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ABSTRACT. Field patching, introduced by Harbater and Hartmann in [33], and extended
by the aforementioned authors and Krashen in [34], has recently seen numerous appli-
cations. We present an extension of this technique to the setting of Berkovich analytic
geometry and applications to the local-global principle.

In particular, we show that this adaptation of patching can be applied to Berkovich
analytic curves, and as a consequence obtain local-global principles over function fields
of curves defined over complete ultrametric fields. Because of the connection between
the points of a Berkovich analytic curve and the valuations that its function field can be
endowed with, one of these local-global principles is given with respect to completions,
thus evoking some similarity with more classical versions. As an application, we obtain
local-global principles for quadratic forms and results on the u-invariant. These findings
generalize those of [34].

As a starting point for higher-dimensional patching in the Berkovich setting, we show
that this technique is applicable around certain fibers of a relative Berkovich analytic
curve. As a consequence, we prove a local-global principle over the germs of meromorphic
functions on said fibers. By showing that said germs of meromorphic functions are
algebraic, we also obtain local-global principles over function fields of algebraic curves
defined over a larger class of ultrametric fields.

RESUME. Recollement sur les espaces de Berkovich et principe local-global.
Le recollement sur les corps, introduit par Harbater et Hartmann dans [33], et étendu
par ces auteurs et Krashen dans [34], a récemment trouvé de nombreuses applications.
Nous présentons ici une extension de cette technique au cadre de la géométrie analytique
de Berkovich et des applications au principe local-global.

Nous montrons que cette adaptation du recollement peut s’appliquer aux courbes
analytiques de Berkovich, et par conséquent obtenons des principes locaux-globaux sur
les corps de fonctions de courbes définies sur des corps ultramétriques complets. Grace
a la connexion entre les points d’une courbe analytique de Berkovich et les valuations
dont on peut munir son corps de fonctions, nous obtenons un principe local-global par
rapport a des complétés du corps de fonctions considéré, ce qui présente une ressemblance
avec des versions plus classiques. En application, nous établissons des principes locaux-
globaux dans le cas plus précis des formes quadratiques et en déduisons des bornes sur
lu-invariant de certains corps. Nos résultats généralisent ceux de [34].

Comme point de départ pour le recollement en dimension supérieure dans un cadre
d’espaces de Berkovich, nous montrons que cette technique peut s’appliquer autour de
certaines fibres d’une courbe analytique relative. Nous I'utilisons ensuite pour démontrer
un principe local-global sur les germes des fonctions méromorphes sur ces fibres. En
montrant que ces germes de fonctions méromorphes sont algébriques, nous obtenons
aussi des principes locaux-globaux sur les corps de fonctions des courbes algébriques
définies sur une famille plus vaste de corps ultramétriques.
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Introduction

In this thesis we use the language of Berkovich’s theory to prove results on the local-
global principle as well as applications to quadratic forms and a related invariant. We
do this by using the crucial tool of patching. This technique has seen many applications,
and has recently become the main instrument in an ongoing series of papers. We extend
patching from an algebraic setting to one of Berkovich spaces.

With the Berkovich point of view, patching becomes of highly geometric nature: it
can be interpreted as the sheaf-theoretical gluing of meromorphic functions, thus providing
clarity into the overall strategy of proof. This is one of the reasons why we believe this
approach to be a nice framework for further generalizations.

More precisely, we show that patching is applicable to Berkovich analytic curves, and
thus obtain a local-global principle over function fields of curves, generalizing the results
of the founding paper [34]. We recall that a variety X defined over a field F' is said to
satisfy the local-global principle if there exists a family (F}); of fields containing F' (from
now on referred to as overfields) such that X (F') # 0 if and only if X (F;) # 0 for all i. We
provide two possible families of overfields in this setting: one appearing quite naturally
in Berkovich’s theory (germs of meromorphic functions), and one of more classical nature
consisting of completions of the function field. The connection between the two is a
consequence of the connection between the points of a Berkovich analytic curve and the
valuations that its function field can be endowed with, which we make precise.

Said local-global principle is applicable to quadratic forms. This, combined with the
nice algebraic properties of local rings of Berkovich analytic curves, allows us to obtain
applications on the u-invariant.

As a first step towards higher dimensional versions of this technique, we show that
patching is possible around certain fibers of a relative Berkovich analytic curve. This
way, we obtain a local-global principle over the germs of meromorphic functions on said
fibers, which is applicable to quadratic forms. As before, there are two possible families of
overfields: the germs of meromorphic functions on the points of the fiber, and completions
of the field of meromorphic germs. In particular, we show that the latter are algebraic.

By using the theory of projective limits of schemes, we also obtain a local-global
principle over function fields of algebraic curves over a larger class of ultrametric fields
(which aren’t necessarily complete).

Presentation of the major directions

Local-global principle. The local-global principle first appeared in the '20s under
the name Hasse-Minkowski principle, which states that a rational quadratic form has non-
trivial solutions over Q if and only if it has non-trivial solutions over R and Q,, for any
prime number p. Modern versions deal with varieties defined over a field K, which have
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a K-rational point if and only if they have K; rational points for all i, where (K;); is a
family of overfields of K.

The local-global principle does not always hold. Amongst the first counter-examples
was one given by Reichardt and Lind, who showed that the equation 2Y? = X* — 1724
has solutions over all the completions of @@, but no rational solutions. There have since
been found many other counter-examples. Determining for which fields, overfields, and
varieties there is a local-global principle and studying the obstructions to this property
has been an active area of research for decades (see for example [9] and [51]).

The development of arithmetic geometry brought powerful new techniques to the pic-
ture, causing the main focus to shift upon questions that have some geometrical meaning.
More precisely, using the notation above, K is taken to be the function field of some al-
gebraic variety, and the family of overfields are interpreted in a geometrical setting. So
far, known results cover only special cases, with the majority concerning curves (see e.g.
[34] and [39]). Moreover, typically, the family of overfields is one of completions of K
with respect to discrete valuations (which can be read from a “fine enough” model of the
curve).

A particular class of varieties that behaves well with respect to the local-global principle
is the class of homogeneous varieties over certain linear algebraic groups (e.g. see [16] for
a survey). We recall that given a field F', a variety X/F is said to be homogeneous over
a linear algebraic group G/F if G acts on X and the group G(F) acts transitively on
the set X (F), where F is an algebraic closure of F. For example, it was shown in [9]
that, under certain additional conditions, the only obstruction to a local-global principle
for homogeneous varieties is the so-called Brauer-Manin obstruction introduced by Manin
in [51].

A new approach to local-global principles for homogeneous varieties over function
fields of curves defined over complete discretely valued fields was introduced by Harbater,
Hartmann, and Krashen in [34] via patching.

Patching. Patching techniques were introduced as one of the main approaches to
inverse Galois theory. Originally of purely formal and geometric nature, this method
provided a way to obtain a global Galois covering from local ones, see for example [32].
This is how the inverse Galois problem for Q,(T"), where p is a prime number, was shown
to have an affirmative answer. Formal patching was translated to rigid geometry by Liu
n [50]. Another example is [61], where Poineau used patching on analytic curves in the
Berkovich sense and consequently generalized results shown by Harbater in [30] and [31].

In [33], Harbater and Hartmann combined formal patching with algebraic patching
in the sense of [40], and this way extended the technique to structures over fields, while
constructing a setup of heavily algebraic flavor. Since then, patching over fields has seen
many applications and is the crucial ingredient in an ongoing series of papers (see e.qg.
34], [35], [39], [36], [17]).

One of the main points of focus of these works are local-global principles over func-
tion fields of algebraic curves defined over complete discretely valued fields. Namely, it
was this form of patching that provided a new approach to the local-global principles of
homogeneous varieties over certain linear algebraic groups (for example see [34] and [39]).

In particular, in [34], Harbater, Hartmann, and Krashen (from now on referred to as
HHK) obtained local-global principles for quadratic forms and results on the u-invariant,
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generalizing those of Parimala and Suresh [58], which were proven through different meth-
ods. Another source for results on the u-invariant is Leep’s article [47]. In [34], the authors
apply the obtained local-global principles also to central simple algebras.

Let us briefly describe the overfields appearing in the local-global principles proven
n [34]. Let k be a complete discretely valued field, and k° the corresponding valuation
ring. Let 7 denote a uniformizer of k°. Let C/k be an algebraic curve. Let C be a
normal irreducible projective flat model of C' over k° with special fiber C,. Let F' denote
the function field of C (and hence of C). For any point P € Cs, set Rp = O¢ p. We
denote by ]SL; the completion of the local ring Rp with respect to its maximal ideal.
Set F'p = Frac Rp Let U be a strict subset of an irreducible component of Cs. Set
Ry =0 pey Bp. We denote by RU the m-adic completion of Ry. Set Fiy = Frac RU

Let P be any finite set of closed points of Cs containing all points at which the different
irreducible components of C intersect. Let U be the set of connected components of Cs\P.
Then, the overfields in question are {Fp, Fy : P € P,U € U}. More precisely, HHK show
that for a variety X/F satisfying certain conditions:

X(F)#0 < X(Fp)#0,X(Fy)# 0 forall Pe P, U €U.

See subsection 3.3.2 for a somewhat more detailed account of the local-global principle
of [34].

For a survey on the historic development of different variants of patching, see [37]. We
have adapted field patching to the setting of Berkovich spaces.

Berkovich spaces. Tate’s study of elliptic curves with bad reduction over @, in the
’60s led to him developing the first approach to non-Archimedean analytic geometry, the
so-called rigid geometry ([63]). Since Q, is totally disconnected as a topological space,
the naive approach of defining analytic functions to be locally given by convergent power
series does not work because we wind up with too many analytic functions. An example
of this is the function f: Q, — R, given by

Fa) = {0, if 2], < 1

1, otherwise

which would be analytic. In order to avoid this issue, Tate allows only certain opens and
certain covers. Consequently, rigid spaces don’t possess a genuine topology, but only a
Grothendieck one.

Since then, there have been several other approaches to non-Archimedean analytic
geometry: Raynaud’s theory of formal models, Berkovich spaces, and Huber’s adic geom-
etry.

Developped in the late '80s (see [6]), Berkovich’s approach was originally motivated by
questions in spectral theory. Roughly speaking, Berkovich spaces are obtained by adding
points to rigid spaces. This way one obtains topological spaces with nice properties such
as local compactness and local arcwise-connectedness. As a consequence, these objects
can be thought of geometrically. As opposed to rigid geometry, Berkovich spaces can also
be defined over trivially valued fields.

An analogy can be drawn with the classical complex setting: analytic functions over
certain analytic domains are convergent power series, there is a maximum modulus prin-
ciple, a principle of analytic continuation, and GAGA-type theorems. There is also an
analogy with algebraic geometry in the sense that Berkovich spaces, just like schemes,
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have building blocks. The latter are called affinoid spaces. The main difference between
these two settings (the algebraic and Berkovich analytic one) is that the building blocks
of Berkovich spaces are compact, meaning also Hausdorff, so not always open. This is also
a source of many difficulties in Berkovich’s theory, seeing as there isn’t a basis of open
neighborhoods for which the sheaf of analytic functions is easy to describe.

Since its appearance, the theory of Berkovich spaces has been extended in several
directions (e.g. Berkovich spaces over Z [59]), and many applications have been obtained,
most of which, thanks to the GAGA theorems, to arithmetic geometry. These include:
dynamical systems, the theory of p-adic dessins d’enfants, Bruhat-Tits buildings, inverse
Galois theory, etc. See [23] and [19] for more. Recently, connections have been made
between Berkovich’s theory and other domains such as tropical geometry (e.g. [2]) and
model theory (e.g. [38]).

Organization of the manuscript

The first chapter is dedicated to an introduction of the theory of Berkovich spaces.
In Chapter 2, field patching is extended to a general formal setup that corresponds to
Berkovich spaces. Chapter 3 deals with patching over Berkovich analytic curves and
the corresponding applications to the local-global principle; its contents gave rise to an
article titled “Patching over Berkovich Curves and Quadratic Forms”, see [54]. Lastly,
in Chapter 4, we show patching to be possible around certain fibers of relative analytic
curves and obtain local-global principles as a consequence; the contents of this chapter
will be the topic of an upcoming paper.

Here is a more detailed description of the organization of this manuscript.

Chapter 1: Introduction to Berkovich Spaces.

This chapter is aimed at giving an introduction to the theory of Berkovich spaces with
the purpose of making the manuscript more self-contained. We give an overview of the
construction of these objects starting from the basic algebraic setup on which it relies.
The latter is a generalization by Berkovich of the algebraic counterpart of Tate’s rigid
geometry (more precisely, a generalization of the theory of Tate affinoid algebras).

A point of particular focus is the case of analytic curves, which is, arguably, the class
of Berkovich spaces that is best understood, and also of most interest to us. We show
some properties for them that will be needed for the next chapters. In particular, their
graph-like structure gives rise to nice topological properties, which we use throughout the
manuscript.

Another point of focus is the sheaf of meromorphic functions, which is crucial for
the work presented in this manuscript seeing as patching is interpreted as the gluing of
meromorphic functions over certain Berkovich spaces. Its construction is similar to the
sheaf of meromorphic functions for schemes and so are the properties it satisfies.

We also provide a detailed description of a typical example of a Berkovich space, the
analytic affine line A" and its points (see section 1.2 and subsection 1.8.4). For a
complete ultrametric field (k,| - |), Ai’aﬂ is the set of all the multiplicative semi-norms on
k[T] extending the norm of k. In particular, k is embedded in Ai’an via a — |- |q, where for
any polynomial P(T') € k[T], |P(T)|q := |P(a)|. The set A,lg’an is endowed with a topology
of pointwise convergence.
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The analytic affine line has a tree-like structure with infinite branching. The following
is an illustration of this Berkovich analytic space. By adding an “co” point to the tree,
we obtain the analytic projective line IP’,i’an. The k-points are situated in the extremities
of the tree, or in other words, they are leaves of the tree. Of particular importance to us
will be the non-extremal points where there is no branching (an example of such a point
is given by z in Figure 1).

Figure 1: Ai’an

Most of the results of this chapter are well-known in the field and we only provide
references for them. Others are more specialized and, to our knowledge, not found in the
litterature, so we give proofs.

Chapter 2: Patching.

The general abstract setup for patching is the following.

Let the diagram below be a tower of fields. Suppose we are given algebraic structures
A; and A, over Fy and Fy, respectively. The goal is to find conditions under which they
induce an algebraic structure of the same kind over F} N Fy. Typically, these algebraic
structures are Fi, resp. Fh-rational points of some variety defined over the smaller field F.
Another example would be zero-cycles of degree one.

F

|

N Fy

Fy

N

\F
v
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We focus on the case where these algebraic structures are rational points of some vari-
ety H/F. If A; and A are compatible over Fp, then they lift to F; N F,. However, if this
is not the case, then we can’t in general lift them to F} N Fy. One way of approaching this
problem is to find a way to render the rational points compatible on Fj.

Ideally, there exists a linear algebraic group G/F acting on H in such a way that these
rational points (or more generally, algebraic structures) can always be altered just enough
via the action of G in order to be made compatible over Fy. To make this work, we need
not only a special action of G on H (which we give in Definition 3.2.1), but also that G
itself satisfy certain conditions. The latter is the point of interest of this chapter; let us
now make it more precise.

Let G/F be a linear algebraic group. The condition we need for the setup above is the
following: for any g € G(Fp), there exist g; € G(F;), i = 1,2, such that g = g1-¢2 in G(Fp).
To see this, suppose ¢ is such that g - A2 = Ay in H(Fp). Set A} := 91_1 - A1 € H(Fy)
and A, := go - A2 € H(F3). Then, by construction, A} = A} in H(Fp), so they lift to
Fy N F,. The existence of an element g € G(Fp) satisfying g - A2 = A; is at the source of
a hypothesis we will adopt on the action of G over H (see Definition 3.2.1).

From now on, we will refer to the “matrix decomposition” property of the paragraph
above as patching. The following class of linear algebraic groups will be shown to satisfy
patching (with a certain choice of fields appearing in the tower above).

DEFINITION. A linear algebraic group G/ F is said to be rational (over F') if there exists
a Zariski open subset of G' isomorphic to a Zariski open subset of A% for some n € N.

We fix a general formal setup (Setting 2.1.1) over which we show the main result
of this chapter (see Theorem 2.1.10). The latter is fundamental to patching. It is a
generalization of [34, Theorem 3.2]. The main difference is that the objects considered in
loc.cit. are defined over a complete discretely valued field, whereas we don’t require the
discretness assumption. A rather direct consequence is that patching is true in a Zariski
neighborhood of the identity of G. The proof (and statement) of Theorem 2.1.10 is of very
technical nature, and follows the main lines of the proof of [34, Theorem 3.2].

The interest of the formal setting over which we work is that it is realised in a natural
(and very geometrical) way in Berkovich’s theory.

In particular, we show that in a special case of Setting 2.1.1, which is realised by
Berkovich analytic curves, Theorem 2.1.10 can be strengthened to show that patching
is true in G (Theorem 2.2.3). This is the fundamental tool to showing that patching is
possible over Berkovich analytic curves.

Chapter 3: Patching over Berkovich Curves and Quadratic Forms.

In this chapter we show that patching is possible over Berkovich analytic curves and that
it can be interpreted as the gluing of meromorphic functions. More concretely, we show
that the fields F; of diagram (1) can be chosen to be fields of meromorphic functions of
certain parts (called analytic domains) of an analytic curve. We then use this to prove
a local-global principle and provide applications to quadratic forms and the w-invariant.
The results we obtain generalize those of [34].

Before presenting the main results of this chapter, let us introduce some terminology.

DErFINITION (HHK). Let K be a field. Let X be a K-variety, and G a linear algebraic
group over K. We say that G acts strongly transitively on X if G acts on X, and for any
field extension L/K, either X (L) = () or G(L) acts transitively on X (L).
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In general, asking that G act strongly transitively on X is more restrictive than asking
that X be homogeneous over G. However, it is shown in [34, Remark 3.9] that if G is a
reductive linear algebraic group over K and X/K is a projective variety, then the two
notions are equivalent.

Our main results, the local-global principles we show, are:

THEOREM. Let k be a complete non-trivially valued ultrametric field. Let C be a
normal irreducible projective k-algebraic curve. Denote by F' the function field of C. Let
X be an F-variety, and G a connected rational linear algebraic group over F acting strongly
transitively on X.

Let V(F) be the set of all non-trivial rank 1 valuations on F which either extend the
valuation of k or are trivial when restricted to k.

Denote by C* the Berkovich analytification of C, so that F = .#(C*"), where A
denotes the sheaf of meromorphic functions on C*". Then, the following local-global prin-
ciples hold:

o (Theorem 3.2.11) X (F) # 0 <= X (M) # 0 for all x € C*".
e (Corollary 3.2.18) If char k = 0 or X is a smooth variety, then:

X(F)#0 < X(F,) #0 for allve V(F),
where F, denotes the completion of F with respect to v.

The statement above remains true for affinoid curves if /|k*| # Rsq, where /|kX|
denotes the divisible closure of the value group |k*|. Being a local-global principle with
respect to completions, the second equivalence evokes some resemblance to more classical
versions of local-global principles. The statement can be made to include trivially valued
base fields, even though in this case we obtain no new information (since at least one of
the overfields will be equal to F).

REMARK. In order to prove our main results, we need less than strong transitivity.
More precisely, it suffices to assume that for any completion F' of F' with respect to a
valuation extending that of k, either X (F) = ) or the group G(F) acts transitively on

~

the set X (F'). We may even restrict to only certain completions, namely those for which

deg trEﬁ =0 and rankQ\ﬁXMkX] ®7z Q = 1, where k resp. ﬁ, is the residue field of k,

resp. F. (These are the completions with respect to the valuations induced by the type 3
points of the curve, see Definition 1.8.1).

We recall that for any finitely generated field extension F'/k of transcendence degree 1,
there exists a unique normal projective k-algebraic curve with function field F. Thus, the
result of the theorem above is applicable to any such field F.

To show the local-global principles above, we construct certain covers of curves over
which patching can be realised (the so-called nice covers, see Definition 3.1.6). For this,
type 8 points are crucial. A type 3 point has nice topological and algebraic properties.
More precisely, an analytic curve is a real graph over which a type 3 point has arity 2; also,
the stalk of a type 3 point is a field. In Figure 1, x is a type 3 point. The existence of such
points is equivalent to the condition \/|k*| # Rsq, which is why Theorem 3.2.11 is first
shown under this hypothesis. The result is then shown in all generality by using arguments
from model theory. Here is a quick outline of the proof in the case /|k*| # Rxo.

We recall that an affinoid domain of a Berkovich analytic space is an analytic domain
(meaning the structural sheaf is well-defined over it), isomorphic to an affinoid space.
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Moreover, the intersection of affinoid domains of an analytic curve (and, more generally,
of any separated Berkovich analytic space) is again an affinoid domain. Let us start by
introducing the crucial notion of a nice cover.

DEFINITION (Definition 3.1.6). A finite cover U of a k-analytic curve will be called
nice if:
(1) the elements of U are connected affinoid domains with only type 3 points in their
topological boundaries;
(2) for any different U,V € U, UNV = 90U N IV, or equivalently, U NV is a finite
set of type 3 points;
(3) for any two different elements of U, neither is contained in the other.

Figure 2: an example of a nice cover for the Berkovich projective line

For a normal irreducible projective analytic curve C, let U,V be connected affinoid
domains of C' such that U NV is a single type 3 point {n}. (This is a special case of a
nice cover.) Then, following the notation of diagram (1), set F' = .#(C), Fy = .# ({n}),
Fy = #(U),Fy, = # (V). We start by showing that patching is possible with this choice
of fields for any rational linear algebraic group G/F. This is then generalized to any nice
cover of the analytic projective line. To obtain the same generalization for any normal
irreducible projective analytic curve C, we make use of the Weil restriction of scalars in
order to “descend” to the case of the projective line (as HHK do in [34]).

Finally, once patching is shown to be possible, the local-global principle of Theo-
rem 3.2.11 is a rather direct consequence.

To obtain Corollary 3.2.18 from Theorem 3.2.11, we establish a precise connection
between the points of a Berkovich analytic curve and the valuations that its function field
can be endowed with. This is done in Proposition 3.2.14. The rest is then a consequence
of the nice algebraic properties of the fields .#,,r € C, namely their Henselianity.

While HHK work over models of an algebraic curve, we work directly over analytic
curves. Remark that we put no restrictions on the complete valued base field k. Apart from
the framework, this is one of the fundamental differences with Theorem 3.7 of [34], where
the base field needs to be complete with respect to a discrete valuation. Another difference
lies in the nature of the overfields, which here are completions or fields of meromorphic
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functions. Section 4 shows that the latter contain the ones appearing in HHK’s article,
and thus that [34, Theorem 3.7] is a direct consequence of the local-global principle stated
in Theorem 3.2.11. Moreover, we show the converse is true as well provided we choose a
“fine” enough model. The proof of the theorem above is based on the patching method,
but used in a different setting from the one of [34].

As a consequence of our main results, in the context of quadratic forms, we obtain
the following theorem, which is a generalization of [34, Theorem 4.2]. This is because
the projective variety determined by a quadratic form satisfies all of the hypotheses of
Theorem 3.2.11 (including the existence of a connected rational linear algebraic group
acting strongly transitively on it).

THEOREM. Let k be a complete non-trivially valued ultrametric field. Let C' be a normal
irreducible projective k-algebraic curve. Denote by F the function field of C. Suppose
char(F) # 2. Let q be a quadratic form over F of dimension different from 2.

Let V(F) be the set of all non-trivial rank 1 valuations on F which either extend the
valuation of k or are trivial when restricted to k.

Let C®™ be the Berkovich analytification of C, so that F = .#(C®"), where M is the
sheaf of meromorphic functions on C?".

(1) (Theorem 3.4.1) The quadratic form q is isotropic over F if and only if it is
isotropic over My for all x € C*".

(2) (Corollary 3.4.2) The quadratic form q is isotropic over F if and only if it is
isotropic over F, for all v € V(F), where F, is the completion of F with respect
to v.

As mentioned in the introduction of [34], it is expected that for a “nice enough” field K
the u-invariant remains the same after taking finite field extensions, and that it becomes
29u(K) after taking a finitely generated field extension of transcendence degree d. Since
we work only in dimension one, this explains the motivation behind the following:

DEFINITION. Let K be a field.

(1) [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal dimension
of anisotropic quadratic forms over K. We say that u(K) = oo if there exist
anisotropic quadratic forms over K of arbitrarily large dimension.

(2) [HHK] The strong u-invariant of K, denoted by us(K), is the smallest real num-
ber m, such that:

e u(E) < m for all finite field extensions F/K;
° %U(E) < m for all finitely generated field extensions E/K of transcendence
degree 1.
We say that us(K) = oo if there exist such field extensions E of arbitrarily
large u-invariant.

The theorem above leads to applications on the u-invariant. Let k be a complete non-
Archimedean valued field with residue field k, such that char(k) # 2. Suppose that either
|k*| is a free Z-module with rankyz|k*| =: n, or, more generally, that dimg \/|k*| =: n,
where n is a non-negative integer. This is yet another difference with the corresponding
results of HHK in [34], where the requirement on the base field is that it be complete
discretely valued, i.e. that its value group be a free Z-module of rank 1. We obtain an upper
bound on the wu-invariant of a finitely generated field extension of k£ with transcendence
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degree at most 1, which depends only on us(k) and n. More precisely, in terms of the
strong u-invariant:

COROLLARY (Corollary 3.4.28). Let k be a complete ultrametric field. Suppose char(k) # 2.
(1) If dimg /[k%] =: n,n € Z, then us(k) < 2" u,(k).
(2) If |k*| is a free Z-module with ranky|k™| =: n,n € Z, then us(k) < 2"uq(k).

Corollary 3.4.28 is a consequence of the local-global principle we obtained for quadratic
forms (Theorem 3.4.1), and also of the very nice algebraic properties that the local rings
of an analytic curve satisfy, especially Henselianity.

It is unknown to the author whether there is equality in the corollary above. This is
true in the particular case of n = 1 by using [34, Lemma 4.9], whose proof is independent
of patching. This way we recover [34, Theorem 4.10], which is the main result of [34] on
quadratic forms. It also provides one more proof that u(Q,(7")) = 8, where p is a prime
number different from 2, originally proven in [58].

COROLLARY (Corollary 3.4.30). Let k be a complete discretely valued field such that

char(k) # 2. Then, us(k) = 2uy(k).

Chapter 4: Patching over Analytic Fibers and the Local-Global Principle.

In this chapter we show that patching is possible “around” certain fibers of relative analytic
curves. This is then applied to obtain a local-global principle over the field of overconver-
gent meromorphic functions on said fibers. We also show that the latter can be interpreted
as the function field of a particular algebraic curve. As before, the local-global principles
obtained are applicable to quadratic forms (provided the setting is one of characteristic
different from 2).

The goal of this chapter is twofold:

(1) to establish the very first steps of a strategy for higher dimensional patching and
the corresponding applications to the local-global principle;

(2) to generalize the results obtained in Chapter 3; more precisely, to show a local-
global principle over algebraic curves (i.e. their function fields) defined over a
larger class of ultrametric fields (which aren’t necessarily complete).

One of the main results we show is the following (see Theorem 4.6.8 for the exact
statement):

THEOREM (Theorem 4.6.8). Let k be a complete non-trivially valued ultramet-
ric field. Let S,C be good k-analytic spaces such that S is normal. Suppose that
dim S < dimg Rso/|k*| ®z Q. Suppose there exists a morphism w : C — S that makes C a
proper flat relative S-analytic curve. For any affinoid domain Z of S, set Cy := n~Y(Z),
and Fy := #(Cyz), where A denotes the sheaf of meromorphic functions on C. Let x € S
be such that Og, is a field. Let %, denote the fiber of x in C.

Assume there exists a connected affinoid neighboorhood Zy of x such that: (1) all the
fibers of m on Zy are mnormal irreducible projective analytic curves; (2) Cgz, is normal;
(3) Ty, + Czy — Zo is algebraic.

Let G/Fyz, be a connected rational linear algebraic group acting strongly transitively
on a variety H/Fz,. Then, the following local-global principle holds:

H(lim Fz) # 0 < H(Mcw)#0 for allu e nl(z),

TeZ
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where the direct limit is taken with respect to connected affinoid neighborhoods Z C Zj
of x.

Remark that the direct limit appearing on the left side of the local-global principle
above is the field of germs of meromorphic functions on the fiber of z in C.

We work only over fibers of points for which the local ring is a field. The set of such
points is dense. In fact, in the case of curves, if x is any point that is not rigid (see
Definition 1.5.10; rigid points are those that we see in rigid spaces), then O, is a field.
Although this might not appear explicitely during the chapter, the reason behind this
hypothesis is that to make the transition from Chapter 2 to patching “around” the fiber,
we need the fiber to not be a divisor.

To show Theorem 4.6.8, as fibers of an analytic relative curve are endowed with
the structure of an analytic curve, we follow a similar line of reasoning as in the one-
dimensional case. However, there are many additional technical difficulties that appear in
this relative setting. Here is a brief outline of the proof.

We construct particular covers of a neighborhood of the fiber over which patching is
possible (the so-called relative nice covers); this is a relative analogue of nice covers as
introduced in Chapter 3. We first treat the case of P}g’an - the relative projective analytic
line over S. To do this, we use the notion of thickening of an affinoid domain, the idea
for which (in the case of P1*) appears in some unpublished notes of Jérome Poineau.
Given an affinoid domain U in the fiber %, of z in ]P’klg’an, a Z-thickening of U is an affinoid
domain Uy of ]P’;an such that Uz N %, = U, where Z is an affinoid neighborhood of x
in S. Thickenings of affinoid domains of .%, exist and have good properties provided we
choose Z small enough.

Let U be any nice cover of the fiber .#,. Then, there exists an affinoid neighborhood
Z of x such that for any U € U, the Z-thickening Uz of U exists. Let Uz denote the set of
these Z-thickenings of the elements of &/. We show that for a small enough Z, Uy satisfies
the necessary properties for the results of Chapter 2 to be applicable. In that case, Uz is
said to be a Z-relative nice cover of Pgan. In particular, we remark that type 3 points play
once again an important role. Their existence on the fiber is guaranteed by the hypothesis
on the dimension of S. We then show that patching can be applied to relative nice covers
in the case of Phan,

By using pullbacks of finite morphisms towards P1'®", a notion of relative nice cover
can be constructed more generally for the case of normal relative proper curves. By adding
to this the Weil restriction of scalars, patching is shown to be possible over relative nice
covers in this more general framework as well.

Finally, once patching is shown to be possible around the fiber, the local-global prin-
ciple of Theorem 4.6.8 can be obtained as a consequence, albeit not as direct as in the
one-dimensional case.

There is a connection between the points of the fiber and the valuations that the field
of its overconvergent meromorphic functions can be endowed with. We make this precise
in Proposition 4.6.6. As in the one-dimensional case, combined with the Henselianity of
the fields .#¢ ., m(z) = x, this connection allows us to obtain a local-global principle with
respect to completions. Before stating this result precisely, let us recall that the field Og ,
is naturally endowed with a valuation | - |5.
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THEOREM (Theorem 4.6.8’). Using the same notation as in the statement of Theo-
rem 4.6.8 above, set Fo, = lim M (Cyz). Let V(Fp,) denote the set of non-trivial rank 1
valuations on Fo, which induce either |-|; or the trivial valuation on O,. Forv € V(Fp,),
let Fo, . denote the completion of the field Fo, with respect to v.

If char k =0 or H is smooth, then the following local-global principle holds:

H(Fp,) #0 <= H(Fp,.,)#0 for allv € V(Fo,).

Remark that, with the same notation as in the theorem above, Og, = hﬂz Os(2),
where the direct limit is taken with respect to affinoid neighborhoods Z of x in S. Using
Grothendieck’s work on projective limits of schemes to construct a relative algebraic curve
over O(Z) from an algebraic curve over O,, as a consequence of the theorem above, we
obtain the following generalization of Corollary 3.2.18.

THEOREM (Theorem 4.6.9). Let S be a good normal k-analytic space such that dim S <
dimg Rso/|k*|®z Q. Let x € S be such that Oy is a field. Let Cp, be a smooth geometri-
cally irreducible algebraic curve over the field O,. Let Fo, denote the function field of Co, .

Let G/Fo, be a connected rational linear algebraic group acting strongly transitively
on a variety H/Fo,. Then, if char k =0 or H is smooth:

H(F@I) 75 ) — H(FOI,’U) 75 0 fOT’ allv e V(F@z),

where V(Fp,) is given as in Theorem 4.6.8° above.

A crucial element for showing Theorem 4.6.9, and more generally, to highlight the
interest of this chapter, is that, in the setting of Theorem 4.6.8, meromorphic functions
around the fiber of x are algebraic. More precisely, the field of overconvergent meromorphic
functions on the fiber of x is the function field of an algebraic curve over O, (which is
basically an “algebraization” of a neighborhood of the fiber succeeded by a base change
to Oy; see Corollary 4.4.15). To show this non-trivial result, we use GAGA-type theorems
for the sheaf of meromorphic functions (see Theorem 1.7.8).

At the end of this chapter we provide some examples of local rings of analytic spaces
that are fields and over which the results above can be applied. More precisely, we calculate
the stalks of the points of A for which the corresponding local ring is a field. In addition
to that, we also give a description of the stalk of a certain point of A™*" n € N. Here is
an example of such a field, corresponding to a type 3 point of the analytic affine line.

EXAMPLE. Let (k,|-|) be a complete ultrametric field. Let r € Rso\4y/|k*|. Let

x € A,i’an be a multiplicative semi-norm on k[T such that |T|, = r (in fact, = is the
. . 1l,an
unique such point of Ay’™").

For any rq, 79 € Ry such that r1 < r < g, set

Ayl oy = g anT" :an € k, lim |ay|ry =0, Im |a,|ry =0, .
7 n——+oo n—r—00
ne

Then, (’)A}C,an@ = hgqu<r<r2 Ay ro-

As in Chapter 3, seeing as the projective variety determined by a quadratic form
satisfies the hypotheses of the results presented, the prime example to which the state-
ments of this chapter can be applied is the case of quadratic forms (under the assumption
char k # 2).
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Dans cette these nous utilisons le langage de la théorie de Berkovich pour démontrer
des résultats sur le principe local-global et obtenons des applications aux formes quadra-
tiques et a un invariant qui leur est lié. Pour ce faire, nous utilisons 1’outil fondamental
du recollement. Cette technique admet déja plusieurs applications, et apparait récemment
comme l'ingrédient principal dans une série d’articles en cours. Nous étendons le recolle-
ment d’un cadre algébrique au cadre des espaces de Berkovich.

En adoptant ce point de vue, le recollement acquiert une nature trés géométrique : il
peut s’interpréter comme le recollement faisceautique de fonctions méromorphes, éclairant
ainsi la stratégie globale de preuve. Ceci nous laisse penser que cette approche est propice
a des généralisations futures.

Plus précisément, nous montrons que le recollement peut s’appliquer aux courbes ana-
lytiques de Berkovich, et obtenons ainsi un principe local-global sur les corps de fonctions
de telles courbes, généralisant de cette fagon les résultats de I’article fondateur [34]. Nous
rappelons qu’une variété X définie sur un corps F’ satisfait le principe local-global s’il existe
une famille (F;); de corps contenant F' (qu’on appelera des surcorps) telle que X (F) # ()
si et seulement si X(F;) # () pour tout 7. Nous définissons deux familles de surcorps :
une qui apparait tres naturellement dans la théorie de Berkovich (des germes de fonctions
méromorphes), et une de nature plus classique constituée de complétés du corps de fonc-
tions. Nous établissons une connexion entre ces deux familles en rendant précis le lien qui
existe entre les points d’'une courbe analytique de Berkovich et les valuations dont on peut
munir son corps de fonctions.

Le principe local-global obtenu peut s’appliquer aux formes quadratiques. Ceci, com-
biné avec les bonnes propriétés algébriques des anneaux locaux d’une courbe analytique
de Berkovich, nous permet d’obtenir des application a 'u-invariant.

Comme premier pas vers des versions en dimension supérieure de cette technique, nous
montrons que le recollement est possible autour de certaines fibres d’une courbe relative
analytique de Berkovich. Ainsi, nous obtenons un principe local-global sur les germes
de fonctions méromorphes sur ces fibres, qui peut de nouveau s’appliquer aux formes
quadratiques. Comme précédemment, il y a deux familles possibles de surcorps : les
germes de fonctions méromorphes en les points de la fibre, et des complétés du corps des
germes méromorphes. En particulier, nous montrons que ces derniers sont algébriques.

En utilisant la théorie des limites projectives de schémas, nous obtenons aussi un
principe local-global sur le corps de fonctions d’une courbe algébrique définie sur des
corps ultramétriques qui ne sont pas nécessairement complets.

Présentation des directions majeures

Principe local-global. Le principe local-global est apparu pour la premiere fois dans
les années '20 sous le nom de principe de Hasse-Minkowski, et énonce alors qu’une forme

xiii
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quadratique rationnelle a une solution non triviale sur Q si et seulement si elle a des
solutions non triviales sur R et Q, pour tout nombre premier p. Les versions modernes
traitent plus généralement de variétés définies sur un corps K qui ont un point K-rationnel
si et seulement si elles ont des points Kj-rationnels poir tout ¢, ou (K;); est une famille de
surcorps de K.

Le principe local-global n’est pas toujours vrai. Parmi les premiers contre-exemples
historiques, mentionnons celui obtenu par Reichardt et Lind, qui ont montré que I’équation
2Y2 = X* — 17Z* a des solutions sur tous les complétés de Q, mais pas de solutions
rationnelles. Depuis, beaucoup d’autres contre-exemples ont été trouvés. Détérminer pour
quels corps, surcorps et variétés il y a un principe local-global et étudier les obstructions a
cette propriété a été un domaine actif de recherche depuis des décennies (cf. par exemple
[9] et [51]).

Le dévelopement de la géométrie arithmétique a apporté de nouvelles techniques puis-
santes qui s’appliquent a I’étude du principe local-global, mettant ainsi au premier plan des
questions possédant un sens géométrique. Plus précisement, en utilisant la méme notation
que précédemment, K est le corps de fonction d’une variété algébrique, et la famille de
surcorps est interprétée dans un cadre géométrique. Jusqu’a présent, les résultats connus
ne couvrent que des cas spécifiques, la majorité concernant les courbes (cf. par exemple
[34] et [39]). De plus, en général, la famille de surcorps considérée contient des complétés
de K par rapport a des valuations discretes (qui peuvent se lire sur un modele “assez fin”
de la courbe).

Une classe particuliere de variétés qui se comportent bien par rapport au principe
local-global est celle des variétés homogénes sous certains groupes linéaires algébriques
(voir e.g. [16] pour une bréve exposition du sujet). Nous rappelons qu’étant donné un
corps F', une variété X/F est dite homogéne sous un groupe linéaire algébrique G/F si
G agit sur X et si le groupe G(F) agit transitivement sur I’ensemble X (F), ou F est
une cloture algébrique de F. Il a été démontré dans [9] que, sous certaines conditions
additionnelles, la seule obstruction au principe local-global pour les variétés homogenes
est I'obstruction de Brauer-Manin introduite par Manin dans [51].

Une nouvelle approche au principe local-global pour les variétés homogenes sur des
corps de fonctions de courbes définies sur des corps complets discretement valués a été
introduite par Harbater, Hartmann et Krashen dans [34] via le recollement.

Le recollement. La méthode de recollement a été introduite comme une des ap-
proches principales a la théorie inverse de Galois. Originellement de nature formelle et
géométrique, cette technique a fourni une fagon d’obtenir un revétement galoisien global a
partir de revétements locaux (voir par exemple [32]). Par cette technique, il a été démontré
que le probleme inverse de Galois pour Q,(7"), olt p est un nombre premier, admet une
réponse affirmative. Le recollement formel a été traduit dans le langage de la géométrie
rigide par Liu dans [50]. Un autre exemple est [61], ou Poineau utilise le recollement sur
des courbes analytiques au sens de Berkovich et généralise ainsi les résultats montrés par
Harbater dans [30] et [31].

Dans [33], Harbater et Hartmann ont combiné le recollement formel avec le recollement
algébrique au sens de [40], et ont ainsi étendu la technique aux structures définies sur des
corps, en construisant un cadre de nature tres algébrique. Depuis, le recollement sur
les corps a trouvé de nombreuses applications et est l'ingrédient crucial dans une série
d’articles en cours (voir par exemple [34], [35], [39], [36], [17]).
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Parmi les principaux problemes abordés dans ces travaux, on retrouve les principes
locaux-globaux sur des corps de fonctions de courbes algébriques définies sur des corps
complets discretement valués. C’est cette forme de recollement qui a fourni une nou-
velle approche au principe local-global pour les variétés homogenes sous certains groupes
linéaires algébriques (voir par exemple [34] et [39]).

En particulier, dans [34], Harbater, Hartmann et Krashen (abrégé par la suite en
HHK) obtiennent un principe local-global pour les formes quadratiques et des résultats
sur l'u-invariant, généralisant ainsi ceux de Parimala et Suresh [58], qui ont été montrés
en utilisant d’autres méthodes. Une autre source pour des résultats sur 'u-invariant est
larticle [47] de Leep. Dans [34], les auteurs appliquent aussi les résultats locaux-globaux
obtenus aux algebres centrales simples.

Décrivons brievement les surcorps qui apparaissent dans les principes locaux-globaux
démontrés dans [34]. Soit k un corps complet discretement valué, et k° l’anneau de
valuation correspondant. Soit 7 une uniformisante de k°. Soit C'/k une courbe algébrique.
Soit C un modele plat normal irréductible projectif de C' sur k° avec fibre spéciale Cs.
On note avec F' le corps de fonctions de C (et donc de ). Pour tout point P € Cg,
soit Rp = O¢ p. On note par él\o le complété de I'anneau local Rp par rapport a son
idéal maximal. Soit Fp = Frac }/2;. Soit U un sou/s\—ensemble propre d’une composante
irréductible de Cs. Soit Ry = (\peyy Rp. On note Ry le complété m-adique de Ryr. Soit
Fy = Frac é?]

Soit P un ensemble fini de points fermés de Cs contenant tous les points d’intersection
des composantes irréductibles de Cs. Soit U ’ensemble des composantes connexes de Cq\P.
Alors les surcorps en question sont {Fp, Fyy : P € P,U € U}. Plus précisement, HHK
montrent que pour une variété X /F satisfaisant certaines conditions :

X(F)#0 < X(Fp)#0,X(Fy) # 0 pour tout P € P,U € U.

Voir la sous-section 3.3.2 pour plus de détails sur le principe local-global de [34].
Pour un survol sur le développement historique des différentes versions du recollement,
voir [37]. Nous avons adapté le recollement sur les corps au cadre des espaces de Berkovich.

Les espaces de Berkovich. L’étude de Tate des courbes elliptiques avec mauvaise
réduction sur @, dans les années '60 a mené au développement d’une premiere approche
a la géométrie analytique non-archimédienne, appelée géométrie rigide ([63]). Comme Q,
est totalement discontinu en tant qu’espace topologique, 'approche naive de définir une
fonction analytique comme étant localement développable en série entiere ne fonctionne
pas : on obtiendrait trop de fonctions. Par exemple, la fonction f : Q, — R, définie par

Fa) = {0, si Jzl, < 1

1, sinon

serait alors analytique. Pour éviter ce probleme, Tate ne permet que certains ouverts et
recouvrements. Par conséquent, les espaces rigides ne sont pas dotés d’une vraie topologie,
mais seulement d’une topologie de Grothendieck.

Depuis, il y a eu plusieurs autres approches a la géométrie analytique non-archimédienne :
la théorie de Raynaud des modeles formels, les espaces de Berkovich et la géométrie adique
de Huber.

Developpée a la fin des années '80 (voir [6]), "approche de Berkovich a originellement
été motivée par des question de théorie spectrale. Grossierement, les espaces de Berkovich
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sont obtenus en ajoutant des points aux espaces rigides. De cette maniere on obtient des
espaces topologiques avec de bonnes propriétés comme la compacité locale et la connexité
par arcs locale. Par conséquent, on peut penser a ces objets géométriquement. Contraire-
ment & la géométrie rigide, les espaces de Berkovich peuvent aussi étre définis sur des
corps trivialement valués.

Une analogie peut étre établie avec le cadre classique complexe : les fonctions analy-
tiques sur certains domaines analytiques sont des séries entieres convergentes, il existe un
principe de prolongement analytique, ainsi que des théoréemes du type GAGA. On peut
aussi observer un parallele avec la géométrie algébrique dans le sens ou les espaces de
Berkovich, comme les schémas, sont construits a partir de blocs de base. Ces derniers sont
appelés espaces affinoides. La différence principale entre ces deux cadres (algébrique et
Berkovich) est que les blocs de base des espaces de Berkovich sont compacts, donc aussi
Hausdorff, et par conséquent pas toujours ouverts. Ceci est une source de nombreuses
difficultés dans la théorie de Berkovich, puisqu’il n’y a pas de base d’ouverts pour lesquels
on peut décrire facilement le faisceau de fonctions analytiques.

Depuis son apparition, la théorie des espaces de Berkovich a trouvé plusieurs applica-
tions, la plupart, grace aux théoremes GAGA, a la géométrie arithmétique, et a été étendue
dans plusieurs directions (par exemple les espaces de Berkovich sur Z [59]). Celles-ci in-
cluent : les systemes dynamiques, la théorie des dessins d’enfants p-adiques, les immeubles
de Bruhat-Tits, la théorie inverse de Galois, etc. Voir [23] et [19] pour plus d’exemples.
Récemment, des connexions ont été établies entre la théorie de Berkovich et d’autres
domaines comme la géométrie tropicale (e.g. [2]) et la théorie de modeles (e.g. [38]).

Organisation du manuscrit

Le premier chapitre est dédié a l'introduction de la théorie des espaces de Berkovich.
Dans le chapitre 2, le recollement sur les corps est étendu & un cadre général formel qui
correspond aux espaces de Berkovich. Le chapitre 3 traite du recollement sur les courbes
analytiques de Berkovich et de ses applications au principe local-global ; son contenu a
donné lieu a un article intitulé “Patching over Berkovich Curves and Quadratic Forms”,
voir [54]. Finalement, dans le chapitre 4, nous montrons que le recollement est possible
autour de certaines fibres de courbes analytiques relatives et en déduisons des principes
locaux-globaux ; le contenu de ce chapitre sera le sujet d’un futur article.

Voici une description plus détaillée de 'organisation de ce manuscrit.

Chapitre 1 : Introduction aux espaces de Berkovich.

Ce chapitre a comme but de donner une introduction a la théorie des espaces de Berkovich
afin de rendre le manuscrit plus auto-suffisant. Nous donnons un rappel rapide de la
construction des principaux objets qui interviennent dans cette théorie en commencant
par le cadre algébrique sur lequel elle se base. Ce dernier est une généralisation par
Berkovich du pendant algébrique de la géométrie rigide de Tate (plus précisement, une
généralisation de la théorie des algebres affinoides de Tate).

Nous nous attardons particulierement sur le cas des courbes analytiques, qui est sans
doute la famille d’espaces de Berkovich la mieux comprise, ainsi que celle qui présente le
plus d’intérét pour nous. Nous en montrons quelques propriétés qui nous seront nécessaires
dans les chapitres suivants. En particulier, leur structure de graphe est source de nom-
breuses bonnes propriétés topologiques, que nous utiliserons dans ce manuscrit.
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Un autre point important que nous traitons est le faisceau des fonctions méromorphes,
qui est crucial pour le travail presenté ici vu que le recollement est interprété comme le
recollement de fonctions méromorphes sur certains espaces de Berkovich. Sa construction,
ainsi que les propriétés qu’il satisfait, sont similaires a celles du faisceau de fonctions
méromorphes sur les schémas.

