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Abstract

The idea that intelligence is embedded not only in specific brain regions, but
also in efficient brain networks has grown up. Indeed, human brain organization is
believed to rely on complex and dynamic networks in which the communication be-
tween cerebral regions guarantees an efficient transfer of information. These recent
concepts have led us to explore the neural bases of intelligence using advanced MRI
techniques in combination with graph analysis. On one hand, advanced MRI tech-
niques, such as resting-state functional MRI (rs-fMRI) and diffusion MRI (dMRI)
allow the exploration of respectively the functional and the structural brain connec-
tivity while on the other hand, graph theory models allow the characterization of
brain networks properties at different scales, thanks to global and local metrics.

The aim of this thesis is to characterize the topology of functional and struc-
tural brain networks in children and in adults with high intelligence quotient (HIQ)
compared to standard intelligence quotient (SIQ).

First, we focused our attention on a children population with different cogni-
tive characteristics. Two HIQ profiles, namely homogeneous (Hom-HIQ) and het-
erogeneous HIQ (Het-HIQ), have been defined based on clinical observations and
Intelligence Quotient (IQ) sub-tests. Using resting-state fMRI techniques, we exam-
ined the functional network topology changes, estimating the "hub disruption index"
(κ), in these two HIQ profiles. We found significant topological differences in the
integration and segregation properties of brain networks in HIQ compared to SIQ
children, for the whole brain graph, for each hemispheric graph, and for the homo-
topic connectivity. These brain networks changes resulted to be more pronounced in
the Het-HIQ subgroup. Finally, we found significant correlations between the graph
networks’ changes and the full-scale IQ, as well as some IQ subscales. These results
demonstrated for the first time, that the two HIQ profiles are related to different
neural substrate organizations. Then, the structural brain network connectivity was
measured by dMRI. We found strong correlations between the children brain net-
works density and their intelligence scores. Furthermore, several correlations were
found between integration graph metrics suggesting that intelligence performances
are related to a homogeneous network organization. These findings demonstrated
that intelligence neural substrate is based on a strong white matter microarchitecture
of the major fiber-bundles and a well-balanced network organization between local
and global scales. This children population was finally studied using a memory-word
task in fMRI. Significant changes were observed between both HIQ and SIQ groups.
This study confirmed our hypothesis that both HIQ profiles are characterized by a
different brain activity, with again stronger changes in Het-HIQ children.

Second, we investigated both functional and structural connectivity in a popula-
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tion of adults. We found several correlations between graph metrics and intelligence
sub-scores. As well as for the children population, high cognitive abilities of adults
seemed to be related with different organization of brain structural and functional
networks.

In conclusion, this work has demonstrated that the sensitivity of graph metrics
based on advanced connectomic MRI techniques, such as rs-fMRI and dMRI, can
provide a better characterization of children and adult HIQ, and further, distinguish
different intelligence profiles in children.



Résumé

L’idée que l’intelligence s’appuie non seulement sur des régions spécifiques du
cerveau, mais également sur des réseaux cérébraux efficaces s’est récemment affirmée.
En effet, on pense que l’organisation du cerveau humain repose sur des réseaux com-
plexes et dynamiques au sein desquels une bonne communication entre les régions
cérébrales garantit un transfert efficace d’informations. Ces concepts récents nous
ont amené à explorer les bases neurales de l’intelligence en combinant des techniques
avancées d’IRM et la théorie des graphes. D’un côté, les techniques avancées d’IRM,
telles que l’IRM fonctionnelle de repos (IRMf-rs) et l’IRM de diffusion (IRMd), per-
mettent d’explorer respectivement la connectivité cérébrale fonctionnelle et struc-
turale, tandis que les modèles de la théorie des graphes permettent la caractérisation
des propriétés des réseaux à différentes échelles, grâce à des métriques globales et
locales.

L’objectif de cette thèse est de caractériser la topologie des réseaux cérébraux
fonctionnels et structurels chez les enfants et les adultes avec un quotient intellectuel
supérieur (HIQ) par rapport aux sujets de niveau standard (SIQ).

Premièrement, nous avons concentré notre attention sur une population d’enfants
présentant différentes caractéristiques cognitives. Deux profils HIQ, à savoir ho-
mogène (Hom-HIQ) et hétérogène HIQ (Het-HIQ), ont été définis sur la base d’obser-
vations cliniques et de sous-tests du quotient intellectuel (QI). En utilisant des tech-
niques d’IRMf au repos, nous avons examiné les modifications topologiques du réseau
fonctionnel par « l’index de perturbation des nœuds » (κ). Nous avons trouvé
des différences topologiques significatives dans les propriétés d’intégration et de sé-
grégation des réseaux, chez les enfants HIQ par rapport aux enfants SIQ, pour le
graphe cérébral entier, pour chaque graphe hémisphérique et pour la connectivité
homotopique. De plus, ces changements de topologie sont plus prononcés dans le
sous-groupe Het-HIQ. Enfin, nous avons trouvé des corrélations significatives entre
les métriques de graphes et le QI total ainsi que d’autres sous indices du QI. Ces
résultats ont démontré pour la première fois que les deux profils HIQ sont liés à des
organisations différentes du substrat neuronal. Ensuite, la connectivité structurale
du réseau cérébral, mesurée par IRMd chez l’ensemble des enfants HIQ, est signi-
ficativement différente de celle des enfants SIQ. Nous avons également constaté de
fortes corrélations entre la densité des réseaux cérébraux des enfants et leurs scores
d’intelligence. De plus, plusieurs corrélations ont été trouvées entre les métriques
de graphe d’intégration et les scores d’intelligence suggérant que les performances
intellectuelles sont probablement liées à une organisation uniforme des réseaux. Ces
résultats ont démontré que le substrat neuronal de l’intelligence repose sur une solide
microarchitecture des principaux faisceaux de fibres de la substance blanche et sur

vii



une organisation de réseau bien équilibrée entre les échelles locale et globale. Cette
population d’enfants a finalement été étudiée par IRMf à l’aide d’une tâche de mé-
morisation de mots. Des changements significatifs ont été observés entre les groupes
HIQ et SIQ. Cette étude confirme notre hypothèse selon laquelle les deux profils HIQ
sont caractérisés par une activité cérébrale différente, avec un effet plus prononcé
chez les enfants Het-HIQ.

Deuxiemement, nous avons étudié la connectivité fonctionnelle et structurale
dans une population d’adultes. Nous avons trouvé plusieurs corrélations entre les
métriques de graphe et les sous-scores d’intelligence. De même que pour la pop-
ulation d’enfants, les capacités cognitives élevées des adultes sont corrélées à une
organisation uniforme des réseaux structurels et fonctionnels et un moindre fonc-
tionnement en clusters.

En conclusion, ce travail a démontré que la sensibilité des métriques de graphes
basées sur des techniques d’IRM avancées de connectivité, telles que l’IRM de repos
et l’IRM de diffusion, permettent de mieux caractériser les réseaux cérébraux des
enfants et des adultes, et de distinguer différents profils d’intelligence.
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Introduction

Human intelligence has always been a subject of interest for the humanity. The
percentage of High Intelligence Quotient (HIQ) people is about of 2-3% of the total
population, representing in childhood an average of one child per two classes. De-
spite of HIQ persons are usually characterized by better cognitive abilities, they may
present simultaneously some disabilities. Indeed, they can be unable to manage their
attention and emotions and these difficulties may cause social difficulties. A HIQ
person may feel out of place, and then may suffer from this, until presenting some
psychological troubles. In order to improve our understanding of their mental abili-
ties, we investigated new markers characterizing the neural correlates of intelligence
and to explain their behaviour difference with scientific grounds.

Magnetic resonance imaging (MRI) is a powerful technology to non-invasively
investigate multiple aspects of the brain. Indeed, with the evolution of MRI, non-
conventional acquisition protocols have been developed and two main techniques
have been spread: functional MRI (fMRI) and diffusion MRI (dMRI). On one hand,
the first technique allows to measure the activity of the brain in two different situ-
ations. With task fMRI, the activity of the brain during the performance of a task
can be studied. Instead, resting-state fMRI provides information about the brain
activity at rest, without any task performance. On the other hand, dMRI allows
to obtain quantitative information about the structure of white matter at micro-
scopic scale. From these two techniques, we can measure how the brain regions are
connected among them on two different levels. With fMRI, the functional connec-
tivity between regions can be measured, while dMRI provides information about the
structural connectivity, or rather how the white matter (WM) fibers link the cortical
regions. Since brain connectivity can be modeled as a network in which the brain re-
gions are connected, a natural technique to explore it is the graph analysis. Indeed,
the brain network can be represented as a graph in which the gray matter (GM)
regions represent the nodes of the graph and structural or functional connectivity
represent the edges between the nodes.

In this work, we will take advantage from the specificity of these modern MRI
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techniques to characterize the neural bases of intelligence, based on both functional
and structural brain connectivity measured in children and in adults.

This thesis is composed of three principal parts. The first part presents the state
of the art of MRI, graph theory, and MRI studies of intelligence. In the second part,
we explored the neural substrate of intelligence in children with three complementary
MR approaches. Finally, in the third part, the structural and functional connectivity
networks related to intelligence have been characterized in adults.

In the first chapter of the part I, MRI is illustrated starting from the physical
mechanisms at the origin of nuclear magnetic resonance till the generation of the
images, passing through the imaging sequences used in conventional MRI. Then, we
introduced functional MRI. Starting from the neuro-physiological mechanism that
is beyond this technique, we explained two different fMRI measures: task fMRI and
resting-state fMRI. Finally, we present the principles of diffusion MRI technique. We
begin by recalling the diffusion phenomenon. We then present the diffusion MRI
sequence and the major diffusion technique namely diffusion tensor imaging (DTI).
We concluded this chapter with the illustration of this technique that can, on one
hand, generate parametric maps characterizing the tissue architecture and, on the
other hand, reconstruct by tractography the fibers of white substance bundles from
the main direction of diffusion.

In the second chapter, the brain connectivity concept is introduced. We started
with the description of the graph theory and its metrics. Then, we explained the
different graph types and the topology of the brain network. Finally, the process
to measure brain connectivity, using an anatomical parcellation and a connectivity
matrix, from different MRI techniques is discussed. The state of the art section
is concluded with the presentation of the Intelligence. In this chapter, the history
of neuroscience researches in Intelligence concept has been introduced. From the
most ancient to the most recent models and intelligence tests used in research are
presented. This chapter is concluded by the description of the different investigation
of the intelligence by MRI. The literature review starts from the early MRI studies
till the modern studies that explore the connectivity of brain network related to
intelligence.

The second part of this work is dedicated to the study of brain correlates of
intelligence in HIQ children. The participants of this research project are a group of
children between 8-12 years that undergo the fourth edition of Wechsler Intelligence
scale for Children (WISC-IV), and a complete MRI protocol. Based on the results of
the WISC-IV test, children were divided into three groups: a group of children with
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a standard full scale intelligence quotient (SIQ), a group of children with a Full Scale
Intelligence Quotient (FSIQ) higher than 130 called homogeneous HIQ (Hom-HIQ),
and a group of children with a Verbal Comprehension Index (VCI) or a Perceptual
Reasoning Index (PRI) higher than 130 and a significant difference between VCI
and PRI, called heterogeneous HIQ (Het-HIQ). The first and the second chapters
of the second section, are dedicated to the characterization of cerebral connectivity
through two advanced MRI techniques: rs-fMRI and DTI respectively. The first
chapter starts with the methodological description to optimize the pipeline for func-
tional connectivity measures. Then, we explore the functional brain connectivity
with the graph theory, and its topological modification using the "hub disruption
index". With this metric, we evaluate how the functional brain topology changes
according to different intelligence scores and different HIQ profiles. The structural
brain connectivity measured with DTI is then described in the second chapter. The
last study on the same children population is presented in the third chapter of this
section. A task fMRI study was performed in children using a memory semantic
task. Brain performances and activations during this task were analyzed in correla-
tion with the children cognitive abilities.

In the last part of this work, our research project was applied to investigate
the intelligence in adults. As well as for the children population, we performed a
connectivity study with rs-fMRI and DTI techniques. In this chapter, we report
the results obtained with the application of graph theory on both functional and
structural connectivity matrices and their relationship with intellectual abilities in
adult age.

Finally, we will draw the main conclusions of this work and highlight the most
interesting perspectives for further investigations.
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Chapter 1

Magnetic Resonance Imaging
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CHAPTER 1. MAGNETIC RESONANCE IMAGING

1 Introduction

In 1946, the Nuclear Magnetic Resonance (NMR) was independently but simul-
taneously discovered by Purcell, Torrey and Pound at Cambridge MIT, and Bloch,
Hansen and Packard at Stanford. In 1952, Bloch and Purcell were both awarded
with the Nobel Prize for physics for their important discovery. At the beginning,
NMR was an experimental technique for physicist to explore the nuclear magnetic
moments of nuclei.
The first to use NMR technique on living systems was Felix Bloch who analyzed
water contained in his finger, and only in 1971 the first disease study by NMR was
realized. With this technique, it is possible to investigate several properties of the
matter described by different parameters and to obtain images weighted by different
contrasts.
In contrast with other physical techniques used in medicine, NMR uses radio waves,
a nonionizing radiation. Their frequency band (MHz) is too low to release the
electrons and to create ionization. For this property, NMR is a non-invasive and
non-destructive technique, ideal for in vivo analysis.

2 From signal to images

The application of NMR in neuroscience involves mainly spectroscopy, functional
imaging, and diffusion imaging. Therefore, NMR is considered a great diagnostic
technique that studies the magnetic proprieties of the matter using the intrinsic
nuclear moment, the spin. A nucleus with an odd number of protons and neutrons
has a non-zero nuclear magnetic spin and a kinetic moment defined as follow:

‖ �s ‖=
√

s(s + 1) ∗ � (1.1)

where �s is the dipolar kinetic moment, s the spin, and � the Planck constant
normalized on 2π. In its ground state, a nucleus with a kinetic momentum �s has a
nuclear magnetic momentum �μ:

�μ = γ�s (1.2)

where γ is the gyromagnetic ratio.
Being a constant defined as the ratio between nuclear magnetic momentum and

intrinsic angular magnetic spin momentum, the magnetic momentum is specific for
each nucleus. The most studied nucleus is the hydrogen nucleus, fundamental in
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2. FROM SIGNAL TO IMAGES

medical studies thanks to its high isotopic abundance and its easier detection due
to its large gyromagnetic ratio (42.58 MHz/T ).

Due to their paramagnetic property, when placed in an external magnetic field,
these magnetic momenta will be aligned to the field direction and the nuclear state is
splitted into two levels called "Zeeman levels". The difference between the population
of the two energetic levels leads to the macroscopic magnetization �M :

�M =
∑

�μ (1.3)

During this alignment, the spins experience a precession motion whose frequency
depends on the angular frequency �ω, the fundamental parameter of NMR.

�ω = −γ �B0 (1.4)

where �ω is named Larmor angular frequency and depends on Larmor frequency (for
hydrogen nucleus ν = 42.58MHz for B0 = 1T ) with ω = 2πν.

2.1 The Nuclear Magnetic Resonance (NMR) phenomenon

The macroscopic magnetization relaxation gives information about the sample.
In order to have a signal, the equilibrium state must be perturbed by a magnetic field
�B1, perpendicular to �B0 that is along the z axis, rotating with the Larmor frequency.
The system of spins is then on resonance with the field and two phenomena happen:

• microscopically: the spins receive an amount of energy enough to transit from
a level to the other;

• macroscopically: the magnetization will have a precessional motion around B0

and B1.

When the magnetic field B1 is turned off, the three magnetization components come
back into an equilibrium position through the relaxation process. This motion is
described by the following Bloch’s equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dMx(t)
dt

= −Mx(t)
T2

dMy(t)
dt

= −My(t)
T2

dMz(t)
dt

= −Mz(t)−M0
T1

(1.5)

where T1 and T2 are the relaxation time needed to return to the equilibrium, and
M0 is the initial magnetization.
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CHAPTER 1. MAGNETIC RESONANCE IMAGING

T1 is the Longitudinal Relaxation Time or spin-lattice that describes the tempo-
ral evolution of the longitudinal magnetization as mathematically expressed by the
following equation:

Mz(t) = Mz(0)(1 − e
− t

T1 ) (1.6)

During this process, the spins give their energy to the lattice.
The characteristic time of the exchanged energy between the spins themselves is T2

named spin-spin or Transverse relaxation time. T2 measures how fast the spins lost
their phase coherence because of spin-spin interactions, and during this time-frame
the transverse magnetization comes back to the equilibrium state. The temporal
evolution of the transverse magnetization is described by:

Mxy(t) = Mxy(0)e− t
T2 (1.7)

In practice, B0 in-homogeneity, due to the magnet and/or heterogeneities of the
sample, increases the decay rate of the transverse magnetization. This signal decay
is then dependent on the apparent relaxation time T ∗

2 defined by:

1
T ∗

2
= 1

T2
+ 1

T ′
2

(1.8)

where T ′
2 characterizes the relaxation time induced by this loss of coherence due

to local variations of magnetic field.

2.2 Imaging

In 1973, Lauterbur reached for the first time density distribution by NMR Imag-
ing. The spatial coding is supplied by the introduction of magnetic fields variation
through a gradient application. Field gradients describe the variation of longitudinal
components of magnetic field along the three axes (x, y, z):

�G(t) = (Gx(t), Gy(t), Gz(t)) = (∂Bz

∂x
,
∂Bz

∂y
,
∂Bz

∂z
) (1.9)

Figure 1.1 shows the trend of the magnetic field along z axis depending on z
position. A selective RF pulse in the range Δω excites the rate of z (Δz) (area of
figure colored in gray). The slice thickness depends on the gradient intensity and
on the bandwidth of the radio frequency pulse: a larger bandwidth (Δω) means a
greater thickness of the excited slice range (Δz).

k-space is a formalism used in MRI to interpret images. Indeed, the 2D Fourier
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2. FROM SIGNAL TO IMAGES

Figure 1.1: (A) Magnetic field gradient in z direction. (B) Spatial slice in a real
object selected by a selected pulse with the application of a gradient [De Graaf
(1998)].

transform (2DFT) method provides a k-space sampling for the formation of the
images. In order to have a 3D image, the sample is divided in 2D slices along a
third direction. Once a slice is selected, in order to distinguish the signal from spins
that have a different position in the slice, the second step of the image acquisition
is to apply two new gradients. The first gradient applied after the selective pulse
is named Phase-encoding Gradient and it is usually along y direction. When Gy is
turned on, spins along this direction feel a different magnetic field and consequently
they acquire a specific phase Φ = γGyty. So, spins of the selective slice, that were
in phase, now become dephased.
During the signal acquisition, a gradient along x axis named Frequency-encoding
Gradient or Readout Gradient is turned on. It modifies Larmor frequency depending
on the gradient duration along the other transverse direction to the slice. Finally,
the signal in the k-space S(kx, ky) is obtained by the following equation:

S(kx, ky) =
∫∫

ρ(x, y)eiγ(Gxxt+Gyyt)dxdy =
∫∫

ρ(x, y)ei2π(kxx+kyy)dxdy (1.10)

where kx = γ Gxtx

2π
and ky = γ Gyty

2π

From these expressions, it is obvious that the phase-encoding gradient causes a
dephasing in ky direction while the readout gradient moves along kx axis. Further-
more, k-space sampling depends on the values of the phase-encoding, the frequency-
encoding gradient, and by their combinations.
As example, the I and IV quadrants sampling of the k-space for kx > 0 are described
below:
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CHAPTER 1. MAGNETIC RESONANCE IMAGING

• ky = 0 line is achieved putting Gy=0 (kx axis);
• ky > 0 line is achieved putting Gy>0 (I quadrant);
• ky < 0 line is achieved putting Gy<0 (IV quadrant).

K-space central points have low k-coordinate values (low spatial frequencies) and
they correspond to the image contrast, while points with high spatial frequency (on
k-space edges) have information about image details (Figure 1.2).
Finally, the 2D image is obtained through the Inverse Fourier Transform and the
image in the real space is obtained.

Figure 1.2: Illustration of k-space with its 4 quadrants. Adapted from
https: //www.radiologycafe.com.

2.3 Conventional MRI sequences

Several acquisition sequences have been developed to measure NMR signal and
they are based on two main sequences that use different methods to refocus the
signal. The NMR signal can be measured by a Spin-Echo sequence using two RF
pulses, one 90◦ and one 180◦, or with one 90◦ pulse in conjunction with a gradient
reversal (see next section), named Gradient-Echo.

2.3.1 Spin-Echo

The spin-echo sequence was introduced in the 50s by Erwin Hahn and it is based
on a 180◦ pulse that refocuses the magnetization after a time t called Echo Time
(TE). This sequence starts with a 90◦ pulse that moves the magnetization from the
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longitudinal to transverse plane. During a period of half echo-time (TE/2), spins
groups may precess with a different speed from others because of their different
T2 and of local field inhomogeneities leading to the T2∗. The following 180◦ pulse
rotates the magnetization components reversing the phase difference and allowing
the spins re-phasing during an other TE/2 period. At the end, the echo signal
is generated after a TE time from the selective pulse and a line of the k-space is
acquired. After a repetition time (TR), the sequence is repeated several times until
the k-space is filled.

Figure 1.3: Spin-echo imaging sequence diagram. TR is the repetition time between
two 90◦ pulses. TE is the echo time between the first 90◦ and the echo signal
registration. Adapted from [McRobbie et al. (2006)].

The contrast of the image obtained with a spin-echo sequence can be changed
modifying the two main parameters of the sequence TR and TE. When the time
between the excitation and the echo signal (TE) is short, the echo signal is measured
too early to differentiate the tissues based on their T2. In this case, with a short
TR the longitudinal magnetization differences between tissue are stronger and the
contrast of the image is T1-weighted, while with a long TR the T1 effect disappears
and the image is proton density weighted. With a similar reasoning, with long TR
the longitudinal magnetization is recovered and with a long TE difference in T2 are
more visible and the image is T2-weighted.
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2.3.2 Gradient-Echo

The second sequence that allows to refocus the NMR signal is called "gradient-
echo". In this case the echo signal is produced with the application of a gradient
reversal at the center of the acquisition period. After an initial RF pulse that is
typically in the range of 10◦ to 40◦, a negative gradient is applied to dephase the
spins because of changes in local magnetic fields. This process is then reversed
applying a second gradient with the same strength but opposite polarity to the
first one and the spins are refocused to produce an echo signal. Since the absence
of a 180◦ RF pulse, this sequence does not erase the static tissue susceptibility
gradients producing an image contrast of T ∗

2 that depends on these factors. In order
to minimize the influence of these suceptibility artefacts on the images, a short TE is
often used. Moreover, the small initial RF causes a faster magnetization recovering
allowing to use a shorter TR. In these conditions, the images exhibit T1-weighting
in which tissues with short T1 appear brighter than those with long T1.

Figure 1.4: Gradient-echo sequence diagram. TR is the repetition time measured
between two RF pulses. TE is the echo time between the first 90◦ and the echo
signal registration. Adapted from [McRobbie et al. (2006)].
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3. FUNCTIONAL MRI

3 Functional MRI

Functional Magnetic Resonance Imaging (fMRI ) is one of the functional neu-
roimaging techniques that describes physiological changes accompanying brain ac-
tivity. Despite it was known that regional cerebral blood flow increased in areas of
neuronal activity since the end of 1980’s, Belliveau and colleagues [Belliveau et al.
(1991)] were the first in 1991 to use MRI to observe cerebral activation. They showed
an increased brain activity in primary visual cortex during photic stimulation mea-
suring blood volume changes of this area thanks to the susceptibility changes from
a gadolinium bolus. A new technique named Blood oxygenation level dependent
(BOLD) was introduced by [Ogawa et al. (1990)], allowing two groups from Min-
nesota and MGH to measure the brain activation without the use of any exogenous
contrast. They were able to create the neuronal activation maps detecting changes in
blood flow exploiting different magnetic properties of oxygenated and deoxygenated
blood [Ogawa et al. (1992),Kwong et al. (1992)].

3.1 BOLD signal

Like all organs, the brain requires high level of energy metabolism for its activity.
More in detail, it is responsible for the 20% of the energy consumption. Because
brain energy production is joined with the oxydative metabolism, an amount of
oxygen increment is needed to increase brain activity. BOLD signal was measured
for the first time in 1990 by Ogawa et al. on rats [Ogawa et al. (1990)]. It is based on
the variation of deoxyhaemoglobin concentration in blood. In living organisms, there
are two types of haemoglobin: the oxygenated one (oxyHb) and the haemoglobin
without oxygen (deoxyHb). When the neural activity increases, a greater deoxyHb
amount is generated. This phenomenon is modeled by the haemodynamic response.

Due to its paramagnetic property, the deoxyHb creates local magnetic field dis-
tortions within and around blood vessels. In 1992, Ogawa demonstrated that local
field gradients cause changes in nearby spins that achieve different resonance fre-
quencies [Ogawa et al. (1992)]. This phenomenon is reflected in a T ∗

2 decrease
in tissue around the blood vessels. In 1998, Thulborn et al. demonstrated that
these susceptibility gradients produce measurable changes in T2 contrast [Thulborn
(1998)]. These distinct experiments allow to conclude that both T2 and T ∗

2 changes
contribute to BOLD contrast.
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Figure 1.5: Haemodynamic response phenomenon. The neuronal activity consumes
the oxygen from the blood, causing an increase of deoxyhaemoglobin concentration.
In response to neuronal activity, the blood flow increases leading to an increase
of oxygen concentration in blood. The difference of oxygenated and deoxygenated
haemoglobin results in a decrease of deoxyhaemoglobin. From Oxford Sparks.

3.1.1 Temporal dynamic of BOLD signal

It may seem paradoxical, but during a neuronal activation an increased BOLD
signal is measured and a more intense image is obtained [Jezzard (2001)]. This
is due to the fact that BOLD signal reflects neurovascular coupling modeled by
the Haemodynamic response (HR) to activation [Buxton (2009)] that depends on
different phenomena: cerebral metabolic rate of oxygen (CMRO2), cerebral blood
flow (CBF) and cerebral blood volume (CBV) changes. During a neuronal activation,
these three events happen simultaneously, and BOLD timecourse is the combination
of CMRO2, CBF and CBV temporal signals as shown in Figure 1.7.

The typical fMRI BOLD response is composed of three steps (Figure 1.6):

• Initial dip: an initial dip lasting 1s before the positive BOLD signal has been
reported [Menon et al. (1995)]. This effect is visible only in high magnetic
field and it corresponds to an increase of deoxyhaemoglobin. It reflects the
rapid CMRO2 increase that starts before the blood flow changes.

• Positive response: after 5-8s from the beginning of the stimulus, the signal
increases by 2-3 % from the baseline. The positive response is often composed
of an overshoot followed by an exponential decay. Mandeville and colleagues in
1999 demonstrated that this amplification is due to CBV increase that, starting
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Figure 1.6: Blood oxygenated level dependent (BOLD) timecourse.

Figure 1.7: BOLD, CBF and CBV temporal trend for: (A) a short stimulus, and
(B) a long stimulus.

later than CBF, reduces the BOLD signal during the plateau phase [Mandeville
et al. (1999)].
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• Post-stimulus undershoot: the BOLD signal ends with a post-stimulus
undershoot that lasts for approximately 30 s. As for the overshoot, it is caused
by the CBV changes because when the blood flow falls dramatically, CBV levels
are still elevated and a reduced BOLD signal is measured.

3.2 Acquisition sequences

The most used imaging method in fMRI is the gradient-echo sequence for its
sensitivity to BOLD effect with an encoding echo-planar imaging (EPI) for fast k-
space acquisition (Figure 1.8). Compared to the conventional imaging, EPI most
important advantage is the speed for obtaining the image. While the duration of
the conventional MRI sequences previously described is about N ×TR because each
k-space row is filled after a selective pulse, the total duration of an EPI acquisition
is about one TR. This short duration is obtained because EPI sequence allows to
sample the entire k-space with only one initial RF pulse (Figure 1.8). For functional
imaging, this spatial encoding scheme is used with gradient-echo sequences that offer
a T2* contrast. Since the signal intensity decay is measured after the excitation
determined by local field inhomogeneities, this technique is ideal for BOLD contrast
imaging.

Figure 1.8: EPI imaging sequence diagram. Adapted from [McRobbie et al. (2006)].

Figure 1.8 shows a typical EPI sequence and figure 1.9 its k-space trajectory.
The k-space sampling starts in the point (−kf,max, −kp,max) and when Gfreq is
turned on, the first gradient-echo is acquired along k-space line kp = −kp,max. A
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so called blip phase-encoding gradient changes the position in k-space till the point
(kf,max, −kp,max + Δkp). After another refocusing (-Gfreq), the second acquisition
starts. Iterating this process, the k-space is completely sampled.
Maximum echo formation is achieved in k-space origin where the initial negative
phase-encoding gradient is completely refocused by the sum of all blip gradients.

Figure 1.9: Example of k-space sampling: it starts from the point (−kf,max, −kp,max)
and goes on with a zig-zag trajectory.

While the most important EPI advance is the shortness of the acquisition time,
it has two fundamental drawbacks:

• the magnetic field inhomogeneities are not re-focalized because absence of a
180◦ pulse. For this reason the images are deformed and, since T ∗

2 is smaller,
the signal intensity is lower;

• transverse magnetization is created once and the signal is given by echo gra-
dients when the Gphase areas are compensated.

3.3 From functional localisationism to connectionism

The major goal of functional MRI is to understand brain function. Since its
introduction, fMRI was mainly used to spatially localize brain function [Friston
et al. (1994)]. This localisationism approach was introduced with the formulation
of phrenology by Franz Joseph Gall at the end of the XVIII century. Starting from
this, a central assumption in neuroscience was the association between particular
regions and specific functions. Despite this theory was not confirmed by Fluorens in
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1815, later experiments supported the idea of localisationism. In particular Broca
and later Wernicke localized regions respectively involved in language processing and
in comprehension of speech. Nowadays, two main theories about brain’s cognitive
function have been developed. The first one supports functional specialization of
brain regions based on the concept that neural activity can be revealed by localized
changes in metabolism. Furthermore, several studies have demonstrated the func-
tional specialization of distinct regions. For instance, all the primary cortices are
involved in brain’s input and output and they have different spatial locations:

• primary visual cortex is in the occipital lobe;
• primary auditory cortex is located in the temporal lobe;
• somatosensory cortex is in parietal lobe;
• primary motor cortex is in frontal lobe;
• olfactory bulb is located on the inferior surface of the frontal lobe;
• gustatory cortex is located on the inferior surface of the temporal lobe.

Nowadays, the most used standardized nomenclature in neuroimaging is Brod-
mann classification of brain areas (Figure 1.10). In 1909, the German anatomist Ko-
rbinian Brodmann numerated cortical areas in humans, monkeys, and other species
based on the cytoarchitectural organization of neurons. The Brodmann classification
divides the cortex into 52 areas, numbered sequentially, that have been discussed,
and renamed for a century. However, the neuroimaging studies still refer to this
nomenclature to identify the function of each brain area.

Figure 1.10: Brain regions classified with primary areas name on the left (localisa-
tionism), and Brodmann nomenclature on the right.

The second modern theory, instead, considers the brain as an interactive network
in which the regions are functionally interconnected rather than specialized. This
idea is named connectionism theory and refers to methods aiming at identifying
and quantifying inter-regional relationships [Friston et al. (1994)]. In particular,
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functional connectivity is the statistical correlation among neural activity measure-
ments [Friston (2011)].

Figure 1.11: Illustration of connectionism: a complex network analysis reflecting
whole-brain connectivity.

These two approaches are mainly based on two functional MRI techniques: task
fMRI and resting-state fMRI measuring brain activation during a task and at rest,
respectively. Task and rs-fMRI are presented in details in the next sections.

