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1. Introduction



Global demand for agricultural crops is increasing and may continue for the next decades with the
increase of global population and per-capita demand due to rising living standards (Mauser et al.
2015). A 100-110% increase in global crop demand is forecasted from 2005 to 2050 (Tilman et al.
2011). However, with the backdrop of climate change, the frequency of extreme weather is rising
which causes marked damage to crops and threatens local to global food security (Lesk et al. 2016;
Nelson et al. 2016). Therefore, more efforts should be made to meet the increasing global crop
demand with minimal environmental impacts.

1.1 Nitrogen fertilization problem

During the past decades, the use of Nitrogen as fertilizer is intensified and results in the incensement
of the grain production (FAO 2017). Indeed, since the early 1960s, the use of N fertilizers has grown
approximately sevenfold (Figure 1 (Lu and Tian 2017)) . As a matter of fact, N is one of the most
important factors determining biomass production in ecosystems (Le Maire et al. 2008). However, the
significant improvement of the profitability of agriculture by using nitrogen fertilization is at the
expense of a degradation of our environment. Nowadays, 30-80% of N applied to farmland is lost to
surface, ground-waters and atmosphere (Bednarek et al. 2014; Van Grinsven et al. 2014). Therefore,
the optimization of crop cultivation and rates of N fertilizers application should be balanced at field
scale according to the crop needs. Providing sufficient nitrogen for the particular environmental
conditions and genotype have several economic and environmental benefits, including the reduction
of the water and atmospheric pollution (Goffart et al. 2008), the increase of yield and quality of the
crop, the evolvement of the cropping systems toward a sustainable agriculture (Spiertz 2009).
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Figure 1 Temporal patterns of global nitrogen (N) fertilizer use in terms of total amount (tot) and
average rate on per unit of cropland area (avg) per year (Lu and Tian 2017).

Compared with destructive sampling, non-destructive approaches based on optical measurements
provide an efficient way to estimate N content and have been widely used in precision farming and
phenotyping to optimize genotypes (Scharf et al. 2002). At field level, unmanned aerial vehicle (UAV)
and satellite observations can provide real time monitoring of the spatial variation of the N status
along the growing season (Beeri et al. 2005; Polénen et al. 2013). To achieve this goal, several
methods have been developed in the literature: N content can be directly estimated from regression
relationships with vegetation indices (Feng et al. 2016; Kusnierek and Korsaeth 2015) or it can be
indirectly retrieved by establishing relationships with canopy or leaf chlorophyll content that can either
be estimated from vegetation indices or radiative transfer model inversion. Indeed, many studies have
demonstrated the strong correlation between leaf chlorophyll content (Cab) and leaf nitrogen content
(N%) (Cartelat et al. 2005; Schlemmer et al. 2013), as well as the relationship between canopy



nitrogen content (QN) and Canopy Chlorophyll Content (CCC) which is defined as the product
between Cab and the Green Area Index (GAl: the green elements of the canopy) (Baret et al. 2007;
Houles et al. 2007). Spectral features of chlorophyll in visible and near-infrared (NIR) are usually used
as indicators of N content (Feng et al. 2016; Kusnierek and Korsaeth 2015). In addition, methods
based on chlorophyll fluorescence emission ratio are also widely applied to crop N status monitoring
(Schachtl et al. 2005; Tremblay et al. 2012). However, this thesis will not deal with fluorescence
methods since there is no satellite mission today compatible with the spatial resolution required for
precision farming or phenotyping application (Drusch et al. 2017).

1.2 Estimation of leaf and canopy characteristics: from leaf measurements to
satellite data

When dealing with nitrogen content, Ca, CCC and GAI are among the most important biophysical
variables since they also drive the radiative transfer within the canopy, which makes them accessible
in a non-destructive way. Chlorophyll is the major plant pigments in photosynthesis. It is not only
applied as an indirect estimation of N status but also closely related to plant stress and senescence.
Since chlorophyll is the main plant component determining the reflectance in the visible and red-edge
region of the spectrum, optical measurements are relevant to provide information for estimation of leaf
and canopy chlorophyll content (Gitelson et al. 2002). Similarly to the Leaf Area Index (LAI), defined
as half the total developed area of leaves per unit horizontal ground area (Chen and Black 1992),
(Baret et al. 2010; Duveiller et al. 2011) proposed to consider GAl that refers to the surface of all the
canopy green elements, including the green leaves, stems and other organs. Indeed, all the green
elements contribute to the reflectance observations, making GAI better accessible from remote
sensing imagery than LAL.

To estimate biophysical variables from leaf and canopy level, both empirical vegetation index (VI)
methods based on the combination of leaf or canopy reflectance in few bands and physically based
methods based on the physical process within leaf or canopy structure have been developed.
Retrieval algorithms used to estimate leaf and canopy variables from laboratory to satellite
observations can be split into two main categories (Baret and Buis 2008): (1) radiometric data-driven
approaches (Figure 2, left) like Look-Up-Tables (LUT) (Duan et al. 2014; Gonzalez-Sanpedro et al.
2008) and iterative optimization methods (Lauvernet et al. 2008). They are based on finding the best
match between the measured reflectance (transmittance) and those simulated from radiative transfer
model (RT model) or stored within a database from experimental observations. (2) Regression
methods (Figure 2, right) such as linear or polynomial multiple regression (Liu et al. 2012; Nguy-
Robertson et al. 2012), or machine learning based ones such as Neural Networks (Li et al. 2015;
Weiss et al. 2002), Random Forests Regression (Breiman 2001), Support Vector Machine (Durbha et
al. 2007) and Gaussian Process Regression (Verrelst et al. 2012). The calibration or training
database can be generated either using simulations from RT model or experimental measurements.
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Figure 2 Two main retrieval methods to estimate leaf and canopy variables from laboratory to satellite
observations. Left: radiometric data driven approach, Right: variable driven approach.

1.2.1 Methods to estimate the chlorophyll content at the leaf level

At the leaf level, leaf spectra are usually measured at the laboratory from hyperspectral sensors
(Féret et al. 2011). Then, based on these measurements, methods including both empirical and
physically based modeling approaches have been developed to estimate the leaf chlorophyll content
(Cab).

1.2.1.1 Empirical methods

Vis are combinations of spectral bands that capture some absorption characteristics of a given
biochemical content. Empirical methods with Vis are widely used with ratios of reflectance at
wavelengths that are sensitive to leaf chlorophyll (Croft and Chen 2017). The main types of indices
are derived from three forms: simple ratio (SR), normalized difference (ND), modified versions of SR
and ND and indices using reflectance derivatives (Le Maire et al. 2004). Several comprehensive
reviews have investigated the range of vegetation indexes for determining chlorophyll content (Croft
et al. 2014; Le Maire et al. 2004). Table 1 provides a selection of typical vegetation indices for
estimating Cab.

However, some limitations still exist when the VI relationship is calibrated over a given training
dataset and is then applied to different species or contrasted environmental conditions such as
variation in soil background or in the illumination levels in relation to the position of the leaf within the
canopy (Lymburner et al. 2000; Wang et al. 2011). In addition, when considering phenotyping
applications, quantifying the differences expected between genotypes grown under similar conditions
is more challenging. The differences between genotypes in pigment, water and dry matter contents
are generally limited. In these conditions, a significant part of the variation in leaf optical properties is
also due to variations in the leaf structure, the distribution of pigments in the leaf volume as well as
surface features. This affects the relationships between vegetation indices and chlorophyll content
while a physically based model of leaf optical properties should allow to explicitly account for these
potentially confounding effects. Furthermore, new genotypes grown under given environmental
conditions may have characteristics not well represented in the Vl-relationship training database,
making the biochemical content estimation uncertain.



Table 1 Examples of vegetation indices for estimating Cab.

Index Name Equation Reference
Gitelson ratio green —R8OO - (Gitelson et al. 2003)
C|green R550
. . R800 .
Gitelson ratio red edge ——1 (Gitelson et al. 2003)
Clred-edge R710
R — R
Normalized difference VI —800 680 (Rouse Jr et al. 1974)
NDVI R800 + R680
Normalized difference VI R750 — R705
- Gitelson and Merzlyak 1994
NDVlre —red edge R750 + R705 ( Y )
Photochemical R531 — R570 .
PRI Reflectance Index RE31L T RE70 (Sims and Gamon 2002)
Struc.:ture |n§en5|t|ve R800 — R455 (Penuelas et al. 1995)
SIPI pigment index R800 — R680

1.2.1.2  Physically based Methods

Physically based modeling approaches are developed to understand the relationship between leaf
optical properties and leaf biochemical. According to the differences in leaf structure assumption and
calculation algorithm, it can be categorized into five classes (Jacquemoud and Ustin 2001;
Jacquemoud and Ustin 2008) :

e Plate models assume the leaf as a stack of one or several absorbing plates with rough surfaces
giving rise to isotropic diffusion (Allen et al. 1969).

e N-flux models, derived from the Kubelka-Munk theory, consider the leaf as a slab of absorbing
and diffusing material (Allen and Richardson 1968; Yamada and Fujimura 1991).

e Radiative transfer Equation, where the leaf is considered as a random medium with a spatially
varying permittivity. The variations of the electric field are described using the Maxwell theory
(Ganapol et al. 1998).

e Stochastic models, where the leaf is divided into independent tissues and the radiative transfer
is simulated by a Markov chain (Maier et al. 1999; Tucker and Garratt 1977).

e Ray-tracing models simulate the photon transport within the leaf and calculate the optical
properties for bifacial leaves with detailed description of the leaf structure (Baranoski 2006; Dorigo
et al. 2007; Ustin et al. 2001).

As a typical plate model, PROSPECT is one of the most widely used leaf RT models (Feret et al.
2008; Fourty et al. 1996; Jacquemoud and Baret 1990; Jacquemoud et al. 2009). It allows simulating
leaf optical properties from a limited set of state variables and has been successfully applied to
retrieve leaf biochemical composition from leaf reflectance and transmittance (Jacquemoud et al.
2009; Le Maire et al. 2004; Zarco-Tejada et al. 2004). Several versions of the PROSPECT model are
available. They mostly differ by the number of chlorophyllian pigments considered, the spectral
variation of the specific absorption coefficient and of the refractive index that controls the scattering
processes in the leaf. However, because of the homogeneous assumptions of plate models, the
simulated reflectance and transmittance of bifacial leaves from PROSPECT model are always the
same, which contradicts some observations of leaf optical properties on both faces (Baldini et al. 1997;
Stuckens et al. 2009b).




1.2.2 Methods to estimate the chlorophyll content and GAI from satellite data

At the canopy level, satellite data carried out at different scales allows detailed and frequent
observations of the vegetation canopy. The monitoring of vegetation through remote sensing
techniques has been applied in domains such as agriculture, ecology and climate change (Atzberger
2013; Wang et al. 2010) since it provides a non-intrusive and cost effective way of monitoring the
spatial variations of the plant status. Only since recently, the high spatial and temporal resolution of
systems made satellite remote sensing suitable for agricultural monitoring at the field and intra-field
levels. The SENTINEL-2 constellation has the advantages of a short revisiting time (5 days revisit
cycle) and decametric spatial resolution (10 — 60m) (Drusch et al. 2012). It can generate geo-
information at local, regional, national and global scales near real-time with free-access. Some new
approaches and applications in agriculture fields have been applied with SENTINEL-2 observations
(Bontemps et al. 2015; Clevers et al. 2017; Clevers and Gitelson 2013).

In the same way as the for the leaf level, methods to estimate biophysical variables from remote
sensing data can be classified in empirical methods based on regression between the variables and
VIs or reflectance, and physically based RT models inversion (Baret and Buis 2008; Verrelst et al.
2012).

1.2.2.1 Empirical methods

For empirical methods, additionally to the VIs developed at leaf level for chlorophyll estimation (Table
1), some indices (e.g. OSAVI, TVI and MTVI2) were specifically designed at the canopy level,
showing different sensitivities to leaf chlorophyll, canopy structure (and thus GAl), soil background
and atmospheric condition (Bannari et al. 1995; Baret and Guyot 1991; Henrich et al. 2009). Even
though different empirical VIs have been applied to provide accurate estimation of GAIl or chlorophyll
based on established statistical relationships with field measurements (Broge and Leblanc 2001;
Broge and Mortensen 2002; Liu et al. 2012), they are limited by the cultivar, location and time with
local calibration and the small number of bands concurrently used (generally 2-3) (Thenkabail 2015).
But for very high spatial resolution observations obtained from unmanned aerial vehicles (UAV),
empirical models were proved to overperform PROSAIL inversion by focusing on green pixels solely
to estimate leaf chlorophyll content (Jay et al. 2018).

1.2.2.2  Physically based methods

Physically based RT models describe the physical processes governing the interaction of light with
the canopy elements, and allows taking explicitly into account the information on the observational
configuration (Delloye et al. 2018; Strahler 1997; Verrelst et al. 2012). Therefore, it is often preferred
for its better transferability, robustness, and flexibility.

e Turbid medium assumption: 1D models

One-dimensional radiative transfer models (1D RTM) assume the canopy as a horizontally infinite
turbid or discrete scatters medium (Figure 3A). 1D RTMs such as PROSAIL (Jacquemoud et al. 2009)
or ACRM (Kuusk and Nilson 2001) require only a small number of input variables and are
computationally very efficient. They approximate the canopy as a turbid medium where leaves are
considered as infinitely small particles randomly distributed in the canopy volume. 1D RTMs are well
adapted to situations where the amount of information on the target is limited. This is the case for
kilometric resolution observations where the generally mixed nature of pixels and their unknown
composition makes the problem difficult to be properly solved. Indeed, 1D RTMs provide “apparent”
values of the biophysical variables that have been proven to be very useful over regional to global
scales applications (Camacho et al. 2013; Delloye et al. 2018; Xiao et al. 2015). At high spatial
resolution, 1D-RTMs are applicable to canopy structures close to the turbid medium assumption, e.g.
showing little canopy aggregation including row structure. However, this assumption is often not
realistic at higher spatial resolutions going from satellite decametric through metric and sub-metric
images recorded on-board unmanned Aerial Vehicles (UAVs) (Duan et al. 2014; Verger et al. 2014) or
ground vehicles (Comar et al. 2012). In this case, a more realistic description of the canopy structure
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is required to get more accurate simulations of the RT models (Ross 2012) and therefore improve the
variable retrieval performances.

e Hybrid models

Apart from the simple 1D turbid medium description, several types of RT models have been
developed with an enhanced realism at the expense of increasing complexity (Goel 1988). Hybrid
models such as GEOSAIL (Huemmrich 2001) or the hybrid GORT model (Li and Strahler 1985)(Li
and Strahler 1985) combine the geometric optics of large scale canopy structure with the principles of
radiative transfer for volume scattering within each geometric structure (e.g. protrusion represented by
cylinders, ellipsoids, cones), allowing the inclusion of some clumping at the canopy scale (Figure 3b).
However, an inherent loss of information results from the assumption that averaging canopy structural
properties and averaging the scattering behaviour of the canopy (Disney et al. 2000). Therefore, the
development of 3D radiative transfer models (3D RTM) based on a realistic and detailed description
of the canopy structure are highly desired.

e More realistic description of the canopy structure: 3D models

3D RTMs are developed to simulate the light propagation within canopies by combining an explicit 3D
description of the plant and stand architecture with the optical properties of the different canopy
elements (Figure 3C and 3D). Commonly used 3D RTMs are based either on radiosity or ray tracing
methods. Radiosity methods rely on a ‘view factor’ matrix built to represent the scattering between
one surface and every other surfaces within a scene. The view factor is then used in an iterative
manner to solve the radiative transfer between all surfaces (Cohen and Wallace 2012). Since the
radiosity method is a global algorithm, reflectance from multi view angles can be calculated at once.
However, for complex scenes, it is time-consuming due to a high number of scattering primitives.
Examples of radiosity-based methods include RGM (Qin and Gerstl 2000) and RAPID (Huang et al.
2013) which integrates explicit porous objects over arbitrary canopies to accelerate the computation
time in complex landscapes. The ray tracing method is based on a sampling of photon trajectories
within the scene (Disney et al. 2000). It traces the path of light in an image plane and simulates the
effects of its encounters with other vegetation or ground elements. Because of its efficiency and
scalability, many approaches are implemented with the Monte Carlo ray tracing method such as Flight
(North 1996) where the scene is described with the geometric primitives and volume-averaged
parameters, Raytran (Govaerts and Verstraete 1998) or DART (Gastellu-Etchegorry et al. 2015;
Gastellu-Etchegorry et al. 2004) which is based on the exact kernel and discrete ordinate approach.

Several open source 3D ray tracing render engines were developed concurrently for computer
graphics applications, including LuxCoreRender (LuxCoreRender 2018), MITSUBA (Jakob 2014) and
Pov-ray (Persistence of Vision Raytracer) (POV-team 2013). LuxCoreRender and MITSUBA are
developed based on the PBRT (Pharr et al. 2016) which is a physically based unbiased ray tracer,
while Pov-ray is built from the non-physically based render engine where empirical shading algorithm
is used (Casa and Jones 2005). Because of their flexibility and performances, these computer
graphics tools are gradually used by the remote sensing community (Casa and Jones 2005; Coubard
et al. 2011; Stuckens et al. 2009a).

However, in addition to the higher complexity of the canopy structure description and the associated
increase in the number of required parameters, running a simulation is computationally intensive.
Method like model emulation techniques (Gémez-Dans et al. 2016; Verrelst et al. 2017) is proposed
based on machine learning techniques to bypass the computational burden. However, Training such
emulators is thus computationally more expensive and requires a higher number of simulations to
represent properly the variability induced by leaf biochemical composition, wavelength and soil
properties. The generation of large LUTs or training datasets to retrieve canopy attributes from a set of
reflectances measured in a given observational configuration requires a lot of time. As a matter of fact,
the reflectance should be simulated in all the considered directions and wavebands, for a high
number of canopy architectures, composed of different elements with given optical properties (leaf,
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stem, ears, green, yellow,...) and soil background. The computation time as well as the accurate 3D
characterization of the canopy remains one of the principal limitations when inverting realistic 3D
RTMs.

A B

Figure 3 Examples of (A) 1D model (B) GORT model and 3D model of (C) wheat canopy and (D)
maize canopy (simulated by LuxCoreRender).

1.3 Study objective and outlook

In the context of crop nitrogen monitoring for smart agriculture and field phenotyping applications,
remote sensing appears as an efficient tool to characterize the vegetation status. Although some
retrieval methods relying on the inversion of physically based models have already been developed
both at the laboratory and satellite observation levels, the accuracy of estimation is still limited by
computing capacities or by the use of flexible but rather simple models. These latter are based on an
oversimplification of the leaf and canopy structure that induces biases in the estimation of the crop
state variables of interest (Stuckens et al. 2009a). The objective of this work is thus to propose and
evaluate an efficient, accurate and robust method to retrieve leaf and canopy characteristics from
close and remote sensing observations. This method relies on RT models with realistic descriptions of
the leaf and canopy structures.

The study is divided in two main parts corresponding to the two considered levels of observation
(Figure 4):

e The first part focuses on the leaf level. We first evaluate the ability of the different versions of the
PROSPECT model to estimate biochemical variables like chlorophyll, water and dry matter
contents using an optimization inversion method. Our results highlight a bias for chlorophyll
estimation that we attribute to the fact that the specific absorption coefficients of the PROSPECT
model are calibrated over a large range of species characterized by two distinct mesophyll
structures: the palisade mesophyll contains most of the chlorophyll, while the spongy mesophyll is
characterized by a small amount of chlorophyll and more air space with a high level of scattering.
We thus propose to develop the FASPECT model that explicitly describes the two kinds of
mesophyll layers. Therefore, we built a four-layer model of the leaf and recalibrated the
corresponding specific absorption coefficients of the main absorbing materials. We validate the
FASPECT model against eight measured datasets.

10
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2 Estimating leaf biochemical content from
laboratory spectral measurements
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Leaf biochemical content corresponds to traits related to the plant state and its functioning in relation
to photosynthesis, respiration and transpiration. The main leaf absorbers including chlorophyll,
carotenoid, water and dry matter contents show strong and specific absorption features, which
impacts the leaf reflectance and transmittance spectra. It is therefore possible to estimate the content
of these constituents from laboratory spectral measurements. In this chapter, we first evaluated the
performances of the several versions of the PROSPECT model against Vis to estimate leaf
biochemical content from leaf reflectance measurements. Since a number of plant species have
distinct optical properties between the upper and lower leaf faces, which are neglected in PROSPECT,
we developed and validated FASPECT to take into account the differences between the two faces.
This chapter is thus split into 2 main sections that correspond to journal articles:

e Article 1. Estimation of leaf traits from reflectance measurements: comparison
between methods based on vegetation indices and several versions of the PROSPECT
model (published in Plant Methods). The study is based on an experiment conducted over six
wheat cultivars grown under several nitrogen levels and sowing densities. Leaf reflectance
spectra in the 450-2250 nm domain were acquired at two growing stages, concurrently with
destructive measurements of chlorophyll, carotenoid, water and dry matter contents.
Estimation performances were compared between several versions of PROSPECT model
and those obtained using empirical relationships with vegetation indices (VI). Results show
that PROSPECT model inversion and empirical VI approach provide similar retrieval
performances and are useful methods to estimate leaf biochemical composition from spectral
measurements. However, for PROSPECT models, the dry matter content is not very well
estimated and significant bias was observed for chlorophyllian pigments estimates.

e Article 2: Optical properties differences between upper and lower leaf faces:
measurements, and development of the FASPECT model
In this article, we propose the FASPECT model that considers the leaf as a stack of four-
layers. The upper and lower epidermis layers are characterized by distinct wavelength-
independent reflectivity and the leaf mesophyll is assumed to be made of a palisade and a
spongy parenchyma layers with two proportional parameters to describe the distribution of
pigments and leaf structure. Therefore, six additional parameters are required to describe the
differences in leaf optical properties between upper and lower faces as compared to the
PROSPECT model which describes the homogeneous case. Because of the concentrated
chlorophyll in palisade mesophyll, the specific absorption coefficients of chlorophyll and
carotenoids are recalibrated. Validation was done against eight datasets.
Results show that FASPECT simulates accurately the reflectance and transmittance of the
two faces and over-performs the PROSPECT models for single face spectra. In the inverse
mode, significant improvements are observed for the estimation of dry matter content as
compared to PROSPECT. We thus demonstrate that FASPECT is efficient and could be used
in 3D canopy radiative transfer models to simulate canopy reflectance more accurately,
especially for plants with significant differences in leaf optical property between faces.
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Abstract

Background: Leaf biochemical composition corresponds to traits related to the plant state and its functioning. This
study puts the emphasis on the main leaf absorbers: chlorophyll a and b (Cyp), carotenoids (Cp), water (Cy,) and dry
mater (C) contents. Two main approaches were used to estimate [Cgp, Ce, Cp, Cl in @ non-destructive way using
spectral measurements. The first one consists in building empirical relationships from experimental datasets using
either the raw reflectances or their combination into vegetation indices (VI). The second one relies on the inversion

of physically based models of leaf optical properties. Although the first approach is commonly used, the calibration

of the empirical relationships is generally conducted over a limited dataset. Consequently, poor predictions may be
observed when applying them on cases that are not represented in the training dataset, i.e. when dealing with differ-
ent species, genotypes or under contrasted environmental conditions. The retrieval performances of the selected Vs
were thus compared to the ones of four PROSPECT model versions based on reflectance data acquired at two pheno-
logical stages, over six wheat genotypes grown under three different nitrogen fertilizations and two sowing density
modalities. Leaf reflectance was measured in the lab with a spectrophotometer equipped with an integrating sphere,
the leaf being placed in front of a white Teflon background to increase the sensitivity to leaf biochemical composition.
Destructive measurements of [Cyp, Ce, C, Cril Were performed concurrently.

Results: The destructive measurements demonstrated that the carotenoid, C., and chlorophyll, Cgp, contents were
strongly correlated (r*=0.91).The sum of C, and C,, i.e. the total chlorophyllian pigment content, Cgpc, Was therefore
used in this study. When inverting the PROSPECT model, accounting for the brown pigment content, Cpy, was neces-
sary when leaves started to senesce. The values of C,c and Gy, were well estimated (r?=0.81 and r* = 0.88 respec-
tively) while the dry matter content, Cy, was poorly estimated (= 0.00). Retrieval of C,, from PROSPECT versions was
only slightly biased, while substantial overestimation of Cypc Was observed. The ranking between estimated values of
Cabe and Gy, from the several PROSPECT versions and that derived using the Vis were similar to the ranking observed
over the destructively measured values of Cgpc and Cy.

Conclusions: PROSPECT model inversion and empirical VI approach provide similar retrieval performances and are
useful methods to estimate leaf biochemical composition from spectral measurements. However, the PROSPECT
model inversion gives potential access to additional traits on surface reflectivity and leaf internal structure. This study
suggests that non-destructive estimation of leaf chlorophyll and water contents is a relevant method to provide leaf
traits with relatively high throughput.
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Background
Plant phenotyping was recognized as one of the major
bottleneck in the genetic improvement of crops [1]. It
is currently a rapidly growing research domain that fol-
lows the continuous technical advances of sensors, robot-
ics and computer systems for data processing. It relies
on non-destructive and high-throughput measurements
used to assess functional traits repeatedly throughout the
growing season [2]. Plant phenotyping is completed at
three main scales [3]: (1) the plot scale, i.e. a collection
of plants mostly sampled in field conditions, (2) the plant
scale generally measured under controlled conditions in
the greenhouse, and (3) the organ scale, i.e. an element of
the plant (leaf, stem, reproductive or storage organs) that
can be sampled either in the field or under controlled
conditions. For phenotyping purposes, the leaf biochemi-
cal composition provides valuable information on the
plant state regarding some key processes such as photo-
synthesis, respiration and transpiration. The close rela-
tionship between chlorophyll and carotenoid pigments
and nitrogen status of crops was indeed investigated by
several studies [4—10] and depends on crop phenologi-
cal stages as well on the leaf light environment [11-14].
Variation of the leaf relative water content (water mass
per unit leaf mass) is related to the water stress experi-
enced by the plant [15] or indicates the senescence level
[16]. Green leaves show generally small deviations of the
relative water content to keep the leaf turgescent while
being compatible with biochemical processes [17]. The
dry matter content corresponds to the leaf mass per area.
It is related to photosynthesis and respiration processes
[18-20]. It also controls the transformation of the mass
of assimilates produced and allocated to the leaf into a
leaf area increment within many crop models [21-23].
Chlorophyll, carotenoid, water and dry matter con-
tents show strong and specific absorption features, which
impact the leaf reflectance and transmittance spectra
[24]. 1t is therefore possible to estimate the content of
these constituents from the measurement of leaf opti-
cal properties [25-27]. Indeed, the actual quantity that
drives light reflectance and transmittance is the con-
tent (mass of constituent per unit leaf area) rather than
the concentration (mass of constituent per unit leaf dry
mass): the biochemical content governs the effective path
length of light through the leaf and controls thus the leaf
reflectance and transmittance through scattering and
absorption processes.

The estimation of the leaf chlorophyll and carotenoid
content from optical measurements [28, 29] became
very popular with the rise of precision farming focusing
on nitrogen applications [13]. Empirical relationships
between leaf water content and leaf optical properties
have also been calibrated over experimental datasets and
were demonstrated to be efficient [30—34]. Fewer stud-
ies reported attempts to estimate dry matter content
from reflectance measurements [26, 35, 36]. These stud-
ies are generally reporting results obtained over a wide
range of contents due either to interspecific differences
or to contrasted environmental conditions such as vari-
ation in salinity or in the illumination levels in relation to
the position of the leaf in the canopy [35, 36]. However,
quantifying the differences expected between genotypes
grown under similar conditions is more challenging: the
differences between genotypes in pigment, water and
dry matter contents are generally limited. In these con-
ditions, a significant part of the variation in leaf optical
properties is also due to variations in the leaf mesophyll
structure, the distribution of pigments in the leaf volume
as well as surface features. This affects the relationships
between vegetation indices and chlorophyll content while
a physically based model of leaf optical properties should
allow to explicitly account for these potentially confound-
ing effects. Furthermore, new genotypes grown under
given environmental conditions may have characteristics
not well represented in the VI-relationship training data-
base, making the biochemical content estimation uncer-
tain. A recent review of models of leaf optical properties
[37] distinguishes three main approaches based either on
radiative transfer [38—41], on stochastic processes [42,
43], or on ray tracing [44, 45]. PROSPECT is one of the
most widely used leaf radiative transfer models [24, 41,
46, 47]. It has been successfully applied to retrieve leaf
biochemical composition from reflectance and/or trans-
mittance measurements [26, 46, 48, 49]. Several versions
of the PROSPECT model are available. They mostly dif-
fer by the increasing detail in the pigments used and the
associated values of the specific absorption coefficients,
water and dry matter, as well as by the value of the refrac-
tive index controlling the scattering processes in the leaf.