Nous donnons aussi une description d’un exemple typique d’espace de Berkovich, la
droite analytique affine A3, et de ses points (voir la section 1.2 et la sous-section 1.8.4).
Pour un corps ultramétrique complet (k, |- |), A,lg’an est I’ensemble des semi-normes multi-
plicatives sur k[T| qui étendent la norme de k. En particulier, k se plonge dans A,lc’an via
a | |q, ot pour tout polynéme P(T) € k[T], |P(T)|s := |P(a)|. L’ensemble Ai’an est
muni d’une topologie de convergence simple.

La droite analytique affine a une structure d’arbre infiniment branché. La Figure 3 est
une illustration de cet espace de Berkovich. En ajoutant un point ”0o” a cet arbre, nous
obtenons la droite analytique projective ]P’,lc’an. Les k-points sont situés aux extrémités de
I’arbre, ce sont des feuilles de 'arbre. Un role particulierement important pour nous est
joué par les points non extrémaux ou il n’y a pas de branchement (un exemple d'un tel
point est donné par x dans la Figure 3).

Figure 3 : A,lﬂ’an

La plupart des résultats de ce chapitre sont bien connus dans le domaine et nous nous
contentons de donner des références pour leurs preuves. Certains autres, plus spécialisés,
ne sont a notre connaissance pas présents dans la littérature, nous en proposons donc des
démonstrations.

Chapitre 2 : Le recollement.

Le cadre général abstrait pour le recollement est le suivant.

Considérons la tour de corps illustrée dans le diagramme (2) ci-dessous. Supposons
qu'on a des structures algébriques A; et Az sur F et Fy, respectivement. Le but est
de trouver des conditions sous lesquelles elles induisent une structure algébrique du méme
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type sur F1NF,. Typiquement, ces structures algébriques sont des points rationnels sur Fi,
respectivement F5, d'une variété définie sur un corps plus petit . Un autre exemple est
le cas des zéro-cycles de degré un.

F

|

Fi Nk

g 7N
{0

Nous nous concentrons sur le cas ou ces structures algébriques sont des points rationnels
sur une variété H/F. Si A; et A sont compatibles sur Fj, alors elles se relevent sur
F1 N Fy. Sice n’est pas le cas, on ne peut pas généralement les relever a Fy N Fy. Une
maniere d’approcher ce probleme est de trouver une fagon de rendre ces points rationnels
compatibles sur Fj.

Idéalement, il existe un groupe linéaire algébrique G/F qui agit sur H de fagon a
ce que ces points rationnels (ou, plus généralement, ces structures algébriques) puissent
toujours étre déplacés par 'action de G et rendus compatibles sur Fy. Pour que cette
idée fonctionne, il nous faut a la fois une action particuliere de G sur H (donnée dans la
définition 3.2.1), et des conditions sur le groupe G. Ces conditions font 'objet principal
de ce chapitre.

Plus précisément, soit G/F un groupe linéaire algébrique. La condition dont nous
avons besoin est la suivante : pour tout g € G(Fp), il existe g; € G(F;),i = 1,2, tels que
g = g1 g2 dans G(Fp). En effet, supposons que g est tel que g-. Ay = A; dans H(Fp). Soit
A= gfl - Ay € H(Fy) et A, := go - Ay € H(F3). Alors, par construction, 4] = A} dans
H(Fp), donc elles peuvent se relever sur Fj N Fy. L'existence d’un élément g € G(Fp) qui
satisfait g - Ay = A; est a lorigine de I'hypothése que nous adoptons sur ’action de G sur
H (voir la définition 3.2.1).

Par la suite, nous appellerons la propriété de “décomposition matricielle” décrite dans
le paragraphe précédent recollement. Nous montrerons que la famille suivante de groupes
linéraires algébriques satisfait le recollement (avec un certain choix de corps dans la tour
du diagramme (2)).

DEFINITION. Un groupe linéaire algébrique G/F est dit rationnel (sur F) s’il existe
un ouvert de Zariski de G isomorphe a un ouvert de Zariski de A% pour un certain n € N.

Nous fixons un cadre général formel (Setting 2.1.1) sur lequel nous montrons le résultat
principal de ce chapitre (voir le théoreme 2.1.10). Ce dernier est fondamental pour le
recollement. Il est une généralisation de [34, Theorem 3.2]. La différence principale est
que les objets considérés dans loc.cit. sont définis sur un corps complet discrétement
valué, alors que nous ne demandons pas aux valuations d’étre discretes. Une conséquence
assez directe est que le recollement est vrai sur un voisinage de Zariski de I'identité de G.
La preuve (ainsi que ’enoncé) du théoréme 2.1.10 est treés technique, et suit les lignes
principales de la preuve de [34, Theorem 3.2].
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L’intérét du cadre formel sur lequel on travaille est qu’il est réalisé de facon naturelle
(et tres géométrique) dans la théorie de Berkovich.

En particulier, nous montrons que dans un cas particulier du Setting 2.1.1, realisé par
les courbes analytiques de Berkovich, le théoréeme 2.1.10 peut se généraliser pour montrer
que le recollement est vrai dans G (théoreme 2.2.3). Ceci est l'outil fondamental pour
obtenir un recollement sur les courbes analytiques de Berkovich.

Chapitre 3 : Recollement sur les courbes de Berkovich et formes quadra-
tiques.

Dans ce chapitre nous montrons que le recollement est possible sur les courbes analytiques
de Berkovich et qu’il peut s’interpréter comme le recollement de fonctions méromorphes.
Plus concrétement, nous montrons que les corps F; du diagramme (2) peuvent étre choisis
comme les corps de fonctions méromorphes de certaines parties (appelées domaines ana-
lytiques) d’une courbe analytique. Nous utilisons ensuite ce résultat pour démontrer un
principe local-global et donner des applications aux formes quadratiques et a 'u-invariant.
Les résultats obtenus généralisent ceux de [34].

Avant de présenter les résultats principaux de ce chapitre, nous introduisons un peu
de terminologie.

DEFINITION. Soit K un corps. Soit X une K-variété et G un groupe linéaire algébrique
sur K. On dit que G agit fortement transitivement sur X si G agit sur X et que pour
toute extension de corps L/K, soit X (L) = ) soit G(L) agit transitivement sur X (L).

En général, demander que G agisse fortement transitivement sur X est plus restric-
tif que demander que X soit homogene sous G. En revanche, il est montré dans [34,
Remark 3.9] que si G est un groupe linéaire algébrique sur K et X/K est une variété
projective, alors les deux notions sont équivalentes.

Nos résultats principaux, les principes locaux-globaux que nous montrons, sont :

THEOREME. Soit k un corps ultramétrique complet non trivialement valué. Soit C
une courbe k-algébrique normale irréductible projective. On note F le corps de fonctions
de C. Soit X une F-variété et G un groupe linéaire algébrique connexe rationnel sur F
qui agit fortement transitivement sur X.

Soit V(F) l’ensemble de toutes les valuations non triviales de rang 1 sur F' qui ou bien
prolongent la valuation de k ou bien sont triviales sur k.

Soit C*" "analytifié au sens de Berkovich de C' ; alors F = #(C*"), ou .4 désigne
le faisceau de fonctions méromorphes sur C?*". Alors les principes locauz-globaux suivants
sont vrais :

e (Theorem 3.2.11) X (F) # 0 <= X (M) # 0 pour tout x € C*".
e (Corollary 3.2.18) Si car k =0 ou X est une variété lisse, alors :
X(F)#0 < X(F,)# 0 pour tout v € V(F),
ou F, désigne le complété de F' par rapport a v.

L’énoncé ci-dessus reste vrai pour les courbes affinoides si \/|k*| # Rsg, ot /|kX|

est la cloture divisible du groupe des valeurs |k*| de k. Etant un principe local-global par
rapport aux complétés, la deuxieme équivalence ressemble a des versions plus classiques
de principes locaux-globaux. L’énoncé peut se formuler de facon a inclure les corps de
base trivialement valués, méme si cela ne nous donnerait pas de nouvelles informations
puisqu’au moins un des surcorps serait alors égal a F.
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REMARQUE. Pour démontrer nos résultats principaux, nous avons besoin de moins
que la transitivité forte. Plus précisement, il suffit de supposer que pour tout complété
F de F par rapport a une valuation qui prolonge celle de k, soit X (ﬁ ) = 0 soit le
groupe G(F) agit transitivement sur I'ensemble X (F). Nous pouvons méme nous re-

~

streindre a certains de ces complétés, notamment a ceux pour lesquels deg tr;F' =0 et

rang@ﬁ “1/1E*| ®z Q =1, ou k, respectivement F , est le corps résiduel de k, respective-

ment F. (Ce sont les complétés par rapport aux valuations induites par les points de type 3
de la courbe, voir la définition 1.8.1).

Nous rappelons que pour toute extension de corps F/k finiment engendrée de degré
de transcendance 1, il existe une unique courbe normale projective algébrique sur k avec
corps de fonctions F'. Donc, le résultat du théoreme ci-dessus s’applique a tout tel corps F.

Pour montrer les principes locaux-globaux énoncés ci-dessus, nous construisons des
recouvrements particuliers des courbes sur lesquels le recollement peut se réaliser (appelés
bons recouvrements, voir la définition 3.1.6). Lors de cette étape, les points de type 3 sont
cruciaux. Un point de type 3 a de bonnes propriétés topologiques et algébriques. Plus
précisément, une courbe analytique est un graphe réel sur laquelle un point de type 3 est
d’arité 2 ; de plus, 'anneau local du faisceau structural d’'un point de type 3 est un corps.
Dans la Figure 3, z est un point de type 3. L’existence de tels points est équivalente a
la condition 4/|k>| # Rsg ; ceci est la raison pour laquelle le théoréme 3.2.11 est d’abord
montré sous cette hypothese. Le résultat est ensuite démontré dans toute sa généralité en
utilisant des arguments de théorie des modeles. Voici un bref résumé de la preuve dans le
cas ol \/|kX| # Rxy.

Nous rappelons qu'un domaine affinoide d’un espace analytique de Berkovich est un
domaine analytique (i.e. le faisceau structural y est bien défini), isomorphe & un espace
affinoide. De plus, une intersection finie de domaines affinoides d’une courbe analytique (et
plus généralement, de tout espace de Berkovich séparé) est encore un domaine affinoide.
Nous commencons par introduire la notion cruciale de bon recouvrement.

DEFINITION (Definition 3.1.6). Un recouvrement fini &/ d’une courbe k-analytique est
appelé bon si :
(1) les éléments de U sont des domaines affinoides ne contenant que des points de
type 3 dans leur bord topologique ;
(2) pout tous U,V e U,U #V, UNV = 90U NIV, ou, de fagon équivalente, U NV
est un ensemble fini de points de type 3 ;
(3) aucun élément de U n’est contenu dans un autre élément de U.

Voir la Figure 4 ci-dessous pour un exemple de bon recouvrement de la droite analy-
tique projective.

Pour une courbe normale irréductible projective k-analytique C, soient U,V des do-
maines affinoides connexes de C tels que U NV soit un seul point de type 3, noté {n}.
(Ceci est un cas particulier d’'un bon recouvrement.) Alors, en suivant les notations du
diagramme (2), on note F := .#(C), Fy == A ({n}), F1 := #(U),Fy := # (V). Nous
commencons par montrer que le recollement est possible avec ce choix de corps pour tout
groupe linéaire algébrique rationnel G/F. Ceci est ensuite généralisé a un bon recouvre-
ment quelconque de la droite analytique projective. Pour étendre le résultat a toute courbe
analytique normale irréductible projective C', nous utilisons la restriction des scalaires de
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Weil pour “descendre” au cas de la droite analytique projective (cette idée est aussi em-
ployée par HHK dans [34]).

. 1
Figure 4 : exemple d’'un bon recouvrement pour ]P’k’an

Finalement, apres avoir démontré que le recollement est possible, le principe local-
global du théoreme 3.2.11 est obtenu comme conséquence relativement directe du recolle-
ment.

Pour obtenir le corollaire 3.2.18 a partir du théoreme 3.2.11, nous établissons une
connexion précise entre les points d’une courbe analytique de Berkovich et les valuations
dont on peut munir son corps de fonctions. Ceci est 'objet de la proposition 3.2.14. Le
reste est alors une conséquence des bonnes propriétés algébriques des corps A, x € C,
notamment de leur henselianité.

A la différence de HHK qui travaillent sur des modeles d’une courbe algébrique, nous
travaillons directement sur des courbes analytiques. Remarquons que nous n’imposons pas
de conditions supplémentaires au corps complet ultramétrique de base k. Ceci est une des
différences fondamentales avec le Theorem 3.7 de [34], ou le corps de base doit étre complet
par rapport a une valuation discrete. Une autre différence est dans la nature des surcorps,
qui ici sont des complétés ou des corps de fonctions méromorphes. La section 3.4 montre
que ces derniers contiennent ceux qui apparaissent dans l’article de HHK, et donc que [34,
Theorem 3.7] est une conséquence du principe local-global énoncé dans le théoréeme 3.2.11.
De plus, nous montrons que l'inverse est aussi vrai si on choisit un modele “assez fin”. La
preuve du théoreme ci-dessus est basé sur la méthode de recollement, mais utilisé dans un
cadre différent de celui de [34].

Comme conséquence de nos résultats principaux, dans le contexte des formes quadra-
tiques, nous obtenons le théoréme suivant, qui généralise [34, Theorem 4.2]. Il est un
corollaire direct des principes locaux-globaux mentionnés précédemment car la variété pro-
jective définie par une forme quadratique satisfait toutes les hypothéses du théoreme 3.2.11
(en particulier I'existence d’un groupe linéaire algébrique connexe rationnel qui agit forte-
ment transitivement sur elle).

THEOREME. Soit k un corps ultramétrique complet non trivialement valué. Soit C' une
courbe normale irréductible projective algébrique sur k. On note F le corps de fonctions
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de C. Supposons que car(F) # 2. Soit q une forme quadratique sur F de dimension
différente de 2.

Soit V(F) U’ensemble de toutes les valuations non triviales de rang 1 sur F' qui soit
prolongent la valuation de k soit sont triviales sur k.

Soit C* analytifié au sens de Berkovich de C. Alors F = .#(C*"), ot A est le
faisceau de fonctions méromorphes sur C?".

(1) (Theorem 3.4.1) La forme quadratique q est isotrope sur F' si et seulement si elle
est isotrope sur M, pout tout x € C?".

(2) (Corollary 3.4.2) La forme quadratique q est isotrope sur F' si et seulement si elle
est isotrope sur F, pour tout v € V(F'), ou F, est le complété de F par rapport
av.

Comme mentionné dans I'introduction de [34], on s’attend a ce que pour des corps assez
“gentils” K, l'u-invariant reste le méme pour les extensions finies, et devienne 2du(K ) pour
les extensions finiment engendrées de degré de transcendence d. Puisque nous ne travaillons
qu’en dimension 1 ici, ceci explique la motivation derriére la définition suivante :

DEFINITION. Soit K un corps.

(1) (Kaplansky) L’'u-invariant de K, noté u(K), est la dimension maximale des
formes quadratiques anisotropes sur K. On dit que u(K) = oo s'il existe des
formes quadratiques anisotropes sur K de dimension arbitrairement grande.

(2) (HHK) L'u-invariant fort de K, noté us(K), est le plus petit nombre réel m tel
que :

e u(E) < m pour toute extension finie de corps E/K ;
. %u(E) < m pour toute extension de corps finiment engendrée E/K de degré
de transcendance 1.
On dit que us(K) = oo 8'il existe de telles extensions E/K d’u-invariant arbi-

trairement grand.

Le théoreme ci-dessus mene & des applications sur l'u-invariant. Soit k un corps
ultramétrique complet avec corps résiduel & tel que car(k) # 2. On suppose que soit |k*|
est un Z-module libre avec rang;|k*| =: n, ou, plus généralement, que dimg /|k*| =: n,
ou n est un entier naturel. Ceci est encore une différence avec les résultats correspondants
de HHK dans [34], ou '’hypothese sur le corps de base est qu'’il soit complet par rapport
a une valuation discrete, c’est-a-dire que son groupe de valeurs soit un Z-module libre de
rang 1. Nous obtenons une borne supérieure sur l'u-invariant d’une extension finiment
engendrée de k de degré de transcendance au plus 1, qui ne dépend que de us(k) et n.
Plus précisement, en terme de I'u-invariant fort :

COROLLAIRE (Corollary 3.4.28). Soit k un corps ultramétrique complet. Supposons
que car(k) # 2.
(1) Si dimg +\/|k*| =:n,n € Z, alors us(k) < o+l (k).
(2) Si|k*| est un Z-module libre avec rangy|k*| =: n,n € Z, alors us(k) < 2"ug(k).
Le corollaire 3.4.28 est une conséquence du principe local-global obtenu pour les formes
quadratiques (théoreme 3.4.1) et des bonnes propriétés algébriques que les anneaux locaux
d’une courbe analytique satisfont, notamment [’hensélianité.

L’auteure ignore s’il y a égalité dans le corollaire ci-dessus. Ceci est vrai dans le
cas particulier ot n = 1 en utilisant [34, Lemma 4.9], dont la preuve n’utilise pas le
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recollement. De cette maniére nous obtenons [34, Theorem 4.10], qui est un des résultats
principaux de [34] sur les formes quadratiques. Ceci est une nouvelle preuve du fait
que u(Qp(7T)) = 8, ol p est un nombre premier différent de 2, originellement démontré
dans [58|.

COROLLAIRE (Corollary 3.4.30). Soit k un corps complet par rapport a une valuation
discréte tel que car(k) # 2. Alors us(k) = 2uq(k).

Chapitre 4 : Recollement sur des fibres analytiques et le principe local-
global.

Dans ce chapitre nous montrons que le recollement est possible “autour” de certaines
fibres d’une courbe analytique relative. Ceci est ensuite appliqué pour obtenir un principe
local-global sur le corps des fonctions méromorphes surconvergentes sur ces fibres. Nous
montrons aussi que ce dernier peut s’interpréter comme le corps de fonctions d’une certaine
courbe algébrique. Comme précédemment, les principes locaux-globaux obtenus peuvent
s’appliquer aux formes quadratiques (si le corps de base est de caractéristique différente
de 2).
Ce chapitre a deux objectifs principaux :

(1) établir un premier pas vers une stratégie pour le recollement en dimension supérieure
et les applications correspondantes au principe local-global ;

(2) généraliser les résultats obtenus dans le Chapitre 3 ; plus précisément, démontrer
un principe local-global sur des courbes algébriques (c’est-a-dire leurs corps de
fonctions) définies sur une famille plus grande de corps ultramétriques (qui ne
sont pas nécessairement complets).

Les résultats principaux que nous démontrons sont les suivants (voir le théoreme 4.6.8
pour I’énoncé précis) :

THEOREME (Theorem 4.6.8). Soit k un corps ultramétrique complet non trivialement
valué.

Soient S,C' deux bons espaces k-analytiques tels que S soit normal. On suppose que
dim S < dimg Rso/|k*| ®7z Q. On suppose qu’il existe un morphisme m: C — S tel que C
est une courbe propre plate relative sur S. Pour tout domaine affinoide Z de S, on pose
Cy :=7Y2) et Fy == M (Cy), ou M désigne le faisceau des fonctions méromorphes
sur C. Soit x € S tel que Og 5 soit un corps. On désigne par F la fibre de x dans C.

Supposons qu’il existe un voisinage connexe affinoide Zy de x tel que : (1) toutes les
fibres de w sur Zy sont des courbes analytiques projectives normales irréductibles ; (2) Cz,
est normale ; (3) |y,  Czy = Zo est algébrique.

Soit G/Fyz, un groupe linéaire algébrique connexe rationnel qui agit fortement transi-
tivement sur une variété H/Fz,. Alors le principe local-global suivant est vrai :

H(lim Fz) # 0 <= H(Mcu)# D pour tout u € 7 (z),
T€EZ
ot la limite directe est prise sur tous les voisinages affinoides connexes Z C Zy de x.

Nous remarquons que la limite directe qui apparait a gauche du principe local-global
est le corps des germes de fonctions méromorphes sur la fibre de = dans C.

Nous ne travaillons que sur les fibres de points en lesquels ’anneau local est un corps.
L’ensemble de tels points est toujours dense. En particulier, dans le cas des courbes, si x
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est un point qui n’est pas rigide (voir la définition 1.5.10 ; les points rigides sont ceux
qu’on voit dans les espaces rigides), alors O, est un corps. Méme si cela n’apparait pas
explicitement pendant le chapitre, la raison derriere cette hypothese est que pour pouvoir
appliquer les résultats du Chapitre 2 et recoller “autour” de la fibre, nous avons besoin
que la fibre ne soit pas un diviseur.

Pour montrer le théoréeme 4.6.8, comme les fibres d’une courbe analytique relative sont
munies d’une structure de courbe analytique, nous suivons un raisonnement similaire a
celui du cas de dimension un. Cependant, beaucoup de difficultés techniques apparaissent
dans ce cadre relatif. Voici un bref résumé de la preuve.

Nous construisons des recouvrements particuliers d’un voisinage de la fibre sur lesquels
le recollement est possible (qu’on appelle bons recouvrements relatifs) ; ils représentent
P’analogue relatif des bons recouvrements introduits dans le Chapitre 3. Nous traitons
d’abord le cas de Pgan - la droite analytique projective relative sur S. Pour ce faire, nous
utilisons la notion d’épaississement d’un domaine affinoide, dont 'idée apparait dans un
texte non publié de Jérome Poineau. Si U est un domaine affinoide de la fibre .%, de x dans
IP’}SJan, un Z-épaississement de U est un domaine affinoide Uy de P;an tel que UzNF, = U,
ol Z est un voisinage affinoide de x dans S. Les épaississements des domaines affinoides
de 7, existent et ont de bonnes propriétés si Z est choisi assez petit.

Soit U un bon recouvrement de la fibre .%,. Alors, il existe un voisinage affinoide Z de
x tel que pour tout U € U, le Z-épaississement Uy de U existe. Soit Uy 'ensemble de tous
ces Z-épaississements d’éléments de /. Nous montrons que pour Z assez petit, Uy satisfait
les propriétés pour que les résultats du Chapitre 2 puissent s’appliquer. Dans ce cas, Uz
est dit étre un bon recouvrement Z-relatif de Pgan. En particulier, nous remarquons que
les points de type 3 jouent encore un role tres important. Leur existence dans la fibre est
garantie par 'hypothese sur la dimension de S. Nous montrons alors que le recollement
peut s’appliquer aux bons recouvrements relatifs dans le cas de P12",

En utilisant des tirés en arriere de morphismes finis vers P1#" une notion de bon
recouvrement relatif peut se construire plus généralement dans le cas des courbes normales
propres relatives. En rajoutant a ceci la restriction des scalaires a la Weil, on montre que
le recollement est possible sur des bons recouvrements relatifs dans ce cadre plus général.

Finalement, apres avoir démontré que le recollement est possible autour de la fibre, le
principe local-global du théoreme 4.6.8 peut étre démontré. Ceci nécessite toutefois plus
de travail que dans le cas de la dimension un.

Il existe une connexion entre les points d’une fibre et les valuations dont son corps de
fonctions méromorphes surconvergentes peut étre muni. Nous rendons cela précis dans la
proposition 4.6.6. Comme dans le cas de la dimension un, combiné avec ’hensélianité des
corps A, ., m(2) = x, cette connexion nous permet d’obtenir un principe local-global par
rapport aux complétés. Avant d’énoncer ce résultat, nous rappelons que le corps Og ;. est
naturellement muni d’une valuation | - |;.

THEOREME (Theorem 4.6.8°). Avec les mémes notations que dans [’énoncé du
théoréme 4.6.8, on note Fo, = lim AM(Cz). Soit V(Fp,) l'ensemble des valuations non
triviales de rang 1 sur Fo, qui induisent ou bien |- |, ou bien la valuation triviale sur O.
Pour v € V(Fo,), soit Fo, . le complété de Fo, par rapport a v.

Sicar k=0 ou H est lisse, alors le principe local-global suivant est vrai :

H(Fo,) #0 < H(Fo,.,) # 0 pour tout v € V(Fo,).
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Nous remarquons que, avec les mémes notations que dans le théoreme ci-dessus,
Os, = hﬂz Os(Z), ou la limite directe est prise sur les voisinages affinoides Z de x
dans S. En utilisant les travaux de Grothendieck sur les limites projectives de schémas
pour construire une courbe relative algébrique sur O(Z) a partir d’une courbe algébrique
sur O, et comme conséquence du théoreme ci-dessus, nous obtenons la généralisation
suivante du corollaire 3.2.18.

THEOREME (Theorem 4.6.9). Soit S un bon espace normal k-analytique tel que dim S <
dimg Rso/|k*| @7z Q. Soit x € S tel que Oy soit un corps. Soit Co, une courbe algébrique
lisse géométriquement irréductible sur le corps Oy. On note Fp, le corps de fonctions
de Co, .

Soit G/Fo, un groupe linéaire algébrique connexe rationnel qui agit fortement transi-
tivement sur une variété H/Fp,. Si car k =0 ou H est lisse, alors :

H(Fo,) #0 < H(Fo,.,) # 0 pour tout v € V(Fo,),
ou V(Fo,) est comme dans le théoréme 4.6.8 ci-dessus.

Un élément crucial pour démontrer le théoreme 4.6.9, et plus généralement, pour
mettre en valeur l'interét de ce chapitre, est que, dans le cadre du théoreme 4.6.8, les
fonctions méromorphes autour de la fibre de x sont algébriques. Plus précisement, le corps
des fonctions méromorphes surconvergentes sur la fibre de z est le corps de fonctions d’une
courbe algébrique sur O, (qui est 1’algébrisation d’un voisinage de la fibre suivi par un
changement de base & O, ; voir le corollaire 4.4.15). Pour montrer ce résultat non trivial,
nous utilisons un théoreme du type GAGA pour le faisceau des fonctions méromorphes
(voir le théoreme 1.7.8).

A la fin de ce chapitre nous calculons quelques exemples d’anneaux locaux des espaces
analytiques de Berkovich qui sont des corps et auxquels les résultats ci-dessus peuvent
s’appliquer. Plus précisément, nous calculons les anneaux locaux en les points de Al2"
pour lesquels 'anneau local correspondant est un corps. De plus, nous donnons une
description de 'anneau local en certains points de A™*" n € N. Voici un exemple d’un tel
corps, qui correspond & un point de type 3 d’une droite analytique affine.

EXEMPLE. Soit (k,|-|) un corps ultramétrique complet. Soit € Rso\+/|k*]|. Soit
x € Ap™ une semi-norme multiplicative sur k[T] telle que |T|, = (en fait, = est le seul
. 1,an
tel point de A,™").
Pour tous r1,79 € Ry tels que r1 < 7 < 79, on pose

Ap o = E anT" :ap € k, lim J|ay|ry =0, lim |a,|r} =0p.
7 n—-+oo n——oo
ne

Alors, OAllc,an’x =lim _ Ariro-

Comme dans le Chapitre 3, puisque la variété projective définie par une forme quadra-
tique satisfait les hypotheses des résultats présentés, I’exemple naturel auquel les énoncés
de ce chapitre peuvent s’appliquer est celui des formes quadratiques (sous I’hypothése
car k # 2).






CHAPTER 1

Introduction to Berkovich Spaces

The aim of this chapter is to give an overview of the construction of Berkovich spaces
and prove certain properties for them that we need for the next parts of the manuscript.
The content of the first six sections is classical, so we only provide references for most
of the results. The exposition follows [6], [42], and [64]. The last two sections are more
specialized, containing for the most part results (including proofs) that will be applied in
the next chapters.

We start by presenting the algebraic setting on which Berkovich’s theory is founded.
Since the objects in question are analytic, their algebraic counterparts will be rings en-
dowed with some norm structure with respect to which they are complete (i.e. Banach
rings). We make this more precise in Section 1.1, where the notion of (semi-)norm is
defined and some of its properties are presented. Finally, we give the notion of Berkovich
analytic spaces over Banach rings. More precisely, the analogue of the affine spectrum,
called Berkovich spectrum, is discussed.

In Section 1.2, we give a classical example (on a topological level) of a Berkovich space,
the analytic affine line. This is one of the most understood objects in the theory, and its
properties are a good indicator of the kind of properties that analytic curves satisfy.

Like schemes, Berkovich spaces have “building blocks”, called affinoid spaces. Roughly,
affinoid spaces are to Berkovich spaces (or at least a certain subclass thereof known as good
Berkovich spaces) what finite type affine schemes are to a finite type scheme. One funda-
mental difference between the two is that affinoid spaces are compact (meaning Hausdorff
and hence not necessarily open), which is the cause of many technical difficulties in the
Berkovich setting. Another particularity is that there are several notions of boundary for
affinoid spaces. These objects are the topic of Section 1.4. We start with their algebraic
counterpart, affinoid algebras (which are a generalization of Tate’s affinoid algebras) in
Section 1.3, and continue with the construction of the structural sheaf.

In Section 1.5, good analytic spaces and some of their main properties are presented.
Local properties as being reduced, normal, regular, etc., exist for Berkovich analytic spaces
and are briefly discussed in this section. Several classes of morphisms in the category of
good Berkovich spaces and their main properties are presented. Most of these notions
are similar to their algebraic counterparts, but not all; this is due to the (sometimes) bad
behaviour of boundary points. Berkovich spaces possess very nice topological properties
(such as being locally arcwise-connected).

An analytification functor and GAGA-type theorems exist for Berkovich spaces and
are the main tool for applying Berkovich’s theory to arithmetic geometry. A topology is
induced from a scheme to its Berkovich analytification, called the Zariski topology with
respect to which the notion of irreducibility can be obtained. This is coarser than the
Berkovich topology, but behaves quite nicely with respect to GAGA-principles. These
facts are the topic of Section 1.6.
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In Section 1.7, we discuss a somewhat less classical topic, the sheaf of meromorphic
functions for Berkovich spaces. The definition and main properties resemble those of the
sheaf of meromorphic functions for schemes. Seeing as later on we interpret patching as the
gluing of meromorphic functions, this notion is crucial to our work. In particular, we give
a detailed proof of a GAGA-type result coming from a MathOverflow thread (see [57]).

Finally, in Section 1.8, a more detailed account of analytic curves is given, seeing as
it is the case of most interest to us. It includes some general results on curves (most
of which shown in [20]), and some specific statements that we will need later. This is
arguably the class of Berkovich spaces that is best understood and most studied: in [20],
Ducros shows that Berkovich analytic curves have a(n infinite) graph-like structure; many
of the notions defined on Berkovich spaces are much better behaved in the case of curves
than in general (e.g. boundaries); an algebraic classification of points can be given, and
it is usually possible to interpret it topologically. At the end of this section, we give a
description of the points of the analytic affine line.

1.1. Banach rings and the Berkovich spectrum
All rings considered here are assumed to be commutative with unity.

1.1.1. Valued Fields. Let k be a field.

DEFINITION 1.1.1. An absolute value on k is a function |- | : K — R such that:
(1) [1f =1,
(2) for x € k, |z| = 0 if and only if z = 0,
(3) Va,y €k, |yl = |y,
(4) Vx,y € ka ‘:L' - y’ < |ZL‘| + ’y|
We will say that (k,|-|) is a field endowed with an absolute value.
If instead of (4), the following stronger condition is satisfied,
(4) Vz,y € k, |z — y| < max(|z], [y]),
then we say that | - | is a non-Archimedean or ultrametric absolute value on k. In that
case, we will say that (k,|-|) is a non-Archimedean valued (or ultrametric) field. When
there is no risk of ambiguity, we will simply say that k is an ultrametric field.
An absolute value which is not ultrametric will be called Archimedean.

EXAMPLE 1.1.2. (1) For any field k, the function |- |p : & — Rsp, x — 1 if  # 0,
and x — 0 otherwise, determines an absolute value on k. We call |- | the trivial valuation
on k. Remark that |- |o is ultrametric. The trivial valuation is the only absolute value
with which a finite field can be endowed.

(2) The standard Euclidean norm | - | is an absolute value in C. It is Archimedean.

(3) Let p be a prime number. For x € Q*, let a,, b, be the unique integers such that
by >0, (ag,by) =1, and x = 3=. Then, the function |- |p: Q= Rxp,

p_(vp(ax)_ﬂp(bx)) if © 7é 0,
T —
0 otherwise,

where for ¢ € Z\{0}, ¢ = p*»(®) .d and p [d, is a non-Archimedean absolute value on Q. It
is said to be the p-adic valuation on Q.

(4) Let p be a prime number. Then, the function |- |7 : F,(T)) = Rxp, 0 — 0, and
x> o~ "T@) for z # 0, where o > 1 and vp(z) is the largest integer n for which z € (T)",
is a non-Archimedean absolute value on [F,(T).
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The following tells us how to distinguish between Archimedean and non-Archimidean
absolute values.

PROPOSITION 1.1.3. An absolute value | - | on k is non-Archimedean if and only if
In| <1 for alln € Z.

Remark that an absolute value on k determines a metric, and thus a topology on k.
The following definition gives a criterion for when two absolute values induce the same
topology on the underlying field.

DEFINITION 1.1.4. Two absolute values | - |1, | - |2 are said to be equivalent if there
exists a > 0 such that |- |1 = -9.

Ostrowski’s Theorem (see e.g. [44, Theorem 1, Section 1.2]) tells us that, up to

equivalence, Q can only be endowed with the following absolute values: |- |o, | - |00, and
| - |p, p a prime number.
Let | - | be an absolute value on k. We will say that k is complete with respect to | - |

(or simply complete when there is no risk of ambiguity) if it is complete with respect to
the metric | - | induces on k. As usual, one can define the completion (k, |- |) of (k,|-|) by
using the Cauchy sequence construction. Then, (k,| -|) is complete.

EXAMPLE 1.1.5. (1) The field k is complete with respect to its trivial absolute valuation
[+ lo-

(2) The field C is complete with respect to | - |. By the Gelfand-Mazur theorem
(cf. [15], VI, 6, n°4, Théoreme 1), the only complete fields with respect to Archimedean
absolute values are R and C.

(3) Let p be a prime number. We denote the completion of (Q, |- [,) by Q,. It is called
the field of p-adic numbers.

(4) Let p be a prime number. Then, the completion of (F,(T), |- |r) is the field F,((7"))
of Laurent series over [F),.

THEOREM 1.1.6. Let (k,|-|) be a complete field. Let us fix an algebraic closure k of k.
(1) The absolute value | - | can uniquely be extended to k.

(2) The completion k of (k,|-|) is a complete algebraically closed field.

For a prime number p, we will denote by C, the field Q,. It is the p-adic analogue
of C.

Finally, let us mention a few topological particularities of non-Archimedean valued
fields.

PROPOSITION 1.1.7. Let (k,|-|) be a non-Archimedean valued field.

(1) For any x,y € k such that |z| # |y|, one has |z + y| = max(|x|, |y|).

(2) A closed disc of positive radius in k is open.

(3) For any a € k and r € Rxy, let B(a,r) denote the closed disc in k centered at a
and of radius r. Then, for any b € B(a,r), one has B(a,r) = B(b,r).

(4) The field k is a totally disconnected topological space (with respect to the topology
induced by | - |).

NoTATION 1.1.8. For any field k endowed with an absolute value |- |, we denote by |k|
the set {r € Ryo : 3a € k,|a| = r}. Set |k*| = {r € |k| : » # 0}. This is a multiplicative
subgroup of R~o. We denote by +/|k*| its divisible closure.
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Let k be a complete ultrametric field. We will say that K/k is a complete ultrametric
field extension if: (1) K is a field extension of k; (2) K is complete with respect to an
absolute value that extends that of k.

1.1.2. Semi-normed rings. Let A be a ring.

DEFINITION 1.1.9. A semi-norm on A is a function |- | : A — R3¢ such that
(1) o] =0,11] =1,
(2) Vo,y € A, |zy| < |z[lyl,
(3) Vo,y € A,z —y| <[] + [yl.
If condition (2) is strengthened: Vz,y € A, |zy| = |z||y|, we will say that |- | is a multi-
plicative semi-norm on A.
If ker | -| = {0}, we will say that |-|is a norm on A. If | -| is a multiplicative semi-norm
and a norm, we will say that it is a multiplicative norm on A.
If instead of condition (3) we take the following stronger hypothesis:
(3’) VI',y S A7 ’:U - y| < max(|3:|, ’y|)a
then | - | is said to be non-Archimedean.

We will sometimes say that A is a (semi-)normed ring.

ExAaMPLE 1.1.10. (1) The function |- |p : A = Ryp, z — 1 if © # 0, and z — 0
otherwise, determines an multiplicative norm on A, called the trivial norm.

(2) The Euclidean norm | - |o is a multiplicative norm on Z. For a prime number p,
the p-adic absolute value |- |, determines a non-Archimedean multiplicative norm on Z.

(3) Let (k,|-|) be a field endowed with an absolute value. Let a € k. Then, the
function | - |q : kK[T] — Rxo, P(T) + |P(a)|, is a multiplicative semi-norm on k[T]. It is
non-Archimedean if | - | is so.

(4) Let M, (C) be the ring of n x n matrices over C. Let ||| - ||| : M(C) — R>¢ be the
function given by M — sup,ccn\ {0y %, where || - || : C" — R is the Euclidean norm,
ice. (t1,ta,. .., tn) = V]t|% + [t22% + - [ta|%. Then, ||| - ||| is a norm on M, (C).

As before, a semi-norm |-| on A determines a topology on A. Remark that this topology
is Hausdorff if and only if || is a norm. A sufficient condition for two semi-norms to induce
the same topology on A is given by the following;:

DEFINITION 1.1.11. Two semi-norms | - |1, |- |2 on A are said to be equivalent if there
exist real numbers C1,Co > 0 such that Cq| - |1 < |- ]2 < Cof - |1.

In particular, remark that ker| - |; = ker| - |2, so | - |1 is a norm if and only if |- |2 is a
norm.

LEMMA 1.1.12. A multiplicative semi-norm |- | on A is non-Archimedean if and only
if Z is bounded.
Let I be an ideal of A. Then, any semi-norm |- | on A induces a semi-norm on A/I

via 4+ I — inf{|y| : © — y € I}, called the quotient semi-norm on A/I induced by |- |. If
| - | is non-Archimedean, then so is the quotient semi-norm.

Let us introduce the class of morphisms between semi-normed rings that will be of
interest to us.

DEFINITION 1.1.13. Let (A4, |a),(B,]| - |B) be two semi-normed rings (i.e. rings
endowed with semi-norms). A morphism f : A — B is said to be bounded (with respect
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to these semi-norms on A, B, respectively) if there exists a real number C' > 0, such that
for any a € A, |f(a)|p < C - |ala.

The morphism f is said to be admissible if the quotient semi-norm on A/ker f induced
by |- |4 is equivalent to the semi-norm induced on Im(f) by |- 5.

Let |- | be a norm on A. As usual, we will say that (A,|-|) is complete if any Cauchy
sequence in A has a limit in A (with respect to |-|). In that case, A is said to be a Banach
ring. In Berkovich’s theory, Banach rings plays a role analoguous to commutative rings in
algebraic geometry.

In Example 1.1.10, (Z,| - |s), (Mn(C),||| - |||) are Banach rings.

DEFINITION 1.1.14. Let (A, |- |a),(B,| - |s) be Banach rings, such that B is an A-
algebra. We say that (B, |-|p) is a Banach A-algebra if the morphism A — B is bounded.

LEMMA 1.1.15. Let I be a closed ideal of A. If |- | is a norm on A, then the quotient
semi-norm | - |4/ on A/I induced by |- | is a morm on A/I. Moreover, if (A,]-]) is a
Banach ring, then so is (A/I,[-|a/1)-

If | - | is merely a semi-norm on A, it does not make sense to speak of completeness
seeing as the Cauchy sequences in A may have more than one accumulation point. There
is, however, a notion of completion.

THEOREM 1.1.16. Let (A, |-|) be a semi-normed ring. The set of equivalence classes of
Cauchy sequences in A forms a ring A naturally endowed with a norm |-|". Then, (A,]-|")

is @ Banach ring, and there is a natural admissible morphism A — A such that the image
of A is dense. Moreover, |- | is non-Archimedean if and only if | -|" is non-Archimedean.

We will say that (A,|-|') is the completion (in some texts referred to as separated
completion) of (A, |- |). The admissible morphism A — A is an embedding if and only if
| - | is a norm. It is an isomorphism if and only if (A4, |- |) is a Banach ring. Remark that
(A, | -|") is the completion of A/ker |- | with respect to the quotient semi-norm.

1.1.3. The spectral radius. Let (A,]|-|) be a Banach ring. We present here a
canonical way to obtain from |- | a semi-norm with particularly nice properties (e.g. as
close as possible to being multiplicative).

LEMMA 1.1.17 (Fekete’s Lemma). Let x € A. Then, pa(x) := lim,_, oo |2"|Y/™ exists.
Moreover, pa(x) = infpen |2™[Y/™.

DEFINITION 1.1.18. For any = € A, pa(x) is called the spectral radius of x.

LEMMA 1.1.19. (1) pa(1) = 1;
(2) Va,y € A pa(z —y) < pa(x) + paly);
(3) Va,y € A, pa(zy) < pa(z)pa(y);
(4)Vn €N, Vo € A, pa(z™) = pa(z)™.
If A is non-Archimedean, then Vr,y € A, pa(x —y) < max(pa(z), pa(y)).

We will call ps the spectral semi-norm of A.
Another important property of the spectral semi-norm is that it remains the same
even if | - | is replaced by an equivalent norm.
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1.1.4. Semi-normed modules. Let (A, |- |) be a ring endowed with a semi-norm.
Let M be an A-module.

DEFINITION 1.1.20. A semi-norm on the A-module M is a function || - || : M — R,
satisfying:
(1) Va,y € M, ||z =yl < =]l + [lyl;
(2) there exists a real number C' > 0 such that Va € A,Vm € M, |jam| < Clal||m||.
If ker|| - || = 0, we will say that || - || is a norm on M.
If condition (1) is strengthened to: Va,y € M, ||z — y|| < max(||z|,||y|), then || - || is
said to be non-Archimedean.

Remark that for any semi-norm || - || on M, ||0]| = 0 (because of condition (2) above
and the fact that |0] = 0).

A semi-norm ||-|| defines a topology on M, which is Hausdorff if and only if ||-|| is a norm.
There is once again a notion of equivalent semi-norms which gives a sufficient condition for
semi-norms to induce the same topology on M: two semi-norms || - ||1, || - [|2 are said to be
equivalent if there exist positive real numbers C1, Cy such that C1| - ||1 < || - [l2 < Cofl - ||1-

Hence, || - || can be replaced by an equivalent semi-norm for which in condition (2) of
Definition 1.1.20 we can take C' = 1.

Let M’ be an A-submodule of M. Then, a (non-Archimedean) semi-norm || - || on M
induces a (non-Archimedean) semi-norm on M /M’ via x + M' — inf{||y|| : z —y € M'},
called the quotient semi-norm.

We can define in the same way as in Definition 1.1.13 the notion of bounded and
admissible morphisms between semi-normed A-modules.

Let || - || be a norm on M. Then, M is said to be complete with respect to || - | if
any Cauchy sequence in M has a limit in M. In that case, we will say that (M, | -||) is a
Banach A-module.

LEMMA 1.1.21. Let M’ be a closed A-submodule of M. If || - || is a norm on M, then
the quotient semi-norm ||-||pr/ar on M /M induced by || -|| is a norm on M/M'. Moreover,
if (M, || -||) is @ Banach A-module, then so is (M/M',|| - || pr/ar)-

With the same remarks as in the case of semi-normed rings, there is a notion of
completion.

THEOREM 1.1.22. Let (M,|| -||) be a semi-normed A-module. The set of equivalence
classes of Cauchy sequences in M forms an A-module M naturally endowed with a norm
| - |I'. Then, (M,]||-1|') is a Banach module over both A and A, and there is a natural

admissible morphism M — M such that the image of M is dense. Moreover, Il -l is
non-Archimedean if and only if || - || is non-Archimedean.

We will say that (1\7, | - 1I) is the completion (in some texts referred to as separated

completion) of (M, ||-||). The admissible morphism M — M is an embedding if and only if
||-|| is a norm. It is an isomorphism if and only if (M, ||-||) is a Banach A-module. Remark

that (]\7, | - |I') is the completion of M /ker || - || with respect to the quotient semi-norm.

1.1.5. Complete tensor product of modules in the non-Archimedean case.
Let (A,|-]) be a non-Archimedean normed ring. Let (M, |- |ar), (N, |- |n) be two normed
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non-Archimedean A-modules. We can endow the tensor product M ® 4 N with the semi-
norm

n
HI’H ;= inf {i_rrllaxn \mZ]M|nZ|N LT = Zmz ® nz} .
e i=1

DEFINITION 1.1.23. The complete tensor product of M and N, denoted M@ 4N, is the
completion of M ®4 N with respect to the semi-norm || - |. It is a Banach module over

both A and A,
The complete tensor product satisfies a universal property.

DEFINITION 1.1.24. Let (Py, |- |1), (P2, |- ]2), (Ps, ]| |3) be normed A-modules. A mor-
phism ¢ : P, X P, — P3 of A-modules is said to be a bounded bilinear morphism if there
exists C' > 0 such that for any « € P1,y € P, |p(z,y)|3s < Clz|i|yl2.

ProrosiTION 1.1.25 ([11, 2.1.7/1]). Let P be a Banach A-algebra. Any bounded
bilinear morphism M x N — P is uniquely factorised through M® o N.

Other useful properties of this construction that we need are the following (non-trivial)
results:

THEOREM 1.1.26 ([29], Section 3, Thm. 1(4)). Let k be a complete ultrametric field.
Let M, N be non-Archimedean k-Banach vector spaces. Then, the canonical map M ®y
N — M®iN is an embedding with a dense image.

THEOREM 1.1.27. [41, Appendix D.4.2] Let A be a non-Archimedean Banach ring.
Let M,N,M’', N' be Banach A-modules. If there exist A-linear maps ¢ : M — M’ and
¥ : N — N’ that are surjective and admissible, then p@41 : MR AN — M'@aN’ is
surjective and admissible.

For a detailed treatment of complete tensor products, see [11, 2.1.7].

1.1.6. The Berkovich spectrum. All rings considered here are assumed to be com-
mutative with unity. We now define and explore the Berkovich analogue of the affine
spectrum, defined in [6, Section 1.2].

DEFINITION 1.1.28. Let (A, || - ||) be a ring endowed with a semi-norm. A semi-norm
| | on A is said to be || - || —bounded if there exists a positive real number C, such that
1<l

When there is no risk of ambiguity, we will simply say that |- | is a bounded semi-norm
on A.

DEFINITION 1.1.29 (The Berkovich Spectrum). Let (A, | - ||) be a Banach ring. The
Berkovich spectrum of A, denoted M(A), is the set of all bounded multiplicative semi-
norms on A.

We endow M (A) with the coarsest topology for which the function v, : M(A) — Rxo,
|- | = |f|, is continuous for all f € A.

REMARK 1.1.30. For any |- | € M(A), | -] < || - ||. To see this, fix |-| € M(A), and
let C' > 0 be such that |- | < C| - ||. Then, for any a € A and any n € N, we have
la|™ = |a™| < C|a™|| < C|la||™, so |a] < ¥/C|la||. By taking n — 400, we obtain |a| < ||al|,
sol-1<]-I
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Remark that because of their multiplicativity, M(A) does not contain equivalent semi-
norms. Also, M(A) does not change if we replace || - || by an equivalent norm.

