 𝐼𝐼𝑗𝑗,𝑘𝑘
𝑖𝑖𝑛𝑛 (𝑘𝑘 = 1,  2 , . . .  ,  𝑃𝑃), 
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where 𝑃𝑃 is the total number of pulses incident on voxel 𝑗𝑗. Since the path length (𝛥𝛥𝛥𝛥𝑗𝑗,𝑘𝑘) of different 

pulses changes with the incident angles and cell entry points, an averaged path length is used to 

estimate PVD:

𝐿𝐿𝐴𝐴𝐶𝐶𝑗𝑗 = −
2 𝛥𝛥𝑡𝑡 𝑇𝑇𝑗𝑗
𝛥𝛥𝛥𝛥𝑗𝑗

(6-3)

where 𝛥𝛥𝛥𝛥𝑗𝑗 is the averaged path length for all pulses that are incident on voxel 𝑗𝑗.

As shown above, the energy that enters and exist a voxel must be known for calculating PVD. 

The energy incident on a voxel cannot be estimated directly. Here, it is assumed that it is equal to 

the incident energy at the positon of the first echo for each pulse in voxel 𝑗𝑗, i.e., 𝐼𝐼𝑗𝑗,𝑘𝑘
𝑖𝑖𝑛𝑛 = 𝐼𝐼𝑗𝑗,𝑘𝑘,1. The 

outgoing energy 𝐼𝐼𝑗𝑗𝑜𝑜𝑠𝑠𝑎𝑎 is the energy incident on other voxels. It can be calculated through the same 

way as calculating incident energy, which is an iterative process. Thus, the problem turns out to 
calculate the incident energy (𝐼𝐼𝑗𝑗,𝑘𝑘,1) at the position of the first echo of pulse 𝑘𝑘 in voxel 𝑗𝑗.

Figure 6.1: Voxel PVD inversion using pulse transmittance

6.3.2 Incident energy at each return

To determine the incident energy at the position of the first echo in each voxel, the LiDAR 

data is processed pulse by pulse. In the discrete LiDAR point cloud, the pulse information is not 

directly provided. However, it can be extracted from the GPS time, since echoes from the same 

pulse usually have the same GPS time, which is also unique in the whole point cloud. Then the 

whole LiDAR points can be grouped into different pulses. In forest area, there are usually three 

types of pulses, which are identified based on the interaction between the pulse and landscape 
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elements (leaves, branches and ground): vegetation-ground pulse, pure-ground pulse and pure-

vegetation pulse. Vegetation-ground pulse is the pulse that contains both vegetation echoes and 

ground echo, while pure-ground pulse and pure-vegetation pulse only contain ground echo and 

vegetation echoes, respectively. Usually, the pure-ground pulse only has one echo. 

In order to calculate the incident energy of a voxel, the incident energy at the position of all 

the echoes for all the pulses is first calculated. For a ground echo in a pulse, the incident energy 
𝐼𝐼𝑤𝑤 can be calculated by the backscattering energy 𝑄𝑄𝑤𝑤 (Figure 6.2),

𝐿𝐿𝐼𝐼𝑤𝑤 =
𝑄𝑄𝑤𝑤

𝜋𝜋𝑓𝑓(𝛺𝛺𝑎𝑎,𝛺𝛺𝑣𝑣) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑣𝑣
(6-4)

where 𝑓𝑓(𝛺𝛺𝑣𝑣,𝛺𝛺𝑣𝑣) is the bidirectional reflectance distribution function (BRDF) of the ground, 𝛺𝛺𝑎𝑎 
denotes the incident direction of the pulse and 𝛺𝛺𝑣𝑣  denotes the sensor direction. In LiDAR 

measurements, 𝛺𝛺𝑎𝑎  and 𝛺𝛺𝑣𝑣 is the same direction. For vegetation echoes, the backscattering is 

related to leaf surface reflectance and leaf angle distribution, which can be describe as a phase 

function,

ω(𝛺𝛺𝑎𝑎 → 𝛺𝛺𝑣𝑣) =
∫ 𝑔𝑔(𝛺𝛺𝐿𝐿)

2𝜋𝜋 |𝛺𝛺𝐿𝐿 ⋅ 𝛺𝛺𝑎𝑎| ⋅ |𝛺𝛺𝐿𝐿 ⋅ 𝛺𝛺𝑣𝑣|𝜌𝜌𝑣𝑣𝜋𝜋 𝑑𝑑𝛺𝛺𝐿𝐿2𝜋𝜋

∫ 𝑔𝑔(𝛺𝛺𝐿𝐿)
2𝜋𝜋 |𝛺𝛺𝐿𝐿 ⋅ 𝛺𝛺𝑎𝑎|𝑑𝑑𝛺𝛺𝐿𝐿2𝜋𝜋

(6-5)

with 𝜌𝜌𝑣𝑣  being the reflectance factor of leaf surface. 𝜔𝜔(𝛺𝛺𝑎𝑎 → 𝛺𝛺𝑣𝑣)  is the proportion of the 

intercepted energy in direction 𝛺𝛺𝑎𝑎 that is reflected into direction 𝛺𝛺𝑣𝑣 per solid angle unit. Here, 

it is a constant because 𝜌𝜌𝑣𝑣 is assumed to be the same for all leaves in a same voxel. 