The objective of this study was to evaluate the perfor-
mances of the several versions of the PROSPECT model
to estimate leaf chlorophyll, C,;, carotenoid, C,, water, Cy,
and dry matter, C,,, contents from leaf reflectance meas-
urements in the context of phenotyping experiments.
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Performances were compared to those obtained using
empirical relationships with vegetation indices. The study
is based on an experiment conducted over six wheat cul-
tivars grown under several nitrogen levels and sowing
densities. Leaf reflectance spectra in the 450-2250 nm
domain were acquired at two growing stages, concur-
rently with destructive measurements of chlorophyll,
carotenoid, water and dry matter contents. Attention was
paid both to the accuracy and precision of the biochemi-
cal content estimates as well as to the ranking capacity
necessary to identify differences between genotypes.

Methods

The biological material

The experiment took place near Toulouse at the INRA
centre “Auzeville Tolosane” (43°33'N, 1°28’E) in France
over a site presenting deep and homogenous soil condi-
tions. The wheat plants from which the leaves were col-
lected were grown in field conditions described in [2].
The crop was sown in October 2011 and harvested in
June 2012. Three factors were taken into account in the
experimental design which resulted into 36 modalities:
six cultivars (four winter wheat: Apache, Caphorn, Sois-
sons and Hysun (hybrid); two durum wheat: Isildur and
Biensur), two sowing densities and three nitrogen levels.

The measurements

Leaves were collected in April 2012 at the “two nodes”
stage and in June 2012 during grain filling. All the 36
modalities were sampled in April, while only 26 of them
were collected in June. For each of the resulting 62 sam-
ples, six top leaves were randomly collected. Three of
them were used for the destructive measurements of dry
matter and water content and the remaining three for
destructive measurements of chlorophyll and carotenoid.
Reflectance measurements were conducted for each of
the six leaves used for destructive measurements. All
data for destructive and spectral measurements are pro-
vided in Additional file 1.

Destructive measurements

The area (S) of each leaf was first measured by scanning
each sample and processing the resulting image with the
SCANAREA software [40]. Then, the three leaves used
for the destructive measurements of C,, and C, were
weighed before (M), and after (My;,) drying them out
at 80 °C in an oven during 2 days. The dry matter (C,, in
mg/cm?) and water contents (C,, in mg/cm?) were then
computed using the following equations:

My
Cn = S’y

(1)
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The three leaves used for C,;, and C, leaves were lyophi-
lized and stored in the dark at — 20 °C after measuring
their area. The mass of Chlorophyll a and b and carote-
noid were then estimated according to [50] by extracting
the pigments in acetone and measuring the optical den-
sity of the solution. The corresponding content was com-
puted using the measured area of each leaf.

Cw (2)

Spectral measurements
The optical properties of the 372 leaves were acquired
using an ASD Fieldspec-3 spectroradiometer (Analytical
Spectral Devices Inc., Boulder, Colorado, USA) equipped
with an integrating sphere Li-Cor 1800-12 (LI-COR Inc.,
Lincoln, NE). Data were sampled at intervals of 1.4 nm
(350-1050 nm) and 2 nm (1000-2500 nm) with a spec-
tral resolution of 3 nm for the region 350—1000 nm and
10 nm for the region 1000-2500 nm [51]. The direc-
tion of the incoming light was almost normal to the
leaf sample while the bare fiber of the spectroradiom-
eter viewed the integrating sphere wall under a 25° field
of view (Fig. 1). The original Li-Cor lamp system of the
integrating sphere was replaced by a lamp connected to
a stabilized power supply. The original infrared filter was
removed to increase the light available in this domain
where the spectrophotometer has a lower sensitivity
than in the shorter wavelengths. A Teflon white panel
was used as the background of the leaf as proposed by
[49] to increase the optical path in the leaf, thus enhanc-
ing the absorption features. Another Teflon white panel
was used as a secondary reference to compute the direc-
tional-hemispherical reflectance factor (DHRF) of the
leaf-white background system. The absolute DHRF,.s
of the secondary Teflon white reference was calibrated
against a spectralon primary reference panel [52].

Three spectrophotometer measurements were com-
pleted for each of the six leaves sampled per date, cultivar

ASD Fieldspec-3
spectroradiometer

white panel

Integrating sphere

Fig. 1 The experimental setup for leaf reflectance measurement with
Teflon white panel
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and modality. The average (Si,r(4)) of the resulting 18
individual spectra was computed and then transformed
into the corresponding DHRF (DHRF .4 (1)) according to
Eq. (3):

2Sleaf (4)
(Sreffbef (/1) + Sreffaft()V))

DHRFjpqr (J) = DHRFyf(2)

3)

where Syer_per(4) and Syer g7 (4) are the spectra of the sec-
ondary Teflon reference completed before and after the
series of the 18 leaf spectrophotometer measurements.
The reflectance of the white background was measured
systematically just after the S,or 47 (1) measurements to
account for possible changes of its properties due to the
contact with the leaf.

The vegetation indices

A vegetation index is a combination of spectral bands
that captures some absorption characteristics of a given
biochemical content. Several of them have been pro-
posed in the literature, mainly to assess water [33], and
chlorophyll and carotenoid contents [48, 53, 54]. How-
ever, their associated performances are still a matter of
discussion when the calibration and validation data-
sets differ in acquisition conditions, crop state and/or
soil background [55, 56]. Two VIs (Dx4 and Clre) were
selected among the most popular ones for chlorophyll
content estimates (Table 1): Dx4 was developed for the
Dualex Scientific+ " instrument (Force-A, Orsay, France)
to estimate chlorophyll content from the transmittance in
the red-edge (T710) and the near infrared (Tgs0) [29]. Clre
is the ratio between the reflectance in the near infrared
(R760—800) and the red-edge (Rg90—710) [28, 57]. For water
content, two popular indices were selected: SRw [31] is
the ratio between reflectance in the short wave infrared
(R1300; R1a50) and NDw [27] is a normalized difference
of bands in the short wave infrared (Riog2, R1393). Since
all the selected VIs are designed to enhance the absorp-
tion features of chlorophyllian pigments or water for leaf
transmittance (Dx4) or reflectance over a black back-
ground (other VIs), they are also expected to work simi-
larly for leaf optical properties measured over a white
background. Simple linear functions were considered
to empirically relate the biochemical contents and Dx4,
Clre and SRw. A second order polynomial function was
used to relate NDw and C,,. A leave-one-out method was
used to quantify the performances of the empirical cali-
bration using the r* (squared Pearson correlation coeffi-
cient) and RMSE (root mean square error) between the
estimated and measured biochemical contents.
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Table 1 Definition of the selected vegetation indices

Variables Vis Formula References
Cabe Dx4 Tsso _ 9 [29]
T70
Clre Rre0-s00 _ 4 [28,57]
Reoo—710
Cw SRw Riz00 [31]
Rias0
NDw Rig62 =Ri303 271
Rio62+R1393

Inversion of the PROSPECT model

PROSPECT versions

The PROSPECT model [41] extended to multiple layers
(plates) the (single) plate model from Allen [58] using the
Stokes system of equations [59]. The mesophyll structure
parameter, N, characterizes the number of homogenous
elementary layers that constitute the leaf. Each elemen-
tary layer is described by the refractive index of the leaf
material, #, and by an absorption coefficient computed
as the sum of the specific absorption coefficients of each
constituent weighted by their corresponding content.
Several versions of the PROSPECT model have been pro-
posed in the literature. They differ mainly by the specific
absorption coefficients and refractive index. The origi-
nal version was first updated based on a dataset of 58
leaves representing a broad range of species over which
the specific absorption coefficients were recalibrated
[26]. This resulted into PROSPECT version 3 (P3) [24,
41]. More recently, new values of the specific absorption
coeflicients and refractive index were proposed by [46]
based on a larger set of leaf reflectance and transmittance
measurements. It resulted into PROSPECT version 4 (P4)
where chlorophyll and carotenoids were pooled together,
and PROSPECT version 5 (P5) where chlorophyll and
carotenoids were described separately. Finally, PROS-
PECT-D was proposed by [60], where anthocyanins were
described explicitly in addition to chlorophyll a and b and
carotenoids. Besides, the refractive index was also recali-
brated. Finally, the contribution of the brown pigment
content (Cp,) to leaf absorption can be added to each of
the 4 PROSPECT versions, leading to P3b, P4b, P5b and
PDb versions (Table 2). Brown pigments correspond to
polyphenols that appear during leaf senescence [46].

Adaptation of PROSPECT to the measurement configuration

The reflectance measurements were achieved with the
leaf placed over a white Teflon background to enhance
the sensitivity to the leaf biochemical composition by
increasing the optical path in the leaf [49]. PROSPECT
simulates the directional hemispherical reflectance
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Table 2 Description of the different PROSPECT model versions considered in this study

Version name PROSPECT 3 PROSPECT 4 PROSPECT 5 PROSPECT D
Chlorophyllian pigment separation Cabe Cabe Capand C¢ Cab Ccand Caneh

References [26] [46] [46] [60]

Brown pigments Cop=0 Cop Cop=0 Cop Cp=0 Cop Cop=0 Cop
Abbreviated name P3 P3b P4 P4b P5 P5b PD PDb

[Reflectance, Transmittance]

Leaf surface I ] (R 1-Re]

Leaf volume [Rist(N), Tieat (V)]

Leaf surface ][R 1-Reud]
Teflon [ | [Rw0)
background

Fig. 2 Leaf model to measure reflectance over a white background:
the reflectance and transmittance values of each layer are indi-

cated Ry is the surface reflectivity for both upper and lower leaf
surfaces (independent of wavelength), Riear (A) and Tjeqr (1) are the
leaf reflectance and transmittance simulated by PROSPECT, assuming
no reflectivity at the top and the bottom of the leaf volume. R, is the
reflectance of the Teflon white background. All the reflectance and
transmittance terms are bi-hemispherical except the upper and lower
leaf surface reflectivity is directional-hemispherical

(Rieqr) and transmittance (Tj.,s) of the leaf from the
knowledge of the chlorophyll, carotenoid, water and dry
matter contents, as well as brown pigments and the mes-
ophyll structure parameter, N [41, 46]. In this study, the
computation of the surface reflectivity was approximated
by using the parameter R, conversely to the original
PROSPECT version where the ‘a’ solid angle was used
to mimic the leaf surface roughness. This allows to get a
wider range of variability of surface reflectivity in agree-
ment with observations [61]. Ry,,s was assumed to be
independent from wavelength since the refractive index
is very little spectrally dependent in the 350-2500 nm
domain [61, 62]. Because wheat presents only small dif-
ferences between the upper and lower surface features,
Ryyyr was assumed to be the same for both faces. Indeed,
the possible small differences between the two faces have
a marginal impact on leaf characteristics estimates since
the value of the illuminated face will mainly control the
optical properties of the system. Figure 2 showed the rep-
resentation of the system of layers used to compute leaf
reflectance when the leaf was placed over the white Tef-
lon background. The leaf volume layer was characterized
by the reflectance and transmittance simulated by PROS-
PECT assuming no reflectivity at the top and the bottom,
while the leaf upper and lower epidermis layers were
characterized by Ry,,s with no absorption.

The system described in Fig. 2 was solved in three
steps. First the reflectance of the lower leaf surface over
the white Teflon background, :Zbrf’ was computed as:

Rup() (1 = Ryp)?
1- Rsmijwh (4)

R;if’,f(z) = Ryyy + (4)
where Ry, is the reflectivity of the lower surface, assum-
ing that the transmissivity of the interface is 1 — Rg,r
and there is no absorption at the leaf surface. R,,;, (1) is
the hemispherical reflectance of the Teflon white back-
ground. The reflectance at the bottom of the upper epi-

dermis, RE’LI{’ ', (A), was then computed as:

Ry () Tiear ()

RY® (2) = Rigar (2) + : -
’ T Rueag (ORI ()

where R4 (/) is the leaf volume reflectance computed
from the PROSPECT model for which the reflectiv-
ity of the surface of the leaf volume is set to 0; Tjeur (1)
is the corresponding leaf volume transmittance. Note
that Eq. (5) assumes that the properties of the leaf are
the same on both faces and that the directional hemi-
spherical reflectance and transmittance are equal to the
bi-hemispherical corresponding quantities. Then, the
reflectance of the leaf over the white background was
computed using the upper surface reflectivity which was
assumed to be identical to the lower surface:

R (2)(1 = Ryyr(1))?

1= Ry ORLE, (7))

Finally, since the incident light on the leaf may directly
illuminate the white background in case of small leaves,
an additional parameter, f,,;, was introduced to describe
this situation. f;,;, is the fraction of white Teflon back-
ground illuminated directly by the light source. The cor-
responding reflectance of the system was finally written
as:

R(2) = Rup(A) fup + (1 —fup) -Rios (1) (7)
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Fitting the white background PROSPECT model variables

An iterative minimization of the cost function, J(V)
(Eq. 8), was applied to estimate the model variables,
V, where V =[C,pc Cw, Ciy N, Rmf, fwp] for P3 and P4,
V=[Cu C, Cy, Ciy N, Ry fwp] for P5 and V =[C,, C,,
Canth» Cw» Cmy N, Rgyyp, fup) for PD. The brown pigments
Cpp were also considered as an additional variable for
each of the four models (P3b, P4b, P5b, PDDb).

The cost function J (V') computed the distance between
the PROSPECT simulated reflectance spectrum and the
actual measurements over the 18 acquisitions performed
on each date, cultivar and modality:

A=2200

1
800 2
2 0

2
(R;avfoggpect (A) - R;:Zf(}“)) (8)

J(V) =

The original 300-2500 nm spectral range of the ASD
spectroradiometer was restricted to the 400-2200 nm
domain because (1) the PROSPECT model was cali-
brated only for wavelengths higher than 400 nm and (2)
the signal was dominated by noise for wavelengths longer
than 2200 nm. Furthermore, the 400-2200 nm spectral
domain contains a significant part of all the spectral fea-
tures of the biochemical components considered in this
study.

The interior point minimization algorithm [63] was
used to minimize J(P) by keeping the variables within
their bounds (Table 3). Three initial guesses (Table 3)
were used to avoid the algorithm to be trapped in a
local minimum. The estimated biochemical contents
were then computed as the mean value over the three
optimization results. Fortunately, in most situations the
three initial guesses were providing almost the same
solution.

Results

Relationships between biochemical contents

The relationships between C,, C,, Cy, and C,, were first
investigated over the destructive measurements which
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were considered as the reference. Note that Cp, was not
measured since polyphenols are difficult to extract.

The results showed that dry matter content was inde-
pendent from the content of the other constituents with
r? lower than 0.02 (Fig. 3). Chlorophyll and, in a lesser
extent, carotenoid contents were correlated to water
content (r* larger than 0.2 significant at a=5%) since a
loss of water is concomitant with a loss of chlorophyll
and carotenoid pigments for the senescing leaves (Fig. 3).
The strongest correlation was observed between chloro-
phyll and carotenoid pigments (r*=0.91 with a ratio of
C.»/C.5, when the offset is neglected Fig. 3), which was
consistent with the results from [54] and [41]. However,
while these studies found an offset of 5 pg/cm? in this
relationship over a large range of species, we observed a
lower offset for the carotenoid content (*1 pg/cm?) when
all the chlorophyll had disappeared. Considering this
strong relationship between chlorophyll and carotenoid
contents, we did not consider them separately in the fol-
lowing of the study.

PROSPECT spectra simulation performances

The performances of the inversion were first evaluated
by considering the agreement between the simulated
and the measured reflectance spectra. Figure 4 shows
an example of a measured and simulated leaf reflectance
spectrum, as well as the several terms used in Egs. (4-7).
The reflectance was simulated using the estimated val-
ues of the variables V after minimizing the cost func-
tion J(V) (Eq. 8). This result showed that the reflectance
spectra simulated using the retrieved PROSPECT model
variables closely matched the measurements. Indeed,
when considering the whole dataset, the average RMSE
between the measured and estimated spectra over all the
samples and the different PROSPECT versions was 0.013
(Fig. 5). PD and PDb provided the lowest RMSE. The
observed outliers corresponded to senescent leaves for
which absorption features cannot be properly modeled
with the present PROSPECT model versions.

Table 3 Initial guesses and bounding limits required to perform the fitting of the PROSPECT models

Variables C. Cab Cabc cAnth Cm Cw Cbp N Rsu,-f fwb
(ng/cm?) (ng/cm?) (ng/cm?) (ng/cm?) (mg/cm?) (mg/cm?)

Initial guess

1 10 50 60 5 12 5 0.01 14 0.05 0.01

2 5 20 20 1 8 15 0.2 2 0.1 0.2

3 50 80 90 10 40 18 0.001 1.1 0.01 0.1

Bounds

Min 0 0 0 0 1 1 0 1.01 0 0.0

Max 80 140 140 20 50 30 1 35 0.5 1.0

List of the three initial guesses and bounding limits used to minimize the cost function for each variable. Min and Max are the minimum and maximum bounding

values of each variable
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Fig. 3 Relationships between the four biochemical leaf traits from destructive measurements. Green and red points correspond to measurements
achieved at two nodes (April) and grain filling (June) stages respectively. The squared Pearson correlation coefficient () of each relationship is

Simulated Rias

wb
Measured Rjg.¢

1000 1500 2000

Wavelength(nm)

Fig. 4 Example of a measured leaf spectrum (red) and a correspond-
ing PROSPECT simulation (blue). The reflectance (Ry.,rand T, and
transmittance of the leaf volume are shown in green and magenta
respectively. The reflectance computed at the top of the leaf volume
(R,) considering measurements over a Teflon white background is
shown in black

Performances for biochemical composition estimation
The values of the retrieved C,, C,, C,,, C,, and C, were
compared to the destructive measurements. Results
(Table 4) showed that when combining these pigments
into chlorophyllian pigments, C,,. estimates were
strongly correlated with the destructive measurements
for all the PROSPECT versions (r* between 0.59 and
0.79). The addition of brown pigments (P3b, P4b, P5b
and PDb) provided more accurate estimation of Cpp, (r2
between 0.79 and 0.81), particularly for the June meas-
urements after the beginning of the senescence (Fig. 6).
When correcting the chlorophyll systematic overestima-
tion by a linear fit (Fig. A, dashed line), the RMSE values
varied from 6 to 9 pg/cm?® However, part of the scattering
might also be attributed to uncertainties in the destruc-
tive measurements of chlorophyllian pigments used as a
reference, estimated to be around 10%, i.e. 3 ug/cm?
Leaf water content was very well estimated regardless
of the PROSPECT version (Table 4). However, a small
bias was systematically observed (1.13 <slope <1.24).
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Fig. 5 Box plot of RMSE between the measured and simulated
reflectance using the 8 PROSPECT versions (P3:PROSPECT 3, P3b:
PROSPECT 3 considering the brown pigment content, P4:PROSPECT
4, P4b: PROSPECT 4 considering the brown pigment content,
P5:PROSPECT 5, P5b: PROSPECT 5 considering the brown pigment
content, PD: PROSPECT D, PDb: PROSPECT D considering the brown

pigment content)

The estimation of the dry matter content showed very
poor performances, with a r*=0.00, a significant bias
(between 2.18 and 2.88 mg/cm?) and RMSE values after
bias correction around 1.8 mg/cm?.

The mean value of the retrieved N parameter (mesophyll
structure) differed according to the four PROSPECT ver-
sions: N < 1.5 for P3, P3b, PD and PDb while N > 1.6 for
P4, P4b, P5 and P5b. This behavior was partly linked to
some compensation effects between Ry,,r and f;, during
the model inversion process. The surface component of the
leaf reflectance, Ry, also varied between the PROSPECT
versions. It was found to be 0.05 with P3 and P3b which
was in better agreement with the literature [2, 64], as com-
pared to the other PROSPECT versions (Ry,s = 0.01).
Estimates of f,; using P4, P4b, P5, and P5b, were higher
(fwp= 0.07) than for P3, P3b, PD and PDb (f,; ~ 0.03).

Comparison between C,p, and Cy, estimates

from PROSPECT and vegetation indices

The comparison was first based on the Spearman corre-
lation coefficient that offered the advantage to be inde-
pendent from possible bias and little sensitive to the
non-linearity between the biochemical contents and
the VIs considered in this study. The Spearman correla-
tion coefficient quantifies the consistency of the ranking
between the biochemical content measurements used
as reference and those estimated from non-destructive
techniques. The ranking capacity of phenotyping tech-
niques, i.e. the relative values of traits rather than their
absolute values, is indeed probably the first property
required by the breeders.
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The total chlorophyllian pigment content was here con-
sidered since it was difficult to estimate independently
the chlorophyll a and b from the carotenoids (Table 5).
Furthermore, C,;, and C. were strongly correlated (Fig. 3).
The PROSPECT versions using the brown pigments were
considered here because of their better performances.

Results (Table 5) showed that, after bias correction,
the performances of C,}, estimation were good for all the
versions of PROSPECT and similar to the ones of Dx4.
They were slightly degraded for Clre (p=0.78; RMSE
Corr="7.08) as compared to PROSPECT and Dx4 esti-
mates (p>0.8; RMSE Corr=6.63).

Performances for water content estimation were very
good, especially when considering the Spearman cor-
relation coefficient, which was higher than for C,p,.. The
four versions of the PROSPECT model provided similar
results after bias correction (Table 5). However, NDw
slightly improved the estimation of water content both
for p and RMSE.

Discussion

Accuracy of the PROSPECT versions to simulate reflectance
spectra

The performances (RMSE) in terms of the full spectrum
reconstruction were decreasing from the first (P3) to the
last (PD) version of PROSPECT (Fig. 5). These results
did not match the model performances for biochemi-
cal content estimation (Table 4) because of three main
reasons: (1) there were possible compensations between
the several specific absorption coefficients during the
PROSPECT calibration process. (2) A bias in the specific
absorption coefficient results in a bias in the biochemical
content estimates. (3) there might also be compensations
between some parameter estimates during the PROS-
PECT model inversion implemented in this study.

The inclusion of the brown pigments helped decreasing
the number of outliers for all the model versions (Fig. 5),
particularly for the June measurements when senescence
was observed (results not shown). The spectral variations
of the RMSE between measured and simulated reflec-
tance clearly showed the advantage of including the
brown pigments to get more accurate and precise reflec-
tance simulations in the 400-1000 nm domain (Fig. 7a,
b). Between 1000 nm and 2200 nm (Fig. 7b, d), the effect
of the brown pigments was negligible as expected since
they do not absorb in these longer wavelengths.

Closer inspection (Fig. 7c) showed that P3b and P4b
versions that did not account for the carotenoids showed
larger RMSE values in the 400-570 nm domain. In the red
edge (700-780 nm), all the PROSPECT versions showed
artefacts as compared to the measurements, while the
RMSE was much lower for P3b than for the other ver-
sions. The separation of anthocyanin from chlorophyllian
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Table 4 Performances of the inversion process over the 372 sampled leaves
Variables Metrics P3 P3b P4 P4b P5 P5b PD PDb
Cype (Hg/cm?) r? 0.65 081 0.59 0.79 063 0.80 0.79 0.80
RMSE 3092 27.66 19.90 10.93 2585 19.21 2533 2272
RMSE Corr 8.70 6.51 088 6.67 8.94 6.66 6.83 6.67
Slope 167 163 135 1.18 154 141 157 150
Bias —27.70 — 2509 — 1499 —811 —23.29 —17.56 —2322 — 2069
Cap (ug/cm?) r? - - - - 0.81 0.82 0.81 082
RMSE 2460 1871 19.39 17.29
RMSE Corr 5.60 5.29 552 545
Slope 167 150 152 1.45
Bias —2238 —16.78 —1752 — 1539
Cc (ug/em?) r’ 0.16 0.04 0.48 045
RMSE 9.00 391 6.18 575
RMSE Corr - - - - 563 342 1.56 158
slope 0.88 0.99 1.80 174
Bias —091 —078 —570 —530
Cy (Mg/cm?) r’ 0.88 0.87 085 0.85 0.86 0.86 0.85 0.85
RMSE 2.35 287 375 391 3.65 3.79 247 267
RMSE Corr 1.06 113 1.06 107 1.03 104 108 1.09
Slope 1.13 1.17 123 124 123 1.24 1.14 116
Bias —1.96 —247 — 354 —368 —348 —359 —214 —234
Crn (mg/cm?) r’ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 245 282 2.82 3.07 283 3.06 2.59 287
RMSE Corr 1.67 1.80 1.80 190 1.80 1.89 175 184
slope 0.56 047 047 042 047 042 0.53 046
Bias 218 2.60 261 2.88 262 2.88 233 265
N Mean 145 147 164 163 164 162 143 141
Rt Mean 0.05 0.05 001 0.01 0.01 001 0.01 001
s Mean 001 0.02 007 0.07 0.07 007 0.04 0.04

The estimation performances of Cgp, Cap, Cc, Cw and Cyp, Were quantified using the squared Pearson correlation coefficient (r%) and the RMSE computed between the
measured and estimated biochemical contents over the 186 available data. The RMSE Corr was computed when correcting for possible systematic deviations using a
linear model characterized by a slope as observed in Fig. 6. Bias value was the difference between the mean measured and mean estimated biochemical contents. The
numbers in italic indicate the best result for each biochemical content and model version

pigments in PDb further decreased the RMSE between
500 to 600 nm where anthocyanin absorbs light. PDb that
describes the biochemical content of more pigments than
the other versions showed therefore the best agreement
with the measured reflectance spectra.

In the 1000-2200 nm domain, P3 and P3b showed
significant RMSE peaks on the lower wavelength shoul-
ders of the main water absorption features at 1150, 1400
and 1900 nm although it performed best at 1300 and
1600 nm. P4, P4b, P5 and P5b showed similar RMSE
peaks around the water absorption features.

Comparison between PROSPECT versions for C,p, Ci

and C,,, estimates

Taking into account the presence of brown pigments
significantly improved the performances of all the

PROSPECT model versions to estimate C,, and Cyp,
, resulting in r* values between 0.79 and 0.81 instead of
0.59 and 0.79 when brown pigments are not considered
(Table 4). In the following, the discussion will therefore
concentrate on the PROSPECT versions that include the
brown pigments.

When distinguishing between chlorophyll and carot-
enoids using the P5b and PDb versions, the estimated
chlorophyll content was strongly correlated with the
destructive measurements with similar performances as
those observed when chlorophyll and carotenoids were
pooled together (Table 4). Conversely, carotenoids were
poorly estimated although PDb performed much bet-
ter than P5b. A clear separation was observed between
the April measurements corresponding to the greener
leaves with more chlorophyllian pigments and the June
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Table 5 Comparison between destructive measurements of C,, and C,, and PROSPECT or vegetation indices estimates

Variables Metrics PROSPECT Vis
P3b P4b P5b PDb Dx4 Clre SRw NDw
Cane o 081 080 082 080 080 078 - -
2
(hg/cm) P 081 079 080 080 0.80 077 - -
RMSE Corr 6.54 672 670 671 6.63 7.08 - -
Cu 0 093 093 092 091 - - 0.89 0.94
2
(mg/cm?) P 087 085 086 085 - - 080 088
RMSE Corr 114 108 1.05 11 - - 128 129

The estimation performances from the four PROSPECT versions (including brown pigments) and vegetation indices against destructive measurements: spearman
correlation coefficient (p), squared Pearson correlation coefficient () and RMSE Corr as provided in Table 4. RMSE Corr for VIs was computed from the fitted empirical
model between the biochemical contents and the Vis: linear functions for Dx4, Clre and SRw, a second order polynomial function for NDw. The numbers in italic
indicate the best result for each biochemical content

measurements with overall lower values for all the
PROSPECT versions (illustrated for PDb in Fig. 6a, b).
Although PDb accounts for the anthocyanin pigments
(Cyupen), the corresponding estimates were very low with
Cann<0.5 pg/cm? (Fig. 8) while larger values (0.5 pg/
cm?<Cp,<5 pg/cm?) were observed for the senescent

leaves when the carotenoid (and thus chlorophyll) con-
tent was very low. For senescent leaves, the estimated
anthocyanin content appeared to be correlated with the
estimated carotenoid (and chlorophyll) pigment content
(Fig. 8) although such a correlation was not reported
from measured contents in previous studies [65]. This
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pigment content). Green and red points correspond to measure-
ments achieved at two nodes (April) and grain filling (June) stages
respectively

may be due to possible compensations between brown
pigment, carotenoid and chlorophyll contents during
the PROSPECT inversion process. In any case, results
showed that accounting for the anthocyanin pigments
for wheat leaves was not mandatory since these pig-
ments were generally present only in very small quanti-
ties and anthocyanins present relatively weak absorption
features. Thus, it appeared more efficient to estimate the
content of pooled chlorophyllian pigments, C,;, without
considering the anthocyanin for wheat leaves. Further-
more, after bias correction all the PROSPECT versions
performed similarly for C,,. estimation in wheat leaves
(Tables 4, 5).