3.4 Task fMRI

Since the discovery that brain activation can be indirectly measured throughout
the BOLD effect, a number of imaging approaches have been used to measure it
and to obtain an image of activation areas. The prototype brain mapping of task
fMRI experiment consists of alternating periods of a stimulus task and a control
task during which the signal changes are measured. Two experimental paradigms
are used: the Block Design and the Event-Related Design.

3.4.1 Block Design

Block Design is the first paradigm used for fMRI experiments [Bandettini et al.
(1993),Ogawa et al. (1992)] and for statistical analysis [Bandettini et al. (1993),Fris-
ton et al. (1994)]. It consists in a succession of time interval blocks with continuous
stimuli from 16 s to a minute, named epoch, interleaved with control condition.
These repeated measures with the same functional condition increase the image sig-
nal to noise ratio (SNR). Typically tasks with different functional properties are
performed in order to obtain a BOLD signal. The time between two epochs with
the same task defines a cycle.
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The advantage of this paradigm is to obtain an intense BOLD signal but the
subject could predict the stimulus because the repetition of the same task. Generally,
a fMRI acquisition is composed of 120 volumes or more.

3.4.2 Event-Related Design

This paradigm provides a rapid succession of different random functional tasks.
It allows to obtain temporal information of the haemodynamic response eliminating
routine effects, thanks to the random distribution of the tasks. It investigates the
BOLD response to each individual task.

3.4.3 Mixed Design

In mixed paradigms, semi-randomized events take place during the task blocks,
with rest periods in between them. This method preserves the positive aspects of
the two methods: high SNR of blocked methods, and the flexibility of event-related
ones.

Figure 1.12: Three task fMRI experimental designs: Block, Event-Related and
Mixed. (Courtesy of Allen D. Elster, MRIquestions.com).

3.5 Resting-state fMRI

As opposed to task-based fMRI, resting-state fMRI is acquired without a paradigm
when the subject is at rest. The first evidence that the brain presents aspontaneous
activity at rest, was observed in 1995 by Biswal and colleagues [Biswal et al. (1995)].
They measured a correlation of low frequency time courses (<0.1 Hz), between senso-
rimotor cortex and supplementary motor cortices at rest. Some years later, Raichle
et al. observed during a mental task a brain energy consumption less than 5% more
of its baseline energy [Raichle et al. (2001),Raichle and Gusnard (2001)]. This low
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activity suggests the existence of a default brain function that is constantly active
while this activity is diminished during specific tasks.

Figure 1.13: Two functional networks: nodes in warm colors are significantly cor-
related with task-positive seeds and significantly anticorrelated with task-negative
seeds, while nodes in cold colors are significantly correlated with task-negative seed
regions and significantly anticorrelated with task-positive seed regions. [Fox et al.
(2005)]

In 2005, Fox et al. demonstrated that two anticorrelated functional networks,
normally observed during cognitive tasks, are present also in the absence of any
other task. This dichotomy is then intrinsic to the brain: one network is named
task-positive network because composed of regions exhibiting activation during a
task while the other is the task-negative network because consisting in regions that
exhibit deactivation during a task. Resting-state network is composed of at least 20
distinct patterns of brain connections similar to networks of task-induced activations
and deactivations. The most important include the default mode network (DMN)
(involved with introspection and mind wandering), the salience network (involved
in detecting and filtering salient stimuli), the central executive network (involved
in high level cognitive functions), the dorsal attention network, the sensory motor
network (SMN), and the visual and the auditory networks.
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Figure 1.14: The most important resting-state networks [Raichle (2011)].

4 Diffusion MRI

4.1 Physic principle

Diffusion is the spontaneous movement of the water molecules when they are
agitated by thermal energy. This phenomenon is also named Brownian motion, in
honor of Robert Brown, the first to describe this movement in 1828 [Brown (1828)]
observing spontaneous movement of pollen particles in water. The mathematical
formalization of the diffusion was introduced in the 19th century by Adolph Fick’s
laws. For the first law, the flux of particles (J) is directly proportional to the
concentration gradient (∇C) by the diffusion coefficient D.

J = −D∇C (1.11)

Fick’s second law is a partial differential equation describing the spatio-temporal
evolution of the concentration:

∂C

∂t
= D

∂2C

∂x2 (1.12)

In 1905, Albert Einstein demonstrated these laws by connecting Fick’s diffusion
coefficient (D) with the statistics of Brownian motion. He also defined the diffusion

24 Ilaria SUPRANO



4. DIFFUSION MRI

coefficient (D) as being directly proportional to the absolute temperature (T) and
Boltzmann constant (kB):

D = kBT

6πηr
(1.13)

where η is the viscosity of the medium and r is the radius of the particles.

4.2 Acquisition sequences

Measuring the Brownian movement of water in a tissue, we can obtain diffusion-
weighted images (DWI). In the mid-1960’s, Edward Stejskal and John Tanner intro-
duced the pulsed gradient spin-echo (PSGE) sequence [Stejskal and Tanner (1965)],
applying to a spin-echo sequence two symmetric diffusion gradients on either side of
the 180◦-pulse. These diffusion gradients can take three encoding directions provid-
ing a specific diffusion-weighted direction, corresponding to the encoding coordinate
system. The first of these gradients changes the phase of the spins by an amount
that depends on their location. If the spins have not moved during the diffusion time
� which is the time between the application of the two gradients (δ), the second
gradient will completely rephase them and their signal will not be changed. If the
spins have diffused, they will be not rephased with the second gradient: the more
they have moved, the less they are rephased (Figure 1.15).

The signal (S(b)) will be attenuated following the equation:

S(b) = S0e−bD (1.14)

where S0 is the initial signal, S(b) the intensity of the signal at echo time, D the
diffusion coefficient. Finally, b is the measure of the gradient diffusion intensity that
depends on the gyromagnetic ratio (γ), the gradient diffusion duration (δ), and the
diffusion time between the two gradients (�):

b = γ2G2δ2(� −δ

3) (1.15)

The measured diffusion coefficient D, also named Apparent Diffusion Coefficient
(ADC), is used to refer to the mean diffusivity in a voxel.
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Figure 1.15: (A) Spin-echo imaging sequence diagram and (B) phase evolution of the
spins at different locations along the gradient direction. δ is the gradient diffusion
duration and the � is the diffusion time. The 180◦ pulse inverts the phase wrap
produced by the first gradient pulse and the second gradient pulse, which is now
identical to the first one in amplitude and length, completely refocuses this phase
wrap.

4.3 Diffusion Tensor Imaging (DTI)

White matter is made of fiber tracts with different orientations, so water molecules
are constrained by axonal membranes in the brain. Within these conditions, the dif-
fusion is anisotropic and and cannot be exhaustively be described with a scalar
diffusion coefficient ADC, but by a diffusion tensor Dij. Introduuced by Basser in
1994, Diffusion tensor imaging (DTI) is a technique based on the hypothesis that
diffusion in each voxel does not have a single direction, but follows a gaussian dis-
tribution [Basser et al. (1994)]. The equation 1.13 written with a diffusion tensor is
the following:

Ji = −Dij
∂C

∂i

(1.16)

and 1.14 becomes:

S(b) = S0e−
∑3

i=1
∑3

j=1 bijDij (1.17)
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where the tensors Dij and bij are:

Dij =

⎛
⎜⎜⎜⎝

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞
⎟⎟⎟⎠ ; bij =

⎛
⎜⎜⎜⎝

bxx bxy bxz

byx byy byz

bzx bzy bzz

⎞
⎟⎟⎟⎠ . (1.18)

From the equation 1.17 using the tensors we obtain:

ln
(

S(b)
S(b = 0)

)
= −(bxxDxx + 2bxyDxy + 2bxzDxz + byyDyy + 2byzDyz + bzzDzz)

= −Trace(bD)
(1.19)

Since the diffusion tensor is symmetric, its diagonalization provides three eigen-
vectors (ε) and three eigenvalues (λ):

Dij =

⎛
⎜⎜⎜⎝

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

−→ε1
−→ε2
−→ε3

⎞
⎟⎟⎟⎠ (1.20)

The three eigenvectors define one major and two minor diffusion axes and the
eigenvalues are proportional to the diffusion in the corresponding direction. So the
optimal representation for the diffusion tensor is an ellipsoid with the main axis
parallel to the principal diffusion direction and two other axes parallel to the two
minor diffusion directions.

Diffusion eigenvalues allow to understand diffusion motion:

• λ1 >> λ2 > λ3: anisotropic diffusion along ε1 axis;

• λ1 ∼ λ2 �= λ3: anisotropic diffusion in the ε1 − ε2 plane;

• λ1 ∼ λ2 ∼ λ3: isotropic diffusion.

From diffusion eigenvalues and eigenvectors combinations, different brain images
can be created. The bigger eigenvalue (λ1) is the Axial diffusivity (AD) that shows
the amount of water molecules diffusing along the main diffusivity axis. Radial
diffusion (RD) is the average between the two small eigenvalues:

RD = λ2 + λ3

2 (1.21)

RD shows the diffusion in the ε2 − ε3 plane perpendicular to the principal direction.
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Figure 1.16: Isotropic diffusion versus anisotropic diffusion. The anisotropic diffu-
sion is represented by an ellipsoid with three eigenvalues λ1 >> λ2 > λ3, while for
isotropic diffusion the ellipsoid becomes a sphere with λ1 ∼ λ2 ∼ λ3.

Mean diffusivity (MD), proportional to ADC, is the average of the three eigenvalues:

MD = λ1 + λ2 + λ3

3 (1.22)

Fractional anisotropy (FA) measures the diffusion asymmetry within a voxel and
is defined as:

FA =

√√√√(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ2
1 + λ2

2 + λ2
3)

(1.23)

FA value varies between 0 and 1. In the case of isotropic diffusion (λ1 ∼ λ2 ∼ λ3),
FA is 0. On the contrary, for anisotropic diffusion (λ1 >> λ2 > λ3) FA tends to 1.

Figure 1.17: Examples of images acquired with DTI. From left to right FA, AD, RD,
and MD weighted images. Data acquired at CERMEP.
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4.4 Tractography technique

White matter axons are wrapped inside a membrane sheet composed of a lipid-
rich substance, called myelin, which increases the signal transmission speed along
the axon (Figure 1.18). The arrangement of nerve fibers into bundles promotes
water diffusion along the direction parallel to the fibers due to the restriction of
water diffusion caused by myelin and the cell walls of the axons. This ability to
estimate fiber-bundle orientation within a voxel allows in-vivo estimation of white
matter fiber tracts that have been validated with postmortem dissections [Pierpaoli
et al. (1996)].

Figure 1.18: Diagram of a neuron with a myelinated axon (adapted from wikipedia).

Once the principal direction of water diffusion is estimated in each voxel, the
direction of white matter fibers can be estimated by tractography technique. Trac-
tography is a modeling technique used to reconstruct white matter tract in 3D from
voxelwise data by estimating curvature of streamlines extracted from the principle
eigenvector of adjacent voxels [Catani et al. (2002)]. It can be obtained, either apply-
ing deterministic or probabilistic techniques. On one hand, deterministic tracking
recontructs a fiber from a seed voxel to the next until stopping criteria are veri-
fied [Mori et al. (1999)]. On the other hand, probabilistic tractography reconstructs
several paths from a seed voxel to the next through random direction and iterat-
ing this process until the probabilistic maps of streamlines is obtained [Parker and
Alexander (2003)]. While, the first method is very fast, the second one allows the
reconstruction of the full tractogram.

In spite of DTI is the most used reconstruction technique for diffusion MRI, it is
limited by the gaussian model used for the description of water diffusion probability.
Since the voxel resolution is much higher than the axon resolution, in each voxel there
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are several axons with different direction. Allowing to estimate only one diffusion
direction for each voxel, gaussian distribution can not reproduce the tractography
in voxel with crossing fibers. Thus, more general mathematical models are needed
(Figure 1.19).

Figure 1.19: Examples of different possible fiber configurations in white matter and
for each configuration the following information are showed: diffusion probability
(p) along the three directions, diffusion tensor (DT), principal direction obtained
from DT, fODF, and diffusion signal (adapted from [Johansen-Berg and Behrens
(2009)])

In order to overcome this limitation, several models, parametric and non-parametric
have been proposed. For the purpose of this thesis, only non-parametric models were
used and will be introduced in the following sections. These methods permit the
computation of water molecule displacement probabilities over a sphere and these
probabilities are called the fiber orientation distribution functions (fODF). fODF can
be estimated applying different methods: some of them use DTI signal for fODF
estimation such as the spherical deconvolution [Tournier et al. (2004),Tournier et al.
(2007)], while DSI [Tuch et al. (2002)] and Q-Ball [Tuch (2004)] use an other spher-
ical function that measures diffusion probability along different directions. These
last two techniques provide only diffusion ODF (dODF) and not fODF that is ob-
tained instead with spherical deconvolution methods [Tournier et al. (2004)]. This
technique is based on the hypothesis that diffusion MRI signal in a voxel is the
convolution of its fiber population signal and the fiber ODF.
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The most used method [Tournier et al. (2004)] estimates a response function
from the average signal of voxels presenting the highest anisotropy in the whole
brain. Finally, a simple diffusion signal deconvolution from the response function
allows to obtain fODF (Figure 1.20).

Figure 1.20: Spherical convolution illustration: voxel diffusion signal (Stot is com-
posed by signals of multiple fibre populations (S1 and S2) within it. Under the
assumption of a common fibre signal profile (fODF), it is also the convolution of
fODF with the fiber response function (R) (adapted from wikipedia).
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Chapter 2

Brain connectivity
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CHAPTER 2. BRAIN CONNECTIVITY

1 Introduction

As presented in section 4.3, a recent approach for exploring brain is the connec-
tionism theory. The major idea is that brain regions are specialized for particular
tasks, but the higher level functions require the coordination among the brain areas
that are connected through the long fiber-bundles of the brain.

The history of brain connectivity research starts with the description of the
structure of the nervous system and especially of the brain by Santiago Ramòn y
Cajal [Ramon y Cajal and Azoulay (1911)]. He illustrated the cellular connections in
the brain proving that each brain unit interacts with others through their connections
in order to perform some tasks. These units can be at three different levels [Sporns
et al. (2005)]:

• at micro-scale brain: brain units are represented by single neurons;

• at meso-scale: neuronal populations are studied;

• at macro-scale: brain units are the connections between different brain regions.

In this work, we are interested in describing the brain connectivity at the macro-
scale. The connections between different regions can be studied using modern imag-
ing techniques like MRI, electroencephalography [EEG], or positron emission tomog-
raphy [PET].

Considering the brain subdivision into brain areas, it could be studied as a net-
work with brain areas as "nodes" and the communication between the regions as
"edges". We will then focus on brain connectivity networks obtained with MRI
and the brain connectivity will be studied using the graph theory. Starting from
mathematical problems solving, graph theory has become a common tool to model
biological and physical, as well as real life problems. The most common examples
of graph theory application in social life are: airline networks, banking networks,
social networks, physician networks, supply chain networks, as well as protein net-
works. Details of nodes and edges for each of these networks are explained in Table
2.1. The application in cerebral connectivity started when it has been demonstrated
that the neural networks presents a graph organization [Eguíluz et al. (2005)], with
small-world topological properties [Achard et al. (2006)].

34 Ilaria SUPRANO



2. GRAPH THEORY

NETWORK NODES EDGES
Airlines Network Airports Airplanes / Routes
Banking Network Account Holders Transactions
Social Network Users Interactions
Physician Network Doctors Patients
Supply Chain Network Warehouses Trucks
Protein Network Protein Protein-Protein Interactions

Table 2.1: Example of six common networks in real life. For each of them, nodes
and edges for the application of graph theory are specified.

2 Graph theory

Graph theory is a mathematical branch that describes how objects are connected
between them, representing these relationships with a graph.

It was applied for the first time in the 18th century by the mathematician Leon-
hard Euler. He tried to solve the "konigsberg bridge problem" answering to the
question "was it possible to take a walk through the town in such a way as to cross
over every bridge once, and only once?".

Euler represented this problem with a graph in which the nodes were the four
bodies of land (A, B, C, and D in Figure 2.1), and the edges, the seven bridges (a, b,
c, d, e, and f in Figure 2.1). He concluded that for the bridge physical arrangement
there was no solution to the problem.

Figure 2.1: Representation of the Euler’s problem. (A) The map of the ancient
Prussian city of Königsberg with its seven bridges across the river Pregel. (B)
Euler’s representation of the problem by a graph that helps to realize that it is
not possible to visit all the nodes passing on each edge only once. Figure adapted
from [Toroczkai (2005)].

Indeed, he observed that, since a bridge connected two land masses, if you have to
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reach and then live one of them without crossing a bridge twice, then the number of
bridges connecting each land should be even. In the "konigsberg bridge problem" the
four vertices had odd number of edges, therefore he concluded that it was impossible
to have a walk crossing every bridge only once.

From this observation , a graph in which each node has even edges is defined the
"Euler path".

2.1 Graph definition

A graph is defined as an ordered pair, G=(V,E) (Figure 2.2), where:

• V is a set of vertices or nodes;

• E is a set of edges or links.

Figure 2.2: Example of a simple graph G=(V,E), with five nodes V=A, B, C, D, E
and eight edges that link the nodes E=AB, AC, BC, BD, BE, CD, DE, EA.

2.2 Graph properties

Based on its properties, different types of graph can be identified:

• undirected graph, when the is no preferential direction in the connections
(Figure 2.3 on the left);

• directed graph, when there is a preferential direction in the connections (Figure
2.3 on the right);

• an unweighted graph, when the nodes or the edges do not have an assigned
weight (Figure 2.4 on the left);
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Figure 2.3: Example of undirected graph (on the left), and directed graph (on the
right).

• a weighted graph, when the nodes or the edges have an assigned weight (Figure
2.4 on the right);

Figure 2.4: Example of unweighted graph (on the left), and weighted graph with a
different weight for each connection (on the right).
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• a fully connected graph, when all nodes are connected at least to an other
node (Figure 2.5).

Figure 2.5: Example of fully connected graph, with all nodes having at least one
connection.

3 Graph metrics

The graph topology can be described measuring metrics at different scales: at
the scale of the entire graph, the so-called global metrics or at the scale of the
node, the nodal metrics. The graph metrics allow to characterize three main graph
properties:

• integration properties relate to the way that the information propagate in
the graph, is based on the measure of the distance (Figure 2.6)

• segregation properties reflect how a graph is divided into different modules
(Figure 2.7)

• centrality properties or hubness measure the importance of a node for the
communication in the graph (Figure 2.7)

These three properties can be desribed by global or nodal metrics.

3.1 Nodal metrics

Nodal metrics are computed for a single node and measure the properties of each
node. The main nodal metrics are showed in this section.
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The degree of a node i (ki) is defined as the number of connections of the node
i with the other nodes of the graph:

ki =
∑
j∈N

Aij (2.1)

where N is the set of all nodes in the network and Aij is the connection between
nodes i and j.

The minimum path length is the minimum number of edges that must be
traversed to go from one node to another. In Figure 2.6, the shortest path to go
from the extreme node on the left to the extreme node on the right is 4.

The efficiency is the average of the inverse of the distance

Ei = 1
n

∑
i∈N

∑
j∈N,j �=i d−1

ij

n − 1 . (2.2)

These three nodal metrics reflect the integration properties (Figure 2.6).

Figure 2.6: Graphical representation of two integration metrics: the degree (blue),
and the minimum path length (green). Adapted from [Sporns].

The clustering coefficient measures the density of connections between the
node’ s neighbors given from the number of triangles (t) around a node. It reflects
thus local segregation property.

Ci = 2ti

ki(ki − 1) (2.3)

The betweenness centrality is the main nodal metric that reflects the central-
ity of a node and it is defined as:

bi = 1
(n − 1)(n − 2)

∑
j,h∈N,

h �=j,h�=i,j �=i

ρhj(i)
ρhj

, (2.4)

Ilaria SUPRANO 39



CHAPTER 2. BRAIN CONNECTIVITY

Figure 2.7: Graphical representation of segregation and hubs metrics. Two modules,
that are limited by red lines, communicate between them thanks to a hub node that
is highlighted in blue. In the second module, the clustering coefficient is coloured in
orange. Adapted from [Sporns].

where ρhj is the shortest path length between the nodes h and j and ρhj(i) is the
shortest path length between the nodes h et j passing throughout i.

3.2 Global metrics

Global metrics characterize the whole network with a single value. We present
in this paragraph the main global metrics used in this thesis.

The modularity is a global metric that reflects segregation properties and de-
fined as

Q =
∑

u∈M

[euu − (
∑

v∈M

euv)2] (2.5)

where M is the number of modules of the network, euv is the edges connecting the
nodes of the module u with that of the module v.

The transitivity is a variant of the global clustering coefficient:

T =
∑

i∈N 2ti∑
i∈N ki(ki − 1) (2.6)

A graph with a strong transitivity is composed by modules within which the nodes
are very connected between them, but only a few connection allow the communica-
tion between different modules.
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The assortativity is the Pearson correlation between the degree of the nodes:

r =
l−1 ∑

(i,j)∈L kikj − [l−1 ∑
(i,j)∈L

1
2(ki + kj)]2

l−1 ∑
(i,j)∈L

1
2(k2

i + k2
j ) − [l−1 ∑

(i,j)∈L
1
2(ki + kj)]2

. (2.7)

where L is the set of all links in the network.

The characteristic path length is the average of the distance matrix of the
graph:

CPL = 1
n

∑
∈N

Li = 1
n

∑
i∈N

∑
j∈N,j �=i dij

n − 1 (2.8)

where n is the number of nodes, LI is the minimum path length between the
node i and all the others and dij is the shortest distance between the node i and the
node j.

3.3 Hub disruption index

Introduced by Achard et al. [Achard et al. (2012)], the "Hub Disruption Index"
(κ) describes the topological changes of an individual subject brain networks with
respect to a referential networks topology from a group of reference subjects. In
this work, this index is measured in two groups with different intelligence quotient:
Standard intelligence quotient group represents the referential group, and High in-
telligence quotient (HIQ) group is the population to study. To understand how this
index is defined, consider a nodal metric, for example the degree, and plot the degree
value of each node for a SIQ subject against the average degree of the corresponding
nodes in the SIQ group (Figure 2.8.A). We can observe that the distribution of the
points falls approximately on a positive slope line (y = x). This happens because for
a SIQ subject, the nodal metric values are close to the average value for the same
node computed in the SIQ group. Constructing the same plot for a HIQ subject, we
can observe that the points have a different distribution (Figure 2.8.B), so they are
not well predicted by the SIQ average degree.

κ is defined following the following steps. First, the SIQ group mean metric of
each node is subtracted from the metric of the corresponding node in an individual
subject. Second, this difference is plotted against the SIQ group mean for all the
nodes. Finally, the gradient of the linear regression that models this points is defined
as κ. According to this definition, data of a SIQ subject will scatter around a
horizontal line (κ ∼ 0) (Figure 2.8.C), while for a HIQ subject data will follow a
negative slope (κ < 0) (Figure 2.8.D).
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Figure 2.8: Hub disruption index κ computation for nodal degree metric: nodal
degree of an individual subject in relation to the degree average of the standard
intelligence quotient (SIQ) group (A) for one standard intelligence quotient (SIQ)
child and (B) for one high intelligence quotient (HIQ) child. The mean nodal degree
of the SIQ group is subtracted from the degree of the corresponding node in an
individual subject and then this individual difference is plotted against the SIQ
group mean. κ is the slope of the regression line computed on this scatter plot.
Based on this definition, the data for a SIQ child (C) will be scattered around a
horizontal line (κ ∼ 0), whereas the data for a HIQ child (D) will be scattered
around a negatively sloping line (κ < 0).

4 Matrix notation

The mathematical representation of a graph is a square matrix in which rows and
columns are both labelled as the set of vertices. Inside the matrix, the connection
between each pair of nodes is showed at the intersection between the row and the
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column corresponding to the two nodes.
A particular type of matrix is the adjacency matrix. In an adjacency matrix,

the intersection between two nodes shows 1 if they are adjacent, and 0 if they are
not.

In a mathematical description, an unweighted graph G=(V,E) is represented by
a | V | x | V | matrix M with:

• Mi,j = 1 if the nodes i and j are connected;

• Mi,j = 0 if the nodes i and j are not connected.

Figure 2.9: Example of a graph G=(V,E) on the left of the image and its adjacency
matrix on the right.

5 Brain graph topology

Depending on its connections distribution, a network may present a specific struc-
ture that is characterized by peculiar properties. Two graph metrics that highlight
the structure differences are the clustering coefficient and the path length.

At one extreme of the topology there are regular graphs. Since the number of
connections of each node with the others is the same, these graphs are characterized
by a very low heterogeneity and randomness. The dense connections between the
nodes tend to divide the graph into groups and it is reflected by a high clustering
coefficient and long average path. Figure 2.10 shows on the left a typical diagram
of a regular graph, well ordered with homogeneous connections. On the opposite,
there are random graphs. They are constructed by choosing a number of nodes n

and joining pairs of them together until a number of m connections is reached. The
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resulting diagram is a snarl of criss-crossed lines as shown on the right of Figure 2.10.
An example of random graph is the computer network and they are characterized
by a low clustering coefficient and short average paths in this structure.

Figure 2.10: Graphical representation of three different graph topologies. A regular
graph (on the left), a random graph (on the right), and a small-world graph (in the
middle). Image taken from [Watts and Strogatz (1998)].

Obviously, real-world networks cannot be neither regular nor random. On one
hand, the regular graphs do not favor the information change between distant nodes.
On the other hand, the numerous long distance connections of the random networks
lead to a high graph cost. The model that can describe the networks present in nature
is an intermediary model named "small-world" network [Watts and Strogatz (1998)].
The idea of the small-world network is simple to explain in the social interaction
context. Each person has a group of close friends that are friends with each other
as well. If we will know other people in a distant city, we may discover that some
of them are socially connected with the previous group of friends. This relationship
network represents a small world model and it was quantitatively translated by Watts
and Strogatz in 1998 as a network in which the connections between the nodes in
a regular graph were rewired with a certain probability. In this way, they have a
higher cluster number than the random networks, but they are directly connected
also with distant networks. Several biological networks present these properties,
and in particular it has been demonstrated that the brain network is a small-world
network [Bassett and Bullmore (2006),Eguíluz et al. (2005)].
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6 Brain connectivity with MRI

The characterization of the brain network topology is an important issue in
neuroscience. It can reveal structural and functional organization that can explain
the information transfer throughout the human brain [Sporns and Zwi (2004)].

As it has been described in the previous sections of this chapter, the brain network
is represented by a graph that is a set of nodes linked between them with some
connections. The study of the brain connectivity is based on the choice of nodes
and their connections.

6.1 Brain parcellation

In brain networks, different choices can be made for the definition of the nodes.
We can consider each voxel as a node, or we can define the nodes as the brain regions
obtained from the segmentation of the cortical and sub-cortical gray matter. Indeed,
the number of nodes and their size depend on the atlas that has been chosen for the
parcellation. In this work, the nodes are labeled only using atlas segmentation. The
most used atlas in literature are:

• AAL anatomical scheme of [Tzourio-Mazoyer et al. (2002)], composed of 89
regions plus cerebellum;

• Desikan Killiany parcellation [Desikan et al. (2006)], composed of 84 regions
obtained from probabilistic information estimated from a manually labeled
training set;

• Destrieux atlas [Destrieux et al. (2010)], composed of 74 regions for each
hemisphere;

• Harvard-Oxford probabilistic atlas [Makris et al. (2006)], covering 48 cortical
and 21 subcortical structural areas for each hemisphere, derived from struc-
tural data.

• Glasser atlas derived from Human Connectome Project (HCP) data [Glasser
et al. (2016)], composed of 180 areas in each hemisphere.

6.2 Connectivity matrix

The edges that link the nodes, instead, derive from the MRI sequence used. Ac-
cording to them, they can provide three different brain connectivity: morphological,
structural and functional brain connectivity (Figure 2.11).
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Figure 2.11: Three brain connectivity measures. First, in morphological connec-
tivity, the connections between the nodes are obtained from cortical GM thickness
correlations. Second, functional connectivity is estimated from temporal correlations
of BOLD signals between regions. Third, structural connectivity is calculated from
WM fibers obtained from tractography.

Morphological connectivity Morphological connectivity derives from anatomi-
cal measurements of in-vivo MRI. The characterization of the anatomical network
reveals intrinsically structural organizational principles in the human brain. Morpho-
metric based correlation networks have been commonly constructed using divergent
structural measurements such as cortical thickness, cortical surface area, and gray
matter (GM) volume. In this section, cortical thickness was chosen to explore brain
connectivity. Some studies demonstrated that association in cortical thickness be-
tween different regions provides information about human brain connectivity [Lerch
et al. (2006),He et al. (2007)]. Indeed, this morphometric feature reflects the size,
density, and arrangement of cells in the brain [Narr et al. (2005)]. It has been
demonstrated that correlation between thickness values are characterized by high
clustering coefficient and short path length reflecting a small-world topology [He
et al. (2007)].

In order to explore morphological brain connectivity first, the cortical thickness
of each region can be measured applying different computation algorithm. Sec-
ond, the Pearson’s correlation between the cortical thickness of each pair of region
is computed. Two regions are considered connected if the correlation between their
cortical thickness measurement is significant across all the population studied. Once
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obtained the matrix of the significant correlations, an undirected graph can be con-
structed from the thresholded correlation matrix. This procedure is shown in Figure
2.12.

Figure 2.12: Example of a pipeline for obtaining morphological connectivity matrix
from [He et al. (2007)]. (A) Cortical thickness estimation from the anatomical MRI:
the inner and outer surfaces were extracted and finally cortical thickness was mea-
sured at each vertex; (B) cerebral cortex segmentation; (C) Significant correlations
between cortical thickness measurement of two brain regions; (D) Correlation ma-
trix across all the population; (E) Anatomical correlation matrix obtained from the
thresholded correlation matrix; (F) Graph representation of morphological correla-
tion matrix. Adapted from [He et al. (2007)].

Functional connectivity Functional connectivity refers to synchronization level
of neuronal activity of different brain regions [Friston et al. (1993)] that can be
captured in BOLD signal during resting-state fMRI acquisitions. It is defined as
the statistical correlations between time-series recorded in two brain regions. The
first work that explored functional correlations was conducted by Biswal and col-
leagues [Biswal et al. (1995)] using resting-state fMRI. Measuring the correlation
between time course of a seed region of interest (ROI) in the motor area and time
course of all other voxels, they demonstrated the functional connectivity between
left and right regions of primary motor network. In the past few years, several stud-
ies examined the whole-brain functional connectivity demonstrated that at rest the
brain is organized into different Resting-State Networks (RSNs) [Damoiseaux et al.
(2006),Salvador et al. (2005)].

Functional connectivity is measured using different methods as like as seed-based,
model-free and network analysis method, but in this work, only the third method
is used. Many studies using graph methods have demonstrated that whole-brain
functional networks exhibit effective small-world properties [Stam (2004), Salvador
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et al. (2005),Achard et al. (2006),Van den Heuvel et al. (2008)]. In this thesis, we
used wavelets transformation to decompose fMRI time-series obtained for cortical
and subcortical brain regions. This technique realizes a time-scale decomposition
that partitions the total energy of a signal over a set of compactly supported basis
functions, or little waves, each of which is uniquely scaled in frequency and located
in time [Akansu and Haddad (2001), Bullmore et al. (2004)]. Then, the maximal
overlap discrete wavelet transform (MODWT) was applied to each regional mean
time-series and Pearson’s correlations between wavelet coefficients were estimated
at each decomposition scale (Figure 2.13).

A

B C D

Figure 2.13: Representation of graph generation from functional connectivity. After
brain parcellation (A), time-series of brain regions are extracted (B), each time-series
is decomposed using wavelet transformation (C), and finally, the Pearson correlation
between each pair of nodes is computed for all the wavelets scales (D).