For echoes in a vegetation-ground pulse, the incident energy at the position of each echo can 

be written using an iterative expression:

𝐼𝐼𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧𝑄𝑄𝑖𝑖
𝑟𝑟𝑣𝑣

+ 𝐼𝐼𝑖𝑖+1,   if  𝑖𝑖 < 𝑁𝑁

𝑄𝑄𝑤𝑤
𝑟𝑟𝑤𝑤
          if  𝑖𝑖 = 𝑁𝑁

(6-6)

where 𝑟𝑟𝑤𝑤 = 𝜋𝜋𝑓𝑓(𝛺𝛺𝑎𝑎 → 𝛺𝛺𝑣𝑣) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑣𝑣, and 𝑟𝑟𝑣𝑣 = 𝜋𝜋𝜔𝜔(𝛺𝛺𝑎𝑎 → 𝛺𝛺𝑣𝑣). For Eq. (6-6), we can derive

𝐼𝐼1 =
1
𝑟𝑟𝑣𝑣
� 𝑄𝑄𝑘𝑘

𝑁𝑁−1

𝑘𝑘=1

+
𝑄𝑄𝑤𝑤
𝑟𝑟𝑤𝑤

,   𝐼𝐼𝑖𝑖 =
1
𝑟𝑟𝑣𝑣
� 𝑄𝑄𝑘𝑘

𝑁𝑁−1

𝑘𝑘=𝑖𝑖

+
𝑄𝑄𝑤𝑤
𝑟𝑟𝑤𝑤

,  ⋯ ,   𝐼𝐼𝑁𝑁 =
𝑄𝑄𝑤𝑤
𝑟𝑟𝑤𝑤

(6-7)

To determine the ground back scattering coefficient 𝑟𝑟𝑤𝑤, a nearest pure-ground pulse is used.  

If two pulses are not far from each other (spatial distribution of pure-ground pulses is dense enough, 

the incident angles (𝜃𝜃𝑣𝑣) should be very close, thus the back scattering coefficients are also the same, 
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no matter what the BRDF of ground is. In this study, we ignore the air attenuation from top of 

canopy (TOC) to ground for pure-ground pulse, then we have:

𝑟𝑟𝑤𝑤 =
𝑄𝑄𝑤𝑤∗

𝐼𝐼0
=
𝑄𝑄𝑤𝑤∗

𝐼𝐼1
(6-8)

where 𝑄𝑄𝑤𝑤∗  is the intensity of the nearest pure-ground pulse. 𝐼𝐼0 is the incident energy at TOC. For 

vegetation-ground and pure-ground pulses, 𝐼𝐼𝑁𝑁 = 𝐼𝐼𝑤𝑤 . For pure-ground pulse, 𝐼𝐼𝑁𝑁 = 𝐼𝐼𝑤𝑤 = 𝐼𝐼0 . 

Combining Eq. (6-8), then Eq. (6-7) can be rewritten as

𝐼𝐼1 =
𝑄𝑄𝑤𝑤∗ ∑ 𝑄𝑄𝑘𝑘𝑁𝑁−1

𝑘𝑘=1

𝑟𝑟𝑣𝑣(𝑄𝑄𝑤𝑤∗ − 𝑄𝑄𝑤𝑤)
,   𝐼𝐼𝑖𝑖 =

𝑄𝑄𝑤𝑤∗ ∑ 𝑄𝑄𝑘𝑘𝑁𝑁−1
𝑘𝑘=𝑖𝑖 + 𝑄𝑄𝑤𝑤 ∑ 𝑄𝑄𝑘𝑘𝑖𝑖−1

𝑘𝑘=1

𝑟𝑟𝑣𝑣(𝑄𝑄𝑤𝑤∗ − 𝑄𝑄𝑤𝑤)
,⋯  ,   𝐼𝐼𝑁𝑁 =

𝑄𝑄𝑤𝑤 ∑ 𝑄𝑄𝑘𝑘𝑁𝑁−1
𝑘𝑘=1

𝑟𝑟𝑣𝑣(𝑄𝑄𝑤𝑤∗ − 𝑄𝑄𝑤𝑤)
(6-9)

For pure-vegetation pulse, the incident energy at the position 𝑖𝑖 can be simply written with

𝐼𝐼𝑖𝑖 =
1
𝑟𝑟𝑣𝑣
�𝑄𝑄𝑘𝑘

𝑁𝑁

𝑘𝑘=𝑖𝑖

(6-10)

Eq. (6-9) and (6-10) provide a way to calculating incident energy at the position of each 
vegetation echo. 𝑄𝑄𝑤𝑤∗   and 𝑄𝑄𝑘𝑘  is backscattered energy, which can be interpreted as the LiDAR 

intensity value. Leaf backscattering coefficient 𝑟𝑟𝑣𝑣 is the only unknown parameter. However, it 

can be canceled out during the calculation of voxel transmittance, as described in section 6.3.3.