CONVENTION 1.1.31. For a point z of the space M(A), we will also use the notation
| - | when considering it as a semi-norm on A.

ExAMPLE 1.1.32. (1) Let (k,|-|) be a complete ultrametric field. Then, M (k) is the
single point {| - |}.

(2) Let us briefly describe M(Z), where Z is endowed with | - |s. This can be done
using Ostrowski’s theorem on the classification, up to equivalence, of all absolute values
that Q can be endowed with.

Let | - |, be a multiplicative norm on Z. Then, this defines an absolute value on Q, so
we have the following possibilities:

e |- |z =] |o-the trivial norm on Z;

o ||z =|-1]% for some o > 0, and in order for this to be an absolute value on Q,
a € (0,1];

e there exists a prime number p such that |- |, = |- \g for some 8 > 0; here
B € (0,400).

Suppose that | - |, is a multiplicative semi-norm on Z that is not a norm. Then, ker| - |,
determines a non-zero prime ideal P, of Z. Consequently, there exists a prime number
p € Z, such that P, = pZ. The quotient semi-norm on Z/pZ = F, is a norm, so it is
trivial. Consequently, |- |, = | - |p,0, where |z|,0 :== 1 if p fz, and |z|,o := 0 otherwise.
(Remark that, informally, “limg_, ;| - ]5 =|-|po”.)

‘ ) ’p,O

Finally, M(Z) = {|-|o,||%, |- |5, - lpo:0<a<1,3>0,p—prime}. This gives us the
following “tree-like” illustration of M(Z). For any prime p, there is a “branch” associated
to it that is homeomorphic to an interval. There is an additional branch associated to the
Euclidean norm | - |, which is also homeomorphic to an interval. All of these branches
come together at the “central” point of the tree, corresponding to the trivial valuation.
The open neighborhoods of | - |p have only finitely many boundary points, meaning they
contain all but a finite amout of the branches of the tree.

We will see other important examples later. Berkovich spaces will be defined over a
complete ultrametric field, for which the space M (k) will be relevant. There also exist
Berkovich spaces defined over Z (i.e. over M(Z)), which include at the same time elements
of the Archimedean and non-Archimedean worlds (see [59]). This is an area of research
that is in the rise.
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Let A be a Banach ring, and © € M(A). Then, ker|- |, is a closed and prime ideal
of A, so = induces a semi-norm | - |/, on the domain A/ ker| - |z. Moreover, for any f,g € A
such that |f — g|, = 0, we have that |f|, = |g|.. Thus, |f|, = ]f| where f is the image
of f in A/ker|-|;. Consequently, the quotient semi-norm in A/ ker| |2 is a multiplicative
norm, and can thus be extended to Frac (A/ker| - |;).

DEFINITION 1.1.33. Let A be a Banach ring. For any 2z € M(A), let us denote by
H(z) the completion of Frac(A/ker|-|;) with respect to the quotient norm. We call it the
completed residue field of x.

Remark that there is a canonical isometric embedding k < H(z), implying H(z) is a
complete ultrametric field.

The completed residue fields are important objects in Berkovich’s theory. These are
the fields where analytic functions take their values.

Before stating the main properties of the Berkovich spectrum, let us present another
construction of it, which draws an analogy with the affine spectrum.

DEFINITION 1.1.34. Let A be a Banach ring. Let K, L be two complete ultrametric
fields, such that there exist bounded maps ¢ : A — K, ¢ : A — L.

The morphisms ¢x, ¢, are said to be equivalent if there exists a complete field M, a
bounded morphism A — M, and embeddings M — L, M — K corresponding to complete
ultrametric field extensions, such that the following diagram commutes.

Nl

LEMMA 1.1.35. [6, Remark 1.2.2(ii)] Let A be a Banach ring. The points of M(A)
are the equivalence classes (Definition 1.1.34) of bounded morphisms A — K, where K is
a complete ultrametric field.

For a proof of Lemma 1.1.35, see [41, pg. 7, Algebraic Characters].
A crucial property of the Berkovich spectrum is the following:

THEOREM 1.1.36. [6, Theorem 1.2.1] Let A be a Banach ring. Then, M(A) is a
non-empty compact space.

REMARK 1.1.37. In this text, compact will always mean quasi-compact and Hausdorff.

The fact that M(A) is compact (and hence Hausdorff) is one of the main differences
with the algebraic setting. As we will later see, the spectra of certain Banach rings form
the building blocks of Berkovich spaces, and the fact that the building blocks are compact
is a source of technical difficulties. Namely, the structural sheaf of analytic functions will
be defined over these building blocks and will be “nice” there, but this will generally not
be the case for opens.

Another very important property is the following:

THEOREM 1.1.38 (The maximum modulus principle, [6, Theorem 1.3.1]). Let A be a
Banach ring. Then, for any a € A, pa(a) = maxyecaq(a) |ale, where pa is the spectral
radius associated to the norm on A.
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Information can be obtained on the Banach ring A by looking at the infinite vector
(| - |)zem(a)- Here is an example.

LEMMA 1.1.39 ([42, Corollary 3.15]). Let A be a Banach ring. An element a € A is
invertible if and only if |a|, # 0 for all x € M(A).

Let us finish the construction of a functor from the category of Banach rings to the
category of topological spaces (A — M(A)) by giving the class of morphisms that we
consider.

LEMMA 1.1.40. Let A, B be Banach rings. Any bounded morphism A — B gives rise
to a continuous map ¢ : M(B) = M(A).

For a proof, see [41, pg. 8, Induced maps].

REMARK 1.1.41. Let f : A — B be a bounded morphism of Banach rings. Let
v : M(B) — M(A) be the induced continuous morphism of their spectra. For any = €
M(B), there exists a natural isometric embedding H(y) < H(x), where y := ¢(x).

Here is a description of the fibers of these morphisms.

LEMMA 1.1.42. Let A, B be Banach rings. Let f : A — B be a bounded morphism,
and ¢ : M(B) — M(A) the induced morphism of their spectra. Then, for any x € M(A),
the fiber ¢~ (x) is homeomorphic to M(B&aH(x)).

For a proof, see [41, pg. 14, Fibers].
Finally, the following important result will be very useful.

ProprosITION 1.1.43 ([6, Corollary 1.3.6]). Let k be a complete field. Let A be a
Banach k-algebra. Set G = Gal(k®/k), where k*® is the separable closure of k. Then, G

acts on k and M(A®yk). Moreover, there is a homeomorphism M(ARQyk)/G — M(A).
1.2. The Analytic Affine Line

Before continuing with an overview on the construction of Berkovich spaces, we make a
digression in order to describe in detail (only as a topological space) a fundamental example
of these objects. As we will later see, said example illustrates well the main geometric
properties of Berkovich analytic curves. The objects presented here were originally defined
in [6, Section 1.5].

1.2.1. The analytic affine space. Let A be a Banach ring. Set

AP = {multiplicative semi-norms on A[T},T5,...,T,] that are bounded on A}.
We endow the above set with the coarsest topology for which the map
AT — Reg,x — ||, is continuous for all f € ATy, Ts,...,T,)].
The space A'y™ is called the n-dimensional analytic affine space over A. If n = 1,
1,an

we say that A" is the analytic affine line over A. The analytic affine space has nice
topological properties (cf. [59, Théoreme 1.1.13]).

ExampLE 1.2.1. If A is C endowed with | - |, then by the Gelfand-Mazur theorem
we obtain the usual complex affine n-dimensional space Ag’an homeomorphic to C”.

The case of most interest to us is when A is a complete ultrametric field £ and n = 1.
Arguably, these are the (non-trivial) Berkovich spaces that can be described the best. We
now focus on that.
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DEFINITION 1.2.2. For any = € A™, let H(z) be the completion of Frac(k[T]/ker] - |,.)
with respect to the quotient semi-norm. Remark that #H(x) is a complete ultrametric field

and there is a canonical isometric embedding k — #H(x). We denote by k, resp. %, the
residue field of k, resp. H(x).

1.2.2. A,lc’an: the trivially valued case. Let k be a trivially valued field. For any
x € Ai’an, let py := ker| - |5.

If p, # 0, then there exists an irreducible polynomial P(T') € k[T] such that p, = (P).
Then, H(x) = k[T]/(P), and since k is trivially valued, we obtain that H(x) is trivially
valued. Consequently, z determines the following semi-norm on k[T]: @ — 0 if P|Q, and
Q@ — 1 otherwise. We denote npg := x.

Suppose p; = 0. Then, |-| is a multiplicative norm on k[T'] (and hence on k(7")) which
when restricted to k is the trivial norm. This implies that | - |, is non-Archimedean (see
Lemma 1.1.12).

o If |T|, < 1, then for any polynomial P over k, |P|, < 1. Let m, := {P € k[T] :
|P|; < 1}. If my = 0, then z is the trivial norm on k[T, which we denote by
nr1. If my # 0, then there exists an irreducible polynomial () over k, such that
me = (Q). Set r := |Q|, € (0,1). Then, for any P € k[T]\{0}, |P|, = rve("),
where vg(P) is the largest n € N such that Q"|P. We will denote this point by
nqQ,r- Remark that #H(ng,) is the completion of k[T] with respect to the @-adic
valuation.

e Suppose |T'|; > 1, and set s := |T'|, > 1. Then, for any P € k[T]\{0}, |P|, =
sdee P We denote this point by n75. The field H(n75) is then isomorphic to the
field of Laurent series k((T~1)).

+00

nr,s

nr,o

nrPo

Figure 1: A}C’an for k-trivially valued

We obtain the above “tree-like” illustration of Alle’an. To each irreducible polynomial
over k, a branch homeomorphic to an interval is associated. There is an additional branch
corresponding to 77, s > 1, which is also homeomorphic to an interval. They all come
together at the “central point” nr; - the trivial valuation. An open neighborhood of 17
contains all but a finite number of these branches (i.e. it has finite boundary).
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1.2.3. A,lc’an: the algebraically closed case ([6, 1.4.4]). Let (k,|-|) be a complete
non-trivially valued ultrametric field that is algebraically closed.

e For any a € k, let np_qp0 : k[T] — Rxo, P(T) — |P(a)|. This determines a
multiplicative semi-norm on k[T extending the absolute value on k, so ny_q is
a point of Ai’an; it is said to be a type 1 point. Remark that H(x) = k. We will
sometimes denote this point by 7,0.

e For any a € k and r € Ryg, let nr_q, 1 K[T] = Roo, P(T) = >, an(T —a)" —
maxy, |a,|r". This is a multiplicative norm on k[T] extending the absolute value
on k, so ny—qr € A,lg’an. Remark that n7_,, does not depend on a, but only on
the closed disc B(a,r) in k centered at a and of radius r (i.e. for any b € B(a,r),
NT—byr = NT—ar). We will sometimes simply denote 7.

These kinds of points behave differently depending on r. If r € |k*|, 14, is
said to be a type 2 point. In that case, H(z) = k(T) and |H(z)| = |k

If » & |k|, then n,, is said to be a type 3 point. If that is the case, then
H(z) = k, and |H(z)*| is generated by |k*| and r.

Let % := (B )nen be a sequence of decreasing closed discs in k, i.e. B,y1 C B, for all
n € N. Let a,, € k and 7, € R5¢ be such that B,, = B(ay, ). Let us denote by |- |p, the
(unique) point g, , of A™ determined by B,, as above. Then, % determines a point of
AY™ as follows: |- |z : k[T] — Rso, P(T) v inf,, |P(T)|s, .

Berkovich showed that all of the points of A,lc’an are of the form described above. In
particular, remark that: (1) if (), By, is a single point a € k, then |- |4 is the type 1 point
Na,0; (2) if (), By, is a closed disc centered at a € k and of radius r € R, then |- |z is the
point 7, which is of type 2 or 3 depending on the nature of r.

However, this does not always cover all of the possibilites. Namely, it could happen
that (), B, = 0, in which case we say that the field k is spherically complete. If this is
the case, A gives rise to a point said of type 4 (these are in general the most complicated
points to work with). Let z € Ai’aﬂ be a type 4 point. By [6, 1.4.4], |H(x)| = |k|, and

—_~

The above is an illustration of A,lc’an in this case. Remark that it is an “infinitely

branched tree”. The types of points can be read in the drawing. Namely:

e type 2 points are the points of branching in the tree (e.g. 171 =nr—11);

e type 3 points are those where there is no branching (e.g. n7, with r & |k|);

e type 1 and 4 points are the “leaves” of the tree.
The topology on A,lc’an is quite complicated. All of the injective “paths” are isomorphic to
a segment. For points of type 2, neighborhoods resemble somewhat to the neighborhoods
of the “central” point in the trivially valued case.

1.2.4. A}C’an: the general case. Suppose k is a complete ultrametric field (not nec-
essarily algebraically closed).
There is a canonical continuous open surjective morphism ¢ : AZ™ — Ai’an. More-

over, let G denote the absolute Galois group of k, i.e. G = Gal(k®/k), where k* is the
separable closure of k. Then, G acts on A%’an preserving the types of points, and by

Proposition 1.1.43, there is an isomorphism A%’an/G = A,lg’an.
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Nr-a0,5 = |al

< _
T, 1T ~a,s A - type 1 point

& - type 2 point

® - type 3 point

0Ty, 7 & |k

71 = NT-1,1

V¥ - type 4 point

NTr-1,0

nr,o

Figure 2: A,lg’an for k algebraically closed

A point x € A,lg’an is said to be of type i if there exists y € p~1(x) that is of type 4,
i = 1,2,3,4. (This is well defined seeing as then all of the points of ¢ ~!(z) will be of
type i.)

For any a € k and any r € R, we denote by 7, the point ¢(n,,) of Allg’an.

DEFINITION 1.2.3. A point z € A,lc’an is said to be rigid if H(x)/k is a finite field
extension.

LEMMA 1.2.4. There is a bijection between the rigid points of A,lg’an and the irreducible

polynomials over k (up to multiplication by an element of k* ), given by x — ker| - |.

PROOF. By their definition, the rigid points of Ai’an are exactly the ones that deter-
mine semi-norms on k[T’ of non-zero kernel. Let z € Alle’an be a rigid point. Then, ker|- |,
is a non-zero proper prime ideal of k[T], and as such is generated by a (unique up to
multiplication by an element of £*) irreducible polynomial P, over k.

Let P € k[T] be an irreducible polynomial. Let a@ € k be a root of P. Then,
|Plo(a0) = 0, 80 Tp := p(1a,0) € A,lc’an is a rigid point, and ker| - |, = (P). O

For any irreducible polynomial P over k, let us denote the unique rigid point = € Ai’an
such that |P|; = 0 by npo. By the lemma above, the set of rigid points of A,lc’an is given
by {npo : P an irreducible polynomial over k}.

The illustration of Ai’an in the general case is very similar to that in the algebraically
closed case. It is an infinitely branched tree, where type 2 points are the branching ones,
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type 3 points the non branching ones, and type 1 and 4 the “leaves”. In particular, npg
is a leaf of the tree for any irreducible polynomial P over k.

REMARK 1.2.5. With the terminology introduced here, remark that in the trivially
valued case, the only type 2 point is 79,1. The type 1 points are the rigid points, and all
. 1l,an
the rest are type 3 points of A, ™",
Also, remark that in the algebraically closed case, the type 1 points are the rigid points.
This is only true if k is algebraically closed or trivially valued.

We give a more detailed description of the points of A}C’an in part 1.8.4.
1.2.5. The analytic projective line.

DEFINITION 1.2.6. As usual, one can obtain the n-dimensional projective analytic space
over k, denoted P;"*", by gluing n+1 copies of A"*", or equivalently, compactifying A"

In particular, for n = 1, the projective analytic line over k is obtained by adding an
o0 point to A}C’an.

l,an

The oo point of P,’™" is a rigid (even rational) point (it is the unique point for which

|1/T) = 0). We will say that oo is a type 1 point of Pi’an. For any other point x € Pi’an,
we will say that x is of type i if it is of type i as a point of A,lg’an, i=1,2,3,4.

We give a more detailed description of the points of A;™ (and thus of P,™") in 1.8.4.
1.3. Affinoid Algebras

Affinoid algebras in Berkovich’s theory are the analogue of finite type algebras in
algebraic geometry. Throughout this section, let (k,| - |) denote a complete ultrametric
field.

1.3.1. Definition and some properties.

DEFINITION 1.3.1. Let n € N and r1,79,...,7r, € Ryg. We denote

Ky T,y Ty T} = T ek, li L_o\.
{rl 1 T2 2 Tn n} l% apl a; |l|_1>I—I|—loo’al‘z

where for any [ = (I1,l2,...,l,) € N* |l| := Il + Iy + -+ + I, and for any n-tuple
a = (g, 00,...,00), ol = I, aﬁ". We sometimes use the notation k{r—'T} for

z{7"1_1T17 75 T, ..., r T, }. This is a k-algebra.

For ry =r9 =--- =r, =1, we obtain the so-called Tate affinoid algebra k{T}.

LEMMA 1.3.2. For any n € N and any r € R%, the map || - || : k{r 'T} — Ry,
Y lenn a;T' — maxenn lag|rt, defines a non-Archimedean multiplicative norm on k{r= T},
which satisfies || - |||, = | - |. Moreover, (k{r™*T}, |- ||) is a Banach k-algebra.

For a proof, see [42, Lemma 4.8]. In fact, k{r T} is the completion of k[T] with
respect to the norm || - || introduced in Lemma 1.3.2.

DEFINITION 1.3.3. A Banach k-algebra A is said to be a k-affinoid algebra if there
exist n € N,r € RZ;, and a surjective admissible morphism k{r='T} - A.

The Banach k-algebra A is said to be a strict k-affinoid algebra if there exist n € N,
and a surjective admissible morphism k{T'} — A.
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Before anything else, let us note that for any complete ultrametric field extension K
of k, the Banach K-algebra AQ,K is a K-affinoid algebra. Also, the completed tensor
product of two k-affinoid algebras is also a k-affinoid algebra (for both of these statements,
recall Theorem 1.1.27).

Remark that the norm of an affinoid algebra always has a representative in its equiva-
lence class that is non-Archimedean. Before saying anything else about affinoid algebras,
let us remark the following.

LEMMA 1.34. Let (A,] - ||) be a k-affinoid algebra, where we suppose that || - || is the
norm obtained from some surjective admissible morphism kir T} — A. The norm || - ||
is k-linear, meaning: Ya € k,Vx € A, |laz|| = |al||z||. Moreover, || - || =1 -|.

In practice, when working with k-affinoid algebras, we usually (in this text, always)
only encounter norms obtained like the one in Lemma 1.3.2.

Strict affinoid algebras are the central algebraic object in Tate’s rigid geometry (where
they are simply called “affinoid algebras”). As a consequence, they have been extensively
studied (e.g. in [11]). They share many algebraic properties with finite type algebras, e.g.
there is a Nullstellensatz and a Noether Normalization Lemma (meaning for any strict
k-affinoid algebra A, there exists a finite bounded morphism k{T1,T5,...,T,} — A).

LeEMMA 1.3.5 ([11, 6.1.5/4]). A k-affinoid algebra A is strict if and only if there exist
neN,r € /|kX|,i=1,2,...,n, and a surjective admissible morphism k{r 1T} — A.

There is a “trick” to study affinoid algebras by using known information on strict
affinoid algebras. The following example gives us the main tool for this trick.

EXAMPLE 1.3.6 ([6, pg. 21], [22, 1.2]). Let n € N and r € RZ,. Let K, denote the

k-algebra
{Z aT':aq €k, lim |a1]£l = 0} )
|{| =00
lezn
The map || - || : 3" ez @/L" + max; |ay|r! determines a multiplicative norm on K.

Moreover, there is an isometric isomorphism of k-algebras K, = k{r !X, r Y} /(X;Y; — 1);,
where the norm on the right is the quotient one, so K, is a k-affinoid algebra.

If r1,79,...,7y are linearly independent over /|k*|, then K, is a field.

The construction above can be obtained by starting with n = 1 and then iterating.
This is because K, = Km@ka@k e @kKT".

LEMMA 1.3.7. For any k-affinoid algebra A, there exists a non-trivially field K, con-
structed as in Ezample 1.3.6, such that AQLK, is a strict K,-affinoid algebra.
For a proof of the above, see [41, pg. 30].

PROPOSITION 1.3.8 ([6, Proposition 2.1.2]). Let A be a k-affinoid algebra andr & \/|k*|.

(1) The map A — A®K, is an isometric embedding.
(2) Let B,C be two k-affinoid algebras. Then, A — B — C' is exact and admissible
if and only if AQLK, — BRLK, — CQLK, is exact and admissible.

For a proof, see [41, pg. 29, Proof of Proposition 2.1.2].
A few of the most important algebraic properties of affinoid algebras are the following:
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THEOREM 1.3.9. (1) Any ideal of a k-affinoid algebra is closed.
(2) A k-affinoid algebra is Noetherian and excellent.

For the Noetherianity and the fact that all ideals are closed, see [6, Proposition 2.1.3].
The property of being excellent was shown to be true more recently, in [21, Théoréme 2.13].

In particular, part (1) of Theorem 1.3.9 tells us that for any n € N and r € RZ,
the k-algebra k{r~1T}/I, where I is an ideal of k{r~'T}, is a k-affinoid algebra (with
respect to the quotient norm). More generally, any quotient of a k-affinoid algebra is a
k-affinoid algebra with respect to the quotient norm. (We will see later, in Section 4.2,
that a k-affinoid algebra can be endowed with the structure of a Banach k-algebra in a
unique way. This is proven for strict affinoid algebras in [11, 6.1.3/2]. The general case
follows quickly from that.)

The set of k-affinoid algebras endowed with bounded morphisms forms a category.

DEFINITION 1.3.10. For a k-affinoid algebra (A,|-|), n € N, and r € RZ, let
A{r~'TY} = {ZleNn aT':a € A im0 lag|rt = O}.
We endow this k-algebra with the norm:

Z T

leNn
which makes it a Banach A-algebra.

— l
= max |a|r,

DEFINITION 1.3.11. Let A be a k-affinoid algebra. A Banach A-algebra is said to be
an A-affinoid algebra if there exist n € N, r € RZ;, and a surjective admissible morphism
A{ﬁflz} — B.

The following is a consequence of Theorem 1.1.27.

LEMMA 1.3.12. Let A be a k-affinoid algebra. Any A-affinoid algebra is a k-affinoid
algebra.

Another useful result is the following:

LEMMA 1.3.13 ([6, Corollary 2.1.5]). Let Ki,Ka be two complete ultrametric field
extensions of k. Let f: A — B be a bounded k-linear morphism going from a K1-affinoid
algebra to a Ks-affinoid algebra.

Let b; € B and r; € Rsg, i = 1,2,...,n, such that pp(b;) < r; for all i, where pp 1is
the spectral semi-norm on B. There exists a unique bounded morphism g : A{r—'T} — B
extending f, such that T; — b; for all i.

1.3.2. Affinoid algebras and the spectral radius. As we saw in Subsection 1.1.3,
the spectral radius p4 of a Banach ring A determines naturally a non-Archimedean semi-
norm on A (which doesn’t depend on the representative of the equivalence class of the
norm on A).

PROPOSITION 1.3.14 ([6, Corollary 2.1.6]). A k-affinoid algebra A is strict if and only
if pa(a) € \/|k*|U{0} for all a € A.

The following is a good example of why the spectral semi-norm is very useful.

ProOPOSITION 1.3.15. Let A be a k-affinoid algebra, and pa the corresponding spectral
Semi-norm.
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(1) [3, Proposition 2.7.3(2)] Let f € A. Then, pa(f) =0 if and only if f is nilpotent.
The spectral semi-norm pa4 on A is a norm if and only if A is reduced.
(2) [42, Proposition 9.13] If A is reduced, then pa is equivalent to the norm on A.

1.3.3. Finite modules/algebras over a k-affinoid algebra.

DEFINITION 1.3.16. Let A be a k-affinoid algebra. A Banach A-module M is said to
be finite if there exists a surjective admissible morphism A™ — M.
A Banach A-algebra B is said to be finite if it is a finite A-module.

THEOREM 1.3.17 ([6, Proposition 2.1.9]). Let A be a k-affinoid algebra. The forgetful
functor induces an isomorphism between the categories of finite Banach A-modules (with
bounded A-linear maps) and finite A-modules (with A-linear maps).

The same result remains true when replacing module by algebra (see [6, Proposition 2.1.12]).
The following are properties that we will use in the next chapters.

PROPOSITION 1.3.18 ([6, Proposition 2.1.14(i)]). A k-affinoid algebra that is an integral
domain is Japanese.

PROPOSITION 1.3.19. Let A be a k-affinoid algebra. Any finite A-algebra is a k-affinoid
algebra.

The above is shown for strict affinoid algebras in [11, 6.1.3, Proposition 4]. The general
case can be deduced from [6]: Proposition 2.1.11 and Corollary 2.1.8.

REMARK 1.3.20. As there is a Banach Open Mapping Theorem for any non-trivially
valued complete ultrametric field k, if A, B are k-affinoid algebras, any bounded surjective
morphism A — B is admissible.

1.4. Affinoid Spaces
Throughout this section, let (k,| - |;) be a complete ultrametric field.

1.4.1. A first definition. In order to simplify the terminology we will soon use, let
us, for now, fix the following (we hold off on making this a definition until the construction
of the sheaf of analytic functions):

CONVENTION 1.4.1. A k-affinoid space is the Berkovich spectrum of a k-affinoid alge-
bra.

A k-affinoid space X is said to be strict if there exists a strict k-affinoid algebra A
such that X = M(A).

A morphism X — Y of k-affinoid spaces is one induced by a bounded k-linear mor-
phism Ay — Ax of the corresponding k-affinoid algebras.

LEMMA 1.4.2. Let A be a k-affinoid algebra. For any x € M(A), the multiplicative
semi-norm | - |, is non-Archimedean. Moreover, |- |y, = |- [k

1.4.2. Affinoid domains. The goal here is to present, for Berkovich spaces, the
analogue of an open affine subscheme. This is also a crucial step for the construction
of the structural sheaf. Historically, the notion of an affinoid domain appears in Tate’s
rigid geometry. The main difference is that here these are closed subsets (even compact),
whereas in rigid geometry they are open.
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CONVENTION 1.4.3. Let ¢ : A — B be a bounded morphism of Banach rings. From
now on, we will denote by ¢’ the induced continuous morphism M(B) — M(A).

Let (k,|-|) be a complete ultrametric field.

DEFINITION 1.4.4. Let A be a k-affinoid algebra, and X the corresponding k-affinoid
space. An affinoid domain in X is a pair (V, Ay) such that:

(1) V is a closed subset of X, and Ay is a k-affinoid algebra;

(2) there exists a bounded morphism ¢ : A — Ay, such that ¢'(M(Ay)) CV;

(3) the following universal property is satisfied: for any bounded k-linear morphism
¢ : A — B such that ¢/(M(B)) C V, where B is a K-affinoid algebra for
some complete ultrametric field extension K/k, there exists a unique bounded
morphism Ay — B such that the following diagram is commutative.

A—2 Ay,

N S

We will say that (V, Ay) is a strict affinoid dOmam in X if Ay is a strict k-affinoid algebra.

We start by giving important examples of these objects (that come from rigid geome-
try). Let A be a k-affinoid algebra, and X the corresponding k-affinoid space.

EXAMPLE 1.4.5 (Weierstrass domains). Let n € N, f1, fa, ..., fn € A,and r1,79,...,7, € Ryg.
Then, V:={z € X : |fils <7i,i =1,2,...,n} is called a Weierstrass domain of X. Set
Ay = A{r~'T}/(T; — f:);. This is an A-affinoid algebra with respect to the quotient norm
(and thus also a k-affinoid algebra).

We will see in Lemma 1.4.8 that (V, Ay) is an affinoid domain in X.

EXAMPLE 1.4.6 (Laurent domains). Let m,n € N, f;,9; € A, and r;,s; € Ryg, i =
1,2,...,n,j=1,2,...,m. Theset V :={x € X : |fi|ly < ri,|gjle = 7j,4,7} is called a
Laurent domain of X. Set Ay := A{r~'T,sS}/(T; — fi» 9555 — 1); 5. This is an A-affinoid
algebra with respect to the quotient norm (and thus also a k-affinoid algebra).

We will see in Lemma 1.4.8 (by applying Lemma 1.4.9) that (V, Ay) is an affinoid
domain in X. Remark that a Weierstrass domain is a Laurent domain.

Laurent domains form a basis of neighborhoods of the topology on X. To see this,
recall that the topology on X is the coarsest one for which the map X — Ry, z — |als,
is continuous for all a € A.

ExaMPLE 1.4.7 (Rational domains). Let n € N,g, f; € A, i = 1,2,...,n, be such
that (g, f1,...,fn) = A. Let r; € Ryg,i=1,2,...,n. Then, the set V :={z € X : |fi|, <
7ilglz,i =1,2,...,n} is said to be a rational domain in X. Set Ay := A{rT~'}/(¢T;— fi):.
This is an A-affinoid algebra with respect to the quotient norm (and thus also a k-affinoid
algebra). We will soon see that Laurent (and hence Weierstrass) domains are rational
domains.

LEMMA 1.4.8. The pair (V, Ay) from Ezample 1.4.7 is an affinoid domain in X.

PROOF. The subset V is clearly closed (again, recall the topology on X). Let the
morphism ¢ : A — Ay be the canonical one. Then, for any z € M(Avy), |9]2|Tilz = |fil=
for all i. Let || - || denote the (quotient) norm on Ay. Then, || T;|| < r; for all ¢, so |T;|, < r;



1.4. AFFINOID SPACES 19

for all x € M(Ay), implying |filz = |Tilz|gle < 7ilgle. Consequently, |filg () < 7ilgle (a)
for all 4, so ¢'(x) € V, and ¢/(M(Ay)) C V.

Let ¢ : A — B be a bounded k-linear morphism such that ¢'(M(B)) C V, where B is
a K-affinoid algebra for some complete ultrametric field extension K /k. This means that
for any x € M(B), |¢(fi)|z < ri|p(g)|. for all 7. In turn, this implies that ¢(g) is invertible
in B: otherwise, by Lemma 1.1.39, there would exist y € M(B) such that |p(g)|, = 0, im-
plying [¢(fi)]y = 0 for all 4. Thus, |g|.(,) = |file(y) = 0 for all 4, which contradicts the as-

sumption (g, f1,..., fn) = A. Hence, ¢(g) is invertible in B, and % € B for all i. Remark

that for any © € M(B), % < 1y, SO pB(“:)((];i))) <ryi=1,2,...,n. By Lemma 1.3.13,
X
there is a unique bounded morphism A{r='T} — B, T; ~ %, 1=1,2,...,n, extend-

ing the morphism A — B. Clearly, this factorizes through Ay via bounded morphisms:
A{r~'T} — Ay — B. The uniqueness of the obtained morphism Ay — B is clear from
the construction. O

LEMMA 1.4.9. A Laurent domain is a rational domain.

The proof comes down to showing that the intersection of rational domains is a rational
domain. For this, see [11, 7.2.3/7].
Let us describe precisely the relationship between V and Ay .

PROPOSITION 1.4.10 ([6, Proposition 2.2.4]). Let A be a k-affinoid algebra and X the
corresponding k-affinoid space. Let (V, Ay) be an affinoid domain in X.
(1) The morphism M(Ay) — X is injective with image V. In other words, M(Ay) =V.
In particular, the morphism A — Ay is uniquely determined by V.
(2) The morphism A — Ay is flat.

Affinoid domains behave well (these can be checked using the definition):

PROPOSITION 1.4.11. (1) Let ¢' : X — Y be a morphism of k-affinoid spaces,
where X = M(B) and Y = M(A). Let (V,Ay) be an affinoid domain in Y.
Then, (¢'~1(V), Ay@aB) is an affinoid domain in X.

(2) Let X be a k-affinoid space and A its corresponding k-algebra. Let (U, Ay), (V, Ay)
be affinoid domains in X. Then, (UNYV, AU@A@AAV) is an affinoid domain in X.

(3) Let X be a k-affinoid space. Let (U, Ay) be an affinoid domain in X. Let (V, Ay)
be an affinoid domain in U. Then, (V, Ay) is an affinoid domain in X.

The first two parts of the statement above remain true when replacing affinoid by
Weierstrass or Laurent or rational. The third one remains true for Weierstrass and rational
domains, but not always for Laurent ones.

As a direct consequence of the universal property for affinoid domains, we can show
that the completed residue field of a point does not depend on the affinoid domain con-
taining it.

LEMMA 1.4.12. Let X be a k-affinoid space. Let (V,Ay) be an affinoid domain in
V. For any x € V, let us denote by H(z) (resp. Hy(x)) the completed residue field of x
when considering x as a point in X (resp. V). Then, there is an isometric isomorphism

H(x) — Hy(x).

REMARK 1.4.13. From now on, we will denote an affinoid domain simply by V' (instead
of (V, Ay)). This causes no ambiguity considering Proposition 1.4.10.
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The following outstanding result is used to simplify the construction of the structural
sheaf (it had not yet been shown when Tate wrote [63]). In the rigid case it was proven
by Gerritzen and Grauert, and it was generalized to the setting of Berkovich spaces by
both Ducros and Temkin (see e.g. [65]).

THEOREM 1.4.14 (Gerritzen-Grauert). Let X be a k-affinoid space. Any affinoid do-
main in X is a finite union of rational domains.

The following two results will be useful to us in the next chapters.

PROPOSITION 1.4.15 ([6, Proposition 2.2.3(iii)]). Suppose k is non-trivially valued.
Let X be a strict k-affinoid space. Then, the strict affinoid domains in X form a basis of
neighborhoods of the topology on X.

LEMMA 1.4.16 ([6, Corollary 2.2.10]). Let V' — X be a morphism of k-affinoid spaces
such that V' is a rational domain in X. Let us denote by Ay, resp. Ax, the corresponding
k-affinoid algebras. Set Sy = {a € Ay : |al, # 0 for all x € V'}. Then, Sy, Ay is dense
m Av.

1.4.3. The structural sheaf. Recall that (k,|-|) denotes a complete ultrametric
field. Let A be a k-affinoid algebra and X the corresponding k-affinoid space.

The Gerritzen-Grauert Theorem is a very useful tool for proving the next results as it
allows one to reduce to the case of rational domains.

THEOREM 1.4.17 (Tate’s Acyclicity Theorem, [6, Proposition 2.2.5]). Let (V;, Av,)",

be a cover of X, where (V;, Av;) is an affinoid domain in X for all i. The following C'ech
complez is exact and admissible:

i ij
(fi)i = ((fi = fi)1av,nay, Jig = -

Let S(X) denote the family of finite unions of affinoid domains in X. An element V'
of S(X) is said to be a special subset of X. Then, the special subsets of X determine a
G-topology on X, and Tate’s Acyclicity theorem allows us to construct a sheaf for it.

COROLLARY 1.4.18 ([6, Corollary 2.2.6]). For any V € S(X), set

AV := ker HAVz — HAVZQVJ s
i i\j
where (V;)I'_, is a finite cover by affinoid domains of V. Then:

e Ay is a Banach k-algebra which does not depend on the affinoid cover (V;)i,
of V;

o V — Ay determines a sheaf on the G-topology of X;

e V is an affinoid domain if and only if Ay is a k-affinoid algebra and V= M(Ay ).

Let us mention one result that will be important for the next chapters. As we will see
later, it is true in much more generality in the case of analytic curves.

COROLLARY 1.4.19 ([6, Corollary 2.2.7]). Let U,V be closed disjoint subsets of X.
Then, W := U UV is an affinoid domain in X if and only if U and V are affinoid
domains. In that case, the corresponding affinoid algebras satisfy: Aw = Ay X Ay.
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We are finally in a position to give the following:

DEFINITION 1.4.20. For any open U C X (with respect to the Berkovich topology),
set
Ox(U) = 1&1 AV

VCU
V —special

in the category of k-algebras. This determines a sheaf on X which we call the sheaf of
analytic functions on X.
Remark that any f € Ox(U) can be seen as a function in the sense f : U — ] . H(z),

T = (|f|x)z€U

1.4.4. The stalks. As before, X denotes a k-affinoid space.

LEMMA 1.4.21. (1) For any z € X, Ox, = hglxev Ay, where the limit is taken
over neighborhoods V' of x that are affinoid domains in X. The ring Ox . inherits a
multiplicative semi-norm induced by the point x on Ay, with V as above. We will continue

to denote it by | - |-
(2) The ring Ox  is local with mazimal ideal my == {f € Ox 4 : |f|» = 0}.

PROOF. The first part is a consequence of the fact that Laurent (hence affinoid) do-
mains form a basis of neighborhoods of the Berkovich topology on X.

For the second part, clearly m, is a proper ideal of Ox, (for instance, |1], = 1). It
suffices to show that for any f € Ox , such that |f|, # 0, f is invertible.

Let ¢ € Ox, be such that |g|, # 0. There exists a neighborhood (W, Aw) of x
that is an affinoid domain such that g € Ay \{0}. Let » > 0 be such that |g|, > 7.
Then, the Laurent domain W’ := {y € W : |g|, > r} of W contains . Remark that
Awr := Ox(W') = Aw{rT}/(gT — 1), and g € Ay is invertible. Consequently, ¢ is in-
vertible in Ox ;. O

The field k(x) := Ox z/m, is said to be the residue field of x.

Another very important property for the next chapters is the relationship between
Ox, and H(x), which is a direct consequence of Lemmas 1.4.12 and 1.4.21 (recall also
Definition 1.1.33).

LEMMA 1.4.22. For any x € X, there is a canonical embedding r(x) — H(x). More-
over, k(x) is dense in H(x).

The stalks of Ox are crucial for our work in the next chapters. In Section 4.7, we will
see some examples of them. For now, let us mention that they have very nice algebraic
properties.

THEOREM 1.4.23. For any x € X, Ox . is a Noetherian, Henselian, and excellent local
ring.

Noetherianity is shown in [4, Theorem 2.1.4], and Henselianity in [4, Theorem 2.1.5].
The property of being excellent was shown more recently in [21, Théoréme 2.13].

1.4.5. Back to affinoid spaces. We may now revisit Convention 1.4.1.

DEFINITION 1.4.24. A k-affinoid space X is the Berkovich spectrum of a k-affinoid
algebra endowed with the sheaf Oy constructed above. The space X is said to be strict
if there exists a strict k-affinoid algebra A such that X = M(A).
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These are the building blocks of good Berkovich spaces. Remark that for any k-affinoid
space X, there exists a canonical morphism X — M (k).

EXAMPLE 1.4.25. Let n be a positive integer, and r € R~q. Then, M(k{r='T}) is said
to be the closed Berkovich polydisc of polyradius 7.
In particular, if n = 1, then we obtain the closed Berkovich disc of radius r.

DEFINITION 1.4.26. A morphism of k-affinoid spaces (Y,0Oy) — (X,0Ox) is a mor-
phism of k-locally ringed spaces which comes from a bounded morphism of the corre-
sponding k-affinoid algebras.

Remark that the category of k-affinoid spaces (endowed with the morphisms above),
denoted k-aff, is the opposite of the category of k-affinoid algebras with respect to bounded
k-linear morphisms.

The category k-aff admits fiber products (the relationship between fiber products and
completed tensor products for k-affinoid spaces in Berkovich’s theory is the same as that
of fiber products and tensor products for affine schemes in algebraic geometry).

DEFINITION 1.4.27. One can also define the category aff-k, where the objects are K-
affinoid spaces over a complete ultrametric field extension K/k, and the morphisms are
those of locally ringed spaces induced by a bounded k-linear morphism of the corresponding
affinoid algebras.

For an object of aff-k, we will say that it is an affinoid k-space. For X,Y € aff-k,
and a morphism ¢ : Y — X of the same category, we will simply say that ¢ : Y — X is a
morphism of affinoid k-spaces.

The category aff-k admits base change by complete ultrametric field extensions of k.
However, it does not in general admit fiber products.

1.4.6. The boundaries of an affinoid space. Since affinoid spaces are compact
(so closed), we want to have a notion of boundary for them.

1.4.6.1. Relative interior and boundary. These are amongst the rare notions that are
exclusive to Berkovich’s theory, meaning there is no analogue in rigid/complex/algebraic
geometry. See [6, 2.5] for more details.

DEFINITION 1.4.28. Let ¢ : Y — X be a morphism of k-affinoid spaces, where X =
M(A;) and Y = M(Asg). The Berkovich relative interior of ¢, denoted Intp(Y/X), is the
set of points y € Y such that there exist n € N,r; € Ryg,7 = 1,2,...,n, and a surjective
admissible A;-linear morphism v : A;{r 1T} — Aj satisfying [¢(T})], < r; for all 4.

The set Y\Intp(Y/X) is called the Berkovich relative boundary of ¢, and is denoted
by 0p(Y/X). We say that ¢ is boundaryless if 0p(Y/X) = () (Berkovich calls this closed).

If Y — M(k) is the canonical morphism, then we denote by Intg(Y") (resp. 9p(Y)) the
set Intp(Y/M(k)) (resp. 9p(Y/X)), and call it the Berkovich interior (resp. Berkovich
boundary) of Y. If 9p(Y') = (), then Y is said to be boundaryless.

Remark that in the litterature these objects are called relative interior, relative bound-
ary, and absolute interior, absolute boundary, respectively, and are denoted as above but
without the index “B”.

As Temkin remarks in [64, Remark 3.4.10], the geometric interpretation of the defini-
tion above is that the morphism  induces a closed immersion of Y into the closed polydisc
over Ay of polyradius r (i.e. into M(A1{r~'T})) such that the image of Y is contained
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in the open polydisc over Ay of polyradius r (i.e. in {x € M(A{r 'T}) : |T}|s < riyi =
1,2,...,n}).

Here are some of the main properties of these notions. The first one is immediate from
the definition.

THEOREM 1.4.29. Let ¢ : Y — X be a morphism of k-affinoid spaces.

(1) Intp(Y/X) is open, and 0p(Y/X) is closed in Y.

(2) [6, Prop. 2.5.8(iii)] Let ¢ : Z — Y be a morphism of k-affinoid spaces. This in-
duces a morphism po ¢ : Z — X. Then, Intp(Z/X) = Intg(Z/Y)Ng~ L (Intp(Y/X)).

(3) [6, Cor. 2.5.13(1)] dp(Y/X) = 0 if and only if ¢ is finite, i.e. the corresponding
morphism A1 — As is finite.

(4) [6, Cor. 2.5.13(ii)] If Y is an affinoid domain of X, then Intp(Y/X) is the
topological interior of Y in X.

Remark that by part (3) of Theorem 1.4.29, a k-affinoid space is boundaryless if and
only if the corresponding k-affinoid algebra is a finite k-algebra.

1.4.6.2. Shilov boundary. As usual, let k be a complete ultrametric field, and A a
k-affinoid algebra. Set X = M(A).

A closed subset I' of X is said to be a boundary of X if any element f € A attains
its maximum at a point of I'. The set of boundaries of X forms a partially ordered set
(via inclusion). By Zorn’s Lemma, there exist minimal boundaries of X. If there exists a
unique minimal boundary, then it is said to be the Shilov boundary of X, and is denoted

by I'(X).

PRrOPOSITION 1.4.30 ([6, Corollary 2.4.5]). The Shilov boundary I'(X) of X exists and
is finite.

In particular, this means that for any f € A, pa(f) = maxep(x)|flz, where pa

denotes the spectral semi-norm of A.
The following is a useful property (see the proof of [22, Lemme 2.1]):

LEMMA 1.4.31. If A is integral, then for any f € A\{0}, |f|. # 0 for any = € T'(X).
The two kinds of boundaries we have just seen are related as follows:

PROPOSITION 1.4.32 ([6, Proposition 2.5.20]). For any affinoid domain (V, Ay) of X,
HNX)NvVCcr(w) cop(V/X)u T(X)nV).

We will later see (Lemma 1.8.8) that in the case of curves the Berkovich and Shilov
boundaries coincide for a k-affinoid space.

1.4.7. The reduction map. The notion of the reduction map will be very useful to
us for comparing our results from Chapter 3 to others in the litterature.

Recall that (k,|-|) is a complete ultrametric field. Let A, B be two Banach k-algebras.
Let ¢ : A — B be a bounded morphism. Let p4 (resp. pp) denote the spectral radius
of A (resp. B). Then, for any a € A, pp(¢(a)) < pa(a).

Set A°={a € A:pa(a) <1} and A°° ={a € A:pa(a) < 1}; A° is a subring of A,
and A°° is an ideal of A°. Set A = A°/A°°. Let B°, resp. B°°, resp. E, be the analoguous
notations for B. By the paragraph above, the morphism ¢ : A — B induces canonically
morphisms ¢° : A° — B° and ¢ : A — B. In the case of k-affinoid algebras, a lot of
information can be obtained on ¢ through ¢ and vice-versa (cf. [6, 2.4]).
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In particular, for any = € M(A), the canonical morphism x, : A — H(z) induces a
morphism Y : A= H(x). Clearly, ker x, is a prime ideal of A. This gives rise to a map
r: M(A) — Spec A,z — ker Y.

DEFINITION 1.4.33. Suppose A is a Banach k-algebra. Then, the map r : M(A4) —
Spec A constructed as above is called the reduction map of A.

PROPOSITION 1.4.34 ([6, Proposition 2.4.4]). Let A be a strict k-affinoid algebra.

(1) The reduction map r of A is surjective and anticontinuous.
(2) 77 Y((Spec A)gen) = T(M(A)), where (Spec A)gen is the set of generic points of
the irreducible components of Spec A.

Temkin generalized this to any affinoid space using what is referred to in the litterature
as Temkin’s graded reduction [66]. The (graded) reduction map does not have nice gluing
properties, so it is only defined over affinoid spaces.

1.5. Good Berkovich analytic spaces
Throughout this section, let k be a complete ultrametric field.
1.5.1. The category of good analytic spaces.

DEFINITION 1.5.1 (Non-rigorous). A good k-analytic space is a locally ringed space
(X,0x), where each point has a neighborhood isomorphic to a k-affinoid space. The
structural sheaf Ox is said to be the sheaf of analytic functions on X.

The analytic space X is said to be strict if any point has a neighborhood isomorphic
to a strict k-affinoid space.

The morphisms between good k-analytic spaces are the morphisms of locally ringed
spaces induced by morphisms of k-affinoid spaces. Remark there is a canonical morphism
X — M(k).

The good k-analytic spaces with the above morphisms form a category, which we
denote by k-An.

The precise definition requires a condition (which we will continue to omit without
consequences) on the G-topology we mentioned before.

The fiber product exists in the category of good k-analytic spaces seeing as it exists
for k-affinoid spaces.

The fact that affinoid spaces are compact (hence closed) is the reason why the definition
above is not enough for all Berkovich spaces (in the sense that there are rigid spaces that
don’t have a Berkovich analogue). In general, it can happen that a point does not have
a neighborhood isomorphic to an affinoid space, but is only contained in the boundary
of subsets isomorphic to affinoid spaces. The theory of general Berkovich spaces was
developed by Berkovich afterwards, in [4]. We will later see that analytic curves are
always good analytic spaces.

EXAMPLE 1.5.2. Remark that for any n € N, and r € RY,, we have an embedding
M(k{r~1T}) C A}"™. To see this, recall that (k{r 'T},| - ||) (with || - || defined as in
Lemma 1.3.2) is the completion of k[T]. On the other hand, because of the same reason,
for any z € A if |T;|, = s;, 4 = 1,2,...,n, then € M(k{r~'T}) for any r € RZ,
such that r; > s; for all 4. Consequently, A}"™" = UIER’;O M(E{r1T}).
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For the compatibility of topologies, it is direct from the definition that the set-wise
embedding ¢y, : M(k{r~'T}) < A} is continuous. It is also a direct consequence of the
definition that A;*" is a Hausdorff space. Thus, ¢, is an injective continuous morphism
from a compact space to a Hausdorff one. Consequently, it is a homeomorphism onto its
image.