Structural connectivity The structural connectivity is based on modern MRI
technique, namely DTI, that allows to reconstruct white matter tracts and to es-
timate the integrity and efficacy of the connections. Indeed, connection between
regions is given from the number of WM fibers that link these regions. Once the
brain regions are defined and DTI data are preprocessed, the direct fiber connec-
tions between two brain regions can be quantified in different ways, including mean
FA [Beaulieu (2002)], mean diffusivity, and fiber count [Damoiseaux and Greicius
(2009)]. This information is extracted applying tractography technique on DTI
data. Connectivity matrices are generated by summing the number of streamlines
connecting each pair of nodes (Figure 2.14). Several studies explored structural con-
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nectivity topology using this technique and they found that the network exhibited
small-world topology with high clustering and short path length [Iturria-Medina
et al. (2007), Iturria-Medina et al. (2008),Hagmann et al. (2007)].

Figure 2.14: Representation of graph generation from structural connectivity. First,
(1) the nodes are defined from an anatomical parcellation of the anatomical image.
Second, (2) diffusion images are preprocessed and the tractography is generated.
Third, (3) the connectivity matrix is created using the number of fibers that connect
each pairs of nodes. From this matrix, structural connectivity graph of the brain is
generated (4).

Since the structural connectivity matrix refers on the number of streamline, the
graph properties depends on the total number of fibers that have been reconstructed
in the brain. Indeed, a graph generated with a low fiber numbers will have a lower
density than a graph generated with high fiber numbers. Graph measure, conse-
quently, are not absolute measures and they can be compared only if the total fiber
number of tractography is the same.

Ilaria SUPRANO 49



CHAPTER 2. BRAIN CONNECTIVITY

50 Ilaria SUPRANO



Chapter 3

Intelligence

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 g-Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Intelligence Quotient (IQ) measure . . . . . . . . . . . . . 54

5 Wechsler Intelligence Scales . . . . . . . . . . . . . . . . . 55

5.1 WISC-IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 WAIS-IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 MRI application to intelligence . . . . . . . . . . . . . . . 57

6.1 Early MRI studies . . . . . . . . . . . . . . . . . . . . . . 57

6.2 The Parieto-Frontal Integration Theory (P-FIT) . . . . . 61

6.3 The role of brain connectivity in intelligence . . . . . . . . 62

51



CHAPTER 3. INTELLIGENCE

1 Introduction

Interest in human intelligence began thousands years ago, when the Greek philoso-
pher Aristotle introduced the concept of reason. During the later centuries, lots of
different definitions of intelligence have been proposed. They all share a single idea:
intelligence is a general mental ability and it must have something to do with the
brain [Haier (2016)]. Researchers developed measure of intelligence for empirical
investigations using sophisticated statistical methods.

"Intelligence is what intelligence tests measure." E. G. Boring

Boring’s 1923 definition is not really accepted from psychology community. In-
deed, test scores do not measure intelligence but they estimate the general mental
ability. Being influenced by many things, they are not perfect predictors. Nonethe-
less, they are necessary tools for research about intelligence.

2 g-Factor Model

Intelligence is actually the result of many abilities, each one estimated by a test.
All these abilities are not independent, indeed they are all related to each other.
This relationship is named structure of mental abilities and it is reported in figure
3.1. In this structure, there are 15 different tests that measure 5 mental abilities:
reasoning, spatial ability, memory, processing speed and vocabulary. However, all
the mental abilities, being related each other, have in common a factor, namely the
factor of intelligence g.

Figure 3.1: Structure of mental abilities. On the bottom, from 1 to 15, the different
tests. In the middle, 5 mental abilities from the tests. On the top, g that is common
to all abilities. Numbers represent the correlations between tests, mental abilities
and g. [Haier (2016)]
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g factor was described for the first time by Charles Spearman in 1904 [Spearman
(1904)] who realized that all mental processes were inter-correlated and he used a
statistical analysis, called factor analysis, to identify these correlations.

3 Other Models

Other models were introduced to describe intelligence structure. In 1971, Ray-
mond Cattel described intelligence as composed of two factors: crystallized intelli-
gence (Gc) and fluid intelligence (Gf) [Cattel (1971)]. Crystallized intelligence refers
to capacities to use skills that a person has acquired through knowledge and exper-
tise. The fluid intelligence is the innate learning capacity of all individuals to solve
new problems. The two factors have a different evolution during the lifespan (Figure
3.3). While Gc continues to improve until late adulthood because it is fed by each
new think learned, Gf has a peak during adolescence and then it decreases slowly
with age because of age-related brain degeneration.

Figure 3.2: Schematic representation of changes in crystallized and fluid intelligence
during the life span. Adapted from [Horn (1982)].

Other models that have been proposed are based on three factors [Johnson and
Bouchard (2005)] or they have less empirical evidences [Sternberg (2000), Gardner
(1987)].
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4 Intelligence Quotient (IQ) measure

Intelligence quotient (IQ) is not the same as g factor, but IQ scores can estimate
g because both of them are measured by tests that measure different mental abilities.
The first IQ test was developed in 1904 by a French psychologist Alfred Binet and his
colleague Theodore Simon. The French government wanted to identify children who
needed specialized assistance in order to help them in school achievement. The test
was composed of questions to test mental abilities such as attention, memory, and
problem solving. Once many children underwent these questions, Binet measured
averaged score for each age and sex. He then introduced the concept of mental age
that was a measure of the intelligence compared to abilities of children of a certain
age group.

Figure 3.3: Page from the Binet-Simon Intelligence Scale: children were asked which
face, of each pair, was prettier. Adapted from [Binet and Simon (1916)].

Successively, the Binet-Simon Scale was standardized using a sample of American
participants by a Stanford University psychologist. This test, published in 1916 as
the Standford-Binet Scale, calculated a single number named intelligence quotient
by multiplying for 100 the ratio between mental age and chronological age. The
focal point of these tests is that a child score is a measure relative to their peers.
Even today, IQ is not an absolute measure, but it is a relative measure that has a
meaning only if compared with other people.
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5 Wechsler Intelligence Scales

Based on the Standford-Binet test, in 1939 David Wechsler combined several
sub-tests to develop a new IQ test. Wechsler believed that intelligence was

"the global capacity of a person to act purposefully, to think rationally,
and to deal effectively with his environment" .

For this reason, its IQ test was composed of questions that tapped many verbal
and non-verbal abilities. This test has undergone to many revisions and it is today
the most used in psychology. Three intelligence tests developed by Wechsler for
different populations are used in United States: the Wechsler Adult Intelligence
Scale-fourth edition (WAIS), the Wechsler Intelligence Scale for Children (WISC),
and the Wechsler Preschool and Primary Scale of Intelligence (WPPSI). All the
Wechsler scales rely on the idea that IQ scores is normally distributed throughout
the population (Figure 3.4) with an average score fixed at 100.

Figure 3.4: Normal distribution of IQ scores. The average IQ is 100 and 68%
of the population has a normal IQ in the range between 85 and 115. Only
the 2.5% of the population has a very high IQ (IQ > 130). Adapted from
https://www.iqtestforfree.net.

5.1 WISC-IV

The Wechsler Intelligence Scale for Children (WISC) has been developed around
1949 to measure different aspects of intelligence in children between the ages of 6 to
16 [Wechsler (2003)]. The test has undergone several updates and the current version
of the test is the fifth edition WISC-V. However, in this work we used the fourth
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edition WISC-IV. It contains 10 principal and 5 additional sub-tests to measure
child’s abilities in four cognitive domains represented by 4 primary index scores:
Verbal Comprehension Index (VCI), Perceptual Reasoning Index (PRI), Working
Memory Index (WMI), and Processing Speed Index (PSI) as shown in figure 3.5.
The VCI measures the child’s ability to verbally reason and it is influenced by
semantic knowledge. The PRI estimates non-verbal and fluid reasoning, WMI is
a measure of working memory abilities, and PSI measures the processing speed.
Finally, child’s general intellectual ability namely Full Scale IQ (FSIQ) is obtained
from the 4 indices. Like Binet’s tests, sub-tests of the WISC-IV are compared to a
sample of children with the same age.

5.2 WAIS-IV

The Wechsler Adult Intelligence Scale (WAIS) is the most used intelligence test
today. The last version, namely WAIS-IV, was released in 2008 and it contains 10
sub-tests along with five supplemental tests. As well as the WISC-IV, the WAIS-
IV provides scores on four major areas of intelligence namely VCI, PRI, WMI and
PSI and their combination provides the Full Scale IQ (FSIQ) that summarizes the
general intellectual ability. The details of the 10 sub-tests are shown in the following
image:

Figure 3.5: Structure of Wechsler Intelligence Scale for Children (WISC-IV) and
Wechsler Adult Intelligence Scale (WAIS-IV). The 10 principal sub-tests are dis-
tributed in four groups, each for a different intelligence score.

The WAIS results are scored comparing the obtained score to the scores of an
adults population of the same age.
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6 MRI application to intelligence

Since XIX century, the relationship between brain volume and intelligence has
been a topic of a scientific debate. Numerous studies demonstrated this relation-
ship [Galton et al. (1869)], but they have been severely hindered by difficulties in
obtaining direct measures of brain size measure [Van Valen (1989)], that was achieved
indirectly with head circumferences, or "number of metal pellets" required to fill a
skull. Over the past three decades, the extraordinary development of brain imaging
technology techniques, like PET and MRI, have allowed to investigate the neural
substrate of intelligence. Because it provides images of all the body without radia-
tion exposure, with a great contrast and allowing the detection of pathology with a
great sensitivity, MRI has become the pillar of cognitive neuroscience research.

In this section, we review the literature of MRI application to human intelligence.
First, we introduce some studies that showed important relationship between intel-
ligence and simple MRI measures obtained from anatomical, diffusion weighted, and
functional MRI study. Second, the most important intelligence theory based on 37
neuroimaging studies is presented. Finally, we detail literature studies that explored
the relationship between brain connectivity and intelligence differences and we focus
our attention on those that analyzed brain connectivity throughout graph theory.

6.1 Early MRI studies

Structural MRI studies The first MRI study demonstrated in 1991 that dif-
ferences in human brain size are relevant for explaining differences in intelligence
test performance [Willerman et al. (1991)]. Until today, this result was confirmed
many times [Wickett et al. (2000),Haier et al. (2004)] and in 2005 McDaniel wrote
a complete review on this subject comparing 37 studies for a total of 1530 sub-
jects [McDaniel (2005)]. The main result was a mean correlation over all subjects
of 0.33, that was higher for females (0.40), between intelligence test score and brain
size. He concluded that the debate was resolved and intelligence and brain volume
are meaningfully related.

In order to have more detailed results, relationship between single region of
interest (ROI) and intelligence was explored. These studies reported that volume
of frontal, temporal, parietal lobes, along with hippocampus and cerebellum are the
most related to intelligence [Andreasen et al. (1993),Flashman et al. (1997)]. Using
more sophisticated methods that allow to distinguish gray and white matter volume,
higher resolution results have been reached. With voxel-based morphometry (VBM)
technique, Haier and colleagues demonstrated that several areas in overall the brain
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are correlated with IQ [Haier et al. (2004)], and with g factor [Colom et al. (2006)]
and that these relationships depend on sex [Haier et al. (2005)].

A more recent method to investigate the brain structure, uses Euclidean geometry
to calculate thickness of the cortex in many points. Applying this measure to a
large population of children, significant correlation between cortical thickness and
IQ were measured (Figure 3.6) and the strongest correlation was observed in late
childhood [Shaw et al. (2006)].

Figure 3.6: Evolution of cortex thickness difference between high and standard in-
telligence group from 7 to 16 years old. In early childhood, high intelligence group
presents a thinner cortex that increases. The most significant result is obtained at
age 13 when an elevated increase in cortical thickness is measured in high intelligence
group. Adapted from [Shaw et al. (2006)].

White matter measure with DTI Diffusion tensor imaging (DTI) also consti-
tutes a very sensitive MRI technique for the characterization of WM microstructural
organization and the identification of neural pathways. The high sensitivity of this
technique demonstrates the association between WM microstructure and IQ during
lifespan. The first DTI study, performed by Schmithorst and colleagues, showed pos-
itive associations in a children population between IQ and fractional anisotropy (FA)
in frontal and parietal areas [Schmithorst et al. (2005)]. Another study in children,
demonstrated a correlation between visuospatial abilites and FA in the right unci-
nate fascicle [Muetzel et al. (2015)]. The relationship between FA and IQ was also
demonstrated to exist also in adolescents [Navas-Sánchez et al. (2014)]. In 2017, our
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group demonstrated that not only FA, but also axial diffusivity (AD) is correlated
with IQ, and that DTI measures present a significant difference of the hemispheric
lateralization in two IQ children profiles namely Homogeneous HIQ (Hom-HIQ) and
Heterogeneous HIQ (Het-HIQ) [Nusbaum et al. (2017)]. These results are shown in
Figure 3.7, where the significant AD differences, compared to a standard IQ group,
are represented in Hom-HIQ group (Top), and in Het-HIQ group (Bottom). Signif-
icant voxels were found mainly (60%) in the right hemisphere for Hom-HIQ, and in
the left hemisphere for Het-HIQ.

Figure 3.7: Regions with significant greater AD when comparing the homogeneous
HIQ group (Top) and heterogeneous HIQ group (Bottom) with the standard IQ
group. Adapted from [Nusbaum et al. (2017)].

Several studies demonstrated that high intelligence is also positively associated
in adults to WM microstructure [Clayden et al. (2012),Dunst et al. (2014)]. More
in detail, Tamnes and colleagues showed that cognitive abilities are related to FA,
mainly in the left hemisphere [Tamnes et al. (2010)]. The authors explained this left
hemisphere dominance as a verbal mediation during reasoning, since other studies
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proved that performance on matrix reasoning is associated with measures of verbal
abstract reasoning and verbal fluency.

Functional MRI studies Since the end of XX century, several studies explored
brain functions related to intellectual abilities throughout task fMRI. The first study
that explored the neural substrates of fluid reasoning was conducted by Prab-
hakaran’s group that measured blood flow increase in frontal and parietal lobes
during reasoning tasks from Raven’s test [Prabhakaran et al. (1997)].

Despite the use of different tests that measure various intelligence components,
more recent studies also highlighted a relationship between fronto-parietal regions
activation and intelligence. A large-sample of imaging studies probed individual
differences in general fluid intelligence, using verbal and nonverbal working memory
tasks [Gray et al. (2003)]. They found that greater activity in prefrontal cortex is
associated with higher fluid intelligence. Intellectual giftedness in adolescents has
been investigated in [Lee et al. (2006)a]. As shown in Figure 3.8, when performing
visual reasoning tasks, the superior intelligence group presents higher activation than
the average intelligence group in fronto-parietal network particularly driven by the
posterior parietal activation.

Figure 3.8: Example of frontal and parietal regions ((A) and (C) PFC, prefrontal cor-
tex; (B) ACC, anterior cingulate cortex; (D) and (E) PPC, posterior parietal cortex)
with their activation level in two different intelligence group: Average intelligence
and Superior intelligence groups. Activation levels are represented by changes in
BOLD signal during reasoning task. Adapted from [Lee et al. (2006)b].

Noveck’s group explored brain activation during employed propositional syllo-
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gisms involving conditional reasoning [Noveck et al. (2004)]. The main finding of
this study was a lateralization of parieto-frontal network, that was more activated
in the left hemisphere, when reasoning becomes more challenging. Another study
on a large cohort of over 300 children performing the semantic processing task of
silent verb, observed activation differences between brain hemispheres [Schmithorst
and Holland (2006)]. Regions of the left hemisphere (namely the middle temporal
gyrus, prefrontal cortex, medial frontal gyrus, precuneus, and cingulate gyrus) ex-
hibited positive correlations with IQ, while the superior temporal gyrus in the right
hemisphere showed negative correlations.

6.2 The Parieto-Frontal Integration Theory (P-FIT)

The most important review of neuroimaging studies of intelligence was written in
2007 by the two major researchers of intelligence: Rex Jung and Richard Haier. They
collected the results of 37 imaging studies that used PET, functional, and structural
MRI. Results in common to more than half studies were grouped in order to build
their theory, named Parieto-Frontal Integration Theory (P-FIT). This name comes
from the spatial position of the brain regions mainly associated with intelligence
that were distributed in parietal and frontal lobes.

The majority of the activation was observed in the left hemisphere while a few
in the right hemisphere. Furthermore, from structural studies results, Jung and
Haier concluded that frontal and parietal lobes communicate between them thanks
to white matter fibers (Figure 3.9).

They proposed a very detailed information processing among these regions com-
posed of 4 steps. First, the information arrives and it is raveled from the sensory
perception regions in occipital and temporal brain areas (BA 18-19, BA 37 and 22).
During the second step, the information are integrated thanks to association brain
areas (BA 39, 40, and 7) that are also relied to memory. This integration processing
ends during the third step, when parietal regions interact with frontal areas (BA
6, 9, 10, 45, 46, and 47) allowing problem solving and evaluation. Finally, in the
decision making the frontal region BA32 is involved.

This model is still used today, but in 2015, Basten and colleagues meta-analysis
showed that also posterior cingulate cortex and subcortical structures are associated
with intelligence [Basten et al. (2015)].
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Figure 3.9: The Parieto-Frontal Integration Theory (PFIT) network: blue circles
indicate PFIT regions located in the left hemisphere, while pink regions are located in
both hemispheres. The yellow arrow represents the transfer of information through
the major white matter tracts of fiber-bundles that connects the regions. The regions
numbers refer to the Brodmann area (BA) nomenclature. Adapted from [Eggermont
(2012)].

6.3 The role of brain connectivity in intelligence

Resting-state functional connectivity The turning point in neuroimaging re-
search was the development of connectivity methods with resting-state fMRI. Indeed,
this technique allows to measure the functional connectivity between two regions
without any cognitive task, but during resting conditions [Fox et al. (2005), Shirer
et al. (2012)]. The first study to apply functional connectivity in intelligence was
performed by Song’s lab. Since dorsolateral prefrontal (BA 46-9) cortex has been
found to be one of the most important brain region supporting intelligent behav-
ior [Gray and Thompson (2004)], in this work the bilateral BA 46-9 were chosen as
seed regions. First, the authors identified brain voxels with a significant functional
connectivity with seed regions. Second, they correlated the connectivity strength
with intelligence scores. The main results supported the PFIT model as they showed
that differences in intelligence can be predicted from functional connectivity between
frontal regions and between frontal and posterior brain regions [Song et al. (2008)].
Association between the local connectivity within a specific brain region and intelli-
gence during rest was explored measuring local synchronization of voxels within the
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regions [Wang et al. (2011)]. Consistent with PFIT theory, these results measured
significant correlations between FSIQ and local connectivity in bilateral inferior pari-
etal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right
thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule.
These results remain valid during childhood, in spite of the frontal pole is the last
region area to be finalized and its connectivity with the distant strengthens during
this life period [Langeslag et al. (2013)].

Figure 3.10: Results obtained from functional connectivity analysis on HCP popula-
tion that are located mainly in default mode network (DMN) and fronto-parietal net-
work (FPN). Functional connections significantly associated with intelligence scores
are represented (A) in anatomical space, and (B) outside the anatomical space. Cor-
relations between the average functional connectivity values in the whole implicated
network showed in panel (C) and general intelligence scores. Adapted from [Hearne
et al. (2016)].

Since resting-state brain activity is organized into distinct neural networks, some
neuroimaging researchers analyzed the association of the connectivity in these net-
works and intelligence. A positive association has been demonstrated to exist be-
tween the functional connectivity of the default mode network (DMN) and the
fronto-parietal network (FPN) with intelligence scores [Hearne et al. (2016)]. This
result was obtained with two different analysis: a meta-analysis from studies present
in literature, and an exploration of the functional brain network based on the Hu-
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man Connectome Project (HCP) (Figure 3.10). Another study that explored brain
networks on early adolescents, showed a significant relationship between intelligence
performance and the functional connectivity of DMN and central executive networks
(CEN) [Sherman et al. (2016)].

Graph theory The brain connectivity horizons have been broaden with the use
of graph theory, an advanced mathematical approach [Watts and Strogatz (1998)].
Indeed, as explained in the previous chapter, graph theory is particularly suitable
to explore without a priori hypothesis brain networks that present a "small-world"
topology [Achard and Bullmore (2007)]. Such networks can be described at two
different scales using global and local graph metrics. A few studies have applied
graph theory to structural and functional MRI to explore brain connectivity changes
with intelligence.

The first application of graph theory on structural connectivity for the study
of intelligence hypothesized that higher intelligence scores correspond to more effi-
cient information transfer in the brain [Li et al. (2009)]. Since white matter tracts
assure flow information in the brain, they measured the global efficiency metric of
the structural network. Their main finding was a higher IQ in brain networks char-
acterized by higher global efficiency, and consequently, shorter characteristic path
length. Moreover, this is the only work that observed the normal aging population
with graph theory. No significant correlation was measured between network prop-
erties and WAIS sub-tests scores in elderly population. However, in a subgroup of
individuals aged 75 and above, high local clustering and global efficiency as well as
overall short path lengths between brain areas were correlated with higher intelli-
gence scores [Fischer et al. (2014)]. On one hand, these results highlighted that
intelligence is not associated with brain structure in elderly. On the other hand, in
advanced elderly, intelligence may be affected by network deterioration only if the
brain structural damage goes beyond a threshold. Two graph network analysis to
structural neuroimaging extended the previous results obtained for adults [Li et al.
(2009)] to a children population [Koenis et al. (2015),Kim et al. (2016)]. In the first
study, children showing an increased global efficiency where the ones with the highest
IQ and, at local scale, frontal and temporal areas showed the strongest associations
between their efficiency changes and intelligence (Figure 3.11) [Koenis et al. (2015)].
In the second study, perceptual reasoning measurements (PRI) revealed a significant
positive association with global efficiency of structural brain networks [Kim et al.
(2016)].

The firsts to explore brain functional substrate of intelligence with graph theory
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Figure 3.11: Correlations between local efficiency and IQ changes in adolescents:
purple and blue nodes present a significant correlation in cortical and subcortical
regions respectively. On the bottom, example of correlation scatterplots in left
inferior orbitofrontal cortex, left cuneus, and right thalamus. Adapted from [Koenis
et al. (2015)].

were Van den Heuvel and colleagues. They extended the idea of the relationship
between intelligence and brain efficiency to functional networks, that has previously
demonstrated in structural connectivity studies. Indeed, they found that IQ cor-
relates negatively with shortest path length measured on the whole resting-state
brain networks [Van Den Heuvel et al. (2009)a], suggesting that it depends on effi-
ciency of functional connections between brain regions. The DMN being the most
important resting-state network, its activity in two groups with different cognitive
capacities has also been subject of study [Song et al. (2009)]. In this network, the
hub, represented by the node with the greatest degree, was found to be the posterior
cingulate cortex and the regions with the weaker connectivity with the major DMN
nodes were the parahippocampal gyrus and cerebellar tonsils. While these results
were in common in both intelligence groups, the network global efficiency and the
strength of some functional connectivity were significantly different between them.
The exploration of network efficiency not only at global scale but also at local scale
as function of intelligence, was the goal of Hilger’s group. They identified anterior
insula (AI) and dorsal anterior cingulate cortex (dACC) as hub functional nodes
of brain network associated with intelligence since they showed a nodal efficiency
positively associated with it [Hilger et al. (2017)a]. Since these regions are part of
the Salience network, this result suggests that intelligence performance is associated
with functional connectivity of the salience network. On the contrary, a negative
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association was measured for the efficiency of the left temporo-parietal junction
(TPJ) (Figure 3.12). However, no significant results have been found at a global
scale neither in network efficiency nor in modularity that this group explored in an-
other study [Hilger et al. (2017)b]. In this last report, the node measures of within-
and between-module connectivity showed a significant relationship with intelligence.
This result was mainly measured in frontal and parietal regions and highlighted the
importance of topological reorganization in higher cognitive abilities.

Figure 3.12: Nodes showing significant associations between intelligence and nodal
efficiency. In red, (A) dorsal anterior cingulate cortex (dACC), and (B) insula (AI)
present a positive association while, in blue (C) temporo-parietal junction (TPJ)
presents a negative association. Adapted from [Hilger et al. (2017)a].

A surprising finding from Santernecchi’s team, demonstrated that weaker long-
distant connections are more important than the strong short one in IQ differ-
ences [Santarnecchi et al. (2014)]. These researchers also performed other studies
that allowed to know other details of the neuronal substrate of different intelligence
performance. For instance, they applied randomly a technique to simulate a damage
of a brain area demonstrating that people with higher intellectual capacities showed
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a more resilient brain in that the flow of information continues also if the most
important regions are damaged [Santarnecchi et al. (2015)a]. Analyzing functional
connectivity between the same brain region in the right and the left hemisphere,
namely homotopic connectivity, the same group reported a decreased functional
connectivity in the principal sensory areas in association with high IQ [Santarnecchi
et al. (2015)b]. Not only this result was unexpected, but also it was the unique study
to investigate homotopic connectivity in intelligence. Finally, they investigated the
connectivity in the network related to fluid intelligence (Gf) and they compared it
with the most important resting-state networks [Santarnecchi et al. (2017)]. Gf net-
works showed the strongest positive correlation with regions of the dorsal attention
and executive control networks, and negative correlation with DMN regions. These
results suggested a link between fluid intelligence and resting-state networks and,
particularly, the DMN which may be a marker of intelligence.
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Chapter 4

Aim of the thesis

High Intelligence Quotient (HIQ) people are characterized by different neuro-
logical, cognitive, relational and emotional functioning. Based on scientific studies,
2-3% of the population is concerned by this mental specificity that represents an
average of one child per class in school. The prevalent thought of the society is
that HIQ people know everything. They are considered as geniuses, gifted child or
talented people. They are usually characterized by better cognitive abilities such
as faster processing speed based on a rich vocabulary range, greater attention, and
visuo-spatial abilities, fast and large memory, superior problem solving capacities,
mental flexibility, and reasoning strategies [Vaivre-Douret (2011)]. These particular
skills are reflected in a High Intelligence Quotient quantified by a high Full Scale
Intelligence Quotient (FSIQ>130) as measured by the Wechsler Intelligence Scales.

However, HIQ people do not always feel to be lucky persons or to be better
than other people. On the contrary, their capabilities may lead to social or learn-
ing difficulties. Their thinking is different, faster, and their interests are usually
broader. Furthermore, they present an increased sensibility that may lead some
of them to present different disabilities in managing their attention, emotions, and
relationships. Indeed, they are characterized by hypersensitivity, perfectionism, law
self-esteem. As they understand everything very quickly at school, they could be
bored in class. For all these aspects, HIQ person feel himself different from the
others, and his hypersensitivity makes him suffering from this difference. The coex-
istence of two opposite aspects in the same person that on one hand, have better
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cognitive capabilities and on the other have relationship difficulties, has been called a
"dyssynchrony syndrome" based on a dyssynchrony between cognitive and emotional
abilities [Terrassier (2009),Guénolé et al. (2015)]. These clinical observations have
led Fanny Nusbaum, the psychologist and neuroscientist of our group, to define two
profiles based on her clinical experience and measured by their Wechsler Intelligence
scores, namely the Homogeneous-HIQ profile (Hom-HIQ) and the Heterogeneous-
HIQ profile (Het-HIQ) also named "laminar philocognitive" and "complex philocog-
nitive", respectively. The first ones usually present a well-controlled behaviour and
a successful curriculum that is reflected in homogeneous results to the Wechsler’s
scores. On the contrary, Het-HIQ show social maladjustment and learning troubles
that can be detected by a significant difference between verbal comprehension index
(VCI) and perceptual reasoning index (PRI) as well as standard memory and speed
processing index [Sweetland et al. (2006),Guénolé et al. (2013)].

In the third chapter of this thesis, we reviewed the literature of MRI studies
investigating the intelligence neuronal substrate. Because we support the idea that
intelligence does not depend only on some specific brain regions, but mostly on the
dynamic organization of brain networks [Barbey (2018)], we studied the role of brain
connectivity in intelligence, using graph analysis. Graph theory with its metrics,
providing information on both local and global connectivity of brain networks, is a
powerful technique to explore the intelligence neuronal substrate. Furthermore, the
interest into the global reorganization of brain networks has led us to apply a graph
measure that detects changes in brain reorganization compared to a reference group,
namely the hub disruption index. In this work, we measured the brain structural
and functional connectivity in order to characterize the brain topology of a general
HIQ population.

The major part of this thesis concerns our research in children with High Intelli-
gence Quotient (HIQ). First, we focused our attention on brain network connectivity
in HIQ children with two different MRI techniques: resting-state fMRI and DTI.
After an optimization of rs-fMRI processing for the application of graph theory
methods, we measured functional connectivity in two HIQ profiles compared to a
reference group (SIQ). We explored then the changes in the functional topology
of the brain networks depending on the cognitive abilities. We also studied differ-
ences in structural connectivity obtained by diffusion MRI. Finally, we performed a
task-fMRI study in order to detect differences in functional activation to a semantic
memory task in two HIQ profiles.

In order to have an overall view of brain connectivity along lifespan, we studied
in the second part of this work, a population of HIQ adults.
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The final purpose of this work, is to characterize the neural substrate of intel-
ligence. Once the functioning of HIQ people brain is understood, this could be a
scientific explication for their difference and it could help them to be more integrated
in everyday life, from the education age to work age.
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Introduction

Already before the introduction of the “general model” described by Spearman in
1904 [Spearman (1904)], and the first standardized psychological tests developed by
Binet [Binet (1905)], people were interested in knowing where the intelligence could
be localized in the brain. On one hand, there was the notion that higher cognitive
functions were related to a harmonic work of the brain as a single entity [Flourens
(1824)]. On the other, the idea that intelligence was related to specific regions was
disclosed [Gall (1825)]. Only in 1949, these two ideas were synthesized providing
the new concept that high intelligence performances are related to the interactions
of single brain regions [Pavlov (1949)].

This idea still persists to day and the concept of intelligence remained a challenge
in cognitive research [Haier (2016)]. Nowadays, neuropsychological tests, such as
the Wechsler Intelligent scale for Children (WISC) [Wechsler (2003)], can provide a
reliable estimation of the intelligence quotient (IQ), and help the clinical problem of
children with high intelligence quotient (HIQ).

Understanding HIQ children has always been a question that is dear to psy-
chologists and clinicians of our research team. A HIQ child has often an atypical
development from several points of view. On the psycho-motor level, they start to
walk very early [Vaivre-Douret (2004)]. This fact allows them to explore the en-
vironment and to acquire skills earlier than other children. On the cognitive level,
they start to say the first words at 9 months [Vaivre-Douret (2004),Revol and Bléan-
donu (2012)], and they have a great capacity of concentration and memorization.
On psycho-social level, they prefer the company of older children and they show
hypersensitivity and empathy [Robert et al. (2010)].

Two profiles of HIQ children have been identified by [Liratni and Pry (2011)].
They hypothesised that there would be a "clinical" group with psychopathological
difficulties and a "non-consultant" group with no psychopathological disorders. Al-
though the Full Scale of Intelligence Quotient (FSIQ) is not significantly different, it
has been noticed that the cognitive profile of the "clinical" group was more heteroge-
neous than in the other group. This heterogeneity is significant between the Verbal
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Comprehensio Index (VCI) and the Perceptual Reasoning Index (PRI). Through the
research of different authors and our personal observations, two groups of HIQ chil-
dren have been distinguished, who differ in their cognitive profile, but also in their
education and sociability. Then, Fanny Nusbaum proposed to distinguish these two
groups: the Homogeneous HIQ (Hom-HIQ) and Heterogeneous HIQ (Het-HIQ).

Hom-HIQ is characterized by harmonious indices on Wechsler scales and the
FSIQ reflects the general cognitive profile of these children. They are generally well
integrated socially and academically. Despite they exhibit emotional hypersensitiv-
ity, they have the capacity to hide it. At school, they will succeed easily in all the
subjects but these learning facilities may led them to get bored.