Figure 6.2: Incident energy calculation for all echoes in a pulse.

6.3.3 Ray traversal in voxels

A ray tracing approach is used to calculate voxel transmittance. It gives the voxel incident 
energy 𝐼𝐼𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛  and outgoing energy 𝐼𝐼𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑜𝑜𝑠𝑠𝑎𝑎. Here, the voxel is defined as a cube with a size of 1×1×1 

m3 (Figure 6.3). To trace a ray, the origin 𝒐𝒐 and direction 𝒅𝒅 must be known. Since the LiDAR 
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point cloud does not provide this information directly, we use the positions of the first echo 𝒑𝒑𝟏𝟏 

and last echo 𝒑𝒑𝑵𝑵 to calculate 𝒅𝒅, which gives 𝒅𝒅 = (𝒑𝒑𝑵𝑵 − 𝒑𝒑𝟏𝟏)/|𝒑𝒑𝑵𝑵 − 𝒑𝒑𝟏𝟏|. Then any point on the 

ray can be expressed as 𝒑𝒑 = 𝒐𝒐 + 𝑡𝑡𝒅𝒅, where 𝑡𝑡 is an arbitrary real number. The origin of the ray 

(sensor position) is achieved by moving the first echo in negative direction as long as it is above 

the canopy (e.g., t=1000). For pulses with only one echo, the direction of the nearest pulse with 

multiple echoes is used. For areas with large gaps, the nearest multiple-echo pulse may be very far, 

which causes the incident angle to be far from the real value. However, this area does not have 

vegetation and then is out of our interest in this study.

The ray tracing method used in this study is based on a voxel traversal algorithm(Amanatides 

et al., 1987). Given the origin and direction of a pulse, all the crossed voxels and the corresponding 

path lengths can be determined. Suppose all the crossed voxels are labeled as 1, 2 , … , m, … ,𝑀𝑀 

with 𝑀𝑀 the total number of traversed voxels (Figure 6.3), the incident energy due to this pulse is 
𝐼𝐼𝑚𝑚,𝑘𝑘, 1, and the outgoing energy due to this pulse is 𝐼𝐼𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎(𝑚𝑚,𝑘𝑘),𝑘𝑘, 1, where 𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡(𝑚𝑚,𝑘𝑘) stands for 

the next non-empty (at least one echo from pulse 𝑘𝑘) voxel crossed by pulse 𝑘𝑘. Thus, the total 

incident energy and outgoing energy for a voxel can be calculated by accumulating all the pulse 

incident energy and pulse outgoing energy, respectively. The total transmittance is:

𝑇𝑇𝑗𝑗 =
𝐼𝐼𝑗𝑗𝑜𝑜𝑠𝑠𝑎𝑎

𝐼𝐼𝑗𝑗𝑖𝑖𝑛𝑛
=
∑ 𝐼𝐼𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎(𝑗𝑗,𝑘𝑘),𝑘𝑘,1
𝑃𝑃
𝑘𝑘=1

∑ 𝐼𝐼𝑗𝑗,𝑘𝑘,1
𝑃𝑃
𝑘𝑘=1

(6-11)

For voxels without echoes due to pulse k, the incident energy equals to outgoing energy, 
which is give as 𝐼𝐼𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎(𝑗𝑗,𝑘𝑘),𝑘𝑘,1.

During the voxelization process, an echo may lie in the corner of a voxel. This may produce 

very short path length (Figure 6.3) and produce a large PVD value. Basically, an echo stands for 

the interaction between a pulse and a cluster of vegetation elements, instead of a single point. Thus, 

we assume that a virtual voxel, which has the same size as the normal voxel, is centered around 

the echo. Its corresponding path length 𝛥𝛥𝛥𝛥′  can be computed using a ray-box intersection 

algorithm (Williams et al., 2005). Then the transmittance can be calibrated as:

𝛥𝛥𝑡𝑡 𝑇𝑇𝛥𝛥𝑎𝑎 = 𝛥𝛥𝑡𝑡 𝑇𝑇𝛥𝛥𝑎𝑎′
𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥′

(6-12)

where 𝑇𝑇𝛥𝛥𝑎𝑎  and 𝑇𝑇𝛥𝛥𝑎𝑎  are the transmittance values along path lengths 𝛥𝛥𝛥𝛥  and 𝛥𝛥𝛥𝛥′ , respectively. 

Hence, 𝛥𝛥𝛥𝛥′ can be used as the corrected path length when deriving PVD from transmittance.
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Figure 6.3: Ray traversal in voxels

6.3.4 Accuracy Validation

6.3.4.1 Validation with DART simulations

A simulated LiDAR dataset was used to validate the accuracy of the proposed PAD estimation 

method. LiDAR point cloud was generated using DART model (Gastellu-Etchegorry et al., 2015), 

which is a 3D radiative transfer model that can simulates full-waveform as well as discrete point 
cloud. The size of the virtual scene is 100 m×100 m×50 m. Voxel dimension is 5 m×5 m×5 m. 