However, absolute estimates of C,;, and Cyp from the
PROSPECT model were significantly biased when com-
pared to destructive measurements. Indeed, the spe-
cific absorption coefficients of the PROSPECT models
were calibrated over a large range of species, includ-
ing dicotyledonous and monocotyledonous leaves. The
structure of dicotyledonous leaves is characterized by a
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well-developed spongy mesophyll that increases the aver-
age optical path while monocotyledonous leaves such
as wheat have only a palisadic parenchyma where chlo-
roplasts are concentrated [37]. Therefore, the values of
the PROSPECT specific absorption coefficient calibrated
over a large range of species might not represent accu-
rately the actual individual values for each species. The
distribution of the chlorophyllian pigments (e.g. pigment
clumping) may also explain the different bias observed
(Fig. 8) for yellow (June) and green leaves (April). For
high values of chlorophyll content, e.g. green leaves, chlo-
rophyll is concentrated within the chloroplasts and the
chloroplasts themselves are organized in a clumped way
in the cells. Conversely, the distribution of chlorophyllian
pigments within yellow leaves is more uniform. As the
specific absorption coefficients of PROSPECT were cali-
brated mostly over medium to high values of chlorophyll
content, the estimated Cy, for yellow leaves led to over-
estimate the chlorophyll content due to the lower reflec-
tance value expected for uniform pigment distribution as
compared to a clumped situation.

All the PROSPECT versions provided very precise esti-
mates of leaf water content (Tables 4, 5). This is mainly
explained by the strong and specific absorption features
of water. Conversely to what was observed for the chlo-
rophyllian pigments, including the brown pigments did
not improve the fitting process: actually, brown pig-
ments are mainly absorbing in the visible domain where
water shows only marginal absorption features. The bias
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observed between estimated and measured values of Cy,
although significant, was much lower than that observed
previously for C,,.. Some differences were noticed
between PROSPECT versions, with P3 providing the
lowest bias (Table 4). The smaller bias observed for C, as
compared to that of Cyp is mainly explained by the more
even distribution of water within the leaf volume as com-
pared to chlorophyll. Furthermore, the relative rRMSE
(=6%) obtained after bias correction was much lower
than the one observed for C,p,c ('rRMSE =20%). This may
be explained by the errors associated to the destructive
measurements. For water content, the measurements
were relatively accurate and precise because only few
simple steps are required: measurements of the area and
the fresh and dry weights. Conversely, the accuracy and
precision associated to pigment content were expected
to be degraded because of the several additional steps
needed (leaf storage in the cold, extraction in a solution,
spectrophotometer calibration...). Nevertheless, errors
were also associated to the reflectance measurements,
including the stability of the light source and that of the
spectrophotometer, the characterization of the white
references and the spectrophotometer calibration. Addi-
tional investigation should thus be conducted to quan-
tify the repeatability of the destructive measurements as
compared to the proposed method based on reflectance
measurements. Furthermore, the interest of using a white
background should also be investigated.

Table 6 Minimum, maximum of observed dry matter content, corresponding RMSE and relative RMSE (rRMSE) values
of estimates from PROSPECT model inversion as reported in previous studies

Data set Reference  PROSPECT Reflectance/ Species Min (mg/cmz) Max (mg/cmz) RMSE (mg/cmz) rRMSE
versions transmittance
Baretand Fourty  [26] P3 Reflec- Temperate spe- 2.2 83 14-16 0.23-0.26
(1997) tance +trans- cies and crops
mittance
Feret et al. (2008):  [46, 66] P4, P5 Reflec- Temperate 1.7 15.2 35 0.26
LOPEX (Hosgood @ance+tans  Temperate 17 33.1 26 008
etal. 1994) mittance )
ANGERS (Feret Tropical 6.4 229 49 0.30
2008)
HAWAII (Feret
2008)
Feretetal. (2011) [27] P5 Reflec- Temperate and 0.8 33.1 3.1 0.09
tance + (trans- Tropical
mittance)”
Liand Wang [67] P4 Reflectance Temperate spe- 2.6 1.9 2.7* 0.29
(20171) cies
Alietal. (2016) [68] P4 Reflectance + Broadleaf 34 13.6 3.7* 0.36
ransmittance  conjfer 11 29,1 86" 031
Present study P3,P4,P5 PD Reflectance Wheat 40 6.0 2.5-3.1 1.25-1.55

* Indicates that better performances were obtained by modified PROSPECT model inversion methods

**Transmittance was not available for part of the data
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All the PROSPECT versions showed no correla-
tion between the estimated C,, and the corresponding
destructive measurements with a systematic underes-
timation. However, the RMSE values were of the same
order as those reported in previous studies generally con-
ducted over larger range of C,, values based on a similar
inversion process (Table 6). However, the relative RMSE
(rRMSE) was larger than for the other studies [26, 27, 46,
66—68]. Those latter, conversely to the present study, con-
sider a large range of species where broadleaf and conif-
erous trees were often mixed with herbaceous plants.
Therefore, the poor correlation observed was mainly
explained by the very small variability of C,, measured
in this wheat experiment. Existing modified PROSPECT
inversion methods that include the design of a specific
merit function for Cy, [67] or the use of prior information
[55, 68] and provided improved results over mixed trees
could also be tested for C,, estimation in wheat experi-
ment in the future.

Comparison between VI and PROSPECT based methods

for Capc and Cy, estimates

The ranking capacity between cultivars appeared to
be very similar using either the VI or the PROSPECT
based methods. It should be noticed that ranking did
not require any calibration for VIs or bias correction for
PROSPECT model inversion. However, in the context
of phenotyping, the ranking between genotypes is not
always sufficient. Estimates of the absolute values of the
biochemical contents will allow using crop models to
access functional traits. The results showed that biases
were observed for estimates from PROSPECT inversion.
This problem could be solved properly at least in two
different ways: (1) by recalibrating the specific absorp-
tion coefficients for wheat leaves; (2) by changing the
formalism of PROSPECT and including heterogeneous
distribution of absorbers in the leaf. This will require a
recalibration of the specific absorption coefficients over
a large range of leaf types. Because of the limited amount
of data available, as well as the fact that the only meas-
ured optical property was the reflectance over a white
background, we did not perform a recalibration of the
PROSPECT specific absorption coefficients. Therefore,
a simple empirical recalibration of the raw estimates of
PROSPECT using the destructive measurements was
proposed. Results show that the performances of the veg-
etation indices were comparable to those of PROSPECT
after this bias correction (Table 5). However, the PROS-
PECT model had the capacity to account for the effect
of variation in the leaf surface and leaf mesophyll struc-
ture. Even though the relationship between C,, and the
leaf mesophyll structure was reported in previous stud-
ies [41, 69] when considering mixed species including

Page 13 of 16

both monocotyledons and dicotyledons, this relationship
might not be so strong for a single species like wheat.
Therefore, this may be important in the context of pheno-
typing experiments where new genotypes with particular
surface or mesophyll features may be encountered.

Conclusion
The ability of the PROSPECT model and vegetation
indices to estimate wheat leaf biochemical content was
evaluated. Reflectance measurements were collected over
detached leaves using a spectrophotometer equipped
with an integrating sphere. Leaves were put over a white
Teflon background to enhance the absorption features
and the PROSPECT model was adapted to account for
this specific measurement configuration. Estimates from
the inversion of several PROSPECT model versions were
compared with destructive measurements. The consid-
ered versions differed by the explicit description of the
absorption of some pigments (chlorophyll ab, carotenoid,
anthocyanin, brown pigments) and the dataset used to
calibrate the corresponding specific absorption coeffi-
cients and the refractive index. Results demonstrated that
all the PROSPECT versions provided reasonable esti-
mates of water and chlorophyll contents when the brown
pigment content was used as an additional variable. This
was particularly important when considering senescing
leaves. Consideration of the anthocyanin did not offer
major interest since wheat leaves did not show high val-
ues of anthocyanin content. The separation between
chlorophyll and carotenoid contents did not bring sig-
nificant improvement since they are strongly corre-
lated. Consequently, the pooled chlorophyllian pigments
(chlorophyll 4 carotenoids) should be used as a leaf trait.
However, significant bias was observed for chlorophyl-
lian pigments, probably due to the non-even distribution
of chlorophyll in the leaf volume as well as some possi-
ble clumping of the chlorophyll pigments. Water con-
tent was estimated with a smaller bias, in relation to the
more even distribution of the water in the leaf volume. In
contrast with most of other studies involving the PROS-
PECT model applied to a large mix of species, this study
concentrated on a single species. This highlights the
limits of a generic formalism and calibration of the cur-
rent PROSPECT models. Further investigations should
therefore focus on a better description of the chlorophyll
distribution in the leaf volume to account for differences
between species. Furthermore, the bias and discrepancies
observed in this study might be also partly explained by
the measurement uncertainties associated to reflectance
and biochemical contents.

PROSPECT estimates of chlorophyllian pigments and
water contents were compared with empirical relation-
ships based on vegetation indices. Results showed very



Jiang et al. Plant Methods (2018) 14:23

similar performances in terms of ranking as well as in
terms of RMSE after bias correction for PROSPECT
model estimates. Although VIs provided a very sim-
ple and straightforward method for biochemical con-
tent estimates, PROSPECT model inversion offered the
advantage to explicitly account for genotypic differences
in leaf surface features, R,y and mesophyll structure
(N). However, these two additional variables should be
more deeply investigated to evaluate their interest as
potential new traits. Indeed, Ry, could allow charac-
terizing the glaucosity observed between genotypes and
conditions through the differences in leaf ‘color’ due to
leaf surface features.

Finally, this study indicates that non-destructive meth-
ods may provide similar or better precision of chloro-
phyllian pigments and water contents as compared to
classical destructive measurements [29]. However, the
repeatability of these traits should be more formally com-
pared over a large phenotyping dataset. The currently
limited throughput of the indirect methods based on leaf
reflectance achieved in the lab may be replaced in the
close future by the development of new imaging tech-
niques achieved at the canopy level as suggested by [70].

Additional file

Additional file 1. Contains the experimental dataset used in this study
e.g. the measured wheat leaf reflectance over the white background and
the corresponding chlorophyll a and b, carotenoid, dry matter and water
contents. The EXCEL file includes 4 sheets. The first sheet is the description
of the dataset. The sheet reflectance_Chl'includes the leaf reflectance
over the white background measured from 400 mm to 2200 mm for 186
wheat leaves and the corresponding chlorophyll a and b and carotenoid
content measured destructively. The sheet reflectance_Cw_Cm'is the

leaf reflectance over the white background measured from 350 mm to
2500 mm for 186 wheat leaves and the corresponding water and dry mat-
ter contents from destructive measurements. Sheet reflectance of white
background'describes the reflectance of the white background.

Abbreviations

Bmax: maximum bound; Bmin: minimum bound; Cgp: chlorophyll a and b
content (pg/cmz); Cc: carotenoid content (ug/cmz); Cape: chlorophyll and
carotenoid content (ug/cm?). Cape = Cap + C; Canei anthocyanin content
(ug/cm?); C: dry matter content (mg/cm?); C: water content (mg/cm?); Cpy:
brown pigment content (no unit); N: mesophyll structure index (no unit); Ry,
- reflectivity of the leaf surface (no unit); J: cost function (no unit); f,: fraction
of background illuminated by the incident light in the integrating sphere

(no unit); Rieqr: reflectance of the leaf (over black background) (no unit); Tiear

- transmittance of the leaf (no unit); R/ngf: reflectance of the leaf over the white
background (no unit); R%: reflectance of the leaf without the epidermis over
the white background (no unit); R,: reflectance of the white background (no
unit); Mgesp: leaf fresh weight (g); Mesp: leaf dry weight (g); S: leaf area (cm?);
DHRF: directional hemispherical reflectance (no unit); n: refractive index (no
unit); RMSE: root mean square error.
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2.2 Improving the PROSPECT model to
retrieve leaf biochemical content
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FASPECT: a model of leaf optical properties accounting for the differences between upper and lower faces
Jingyi Jiang, Alexis Comar, Marie Weiss, Samuel Buis & Frederic Baret

ABSTRACT:

A number of plant species have distinct optical properties between upper and lower leaf faces, which are a
fact that has been neglected in most leaf and canopy radiative transfer models. It is assumed that differences
between faces are attributed to a non-homogeneous distribution of absorbing and scattering materials within
the leaf as well as particular surface features of both epidermises. In this paper, the FASPECT model which is
based on a leaf four-layer system was proposed. The upper and lower epidermis layers are characterized by
distinct wavelength-independent reflectivity. Leaf mesophyll is assumed to be made of a palisade and a spongy
parenchyma layers with two proportional parameters to describe the distribution of pigments and leaf
structure. Six additional parameters are required to describe the differences in leaf optical properties between
upper and lower faces as compared to the PROSPECT model which describes the homogeneous case. Because
of the concentrated chlorophyll in palisade mesophyll, the SACs of chlorophyll and carotenoids are
recalibrated. Validation was done with eight datasets. Results show that reflectance and transmittance from
one face is enough for biochemical content estimation. Even though marginal improvements are achieved for
estimation of pigments and water content, significant improvements are observed for estimation of dry matter
content. For spectrum estimation, the FASPECT model simulates accurately the reflectance and transmittance
of the two faces and overperforms PROSPECT models for single face measurements. Therefore, the FASPECT
model would be efficient to simulate leaf optical properties with two faces and can be applied with 3D canopy
radiative transfer model to simulate canopy reflectance precisely.

KEY WORDS: leaf radiative transfer model, reflectance, transmittance, chlorophyll, dry matter content,
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1 Introduction

The monitoring of vegetation by remote sensing techniques at different scales has been applied to
agriculture, ecology and climate change (Wang et al. 2010; Atzberger 2013). Vegetation radiative
transfer models are very useful for exploiting remote sensing observations and transform the signal
collected onboard a satellite into structural or biochemical vegetation characteristics. Modeling the
radiative transfer at the canopy level requires a description of leaf optical properties (Croft and Chen
2017). Leaves are often represented as lambertian surfaces with the same reflectance and
transmittance properties for both faces. However, a number of species show differences in
scattering properties between the two faces as reported by (Grant et al., 1987; Woolley,
1971)(Baldini et al. 1997; Stuckens et al. 2009b). As a matter of facts, leaves ensure a number of
functions under a wide range of environmental conditions and have therefore developed
adaptations leading to differentiations between faces. (Stuckens et al. 2009a) demonstrated that
bifacial or dorsiventral leaves with contrasted optical properties between both faces induce
significant effect on the canopy reflectance.

Leaf optical properties models simulate leaf reflectance and transmittance from a limited set of state
variables describing the content of absorbing materials such as chlorophyll, water or dry matter, and
the scattering occurring at the interfaces between materials with different refraction index values.
Several modeling approaches have been proposed (Jacquemoud and Ustin 2001) including ray-
tracing models, stochastic models, N-flux models and plate models. A very detailed description of
leaf features could be implemented using ray-tracing models (Ustin et al. 2001; Baranoski 2006).
However, these models are difficult to use because of the complexity of the description of the leaf
structure and content, as well as because of the computation time required for the simulations
(Dorigo et al. 2007). The SLOP (Stochastic model for Leaf Optical Properties) model (Maier et al. 1999)
described the radiative transfer process as a stochastic process with Markov chain. Although it offers
potentials to account for the differences between both sides of the leaf, its current implementation
with simple assumptions on leaf internal structure and the lack of proper epidermis layer prevent
from simulating differences of reflectance or transmittance between both faces. N-flux models
(Allen and Richardson 1968) allows considering several layers within the leaf. (Yamada and Fujimura
1991) developed a leaf radiative transfer model based on the Kubelka-Munk theory {Kubelka, 1931
#1354}. This approach is computationally efficient and allows to potentially simulate differences
between both lea faces. However, most efforts have been dedicated to the plate model approach.
Plate models treat the leaf as one or several absorbing plates with rough surfaces giving rise to
isotropic diffusion (Allen et al. 1969). The PROPSECT model (Jacquemoud and Baret 1990) is one of
the most widely used plate model that has been successfully applied to retrieve leaf biochemical
composition from leaf reflectance and transmittance (Le Maire et al. 2004; Zarco-Tejada et al. 2004;
Jacquemoud et al. 2009) (Stuckens et al. 2009b) {Jiang, 2018 #6469}. A series of improved versions
were proposed. PROSPECT-4 and 5 (Feret et al. 2008) separated carotenoids from chlorophyllian
pigments and recalibrated the specific absorption coefficients describing the spectral features of the
main light absorbers in the leaf. More recently, PROSPECT-D (Féret et al. 2017) added anthocyanins
and showed better performances in both reflectance and transmittance simulations and pigment
content estimation. However, no emphasis was put on the differences between leaf faces before
(Stuckens et al. 2009b) who developed the DLM (Dorsiventral Leaf Model). DLM is based on the
plate model approach with possible non uniform distribution of the absorbing materials and
reflectivity of the epidermis that may differ between the two faces.
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This study aims at documenting and modeling the possible differences between the optical
properties both leaf faces. Reflectance and transmittance measurements were performed over a
few leaf samples to quantify the possible differences between faces. FASPECT, an evolution of the
PROSPECT model is proposed to explicitly account for the inhomogeneity in the leaf structure and
simulate the corresponding differences in leaf optical properties between faces. The specific
absorption coefficients of chlorophyll and carotenoids were then recalibrated. Finally, the
performance of FASPECT model was evaluated over several independent datasets. Both the accuracy
of pigment estimation and differences between simulated and measured optical properties were
compared with PROSPECT-5 and PROSPECT-D.

2 Measurements
2.1 Available datasets

Eight datasets available from several researchers were used as the calibration and validation dataset
(Table 2). For LOPEX and ANGER, different plant species are included with leaf reflectance and
transmittance for one face ranging from 400 nm to 2500 nm. As it was reported by (Feret et al. 2008)
that there is a question about the accuracy of the pigment content in LOPEX, the accuracy of the
estimated chlorophyll and carotenoid contents should be considered. For VIRGINIA, MAPLE, HAZEL,
DOGWOOD1 and DOGWOOD?2, each dataset has single specie with measured pigment contents.
Except DOGWOOD?2 which only has reflectance for one face, VIRGINIA, MAPLE, HAZEL and
DOGWOODL1 contain both reflectance and transmittance measurements for one face in visible bands.
Details of experiment protocol of optical properties measurements and determination of pigment
contents can be found in (Hosgood et al. 1994; Gitelson et al. 2006; Feret et al. 2008; Merzlyak et al.
2008; Gitelson et al. 2009). To apply those datasets which have optical properties for one face to
FASPECT model, the reflectance and transmittance were assumed to be measured from the upper
face considering the usual observation habit. For Avignon, the reflectance and transmittance for

both faces were measured with 10 species according to methods described in Section2.
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Table 2. Description of available datasets.

N N DOG- DOG- X
LOPEX™1 ANGER™2 VIRGINIA3# MAPLE34 HAZEL34 WOOD134 WOOD25 Avignon
Number of species 50 2003 1 1 1 1 1 10
Number of
umbero 64 308 81 48 13 20 51 50
samples
Spectral range 400- 400- 400- 400- 400- 440- 400- 400-
(nm) 2450 2450 800 780 800 796 1000 2200
Optical ti R&T for R&T for R&T for R&T for R&T for R&T for R for one R&T for
ptical properties one face one face one face one face one face one face face two faces
Min 1.36 0.78 0.09 0.14 22.69 0.07 1.53 -
Cab Max | 98.80 106.70 53.76 32.98 | 34.62 15.03 39.81 -
(M8/cm-2) ["Mea
; 47.28 34.41 11.05 7.43 26.37 4.53 23.77 -
Min 3.45 0.00 0.15 1.82 - 0.42 1.73 -
Ce Max | 28.35 25.28 12.27 10.4 - 5.71 10.76 ]
(M8/cm-2) ["Mea
. 10.31 8.84 2.98 5.25 - 2.96 5.39 -
Min - - 0.00 1.12 0.25 0.40 1.07 -
Cant Max - - 37.50 21.66 13.61 15.49 30.23 -
(ug/cm-2) [T\
nea ; ; 8.63 875 | 7.13 6.88 12.71 ;
Min | 0.0046 | 0.0044 - - - - - -
Cw Max | 0.0450 | 0.0340 ; - ; - - -
(8/cm-2) ["\ea
. 0.0114 | 0.0116 - - - - - -
Min | 0.0019 | 0.0017 - - - - - -
Cm Max | 0.0137 | 0.0331 ] ; ; ; ] ]
0.0054 | 0.0052 - - - - - -

n

*LOPEX and ANGERS datasets are downloaded from
http://opticleaf.ipgp.fr/index.php?page=database.

(Hosgood et al. 1994); ?(Feret et al. 2008); 3(Merzlyak et al. 2008); *(Gitelson et al. 2009); >(Gitelson

et al. 2006)
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2.2 Additional measurements of reflectance and transmittance of both faces

Measurements were made over ten species of plants to represent different optical properties of
leaves between upper and lower faces: Fig tree (Ficus Carica), Laurel tree (Laurus Nobilis), Olive tree
(Olea Europaea), Lime tree (Tilia Europea), Lemon tree (Citrus Limon), Persimmon tree (Diospyros
Kaki), Giant Cane (Arundo Donax), White poplar tree (Populus Alba), Common grape vine (Vitis
Vinifera) and Apple tree (Malus Domestica). For each species, five leaves were selected with similar
visual aspects. Reflectance and transmittance were measured at three distinct locations over each
leaf, avoiding the larger veins. The ASD Fieldspec spectroradiometer was used with a Li-Cor 1800-12
integrating sphere to obtain directional-hemispherical reflectance and transmittance values. The
spectroradiometer sampled the 400 to 2200 nm spectral domains with 1-nm steps and a spectral
resolution around 10 nm. The original Li-Cor lamp system of the integrating sphere was replaced by
a lamp powered with a large battery ensuring steady electric power input. The infrared filter placed
in front of the original light source was removed as well. The incoming light was almost normal to
the leaf sample both for reflectance and transmittance measurements, while the bare fiber of the
ASD spectroradiometer (25° field of view) viewed the integrating sphere wall and was
perpendicularly to the sample. To reduce possible stray-light, the experiment was conducted in a
darkroom. Lab calibrated Teflon reference surface was used to get absolute directional
hemispherical reflectance values of the sample from the absolute reflectance and transmittance of
the Teflon (Rrrand Try). To avoid possible changing of the signal over time, the signal values of
reflectance and transmittance of the references were acquired before (SRref ber and STrer ver) and after
(SRref aft and STrer ot) measurements of each leaf. Therefore, the reflectance R; and transmittance T; of
the leaf sample i were calculated as:
2+SR; ()
Ri(A) = Rref @ SRref_bef(/U+l~9Rref_bef(/1)

2xST;(4)
STref_aft(/D +5Tref_aft(/1)

and T;(4) = Tyer (1)

where SR; and ST; are the averaged signal values of reflectance and transmittance for each leaf i.
Uncertainties were characterized by the averaged RMSE values for each leaf. For the whole
wavelength, the uncertainties of reflectance (RMSE=0.01) are comparatively smaller than that of the
transmittance (RMSE=0.02), which mainly came from different measurement locations (Figure 5).

0.04

Reflectance(U)
0.035 Reflectance(L)
— Transmittance(U)
0.03 ——Transmittance(L) |

500 1000 1500 2000
Wavelength(nm)

Figure 5. Uncertainties of measured reflectance and transmittance for both faces (U: upper face; L: lower face).

Differences between upper and lower faces show regularities across the ten species (Figure 6). In the
visible domain (400 - 750 nm), pigments including chlorophyll, carotenoids and anthocyanins are
main absorbing materials. For most species, reflectance from the upper face is smaller than that
from the lower face, while transmittance is almost the same from both faces. Therefore, more light
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is absorbed when it incomes from the upper face. Conversely, in near infrared (NIR; 750 - 1400 nm),
reflectance from the upper faces is larger and transmittance is smaller than those from the lower
face. For the whole bands (400 - 2200 nm), light incidents from the upper face always result in larger
absorptance compared with that from the lower face. This might represent a double advantage for
plants: when photosynthesis is limited by the amount of incoming light, the upper side facing the
sun will better trap light. Conversely, in case of excess radiation such as under water stress, plants
may reorient their leaves with the lower side facing the sun to reduce the amount radiation
(Pastenes et al. 2004; Liu et al. 2007).

However, the discrepancies among species exist, especially for differences in reflectance. Figure 6A
shows that relatively large differences of reflectance between faces (0.2 — 0.4 in visible and short-
wave infrared (SWIR; 1400 — 2200 nm)) are observed in Lime Tree (covered with fine hairs), White
poplar tree and Olive tree (whitish on the lower face), while for the rest seven species, smaller
differences (< 0.1) are exhibited.

—Giant Cane -- Persimmon Tree
Fig Tree Apple Tree
. 04 = 041 —aurel Tree -~ Lime Tree — 04f ok
g =2 Olive Tree Common Grape Vine|| =& Ty
E- 0.2 ﬂg 0.2 White Poplar Tree - - Lemon Tree ‘E‘ 0.2
c
g £ g
§ E 0 e 0
= - v
2 5 £
. ~-0.2 5-0.2
& o] £
[ : A = >
[=] \ Ao 3
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Figure 6. Differences between the upper and lower faces of in (A) reflectance, (B) transmittance and (C) absorptance of
10 species (U: upper face; L: lower face).

3 Modeling

3.1 Leaf described as a four-layer system

A typical dicot leaf is made up of the palisade and spongy mesophyll tissue layers, bounded by two
epidermis layers (Figure 7). The epidermis is a single layer of colorless cells with few chloroplasts.
Palisade mesophyll is elongated perpendicular to the leaf surface and is arranged into one or a few
densely packed layers which contain most of chloroplasts(Govaerts et al. 1996). The spongy
mesophyll is made up of irregularly shaped cells and large intercellular air spaces, which facilitate
gases circulation inside the leaf. Because of the small amount of absorbing material and much air
space in the spongy mesophyll, a large proportion of light coming from the palisade mesophyll is
scattered back and is absorbed by chloroplasts within the palisade mesophyll (Raven et al. 2005).
This is consistence with measurement results (Figure 6) that absorptance from the upper face is
larger than that from the lower face.
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mesophyll

Spongy
mesophyll
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Figure 7. Schematic Structure of a typical dicotyledon leaf.

According to Figure 7, the radiate transfer scheme in the four-layer system of a typical leaf is
abstracted (Figure 8): the upper layer is made of the upper epidermis (Layer 1) and the palisade
mesophyll (Layer 2) and the lower layer is made of the spongy mesophyll (Layer 3) and the lower
epidermis (Layer 4). Subscripts (1, 2, 3 and 4) are layer numbers. The arrows (" and¥) indicate the
directions of the incident flux. Small letters (r and t) correspond to reflectance and transmittance of
each layer, while capital letters are for fluxes created by the multiple layers. Specifically, R1,¥, Ri.™,
Tio¥and T1,™ are noted as the reflectance and transmittance for the combination of Layer 1 and
Layer 1. Ras¥, Ras™, Tas¥and T34™ represent fluxes from combination of Layer 3 and Layer 4. Rand T
are the total fluxes of the leaf.
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Figure 8. The scheme used to describe the fluxes in a four-layer system.

Reflectance of the upper layer (R}, and R1,) and lower layer (R}, and R}, ) with two directions of
incident fluxes can be written as:

ULt Tplpl
rytit 1 1 rityt;

Ry, = rt + 2L and R, = ] + 122
12 ) 12 2 T k]

(1)
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ritit]
1-rir]

T4 t3 t3

Ri = l+

andR}, = r] +

(2)

Similarly, transmittance of the upper layer (Tll2 and Tsz) and lower layer (T3i4 and T3T4) from two
directions become:

Ll 11
tit tlt
T, = —fzand Tf, = —F
1—TZT1 1—7'27"1
(3)
Ll T
tit tht
Tsy = —rzand Ty = —i5
1-1413 1-1,13
(4)

Finally, the total reflectance and transmittance for the four layer system noted R*, T* for upper face
and R, T" for lower face are given by:

 ml m7 T ml sl
R3,T;,T. RT3, T-
R = Riz 4 234 l12 %2 and RT = R§4 12 l34 ?4
1-R34R1; 1-R34R;;
(5)
I ml T ot
L _TiT3 1t _ _Ti2T3s
T"= —F andT' = —
1-R34R1; 1-R34Rq;

(6)

In the visible domain, the absorption of radiation is very strong because the first layer contains most of the
chlorophyll. Since the transmittance is comparatively small and similar for both faces (Figure 6B), the
reflectance of two faces can be approximated as the reflectance of the upper layer (RlzRiZ) and the
reflectance of the lower layer (R'= R§4 ). Because of the higher chlorophyll content of the upper layer, its
reflectance is smaller than that of the lower layer (Ri2 < R?T,4 ). So the reflectance of the upper face is expected
to be smaller than that of the lower face (R' < R").