The two paragraphs above can be used to endow A;"*" (and hence P;"™") with the
structure of a good k-analytic space. Moreover, if k is non-trivially valued, by Lemma
1.3.5, these spaces are also strict.

A full classification of points of Berkovich closed discs can thus be deduced from that
of Ai’an (see part 1.2.4).

REMARK 1.5.3. Using the universal property for affinoid domains, one can show that
the notation H(z) as introduced in Definition 1.2.2 for the points of A,*" is coherent with
the one of completed residue fields.

As in the affinoid case, one can also define a larger category:

DEFINITION 1.5.4. Let An-k denote the category whose objects are good K-analytic
spaces, where K is a complete ultrametric field extension K/k, and the morphisms are
morphisms of k-locally ringed spaces induced by those of the category aff-k. An object of
An-k will be said to be a good analytic k-space.

For X,Y € An-k, and a morphism ¢ : Y — X of the same category, we will simply say
that ¢ : Y — X is a morphism of good analytic k-spaces or sometimes just a morphism of
good analytic spaces when there is no risk of ambiguity.

The category An-k admits base change by complete ultrametric field extensions of &,
but does not in general admit fiber products (as in the case of aff-k).

The following is a class of subsets of X over which the structural sheaf is defined
(examples are opens and affinoid domains).

DEFINITION 1.5.5. A morphism of good k-analytic spaces ¢ : Y — X is said to be an
analytic domain in X if ¢ induces a homeomorphism of Y with its image in X, and for
any morphism of good analytic k-spaces 1 : Z — X such that ¥(Z) C ¢(Y), there exists
a unique morphism of good analytic k-spaces ¢ : Z — Y such that ¢ = poo.

If Y is isomorphic to a (strict) k-affinoid space, then Y is said to be a (strict) affinoid
domain of X.

We identify an analytic domain with its image in the corresponding analytic space. It
is clear from the definition that the property of being an analytic (resp. affinoid) domain
is transitive.

Let X be a good k-analytic space. By definition, for any z € X, there exists a
neighborhood of  isomorphic to (M(A), Opqa)) for some k-affinoid algebra A. Remark
that the affinoid domains of M(A) are affinoid domains of X. Hence, affinoid domains
form a basis of neighborhoods for the topology of any good k-analytic space.

REMARK 1.5.6. Let ¢ : X — Y be a morphism of good k-analytic spaces. Let U be an
analytic domain in Y. Then, the topological space ¢~ !(U) is homeomorphic to U xy X,
and the two can be identified. It is shown as a direct application of Definition 1.5.5 that
¢~ 1(U) is an analytic domain of X.

Similarly, if VW are analytic domains of the good k-analytic space Z, U NV is
identified with the good k-analytic space V x z W which is an analytic domain of X.



26 1. INTRODUCTION TO BERKOVICH SPACES

Along the same lines (and very useful for the next chapters):

PROPOSITION 1.5.7. Let ¢ : X — Y be a morphism of good k-analytic spaces. Let
y € Y. The fiber product X, := X xy M(H(y)) exists in the category Aff-k, and is
homeomorphic to ¢~ (y).

REMARK 1.5.8. It can be shown from the universal property of fiber products that
Xy = (X xx M(H(Y))) Xy x oMy MH(Y)), so X xy M(H(z)) exists as a good H(z)-
analytic space. Consequently, the fiber of any point ¥y € Y can be endowed with the
structure of a good H(y)-analytic space. From now on, we will always identify the two.

REMARK 1.5.9. More generally, let Y — X be a morphism of good k-analytic spaces,
and Z — X a morphism of good analytic spaces in the category An-k. Suppose Z is a good
K-analytic space, where K/k is a complete ultrametric field extension. Then, Y xx Z
exists as a good K-analytic space. To show this, one can check via the universal property
of fiber products that Y xx Z = (Y xj K) Xxx,k Z, and the latter exists.

From now on, we will usually denote X xy H(z) (resp. X X Y) instead of X Xy
M(H(z)) (resp. X X pqq) V).

DEFINITION 1.5.10. Let X be a good k-analytic space. A point z € X is said to be
rigid if the field extension H(z)/k is finite.

Rigid points are those that we see when considering Tate’s rigid spaces.

PROPOSITION 1.5.11 ([6, Proposition 2.1.15]). Suppose k is non-trivially valued. The
set of rigid points of a strict k-affinoid space is dense. Consequently, the set of rigid points
i a strict good k-analytic space is dense.

CONVENTION 1.5.12. We will say that a neighborhood of a point which is an affinoid
domain is an affinoid neighborhood of the point. A cover U of a good analytic space is
said to be affinoid if for any U € U, U is an affinoid domain thereof.

1.5.2. Examples of affinoid domains. Let us give a few examples of affinoid do-
mains in A7™" and P;"*".

ExAMPLE 1.5.13. By Example 1.5.2, for any n € N and any r € Rsq", the closed
polydisc M(k{r~'T}) of polyradius r can be identified with {z € A} : |T;|, < ry,i =
1,2,...,n}, and its ring of analytic functions with k{r~*T}. The closed polydisc of polyra-
dius r is an affinoid domain in AZ’an.

The open subspace {z € AP™ : |Tj|, < 5,0 = 1,2,...,n} of A"™ is said to be a
Berkovich polydisc of polyradius r. If n = 1, it is said to be a Berkovich disc of radius r.

Let s € RY, be such that s; < for all i = 1,2,...,n. Again, using Example 1.5.2 we
obtain that {z € A™ : s; < |T;|, < 74} is an affinoid domain in A}"*". Tt can be identified
with M(k{r=T,s S}/(S;T; — 1);), and its ring of analytic functions with the k-affinoid
algebra k{r='T,s S}/(S;T; — 1);. Remark that if s; = r; for all 4, this coincides with K,
from Example 1.3.6.

Since these subsets are contained in P;"*", all of the above remains true
when replacing A"™ by P"*. For n = 1, let us fix the following notations:

D(0,7) = {z €A™ T, <r} = {a € P ¢ |T|, < r}, and C(0;s,7) :=
(ze ™ :s< Tl <r} = {& € P,* : s < |T], < r}. The affinoid space C(0;s,)
is said to be the closed Berkovich annulus of inner radius s and outer radius r.
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The open subspace {z € A,lg’an : s < |T|z < r} is said to be a Berkovich annulus of
inner radius s and outer radius .

EXAMPLE 1.5.14. Let P € k[T]. Also, let r,s € Ry be such that s < r. Set Dy =
{z e Ay™ P, <r}and Dy = {z € A™ : 5 < |P|, <7}

Seeing as P is bounded in these sets, T has to be so as well. Consequently, there
exists ¢ > 0 such that Dy, Dy C ID(0,t). By Example 1.4.6, Dy, Do are affinoid domains in
D(0,t), so they are affinoid domains in A,lg’an.

As Dy, D5 C P,lq’an7 all of the above remains true when replacing A,ﬁ’an by Pi’an.

In Section 4.2, we will see that O(D1) = k{r T} X]/(P(T) — X) and O(Dy) =
k{r=1T,sS}X]/(TS — 1, P(T) — X).

EXAMPLE 1.5.15. Let r € Ryq. Let us fix a copy of A,lc’an of ]P’,lc’an so that we have a
coordinate T. The subset {z € P,™ : |T|, > r} is an affinoid domain in Py*".

To see this, remark that {z € Py : |T|, > r} = {& € Py*™ : |1/T|, < 1/r}, which is
an affinoid domain in the copy of Ai’am with coordinate 1/7T. Consequently, it is an affinoid
domain in P,ﬁ’an.

The isomorphism k[T| — k[1/T] induces an isomorphism between the corresponding
analytic affine lines (with coordinate T', resp. 1/T"), which induces an isomorphism between
{z € Ay™ :|T|, < 1/r} and {z € A™ :|1/T|, < 1/r}. Taking this into account, we
obtain that O({z € Pi’an |T)e = 7}) = k{rT—1}, where k{rT—1} is the k-affinoid algebra
{0, F an € klimy o0 |an [r™" = 0}

EXAMPLE 1.5.16. Let P(T) € k[T], and r € Rsg. Set D = {z € P,™ : |P|, > r}.
The finite morphism k[T] — k[T],T — P(T'), induces a finite morphism ¢ : Pllc’an — Pi’an
such that ¢~ !'({z € Pp"™ : |T|, > r}) = D. By Example 1.5.15 and Proposition 1.5.34(1),

we obtain that D is an affinoid domain in IP’,IC’an. We will talk about its corresponding
k-affinoid algebra in detail in Section 4.2.

1.5.3. Local properties and dimension of good analytic spaces. Most of the
notions that exist for schemes also exist for Berkovich analytic spaces. We will mostly
focus on defining those that we use in the next chapters. Recall that k£ is a complete
ultrametric field.

DEFINITION 1.5.17. Let X be a good k-analytic space. Let z € X. Then, x is said to
be a reduced (resp. normal, Cohen-Macaulay, reqular) point if Oy, is a reduced (resp.
normal, Cohen-Macaulay, reqular) ring.

The analytic space X is said to be reduced (resp. normal, Cohen-Macaulay, regular)
if for any = € X, x is reduced (resp. normal, Cohen-Macaulay, regular).

REMARK 1.5.18. In [21, Théoreme 3.4], it is shown that an analytic domain of a
reduced (resp. normal, Cohen-Macaulay, regular) good analytic space is also reduced
(resp. normal, Cohen-Macaulay, regular).

Let A be a k-affinoid algebra. Using Noether’s Normalization Lemma for strict affinoid
algebras, one obtains that for any complete ultrametric field extension K/k such that
A®K is a strict K-affinoid algebra (by Lemma 1.3.7, such a K exists), the Krull dimension
of A®K is constant [22, 1.5].
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DEFINITION 1.5.19. The dimension of X = M(A), denoted dim(X), is the Krull
dimension of the ring AR K.

The dimension of any good k-analytic space Y is denoted by dim(Y'), and defined to
be supy, dim(V'), where the supremum is taken with respect to all the affinoid domains V'
inY.

For any x € Y, the dimension of z in Y, denoted dim,(Y"), is inf,cy dim(V'), where
the infimum is taken with respect to all affinoid domains V' in Y that are neighborhoods
of z.

The space Y is said to be pure-dimensional if dim,(Y) = dim(Y") for all z € Y.

Dimension is invariant with respect to base change by a complete ultrametric field
extension.

ExamMpLE 1.5.20. The following is an example showing the necessity of base
change to calculate the dimension of a k-affinoid space: for r € Ryo\\/|k*], let
D:={z €A™ :|T|, =r}. Recall that O(D) = K, - the field of Example 1.3.6. Then,
the Krull dimension of K, is 0, whereas the dimension of D is 1.

The notion of dimension brings us to the introduction of very important invariants of
points.

DEFINITION 1.5.21. Let X be a good k-analytic space. Recall that for any xz € X,
there is a canonical isometric embedding k < H(x). For any = € X, set s, := degtr;H(x)

and t, := rankg|H(z)*|/|k*| ®z Q, where % (resp. k) denotes the residue field of H(z)
(resp. k).

LEMMA 1.5.22 ([4, Lemma 2.5.2], [22, 1.14]). Let X be a good k-analytic space. Then,
dim X = sup,cx(sz + tz).

DEFINITION 1.5.23 (Abhyankar points). Let X be a good k-analytic space. Then,
x € X is said to be an Abhyankar point if s, + t, = dim,(X).

In Example 3.2.10 of [18], it is shown that if # € X is an Abhyankar point, then Ox
is Artinian. Consequently, if Ox , is reduced (for example if X is reduced), then it is a
field.

PROPOSITION 1.5.24 ([60, Proposition 4.7]). Let X be a k-affinoid space. Then, any
point of the Shilov boundary of X is an Abhyankar point. In particular, Abhyankar points
are dense in X.

DEFINITION 1.5.25. Let ¢ : X — Y be a morphism of good analytic spaces. For any
y € Y, the relative dimension of ¢ at y is the dimension of ¢~ 1(y) as a good H (y)-analytic
space.

We will say that X is a relative curve over Y if ¢ ~!(y) is of pure dimension 1 as an
H(y)-analytic space for all y € Y (we use this in Chapter 4).

The notions of dimension and relative dimension of a morphism are extensively studied

by Ducros in [22].

1.5.4. Morphisms, relative boundary and interior. We briefly mention some
classes of morphisms between good analytic spaces, and a generalization of the notions of
relative boundary and interior.
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DEFINITION 1.5.26. Let ¢ : Y — X be a morphism of good k-analytic spaces. The
Berkovich relative interior of ¢, denoted Intp(Y/X), is the set of points y € Y, such
that there exist affinoid neighborhoods Y’ of y and X’ of ¢(x) with ¢(Y') C X" and y €
Intp(Y’'/X'). The Berkovich relative boundary of ¢, denoted dp(Y/X) is the complement
of Intp(Y/X) in Y. If 0p(Y/X) =0, ¢ is said to be boundaryless.

If X = M(k), then we write Intp(Y'), resp. 9p(Y), and call them the Berkovich
interior, resp. Berkovich boundary, of Y. If g(Y) =0, Y is said to be boundaryless.

THEOREM 1.5.27 ([4, Prop. 1.5.5]). Let ¢ : Y — X be a morphism of good k-analytic
spaces.

(1) Let ¢ : Z =Y be a morphism of good k-analytic spaces. This induces a morphism
pod:Z — X. Then, Intg(Z/X) =Intg(Z/Y)N ¢ HIntg(Y/X)).
(2) If Y is an analytic domain of X, then Intp(Y/X) is the topological interior of Y
mn X.
n,an

ExXAMPLE 1.5.28. By Example 1.5.2, for any n € N, A7"*" (and hence P"™") is a
boundaryless space. For any r,s € Ry, r < s, 9g(D(0,7)) = {no}, and 9g(C(0;7,s)) =
{no,r,m0,s} (see [20, 3.6.4.1, 3.6.4.3]).

DEFINITION 1.5.29 (Immersions). A morphism of good k-analytic spaces ¢ : Y — X is
an open immersion if it induces an isomorphism of Y~ with an open subset of X (endowed
with the induced analytic structure from X).

The morphism ¢ is said to be a closed immersion if Y is homeomorphic to a closed
subset of X, ¢,Oy is a coherent sheaf of Ox-modules, and the morphism Ox — ¢,Oy is
surjective.

As usual, there is a bijection between the closed immersions of a good k-analytic
space Y and the ideal sheaves Z of Oy (cf. Proposition 3.1.4(ii) of [6]).

DEFINITION 1.5.30 (Proper and finite). A morphism of good k-analytic spaces ¢ :
Y — X is said to be proper if it is compact and boundaryless. A good k-analytic space Y
is said to be proper if the canonical morphism Y — M(k) is proper.

A morphism of affinoid spaces M(B) — M(A) is said to be finite if the corresponding
bounded morphism A — B is finite.

For any x € X, the morphism ¢ : Y — X of good k-analytic spaces is said to be finite
at z if there exists an affinoid neighborhood V' of z such that ¢~ 1(V) — V is a finite
morphism of affinoid spaces. The morphism ¢ is said to be finite if it is finite at any point
of X.

Finite morphisms will be of particular importance in the rest of the manuscript.

PROPOSITION 1.5.31. Let ¢ : Y — X be a finite morphism of good k-analytic spaces.
Then, 0p(Y/X) =0, i.e. ¢ is boundaryless.

Proposition 1.5.31 is immediate from Theorem 1.4.29(3), and the fact that being an
element of the Berkovich interior Intp(Y/X) is a local property.

REMARK 1.5.32. In [4, Lemma 1.3.7] it is shown that if ¢ : ¥ — X is a finite mor-
phism of k-analytic spaces, then for any affinoid domain V' of X, the induced morphism
¢~ 1(V) — V is a finite morphism of k-affinoid spaces.

As usual, for any y € Y, the induced homomorphism of local rings Ox ,(,) — Oy is
finite. Finite morphisms have finite fibers.
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EXAMPLE 1.5.33. For any n € N, P;"*" is proper.

Remark that a k-affinoid space is boundaryless, and hence proper, if and only if its
corresponding k-affinoid algebra is a finite k-algebra.

ProPOSITION 1.5.34 ([6, Prop. 3.1.7]). (1) The pre-image of an affinoid domain by a
finite morphism is an affinoid domain.

(2) Let X be a good analytic space. There is an equivalence between the category of
finite morphisms over X and the category of coherent Ox-algebras.

(3) A closed immersion is a finite morphism.

(4) A finite morphism is proper.

DEFINITION 1.5.35 (Separated). A morphism ¢ : Y — X of k-analytic spaces is said
to be separated if the canonical induced morphism Y — Y X x Y is a closed immersion.

A good k-analytic space Y is said to be separated if the canonical morphism Y — M (k)
is separated.

A good k-analytic space is locally Hausdorff by construction, but, in general, not
necessarily Hausdorff. Separatedness is equivalent to Hausdorff by [6, Proposition 3.1.5].
As a consequence:

COROLLARY 1.5.36 ([6, Cor. 3.1.6]). If a good k-analytic space is separated, then
affinoid domains are closed, and the intersection of two affinoid domains is an affinoid
domain.

The following is a central object of this manuscript:

DEFINITION 1.5.37. A (good) k-analytic space is said to be a k-analytic curve if it is
separated and of pure dimension 1.

The hypothesis of goodness can be omitted from the above definition. In [20, Propo-
sition 3.3.7] it is shown that any k-analytic curve is a good k-analytic space.

DEFINITION 1.5.38 (Flatness). A morphism of analytic spaces 1 : Y1 — X7 is said to
be naively flat at y € Y1 if for x := p1(y), Oy, y is a flat Ox, ;-module. (Naive flatness is
generally not stable with respect to base change.)

A morphism ¢ : Y — X of good k-analytic spaces is said to be flat at y € Y if for any
morphism X’ — X of good analytic k-spaces, and any v € Y’ :=Y x x X’ lying above y,
the induced morphism Y’ — X’ is naively flat at ¢/ € Y’. The morphism ¢ is said to be
flat if it is flat at all y € Y.

In [18, Theorem 8.3.4], it is shown that for y € Intp(Y/X), the morphism ¢ is flat at
y if and only if it is naively flat at y. Consequently, if ¢ is boundaryless, then the notion
of flatness above coincides with that of flatness for locally ringed spaces.

Flat morphisms have been extensively studied by Ducros in [18]. A special case is the
class of (quasi-)smooth morphisms.

DEFINITION 1.5.39 (Quasi-smoothness, [18, Definition 5.2.4]). A morphism ¢ : Y — X
of good k-analytic spaces is said to be quasi-smooth at y € Y if there exists an affinoid
neighborhood V of y such that V' — X factorizes through a closed immersion V. — W,
where W is an affinoid domain of A'Y™ := A"™" x;, X for some n € N (and satisfies a sort
of Jacobian-presentation condition). The morphism ¢ is said to be quasi-smooth if it is
quasi-smooth at all y € Y.
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A good k-analytic space X is said to be quasi-smooth if the canonical morphism
X — M(k) is quasi-smooth.

DEFINITION 1.5.40 (Smoothness). A morphism ¢ : Y — X of good k-analytic spaces
is said to be smooth at y € Y if it is quasi-smooth at y and y & (Y /X).

A good k-analytic space X is said to be smooth if the canonical morphism X — M (k)
is smooth.

Berkovich gave a different definition of smoothness in [4, 3.5]. Seeing as said defi-
nition excludes boundary points from consideration, this led to the introduction of the
more general notion of quasi-smoothness by Ducros (see [18, Chapter 5] for a detailed
treatment). In [18, Corollary 5.4.8], it is shown that Berkovich’s definition is equivalent
to Definition 1.5.40.

All the morphisms that we have defined above are stable under composition, base
change, and ground field extension.

1.5.5. Topological properties. By construction, good analytic spaces are locally
compact. Let us mention some other very remarkable topological properties of these
objects.

DEFINITION 1.5.41. Let X be a topological space. Let x,y € X. A continuous map
v :[0,1] — X such that v(0) = = and v(y) = 1 is said to be a path in X connecting = and
y. If, moreover, v induces a homeomorphism with its image in X, then it is said to be an
arc in X connecting x and y.

We will say that a topological space X is path-connected (resp. arcwise-connected) if
for any different x,y € X, there exists a path (resp. an arc) in X connecting x and y. If,
moreover, the arc connecting x and y is unique, then X is said to be uniquely arcwise-
connected.

THEOREM 1.5.42 ([6, Thm. 3.2.1]). A connected good analytic space is path-connected.
Consequently, a good analytic space is locally path-connected.

By [70, Corollary 31.6], a Hausdorff topological space that is path-connected is arcwise-
connected.

COROLLARY 1.5.43. A separated connected good analytic space is arcwise-connected.
Consequently, a separated good analytic space is locally arcwise connected.

The following theorem is shown in [5].
THEOREM 1.5.44. A smooth (good) analytic space is locally contractible.

The result above was generalized by Hrushovski and Loeser to a larger class of analytic
spaces. This was done in their ground-breaking work [38], where they use model theory
to study Berkovich spaces. The interplay between these two fields is a rising domain of
research.

1.6. Analytification functor and GAGA theorems

As in the complex setting, there exists an analytification functor and GAGA-type
theorems for Berkovich spaces. For the most part of this manuscript, we will work with

good analytic spaces that are obtained from finite type schemes over a complete ultrametric
field.
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1.6.1. The kernel map. The following gives a strong connection between the Berkovich
and affine spectra.

DEFINITION 1.6.1. Let A be a k-affinoid algebra. There is a canonical morphism
M(A) — Spec A, = — ker| - |,,, which will be called the kernel map and will be denoted
by kerg4.

LEMMA 1.6.2 ([6, Remark 1.2.5(i)]). Let A be a k-affinoid algebra. The kernel map
ker 4 is continuous.

Remark that there is a bijective correspondence between the closed immersions of
Spec A and those of M(A).
The kernel map has very nice properties.

ProprosITION 1.6.3 ([4, Prop. 2.1.1, Thm. 2.1.4]). Let A be a k-affinoid algebra.
Then, ker 4 is faithfully flat.

THEOREM 1.6.4. [4, Thm. 2.2.1] Let A be a k-affinoid algebra. Set X = M(A)
and X = Spec A. Let Px be the set of points on X which are reduced (resp. mormal,
Cohen-Macaulay, reqular), and similarly for Px. Then, Px = kerzl(PX).

In particular, we obtain from the above that a k-affinoid space X is reduced (resp.
normal) if and only if O(X) is reduced (resp. normal).

1.6.2. Analytification over a field. Let k be a complete ultrametric field.

DEFINITION 1.6.5. Let X be a scheme of locally finite type over k. The Berkovich
analytification of X, denoted X", is a good k-analytic space together with a morphism
of k-locally ringed spaces X*" — X, which represents the functor An-k — Set,Y +—
Homy (Y, X), where Homg(+,-) denotes morphisms in the category of k-locally ringed
spaces.

THEOREM 1.6.6 ([6, Thm. 3.4.1, 3.5.1]). Let X be a scheme of locally finite type over k.
The Berkovich analytification X = X" of X exists.

(1) For any complete ultrametric field extension K/k, X (K) = X(K). Moreover, the
canonical morphism 7 : X — X is surjective, and induces a bijection between the
rigid points of X and the closed points of X.

(2) For any x € X, the canonical morphism 7, : Oy r(z) — Ox is faithfully flat.
Furthermor&ifx s a rigid point, then m, induces an isomorphism of completions

OXJr(x) — OX@.

Let us briefly describe how the space X is constructed.

If X = A} for some n € N, then its Berkovich analytification is AZ’an, and the canonical
map is a kernel map 7 : AP™ — A}, x — ker| - |,. This also allows us to construct the
analytifications of closed subschemes of A}. Namely, for any finitely generated k-algebra A,
the analytification of X' := Spec A is given by

X := {multiplicative semi-norms on A which extend the norm on k}.

The canonical map 7 : X — X is still a kernel map; if 7 is the ideal sheaf corresponding
to X as a Zariski closed subset of A}"™", then the analytic structure on X is given by
Ox := OAZ,an/ﬂ*I.
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In the general case, i.e. when X is any locally finite type scheme over k, we obtain X
and the canonical map by gluing the analytifications and the canonical maps of any open
affine cover of X.

Remark that the analytification of a locally finite type scheme over k is boundaryless.
This follows from the construction: it is true for A7, and it is true for its Zariski closed sub-
sets by part (1) of Theorem 1.5.27. Finally, the general case is an immediate consequence
of the latter, seeing as being boundaryless is a local property. If k is non-trivially valued,
the same remains true when replacing boundaryless by strict (recall Example 1.5.2).

REMARK 1.6.7. Let X = Spec A be a finite type affine scheme over k, and denote by X
its Berkovich analytification (which can be described via multiplicative semi-norms in a
similar way to Ai’an, see above). For x € A, let H'(x) be the completion of Frac(A/ker|-|,)
with respect to the quotient norm induced by |-|;. Asin Lemma 1.4.12, using the universal
property for affinoid domains, we can show that H'(z) = H(z) - the completed residue
field of x.

Moreover, if X is a curve, then there is a bijection between the rigid points of X and
the maximal ideals of A. If z € X is a rigid point, then H(z)/k is a finite field extension,
implying ker| - |, is a maximal ideal of A. Let P be a maximal ideal of A. Then, by the
surjectivity of the kernel map (i.e. analytification) X — X there exists € X such that
ker| - | = P. Since A/P is a finite field extension of k, we obtain that z is a rigid point
of X.

7,an

EXAMPLE 1.6.8. The analytification of P} is ;™. The canonical map can be described
using the canonical maps corresponding to the copies of A} in P.

Let f: X — Y be a morphism of locally finite type schemes over k. Set X = X?" and
Y = Y?*". We have a morphism X — X — ) of k-locally ringed spaces. By the universal
property of analytification, this induces a morphism of good k-analytic spaces X — Y.
Remark that, by construction, the following induced diagram is commutative.

x L.y

[

X —Y

DEFINITION 1.6.9. Let f : Y — X be a morphism of locally finite type schemes
over k. The corresponding morphism Y — X of their analytifications (constructed in the
paragraph above) will be denoted by f*", and called the analytification of f.

Let F be any coherent sheaf of Oyx-modules. Let m denote the canonical morphism
X — X. Then, F*" := n*F is a coherent sheaf of Ox-modules. It is called the analytifi-
cation of F.

We now mention the main results that compare properties in the algebraic and analytic
setting.

THEOREM 1.6.10 ([6, Prop 3.4.6, 3.4.7]). Let f : ¥ — X be a morphism of locally
finite type schemes over k. Then, f is: (1) flat, (2) separated, (3) surjective, (4) injective,
(5) smooth, (6) an open immersion if and only if f** possesses the same property.

If f is of finite type, then it is: (1°) dominant, (2°) a closed immersion, (3°) proper,
(4°) finite if and only f* has the same property.
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THEOREM 1.6.11 ([6, Prop. 3.4.3]). A scheme of locally finite type over k is reduced,
normal, Cohen-Macaulay, reqular, smooth or of dimension n if and only if its analytifica-
tion satisfies the corresponding property.

THEOREM 1.6.12 ([6, Cor. 3.4.10, Prop. 3.4.11]). Let X be a proper scheme over k.

(1) Let F be a coherent sheaf on X. Then, for any integer p > 0, the canonical
morphism HP(X,F) — HP(X*, F?") is an isomorphism.

(2) The functor F — F?, induces an equivalence of categories between coherent
sheaves of Ox-modules and the coherent sheaves of O yan-modules.

If k is trivially valued, then the properness assumption in Theorem 1.6.12 is not needed
(cf. [6, Theorem 3.5.1(iii)]).
Since we will be working with curves in Chapter 3, the following result is very useful:

PROPOSITION 1.6.13 ([20, Théoreme 3.7.2]). For any proper k-analytic curve X, there
exists a projective algebraic curve X over k, such that X*" = X.

Hence, we will often refer to reduced proper k-analytic curves as being reduced and
projective. The above result was first shown for reduced curves in [6, Cor. 3.4.14].

1.6.3. Analytification over an affinoid space. The construction of the analyti-
fication functor can be given more generally, over affinoid spaces. We will need this for
Chapter 4.

Let k be a complete ultrametric field and A a k-affinoid algebra. Set X := Spec A,
and X := M(A). We will say that a good analytic k-space Y is a good X -analytic space
if there is a morphism of good analytic k-spaces ¢y : Y — X. A morphism f:Y — Z
of X-analytic spaces is a morphism of analytic k-spaces such that ¢z o f = @y. Let us
denote the category of good X-analytic spaces by X-An.

Let Y be a locally finite type scheme over X. Let F' denote the functor X-An — Set,
Z +— Homy(Z,)), where Homy(+, ) denotes the set of morphisms in the category of
X-locally ringed spaces.

THEOREM 1.6.14 ([4, Prop. 2.6.1]). The functor F is represented by a good X -analytic
space Y*" that is a good k-analytic space, and a morphism Y** — Y of X-locally ringed
spaces.

The space Y is called the Berkovich analytification of ) over X (when there is no
risk of ambiguity, we will simply say that J*" is the analytification of )’). Remark that
the analytification of X over X is simply X.

Remark that as in the case of fields, if f : Y1 — )» is a morphism of locally finite type
X-shemes, it gives rise to a morphism f" : Y — V3" of good X-analytic spaces, called
the analytification of f. This induces the following commutative diagram:

3}1%3)2

[

y?n fan ygn
Analytification of schemes over strict affinoid algebras was introduced by Kopf [45]
in the setting of rigid geometry, and several GAGA-type properties were shown in the
same paper. In [4, 2.6], Berkovich defined and studied the analytification of schemes over
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general affinoid algebras in the setup of Berkovich spaces. It has since been systematically
studied by Ducros in several of his papers (e.g. [21], [18], [61, Annexe A]).

All of the properties that we mentioned for the analytification of schemes over fields
(with the exception of Proposition 1.6.13) hold in this setting as well. However, seeing as
the proofs are dispersed in several papers, we will directly give the references when using
certain (most) of these results.

EXAMPLE 1.6.15. (A%)* = AP™ xp X =: AY™, and (P%)* = P x; X = Pg™"
for any n € N.

The examples of affinoid domains we saw in part 1.5.2 are applicable (using the same
arguments) to AY™ and Py™ as well.
Let us make a few useful remarks for the next chapters.

LEMMA 1.6.16. Analytification commutes with respect to affinoid base change. More
precisely, let Z — X be a morphism of affinoid k-spaces. Set Z := Spec O(Z). Let ) be
any locally finite type scheme over X. Set Y := Y**. Then, (Y xx 2)** =Y Xx Z as good
Z-analytic spaces.

ProoF. By Remark 1.5.9, Y x x Z exists. It is clearly a good Z-analytic space.

We only needs to check that the universal property is satisfied. Let T" be a good
Z-analytic space and T — ) Xy Z a morphism of Z-locally ringed spaces. This in-
duces a morphism 7" — Y contained in Homy(7,)), and a morphism of analytic spaces
T — Z — X, meaning T' — Z can be interpreted as a morphism in X-An. By the universal
property of analytification, we obtain a morphism 7" — Y in X-An. Consequently, there
is a morphism of good Z-analytic spaces T — Y X x Z, thus implying the statement. [

Recall that the fiber of a morphism of analytic spaces can be identified with a good
analytic space (see Proposition 1.5.7).

COROLLARY 1.6.17. Let f : Y1 — Yo be a morphism of X-schemes of locally finite
type. For x € V3", let T denote its image via Y3* — YVo. Then, the fiber (f2*)~1(x) is
isomorphic to (f~1(T) X .z H(x))™ as an H(x)-analytic space, where k(T) is the residue

field of T in Vs.

PROOF. By Proposition 1.5.7, (f2")~1(z) is identified to the good H(z)-analytic space
Vit xysn H(z). By Lemma 1.6.16:

Vit xygn H(x) = (V1 xp, H(@)™ = (V1 Xy, 6(T) X (@) H(2))™ = (F7H(T) Xz H(2))™
(]

1.6.4. The Zariski topology. Let k be a complete ultrametric field.

DEFINITION 1.6.18. Let X = M(A) be a k-affinoid space. The Zariski topology on X
is the topology induced by the kernel map kery : X — Spec A (see Definition 1.4.12).

More generally, let Y be a good k-analytic space. A Zariski closed subset of Y is the
zero-locus of a coherent ideal of sheaves over Y (remark that these are exactly the closed
immersions to Y, and in particular analytic spaces themselves). These are the closed sets
of a topology on Y, called the Zariski topology.

Remark that the Berkovich topology is finer than the Zariski one.
If X is a finite type scheme over k, then the Zariski topology on X" is the one induced
by the canonical analytification map A*" — X’ (see Theorem 1.6.10 (3")).
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DEFINITION 1.6.19. Let X be a good k-analytic space. A Zariski closed subset of X
is said to be irreducible if it is irreducible for the Zariski topology on X.

REMARK 1.6.20. Let X be a locally finite type scheme over k. Then, X is irreducible
if and only X®" is irreducible.

Moreover, in [18, Proposition 2.7.16], Ducros showed that the irreducible components
of X" are the analytifications of the irreducible components of X" in the more general case
of analytic spaces over an affinoid space (we won’t define what an irreducible component
of a good analytic space is; for that, see [18, Definition 1.5.2]).

REMARK 1.6.21. In [21, Proposition 5.14], it is shown that if X is a normal good
k-analytic space, then its irreducible components are its connected components.

Taking Remark 1.5.18 into account, this means that a connected analytic domain of a
normal good k-analytic space is always irreducible, and so integral.

DEFINITION 1.6.22. We will say that a good k-analytic space is integral if it is reduced
and irreducible.

Remark that a k-affinoid space is integral if and only if O(X) is a domain. (This does
not necessarily imply that all the stalks are domains.)

REMARK 1.6.23. One can also define the notion of codimension for the Zariski topology,
see for example [18, 1.5.15]. In particular, for a good k-analytic space X, a divisor on X
is a Zariski closed subset of X of codimension 1. If X is the analytification of a locally
finite type scheme X, then a divisor on X is simply the pullback of a divisor on X via the
canonical map X — X see [18, Corollary 2.7.13].

The Zariski topology on Berkovich spaces has been extensively studied by Ducros in
several of his papers (see e.g. [18]).

PROPOSITION 1.6.24 (Analytic continuation). Let X be an integral good k-analytic
space.

(1) Let Y be any analytic domain of X. The restriction morphism O(X) — O(Y) is
injective.

(2) For any x € X, the restriction morphism O(X) — O, is injective.

PROOF. Let f € O(X) be such that its restriction to Y is zero. Let Z denote the
Zariski closed subset of X determined by the zero locus of f. Then, Y C Z, so by [21,
Corollaire 4.14], Z = X. This means that for any € X, |f|z = 0. Let V' be an affinoid
neighborhood of x in X. Then, |f|, = 0 for all y € V, which by Proposition 1.3.15(1)
(see also Theorem 1.1.38) implies that fjy- is nilpotent in O(V). By Remark 1.5.18, the
reducedness of X implies that of V, so fjy; = 0. We have shown that for any x € X, f =0
in Ox 4, so f =01in O(X), and the restriction morphism to Y is injective.

The second part is a direct consequence of the first one. O

1.7. Complement I: The sheaf of meromorphic functions

As in the complex setting, a sheaf of meromorphic functions can be defined satis-
fying similar properties. Moreover, its definition resembles heavily that of the sheaf of
meromorphic functions for schemes (including the subtleties of the latter, see [43]).

Let k denote a complete ultrametric field.
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DEFINITION 1.7.1. Let X be a good k-analytic space. Let Sx be the presheaf of
functions on X, which associates to any analytic domain U the set of analytic functions
on U whose restriction to any affinoid domain in it is not a zero-divisor. Let .#Z_ be the
presheaf on X that associates to any analytic domain U the ring Sx(U)™1Ox(U). The
sheafification .#x of the presheaf .Z_ is said to be the sheaf of meromorphic functions
on X.

It is immediate form the definition that for any analytic domain U of X, Sx(U)
contains no zero-divisors of Ox (U).

REMARK 1.7.2. The sheaf of meromorphic functions for schemes is given as in Defini-
tion 1.7.1 when replacing affinoid and analytic domain with open subset. Recall that if X
is an integral scheme, then the ring of global sections of the sheaf of meromorphic func-
tions on X' coincides with its function field. See [48, 7.1.1] for a treatment of meromorphic
functions in the algebraic setting.

PROPOSITION 1.7.3. Let X be a good k-analytic space. Let U be an analytic domain
of X. Then,
(1) Sx(U) ={f € Ox(U) : f is a non-zero-divisor in Oy, for all x € U}.
(2)Sx(U) ={f € Ox(U) : f is a non-zero-divisor in Oy (G) for any open subset G of U}.

PROOF. (1) By a direct application of the definition, the elements of Sx (U) are non-
zero-divisors on Oy, for all z € U.

Let f € Ox(U) be such that f is a non-zero-divisor in Oy, for all € U. This means
that Oy, — Ovuz,a— f-a, is an injective map for z € U.

Let V be any affinoid domain in U. By [18, 4.1.11], for any = € V, the morphism
Ovz — Oy, is flat. Consequently, the map Oy, — Oyg,b — f - b, is injective, or
equivalently, f is a non-zero-divisor in Oy,,. Suppose there exists ¢ € Oy (V) such that
f-c¢=0.Then, ¢ =0 in Oy, for all z € V, implying ¢ = 0 in Oy (V). As a consequence,
f is a non-zero-divisor in Oy (V). We have shown that f € Sx(U), concluding the proof
of the first part of the statement.

Finally, (2) is a direct consequence of (1). O

LEMMA 1.7.4. Let X be a good k-analytic space. Let U be an affinoid domain in X.
Then, Sx(U) is the set of non-zero divisors of Ox(U).

PROOF. By definition, the elements of Sx(U) are not zero-divisors in Ox (U).

Let f be an element of Ay := Ox (U) that is a non-zero-divisor, i.e. such that the map
Ay — Ay, a— f - a, is injective. Let V C U be any affinoid domain. Set Ay := Ox (V).
Then, by Proposition 1.4.10(2), the restriction map Ay — Ay is flat. Consequently, the
map Ay — Ay,b+— f-b, remains injective, meaning f is not a zero divisor in Ay . This
implies that f € Sx(U), proving the statement. O

The proof of the following statement resembles the proof of its algebraic analogue.

COROLLARY 1.7.5. Let X be a good k-analytic space. Then, for any x € X, Sx 4 is
the set of elements of Ox , that are non-zero-divisors.

Proor. Let z € X. Clearly, the elements of Sx , are not zero divisors in Ox ;.
Let f € Ox, be a non-zero-divisor. By restricting to an affinoid neighborhood of x
if necessary, we may assume, without loss of generality, that X is an affinoid space and
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f€0x(X). Set A=0x(X).Set I ={a€ A: f-a=0}. This is an ideal of A, and gives
rise to the following short exact sequence

0—-I—->A— A,

where A — A is given by a + f - a. Seeing as f is a non-zero-divisor in Ox ;, we obtain
that IOX@ = 0.

The ring A is an affinoid algebra, and hence Noetherian (¢f Theorem 1.3.9). Conse-
quently, I is finitely generated. Let a1, as, ..., a, € A be such that I = (a1,as,...,ay). By

the above, the germs a; , € Ox , of a; at z are zero for all i € {1,2,...,n}. Consequently,
there exists an affinoid neighborhood V' of x in X such that a;y = 0 for all ¢, implying
10x(V) =0.

Set Ay := Ox (V). By Proposition 1.4.10(2), the restriction morphism A — Ay is flat,
so the short exact sequence above induces the following short exact sequence:

0—>1®4Ay — Ay — Ay,

where Ay — Ay is given by b — fy - b. Seeing as Ay is a flat A-module, I ®4 Ay is
isomorphic to Ay = 0. Consequently, multiplication by f)y, is injective in Ay, or equiv-
alently f is a non-zero-divisor in Ay. By Lemma 1.7.4, this implies that fi;, € Sx(V),
and finally that f € Sx ;. O

By Corollary 1.7.5, if X is a good k-analytic space, then for any x € X, .#x , is the
total ring of fractions of Ox ;. In particular, if Ox , is a domain, then .#x , = Frac Ox ;.
When there is no risk of confusion, we will simply denote O, resp. .#, for the sheaf of
analytic, resp. meromorphic functions on X. We make note of the following, well known,
fact:

LEMMA 1.7.6. Let X be an integral k-affinoid space. Then, .#(X) = Frac O(X).

PROOF. Since O(X) is an integral domain, Frac O(X) C .#Z(X) by the definition
of A . Let f € #(X). The sheaf fONO C .# is non-zero and coherent, so by Kiehl’s
Theorem [6, Proposition 2.3.1], it has a non-zero global section x. Then, there exists
y € O(X)\{0}, for which f = £ € Frac O(X).

O

A very important non-trivial result for us is the following:

PRrROPOSITION 1.7.7 (Hurwitz-Weierstrass Theorem, [6, Prop. 3.6.2]). Let X be a
reduced proper scheme over k. Then, the canonical map Mx(X) — Mxan(X*), where
My denotes the sheaf of meromorphic functions on X, is an isomorphism.

This can be generalized to schemes over an affinoid algebra. It is a non-trivial result
for which GAGA-type theorems (cf. [45], [61, Annexe A]) are crucial. The arguments to
prove the following result were given in a Mathoverflow thread (see [57]).

Let us first mention some brief reminders on the notion of depth. Let R be a ring, I an
ideal of R, and M a finitely generated R-module. An M-reqular sequence of length d over
I is a sequence 11,79,...,74 € I such that r; is not a zero divisor in M/(r1,...,ri—1)M
for i =1,2,...,d. The depth of M over I, denoted depthp(I, M) in [13, Section 1], is

e 00 if IM =M,
e the supremum of the length of M-regular sequences over I, otherwise.
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In what follows, when M = R, we will denote depthp(I, R) by depth;R. Remark that
depth;R > 0 if and only if I contains a non-zero divisor of R.

THEOREM 1.7.8. Let k be a complete ultrametric field. Let A be a k-affinoid algebra.
Let X be a proper scheme over Spec A. Let X*" /M(A) denote the Berkovich analytifica-
tion of X. Then, Mxan(X") = Mx(X), where Mxan (resp. Mx) denotes the sheaf of
meromorphic functions on X (resp. X ).

When there is no risk of ambiguity and the ambient space is clear from context, we
will simply write .# for the sheaf of meromorphic functions.

PROOF. As in Definition 1.7.1, let Sxan denote the presheaf of analytic functions
on X?", which associates to any analytic domain U the set of analytic functions on U
whose restriction to any affinoid domain in it is not a zero divisor. By Corollary 1.7.5, for
any r € X, Sxan ; is the set of non-zero-divisors of O xan ;.

Let Z be a coherent ideal sheaf on X?" that locally on X" contains a section of Sxan.
This means that for any z € X", Sxan ;NZ,; # (). Let s € Sxan ;NZ,. Then, s is a non-zero
divisor in Oxan,, which implies depthy Oxan, > 0. Suppose, on the other hand, that
7 is a coherent ideal sheaf on X" such that depthy Oxan, > 0 for all x € X*". Then,
there exists at least one element s € Z, which is a non-zero-divisor in Oxan 4, implying
s € Sxan,. To summarize, a coherent ideal sheaf 7 on X®" contains locally on X*" a
section of Sxan if and only if depths (Oxan ) > 0 for all z € X"

Let us show that for any coherent ideal sheaf Z on X" containing locally on X" a sec-
tion of Sxan, there is an embedding Hom xan (Z, Oxan) C A xan (X?"), where Hom xan (Z, O xan)
denotes the global sections on X*" of the hom sheaf .77 om(Z, Oxan). Let ¢ € Homxan (Z, Oxan).
For any x € X®, ¢ induces a morphism ¢, : Z, — Oxan,. Let s, € Sxan g N1y,
and set a; = pz(sy). There exists a neighborhood U, of z, such that s, € Z(U,) N
SX““(USB)?aw € OXa“(Ux)a and @(Ux)(sx) = a;. Set fa: = % € SXan(UJC)_lOX‘"‘“(Ux) -
M xon(Uy) (the presheaf S)?inoxan is separated, so S;(}mOXan C Mxon).

Let Uy, U, be any non-disjoint elements of the cover (U, )zexan of X*". Then, consid-
ering ¢ is a morphism of sheaves of Oxan-modules, (U, NU,)(sy - 5.) = 8y - a, = ay - 5.
in Oxan(Uy NU). Consequently, f, v, nv, = foju,nv, in A x=(Uy N U,), implying there
exists f € M xan(X") such that fiy, = fr in A xan(Uy) for all x € X"

We associate to ¢ the meromorphic function f. Remark that if f = 0, then a, = 0 for
all x. This implies that for any o € Z,, 0, (ss - @) = 8z - @u(a) = ay - () = 0, which,
taking into account s; € Sxan ; a non-zero-divisor, means that ¢,(a) = 0. Consequently,
wr = 0 for all z € X? so ¢ = 0. Thus, the map 17 : Homyan(Z, Oxan) — A xan(X?")
we have constructed is an embedding.

Remark that the set of coherent ideal sheaves on X3" containing locally on X" a
section of Syan forms a directed set with respect to reverse inclusion (i.e. if Z, J satisfy
these properties, then so does Z -7 C Z,J). Thus, by the paragraph above, there is
an embedding lim  Hom xan (Z,Oxan) < Mxan(X?"), where the direct limit is taken with
respect to the same kind of coherent ideal sheaves Z as above. Let us show that this
embedding is an isomorphism.

For any f € M xan(X?*"), define the ideal sheaf D as follows: for any analytic domain
U of X% set Dy(U) ={s € OWU) : s f € Oxan(U) C Mxan(U)}. This is a coherent
ideal sheaf on X®". Since .#/xon , = S)_(in@OXanJ for any x € X", there exist s, € Sxan ;
and a; € Oxan , such that f, = i—z in # xan 5. Considering Dy, = {s € Oxan g :s- fz €
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Oxan 5}, we obtain that s, € Dy, so Dy contains locally on X®" a section of Sxan.
To f € Mxan(X*) we associate the morphism ¢ : Dy — Oxan which corresponds to
multiplication by f (i.e. for any open subset U of X*", D(U) — Oxan(U),s — f - s).
Clearly, ¥p,(py) = f, implying the embedding ligz Homyan(Z, Oxan) < M xan(X?") is
surjective, so an isomorphism.

Let Sx denote the presheaf on X through which .#Zx is defined (see [48, Section
7.1.1]). Remark that since A is Noetherian ([6, Proposition 2.1.3]), the scheme X is
locally Noetherian. Under this assumption, for any x € X, Sx, is the set of all non-
zero-divisors of Ox , (see [48, 7.1.1, Lemma 1.12(c)]). Taking this into account, all the
reasoning above does not make use of the fact that X?" is an analytic space, and can
be applied mutatis mutandis to the scheme X and its sheaf of meromorphic functions
Mx. Thus, #Mx(X) = liﬂj Homy (J,Ox), where the direct limit is taken with respect
to coherent ideal sheaves J on X, for which depth Txo Ox >0 forall x € X.

Consequently, to show the statement, we need to show that hgrl 7 Homy (7,0x) =
li_n)ll Homxan (Z, Oxan), where the direct limits are taken as above.