Het-HIQ is commonly encountered in clinic, showing associative learning trou-
bles, attention deficits, emotional, and social maladjustments. These aspects are de-
scribed as the “dys-synchrony syndrome” [Silverman (1997), Terrassier (2009)] and
most often detected as a VCI higher than the other indices. In particular, Terrassier
identified three types of dyssynchrony: internal, cognitive-affective, and social. The
internal dyssynchrony is reflected by an elaborate oral language but also a difficulty
in learning. This dyssynchrony is evident at school, where the child appears gifted
for certain subjects, but he has serious problem to succeed in other. The cognitive-
affective dyssynchrony may be revealed as a discrepancy between the intellectual
and the emotional development. They are hypersensitive as Hom-HIQ, but they are
complete overwhelmed by their emotions. Finally, the social dyssynchrony is char-
acterized by a gap between the child and the social relations with his parents, his
teachers or his classmates. Het-HIQ child is thirsty for knowledge and wants to know
everything, in a very detailed way. This behavior may cause attention disorders at
school where they are bored and feel to be rejected from their classmates. All these
dyssynchronies can lead to anxiety, depression, attentional and behavioral disorders,
as well as academic failure [Terrassier (2009), Revol and Bléandonu (2012), Robert
et al. (2010)]. It is also important to note that the HIQ is recognized by the French
national education but only on the basis of the FSIQ. However, Het-HIQ children, as
previously explained, have particularly heterogeneous Wechsler index scores, which
prevents a correct interpretation of the FSIQ that may be quite standard when at
least one of the indices is above the average. For this reason, Het-HIQ child may be
not recognized as a HIQ child and thus may not benefit from an academic program
adapted to his .

In order to better understand the behavior of both HIQ profiles in everyday life,
a few years ago, our group designed a research project that links psychological and
behavioral observations with neuroimaging explorations. Furthermore, the distinc-
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tion between Hom-HIQ and Het-HIQ groups remains nowadays only at a theoretical
stage while no scientific study allow to confirm it. For this reason, the goal of our
project was to explore the brain function and structure using MRI investigations.

Indeed, the development of advanced MRI techniques allowed to investigate the
neural bases of intelligence and to accept the assumption that human intelligence
has biological basis [Duncan et al. (2000),Gray et al. (2003),Colom et al. (2010)].
For this reason, both structural and functional correlates of cognitive abilities were
explored by MRI.

Neural substrate exploration of intelligence in children was performed with three
different techniques in order to cover the entire spectrum of information that can
be obtained from MRI. First, brain network connectivity networks was explored:
functional connectivity was measured by resting-state fMRI to investigate the dif-
ferences in topology of brain network for HIQ children compared to children with a
standard QI. Then, we studied with DTI the microstructure organization and struc-
tural connectivity in HIQ children. Finally, a task fMRI experiment was set up in
order to investigate how HIQ children respond to semantic tasks, and which regions
they active during these tasks.
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Chapter 5

Functional connectivity: a resting-state
fMRI study

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2 Development of the pre-processing of rs-fMRI . . . . . . 84

2.1 Signal to noise ratio . . . . . . . . . . . . . . . . . . . . . 84

2.2 Subjects’ motion . . . . . . . . . . . . . . . . . . . . . . . 84

2.3 fMRI signal processing . . . . . . . . . . . . . . . . . . . . 87

2.4 Anatomical atlas . . . . . . . . . . . . . . . . . . . . . . . 90

2.5 Wavelet decomposition scale . . . . . . . . . . . . . . . . 91

2.6 Graph’s cost . . . . . . . . . . . . . . . . . . . . . . . . . 93

3 Materials and Methods . . . . . . . . . . . . . . . . . . . . 93

3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 MRI acquisition . . . . . . . . . . . . . . . . . . . . . . . 94

3.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . 94

3.4 Wavelets decomposition . . . . . . . . . . . . . . . . . . . 95

3.5 Graph construction . . . . . . . . . . . . . . . . . . . . . . 96

3.6 Hub Disruption Index (κ) estimation . . . . . . . . . . . . 96

79



CHAPTER 5. FUNCTIONAL CONNECTIVITY: A RESTING-STATE FMRI STUDY

3.7 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 98

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 Modifications of FC organization with intelligence . . . . 99

4.2 Correlations between FC organization and intelligence . . 103

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Brain networks changes with high intelligence . . . . . . . 104

5.2 Correlation between brain networks changes and IQ sub-
scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

80 Ilaria SUPRANO



This chapter is dedicated to the exploration of functional neuronal substrate
of intelligence. As it has been presented in Chapter 2, from resting-state fMRI
data, we can extract BOLD time-series from different brain areas. Exploiting this
information, the temporal correlation between the time-series can be calculated to
estimate the functional connectivity between brain regions. A graph of networks is
obtained from anatomical parcellation of the cortical regions considered as nodes and
from correlation between time-series considered as edges that link the nodes between
them. With these assumptions, the brain connectivity networks can be analyzed
applying graph theory. In Chapter 3, we have illustrated the great potentiality of
this technique that allows to explore networks at two main scales. From local metrics,
properties of each node are obtained, while global metrics provide information about
the total graph. In literature, few studies investigated both topology of graph metrics
and their association with intellectual abilities. The majority of these studies focused
on finding a relationship between brain network efficiency and intelligence, as it is
expected from the efficiency theory. However at global scale, a previously work [Van
Den Heuvel et al. (2009)b] that demonstrated the existence of this relationship were
not confirmed by a more recent study [Kruschwitz et al. (2018)] on a large cohort of
the Human Connectome Project. Indeed, the authors tried to confirm the efficiency
theory but, the correlations measured between global efficiency and IQ did not show
any significant results.

Based on these controversial results, and on the idea that intellectual abilities
are supported by brain network reorganization [Barbey (2018)], we investigated the
brain topology using the "Hub disruption index" (κ). This graph parameter is a mea-
sure of network reorganization and it has been demonstrated to be more sensitive
than global graph metrics to detect group differences [Termenon et al. (2016)b]. We
measured the reorganization of segregation, integration, and hub properties defin-
ing a κ for four local graph metrics, namely the degree, the local efficiency, the
clustering coefficient, and the betwenness centrality. The four κ were estimated
using a reference group with standard IQ, for a group of High IQ children that
was furthermore splitted in two different profiles, namely Homogeneous and Het-
erogeneous HIQ groups. Comparing differences in brain organization among these
groups, significant changes in brain topology have been detected in children with
High Intelligence Quotient.
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This chapter is based on the article published in the journal "Frontiers in Human
Neuroscience" titled Topological modification of brain networks organization
in children with high intelligence quotient: a resting-state fMRI study.
Ilaria Suprano, Chantal Delon-Martin, Gabriel Kocevar, Claudio Stamile, Salem
Hannoun, Sophie Achard, Amanpreet Badhwar, Pierre Fourneret, Olivier Revol,
Fanny Nusbaum and Dominique Sappey-Marinier .

1 Introduction

Resting-state fMRI (rs-fMRI) allows the measurement of functional connectivity
(FC) in large-scale brain networks dedicated either to specific cognitive processing
demands [Shirer et al. (2012)] or to intrinsic brain activity [Fox et al. (2005)].
These properties led several neuro-scientists to apply this technique to characterize
functional intelligence networks.

Based on these approaches, Sherman et al. reported a correlation with intelli-
gence in the default mode network (DMN) and the central executive network (CEN)
of early adolescents [Sherman et al. (2016)]. In a cohort of young children, Langeslag
et al. [Langeslag et al. (2013)] reported associations between high nonverbal intel-
ligence and increased FC between parietal and frontal, and parietal and anterior
cingulate regions. Based on an exploratory mapping of the literature, and a net-
work analysis of the Human Connectome Project (HCP) data, Hearne et al. [Hearne
et al. (2016)] showed that both the DMN and the FPN were strongly correlated with
high intelligence scores in young adults. Moreover, the cognitive functions related to
adult intelligence (measured using IQ) seemed to correlate with the FC of homotopic
regions, which was reported to be reduced in the primary sensorimotor cortex [San-
tarnecchi et al. (2015)b]. Exploration of homotopic connectivity is currently gaining
interest, as it has been demonstrated to robustly increase with advancing gestational
age in the fetus [Thomason et al. (2013)], and be highly consistent within and across
subjects [Finn et al. (2015)].

The concept of intelligence being embedded not only in a single brain network,
but rather in a complex organization of communicating brain networks, has re-
cently emerged [Ponsoda et al.]. Graph theory [Watts and Strogatz (1998)], is in
particular relevant for modeling brain FC as a global efficient network, support-
ing both segregated and distributed information processing [Sporns and Zwi (2004)]
that is modeled by a “small-world” topology [Achard and Bullmore (2007)]. This
approach was recently applied to characterize the neuronal substrate of intelligence
attributable to both structural and functional connectivity, using diffusion tensor
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imaging (DTI) [Kim et al. (2016),Kocevar et al. (2019)] and rs-fMRI [Hilger et al.
(2017)a,Kruschwitz et al. (2018),Van Den Heuvel et al. (2009)b]. These studies in-
vestigated specific metrics reflecting network integration properties (global efficiency
(GE) and degree (D)), segregation properties (local efficiency (LE) and clustering
coefficient (CC)), and hubness properties (betweenness centrality (BC)). Van den
Heuvel et al. [Van Den Heuvel et al. (2009)b] reported a significant correlation
between GE and intelligence, though this finding was not reproduced in the larger
HCP cohort [Kruschwitz et al. (2018)]. Furthermore, LE was demonstrated to be
positively correlated with FSIQ in regions of the salience network and negatively in
the temporo-parietal junction [Hilger et al. (2017)a].

Taken together, these results suggest that HIQ brain could be related to global
modification of network topology. This was recently conceptualized by Barbey [Bar-
bey (2018)] who suggested that “intelligence depends on the dynamic organization
of brain networks, modifying their topology and community structure in the service
of system-wide flexibility and adaptation”. Therefore, we propose to investigate the
relationship between intelligence and brain network FC using a graph organization
measure, the “hub disruption index κ”. This approach has been applied to several
brain pathologies demonstrating significant brain network reorganizations, such as
coma [Achard et al. (2012)], epilepsy [Gendon et al. (2015)], and stroke [Termenon
et al. (2016)a]. Moreover, the hub disruption index has been shown to be more
reliable and sensitive than global graph metrics to detect group differences between
patients and healthy controls [Termenon et al. (2016)b].

In this work, we first focused on the development of a processing pipeline used
to obtain functional brain connectivity. Second, the methods were optimized in
several steps of rs-fMRI preprocessing and graph analysis. Graph analyses were
then performed on different brain networks scales: the whole brain, both cerebral
hemispheres (given the asymmetry of brain functions), and between homotopic re-
gions. From graph metric measures, we finally assessed the topological modification
of brain networks organization in HIQ children using the κ index to characterize
the neural substrate of intelligence. Whether FC changes relate to FSIQ and/or
to its subscales was also investigated by correlational analysis. This approach will
allow for better understanding of the differences in FC substrate between high and
standard IQ children, as well as between the two HIQ profiles.
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2 Development of the pre-processing of rs-fMRI

As we have anticipated, the principal goal of this work was to investigate human
functional connectivity measured from resting-state fMRI in a children population.
The precision of this measure depends on each step of preprocessing pipeline. How-
ever, there is no consensus about which is the better pipeline to use and it is still
a topic of interest. Furthermore, the connectivity measure depends on the choice of
the graph technique parameters used to built the graph and measure the metrics.

In this study, we tested several steps of data analysis focusing on: signal to noise
ratio, subject motion, fMRI signal processing regressors, anatomical atlases for the
parcellation, wavelet decomposition scales, and graph costs.

Our goal was to choose a robust graph theory methodology, in order to obtain the
best significant temporal correlations, and the best precision to compare different
HIQ groups.

2.1 Signal to noise ratio

Because there are regions of the brain where signal is reduced due to inhomo-
geneities of the magnetic field, the first step of our processing pipelines concerns the
measure of the signal to noise ratio (SNR) in functional images.

Since we measured various nodal graph metrics, it is important to measure the
SNR of each parcellated region. This SNR verification is essential to avoid statistical
variations due to insufficient SNR.

For each region of the brain atlas, we measured the signal and verified the fol-
lowing property:

SNRregion >
SNRmax

10 (5.1)

Since this property was satisfied in all the brain regions defined by the atlas, we
considered as graph nodes all the areas of the brain atlas.

2.2 Subjects’ motion

Since the beginning of fMRI, the subject motion has been a hot methodological
topic [Friston et al. (1996)]. In resting-state fMRI, the correlations between time-
series represent the basis of the functional connectivity analysis. For this reason, the
suppression of motion artefacts is critical. A great obstacle in resting-state fMRI
data analysis is contamination of the BOLD signal by head motion and fluctuations.
Small movements of the head between volumes acquired during a scan will cause
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Figure 5.1: Example of distribution of signal to noise ratio for a subject of our
population.

erroneous intensity changes in BOLD data influencing measurement of localized
haemodynamics. Time-series denoising is, thus, an important field in development.
In 2012, three different studies recognized the influence of motion artifact in previ-
ously connectivity studies [Power et al. (2012),Satterthwaite et al. (2012),Van Dijk
et al. (2012)]. They demonstrated that correlations are not uniformly modified
by motion which increases the signal variance signal between nearby voxels, and
decreases it in distant voxels.

Since our population is composed of children between 8 and 12 years old, the
evaluation of head motion is extremely important for connectivity analysis.

Subject movement is estimated during the realignment step when each volume
of data is realigned using a rigid body transformation. This process locate the head
position throughout six parameters: 3 translational that measure the displacement
along X, Y, and Z axis, and 3 rotational measures of pitch, yaw, and roll. In addition
to this step, we added to the preprocessing pipeline the artifact detection using the
Art Toolbox of Matlab. It measures for each TR the variation of head position,
derived from translation and rotation parameters, and the variation of the signal. It
indicates all the scans affected by scan-to-scan head motion. The following figures
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show two example of Art Toolbox applications. In Figure 5.2, a high movement was
detected only in 4 scans, while in Figure 5.3, 62 scans present high signal variation
caused by head movement that represents more than 24 % of noised scans.

Figure 5.2: Example of a child presenting only 4 scans with a high head motion.
Data from our children population.

In the first part of this analysis, subject movement was analyzed with Art Tool-
box and the number of the artefacted scans (Art parameters: z-threshold = 4 and
movement-threshold = 3 mm) were computed. In order to study the influence of
the movements on the percentage of significant correlations, the correlation matrices
were calculated. Exploring these data, we observed that the subjects without any
artefacted scans were not the subjects with the highest amount of significant corre-
lations. Thus, no direct relationship were observed between movement and temporal
correlations.

However, we chose to exclude from the following analysis the subjects with a
number of artefacted scans higher than 20 % of total scans (250). For all the
other subjects, a corresponding artifact regressor was constructed for all the scans
detected from Art Toolbox. This regressor information together with the movement
parameters of each scan were inserted in the time-series extraction in order to regress
the contribution of the movement from BOLD time-series.

In the second part of the movement analysis, motion parameters were measured
for each subject and compared between the three groups. Indeed, when multiple
cohorts are compared, the differences in functional correlations may be affected by
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Figure 5.3: Example of a child presenting more than 24% of scans suffering by high
head motion that affects resting-state fMRI signal.

the movement in each group [Power et al. (2012)]. In order to compare the effect
of motion between groups, the six parameters of the rigid body transformation
have been condensed into a single parameter: the root mean squared head position
change (RMS). The statistical analysis showed that the movement parameters were
not statistically different among the three groups. This result confirms that our
findings were not influenced by inter-group motion differences.

2.3 fMRI signal processing

One of the most controversial procedure in the analysis of resting-state fMRI
imaging data is the regression of nuisance signal derived from non-neuronal sources.
A common method for correcting for this source of noise is a global signal regression
that corrects the covariance of the BOLD signals between voxels, and the mean
across all the voxels. On one hand, this technique has been demonstrated to reduce
non-neuronal signal [Birn (2012)]. On the other hand, some studies demonstrated
that global signal regression may remove also neuronal signal [Chen et al. (2012)],
and it may introduce artefactual correlations [Murphy et al. (2009), Saad et al.
(2012)]. For these reason, we decided to not apply a global signal regression.

Physiological signals, mainly heart beat and respiration, may introduce con-
founding factors. As some regions in CSF and WM correlates with these sig-
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nals [Perlbarg et al. (2007)], it was proposed to regress signals from CSF and
WM to eliminate contribution from physiological source of noise [Behzadi et al.
(2007)]. Several studies regress WM and CSF signals from BOLD time-series [Fox
and Raichle (2007)]. Power and colleagues demonstrated in a recent study that
WM and CSF signals can be correlated to gray matter (GM) signal [Power et al.
(2017)]. Thus, regressing WM and CSF signals may cause the same consequences
than general signal regression.

These findings have led us to investigate the influence of WM and CSF signal
regression on the correlation matrices obtained from BOLD time-series. In order to
be sure to have only the signal due to BOLD variation and not to other contributions
such as subject motion, we applied four different procedures for nuisance signal
regression, only on subjects with no movement as revealed by Art Toolbox:

• Method 1: time-series extraction regressing both WM and CSF signals;

• Method 2: time-series extraction regressing only WM signal;

• Method 3: time-series extraction regressing only CSF signal;

• Method 4: time-series extraction without any nuisance signal regression.

Once the correlation matrices were computed from time-series, we counted the
number of correlations significantly different from 0 (using R function const.adj.mat
of brain waver toolbox) given a p-value, FDR corrected, of 0.05.

We reported the resulting percentage obtained using Harvard-Oxford template
for each methods for the 6 subjects who did not present any significant head move-
ment in Table 2.3 and a graphical representation in Figure 5.4.

SIGNAL REGRESSION
Method 1 Method 2 Method 3 Method 4

SUBJ #1 19.65 20.51 28.456 39.09
SUBJ #2 4.53 5.25 22.81 50.72
SUBJ #3 6.05 7.06 7.60 11.24
SUBJ #4 3.24 3.18 6.99 24.38
SUBJ #5 5.02 5.85 17.04 21.67
SUBJ #6 9.44 11.45 19.45 23.47

Table 5.1: Percentage of significant correlations in correlation matrix for 6 subjects
with no movement artefact for the presented methods from 1 to 4.

Table and Figure 5.4 showed that almost all subjects present a small percentage of
significant correlations (< 10 %) when regressing both WM and CSF signals. These
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results were not improved using the second method. For two subjects, a percentage of
significant correlations higher than 10% of the total correlation number was reached.
Regressing only CSF signal instead, allowed to considerably increase the number of
significant correlations. All but two subjects showed a percentage higher than 15%.
Finally, the results obtained using the last method showed a number of significant
correlations higher than 10% for all the subjects analyzed without any nuisance
signal regression.
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Figure 5.4: Percentage of significant correlation in the correlation matrix derived
from the subjects who did not present any significant head motion, obtained using
four procedures to extract time-series. Method 1: time-series extraction regressing
both WM and CSF signals; Method 2: time-series extraction regressing only WM
signal; Method 3: time-series extraction regressing only CSF signal; Method 4:
time-series extraction without any nuisance signal regression.

This analysis allowed us to conclude that without any signal regression, we were
able to compute the graph analysis. The high loss of significant correlations with
WM or/and CSF signal regression could be explained by the contamination of mixed
GM and WM voxels or GM and CSF in WM and CSF masks respectively.

In order to limit the contamination from physiological contributions, we weighted
fMRI data by the GM probability maps.
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2.4 Anatomical atlas

Since the nodes of the brain connectivity graphs are defined from the anatom-
ical atlas, the choice of its parcellation is fundamental for the connectivity mea-
surements. Several studies compared connectivity measures obtained with different
parcellations, but there was no consensus on the better choice.

In this work, we chose to use two different parcellation schemes to define the
graph nodes, and to measure the percentage of significant correlations in the two
cases. First, we used Harvard-Oxford atlas that is based on the structural images of
37 healthy adults [Makris et al. (2006)]. Second, the nodes have been defined using
the Desikan Killiany parcellation obtained from probabilistic information [Desikan
et al. (2006)]. Both atlases are based on anatomical features, but they are composed
of regions that have really different anatomical boundaries.

Figure 5.5: Representation of parcellation schemes: on the left, the Harvard-Oxford
parcellation and on the right, the Desikan Killiany parcellation.

More in details, Harvard-Oxford parcellation covers 138 regions composed of 48
cortical and 21 subcortical areas for each hemisphere. Desikan Killiany parcellation
consists of 84 brain regions. For each subject, we measured the percentage of signif-
icant correlations with the two parcellation schemes. An example for the reference
group of children with standard intelligence quotient is shown in Figure 5.6

As shown in the previous figure, for each child of the reference group, the De-
sikan Killiany parcellation allowed to reach a percentage of significant correlations
higher than that obtained with the other parcellation. The difference between the
percentages values is probably due to the total number of brain areas that compose
the parcellation. Indeed consisting of 138 regions, Harvard-Oxford atlas causes a
dispersion of significant correlations.

This investigation of two different parcellations have led us to choose Desikan
Killiany parcellation scheme for the definition of nodes in the graph analysis. In
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Figure 5.6: Percentage of significant correlation in each subject of the reference
group (SIQ) for the two anatomical atlases: in red, Desikan Killiany parcellation
and in green, Harvard-Oxford parcellation.

addition, this atlas follows the gyral configuration of the brain.

2.5 Wavelet decomposition scale

Once the parcellation scheme has been chosen, time-series were extracted for each
cortical and subcortical nodes. At this stage, we decided to apply dyadic wavelet
transforms that decomposes time-series, partitioning the total energy, over a set
of basis function uniquely scaled in frequency and located in time [Achard et al.
(2006)]. Time-series were thus decomposed into four scales of dyadic wavelets whose
limits are dependent from repetition time (TR):

• scale 1 ranges from 1/(4.TR) to 1/(2.TR) (here 0.1 to 0.2 Hz);

• scale 2 from 1/(8.TR) to 1/(4.TR) (here 0.05 to 0.1 Hz);

• scale 3 from 1/(16.TR) to 1/(8.TR) (here 0.025 to 0.05 Hz);

• scale 4 from 1/(32.TR) to 1/(16.TR) (here from 0.0125 to 0.025 Hz).
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Based on the fMRI studies literature, it is established that resting-state activity
is characterized by slow intrinsic fluctuations of the BOLD signal between 0.01 Hz
and 0.1 Hz [Biswal et al. (1995)]. Among our four wavelets scales, only two of them
respect this range. For this reason, we restricted our analysis to the second and the
third wavelet scales representing the frequency ranges [0.05 to 0.1 Hz], and [0.025 to
0.05 Hz], respectively. For each subject, the correlation between wavelet coefficients
of all the possible pairs (N=84) of the time-series extracted, was calculated for both
wavelets scales.

Also in this case, the choice between the two wavelet scales has been driven by
the percentage of significant correlations obtained with each of them.
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Figure 5.7: Percentage of significant correlations in the correlation matrices derived
for each subject of the reference group (SIQ) for the two wavelet scales: in red,
wavelet scale 2 and in blue, wavelet scale 3.

Figure 5.7 shows the percentage of significant correlations for each child in the ref-
erence group with a standard Intelligence Quotient (SIQ). As shown in the graphic,
the second wavelet scale of dyadic decomposition allowed to obtain a percentage of
significant correlation that is consistently higher than the other wavelet scale for all
the children studied. Indeed, being characterized by a wider frequency range [0.05
Hz - 0.1 Hz], this wavelet scale provides more robust correlations. These findings al-
lowed us to choose this wavelet scale for the following composition of the correlation
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matrices.

2.6 Graph’s cost

In order to conclude the optimization of the processing pipelines, graph analysis
was computed on binarized matrix using two graph costs: 0.15 and 0.20. The choice
of this values is driven by the study of Termenon et al. who demonstrated that a
cost a of 0.20 provides a good reliability of graph metrics [Termenon et al. (2016)b].
In fact, our results obtained with the two costs are concordant as reported in Annex.
In order to obtain a stronger robustness driven by larger population, a threshold of
0.15 was applied for the graph analysis.

The pipeline obtained from this preprocessing methodological analysis (Figure
5.8) has been applied in the following resting-state fMRI study.

Figure 5.8: Pipeline used in rs-fMRI study detailing all the steps from subject
movement to graph cost.

3 Materials and Methods

3.1 Participants

Fifty-eight children (44 males and 14 females) aged from 8 to 12 years (mean age
10.1 ± 1.2 y.o.) were recruited from the children psychiatry department of Lyon’s
Neurological Hospital, the PSYRENE Center, a psychological center for High IQ
children and adults, and via advertisement in schools for controls. Children with neu-
rological diseases, learning disabilities and psychotropic treatments were excluded
from this study. Children underwent the fourth edition of WISC (WISC-IV) test
and their FSIQ was established from the results of its four subscales (VCI, PRI,
WMI and PSI). Children with a high Intelligence Quotient (IQ>130) were labeled
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as HIQ children and two HIQ profiles were defined based on the score difference be-
tween VCI and PRI (Table 5.2). This prospective study was approved by the local
ethics committee (CPP Sud-Est IV) and the French national agency for medicine
and health products safety (ANSM). Written informed consent was obtained from
the two parents of all participants.

SIQ HIQ Hom-HIQ Het-HIQ
(n=12) (n=37) (n=15) (n=22)

Age 10.0 ± 1.1 10.0 ± 1.1 9.8 ± 0.8 10.1 ± 1.3
FSIQ 104.1 ± 8.5 134.1 ± 12.3 *** 141.6 ± 11.8 129.3 ± 10.2 #
VCI 108.1 ± 6.8 143.0 ± 9.8 *** 141.6 ± 12.5 143.9 ± 8.0
PRI 97.7 ± 6.9 124.1 ± 13.8 *** 136.4 ± 9.2 116.8 ± 10.5 ##
WMI 95.6 ± 10.3 117.2 ± 15.3 *** 125.3 ± 15.5 112.0 ± 13.0 #
PSI 102.3 ± 15.1 107.8 ± 16.8 114.3 ± 18.4 103.8 ± 14.9

Table 5.2: Population characteristics (Mean ± SD): age, full scale IQ (FSIQ), Verbal
Comprehension Index (VCI), Perceptual Reasoning Index (PRI), Processing Speed
Index (PSI), and Working Memory Index (WMI) for Standard Intelligence Quotient
(SIQ), High Intelligence Quotient (HIQ) groups and HIQ subgroups: Homogeneous
(Hom-HIQ) and Heterogeneous (Het-HIQ). *** p<0.001 when comparing HIQ and
SIQ using a Wilcoxon test; p<0.01; p<0.001 when comparing Hom-HIQ and Het-
HIQ using Dunn’s post-hoc test after the comparison of SIQ, Hom-HIQ and Het-HIQ
using Kruskal-Wallis test.

3.2 MRI acquisition

MRI examinations were performed on a 1.5T Siemens Sonata MRI system (Erlan-
gen, Germany) with an 8-channel head-coil at the MRI department of CERMEP-
Imagerie du Vivant. A structural 3D T1-weighted MPRAGE sequence was first
acquired in the sagittal plane with a 1mm isotropic spatial resolution (TI/TE/TR
= 1100/3.93/1970 ms, FOV: 256 x 256 x 176 mm, 8 min acquisition duration). Then
a full examination with task fMRI, DTI and rs-fMRI was conducted. rs-fMRI data
were recorded using an EPI BOLD sequence (250 scans, TR = 2500 ms, TE = 50
ms, voxel size = 3.4 x 3.4 x 3 mm) while subjects lay quietly at rest with eyes open
and fixating on a projected cross for 10.3 min. For this study, only the rs-fMRI (at
the end of the exam) is reported.

3.3 Data preprocessing

The rs-fMRI data were preprocessed using SPM12 software (https://www.fil.ion.
ucl.ac.uk/spm/software/spm12). For each subject, functional images were corrected
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for delay between slice acquisitions, motion, and co-registered to the anatomical im-
age. Time-series data were not spatially smoothed because the smoothing step intro-
duces spurious spatial correlations between adjacent regions [Fornito et al. (2010)].
Using Art toolbox that evaluates the scans affected by scan-to-scan motion, we
scrubbed the data carefully. When scans with movements greater than 3 mm or
with an exceptionally high variation (signal higher than 4 standard deviations from
mean) were found, a corresponding artifact regressor was constructed. Subject’s
data was excluded if more than 20% of the available scans were affected by head
motion. Motion parameters for each group were measured and compared among
the groups to verify that the correlation results were not influenced by inter-group
motion differences [Power et al. (2012)]. The anatomical MRI from each participant
was segmented into six different brain and non-brain tissues according to prior tis-
sue probability maps. This step generates gray-matter (GM), white-matter (WM)
and cerebrospinal fluid (CSF) probability maps that will be eventually be used to
extract time-series to compute the graph. These maps were further normalized to
the MNI152 template using DARTEL, a diffeomorphic registration method that ac-
curately align brains within the MNI space [Ashburner (2007)]. This registration
provides a deformation field that was then applied to functional and anatomical im-
ages to be later used to extract the time-series to compute the graphs. The structural
images were parcellated into 84 cortical, subcortical and cerebellar areas according to
the Desikan Atlas [Desikan et al. (2006)]. Regional mean time-series were estimated
by averaging the fMRI time-series over all voxels in each parcel weighted by GM
probability map using the Conn Toolbox (https://www.nitrc.org/projects/conn).
Finally, time-series were regressed by the residual contamination from motion pa-
rameters and outliers detected using the ART toolbox and band-pass filtering was
applied using wavelets transforms.

3.4 Wavelets decomposition

Following the approach proposed by Achard et al., time-series were decomposed
using dyadic wavelet transforms that subdivides the total energy of a signal over a set
of compactly supported basis functions, each of which is uniquely scaled in frequency
and located in time [Achard et al. (2006)]. The pairwise interregional correlations
between wavelets coefficients of fMRI time-series extracted from each individual data
set were estimated for 4 wavelet scales. Because frequencies below 0.1 Hz contain
relevant information in resting-state fMRI, we restricted our analysis to two wavelet
scales: the scale 2 from f = 1/(8 TR) to f = 1/(4 TR), that represents the frequency
interval 0.05 - 0.1 Hz, and the scale 3 from f = 1/(16 TR) to f = 1/(8 TR), that
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represents the frequency interval 0.025 - 0.05 Hz. At this stage, we measured the
percentage of significant correlations obtained for the two scales. Since the wavelet
scale 2 presents a higher percentage of significant correlations, we chose to proceed
with the graph computation using only the correlation matrices of this scale.

3.5 Graph construction

To construct the binarized graph, two steps are necessary. Following Alexander-
Bloch, we kept the graph fully connected, using the minimum spanning tree based
on the absolute correlation matrix [Alexander-Bloch et al. (2012)]. This creates a
preliminary graph that contains a number of edges equal to the number of nodes
minus one. In the second step, the remaining absolute values of the correlation ma-
trices were thresholded to create an adjacency matrix that defines, for each subject,
an unweighted and undirected graph using two graph costs: 15% and 20%. The
choice of these values was guided by the results of a test-retest study of graph met-
rics derived from graph analysis of rs-fMRI dataset, where the cost of about 20%
provides a good reliability of all graph metrics [Termenon et al. (2016)a]. Since
our results obtained with the two costs were concordant, we reported in this study
those related to 15%, allowing a larger inclusion of subjects and a greater robustness
of the correlations. After having verified that the small-world property was satis-
fied for each subject and that the topology of the three groups were the same, four
topological metrics were estimated for each node using Brain Connectivity Toolbox
(http://www.brain-connectivity-toolbox.net/): degree, betweenness centrality, local
efficiency, and clustering. When the graph was computed with the 84 regions from
the Desikan atlas, we referred to it as the “whole brain networks” in the manuscript.
When the graph was computed with the 42 regions of the right (or left) hemisphere,
we referred to it as the “right hemispheric networks” (or the “left hemispheric net-
works”). Finally, we considered the connectivity related to the homotopic regions:
42 nodes in each hemisphere as the “homotopic connectivity”.