In NIR, the differences between transmittance of two faces become more obvious. As a matter of fact, in our
experiment, the incident radiation is collimated along the leaf normal while the directionality of leaf
reflectance is mainly composed with a specular and a lambertian scattering components (Bousquet et al. 2005).
More specifically, the transmittance of the first layer with incident flux from up to down, Tllz, is mostly
affected by the incoming collimated light source. Conversely, the transmittance in the opposite direction, sz,
is mainly subjected to a diffuse incoming flux generated by multiple scattering occurring within the leaf volume.
Because of the reduced specular contribution and longer path length compared with the collimated incoming
light, T/, is smaller than T},.Therefore, the ratio between these two transmittances would be greater than 1
(yiz = sz /sz >1) and the same applies to the lower layer (y3; = T3T4/ T3i4 >1). The difference between the
transmittance of two faces (A; ) can be written as (from equation 4):

—7l_ 7t — T12T34 Va2
AT =T T - R§4RT 1-
(7)

According to the measurements, transmittance of the upper face is larger than that of the lower face ( AT <0, ¥34<y12). SO

the difference between transmittance for different incoming fluxes (the normal collimated and diffuse) of the upper layer
(Ti2 and T;Z), is larger than that of the lower layer (T_E,4 and T§4). This is probably because the structure of palisade
parenchyma keeps the incoming collimated light normal to the leaf surface, while the spongy parenchyma would enhance
light scattering for both collimated and diffuse lights.

3.2 Development of the FASPECT model

In original PROSPECT model, only one layer of the leaf was considered and the radiative transfer
process within the leaf was ignored. This allowed little flexibility to describe particular surface
features and would result in some bias for the simulation of leaf optical properties. Based on the
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built system of leaf (Figure 8), the FASPECT model is proposed to consider the leaf as four layers.
Radiative transfer terms of each layer are showed in Table 3.

In FASPECT, epidermis layers are assumed to be very thin with negligible absorption, so
transmittance of epidermis can be described by 1 minus the corresponded reflectance. As it was
explained in Section 3.1, tf from the incoming collimated light is larger than tI from the multiple
scattered lights within the leaf, so ;' is smaller than r{ and the ratio between two reflectance of
upper epidermis would be smaller than 1 (a; = i/ r{ <1). Similarly, 7] is smaller than 1}, so a; = 1}/
1”4l <1. According to several converging observations(Jacquemoud and Baret 1990; Bousquet et al.
2005), the wavelength dependency of the refraction index was assumed negligible in the 400-2500
nm spectral domain. Therefore, epidermis reflectivity was considered independent on wavelength.

The leaf structure parameter (N) is sum of the structure parameter of palisade mesophyll (N) and
spongy mesophyll (Ns). The parameter p = N,/ N is used to characterize the gradient between two
mesophyll layers. In original PROSPECT model, p was set to be 0.5 for all kinds of leaves. Even though
the proportion of palisade and spongy parenchyma is comparatively average, p should be slightly
smaller than 0.5 for leaves with well-developed spongy mesophyll or around 0.5 for
monocotyledonous leaves.

The total absorption coefficient (K) is the sum of the pigment contents multiply by the corresponding
SACs. For chlorophyll and carotenoids, they are manly existed in palisade mesophyll and spongy
mesophyll. The distribution of them is computed using parameter d, which represents the ratio
between chlorophyll or carotenoids content in palisade mesophyll (Cqas2 or Cc2) and the total
chlorophyll content (Cap or Cc). So the chlorophyll or carotenoids content in spongy mesophyll (Caps
or C3) can be computed as Cyp-(1-d) or C+(1-d). In previous versions, chlorophyll was assumed to be
uniform distributed within the leaf (d = 0.5). However, since palisade mesophyll contains most of
chloroplasts, d should ranges from 0.5 to 1. For water and dry matter contents, they are assumed to
be distributed proportionally as the distribution of N in mesophyll layers. So water or dry matter
content in palisade mesophyll (Cwz0r Cn2) are computed as p- Cyor p- Cr and those in spongy
mesophyll (Cyws or Cms) are computed as (1-p)- Cyor (1-p)- Cm.

As compared to previous versions of PROSPECT model, the description of differences between faces
is achieved at the expense of 6 additional parameters that do not vary with wavelength: d, p, r;, a;,
rqsand ay.

48



Table 3. Radiative transfer terms of four layers in the FASPECT model.

Contents of absorbing materials Leaf
[Reflectance,
Layer Name Dry structure Transmittance]
Chlorophyll| Carotenoids | Water matter | Parameter
[ri, trl=lr{, 1-ri]
Upper T 47 T T
1 0 0 0 0 - = ,
epidermis [ry, til=lry, 1-1y]
ar=1i/1]
[y, t3, 73, t]]
5 Palisade _
mesophyll | <7 Ced | Gwp | G | Na=Np | - pROSPECT (n,
NZ; KZ)
S o [rs, t3, 79, t]]
pongy wil-
3 Cav(1-d Co(1-d Cme(1- N3=N-(1- _
mesophyll o(1-d) (1-d) p) (1-p) 5=N-(1-p) = PROSPECT (n,
N3, K3)
[, th=[r}, 114
Lower
4 0 0 0 0 - T th=r] 107
epidermis (1, tal=lry, 1-14]
=11

Car, Co, Cw and C, are contents of chlorophyll, carotenoids, water and dry matter. N is the leaf
structure parameter. d is the ratio between C,, (Cc) in palisade mesophyll and total Cap (Cc). p is the
ratio between N (C. / Cm) of the palisade mesophyll and the total N (C / Cr). n is the refractive index.
K is the total absorption coefficient. r and t are reflectance and transmittance of each layer.
Subscripts (1, 2, 3 and 4) represent layer numbers. The arrows (* and¥) are the directions of the
incident flux.

3.3 Model calibration
3.3.1 Selection of calibration dataset

Different from PROSPECT model which assumes biochemical contents are homogenous distributed
within the leaf, the FASPECT model treats each variable proportionally distributed in different layer.
So it is necessary to recalibrate the SACs of biochemical variables. As explained in Section 3.2, the
distribution of chlorophyll and carotenoids are more centered in palisade mesophyll while the
distribution of water and dry matter content within leaf is comparatively homogenous. Therefore,
the SACs of chlorophyll and carotenoids should be recalibrated and the SACs of water and dry matter
content are kept the same as PROPSECT-5. For anthocyanin, since it is distributed in different leaf
cell layers for different species, phylogeny and environmental conditions (Lee 2002), it is difficult to
determine its distribution with one or two parameters. As simplification, anthocyanin is assumed to
be evenly distributed and the SAC was from PROSPECT-D. According to the comparison from (Féret
et al. 2017), the refractive index from PROSPECT-3 which was computed from an albino maize leaf
provided the best performance, while the refractive index from PROSPECT-5 would induce artifices
in leaf optical properties because of the strong spectral variation. So the refractive index from
PROSPECT-3 is applied to FASPECT model.
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Therefore, the calibration dataset should include both the measured reflectance and transmittance
ranging from 400 nm to 2400 nm and the measured biochemical variables including pigment
contents (chlorophyll, carotenoid and anthocyanin), water and dry matter contents. Considering the
accuracy problem from LOPEX (Feret et al. 2008), the ANGER dataset which meets those criterions is
chosen as the calibration dataset. ANGER was also used to calibrate PROSPECT-4, PROSPECT -5 and
PROSPECT -D. It includes leaves with different states like albino or etiolated leaves which play a vital
role to eliminate the strong correlation between chlorophyll and carotenoid in mature leaves (Feret
et al. 2008). From (Féret et al. 2017), the anthocyanin contents (C,nt) of each sample from ANGER
were estimated using spectral index with good accuracy when Cune < 11 pg/cm??, so the estimated
Cant Was also included and samples with low Cone (< 5 pg/cm) were kept to reduce the influence
from estimated anthocyanin. To eliminate redundancy of calibration dataset, samples with little
impact on calibrated SACs of chlorophyll and carotenoids were removed. Finally, totally 120 samples
from ANGER were selected as the calibration dataset and the remaining (188 samples) were used as
the validation dataset. It is notice that only optical properties from one face were available in ANGER,
so all reflectance and transmittance used to adjust SACs in the next section were considered as
optical properties from upper face.

3.3.2 Adjustment of specific absorption coefficients

As calibration algorithm proposed in (Feret et al. 2008), the calibration of SACs was conducted using
iteration optimization methods with two-steps. Firstly, the structure parameter N was determined
with three selected bands in NIR where absorption was smaller. Then, each SAC was calibrated
wavelength by wavelength with the whole calibration dataset. However, in FASPECT model, six
additional parameters which are independent with wavelength are added. So, more bands covering
the whole wavelength are needed to define wavelength invariant parameters.

For the first step, different combinations of bands were traversed to fit the spectral curve using
smoothing spline function from Matlab2016. The sum of the root-mean-square error (RMSE)
between measured and simulated spectrum from calibration dataset were used to evaluate the
fitting results. In this way, 30 most representative bands were selected from 400 nm to 2450 nm
with the curve fitting methods (Figure 9).
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Figure 9. 30 representative bands from 400 nm to 2450 nm. The blue dotted lines are measured reflectance and
transmittance of one leaf from ANGER. The black dots are 30 selected bands. The red solid lines are simulated
reflectance and transmittance with selected bands using smoothing spline method.
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Then parameters Pi={N, d, pj, ryj, a1, rsj, a4 } of the leaf j which are invariant with wavelength and
SACs of chlorophyll (Kus(A)) and carotenoid (K.(A)) of 30 selected bands were estimated on the basis
of the iterative optimization:

](Ki(/ln)rpj) = Zigl Z;iql:lzo(Rmes,j (An) - Rmod,j(k(ln)rpj))z + (Tmes,j (An) -
Tmod,j(k(/ln): Pj))z (9)

where

k(1,) = i Ki(Ay) * C; j)/N;
(10)

Rmes,j(An) and Tmes (An) are measured reflectance and transmittance at wavelength A, of leaf j. Rmod,j(An)
and Tmogj(An) are simulated reflectance and transmittance of upper face from FASPECT model. num
is the number of samples from calibration dataset. k(A,) is the total absorption coefficient at
wavelength A,. K; is the SAC of constituent i. C;; is the concentration of constituent i of leaf j. N; is the
corresponding leaf structure parameter

Secondly, with the calculated P; of each leaf, Kap(A) and K(A) were calibrated with the inversion of
FAPSECT model using all the samples from calibration dataset at each wavelength. The cost function
J was minimized:

JK; ) = ZFE=0(Ries,j D) = Rinoa,j (KA, P))? + (Times,j(A) = Trmoa,j (k(Q), P))?
(11)

3.4 Model validation

The model inversion was performed through adjusting input variables P= {N, d, p, r1, a1, r4, a4} and
the concentration of each constituent C; so that simulations matched observations by minimizing the
following cost function:

A
](P: Ci) = Zface meax(Rmes,face OO - Rmod,face (P' Ci)z + (Tmes,face O\) - Tmod,face (P: Ci))z

min
(12)
where face represent upper and lower faces. C; corresponds to Cas, Cc, Cant, Cw and Cn,. The inversions
utilized the fmincon function from Matlab2016.

To test whether FASPECT model could generate accurate estimation of biochemical composition
when only reflectance and transmittance from one face is available, 100 simulated cases with
different combinations of biochemical contents and corresponding reflectance and transmittances
from two faces were generated from FASPECT model. To make the simulations more realistic, 2%
uncertainties were added to simulated optical properties as errors from measurements. As
comparison, both optical properties from two faces and optical properties from single face were
applied for model inversion to estimate biochemical contents. Then, the FASPECT model was
evaluated over all available datasets except samples used for calibration. The procedure was
repeated with PROPSPECT-5 and PROSPECT-D using the same cost function (Equation (12)) as
comparison. The estimates were validated from both spectrum simulation and biochemical content
estimation. RMSE was used to compute the differences between measured and estimated
biochemical contents or difference between measured and estimated spectrum at each wavelength.
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4 Results and discussion

4.1 Adjusted specific absorption coefficients

The adjusted SACs of chlorophylls and carotenoids were showed in Figure 10. As comparison, results
from PROSPECT-5 and PROSPECT-D were also demonstrated. Compared with PROSPECT-5, the
tendency of SACs from FASPECT are more close to that from PROSPECT-D. For wavelength from 400
nm to 500 nm, the SACs of chlorophylls and carotenoids from FASPECT are slightly higher than
PROSPCT-D and the SAC of chlorophylls is a bit lower than that from PROSPCT-D at wavelength
around 680 nm. This difference is possibly introduced by the adding parameters d and p which
describe the different distribution of pigments and structure variation.
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Figure 10. Specific absorption coefficients of chlorophylls (solid line) and carotenoids (dashed line) from PROSPECT-5
(blue), PROSPECT-D (black) and FASPECT (red).

4.2 Validation of model performance

4.2.1 Estimation of leaf pigments

Results to validate the ability of model inversion with two faces or single face are compared in Table
4.When reflectance and transmittance from upper or lower face are used, similar RMSE are
observed compared with results estimated from reflectance and transmittance with two faces.
Therefore, optical properties from single face are enough for biochemical content estimation. When
only reflectance or transmittance from upper face is available, results estimated from transmittance
performs much better than that from reflectance. This is might because the transmittance contains
more information with light goes through the leaf interior, while the reflectance from one side is not
sufficient to get accurate estimation for model inversion.
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Table 4. RMSE of estimation of pigments, water and dry matter content using optical properties from two faces or single
face with simulated dataset.

R+T (UP+DOWN) R+T(UP) R+T(DOWN) R(UP) T(UP)

Cab (Hg/cM-2) 0.29 0.24 0.35 3.77 0.55

Cc (ng/cm-2) 0.51 0.46 0.24 3.84 0.20

Cant (ug/cm-2) 0.11 0.13 0.17 2.60 0.11
Cw (g/cm-2) 0.0001 0.0001 0.0001 0.0002 0.0001
Cm (g/cm-2) 0.0003 0.0003 0.0003 0.0003 0.0003

R and T correspond to the reflectance and transmittance of the leaf. UP and DOWN indicate the
reflectance or transmittance is coming from the upper and lower faces of the leaf.

Inversions from PROSPECT-5, PROSPECT-D and FASPECT are compared using RMSE between
measured and estimated pigments, water and dry matter content (Table 5). For C,, and C, similar
results from PROSPECT-D and FASPECT are showed in RMSE and scatter plots between measured
and estimate results (Figure 11 A and B)), while bias from PROSPECT-5 are comparatively larger. For
ANGER and VIRGINIA, parts of the validation data were used as calibration datasets for PROPSECT-D.
For Cant, slight reduce of RMSE is got especially for DOGWOOD-2 when only reflectance is available
(Figure 11C). The estimation of water content is always accurate from PROPSECT-5, PROSPECT-D and
FASPRCT models. For Cp, significant improvement is achieved where estimates are more centred
around 1:1 line (Figure 11E). This is possibly because of the adding of p which could better describe
the distribution of leaf structure and the adding of parameters describing epidermis optical
properties (ri, a1, rs, and a4) to improve the spectrum simulation in SWIR.
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Figure 11 Comparison between measured and estimated (A) chlorophyll (B) carotenoids (C) anthocyanins (D) water

content and (E) dry matter estimated from PROSPECT-5 (blue), PROSPECT-D (black) and FASPECT (red) on seven validate
datasets.
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Table 5. RMSE of estimation of pigments, water and dry matter content using PROSPECT-5, PROSPECT-D and FASPECT
inversion with validation datasets. The bold font is the lowest values.

LOPEX ANGER VIRGINIA MAPLE | HAZEL DOGWOOD1 DOGWOOD2
PROSPECT-5 | 14.17 | 11.29 | 3.63 3.99 | 5.89 7.12 8.52
Cab
PROSPECT-D | 13.93 | 7.94 2.58 3.19 | 2.28 4.06 6.31
(ug/cm-2)
FASPECT 14.82 | 8.93 2.71 3.07 | 2.89 3.48 5.01
PROSPECT-5 | 4.54 6.6 15.82 | 14.06 | - 17.65 16.59
C
PROSPECT-D | 3.97 3.83 1.21 2.26 - 2.11 10.87
(ug/cm-2)
FASPECT 3.91 | 3.60 1.68 2.76 - 1.89 5.53
PROSPECT-5 - - - - - - -
Cant
PROSPECT-D - 3.22 4.61 3.68 | 2.87 4.17 14.49
(ug/cm-2)
FASPECT - 3.17 4.09 3.40 | 1.94 2.51 10.71
PROSPECT-5 | 0.0055 | 0.0021 - - - - -
Cw
PROSPECT-D | 0.0017 | 0.0025 - - - - -
(g/cm-2)
FASPECT | 0.0017 | 0.0024 - - - - -
PROSPECT-5 | 0.0025 | 0.0030 - - - - -
Cn
PROSPECT-D | 0.0028 | 0.0029 - - - - -
(8/cm-2)
FASPECT | 0.0018 | 0.0020 - - - - -

4.2.2 Spectrum reconstruction

To compare the accuracy of reconstructed spectrum from PROSPECT-5, PROSPECT-D and FASPECT,
spectral RMSE between measured and estimated results from validation datasets were computed
for the whole wavelength (Figure 12). In visible domain, PROSPECT-5 provides the highest RMSE in
both reflectance and transmittance, while FASPECT is slightly lower than PROSPECT-D with RMSE
ranging from 0.005 to 0.015. In NIR, spectral RMSE from FASPECT shows the lowest value for most
bands from 800 nm to 1400 nm. For wavelength from 1400 nm to 2000 nm, RMSE from PROSPECT-5
is lower than the other two versions in transmittance. This is possibly due to the refractive index
used in PROSPECT-5 which was calibrated with ANGER dataset. When it is applied with the same
dataset, lower spectral RMSE would be got with strong spectral variations. For Avignon dataset,
optical properties from both sides were estimated at the same time with FASPECT model (

Figure 13). The spectral RMSE is around 0.02 except the reflectance from lower face. When three
species, White poplar tree, Olive tree and Lime Tree, which have larger differences between faces
are excluded, the spectral RMSE of the reflectance from lower face reduced especially from 400 to
500 nm (green dotted line in

Figure 13). To validate if errors were introduced from the FASPECT model, reflectance and
transmittance from the lower face of White poplar tree were also simulated with PROSPECT-D
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(Figure 14). But larger differences are demonstrated in simulated results compared with those from
FASPECT. Therefore, errors might come from the description of lower epidermis which are whitish or
hairy and have a certain thickness with some absorptance. In general, FASPECT model can simulate
the reflectance and transmittance of the two faces accurately and shows better performance
compared with other models for single face measurements.
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Figure 12 Spectral RMSE between measured and estimated (A) reflectance and (B) transmittance inverted from
PROSPECT-5, PROSPECT-D and FASPECT for the validation dataset.
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Figure 13 Spectral RMSE between measured and estimated reflectance and transmittance with two faces (U: upper face,
L: lower face) inverted from FASPECT for Avignon dataset. Solid lines are spectral RMSE from 10 species. Dashed lines
represent spectral RMSE from 7 species (White poplar tree, Olive tree and Lime Tree are excluded).
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Figure 14 Measured and simulated reflectance and transmittance from the lower face of White poplar tree using
PROSPECT-D and FASPECT.

4.3 Sensitivity analysis

A global sensitivity analysis was conducted to better understand the role of each input variable of
FASPECT on leaf reflectance and transmittance of both faces. The global sensitivity analysis can
quantify the importance of inputs through allowing all inputs to concurrently sample their range of
variation (Saltelli et al. 2000) and has been proved to be efficient and robust when applied on
vegetation radiative transfer models (Gu et al. 2016; Zhou et al. 2018). Here, the Extended Fourier
Amplitude Sensitivity Test (EFAST) method (Saltelli et al. 1999) was used to compute the total
sensitivity index which describes the impact of each variable and the interactions between input
variables on model output. 12 input variables (Ca, Cc, Cant, Cw, Cm, N, d, p, r1, as, r4, and ay) with
independent uniform distribution laws over the widest possible range of values (Table 6) were
included in the analysis. Consider the computational efficiency and the robustness of the method,
12000 samples were selected to generate the model output and the total sensitivity index of each
variable was computed wavelength by wavelength.

Table 6. Ranges of input variables for the sensitivity analysis.

Inpu
t Cab Ce Cont Cw Cm N d p ri [0 4] rq 0y
.| wg/cm | pg/cm | pg/cm | g/cm | g/cm
Units - - - - - - -
2 2 2 2 2
0.00 | 0.00 | 0.00 | 0.00
Mi 001 | 1
in 0 0 0 0 0.00 0| 1 ! 1 .
3. | 0.
Max | 140 50 50 006 | 005 | | [ | 1| 01 1 0.1 1

To show the sensitivity more clearly, results are normalized to 0-1 through divided by the sum of
sensitivity from all parameters at each wavelength. The sensitivity of each parameter for differences
between upper and lower faces is investigated in Figure 15. Results show that parameters describing
epidermis optical properties (ri1, as, r4, and a4) play an important role for reflectance and
transmittance anisotropy in whole bands. More sensitivity is observed from lower epidermis
compared with that from upper side. Even though r;, s, r4, and az are the only four variables
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inducing differences in optical properties between faces based on the assumptions embedded in
FASPECT, structure parameters and the amount of absorbing materials would also have significant
effects for differences between the two faces. For structure parameter (N), sensitivity exists in all the
wavelengths. But for parameters describing chlorophyll distribution (d) and structure variation (p),
obviously sensitivity is observed in the visible domain where chlorophyll inhomogeneity is expressed.
Chlorophyllian pigments present larger effects in visible bands, while water and dry matter express
significant influence in NIR and SWIR.
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Figure 15 Normalized total sensitivity indices for differences in (A) reflectance and (B) transmittance between two faces
of leaf as simulated by the FASPECT model. The area with different colors represents the normalized total sensitivity
index of each input variable.

5 Conclusion

In this study, a model named FASPECT which is based on a four-layer system of leaf was proposed to
describe the differences in leaf optical properties between upper and lower faces. Two epidermis
layers are simulated with reflectance and transmittance which are assumed to be constant with
wavelength. The palisade and spongy parenchyma are characterized by two proportional parameters
to describe the distribution of structure parameter, water, dry matter and chlorophyllian contents
within the two internal layers. The radiative transfer process in two parenchyma layers is simulated
with PROSPECT model. Because of the concentrated chlorophyll in palisade mesophyll, the SACs of
chlorophyll and carotenoids are recalibrated. The new model was validated with a series of
database. For pigment estimation, it provides similar performance as compared with PROSPECT-D.
For dry matter content, the estimation from FASPECT model is more accurate than previous versions
of PROSPECT model. At the same time, FASPECT model can provide comparatively accurate
simulation of reflectance and transmittance from two faces. And more precise simulation of
reflectance and transmittance from one face is also got with lower RMSE compared with PROSPECT-
5 and PROSPECT-D for most bands. The validation results shows that the new model provide a more
accurate way to simulate leaf optical properties from two faces. The improvements of dry matter
estimation can be applied in fields like the estimation of biomass or conservation of nutrients of
leaves. A global sensitivity analysis of the FASPECT model demonstrates the role of biochemical
contents, structure parameters and optical properties of epidermis on differences of reflectance and
transmittance between faces. Among the six additional parameters used in FASPECT, parameters
which characterize pigments and structure distributions within the leaf show more importance in
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the visible domain, while epidermis reflectivity affects the whole spectral domain. For further
application, the FASPECT model can be applied with 3D canopy radiative transfer model to better
simulate the reflectance of canopy when add the contribution of the lower side of leaves. Then, it
can be applied with satellite images with high resolution or proxy remote sensing images to estimate
leaf and canopy state variables more precisely.
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2.3 Conclusion of the chapter

In this chapter, we compared the ability of both empirically and physically based methods to estimate
leaf traits from laboratory spectral measurements. Then, we proposed a new optical properties model,
named FASPECT, which takes into account some differences between the leaf upper and lower faces.

We first evaluated the ability of the main PROSPECT model versions and vegetation indices to
estimate wheat leaf biochemical content. Results demonstrate that all the PROSPECT versions
provide reasonable estimates of water and chlorophyll contents, especially when the brown pigment
content is taken into account. However, significant bias is observed for chlorophyllian pigments,
probably due to the non-even distribution of chlorophyll in the leaf volume as well as some possible
clumping of the chlorophyll pigments. In contrast with most of other studies involving the PROSPECT
model applied to a large mix of species, this study concentrates only on different wheat cultivars. This
highlights the limits of a generic formalism and calibration of the current PROSPECT models. Further
investigations should therefore focus on a better description of the chlorophyll distribution in the leaf
volume to account for differences between species. Compared with empirical relationships based on
vegetation indices, very similar performances in terms of ranking as well as in terms of RMSE after
bias correction for PROSPECT model estimates are observed. Although VIs provide a very simple
and straightforward method for biochemical content estimates ,PROSPECT model inversion offers the
advantage to explicitly account for genotypic differences in leaf surface features, e.g. leaf surface
reflectivity and mesophyll structure. It therefore appears that non-destructive methods may provide
similar or even better accuracy of chlorophyllian pigments and water contents as compared to
classical destructive measurements.

Following these conclusions, we proposed the FASPECT model to describe the leaf structure more
realistically by focusing on the difference between the upper and lower faces, and the chlorophyll
distribution within the leaf. We therefore considered the leaf as a four-layer system. The two
epidermis layers are lambertian and characterized by their reflectance and transmittance specitra.
Then, two proportional parameters are used to describe the distribution of the structure parameter
and leaf biochemical constituents (chlorophyll, water and dry matter) between the two internal layers
that represent the palisade and spongy parenchyma. The radiative transfer process in the two
parenchyma layers is simulated with PROSPECT model. We first re-calibrated the specific absorption
coefficients of chlorophyll and carotenoids for FASPECT to take into consideration the assumption
that the chlorophyll is concentrated in the palisade mesophyll. Then, we validated FASPECT using
eight databases. First, we showed that FASPECT provides accurate simulations of reflectance and
transmittance of the two leaf faces. Furthermore, the FASPECT reflectance and transmittance
simulation of the upper leaf face is better than PROSPECT-5 and PROSPECT-D for most of the
spectrum. When used in the inverse mode, while for chlorophyllian pigment content estimation,
FASPECT provides similar performance as PROSPECT-D, the use of FASPECT significantly
improves the estimation of the dry matter content. Therefore, FASPECT can now be used in canopy
radiative transfer modelling to better account for leaves showing high differences between the two
faces.
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3 Estimates of canopy characteristics

from satellite data
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The green area index (GAIl) and the chlorophyll content at leaf (Can) and canopy (CCC) levels are
among the most important biophysical variables since they both relate to the canopy photosynthetic
potential and to the amount of electromagnetic radiation reflected into space which make them
accessible from satellite data. Chlorophyll content is not only applied as an indirect estimation of N
states but also closely relate to plant stress and senescence.ln the past decades, the retrieval of
these variables from remote sensing data to generate operational products at high spatial resolution
(e.g. lower than decametric) was mainly based on VI-empirical relationships or 1D Radiative Transfer
Model (1D RTM) inversion. While the use of VI is sensitive to the calibration database used to
establish the empirical relationship, 1D RTM inversion appear and generic more robust but they rely
on a very simple description of the canopy structure (e.g. turbid assumption), which may not be
sufficient to properly describe the canopy. Thanks to the recent advances in computation
performances, it is now possible to invert 3D RTMs to improve the accuracy of biophysical variation
estimation. The objective of this chapter is thus to improve canopy characteristics estimation from
satellite data by taking into account the 3D structure of the canopy.