By [61, Annexe A] (which was proven in [45] in the case of rigid geometry), there is
an equivalence of categories between the coherent sheaves on X and those on X2". Let us
show that this induces an equivalence of categories between the coherent ideal sheaves on X
and those on X#". To see this, we only need to show that if F is a coherent sheaf on X such
that 2" is an ideal sheaf on X", then F is an ideal sheaf on X. By [61, A.1.3], we have a
sheaf isomorphism Zom/(F,0)*" = #om(F**, Oxan), so Fom(F,O)*" has a non-zero
global section ¢ corresponding to the injection F?" C Oxan. By [61, Théoreme A.1(i)],
Hom(F,0) (X)) =2 Hom(F,O0)(X). Let o/ € #om(F,O)(X) denote the element
corresponding to ¢. Then, the analytification of /' : F — Ox is the morphism ¢ : F2" <
Oxan. By flatness of X** — X, we obtain that (ker ¢/)*" = ker /2" = ker ¢, so (ker //)** = 0,
implying ker /" = 0. Consequently, there exists an embedding F < Ox, implying F is an
ideal sheaf on X.

If to a coherent ideal sheaf 7 on X we associate the coherent ideal sheaf 72" on X2,
then as seen above Homy (7, Ox) = Homxan (J*", Oxan).

Let us also show that a coherent ideal sheaf J on X satisfies depth; Ox , > 0 for
all z € X if and only if depth J;n(’)xany > 0 for all y € X?®". To see this, recall that by
[4, Proposition 2.6.2], the morphism ¢ : X?" — X is surjective and for any y € X?",
the induced morphism of local rings Ox, — Oxany is faithfully flat, where z := ¢(y).
By [13, 1.3, Proposition 6], depth ; Ox , = deptthOXan’yOXan,y ®0x., Ox,z- At the same
time, seeing as the morphism Ox ; — Oxany is flat, T = Ty ®oy, Oxony = TeOxon y,
so depth; Ox ;= depthj;m Oxan 4.

From the above, hgj Homy (J,0x) = @I Hom xan (Z, O xan), where the direct limits
are taken with respect to coherent ideal sheaves J on X (resp. Z on X?"), for which
depth; Ox , > 0 for all x € X (resp. depthy Oxan, > 0 for all x € X*"). Finally, this
implies that .#x (X) = M xan(X?"). O

As an immediate consequence of the theorem above, we obtain that for any integral
k-affinoid space Z, 4 (Py™) = 4 (Z)(T).
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1.8. Complement II: Analytic curves

Arguably, analytic curves in the sense of Berkovich form the class of Berkovich spaces
that is understood the best and on which the most progress has been made. In [20],
Ducros proves the semi-stable reduction theorem using only Berkovich’s theory, which is
why one can find an extensive study of these spaces in loc.cit. Among other things, the
relationship between formal models of an algebraic curve and its Berkovich analytification
is explored. Also, it is shown that Berkovich curves have a graph-like structure preserving
their homotopy type, which then led to studies of combinatorial nature of these objects.
Namely, connections have been made between tropical and Berkovich’s geometry, and this
is a rising area of research.

We give here a brief overview on analytic curves, focusing mainly on: major results
or ones that are needed for the next chapters and which exist in the litterature (with
references), and results that we need (which to our knowledge are not in the litterature)
for which we provide proofs. There remain certain results of the latter type which will
be proven when needed in the next chapters (we consider this to be a more natural
presentation).

Throughout this section, let k denote a complete ultrametric field.

1.8.1. The points of an analytic curve. Recall the definition of a good analytic
curve (Definition 1.5.37) and the remark below it. The latter justifies the fact that we will
simply say analytic curves from now on (instead of good analytic curves).

As in the case of Ai’an, for any analytic curve there is a full classification of points. Let
C be a k-analytic curve. In Definition 1.5.21, for any « € C, we introduced the invariants
sy = degtrp H(z) and t, := dimg [H(x)*[/|k*|®zQ, where H(z) is the completed residue
field of z, and k, H(z) are the residue fields of k, H(z), respectively. By Lemma 1.5.22,
for any x € C, s +{; < 1. Let us fix an algebraic closure k of k. The absolute value of k

extends uniquely to k. We denote by k the completion of k with respect to said absolute
value.

DEFINITION 1.8.1. The point z is said to be

(1) of type 1 if H(x) C k; remark that s, = t, = 0;
(2) of type 2 if s, =1,
(3) of type 3 if t, = 1;
(4) of type 4 if s, =t, =0 and z is not of type 1.

Remark that type 2 and 3 points are the Abhyankar points of C. By Proposition 1.5.24,
for any affinoid domain in C, the points in its Shilov boundary are of type 2 or 3. Also,
rigid points are type 1 points (but not necessarily vice-versa unless k is algebraically closed
or trivially valued). Definition 1.8.1 is compatible with the terminology we introduced in
Subsection 1.2.4.

Here are a few results that we will need for the next chapters.

LEMMA 1.8.2. Let f: Cy — Cy be a finite morphism of k-analytic curves. If x € Cy
is a type i point, then for any y € f~1(x), y is a type i point in C1,i =1,2,3,4.

PROOF. This is immediate from the fact that for any y € C, the morphism O¢, r(,) —
Oc, y is finite.
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LEMMA 1.8.3 ([18, Lm. 4.4.5]). Let C be a reduced k-analytic curve. Then, for any
x € C that is not rigid, Oc, s a field.

LEMMA 1.8.4. Let C' be a normal k-analytic curve. Then, for any x € C, Oc, is
either a field or a discrete valuation ring. Moreover, Oc . is a discrete valuation ring if
and only if x is a rigid point of C.

Proor. By Corollary 3.2.9 of [18], dimO¢, < dim,(C) = 1. If dimO¢, = 0, then
Oc¢,; is a normal local ring of Krull dimension 0, so it is a field. If dimO¢, = 1, then
Oc¢, is a Noetherian normal local ring of Krull dimension 1, so it is a discrete valuation
ring.

To show the last part of the statement, by Lemma 1.8.3, it suffices to prove that if
Oc is a field for some z € C, then x is not a rigid point. This is a consequence of [18,
Corollary 3.2.9]. O

LEMMA 1.8.5. Let C be an irreducible k-analytic curve. Then, any proper Zariski
closed subset of C is discrete and contains only rigid points.

PROOF. Recall that a Zariski closed subset of C is a k-analytic space, so it makes
sense to speak of its dimension.

Let Z be a proper Zariski closed subset of C. By [21, Cor. 4.14], dim Z = 0. Hence,
for any x € Z, dim,(Z) = 0, which by [22, 1.21] is equivalent to the fact that x is a rigid
and isolated point. O

LEMMA 1.8.6. Let k be a trivially valued field. Let C' be an integral projective k-analytic
curve. Then, C' contains exactly one type 2 point x, and O, = A (C).

Proor. By Proposition 1.6.13, the curve C' is the analytification of an integral pro-
jective algebraic curve C over k. Let m : C' — C denote the canonical morphism.

Let U be any affine open subset of C. Then, by Lemma 1.8.5, all type 2 points are
contained in 7~ H(U) = U, Seeing as U is affine, U" is the set of multiplicative semi-
norms on O¢(U) which extend the absolute value of k. Remark that the trivial norm on
Oc¢(U) determines a unique point of U?".

Let x € U be any type 2 point. Then, seeing as /|k*| = {1}, we obtain that

|H(z)*| = |H(x)*| = {1}, i.e. = induces the trivial norm on O¢(U). Consequently, by
the description of the points of U?", there is exactly one type 2 point in U?", and hence
in C. By Lemma 1.4.12, H(x) is the completion of the residue field x(x) with respect to
the trivial norm, implying x(x) = H(z). As z is of type 2, k(z) = O,.

By Remark 1.6.7, H(z) is the completion of Frac O¢(U) with respect to the trivial
norm | - |z, so H(z) = Frac O¢(U). As C' is irreducible, .# (C) = Frac O¢(U) = H(z). O

Type 3 points are crucial for the constructions we will make, which is why it is very
important to know when they exist.

ProprosITION 1.8.7. Let C be a k-analytic curve. Type 3 points exist in C if and only
if /|kX| # Rso, in which case they are dense.

Moreover, the family of connected affinoid domains with only type 8 points in their
topological boundaries forms a basis of neighborhoods of the Berkovich topology on C.

PROOF. Since curves are good analytic spaces, we may assume that C' is an affinoid
space. Let U be an open neighborhood of = in C. There exists an open neighborhood
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of z in U given by {|fi| < ri,|gj| > s; :i=1,2,...,n,j =1,2,...,m}, where f;,g; are
analytic functions on C' and 74, 5; € Rsg.

Let r}, s’ € R>o\+/|k*|, such that r] < r; and s; > s;, and | f;(x)| < 7}, ]g;(x)| > s, for
all 7 and j. Set V' = {|fi| <}, [g;| = s;}. It is an affinoid domain of C' and a neighborhood
of = contained in U.

As {|fil < r},|gjl > s;} is open, it is contained in Int(V), so OV C UL {|fi| =
ri} WUl {lgsl = 85} Let y € Ui {Ifil = ri} UUjL,{lgj| = s}. Since there exists an
analytic function f on C such that |f(y)| € v/|k*|, the point y is of type 3, implying that
the boundary of V' contains only type 3 points. (]

1.8.2. Boundaries in dimension 1.

LEMMA 1.8.8. Let V' be a k-affinoid curve. The following sets are equal:

(1) the Berkovich boundary (V') of V;
(2) the Shilov boundary T'(V') of V.

PRrROOF. If V is strictly affinoid, this is [69, Lemma 2.3]. The proof can be extended
to the general case by replacing classical reduction with Temkin’s graded reduction (see
Propositions 3.3 and 3.4 of [67]). O

REMARK 1.8.9. If C is a k-analytic curve and U an analytic domain of C, then by
Theorem 1.5.27, 0U C 9p(U).

PROPOSITION 1.8.10. Let C' be a k-analytic curve such that Og(C) = (. Let V be an
affinoid domain of C. The three following sets coincide:
(1) the topological boundary OV of V in C,
(2) the Berkovich relative boundary 0p(V/C') of V in C;
(3) the Shilov boundary I'(V') of V.

PrOOF. By Theorem 1.5.27(2), 0p(V/C) = 0V. By Theorem 1.5.27(1), since C' is
boundaryless, dp(V/C) = (V). Finally, in view of Lemma 1.8.8, 0V = dp(V/C) = T'(V).
(]

In particular, the results above tell us that the topological (and Berkovich) boundary
of any affinoid domain of an analytic curve is finite. As an immediate consequence:

COROLLARY 1.8.11. Let C be a k-analytic curve. For any affinoid domain U in C,
(Int U) =U.

The following is a direct consequence of [60, Lemme 4.4] and Proposition 1.3.14.

PropoSITION 1.8.12. Let V' be a k-affinoid curve. Then, V is strict if and only if
(V) contains only type 2 points.

1.8.3. Some general results on curves. Informally, a real graph is an infinite graph
where there can be “infinite branching” even locally (for example, the tree corresponding
to A,lc’an is a real graph). The precise notion has many nice properties, e.g. it is locally
uniquely arcwise-connected. For the precise definition, see [20, 1.3.1].

THEOREM 1.8.13 ([20, Théoreme 3.5.1]). An analytic curve is a real graph.

Type 3 points are the points of arity 2 in the real graph associated to the analytic
curve. Type 1 and 4 points have arity 1, and type 2 points infinity.
Here is a useful (for the next chapters) application of this.
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PrOPOSITION 1.8.14. Let C be a compact k-analytic curve. For any x,y € C, there
exist only finitely many arcs in C connecting x and y.

PROOF. By [20, Théoréeme 3.5.1], C is a real graph. By [20, 1.3.13], for any z € C,
there exists an open neighborhood U, of z such that: (1) U, is uniquely arcwise-connected;
(2) the closure U, of U, in C is uniquely arcwise-connected; (3) the boundary OU, is finite,
implying in particular OU, = 9U,. Seeing as C is compact, the finite open cover {U,}.cc
admits a finite subcover U := {U1,Us, ..., Up}. Set S := J;, OU;. This is a finite subset
of C.

Let z,y be any two points of C. Let v : [0,1] — C be any arc in C' connecting x
and y. Set Sy := S N~([0,1])\{z, y}. It is a finite (possibly empty) subset of C'. For any
a € S, there exists a unique a € [0, 1] such that y(a) = a. This gives rise to an ordering
of the points of S,. Set S, = {ai,a2,...,an} such that the order of the points is the
following: a3 < ag < -+ < ay, (meaning v~ (a1) < 7 Hag) < -+ < v ). To the
arc y we associate the finite sequence 7 := (a1, a2, ..., o) of points of S,. Set ag = x,
and a1 = y.

For any i € {0,1,...,m + 1}, set v; := v([y "} (), *(ait1)]). This is an arc in C
connecting «; and «;y1. By construction, for any i, v; NS C {a;, a;+1}. Remark that
v([0,1]) = U?igl Yi-

Let us show that for any ¢ € {0,1,...,m}, there exists a unique arc [, a;41]o in C
connecting «; and a;41 such that [a;, air1]o NS C {ay, aiy1}. Let [ay, 1] be any such
arc (the existence is guaranteed by the paragraphs above). Let j € {1,2,...,n} be such
that (o, ai1] NU;j # 0. Let z € [a, ai1]) NUj; since a4, 1] N U; is open in [y, iy,
we may choose z such that z & {a;,aj+1}. Let us denote by [ay, 2], resp. [z, a;t1] the
arc in C' induced by [, aj11] connecting «; and z, resp. z and «;11. Clearly, [, aiy1] =
[, 2] U [z, a). o o

Suppose there exists u € [0, a;1]\Uj. Again, as [a;, a;41]\U;j is open in [0y, aiq1], we
may assume that u & {a;, a;11}. Without loss of generality, let us suppose that u € [ay, z].
Let [av, ul, resp. [u, z], be the induced arcs connecting «; and u, resp. u and z. Seeing as
z € Uj and u € Uj, [z,u]NOU; # 0. At the same time, § # [z,u]NOU; C [ov, aiy1]NOU; C
[, air1] NS C {ay, a1}, which contradicts the injectivity of [, at1]-

Consequently, [a;, a;11] C 7] Seeing as 7] is uniquely arcwise-connected, we obtain
that the arc [, ;41] in C connecting «; and a41, and satisfying the property [ov;, ;1] N
S C {a;,@;q1}, is unique. Thus, v; = [ay, ajt1], and the arc « is uniquely determined by
its associated ordered sequence 7.

Seeing as S is finite, the set of all finite sequences (/3;); over S such that 8y # B
whenever I’ # 1", is also finite. Consequently, the set of arcs in C' connecting z and y is
finite. U

The following result is crucial for our work in the next chapters. It is among the main
reasons why the case of curves is the most pleasant one to treat. The proof is obtained by
applying Théoreme 6.1.3 of [20].

THEOREM 1.8.15. (1) An irreducible compact k-analytic curve is either projective or
an affinoid space.

(2) The finite union of affinoid domains in an irreducible k-analytic curve is the curve
itself or an affinoid domain.
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PROOF. (1) Let C be an irreducible compact k-analytic curve. Then, if dg(C) # 0,
C' is an affinoid curve by [20, Théoréme 6.1.3]. If dg(C) = (), then the canonical map
C — M(k) is proper, so C is a projective curve.

(2) Let C be an irreducible k-analytic curve. It suffices to show the result for two
affinoid domains. Let Ui, Us be affinoid domains in C. Set X = U; U Us. This is an
analytic domain in the sense of [4, 1.3] by definition. As X is an analytic curve, by
[20, Proposition 3.3.7], it is a good k-analytic space. It can be shown that X is also an
analytic domain of C' in the sense of Definition 1.5.5 (see [4, pg. 23]). If 9p(X) = 0,
then by Remark 1.8.9, 9X = (). As X is a compact, hence closed, subset of the connected
curve C, this is possible if and only if X = C. In particular, C is projective (as 95(C) = ).

Suppose 9p(X) # 0. Let Xy be an irreducible component of X, meaning it is a
Zariski closed subset of X, and the inclusion Xg — X is a closed immersion, hence
finite. By Proposition 1.5.31 and Theorem 1.5.27, 9p(Xo) = Xo\Intp(X), meaning
0p(Xo) C 0p(X).

If 0p(Xo) = 0, by [20, 3.2.3], Xog = C, so X = C, and X is proper, which is in
contradiction with the assumption dg(X) # (). Thus, for any irreducible component X
of X, 0 # 9p(Xo) C dp(X). We conclude by [20, Théoreme 6.1.3] that X is an affinoid
space which is an analytic domain of C', hence an affinoid domain in C. U

Here is another way to obtain affinoid domains on a curve. This is again an application
of [20, Théoreme 6.1.3].

LEMMA 1.8.16. Let C be a normal irreducible projective k-analytic curve. Let U be a
connected affinoid domain of C such that its boundary contains only type 3 points. Then,
for any S C 9U, U\S is connected.

PROOF. Suppose that C is generically quasi-smooth. Since 35S contains only type 3
points, all of the points of S are quasi-smooth in C.

Let z,y € Int U. Since U is connected, there exists an arc [z,y] C U connecting x
and y. Let z € S. We aim to show that z ¢ [z,y], implying [z,y] C U\S, and thus the
connectedness of U\S.

By [20, Théoréme 4.5.4], there exists an affinoid neighborhood V' of z in U such that it
is a closed virtual annulus, and its Berkovich boundary is dp(V') = {z,u} for some u € U.
We may assume that z,y ¢ V. Since V is an affinoid domain in U, by Theorem 1.5.27,
the topological boundary dyV of V in U is a subset of dp(V) = {z,u}. Since V is a
neighborhood of z, dyV = {u}.

Suppose z € [z,y]. Then, we could decompose [z,y] = [z, 2] U [2,y]. Since z,y € V,
and z € V, the sets [z, 2] N OyV, [z,y] N OyV are non-empty, thus implying v is contained
in both [z, z] and [z,y], which contradicts the injectivity of [z,y]. Consequently, U\S is
connected.

Let us get back to the general case. Let C*& denote the algebraization of C' (i.e. the
normal irreducible projective algebraic curve over k whose analytification is C'). Since it
is normal, there exists a finite surjective morphism C*& — Pk. This induces a finite field
extension k(7T') — k(C*) = .#(C) of their function fields. Let F' denote the separable
closure of k(T) in k(C). Then, there exists an irreducible normal algebraic curve X over k
such that k(X) = F. Seeing as k(T') = k(C) is separable, the induced morphism X — P}
is generically étale, so X is generically smooth. On the other hand, the finite field extension
kE(C)/F is purely inseparable, implying the corresponding finite morphism C¥e - X is a
homeomorphism.
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Finally, the analytification X?" is a normal irreducible projective k-analytic curve
that is generically quasi-smooth, and there is a finite morphism f : C — X?" that is a
homeomorphism. By [20, Proposition 4.2.14], f(U) is a connected proper closed analytic
domain of X*. By [20, Théoreme 6.1.3], f(U) is an affinoid domain of X?". Clearly,
Af(U) = f(0U). Let S C 9U, and set S" = f(S). As shown above, f(U)\S’ is connected.
Consequently, U\S is connected. O

COROLLARY 1.8.17. Let C' be a normal irreducible k-analytic curve. Let U be an
affinoid domain in C' containing only type 3 points in its boundary. If Int(U) # 0, then
(Int U)° is an affinoid domain in C' containing only type 3 points in its boundary.

PROOF. Seeing as U is an affinoid domain, it has a finite number of connected com-
ponents, and by Corollary 1.4.19, they are all affinoid domains in C. Furthermore, each
of the connected components of U contains only type 3 points in its boundary. Conse-
quently, by Lemma 1.8.16, Int(U) has only finitely many connected components. Thus,
by [20, Proposition 4.2.14], (Int U)¢ is a closed proper analytic domain of C. By [20,
Théoréme 6.1.3], it is an affinoid domain in C. O

Until the end of this part, we briefly mention some of the cornerstones of the theory
of Berkovich curves.

Triangulations. In [20], Ducros introduces the notions of wvirtual discs and virtual
annuli (resp. closed virtual discs and closed virtual annuli), which are generalizations
of discs and annuli (resp. closed discs and annuli) as we saw them in Examples 1.4.25
and 1.5.13; more precisely, a (closed) virtual disc, resp. annulus, becomes isomorphic to a
disjoint union of (closed) discs, resp. annuli, after a base change. The Berkovich boundary
of a virtual disc (resp. annulus) is a single point (resp. a set of 2 points), and the same
remains true if we replace disc (resp. annulus) by closed disc (resp. closed annulus).
Using these spaces, Ducros provides bases of neighborhoods for all of the types of points
of a quasi-smooth Berkovich curve. In particular, he shows that a basis of neighborhoods
of type 3 points of a quasi-smooth curve is given by closed virtual annuli.

In [20], the notion of triangulation of a quasi-smooth k-analytic curve is introduced;
it is a locally finite set of type 2 and 3 points of the curve satisfying certain topological
and analytic properties (see [20, 5.1.13]). To any triangulation we can associate a locally
finite graph, called a skeleton of the curve, and there is a strong deformation retraction
from the curve to this skeleton. If T is a triangulation of a k-analytic curve C, then the
connected components of C\T" are virtual discs and virtual annuli.

The specialization map. There is a more thorough treatment of the following content
in Section 3.3. We give here a brief overview (without the relevant references, which will
be given in Section 3.3).

For a complete ultrametric field k, let k° denote its ring of integers. Given an adequate
formal model ¥ of an algebraic curve over k°, there is a notion of an analytic generic fiber
C of €, where C is a k-analytic curve. This is the analytification of the algebraic generic
fiber of ¥ if the latter is projective. In general, there exists a specialization map (sometimes
called reduction map, which we will avoid because of Subsection 1.4.7) C' — %, where 6,
is the special fiber of €. The specialization map is anti-continuous.

Let C be a normal irreducible projective k-analytic curve. Let C*# be the algebraic
curve over k such that (C#8)a" = C (recall Proposition 1.6.13). Ducros showed in [20] that
under certain conditions, for any finite set of type 2 points S of C, there exists a model &
of C?18 over k° such that the corresponding specialization map induces a bijection between
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S and the generic points of the irreducible components of the special fiber of 4. We will
need this connection between fibers when comparing the statements of Chapter 3 to those
of [34]. This result is shown more generally for certain subsets S of C' which are called
vertez sets (or in French, ensemble sommitauz, see [20, 6.3.17] for the definition).

1.8.4. Additional properties of P, Let k be a complete ultrametric field.
Recall that (Definition 1.5.41) that a topological space X is said to be uniquely arcwise-
connected if for any x,y € X, there exists a unique arc in X connecting x and y.

PROPOSITION 1.8.18. The analytic affine line A,lﬁ’an 18 locally compact, uniquely arcwise-
connected, and contractible.

PropoOSITION 1.8.19. The projective analytic line IP’,lc’an 1§ compact, uniquely arcwise-
connected, and contractible.
For a proof, see [20, 3.4.20].

For any x,y € IP’,lc’an, let us denote by [z, y] the unique arc connecting them. The next
few properties are a direct consequence of Proposition 1.8.19.

LEMMA 1.8.20. Let A C IP’,lc’an. Then, A is connected if and only if for any x,y € A,
[x,y] C A. Furthermore, the intersection of any two connected subsets of]P’,i,’an s connected.

an

LEMMA 1.8.21. Let U,V be two non-disjoint connected affinoid domains of Pi’
that they have disjoint interiors. Then, U NV is a single point.

, such

PROOF. Since U NV = 9U NIV, it is a finite set of points. At the same time, by
Lemma 1.8.20, U NV is connected, so it must be a single point. O

We will now give a more precise description of points in A,lc’an (or equivalently, Pllﬁ’an).
Let us fix an algebraic closure k of k. There is a canonical surjective open contin-

l,an

uous morphism ¢ : A" — A,lg’an induced by the inclusion k[T] < k[T]. Let G denote

Gal(k®/k), where k° is a separable closure of k. Then, by Proposition 1.1.43, G acts on
%’an, and ¢ induces a homeomorphism AL /G = A,lg’an. Remark that for any a € F,

3
r',r € Ry, the elements of G act on {x € A%’an
homeomorphically to {z € A%’an :17" < |T — bl < r}, where b is a conjugate of a.

: " < |T —aly < r} by sending it

LEMMA 1.8.22. Let P(T) be a monic irreducible polynomial over k. Let a € k be such
that P(a) = 0. Then, for any s,s’ € Rxg such that s' < s, there exist unique r,r" € Rx
such thatr’ < r, satisfying: p({z € A%’an < T —al, <r})={y € Ai’an 18 <|P|y < s}
Moreover, s > 0 (resp. ' > 0) if and only if r > 0 (resp. ' > 0). Consequently,

ey e Ay S <Py <sh) = | {me A ir' < |T—afs <1}
ack "
P(a)=0

PROOF. Let us suppose s’ = 0. The general statement can be shown using the same
type of argument.

For any root 3 of P(T') over k, let ng be its multiplicity, so that P(T) = [ps)=o(T = B)".
The function f : R>o — Rxo,t = " [] p(5)=0 s max(t, |a — B])"7, is strictly increasing
and continuous, so bijective. Thus, for any s € R, there exists a unique positive real
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number r € R>g, such that f(r) = s. Moreover, r = 0 if and only if s = 0. Remark that
rdes P < g
Let z € A%’an be such that |T'— a|; < r. Then, [P(T)|p@) = [1p@g)=olT — Bl <

" [pg)=o,a6 1T — Blz". Also, since |- |, is non-Archimedean, we obtain that [T — 8], <
max(|T—als, |a—ple) < max(r, [a—F]), implying [ P(T)|, ()
Let y € A,lg’an be such that |P(T)|, < s. Let € ¢~ !(y). Suppose that for any root 3
of P(T) we have |T'— S|y > r. Then, s = |P(T)|y = [Ip@)=o T — Blz? > 48P which is
impossible. Thus, there exists a root By of P in k such that |T — S|, < 7. By the Galois
action, there exists 2’ € p~!(y) such that |T — al, < 7.
The last part of the statement is a direct consequence of the Galois action on A%’an. O

COROLLARY 1.8.23. Let P(T) be an irreducible polynomial over k. Let o € k be such
that P(a) = 0. Let s, be positive real numbers such that s > s', and r,r’, with r > 1/,
the corresponding positive real numbers obtained by applying Lemma 1.8.22.

Then, the (topological or Shilov or Berkovich) boundary of {x : |P|l, < s} (resp.

{z 8" <[Pz < s}) s {p(Mar)} (resp. {o(ap), 9(Nar)})-

PrROOF. We may, without loss of generality, assume that P is monic (re-
call Lemma 1.4.2). Seeing as ¢ is open and continuous, by Lemma 1.8.22,
¢~ 0z 1 [Ple < s}) = 0Upgy=oty : IT = Bly <7} By [20, 3.6.4.1], for any 5 € Fk
such that P(8) = 0, the Shilov boundary of {y : |T"— 8|, < r} is {ng,}. Thus,
o (0w : [Pl < 5}) = {ns.r € A" : P(B) = 0}.

Seeing as 73, is the topological boundary of {z : |T'— ], < r} in A%’an, we obtain that
©(npr) = (o) for any B € k such that P(B) = 0. Finally, 0{z : |P|; < s} = {¢(Na.r)}-

We can conclude seeing as {z : |P|, < s} and {y : |T|, < r} are affinoid domains in
AL resp. A}C’an, and taking into account Proposition 1.8.10 and Example 1.5.2.

The other case is shown similarly. (]

DEFINITION 1.8.24. Let P € k[T be any irreducible polynomial. Recall that we denote
by npo the only (type 1) point of A}C’an for which |P| = 0. For s € R, we will denote by
1p,s the point of A" that is the Shilov boundary of the affinoid domain {|P| < s} € A,

PROPOSITION 1.8.25. For any point n € Ai’an of type 2 or 3, there exist an irreducible
polynomial P € k[T] and r € Rsq, such that n = np,. Then, |P|, =1 and:
(1) r € \/|kX| if and only if n is a type 2 point;
(2) r & \/W if and only if n is a type 3 point, in which case n is the only element
of Ay™ for which |P| = r.
PRrOOF. This was shown to be true in Subsection 1.2.2 if k is trivially valued, so let

us assume that that is not the case.

We recall that the projective line P,lc’an can be obtained by adding a rigid point co
to A" Let A be a connected component of P,*"\ {1} that doesn’t contain cc. In partic-
ular, A C A}C’an. Seeing as it is open, by Proposition 1.5.11, there exists a rigid point 7
in A. By Lemma 1.2.4, there exists a unique irreducible polynomial P € k[T, such that
no = npo. Then, n € [npo, ool

< s. Hence, p(z) € {y : |P|, < s}.
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Let ¢ be the finite morphism P,™ — Pp* determined by the map k[T] — k[T,
T+ P(T). Seeing as ¢(npn) = nro and ¢(co) = 0o, [np, o0] is mapped by ¢ to [n7,9, o0].
Set 17/ = ¢(n). The arc connecting 770 to co in Py™ is {57 : s € Rz} U {oo}. For any
52 0,|T|y,, = s, and if 97, is a type 3 point, then it is the only one in ]P’,lf’an for which
|T| = s. Furthermore, nr s is a type 2 (resp. type 3) point if and only if s € y/|k*| (resp.
s & /[kX]).

Thus, there exists r > 0, such that n' = np,. Since ¢() = nr,, by construction,
n = np, and |P|,, = r. Seeing as a finite morphism preserves the type of the point (i.e.
nry is a type 2 (resp. 3) point if and only if np, is so), we obtain (1) and the first part
of (2).

To prove the second part of (2), we need to show that if r ¢ \/|k*|, np, is the only
point in A,lg’an for which |P| = r. Since P is irreducible, by [20, 3.4.24.3], |P| is strictly
increasing in [npg,o0), and locally constant elsewhere. Hence, np, is the only point in
[npo,00) for which |P| = r, and since it is a type 3 point (i.e. A,lg’an has exactly two
connected components), it is the only such point in Ai’an. O

REMARK 1.8.26. As we saw in the proof of Proposition 1.8.24, the unique arc connect-
ing npo to oo in P,lg’an is {nps:s€Rxp}U{o0}.






CHAPTER 2

Patching

The purpose of this chapter is to develop the necessary tools for proving a “matrix
decomposition” statement generalizing [34, Theorem 2.5] and applicable to a Berkovich
framework. To do this, we follow along the lines of proof and reasoning of [34, Section 2.1]
making the necessary adjustements.

We work over a general formal setup (Setting 2.1.5), which is partly why the content
of this chapter is of very technical nature. It will be shown in the next parts of this
manuscript that the hypotheses we adopt here are satisfied in a very natural way in
Berkovich’s geometry. After showing the main result (Theorem 2.1.10), we focus on a
somewhat more restrictive formal setup (which is realised by curves) over which we prove
that patching is possible.

2.1. The general case

SETTING 2.1.1. Let k be a complete non-trivially valued ultrametric field. Let R be
an integral domain containing k, endowed with a non-Archimedean (submultiplicative)
norm | - |g. Suppose that for any a € R and b € k, |ab|g = |a|r - |b].

Remark that the last assumption implies the norm | - |z extends | - |.

For p € N, and indeterminates Xi,...,X,, let us use the notation X for the p-tuple
(X1,...,X,). Following [34, Section 2|, set A := R[X]| and A := R[[X]]. For any M > 1,
set

Ay = {Z aXle A: VIeN |g|r < M”},
leNP
where for | = (I1,1a,...,1,) € NP, Xh.= ?:1 Xfi and || =1 +lo+ -+ 1.

This is a subring of A, and for any M', M” > 1, if M’ < M" then Ay C K]\;
Furthermore, ZJ\; is complete with respect to the (X)-adic topology: if (fy,), is a Cauchy
sequence in AAM, then for any I € N? and large enough n, fui1 — fn € (X)), implying
that f, and f,4+1 have the same “first few” coefficients (the larger |/|, the more “first few”
coefficients that are the same).

Remark also that for any element f = £ of the local ring R[X]x), where
g,h € R[X],h(0) #0, if h(0) € R*, then f can be expanded into a formal power series
over R, meaning in this case f € A.

The following two lemmas are generalizations of Lemmas 2.1 and 2.3 of [34] (and their
proofs follow the line of reasoning of the latter). For any n € N, we keep the notation |- |g
for the max norm on R"™ induced by the norm of R. For a := (ay,as2,...,a,) € R™ and

l:= (ll) l27 cee 7ln) S Nn, we denote al = al11 ce alﬁl. Clear]y, al € R.

51
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LEMMA 2.1.2. (1) Letu= Y, cqwaX' € Ay If a € RP is such that lajp < M1,
then the series >, onp c1a is convergent in R. Let us denote its sum by u(a).

(2) For M > 1, let v,w € ZJ\\/[ be such that w and vw are polynomials. If a € RP is
such that |a|gr < M1, then vw(a) = v(a)w(a).
(3) Let f =7 € R[X](x),9,h € R[X],h(0) # 0, be such that g(0) = 0 and h(0) € R*.

There exists M > 1 such that f € ;1-]\\4 and h € ;1]\\4X.

Let f =3 cnw a X' be the series representation of f. Then, for any a € RP
with |a|g < M, the series > oy cia’ is convergent in R and f(a) = %.
PROOF. (1) Set m = |a|g < M~'. Then, |¢a!|r < (Mm)!. Since Mm < 1, ¢;d*

tends to zero as |I| tends to +oo, implying > ;e cial converges in R.

(2) Let d > degvw, and C := maxjene (Jvwi|g, |wi|r), where vwy,w;,l € NP, are the
coefficients of the polynomials vw,w, respectively. Let v = 7, X ! be the
series representation of v. For any s € N, set vg = Z|l|<s b X'. By the first part,
the sequence (vs(a))sen converges in R, and we denote limit by v(a). For s > d,
rs := vsw — vw = (vs — v)w is a polynomial whose monomials are of degree at
least s. The coefficient C; corresponding to any degree j > s monomial of 7 is a
finite sum of products of/c\oefﬁcients of vs—wv and w. Since R is non-Archimedean,
M > 1, and vy — v € Ay, we obtain |Cj|g < MIC (recall the definition of C
above).

Set m = |a|g. By the paragraph above, every degree j monomial of r, eval-
uated at a has absolute value at most (mM)JC. Since j > s and Mm < 1,
using the fact that R is non-Archimedean, we obtain |rs(a)|r < (Mm)*C, im-
plying rs(a) — 0,s — oo. Consequently, vs(a)w(a) — vw(a) when s — oo, i.e.
v(a)w(a) = vw(a).

(3) Set b = h(0). Then, b—h € (X), and thus 1—b~'h € (X). Set e = 1—b~1h, so that
b='h =1 — e with e € (X). This implies (b'h) "' =bh~! = - =3, ¢ € 4,
and so h™t =3, (b lel € A. Consequently, f = gh~! = Sienblge € A.

Set M = maxjene (1,167 g, Wlailr, Vlelr, V/|hi|r), where g (vesp. e;, hy),

L

I € NP, are the coefficients of the polynomial g (resp. e, k). Then, b=!, g,e € Ay,

and since A/\M is a ring, b~te!, b lgel € ZA\/[ for any ¢ € N. Finally, since Ay is
complete with respect to the (X)—adic norm, h™!, f € Aps, and so h € AMX.

The rest is a direct consequence of the first two parts of the statement.
O

Let n e Nand S;,T;,i = 1,2, ...,n, be indeterminates. As before, we use the notation
S (resp. T) for the n-tuple (S1,...,Sy,) (resp. (T1,...,Ty)). For I,m € N, we denote by
|(I,m)| the sum |I| + |m|, where |I| (resp. |m]) is the sum of coordinates of I (resp. m).
Also, S' = [, Sfi and T™ := [[, T;™. For any vector a € R", we denote by a;
the i-th coordinate of a, i = 1,2,...,p, meaning a = (a1, as,...,a,),a; € R. As before,
al = a,lf . -aﬁln.

LEMMA 2.1.3. Let f = 2 € R[S, T)(s1r), h1,ha € R[S, T], ho(0) # 0, be such that
ho(0) € R*. Suppose there ezists i € {1,2,...,n} such that f(a,0) = f(0,a) = a; for any
a € R™ for which f(a,0) and f(0,a) converge in R.
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Then, there exists M > 1 such that f € AAM and its series representation is:

f=Si+Ti+ Y amsS'Tm™
(1,m)[>2

PROOF. Set g = f — S; — T;. Then, g(a,b) = 0 if it is well defined and a = 0 or b=0.
By Lemma 2.1.2, there exists M > 1 such that f € AM, implying g € AM Let g =
Z(l’m)eNQn chmﬁz s amlr < MIEm for all (I,m) € N?" be the series representation
of g. Since g(0,0) = 0, cpo = 0. It remains to show that ¢, = 0 for all (I,m) € N?" for
which |(I,m)| = 1.

We proceed by contradiction. Let us assume, without loss of generality, that for [y :=
(1,0,...,0) and mg := (0,...,0), ¢jy,me 7# 0. Let 0 < ¢ < 1 be such that ¢ < |1y, mo|r < M.
Let a € k* be such that |a| < % (it exists seeing as k is non-trivially valued). Set
a:=(a,0,---,0) € R", b= (0,...,0) € R", and v := (a,b). Then, g(v) = 0.

Let L be the part of g that has degree 1. Then, L(v) = ¢, m, # 0. At the same time,
IL(v)[r = |cig,mo |rl| = gle.

Let h = ¢;,;,S'T™ be any non-zero monomial of g of degree j := |(I,m)| > 2. Let us
show that |h(v)|r < |L(v)|r. If h(v) = 0, this is clear. If h(v) # 0 then h = chS{ and
|h(v)|r = |cim|r|a)’. Consequently:

|L(v)|R < qla - q e <J\42>J—1 _ Mi—2
W)k ™ leymlrlal? = Milal=t = M7\ q ¢

Consequently, |h(v)|r < |L(v)|r implying |g(v)|r = |L(v)|r, which is impossible seeing as

l9(v)[r = 0 and |L(v)|r # 0. O

REMARK 2.1.4. Lemma 2.1.3 is the only reason behind the hypothesis that & is non-
trivially valued.

> 1.

We now introduce a general formal setting on which patching results will be proven.
As already mentioned, these are hypotheses that are satisfied naturally in the framework
of Berkovich’s geometry that we will work in.

SETTING 2.1.5. Let (k,|-|) be a complete non-trivially valued ultrametric field. Let
R;,;i = 0,1,2, be an integral domain containing k, endowed with a non-Archimedean
(submultiplicative) norm |-|g, with respect to which it is complete. Assume that |-|g, is k-
linear, meaning for any a € k and any b € R;, |ab|g, = |a|-|b|g,. In particular, |- |g, extends
|-|. Suppose there exist bounded morphisms R; — Ry, j = 1,2. Set F; = Frac R;,i = 0,1, 2.
Let F' be an infinite field embedded in both F; and F5.

Let A; be a finite Rj-module such that A; C Fj;,j = 1,2. Suppose that there exist
embeddings A; — Rp. Let us endow A; with the quotient semi-norm induced from a
surjective morphism ¢; : R;” — Aj,j =1,2; we assume that these semi-norms are norms.
Assume that A; is complete and the morphism A; — Ry is bounded for j = 1, 2. Suppose
the induced map 9 : A1 @ Ay — Ry is surjective. Finally, suppose the norm of Ry is
equivalent to the quotient norm induced by the surjective morphism v : A; & As — Ag,
where A; @ Ag is endowed with the usual max norm | - |pax, i.e. that the morphism v is
admissible (see Definition 1.1.13).

Before giving an analogue to [34, Theorem 2.5] (which is fundamental to patching) in
this setting, let us give some motivation behind its interest to us.
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DEFINITION 2.1.6. Let K be a field. A rational variety over K is a K-variety that has
a Zariski open isomorphic to an open of some A’.

REMARK 2.1.7. The definition above does not coincide with the standard notion of
rational variety. We adopt it here because we will only use it for linear algebraic groups,
in which case a connected rational linear algebraic group is rational in the traditional
sense (i.e. birationally equivalent to some P™). We make this distinction because there
are certain statements we will show that don’t require connectedness and others that do.

Using the same notation as in Setting 2.1.5, let G/F be a rational linear algebraic
group (rational here means that G is a rational variety over F'). Our main goal will be
to show that under certain conditions (which we will interpret geometrically in the next
chapters), for any g € G(Fp), there exist g; € G(F}),j = 1,2, such that g = g1 - g2 in
G(Fp).

REMARK 2.1.8. Let K/F be any field extension. Since G has a non-empty Zariski
open subset S” isomorphic to an open subset S of an affine space A%, by translation we
may assume that the identity element of G is contained in S’, that 0 € S, and that the
identity is sent to 0. Let us denote the isomorphism S’ — S by ¢.

Let m be the multiplication in @, and set 5" = m~1(5") N (S’ x $'), which is an open
of G x G. It is isomorphic to an open S of A%?, and mg gives rise to a map S - S,
i.e. to a rational function f : A2" --» A (see the diagram below). Note that for any
(x,0),(0,2) € S, this function sends them both to z.

_ Mg
S’ S’
(¢ x @)@[ l@
S S
f

The result we are interested in can be interpreted in terms of the map f. Theo-
rem 2.1.10 below shows that (under certain conditions) said result is true on some neigh-
borhood of the origin of an affine space.

Let us start with an auxiliary lemma. Referring to Setting 2.1.5, let |- |ins be the norm
on Ry obtained from the admissible morphism 1 : A1 & Ay — Ry. Since it is equivalent to
| - |ry, there exist positive real numbers C, Cy such that Ci|- |r, < | |int < Ca2| - |R,-

Since the morphisms A; < Ry, j = 1,2, are bounded, there exists C' > 0 such that
for any z; € Aj, one has |z;|r, < C|zj|4,. By changing to an equivalent norm on Aj if
necessary, we may assume that C' = 1.

LEMMA 2.1.9. There ezists d € (0,1) such that for all ¢ € Ry, there exist a € Ay,
b € Ag, for which ¥ (a +b) = ¢ and d - max(|a|a,, |bla,) < |¢|r,-

PROOF. Suppose ¢ # 0. Let D be a real number, such that D > max(1,1/C5). Then,
for any ¢ € Ry, there exist a € A;,b € Ay, with ¥(a 4+ b) = ¢ and max(|ala,,|bla,) <
D - |c|ing. Otherwise, for any x € A; and any y € As for which ¢ (z + y) = ¢, we would
have

[+ Ylmax = max(|z]ay, [y|a;) > D - [cing-
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But, |c|inf = infy y |2 4+ Y|max > D - |¢|inf, where D > 1 and |c|ins # 0, so this is impossible.
Set d = 1/D < Cy. Then, d' - max(|a]a,,|b|4y) < |¢|ins < C2 - |c¢|r,. We obtain the
wanted result by setting d = g—; € (0,1).
If ¢ = 0, the statement is true regardless of the choice of d. O

From now on, instead of writing ¢(x + y) = ¢ for x € A;,y € Az, c € Ry, we will
simply put  + y = ¢ when there is no risk of ambiguity.

In what follows, for any positive integer n, let us endow R} with the max norm induced
from the norm on Ry, and let us also denote it by | - |r,. For a normed ring A and § > 0,
we denote by D4(0,9) the open disc in A centered at 0 and of radius 6.

THEOREM 2.1.10. Forn € N, let f : Al x AL --» A% be a rational map defined on a
Zariski open S, such that (0,0) € S, and f(x,0) = f(0,z) = z whenever (z,0), (0,z) € S.
Write f = (f1, f2,.-., fn), where fi = # for some g;,hi € Ro[S,T], i = 1,2,...,n.
Suppose hi(0) € Ry for all i.

Let M > 1 be such that f; € AAM and h; € Z]\\4X for all i (applying Lemma 2.1.2 with
R = Ry). Suppose there exists 6 > 0 such DRgn(O,é) C S(Fy). Let d be as in Lemma

2.1.9. Let e > 0 be such that e < min(ﬁ, ]\%, %5) Then, for any a € A™(Fy) with a € Ry

and |a|g, < ¢, there exist u € A and v € A for which (u,v) € S(Fy) and f(u,v) = a.
PROOF. Since f;(0,0) = 0 for all 7, the functions g; belong to the maximal ideal (S,T)
of Ry[S,T]. From Lemmas 2.1.2 and 2.1.3:

(1) we can see these rational functions as elements of Ry[[S,T]];
(2) the constant M is such that

fi=Si+Ti+ Y ¢, I'S™ e Ro[[S, T,
[(L,m)[>2

with ‘Cg,m‘RO < MG for 4 =1,2,...,n and (I,m) € N**, where |(I,m)| is the
sum of the coordinates of (I, m).

By the choice of §, for any (z,y) € R3" satisfying |(zo,v0)|r, < 6, (x,y) € S(Fy), so
the function f(x,y) is well-defined (meaning the functions f; are well-defined for all 7).

Set &’ = §. Then, 0 < &’ < min{1/2M, d*/M*,5/2}. Since ¢ < & < min(1/M, §/2), for
any (z,y) € S(Fy) satisfying (,7) € R2" and |(x,y)|r, < €, f(z,y) is well defined, and
by Lemma 2.1.2, the series f; is convergent in Ry at (z,y), i =1,2,...,n.

Let a = (a1, a2, ...,a,) € A"(Fp) be such that a € R and |a|g, < €. Let up =0 € A},
and vg = 0 € AY. Using induction, one constructs sequences (us)s in A7, and (vs)s in AY,
such that the following conditions are satisfied:

(1) |us|ay, lvs|a, <€ for all s > 0;
(2) |us — ts—1]a,, [Us — Vs_1]a, <& for all s > 1;

(3) |f(us,vs) —alg, < de'*% for all s > 0.