3.6 Hub Disruption Index (κ) estimation

Introduced by Achard et al. [Achard et al. (2012)], the "Hub Disruption In-
dex" describes the topological changes of an individual subject brain networks with
respect to a referential networks topology from a group of reference subjects. To
understand how this index is defined, consider a nodal metric, for example the de-
gree, and plot the degree value of each node for a SIQ subject against the average
degrees of the corresponding nodes in the SIQ group (Figure 5.9.A). Since for a SIQ
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subject, the nodal metric values are close to the average value for the same node
computed in the SIQ group, the distribution of the points falls approximately on a
positive slope line (y = x). Constructing the same plot for a HIQ subject, we can
observe that the point cloud does not scatter around the same slope (Figure 5.9.B),
so they are not well predicted by the SIQ average degree. For each nodal metric,
κ is defined following several steps. The SIQ group mean metric of each node was
first subtracted from the metric of the corresponding node in an individual subject.
This difference was further plotted against the SIQ group mean for all the nodes
and the gradient of the linear regression that models this points cloud represents κ.
According to this definition, data of a SIQ subject will scatter around a horizontal
line (κ ∼ 0) (Figure 5.9.C), while for a HIQ subject data will follow a negative
slope (κ < 0) (Figure 5.9.D). κ index was calculated for the degree, the betweenness
centrality, the local efficiency and the clustering coefficient in whole brain networks
(κD, κBC , κLE and κCC) and in both left (κL

D, κL
BC , κL

LE and κL
CC) and right (κR

D,
κR

BC , κR
LE and κR

CC) networks, and for functional homotopic connectivity (κHC).

A B

C D
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Figure 5.9: Hub disruption index κ computation for nodal degree metric. Given
a set of nodes from an atlas Ni, i ∈ [1, n], and a nodal metric M , each node i
presents a value Mi, i ∈ [1, n] for a given subject. Across a set of reference subjects
Rj, j ∈ [1, m], the averaged nodal metric can be computed < Mi >R. For each
individual Ik, k ∈ [1, ρ], whatever its status (patient, HIQ child, or healthy subject),
its metric in each node is Mi,Ik

and the difference in nodal metric with the reference
group is Mi,Ik

˘ < Mi >R. The scatterplot with all nodes is computed with < Mi >R

in abscissa and Mi,Ik
˘ < Mi >R in ordinates. For each node i, if the nodal metric

is close to the reference’s nodal metric, then the linear trend of this plot is about 0.
Conversely, if the nodal metrics are reduced in some nodes and increased in others,
then the linear trend will differ from 0. κ is the slope of the regression line computed
on this scatter plot. Example for the nodal degree (D) as metric of interest. Di,I

vs. < Di >R for a standard intelligence quotient (SIQ) child (A) and for a high
intelligence quotient (HIQ) child (B), Di,I˘ < Di >R vs. < Di >R for a SIQ child
(C) is scattered around a horizontal line (κ ∼ 0), whereas for a HIQ child (D) is
scattered around a negatively sloping line (κ < 0).

3.7 Statistical analysis

First, statistical differences between κ indices of each group were computed using
permutation tests, by randomly reassigning subjects to three groups: 12 children
played the role of the SIQ group, 15 of Hom-HIQ group and 22 of Het-HIQ group.
For each subject, κ was computed following its definition. This process was repeated
for 1000 permutations of the data to sample the null distribution of κ. The p-
value was computed counting how many times the κ-values were higher than the
one obtained using the true SIQ and HIQ groups. As the κ definition is based
on the reference group (SIQ), its homogeneity was controlled using the Grubbs’
test. One outlier was identified and excluded from the SIQ group. Furthermore,
as nodes could play different roles in brain networks organization, we tested for
metric differences in graph’s nodes between each HIQ group and SIQ. A statistical
analysis was performed at each node using a non-parametric Wilcoxon test and a
Benjamini-Hochberg correction for multiple comparisons. Second, the correlations
between intelligence scores (FSIQ, VCI, PRI) and hub disruption index (κ) were
analyzed using a non-parametric Spearman correlation coefficient (ρ) controlling for
sex. Correlation significance level was evaluated replicating a permutation test, by
randomly reassigning WISC-IV scores to the subjects, for 1000 iterations. The p-
value was computed counting how many times the ρ-values were higher than the one
obtained with our true intelligence scores and corrected for multiple comparisons
using the Benjamini–Hochberg correction. All statistical analyses were computed
on R (http://www.R-project.org/) and since the groups were matched in age, with
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small standard deviation values. No regression of age effect was applied.

4 Results

4.1 Modifications of FC organization with intelligence

In the whole brain networks, HIQ children showed significant differences in hub
disruption indices of several graph metrics, namely κD (p<0.01), κCC (p<0.05) and
κLE (p<0.05), compared to SIQ children (Table 5.3.A and Figure 5.10). These
results suggest significant topological modifications in the graph’s integration and
segregation properties. Locally, D was significantly decreased in the left dorsolateral
prefrontal cortex (BA 9-10-46) (p<0.01), indicating decreased prefrontal functional
connectivity in HIQ children (Figure 5.11.A). These networks changes were further
assessed in the two HIQ subgroups separately, relative to the SIQ group. The Hom-
HIQ group didn’t show any significant changes, whereas the Het-HIQ group showed
significant changes in integration and segregation properties related to all graph
metrics (Table 5.3.A and Figure 5.10).

Networks κ HIQ Hom-HIQ Het-HIQ
(n=37) (n=15) (n=22)

κBC -0.472 -0.475 -0.470
A. Whole κD -0.317 (**) -0.228 -0.378 (**)
brain κLE -0.291 (*) -0.201 -0.352 (*)

κCC -0.350 (*) -0.259 -0.413 (*)
κL

BC -0.399 -0.396 -0.402
B. Left κL

D -0.299 (**) -0.306 (*) -0.294 (**)
hemisphere κL

LE -0.340 -0.299 -0.369
κL

CC -0.399 -0.342 -0.438
κR

BC -0.311 -0.292 -0.324
C. Right κR

D -0.228 -0.070 -0.336 (*)
hemisphere κR

LE -0.364 -0.209 -0.471 (*)
κR

CC -0.406 -0.264 -0.502
D. Homotopic κHC -0.198 (*) -0.214 (*) -0.187 (*)

Table 5.3: Reorganization indices (κ) in High Intelligence Quotient (HIQ), Homo-
geneous HIQ (Hom-HIQ) and Heterogeneous HIQ (Het-HIQ) groups measured in
whole brain networks (A), left and right hemispheres networks (B, C) and between
homotopic regions (D).
* p<0.05; ** p<0.01; when testing significance of values in HIQ, Hom-HIQ or Het-
HIQ groups compared to SIQ group using permutation test (number of permutations
= 1000).
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Figure 5.10: Boxplot (first quartile, median and third quartile) of κ values in Stan-
dard Intelligence Quotient (SIQ), High Intelligence Quotient (HIQ) groups, and
its Homogeneous HIQ (Hom-HIQ), and Heterogeneous HIQ (Het-HIQ) subgroups
for each graph metrics in the whole brain networks: A) Degree (D), B) Between-
ness Centrality (BC), C) Local Efficiency (LE), and D) Clustering Coefficient (CC).
* p<0.05; ** p<0.01; when testing significance of κ values in HIQ, Hom-HIQ or Het-
HIQ groups compared to SIQ group using permutation test (number of permutations
= 1000).

Figure 5.11: Local results: (A) significant decreased nodal degree metric in left dor-
solateral prefrontal nodes when comparing all High Intelligence Quotient (All-HIQ)
and Heterogeneous High Intelligence Quotient (Het-HIQ) to Standard Intelligence
Quotient (SIQ) groups in whole brain networks analysis; (B) trend for decreased
nodal degree metric in left inferior parietal cortex when comparing Het-HIQ to SIQ.

A significant degree reduction was also locally observed in the left dorsolat-
eral prefrontal node (p<0.01) of the Het-HIQ group, while a trend towards a de-
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creased degree was measured in the left inferior parietal cortex (p<0.1) (Figure
5.11.B). Since the neural substrate of high intelligence may be related to hemispheric
characteristics [Hearne et al. (2016), Nusbaum et al. (2017)], we additionally ex-
plored the topological changes of brain FC organization by computing the κ values
of intra-hemispheric networks connectivity (ignoring inter-hemispheric connectiv-
ity). In the left hemisphere, only integration properties measured by κD (p<0.01)
were significantly reorganized in the HIQ group, compared to the SIQ group (Table
5.3.B). Specifically, nodal analysis showed a significant degree reduction (p<0.01)
in the left dorsolateral prefrontal node (BA 9-10-46) (Figure 5.12.A). No signifi-
cant changes were found in the right hemisphere (Table 5.3.C). When exploring the
intra-hemisphere graph networks of each HIQ subgroup, significant modifications of
integration properties were found in the left hemisphere of both Hom-HIQ (p<0.05)
and Het-HIQ groups (p<0.01), relative to SIQ (Table 5.3.B). This difference was
locally highlighted by a D reduction in the left dorsolateral prefrontal cortex of the
Het-HIQ group (Figure 5.12.A).

Figure 5.12: Local results: (A) significant decreased nodal degree metric in left dor-
solateral prefrontal nodes when comparing all High Intelligence Quotient (All-HIQ)
and Heterogeneous High Intelligence Quotient (Het-HIQ) to Standard Intelligence
Quotient (SIQ) groups in hemispherical network analysis; (B) trend for increased
functional connectivity in amygdala nodes when comparing All-HIQ, and Het-HIQ
to SIQ.

While right hemisphere networks were not significantly modified in the Hom-
HIQ group, integration and segregation properties, measured by D (p<0.05) and LE
(p<0.05), were significantly changed in the Het-HIQ group (Table 5.3.C and Figure
5.13). In sum, both HIQ groups showed modifications of integration properties in
the left hemisphere, while only the Het-HIQ profile showed changes of integration
and segregation properties in the right hemisphere.

Since homotopic FC has been shown to correlate with IQ [Santarnecchi et al.
(2015)b], we analyzed the FC between homotopic regions in each HIQ group by
measuring their κ indices. Significant changes (p<0.05) in homotopic connectivity
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Figure 5.13: Boxplot of κ values of the left (A, C, E, G) and the right (B, D,
F, H) hemispheres networks in SIQ, HIQ groups, and its Hom-HIQ, and Het-HIQ
subgroups for each graph metrics: A-B) Degree (D); C-D) Betweenness Centrality
(BC); E-F) Local Efficiency (LE), and G-H) Clustering Coefficient (CC). ∗p < 0.05;
∗ ∗ p < 0.01; when testing significance of κ values in HIQ, Hom-HIQ or Het-HIQ
compared to SIQ group using permutation test (number of permutations = 1000).

were found in the HIQ group compared to the SIQ group (Table 5.3.D). Exploring
the two HIQ subgroups separately, significant changes (p<0.05) of the homotopic
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FC were found in both Hom-HIQ and Het-HIQ groups (Table 5.3.D and Figure
5.14). At a regional level, a trend towards increased homotopic FC was found in the
amygdala nodes of the Het-HIQ group (p<0.1) (Figure 5.12.B).

Figure 5.14: Boxplot of κ values of functional connectivity between homotopic re-
gions network in SIQ, HIQ groups, and its Hom-HIQ, and Het-HIQ subgroups.
* p<0.05 when testing significance of κ values in HIQ, Hom-HIQ or Het-HIQ groups
compared to SIQ group using permutation test (number of permutations = 1000).

4.2 Correlations between FC organization and intelligence

We further investigated how these topological organization changes could be
related to the high abilities of HIQ children. A correlation analysis between the
previously measured κ indices and the different IQ scales was performed in different
brain networks.

In the whole brain networks, significant negative correlations were found between
the hub disruption indexes, related to integration (κD) or hubness (κBC) properties,
and the FSIQ and VCI (Table 5.4.A). As shown in Figure 5.15, the higher the FSIQ,
the greater the hub disruption index, thereby reflecting a high sensitivity of κBC to
highlight the differences in FSIQ. κBC was also correlated (p<0.05) with PRI and
WMI (Figure 5.17-5.18).

In addition, VCI significantly (p<0.05) correlated with all the hub disruption
indices (κBC , κD, κLE and κCC) (Table 5.4.A and Figure 5.16). When separately ex-
ploring the networks in the left hemisphere, FSIQ and PRI were negatively correlated
with modifications of integration and segregation metrics (κL

D, and κL
LE) (p<0.05),

while VCI was correlated only with the modifications of segregation metrics (κL
CC

and κL
LE) (p<0.05). In the right hemisphere, only the segregation metrics changes

(κR
CC and κR

LE) were significantly correlated (p<0.05) with VCI (Figure 5.16). Fi-
nally, the strongest correlations (p<0.01) were observed between the hub disruption
index in homotopic regions (κHC) and the three major intelligence subscales, namely
FSIQ, VCI and PRI (Figure 5.15-5.17).
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Networks κ FSIQ VCI PRI
κBC -0.344 (*) -0.316 (*) -0.306 (*)

A. Whole κD -0.277 (*) -0.310 (*) -0.218
brain κLE -0.153 -0.250 (*) -0.138

κCC -0.133 -0.253 (*) -0.131
κL

BC -0.250 -0.138 -0.107
B. Left κL

D -0.267 (*) -0.213 -0.295 (*)
hemisphere κL

LE -0.290 (*) -0.305 (*) -0.255 (*)
κL

CC -0.250 -0.279 (*) -0.228
κR

BC -0.143 -0.171 -0.100
C. Right κR

D -0.172 -0.223 -0.028
hemisphere κR

LE -0.209 -0.261 (*) -0.115
κR

CC -0.226 -0.260 (*) -0.135
D. Homotopic κHC -0.396 (**) -0.431 (**) -0.379 (**)

Table 5.4: Coefficients of non-parametric correlations (ρ) between the topological re-
organization coefficient (κ) of different nodal metrics (Betweenness Centrality (BC),
Degree (D), Local Efficiency (LE), and Clustering (CC), and Homotopic Connec-
tivity (HC)) with intelligence scores (Full Scale IQ (FSIQ), Verbal Comprehension
Index (VCI) and Perceptual Reasoning Index (PRI)) at different network levels:
whole brain (A), left and right hemispheres (B and C) and homotopic regions (D).
* p<0.05; ** p<0.01; when testing significance of values in HIQ, Hom-HIQ or Het-
HIQ groups compared to SIQ group using permutation test (number of permutations
= 1000).

5 Discussion

The hub disruption index κ was used in this study, on one hand, to uncover
the topological organization modification of brain networks in children with high
intelligence, and on the other hand, to investigate whether these changes could be
related to their specific cognitive profiles.

5.1 Brain networks changes with high intelligence

Our study provided evidence that FC networks in HIQ children undergo mod-
ifications of integration and segregation properties, in comparison to SIQ children.
Indeed, κD (related to integration properties) as well as κLE and κCC (related to net-
works segregation properties) were modified in the whole brain networks, while only
κD was changed in the left hemisphere of HIQ children. This last result was observed
in both subgroups of HIQ children, showing a common integration properties changes
in the left hemisphere. Conversely, in the right hemisphere, modifications of inte-
gration and segregation properties were only highlighted in the Het-HIQ subgroup.
These changes in integration properties support the hypothesis that intelligence is
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Figure 5.15: Correlations between Full Scale Intelligence Quotient (FSIQ) and reor-
ganization indices (κ) of graph metrics measured in: (A) the whole brain networks,
(B) the left hemisphere networks, (C) the right hemisphere networks and (D) the ho-
motopic nodes. Significant correlations were measured for κ describing hubs (κBC)
and integration properties (κD) in the whole brain network, for integration and seg-
regation properties in the left hemisphere network (κL

D and κL
LE) and for homotopic

connectivity (κHC). No significant correlations were found in the right hemisphere
network.

based on better neural efficiency, which promotes better information transmission.
Our results are in concordance with previous observations of greater FC associated
with high intelligence in certain regions of the fronto-parietal and default mode net-
works [Basten et al. (2015),Hearne et al. (2016),Jung and Haier (2007)], two nodes
of the salience network, and one node of the DMN [Hilger et al. (2017)a].

The WISC-IV test provides a global index (FSIQ), as well as four subscales in-
cluding verbal (VCI) and non-verbal (PRI) indices, that are sensitive to different
cognitive capabilities. Based on a significant difference between these two subscales,
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Figure 5.16: Correlations between Verbal Comprehension Index (VCI) and reorgani-
zation indices (κ) of graph metrics measured in: (A) the whole brain networks, (B)
the left hemisphere networks, (C) the right hemisphere networks and (D) the homo-
topic nodes. Significant correlations were measured for κ describing hubs properties
in the whole brain networks (κBC), for integration properties in the whole brain
network (κD) and for segregation properties in the whole brain networks (κCC and
κLE), in the left (κL

CC and κL
LE) and right hemisphere networks (κR

CC , κR
LE) and for

homotopic connectivity (κHC).

two profiles of HIQ children were identified, namely the Hom-HIQ and the Het-HIQ
(Table 5.2). It is interesting to underline that we found a significant modification
of brain networks organization common to both Hom-HIQ and Het-HIQ subgroups.
Additionally, we also observed specific changes in the Het-HIQ subgroup. These re-
sults support the existence of different intelligence profiles that should be taken into
account during investigations on intelligence. Moreover, our results showed that
high intelligence associated functional neural changes occur differently in the left
and right hemispheres. Surprisingly, the neuroimaging literature does not report
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Figure 5.17: Correlations between Perceptual Reasoning Index (PRI) and reorgani-
zation indices (κ) of graph metrics measured in: (A) the whole brain networks, (B)
the left hemisphere networks, (C) the right hemisphere networks and (D) the homo-
topic nodes. Significant correlations were measured for κ describing hubs properties
in the whole brain networks (κBC), for integration (κL

D) and segregation properties
in the left hemisphere networks (κL

LE) and for homotopic connectivity (κHC).

such lateralization, except for a rs-fMRI study by Santarnecchi et al. [Santarnec-
chi et al. (2015)b], a DTI study by Tamnes et al. [Tamnes et al. (2010)], and
our previous DTI study of Hom-HIQ and Het-HIQ children that included subjects
described in the present study [Nusbaum et al. (2017)]. This last study found
increased structural connectivity (measured using axial diffusivity) in both Hom-
and Het-HIQ groups, with the Het-HIQ group being more lateralized in the left
hemisphere and the Hom-HIQ group in the right. These findings demonstrated that
brain lateralization of both structural and functional connectivity play a significant
role in intelligence. This observation led us to further investigate the role of ho-
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Figure 5.18: Correlations between Working Memory Index (WMI) and reorganiza-
tion indices (κ) of graph metrics measured in: (A) the whole brain networks, (B) the
left hemisphere networks, (C) the right hemisphere networks and (D) the homotopic
nodes. Significant correlations were measured for κ describing hubs properties in
the whole brain networks (κBC), for integration properties in the left hemisphere
networks (κD.

motopic regions in intelligence. During brain development, homotopic functional
connectivity was shown to increase with advancing gestational age [Thomason et al.
(2013)]. Along the lifespan, sensorimotor regions tend to show increasing homotopic
functional connectivity, whereas prefrontal higher-order processing regions show de-
creasing connectivity [Zuo et al. (2010)]. Santarnecchi et al. [Santarnecchi et al.
(2015)b] addressed the relation between homotopic connectivity and intelligence in
adults. Reduced homotopic connectivity was reported in above average-IQ versus
average-IQ subjects in the primary sensory regions, suggesting that a downgrading
of inter-hemispheric transmission at rest could be associated with higher intelligence
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for efficiency purpose. In our study, significant changes of the homotopic connec-
tivity were found in HIQ children and in both HIQ subgroups, reflecting decreased
connectivity in some node pairs and an increase in others.

5.2 Correlation between brain networks changes and IQ sub-
scales

We additionally demonstrated that the reported topological organization changes
were correlated with cognitive abilities, thus supporting the hypothesis that intelli-
gence relates to the brain network functional organization (Table 5.4). As illustrated
in Figure 5.15, FSIQ significantly correlated with the hub’s changes, as measured
by κBC in the whole brain networks. Hubs’ modifications, therefore, occur in chil-
dren with high cognitive abilities, as demonstrated by the significant correlations
with VCI, PRI and WMI subscales (Figure 5.16-5.18). In parallel, integration prop-
erties changes were correlated with FSIQ and VCI in the whole brain networks,
and with FSIQ and PRI in the left hemisphere networks. These findings support
the association of high intelligence with greater network efficiency throughout the
brain, and especially in the left hemisphere. Our results are in agreement with the
study of Santarnecchi et al. [Santarnecchi et al. (2014)], that highlighted an as-
sociation between IQ scores and the global efficiency measures of both strong and
weak connections. Moreover, a recent study introduced the idea that differences
in intelligence are related to different ways of information processing, with some
networks being more efficient in integration and propagation of information across
the modules, and others in segregation, i.e. ensuring communication within the
module [Hilger et al. (2017)b]. In line with this hypothesis, our study showed that
modifications occurred not only in integration but also in segregation properties,
which were correlated with intelligence scores in both whole brain and hemispheres
networks. Finally, the correlation found between FC changes of homotopic pairs of
regions and FSIQ, as well as VCI and PRI, confirmed that homotopic FC is modified
in high intelligence, in agreement with the report of Santarnecchi et al. [Santarnec-
chi et al. (2015)b]. Among all the brain networks differences found in our study,
several regions presented decrease or increase in their nodal metrics. It is the case
for the dorsolateral prefrontal cortex that showed a significant reduction in degree,
suggesting less FC. This observation was found both in the whole brain and in the
left hemisphere networks of HIQ and Het-HIQ groups. These findings support the
hypothesis that this prefrontal region constitutes a weaker node in HIQ children,
which might result from a late gray matter maturation, as previously observed in

Ilaria SUPRANO 109



CHAPTER 5. FUNCTIONAL CONNECTIVITY: A RESTING-STATE FMRI STUDY

high intelligence children [Shaw et al. (2006)]. As the rationale of the hub disruption
index κ is to highlight simultaneous decreases in some nodes metrics and increases in
others (see Figure 5.9 for a scheme-based explanation), the degree decrease observed
in the prefrontal cortex may suggest potential increases of integration properties in
other brain areas. Overall, our study demonstrated the sensitivity of rs-fMRI graph
metrics to characterize the specificities in functional brain networks changes of HIQ
children, and particularly of Het-HIQ children. As Het-HIQ children could be asso-
ciated with specific social behavioral and learning difficulties, these findings support
our initial hypothesis that FC measurements may constitute a promising approach
for a better characterization of HIQ brain function and neural characteristics. Future
studies may extend these findings on a larger cohort of children.

6 Conclusion

In this chapter, we have addressed the issue of the functional neural substrate
of intelligence. Based on the idea that intelligence is related to network capacity to
adapt and reorganize its topology [Barbey (2018)], we measured the "hub dsruption
index". This graph measurement was introduced by [Achard et al. (2012)] and
provides information about brain organization change respect to a reference group.
In our case, brain changes were measured in HIQ in general, and two HIQ different
profiles were compared to the SIQ group.

While different global metrics have been used in several rs-fMRI studies, Hub
disruption index was never used to investigate the neuronal substrate of intelligence.

In this work, we have demonstrated that there is a strong relationship between
cognitive abilities and brain functional topology. Indeed, all the HIQ children present
a reorganization of brain networks. Some regions that are very important in brain
network of SIQ, become less important in HIQ brain networks. More specifically,
Het-HIQ children showed the strongest topological changes. As presented in chapter
4, this group benefits from a higher IQ than the standard population, particularly
in the Verbal Comprehension Index test which is significantly higher than the Per-
ceptual Reasoning Index. This dyssynchrony is also related to clinical observations.
Indeed, they present several disabilities that include managing their emotions, learn-
ing difficulties and social relationships. We believe that these differences in respect
to other children, may be reflected with a reorganization of functional connectivity
between brain regions. Thanks to the high sensitivity of fMRI graph metrics, we
have been able to reveal this topological reorganization.
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CHAPTER 6. STRUCTURAL CONNECTIVITY: A DTI STUDY

In this chapter, we will present our second study on the children population.
Indeed, after the exploration of functional connectivity, we would like to complete
the connectivity analysis by exploring the structural connectivity obtained from
DTI.

As explained in the next section, several neuroimaging groups studied how the
structural brain connectivity is related to intelligence level. However, only few stud-
ies focused their attention on a children population. Furthermore, carrying out a
meticulous study of the literature, we noticed that no work performed a complete
graph analysis of structural brain networks and showed results at both local and
brain scales.

This literature gap strengthened our interest and motivation in exploring the
structural substrate of intelligence through several graph metrics. We started per-
forming a simple correlation between the intelligence scores of WISC test and the
graph metrics. Once we obtained significant results, we pushed our analysis by using
factor analysis to extract a single common factor (g factor) of all the intelligence
sub-tests. From this information, we can then extract "pure" intelligence domains
that are not biased by the g factor. So, in the second part, of this chapter we present
the correlation between three intelligence domains, obtained by a statistical analysis,
and the graph metrics.

Finally, to complete this work, we decided to explore the relationship between
WM microstructure and intelligence. From diffusivity metrics, we grouped WM
fiber-bundles in diffusivity components, using a principal component analysis (PCA).
These diffusivity components were then correlated with intelligence domains.
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1. INTRODUCTION

This chapter contains the article published in the journal "Intelligence" titled
Brain Structural Connectivity Correlates with Fluid Intelligence in Chil-
dren: a DTI Graph Analysis.
Gabriel Kocevar∗, Ilaria Suprano∗, Claudio Stamile, Salem Hannoun, Pierre Fourneret,
Olivier Revol, Fanny Nusbaum and Dominique Sappey-Marinier. (∗ co-first authors)

1 Introduction

Diffusion tensor imaging (DTI) constitutes a very sensitive imaging tool for the
characterization of WM microstructural organization and the identification of neural
pathways [Basser et al. (1994),Basser et al. (2002),Beaulieu (2002)].

Indeed, WM fiber organization and integrity in brain tissue can be measured
through the estimation of diffusivity metrics such as the fractional anisotropy (FA),
and the axial (AD) and radial (RD) diffusivities, estimating the amount of diffusion
along and perpendicular to the main fiber direction. During the last decade, the
high sensitivity of DTI to WM changes allowed to explore relationship between
WM microstructure and IQ from childhood to adulthood. Initially, Schmithorst
et al. reported a positive association between IQ and FA in numerous cerebral
regions of children [Schmithorst et al. (2005)]. More recently, a positive correlation
between FA values and intelligence scores, was observed in several large WM fiber-
bundles, namely the splenium of the corpus callosum, the left inferior longitudinal,
and the arcuate fasciculi [Clayden et al. (2012)]. Muetzel et al. also reported a
positive association between FA and both IQ and visuospatial abilities in children,
mainly in the right uncinate fasciculus [Muetzel et al. (2015)]. In a study of 168
subjects, aged between eight and 30 years, both verbal and performance abilities were
positively associated to FA, particularly in the left hemisphere, independently of age
and sex [Tamnes et al. (2010)]. During adolescence, Navas-Sanchez et al. confirmed
the correlation between IQ and FA, mainly in the corpus callosum [Navas-Sánchez
et al. (2014)], while Dunst et al. showed that adults’ WM microstructure differs
between individuals as a function of intelligence and gender [Dunst et al. (2014)].
Along with the FA, AD may also be well correlated with IQ. Indeed, Nusbaum et al.
showed increased AD in children with high IQ compared to standard IQ. This study
also showed, that diffusivity measures could discriminate two groups of high IQ
children profiles, namely homogeneous and heterogeneous [Nusbaum et al. (2017)].

Based on a geometrical graph representation, a simple description of structural
brain connectivity was recently proposed [Shuman et al. (2013)]. Indeed, connec-
tions between GM regions, represented as graph nodes, can be derived from DTI
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tractography. Using such formalism, the brain could be considered as a small-world
network, whose organization can be explored at both local and global scales using
graph theory [Hagmann et al. (2007)]. The relationship between graphs structural
connectivity and IQ was first evaluated in adults by Li et al., showing higher global
efficiency (Eg) and shorter characteristic path length (L) in subjects with higher
IQ scores [Li et al. (2009)]. A recent study, performed in a population of 99 chil-
dren (six to eleven years old), showed that Eg was correlated to the perceptual
reasoning index (PRI) and its subtests [Kim et al. (2016)]. Furthermore, this study
highlighted several associations between local network organization and intelligence.
Indeed, PRI sub-scores were positively correlated to local efficiency in the pre- and
post-central gyrus, the precuneus, the superior and inferior frontal gyri, and in the
inferior temporal cortex. However, this unique study in children was limited to the
analysis of only PRI and its subtests.

In the present study, we propose to explore the neural substrate of intelligence
in a cohort of children. We tested the hypothesis that intelligence is associated
with a better structural connectivity and a specific network organization at different
anatomical levels: whole brain, intra- and inter-hemispheres, and lobes. To this end,
first, the relationships between all IQ indices and topological properties of brain
structural networks as well as diffusivity metrics of the main WM fiber-bundles
were investigated. Second, the relationship between diffusion metrics and the major
intelligence domains, based on the Wechsler intelligence scale for children (WISC-IV)
subtests inter-correlations, was assessed in the main WM fiber-bundles. Finally, the
association between intelligence domain and the brain structural networks properties
were investigated using a graph theory approach at both global and local scales.

2 Materials and Methods

2.1 Participants

This prospective MRI study included 43 children (11 girls and 32 boys, age
(mean ± SD): 9.82 ± 1.06 years). Subjects were recruited from the private psycho-
logical center (PSYRENE) and the children’s psychiatry unit of Lyon’s Neurological
Hospital, both specialized in high IQ children evaluation and follow-up, as well as
through advertisement in medical practices and public institutions. All children
with any neurological diseases, medical psychiatric comorbidities, learning disabili-
ties, psychotropic treatments, or contra-indications for MRI were excluded. Prior to
enrollment, children received a medical examination and were fully informed along
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with their parents of the study details. Ethical committee approval (“CPP Sud-
Est IV”) and written informed consent from the children and their parents were
obtained.

2.2 Intelligence scores

All children underwent comprehensive neuropsychological testing using the Wech-
sler intelligence scale for children (WISC-IV) which provided a reliable estimation
of the full-scale IQ (FSIQ) based on four subscales, namely, the verbal comprehen-
sion index (VCI), the perceptual reasoning index (PRI), the working memory index
(WMI), and the processing speed index (PSI).

These WISC subscales have been calculated from ten subtests, namely the vocab-
ular, comprehension, and similarities subtests (estimating the verbal comprehension
abilities), the picture concept, matrix reasoning, and block design (reflecting the
perceptual reasoning abilities), the letter-number sequencing and digit span sub-
tests (estimating the working memory), and the coding and symbol search subtests
(estimating the processing speed).

2.3 MRI acquisition and processing

MRI examinations were performed without any sedation or contrast agent at the
MRI department of the CERMEP-Imagerie du Vivant, on a 1.5T Siemens Sonata
system (Erlangen, Germany) with an 8-channels head-coil and 40mT/m gradients.
The MRI protocol included a 3D T1-weighted magnetization prepared rapid gradient
echo (MPRAGE) sequence (time of repetition / time of echo / time for inversion
[TR/TE/TI] = 1970/3.93/1100 ms; flip angle = 15°; matrix size = 256x256; field of
view = 256x256 mm; slice thickness = 1 mm; voxel size = 1x1x1 mm; acquisition
time = 8 min). DTI protocol was based on a 2D multi-slice spin-echo echo-planar
imaging (EPI) sequence (TR/TE = 6900/86 ms, resolution 2.5x2.5x2.5 mm, FOV
= 240x240 mm, acquisition time = 7 min). Fifty-one contiguous axial slices were
acquired in the anterior commissure - posterior commissure (AC-PC) plane. Twenty-
four diffusion gradient directions (b = 1000 s/mm2) were applied. The b0 image
was acquired four times to increase signal to noise ratio while other directions were
acquired twice. Diffusion data were corrected for subjects’ motion and Eddy currents
using the FMRIB Software Library (FSL) [Jenkinson et al. (2012)]. Non-brain voxels
were removed using FSL-BET. Transformation matrices generated during the Eddy
current correction were also used to compute the Root Mean Square deviation. As
a result, we obtained a mean patient displacement value of 1.26 ± 0.52 mm (mean
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± SD), which is half of a voxel size (2.5 mm). For each subject, the tensor model
was then fitted on diffusion data using FSL-FDT and four diffusion maps (FA, AD,
RD, and mean diffusivity (MD)) were extracted [Reuter et al. (2012)].