We first evaluated the ability of the LuxCorerender engine to properly simulate the radiative transfer
model in the canopy based on a 3D description of the vegetation structure. Then, to allow the
development of inversion method, we proposed a speeding up method to simulate canopy reflectance
of a given canopy by considering 3D simulations of a limited number of soil and leaf properties. Based
on simulations, we then compared the ability of three estimation methods (VlIs, 1D RTM and 3D RTM)
to assess different quantities related to the leaf and plant surface, including the green area index, the
plant area index, and the leaf area index for different canopy structures corresponding to wheat and
maize. Finally, we compared the estimation of effective GAIl, Cab, and CCC from 1D RTM (generic
algorithm) and 3D RTM (crop specific algorithm) inversion in wheat and maize using both 3D
simulations and SENTINEL2 observations. This chapter is therefore split into 3 main sections that
correspond to the following articles:

e Article 1: Speeding up 3D radiative transfer simulations: a physically based
approximation of canopy reflectance dependency on wavelength, leaf biochemical
composition and soil reflectance. The article has been submitted in Remote Sensing of
Environment. The objective of this article is to propose an accurate and physically based
approximation to speed-up 3DRTM radiative transfer simulations. This method allows to
simulate the reflectance in a given acquisition configuration for any wavelength, leaf
biochemical composition and soil background reflectance from a limited number of 3D
radiative transfer model simulations. The four stream approximation is firstly applied to
describe the interactions between the soil background and the vegetation layers using two or
three terms. Then, the dependency of each of these terms to wavelength and leaf properties
is described using the leaf total absorption coefficient. For a given canopy structure and
observation configuration, only 12 to 18 reference simulations are required to simulate the
corresponding reflectances for any wavelength, soil background or leaf optical properties.
Very good accuracy is achieved when compared with the reference dataset generated from
3D RTM.

e Article 2: The importance of LAl definition when deriving it from reflectance
observations. In this study, we evaluate the ability of 1D and 3D RTM inversion to estimate
different quantities related to the leaf area index LAI, e.g. the plant area index PAI (that
includes both green and yellow plant elements), the green area index GAI (that includes only
green plant elements), and the effective green area index. Based on 3D mock-ups of maize
and wheat, we computed these quantities and simulated the canopy reflectance using the
3DRTM.Conditions including different phenological stages, leaf optical properties, soll
reflectance, canopy structures and sun angles were thus considered. Different inversion
methods including VIs, 1D RTM PROSAIL and 3D RTM LuxCoreRender are compared.
Results show that effective GAIl is best estimated from remote sensing observations
according to inversion results from 3D RTM. Inversion results from 3D model are more
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accurate compared with VIs and PROSAIL model. We then investigate the impact of the sun
position on the inversion results and found that the 3D model estimation is less sensitive to
the sun position, especially in the row direction, where the turbid assumption of the 1D model
is not valid.

Article 3: Optimal learning for GAIl and chlorophyll estimation from 1D and 3D radiative
transfer model inversion: the case of wheat and maize crops observed by Sentinel2.
The objective of this study is to compare the estimation of GAl and chlorophyll at leaf and
canopy level from 1D and 3D RTM inversion with Sentinel-2 observations. Two crops, wheat
and maize, with different phenological stages are tested. Both 1D PROSAIL and 3D specific
model are selected to build the learning database. NN are used as the inversion method to
train the learning database. Results show that 3D model provides more accurate estimation of
GAI and CCC for both wheat and maize compared with 1D RTM. The inclusion of bands in
red-edge and SWIR region improve the estimation of GAl and the utilization of bands in red-
edge region is important for chlorophyll estimation.
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Abstract

A physically based approach is proposed to describe the dependency of canopy reflectance from the
wavelength, leaf and soil properties. The four stream approximation is first applied to describe the
interaction between the soil background and the vegetation layers. This leads to the calibration of
three terms for a given canopy structure, observation configuration and leaf properties. This number
can be reduced to two by using a linear approximation which shows a slight degradation when the
multiple scattering contribution is significant. The dependency of each of the two or three terms to
wavelength and leaf properties is described using the leaf total absorption coefficient. Our approach
requires only 12 (linear approximation) to 18 (four stream approximation) simulations of a reference
model to describe the full canopy reflectance dependency to wavelength, leaf and soil properties. The
approach was evaluated against reference canopy reflectance simulations using the ray tracing
LuxCoreRender model. LuxCoreRender was first validated against reference radiative transfer
models. The reference dataset corresponds to range of detailed 3D maize canopies showing variation
of leaf and background properties under different view and sun directions in a set of wavebands.
Results demonstrate that our approach provides accurate description of the dependency of canopy
reflectance to wavelength, leaf and soil properties with RMSE = 0.0017 for the four stream
approximation and RMSE = 0.0022 for the linear approximation. The proposed approach appears
therefore computationally effective and well suited to generate a large number of canopy reflectance
simulations with detailed 3D radiative transfer models that can be used to retrieve vegetation
characteristics from remote sensing observations.

Keywords

Canopy reflectance; LuxCoreRender; 3D radiative transfer model; soil reflectance; leaf properties;
wavelength
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1 Introduction

Several methods have been developed to estimate biophysical variables from remote sensing data.
They are either based on empirical regressions of different complexity up to machine learning
algorithms applied to experimental data (Verrelst et al. 2012b), or on the inversion of physically based
radiative transfer models (Baret and Buis 2008). The latter approach is generally preferred since it
exploits our knowledge on the physical processes governing the interaction of light with the canopy
elements, and allows taking explicitly into account the information on the observational configuration.
Several inversion methods have been widely used including iterative optimization (Jacquemoud et al.
2000), Look-up-table (LUT) (Ganguly et al. 2012; Houborg et al. 2015) and machine learning (Li et al.
2015; Verrelst et al. 2012a). These algorithms require either simulations to be run very fast in the case
of iterative optimization or to generate a large number of simulations to populate the LUT or the
training database for machine learning approaches. 1D radiative transfer models require only a small
number of input variables and are computationally very efficient. They approximate the canopy as a
turbid medium where leaves are considered as infinitely small particles randomly distributed in the
canopy volume. The 1D radiative transfer models are well adapted to situations where the amount of
information on the target is limited. This is the case for kilometric resolution observations (Baret et al.
2013) where the generally mixed nature of pixels and their unknown composition makes the problem
difficult to be properly solved. These simple 1D models provide apparent values of the biophysical
variables that have been proven to be very useful over regional to global scales applications (Camacho
et al. 2013; Delloye et al. 2018; Xiao et al. 2015). However, the increasing availability of frequent
decametric resolution satellite images as well as sub-metric and sub-millimetric images recorded
onboard unmanned Aerial Vehicles (UAVs) (Verger et al. 2014) or ground vehicles (Comar et al.
2012) require a more realistic description of the canopy structure to get more accurate simulations of
the radiative transfer models (Ross 2012) and therefore improve the retrieval performances.

Apart from the simple 1D turbid medium description, several types of radiative transfer models (RTM)
have been developed with an enhanced realism at the expense of increasing complexity (Goel 1988).

Geometric optical models describe the canopy structure with simple protrusion objects such as

cylinders, cones, spheres or ellipsoids distributed over a defined background surface. Hybrid models

integrate geometric optical models with turbid medium models. These models define the canopy by a

set of statistical properties represented by a distribution function or a simple average (Pinty and

Verstraete 1998). However, an inherent loss of information results from these assumptions (Disney et

al. 2000). 3D radiative transfer models based on a realistic and detailed description of the canopy

structure are thus highly desired.

Several 3D RTMs have been proposed, either based on Monte Carlo ray tracing methods including
Flight (North 1996) and Raytran (Govaerts and Verstraete 1998), or based on radiosity methods such
as RGM (Qin and Gerstl 2000), or on the exact kernel and discrete ordinate approach as for DART
(Gastellu-Etchegorry et al. 2004). These RTMs have been successfully used in the remote sensing
community to simulate canopy reflectance (Bye et al. 2017; Gastellu-Etchegorry et al. 2015; Huang et
al. 2013; Widlowski et al. 2015; Widlowski et al. 2008). Several open source 3D ray tracing render
engines were developed concurrently for computer graphics applications. They include
LuxCoreRender (LuxCoreRender 2018), MITSUBA (Jakob 2014) and Pov-ray (POV-team 2013).
Because of their flexibility and performances, these computer graphics tools are gradually used by the
remote sensing community (Casa and Jones 2005; Coubard et al. 2011; Stuckens et al. 2009).
However, apart from the higher complexity of the canopy structure description and the associated
increase in the number of required parameters, running a simulation is computationally intensive. The
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generation of large LUTs or training datasets to retrieve canopy attributes from a set of reflectance
measured in a given observational configuration takes a lot of time. This remains one of the principal
limitations when inverting realistic 3D RTMs. As a matter of fact, the reflectance should be simulated
in all the considered directions and wavebands. For better accuracy, the sensor spectral response
should be taken into account to simulate the reflectance by simulating the reflectance over a large
number of bands covering continuously the spectral band domain. Then, the reflectance values must
be integrated by considering the spectral distribution of the incident light and the spectral sensitivity
of each individual waveband of the sensor. Further, the simulations also require considering a large
range of soil reflectance properties.

The objective of this study is to propose a method to accurately simulate canopy reflectance for any
wavelength, leaf biochemical composition and soil reflectance from 3D simulations over a limited
number of soil and leaf properties. It should therefore save a lot of time when populating a training
database to calibrate a retrieval approach. It is based on the development of a metamodel from a
limited reference set of canopy reflectance simulations. It is illustrated here using the LuxCoreRender
ray tracing model (LuxCoreRender 2018) applied to detailed maize 3D architecture. A general
description of the proposed method is first presented along with the LuxCoreRender implementation
and the 3D maize architecture model. LuxCoreRender is then validated over reference canopy
reflectance simulations. The several steps of the metamodel development and calibration are then
presented, followed by an evaluation of the accuracy associated to the proposed method. Finally, the
limits and potential applications of the method are discussed.

2  Methods

2.1 Overall presentation of the method

The proposed approach is based on two steps (Figure 16): (1) the calibration of the metamodel, and (2)
its application to approximate canopy reflectance. In the first step, the metamodel is calibrated for a
given canopy structure, 2, and observation geometry, (2. It is made of two nested sub-models. The
first one describes the dependency of canopy reflectance to soil reflectance using a physically based
approximation that requires few terms (called S) to be calibrated. The S calibration step requires using
three reference soil reflectances corresponding to contrasted soils, including a black one. The second
sub-model called Fg, describes the wavelength and leaf properties dependency of the previously
calibrated S terms. It uses the leaf total absorption coefficient, K, as defined in the PROSPECT model
(Jacquemoud et Baret, 1990) and assumes that the leaf mesophyll structure, N, is known and that the
impact of the spectral variation of the refraction index, n, on leaf properties is marginal. This will be
later discussed.

In the second step, for a given leaf biochemical composition, €, and wavelength, A, the total
absorption coefficient, K, is computed using the PROSPECT model and the known specific
absorption coefficients of the leaf constituents kj (1). The function Fs previously adjusted is used to
compute each S term for the considered K value. Finally, canopy reflectance, R, is computed using
the physically based approximation of canopy reflectance to soil properties that requires the S terms
and the actual soil reflectance, r. A more detailed description of each step is provided in the following
sections.
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Figure 16. Flow diagram describing the proposed method. The two steps are identified by gray vertical unfilled
rectangles with round corners. The output (R: canopy reflectance) is represented in green and the fixed inputs in red
([K],¢f: six reference values of the total leaf absorption coefficient K, n,. : a single reference value of the leaf

refraction index, [r],.: three reference values of soil reflectance, k,(1): the specific absorption coefficients of the

leaf constituents). The input canopy characteristics (Cj: leaf biochemical contents, N: the leaf mesophyll structure, A:
the wavelength, 2: the observation configuration, 2 the observation geometry, r: the actual soil reflectance of the
canopy ) are identified by a vertical rectangle with dashed black border. The several computation sub-steps are
identified by gray horizontal rectangles with round corners and their output results by a smaller horizontal rectangle
with black borders.

2.2 LuxCoreRender ray tracing model implementation

LuxCoreRender is a physically based and unbiased rendering engine. It is derived from the Physically
Based Radiative Transfer project (Pharr et al. 2016) and is an open source software for ray tracing
model simulations (Coubard et al. 2011). It computes the radiation fluxes according to physical
equations describing the interaction between light and materials. It produces realistic images of
photographic quality with a reasonable computation time (LuxCoreRender 2018).

The path tracing was selected as the ray-tracing integrator. The path tracing allows the path integrator
to shoot rays from the camera into the scene and continues reflecting the ray off objects until it finds a
light or the search is terminated (LuxCoreRender 2018). Even though it is usually slower than
bidirectional or photon map integrator, it can provide unbiased simulation results. For each pixel, 128
rays were generated including direct and diffuse scattering. Leaves were assumed lambertian both for
reflectance and transmittance. Stems had the same reflectance as the leaf but no transmission. The soil
was set to be flat and lambertian. The scene illumination was simulated with only one directional light
source.
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A perspective camera was selected as the virtual camera with a 25° field of view (FOV) providing a
4.5m x 4.5 m when the camera is pointing the center of the scene from a 50 m distance. To avoid
possible border effects, the scene was replicated 8 times around the central one. The simulated
LuxCoreRender fluxes were then transformed into Bidirectional Reflectance Factors (BRF) by
dividing them by the value simulated over a reference lambertian panel with BRF = 1.0 using the
same illumination and observation configuration.

2.3 3D Maize architecture model

The 3D maize architecture model was developed by (Lopez-Lozano et al. 2007). The development of
the canopy is driven by the growing degree days. Five growth stages were simulated every 200 °Cd
from the two leaves stage corresponding to 150 °Cd up to 950 °Cd corresponding to the start of male
earing. The six parameters of the model (Table 7) were changed and resulted into 60 scenes simulated
corresponding to typical maize canopies (Figure 17).

Table 7. Parameters of the 3D maize model used in this study.

Variable Unit Value

Ninax Maximum number of leaves per plant - 18

Smax Maximum leaf area per plant m? 0.5,0.75

D Plant density plants/m? 9

drows Distance between rows m 0.7,0.8

Himax Maximum plant height m 2

Omax Inclination of largest leaf ° 30, 45, 60

T Stages expressed in thermal time °Cd 150, 350, 550, 750, 950

Figure 17. A typical 3D scene of maize canopy (Nmax=18, Smax =0.75 m?, D=8 plants/m?, drows =0.7 m, Hmax=2 m,
Omax=45°, T=950 °Cd) simulated with LuxCoreRender.
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3 Results

3.1 LuxCoreRender simulates accurately canopy reflectance

The RAMI Online Model Checker (ROMC) (Widlowski et al. 2008) provides a set of reference data
designed to evaluate the performances of radiative transfer models. The reference data are composed
of simulations generated by a set of validated RAMI models. Contrasted canopy types were selected
with heterogeneous (HET04 in RAMI3) and homogeneous (HOMO03 and HOMI13 in RAMI3)
architectures characterized by different leaf orientations and with different leaf optical properties. The
reflectance of HOM13 was simulated in red band, while the reflectance of HET04 and HOM13 were
in NIR band. For each case, the sun azimuth angle was set at 0°. Viewing directions were considered
in both the principal and the perpendicular planes using a camera with orthographic projection and no
geometric distortion. The heterogeneous canopy is composed of two elements with different optical
properties.

Table 8. Main characteristics of the ROMC scenes used to evaluate LuxCoreRender. LAI stands for
Leaf Area Index. SZA is the sun zenith angles. p, and 7; correspond to the reflectance and

transmittance of the canopy elements. More details can be found in (Widlowski et al. 2008).

# Type of canopy LAI P T SZA

Homogeneous; erectophile leaf

3 0.50 0.44 20°
distribution

HOMO3_DIS_ERE

HOMI3 DIS PLA Homogeneous; planophile leaf 3 0.05 0.01 500

distribution

spheres and cylinders, uniform leaf

S 5 0.49/0.45 | 0.45/0.30 | 20°
distribution

HETO04

Results show a very good agreement between LuxCoreRender and the ROMC reference data (Figure
18) with low root mean square error (RMSE=~0.0016). The model skill which is an integrated metrics
describing how the model matches the reference data (Widlowski et al. 2008) was 98.3% and 99.6%
respectively in the principal and perpendicular planes. It is therefore concluded that LuxCoreRender
and the way it was implemented in this study reaches the same accuracy level as the state of the 3D-
models involved in the RAMI exercise. It is thus able to provide accurate simulations of canopy
reflectance across a large range of cases.
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Figure 18. Comparison between LuxCoreRender reflectance simulations and ROMC (RAMI On-Line Model
Checker) reference values. The three scenes presented in Table 8 are displayed: HOMO03 (red), HOM13 (blue) and
HETO04 (green). Principal plane (left) and perpendicular plane (right). The black line corresponds to the 1:1 line.

3.2 Computation of the § term describing the dependency of canopy reflectance to
soil reflectance.

3.2.1 The four stream approximation solves accurately the soil background problem

The four stream approximation (Suits 1972; Verhoef 1985) was used to describe the radiative
coupling between the soil background and the vegetation layer. We thus assumed two directional
fluxes in the source and observation directions and two diffuse fluxes in the upward and downward
directions. Verhoef (1985) stated that in black-sky conditions (e.g. no diffuse illumination), the top-
of-canopy BRF (R) is the sum of a purely bi-directional component (7y,) and a directional-
hemispherical component (r54):

R = 15+ Tsq (D
with:
_ (TssT+TsaT)Tao+(Tsa+TssTPAd) T Too
Tso = Pso T TssTool + —
1-7Tpaq )
o, = (TssT+T5d7)Tdd
sd Psd 1-1pgd

where 1 refers to soil reflectance assumed lambertian, 7,, and p,, represent respectively the
transmittance and the reflectance of the canopy layer. The incoming and outgoing directions are
indicated respectively by subscripts x and y that can be either s (source direction), o (observation
direction) or d (diffuse downward or upward directions). These notations are consistent with those
used by (Verhoef 1985; Verhoef and Bach 2007). Equation (1) can be rewritten as:

2
TssToo” — TssToo " Pdd + (Tssr + Tsdr)Tdo + (Tsd + Tssrpdd)rroo + (Tssr + Tsdr)Tdd

1=7paa

R=pso+psd+

T (Tss+Tsa)(Too+Tao+Tad) _ T (3)

=Pso T Psat 1-Tpgq =pstr 1-Tpgq

Where pg = pso + psqg and T = (Tgs + T5q)(Too + Tao + Taq) - The term pg corresponds to the
canopy reflectance simulated with a black soil:

r=15=0.0=>Ry =p;s 4)
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The terms pyq and T can be derived from the simulations of canopy reflectance, R; and R,,
corresponding to two additional contrasted soil reflectance, r = r; and r = r,. The term p;4 can then
be computed from equation (3) by applying it to 7y and r:

Ry =Ry+m (Rp=Ro)ry
1-7T1pda = _ _(R1-Ro)T2 5
= Pda = . ((RZ—RO)_l) (%)
R; =Ry +1; 1\(R1=Ro)

The term T is finally computed by replacing the value of pg; from equation (4) into equation (3)
applied to one of the previously used soil reflectance (r; = 14,13):

T = (R2—Ro)(1-7spdd)

¢ (©)
Therefore, the term S can be described as three terms [Sy5] = [Paa, Ps» T ] from equation (3) depend on
canopy structure and leaf optical properties. Furthermore, pg and T also depend on the observational
configuration defined by the view and illumination directions, while p,4 does not. The proposed
solution to describe the dependency of canopy reflectance to soil reflectance needs therefore to be
applied for a given combination of canopy structure, 2, observational configuration, £, and leaf
optical properties, [p;, T;]. For each combination [, Q, [p;, T;]], the terms [S,5] of equation (3) were
computed according to equations (4) to (6) using three reference values of soil reflectance: [r]ef =
[ro, 11, 12 ] embracing the typical range of variation of soil reflectance.

The accuracy of the proposed approximation was evaluated over 60 scenes generated with the 3D
maize model (Table 7) for nadir viewing and for 20° and 35° sun zenith angles in both the red [p;(red)
= 0.063; t; (red) = 0.018] and NIR bands [p;(NIR) = 0.463; t; (NIR) = 0.522]. Canopy reflectance
was simulated with LuxCoreRender for these 240 combinations [2; Q, [p;, T;]] (60 scenes, two bands
and two sun directions) for five soil reflectance values: [r] = [0, 0.1, 0.2, 0.3, 0.4, 0.5] embracing the
typical range of variation of soil reflectance in these bands. For each of the 240 [X Q,[p;, T/]]
combinations, the terms [S4s] = [Pga, Ps, T] were calibrated using equations (4) to (6) with [r],¢ = [0,
0.1, 0.4]. Once [pgq, ps, T] are calculated, canopy reflectance can be computed using equation (3) for
any soil reflectance value. As validation, estimated results with [r] = [0.2, 0.3, 0.5] were compared
with LuxCoreRender canopy reflectance.
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Figure 19. Left: scatterplot between the reference canopy reflectance simulated using LuxCoreRender and the
corresponding one estimated using the four stream approximation (equation (3)) in red (red) and NIR (blue). The
black solid line is the 1:1 line. Right: distribution of the residuals (difference between reference and approximated
canopy reflectance) using the four stream approximation based on equation (3).
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Results show that the proposed method provides very accurate approximations (RMSE=0.0004 and r?~1) for the two
bands and all the considered combinations (Figure 19. left). The distribution of the residuals between the reference
LuxCoreRender simulated reflectance and the one estimated based on equations (3) to (6) is centered on 0.00 (Figure
19. right) with maximum absolute values of the residual smaller than 0.002. The four stream approximation was

. . . . . T
expected to be accurate for low values of soil reflectance since the soil contribution term r r—
“TPdd

negligible in these conditions. However, the four stream approximation is still valid even for r = 0.5, i.e. outside the
domain of the method calibration (0.0 <7 < 0.4). It is therefore an accurate way to estimate canopy reflectance for
any soil background value using only three reference simulations corresponding to three soil reflectance values with
[T]ref= [0, 0.1, 0.4].

in equation (3) is

3.2.2 The linear approximation describes efficiently the dependency of canopy reflectance
to soil properties

A further simplification can be introduced by neglecting the non-linear interaction term in equation

(3), resulting into a linear approximation of the canopy reflectance that reduce the term S to [Sy;,] =

[ps, Al

R=ps+T74A @)

A can be computed analytically by deriving p, from the black soil simulation (equation (4)) and
simulating the canopy reflectance for one additional soil, 7:

__ R1—Rg

Ts

A ®)
Similarly to the four stream approximation, the terms [Sy, ] need to be computed for each
combination of [, Q, [p;, T;]]. The previous set of canopy reflectance simulations were thus used to
evaluate the accuracy of this linear approximation: for each combination of [, Q, [p;, T;]], the terms
[Siin] were computed using [r],.= [0, 0.4] and equations (4) and (8). Equation (7) was then applied
to get the linear approximation of canopy reflectance for the soil properties used previously for the
validation: [r]=10.2, 0.3, 0.5].

Results show that the linear approximation induces a slight degradation of the performances in the
NIR (RMSE=0.0025, r*=0.9994). This is due to a higher multiple scattering within the canopy due to
higher leaf reflectance and transmittance values in that spectral domain (Figure 20). Detailed
inspection of the distribution of the residuals shows that they are well centered on 0.0. However, the
absolute value of the residuals can reach 0.008 in the NIR for medium values of vegetation
development and high values of soil reflectance (r = 0.5). The linear approximation is therefore
efficient in most of the cases although it requires only two LuxCoreRender simulations per
[2 Q, [p;, T;]] combinations to compute accurately the canopy reflectance for any soil background
reflectance values.
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Figure 20. Left: scatterplot between the reference canopy reflectance simulated using LuxCoreRender
and the corresponding one estimated using the linear approximation (equation (7)) in red (red) and
NIR (blue). The black solid line is the 1:1 line. Right: distribution of the residuals (difference
between reference and approximated canopy reflectance) using the linear approximation based on
equation (7).

3.3 Dependency of the S terms to wavelength and leaf optical properties

3.3.1 Principles

Leaf optical properties depend on the surface features (Comar et al., 2012), the internal structure of
the leaf mesophyll, the biochemical composition including the distribution of the constituents in the
leaf volume, and the complex refraction index of these constituents (Baret et al. 1994). According to
(Jacquemoud and Baret 1990), the real part of the refraction index, n, that drives the leaf scattering
processes varies marginally for wavelengths belonging to the 400-2200 nm spectral domain.
Therefore, the spectral variation of the leaf optical properties is mainly driven by the imaginary part of
the refraction index that corresponds to the absorption coefficient. Consequently, neglecting the
spectral variation of n allows to simulate leaf optical properties as a function of the total absorption
coefficient, K, and the leaf mesophyll structure parameter, N (Fourty et al. 1996). The total absorption
coefficient, K, is determined by the specific absorption coefficient of each biochemical constituent
ky (1) and the corresponding content €}, expressed in terms of mass per unit leaf area (Jacquemoud
and Baret, 1990):

K= Yk,(D)Cp ©

For a given value of the leaf mesophyll structure parameter N, the refractive index n, the canopy
structure X' and the observational configuration (2, the spectral variation of the three terms [S,5]=[P4q,
ps, T of the four stream solution identified in equation (3) or the two terms [Sy;,[=[ps, A] of the
linear approximation in equation (7) can therefore be described by a smooth and monotonic function
that depends on K (Baret et al. 1994). An empirical function, F5(K), can therefore be fitted to
represent the dependency of each term [S] of equations (3) or (7) to K for a given combination of
[2 2 N,n].
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3.3.2 Range of variation of K and impact of the spectral variation of the refraction index n
on leaf properties

The range of variation of the total absorption coefficient, K, was computed for the 400 nm to 2200nm

spectral domain based on the minimum and maximum values observed for k; (1) from PROSPECT3

(Jiang et al., 2018) and the bounds of C; values reported in the LOPEX dataset (Hosgood et al. 1995).

Results show that K ranges from 0.0045 to 5.5.

The refractive index, n, varies slightly with the wavelength (Jacquemoud and Baret 1990). It ranges
from 1.5 at 400 nm to 1.3 at 2200 nm. However, the impact of the spectral variation of n on leaf
optical properties is generally marginal. This was verified using PROSPECT3 model simulations
using a typical value of the leaf mesophyll structure parameter for maize crop, N = 1.5. Results show
that the leaf reflectance is almost insensitive to variation of n, except for the very small values of the
absorption coefficient (K < 0.4), when scattering processes are dominating (Figure 21A). Similar
results are observed for transmittance, with however a larger impact for K < 2 (Figure 21B). In the
following, we will consider that the refraction index is independent from the wavelength, with n,.,r=
1.4 corresponding to the average value. The influence of this approximation on the computation of
canopy reflectance will be further investigated in the next section. A set of K values approximately
equally spaced in reflectance and transmittance were selected to represent the range of variation of
leaf optical properties: [K ], =[0.0045; 0.0509; 0.1909; 0.4626; 1.0951; 5.5000].
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Figure 21. Relationship between the global absorption coefficient K and the refractive indexes n for leaf reflectance
(left) and leaf transmittance (right). The black, blue and red lines correspond respectively to n = [1.3, 1.4, 1.5]. The
dotted lines show the average absolute value of the difference between leaf reflectance or transmittance using n,..; =

1.4 (reference value) and n = 1.3 and 1.5. The asterisks correspond to the six values of [K],.s selected to describe the
leaf reflectance and transmittance.

3.3.3 Calibration of function Fg(K) describing the dependency of the § terms to K

For each canopy structure, observational configuration, mesophyll structure index, and refraction

index, the dependency of the S terms to the K values can be approximated by a sigmoid function

Fs(K) fitted on the six previously selected K values:
a—-d

a+&pym

Fs(K) =d+ (10)

Results show that the sigmoid functions described very well the variation of the S terms as a function
of K, showing a RMSE value lower than 0.005 computed over data points that were not used for the
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calibration (see the black dots in Figure 22). The S terms showed a smooth exponential decrease with
K. The plateau is reached for K > 0.5 for py4 and pg, and for K > 0.2 for T and A (Figure 22). As
expected, the S terms contributing to the reflectance value, p;4 and ps, increase with LAI, while the
other ones contributing to the transmittance, T and A, decrease with LAIL
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Figure 22. Relationship between the six selected global absorption coefficient K and the different S
terms for several maize canopies (LAl = 0.3, 1.3, 2.7 and 3.7) using either the four stream
approximation ([S4s], A: pga » B: ps, C: T) or the linear approximation ([S;;,], D: A). Dotted lines
correspond to the fitted curves from Fg(K) (equation (10)). The black dot corresponds to the
validation points.

3.4 Very accurate approximation is obtained by calibrating the metamodel over 12

canopy reflectance simulations
The 60 canopy structure scenes described in Table 7 with two observational configurations (nadir
viewing and SZA=[20°, 35°]) were used as validation cases. They were combined with the three soil
properties proposed in Table 9 and the six leaf optical properties shown in Table 10. Finally, the
canopy reflectance was computed in six bands of the SENTINEL 2 sensor (Drusch et al. 2012) (Table
9).
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Table 9. Soil properties used to simulate canopy reflectance in six of the SENTINEL2 bands to validate the
metamodel.