The first terms ug and vg satisfy conditions 1 and 3. We notice that the first condition
implies |(us, vs)|r, < €', 80 f(us,vs) is well-defined, and f; is convergent in Ry at (us, vs) for
i€{1,2,...,n}. Suppose that for j > 0, we have constructed u; and v; satisfying all three

conditions above. Then, d; := a — f(uj,v;) € R is well defined, and |dj|Rr, < e’
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From Lemma 2.1.9, there exist u} € A} and v} € Aj, such that d; = u + v}, and

j J
/ / 1it2
d- max(|uj’x417 |Uj|A2) < |dj‘Ro <de'z
it2
Set wjy1 = uj + u; and vj11 = vj + 1);-. Then, |ujt1]a, < max (5’,5’ 2 ) = g,
and the same is true for vj1. Also, |ujy1 — ujla, = [ufla, < €72, and similarly,
i+2

vj+1 = vjla, <72

For r € N, 7 € {1,2,...,r}, and A € Fj, let \; be the i-th coordinate of A. For
p=(p1,p2,--..pr) € N, set AP :=[[\_; A", For any v,/ € N", v < v/ will mean v; < v/]
foralli=1,2,...,r. Then, for the third condition,

_ 7 l m
| fi(ujn,vi41) = @il Ry = [wjai +vj1s — i+ Y ) pubiofl
() [>2 Ao

/ / i l m
= |Uji T U5+ Uy U —a+ g ClmWj 1541
m)|>
[(l,m)[>2 Ro

I S ) / ! i l m L, m
= \fiuj,vj) —ai +uj; +vj,; + E CLm (Wj 11041 — uj07")
(Wm)>2 R

_ . / / ) l m l,m
= |—dji +uy; +vj; + E L (W 110551 — uj05")
(Wm)>2 R

_ 7 l m . m
= E €l (UWj 410551 — uj0")

[(tm)[>2 Ao

j l l
< max \Cﬁ,m’Ro : |Uj+17)§ri1 - uj”;'n|R0'

Moreover,

ué-ﬂvﬂl — kv =(u; + u;-)l(vj + )™ — uév}”

= Z ABBvu?u;l_vav/m_7 — vy’

—

J7i J
0<p<l
0<ysm
_ B, N=B,v,/m=y 1l m
= E g A@Byujuj v, V; u;v;

0<a<(l,m) f+y=a
0<B<l
0<ysm

— B 1N—-pB m—
= 2 D AsByduy tup

0<a<(l,m) B+y=«a
~ \l

0<ysm
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where Ag, B, are integers (implying they are of norm at most one on Rp). Finally, since

the norm | - | g, is non-Archimedean:

l m 1.m B o n—p m—~y

’uj+lvj+1 — u;v; |Ry < Ogﬁﬂi§l7m) ’Uj ‘R()’Uj \Rofuj |Ro\”j |Ro
0<B<L,0<y<sm

< max B (FIEmI-IEMI

0<B+vy<(l,m)
0<B<L,0<y<m

Jt+2 _ . . .
S0 |u§+1vﬁ1 — uévgnmo < max0<9<‘(l7m)|a’9 - (¢2)IEm)I=0 " This, combined with
et |re < MG implies that:

filujer,vj41) = ailry, < max  MIGmI (75 lEml=0

[(t,m)|>2
0<0<|(l,m)|
o
= max (Me)? (Me2)IEmI=0,
[(t,m)[>2
0<0<|(lm)]
. it2 _ it2
Since & > "2, we have: |fi(uj1,vj11) — ailry < max|(l7m)|22(M€/)‘(l7m)‘ Lo (M),

Since Me' < 1, one obtains: max( ) >o(Me’)lGmI=1L. (M2 ) < Me'- M’z . We have
shown that

i+2 i+2
|fiwji1,v41) — ailpy < Me'- Me"™2 = M7
i+s ,it3

At the same time, seeing as &’ < J\dTQ‘“ we obtain M2 . 1+5 = (MTQE’l/Q)ds/T <de" 2,
which concludes the induction argument.

The second property of the sequences (us)s, (vs)s tells us that they are Cauchy (hence
convergent) in the Banach modules A}, A}, respectively. Let u € A} and v € A} be the
corresponding limits. The first property implies that |(u,v)|r, < &’ < J, so (u,v) € S(Fy),
and f(u,v) is well-defined. Lastly, the third property implies that f(u,v) = a. O

Using the same notation, we have proven:

PROPOSITION 2.1.11. Suppose h;(0) € R} and there exists an open disc ofR%” centered

at 0 that is contained in S. Then, there exists € > 0 such that for any g € S'(Fy) with
©(g) € R} and |¢(g)|r, < €, there exist g; € G(F;),i = 1,2, satisfying g = g1- g2 in G(Fyp).

2.2. A special case fundamental for patching over curves

Proposition 2.1.11 can significantly be strengthened under a few additional hypotheses.
This setup is of fundamental importance for patching over analytic curves.
The following is a result shown in [34] that we will need.

LEMMA 2.2.1 ([34, Lemma 3.1)). Let G be a rational linear algebraic group defined
over an infinite field F. Let Fy/F be a field extension and g € G(Fy). There exists a
Zariski open subset U of G' isomorphic to a Zariski open subset of some A% and such that
g € U(Fop).
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Under the hypotheses of Setting 2.1.5, let G/F be a rational linear algebraic group. As
in Remark 2.1.8, let S’ be a Zariski open subset of G isomorphic to an open subset S of an
affine space A’%. By translation we may assume that the identity element of G is contained
in S’, that 0 € S, and that the identity is sent to 0. Let us denote the isomorphism S’ — S
by ¢. Let the diagram below and the corresponding notations be as in Remark 2.1.8. As
noted there, the vertical arrows are isomorphisms.

_ Mg
S/ s/
(¢ x %@[ ‘w
S S
f

CONVENTION 2.2.2. Let us fix once and for all an embedding of G into A% for some
m € N. Let K/F be a field extension, and M C K. Set Gx = G xp K. Let U be a
Zariski open subset of Gx. Seeing as G is affine, there is a notion of “M-points” of U.
More precisely, these are the points in U(K) whose coordinates are in M. Let us denote
this set by U(M).

An outline of proof (which we follow) of a special case of the following result is given
in the proof of [34, Theorem 3.2]. Recall that for a normed ring A and r > 0, we denote
by D4(0,r) the open disc in A centered at 0 and of radius r.

THEOREM 2.2.3. Under the hypotheses of Setting 2.1.5, suppose Fy = Ry. Suppose
that Fy is dense in Fy. Then, for any g € G(Fy), there exist g1 € G(F1) and go € G(F3)
such that g = g1 - g2 in G(Fp).

PROOF. As already noted in Remark 2.1.8, the function f satisfies the properties of
Theorem 2.1.10. Seeing as Fj is a normed field, if FOQ" is endowed with the max-norm
(which we still denote | - |g,), then the induced topology in Fg" is finer than the Zariski
one. Consequently, there exists 6 > 0 such that DFozn(O,(S) C S(Fp). Hence, all of the
hypotheses of Theorem 2.1.10 are satisfied, implying there exists € > 0 such that for any
a € A"(Fy) satisfying |a|p, < ¢, there exist u € A} and v € A} such that f(u,v) = a.

(1) Suppose g € S'(Fp) and |p(g)|r, < e. Then, by the paragraph above, there exist
g € G(4;) € G(F;),i = 1,2, such that g = ¢1 - g2 in G(Fp). Similarly, there exist
g, € G(F;), i = 1,2, such that g = ¢} - ¢} in G(Fp).

(2) Suppose g € S'(Fp) with no further restrictions. Remark that ¢S’ N S’ is a non-
empty (seeing as g € ¢S’ N S’) Zariski open subset of G. Let ¢ : gS'NS" — AL be
the morphism given by h + ¢(g~'h). Remark 0 € Im(v). The preimage ¢_1(DF5L(O,5))
is open in (¢S’ N S")(Fy). As Fy is dense in Fy, we obtain that (¢S N S’)(F1) is dense
in (¢gS8" N S")(Fy) with respect to the topology induced by | - |gr,. Hence, there exists
h e (98N S)(F1) Ny Y (Dgp(0,€)). More precisely, h € (95" N S")(F1) € G(F1), and
lo(g7 h)|r, < e. Then, by part (1), there exist ¢) € G(F}) and g5 € G(F») such that
g 'h = gy g, in G(F). Set g1 := h-g' € G(F), and go := g5 ! in G(Fy). Then,
g =91 g2 in G(Fp).

(3) Suppose g € G(Fp) with no further restrictions. By Lemma 2.2.1, there exists
a Zariski open subset U of G isomorphic to a Zariski open U’ of some A% such that
g € U(Fy). As F is infinite, there exists a« € U(F). Set S = o U. It is a Zariski open
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subset of G containing the identity, which is isomorphic to an open subset of A%. By
translating (over F') if necessary, we may assume that this isomorphism sends the identity
to 0 in A%.

By part (2), there exist g] € G(F}) and g2 € G(F,) such that a™lg = ¢} - g2 in G(Fp).
Set g1 = a- gy € G(F1). Then, g = g1 - g2 in G(Fp). O






CHAPTER 3

Patching over Berkovich Curves and Quadratic Forms

In this chapter we show that patching can be applied to analytic curves. As a conse-
quence, we obtain a local-global principle for function fields of curves, which is applicable
to quadratic forms. Moreover, we also obtain applications to the u-invariant of function
fields of curves. The results of this chapter generalize those of [34].

In Section 3.1 we study a special class of covers of an analytic curve, called nice covers.
The motivation for their study comes from the fact that patching (or, more precisely, a
generalized form of patching as seen in Chapter 2) can be applied to these covers. We
start by exhibiting a special case to which the results of Chapter 2 are directly applicable,
and then use it to obtain said generalization. More precisely, let C' be a k-analytic curve.
Let U,V be connected affinoid domains in C such that W = U NV is a single type 3
point. We show that given two reasonable algebraic structures over .Z (U), .#(V'), and
a suitable group action on them, they can be patched to give the same type of algebraic
structure over . (U U V). Roughly, nice covers are a generalization of this situation (cf.
Definition 3.1.6). In particular, note that type 3 points play a very important role, and
so their existence is crucial. We study the properties of these covers, and show that any
open cover can be refined by a nice cover.

The second section of this chapter contains its main results. We show a local-global
principle (Theorem 3.2.11) for fields of meromorphic functions of normal projective k-
analytic curves (or, equivalently, the function fields of such algebraic curves). In the
simplest cases, the proofs use patching on nice covers and induction on the number of
elements of said covers. We first prove these results over a complete ultrametric base field
k such that \/|k>| # R¢. This is then generalized for projective curves over any complete
ultrametric field using a descent argument that is based on results of model theory. We
also prove similar results for affinoid curves. Finally, we show that there is a connection
between the points of a Berkovich analytic curve and the valuations on its function field
(i.e. its field of meromorphic functions). We then use this to prove a local-global principle
with respect to completions (Corollary 3.2.18, Corollary 3.4.2).

In Section 3.3, using the theory of generic analytic fibers, we interpret the overfields
of HHK’s [34] in the Berkovich setting. Then, we use a result of Bosch to show that
the local-global principle [34, Theorem 3.7] is a consequence of the local-global principle
obtained here (Theorem 3.2.11). Using the theory of analytic curves developed by Ducros,
we prove that the converse is true as well provided one works over a “fine” enough model.

The purpose of Section 3.4 is to give applications to quadratic forms and the u-invariant
of a field. We start by applying Theorem 3.2.11 to obtain a local-global principle for
quadratic forms (Theorem 3.4.1).

Then, we find conditions under which there is local isotropy of a quadratic form ¢ over
analytic curves. The setup will be somewhat more general, which is partly why it is the
most technical section of the chapter. The idea is to find a nice enough representative of
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the isometry class of ¢ to work with and then use Henselianity conditions. The hypotheses
on the base field become stronger here. Namely, we require our complete valued non-
Archimedean base field & to be such that the dimension of the Q-vector space /|k*| be
finite (a special case being when |k*| is a free module of finite rank over Z), and the residue
characteristic unequal to 2. The restriction on the value group is not very strong: when
working over a complete ultrametric field k satisfying this property, for every k-analytic
space X and every point € X, the completed residue field H(z) of x satisfies it as well.

Finally, we combine the local-global principle for quadratic forms and these local
isotropy conditions to give a condition for global isotropy of a quadratic form over an
analytic curve. From there we deduce applications to the (strong) u-invariant of a com-
plete ultrametric field & with residue characteristic different from 2, and such that the
dimension of the Q-vector space \/|k*| is finite.

3.1. Nice covers

In this section we construct a class of covers of analytic curves over which we can apply
patching, and study some of their properties.

3.1.1. An interpretation of patching over analytic curves. We present here
the main example of Setting 2.1.5 which we will be dealing with in this Chapter. Let k
be a complete ultrametric field.

Let us start with a couple of auxuliary results.

LEMMA 3.1.1. Let V' be a reduced affinoid space containing a single point x. Then,
OWV)=(V)="H(z) - the completed residue field of x.

PROOF. Let (A4,] -||) be the corresponding affinoid algebra of V. Let f € A\{0}.
If |f|z = 0, then by Proposition 1.3.15, f is nilpotent in A. As A is reduced, f = 0,
contradiction. Thus, |f|, # 0, so by Lemma 1.1.39 f is invertible in A. This means that A
is a field, i.e. O(V) = .# (V). Remark that we have also shown that | - |, is a norm on A.

Since A is reduced, by Proposition 1.3.15, the spectral norm p4 of A is equivalent to ||-|.
Remark that the Shilov boundary I'(V') of V' is {z}. Hence, by Theorem 1.1.38, pa = |- |-
Consequently, the field A is complete with respect to |- |, implying H(z) = A= O(V). O

LEMMA 3.1.2. Let C be a normal irreducible k-analytic curve. Let U,V be connected
affinoid domains of C, such that U NV = {n}, where n is a point of type 3. Then, the
images of A (U) and A4 (V') in #({n}) are dense.

PROOF. The subset {n} is an affinoid domain in both U and V by Corollary 1.5.36.
By the Gerritzen-Grauert theorem (Theorem 1.4.14), it is a rational domain. By [21,
Théoreme 3.4], U, V, {n} are normal. Hence, as they are connected, they are irreducible.
In particular, O(U), O(V) are integral domains.

Set Sy := {f € O(U) : |f|, # 0}. By Lemma 1.4.16, S;;'O(U) is dense in O({n}).

Suppose f € O(U) is such that |f|, = 0. As n is a type 3 point, by Lemma 1.8.3,
O, is a field, implying f = 0 there. By Proposition 1.6.24, this implies that f = 0 in
O(U). Thus, Sy = O(U)\{0}, meaning Frac O(U) is dense in O({n}). By Lemmas 3.1.1
and 1.7.6, this is the same as saying that the image of .#(U) is dense in .Z ({n}).

The same is true for V. O

The example of Setting 2.1.5 we will be working with is the following:
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PROPOSITION 3.1.3. Let C be a normal irreducible k-analytic curve. Set Fo = #(C).
Let D be an effective divisor of degree n on C. Take two connected affinoid domains U,V
in C, such that W = U NV = {n}, where n is a type 3 point. Set Ry = O(U), Fy =
Frac Ry, Ry = O(V), Fy = Frac Ry, and Fyy = Ry = O(W). Set Ay = O(D)(U),
Ay = O(D)(V).

For large enough n such that H'(C,O(D)) = 0, the conditions of Setting 2.1.5 are
satisﬁed fOT‘ Ro = Rw,Rl = RU,R2 = Rv, A1 = AU,AQ = Av, and F = Fc.
Moreover, Fy = Ry and Fy, Fy are dense in Fy.

Proor. As U, V,W are connected affinoid domains of a normal curve, they are inte-
gral, so Ry, Ry, Ry are integral k-affinoid algebras, meaning they are integral domains
that are complete with respect to non-Archimedean norms. Moreover, k is contained
in Ry, Ry, Ry and the norms of the latter are k-linear. Since Ry = O(W) = H(n)
(Lemma 3.1.1), the normed ring Ry is a field. By Lemma 1.7.6, #(U) = Fy, #(V) =
Fy, and # (W) = Fyy = Ry . This shows the existence of embeddings of F in Fy, Fy,
and Fyy. The restriction morphisms Ry, Ry — Ryy are bounded by construction. Clearly,
F¢ is an infinite field.

Notice that for Z € {U,V,W}, O(Z) — O(D)(Z) — #(Z). In particular, this
means that O(D)(W) = O(W) = .# (W ). Since O(D) is a coherent sheaf, Ay (resp. Ay)
is a finite Ry-module (resp. Ry-module). The completness of Ay (resp. Ay ) follows
from the fact that ideals of affinoid algebras are closed (see [6, Proposition 2.1.3]). The
morphism O(D)(U) = Ay — Rw = O(D)(W) is the restriction morphism of the sheaf
O(D), so it is bounded. The same is true for Ay < Ryy.

If U UV is not the entire C, it is an affinoid domain thereof (see Theorem 1.8.15). By
Tate’s Acyclicity Theorem (Theorem 1.4.17),

0— HY (U UV,0(D)) - H (U, O(D))® H(V,0(D)) - H (UNV,0(D)) = 0

is an exact admissible sequence, from which we obtain the surjective admissible mor-
phism Ay & Ay — O(D)(W) = Fy.

Suppose U UV = C. Since C' is then compact and integral, by Theorem 1.8.15, it
is either an affinoid space (a case we dealt with in the paragraph above) or a projec-
tive curve. If C is projective, by [49, Section 7.5, Proposition 5.5 for large enough n,
HY(U UV,0(D)) = 0. The Mayer-Vietoris exact sequence now produces a bounded sur-
jective morphism Ay @ Ay — O(D)(W) = Fy. Admissibility follows from Banach’s Open
Mapping Theorem if k is non-trivially valued (for a proof see [14]), and by a change of
basis followed by the Open Mapping Theorem if it is (see Proposition 1.3.8).

The remaining part of the statement was shown in Lemma 3.1.1 and Lemma 3.1.2. O

REMARK 3.1.4. Other examples of Setting 2.1.5 can be obtained by taking instead of
O(D) any coherent sheaf F of O-algebras that is a subsheaf of .#, for which H*(C, F) = 0.

We make note of the fact that Proposition 3.1.3 assumes the existence of a point of
type 3, which is equivalent to \/|k*| # Rxg.

REMARK 3.1.5. Remark 2.1.4 tells us that the only reason k was assumed to be non-
trivially valued in Chapter 2 is for the proof Lemma 2.1.3 to work. As we saw in Proposi-
tion 3.1.3, in the case of curves, the role of the ring Ry is played by the field of meromorphic
functions of a type 3 point. This means that Ry is a non-trivially valued complete ultra-
metric field. As a consequence, the proof of Lemma 2.1.3 is valid regardless of the absolute
value k is endowed with.
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Thus, in the case of curves, patching is true even if the base field is trivially valued.
As we will see, the trivially valued case provides no new information on the local-global
principle, which is why we continue to disregard it.

Keeping the same notation as in Proposition 3.1.3, let G/F¢ be a rational linear
algebraic group. By Theorem 2.2.3, for any g € G(.# ({n})), there exist gy € G(.#(U))
and gy € G(.#(V)) such that g = gy - gv in G(A({n})). We will generalize this result
to one that applies to certain covers of the analytic curve. The latter generalize the the
conditions of Proposition 3.1.3.

The above should serve as motivation for the following:

DEFINITION 3.1.6. A finite cover U of a k-analytic curve will be called nice if:

(1) the elements of U are connected affinoid domains with only type 3 points in their
topological boundaries;

(2) for any different U,V € U, UNV = 90U N IV, or equivalently, U NV is a finite
set of type 3 points;

(3) for any two different elements of U, neither is contained in the other.

Let V be a cover of a k-analytic curve. We will say that a cover U of the same curve
is a nice refinement of V if it is a refinement of V that is a nice cover.

We recall that we use the term boundary for the topological boundary.

%?@@

b)

Figure 3. Examples of nice covers for:
a) a uniquely arcwise-connected curve; b) a non-uniquely arcwise-connected curve.

The definition above (as well as Proposition 3.1.3) highlights the importance of type 3
points. To insure their existence, for the rest of this section we assume that /|k*| # Rsg
(recall Proposition 1.8.7).

We start our study of these covers by showing that, under certain conditions, for any
open cover of a k-analytic curve, there exists a nice refinement.

3.1.2. Nice covers of Pi’an. Recall that P,lﬁ’an is uniquely arcwise-connected. For

any x,y € Pllg’an, let us denote by [z,y] the unique arc connecting them. The next few
properties of the projective line will be essential to the remainder of this section.
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We can now show a special case of the result we prove in this section.

LEMMA 3.1.7. Let C, D be connected affinoid domains of Pi’an with only type 3 points
in their boundaries. There exists a nice refinement {Cy,...,Cy, D} of the cover {C, D}
of CUD, such that C;NCj =0 for any i # j.

Proor. If C = D, it is straightforward. Otherwise, suppose C' € D. By Corol-
lary 1.8.17, C\Int D is an affinoid domain in IP’}C’an containing only type 3 points in its
boundary. Let C7,C%,...,C! be its connected components. They are mutually disjoint
connected affinoid domains with only type 3 points in their boundaries. Furthermore, for
any i, C/!N' D C (Int D)*N D C 9D is a finite set of type 3 points. As C! and D are
connected, by Lemma 1.8.20, so is C/ N D, meaning it is either empty or a single type 3
point. By construction, C;NC? = @ for all i # j, and {C], Cs, ..., C},, D} is a refinement of
{C, D}. For any i, if C! is a single point, i.e. C] C D, we remove it from {C},C5,...,C}.},
and if not, we keep it there. Let C1, (>, ..., C, be the remaining connected components of
C\Int D. Then, {C1,C5,...,Cy, D} is a nice refinement of the cover {C, D} of CUD. O

The main result of this section in the case of the projective line is the following gen-
eralization:

1,an

PROPOSITION 3.1.8. For any n € N, let {U;}7_, be a set of affinoid domains of P,
with only type 3 points in their boundaries. Set V, = \J;_, U;. Then, there exists a nice
cover of V,, that refines {U;}I_,, satisfying the following properties:

(1) the intersection of any two of its elements is either empty or a single type 3 point;

(2) if two domains of the refinement intersect, there is no third one that intersects
them both.

PRrROOF. We will use induction on the number of affinoids domains n. For n = 1, the
statement is trivial. Suppose the proposition is true for any positive integer smaller or
equal to some n — 1. Let {U;}}"; be affinoid domains of Pi’an with only type 3 points in
their boundaries. If they are all of empty interior, i.e. unions of points, then the statement
is trivially true. Otherwise, let ig € {1,2,...,n} be any index for which U;, has non-empty
interior. To simplify the notation, suppose i9g = n. By removing the U;’s contained in U,
if necessary, we may assume that for all i, U; Z U,.

From Lemmas 1.8.17 and 3.1.7, U := {U,} U {U; N (Int U,,)°}?=! is a refinement of
{U;}, containing affinoid domains with only type 3 points in their boundaries. Let
{W}{_, be a nice refinement of {U; N (Int Uy,)¢ ?:_11. Then, for any I, U, N W; C 9U,,. By
removing those W for which W; C U, if necessary, we obtain that {U,} U {W;}]_, is a
nice refinement of {U;}!" ;. The first condition of the statement is a direct consequence of
Lemma 1.8.21.

We have proven that for any positive integer n, there exists a nice refinement of
{U;},, which satisfies the first property of the statement. Property 2 is immediate from
the following:

LEMMA 3.1.9. Let Wy, Wy, W3 be three connected affinoid domains of IP’,lc’an with non-
empty interiors and only type 3 points in their boundaries. Suppose their interiors are
mutually disjoint. Then, at least one of W1 N Wy, Wo N W3, W3 N W7 is empty.

PROOF. Suppose that W1 NWsy, WonNWs, and WsNWy are all non-empty. If W1NWoN
W3 # ), then by Lemma 1.8.20, it is a single type 3 point {z}. Since Pi"m\{z} has exactly
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two connected components, and the interiors of Wy, W5, W3 are non-empty and mutually
disjoint, this is impossible. Hence, W1NWoNW3 = @, and so W1NWs, WonNW3 and W3NW;
are all non-empty and different. Since W1NW5y # 0, W1 UWj is a connected affinoid domain
with only type 3 points in its boundary. Furthermore, Int(W3) N Int(W; U Wa) C (W3 N
W1)U(W3NWs), and since this is a finite set of type 3 points, Int(Ws3) NInt(W; UWs) = 0.

Thus, the interior of Wy U Wy is disjoint to the interior of W3. By Lemma 1.8.21,
(W1 UWy)NWj is a single type 3 point. But, W3 N W3 and Wy N W3 were both assumed to
be non-empty and shown to be different, implying (W1 NW3)U(WanW3) = (W1 UW,)NW3
contains at least two different points, contradiction.

Thus, at least one of W1 N Wa, Wo N W3, W3 N W1 must be empty. O

This completes the proof of the proposition. O
In view of Theorem 1.8.7, we obtain:

THEOREM 3.1.10. Any open cover of a compact subset of P,lg’an has a nice refinement.
The following will be needed later:

LEMMA 3.1.11. Let A be a connected affinoid domain of Pllq’an. Let S be a finite subset
of Int(A) containing only type 8 points. There exists a nice cover A of A, such that the
set of points of intersection of different elements of A is S.

PROOF. Seeing as S consists of type 3 points, they are all contained in a copy of Ai’aﬂ
in IP’,i’an. Thus, for any element 1 € S, there exists an irreducible polynomial P over k and
a real number r ¢ \/|k*|, such that n = np, (cf. Proposition 1.8.25).

Let us prove the statement using induction on the cardinality of S. If .S is empty, then
the statement is trivially true. Suppose we know the statement is true if the cardinality
of S is equal to some n — 1.

Let us assume S contains n points. Fix some element np, € S. Let U be a nice
cover of A that satisfies the properties of the statement for S’ := S\{np,}. There
exists a unique U € U, such that np, € U, in which case np, € Int(U). Then,
{UN{|P| <7}, UN{|P| =r}}U{V €U :V # U} is a nice cover that fulfills our require-
ments. (]

3.1.3. Nice Covers of a Berkovich Curve.

PropoOSITION 3.1.12. Let C' be an irreducible projective generically smooth k-analytic
curve. There exists a type 8 point n in C such that C\{n} has exactly two connected
components E1, Es. Furthermore, E1 U {n}, E2 U{n} are affinoid domains of C.

PROOF. By [20, Théoréme 3.7.2], there exists an algebraic projective curve C?8/k
such that (C*8)a = C. By [6, Theorem 3.4.1], there is a bijection between the closed
points of C*8 and the rigid points of C, meaning the latter are Zariski dense in C. As C'is
generically smooth, by [21, Théoréme 3.4], the smooth locus of C' is a non-empty Zariski
open of C. Consequently, there exists 1y - a rigid smooth point in C.

By [20, Théoréme 4.5.4], there exists a neighborhood D’ of 1y in C' which is a virtual
disc. By density of type 3 points in C' (Proposition 1.8.7), there exists a type 3 point
n € D'. By [20, 3.6.34], D’ is uniquely arcwise-connected with a single boundary point x.
By [20, 1.4.21], D := D’ - the closure of D in C, is uniquely arcwise-connected. Remark
that 0D = {z}, and D = D' U {z}.
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As it is of type 3, by [20, 4.2.11.2], there exist at most two branches coming out
of 1, and there are exactly two if and only if n € Intg(D). As n € Int(D) = Intg(D)
(Theorem 1.5.27), there are two branches coming out of 1. As D is uniquely arcwise-
connected, by [20, 1.3.12], this means that D\{n} has exactly two connected components.
Let us denote them by A and B, and assume, without loss of generality, that x € B.
Remark that A C D'.

Set £ := (C\D)U{z} = C\D'. Let us show that F is connected. Let a,b € E. Since C
is connected, by Corollary 1.5.43, there exists an arc [a, b] in C' connecting a and b. Suppose
[a,b] N D" # (. Let d € [a,b] N D’. Then, [a,b] induces arcs [a,d] and [d, b] in C connecting
a and d, resp. d and b. As a,b ¢ D' and d € D', we obtain that [a,d]NdD,[d,b]NOD # 0,
so z € [a,d] and z € [d,b]. This contradicts the injectivity of [a, b] unless = d, which is
impossible seeing as « ¢ D’. Thus, [a,b]N D’ =0, i.e. [a,b] C E, implying E is connected.

As B, E are connected, and BNE = {z}, G := BUEF is a connected subset of C. Remark
that ANG = (ANB)U(ANE) C D'NE = (. Also, AUGU{n} = AUBUEU{n} = DUE = C.

It only remains to show that A’ := AU{n} and G’ := GU{n} are affinoid domains in C.
By [20, Proposition 4.2.14], they are both closed analytic domains in C. As C'is projective,
it is boundaryless, so dp(A’) = 0A’ = {n}, and the same is true for G’ (Proposition 1.8.10).
Let I be an irreducible component of A’ (resp. G’). By [20, 3.2.3], if Og(I) = 0, then
I = C, implying A’ (resp. G') is C, which is false. Hence, dg(I) # 0.

As T is a Zariski closed subset of A" (resp. G’), there exists a closed immersion (hence,
a finite morphism) I — A’ (resp. I — G’). By Proposition 1.5.31 and Theorem 1.5.27,
Op(I) is a subset of I\Intg(A’) (resp. I\Intp(G’)). Hence, dp(I) is a non-empty subset
of Op(A’") (resp. dp(G")). We conclude by [20, Théoreme 6.1.3]. O

REMARK 3.1.13. In general, C'\{n} has at most two connected components “around” 7,
and it might happen that it has exactly one (for example in a Tate curve), see also
[20, 4.2.11.2] and the remarks made after Lemma 3.2.7.

PropoSITION 3.1.14. Let C' be a normal connected projective k-algebraic curve. Then,
there exists a nice cover {Uy,Us} of C* - the Berkovich analytification of C, such that
Uy NU;y is a single type 3 point.

PRrROOF. Let C — ]P’,{, be a finite morphism. It induces an embedding of function fields
k(P}) < k(C). Let K be the separable closure of k(P}) in k(C). There exists a connected
normal projective algebraic curve Y over k, such that k(Y) = K. Since the field extension
K /k(P}) is separable, the induced morphism Y — P} is generically étale, so Y is a generi-
cally smooth curve. In particular, this implies that the k-analytic curve Y#" is generically
smooth ([21, Théoreme 3.4]). At the same time, since the finite extension k(C)/K is
purely inseparable, the induced finite type morphism C' — Y is a homeomorphism. Con-
sequently, by [6, Proposition 3.4.6], its analytification f : C*" — Y?" is a finite morphism
that is a homeomorphism.

By Proposition 3.1.12, there exists a nice cover {U7, Uj} of Y**, such that U] N U} is
a single type 3 point. Seeing as f is finite and a homeomorphism, U; := f~1(U!),i = 1,2,
is a connected affinoid domain, and Uy N Us is a single type 3 point. U

DEFINITION 3.1.15. For a nice cover U of a k-analytic curve, let us denote by Sy, the
finite set of type 3 points that are in the intersections of different elements of U.
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Remark that for a nice cover U of a k-analytic curve C, if s € Sy, the set {s} is an
affinoid domain of C. This is because {s} is a connected component of the intersection of
two affinoid domains.

The following notion will be needed in what follows.

DEFINITION 3.1.16. Let C be a k-analytic curve. Let U be a nice cover of C. A function
Ty : U — {0,1} will be called a parity function for U if for any different U’, U” € U such
that U' NU" # 0, one has Ty (U") # Ty (U").

LEMMA 3.1.17. For any n € N, let Uy,Us, ..., U, be affinoid domains in IF’,IC’G" such
that Uy, == {U;}1'_, is a nice cover of K, := J;_, U;. Then, there exists a parity function
Ty, for U,.

PROOF. It suffices to prove the result under the assumption that K, is connected.
We will use induction on the cardinality n of U,. If n = 1, the statement is trivially true.
Suppose it to be true for some n — 1.

LEMMA 3.1.18. Let Z be a topological space. For any positive integer m, let {W;}",
be a set of closed connected subsets of Z. Suppose | J;~, W; is connected. Then, there exists
io € {1,2,...,m}, such that Ui;éio W; is connected.

PRrooF. Let [ be the largest integer such that [ < m and there exist W;, , W;,,..., W,

with Ué’:1 Wi, connected. As all the W; are connected, [ > 0. Set J = {1,2,...,m}\{i1,d2,. ..

If I < m — 1, then for any p € J, we obtain W, N Ué‘:l Wi, = (). This implies that

7il}‘

(UpeJ Wp) N (Ué‘:1 W@-j) = (), which contradicts the connectedness of | J;~; W;. Thus, | = m — 1.

O

Seeing as J;—, U; is connected, from Lemma 3.1.18, there exist n — 1 elements of
U, whose union remains connected. For simplicity of notation, assume them to be the
elements of U,,—1 := {U1,Us,...,Up_1}. Then, U,_1 is a nice cover of the connected set
K, 1:= U?;ll U;. Let Ty, _, be a parity function for U,,_;. By Lemma 1.8.21, UnﬂU?:_l1 U;
is a single type 3 point, so by Lemma 3.1.9, U,, intersects exactly one of the elements of
Un—1. Without loss of generality, suppose it to be U, _1. Define T, as follows:

(1) for any U € Uyp—1, Ty, (U) := Ty, _,(U);
(2) TZ/{n(Un) =1- Tunfl(Un—l)'
The function 14, is a parity function for U, (]

PRrROPOSITION 3.1.19. Let Y, Z be k-analytic curves with' Y normal and Z compact. Let
f:Z =Y be a finite surjective morphism. Suppose V is a nice cover of Y. Then, the con-
nected components of f~1(V),V €V, form a nice cover U of Z, such that f~1(Sy) = Sy.

Furthermore, if Ty is a parity function for V, then the function Ty that to an element
U €U associates Ty(f(U)), is a parity function for U.

PROOF. Since Z is compact and Y is Hausdorff, f is a closed morphism. By [20, 3.5.12],
f is open.

If V is any connected affinoid domain of Y, for any connected component Vj of f~1(V),
f(V§) = V. To see this, recall that by [4, Lemma 1.3.7], fig-1(yy : f7'(V) = V is a finite
morphism of affinoid spaces, and by [21, Théoréeme 3.4], as Y is normal, so is V. Thus,
fig—1(v) is open and closed. Seeing as V{ is a connected component of f~HV), it is both
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open and closed in f~!(V), so its image is both open and closed in V. As V is connected,
FVg) = V.

The connected components of f~1(V) for all V € V form a finite cover I of Z consisting
of affinoid domains (see Corollary 1.4.19). As f is open, for any V € V, 9(f~1(V)) =
f~1(0V). Since a finite morphism preserves the type of point (Lemma 1.8.2), (V) is
an affinoid domain containing only type 3 points in its boundary. Thus, the elements of
U are connected affinoid domains containing only type 3 points in their boundaries.

Let Uy,Us € U be such that Uy N Uz # (. Set V; = f(U;),i = 1,2. Then, V1,V € V,
and Vi # V. To see the second part, if V3 = Vs, then Uy, Us would be connected compo-
nents of f~1(V4), thus disjoint, which contradicts the assumption Uy N Us # (). Seeing as
UiNUs C f~1(V1NVs), UNUs is a finite set of type 3 points. Hence, U1 NUs = OU; NOUs.
The third condition of a nice cover is trivially satisfied. Since f~1(9V) = df~1(V) for all
V €V, it follows that f~1(Sy) = Sy. Finally, Ty (Uy) = Ty(V1) # Ty(Va) = Ty(Us), so
Ty is a parity function for Y. O

COROLLARY 3.1.20. Let C be a normal projective k-analytic curve or a strict k-affinoid
curve. Any open cover of C' has a nice refinement.

Proor. By Theorem 1.8.7, we may assume that the open cover only contains elements
with finite boundary consisting of type 3 points. Since C' is compact, there is a finite sub-
cover U of the starting open cover. Set S := ;¢ OU. Suppose C is projective. Then,
there exists a finite surjective morphism C' — ]P’,lg’an. Set 8" = f(S). By Lemma 3.1.11,
there exists a nice cover D of P,lc’an, such that Sp = S’. We conclude by applying Propo-
sition 3.1.19.

If C is a strict k-affinoid curve, by Noether’s Normalization Lemma there exists a
finite surjective morphism C — D, where D is the closed unit disc in ]P’,lg’an. We conclude
as above. O

3.2. A Local-Global Principle over Berkovich Curves

Unless mentioned otherwise, throughout this section we assume that k is a complete
non-trivially valued ultrametric field such that /|k>| # Rso.

DEFINITION 3.2.1 (HHK). Let F' be a field. A linear algebraic group G over F' acts
strongly transitively on an F-variety X if G acts on X and for any field extension E/F,
either X (E) = ) or the action of G(E) on X (E) is transitive.

We start by showing some patching results over nice covers. Recall that we denote by
M the sheaf of meromorphic functions.

3.2.1. Patching over nice covers. We show a generalized form of patching (with
respect to the one seen in Chapter 2) with is applicable to nice covers.

PROPOSITION 3.2.2. Let D be Pllc’an or a connected affinoid domain of ]P’,lc’an. Let
D be a nice cover of D, and Tp a parity function for D. Let G/.# (D) be a ratio-
nal linear algebraic group. Then, for any (gs)sesp € [lses, G(A({s})), there exists
(gv)vep € [lyep G(A(U)), satisfying: for any s € Sp, if Uy, Uy are the elements of D
containing s, and Tp(Uy) = 0, then gs = gu, gl}ll in G(A({s})).

PRrOOF. We will use induction on the cardinality n of a nice cover. If n = 2, then this is
Theorem 2.2.3 (considering Proposition 3.1.3 with O(D) = O). Suppose the result is true
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for some n — 1. If D := {Uy,Us,...,U,}, since J;_; U; is connected, from Lemma 3.1.18,
there exist n — 1 elements of &/ whose union remains connected. For simplicity of nota-
tion, suppose them to be the elements of D' := {U;y,Us,...,U,—1}. By Lemma 1.8.21,
U?:_f U; NU, is single type 3 point, so by Lemma 3.1.9, U, intersects exactly one of the
elements of D’. To simplify the notation, suppose it to be U,,_1. Set {n} := U,,—1 N U,, so
that Sp = Spr U {n}.

Let (gs)sesp be any element of [, ¢ G(.#({s})). By the induction hypothesis, for
(9s)sesp € HseSD/ G(A ({s})), there exists (gu)vep’ € [[yep G(A#(U)), satisfying the
conditions of the statement.

e Suppose Tp(Uy,) = 0. By Theorem 2.2.3, there exist a € G(.#(U,)) and b €
G(#(J!=! Uy)) such that g, - gu,_, = a-bin G(#({n})). For any i # n, set
gy, = gu, - b~1 in G(A (Uy)). Also, set g, = a in G(A(Uy)).

e Suppose Tp(U,) = 1. By Theorem 2.2.3, there exist ¢ € G(.# ('] U;)) and
d € G(#(Uy)) such that g[}iil gy = c-din G(#({n})). For any i # n, set
gy, = gu; - ¢ in G(A (U;)). Also, set g; = d=tin G(#(Uy,)).

The family (g7, )7_; € [[i=, G(#(U;)) satisfies the conditions of the statement for (gs)sesy-
([

PROPOSITION 3.2.3. Let Y be an integral strict k-affinoid curve. Set K = .#(Y).
Let G/K be a connected rational linear algebraic group. For any open cover V of Y,
there exists a nice refinement U of V with a parity function Ty, such that for any given
(9y)yesu € Hyesu G(A ({y})), there exists (gu)veu € HUeu G(#(U)), satisfying: for
any y € Sy, there are exactly two elements U',U" of U containing s, and if Ty (U') = 0,

then gy = gur - g in G(A {y}).

Proor. By Proposition 1.8.7, we may assume that the cover V only contains elements
with finite boundary consisting of only type 3 points. Since Y is compact, we may also
assume that V is finite.

Let f : Y — D be a finite surjective morphism we obtain from Noether’s Normalization
Lemma, where D is the closed unit disc in Py*. Set S = f(Uycp V). It is a finite set
of type 3 points. By Lemma 3.1.11, there exists a nice cover D of D such that Sp = S.
Let Tp be a parity function for D (it exists by Lemma 3.1.17). From Proposition 3.1.19, the
connected components of f~(Z’), Z' € D, form a nice cover U of Y such that f~1(Sp) =
Su, and T’p induces a parity function 1, for U.

Let us show that U/ refines V. Suppose, by contradiction, that Z € U is such that there
does not exist an element of V containing it. Then, there must exist a € (Jy ), OV C Sy
such that a € Int(Z). Since a € Sy there exists U € U, such that a € OU. But then,
Z NU # 0Z N oU, which contradicts the fact that i/ is a nice cover of Y. Consequently, U
must refine V.

Suppose that for s € Sy there exist different Uy,Us,Us € U containing s. Then,
f(s) e VinVonVs, where V; := f(U;) € D, i = 1,2,3, (the fact that V; € D was shown in
the beginning of the proof of Proposition 3.1.19). By Lemma 3.1.9, this is only possible if
at least two of the Vi, Vo, V3 coincide. Suppose, without loss of generality, that Vi = Vs.
Then, U, Uy are connected components of ffl(Vl), so U1 NUs = 0, contradiction. Hence,
for any s € &y, there exist at most two elements of U/ containing s. Considering the
definition of Sy, there must exist exactly two.
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Set G' = Rk/.»(m)(G) - the Weil restriction of scalars from K to .# (D) of G. It is still
a connected rational linear algebraic group (see [12, 7.6] or [55, Section 1], this is where
the connectedness assumption is necessary).

LEMMA 3.2.4. For any point s of type 3 in D, A ({s}) @ 4y A (Y) = [l e-1(s) A {x}).

PROOF. Secing as s is a type 3 point, the set f~!(s) is finite consisting of only type 3
points. Hence, O({s}) = .#({s}), and O({z}) = #({x}) for all x € f~!(s) (recall
Lemma 3.1.1).

Set A := O(D),B := O(Y), and C := O({s}). Let us denote by T the set of non-
zero elements of A. We know that C ®a B = [[,cp-1(5 OUz}) = [locp1(s) #{z}).

Then, localizing on both sides, we obtain: T 1(C®sB)=C®g 14T 'B and
T (Taego1( # (o)) = Taes1(9 # ({2}).

Since B is a finite A-module, T~!'B is a domain that is a finite dimensional T~ A-
vector space. Then, for any b € B\{0}, the map T-'B — T 'B,a + ba is injective,
so surjective. Thus, there exists ¥ € T~'B such that bb’ = 1, implying T~'B = Frac 7.
Consequently, T-(C ®4 B) = 4 ({s}) @ 4m) A (Y). O

By the universal property of the Weil restrictio of scalars, for any s € Sp, G'(.# ({s})) =
(M ({5}) @40y A(Y)). By the lemma above, G'(#/({s})) = [Le;-15) G ({z})).

Consequently, (gy)yes, € [ eq, G(-#({y})) determines uniquely an element (hs)sesy,
of [T es, G'(#({s})). By Proposition 3.2.2, there exists (hz)zep € [[zep G'(#(2)),
such that if for two different Zy, Z; € D with Tp(Zy) =0, s € ZoN Zy, then hs = hz, h}ll
in G/ (4 ({3}).

For any Z € D, let Z1, Zs, ..., Z, be the connected components of f~!(Z). The applica-
tion A (Z2)2. 4wy (Y) — ;=) #(Z;) induces amap G' (A (Z)) = G(M(Z)® 4 m)#(Y))
— 1y G(#(Z;)), which sends hy to an element (9z,,9z,,---,9z.) of [[i_, G(A#(Z;)).
Thus, for any U € U, we have an element gy € G(#(U)). It remains to show that given
different Uy, Uy € U with Ty (Uy) = 0, such that y € Uy N U; for some y € Sy, we have
Gy = U, - 91;11 in G(.#({y})). This is a consequence of the analogue result for (hs)secs,
and (hz)zep, the relation between Tp and Ty, and of the commutativity of the following
diagram for any Z € D and any s € Z of type 3:

AM(Z) Ap({s})

[liz1 4 (2:)

[yep1(s) v ({y})

O

3.2.2. Local-global principles over analytic curves. We now apply patching over
nice covers to obtain local-global principles. Throughout this section, unless mentioned
otherwise, k denotes a non-trivially valued complete ultrametric field such that /|k*| #
R<o.
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PROPOSITION 3.2.5. Let Y be a normal irreducible strict k-affinoid curve. Set K = #(Y).
Let X/ K be a variety, and G/K a connected rational linear algebraic group acting strongly
transitively on X. The following local-global principles hold:

o X(K)#0 < X (M) #0 forallzeY;
e for any open cover P of Y, X(K) # 0 < X(#(U)) #£0 for allU € P.

PROOF. Since Y is irreducible and normal, O, is a domain for all z € Y, and .#, =
Frac O,.

Seeing as K «— .#, for all x € Y, the implication “ =" is true.

Suppose X () # () for all z € Y. Then, there exists an open cover V of Y such that
forany V e V, X(#(V)) # 0. Let U be a nice refinement of V given by Proposition 3.2.3,
and Ty its associated parity function. Remark that for any U € U, we have X (.4 (U)) # 0.

For U € U, let oy € X(#(U)). For any y € Sy, there exists exactly one element
U, € U, with Tyy(U;) = i, i = 0,1, containing y. From the transitivity of the ac-
tion of G, there exists g, € G(.#({y})) such that zy, = gy - zy, in G(#({y})). This
gives us an element (gy)yes, € [l cs, G(#({y})). By Proposition 3.2.3, there exists
(gv)veu € [1yey G(A#(U)), satisfying: for any different U’, U” € U containing some point
y € Sy such that Ty(U’) = 0 (implying Ty(U") = 1), gy = gu g(},l, in G(A{y}).

For any U € U, set z; = g[}l -xy € X(A#(U)). We have construced a mero-
morphic function over U for any U € U. Let us show that these meromorphic func-
tions are compatible, i.e. that they coincide on the intersections of the elements of .
Let D,E € U be such that D N E # (. Suppose Ty(D) = 0. For any s € DN E,
vy = gg' - 2e = 95" (9p9z") - 2E = 95" (9« - TE) = gp'wp = ) in X (A ({s})). Conse-
quently, 2, = 2/, in X(#(E N D)).

Compatibility of these meromorphic functions implies they can be glued to give a
meromorphic function on the entire Y. Thus, X(K) = X (.Z(Y)) # 0.

The second version of this local-global principle is a direct consequence of the first one.

O

Let us show the same result (Theorem 3.2.9) for any k-affinoid space. Recall that we
denote by T'(+) the Shilov boundary of an affinoid space.

LEMMA 3.2.6. Let k be a complete ultrametric field. Let E be a k-affinoid space. Let e
be any point of E£. Then, the following statements are equivalent:

(1) there ezists an affinoid neighborhood Ny of e in E such that e € T'(Np);
(2) for any affinoid neighborhood N of e in E, e € T'(N);
(3) e I'(E).

PROOF. Suppose there exists an affinoid neighborhood Ny of e in E, such that e € I'(NVy).
By [6, Proposition 2.5.20], I'(Ng) € d(No/E) U (I'(E) N Np). Since 0g(N/E) is the topo-
logical boundary of Ny in E (see [6, Corollary 2.5.13 (ii)]), we obtain that e & Og(No/E),
implying e € I'(E) N No C I'(E).

On the other hand, if e € T'(E), for any affinoid neighborhood N of e in F, since
I'(E)NN CTI'(N) (see [6, Proposition 2.5.20]), we obtain e € I'(V). O

LEMMA 3.2.7. Let Y be an integral k-affinoid curve. Let y € Y be any point of type 3,
and Z a connected affinoid neighborhood of y in'Y. Then,

(1) the subspace Y\{y} has at most two connected components at the neighborhood
of y; it is connected at the neighborhood of y if and only if y € T(Y);
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(2) ify € I'(Y), then there exist connected affinoid domains A, B of Y, such that A
is a neighborhood of y in Z, T(Y)NA={y}, AUB=Y, and AN B is a single
type 3 point;

(3) if k is non-trivially valued and y & T(Y'), there exists a strict affinoid neighborhood
ofy inY.

PROOF. Let p denote the characteristic exponent of k. Then, by [21, Théoréme 6.10],
there exists n such that Y’ := (Y x k'/P"),.q is geometrically reduced. Since k'/?" /k
is a purely inseparable field extension, the map f : Y/ — Y is a homeomorphism (see
[21, Remarque 0.5]). As Y’ is geometrically reduced, the set of its smooth points is a
non-empty Zariski-open subset (see [21, Théoréeme 3.4]), i.e. by Lemma 1.8.5, the com-
plement of a set of rigid points. Consequently, since 3’ := f~!(y) is non-rigid, it is smooth
in Y’. Remark also that by [20, Proposition 4.2.14], the image (resp. preimage) of a con-
nected affinoid domain is a connected analytic domain, and thus by [20, Théoreme 6.1.3],
a connected affinoid domain. Finally, for any affinoid domain U of Y’, we have that
L'(U) = f~YT(f(U))): by Proposition 1.5.31 and Theorem 1.5.27 (while taking into ac-
count Proposition 1.8.10), this is true for finite morphisms, and taking the reduction of an
affinoid space does not change its Shilov boundary. Set Z’ := f~!(Z). It suffices to prove
the statement for Y’ v/, Z'.