2.4 Fiber-Bundle Analysis

Large WM fiber-bundles were defined using the Illinois Institute of Technology
(IIT) atlas, which included the forceps major (Fmajor), the forceps minor (Fminor),
the superior and inferior longitudinal fasciculus (SLF and ILF respectively), the
inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (Unc), the cin-
gulum (Cing), and the cortico-spinal tract (CST) [Varentsova et al. (2014)]. The
IIT atlas FA map was co-registered to each subject’s FA image using a non-rigid
transformation performed using NiftyReg [Ourselin et al. (2001)] The resulting de-
formation field was then applied to co-register the IIT atlas large WM fiber-bundles
to each patient’s space. Since fiber-bundles masks contained the probability of each
voxel to belong to a specific fiber-bundle, a threshold was used to discard all voxels
having a probability lower than 35%. The resulting masks were then binarized. Fi-
nally, the mean value of FA, MD, AD, and RD, were extracted from each subject’s
fiber-bundles. This pipeline for fiber-bundles analysis is illustrated in Figure 6.1.

2.5 Graph analysis

The previously generated deformation field was used to transform the Desikan
cortical and subcortical GM parcellation to each subject space, to define the 84
nodes of the structural brain networks [Desikan et al. (2006)]. Whole brain trac-
tography was performed for every subject using MRtrix software [Tournier et al.
(2012)]. First, the main diffusion directions were estimated in each voxel using
diffusion orientation distribution function (dODF). The maximum spherical har-
monics (h=4) order was selected to match with the acquisition protocol. Then,
based on the four-tissue-class classification (WM, cortical GM, sub-cortical GM and
cerebro-spinal fluid (CSF)) of the IIT atlas and dODF, anatomically constrained
probabilistic streamline tractography was performed to generate 1’000’000 stream-
lines. Finally, adjacency matrices were generated for each subject by summing the
number of streamlines connecting each pair of nodes. In order to remove the weakest
connections generated by tractography, a proportional threshold (τ) must be applied
to obtain binary connectivity matrices. As this threshold strongly affects the network
topology and density, it has to be carefully chosen [Simpson et al. (2013),Bullmore
and Sporns (2009)]. Two methods are commonly used in brain network studies,

116 Ilaria SUPRANO



2. MATERIALS AND METHODS

Figure 6.1: Overview of the pipeline used for data processing. On top, the pipeline
for graph generation: graph nodes are generated through anatomical parcellation on
T1 image (1) and probabilistic anatomically constrained streamline tractography is
generated from diffusion images (2). Then, the numbers of streamlines connecting
each pair of nodes are used to define edges in the weighted graph and generate the
connectivity matrices. (3) Finally, a proportional threshold (τ=0.25) was applied
to remove the weakest connections before generating adjacency matrices (4). On
bottom, the pipeline for fiber-bundles extraction. Computation of FA, MD, AD,
and RD (5) from diffusion images. Registration of the atlas on the subject space (6)
and extraction of the mean value inside WM masks.

namely absolute and proportional thresholding. In this work, proportional thresh-
old τ = 0.25 was selected according to the method described elsewhere [Kocevar
et al. (2016)]. The pipeline for graph generation is illustrated in Figure 6.1. Brain
structural connectivity was analyzed globally as well as locally by dividing the con-
nectivity matrices in different sub-graphs: the left and right hemispheres, and the
inter-hemisphere connections graph. The connectivity matrices were also divided
into subnetworks of lobes (frontal, occipital, parietal and temporal), and sub-cortical
nuclei. Details of the cortical regions composing each lobe and a schematic repre-
sentation of this subdivision on the Details of the cortical regions composing each
lobe and a schematic representation of this subdivision on the connectivity matrix
is shown in Figure 6.2.

The topological properties of brain networks were analyzed using global and
nodal metrics from graph theory [Rubinov and Sporns (2010)]. Six global graph
metrics were estimated to analyze the networks properties. First, the graph density
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Figure 6.2: Schematic representation of the connectivity matrix subdivision in dif-
ferent networks, including left-, right-, and inter- hemispheres networks and lobes
networks. The cortical regions in each lobe are also reported.

(D) is measured as the ratio between the numbers of effective connections in the
graph (l) to the number of possible connections. Second, the integration property
of the graph was evaluated using the following two metrics: the characteristic path
length (L), which is the mean of the shortest paths in the graph, and the global
efficiency (Eg), which is the mean of the inverse of the distance matrix of the graph.
Third, the segregation property of the graph was analyzed using the following three
metrics: the transitivity (T) which is the ratio between the number of triangles
and the number of triplets in the graph, the assortativity (r) which is the Pearson
coefficient between the degrees of two nodes at the extremities of an edge, and the
modularity (Q) which is the difference between the number of intra-modules con-
nections and the number of inter-modules connections. Four nodal graph metrics
were also computed. The degree (ki) represents the number of connections of each
node. The clustering coefficient (Ci) defined as the ratio between the number of
triangles and the number of triplets around each node, measures the network’s ten-
dency to form dense local clusters. The betweenness centrality (Bi), defined as the
ratio of the number of the shortest paths comprising the node to the total number
of shortest paths in the graph, measures the hub property of the node. The nodal
efficiency (Ei) defined as the mean of the inverse of the distance vector, measures the
signal transmission efficiency. Small-world properties of each subject’s graph were
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estimated. First, a random graph with preserved degree distribution was generated.
Then the characteristic path length (L) and the mean clustering coefficient (C) were
estimated for both the subject and the random graph. Finally, λ, γ, and σ were
estimated as follows:

λ = Lsubject

Lrandom

; γ = Csubject

Crandom

; σ = γ

σ
(6.1)

Compared with a random network, small-world networks are known to have
similar L and higher C, resulting in λ ≈ 1, γ > 1, and σ > 1 [Uehara et al.
(2014)]. All the metrics, except graph density, were computed based on the binarized
connectivity matrices using the brain connectivity toolbox on Matlab [Rubinov and
Sporns (2010)].

2.6 Statistical analysis

The statistical analysis is mainly composed of two parts.
First, partial correlations between intelligence scores and network measures were

calculated in the total sample using age and gender as covariates. A linear model
(LM) was used to investigate the relationship between each WISC (Wi) index and
the global and nodal graph metrics as well as the diffusion metrics of the WM
fiber-bundles. The general expression of this model was as follows:

Wi ∼ (diffusion/graph)metric + Age + Gender (6.2)

Statistical significance of all predictor was tested for each fit by applying analysis-
of-variance and analysis-of-deviance with a 5% significance level corrected for mul-
tiple comparisons, applying FDR correction to p values.

As previously described in Karama’s work [Karama et al. (2011)], a factor anal-
ysis was performed on the correlation matrix of the ten WISC subtests in order to
explore their inter-correlations and to extract intelligence domains not biased by the
factor “g”. First, a factor analysis using the oblique “promax” rotation was applied
to the subtests, defining the principal intelligence domains. Second, an unrotated
factor analysis was performed to extract the g-score, defined as the scores of the first
factor component. Finally, the correlations between each intelligence domains and
the g-score were processed to extract their residuals, considered as g-unbiased intel-
ligence domains. As previously described by Privado et al. [Privado et al. (2017)],
a principal component analysis (PCA) was performed to explore potential groups of
inter-correlated WM fiber-bundles, based on their diffusivity metrics (FA, AD, RD,
MD). The resulting components were rotated to the simple structure using a “pro-
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max” rotation. Partial correlations between g-unbiased intelligence domains and
graph network metrics or diffusivity components were calculated in the total subject
sample. A linear model (LM) was used to investigate the relationship between each
intelligence domain and the diffusion metrics of the WM fiber-bundles, as well as
the global and nodal graph metrics. Age and sex were added to the linear model
as cofactors in order to account for any imbalance effect. The general expression of
this model was as follows:

Intelligencedomain ∼ (diffusion/graph)metric + Age + Gender (6.3)

Significance of all predictors for each fit was tested by applying analysis-of-variance
and analysis-of-deviance with a 5% significance level. All statistical analysis were
computed using R and the “psych” library [R Developement Core Team (2015)]. In
order to correct for multiple comparisons between the local graph metrics, Sidak
correction was applied to the p-values.

3 Results

3.1 Correlation with WISC scores and graph metrics

In the first analysis of this study, the five WISC scores (FSIQ, VCI, PRI, WMI,
and PSI) have been correlated with both local and global graph metrics derived from
structural connectivity.

Global graph metrics

When measured in whole brain, significant correlations were found between graph
metrics and FSIQ as well as WISC-IV subscales. More in details, FSIQ, VCI, PRI,
and WMI showed positive correlations with the density D (Figure 6.3). In contrast,
negative correlations were found between FSIQ, PRI, and WMI and the modularity
Q, as well as between VCI and WMI and the transitivity T. When measured in both
hemispheres, FSIQ, VCI, PRI, and WMI values were positively correlated with D.
In the right hemisphere, a negative correlation was observed between PRI and Q.
Finally, positive correlations were observed between FSIQ, VCI, and WMI and D,
and between PSI and T, in the inter-hemispheric connections.

The same graph metrics were also measured in other networks such as brain
lobes (frontal, parietal, occipital, and temporal) as well as sub-cortical nuclei. In
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p<0.001 p<0.001

p<0.01 p<0.01

Figure 6.3: Significant positive correlations obtained between the graph density of
the whole brain networks and the full-scale intelligence quotient (FSIQ) the verbal
comprehension index (VCI), the perceptual reasoning index (PRI), and the working
memory index (WMI).

the left parietal lobe FSIQ and WMI were negatively correlated with Q. In the
right occipital lobe, WMI was negatively correlated with T, and positively with
CPL. In the left temporal lobe, FSIQ and WMI were positively correlated with r
and T. FSIQ, PRI, and PSI were negatively correlated with Q. VCI, and PRI were
negatively correlated with Eg. FSIQ, and VCI were positively correlated with CPL.
Finally, in the left subcortical GM networks, PRI was negatively correlated with
r, while PSI was positively correlated with T. All the correlations between global
graph metrics and intelligence scores are reported in Table 8.2.
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Networks Metric FSIQ VCI PRI WMI PSI

Whole brain -
D 304.17*** 399.66*** 243.49** 278.01** -
Q -420.93* - -377.73* -466.40* -
T - -926.32* - -813.38* -

Inter-Hemisphere - D 165.23** 227.24*** - 170.64** -
T - - - - 136.55*

Hemisphere
L D 342.05** 413.26*** 331.26** 309.88** -

R D 233.15** 291.27** 237.35* 183.05* -
Q - - -381.91* - -

Parietal L Q -259.65* - - -288.69* -

Occipital R CPL - - - 85.58* -
T - - - -42.79* -

Temporal
L

r 55.21* - - 68.88* -
Q -182.99* - -192.70* - -180.22*
T 147.48* - - 203.72** -

R Eg - -365.17* -344.62* - -
CPL 139.88* 164.08* - - -

Sub-Cortical L r - - -215.61* - -
T - - - - 62.34*

Table 6.1: Correlation slopes and statistical significances obtained with a LM model
between global graph metrics, namely density (D), assortativity (r), transitivity (T),
modularity (Q), characteristic path length (CPL), and efficiency (Eg) measured in
different brain networks (whole brain, inter-hemisphere, left and right hemispheres,
different lobes, and subcortical regions), and the IQ scores (full scale intelligence
quotient (FSIQ), verbal comprehension index (VCI), perceptual reasoning index
(PRI), working memory index (WMI), and processing speed index (PSI)). * p<0.05;
** p<0.01.

Nodal graph metrics

Several significant correlations were observed between the nodal graph metrics
and the intelligence scores, including mainly FSIQ and VCI, and to a lesser extent
PRI. These correlations were observed in numerous networks, mainly located in
the left hemisphere, as reported in Table 6.2. As shown in Figure 6.4, FSIQ was
positively correlated with the degree ki and negatively with the local efficiency Ei in
the left precuneus networks and in the left middle temporal networks. In the middle
and superior temporal networks, VCI was positively correlated with ki and only in
the middle temporal networks negatively with Ei (Figure 6.5). In the right caudate
nuclei networks, PRI was positively correlated with ki (Figure 6.6).
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Networks GM nodes Metric FSIQ VCI PRI WMI PSI

Frontal L
Paracentral ki - 3.0* - - -

Frontalpole ki -3.9* -3.9* - - -
Bi -2.9* - - - -

Parietal L Precuneus
ki 2.1* 1.9* 2.1* - -
Ci -279.0* - -294.2* - -
Ei -463.6* - - - -

R Supramarginal Bi - 0.4* - - -
Occipital R Lateraloccipital Bi 1.1* - - - -

Temporal

L

Fusiform ki - -2.7* - - -

Middletemporal
ki 2.3* 2.4* - - -
Ci -106.9* - - -
Ei -212.2* - - -

Superiortemporal

ki - 3.0* - - -
Bi - 0.2* - - -
Ci - -176.6* - - -
Ei - -340.6* - - -

Transversetemporal ki -3.8* -3.2* -3.8* - -

R Bankssts ki - -3.6* - - -
Bi - -4.5* - - -

Transversetemporal ki -4.6* -3.8* -4.2* - -
Sub-Cortical R Caudate ki 2.8* 2.6* 3.5** - -
Cerebellum R Cerebellum ki - - 2.2* - -

Table 6.2: Correlation slopes and statistical significances obtained with a LM model
between the local graph metrics, namely degree (ki), betweenness centrality (Bi),
clustering coefficient (Ci), and efficiency (Ei), measured from gray matter (GM)
nodes of brain lobes of each hemispheres (left (L) and right (R)), and the IQ scores
(full scale intelligence quotient (FSIQ), verbal comprehension index (VCI), percep-
tual reasoning index (PRI), working memory index (WMI), and processing speed
index (PSI)). * p<0.05, ** p<0.01, *** p<0.001

3.2 Correlation with intelligence domains using factor anal-
ysis

In the second part of this study, the correlations between intelligence domains
and brain microstructure were explored.

Based on the ten WISC-IV subtests data, three broad g-score domains were de-
fined by the factor analysis as shown in Figure 6.7. Table 6.3 shows the descriptive
statistics for the ten intelligence measures and the correlations among them. The
first domain (PA1) including the matrix reasoning, block design, digit span, and
similarities subtests, is named “fluid intelligence”. The second domain (PA2) in-
cluding the symbol search, coding, and letter-number sequencing subtests, is named
“Classification ability”; and the third domain including the comprehension, vocab-
ulary, and picture concept subtests, is named “crystalized intelligence”. A second
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p<0.05 p<0.05

p<0.05 p<0.05

Figure 6.4: Significant correlations obtained between the full-scale intelligence quo-
tient (FSIQ) and the local graph metrics in the left precuneus and the left middle
temporal networks.

p<0.05 p<0.05

p<0.05

Figure 6.5: Significant correlations obtained between the verbal comprehension index
(VCI) and the local graph metrics in the left superior and middle temporal networks.
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p<0.05

Figure 6.6: A significant positive correlation obtained between the perceptual rea-
soning index (PRI) and degree metric in the right caudate.

factor analysis, based on the three major intelligence domains, was then applied on
the correlation matrix to define the g-score and the g-unbiased intelligence domains
(PA1-g, PA2-g, and PA3-g; Table S2 in the supplementary data).

1 2 3 4 5 6 7 8 9 10
1 0.42** 0.43** 0.19 0.17 0.27 0.42** 0.56*** 0.23 0.20
2 0.57*** 0.52*** 0.12 0.43** 0.51*** 0.46** 0.41** 0.33*
3 0.43** 0.19 0.30 0.54*** 0.49*** 0.44** 0.03
4 0.32* 0.30 0.52*** 0.21 0.34* 0.16
5 0.30 0.42** 0.21 0.09 0.41**
6 0.43** 0.13 0.56*** 0.19
7 0.53*** 0.35* 0.36*
8 0.23 0.30
9 -0.06
10
Mean 13.19 15.86 12.28 12.6 10.86 15.93 11.44 13.37 14.47 11.14
sd 3.86 3.11 3.13 3.25 3.19 3.06 3.11 3.02 3.38 2.62

Table 6.3: Correlation matrix and descriptive statistics of the ten WISC-IV subtests
(1: Block Design, 2: Similarities, 3: Digit span, 4: Picture concept, 5: Coding, 6:
Vocabulary, 7: Letter-Number, 8: Matrix reasoning, 9: Comprehension, 10: Symbol
search). * p<0.05, ** p<0.01, *** p<0.001
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Figure 6.7: The g-score, obtained using a factor analysis of the ten WISC subtests,
was composed of three major broad domains, named “fluid intelligence” (PA1),
“classification ability” (PA2), and “crystalized intelligence” (PA3).

3.2.1 Fiber-bundles analysis

Based on the diffusion data of the seventeen WM fiber-bundles, broad compo-
nents of fiber-bundles were defined by a factor analysis. First performed on FA
values of the WM fiber-bundles (Table S2 in supplementary materials), the factor
analysis extracted five broad components with eigenvalues of 6.93, 1.78, 1.40, 1.30,
and 1.17, explaining 74% of the total variance (41%, 10%, 8%, 8%, and 7%). The
first component (FA-Comp1) showed high loadings for the Fmajor, Fminor, left and
right ILF and left hippocampal part of the Cing and left IFOF. The second com-
ponent (FA-Comp2) comprised the left and right Unc, the right hippocampal part
of the Cing and the right IFOF, whereas the third component (FA-Comp3) showed
high loadings for the left and right cingular parts of the Cing and the right SLF.
The fourth component (FA-Comp4) comprised the left and right CST, whereas the
fifth component (FA-Comp5) showed high loadings for the fornix and the left SLF.
When performed on AD values of the WM fiber-bundles (Table S3 in supplemen-
tary data), four broad components were obtained with eigenvalues of 7.22, 2.60,
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1.56, and 1.12, explaining 74% of the total variance (42%, 15%, 9%, and 7%). The
first component (AD-Comp1) showed high loadings for the Fmajor and Fminor, and
for the right hippocampal part of the Cing, CST, IFOF, ILF, SLF, and Unc. The
second component (AD-Comp2) comprised the left IFOF, ILF, SLF, and Unc. The
third component (AD-Comp3) showed high loadings for the fornix and the left and
right cingular part of the Cing. Finally, the fourth (AD-Comp4) component com-
prised the left hippocampal part of the Cing and CST. As reported in Table 6.4, the
broad components based on AD and FA values of the WM fiber-bundles were further
correlated to the intelligence domains. First, significant positive correlations were
observed between AD-Comp1 and PA1, PA2, PA3, and g-score. Also, significant
positive correlations were observed between AD-Comp2 and PA1, g-score and PA1-
g, and between AD-Comp4 and PA3-g. Finally, a significant negative correlation
was observed between AD-Comp2 and PA2-g. Second, significant positive correla-
tions were observed between FA-Comp1 and PA1 and between FA-Comp5 and PA2
and g-score. A significant negative correlation between FA-Comp1 and PA2-g was
observed. The factor analysis was also performed on the radial and mean diffusiv-
ities of WM fiber-bundles and showed no significant correlations with intelligence
(Loadings matrices are reported in Tables S4 and S5 of supplementary data).

PA1 PA2 PA3 g-score PA1-g PA2-g PA3-g
Comp-1 0.397** 0.402** 0.259* 0.433**

AD Comp-2 0.496** 0.353* 0.197* -0.116*
Comp-4 0.257**#

FA Comp-1 0.323* -0.112*
Comp-5 0.320* 0.327*

Table 6.4: Correlations between WM fiber-bundles diffusivity components of frac-
tional anisotropy (FA) and axial diffusivity (AD), and intelligence domains (PA1,
PA2, and PA3), g-score, and g-unbiased intelligence domains (PA1-g, PA2-g, and
PA3-g).* p<0.05; ** p<0.01; # p<0.05 for effect of age.

3.2.2 Graph analysis

Global graph metrics

Structural brain networks were successfully reconstructed using a threshold of
0.25 and 1’000’000 fibers. The resulting networks showed overall small world char-
acteristics for all subjects with a mean of 1.62, a mean of 1.74, and a mean of 1.08.
Global Graph metrics Correlations between graph metrics and the three intelligence
domains, the g-score, and the g-unbiased intelligence domains are reported in Table
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6.5. PA1, PA2, and g-score showed significant correlations with the density in the
whole brain (Figure 6.8). In the inter-hemispheric network, PA1 and g-score were
positively correlated with density, PA1-g was positively correlated with efficiency,
characteristic path length, and modularity, and PA2-g was negatively correlated
with transitivity. PA1, PA2, and g-score were positively correlated with density in
both left and right hemispheres, whereas PA1-g showed negative correlations with
transitivity in the right hemisphere and PA3-g with modularity in the left hemi-
sphere.

Figure 6.8: Significant positive correlations measured between graph density in the
whole brain networks and the g-score (p<0.01), the fluid intelligence domain (PA1;
p<0.001), and the classification ability domain (PA2; p<0.05).

Global graph metrics were also measured in brain networks of lobes, namely the
frontal, parietal, occipital, and temporal lobes, as well as in the sub-cortical nuclei.
In the frontal lobe, PA3-g was positively correlated with modularity, whereas PA2
and g-score were negatively correlated with transitivity. In the parietal lobe, PA1,
PA2, and g-score were positively correlated with density, while PA1 and PA1-g were
negatively correlated with modularity. Also, PA1, PA2, and g-score were negatively
correlated with assortativity. In the occipital lobe, PA1 was positively correlated
with density. PA3-g was positively correlated with efficiency and transitivity, but
negatively correlated with characteristic path length. In the temporal lobe, PA1 and
g-score were positively correlated with characteristic path length and assortativity
and negatively with efficiency. PA2 was positively correlated with assortativity and
negatively with modularity. Also, g-score was negatively correlated with modularity.
Finally, in the sub-cortical network, PA3 was positively correlated with efficiency and
assortativity, while PA3-g was negatively correlated with characteristic path length
and positively correlated with assortativity.

Nodal graph metrics

Significant correlations were observed between intelligence domains and g-score
and local graph metrics in all the brain lobes. However, after correcting p-values for
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g-score PA1 PA2 PA3 PA1-g PA2-g PA3-g
Whole brain D 16.87** 19.06*** 15.24* - - - -

D 9.20* 11.58** - - - - -
Inter- E - - - - 4.82* - -
hemisphere L - - - - 0.30* - -

Q - - - - 1.68* - -
T - - - - - -3.25* -

Left D 19.52** 19.48** 19.53* - - - -
Hemisphere Q - - - - - - -16.59*
Right D 13.17* 12.76* 12.68* - - - -
Hemisphere T - - - - -20.26* - -

Frontal Q - - - - - - 11.46*
T -14.26* - -14.37* - - - -
D 18.24*** 20.16*** 15.86*** - - - -

Parietal Q - -10.85** - - -4.87* - -
r -7.27** -8.12** -6.24* - - - -

Temporal

E -45.01* -52.19* - - - - -
L 10.22* 12.12** - - - - -
Q -225.66* - -218.25* - - - -
r 6.13** 5.82* 5.81* - - - -

Occipital

D - 2.67* - - - - -
E - - - - - - 18.84**
L - - - - - - -5.38**
T - - - - - - 2.68*#
E - - - 4.43* - - -

Subcortical L - - - - - - -1.13**
r - - - 2.86* - - 2.01*

Table 6.5: Correlation slopes between global graph metrics, namely the density (D),
assortativity (r), transitivity (T), modularity (Q), characteristic path length (L),
and efficiency (E) in different brain networks (whole brain, inter-hemispheres, left
and right hemispheres, lobes, and subcortical nuclei) and intelligence domains (PA1,
PA2, PA3, g-score, and g-unbiased PA1-g, PA2-g, PA3-g). * p<0.05, ** p<0.01, ***
p<0.001. p<0.05 for the effect of age

multiple comparisons (84 graph nodes), only few correlations remained significant.
More in details, PA1-g was positively correlated with the degree and betweenness
centrality, and negatively with clustering coefficient and local efficiency in the right
precuneus node (Figure 6.9). Also, PA1-g was negatively correlated with the degree
in the right isthmus cingulate node.

4 Discussion

In this work, WM structural connectivity was measured using fiber-bundle anal-
ysis as well as graph theory method. To our knowledge, this study is the first to

Ilaria SUPRANO 129



CHAPTER 6. STRUCTURAL CONNECTIVITY: A DTI STUDY

Figure 6.9: Correlations between PA1-g intelligence domain and local graph metrics
in the right precuneus node.

correlate children intelligence with both global and local graph metrics of brain
networks.

The exploration of structural connectivity using graph metrics provided evidence
of a strong relationship between brain networks connectivity and intelligence. More
specifically, we showed that higher intelligence is related to a dense and homogeneous
brain networks. Indeed, most of the IQ indices (VCI, PRI and WMI) correlated pos-
itively with graph density and negatively with modularity and transitivity, two met-
rics describing segregation properties. These results are in accordance with the idea
that intelligence depends on the brain networks capacity to enhance their structural
connectivity [Barbey (2018)]. On one hand, the strong correlations observed be-
tween both VCI and WMI scores and graph metrics in the temporal lobe confirmed
that high integration and density levels of the temporal connectivity are related to
high verbal and memory abilities, as previously reported [Squire and Zola-Morgan
(1991)]. On the other hand, the high levels of structural connectivity observed in
the parietal lobe in relation with high FSIQ confirmed the important role of parietal
functions in children intelligence, such as visuospatial and memory abilities (mir-
ror neurons), as well as mathematical operations processing [Desco et al. (2011)].
Moreover, as shown by [Sowell et al. (1999)], the parietal lobe presents the most
important changes during adolescence, a period of rapid cerebral development.

These results have been confirmed when three intelligence domains were ex-
tracted from WISC scores by PCA, and finer results have been obtained. First, the
increase of density with the general intelligence domains (g-score, PA1, and PA2)
in the whole brain, the left and right hemispheres, and the inter-hemisphere net-
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works demonstrated that a high level of intelligence is associated with increased
WM connectivity. More specifically, the graph density in whole brain and hemi-
sphere networks was correlated with PA1 and PA2 but not with PA3 intelligence
domains, showing the predominance of fluid intelligence and classification abilities.
Second, the decreased segregation properties (modularity and transitivity) with the
general intelligence domains (g-score, PA1, and PA2) in the frontal (PA2),
parietal (PA1), and temporal (g-score and PA2) lobes networks showed that the
main intelligence domains are related to homogenous brain organization. These cor-
relations observed between frontal and temporo-parietal regions and intelligence are
in agreement with the meta-analysis of Jung and Haier [Jung and Haier (2007)],
and Basten et al. [Basten et al. (2015)]. Nevertheless, as concluded by Basten et
al. [Basten et al. (2015)], one should carefully distinguish structural and functional
brain correlates of intelligence. In contrast, the third broad intelligence domain,
named crystalized intelligence (PA3 and PA3-g), was mainly associated to increased
integration properties in the occipital lobe and sub-cortical nuclei networks. This
finding is in agreement with the previous report of Colom et al., showing that crys-
talized intelligence correlates mainly with occipital regions [Colom et al. (2008)].
These findings on global network organization support the model proposed by Bar-
bey [Barbey (2018)], in which high intelligence is related to a balance between high
integration (high density) and mean segregation (modularity and transitivity) lev-
els in the network, which correspond to the definition of a small-world network as
observed in this study.

To further explore the relationship between intelligence and brain organization
at a lower scale, local graph metrics were computed. Associations were mainly
found in the parietal, temporal, and frontal lobes, which correspond to the P-FIT
regions [Jung and Haier (2007)]. In particular, metrics measured a better network
integration in the left and right precuneous in relation with FSIQ, mostly driven by
the PRI, and the g-unbiased fluid intelligence (PA1-g), respectively. This result is
in agreement with previous studies, highlighting the importance of the precuneus
in visuospatial abilities and self-consciousness [Oshio et al. (2010)]. Local metrics,
measured in the left middle and superior temporal networks, were associated to VCI.
These findings are concordant with the report of [Crinion et al. (2003)], showing
that speech comprehension employs both temporal lobes, with a left predominance.
Moreover, in agreement with the report of Basten et al., we observed a relation
between PRI and local graph metrics in the subcortical networks [Basten et al.
(2015)]. High PRI was associated to high network integration of the right caudate
nucleus, region also involved in reasoning [Melrose et al. (2007)].
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These results on structural brain network organization were confirmed by the
diffusivity measurements obtained from the major WM fiber-bundles. Indeed, posi-
tive correlations were observed between AD values and intelligence domains. Based
on the hypothesis that AD values reflect myelination and axonal density or di-
ameter [Jones et al. (2013), Mori and Zhang (2006)], these findings confirmed
the relationship between WM fiber-tracts integrity and intelligence, and suggest
the potential interest of AD as a marker of general intelligence. More specifically,
the correlation with g-score and g-intelligence domains (PA1, PA2, and PA3) were
mainly located in the right fiber-bundles (AD-Comp1), while the correlations with
g-unbiased intelligence domains were mainly located in the left fiber-bundles (AD-
Comp2). These results may suggest a potential lateralization of the intelligence
axonal substrate, with the general intelligence being more weighted by the right
WM fiber-bundles, and the g-unbiased intelligence being more weighted by the left
WM fiber-bundles.

5 Conclusion

In this chapter, we aimed to explore the structural brain substrate of intelligence.
For this purpose, we applied graph analysis to the connectivity matrix obtained from
DTI. A preliminary study of correlation, between graph measures and five WISC sub-
tests, showed significant results. These findings have led us to perform a principal
component analysis on the 10 WISC sub-tests in order to obtain more precise results
on these correlations with well separated intelligence domains. Three major domains
were extracted, namely "fluid intelligence", "classification ability", and "crystallized
intelligence" that composed all together the "g-factor".

The graph analysis showed significant correlations between several graph met-
rics based on diffusion measures and intelligence factors. First, the increase of net-
work density with intelligence scores, confirmed that fiber-bundles density of brain
networks plays a significant role in children intelligence. Second, considering that
modularity represents a measure of segregation level between graph modules, and
that transitivity reflects the redundancy in the network connections, the low modu-
larity and low transitivity observed in high IQ children confirmed that homogeneous
brain organization correlates with intelligence. These findings showed that chil-
dren’s high IQ may be related to a high fiber density and optimally distributed
brain networks, thanks to the global sensitivity of such graph-based methods for
the investigation of brain topological organization. Furthermore, diffusion metrics
measured in WM fiber-bundles confirmed that children intellectual abilities are cor-
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related with enhanced WM myelination and integrity. Our findings showed that
both inter- and intra-hemispheric WM integrity are enhanced in children with high
intellectual abilities. In agreement with the literature, these results confirmed that
diffusion metrics measured in WM fiber-bundles constitute accurate and quantita-
tive markers of intelligence. In summary, this study demonstrated that intelligence
quotient is correlated with the microstructure as well as the topological organization
of the WM brain networks.
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CHAPTER 7. BRAIN ACTIVATION DURING SEMANTIC TASKS

Our research on children intelligence, has been concluded with a task-fMRI study
which is presented in this chapter. We were interested in knowing if their brain re-
acts differently to task stimulation compared to children with a standard IQ (SIQ),
and if the two HIQ profiles, previously introduced in the chapter 5, present differ-
ent functional networks. For this purpose, we designed a fMRI experiment with a
semantic memory task. As well as in the functional connectivity study, we distin-
guished a group of children with heterogeneous HIQ and a group with homogeneous
HIQ, and a control group composed of children of the same age with a standard IQ.
The study consisted of passing an fMRI in which a verbal semantic memory task
was presented. During this task, children had to memorize semantically linked pairs
of words and then return them using a response box. This task was selected because
of its similarity to the WISC IV "Similarities" test, in which children must extract
a common concept linking two words presented orally, and for which the two HIQ
profiles do not differ. Brain activation, response times, and the number of correct,
incorrect, or missed responses were registered.