SENTINEL? bands

(nm) 450 | 560 | 665 | 705 | 740 865
0.067 | 0.106 | 0.140 | 0.152 | 0.163 | 0.191

Soil reflectance 0.134 | 0212 | 0.280 | 0.304 | 0.326 | 0.382
0.201 | 0318 | 0.420 | 0.456 | 0.489 | 0.573

Table 10. Leaf characteristics used for the PROSPECT model to simulate canopy reflectance to validate the
metamodel.

N Chlorophyl Water Dry matter | Brown pigments
1 content content content content
(ngem?) | (gem?) (g.cm?) .

1.5 40 5 10 0.5

1.5 50 15 5 0.2

1.5 55 25 20 0.7

1.5 60 10 30 0.4

1.5 65 20 25 0.6

1.5 70 30 15 0.3

The 12960 (60 canopy structures x 2 observational configurations x 3 soil properties x 6 leaf
characteristics x 6 bands) reference canopy reflectance were computed using LuxCoreRender and
taking into account the spectral dependency of the refraction index, n(A). The metamodel was then
calibrated on each of these 60 scenes for two observational configurations according to the scheme
presented in Figure 16. The refraction index was set here to 1o = 1.4 using [r],r = [0.0, 0.1, 0.4]
or [r]ef = [0.0, 0.4] respectively for the four stream and the linear approximations to compute the §
terms using [K],..s= [0.005, 0.040, 0.092, 0.177, 0.343, 1.096] to fit the functions Fg(K).

Results show that the metamodel approximates with a very good accuracy the reference canopy
reflectance simulations (Figure 23). The four stream approximation shows very little difference from
the reference canopy reflectance, with RMSE=0.0017 (Figure 23A). Conversely, the linear
approximation degrades slightly the agreement with the reference canopy reflectance particularly for
canopy reflectance values larger than 0.3 (Figure 23B), corresponding mostly to the 740 nm and 865
nm bands and bright soils (r > 0.4) when the multiple scattering is relatively important, confirming
our previous observations. More detailed inspection of the distribution of the residuals shows that the
metamodel slightly overestimates the reference canopy reflectance showing a higher number of
negative residuals especially for the linear approximation (Figure 24B). However, most negative
residuals for the linear approximation are very small (< 0.005 for absolute value and < 4% for relative
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value), while larger positive residuals are observed. These cases correspond to the higher values of
leaf reflectance and transmittance as well as soil reflectance that enhance the multiple scattering.
Nevertheless, the linear approximation provides an efficient solution with a reasonable accuracy:
RMSE=0.0022.
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Figure 23. Comparison between the reference canopy reflectance simulated using LuxCoreRender and the
approximated one using the metamodel. (A) Using the four stream approximation (B) Using the linear approximation.

A further analysis was conducted to evaluate the impact of assuming n,..r = 1.4 when approximating
the canopy reflectance. For this purpose, the metamodel was calibrated according to the scheme
presented in Figure 16, except that the refraction index was depending on wavelength (n(4))
according to the values proposed in PROSPECT3. Results show that the slight overestimation of the
metamodel is considerably reduced (Figure 24) when allowing the refraction index to vary with the
wavelength. The accuracy of the metamodel is significantly improved both for the four stream
(RMSE=0.0007) and the linear (RMSE=0.0018) approximations. The overestimation observed when
assuming n,..r = 1.4 comes mostly from the fact that the six wavebands selected in this validation
exercise are corresponding to values of 1.5 >n >1.43. When fixing n,.; = 1.4, leaf transmittance is
overestimated (Figure 21B) which induces a slight overestimation of the simulated canopy reflectance.
Therefore, the metamodel could be calibrated with a n value closer to that corresponding to the range
of wavelengths considered.
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Figure 24. Distribution of the residuals (difference between reference and approximated canopy reflectance). (A)
Using the four stream approximation (B) Using the linear approximation. Red: approximation using n,..; = 1.4. Blue:
approximation using n(4).

4 Summary and perspectives

The LuxCoreRender physically based ray-tracing model was run to simulate reference canopy
reflectance using a detailed 3D representation of canopy structure. LuxCoreRender was first validated
against other reference radiative transfer models applied both to homogeneous and heterogeneous
canopies in spectral domains where multiple scattering is small (red) or large (near infrared). Results
show very good agreement between LuxCoreRender simulations and the reference values. This
demonstrates that LuxCoreRender can be considered as a good reference radiative transfer model.

A scheme was then proposed to approximate the dependency of canopy reflectance to leaf properties,
wavelength and soil reflectance. It is based on the separation between the influence of the canopy
structure and observation configuration from that of the leaf and soil properties. This approach is
similar to the ‘spectral invariant’ principles proposed by (Huang et al. 2007; Lewis and Disney 2007),
although the photon recollision probability (Méttus and Stenberg 2008; Wang et al. 2018) was not
used in our study. The influence of the soil background on canopy reflectance was approximated
using the four stream approximation that couples a soil background layer with a vegetation layer. The
three terms used in this approximation require thus three reference simulations to be calibrated for a
given canopy structure, observation configuration and leaf properties. Results show that the four
stream approximation provides a good agreement with the reference values of canopy reflectance as
computed with LuxCoreRender over a range of maize architecture observation configurations and leaf
properties. A further simplification is proposed, requiring only two simulations of the reference model
to calibrate the two terms used in the approximation. The multiple scattering between the soil and the
vegetation layers is not explicitly considered in the linear approximation. It induces a slight
underestimation of canopy reflectance in the red-edge and near infrared spectral domains with high
soil reflectance. Nevertheless, the overall low RMSE=0.0039 demonstrates that this approximation is
efficient.

The dependency of canopy reflectance from the leaf biochemical composition and wavelength was
described by calibrating relationships between the total absorption coefficient K of the leaf and the
two (linear approximation) or three terms (four stream approximation) needed to represent the soil
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background effect. Because of the smoothness and monotony of these relationships, only six reference
data points [K],.r are needed. The coefficients of these relationships are spectrally invariant since
they only depend on canopy architecture and observation configuration. Using the total absorption
coefficient, K, as proposed here offers the advantage to represent at the same time the dependency
from the leaf biochemistry and wavelength. The refraction index, n, was set to an average value, ny..f
= 1.4, over the 400-2200 nm domain because of its small spectral dependency. However, slight
overestimation was observed in the test cases considered in this study and restricted to the 450-865
nm domain, where n > 1.4. In such conditions, the refraction index could be set to a fixed value more
representative of the spectral domain considered. For the sake of simplicity, the leaf mesophyll
structure index, N, was set to a fixed value. This is justified by its relatively small variability for a
given species as well as the limited sensitivity of leaf reflectance and transmittance to small deviations
of N around its mean value. However, it is possible to include N as an additional independent variable
at the expense of additional reference model simulations to fit the more complex relationship between
the leaf absorption coefficient and the two or three terms used to describe the dependency of canopy
reflectance to soil background reflectance.

The proposed approach requires considering each combination of canopy structure and observation
configuration. It was illustrated in this study for maize canopies using LuxCoreRender as a reference
model while it is applicable to any canopy architecture and any reference radiative transfer model.
However, we assumed that the vegetation layer is made of elements that can be described with the
same total absorption coefficient K. In the case of canopies with several types of elements having
different optical properties, the same approach could be used without any modification by focusing on
the dependency of only one element type.

The method described in this study provides an efficient way to reduce the computation time required
to generate large training datasets used to invert radiative transfer models and retrieve some canopy
characteristics. This is of particular interest when using a large number of wavelengths such as for
hyperspectral data, leaf biochemical composition and soil properties. Contrary to our approach that
exploits the knowledge on the physical processes, model emulation techniques as proposed by
(Gomez-Dans et al. 2016; Verrelst et al. 2017) are pure machine learning based techniques. Training
such emulators is thus computationally more expensive and requires a higher number of simulations
to represent properly the variability induced by leaf biochemical composition, wavelength and soil
properties. However, both methods could be combined: model emulation could focus on the
variability due to the canopy structure and observational configuration for the 12 (linear
approximation) or 18 (four stream approximation) combinations of soil reflectance and total
absorption coefficients K required by our approach. For each combination of canopy structure and
observation configuration and a typical case with seven wavebands, four values of chlorophyll content
and four values of soil background reflectance as used in (Verger et al. 2011) for LAI retrieval, 112
simulations with the reference 3D radiative transfer model would be necessary while only 12
simulations (linear approximation) are required with the linear approximation approach, leading to a
nine-fold reduction of the computation time. The proposed approach appears therefore very efficient
to generate large training datasets based on advanced radiative transfer models and realistic canopy
architecture models.
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3.2 In-silico comparison between turbid
medium and 3D realistic based radiative
transfer models to estimate GAI of wheat

and maize canopies: impact of leaf clumping
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Effective GAI for crops is best estimated from reflectance
observations as compared to GAI and LAI
Jingyi Jiang, Marie Weiss, Shouyang Liu, Fred Baret

Abstract

The definition of LAl is important when deriving it from reflectance observation for model
application and validation. Canopy reflectance and the corresponding quantities of LAI, PAI, GAl and
effective GAI are first calculated using 3D radiative transfer model (RTM) and 3D wheat and maize
architecture models. Conditions including different phenological stages, leaf optical properties, soil
reflectance, canopy structures and sun angles are all considered. Different inversion methods
including vegetation indices, 1D RTM PROSAIL and 3D RTM LuxCoreRender are compared. Results
show that effective GAl is best estimated from remote sensing observations according to inversion
results from 3D RTM. Inversion results from 3D model are more accurate compared with VIs and
PROSAIL model with RMSE = 0.33 for wheat and RMSE= 0.47 for maize. Different sun position will
affect canopy reflectance of row crop and result in different performance of inversion. 3D model is
less sensitive to sun angles, while 1D model is more affected when the angle between the sun light
and the row angle is close to 0° because of the difference between turbid medium assumption and
realistic canopies.

Highlights

e Canopy reflectance are simulated with 3D radiative transfer model
o Effective GAl is best estimated from remote sensing observations
e 3D model inversion provides the best estimation of effective GAI

o 3D model inversion results are insensitive to sun position
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1 Introduction

Leaf area index (LAl) was defined by Chen and Black (1992) as half the total developed area of leaves
per unit horizontal ground area. LAl is directly involved in the vegetation functioning an is therefore
widely used in agriculture, ecology or global change domains. As leaves represent the main
boundary between the plant and the atmosphere, it is a key variable used to evaluate the exchanges
of energy, water and carbon (Fang and Liang 2008). It also both indicates the actual plant state and
its potential growth (Gonsamo 2009). However, depending on the considered applications, several
definitions of LAl should be used. LAl might be relevant when related to the aboveground biomass
based on allometric approaches {Baret, 1989 #149} for a given species and development stage.
Conversely, the rainfall interception efficiency of the canopy need to consider all the vegetation
elements including leaves, stems or all other organs, either green or senescent (Domingo et al. 1998;
Martello et al. 2015), leading to the definition of the Plant Area Index (PAl). For transpiration and
photosynthesis, all the green parts that potentially exchange carbon and water mainly through the
stomates need to be considered (Wang and Dickinson 2012), leading to the Green Area Index (GAIl)
definition. Furthermore, when considering the radiation interception efficiency, the spatial
arrangement of green vegetation elements need to be considered because leaf clumping may
reduce the interception efficiency by the mutual masking of elements, leading to the effective GAl
definition. All the processes listed previously may be described within vegetation functioning models
that need to be calibrated over measurements of state variables including LAI, GAI, effective GAIl or
PAI. A high degree of consistency is therefore required between the definition of the state variables
used in the models and that of the corresponding measurements used to calibrate the models.

LAl can be mainly accessed through direct methods that consist in measuring the area of individual
leaves for all the leaves present over a given ground area. Variants of the method selects only the
green active parts of the leaves, leading to the Green Leaf Area Index (GLAI), or includes the area of
all the other elements independently from their color leading to PAI or restricts to the green ones
leading to GAI. However, these direct measurements methods are tedious and low-throughput and
at least invasive but generally destructive which explains why indirect methods are widely used
(Gower et al. 1999). Indirect methods are based on optical devices that document the canopy light
regime or structure from 1D to 3D techniques. The 1D techniques are based on canopy
transmittance measurements using either hemispherical light sensors {Leblanc, 2005 #4285} or
directional ones (Brede et al., 2018). The LAI2000 instrument {Campbell, 1988 #246} can be
considered as a 1.5 D since it measures canopy transmittance from 5 directions. All these 1D or 1.5D
techniques are based on the same gap fraction theory (Jonckheere et al. 2004) with the sensors
placed at the bottom of the canopy. They will be sensitive to the presence of all the elements above,
either green or not, and will thus be proxy of the PAI (Norman and Campbell 1989). 2D techniques
are based on cameras looking either at one specific directions {Baret, 2010 #6070} or using multiple
directions from multiple images or from hemispherical images (Weiss et al. 2004). Images can be
taken from the bottom of the canopy to get canopy transmittance and derive PAIl estimates since it
is difficult to separate the green from the non-green elements. Images can be also taken from the
top of the canopy to get the green fraction (GF, the fraction of green pixels in an image) by
identifying the green pixels from which the GAI will be estimated. 3D techniques have been also
developed more recently using terrestrial laser scanners (Liu et al. 2017; Yan et al. 2019) or
stereovision (Biskup et al. 2007). The resulting 3D point clouds are exploited to get the directional
canopy transmittance and derive the corresponding PAI if no distinction is made between the green
and non-green elements, or to get the directional green fraction leading to GAI estimates when the
green points are identified. However, the transformation of the measured directional gap or green
fraction into PAl or GAl is generally based on some assumptions on the canopy structure, particularly
regarding leaf arrangement. One of the main assumption used considers leaves as randomly
distributed within the canopy volume. A distinction is thus made between the true PAl or GAIl and
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the corresponding “effective” values that are derived from gap or green fraction measurements
assuming that leaves are randomly distributed (Nilson 1999; Fang et al. 2018).

Similarly to indirect optical ground measurements, PAl and GAIl can also be retrieved from
reflectance observations using empirical or physically based methods. Empirical methods consist in
calibrating relationships between a combination of reflectance in several wavebands and ground
measured LAI. The most common method is the use of spectral vegetation indices (Richardson et al.
1992; Broge and Leblanc 2001; Broge and Mortensen 2002; Liu et al. 2012). However, machine
learning techniques now allow to build more robust and accurate relationships providing that the
data used to train the algorithms represents well the domain of application (Camacho et al, 2017).
Conversely, physically based methods consist in inverting a Radiative Transfer Model (RTM) that
simulates the actual physical processes involved in the photon transport within the canopy (Strahler
1997). Inversion techniques such as optimization (Jacquemoud et al. 2000), Look-Up-Tables (LUT)
(Gonzalez-Sanpedro et al. 2008; Duan et al. 2014) or machine learning (Weiss et al. 2002; Verrelst et
al. 2012) are used to estimate the RTM input variables including PAI or GAI. The accuracy of such
methods depends on the ability of the model to simulate realistically the reflectance of the targeted
canopy given a description of the architecture of the canopy and the optical properties of its
elements. 1D RTM such as PROSAIL {Jacquemoud, 2009 #4539} assume that the canopy is a
horizontally homogeneous layer of randomly distributed leaves. Inverting 1D RTM has the advantage
of being computationally efficient and characterized by a low number of inputs, which eases the
setting of numerical experiments and constrains the possible ambiguities between variables during
the inversion process (Baret and Buis 2008). However, several 3D radiative transfer models were
developed to get more realistic simulations of canopy reflectance: they combine an explicit 3D
description of the canopy architecture while accounting for the differences in optical properties of
the several vegetation elements. However, the higher number of parameters and variables required
and computer demanding simulations explains why 1D RTM are still mainly used within RTM
inversion. Nevertheless, 3D RTMs such as FLIGHT (North 1996) based on Monte Carlo ray tracing
methods or DART (Gastellu-Etchegorry et al. 2004) based on the discrete ordinate methods have
already been used to retrieve canopy structure and biochemical variables from remote sensing data
(Gascon et al. 2004; Malenovsky et al. 2013; Banskota et al. 2015; Hernandez-Clemente et al. 2017).
Such 3D models are inverted using LUT or machine learning techniques. However, the large
computation effort required to populate the LUT or the training dataset with these 3D RTMs
simulations, combined with the larger number of variables required for a 3D description as
compared to 1D RTMs explains why the space of canopy realizations is generally poorly sampled,
resulting into possibly less robust PAIl or GAI estimates.

The objective of this study is to evaluate the estimation performances of LAI, PAI, GAI and effective
GAl when retrieved from top of canopy reflectance observations. We focused on wheat and maize at
different phenological stages to get contrasted architectures. Realistic 3D wheat and maize scenes
were generated and used to simulate the corresponding reflectance observations. Part of the
simulations were considered as pseudo measurements used to evaluate the retrieval performances.
The other part was used to populate a training dataset used to calibrate the RTM inversion method.
We then compared the performances of several retrieval methods including vegetation indices (VIs),
neural networks applied to 1D RTM PROSAIL (Jacquemoud et al. 2009) and 3D RTM LuxCoreRender
(LuxCoreRender 2018) for LAI, PAI, GAl and effective GAI canopy variables.

2 Material and methods

2.1 The 3D crop architecture models
We selected two contrasted species: wheat with narrow and long leaves with small spacing between
rows and plants, and maize with taller plants, larger leaves and stems and larger row and plant
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spacing. While wheat canopies evolves from a clear row structure at early stages to a structure more
similar to a turbid medium later in the vegetation cycle, maize canopy is characterized by a row
structure at any phenological stage. Leaf inclination also varies differently during the growth cycle
for these two species.

The 3D ADEL-Wheat model (Fournier et al. 2003) was selected to simulate the time course of the 3D
architectural growth of wheat. It is an up-to-date model calibrated over a range of experimental
conditions (Abichou et al. 2013). For maize, we used the 3D model created by Lépez-Lozano et al
(2007) where plants are described by simple geometric shapes (triangles for leaves and pyramids for
stems), their growth being driven by thermal time. Even though this model does not account for leaf
undulation and curvature, maize canopies are much better represented than when using a turbid
medium model (Casa et al. 2010). As little knowledge is available on ear and flowers optical
properties, both wheat and maize were simulated from emergence to the last stage before earing
(wheat) or male flowering (maize). Therefore, for maize, as senescent leaves appear after male
flowering, PAl and GAI will be equal, which is not the case for wheat. For both species, 810 canopies
were generated according the variables listed in Table 11. The range of values considered for the
input variables were derived from previous experiments (Lopez-Lozano et al. 2007; Abichou et al.
2013; Liu et al. 2017). Each input variables was varied between the minimum and maximum values
by a number of equal steps (Table 1). The corresponding LAI, PAl and GAIl were calculated from the
mock-ups for nine development stages evenly distributed within the 100 to 900°Cd for wheat, and
from 150 to 950°Cd for maize. Since around 40% canopies have the GAl smaller than 1, 160 canopies
with GAl<1 were randomly eliminated from the wheat and maize canopies. The distribution of GAl
and average leaf angle (ALA) of simulated scenes are shown in

and examples of resulting scenes are provided in Figure 25.

Figure 25 Typical 3D scenes of wheat ((a) front view; (b) top view) and maize ((c) front view; (d) top
view) canopy simulated with ADEL-Wheat (LAI=2.26, GAI=2.34, effective GAI=2.15, PAI=2.56) and 3D
maize models. (LAI=4.78, GAI=6.51, effective GAI=4.12, PAI=6.51)

93



Table 11 Parameters of ADEL-Wheat and 3D maize model used in this study.

Variables Unit Min | Typical | Max | Steps

D Plant density plants/m? | 150 [ 250 | 350 3

Nter | Number of tillers per plant - 3 1

= Nieatmain | Number of leaves on the main stem - 11 1
(]

£ [ T | Phyllochron °*cd | 80 | 100 | 120 | 3

g Liamina | Length of lamina one cm 8 12 16 3

Angshire | Rotation of leaf basal inclination ° -30 0 30 3

Angiler | Inclination of the base of the tiller ° 20 1

D Plant density plants/m? | 9 (typical 0.75???) 1

drows | Distance between rows m 0.6 0.7 0.8 3

% Nmax Maximum number of leaves per plant - 18 20 22 3

% TTony | Phyllochron °Cd ? 1

% Smax Maximum leaf area per plant m? 0.5 0.75 0.7 3

” Humax Maximum plant height m 2 1

Omax Inclination of largest leaf ° 30 60 60 3

2.2 Reflectance simulations

2.2.1 LuxCoreRender ray tracing model

Canopy reflectance was simulated using the LuxCoreRender 3D render engine (LuxCoreRender 2018)
based on 3D scenes generated by the crop architecture models. LuxCoreRender is an open source
software derived from the PBRT project (Pharr et al. 2016; LuxCoreRender 2018). It has been
validated using RAMI Online Model Checker (ROMC) (Widlowski et al. 2008) against a set of state-of-
the-art models (Jiang et al, 2018).

We used the LuxCoreRender ray-tracing integrator with 1.36x10° samples of light and 16 path
depths per pixel to guarantee the accuracy of the render of the simulated reflectance. Leaves were
assumed lambertian and characterized by their reflectance and transmittance, while the stem is
characterized by the same reflectance as the leaf with no transmittance. The soil was assumed flat
and lambertian. The sun was the only light source with no adjacency contributions nor diffuse
radiation. The scene was corresponding to a square of 4.5 mside to represent the average condition
of the canopy. It was replicated three times to minimize possible border effects. The bidirectional
reflectance factor was computed as the ratio of reflected photons in the view direction to those
reflected by a perfect lambertian scatterer placed horizontally under the same illumination
conditions.
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2.2.2 Canopy reflectance simulations

Six wavelengths were selected to mimic Sentinel 2 bands in the visible and near infrared: 450 nm,
560 nm, 665 nm, 705 nm, 740 nm and 865 nm. Since reflectance simulation with LuxCoreRender is
time consuming because of the ray-tracing process, we used the method proposed by Jiang et al
(2018) to speed up the computations: for a given canopy structure and observational configuration,
it allows to accurately compute canopy reflectance for any soil reflectance and any leaf properties
(wavelength and biochemical composition) by simulating canopy reflectance for two contrasted
backgrounds and six value of the absorption coefficient of the leaf that drives leaf reflectance and
transmittance.

For each of the 650 scenes considered for each crop (Table 1), the camera was set at nadir (View
Azimuth Angle (VAA) = 0° and View Zenith Angle (VZA) = 0°) while the sun position varied by
considering eight Sun Zenith Angles (SZA) and four Sun Azimuth Angles (SAA) defined relatively to
the row orientation (Table 2). Five typical soil spectra with a variability in soil brightness (Bs) were
simulated to represent a large range of soil background. The leaf and stem optical properties were
simulated using the PROSPECT3 model (Jacquemoud and Baret 1990; Baret and Fourty 1997) by
considering the contents of four main absorbing element: chlorophyllian pigments (Cahc), dry matter
(Cam), water (Cy) and brown pigments (Cpp). Their distribution laws were defined similarly to (Li et al.
2015).

There were totally 37500 cases (Table 2) for each scene. To build learning database with mixed sun
angles, one of the 20 geometry settings was randomly selected for each case. 70% of the 33750
cases with mixed geometry settings were selected as the learning database and the remaining of the
whole cases was kept as the validation database.

Table 12 Distribution of input variables used to generate canopy reflectance with 3D simulations.

ln_put Minimu Maximu Mod Std Nb_Clas Law
variable m m e S
ob ) VZA(°) 0
se;vatlo VAAC) 0
SZA(°) 20, 35, 50, 65
geometry
SAA(°) 0, 25, 45, 67, 90
Lcn Refractive 14
= Index n
= Mesophyll
= y 15
g N
. -
P ‘q"N_, Leaf optical Cab(p;?.cm 20 90 4> 30 5 Gauss
NI .
. | properties -
= 5 Cdm(zg.cm 0.003 0.011 0.005 | 0.00 5 Gauss
o = ) 5
=
- N .
| N Cu_Rel 06 0.85 0.75 | 0.08 5 Unifor
< m
)
:n Chop 0.0 2.0 0.0 0.3 3 Gauss
5 Soil
- Bs 0.5 3.5 1.2 2.0 5 Gauss
= | background

95




2.3 Effective GAI computation

This definition of the effective GAI should be consistent with what could be derived from indirect
techniques at the ground level such as hemispherical images (Weiss et al. 2004).The effective GAI
(GAl.5f) was therefore computed from Welles and Norman (1991) which corresponds to a close
approximation of the Miller’s formula (Miller 1967) that relates GAI to the directional green fraction,
assuming that the leaves are randomly distributed in the canopy volume. The green fraction was
simulated by LuxCoreRender for six view zenith angles spanning from 0° to 60° and averaged over all
the azimuths.

2.4 1D PROSAIL simulations

The PROSAIL model (Baret et al. 1992) was generated from the combination of the leaf optical
properties model PROSPECT (Jacquemoud and Baret 1990) and the SAIL (Scattering by Arbitrary
Inclined Leaves) canopy reflectance model (Verhoef 1984) which assumes the canopy as a turbid
medium, i.e. homogeneous infinitely extended horizontal layer of infinitely small leaves randomly
distributed. A hotspot parameter was introduced by Kuusk et al. (1985) to account for the fact that
leaves have finite dimensions. PROSAIL has been widely used to estimate canopy biophysical and
structural variables for applications at different scales (Jacquemoud et al. 2009). PROSAIL was
inverted by training Neural Networks as proposed by Li et al. (2015). This technique was applied to
decametric resolution (Weiss et al. 2002) and exploited operationally to derive kilometric resolution
(Baret et al. 2007) or decametric (Li et al. 2015; Delloye et al. 2018; Verrelst et al. 2018) biophysical
products.

A dataset was first populated with PROSAIL model simulations using distribution of the input
variables consistent with what was previously done with the 3D models (Table 2). The distribution of
canopy structure variables (Table 13) were also consistent with those used previously for the 3D
models (Figure tol). A total of 33750 cases were simulated for both wheat and maize with input
variables and output reflectance. 70% of the whole cases were randomly selected as the 1D training
database.

Table 13 Distribution of input variables used to generate the learning database with PROSAIL model.
HOT is the hotspot parameter that partly controls the fact that leaves have finite dimensions and are
not fully randomly distributed.

Input variable | Minimum | Maximum | Mean | Std | Class | Law

GAI 0.0 8.0 2.0 3.0 6 Gauss

Canopy
ALA (°) 30 70 45 30 3 Gauss

structure
hotspot 0.1 0.5 0.2 |05 1 Gauss

2.5 Retrieval methods

2.5.1 VIbased empirical retrieval

Many vegetation indices based on the combination of a few spectral bands have been developed to
retrieve variables related to the plant photosynthetic activity, such as GAI, fAPAR, and chlorophyll
content (Myneni et al. 1995). We selected three vegetation indices among those proposed in the
literature (Henrich et al. 2009): the Normalized Difference Vegetation Index (NDVI) (Rouse Jr et al.
1974) which is the most widely used, the optimized Soil-Adjusted Vegetation Index (OSAVI)
(Rondeaux et al. 1996) which was designed to minimize the effect from the soil background, and
finally, the modified triangular vegetation index (MTVI2) which was found less sensitive to the
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saturation effect and thus provides more accurate estimates of high GAI values while reducing the
influence of the soil background (Haboudane et al. 2004).

NDVI = PNIRZPred (9)
PNIRtPred

OSAV] = —PNIRZPred _ (3)
PNIRtPred+0.16

MTVI2 = 1.5 1.2(pNIR—Pred)—2.5(Pred—Pgreen) @
\/(ZPNIR+1)2—(6pN1R—SM)—0.5

To relate VIs to different definitions of LAI, the modified version of Beer’s Law describing VI as a
function of the foliage amount F (Baret and Guyot, 1991) was selected:

VI = Vg, + (VI — Vi, )exp®viF (5)

where F refers either to LAI, GAI, PAl or effective GAI VI, represents the VI value for very high
density canopy (F — o) and VI, represents the VI value of bare soil (F = 0); Ky, is equivalent to
the extinction coefficient in Beer’s Law. Parameters [V, VI, Ky,] are fitted with the learning
database generated from the 3D LuxCoreRender simulations using a robust regression.

2.5.2 Model inversion using neural networks

For both training database generated from 3D simulations and the PROSAIL model, a simple back-
propagation neural networks (NN) with the same architecture as in Li et al. (2015) was selected. The
inputs include the canopy reflectance in six bands and the geometrical configurations: the cosine of
VZA, the cosine of SZA and the cosine of relative azimuth angle between VAA and SAA. The outputs
are either LAI, PAI, GAI and effective GAI for the 3D model. For PROSAIL, the only outputs are the
GAI that equals LAl (no other elements than the leaves), PAIl (no senescent elements) and effective
GAI (turbid medium assumption).