We randomly selected some voxels from the grids, and filled them with randomly distributed 

leaves, using a spherical leaf angle distribution. Parameters (e.g., laser divergence) of the simulated 

LiDAR device are indicated in Table 6.1. The flight height is 500 m and the incident direction of 

the pulse is vertical. Based on the simulated point cloud, we calculated the PAD of each voxel and 

compared it with true values provided by LESS.
Table 6.1: LiDAR parameters for DART simulations

Parameter Value Parameter Value
Wavelength 1550 nm Cross-track FOV ±30°
Laser sampling interval 1 ns Scanning Speed 100 lines/second
Laser beam divergence 0.3 mrad Laser repetition rate 200 kHz

Flight height 500 m

Figure 6.4 illustrates the estimated PVD and reference PVD that is provided by DART. It 

shows that the estimated PVD is consistent with reference PVD with R-squared value being 0.98 

and RMSE being 0.14. This comparison is valid because the simulated scene is a highly abstracted 



6.3 VOXEL-BASED 3D PVD INVERSION

105

scene with spherical leaf angle distribution and randomly distributed leaves within voxel. Besides, 

we have removed the pulses that are partially intersected with a voxel. In real forests, other factors, 

such as branches and clumping of leaves, will also influence the estimated PVD. However, this 

validation experiment, at least, illustrates that the method proposed in this study is theoretically 

valid.

 
(a)                              (b)

Figure 6.4: Comparison between estimated PVD and reference PVD.

(a) Top view of the test scene; (b) Estimated PVD and reference PVD.

6.3.4.2 Cross validation with other PVD estimation method

The PVD distribution of the 500 m × 500 m study area is illustrated in Figure 6.5. It shows 

the PVD of each voxel in 3D space. The subplot (Figure 6.5b) gives a closer view of the 3D 

distribution. It successfully captures the canopy structures. This can be also seen from the 2D view 

(Figure 6.5c), which has similar spatial structures with its corresponding canopy height model 

(CHM). 

In Figure 6.6, a 2D profile of the PVD and the original LiDAR measurements are shown. 

Overall, the spatial distribution of voxel reveals the distribution of LiDAR points, even the fine-

scale structures. The ground is automatically filtered out during the processing of LiDAR data. It 

can also be noted that the undergrowth in this plot is also captured by our method.

To quantitatively evaluate the performance of the voxel based PVD. We project it onto a 2D 

map with 10 m resolution, and compare it with an echo number based method (She-Zhou et al., 

2013), which can map PVD with total ground echoes divided by total echoes. Figure 6.7 shows 

the comparison of these two methods. The 2D PVD of the voxel based method appears to be 
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consistent with the echo number based method. The R-squared value between them is 0.71. In this 

comparison, a slight difference is noted that the echo number based method has more spatially 

smooth LAI

(a)                                  (b)

    
(c)                                 (d)

Figure 6.5: Voxel-based 3D distribution of PVD.

(a) 3D PVD of the 500 m × 500 m study area; (b) A subplot in the study area (25 × 25 m); (c) 2D view of the 3D 

PVD distribution; (c) Canopy height model (CHM) derived from LiDAR data.
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Figure 6.6: 2D profile of the PAD distribution and its corresponding LiDAR measurements.

(a)                        (b)                          (c)

Figure 6.7: Comparison of PAD map with established method.

(a) Echo number based method; (b) Voxel based method; (c) Scatter plot of this two methods.

6.3.4.3 Assessment of ALS-derived PVD with TLS-derived PVD

Compared to ALS measurements, TLS data usually has higher sampling density smaller beam 

divergence. This makes it possible to evaluate the ALS-derived PVD with TLS-derived PVD at a 

voxel level. However, a registration between ALS and TLS data must be performed before the 

comparison. This is achieved by a two-step procedure. First, a coarse registration was performed 

by using the GPS positions of the plot corners, which were measured by a differential GPS device 

in the field. Then a fine registration was done by using the iterative closest point (ICP) algorithm 

implemented in Cloudcompare software (Girardeau-Montaut, 2011). Figure 6.8 illustrates an 

example of the aligned ALS and TLS data. Afterwards the retrieval of the voxel-level PAD from 

the TLS data was conducted by using a contact-frequency based method (Béland et al., 2011). The 

voxel size is also set to 1 m.
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Figure 6.9 shows the 3D distribution of voxel-level PVD derived from ALS and TLS data for 

a subplot. A significant difference between them is that the distribution of TLS-derived PVD is 

much denser than ALS-derived, since some vegetation elements detected by TLS acquisitions are 

not detected by ALS system (Kükenbrink et al., 2017), especially for the lower layer of the canopy. 

This can also be confirmed by the top view of different layers, which is illustrated in Figure 6.10. 