(1) By [20, Théoreme 4.5.4], ¢’ has an affinoid neighborhood A’ in Y that is a closed
virtual annulus, implying dp(A’) contains exactly 2 points. We may assume, seeing as
type 3 points are dense in Y’ (Proposition 1.8.7), that A’ constists of only type 3 point.

Thus, A’ has at most two connected components at the neighborhood of 3/, and it is
connected there if and only if y' € T'(A").

Finally, Y/ has at most two connected components at the neighborhood of 3, and by
Lemma 3.2.6, it is connected there if and only if ¥/ € T'(Y”).

(2) Suppose furthermore that ¢’ € I'(Y”), implying ' € T'(4’). Set I'(A") = {¢/, 2},
where 2’ is a type 3 point. Then, A" = {2’} and by Theorem 1.8.15, B’ := (Y"\A") U {2’}
is an affinoid domain. We have: A’ U B’ = Y’/ A’ N B’" = {z'} (which implies B’ is
connected). Finally, by shrinking A’ if necessary, we can always assume 2z’ € T'(Y”), and
since I'(Y') N A’ CT'(A"), this implies T'(Y') N A" = {y'}.

(3) If yf & T'(Y"), then y/ ¢ I'(4’), and for the non-trivially valued field k'/?", the
statement follows from the fact that A’ is a closed virtual annulus. (]

By the terminology introduced in [20, Section 1.7] and [20, Théoreme 3.5.1], the first
part of Lemma 3.2.7 shows that points of type 3 of certain k-analytic curves have at most
two branches. Furthermore, in view of Lemma 1.8.8 and Theorem 1.5.27(1), it has one
branch if and only if it is in the Berkovich boundary of the curve.

The following argument will be used often in what follows.

LEMMA 3.2.8. Let k be a complete ultrametric field. Let C' be a mormal irreducible
k-analytic curve. Set F = #(C). Let X/F be a variety, and G/F a connected rational
linear algebraic group acting strongly transitively on X.

(1) Suppose X (M) # O for all x € C. Let Z be any affinoid domain of C. Then,
Gz :=GxpHM(Z) is a connected rational linear algebraic group over #(Z) act-
ing strongly transitively on the 4 (Z)-variety Xz := X xXp M (Z). Furthermore,
Xz( My i) # 0 for all x € Z, where My is the sheaf of meromorphic functions
over Z.
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(2) Let Uy, Uz be connected affinoid domains of C' such that Uy N Uz = {s}, where s
is a type 8 point. If X (M (U;)) # 0,1 = 1,2, then X( (U1 UUs)) # 0.

PROOF. (1) That Gz = G xp.#(Z) is still a connected rational linear algebraic group
acting strongly transitively on the variety Xz = X xp .#(Z) is immediate. Also, seeing
as X, Z are normal, .#, and .4z, are fields, so the restriction morphism .#, — #7,
is injective for all € Z. Thus, X (#,) # 0 implies X (A7) = Xz( M7 5) # O for any
x e

(2) Let z; € X(#(U;)),i = 1,2. By the transitivity of the action of G, there exists
g € G(({s})), such that x1 = ¢ - 22 in X(#({s})). By Theorem 2.2.3, there exist
gi € G(# (U;)) such that g = g1 - g2 in G(A({s})). Thus g;' -1 = go- 29 in X (A ({s})).
Set ] = gy L.z and xb, = g2 - 2. They represent meromorphic functions over U; and
U,, respectively, whose restrictions to Uy N Us are compatible. Thus, they can be glued
to give a meromorphic function x over .Z (U; UUs), where z € X (.4 (Uy UUs)), implying
X(.//(Ul UUQ)) 75 0. O

Recall that unless mentioned otherwise, k is a complete non-trivially valued ultrametric
field such that /|k*| # Rso.

THEOREM 3.2.9. Let Y be a normal irreducible k-affinoid curve. Set K = .#(Y). Let
X/K be a variety, and G/K a connected rational linear algebraic group acting strongly
transitively on X. The following local-global principles hold:

e X(K)# 0 < X(My)# 0 for allz €Y
e for any open cover P of Y, X(K) # 0 <= X(#(U)) # 0 for allU € P.

PROOF. Seeing as K — ., for any x € Y, the implication * =" is true.

For the other one, let us use induction on the number n of type 3 points in the Shilov
boundary of Y. If n = 0, then by Proposition 1.8.12, Y is a strict k-affinoid curve, in which
case the statement has already been proven in Proposition 3.2.5. Assume we know the
statement for any positive integer not larger than n — 1,n > 0.

Suppose I'(Y') contains n type 3 points. Let u € T'(Y). Since X (.#,) # 0, there
exists a connected affinoid neighborhood U] of w in Y, such that X (.#(Uj)) # (. By
Lemma 3.2.7(2), there exist two connected affinoid domains Uy, Uy of Y, such that Uj is
a neighborhood of u in Uj, T'(Y) N Uy = {u}, Uy UUz =Y, and Uy N Uz = {s}, where s is
a type 3 point. Since U; C Uj, we obtain X (#(Uj)) C X (.4 (Uy)), so X(#(Uy)) # 0.
Let Ug be a connected strict affinoid neighborhood of s in Y (see Lemma 3.2.7(3)). Set
Z; = U; UUs,i = 1,2. It is an integral affinoid domain. Let us show I'(Z3) contains at
most n — 1 type 3 points.

For any y € Us of type 3, seeing as I'(Us) doesn’t contain any type 3 points, y & I'(Us).
Taking into account I'(Z;)NUs C I'(Us), we obtain y ¢ I'(Z;). Similarly, for any y € U;\I'(U;),
we have y & I'(Z;). Thus, if z is a type 3 point in the Shilov boundary of Z;, then
2 ¢ U, U2 (U\T(U)), implying z € T(U;). For a subset S of Y, let us denote by S3 the
set of type 3 points contained in S. We have just shown that I'(Z;)s = I'(U;)s\{s},i = 1, 2.
At the same time, I'(Y)s is a disjoint union of I'(U;)3\{s},7 = 1,2. By construction,
u € I'(U1)3\{s}, so the cardinality of I'(Z2)3 is at most n — 1.

By the first part of Lemma 3.2.8, Xz, (A2, ) # 0 for any x € Z,. In view of the
paragraph above and the induction hypothesis, X (#(Z2)) = X z,(.#(Z3)) # 0. Seeing as
M (Zy) C M (Us), we obtain X (4 (Us)) # (. Considering we also have X (. (Uy)) # 0,
we can conclude by applying the second part of Lemma 3.2.8.
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The second version of this local-global principle is a direct consequence of the first one.
O

We are now able to prove the following:

THEOREM 3.2.10. Let k be a complete ultrametric field such that \/|k*| # Rsg. Let C
be a normal irreducible projective k-analytic curve. Set F = 4 (C). Let X/F be a variety,
and G/F a connected rational linear algebraic group acting strongly transitively on X. The
following local-global principles hold:

o X(F)#0) < X(My)#0D for all x € C;
e for any open cover P of C, X(F) # 0 < X (A (U)) # 0 for allU € P.

PROOF. Since F' < ., for any x € C, the direction “ =7 is true.

Suppose k is non-trivially valued. By Proposition 3.1.14, there exists a nice cover
{Z1, Z5} of C, such that Z1NZs is a single type 3 point 7. By the first part of Lemma 3.2.8,
G z, is a connected rational linear algebraic group acting strongly transitively on the variety
Xz, and Xz, (Mg, ) # 0 for any x € Z;,i = 1,2. Thus, by Theorem 3.2.9, X (.#(Z;)) =
Xz, (A (Z;)) # 0. We now conclude by the second part of Lemma 3.2.8.

Suppose k is trivially valued. Being a projective analytic curve over a trivially valued
field, the curve C has exactly one type 2 point = (see Lemma 1.8.6). In that case, #, = F,
so the statement is trivially satisfied.

The second version of this local-global principle is a direct consequence of the first one.
O

The condition on the value group of k can be removed using model-theoretic arguments.
We are very grateful to Antoine Ducros for bringing this to our attention.

THEOREM 3.2.11. Let k be a complete ultrametric field. Let C be an irreducible normal
projective k-analytic curve. Set F = 4 (C). Let X/F' be a variety, and G/F a connected
rational linear algebraic group acting strongly transitively on X. The following local-global
principles hold:

o X(F)#0 < X(My)#0 for all x € C;
e for any open cover P of C, X(F) #0 < X (A (U)) # 0 for allU € P.

PRroOOF. If 1/|k*X| # Rsg, then the statement was already proven in Theorem 3.2.10.
Let us show that we can always reduce to this case.

Since F' < ., for all x € C, the direction “ = 7 is clear. Assume X (.#;) # () for
all z € C. Since C is compact, there exists a finite cover V of C containing only affinoid
domains, such that {Int(V') : V € V} is also a cover of C, and X (#(V)) # 0 for all V € V.
Let xy € X(A(V)).

Recall that for any V, .# (V') is the fraction field of an algebra of convergent series
over k. Hence, C, X, G, the action of G on X, the isomorphism of a Zariski open of G to
an open of some AL, and xy,V € V, are all determined by countably many elements of
k. Let S C k denote a countable subset containing all these elements.

Let ko be the prime subfield of k. Let k1 be the field extension of kg generated by S.
Remark that k1 is countable. By [52, Theorem 2.3.7], there exists a subfield ks of k that is
a countable extension of ki, such that ks C k is an elementary embedding in the language
of valued fields.
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Then, by [52, Theorem 2.5.36], there exists a field extension K of k, such that
K= k% /D, where I is an index set and D is a non-principal ultra-filter on I. Further-
more, by [52, Exercise 2.5.22], it is an elementary extension.

Since ko is a countable subfield of k, the value group of ko with respect to the valuation

induced by that of k satisfies \/|k5| # Rso. Let &’ be the completion of ko with respect

to this valuation. Then, /|k"*| # Rso.

Since C' is defined over k’, there exists a connected compact normal k’-analytic curve
C’, such that C’ x, k = C. Since C' is projective, by Theorem 1.8.15, C” is projective as
well.

Set F' = .#(C"). By construction, there exists an F’-variety X', and a connected
rational linear algebraic group G'/F" acting on X', such that X = X' xpm F, G = G' X F,
and the action of G induced on X is the one given in the statement. Let us show that
G’ acts strongly transitively on X’. Let L/F’ be any field extension such that X'(L) # 0.
Set Ly = L!/D. This is a field containing F' and k (since k C k"' /D C L1), so it is a field
extension of F. Consequently, G'(L1) = G(L1) acts transitively on X'(L1) = X(L1), and
since by [52, Exercise 2.5.22], L C L; is an elementary embedding, G’(L) acts transitively
on X'(L).

For any V € V, let V' denote the image of V with respect to the projection morphism
C — C'. By construction, X'(.# (V")) # 0. Hence, X'(#;) # 0 for all z € C’, implying
X'(F'") # 0, thus in particular X'(F") = X(F') C X(F) # 0.

The second part of the statement is a direct consequence of the first one. O

3.2.3. Valuations, Berkovich Curves, and the local-global principle. Because
of the relation of Berkovich points to valuations of the function field of a curve, as a result
of Theorem 3.2.11 we will obtain a local-global principle with respect to completions, thus
evoking some resemblance to “classical local-global principles”. Let us start by making
said relation precise.

DEFINITION 3.2.12. Let k be a complete ultrametric field. Let F' be a field extension
of k. For any valuation v on F, we denote by R, the valuation ring of F' with respect to v,
and m, its maximal ideal. We denote by F,, the completion of F' with respect to v. We
use the following notations:

Vi(F) is the set of all rank 1 valuations v on F' that extend the valuation of k;
Vo(F) is the set of all non-trivial rank 1 discrete valuations on F' that when
restricted to k are trivial;

for a k-subalgebra R of F, R # k, V,(F') is the set of valuations v € Vy(F') such
that R C Ry;

V(F) = Vi(F) UVo(F);

o for a k-subalgebra R of F', R # k, Vr(F') := V,(F) U VL(F).

Remark that if & is trivially valued, then V(F') contains the trivial valuation on F.

REMARK 3.2.13. Let C be a normal irreducible k-analytic curve. Then, for any point
x € C, Oy is either a field or a discrete valuation ring (see Lemma 1.8.4). If O, is a field,
then 4, = O, — H(z), so we endow .#, with the valuation induced from H(z). If O, is
a discrete valuation ring, then we endow .#, with the corresponding discrete valuation.

PROPOSITION 3.2.14. Let k be a non-trivially valued complete ultrametric field. Let C
be a normal irreducible k-analytic curve.
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(1) Suppose there exists an affine curve S over k, such that S*® = C. Let F' denote the
function field of S. Then, there exists a bijective correspondence C' «— Vo(g)(F).
(2) If C is projective, set F = .#(C). Then, there exists a bijective correspondence
C+— V(F).
In either case, if to x € C is associated the valuation v of F, then % = F,, where the
completion of M, is taken with respect to the valuation introduced in Remark 3.2.13.

PRrROOF. (1) Let x € C. If = is a non-rigid point, then O, is a field (Lemma 1.8.3), so
|- |z is a norm on A := O(S) extending that of k. Consequently, it extends to F' = Frac A
and defines a valuation v, on F' extending that of k, i.e. v, € Vi(F). If z is a rigid point,
O¢ is a dvr (Lemma 1.8.4), and k* C Of ,, so the embedding A — O¢, induces a
discrete valuation on A whose restriction to & is trivial, 7.e. a discrete valuation v, on F
whose restriction to k is trivial. Moreover, A C R,,, by definition, so v, € V}(F).

Let us look at the function C — V4(F), x — v,. It is injective by the paragraph
above. It is also surjective: if v € Vi (F'), then it determines a norm on A that extends
that of k, so it corresponds to a non-rigid point of C; if v € V(F'), then A C R,, and
P := AN m, is a prime ideal of A, so it corresponds to a rigid point z of C' for which
ker| - |; = P (see Theorem 1.6.6(1)).

If x € C is non-rigid, then My = H(z), which is the completion of F' with respect
to vy (see Remark 1.6.7). If x is a rigid point of C, and P its corresponding prime ideal

in A, then by Theorem 1.6.6(2), 5(; = ;1; = E, where A denotes the completion of A

with respect to the ideal P. Consequently, ;//\x = Frac A = F,,.

(2) Suppose C is projective. Let C?8 be the normal irreducible projective k-algebraic
curve such that its Berkovich analytification is C, and 7 : C' — C®# the canonical analyti-
fication morphism. Let 2 € C. Let S’ be an affine Zariski open of C*# containing 7 (z).
Since C' is irreducible, the function field of S’ is F. By (1), there exists an injective map:
C— V(F), z— vy

Let us show it is also surjective. Let v € V/(F') such that v);, is the starting valuation
on k. Then, by taking any affine Zariski open subset S’ of C?!# (as in the paragraph
above), seeing as its function field is F, we obtain that v corresponds to some non-rigid
point of S C C.

Suppose v € V/(F) is such that vy, is trivial. Let us consider an embedding Ccle Pr =
Proj k[zo, 21, ..,2n]. Let {U; := Spec k[x;/x;)/1;}, be a cover of C*¢ by standard
open sets. Let ig be such that |x;,|, = ||, for all i. Since |z;/zi, |, < 1, O(U;,) C Ry, so
by (1), v corresponds to a rigid point of UZ" C C.

That ;//\m = F,, for all z € C follows from part (1) by taking an affine Zariski open
containing the point z. U

REMARK 3.2.15. Proposition 3.2.14 shows that if X/k is a normal irreducible projective
algebraic curve over k with function field F, then there is a bijective correspondence

X 5 V(F),x — v, and F,, = %

Let us now show a local-global principle with respect to all such completions of the
field F.

We are very greatful to the referee (of the article that arose from the contents of this
chapter) for bringing to our attention the following lemma:
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LEMMA 3.2.16. Let K be a complete valued field and Ko a dense Henselian (called
quasicomplete in [4, Definition 2.3.1]) subfield. Let F be a subfield of Ko and X an F'-
variety. Then, if F is perfect or X is smooth,

X(Ko) #0 < X(K) # 0.

PROOF. Since Kj is a subfield of K, the implication “=" is clear. Suppose X (K) # 0.

Suppose F' is perfect. By taking the reduction of X if necessary, we may assume that
X isreduced. Let a € X (K). Denote by X’ the (reduced) Zariski closure of {a} in X. Since
F is perfect, the smooth locus X” of X’ is a dense Zariski open subset of X’ containing a.
Thus, X” is a smooth F-variety such that X”(K) # (), implying it suffices to prove the
statement in the case X is smooth.

Suppose X is smooth. Let a € X(K). Since X is smooth, there exists a neighborhood
U of a in X, such that there exists an étale morphism ¢ : U — Aﬁlp for some d € N.
Let o : Ug — A}i( be the tensorization by K, and let us look at its analytification %
Since a is a rational point, ¢% induces an isomorphism between a neighborhood V' of z

in U and an open V' of Afgan. Since Ky is dense in K, there exists b in V', such that
b € AYK) = K% has coordinates over Ky (recall Theorem 1.6.6(1)). Let ¢ be the only
pre-image of b in V. Then, ¢ is a K-rational point over b.

Uk Uk,
PK YKy
A% A%,

Set o/ := g(b) € A&l(o. By commutativity of the diagram, since b has coordinates over Ky,
b’ is a closed point of A‘Ii(O which is in the image of ;.

Since ¢ is étale, cp;((l) (b') is a disjoint union | |, Spec Fj, where F; are separable finite
field extensions of k(b)) = Kj. At the same time, gpf(l(b) =L, Fi®K, K. Set ﬁz = Fi®oK, K.
It is a field by [4, Proposition 2.4.1].

We know that ¢! (b)(K) # 0. Then, there exists i, such that (Spec E)(K) # 0, so
F;, = K. By Proposition 2.4.1 of [4], this implies that F; = Ky, and so cp[_(i (') (Ko) # 0,
implying X (Ko) # 0. O

COROLLARY 3.2.17. Let k be a complete ultrametric field. Let C' be a normal irreducible
k-analytic curve. Set F = .#(C). Let X be an F-variety. Then, if char k = 0 or X is
smooth: -

X( M) #0 = X (M) # 0
for all x € C, where the completion ;//\x of My is taken with respect to the valuations
introduced in Remark 3.2.13.

ProOOF. Remark that F' is perfect if and only if char k = 0.

If O, is a field, then .#, is Henselian by [4, Theorem 2.3.3]. If O, is not a field, then it
is a discrete valuation ring that is Henselian (see [4, Theorem 2.1.5]), so .#, is Henselian
by [4, Proposition 2.4.3]. We conclude by Lemma 3.2.16. O
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Recall once again that an irreducible compact analytic curve is either projective or
affinoid (see Theorem 1.8.15).

COROLLARY 3.2.18. Let k be a complete ultrametric valued field. Let C be a compact
irreducible normal k-analytic curve. Set F = .#(C). Let X/F be a variety, and G/F a
connected rational linear algebraic group acting strongly transitively on X. The following
local-global principles hold if char k =0 or X is smooth:

(1) if C is affinoid and /|k*| # Rxo,
X(F)#0 <= X(F,) #0 for all v € Vo) (F);
(2) if C is projective,
X(F)#0 < X(F,) #0 for allve V(F).

PROOF. If k is trivially valued, then the trivial valuation v of F' is in Vio(c)(F') (resp.
V(F)), and since F,,, = F, the statement is clear in this case.

Otherwise, it is a consequence of Theorem 3.2.9, and Theorem 3.2.11 in view of Propo-
sition 3.2.14 and Corollary 3.2.17. O

REMARK 3.2.19. Recall that for any finitely generated field extension F'/k of transcen-
dence degree 1, there exists a unique normal projective k-algebraic curve C*¢ with function
field F. Let C be the analytification of C®8. Then, .#(C) = F (see [6, Proposition 3.6.2]),
so the local-global principles above are applicable to any such field F.

In particular, Corollaries 3.2.18 and 3.4.2 can be stated independently from Berkovich’s
theory.

By Corollary 3.8 of [34], if G; and G2 are linear algebraic groups such that G; x G
is a connected rational linear algebraic group, then all the results proven in this section
remain true for G; and Gs.

3.3. Comparison of Overfields

The purpose of this section is to draw a comparison between one of the local-global
principles we proved (Theorem 3.2.11) and the one proven in ([34, Theorem 3.7]). More
precisely, we will interpret what the overfields appearing in [34] represent in the Berkovich
setting, and show that [34, Theorem 3.7] can be obtained as a consequence of Theorem
3.2.11. When working over a “fine” enough model, we show that the converse is also true.

Throughout this section, for a non-Archimedean valued field E, we will denote by E°
the ring of integers of F, E°° the maximal ideal of E°, and by E the residue field of E.

Until the end of this section, we assume k to be a complete discretely valued field.

3.3.1. Analytic generic fiber and the specialization map. We will be using the
notion of generic fibre in the sense of Berkovich. To see the construction in more detail and
under less constrictive conditions, we refer the reader to [7, Section 1] and [8, Section 1].

Let 2" = Spec A be a flat finite type scheme over k°. Then, the formal completion e
of 2" along its special fiber is Spf(;l\), where A is a topologically finitely presented ring
over k° (i.e. isomorphic to some k°{T},...,T,}/I, where I is a finitely generated ideal).
Remark that A Qpo k is a strict k-affinoid algebra.

The analytic generic fiber of e%/”\, denoted by é”;, is defined to be M(g ®po k), where

M(-) denotes the Berkovich spectrum. There exists a specialization map 7 : Z; — Z.,



80 3. PATCHING OVER BERKOVICH CURVES AND QUADRATIC FORMS

(often called reduction map in the litterature, which we avoid because of Subsection 1.4.7),
where ﬁ”; is the special fiber of 3?, which is anti-continuous, meaning the pre-image of a
closed subset is open. We remark that Eg = Z5, where Z; is the special fiber of 2. Let
us describe m more explicitly.

There are embeddings A — A < (A ®yo k)°, where (A ®po k)° is the set of all
clements f of A @go k for which ||, < 1 for all 2 € M(A ®ye k) (if p is the spectral semi-
norm on A @pe k, this is equivalent to asking that p(f) <1). Let z € M(A\ ®pe k). This
point then determines a bounded morphism A — H(z)°, which induces an application

2 A Qpo k— % The specialization map 7 sends x to ker ¢, .

The following commutative diagram, where ¢ : Spec(g ®po k) — Spec(A @po k) is the
canonical map, gives the relation between the specialization map and the reduction map
from [6, Section 2.4]. The morphism ¢ is finite and dominant (see [11, 6.1.2 and 6.4.3]
and [68, pg. 17]).

P

M(A @po k) —"— Spec(A @pe k)

(3) \ l(f’
Spec(A @po k)

The construction above has nice gluing properties. Let 2 be a finite type scheme
over k° and ,%” its formal completion along the special fiber. Then, the analytic generic
fiber 3&’ of 2 is the k- analytic space we obtain by glulng the analytic generic fibers of an
open affine cover of the formal scheme 2. In general, % is a compact analytic domain
of the Berkovich analytification 27" of 2. If 2" is proper, then 22" = é”; (see [56,
2.2.2]). Similarly, there exists an anti-continuous specialization map  : ﬁ”; — Z5, where

A5 is the special fiber of 2.
Recall k is assumed to be discretely valued. A property we will need is the following:

PROPOSITION 3.3.1. With the same notation as above, suppose A is a normal domain.
Then, A = (A ®yo k)°, and the finite morphism ¢ from the diagram above is a bijection.

PrROOF. Let us denote by t a uniformizer of k°, and by I the ideal tA. Recall that
A is the completion of A with respect to the ideal tA (and is isomorphic to some
k°{Ty,T>,...,T,}/P; remark that then A ®po k is isomorphic to the k-affinoid algebra
k{Tl,Tg,...,Ij@}/P). R R

Set B = (A®y0 k)° and J = (A ®ko k)°° - the elements f of A ®ye k such that |f|, <1
for all z € M(A @ k) (i.e. p(f) < 1, where the p is the spectral norm on A ®e k).

Remark that for any maximal ideal m of A, ¢ € m (i.e. the closed points of Spec A
are in the special fiber). This means that tA is contained in the Jacobson radical of A.
Considering this and the fact that A is excellent and normal, by [26, 7.8.3.1], A is also
normal. At the same time, by [11, 6.1.2, 6.3.4], B is the integral closure of Ain A®po k.
Since Frac A = Frac B, we obtain A=B.

Let us look at the canonical map A/t = A/I — B/J inducing ¢. Let | - | be the norm
on the affinoid algebra A Qo k.
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Remark that v/T = J: let z € J, so that p(z) = lim,, s [2""/" < 1, implying |2"| — 0,
n — +o0. Thus, for large enough n, 2™ € I, so J C /1. The other containment is clear
seeing as p(-) < |-|. This means that any prime ideal of A contains I if and only if it
contains J, and thus that ¢ is a bijection. O

3.3.2. The setup of HHK’s [34]. Let us start by recalling HHK’s framework (see
[34, Notation 3.3]):

NoOTATION 3.3.2. Let T' = k° be a complete discrete valuation ring with uniformizer ¢,
fraction field k, and residue field k. Let € be a flat normal irreducible projective T-curve
with function field F. Let us denote by %5 the special fiber of 4.

For any point P € €5, set Rp = Og p. Since T' is complete discretely valued, Rp is
an excellent ring. Let us denote by fi} the completion of Rp with respect to its maximal
ideal. Since Rp is normal and excellent, }/B; is also a domain. Set Fp = Frac é}.

Let U be a proper subset of one of the irreducible components of €. Set Ry = (pcy O, p-

Let us denote by RU the t-adic completion of Ry . By [34, Notatlon 3.3], for any Q € U,
RU - RQ Thus, RU is an integral domain. Set Fy; = Frac RU

Let & be a finite set of closed points of %5 containing all points at which distinct
irreducible components of % meet. Let % be the set of all irreducible components of
€5\ < (which here are also its connected componenets).

The following is the local-global principle proven by HHK in [34] and [35]:

THEOREM 3.3.3 ([34, Theorem 3.7], [35, Theorem 9.1]). Let G be a connected ratio-
nal linear algebraic group over F' that acts strongly transitively on an F-variety X. The
following statements are equivalent:

(1) X(F) # 0;
(2) X(Fp)#0 for all P e & and X(Fy) # 0 for allU € U;
(3) X(Fq) # 0 for all Q € Cs.

The implication (1) = (2) is immediate seeing as F' is embedded into Fp and Fy for
all P € & and U € % . Considering for any U € % and any Q € U, Fyy C F, we obtain
that (2) = (3).

We now proceed to show that the remaining implication (3) = (1) is a consequence of
Theorem 3.2.11. To do this, a comparison will be drawn between the fields Fp, Q € €,
and the ones appearing in Theorem 3.2.11.

3.3.3. The comparison. Let us denote by C' the Berkovich analytification of the
generic fiber of ¢. It is a normal irreducible projective k-analytic curve. By [6, Proposi-
tion 3.6.2], #(C) = F, where .# is the sheaf of meromorphic functions on C. Since ¥ is
projective, C = ?,\7 Let m: C — %5 be the specialization map.

Let p be the generic point of one of the irreducible components of €. Then, Oy , is
a discrete valuation ring with fraction field F, whose valuation extends that of k. Consid-
ering the residue field of p is of transcendence degree one over k, u determines a unique
type 2 point x, on the Berkovich curve C' (recall the classification of points in a curve,
Definition 1.8.1). Moreover:

LEMMA 3.3.4. Let p be the generic point of one of the irreducible components of €.
Then, 7= (u) = {z,}.
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PrOOF. Let U = Spec A be an open affine neighborhood of y in ¥. Since ¥ is
irreducible, we obtain that Frac A = F. By (7, pg. 541], 7~ Y(Us) = (/],\7, and the restriction
of m on U is the specialization ‘map U — U,. Explicitly, we have 7 : ./\/l(A Qpo k) —
Spec(A ®po k), where = € M(A ®po k) is sent to the kernel of the map A ®po k=
AJkCA — ’H( ).

By construction, for any z € 77! (u) and any f € A, f(u) = 0 if and only if |f], < 1,
and f(u) # 0 if and only if |f|, = 1. As a consequence, |f|,, < 1 if and only if |f|, <1,
and |f[, = 1 if and only if [f[, = 1. This implies that z and z,, define the same norm on
A (and hence on F), so 2, = x in C, and 7~ (u) = {z,,}. O

PROPOSITION 3.3.5. Let u be the generic point of one of the irreducible components of
¢s. Set {x,} := 7~ (n). Then, F, = H(z,). Let X be an F-variety. If X(F,) # 0, then
X(AMcyw,) # 0.

PrOOF. Remark that F, = Frac @ is the completion of F' with respect to the valu-
ation x,. Seeing as x,, is of type 2, O¢ sz, = Mz, , and by Proposition 3.2.14, F), = ¢ 4,
=H(xy).

If X is smooth or char k = 0, we can conclude by Corollary 3.2.17.

Otherwise, the restriction morphism of the sheaf of meromorphic functions gives us
Frac O¢, = F = #(C) < Oc,g,, so there exist embeddings O¢ , C Oc g, € H(wy).
Seeing as all elements of O, have norm at most 1, R, = O¢ , C O&x# - the valuation
ring of Ocz,, -

By the proof of [35, Proposition 5.8], X(F,) # 0 implies X(R,) # (. The ring
R, = Oy, is excellent, so by Artin’s Approximation Theorem ([1, Theorem 1.10]), X (RZ) #+
0, where RZ denotes the henselization of the local ring R,,. Seeing as (’)&xu is Henselian
([4, Thm. 2.3.3, Prop. 2.4.3)), R, C R}; C 0%, C Mc,,. Consequently, X (e, ) # 0.

O

We recall that the specialization map is anti-continuous. For any analytic domain U
of C, let us denote | - |gup := Sup,crr | - |a-

PROPOSITION 3.3.6. Let P be a closed point of €,. Then, Rp = O (n~Y(P)), where
O° is the sheaf of analytic functions f such that |f|sup < 1. Consequently, if X (Fp) # 0,
then X (A (v~ (P))) # 0.

PROOF. Let V = Spec A be an open integral affine neighborhood of P in €. As € is
normal, so is A. Note that P € Vi, where V5 is the special fiber of V.

Let 7 denote the specialization map correspoding to €. By cf. [7, pg. 541], 7= 1(V) = ‘//;
- the analytic generic fiber of V', and the restriction of 7 to ‘7;7 is the specialization map
177, — Vi of V. Thus, 7= }(P) C ‘777. Let us come back to the commutative diagram 3:

~——

V) = M(A®po k) —"— Spec(A @y k)

\ Lﬁ

Spec(A Qe k) = Vs
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Set B = (ﬁ ®po k)°. By Proposition 3.3.1, ¢ is a bijection, and B = A. Let mp be
the maximal ideal of AAcorresponding to the point P on the special fiber, and mp the
corresponding ideal in A, i.e. the completion of mp along the special fiber. Then, ¢~!(P)

is a closed point of Spec(g ®po k) corresponding to the maximal ideal mp of B = A.
~ ~mp ~ ~
Since k°°A C mp, AP = A = B™P, where the notation R° is used for the
completion of a ring R with respect to the topology induced by an ideal S. R
As V is reduced, so is its analytification V" ([21, Théoreme 3.4]). Since Vj, is an
analytic domain of V" it is reduced (see [21, Théoréme 3.4]). By a theorem of Bosch
(see [53, Theorem 3.1], [10, Theorem 5.8]),
B — 0% (167 (P)) = O% (= '(P)).
Vi Vi
As P is a closed point of € (resp. Vi), 7~ (P) is an open subset of C (resp. f/;), implying
O%Z(W_l(P)) = Og(n~1(P)).
As a consequence,
Rp = 0gp= A" = B™ = 02,(x~1(P)).

This implies that Fp = Frac O°(7~1(P)) C .# (7~ (P)). The last part of the statement
is now immediate. g

We are now able to state and prove the following argument, thus concluding the proof
that HHK’s local-global principle (Theorem 3.3.3) can be obtained as a consequence of
Theorem 3.2.11.

PROPOSITION 3.3.7. Using the same notation as in Theorem 3.3.3, (3) = (1).

PROOF. Let x be any point of C. Recall  denotes the specialization map C' — %5.

(1) If m(x) = p € € is the generic point of one of the irreducible components of €,
then by Proposition 3.3.5, X (F},) # 0 implies X (Ac ) # 0.
(2) If 7(z) = P € %, is a closed point, by Proposition 3.3.6, Fp C . (7~'(P)). Since
r € 71 (P) and 7~ (P) is open, we obtain .Z(r~(P)) C Mer(py g = My
Hence, X (Fp) # 0 implies X (¢ ) # 0.
Finally, seeing as X (.#,;) # 0 for all z € C, by Theorem 3.2.11, X (F) # 0. O

Lastly, using Ducros’ work on semi-stable reduction in the analytic setting (see [20],
in particular Chapter 6), we can say something in the other direction as well:

PROPOSITION 3.3.8. Let F' be a finitely generated field extension of k of transcendence
degree 1. Let C' be the normal irreducible projective Berkovich k-analytic curve for which
F=.#(C). Let X/F be a variety. Then, there exists a flat normal irreducible projective
model €' over T = k° of F, such that

X (M) # D for allx € C = X(Fp)#0 for all P € €.,
where Fp = @, and €. is the special fiber of €.
Consequently, a local-global principle with respect to the overfields Fp, P € €., implies
a local-global principle with respect to the #,,x € C.
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PROOF. Suppose X (.#,,) # () for all x € C. As the analytification of an algebraic curve,
C is strict, so the strict affinoid domains form a basis of neighborhoods ([6, Proposition
2.2.3(iii)]). Taking into account C'is compact, there exists a finite cover U of C' such that:

(1) for any U € U, U is a connected strict affinoid domain in C;
(2) Upey Int(U) = C;
(3) for any U e U, X (A (U)) # 0.
Let S be the set of all boundary points of the elements of Y. By construction, S is a finite
set of type 2 points.
Let us show that S is a vertex set of C' using [20, Théoréme 6.3.15] (see [20, 6.3.17]
for the definition of a vertex set, which is called ensemble sommital there). Since C
is projective (implying boundaryless) and irreducible, conditions «), ) and 7) of [20,
Théoreme 6.3.15 (ii)] are satisfied. Finally, condition ) is a consequence of the fact that
S contains only type 2 points (see [20, Commentaire 6.3.16]).
By [20, 6.3.23], this implies the existence of an irreducible projective model ¢’ of F over
T with special fiber €/, and specialization map 7 : C — %, such that 7 induces a bijection
between S and the generic points of the irreducible components of %.. Furthermore, by
[20, 6.3.9.1], since k is discretely valued and C' reduced, €” is locally topologically finitely
presented. Finally, by [20, 6.3.10], since C' is normal, the model ¢” is flat and normal.
By Proposition 3.3.6, for any closed point P € ¢, @ = 0°(7~1(P)), where 0 is
the sheaf of holomorphic functions f, such that |f|s,, < 1. In particular, remark that if
V' is an affinoid domain of C, since all holomorphic functions are bounded on V, we have
0°(V) C O(V). This implies Frac 0°(V) C .#(V). Let L € .4 (V), with f,g € O(V). Let
« € k be such that |of|sup, |ag|sup < 1 (it suffices to choose a so that | f|sup, |9]sup < |71,
which is possible seeing as k is non-trivially valued). Then, g = 3—5 € Frac O°(V), implying
M (V) = Frac 0°(V). By construction, there exists U € U such that 7=1(P) C U. In
particular, .# (U) = Frac 0°(U) C Frac(O°(7~*(P))) = Fp, so X(Fp) # 0.
If P is a generic point of €”, then 7=1(P) is a single type 2 point xp, and by Propo-
sition 3.3.5, .//xP c H(xp) = Fp. Thus X(Fp) #* .
Since 7 is surjective ([53, Lemma 4.11]), this implies that X (Fp) # 0 for all P € €.
O

3.4. Applications to Quadratic Forms and the u-invariant

We give applications to quadratic forms, and in particular, to the u-invariant of func-
tion fields. The results presented in this section generalize those of [34, Section 4].

3.4.1. Local-global principles for quadratic forms. The main example of a set-
ting satisfying the conditions we have seen so far (e.g. see Theorem 3.2.11) are quadratic
forms.

We can apply Theorem 3.2.11 to the projective variety X defined by a quadratic form ¢
over F. In [34, Theorem 4.2], HHK show that for a regular quadratic form ¢ over F, if
char(F) # 2, SO(q) - the special orthogonal group of ¢, acts strongly transitively on X
when dim ¢ # 2, so in that case we can take G = SO(q). If dim ¢ = 2, then X may not be
connected and consequently the group SO(q) doesn’t necessarily act strongly transitively
on X (see [34, Example 4.4] and the proof of [34, Theorem 4.2]).
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We will say that quadratic form ¢ defined over F' is isotropic over a field extension
K/F if there exists a non-zero v over K such that ¢(v) = 0. In other words, ¢ is isotropic
over a field K if and only if the projetive variety defined by ¢ has a K-rational point.

Recall that by Theorem 1.8.15, an irreducible compact k-analytic curve is either pro-
jective or an affinoid space.

THEOREM 3.4.1. Let k be a complete ultrametric field. Let C' be a compact irreducible
normal k-analytic curve. If |k*| = {1}, assume C is projective. Set F = .4 (C). Suppose
char(F) # 2. Let q be a quadratic form over F of dimension different from 2.

(1) The quadratic form q is isotropic over F if and only if it is isotropic over .M, for
all x € C.

(2) Let U be an open cover of C. Then, q is isotropic over F if and only if it is
isotropic over A (U) for allU € U.

Proor. By Witt decomposition ([46, 1.4.1]), ¢ = ¢;Lgq,, where g, is regular and ¢,
is totally isotropic. If ¢ # 0, then ¢ is isotropic, so we may assume that ¢ is regular.
Consequently, Theorem 3.2.9, and Theorem 3.2.11 are applicable, proving the statement.

O

COROLLARY 3.4.2. Let k be a complete non-Archimedean valued field. Let C' be a
compact irreducible normal k-analytic curve. Set F' = .#(C). Suppose char(F) # 2. Let
q be a quadratic form over F of dimension different from 2. The following local-global
principles hold:

(1) If C is affinoid and \/|k*| # Rsg, q is isotropic over F if and only if it is isotropic
over all completions Fy,v € Voo (F), of F.

(2) If C is projective, q is isotropic over F if and only if it is isotropic over all
completions F,,v € V(F), of F.

PROOF. If k is trivially valued, then the trivial valuation v of F' is in Vio(c)(F') (resp.
V(F)), and since F,, = F, the statement is clear in this case.

Otherwise, by Witt decomposition ([46, 1.4.1]), ¢ = ¢;L¢,, where g, is regular and ¢,
is totally isotropic. If ¢; # 0, then ¢ is isotropic. Otherwise, ¢ is regular, so smooth, and
we conclude by Corollary 3.2.18. O

3.4.2. Local Calculations. In view of the local-global principle we proved for qua-
dratic forms (Theorem 3.4.1), we now want to find sufficient conditions under which there
is local isotropy. To do this, we will need to put further restrictions on the base field.
Throughout this section, we will suppose the dimension of /|k*| as a Q-vector space (i.e.
the rational rank of |[k*|) is n € Z. In the special case that |k*| is a free Z-module (e.g.
if k is a discretely valued field), the sufficient conditions for local isotropy can be refined.
The class of such fields is quite broad, especially when it comes to arithmetic questions:
if we work over a complete ultrametric base field k satisfying this condition, then for any
k-analytic space and any of its points x, the field H(x) also satisfies it.

For any valued field £, we denote by E° its ring of integers, by £E°° the corresponding
maximal ideal, and by F its residue field.

For the following two propositions, the case of characteristic 2 can be treated uniformly
with the general one. Afterwards, we will restrict to residual characteristic different from 2.

PROPOSITION 3.4.3. Let | be a valued field. Suppose |I*| is a free Z-module of finite
rank n. Let L be a valued field extension of l. Let q be a non-zero diagonal quadratic form
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over L. Suppose for any non-zero coefficient a of q, |a| € |I*|. There exists a family Q
of at most 2" quadratic forms with coefficients in (L°)*, such that q is L-isometric to
1,eQCs - 0, where Cy € L™ for any o € Q.

PROOF. Let us fix 71, m9,...,m, € [*, such that their norms form a basis of the Z-
module [I*|. Set A = {[[;", ﬂf"|5¢ € {0,1}}. For any coefficient a of ¢, let p1,p2,...,pn € Z
be such that |a| = [[;_, |m[P". Then, there exist v, € (L°)* and s, € A, such that
a = v48, mod (L*)2. Consequently, for any A € A, there exists a diagonal quadratic form
o4 with coefficients in (L°)*, such that ¢ is L-isometric to 1L gc 4 A - 04. O

The following is the analogue of Proposition 3.4.3 in a more general case.

PROPOSITION 3.4.4. Let | be a valued field, such that dimg \/W equals an integer n.
Let L be a valued field extension of [. Let q be a non-zero diagonal quadratic form over
L. Suppose for any non-zero coefficient a of q, |a| € \/W Then, there exists a family @
of at most 2" quadratic forms with coefficients in (L°)*, such that q is L-isometric to
1,eQCs - 0, where Cy € L™ for any o € Q.

PRroo¥F. To ease the notation, let us start by introducing the following:

NoTATION 3.4.5. Let M be a multiplicative Z-module, such that the divisible closure
VM of M as a group is a finite dimensional Q-vector space. Set n = dimg v M. Set
M? ={m?:m e M}.

There exist t1,t9, ...,t, € M, such that for any ¢t € M, there exist unique p1, p2,...,pn € Q,

for which ¢ = [T, t¥". Let us fix such elements t1,t2, ..., ty.

In the particular situation that is of interest to us, M = [I*|, and there exist 71, 7o, ..., 7T, € [,
with |m;| = t;, such that for any € € /|[¥|, there exist unique p1, po, ..., pn € Q, for which
e =1 |mif"". Let us fix such elements 71, ma, - -, mp.

S’L

n

DEFINITION 3.4.6. Let ¢ € M. Suppose ¢ = []; for 2 € Q with s;,r; coprime,

=1 z ‘s r;
1=1,2,...,n
(1) Let r be the least common multiple of 5,7 = 1,2, ...,n. We will say r is the order
of e.
(2) Let 7t = 57;, i =1,2,...,n. If there exists ig, such that sj, = 1, then t;, will be

said to be a base of e.

Let € € M, and suppose € = [[1-, &, for p; € Q, i =1,2,...,n. Let a be the order of

i=1"% >
LEMMA 3.4.7. If « is odd, then for any i = 1,2,...,n, there exist 0; € {0,1}, such
that € =TI, £ mod M?2.

PROOF. Remark that since « is odd, € = € mod M?, and €* = [}, ¢ L t’t, with s; € Z
for all i. Let s; = 25, + &;, where s, € Z and &; € {0,1}. Then, e = []", % rnod M%: O

211

LEMMA 3.4.8. If a is even, then there exist m € M, x;,y € Z, i = 1,2,...,n, with
y > 0, satisfying:
(1) € =m mod M?;
i 2y
(2) m =TI, 67

(3) there exists ig € {1, 2,...,n}, such that x;, = 1.
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Remark that ¢;, is a base of m and its order is 2.

PROOF. Let a = 2¥ - 2, with z odd and y > 0. Then, € = ¢ mod M?, and (¢*)?" =
[T, t5, with e; € Z,i = 1,2,...,n. Furthermore, there exists iy € {1,2,...,n}, such

i=1"% >

that e;, is odd.
Seeing as (2Y,¢;,) = 1, there exist A, B € Z, with A odd, such that Ae;, +2YB = 1.
Then, € = ¢* - ()41 mod M?, and ¢4 = t;/gy—B_ [T, pAei/2", Hence, there exists
0 i#i0 V1
m'y € M, such that €4 = m/; mod M2, and
o mly = tilo/zy [Lizi, t?eiﬂy if B is even;
o mly =t/ [y, t197% if Bis odd.
Ae;
If B is odd, ml :==m/y - m%;Qyti_O2_2y = m’y mod M?, and m'y = t;o/gy [Tisi t:™
Consequently, in either case, there exist m € M and x; € Z, for i = 1,2,...n, with
7, = 1, such that € = m mod M2, and m = [ i/ O

i=1"

(2Y+1)

For ¢ € L, such that |e| € \/|I*|, we will say that the order of || is the order of e. If
|Ti, | is a base of ||, we will say ;, is a base of €. By applying the last two lemmas to the
valued field L, we obtain:

COROLLARY 3.4.9. Let e € L*. Suppose |e| = [[i |m|Pi for p; € Qi =1,2,...,n.

(1) If the order of || is odd, then for anyi = 1,2,...,n, there exists 0; € {0,1}, such

that & = []7—, 7% mod (L*)2(L°)*.
(2) If the order of |e| is even, then there exist €' € L*, x;,y € Z, i = 1,2,...,n, with

y > 0, satisfying:

(a) e =€ mod (L*)?(L°)*;

(b) [¢') = [Ty I/

(c) there exists ig € {1,2,...,n}, such that z;, = 1.

We immediately obtain as a by-product of the proof:

COROLLARY 3.4.10. Let € € L™, such that |e| € \/|IX|. Suppose the order of |¢| is 2,
so that there exist v; € Z,i = 1,2,...,n, such that |e| = [, |m:|"/? . If vy is odd for
some i, then there exists €' € L, such that ¢ = ¢’ mod (L*)*(L°)*, and |my| is a base of
l'].

Let ¢ (resp. ¢2) be the part of ¢ whose coefficients have odd (resp. even) order. We
remark that q1, ¢o are diagonal quadratic forms over L, and that ¢ = g1 Lgs.

Decomposition of q1: Set A = {H?:l 77?1' |0; € {0, 1}} . Let e be any coefficient of ¢;. By
Corollary 3.4.9 (1), there exist u. € (L°)* and A, € A, such that e = u, - A. mod (L*)2.
Consequently, for any A € A, there exists a diagonal quadratic form o4 with coefficients
in (L°)*, such that ¢; is L-isometric to L gcaA - 04.

Decomposition of qo: We first need an auxiliary result, which requires the following:

DEFINITION 3.4.11. Let ¢ € L™ be such that there exist p; € Q, i = 1,2,...,n, for
which |e| = [[i; |m|P¢. Let I € {0,1...,n}, such that {i : p; # 0} C I. We will say that ¢
is given in |I| parameters, where |I| is the cardinality of I, or that € is given in parameters
over I.

Notice that a € L is given in 0 parameters if and only if a € (L°)*.
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LEMMA 3.4.12. Let 7 be a diagonal quadratic form over L with coefficients of order
either 1 or an even number. Let I C {1,2,...,n}, with 1 < |I| = m < n, such that the
coefficients of T are given in parameters over I. Then, there exist:

o JC I, with |J| =m—1,

e 1,10 € L™,

e diagonal quadratic forms 1,7 over L with coefficients of order either 1 or an
even number and in parameters over J,

such that T is L-isometric to x1m Lxomo.

Proor. Roughly, the idea is to find some ig and a partition A;,j = 1,2, of the set of
coeflicients, for which there exist x; € L™, satisfying: if a € Aj;, there exists B, € L™, such
that, modulo squares, a = x; - By, and |Bg| = H#io |7i[Pie, pio € Q. In what follows, we
find suitable representatives of the coefficients modulo squares, from which we can read
the factorization x; - B,.

Without loss of generality, let us assume that I = {1,2,...,m}. Suppose the coeffi-
cients of 7 are all of order 1. If they are given in zero parameters, the statement is clear.
Otherwise, suppose that there is a coefficient given over a set of parameters containing ;.