However, being an ongoing study in this chapter, we present only some prelimi-
nary results, and further analysis are needed.

1 Introduction

The most simple and natural way to investigate the neural substrate of intelli-
gence is to use task fMRI. Indeed, this technique allows to study functional correlates
of intelligence subjecting people to cognitive tasks stimulating reasoning, working
memory or other abilities.

In the first MRI study of reasoning, subjects performed three types of tasks:
match, figural reasoning, and analytical problems [Prabhakaran et al. (1997)]. Ac-
tivation in several brain regions mostly overlapping working memory networks were
registered, highlighting the existence of a link between neural correlates of working
memory and those of reasoning. After this first work, several studies of intelli-
gence processes were performed with task fMRI. All of them were then included in a
meta-analysis of 37 neuroimaging studies that led Jung and Haier to introduce the
Parieto-Frontal Integration Theory (P-FIT) [Jung and Haier (2007)]. This model
identified a network of fourteen cortical regions connected with intelligence that be-
long to the Default Mode Network (DMN) and to the Central Executive Network
(CEN) main situated in parietal and frontal lobes. An extension of P-FIT was later
suggested, with the addition of some subcortical structures and other cortical areas
as relevant regions for intelligence [Basten et al. (2015)].
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More recently, other aspects of intelligence were explored more thoroughly, thanks
to task fMRI studies. Indeed, fluid intelligence has been demonstrated to be linked to
specific frontal and parietal regions [Cole et al. (2015)] that showed reduced activa-
tion in lower fluid intelligence subjects when performing memory tasks [Tschentscher
et al. (2017)]. Another interesting finding showed that higher cognitive abilities are
also associated with a lower deactivation in task negative networks, and a lower ac-
tivity in task positive network during working memory tasks [Takeuchi et al. (2018)].
This finding is in agreement with the efficiency theory suggesting that, when working
on the same cognitive tasks, more intelligent individuals show lower brain activation
in comparison to individuals with standard intelligence [Neubauer and Fink (2009)].

In the present study, we explored the functional brain activity of two HIQ children
groups as compared to standard IQ (SIQ) children. HIQ chidren were identified by
a full scale intelligence quotient (FSIQ) higher than 130, measured with the fourth
edition of Wechsler Intelligence scale for Children (WISC). The two HIQ profiles
were characterized: homogeneous HIQ (Hom-HIQ) children had homogeneous re-
sults to the WISC subscales, while heterogeneous HIQ (Het-HIQ) showed a verbal
comprehension index (VCI) or perceptual reasoning index (PRI) higher than 130,
and a significant difference (>15) between VCI and PRI. We proposed to identify
the difference in the functional activation of the three different intelligence groups
during the execution of a semantic memorization task. We hypothesized to obtain
different brain activation during the semantic task according to the two HIQ profiles
and SIQ group.

2 Materials and Methods

2.1 Subjects

Fifty-seven children (43 males and 14 females) were recruited from the children
psychiatry department of Lyon’s Neurological Hospital and the PSYRENE Center.
Children with neurological diseases, learning disabilities and psychotropic treatments
were excluded from this study. Based on the results of the WISC-IV test and its
four indices (Verbal comprehension index [VCI], Perceptual reasoning index [PRI],
Working memory index [WMI] and Processing speed index [PSI]) three groups were
composed. Fourteen children (mean age = 9.91, SD = 1.17), with a full scale in-
telligence quotient (FSIQ) in the standard of children corresponding to their age,
composed the SIQ group. Het-HIQ group was composed of 23 children (mean age =
9.97, SD = 1.24) characterized by a FSIQ higher than 130 and heterogeneous results
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in VCI and PRI. More in details, VCI measure was higher than the value of 130 and
a minimum difference between VCI and PRI of 15 points was measured. Finally,
the Hom-HIQ group was composed of 19 children with a FSIQ higher than 130 with
homogeneous values of the VCI and PRI.

2.2 MRI acquisition

MRI examinations were performed on a 1.5T Siemens Sonata system with an
8-channels head-coil and 40 mT/m gradients, at the MRI department of CERMEP-
Imagerie du Vivant. The MRI protocol included a 3D T1-weighted magnetization
prepared rapid gradient echo (MPRAGE) sequence acquired for 8 minutes with
temporal parameters TR/TE/TI = 1970/3.93/1100 ms and a millimetre spatial
resolution (flip angle = 15◦, matrix size = 256 x 256, field of view (FOV) = 256
x 256 mm). Task fMRI protocol was also acquired using a T2*-weighted BOLD-
sensitive gradient-echo EPI sequence with 30 axial slices of 3 mm thickness, 1 mm

inter-slice gap, repetition time (TR) 2500 ms, echo time (TE) 50 ms and spatial
resolution 3.4 x 3.4 x 3 mm ( flip angle = 80◦, matrix size = 64 x 64, FOV = 192
mm ). Four runs of 440 volumes were acquired.

2.3 Verbal semantic memory task

During the verbal semantic memory task, the subject had first to learn a list of 6
word pairs displayed on a screen (Encoding phase) and then should use two answer
buttons during the Retrieving phase. In total, each child learned 96 pairs of words,
divided into three different categories: words with semantic link (SL), words without
any semantic link (WL) and nonsense words (NS). All words were bi-syllabic and
consisted of up to eight letters. SL and WL words came from the Ferrand’s group
works [Ferrand and Alario (1998), Ferrand (2001)] that were focused on concrete
and abstract words respectively. The words presented in our study were then either
abstract or concrete. NS words were pseudo-words created in such a way that they
were easily pronounceable for a young French-speaking reader.

During the encoding phase, six pairs of words (SL, WL or NS) were displayed
successively during 2800 ms on a black screen. Each presentation of word pairs was
interspersed of 200 ms interval. Following the encoding phase, a fixing cross was
presented on the screen for 3000 ms to announce the transition to the retrieving
phase. During this phase, three words were displayed on the screen: at the top
was shown the word whose couple had to be found, and on the bottom the word of
the pair and a distractor of the same category (SL, WL or NS). This was repeated
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six times for each previously encoded pair. The child had 3000 ms on each test to
answer and over the allotted time, the test was considered "missed".

The succession between encoding phase and restitution phase constitutes a first
block (Figure 7.1). Sixteen blocks were presented alternatively during the two runs.
An interval of a few minutes between the two runs allowed the child to rest and
make sure everything was fine. Answers and response times were recorded. Each
response to a trial was counted as either "correct" or "incorrect" or as "missed".

3000 ms

3000 ms

3000 ms3000 ms

3000 ms

4000 ms

4000 ms

4800 ms

Encoding Retrieval

Image

Couleur

Image

Couleur      Pinceau

0

1

6

0

1

6

Figure 7.1: Illustration of the task. The Encoding and the Retrieval phases consti-
tute a block

2.4 MRI processing

All MRI data analyses were computed using the Statistical Parametric Mapping
software package (SPM12)(https://www.fil.ion.ucl.ac.uk/spm/software/spm12). The
first five functional volumes were eliminated in order to be sure to have a stable sig-
nal. For each subject, data were corrected for slice timing, and motion, and were
coregistered to the anatomical image. Data artifacts for head motion were detected
using Art toolbox. For the scans affected by scan-to-scan motion including rota-
tional movements higher than 3 mm or with an exceptionally high variation (signal
higher than 4 standard deviations from mean), a corresponding artifact regressor was
constructed. Runs with a number of corrected images higher than 10% of the total
volumes, were excluded at this stage for excessive head motion and subjects without
an exploitable image were not included in the analysis. After this screening, the
analysis of the semantic memory task was conducted on 54 subjects. The anatom-
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ical MRI images were segmented according to prior tissue probability maps and
grey-matter, white-matter and CSF probability maps were generated. A template
was generated using DARTEL, a diffeomorphic registration method that accurately
align brains within the MNI space [Ashburner (2007)], from the segmentation of all
the subjects. Finally, the deformation field created during the previous step was ap-
plied to both anatomical and functional images that were normalized in a standard
space applying a Gaussian kernel of (3 x 3 x 3 mm3).

2.5 First level analysis

The statistical analysis was performed for individual subject using the general
linear model (GLM) [Friston et al. (1995)]. For the cognitive task, the two steps
were separately analyzed: the Encoding (E) and Retrieving (R) phases. In the GLM
model, three encoding and three retrieving conditions, each one for a single word
category (SL, WL and NS), were considered as predictors of interest. Furthermore,
the information about the type of response (miss, hit or incorrect) was entered in the
model in order to take into account this information in the creation of the design
matrix. In order to compare the different task conditions, several contrasts were
defined and statistically analyzed with t-Student test using SPM12.

2.6 Second level analysis

In order to search for activated areas that were consistent for each group, the
GLM parameters estimated in the previous analysis were entered in a second level
analysis. For each contrast previously defined, the activated areas for each group
(SIQ, Hom-HIQ, and Het-HIQ) were extracted. Furthermore, the activation of the
two HIQ groups were compared between them and to those in SIQ group. A two-
sample t-test was applied thresholding the results at P < 0.05.

2.7 Task paradigm

The response time and answers obtained for each task were statistically analyzed
using R library (http://www.R-project.org/). Differences among responses time
were evaluated applying an ANOVA test with three factors and the interactions
between them: intelligence group (SIQ, Hom-HIQ, and Het-HIQ), task (SL, WL,
and NS), and response factor (incorrect, missed, correct).

time ∼ Intelligence ∗ task ∗ response (7.1)
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Differences in the percentage of incorrect, missed, or correct answers (ri where
i ∈ : { incorrect, miss, correct }) were explored with an ANOVA test with two
factors and the interactions between them: intelligence group (SIQ, Hom-HIQ, and
Het-HIQ), task (SL, WL, and NS).

ri ∼ Intelligence ∗ task (7.2)

Furthermore, Tukey’s post-hoc test was applied to explore the multicomparisons
within each factor for both statistical analyses.

3 Results

3.1 Task performance

Response time

Statistical analysis on response time showed that the ANOVA test was signifi-
cantly different for all the three factors: intelligence group, task, and response. The
interactions between the three factors were not significant, but a trend resulted for
the interaction between the intelligence group factor and the response factor. Fur-
thermore, Tukey’s post-hoc test showed for all the factors significant difference in
response time in all the multi-comparisons (Table 7.1).

Factors Comparisons Difference
Het-HIQ - SIQ -0.148 ***

Intelligence Hom-HIQ - SIQ -0.216 ***
Hom-HIQ - Het-HIQ -0.068 ***
NS-SL 0.231 ***

Task WL-SL 0.151 ***
WL-NS -0.079 ***
Miss-incorrect 1.076 ***

Response Correct-incorrect -0.166 ***
Correct-miss -1.243 ***

Table 7.1: Results obtained with Tukey’s post hoc test comparing the time response
for all the combinations in each factor. *** p<0.001.

More in detail, Hom-HIQ children answered the questions faster then the two
other groups, while the response time of Het-HIQ group was shorter than that of
SIQ group. Concerning the different tasks, the time of answer was increased in WL
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task compared to SL task, and NS resulted to have the longest response time (Figure
7.2).

Figure 7.2: Boxplots of response time measured in seconds for three different fac-
tors. (A) for Intelligence group: Standard Intelligence Quotient (SIQ), Homogeneous
High Intelligence Quotient (Hom-HIQ), and Heterogeneous High Intelligence Quo-
tient (Het-HIQ); (B) for task factor: words with semantic link (SL), words without
semantic link (WL), and non-sense words (NS); (C) for response factor: incorrect,
miss, and correct. *** p<0.001.

Finally for the time of response, the corrected answers were shorter than the
uncorrect ones. Obviously, the missed answers present the slowest response time.

Response type

The difference in the percentage of answers was explored for each response type
(correct, incorrect or missed). No significant difference among intelligence groups
was found. Indeed, as we can see in Table 7.2, the values among the three groups
are similar for each response type.

However, for incorrect and correct responses a significant difference was measured
among the tasks (SL, WL, NS). More in details (Table 7.3), Tukey’s post hoc test
showed a high significance level (p<0.001) for all the comparisons of the correct
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SIQ Het-HIQ Hom-HIQ SL WL NS
Incorrect 30.85 30.64 28.25 18.88 31.33 44.44
Missed 3.44 3.30 1.96 2.01 3.19 3.86
Correct 65.71 66.06 69.79 79.11 65.48 51.70

Table 7.2: Percentage of total incorrect, missed, and correct answers for each intelli-
gence group (SIQ, Het-HIQ, and Hom-HIQ) without differentiating for task typology,
and for each task typology (SL, WL, and NS) without differentiating for intelligence
group.

answers and for (NS-SL) and (WL-SL) comparisons in incorrect answers, while (WL-
NS) was modestly significant. Finally, the percentage of missed answers resulted in
no significant changes among the three intelligence groups and among the three
tasks.

Comparisons Incorrect Miss Correct
NS-SL 25.56 *** - -27.41 ***
WL-SL 12.45 *** - -13.63 ***
WL-NS -13.11 * - 13.78 ***

Table 7.3: Percentage difference of incorrect, missed, and correct answers for each
pair of task (SL, WL, NS). * p<0.05, *** p<0.001

3.2 fMRI activation

Several brain regions were activated for each contrast defined in the first level
statistical analysis in standard IQ group and both high IQ profiles. We reported in
this work the activation resulting to be significantly different between each pair of
intelligence group.

Encoding phase

During the encoding phase of words without a semantic link (WL), standard
IQ showed a higher activation than heterogeneous HIQ profile in the left inferior
occipital gyrus (BA 19) (Figure 7.3.A).

A significant activation difference between homogeneous and heterogeneous HIQ
profiles was observed during the encoding phase for the words without a semantic
link (WL). For this task, the homogeneous group showed a stronger activation in
the left prefrontal cortex (BA10) (Figure 7.3.B).

No significant activation difference was found between homogeneous HIQ group
and standard IQ group during encoding phase of the task.
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Figure 7.3: Illustration of regions that showed significant higher activation during
encoding phase of words without semantic link (WL): (A) left inferior occipital cortex
in standard intelligence group compared to the heterogenous HIQ profile, (B) left
prefrontal cortex in homogeneous HIQ profile compared to heterogeneous profile.

Retrieving phase

Significant results were observed during the retrieval phase when the heteroge-
neous HIQ group was compared to the reference group with a standard IQ. The
heterogeneous profile showed a stronger functional activation in left thalamus for
words without semantic link (WL) compared to words with semantic link (Figure
7.4.A). A trend was also measured in the left occipital cortex (BA17-18) where the
activation of heterogeneous HIQ profile was stronger than SIQ (Figure 7.4.B 7.4.C)
comparing the retrieval of NS to SL pair of words.

Two significant results were also observed comparing the two High Intelligence
Quotient profiles. A stronger (p<0.01) activation was observed in left posterior
cingular gyrus (BA 23) (Figure 7.5.B) in the Heterogeneous group when the differ-
ence between the retrieving of NS to SL words is compared. For the same contrast,
heterogeneous profile showed also higher activation in the right pre-central gyrus
(BA4) (p<0.05) and in the right supplementary motor area (p<0.01) (Figure 7.5.C
and 7.5.D).

Comparing the retrieval phase of NS words to SL+WL pair of words taken to-
gether, the heterogenous HIQ profile showed higher (p<0.01) activation of the left
middle frontal gyrus (BA6) (Figure 7.5.A) than the homogeneous HIQ profile.

Finally, no significant result was found when comparing Hom-HIQ group with
SIQ group.
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Figure 7.4: Illustration of the regions that showed higher activation in Het-HIQ
profile compared to reference group (SIQ), (A) in the left thalamus in the difference
between the retrieving of words without link (WL) and word with semantic link (SL),
and (B) & (C) in the left occipital cortex for the difference between the retrieving
of non-sense words (NS) and all sense words (SL+WL).

4 Discussion

Task performance

In this study, we aimed to explore the performances of two HIQ profiles. Our
first hypothesis was that Het-HIQ and Hom-HIQ may present higher scores in the
different tasks compared to the reference group. This hypothesis has been confirmed
by the behavioural results. Indeed, we measured significant different response times
among the three groups. In particular, Hom-HIQ resulted to be the fastest group
to respond. Next, very close to homogeneous profile, we found heterogeneous profile
that showed intermediate response time. Finally, we found that SIQ was the slowest
group in the retrieving phase. This first analysis confirms that both HIQ groups
have effectively higher performances during cognitive tasks. We may also affirm
that a significant difference in performance exists between the two HIQ profiles.
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Figure 7.5: Illustration of the regions that showed higher activation in the Het-HIQ
profile compared to the Hom-HIQ profile, (A) in the left middle frontal gyrus for
the difference between the retrieving of non-sense words (NS) and both sense words
(SL+WL). During the retrieving of non sense (NS) and words with semantic link
(SL), (B) in the left postrior cingulate gyrus, (C) in the right posterior central gyrus,
and (D) in the right pre-central gyrus.

However, the three groups could not be differentiated based on percentage of
response type (incorrect, miss, correct). Indeed, no significant difference was ob-
served for this analysis among the Intelligence groups. This result was supported by
the scores obtained during the "Similarities" test of the WISC, where no significant
difference was observed between the two HIQ profiles.

fMRI activation

Concerning fMRI activation, we hypothesized that both HIQ profiles would have
significantly different brain activation, compared to the SIQ group as it has been
previously found in the literature [O’Boyle et al. (2005), Lee et al. (2006)b]. How-
ever, our results allowed to conclude that our hypothesis was confirmed only for the
heterogeneous HIQ profile. Indeed, for both encoding and retrieving phases, this
group showed significant different activations as compared to standard IQ group.
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The neural substrate of depth encoding is not fully understood and several brain
regions have been associated with this task. For instance, left inferior occipital
cortex has been identified to be part of the semantic system. On one hand, it is
involved in reading [Taylor et al. (2019)] task, during which the brain maps visual
information onto language information. On the other hand, it is possible that it
may also serve a semantic function [Binder et al. (2009)]. In our study, this region
is more activated in the SIQ group than in the Het-HIQ group during the reading
of words without any semantic link.

Our results highlight also a strong activation during encoding of words without
semantic links in left (BA 10). This finding is in agreement with the literature that
demonstrated an engagement of the prefrontal cortex (BA 10, 45, 46, 47) in tasks
demanding high semantic elaboration [Nyberg (2002)]. We found that this region
has a higher activity in homogeneous than in heterogeneous HIQ groups. Increased
activity in these regions has been demonstrated to be responsible for deeper encoding
and leads to better retrievable memory traces [Nyberg (2002)]. According to this
study, Hom-HIQ performed a deeper encoding for words without semantic link in
order to then better remember the association between the words.

During the retrieving phase, the left thalamus was more activated in Het-HIQ
group than in the SIQ group. This region is involved in a variety of high cognitive
functions, including cognition, motor, speech and prosody, semantic processing, and
verbal memory [Hebb and Ojemann (2013)]. Although the bulk of the evidence
refers to episodic memory, it was recently proposed that this region supports memory
performance also in semantic retrieval tasks [Pergola et al. (2013)]. Indeed, it seems
to be important during semantic retrieval, possibly because of their role in the
activation of phonological representations. Our result is then consistent with the
literature and showsthat the heterogeneous group actitated more the left thalamus
for the semantic retrieval of more complex words, such as the words without semantic
link.

Even if it was only a trend, the primary and the secondary visual cortex (SVC)
were more activated in Het-HIQ group than in the SIQ group. While the classical
model of the neurobiology of language proposed a left-lateralized linguistic network
of the fronto-temporal regions, more recent studies included also several regions all
around the brain. Since SVC is one of this region [Binder et al. (2009)], our finding
suggest a higher activation of the semantic reading region in the heterogeneous HIQ
profile.

Left pre-motor cortex was also found to be involved in the comparison between
the retrieval of non-sense (NS) words and the sense (SL+WL) words. The association
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of the pre-motor cortex with memory formation has been found in numerous studies
grouped in a meta-analysis [Kim (2011)]. This result showed that heterogeneous
profile activated more the memory region than homogeneous group, probably due
to the difficulty of the task with non-sense words.

The heterogeneous HIQ profile, showed also significant activation in precentral
and postcentral frontal gyri and in the posterior cingulate gyrus. These results
are supported by a meta-analysis of 120 functional neuroimaging studies exploring
the brain semantic system [Binder et al. (2009)]. While this region has generally
been linked with episodic and visuospatial memory, this meta-analysis highlighted
its function in semantic task as an interface between the semantic retrieval and
episodic encoding systems, thanks to its strong connections with the hippocampus.
Finally, somatosensory cortex has been demonstrated to be linked to language, in
particular in some aspects of phonological processing [Bouchard et al. (2013)].

5 Conclusion

The purpose of this study was to characterize the functional differences between
the two groups of HIQ children during a semantic memory task. From these results,
it seems difficult to reject this hypothesis. Indeed, we have highlighted differences
in both performances and brain activation during the task.

First, our results showed that the two HIQ profiles and the SIQ group can be
differentiated from their response time during the retrieving phase of the task. More
precisely, homogeneous profile presented the shortest response time, while SIQ re-
sulted to be the slowest group. Since time response of heterogeneous group were
really very close to those of Hom-HIQ, we could conclude that both HIQ groups are
more rapid in answering than SIQ group.

Second, we compared brain activations between intelligence groups. Exploring
different contrasts in both encoding and retrieving phases, different activations were
observed in the heterogeneous HIQ profile compared to the reference group, and to
the homogeneous HIQ profile. This higher activity was observed in several regions
that are recognized to belong to the semantic reasoning and memory networks. We
aimed to focus our attention to the contrasts that showed significant results implying
the encoding or retrieving of the words without any signification (NS), and the words
without any semantic link (WL). We can conclude that, during harder tasks, like
as NS and WL retrieving, heterogeneous profile needs to activate more the regions
related to semantic reasoning or memory in order to obtain the same performance
of Hom-HIQ and SIQ groups.

148 Ilaria SUPRANO
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From all these findings, we may confirm our hypothesis that both HIQ profiles
are characterized by a different brain activity, with stronger evidences in Het-HIQ
children.
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CHAPTER 8. FUNCTIONAL AND STRUCTURAL CONNECTIVITY

1 Introduction

The last part of this thesis is completely dedicated to the study of brain connec-
tivity in adults. Indeed, after the investigation of the neural substrate of intelligence
in children, we wondered whether the adult neural substrate of intelligence remains
along lifespan.

However, on this population, we did not perform the same functional and struc-
tural analysis that were previously performed in children. In particular, concerning
the functional connectivity analysis, we did not measure the "hub disruption index"
as the control SIQ group was not complete. This fact has led us to explore only
the relationship between intelligence scores, as measured by the Wechsler Adult In-
telligence Scale (WAIS), and both functional and structural network topology, as
described by several graph metrics.

As it has been presented in detail in the previous chapters, several works explored
functional (FC) or structural (SC) brain connectivity in adults with graph analysis.
Concerning the whole brain networks, these studies showed a correlation between
intelligence and brain network efficiency in both connectivity typologies [Li et al.
(2009), Van Den Heuvel et al. (2009)a]. However, this result was not confirmed by
a study of structural connectivity on a larger population of HCP [Kruschwitz et al.
(2018)]. Local graph metrics have been also demonstrated to be associated with
intelligence in several brain regions [Jung and Haier (2007), Fischer et al. (2014),
Hilger et al. (2017)b].

In this ongoing work, we explored brain networks in adults by analyzing the
activity of GM regions, and WM structure that connects these regions (Section
3). To this end, we measured several metrics of graph from the functional and the
structural networks. The association between intelligence subscores, as measured by
the WAIS, and the brain functional and structural networks properties, as measured
by both global and local graph metrics, have been investigated (Section 3).
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2 Materials and Methods

2.1 Population

Fifty male adults were recruited by advertisement in public and medical envi-
ronment. Participants have to fulfill the following prerogatives: being right-handed,
aged between 20 and 60 years old, male, and without any neurological or psychiatric
diseases, nor any MRI contraindication. All these investigations were verified dur-
ing a medical examination and the participants were informed of the study details
and before signing a consent form. This study was approved by the local ethics
committee (CPP Sud-Est III).

2.2 MRI acquisition

MRI examinations were performed on a 3T Siemens Prisma MRI system (Erlan-
gen, Germany) at the MRI department of CERMEP-Imagerie du Vivant. Subjects
brain was scanned using a full MRI protocol, composed of both morphologiacal
and advanced sequences. First, the conventional protocol lasts for 11 minutes and
consisted on the acquisition of 3D T1-weighted MPRAGE along the sagittal plane
(voxel size = 1 x 1 x 1 mm, TR = 1900 ms, TE = 2.21 ms, FOV = 256 x 176 x
256 mm, 4 min acquisition duration), and a T2-weighted FLAIR (voxel size = 1 x
1 x 1 mm, TR = 5000 ms, TE = 400 ms). Resting-state fMRI data were recorded
along the posterior-anterior direction using an EPI BOLD sequence with a multi-
band factor of 6 (700 scans, TR = 750 ms, TE = 30 ms, voxel size = 2.2 x 2.2 x
2.2 mm, FOV = 211 x 211 mm). This acquisition lasts for 9 minutes during which
the subject let its mind wandering while fixing a cross on the screen. A single-band
reference image (“SBRef”) was acquired at the beginning of each functional acqui-
sition to improve image registrations. Furthermore, two single-band spin-echo with
different phase-encoding (TR = 5000 ms, TE = 45 ms, voxel size = 2.2 x 2.2 x 2.2
mm) were recorded. Finally, along the posterior-anterior direction diffusion MRI
with multiband factor 3 was acquired. Diffusion imaging protocol was based on a
2D multi-slice spin-echo EPI sequence (TR = 5048 ms, TE = 90 ms, resolution
1.5 x 1.5 x 1.5 mm, FOV = 160 x 136 mm, acquisition time = 20 min), and 128
diffusion gradient directions were acquired for two b-values (b = 1000 s/mm2, b =
3000 s/mm2).
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2.3 Intelligence scores

Intelligence was assessed with the fourth version of the Wechsler Adult Intelli-
gence Scale (WAIS). It allows the computation of a Verbal Comprehension Index
(VCI), Perceptual Reasoning Index (PRI), Working Memory Index (WMI), Pro-
cessing Speed Index (PSI), and a Full Scale Intelligence Quotient (FSIQ). These IQ
sub-scores were obtained from ten sub-tests divided in: verbal tests (similitude, vo-
cabulary, and information), reasoning (cubes, matrices, and puzzle), memory (arith-
metic and memory of numbers), and speed processing (symbols and codes).

2.4 Data preprocessing

Structural and functional data were preprocessed following the pipeline of the
Human Connectome Project (HCP) [Glasser et al. (2013)]. Indeed, starting from
the collaboration between Washington University, University of Minnesota and Ox-
ford University, the aim of this teamwork was to optimize the fMRI data analy-
sis methods, in order to generate the most complete and accurate description of
the connections among gray matter locations in the human brain at the millimeter
scale [Uǧurbil et al. (2013)]. HCP protocol contains two structural MRI acquisitions
(T1w-MPRAGE and T2w-SPACE), slice-accelerated multiband functional scans, and
two single-band spin-echo EPI with different phase-encoding direction. These latest
sequences allowed to obtain a better distortion correction. Indeed, the most impor-
tant characteristic of HCP is the refinements made in the preprocessing pipelines
concerning correction of spatial distortions, data alignment and registration into
standard space [Van Essen et al. (2012)]. Since our functional protocol is similar to
HCP one, structural and functional pipelines of HCP were implemented to obtain
high quality data.

Structural MRI preprocessing

Anatomical images were analyzed using two steps of the Structural HCP Pre-
processing: PreFreeSurfer, and FreeSurfer. During the first step, a bias field and
distortion corrections were applied to both T1w and T2w. Through linear and non-
linear registrations, the anatomical images have been coregistered together and then
registered to MNI space using linear FLIRT and non linear FNIRT FSL’s functions.
The FreeSurfer step, applied a segmentation of white matter, gray matter, cere-
brospinal fluid and subcortical structures using T1w images. Finally, a parcellation
in 84 regions of the Desikan atlas was computed.
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Functional MRI preprocessing

After the "Structural Preprocessing", the functional data were preprocessed using
fMRIVolume HCP Pipelines (Figure 8.1). This step of functional preprocessing is
similar to the PreFreeSurfer step, which is based on two spin-echo images designed to
compute field maps (each one in one direction AP or PA), and on a reference image
acquired with single-band sequence (SBRef Image). Functional data were corrected
for gradient distortions and for motion using FLIRT. Phase encoding distortions
were then corrected applying the fieldmap derived from the pair of spin-echo EPI
with an opposite phase encoding. Finally, the functional images were re-sampled to
the MNI atlas space and normalized to a global mean. No spatial smoothing was
applied.

Spin Echo Field 
Map (AP/PA)

Gradient
Distortion
CorrectionOrig Timeseries

SE EPI Field Map 
Preprocessing

Motion correction 
to SBRef

EPI Image
Distortion
Correction

SBRef to T1w 
BBR 

Registration

T1w

MNI

Intensity 
Normalization

One Step Spline
Resampling

SBRef Image

Figure 8.1: Steps of the fMRIVolume HCP Pipeline. Starting from gradient distor-
tion correction to the intensity normalization [Glasser et al. (2013)].

Diffusion MRI preprocessing

Diffusion preprocessing starts with data denoising, eddy current-induced distor-
tion correction, and motion correction by the FMRIB Software Library (FSL) using
the b0 volume as reference [Jenkinson et al. (2012)]. Non-brain voxels were then re-
moved using FSL-BET. The diffusion tensor has also been reconstructed to estimate
the FA. T1 image was then coregistered on the diffusion image space using the affine
non-rigid transformation of NiftyReg Tool [Ourselin et al. (2001)]. The resulting
transformation has been applied to the previously generated segmentation of the
cortical and subcortical gray matter in 84 regions that was obtained by FreeSurfer.
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2.5 Connectivity measurement

Functional Connectivity

After the preprocessing of rs-fMRI data, the functional brain connectivity ma-
trices were computed. First, in each region time series were estimated, using the
Conn Toolbox (https://www.nitrc.org/projects/conn), by averaging the fMRI time
series over all voxels weighted by the GM probability map. With this process, the
partial volume effect was reduced and the contamination by WM and cerebrospinal
fluid signal was limited. Furthermore, head motion was removed by regressing out
motion parameters, their first derivative’s time series and outliers detected by Art
Toolbox.

On the resulting signals, the maximal overlap discrete wavelet transform (MODWT)
was applied [Achard et al. (2006)], decomposing the signal in 5 frequency bands.
Among them, we kept the fourth wavelet scale which represent the frequency band
from 0.042 Hz to 0.08 Hz that belongs to the resting-state range frequencies. We
then estimated the pairwise inter-regional correlations between wavelet coefficients
to construct an 84 × 84 correlation matrix.

Finally, the binarized graphs were constructed using the minimum spanning tree
that keeps the graphs fully connected [Alexander-Bloch et al. (2012)], and applying
a threshold of 20% to create an adjacency matrix.

Structural Connectivity

Structural brain connectivity was obtained from DTI data. 84 cortical and sub-
cortical regions of GM obtained with Freesurfer segmentation, were used as graph
nodes. The fiber orientation distribution (FOD) function was estimated using MR-
trix software [Tournier et al. (2012)] using the spherical deconvolution method.
This FOD together with the segmentation in 4 tissues of the IIT atlas (cortical GM,
subcortical GM, WM and CSF) were used to obtain an anatomically constrained
probabilistic streamline tractography generating 1 000 000 streamline [Smith et al.
(2012),Tournier et al. (2012)]. Finally, adjacency matrices were generated for each
subject by summing the number of streamlines connecting each pair of nodes.