2.6 Performance metrics

As validation, the validation database generated from 3D simulation was used to evaluate the
inversion results from NNs trained with 1D and 3D training database.The root mean square error
(RMSE) and the coefficient of determination (R?) are used to evaluate the agreement of the fit
between the original VI value and the fitted one.

3 Results

3.1 Impact of canopy structure assumptions on reflectance

To put emphasis on the canopy structure, we simplified the simulations by assuming that the
reflectance of canopy elements and soil background do not vary with time (Table 14). The camera
was at nadir with SZA=45° and SAA=0°, 45° and 90°.

We then considered the presence or absence of stems and yellow leaves to evaluate the
contribution of these organs to canopy reflectance. Using the ADEL-Wheat and the 3D maize
architecture model, we found that the stem area is null for the early stages, e.g. during the
development of the first leaves (thermal time less than 300°Cd), wheat stem area is in general
smaller in proportion than for maize (Figure 26).
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Table 14 Optical properties of the different parts of the plants and the soil in the red and NIR taken

for the standard maize and wheat stands.

Reflectance | Transmittance
Red NIR Red NIR
Green leaf 0.063 | 0.463 | 0.018 | 0.522
Stem 0.063 | 0.463 | 0.000 | 0.000
Senescent leaf | 0.347 | 0.474 | 0.287 | 0.432
Soil 0.140 | 0.191 - -
6 6
(a) Wheat (b) Maize
5 r 5 - 27%
e o Yellow leaf ik . )
Stem 22% Green leaf =
23 | Green |eaf - T3
Pl [= 2 L 73%
7% o i
1L . 12% 83% 1L
13% :29: ;:: 45% 25% 80%
0 87% 0 55% 75
100 300 500 700 900 150 350 550 750 950

Thermal time(°Cd)

Thermal time(°Cd)

Figure 26 PAIl and the proportion of green leaves (green), yellow leaves (yellow) and stems (blue) of
typical (a) wheat and (b) maize canopies during the growing stages.

shows the LuxCoreRender simulated canopy reflectance by considering the presence of green stems
or not in the red and NIR domains for the considered SAA values. Results showed that the stems had
almost no influence on canopy reflectance in the red domain (Figure 27a and Figure 27c) especially
when the soil contribution is the highest (SAA=0°). This is explained by the low value of leaf and stem
reflectance and transmittance. Conversely, in the NIR domain, stems showed significant impact on
canopy reflectance, particularly for the later stages when the contribution of stems to PAIl increases
(Figure 27b and Figure 27d). The decrease of canopy reflectance due to the stems is mainly
explained by the strong stem absorption (null transmittance) that decreases the multiple scattering.
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Figure 27 Comparison of canopy reflectance (3D structure) between canopy with leaves and stems
(red) and canopy with only leaves (blue) in red and NIR. VZA = 0°, VAA = 0°, SZA = 45°, SAA = 0° (+),
45° (*) and 90° (O). (a) wheat in red (b) wheat in NIR (c) maize in red (d) maize in NIR.

To perform a fair comparison between the turbid medium (e.g. 1D) assumption and the 3D crop
architecture modelling, LuxCoreRender was used to simulate a turbid medium with the same canopy
leaves and stems, but distributing them randomly in the canopy volume, while keeping their
orientation. For both wheat and maize (Figure 28), the 1D reflectance is independent from the sun
azimuthal position, while the 3D reflectance shows significant variations with sun azimuth, especially
when the sun is parallel to the row direction (SZA=45°). In the NIR (Figure 28b and Figure 28d), the
1D reflectance is always higher than the 3D one. This is mainly due to a higher multiple scattering
linked to a higher probability for a photon to interact with a leaf in the absence of clumping (Duthoit
et al. 2008). Conversely, in the red domain (Figure 28a and Figure 28c) where the canopy reflectance
is low, small differences are observed. The 1D reflectance is slightly smaller than the 3D one when
the sun is in the row direction since there is a higher proportion of soil illuminated between the rows
and soil reflectance is higher than that of the leaf. With the increasing of SAA, the 3D simulation in
red decreases and is lower than 1D simulation, mostly because of the increasing fraction of
shadowed soil and leaves seen. As expected, when canopy develops, the difference in reflectance
between 1D and 3D assumptions increases for maize while remaining almost constant for wheat.
This demonstrates that, conversely to maize, for the latest stages, the structure of the wheat canopy
becomes closer to a turbid medium and the row effect is decreasing.
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Figure 28 Comparison of canopy reflectance between turbid medium assumption (red) and 3D
realistic structure (blue) in red (left) and NIR (right) for wheat (top) and maize (bottom). VZA = 0°,
VAA = 0°, SZA = 45°, SAA = 0° (+), 45° (*) and 90° (O).

3.2 Calibrating the relationships between VI and effective GAI

Based on Eq. 5, the relationship between VI and effective GAI are fitted using robust regression for
each sun zenith and azimuth angles, or when using all the sun angles together. For both wheat and
maize, the fixed sun angles improve the fitted results with higher R? for most sun angles (Table 15).
More uncertainties are introduced with increasing SZA and decreasing of SAA. Performances for
maize are more sensitive to the SZA than wheat canopies, which is explained by the more obvious
row structure of maize. Even though both OSAVI and MTVI2 are reported with less sensitivity with
soil backgrounds and canopy structure (Liu et al. 2012; Nguy-Robertson et al. 2012), OSAVI shows
the similar R? as MTVI2 for wheat and better fitting accuracy for maize.
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Table 15 The coefficient of determination (R?) of robust regression between effective GAl and Vs

(NDVI, OSAVI and MTVI2). Vls are calculated from reflectance with specific sun angle from learning
database, or all the sun angles.

S7A NDVI OSAVI MTVI2
SAA 20° | 35° | 50° | 65° | 20° | 35° | 50° | 65° | 20° | 35° | 50° | 65°
0° 0.87 | 0.87 | 0.87 | 0.86 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96
25° 0.87 | 0.88 | 0.86 | 0.76 | 0.96 | 0.97 | 0.96 | 0.93 | 0.96 | 0.96 | 0.96 | 0.94
Wheat 45° 0.88 | 0.88 | 0.83 | 0.73 | 0.97 | 0.97 | 0.96 | 0.91 | 0.97 | 0.97 | 0.96 | 0.93
67° 0.88 | 0.87 | 0.82 | 0.73 | 0.97 | 0.97 | 0.95 | 0.90 | 0.97 | 0.97 | 0.96 | 0.93
90° 0.88 [ 0.87 | 0.82 | 0.73 [ 0.97 | 0.97 | 0.95 | 0.90 | 0.97 | 0.97 | 0.96 | 0.93
All angles 0.77 0.91 0.93
0° 0.87 | 0.87 | 0.87 | 0.87 | 0.88 | 0.88 | 0.89 | 0.90 | 0.83 | 0.84 | 0.86 | 0.87
25° 0.92 1 0.94 | 0.93|10.91 |0.90 | 0.94 | 0.95 | 0.93 | 0.85 | 0.89 | 0.92 | 0.91
Maize 45° 0.94 | 0.94 | 0.93 |1 0.91 | 0.93|0.94 | 0.95 | 0.93 | 0.88 | 0.90 | 0.92 | 0.90
67° 0.94 1 0.94 | 0.93|10.91 | 0.93|0.94 | 0.95|0.93|0.89|0.90 | 0.93 | 0.91
90° 0.94 1 0.94 | 0.93 |1 0.91 | 0.93|0.94 | 0.95 | 0.93 | 0.89 | 0.90 | 0.93 | 0.91
All angles 0.84 0.87 0.82

4 Discussion

4.1 Effective GAI is best estimated using 3D structure description

Estimation results based on 3D model inversion were calculated from NN trained over learning
database simulated from 3D model and corresponded LAI, GAI, PAI and effective GAI. As validation,
validation database was applied and results were evaluated in Figure 29 for wheat and Figure 30 for
maize. Since no yellow leaves are considered in 3D maize model, only LAl and GAIl are showed for
maize canopy. When only green parts are considered (Figure 29b, RMSE = 0.51), the estimation
based on canopy reflectance performs slightly better than adding yellow leaves (Figure 29c, RMSE =
0.53). This is consistent with $&5iRIAIKB]5IFHYE. where almost no contribution is found when
yellow leaves are cantered at the bottom layer of canopy. Since GAIl and PAI have larger range
compared with LAI, adding stem area does not improve the estimation and result in the increase of
RMSE (Figure 29c and Figure 30b). However, when plant clumping is considered, the estimation of
effective GAl showed the best performance with the highest R? and the smallest RMSE (RMSE = 0.33,
R? = 0.95 for wheat and RMSE = 0.47, R? = 0.90 for maize). Therefore, based on the canopy
reflectance simulated from 3D crop architectures, effective GAl is more related to remote sensing
observations.
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Figure 29 Scatter plots between estimated results from NN trained over 3D model simulations and (a)
LAI (b) GAI (c) PAI and (d) effective GAI for wheat. The grey level intensity increases with the density
of points. The black line corresponds to the 1:1 line. The red line is the best linear fit with no

intercept.
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points. The black line corresponds to the 1:1 line. The red line is the best linear fit with no intercept.

4.2 3D description improves estimates of effective GAI as compared to 1D
structure description

Based on the NN trained by database from PROSAIL model, the estimated results from validation
database were compared with effective GAI. For both wheat and maize, estimation results from 3D
structure description (Figure 29d and Figure 30c) perform better than that from 1D structure
description (Figure 31, RMSE = 0.64, R? = 0.86 for wheat and RMSE = 0.79, R? = 0.77 for maize) with
higher R? and lower RMSE. Compared with estimated effective GAI from NN trained over 3D model,
the underestimations were observed for both types when effective GAl were higher than 4. For
effective GAIl lower than 4, the estimated effective GAl from PROSAIL model show good agreements
with effective GAI for wheat (Figure 31a), while comparatively more outliers appear for maize.
Similar results are observed from (Duveiller et al. 2011) (Camacho et al, 2017) where training dataset
is both simulated from PROSAIL model and are compared with measured effective GAI or derived
ground GAI. Underestimation is observed for both wheat and maize when effective GAl is larger than
4. Reasons come from the hypothesis of 1D RTM where canopy is assumed to be homogeneous.
Clumping is not taken into account for irregular distributed canopy and lead to GAI underestimation,
especially for higher effective GAl values.
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Figure 31 Scatter plots between estimated effective GAlI from NN trained over PROSAIL model
simulations and effective GAI for (a) wheat and (b) maize. The grey level intensity increases with the
density of points. The black line corresponds to the 1:1 line. The red line is the best linear fit with no
intercept.

4.3 Radiative transfer inversion performs better than using simple vegetation
indices

Different Vls (regressed using canopy reflectance with mixed angle or fixed angle) were validated
using the validation database from 3D simulations. The estimated effective GAIl from VIs were
compared with effective GAIl (Table 16). VIs with fixed angle provide better estimation than Vs with
mixed angles. For wheat, the estimation from MTVI2 is slightly better than OSAVI with RMSE = 0.96
and R%= 0.73 for mixed angle. For maize, OSAVI provides better estimation with smaller RMSE for
mixed angle, while MTVI2 improves a little bit when fixed angle is applied. But compared with
estimated results from radiative transfer inversion, simple VIs with fixed angle still have larger RMSE
and smaller R% Even though different VIs showed good performance in previous studies (Liu et al.
2012; Kross et al. 2015; Corti et al. 2018), regression parameters as well as estimated accuracy are
different when conditions like location, cultivar and phenological stages are changed. For simulated
database in this study, larger ranges of optical properties, soil brightness and canopy structures were
added. More changes of variables limit the application of simple VIs.

Table 16 Comparison between effective GAl and estimated effective GAl from VIs (NDVI, OSAVI and
MTVI2), PROSAIL model and 3D model using the coefficient of determination (R?) and the root mean
square error (RMSE). Learning and validation database with mixed sun angles are applied.

Wheat Maize
RMSE R? RMSE R?
Mixed Fixed Mixed Fixed Mixed Fixed Mixed Fixed
angle angle angle angle angle angle angle angle
NDVI 1.33 0.85 0.53 0.70 1.39 1.28 0.41 0.43
OSAVI 1.01 0.74 0.73 0.80 1.15 1.11 0.47 0.53
MTVI2 0.99 0.73 0.76 0.82 1.31 1.06 0.57 0.64
PROSAIL 0.64 0.86 0.79 0.77
3D 0.33 0.95 0.47 0.91
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4.4 3D model inversion results are insensitive to sun position

The bidirectional reflectance distribution function (BRDF) of canopy reflectance is important to
relate multi-angle remote sensing data to retrieve biophysical parameters (Liang and Strahler 1993).
When the view angle is fixed at nadir, changing of sun position results in the variation of canopy
reflectance with different proportion of the sunlit and shadowed regions in the row crops (Lord et al.
1988; Zhao et al. 2010).

For Vls, even though studies have proved that the influence of SZA on variability of Vls is relatively
small especially for especially for later stages (Liu et al. 2012), it is significantly depends on SAA
respect to row orientation. Take OSAVI of wheat canopy as an example, when sun direction is
parallel to crop row, the Vl-effective GAl relationship is quite independent from SZA (Figure 32a). But
when sun direction is perpendicular to the row, larger variation is caused because of the larger
changes of the proportion of sunlit and shadows areas. For different SZAs, the smaller it is, the less
effect in canopy reflectance is caused by the row crop structure (Figure 32b).

(@) (b)

SZA=20°| |
—— SZA=50°
SZA=65°

2 3 4 5 6 7

effective GA effective GAI
Figure 32 Mean value (solid line) and standard deviation (shadow face) of best-fit functions between
(a)OSAVI and effective GAI with different SZAs (SZA = 20°, 35°, 50° and 65°) (b) OSAVI and effective
GAI with different SAAs (SAA = 0°, 25°, 45°, 67° and 90°) from learning database for wheat.

For PROSAIL model, the BRDF effect is considered with input geometrical configurations and hot
spot parameters. Nevertheless, the assumptions based on turbid medium distribution of leaves are
different from row crops which show more clumped organization. Therefore, some sun positions will
enhance this difference and result in the miscalculation of effective GAl values. RMSE between
effective GAIl and estimates from NN trained with PROSAIL and 3D simulations with specific sun
angles are showed in Figure 33. For 3D simulations, inversion results are almost insensitive to sun
position with RMSE around 0.3 for wheat and 0.4 for maize when SZA changing from 20° to 50°
regardless of SAA. With the increasing area of shadowed leaves when SZA is quite large (SZA= 65°) or
SAA is closer to 0°, some uncertainties are introduced because of the less observed radiation from
leaves. For results from PROSAIL simulations, wheat canopy which is closer to ransom distribution of
leaves shows less variation and higher accuracy compared with maize canopy. Even though errors
would be introduced when SZA= 65° or SAA = 0°, results from PROSAIL model larger magnifies the
result because of the increasing area of sunlit soil between rows leading to more obvious differences
between turbid medium assumption and realistic canopies.
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Figure 33 RMSE between effective GAl and estimated effective GAI from NN trained with (a,b)
PROSAIL and (c,d) 3D datasets for (a,c) wheat and (b,d) maize. Results are validated using validation
dataset with specific sun angle.

5 Conclusion

The definition of LAl retrieved from remote sensing observations was examined in this paper.
Canopy reflectance of wheat and maize under different conditions was simulated at nadir with ray
tracing model LuxCoreRender and 3D crop architecture models based on the 3D speed up method.
LAI, GAI, PAI and effective GAl were computed according to different definitions. Totally 33750 cases
were generated for each geometry setting and crop type.

Different canopy reflectance over different structure assumptions was first examined. For both
wheat and maize, adding stems would decrease the reflectance because of the increase of
absorption from stems, while adding yellow leaves before earring show almost no influence since
most of them are located at bottom layer. Based on the NN, simulated canopy reflectance from 3D
RTM was related to different definitions of LAl and effective GAIl is best estimated with with the
highest R? and the smallest RMSE (RMSE = 0.33, R? = 0.95 for wheat and RMSE = 0.47, R? = 0.90 for
maize). Two other inversion methods (VIs and 1D RTM) were compared with results from 3D RTM.
Three VIs (NDVI, OSAVI and MTVI2) were test and provided the worst performance compared with
1D and 3D RTM because canopy parameters with large changing ranges were considered. Based on
the turbid medium assumption, the PROSAIL model which is a typical 1D RTM was applied for wheat
and maize. However, limited by the turbid medium assumption of canopy structure, results from
PROSAIL model showed comparatively larger RMSE compared with 3D RTM.
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For row crops, sun-angle effects have been tested in different studies based on canopy reflectance
measured in field experiments (Kollenkark et al. 1982; Shibayama and Wiegand 1985; Lord et al.
1988) or simulated with limited 3D architectures (Zhao et al. 2010). In this study, influence from
different sun positions was examined in both canopy reflectance and inversion performance. Results
showed that the parallel between sun light and row angle would result in more shadowed plants
with the decreasing of canopy reflectance in red and the increasing in NIR, which consequently
cause the worse inversion results because of the introduced uncertainties of plants. Generally
speaking, 3D model is less sensitive to sun angles compared with the other two, while 1D model is
more affected when the sun light is parallel to the row angle because of the difference between
turbid medium assumption and realistic canopies.

This study indicates that the effective GAI shows better consistence with estimates from remote
sensing images using empirical or physical methods. Estimated results from 3D model inversion are
more accurate than VIs and 1D RTM. For future research, effective GAl from field measurements is
more recommended to be compared with retrieved estimates from remote sensing methods and 3D
model inversion is a good way to improve the estimation of canopy parameters.
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3.3 The use of 3D realistic models reduce the
bias in GAI and chlorophyll estimates from
satellite data: the case of wheat and maize

crops under a wide range of conditions
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Optimal learning for GAI and chlorophyll
estimation from 1D and 3D radiative transfer
model inversion: the case of wheat and maize
crops observed by Sentinel2

Jingyi Jiang, Marie Weiss, Shouyang Liu, Kamran Irfan, Wenjuan Li, Cindy Delloye, Fred Baret
Abstract

The estimation of GAl and chlorophyll from 1D and 3D radiative transfer model inversion with neural
network (NN) is compared in the case of wheat and maize. Training databases are first generated
from 1D PROSAIL model and 3D specific model respectively. For 3D specific model, different
phenological stages, leaf optical properties, soil reflectance, canopy structures and sun angles are
included using a speeding up method. Based on the trained NN from 1D and 3D training databases,
biophysical variables including green area index (GAl), leaf chlorophyll content (Ca) and canopy
chlorophyll content (CCC) are estimated using Sentinel-2 observations and compared with field
measurements. Results show that 3D model provides more accurate estimation for most variables,
with slight improvement for wheat (RMSE of GAI = 0.72, RMSE of C., = 9.6 ug/m?and RMSE of CCC =
43.39 pg/m?) and larger improvement for maize (RMSE of GAl = 0.37 and RMSE of CCC = 51.49
ug/m?). The inclusion of bands in red-edge and SWIR region improve the estimation of GAIl and the
utilization of bands in red-edge region is important for chlorophyll estimation.
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GAI, chlorophyll, 3D radiative transfer model, PROSAIL, inversion, neural network
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1 Introduction

The green area index (GAI) and the chlorophyll content at leaf and canopy level are among most
important biophysical variables since they both relate to the canopy photosynthetic potential and to
the amount of electromagnetic radiation reflected into space which make them accessible from
satellite data (Broge and Leblanc 2001). Different from leaf area index (LAI) which is defined as half
the total developed area of leaves per unit horizontal ground area (Chen and Black 1992), GAI refers
to the green elements with no differences between leaves, stems and reproductive organs (Baret et
al. 2010). For reflectance observations, the retrieved variables using remote sensing imagery are
proved to be more sensitive to the green elements (Duveiller et al. 2011). Leaf chlorophyll content
(Cap) is the major plant pigments in photosynthesis. It is not only applied as an indirect estimation of
N states but also closely relate to plant stress and senescence (Croft and Chen 2017). Canopy
chlorophyll content (CCC) is defined by the C,, and GAI (Houles et al. 2007). Compared with C,,, CCC
which represents the optical path in the canopy where absorption by chlorophyll governs the
radiometric signal is proved to be more suited for canopy nitrogen content (Baret et al. 2007b;
Delloye et al. 2018; Zhou et al. 2016).

Methods to estimate GAI, Ca and CCC from remote sensing data include empirical methods based
on empirical regression or machine learning techniques to relate the variables and vegetation
indexes, and physically based radiative transfer models (RTM) inversions (Baret and Buis 2008;
Verrelst et al. 2012). Even though studies have proved that empirical methods can provide more
accurate estimation of canopy variables (Jay et al. 2017; Liu et al. 2012), they are limited by the
cultivar, location and time with local calibration. Physically based RTMs are developed according to
the physical processes involve in the photon transport within vegetation canopies (Verger et al.
2011). 1D radiative transfer models (1D RTM) like PROSAIL model (Jacquemoud et al. 2009) and
kuusk model (Kuusk 1994) are built based on the turbid medium assumption. Combined with
different inversions techniques (e.g. optimization, Look-Up-Tables (LUT) and machine learning
methods), they are inverted to estimate canopy variables with the advantage of being
computational efficient regardless of plant types. However, because of the simplified assumption on
canopy structure, errors are introduced for more clumped conditions. Different 3D radiative transfer
models (3D RTM) like FLIGHT (North 1996), DART (Gastellu-Etchegorry et al. 2004) and open source
renders (e.g. PBRT (Stuckens et al. 2009) and POV-Ray (POV-team 2013)) have been developed to
provide more accurate simulation of canopy reflectance with precise description of canopy structure.
According to the speeding up method of 3D simulation (Jiang et al. 2019b), canopy reflectance can
be simulated by considering only a limited number of soil and leaf properties for the given
observation geometry. A learning and validation database of wheat and maize composed of large
numbers of canopy reflectance simulations have been generated with detailed 3D RTM (Jiang et al.
2019a), which provide the possibility to retrieve biophysical variables from remote sensing
observations.

As one of the machine learning methods, Neural Networks (NN) are intensively used to estimate
biophysical variables with simulated learning database from RTM based on remote sensing
observations from medium to decametric resolutions (Baret et al. 2007a; Delloye et al. 2018;
Verrelst et al. 2018; Weiss et al. 2002). The estimation performances of NN highly rely on the
training database, the architecture and the training process to learn the internal relationships
between the inputs and the corresponding outputs (Bacour et al. 2006; Kimes et al. 1998). When
multiple variables are estimated, some studies trained a single network with several outputs
considering the additional physical constraint among variables (Bacour et al. 2006; Baret et al. 20073;
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Schlerf and Atzberger 2006), while the others prefer to define and train the networks independently
for each variable with the statement that concurrent estimation of several variables with a single
network would lead to poorer performance (Baret et al. 2013; Li et al. 2015; Verger et al. 2011).
However, no studies compare the influence from single or multiple networks specifically.

The European Sentinel-2 Mission (S2) with decametric resolution and high revisit capability could
provide continuity to monitoring services over global terrestrial surfaces (Van der Meer et al. 2014).
S2 includes three new bands in red-edge region (centered at 705, 740 and 783 nm) which has been
proved to improve the inversion of biophysical variables (Clevers and Gitelson 2013; Delegido et al.
2011). Different band combinations have been tested with machine learning algorithms (Delloye et
al. 2018; Verrelst et al. 2012; Verrelst et al. 2013). Results show that the estimation of GAl and
chlorophyll would benefit a lot from bands in the red-edge in different degrees, while adding bands
in SWIR cause low gain in accuracy for both variables.

The objective of this study is to compare the estimation of GAl and chlorophyll at leaf and canopy
level from 1D and 3D RTM inversion with S2 observations. Two crops, wheat and maize, with
different phenological stages are included. Both 1D PROSAIL and 3D specific model are used to build
the learning database. NN are selected as the inversion method to train the learning database. For
different biophysical variables, estimated results from NN with single or multiple outputs are firstly
compared. Then the better one is applied with 1D and 3D RTM to compare the inversion results with
field measurements using reflectance from Sentinal-2. Influence from different bands setting of
Sentinal-2 are also tested. Finally, performance of RTMs with NN in the case of wheat and maize
crops are concluded.

2 Materials and Methods

2.1 Ground reference measurements

The Produits Pour Sentinel-2 (P2S2) Project provides an extensive calibration and validation dataset
over a large range of crops observed under contrasted growth conditions at several phenological
stages. Measurements from P2S2 were applied as the ground reference in this study. Four data
acquisition sites are located in France (Camargue, Toulouse, Boigneville) and Belgium (Gembloux). Totally
43 Elementary Sampling Units (ESUs) of wheat (from February to April, 2018) and 45 ESUs of maize (from May
to August, 2018) with ground measurements of GAI and C,p before earring were selected as the validation
dataset (Table 17).

Table 17 Characteristics of selected ESUs over four measurement sites from P2S2 Project.

Site Lat(°) | Lon(°) | Crop type | Measurement date (2018) | Nb. ESUs
Camargue, France | 43.6 4.5 :1:?:: 12;//85_ é;//%?é 290
Toulouse, France 43.4 1.2 wheat 27/02-02/05 10
Boigneville, France 48.3 2.4 \:1:2?:(: 26/(;17_/3:/05 1(2)

Gembloux, Belgium | 50.6 4.7 m:?:: éi//(())ij ;;5//(())65 i;

The sampling protocol of measurements following the recommendations from the Committee on Earth
Observation Systems Land Product Validation group (CEOS-LPV) (Fernandes et al. 2014). An ESU
corresponds to a 15m x 15m area in a homogeneous part of field with 30 meters far from the field borders.
The centre coordinates of the ESU is geo-located with a GPS within an accuracy of few meters. For each ESU,
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three sub-samples (2m x dm, d varied with the crop row spacing) along the row direction were used to capture
the possible variability (Figure 34).

In each subsample, five Digital Hemispherical Photography (DHP) downward looking acquisitions are
performed along a diagonal transect to represent the possible row effect. The resulting 15 images were
processed together using CAN-EYE software version 6.4.95 (https://wwwé6.paca.inra.fr/can-eye) to
estimate the GAI at the ESU level. The output effective GAI from CAN-EYE was used to compare with the
estimation results from satellite observations because it has been proved that effective GAl is better linked
with remote sensing observations regardless of the inversion methods (liang, 2019). In this paper, ‘GAI’ was
used to represent ‘effective GAI’ in the following estimations and comparisons.

The chlorophyll was measured using SPAD measurements (Minolta 1989) with a minimum of 15 leaves
randomly located at the top of the canopy per subsample. Based on the consensus equation from Gerovic et al.
(2012), the SPAD readings were transformed into surface-based specific units of chlorophyll (ug/cm?):

Chlorophyll = (99*SPAD)/(144-SPAD) (2)

For each ESU, 45 values of chlorophyll were averaged as Cap. The CCC of was calculated from the measured GAI
from DHPs multiplied by the averaged C,p, from SPAD.

BUFFER ZONE

15m

—

30m ﬂ u =

g |3
3

Figure 34 Spatial Sampling within an ESU. On the left, the circle represents the buffer zone with 30m radius
centered on the ESU. The 15m x15 m ESU includes three sub-samples where measurements are taken as
illustrated on the right. The orange circles represent the position of the DHP camera for GAI estimates.

2.2 Sentinel-2 data

Sentinel-2 is an Earth observation mission operated by European Space Agency (ESA) (Drusch et al.
2012). This mission consists of two satellites Sentinel-2A (S2A) launched on 23 June 2015 and
Sentinel-2B (S2B) launched on 7 March 2017. They follow a sun-synchronous orbit with altitude of
786 km and an overpass time at 10:30am UTC. The combination of two satellites offer a nominal
revisit with a period of 5-day. S2 provides data over 13 spectral bands, ranging from visible spectrum
to short-wave infrared spectra. In this study, three 10m bands (B3: 560nm, B4: 665nm, B8: 842nm)
and six 20m bands (B5: 705 nm, B6: 740 nm, B7: 783 nm, B8a: 865 nm, B11: 1610 nm and B12: 2190
nm) were applied to retrieve GAI, C,, and CCC. To make it consistent, the S2 10m bands were
aggregated at 20m resolution.