It shows the horizontal distribution of plant area index (PAI), which is obtained by vertically 

accumulating PVD of each column, for bottom (0 m - 10 m), middle (10 m – 20 m) and top (20 m 

– 30 m) layers. It can be seen that the bottom layer of the canopy is not fully detected by ALS 

system, since pulses are incident from the top and can be blocked by top layers. For TLS 

measurements, it even detects the trunks of the trees, which shows some higher value pixels, 

because it is not distinguished from leaves in this study. The horizontal distribution of top layers 

shows more similarity for ALS and TLS derived PAI. Figure 6.9c illustrates the vertical profile of 

PAI for the subplot. It shows that the vegetation elements are mainly distributed around the height 

of 20 m, which is the center of the crown layer. Overall, the vertical profile of ALS-derived PAI 

matches well with the TLS-derived PAI, which indicates that the proposed voxel-based method 

has the ability to depict the vertical structure of canopies. At the bottom layers, TLS-derived PAI 

is larger than ALS-derived PAI, since TLS is more efficient to sample elements near ground. While 

for top layers, ALS system has more advantages to detect the tree tops.

Figure 6.8: An illustration of the alignment between ALS and TLS data
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(a)                      (b)                     (c)
Figure 6.9: 3D voxel of plot L9: (a) ALS; (b) TLS; (c) Vertical profile of the PVD

Figure 6.10: Top of view of the horizontal PAI distribution for bottom (0-10 m), middle (10–20 m) and top (20–

30 m) layers. The PAI is integrated vertically in each layer for each column.

6.3.5 Discussion

6.3.5.1 Pulse number in each voxel

Number of pulses in a voxel is an important factor that influences the estimation of the total 

transmittance. For point based method, it needs a significant number of echoes to derive an 

accurate transmittance. However, for intensity based method, each pulse can be used to estimate 

transmittance separately. This makes it possible to estimate PVD under high resolution with low 

density point cloud. Figure 6.11 illustrates the vertical profile of the average number of pulses per 

voxel of the subplot. It indicates that the top layer has higher density of pulses, and it drops rapidly 

around the height of 20 m, since this layer contains most of the vegetation elements of a canopy. 

From 3 m to 15 m, the number of pulses changes slowly, because these layers are mainly composed 
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of trunks, which do not block the propagation of pulses so rapidly since the distribution of trunks 

is usually sparser than leaves. At the bottom layers, the number of pulses drops dramatically, which 

is caused by the undergrowth. The influence of number of pulses on the estimation of transmittance 

is illustrated in Figure 6.11b. 15 voxels that have been traversed by 5 pulses are chosen, and the 

transmittance estimated by different number of pulses are plotted. It shows that the estimated 

transmittance is stable when increasing the number of pulses. The results are acceptable even with 

only one pulse.

 
(a)                                  (b)

Figure 6.11: Number of pulses traverse the voxel.

(a) Vertical profile of average number of pulses per voxel; (b) Transmittance estimated by different number of 

pulses for 15 voxels.

6.3.5.2 Nearest pure-ground pulse

Another important factor that influences the accuracy of estimated PAD is the nearest pure-

ground pulse found for each vegetation-ground pulse, since we assume that the reflectance of the 

ground at the positions of these two pulses is the same when they are not far from each other. 

Figure 6.12a illustrates the histogram of the distance between the vegetation-ground pulses and 

the corresponding pure-ground pulses. It shows that 97% of the distances are within a range of 3 

m. This makes it possible to find a pure-ground pulse which has similar ground reflectance. Figure 

6.12b also shows the intensity of all the pure-ground pulses from a single flight path. It can be seen 

that the ground intensity is varying spatially, which may be caused by the heterogeneity of the 

ground. However, at fine scale, the intensity is not changing rapidly, which provides the basis for 

the nearest pure-ground pulse approach. To quantitatively characterize the local properties of pure-

ground pulse intensity values, all the ground points from pure-ground pulses are rasterized into 

pixels according to its coordinates. The standard deviation of the intensity within a pixel is 
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computed if the number of points is larger than 1. Figure 6.13 shows the histogram of the standard 

deviation for pixel resolution 1, 3, 5 and 10 m. It can be seen that the standard deviation increases 

when resolution decreases. That means the intensity of two points is more similar when they are 

closer to each other.

(a)                                (b)

Figure 6.12: Distance between the vegetation-ground pulse to the nearest pure-ground pulse (a) and intensity 

distribution of pure-ground pulses (b).

Figure 6.13: Standard deviation of intensity in each pixel with different resolutions.

 (a) Resolution=1 m; (b) Resolution=3 m; (c) Resolution= 5 m; (d) Resolution= 10 m.
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6.4 3D forest scene reconstruction and simulation

6.4.1 3D landscape reconstruction

Reconstruction of 3D landscapes based on individual trees is sometimes difficult due to the 

difficulty of detecting individual trees from ALS data, especially in dense and mixed forests. In 

this study, the landscape was created using voxels with the size being 2 m × 2 m × 2 m. It should 

be noted that the tree species are not identified in this voxel-based approach due to the lack of 

enough information (e.g., the relative low density point cloud).