The matrices have been binarized applying a threshold of 0.20. This threshold
has been chosen following the criteria of inter-subject variability: τ is the threshold
for which all the estimated global metrics present an inter-subject variability as low
as possible [Kocevar et al. (2016)].
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2.6 Graph metrics

Networks properties were explored using graph metrics that were estimated un-
der MATLAB with the toolbox "Brain Connectivity Toolbox (BCT)" [Rubinov and
Sporns (2010)] for both functional and structural connectivities. On one hand, con-
nectivity network topology was investigated through the measure of six global graph
metrics: density (D), transitivity (T), assortativity (r), modularity (Q), mean path
length (CPL) and mean global efficiency (Eg)). On the other hand, four local metrics
(degree (ki), coefficient of clustering (Ci), betweenness centrality (Bi) and efficiency
(Eli)) described properties of each node i.

2.7 Statistical analysis

The statistical analyses have been performed with R [R Developement Core Team
(2015)]. Correlations between intelligence scores (Wi) and graph metrics have been
evaluated applying a linear model (LM) (Equation 2.7). This model allowed to
evaluate the existence of a relationship between topology of functional or structural
brain networks and level of intelligence, taking into account the effect of the age. All
the results have been corrected for multiple comparisons using the Sidak correction.

Wi ∼ Graph metric(FC or SC) + Age (8.1)

3 Results

3.1 Behavioral observations

Before to apply graph analysis, we explored the composition of our population.
As presented in the section 2.1, our population was aged in the range between

20 and 60 years old. More in details, the age distribution was centred around the
average of 40.91 years old with a standard deviation of 9.14 years.

Studying the distribution of intelligence scores, we observed that the Full Scale
Intelligence Quotient was distributed around an average of 120.04 with a standard
deviation of 10.05. The details of others scores obtained from Wechsler Scale are
reported in Table 8.1.
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Population
Age 40.91 ± 9.14
FSIQ 120.04 ± 10.05
VCI 125.76 ± 12.34
PRI 114.16 ± 10.78
PSI 106.36 ± 10.84
WMI 112.56 ± 11.41

Table 8.1: Population characteristics (Mean ± Standard Deviation): age, Full Scale
Intelligence Quotient (FSIQ), Verbal Comprehension Index (VCI), Perceptual Rea-
soning Index (PRI), Processing Speed Index (PSI), and Working Memory Index
(WMI).

3.2 Functional connectivity

The functional connectivity analysis showed a significant result when global met-
rics were estimated in the whole brain networks. A negative correlation was observed
between Transitivity of the brain networks and the PRI intelligence score (Table 8.2
and Figure 8.2).

100

120

140

0.50 0.55 0.60 0.65
Transitivity

PR
I

Figure 8.2: Significant correlation obtained between graph transitivity and the per-
ceptual reasoning index (PRI) of the functional connectivity.

Trying to localize more specifically the intelligence correlates, FSIQ showed sev-
eral correlations with different nodal metrics. The betweenness centrality increased
together with a higher FSIQ in the right putamen. Furthermore, FSIQ correlated
negatively with both segregation metrics, clustering coefficient and local efficiency,
in bilateral anterior cingulate cortices. However, after multicomparison corrections
all these local results remain only trends (Table 8.3).
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Connectivity Metric FSIQ VCI PRI WMI PSI
Functional T - - -92.1 * - -
Structural r -92.58 * - -145.1 ** -111.41 * -

Table 8.2: Correlation Slopes and statistical significances obtained with a LM model
between IQ scores (full scale intelligence quotient (FSIQ), verbal comprehension
index (VCI), perceptual reasoning index (PRI), working memory index (WMI), and
processing speed index (PSI)) and global graph metrics measured for functional
connectivity (FC), and structural connectivity (SC). The only significant correlation
were found for transitivity metric (T) for FC, and assortativity metric (r) for SC.
* p<0.05, ** p<0.01 after multicomparison correction.

3.3 Structural connectivity

Several significant correlations have been observed between intelligence scores
and both global and local graph metrics estimated from structural connectivity.
When measured in whole brain, a relationship between brain networks assortativ-
ity and intelligence scores was highlighted. More in details, assortativity measure
decreases in brain networks of high PRI (p<0.01) and FSIQ, and WMI (p<0.05)
(Table 8.2 and Figure 8.3).

A

B C

Figure 8.3: Significant correlations obtained between graph assortativity and full
scale intelligence quotient (FSIQ), perceptual reasoning index (PRI), and working
memory index (WMI) for structural connectivity.

At a nodal scale, after multiple comparison correction, only three significant
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results survived (p<0.05) (Table 8.3). A clustering coefficient increase was observed
in right inferior temporal cortex in higher PRI scores (Figure 8.4).

Figure 8.4: Significant correlations obtained between graph clustering coefficient
(CC) and perceptual reasoning index (PRI) in the right inferior temporal cortex.
Clustering Coefficient increases in high PRI values.

Two nodal metrics showed significant negative association with FSIQ in the right
anterior cingulate cortex, meaning that the less ACC is a strong hub, the higher the
FSIQ. Both degree and betweenness centrality decreases were observed in this region
(Figure 8.5). This hub metric showed also a reduction in inferior temporal cortex
that is just a trend (p<0.1) after multicomparison correction.

Connectivity GM Nodes Metric FSIQ VCI PRI WMI PSI
Putamen R. Bi 0.09 · - - - -

Anterior Cingulate L. Ci -30.55 · - - - -
Functional Ei -40.47 · - - - -

Anterior Cingulate R. Ci -53.02 · - - - -
Ei -77.72 - - - -

Anterior Cingulate R. ki -1.98 * - - - -
Structural Bi -0.13 * - - - -

Inferior Temporal R. Ci - - 88.02 * - -

Table 8.3: Correlation slopes and statistical significances obtained with a LM model
between IQ scores (full scale intelligence quotient (FSIQ), verbal comprehension in-
dex (VCI), perceptual reasoning index (PRI), working memory index (WMI), and
processing speed index (PSI)) and local graph (degree (ki), betweenness centrality
(Bi), clustering coefficient (Ci), and local efficiency (Ei)) metrics measured for func-
tional connectivity (FC), and structural connectivity (SC).
· p < 0.1, * p<0.05 after multicomparison correction.
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Figure 8.5: Significant correlations obtained between both degree and betweenness
centrality (BC) graph metrics and full scale intelligence quotient (FSIQ) in the right
anterior cingulate cortex. Both graph metric decrease in high FSIQ.

4 Discussion

In this ongoing work, we combined brain connectivity and graph analysis. Our
goal was to investigate functional and structural neural substrate of intelligence in
adults. To our knowledge, this is the first work that explores in the same study
both functional and structural connectivity and that correlates them with cognitive
capacities applying graph techniques.

Exploring brain networks with both rs-fMRI and DTI, we demonstrated the ex-
istence of a relationship between intelligence level and a less clustered topology of
brain networks. Indeed, in functional and structural connectivity analysis different
intelligence sub-scores correlated negatively with transitivity and assortativity met-
ric, respectively. From the definitions of these metrics explained in Chapter 3.1,
lower assortativity indicates a higher similarity in the degree of all the nodes of the
network, while transitivity decreases when the strength that links the nodes within
a module is the same of the strength that connects them with the nodes of other
modules. We can thus conclude on one hand, that the less the brain is clustered,
the higher is the PRI. On the other hand, the less nodes of the same degree are
connected, the higher is FSIQ score. These results are in agreement with the idea
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that higher intelligence performance are based on the capacity of the brain networks
to reorganize the connections in order to facilitate the communication between the
brain regions all over the brain [Barbey (2018)].

When we searched intelligence correlates locally in the brain, we found specific
regions whose structure changes according to intelligence level. In particular, right
anterior cingulate cortex (ACC) seems to be less connected with other regions (lower
degree) and less important (lower hubness) in the communication within brain struc-
tural networks in adults with high FSIQ. This region is implicated in several complex
cognitive functions, such as empathy, impulse control, emotion, and decision-making.
Moreover, being part of the limbic system, ACC contributes to affect-regulation and
control and management of uncomfortable emotions [Etkin et al. (2011), Tolomeo
et al. (2016)]. A decreased degree in ACC may thus reflect the weakness of this
region in HIQ adults for which the control of the emotion is known to be a behav-
ioral difficulty. The importance of this region in brain networks of HIQ is confirmed
also by the results obtained with functional connectivity that involve ACC bilater-
ally. Furthermore, ACC is recognized as a brain region connected with intelligence
since the introduction of PFIT by [Jung and Haier (2007)] and it resulted to be an
important functional node also in more recent works [Hilger et al. (2017)b].

Finally, the last result obtained analyzing structural connectivity showed a higher
segregation in the temporal lobe since higher clustering coefficient was found in
right inferior temporal cortex, a region involved in visual perception and memory
[Ranganath (2006)].

5 Conclusion

In this chapter, we explored both functional and structural connectivity with
graph analysis in order to found some correlates between networks topology and
intelligence.

Our findings showed the existence of a relationship between intelligence per-
formances and brain network homogeneity. The strength of this result is in the
coexistence of this correlation in both functional and structural connectivity. To
our knowledge, this is the first work to show that brain network homogeneity could
relate to intelligence in both functional and structural networks.

Furthermore, the graph analysis at regional level allowed to highlight the im-
portance of some particular regions for the intelligence. Anterior cingulate cortex
resulted to be a fundamental region for the description of intelligence performances
in both functional and structural brain networks. In adults, the communication
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between ACC and the other regions of the brain networks seems to be reduced as
FSIQ increases. The implication of this region in the regulation of emotion let us
conclude that HIQ people may still present difficulties in managing their emotion
and decision.

In conclusion, this work demonstrated that intelligence is related to the plasticity
of both functional and structural connectivity of the brain networks that become
less modular, and in particular to some specific node of the networks.
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In this thesis, we were interested in characterizing the neural substrate of intelli-
gence. To this end, two main research projects have been performed using advanced
MRI techniques, namely functional and diffusion MRI. First, the study of the neural
correlates with intelligence was performed in children, and second, functional and
structural connectivities were explored in adults. In both projects, intelligence was
estimated with Wechsler tests, the WISC for children, and the WAIS for adults,
respectively.

Clinical observations and the neurophysiological tests, have led to the definition
of two High Intelligence Quotient (HIQ) profiles, namely homogeneous (Hom-HIQ)
and heterogeneous HIQ (Het-HIQ).

A first MRI study was conducted in the children population. Brain activity
was evaluated at rest when the children were asked to let their mind wandering
while fixing a cross on the screen. In a first part, the preprocessing pipeline used
for functional connectivity was optimized in order to measure the graph of brain
networks, their global and regional metrics as well as a reorganization index, the
"Hub disruption index" (κ), in the entire HIQ group and also in both HIQ profiles
separately. This analysis was computed for three different networks: the whole
brain networks, the hemispherical networks (left and right), and the homotopic
connectivity. The measures showed, first, significant topological modifications of
the graph’s properties for the HIQ group and, in particular, for the Het-HIQ profile.
The left hemisphere networks seems to be reorganized in both HIQ profiles, while
the right hemisphere showed significant change only in the Het-HIQ. Finally, the
homotopic connectivity was modified in all HIQ population and separately in both
HIQ profiles. Furthermore, we observed that these brain networks reorganization
measured by graph theory were correlated with higher cognitive abilities measured
by the FSIQ, and some intelligence subscales.

In the second study of the children population, we focused on the characterization
of the structural connectivity applying the graph theory using diffusion MRI. We
were able to demonstrate that graph global metrics, describing the networks proper-
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ties, are related to cognitive capacities. Our main result was that higher intelligence
is associated to denser and more uniform brain networks. Indeed, preliminary find-
ings showed significant correlations between network density and modularity with
almost all WISC-IV sub-tests. This result is found also for each hemispheric net-
work, and for inter-hemispheric connections. In the second part of this study, we
refined our analysis extracting from WISC scores three main intelligence domains
applying a principal component analysis. In this way, we demonstrated that our
previously findings can be enlarged also to specific intelligence domains and par-
ticularly to fluid intelligence. We completed this work measuring diffusion metrics
in white matter (WM) fiber-bundles showing significant correlation between axial
diffusivity (AD) and intelligence domains. Since AD reflects axonal density, we were
able to confirm the relationship between WM fiber-tracts integrity and intelligence.
Finally, the correlations with intelligence domains suggested that general intelligence
domains (g-score, fluid intelligence and classification ability) are more related to the
right WM fiber-bundles, while g-unbiased intelligence domains are more related to
the left WM fiber-bundles.

In order to finalize the study of intelligence in children, we explored brain ac-
tivations with task-fMRI aiming at investigating encoding and retrieving of words.
With this technique, we were able to better define homogeneous and heterogeneous
HIQ profiles. We have, indeed, highlighted differences both at the behavioral level
and at the level of brain functions. Concerning the task performance, both HIQ
profiles resulted to be faster in answering to different tasks than SIQ group. Also,
the three intelligence groups did not differ from each other in response performance
measured by the percentage of incorrect, miss, and correct answers. Furthermore,
fMRI activations involved different brain regions depending on the intelligence group.
Homogeneous profile did not differ from SIQ group while the heterogeneous group
presented, instead, a significant different activity of the brain. During the encoding
of words, the inferior occipital cortex was more activated in SIQ than in Het-HIQ
group, while, during retrieving phase, left thalamus and occipital cortex were more
activated in heterogeneous profile than in SIQ. Finally, comparing the two HIQ
profiles, in encoding phase homogeneous one activated more left prefrontal cortex,
while heterogeneous group showed higher activations during the retrieval in post-
and pre-central gyri, cinguate gyrus and premotor cortex.

These results together with those obtained with resting-state fMRI, confirmed
the hypothesis that there are many differences in brain connectivity between the two
HIQ children profiles. In particular, heterogeneous profile presents several differences
with respect to SIQ children, although they are not always characterized by a higher
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FSIQ. These results invite us to detect children as soon as possible, but also to take
into account not only FSIQ values but all the clinical and behavioral aspect of the
psychological assessments.

In order to investigate if the brain neural correlates remains the same or not along
lifespan, a second research project was realized to characterize brain connectivity
in an adult population with high intelligence quotient. In a first part, we were
interested in the measure of functional connectivity through graph analysis. We
estimated global and local graph metrics of connectivity matrices to characterize the
topology of functional brain networks at different scales. We were able to show that
the transitivity of the networks is lower in HIQ. However, graph metrics measuring
network properties at nodal level did not show any significant variations based on
cognitive abilities. In the second part, the graph analysis was applied on structural
connectivity matrices. In this case, assortativity measures of the networks resulted
changes according to the intellectual abilities. Lower assortativity was detected
when higher full scale IQ was measured, but also in correlation with other sub-
scales of intelligence. At a nodal level, we were able to identify a couple of regions
that presented changes in their structural connectivity in HIQ, and in particular,
the right anterior cingulate cortex (ACC). The graph analysis showed that ACC
was less connected in HIQ. Since the role of this region is to control emotion and
decision, we may conclude that this region communicates less with the rest of the
graph in people with high IQ. Our clinical observations have led us to identify the
difficulty in emotion control as one of the characteristics of HIQ people, and our
results may support these observations.

Our global results can be extended to those obtained in the children population.
Indeed, since transitivity metric reflect the segregation property of the network, we
found that high IQ levels are associated to a less clusterized brain network topol-
ogy. This involvement of a segregation metric in adulthood high intelligence per-
formances, is in common with our results in childhood. We may, indeed, conclude
that brain network of high intelligence quotient people is characterized by a less
segregated and thus more uniform topology of brain networks.
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Limitations

Through these two research projects of a population that presents a high In-
telligence Quotient (HIQ), we were able to characterize the neural substrate of in-
telligence by developing advanced MRI acquisition techniques. Furthermore, the
combination with graph theory allowed to obtain both global and local character-
istics of both functional and structural connectivity. These approaches provided a
better understanding of the neural substrate of intelligence during two phases of hu-
man development, namely childhood and adulthood. However, these two follow-ups
suffered from several limitations, both clinical and methodological.

In the resting-state fMRI study, the "Hub disruption index" allowed to evidence
differences in topological organization of brain networks of HIQ and also between
two HIQ profiles. However, this study is limited by its low sample size, and needs
to be replicated in a larger population. From a methodological perspective, this
study may have been influenced by the choice of graphs cost. The analysis was thus
also computed with a graph cost of 0.20, obtaining concordant results (5). Finally,
the population was not equally distributed between girls and boys. This limitation
is often encountered in high potential children studies, as girls present the ability
to “overadapt” which leads to an under-diagnosis of high IQ girls. Our correlation
analysis has, however, been corrected for the effect of gender in order to overcome
this problem.

In the DTI study, structural correlations between intelligence and graph metrics
were evidenced. Moreover, the principal component analysis allowed to obtain a
finer exploration of neural substrates for different intelligence domains. From a
methodological perspective, this study may suffer from few limitations. First, the
diffusion acquisition was limited to 24 directions, which is relatively low compared
to current research standards in diffusion imaging. Nonetheless, potential crossing-
fibers errors were minimized by using spherical deconvolution instead of classical
diffusion tensor model. Second, as it was already discussed for the resting-state
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fMRI study, the unbalanced ratio of girls and boys was overcome by including the
gender effect in the statistical analysis.

As well as for the rs-fMRI, the task fMRI study allowed to differentiate the brain
activity of HIQ children compared to SIQ and between the two HIQ profiles. How-
ever, this is an ongoing study and the findings presented in this work are preliminar.
Several more detailed analysis of fMRI data can be carried out further. For instance,
the analysis performed on brain activation did not differentiate for the response type
(incorrect, miss, correct). Thus, for each intelligence group, we should include the
response in the fMRI processing. Furthermore, the common and different activations
among the three groups may be studied for each response type.

Finally, for all the three children studies, our subjects’ age was limited to the
range of eight to twelve years old. At this age, the maturation of the prefrontal
cortex is not complete, which may explain the lack of finding in this region. Since
brain maturation continues during and after childhood, our results may only hold
for this particular age range of 8–12 years old.

In the second research project, functional and structural studies were extended
to an adults population. However, this is an ongoing study and thus, in order to be
able to really compare the two research projects, further analysis are needed.
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Perspectives

The studies presented in this work are only a starting point for a more general
and robust study of human intelligence. Indeed, other questions regarding neural
substrate of high intelligence may be addressed by applying graph theory in combi-
nation with advanced MRI techniques.

Regarding the research project on children intelligence, we plan to complete
this study by another work on the same population studied 10 years after. In this
way, we would be able to perform a longitudinal study describing the evolution of
the intelligence correlates from childhood to early adult age. Both functional and
structural connectivities will be measured on this population in order to compare
the results with those obtained during childhood.

Since the research project on the adult population is an ongoing study, further
analyses are planned. First of all, the number of SIQ adults has to be incremented in
order to measure the "Hub disruption index" in HIQ adults. Furthermore, increasing
the number of subjects will improve the statistical power of our findings. As well as
for the structural study of children population, a principal component analysis could
be performed on the adult population. In this way, both functional and structural
measures could be correlated with each intelligence domain in order to obtain a finer
characterization of intelligence neural substrate.

Finally, different behavioral tests are provided in this work. All the participants
underwent questionnaires evaluating their personality, motivation, success, and ex-
ecutive functions. We would like to explore the relationship between the intelligence
brain networks, as measured applying graph analysis and advanced MRI techniques,
and the behavioral characteristics. Furthermore, we plan to split our population in
two main groups depending on their age. In this way, we aim to investigate neural
substrate of intelligence, measured by functional and structural brain connectivity,
along aging.
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Reorganization indices in HIQ
children: results obtained with a
graph threshold of 20%.

Networks κ HIQ Hom-HIQ Het-HIQ
(n=32) (n=14) (n=18)

κBC -0.366 -0.447 -0.324
A. Whole κD -0.280 (**) -0.285(*) -0.278 (***)
brain κLE -0.296 (*) -0.316 -0.286 (*)

κCC -0.315 (*) -0.337 -0.304 (*)
κL

BC -0.429 (**) -0.473 (*) -0.407 (**)
B. Left κL

D -0.256 (**) -0.304 (*) -0.231 (**)
hemisphere κL

LE -0.221 -0.213 -0.225
κL

CC -0.285 -0.288 -0.283
κR

BC -0.232 -0.212 -0.242
C. Right κR

D -0.211 -0.167 -0.233 (*)
hemisphere κR

LE -0.297 -0.257 -0.317 (*)
κR

CC -0.343 -0.309 -0.361
D. Homotopic κHC -0.185 (**) -0.261 -0.145 (*)

Table 1: Results obtained with a graph cost of 20%: reorganization indices (κ)
in Standard Intelligence Quotient (SIQ), High Intelligence Quotient (HIQ), Homo-
geneous HIQ (Hom-HIQ) and Heterogeneous HIQ (Het-HIQ) groups measured in
whole brain networks (A), left and right hemispheres networks (B, C) and between
homotopic regions (D).
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Networks κ FSIQ VCI PRI
κBC -0.317 (*) -0.323 (*) -0.339 (*)

A. Whole κD -0.278 (*) -0.277 (*) -0.278 (*)
brain κLE -0.243 -0.303 (*) -0.248

κCC -0.272 -0.337 (*) -0.305 (*)
κL

BC -0.374 (*) -0.381 (**) -0.337 (*)
B. Left κL

D -0.324 (*) -0.275 (*) -0.337 (*)
hemisphere κL

LE -0.203 -0.201 -0.247
κL

CC -0.306 (*) -0.336 (*) -0.354 (**)
κR

BC 0.050 0.008 -0.050
C. Right κR

D -0.215 -0.252 -0.163
hemisphere κR

LE -0.092 -0.196 -0.087
κR

CC -0.166 -0.264 (*) -0.170
D. Homotopic κHC -0.515 (**) -0.589 (***) -0.523 (***)

Table 2: Results obtained with a graph cost of 0.20: coefficients of non-parametric
correlations (ρ) between the topological reorganization coefficient (κ) of different
nodal metrics (Betweenness Centrality (BC), Degree (D), Local Efficiency (LE), and
Clustering (CC), and Homotopic Connectivity (HC)) with intelligence scores (Full
Scale IQ (FSIQ), Verbal Comprehension Index (VCI) and Perceptual Reasoning
Index (PRI)) at different network levels: whole brain (A), left and right hemispheres
(B and C) and homotopic regions (D).
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Supplementary results of
structural connectivity study in
HIQ children.

Intelligence domains PA1 PA2 PA3
Fluid intelligence PA1 - 0.69*** 0.50***
Classification abilities PA2 - 0.56***
Crystalized intelligence PA3 -
*** p<0.001

Table 3: Correlation matrix of the three intelligence domains defined by the factor
analysis.
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White matter fiber-bundles Comp-1 Comp-2 Comp-3 Comp-4 Comp-5
Forceps major 0.74 -0.21 0.26 0.04 0.02
Forceps minor 0.48 0.19 0.24 0.23 0.07
Fornix -0.05 0.08 0.26 0.01 0.78
Cingulate (Hippocampal) L 0.60 0.18 0.12 -0.30 -0.09
Cingulate (Cingular) L 0.10 0.19 0.75 -0.17 0.20
Cortico-spinal tract L 0.26 -0.01 -0.30 0.64 0.42
Inferior Fronto-occipital L 0.60 0.51 -0.11 -0.05 0.17
Inferior longitudinal L 0.84 -0.09 0.04 -0.05 0.11
Superior longitudinal L 0.37 0.27 0.12 0.06 0.56
Uncinate L -0.06 0.92 -0.01 -0.11 0.17
Cingulate (Hippocampal) R 0.28 0.33 0.28 -0.11 -0.26
Cingulate (Cingular) R 0.06 -0.10 0.88 0.09 0.09
Cortico-spinal tract R -0.14 0.00 0.15 0.91 -0.07
Inferior Fronto-occipital R 0.44 0.52 0.02 0.28 -0.18
Inferior longitudinal R 0.57 0.17 0.08 0.32 -0.42
Superior longitudinal R 0.09 0.18 0.61 0.41 -0.11
Uncinate R -0.08 0.92 0.09 0.09 -0.07
Explained Variance 41% 10% 8% 8% 7%

Table 4: Loadings matrix of fractional anisotropy in the white matter fiber-bundles
obtained by the principal component analysis. Values in bold represent the highest
loadings.

White matter fiber-bundles Comp-1 Comp-2 Comp-3 Comp-4
Forceps major 0.74 0.21 -0.42 0.01
Forceps minor 0.75 0.19 0.11 0.01
Fornix 0.41 0.14 -0.75 0.14
Cingulate (Hippocampal) L 0.34 0.10 0.34 0.59
Cingulate (Cingular) L 0.17 0.20 0.75 0.14
Cortico-spinal tract L 0.20 0.48 0.12 -0.57
Inferior Fronto-occipital L 0.40 0.64 0.14 -0.05
Inferior longitudinal L -0.05 0.92 -0.01 0.19
Superior longitudinal L -0.15 0.96 0.06 0.00
Uncinate L 0.22 0.73 -0.01 -0.31
Cingulate (Hippocampal) R 0.71 -0.40 0.08 0.03
Cingulate (Cingular) R 0.40 0.29 0.55 0.12
Cortico-spinal tract R 0.89 -0.31 0.02 -0.31
Inferior Fronto-occipital R 0.84 0.15 0.03 0.10
Inferior longitudinal R 0.64 0.20 -0.16 0.35
Superior longitudinal R 0.84 0.07 0.04 0.15
Uncinate R 0.51 0.40 0.10 -0.27
Explained Variance 42% 15% 9% 7%

Table 5: Loadings matrix of axial diffusivity in the white matter fiber-bundles ob-
tained by the principal component analysis. Values in bold represent the highest
loadings.
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White matter fiber-bundles Comp-1 Comp-2 Comp-3 Comp-4
Forceps major 0.33 0.06 0.65 -0.17
Forceps minor 0.55 0.19 0.36 0.10
Fornix -0.11 0.05 0.78 -0.19
Cingulate (Hippocampal) L 0.01 0.33 -0.02 0.56
Cingulate (Cingular) L -0.07 0.09 0.72 0.29
Cortico-spinal tract L 0.18 0.91 -0.07 -0.26
Inferior Fronto-occipital L 0.18 0.74 -0.01 0.34
Inferior longitudinal L 0.06 0.79 0.12 0.19
Superior longitudinal L -0.23 0.78 0.29 0.16
Uncinate L -0.17 0.43 0.08 0.68
Cingulate (Hippocampal) R 0.38 -0.43 0.19 0.54
Cingulate (Cingular) R 0.32 -0.01 0.65 -0.06
Cortico-spinal tract R 0.91 0.12 -0.08 -0.30
Inferior Fronto-occipital R 0.75 0.14 0.03 0.38
Inferior longitudinal R 0.80 -0.03 0.08 0.25
Superior longitudinal R 0.76 -0.08 0.33 0.05
Uncinate R 0.33 0.14 0.00 0.70
Explained Variance 42% 17% 8% 8%

Table 6: Loadings matrix of radial diffusivity in the white matter fiber-bundles
obtained by the principal component analysis. Values in bold represent the highest
loadings.

White matter fiber-bundles Comp-1 Comp-2 Comp-3 Comp-4
Forceps major 0.07 0.46 0.61 -0.07
Forceps minor 0.23 0.75 0.04 0.09
Fornix 0.12 -0.03 0.90 -0.03
Cingulate (Hippocampal) L 0.51 0.06 -0.25 0.47
Cingulate (Cingular) L 0.50 0.49 -0.32 -0.05
Cortico-spinal tract L 0.82 0.15 -0.05 -0.32
Inferior Fronto-occipital L 0.82 0.23 0.07 -0.01
Inferior longitudinal L 0.94 0.01 0.10 0.05
Superior longitudinal L 0.99 -0.12 0.05 -0.06
Uncinate L 0.84 -0.12 0.05 0.35
Cingulate (Hippocampal) R -0.34 0.43 0.05 0.57
Cingulate (Cingular) R 0.20 0.83 -0.09 -0.22
Cortico-spinal tract R -0.22 0.87 0.06 -0.10
Inferior Fronto-occipital R 0.12 0.78 0.05 0.28
Inferior longitudinal R -0.01 0.66 0.19 0.33
Superior longitudinal R -0.08 0.92 0.09 0.06
Uncinate R 0.42 0.27 0.12 0.53
Explained Variance 44% 21% 7% 6%

Table 7: Loadings matrix of mean diffusivity in the white matter fiber-bundles
obtained by principal component analysis. Values in bold represent the highest
loadings.
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Etude de la connectivité cérébrale par IRM fonctionnelle et de diffusion
dans l’intelligence

L’idée que l’intelligence s’appuie non seulement sur des régions spécifiques du cerveau, mais également sur des
réseaux cérébraux efficaces s’est récemment affirmée. Ces concepts nous ont amené à explorer le substrat neural
de l’intelligence en utilisant des techniques avancées d’IRM avec la théorie des graphes. Après une étude IRMf
méthodologique préliminaire, l’indice de réorganisation des réseaux a été mesuré. Une réorganisation fonction-
nelle a été trouvée dans les deux groupes d’enfants à Haut Quotient Intellectuel (HIQ) avec des réorganisations
plus importantes chez les Hétérogènes (Het-HIQ). Ensuite, l’analyse des faisceaux de fibres de substance blanche
(SB) a permis d’estimer les métriques de diffusivité dans les faisceaux ainsi que la connectivité structurale. Avec
l’augmentation du QI, nous avons observé une augmentation générale de la densité et une diminution de la tran-
sitivité et de la modularité du graphe. De plus, les correlations entre les capacités intellectuelles et l’intégrité
de la SB, mésurée avec les métriques de diffusion, ont été mesurées dans des faisceaux de fibres de SB. Ensuite,
nous avons étudié les effets d’une stimulation cérébrale par une tâche de mémorisation sémantique au sein de
la même population d’enfants HIQ. Cette analyse a montré des résultats significativement différents selon le
groupe d’intelligence, en particulier au sein du group Het-HIQ. Enfin, nous avons appliqué ces méthodes à une
population d’adulte pour analyser les réseaux cérébraux fonctionnels et structuraux en fonction du QI. Cette
étude a montré certaines altérations des métriques globales et locales de la connectivité chez les adultes HIQ.
Nous avons observé une diminution de l’assortativité et de la transitivité avec l’augmentation du QI. En con-
clusion, les techniques avancées d’IRM associées à l’analyse de graphes constituent une approche prometteuse
pour une meilleure caractérisation des réseaux cérébraux en fonction du QI.
Mots clés : IRMf, DTI, Théorie des graphes, Connectome, Hub disruption index (κ), Intelligence.

A cerebral connectivity study by functional and diffusion MRI in intelligence

The idea that intelligence is embedded not only in specific brain regions, but also in efficient brain networks
has grown up. These concepts have led us to to investigate the neural substrate of intelligence using advanced
MRI techniques in combination with a graph analysis. After a preliminary methodological fMRI study, an
index of network reorganization, the "Hub disruption index", was measured. A functional brain network reor-
ganization was found in both High Intelligence Quotient (HIQ) groups with a dominance in the Heterogeneous
group (Het-HIQ). Then, the analysis of the white matter (WM) fiber-bundles allowed to estimate the diffusivity
metrics and the structural connectivity. With the increase of IQ, we observed a general increase in density and
a decrease in transitivity and modularity of the graph. Furthermore, relationships between intellectual abili-
ties and enhanced WM integrity, as estimated by diffusivity metrics, were measured in WM fiber-bundles. In
the same HIQ population, performing a memory task fMRI study we observed higher behavioral performances
and increased functional activations. This study showed significant different results depending on intelligence
group, in particular for the Het-HIQ group. Finally, the application of these methods in an adult population to
analyze functional and structural brain networks allowed to highlight some changes in global and local metrics
in HIQ subjects. We observed a decreased assortativity and transitivity with the enhancement of intelligence
performances. In conclusion, these advanced MRI techniques associated with graph analysis may constitute a
promising approach for a better characterization of brain networks and particularly in relation with intelligence
abilities.
Keywords: fMRI, DTI, Graph theory, Connectome, Hub disruption index (κ), Intelligence.
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