On all P2S2 sites, cloud free S2A and S2B multi-spectral instrument (MSI) Level-2A images on closet
dates of ground measurements (maximum 7 days difference) were downloaded from Theia Land
data center (https://theia.cnes.fr). These surface reflectance images were generated based on cloud
detection and atmospheric correction algorithm MAJA (Rouquié et al. 2017). The accuracy of MAJA
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algorithm on cloud detection and aerosol estimation has been well validated in several studies
(Baetens et al. 2019; Sola et al. 2018). The pixels contaminated by the clouds/cloud shadow or
flagged as snow were not used in this study. Average value of the 3 by 3 pixels region was calculated
as representative of each site. View zenith angle, view azimuth angle and sun positions of each
image were also extracted from the metadata file of S2.

2.3 Radiative transfer models

2.3.1 1D model

The widely used PROSAIL model (Jacquemoud et al. 2009)was selected as 1D radiative transfer
model in this study. It couples the PROSPECT leaf optical properties model (Jacquemoud and Baret
1990) and the SAIL canopy reflectance model(Verhoef 1984). Based on the turbid medium
assumptions, the PROSAIL model assumes the canopy to be homogenous regardless of species. The
canopy structure is defied with variables including GAI, average leaf angle (ALA) and hot spot
parameter (HOT) from SAIL mode. The leaf optical properties are simulated based on the leaf
structure parameter and combinations of leaf biophysical variables with corresponding absorption
coefficients.

2.3.2 3D model

2.3.2.1 The 3D architecture model

To show different crop architectures, two contrasted species were selected: wheat which is closer to
the turbid medium assumption, while maize keeps the row structure at different phenological stages.
The 3D ADEL-Wheat model (Fournier et al. 2003) and the 3D maize model created by Lépez-Lozano
et al (2007) were utilized to simulate 3D wheat and maize respectively with same setting of canopy
variables as (Jiang et al. 2019a). For both wheat and maize, totally 650 scenes were generated and
selected to represent the distribution of canopy architectures.

2.3.2.2 LuxCoreRender simulation

LuxCoreRender (LuxCoreRender 2018) which is developed based on open source render engine PBRT
(Pharr et al. 2016) was selected as the ray tracing model to simulate canopy reflectance with 3D crop
architecture model. It has been validated using RAMI Online Model Checker (ROMC) (Jiang et al.
2019b; Widlowski et al. 2008). Basic settings of the render engine and optical properties were
defined in Table 18. Canopy reflectance with different wavelength, leaf and soil properties were
computed based on the limited numbers of simulations from reference mode and the extension
method proposed in Jiang et al.(2019b). The 3D canopy mock-up was replicated at least three times
larger than the spot size to avoid boundary effects. The canopy reflectance was computed through
rendering results divided by the value computed for a lambertian reflector under the same
conditions. To compute the effective GAI of each scene, the gap fraction was calculated with the
image from the nadir viewing camera (field of view = 120°) based on Miller’s formula (Miller 1967).

116



Table 18 Basic settings of LuxCoreRender and optical properties of the canopy.

Name properties
Render engine Tiled path, 25 depth per pixel
Light source Sun with no environment effect
Camera Field of view: 10°, Height: 10 m, Spot size: 1.7 x 1.7 m?
Leaf Lambertian with reflectance and transmittance
Optical
P . Stem Lambertian with reflectance
properties
Soil Lambertian with reflectance

2.4 Radiative transfer model inversion

2.4.1 Training database

With PROSAIL and 3D specific model, two training database were built based on variables from Table
19. Descriptions of the ranges and distribution law of each variable as well as constraints on the co-
distributions between variables were defined according to Weiss and Baret (2016). To make two
training database comparable, distribution of leaf optical properties were kept the same and seven
typical soil reflectance spectrums multiplied by different soil brightness were applied for two models.
For 3D model, the refraction index (n) and mesophyll structure (N) were fixed according to 3D speed
up method (Jiang et al. 2019b). For different canopy structures, different GAI, ALA and HOT were
included in PROSAIL model for both wheat and maize, while different 3D wheat and maize
architectures were generated according Section 2.3.2. For PROSAIL model, the maximum GAIl was
set to 15 to solve the saturation problem existed for high GAI value (Delloye et al. 2018). Considering
the effect of sun direction in row crop, each 3D scene was simulated with four sun zenith angles (SZA)
and five sun azimuth angles (SAA) with camera at nadir place (view zenith angle (VZA) and view
azimuth angle (VAA) are 0°). Here SAA is defined as the relative azimuth angle between sun and crop
row.

To make it consistent as S2, the simulated reflectance from both PROSAIL and 3D model were both
spectrally integrated to represent actual S2 bands according to the spectral response function of the
sensor. For PROSAIL model, totally 33750 cases were simulated with input canopy variables and
output reflectance corresponding to 9 selected S2 bands. For 3D model with each crop specie and
geometry setting, the same number of cases was also generated with the same output bands.
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Table 19 Variables to build training database with PROSAIL and 3D model. The standard deviation
(Std), mode, minimum and maximum values are used to describe the distribution law. Nb. Class is
the number of classes of the variable.

Input variable Min Max Mode Std Nb. Law
Class
c GAI 0.0 15.0 2.0 3.0 6 Gauss
anopy ALA (%) 30 70 45 30 3 Gauss
structure
HOT 0.1 0.5 0.2 0.5 1 Gauss
Soil
Bs . . 1.2 2.
background 0.5 35 0 5 Gauss
s Cab(pg.cm??) 20 90 45 30 5 Gauss
b Cam(g.cm™) 0.003 | 0.011 | 0.005 O'SO 5 Gauss
()
- Leaf optical Cu_Rel 06 | 085 | 075 | 008 | 5 | Uniform
|
= P . Cop 0.0 2.0 0.0 0.3 3 Gauss
=| properties
g Mesobhvil N 1.2 1.8 1.5 0.3 3 Gauss
@ PRy 3D:N=15
Refractive 1D : n=n(\); 3D :n=1.4
Index n
VZA(°) 0
Observation VAA(®) 0
geometry SZA(°) 20, 35, 50, 65
SAA(°) 0, 25, 45, 67, 90

2.4.2 Neural networks

Based on the training database generated from PROSAIL and 3D model, a back-propagation artificial
neural network (ANN) was applied to retrieve three biophysical variables: GAI, C,, and CCC.
According to implementations from Li et al. (2015), the architecture of ANN include three layers: one
input layer with normalized input data, one hidden layer of five neurons with sigmoid transfer
functions and one output layer of a linear neuron. Three networks were trained in parallel for the
corresponding variable. To compare the performance between the single and multiple outputs from
ANN, ANN with one output layer of three neurons (one neuron per variable to be estimated (Bacour
et al. 2006)) was also tested. The number of neurons from hidden layer was increased to 10 to
guarantee the simulation accuracy.

For each set of training database, 70% of the cases were randomly selected to train the NN and the
remaining was used to evaluate the theoretical performances. To assess the influence from different
combinations of S2 bands, three band settings were applied as the inputs: (1) bands with 10m
resolution: B3, B4 and B8 (2) bands with red-edge: B3, B4, B5, B6, B7 and B8a (3) bands with red-
edge and SWIR: B3, B4, B5, B6, B7, B8a, B11 and B12. For PROSAIL model, variables of input layer
include the reflectance in different band sets and the geometrical configurations (the cosine of VZA,
SZA and relative angle between VAA and SAA). For 3D model, NNs were trained for each geometrical
configuration and the input layer was composed of reflectance in different band sets from the
corresponding training database. The accuracy of the inversion was evaluated with several statistical
criteria including the coefficient of determination (R?), Root Mean Square Error (RMSE), Relative
Root Mean Square Error (RRMSE) and Bias which are calculated as follows:
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N M2
RMSE = /—Em(’x M0 (2)

RRMSE = RMSE/M  (3)

TN (E—My)
N

Bias =

(4)

where E is the estimate value, M is the measured value, M is the mean of measured results and N is the
number of measurements.

3 Results and discussion

3.1 Estimating single or multiple variables concurrently?

Based on the training and validation database simulated from 1D and 3D model, the theoretical
performances of three specific NN with single output and one NN with three outputs using eight
bands (B3, B4, B5, B6, B7, B8a, B11 and B12) are compared using RMSE between the estimated
and validation GAIl, C,, and CCC. For 1D PROSAIL model (Figure 35), specific NN with single
output provide quite similar performance as the NN with multiple outputs. For 3D wheat (Figure
36) and 3D maize (Figure 37) model, even though lower RMSE and less scattering points are
showed for both NN with single and multiple outputs, NN trained with single variable has
higher theoretical accuracy for all variables. Although Bacour et al. (2006) proposed that using a
NN with multiple outputs allows imposing an additional physical constraint to the inverse
problem as the variables are not independent, errors might be introduced to other variables at
the same time which increase uncertainties of the simulation when one variable is misestimated
from the single NN. Similar conclusion was also stated from Verger et al. (2011) where NN with
single output would lead to poorer performance when estimate LAl, FCOVER and FAPAR from
NN trained with PROSAIL training database. Therefore, the specific NN with single output is
more recommended when multiple variables are estimated especially for 3D model inversion.
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Figure 35 The theoretical performances of the NN over the simulated dataset from 1D PROSAIL
model. A, B and C are validation results of GAI, Ca, and CCC from three NNs with single output; D, E
and F are validation results from one NN with multiple outputs. The grey level intensity increases
with the density of points. The black solid line is the 1:1 line.
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Figure 36 Simulated performances of the NN over the simulated dataset from 3D wheat model. A, B
and C are validation results of GAI, C,, and CCC from three NNs with single output; D, E and F are
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validation results from one NN with multiple outputs. The grey level intensity increases with the
density of points. The black solid line is the 1:1 line.
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Figure 37 Simulated performances of the NN over the simulated dataset from 3D maize model. A, B
and C are validation results of GAI, C,, and CCC from three NNs with single output; D, E and F are
validation results from one NN with multiple outputs. The grey level intensity increases with the
density of points. The black solid line is the 1:1 line.

3.2 3D model improves GAI and chlorophyll estimation

To compare the performance of inversion between 1D PROSAIL model and 3D wheat and maize
model, biophysical variables GAI, C,, and CCC are retrieved using S2 with eight spectral bands (B3, B4,
B5, B6, B7, B8a, B11 and B12) based on the NNs from 1D or 3D training database. As it was
mentioned in the last section, the specific NN with single output is applied.

For 1D PROSAIL model, estimated GAI corresponds well to the field measurements (Figure 38A and
5C, RMSE = 0.75 and R? = 0.75 for wheat and RMSE = 0.72 and R%= 0.87 for maize). For maize, slight
overestimation occurs when GAl is larger than 2 (Bias = 0.46). C,, retrieval using NN shows a
systematic overestimation for both wheat (Figure 38B, RMSE = 11.29 pg/m? and Bias = 5.9 ug/m?)
and maize (Figure 38E, RMSE = 16.99 pg/m? and Bias = 16.17 pg/m?), although correction of SPAD
has been applied according to Eq. (1). To avoid ambiguities between GAIl and C,, from inversion, CCC
is directly estimated from NN. Some scattering is observed for wheat (Figure 38C, RMSE = 56.83
ug/m?), while overestimation still exist for maize CCC estimation (Figure 38F, RMSE = 81.87 pg/m?).

When 3D specific wheat and maize model are applied, the overall inversion results show an
improvement for each variable except C,, of maize. Less scattering and little bias is achieved with
smaller RMSE for both wheat and maize. For GAI and CCC, even though estimation of wheat is
improved (Figure 39A and 6C, RMSE = 0.72 for GAl and RMSE = 51.14 pg/m? for CCC), more increase
of performance is got from maize (RMSE of GAIl decreasing from 0.72 to 0.37 and RMSE of CCC
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decreasing from 81.887 to 51.49). This is mainly because the wheat canopy is more similar as turbid
medium assumption from 1D model where leaves are assumed to be randomly distributed, while
the maize canopy is more discrete as row crops and show larger difference from 1D model. For C,, of
wheat, estimation result shows lower RMSE and reduced bias (Figure 39B, RMSE = 10.11 pg/m? and

Bias =

0.4 pg/m?). But for Ca of maize, worse performance is got with increased RMSE and

decreased R? (Figure 39E, RMSE = 17.44 pg/m? and R?= 0.5). Reasons for the failed estimation of
maize Cyb is might from the wrong setting of maize optical properties. More experiments with 3D
simulation of maize canopy are still undergoing to solve this problem.
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Figure 39 Accuracy of the GAI, Ca, and CCC retrieved from S2 images for the bands set (B3, B4, B5, B6,
B7, B8a, B11 and B12) of wheat (A, B and C) and maize (D, E and F) using 3D wheat and maize model.
The black solid line is the 1:1 line.

3.3 The band setting for 1D and 3D inversion
The retrieval performances of 1D and 3D inversion with 6 bands including red-edge (B3, B4, B5, B6,
B7 and B8a) and 3 10m-resolution bands (B3, B4 and B8) were also presented.

For GAI estimation, increase performance is got with more bands added. For 3D model, RMSE of
wheat increases from 0.72 to 0.81 and RMSE of maize increase from 0.37 to 0.69 from 3 to 8 bands.
When six bands are applied, the overestimation of maize GAl is intensified for 1D inversion (Figure
40D, Bias = 0.69). When only 3 bands exist, the saturation is easier to reach when three bands are
applied when GAl is larger than 4 (Figure 42A and 9D, Figure 43A and 10D). As it is stated by Segl et
al. (2012), bands in SWIR are sensitive to soil spectral and red-edge bands show more links to
vegetation biomass and GAIl. In addition, bands in SWIR and red-edge are reported to be less
disturbed by atmospheric perturbation. Therefore, the inclusion of SWIR and red-edge bands would
increase the accuracy of estimation with more information added. Comparable results are got when
compared with previous studies using PROSAIL model: Delloye et al. (2018) reached a RMSE = 0.72
(RRMSE = 27.2%) for wheat with 9 S2 bands (B3, B4, B5, B6, B7, B8, B8a, B11 and B12) and results
with all 9 bands provide the best performance compared with other band settings. Veloso et al.
(2012) got a RMSE = 0.51 (RRMSE = 31.2%) with mixed wheat, maize, sunflower and soybean with
the combination of Formosat-2 and Spot satellites reflectance data. Simular overestimation of
maize appeared when GAl ranged from 2 to 4.

The estimation of wheat Ca is best estimated when six bands are applied (RMSE = 10.54 pg/m? and
Bias = 5.78 pg/m? for 1D (Figure 40B) and RMSE = 9.6 pg/m? and Bias = 0.91 pg/m? for 3D (Figure
41B)). This can be explained by the excellent correlation between leaf chlorophyll and bands in red-

123



edge region (Segl et al. 2012). Similar results were also achieved from previous studies where C,p
was best estimated with extra bands in red-edge (Segl et al. 2012; Verrelst et al. 2012). However, as
it was showed in other studies using 1D PROSAIL estimation with S2 reflectance (Delloye et al. 2018)
or spectrodirectional measurements (Lunagaria and Patel 2018), overestimation always exists
especially for Cap larger than 50 pug/m?. For 3D estimation, the overestimation is reduced with bias
smaller than 1 pg/m? for different bands combination. For maize Ca,, the best estimation for 1D
estimation is achieved with three 10m bands with less bias (Figure 42E, RMSE = 10.37 pg/m? and
Bias = 8.01 pg/m?), while errors still exist with 3D estimation with bad performance regardless of
bands settings. We are still looking for reasons for this problem.

For wheat CCC estimation, results with six bands (Figure 40C, RMSE = 53.94 ug/m? and Bias = 14.25
ug/m?) or three bands (Figure 42C, RMSE = 53.21 pg/m? and Bias = 16.24 pg/m?) using 1D model
provide similar accuracy. Overestimation occurs when wheat CCC is larger than 200 pg/m?. For 3D
wheat model, the best estimation is achieved using six bands with smallest bias (Figure 41C, RMSE =
43.39 pg/m? and Bias = -1.36 pug/m?). For maize CCC, estimates with three 10m bands using 1D
model has the smallest RMSE (Figure 42F, RMSE = 63.47 pg/m? and Bias = 47.50 pg/m?), while
estimates with 8 bands using 3D maize model performs best (Figure 39F, RMSE = 51.49 pug/m? and
Bias = 26.88 pg/m?). However, for both 1D and 3D inversion, the overestimation always exist, which
might inherit from the overestimates of maize Cas. Compared with estimation of GAIl and C.,, more
uncertainties might be included for CCC estimation since it is the combination of two other results
(GAI and Ca). In addition, errors from two filed measurement instruments would also result in
inaccuracy in validation.
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Figure 40 Accuracy of the GAI, C,p, and CCC retrieved from S2 images for the bands set (B3, B4, B5, B6,
B7 and B8a) of wheat (A, B and C) and maize (D, E and F) using 1D PROSAIL model. The black solid
line is the 1:1 line.
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Figure 41 Accuracy of the GAI, C,, and CCC retrieved from S2 images for the bands set (B3, B4, B5, B6,
B7 and B8a) of wheat (A, B and C) and maize (D, E and F) using 3D wheat and maize model. The black
solid line is the 1:1 line.
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Figure 42 Accuracy of the GAI, C., and CCC retrieved from S2 images for the bands set (B3, B4 and B8)
of wheat (A, B and C) and maize (D, E and F) using 3D wheat and maize model. The black solid line is
the 1:1 line.
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Figure 43 Accuracy of the GAI, C., and CCC retrieved from S2 images for the bands set (B3, B4 and B8)
of wheat (A, B and C) and maize (D, E and F) using 3D wheat and maize model. The black solid line is
the 1:1 line.

Simulated reflectance from training database of 3D wheat and maize model are compared with
reflectance from 1D PROSAIL model as well as reflectance from S2 (Figure 44). Three red-edge bands
(B5, B6 and B7) are compared with the green band (B3). For both wheat and maize, reflectance from
1D model has the larger ranges compared with 3D specific model. However, different distribution of
reflectance is showed for reflectance from 3D simulations because of the different crop
architectures and canopy structures. When compared with reflectance from S2, most bands are
within the changing ranges of 3D reflectance. But for B5 (705 nm) of maize canopy, bias is observed
with some overestimation. These would largely impact on the estimated value of chlorophyll
content since it is close to the pigment absorption region and might be the reason of the poor
estimation of maize Cap.
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Figure 44 Comparison between reflectance from training dataset (blue points: 1D PROSAIL; orange
points: 3D specific model) and S2 reflectance of ESUs (yellow points) of wheat (A, B and C) and maize
(D, Eand F).

4 Conclusion

The estimation of GAl and chlorophyll from 1D and 3D RTM with NN are compared in the case of
wheat and maize crops in this study. NN with single output has better performance compared with
NN with multiple outputs especially for 3D specific model. Compared with 1D generic model, 3D
specific model could provide more accurate estimation through comparison with field
measurements using S2 observations. For GAI, estimation with eight bands provides the best
estimation because of the more added information. Compared with wheat, more gain in accuracy is
achieved for maize with RMSE reduced by half. For wheat C,,, adding bands in red-edge region
improves the estimation. Even though overestimation always exists from 1D model when wheat Cap
is larger than 50 pg/m? it is reduced by 3D wheat model with bias smaller than 1 pg/m? For
estimation of CCC, performance of band setting changes with species and RTM. The application of
3D model reduces the RMSE by around 10 pg/m? with smaller bias for both wheat and maize.

Problems still exist for the estimation of maize C,, which is might because of the settings of maize
leaf optical properties. For further studies, more simulations with intensive sun angles are needed to
generate the generic NN with mixed sun angles. Since earring and flowers would impact on crop
canopy reflectance largely, including more phenological stages after earring is also necessary.

3D RTM inversion has been utilized to estimate biophysical variables with several studies including
adding gap fraction from 3D simulation to PROSAIL inversion (Casa et al. 2010) or complied with LUT
(Banskota et al. 2015; Gascon et al. 2004; Hernandez-Clemente et al. 2017). Even though improved
performances were achieved when accounting for canopy structures, the former one did not truly
consider the radiative transfer process within the canopy and the latter ones include a serious of
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simplifications with limited changing variables which limited the extension of the method. In this
study, 3D wheat and maize models are applied with broader conditions through including different
soil backgrounds, vegetation optical properties and crop structures at different phenological stages.
Through the comparison of estimated result with PROSAIL model, improvements in GAl and CCC
estimation are achieved especially for maize which is more different from turbid medium canopy as
a row crop. Therefore, 3D specific model could be an effective way to estimate biophysical variables
with remote sensing observations. But for more heterogeneous 3D structures, more validation of
the method is needed before further applications.
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3.4 Conclusion of the chapter

In this chapter, we used the ray-tracing model LuxCoreRender to simulate the 3D radiative transfer
process within wheat and maize canopies based on realistic 3D description of the canopy structure. A
speeding up method, which describes the dependency of canopy reflectance from the wavelength,
leaf and soil properties, was first proposed. This allowed simulating a training database by
considering a large range of simulations. Then, we applied machine learning inversion algorithm to
retrieve canopy state variables including different definitions of LAI, Ca» and CCC.

LuxCoreRender was validated against other reference radiative transfer models applied both to
homogeneous and heterogeneous canopies. Results show very good agreement between
LuxCoreRender simulations and the reference values. Since simulating a sufficient number of 3D
scenes to train the machine learning algorithm is time consuming, a specific speeding up procedure to
reduce the number of simulations from the 3D model is implemented. The four stream approximation
is used to couple the vegetation and the soil layers. This allows estimating the canopy reflectance of a
given scene with any soil background by running only two simulations with two different soil
backgrounds. For a given canopy structure and observational configuration, the three terms
describing the vegetation layer in the four stream approximation vary smoothly and monotonically with
the leaf total absorption coefficient value K, for a given value of leaf mesophyll structure parameter
and leaf refractive index. Therefore, only 12 (linear approximation) to 18 (four stream approximation)
simulations of a reference model are needed to describe the full canopy reflectance dependency to
wavelength, leaf and soil properties with RMSE = 0.0017 for the four stream approximation and
RMSE = 0.0022 for the linear approximation. The proposed approach provides an efficient way to
reduce the computation time required to generate large training datasets used to invert radiative
transfer models and retrieve some canopy characteristics. Even though, we showed results
LuxCoreRender simulations for maize canopies, it is applicable to any canopy architecture and any
reference 3D RTM.

Based on the proposed speeding up method, canopy reflectance of wheat and maize under different
conditions were simulated at nadir with LuxCoreRender using 3D crop mock-up of maize and wheat
canopies. 33750 cases were generated for each geometry configuration and crop type. According to
the estimation results from neural networks trained with 3D simulations, we showed that the effective
GAIl was better estimated than LAI, PAI or the true value of GAI. To compare the theoretical
performances of different inversion methods including Vis, 1D RTM PROSAIL and 3D RTM
LuxCoreRender, we simulated an independent validation database of 3D simulations. Compared to
VIs which is sensitive to the large range of canopy parameters and neural networks trained on 1D
RTM PROSAIL simulations, the 3D model inversion provides the best estimation of effective GAIl with
RMSE = 0.33 for wheat and RMSE= 0.47 for maize.

According to the generated learning database from 3D simulation, GAI and chlorophyll at leaf and
canopy level of wheat and maize are estimated based on NN inversion with Sentinel 2 observations
and are compared with in-suit measurements. Results show that 3D model improves the estimation of
GAl, Ca and CCC when compared with PROSAIL estimation with slight improvement for wheat
(RMSE of GAIl = 0.72, RMSE of Ca = 9.6 ug/m? and RMSE of CCC = 43.39 pg/m?) and larger
improvement for maize (RMSE of GAl = 0.37 and RMSE of CCC = 51.49 ug/m?). NN with single output
has better performance compared with NN with multiple outputs especially for 3D specific model.
When different band settings are applied, the inclusion of bands in SWIR and red-edge region
improve the accuracy of GAIl estimation and bands in red-edge region is important for the estimation
of Cab.

132



4 Conclusion and perspectives

In this study, complex RTMs at both leaf and canopy levels were developed to retrieve leaf and
canopy characteristics from close and remote sensing observations. At the leaf level, FASPECT is
able to simulate reflectance and transmittance by considering differences between the upper and
lower faces. Compared with PROSPECT-5 and PROSPECT-D, higher accuracy is achieved for
reflectance and transmittance simulation of the upper leaf face for most of the spectrum. When
inverting the models to estimate the leaf biochemical content, even though FASPECT shows similar
performance as PROSPECT-D for chlorophyll, there is a significant improvement for the dry matter
content. At the canopy level, we designed a 3D RTM by combining the LuxCoreRender engine with
3D specific crop architecture models. We simulated a training database that includes a large number
of wheat and maize canopy cases thanks to a speeding up method, which allows simulating the
canopy reflectance at any wavelength, and for any leaf biochemical composition and soil background
reflectance from 3D simulations over a limited number of soil and leaf properties. Based on both an
independent simulated validation database and in situ measurements acquired with SENTINEL-2
images, we conclude that the 3D model inversion allows getting the most accurate estimates of
effective GAlI and CCC and unbiased results for both wheat and maize canopy. The gain in accuracy
is larger for maize canopy which departs more than wheat from the 1D model assumption.

Although we demonstrated an increase in accuracy both in forward and inverse modes, and at the
leaf and canopy levels, a more detailed description of the structure is made at the cost of an increase
in the number of parameters. This implies to investigate more on the distribution of each of these
parameters to better apprehend their effect on the simulated radiative transfer or the variable retrieval
in inverse mode. For FASPECT, we introduced six parameters, four of them describing the two leaf
surfaces, and two of them describing the chlorophyll and water distributions between the palisade and
spongy mesophylls. We recalibrated the absorption coefficients of the biochemical content. However,
the calibration database only included reflectance and transmittance from the upper leaf face, which
might result in uncertainties in the calibrated specific absorption coefficients, especially for chlorophyll
and carotenoids. This, indeed, might be one reason that no significant improvement was achieved for
these pigment estimation. Furthermore, for the same reason, we only provided a partial FASPECT
validation due to limited available measurements. Only one over the eight databases contained
measured optical properties of the upper and lower leaf faces with no associated leaf biochemical
content while the remaining ones provide the upper leaf reflectance and transmittance as well as
biochemical contents. Therefore, further investigations should focus (i) on the acquisition of a more
complete measured database to complement the calibration and validation of the FASPECT model (ii)
on the range and distribution of the model parameters for the different kind of leaves, depending on
their constitution (monocotyledons versus dicotyledons) or on the differences between faces (colour,
hair, wax,...). Finally, we suggest that hyperspectral measurements could be used in place of
destructive measurements regarding the delicate protocol required for destructive leaf chlorophyll
assessment. Furthermore, this could provide relatively high throughput for both precision farming and
phenotyping applications.

For the 3D RTM model simulations, we preferred using PROSPECT for leaf optical properties for two
main reasons: first, both wheat and maize are monocotyledon plants which do not show obvious
differences in leaf optical properties between faces, and second is a lack of knowledge of the
distribution of FASPECT parameters for the two considered crops as well as for senescent leaves.
The objective of this study was to provide ways of estimating crop state variables in relation to
nitrogen fertilization applications. We therefore focused on two crop types with relatively simple 3D
architecture. However, we relied on functional plant structural models, each model being specific to a
given species and requiring significant developments and measurements to be designed adequately.
For example, we limited the simulations to stages before the flowering/earing stage, since very few
information is available about ear and flowers optical properties.

133



We first evaluated the 3DRTM simulation performances against few reference scenes from the RAMI
exercise that correspond as well to rather simple canopy architectures. Furthermore, to speed up the
simulations, we proposed a method based on the four stream theory that considers scattering
between homogeneous scattering layers. We successfully validated this methodology over a maize
crop, which corresponds to a relatively simple row structure, with only two type of elements (green
leaves and stems). This result should be further confirmed for other canopies such as the ones
proposed in the RAMI exercise, including forests characterized by more heterogeneous structure and
more contrasted optical properties of the constituents (trunks, leaves).

We capitalized on this 3DRTM simulations to develop a crop specific algorithm to estimate different
definition of leaf area index, CCC and LCC from satellite remote sensing measurements. We showed
increased performances as compared to a generic algorithm based on 1D simulation for all variables.
However, for both methods, as expected, the best estimates were obtained for the variables that are
the most closely linked to the radiative transfer, e.g effective GAl (including all green elements) and
CCC. The best improvement concerns the chlorophyll content estimation. Note that to save
computational time, we limited the simulations to nadir viewing directions, with varying sun positions.
Considering satellite remote sensing applications, crop specific algorithms can only be applied with a
priori information on land cover. If implemented in an operational way, a land cover map should also
be generated in near real time, with accurate discrimination between crops, and the impact of
misclassification when using the crop specific estimation should be evaluated as well. The increased
accuracy in GAl and chlorophyll estimation should consequently improve the estimation of canopy
nitrogen content (CNC) through the relationship between CCC and CNC, which also requires further
investigations.
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