Since LESS currently does not support turbid representation of vegetation (like DART), we 

use facet-based leaf cloud to represent the voxel. Each voxel is filled with randomly distributed 

leaves within its volume. The LVD of each voxel estimated from the LiDAR data may be different 

from voxel to voxel. Generating an individual leaf cloud for each voxel in the scene is impractical 

for this 1 km scene due to the large number of facets. In LESS, the “instance” approach was applied 

to translate some base voxels to different positions, which only stores the transformation matrix, 

instead of copying the whole leaf cloud. The base voxels are a series of voxels with different LVD 

values, ranging from 0.1 to 6 with the step of 0.05 (Figure 6.14). The leaf in the base voxels is 

represented by a rectangle with an area of 0.1 m× 0.1 m. When constructing the scene, a base voxel 

with the nearest LVD value is chosen and translated to the desired location. Figure 6.15 illustrates 

an example of a reconstructed 3D scene of a 100 m × 100 m subplot.

Figure 6.14: Base voxels with different LVD
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Figure 6.15: Reconstruction of a 100 m×100 m subplot scene from LiDAR point cloud.

(a) 2D PAI distribution estimated from LiDAR point cloud; (b) Voxel-based representation of the reconstructed 

3D scene (The leaf color is set to green).

6.4.2 Spectral image simulation and comparison

The simulation was carried out under 2 m spatial resolution with 2 spectral bands (NIR: 907 

nm, RED: 656 nm). The reflectance/transmittance of leaf from the measurements is 0.08/0.08 and 

0.43/0.43 for RED and NIR band. The ground reflectance of RED and NIR is 0.07 and 0.35, 

respectively. The sun zenith and azimuth angle (SZA = 42.3°, SAZ = 163°) were calculated by the 

Sun Position Calculator provided by LESS based on the flight date, time of and geographical 

position of the study area. The sensor was set with orthographic projection with view zenith angle 

equal to zero. A spectral BRF image was simulated and compared with the AISA hyperspectral 

image. This simulation took around 50 minutes on a laptop with 16 GB memory and 8 cores. The 

simulation result is illustrated in Figure 6.16, which compares the simulated NIR image with AISA 

image. Overall, the simulated image is visually similar to the actual image. At fine scale, the 

distribution of tree crowns and shadows in LESS simulated image (Figure 6.16c) also matches 

well with the AISA image (Figure 6.16d), which indicates that the voxel-based scene 

reconstruction approach can be used to parameterize canopy structures with fine scale accuracy. 

To quantitatively assess the accuracy of the simulated image, a pixel-wise comparison 

between LESS simulated image and the AISA image was performed under a resolution of 25 m. 

Figure 6.17 illustrates the differences images and scatter plots in RED and NIR band. The 

determination coefficient (R2) is 0.56 and 0.5 for RED and NIR band, respectively. In the NIR 

band, there is an apparent underestimated region (the red rectangle in Figure 6.17a), which leads 
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to a bias around 0.04. The improper assigned optical properties of the leaves can explain this 

underestimation. In the LESS simulation, we assigned the same optical properties (i.e., leaf 

reflectance and transmittance) to all the leaves in the study area, which obviously does not match 

the real forest, which usually has spatially varying optical properties. Specifically, the real leaf 

reflectance is higher than the given one in this small region, which can also be seen from AISA 

image (Figure 6.16a). The overestimation is mainly lying in the right side of the study area, where 

low canopy cover is observed. Thus, the ground has more contribution to the simulated BRF. The 

input ground reflectance may not match well with the real ground situation, which leads to the 

inconsistency. Please note that most of the pixels at the last row of the image have been 

overestimated, since lateral boundary effect are not considered in this simulation. For the RED 

band, the major underestimation occurs in a region with low canopy cover (green rectangle in 

Figure 6.17b). In the simulation, the voxels used to represent the grass have the sample optical 

properties with other voxels for tree leaves, which may be significantly different from the real 

grass reflectance. The overestimation mainly exists in two regions (R1 and R2 in Figure 6.17b). 

R1 is a region from a different flight strip, because the AISA image is merged from several flight 

strips. This region has a more oblique viewing geometry, which may produce lower reflectance in 

the AISA image. R2 is nearly a pure forest area which is mainly composed of larch trees. The input 

optical properties for the leaves in the simulation may differ from the real ones of larch tree, which 

causes the systematical overestimation in this region. Besides, there may be other factors that can 

also explain the differences. The atmospheric correction and orthorectification (due to the rugged 

terrain) of the AISA image cannot be perfect. The branches are not specially handled, since they 

are involved in the total PAI. Thus they are considered as leaves. 

In conclusion, the difference between LESS-simulated BRFs and actual BRFs is mainly 

caused by the insufficient parametrization of the 3D scene (structural and optical). The objective 

of the above simulation is mainly to emphasize the capability of LESS to simulate large-scale 

forest scene with reasonable computational resources (e.g., a laptop with 16 GB memory) in a 

reasonable time (e.g., 30 minutes). The simulated datasets can be used to parameterize some 

inversion models or train artificial neural network (ANN) based models (Malenovský et al., 2013) 

to retrieve biophysical parameters. Compared to field measurements, it can provide the “ground 

truth” to validate a model in a more controllable and repeatable environment.
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Figure 6.16: Comparison between LESS simulated image and the field-measured (AISA) hyperspectral image.

(a) AISA image in NIR band; (b) LESS simulated image in NIR band; (c) Sub-region of AISA image; (d) Sub-

region of simulated image. 

 

Figure 6.17: Differences between LESS simulated image and AISA image in a resolution of 25 m.

(a) Difference image of NIR band; (b) Difference image of RED band; (c) Scatter plot of NIR BRFs; (d) Scatter 

plot of RED BRFs.
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6.5 Concluding remarks

In this chapter, we proposed a voxel-based method to estimate the 3D distribution of PVD 

from relatively low density ALS data. The presented approach uses the nearest pure-ground pulse 

to calibrate the intensity of vegetation-ground pulse and then to calculate the incident energy at 

each echoes of a pulse. This eliminates the requirements of the priori information of ground 

reflectance and leaf surface reflectance. We use a ray-tracing algorithm to determine the 

transmittance of each voxel by reconstructing pulses from discrete point cloud. The results show 

that the 2D map of estimated PAI is comparable with other echo number based method under 

coarser resolutions. At fine scale, it is also inconsistency with TLS-derived PVD in terms of 

horizontal and vertical structures. 

The proposed voxel-based method is a useful approach to estimate 3D structures of canopy 

from ALS data, which provides reliable parameters for 3D radiative transfer model. This chapter 

provides an example to link the 3D information extraction with the 3D radiative transfer model, 

which is seldom studies before, especially for complex forest canopies.
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7.1 Major conclusions

The overall objective of this thesis is to contribute to two interconnected science issues: the 

development of 3D radiative transfer model and 3D parameterization of forest canopy.

1) A ray-tracing based 3D radiative transfer model LESS is proposed to simulate images 

and remote sensing data over large-scale and heterogeneous 3D canopies.

Current 3D physical radiative transfer models usually work on small realistic scene or abstract 

the canopy structures, which may cause biases for simulated data and make it difficult to validate 

physical models that is established with coarse resolution observations. To mitigate this problem, 

a ray-tracing based 3D radiative transfer model that takes full advantages of algorithms in 

computer graphics and acceleration techniques is proposed. According the characteristics of 

different simulation objectives, the LESS model uses different strategies, i.e., forward photon 

tracing to simulate BRF and energy-related data (e.g., FPAR) and backward path tracing to 

simulate images and atmosphere radiative transfer. Besides, a few improvements, such as on-the-

fly computation of shaded components for thermal infrared radiation and virtual photon algorithm 

for simulating BRF, are also proposed in this thesis. In conclusion, the proposed LESS model is of 

great improvement compared to other models. Indeed, it can simulate various remote sensing 

products with considerable accuracy, and it has already been successfully validated with other 

models and field measurements through a series of comparison campaigns as described in chapter 

2.

2) A hybrid acceleration scene structuring scheme is introduced into DART.

DART is 3D radiative transfer model that has been developed since 1992 and it has already 

become a mature model that can simulate various of remote sensing produces, e.g., LiDAR, 

thermal infared, atmosphere, fluorescence, etc. A major problem that faces DART is the uniform 

grid approach to organize landscape elements, which causes low efficiency for simulating complex 

and large-scale scene. Aimed at solving this problem, we have proposed a hybrid structuring 

scheme that removes empty grids from DART scene and organizes them with bounding volume 

hierarchy (BVH), which greatly improves computational efficiency and reduces memory usage, 

especially for high resolution voxels. Besides, the introduction of within-voxel BVH significantly 

accelerates DART simulations in presence of many triangles. Speedup can be as high as 200×. 

This acceleration has great importance for parameter sensitivity studies that usually require a large 
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number of simulations under different conditions. Without this improvement, the studies in chapter 

4, which simulates LiDAR point cloud over scenes with a large number of triangles, would have 

been much more difficult to achieve.

3) Voxel-based inversion of leaf volume density and representation of forest canopies.

3D radiative transfer model usually needs high resolution 3D parameters to drive its 

simulations and retrieval of such parameters, e.g., LVD, from relatively low-density airborne 

LiDAR point cloud is an unsolved problem. This thesis first analyzes different LPI estimation 

approaches, which is the basis for retrieving LVD, by using DART simulated dataset. The study 

shows that intensity based method is the most appropriate one with no assumptions of the canopy 

structures through a nearest pure-ground pulse calibration mechanism. Taking the incident angle 

of LiDAR pulses into consideration, which has great influences on the inverted LVD, this thesis 

proposed a ray-tracing based method to estimate LPI and LVD for each voxel. The analysis also 

shows that the LPI is accurately estimated even with one pulse only, in contrast to dozens of 

penetrated pulses for point number based methods. The validation work stresses that the inversion 

approach presented in this thesis is consistent with other methods and TLS-derived LVD, i.e., it is 

possible to retrieve high resolution 3D LVD from relatively low-density LiDAR point cloud.

Besides, this thesis also demonstrates the possibility to represent forest canopies with 3D 

voxels. LESS simulated spectral images of the reconstructed voxel-based forest scene were 

compared to actual airborne hyperspectral images. This comparison stressed that LESS images are 

similar to actual images both in terms of spatial pattern and absolute BRF values.

7.2 Problems and perspectives

3D canopy radiative transfer modeling is a challenging task. This thesis brings solutions that 

mitigate major problems. However, a number of improvements are still necessary.

1) The proposed model LESS only implements the simulations of atmosphere radiative 

transfer and thermal inferred radiation in backward path tracing mode, instead of forward photon 

tracing mode. The major difficulty here is the intensive computational costs and high variance 

during the photon sampling, especially when a larger number of triangles are present. Thus, 

simulating landscape radiative budget with thermal infrared and atmosphere is difficult for the 

current LESS model. A solution for this problem is to use backward path tracing and compute 

incident radiation for each surface in the scene (Bailey and Ochoa, 2018). Another possibility is to 
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use GPU (Graphics Processing Unit) acceleration, which has already been paid much attention in 

scientific computation community (Malik et al., 2017).

2) When validating the LESS model with field measurements, there are a lot of uncertainties 

due to complexity of forest canopies, whose structures are usually difficult to obtain explicitly, 

such as the position of each leaf, even with the most precise TLS instrument. Another uncertainty 

is due to the spatially varying optical properties, which greatly influences the simulated remote 

sensing data and makes the simulated data different from actual field measurements.

3) The estimation of LVD from airborne point cloud is improved by still not perfect. 

Although the large gaps between crowns have been removed during the inversion through the 

voxel-based approach, the clumping of leaves is still difficult to consider when the low-density 

airborne point cloud. Besides, a pulse may partially hit a voxel and this information is too complex 

to be considered. All these problems need further studies either by more advanced problem or by 

more power data acquisition instruments.
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Appendix

Appendix A: Importance Sampling

For a random variable 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) , which has a probability density function  𝑔𝑔(𝑥𝑥) , the 

expectation is 𝐸𝐸(𝑌𝑌) = ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑥𝑥. In finite case, i.e. there are finite (𝑘𝑘) outcomes of 𝑌𝑌 , the 

expected value can be calculated as

𝐸𝐸(𝑌𝑌) = �𝑓𝑓(𝑥𝑥𝑖𝑖)𝑔𝑔(𝑥𝑥𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

(1)

The probability 𝑔𝑔(𝑥𝑥𝑖𝑖) for each outcome can be approximated by counting the frequency of 

that outcome, which is 𝑔𝑔(𝑥𝑥𝑖𝑖) = 𝑛𝑛𝑖𝑖
𝑁𝑁

 , where 𝑁𝑁  is the total number of outcomes and 𝑡𝑡𝑖𝑖  is the 

number of outcome 𝑌𝑌𝑖𝑖  . Thus,

𝐸𝐸(𝑌𝑌) =
1
𝑁𝑁
�𝑡𝑡𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

(2)

The above equation means, if we generate 𝑁𝑁  samples from the distribution  𝑔𝑔(𝑥𝑥) , the 

expected value can be estimated by 𝐸𝐸(𝑌𝑌) = 1
𝑁𝑁
� 𝑓𝑓(𝑥𝑥𝑖𝑖)

𝑁𝑁
𝑖𝑖=1 . The importance here is that the samples 

must be generated from the density function 𝑔𝑔(𝑥𝑥).

This can be used to estimate the integral of a function 𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥. If we uniformly generate 

samples, the integral can be estimated by 𝐼𝐼 = 1
𝑁𝑁
𝑓𝑓(𝑥𝑥𝑖𝑖). However, in most cases, this will produce 

large variance. For example, the function 𝑓𝑓(𝑥𝑥) can be zero in many places and with very high 

value in some regions. Alternatively, we can rewrite the integral estimator as

𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∫
𝑓𝑓(𝑥𝑥)
𝑝𝑝(𝑥𝑥)

𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 (3)

We can generate samples from distribution function 𝑝𝑝(𝑥𝑥), instead of uniformly distribution, 
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to get 𝐼𝐼 = 1
𝑁𝑁
∑ 𝑑𝑑(𝑒𝑒𝑖𝑖)

𝑝𝑝(𝑒𝑒𝑖𝑖)
𝑁𝑁
𝑖𝑖=1 . The variance of this estimator depends on the density function 𝑝𝑝(𝑥𝑥). If the 

density function is chosen intelligently, i.e., proportional to 𝑓𝑓(𝑥𝑥), the variance can be reduced 

significantly. This is called importance sampling. 𝑝𝑝(𝑥𝑥) is called importance density. 𝑤𝑤𝑖𝑖 = 𝑑𝑑(𝑒𝑒𝑖𝑖)
𝑝𝑝(𝑒𝑒𝑖𝑖)

 

is called importance weight.

Chapter 3. Hybrid Scene Structuring for Accelerating 3D Rad