Let d be any coefficient of the quadratic form. There exist s; € Z,i =1,2,...,n, such
that |d| = [[;—, |m|*. As a consequence, there exist d' € L* and s, € Z,i = 2,...,n,
for which d = d’ mod (L*)?(L°)*, and either |d'| = [/, |mi|% or |d'| = |m| - [T}y |mil%.
Hence, there exist diagonal quadratic forms 71, 7o, whose coefficients are all of order 1, in
parameters over {2,3,...,m}, such that 7 is L-isometric to w171 L7o.

Suppose there exists at least one coefficient of 7 of even order. Let 7/ be the quadratic
form obtained from 7 by:

(1) leaving the coefficients of order 1 intact;
(2) applying Corollary 3.4.9 (2) to the coefficients of even order to substitute them
by elements of L* that satisfy properties 2 and 3 of the lemma.
We remark that due to the proof of Corollary 3.4.9 (2) (i.e. Lemma 3.4.8), the set of
parameters over which the coefficients of 7 are given doesn’t change. The quadratic form
7/ is L-isometric to 7. Let us fix @, one of the coefficients of 7" with largest order. Suppose
the order of o’ is 2%. Without loss of generality, we may assume that m; is a base of .
For i = 2,...,m, let o; € Z be such that |a'| = \7?1]1/20/ o | \m[“i/Qa/.

Let ¢ be any other coefficient of 7. Let m;, be a base of ¢, and 27, > 0, its order. For

i=1,2,...,m, let 7; € Z be such that |c| = [[", ||/

e Suppose o/ > 7. Set ¢ = ¢- a2 Then, ¢ = ¢ mod (L*)?(L°)*, and

yita; (27 —1)

|| = |m| - [T w27
e Suppose o = « and v is odd. By Corollary 3.4.10, there exist o) € Z,i =
2.3,...,n, and ¢’ € L* of order 2%, having m; as a base, such that ¢/ =

e mod (L*)2(L)" and |¢/] = [m1[1/2" - TT1L, | 4/2°.
e Suppose o' =y and 7 is even. Let v} // 29 be the reduced form of v /27, mean-
ing 7] is odd. Set ¢ = c.a/ @20 Then, ¢” = cmod (L*)?(L°)*, and

. (27
(] = ] - [T ] 2

To summarize, there exist ¢ € L* and €3, - , €y, € Z, such that ¢ = ¢ mod (L*)?(L°)*,

€;—ay

and either [¢] = [m [1/2" - [T w2 = |a| - TI%y |ml 2 or [¢ = |m] - [T/ [mil/2.
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Therefore, there exist diagonal quadratic forms 71, 79 over L, such that 7 & 7 La',
and for any coefficient h of 71 or 79, the order of h is either 1 or an even integer. Further-
more, h is with parameters over {2,3,...,m}. O

Using induction, an immediate consequence of Lemma 3.4.12 is that there exists a
family T of 2" quadratic forms with coefficients in (L°)*, such that 7 is L-isometric to
loer By - 0, where B, € L* for any o € T.

Finally, by combining the decomposition results of ¢; and g2, we obtain the statement
of Proposition 3.4.4. O

The following framework corresponds to Berkovich curves:

SETTING 3.4.13. Let k be a complete ultrametric field. Let & C R be a Henselian
valuation ring with maximal ideal mp, and fraction field Fr = Frac R. Set L' = R/mp,
and suppose it is endowed with a valuation making it a Henselian (called quasicomplete
in [4]) valued field extension of k. Let L/L’ be an immediate Henselian extension. Set t =
rankg (|L*|/|k*| ®z Q) = rankg(|L™*|/|k*| ®z Q) and s = degtrEE = degtrzf’. Suppose
s+t < 1.

The motivation behind this setup is:

ExaMPLE 3.4.14. Let C' be any k-analytic curve, and « € C any point. The hypotheses
of the setting above are satisfied for R = O,, Fgr = M, L' = k(x), and L = H(z).

For any quadratic form o with coefficients in R, let us denote by oy, (resp. oyp/) its
image over L (resp. L').
We recall:

DEFINITION 3.4.15. Let K be a field.

(1) [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal dimension
of anisotropic quadratic forms over K. We say that u(K) = oo if there exist
anisotropic quadratic forms over K of arbitrarily large dimension.

(2) [HHK] The strong u-invariant of K, denoted by us(K), is the smallest real num-
ber m, such that:

e u(FE) < m for all finite field extensions E/K;;
. %u(E) < m for all finitely generated field extensions E/K of transcendence
degree 1.
We say that us(K) = oo if there exist such field extensions E of arbitrarily

large u-invariant.

NOTATION 3.4.16. From now on, let k£ be a complete ultrametric field, such that
dimg /|k*| equals an integer n. Also, suppose char k # 2.

PROPOSITION 3.4.17. Let L/k be a valued field extension, such that rankg(|L*|/|k*|
®zQ) =0 and degtryL = 0. Let T be a quadratic form over L, with dimr > 2" uy(k).
(1) Suppose L is Henselian. Then, T is isotropic.

(2) Under the same hypotheses as in Setting 3.4.13, let q be a diagonal quadratic
form over R, such that qr, = 7. Then, q is isotropic over Fg.

PROOF. Since char(L) # 2, we may assume that 7 is a diagonal quadratic form. Seeing
as dimg +/|L*| = n, by Proposition 3.4.4 there exists a set @) of at most 27+l quadratic
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forms with coefficients in (L°)*, such that 7 is L-isometric to L,cqCy - 0, with Cy € L™
for every o € Q.

Since dim 7 > 2”+1us(k:) there exists 7/ € Q, such that dim 7’ > us(k) Let 7 be the
image of 7’ over L. Seeing as the coefficients of 7/ are all in (L°)*, dim 7/ = dim 7/ > (75)
Since deg tr~ = 0, the extension L / k is algebraic. Let E be the finite field extensmn of k

generated by the coefficients of . Then, u(FE) < us(k) < dim 7/ , implying s isotropic
over I/, and hence over L. Since L is Henselian, 7/ is isotropic over L, and thus so is T
For the second part, if 7 = g1, for some diagonal R-quadratic form g, seeing as 7/ is
isotropic over L= L’ the image of g in L is so as well. From Henselianity of L', we obtain
that the image of ¢ in L’ is isotropic there. Finally, from Henselianity of R, the quadratic
form ¢ is isotropic over F. O

The bound 2"+, (%) in Proposition 3.4.17 will remain the same regardless of whether
we demand |k*| to be a free Z-module or not. The reason behind this is that in any case,
the hypotheses of said proposition tell us only that dimg \/|L*| = n, but not necessarily
that |L*| is a free Z-module.

PROPOSITION 3.4.18. Let L/k be a valued field extension, such that rankg(|L*|/|k*|
®zQ) = 0 and degtr;L = 1. Let T be a quadratic form over L, with dim7 > 2" 2uy(k).
(1) Suppose L is Henselian. Then, T is isotropic.

(2) Under the same hypotheses as in Setting 3.4.13, let q be a diagonal quadratic
form over R, such that qr, = 7. Then, q is isotropic over Fg.

If |L*| is a free Z-modules of dimension n, the statement is true for dim7 > 2" (k).

PROOF. Since char(L) # 2, we may assume that 7 is a diagonal quadratic form. Again,
let L,cqCyo be the L-quadratic form isometric to 7 obtained from Proposition 3.4.4 (resp.
Proposition 3.4.3), where Q has cardinality at most 2”1 (resp. 2"). Then, there exists
7' € @, such that dim 7’ > 2u, (E) Let 7/ be the image of 7/ over L. Since the coefficients
of 7/ are all in (L°)%, dim 7/ = dim 7’ > 2u(k).

As the extension L/ k is finitely generated of transcendence degree 1, one obtains

w(L) < 2us(k) < dlmT This implies that 7/ is isotropic over L. Since L is Henselian, the
quadratic form 7’ is isotropic over L, and thus so is 7.

For the second part, if 7 = qr, for some diagonal quadratic form g over R, we conclude
by using the same argument as in Proposition 3.4.17, seeing as 7’ is isotropic over . O

PROPOSITION 3.4.19. Let L/k be a valued field extension, such that rankg(|L*|/|k|
®zQ) =1 and deg tr~ = 0. Let T be a quadratic form over L, with dim7 > 272y, (k).
(1) Suppose L is Henselian. Then, T is isotropic.

(2) Under the same hypotheses as in Setting 3.4.13, let q be a diagonal quadratic
form over R, such that q;, = 7. Then, q is isotropic over Fg.

If |k*| is a free Z-module, the statement is true for dimt > 2"y (k).

PROOF. Since char(L) # 2, we may assume that 7 is a diagonal quadratic form. Since
rankg(|L*|/|k*| ®z Q) = 1, there exists p € Rso\y/|k*|, such that the group |L*| is
generated by |k*| and p. Let T' be an element of L with |T'| = p. Then, for any a € L*,
there exist m € Z, p; € Q (resp. p; € Z), i = 1,2,...,n, such that |a| = |T|™ - [}, |m|?".
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Consequently, there exist diagonal quadratic forms q1, g2 over L, for which 7 is isometric
to q1 L. Tqa, where the coefficients of ¢1, g2 have norms in |k*|.

By applying Proposition 3.4.4 (resp. Proposition 3.4.3) to ¢; and ¢2, we obtain a
family S of at most 22 (resp. 2"*!) diagonal quadratic forms with coefficients in (L°)*
such that 7 is isometric to 1,c5Cy - o, where C, € L™ for every o € S. Thus, there exists
7' € S, such that dim 7’ > u, (k). Let 7/ be the image of 7/ in L. Seeing as the coefficients
of 7" are all in (L°)*, dim 7/ = dim 7’ > uy (k).

The extension L / k is finite algebralc sou(L) < us(k) < dim 7/, implying 7/ is isotropic
over L. Since L is Henselian, 7/ is isotropic over L, and thus so is 7.

For the second part, if 7 = ¢y, for some ¢, as 7/ is isotropic over L’ we conclude as in
Proposition 3.4.17. U

Keeping the same notation, the three propositions above can be summarized into:

THEOREM 3.4.20. Let L/k be a valued field extension. Suppose that the inequality
rankQ(\LX\/lkXL@Z Q) +degtr;L <1 holds. Let T be a quadratic form over L, with
dim 7 > 2" 24 (k).

(1) Suppose L is Henselian. Then, T is isotropic.
(2) Under the same hypotheses as in Setting 3.4.13, let q be a diagonal quadratic
form over R, such that qr, = 7. Then, q is isotropic over Fp.
If |k*| is a free Z-module, and |L*| is a free Z-module with ranky|L>*| = n if deg trEE =1
and rankg(|L*|/|k*| ®z Q) = 0, then the statement is true for dim 1 > oty (k).

A result we will be using often in what follows:

LEMMA 3.4.21. Suppose |k*| is a free Z-module of dimension n. Let k' /k be a valued
field extension, such that |k’ | is finitely generated over |k*|, and |k'|/|k*| is a torsion
group. Then, |k'™| is also a free Z-module of dimension n.

Suppose k'/k is a finite field extension. Let T be a diagonal quadratic form over k'
with dim 7 > 2"uy(k). Then, q is k'-isotropic.

PROOF. Seeing as |k'*|/|k*| is a torsion group, its rank as a Z module is 0. Considering
ranky|k'™ | = rankg|k'*|/|k*| + rankyz|k*|, we obtain ranky|k’*| = n. Furthermore, being
a finitely generated torsion-free module over Z, it is free.

Let L,c0Cos - 0 be the quadratic form k’-isometric to 7 obtained by applying Propo-
sition 3.4.3. There exists o9 € Q with coefficients in (k’°)*, such that dim g = dim g >
us(k) where o is the image of g over K. Suppose k' /k is a finite field extension. Seeing
as then &/ / k is also finite, og is k- isotropic. From Henselianity of k', we obtain that o is
k’-isotropic, thus so is 7. O

The following shows that if |k*| is a free finitely generated Z-module of dimension n,
the last conditions of Theorem 3.4.20 are satisfied in the Berkovich setting.

COROLLARY 3.4.22. Suppose |k*| is a free Z-module with rankyz|k*| = n. Let C be
a k-analytic curve. If x € C is a type 2 point, then |H(x)*| is a free Z-module and
rankz (|H(z)*]) = n.

PROOF. Since z is an Abhyankar point, |H(z)*| is finitely generated over |k*|, and
since it is of type 2, |H(x)*|/|k*| is a torsion group, so this follows from Lemma 3.4.21. O
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Another result we will be needing in what is to come:

LEMMA 3.4.23. Under the same hypotheses as in Setting 3.4.13, suppose R is a discrete
valuation ring. Let q be a diagonal quadratic form over Fgr. Then, there exist diagonal
Fgr-quadratic forms q1,qs with coefficients in R, and a € F;, such that:

e ¢ is isometric to q1 Lago;
e qi 1, has coefficients in (L°)*,i=1,2;
e there exists ig € {1,2}, such that dimg;, 1 > %dim q.
In particular, if either of q1,qo is isotropic over Fg, then so is q.

PROOF. Let 7 be a uniformizer of R. For any coefficient b of g, either b = 1 mod (Fj )*(Fj5)*
or b= 7 mod (FE)Q(F ). Hence, there exist diagonal Fr-quadratic forms g1, g2 with co-
efficients in (Fj)* = R*, such that ¢ is Fr-isometric to ¢ = ¢1 Lmgo. Then, dim ¢ = dim ¢/,
and there exists ig, such that dimg;, > %dim q. Since the coefficients of ¢1, o are in R,
their images over L are of same dimension, so dim ¢;, 1, > % dim ¢. Finally, the last sentence
of the statement is obvious. O

The following theorem gives the motivation behind the hypotheses we put upon R, L’
and L.

THEOREM 3.4.24. Suppose char(%) % 2. Let C be a normal irreducible k-analytic curve.
Set F = .#(C). Let q be a quadratic form over F of dimension d, with d > 2" 2u4(k).
Then, for any x € C, the quadratic form q s isotropic over 4, for all v € C.

If |[k*| is a free Z-module, the statement is true for d > 2" tug(k).

PROOF. Seeing as char(k) # 2, neither of the overfields of k has characteristic 2. In
particular, char(F') # 2, so there exists a diagonal quadratic form ¢’ over F' isometric to g.
By replacing g with ¢ if necessary, we may directly assume that ¢ is a diagonal quadratic
form.

Recall that O, and k(z) are Henselian [4, Sections 2.1 and 2.3]. Furthermore, H(z)
is the completion of k(x), so it is a Henselian immediate extension. We know that
for any € C, the field H(x) is either a finite extension of k or a completion of F
with respect to some valuation extending that of k. Abhyankar’s inequality tells us that

—~

rankq (|H(z)*|/|k*| ®z Q) + deg tr; H(z) < 1. We will apply part 2 of Theorem 3.4.20 by
taking R = Oy, Fr = M, L' = k(z), and L = H(z).

If H(z)/k is finite, i.e. if x is a rigid point, then H(z) = k(z) = Oy/ms. Being a
normal Noetherian local ring with Krull dimension one, O, is a discrete valuation ring.
By Lemma 3.4.23, there exists a diagonal .Z;-quadratic form 7 with coefficients in O,
such that dimr, > Ldimg > 2""luy(k) (resp. dim7, > 3dimg > 2"uy(k)) and the

isotropy of 7 implies that of q. Seeing as rankg(|H(z)*[/|k*| ®z Q) = degtr;H(x) = 0,
we can apply Proposition 3.4.17 (resp. Lemma 3.4.21) to 7.

Otherwise, O, = k() is a field, and H(x) is its completion. In the general case,
we conclude by a direct application of Theorem 3.4.20. In particular, if |k*| is a free
Z-module, then this is an application of Theorem 3.4.20 in view of Corollary 3.4.22. [

We also obtain:

COROLLARY 3.4.25. Suppose char(k) # 2. Let C' be a normal irreducible k-analytic
curve. Let x be any point of C. Let q be a quadratic form over H(x), such that dimq >

2742, (k). Then, q is isotropic.
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If |k*| is a free Z-module, then the statement is true for dimq > 2" u, (k).

PRrOOF. This is a direct consequence of part (1) of Theorem 3.4.20 (in view of Corol-
lary 3.4.22 for the special case). O

3.4.3. The applications. We will now apply the results obtained in the previous
section to the (strong) u-invariant.
We recall:

DEFINITION 3.4.26. Let K be a field.

(1) [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal dimension
of anisotropic quadratic forms over K. We say that u(K) = oo if there exist
anisotropic quadratic forms over K of arbitrarily large dimension.

(2) [HHK] The strong u-invariant of K, denoted by us(K), is the smallest real num-
ber m, such that:

e u(FE) < m for all finite field extensions E/K;;
e Ju(E) < m for all finitely generated field extensions E/K of transcendence
degree 1.
We say that us(K) = oo if there exist such field extensions E of arbitrarily

large u-invariant.

Let k be a complete ultrametric field.

THEOREM 3.4.27. Suppose char(k) # 2. Let F be a finitely generated field extension
of k of transcendence degree 1. Let q be a quadratic form over F of dimension d.
(1) If dimg /|k*| =:n €N and d > 27+2y, (k), then q is isotropic.
(2) If |k*| is a free Z-module with rankz|k*| =:n € N and d > 2" u,(k), then q is
1sotropic.
PRrROOF. There exists a connected normal projective k-analytic curve C such that

F = #(C). By Theorem 3.4.1, the quadratic form ¢ is isotropic over F' if and only if it is
isotropic over ., for all x € C. The statement now follows in view of Theorem 3.4.24. [

COROLLARY 3.4.28. Suppose char(k) # 2.
(1) If dimg \/[k¥] =: n € N, then us(k) < 2" ug(k).
(2) If |k*| is a free Z-module with rankz|k™| =:n € N, then us(k) < 2"us(k).

PROOF. Let [/k be a finite field extension. Let ¢ be an l-quadratic form of dimen-
sion d > 2"t ug(k) (resp. d > 2"us(k)). Since char(k) # 2, we may assume ¢ to be
diagonal. In view of part 1 of Proposition 3.4.17 (resp. Lemma 3.4.21), ¢ is [-isotropic,
so u(l) < 27 u, (k) (resp. u(l) < Q"US(%)) In combination with Theorem 3.4.27, this

completes the proof of the statement. O

COROLLARY 3.4.29. Suppose char(k) # 2. Let C' be a normal irreducible k-analytic
curve. Let x be any point of C.

(1) If dimg /[k¥| =: n € N, then u(H(z)) < 2" 2uy(k).
(2) If |kX| is a free Z-module with rankz|k*| =:n € N, then u(H(x)) < 2" u,(k).

PRrROOF. See Corollary 3.4.25. O
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In particular, when k is discretely valued we obtain the upcoming corollary. It is the
most important result on quadratic forms in [34], and from it we obtain that u(Q,(T")) = 8
when p # 2, originally shown in [58].

COROLLARY 3.4.30. Let k be a complete discretely valued field, such that char(k) # 2.

Then, us(k) = 2uy(k).

PROOF. The inequality us(k) < 2us(k) is a special case of Corollary 6.2. For the other
direction, a proof that is independent of the patching method and relies on the theory of
quadratic forms is given in [34, Lemma 4.9]. O



CHAPTER 4

Patching over Analytic Fibers and the Local-Global
Principle

In this chapter we generalize patching to neighborhoods of certain fibers of a relative
proper analytic curve. As an application, we obtain a local-global principle for the germs
of meromorphic functions on said fibers.

We treat the case of the relative projective line P1@" first. In Section 4.1, we construct
the notion of relative nice covers around a fiber of P13 analoguous to (and a generaliza-
tion of ) nice covers for curves, and show that it possesses good properties, i.e. properties
that are necessary for patching. To do this, we start by showing some complementary
properties of affinoid domains in the analytic projective line that allow us to deduce a par-
ticular writing for them. This writing makes it possible to construct affinoid domains in a
neighborhood of a fiber (of a relative P1#") from an affinoid domain on said fiber. We call
this process thickening' of an affinoid domain. A relative nice cover of the neighborhood
of a fiber (of a relative P1#) is the thickening of a nice cover of the fiber.

In order to be able to apply the results of Chapter 2 to this setting, it is necessary
to constantly “shrink” to smaller neighborhoods of the fiber. Because of this, we need
some uniform boundedness results and explicit norm comparisons, which is the topic of
Section 4.2. As a consequence, this is the most technical section of Chapter 4. It also
contains an explicit description of the Banach algebras of analytic functions on certain
affinoid domains of the relative projective line.

In Section 4.3, we show that the results of Chapter 2 are indeed applicable to relative
nice covers of fibers of the relative P13 and that patching (in the sense of Chapter 2)
can be obtained as a consequence thereof. This is then extended (in the sense of Propo-
sition 3.2.2) to include the level of generality necessary for proving the analoguous result
around fibers of relative analytic curves. The arguments used in this section are of very
topological nature.

In Section 4.4, we study the properties of the class of relative analytic curves over which
we know how to apply patching around certain fibers. The condition that is required is not
too restrictive; namely, the relative proper curve is assumed to be normal and algebraic
around the fiber, so this is satisfied for the Berkovich analytification of any normal proper
relative algebraic curve. Using Grothendieck’s work on the projective limit of schemes, we
show that smooth geometrically irreducible projective algebraic curves defined over certain
fields give rise to a proper relative analytic curve satisfying this condition. In particular,
this makes it possible to generalize some results from Chapter 3.

In Section 4.5, we construct covers (also called relative nice covers) on a neighborhood
of fibers of a relative proper analytic curve and show that they satisfy the necessary

1The idea for thickenings of affinoid domains of P**" originally appears in some unpublished notes of
Jérome Poineau.

95
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properties for patching to be applicable. For this, we use pullbacks of relative nice covers
in the case of P1#", Once again, the arguments that are employed are of very topological
nature. We then use these covers, as well as the corresponding result in the case of relative
P20 to prove that patching is possible in this setting.

Finally, in Section 4.6, we apply patching to prove local-global principles for the germs
of meromorphic functions on a fiber of a proper relative curve. As in the case of curves,
we first show a local-global principle where the overfields are the stalks of the sheaf of
meromorphic functions, and then apply this to obtain a local-global principle with respect
to completions. In order to show the latter from the former, we first prove there is a
connection between the points of a fiber and the valuations on the field of germs of its
meromorphic functions (which we show to have nice algebraic properties; namely, it can
be realised as the function field of a certain algebraic curve).

The fibers around which we apply patching are those over points for which their
corresponding stalk is a field. In Section 4.7, we calculate some examples of these fields.

4.1. Nice covers for the relative projective line

As in the case of curves, we construct covers around fibers of the relative projective
line over which a generalized form of patching as seen in Proposition 3.2.2 will be possible.
More precisely, we construct relative analogues of nice covers (Definition 3.1.6).

4.1.1. Some results on the analytic projective line. Let us start with a couple
of auxiliary results on the analytic projective line. Recall the nature of the points of Pha"
presented in Subsection 1.8.4.

ProOPOSITION 4.1.1. Let K be a complete ultrametric field. Let U be a connected
affinoid domain of }P’}fm with only type 8 points in its boundary. Suppose U is not a
point. Let us fix a copy of A}fm and a coordinate T on it. Let OU = {ng,,, : i =

1,2,...,n}, where R; € K[T| are irreducible polynomials and r; € Rso\+/|K*|. Then,
U= {z:|Rils > i}, where e {<,2},i=1,2,...,n.

PrOOF. We need the following two auxiliary results:
LEMMA 4.1.2. Foranyi € {1,2,...,n}, eitherU C{z : |Ri|z <1} orU C{z : |R;i|x >

PROOF. To see this, assume that the open subsets Vi := U N{z : |R;|, < r;} and
Vo :=UNA{z :|Ri|y > r;} of U are non-empty. As intersections of two connected subets
of P}%an, both V; and V, are connected. Assume V; NInt(U) = 0,5 = 1,2. , This implies
V; C 90U, and since Vj is connected, it is a single type 3 point {7;}. But then, this would be
an isolated point of U, which is in contradiction with the connectedness of U. Consequently,
there exist z; € V;NInt(U), j = 1,2. By Lemma 1.8.16, Int(U) is a connected set, so there
exists a unique arc [z1,x2] connecting x1,zo that is entirely contained in Int(U). Since
|Rilzy < Tiy |Rilsy > 7i, there exists xg € [z1,x2] such that |R;|z, = ;. Since there is a
unique point satisfying this condition (Proposition 1.8.25), and it is ng, ,,, we obtain that
NR;r € |21, 22] C Int(U), which is in contradiction with the fact that ng, ,, € OU. Thus,
there exists j € {1,2} such that V; = (), implying the statement. O

LEMMA 4.1.3. Forn € N, let W; := {z € P}éan 2 |B| > i}, where P; € K[T]

is irreducible, r; € Rso\\/|kX|, >u€ {<, 2}, i € {1,2,...,n}. Suppose for all i # j,
Wi & Int(W;). Then, for V := (.., W;, 0V =, OW;.

Ti}-



4.1. NICE COVERS FOR THE RELATIVE PROJECTIVE LINE 97

PROOF. Since Int(V') = (;_; Int(W;), we obtain that 0V = <ﬂ?:1 Wj> \ (Niey Int(W5)) =
Uizs M= (Wi\Int(W})). Suppose there exist 4, j € {1,2,...,n} such that W;\Int(W;) = 0.
Then, W; C Int(W;), contradicting the hypothesis of the statement.

Hence, for any 4,7, W;\Int(W;) # 0. In particular, this means that W; N Int(W;) is
a strict open subset of Wj, so contained in Int(W;). Consequently, {np, r,} = W;\Int(W;) C
W\(WinInt(W;)) € Wi\Int(W;). This implies that for any i, (;_; (Wi\Int(W;)) = {np, r }.

Finally, OV = {np,,, : i =1,2,...,n}, proving the statement. O

HU CA{zx: |Rs <ri} (resp. U C {x: |Rilz = ri}), set Uy = {z : |Ri|lo < ri}
(resp. U; = {z : |Ri|z > ri}). Remark that for all 4, U; is connected and contains U. Set
V =i, Ui. Let us show that OV = 9U. Assume there exist 4, j such that U; C Int(Uj).
Then, ng; ; €€ U;, 0 nr, ; € U, contradiction. Thus, Lemma 4.1.3 is applicable, and so
aV = {7731.77»1.} = oU.

Remark that V' is a connected affinoid domain (as an intersection of connected affinoid
domains) of IP’}?H. Also, U C V and 90U = 9V. Let us show that U = V. Suppose there
exists some x € V\U. Then, x € Int(V). Let y € Int(U) C Int(V). The unique arc
[z,y] in IP’}?H connecting x and y is contained in Int(V) (by connectedness of the latter,
see Lemma 1.8.16). At the same time, since z ¢ U and y € U, the arc [z,y] intersects
OU = 0V, contradiction. Thus, U =V = (), U;. O

In particular, the result above implies that every connected affinoid domain of P};an

with only type 3 points in its boundary is a rational domain.
1,an

Recall Proposition 1.8.19. For any z,y € PZ™", we denote by [z,y] the unique arc in
IP’}%an connecting = and y.

LEMMA 4.1.4. Let K be a complete ultrametric field. Let U,V be connected affinoid
domains of P}gan containing only type 3 points in their boundaries, such that U NV =
oU NV is a single type 3 point {nr,} (i.e. R is an irreducible polynomial over K and

r € Rao\VIK*]).

o IfU C {z € PZ™ : |R|, <7} (resp. UC {z € PZ :|R|, > 1}), then
V C{x e P :|R|, =7} (resp. V C {x e PP : |R|, <7}).

e Suppose U C {x € P}%ﬁn t |R|z < r}. Set OU = {npy,np,rti-q and OV =
{UR,ranP;,r;}T:17 so that U = {x € P}%an D |Rle < 1 |Pile > 7riyi} and Vo=
{z € P}%an DRl = [Pl > %, 5}, where >y, b€ {<, 2}, Py, P} € K[T] are
irreducible, and ri,rg- € Roo\V/| K| for all i, j.

Then, UUV = {x GIP’}gan | Ple >y iy | Pl o< v i = 1,000 m, = 1,0, m

If n =m =0, this means that U UV = P}éan.

PROOF. (1) Remark that if U C V, then U = {nr,}, so the statement is trivially
satisfied. The same is true if V' C U. Let us suppose that neither of U,V is
contained in the other.

Suppose U C {z € P™ : |R|, < r} and V C {z € PZ™ : |R|, < r}. Let
u € U\V and v € V\U. Since u,v € {x : |R|; < r} - which is a connected set
(Lemma 1.8.16), [u,v] € {z : |R|; < r}. At the same time, since [u,ngr,] C U

and [ng,,v] CV, [u,nr,r]N[NR,r v] = {Nr+}, so the arc [u,v] = [u, Nr+]U[nR,, V]
contains the point ng . This is in contradiction with the fact that [u,v] C {x :
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|R|; < r}. The case U,V C {x € Pg™ : |R|, > r} is shown to be impossible
in the same way. (This property is true regardless of whether OU\{ng,} and
OV\{nr,} contain only type 3 points or not.)

(2) The statement is clearly true if m = n = 0, so we may assume that is not the
case.

Remark that J(UUV) C U UIV. Let n € QU\V. Let G be any neighborhood
of pin ]P’}%an. Since V is closed, there exists a neighborhood G’ C G of 1 such that
G'NV = 0. Since € U, G’ contains points of both U and U®. Consequently,
G', and thus G, contain points of both UUV and U NVC = (UUV)C. Secing as
this is true for any neighborhood G of 7, we obtain that n € (U U V), implying
OU\V C 9(U UV). Similarly, 0V\U C 9(UUV). It only remains to check for the
point ng.

Let x € Int(U) C Int(UUV) and y € Int(V) C Int(UUV'). Remark that z ¢ V
and y ¢ U. Furthermore, |R|, < r and |R|, > r. Consequently, ng, € [z,y]. Since
UUV is a connected affinoid domain containing only type 3 points in its boundary,
its interior is connected (see Lemma 1.8.16). Consequently, [z,y] C Int(U U V),
and hence ng,, € Int(U U V).

We have shown that 9(U U V) = {npi,ri,np}% 21,7}.Since U C {x : | P|y vy 13}
and V' C {x : |Pj[, b<; 7} for all 4, j, we obtain that

UUV = {z:|Pile > 14, | Pl > 75,4, 5}

4.1.2. The general setting.

NOTATION 4.1.5. Let S be a normal good k-analytic space (i.e. affinoid domains form
a basis of the Berkovich topology on S). Suppose that dim S < dimg Rs¢/|k*| ®z Q. Let
us denote by 7 the structural morphism Pgan — 5. Let x € § be such that Og, is a
field. Let F be the fiber of  on IP}g’an, which can be endowed with the analytic structure

of IP);_’[?;I) (see Proposition 1.5.7).

Remark that a connected affinoid domain of S is integral.

Let us explain the hypothesis on the dimension of .S in Notation 4.1.5. As in Chapter 3,
type 3 points play a very important role for obtaining patching results around the fiber F.
Hence, their existence on the fiber is crucial and, as will be seen in the next lemma, this is
guaranteed by the condition we imposed on the dimension of S. Recall that for a complete
ultrametric field K, a K-analytic curve contains type 3 points if and only if /| K*| # Rxo.

LEMMA 4.1.6. Let Y be a k-analytic space such that dimY < dimgRso/|k*| @z Q.
Then, for any y €Y, \/W # R<o.
PrOOF. For any y € Y, we have
dimg [H(y)*|/Ik*| @2 Q < d(H(y)/k) < dimY < dimg Rso/[k™| ®z Q.
Consequently, v/|H(y)*| # Rso. O

By Lemma 4.1.6, in Notation 4.1.5, IP’;{’?Z) contains type 3 points.
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LEMMA 4.1.7. Let U be a connected affinoid domain of PZ?E) with only type 3 points

in its boundary. Then, all the polynomials R; from Proposition 4.1.1 can be chosen so that
their coefficients are in O.

PROOF. Let n € OU. It suffices to show that there exist P € O,[T] irreducible over
H(x) and p > 0, such that n = np,.

The connected components of PL?E)\{U} are virtual discs. Let us fix one that does not
contain the point co. We need to show it contains a rigid point nr o with R € O,[T] with
R irreducible over H(x). This follows immediately from the density of O, in H(z). O

an

REMARK 4.1.8. Let U be a connected affinoid domain of IP’;_Z(x) containing only type 3
points in its boundary. Then, there exist polynomials R; € O,[T] irreducible over H(x)
?;1) : ‘Rz’u >; Ti,i =
1,2,...,n}, where ;€ {<, >} for all i. Consequently, there exists some connected affinoid
neighborhood Z of z in S, such that R; € O(Z)[T] for all i. Hence, the affinoid domain
U can be thickened to an affinoid domain {u € Pgaﬂ o |Rilw > 1,0 = 1,2,...,n} of
7 1(2Z) = Pgan. The role of nice covers in this relative setting will be played by covers

1l,an

that are constructed by thickening affinoid domains of the fiber P} ()" We now study some

and positive real numbers r;,7 = 1,2,...,n, such that U = {u € IP’;&

properties of such domains which make patching possible.

4.1.3. A Theorem: Thickenings of Type 3 Points. Following Notation 4.1.5,
the goal of this part is to show:

1,an

THEOREM 4.1.9. Let nr, be a type 3 point of ]P’H(z), where R € O[T is irreducible
over H(x) and r € Roo\\/|H(x)*|. There exists a connected affinoid neighborhood Zy of
x i S, such that

o R e O(Zy)|T],
e for any connected affinoid neighborhood Z C Zy of x, the set {u € Pgan DR, =
r} is a connected affinoid domain of P;an.

PrRoOOF. Without loss of generality, since O, is a field, we may assume that R(T) is a
unitary polynomial.
To prove the statement, we need several auxiliary lemmas.

LEMMA 4.1.10. Let K be a complete ultrametric field. Let R(T') be a split unitary
polynomial over K. Letr € Rsg. Then, for any root a of R(T') there exists a unique positive

real number s, such that {y € P}éan RNy =7 = Uga)=oly € P}éan T — aly = sa}-
The point nq.s, is the only point y of the arc [nq,0,00] in P}éan for which |R(T)|, = r.
Furthermore, r = sa * |1 p(3)20,azp Mmax(a, o = B]).

PROOF. Remark that if y € Py is such that |R(T)], = 0, then [T q)—o |7 — aly =0,
meaning there exists a root ag of R(T") such that |T" — ag|, = 0 (notice that we haven’t
assumed R(T") to be separable, i.e. there could be roots with multiplicities). This deter-
mines the unique point 7,0 in P™". Thus, the zeros of R(T) in PR™ are 1q,0, R(a) = 0.
Remark also that R has only one pole in Pkan and that is the point co.

By [20, 3.4.23.1], the analytic function R(T) on ]P’}%an is locally constant everywhere
outside of the finite graph I := |J R(a)=0 [Ma,0, 00]. Furthermore, its variation is compatible



100 4. PATCHING OVER ANALYTIC FIBERS AND THE LOCAL-GLOBAL PRINCIPLE

with the canonical retraction d : P}%an — I' in the sense that |R(T)|, = [R(T')|4() for any
y € P};an (cf. [20, 3.4.23.8]). By [20, 3.4.24.3], R(T) is continuously strictly increasing
in all the arcs [14,0,00], R(a) = 0, where |R(T)|;,, = 0 and |R(T)|c = +oo. Conse-
quently, |R(T)| attains the value r exactly one time on each arc [1q,0,00]. Suppose s, is
the unique positive real number for which |R(T)|y, ,, = 7. Then, [Ig 5= [T = Blna.. =
Se - HR(,B):O,a;éﬁ max(sq, o — f]) =r.

We have shown that there exist positive real numbers s, such that {y € I": |R|, =7} =
{Na,s : R(ar) = 0}. As mentioned before, the variation of R is compatible with the
canonical retraction d of P} to T'. Since d ™' (as.) = {y € PR™ : |T — aly = sa}, we
finally obtain that {y € P™ : |R|, = r} = Ur(a)=olv € PR 2 |T — al, = 54} with s, as
above. U

Let Z; be some connected affinoid neighborhood of z in S such that R € O(Z1)[T].
Let E be a finite field extension of .#(Z;) on which R(T) splits. Since O(Z;) is Japanese
(see [6, Proposition 2.1.14]), its integral closure in E is a finite O(Z;)-algebra, and in
particular, an integral k-affinoid algebra (see Proposition 1.3.19). Let us denote by Z’ the
corresponding integral k-affinoid space.

By construction, we have a finite morphism ¢ : Z’ — Z; inducing a finite morphism
W Pt Pglan, and the polynomial R(T) is split over O(Z'). Set {z1,22,...,21} :=
¢~ 1(x). Let us study the affinoid domain |R(T)| = [Tr(a)=o T —a] =rin ngm, i.e. the
affinoid {u € P, : [Tr()=0 IT — alu =71}

Since ¢ is a finite morphism, +/|H(x)*| = +/|H(x;)*| for any ¢ = 1,2,...,¢, so
r & \/|H(z;)*|. By Lemma 4.1.10, there exist positive real numbers sq 4, R(a) = 0,

such that {u € }P’;ﬁgi) Rl = 1} = Up(ay=olu € IP’;{’?L) T — aly = Sau, - Since r &

VIH(z)*], {u € P;?zi) : |R|,, = r} cannot contain any type 2 points, $0 Sq. 5, & v/|H(xi)*| U {0}
and {u € IP’;{’EZ;) HRlw =1} = {Nasa.,  B(a) =0} (for a € k,r € Rx, recall the notation
Na,r in Subsection 1.2.4).

LEMMA 4.1.11. For any i € {1,2,...,t}, and any root o of R(T), there exists a con-
nected affinoid neighborhood Z! of x; and a continuous function s, : Z! — Rsq such that
for any y € Z;,

1, 1, J
{uePyl i [Rlu=r}= |J {uePyy : IT —al,=si(y)}
R(a)=0
Furthermore, we may assume that for any j #i,z; & Z..

PROOF. Let us fix an i € {1,2,...,t} and a root a of R(T) of multiplicity m. Let
a1, Q9,...,q, be the rest of the roots (with multiplicity) of R(T), ordered in such a way
that for any j < [, |a — ojlq; < |00 — qy]s;. As remarked above, sqq, & v/|H(xi)*| U {0},
SO Saz; 7# |a — oy, for all j = 1,2,...,n. Set ag := «. Then, there exists a unique
Jo €{0,1,...,n}, such that |a — oj|q; < Sa; < | — |y, for all j,1 for which j < jo <
(in particular, if jo = 0, this means that 0 < sqz, < | — s, and if jo = n, that

la — anla; < Sa,z;). Since in }P’;{’?;li) :

n n
r= |R‘7]a,sa,zi = ’T - a|?7ma,3a’zi H |T - ai‘na,sa,zi = ngxi ' H ma‘x(sa,x“ ‘Oé - a]|3?1)7
7j=1 7j=1
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i = j N — i — nt S
we obtain that sqq; = o+ M, ool (this means that sa., = "*%/7 if jo = n.)

Note that |ov — o], # 0 for all j > jo seeing as sq 2, < | — @jla;-

Since the function Z’ — Rsg, y — |o — |y is continuous for all j =1,2,...,n, there
exists a connected affinoid neighborhood Z;; of x; in Z’ such that |a — «;], # 0 for all
j>joandally € Z; 1.

Let us define s, : Z;1 — Rsg by y > jo+n/m——————. It is a continuous function
’ Hj:j0+1 la—agly

and Sa,z; = 84 (2;). Also, o — ajly, < sb(xi) < |a — ayly, for all 4,1 for which j < jo < L.
Since on all sides of these strict inequalities we have continuous functionsz there exists a
connected affinoid neighborhood Z! of x; in Z;1 such that for all y € Z/, s, (y) is positive
and o — o]y < st (y) < |ao— oyly for all 3,1 for which j < jo <.
-y =Y

Consequently, for y € Z!, in IPH?;), ‘R(Tﬂ”a,sg@) = sp (YO Ty o — agly = 7.
We can now conclude by using Lemma 4.1.10.

Finally, the last part of the statement is a direct consequence of the fact that Z’ is

Hausdorfl. 0O

REMARK 4.1.12. Lemma 4.1.11 is clearly true for any connected affinoid neighborhood
of x; contained in Z.

Let Z; be any connected affinoid neighborhood of x; such that Z; C Z{. In view of
Lemma 4.1.11, for any ¢ € {1,2,...,t}, {u € }P’Zan HR(T)|w =1} = Upa)=oiu € IP’;?“ :
|T—aly, = st (m(u))}. For any root a of R(T'), set Sy z, := {u € IP’Zan T —aly, = st,(m(u))}.

LEMMA 4.1.13. Fori € {1,2,...,t}, the set Sy, z, is connected.

PROOF. Seeing as s’, is a continuous function, Sa,z; is a closed and hence compact

subset of Pzan. Suppose that S, z, is not connected and assume it can be written as

s s . 3 } / 17 . . . 1,an
a disjoint union of two closed subsets S 0.7 and Sa7 z,- Since Sq z, is compact in Pz,

so are S, ; and S, ;. Since the morphism 7 is proper, (S, ;) and 7(S7 ;) are both
compact subsets of Z;. Also, 7(Sa,z,) = Z;, implying Z; = 7(S], ;) Un(S] ;). Assume
that 7(S}, ;) N7(Sy 5) # 0. This means that there exists a point y € Z;, such that
both ]P;{’a(‘;) NS, and ]P;{’?Z) NS}, ;. are non-empty. But then, the connected domain

{u € P;i?;l) T — al, = si(y)} of IP);{’?;I) can be written as the union of two disjoint
closed subsets, which is impossible. Thus, 7(S, ;) N7 (Sy, 7.) = 0, so Z; can be written
as a disjoint union of two closed subsets. This is impossible seeing as Z; is connected.

Consequently, S, 7z, is connected. O

Recall that the finite morphism Z' — Z; was denoted by ¢. Let U; € Z! be open
neighborhoods of z; in Z’, i = 1,2,...,n. Then, by [25, Lemma 1.1.2], there exists a
neighborhood U of = in Z, such that ¢~ (U) C Ui_, U; € U'_, Z. Let Zy C U be any
connected affinoid neighborhood of x. Then, ¢ ~(Zy) (which is a subset of |J;_; Z!) is an
affinoid domain of Z'.

Any connected component C of p~1(Zy) is mapped surjectively onto Zy. To see this,
remark that ¢ is at the same time a closed and open morphism (see [6, Lemma 3.2.4]).
Consequently, ¢(C) is a closed and open subset of Zj. Since Zj is connected, ¢(C) = Zp.
Thus, for any i, there exists exactly one connected component Z; of ¢~!(Zy) containing z;
and ¢~ (Zy) = J'_, Zi. By construction, Z; C Z..
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Let us look at the induced finite morphism ) : IP’l’f“f( Z0) = LI, IP’l’an — ]P’l’an. The
preimage of {u € IP’l 0 |R|, = r} by t is the affinoid {u € P2 :|R|, = r}. Recall
that for any 7, {u € Plzian Ry =71} = Uga)=o Sa,z:» 50

_1 ZO

{ue B )t 1Rl =7} = U U Sez;-
i=1 R(a
By Lemma 4.1.13, each of the S, z, is connected, and thus 50 18 9 (Sq,z,). Since Sq,z, N
{u € Pl an : |Rly = r} # 0, we also have 9(Sq,z) N{u € IP’l an |R|u =r} # 0.
Consequently, the type 3 point ng, € }P’H’(n) is contained in all of the Sa Z;-

Finally, seeing as {u € P an( 7o) : |R|, = r} can be written as a finite union of connected

sets, all of which contain a common point, it is connected.
It is immediate from the constructions we made that the same is true for any other
connected affinoid neighborhood of x contained in Zj. O

4.1.4. Towards Relative Nice Covers. We construct here a relative version of nice
covers around the fiber. We keep Notation 4.1.5.

DEFINITION 4.1.14. Let P; € O4[T] be irreducible over H(z) and r; € Rsp,i =
1,2,...,n. The set A = {u € IP’l an o |Pily > rii = 1,2,...,n}, where ;€ {<, >},
is an affinoid domain of IP’#(:E). For any affinoid nelghborhood Z of x for which
P, € O2Z)[T] for all i = 1,2,...,n, we will denote by Az the affinoid domain
{u € P 1 |Pily o< 74,5 = 1,2,...,n} of Py and call it the Z-thickening of A.

REMARK 4.1.15. The thickening of an affinoid domain of IP;{’?;I) depends on the poly-

nomials we choose to represent its boundary points. Hence, from now on, when speaking
of the thickening of such an affinoid, we will, unless it plays a specific role (in which case
we mention it explicitely), always assume that a writing of the boundary points was fixed
a priori.

Recall Notation 4.1.5.

Let U and V be connected affinoid domains of IP’#?“)

in their boundaries. Suppose that U NV is a single type 3 point {n}. This means that
UNnV =0UnNoV = {n} By Lemma 4.1.7, there exist R(T") € O,[T] irreducible over H(x)

and r € Rso\/|H(x)| such that n = ng,.
By Lemma 4.1. 2 elther UC{ue IP’I an Ry <r}orUC{uc€ IP’l an DR[|y = 1}

Without loss of generality, let us assume U C {u € Pl an DRy < r}. Then, by
Lemma 4.1.4, V C {u € IP’1 an : |Rly = r}. Set OU = {77377«,77131.,7"1.}?:1 and 9V =

{nrr, P }iLy, where P;, P} € (’)x[ ] are irreducible over H(z), and r;, 7, € Rxo\/|H(z)*],
for all ¢ and j. By Proposition 4.1.1:

U= {uepla“ IR|y <7, |Pilu o<y riyi =1,2,...,n},

containing only type 3 points

V= {uePyl i Rl =m | Plluvd; ), j = 1,2,...,m},
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where l>4i,l><1;-€ {<, >} for all 4, j. There exists a connected affinoid neighborhood Z of x
in S, such that 1, P}, R € O(Z)[T] for all i,j. Let us study the relationship between the
Z-thickenings Uz, Vz of U and V, respectively.

PROPOSITION 4.1.16. There exists a connected affinoid neighborhood Z' C Z of x such

that:
(1)
(2)

Uy NV =(UNV)z ={ue g™ |Rl, = r};
Up UVp = UUV)z = o € B ¢ Pl oot rolPlu o) 1,07} (e
Lemma 4.1.4). If n = m =0, this means that UZ/UVZ/:IE"lan.

The same is true for any connected affinoid neighborhood Z" C Z' of .

PRrROOF. Recall that we denote by F, the fiber of z with respect to the morphism 7.
We will make use of the following:

LEMMA 4.1.17. Let A, B, C be closed subsets of ]P’éan such that ANBNF, =CNF,.

Suppose there exists an open W of P;aﬂ such that ANBNW =CnNW and CNF, CW.
Then, there exists a connected affinoid neighborhood Z' C Z of x such that for any con-
nected affinoid neighborhood Z" C Z' of v, ANBN7 Y(Z")=Cnr=YZ").

PROOF. Set F1 = AN BN W€, and F5, = C N W€, where W€ is the complement of
W in ]P’gan. Remark that F; is a closed hence compact set, and that F; N F, = 0,7 = 1, 2.
Since 7 is proper, 7(F;) is a closed subset of Z, and it does not contain x. Thus, there
exists a connected affinoid neighborhood Z’ C Z of x such that Z' N #(F;) = 0,i = 1,2.
Consequently, 771(Z') N F; = ().

Remark that 7=1(Z")NFy, = 7= (2" )NANBNW¢ = (), so 7~ 1(Z')NANB C W. Similarly,
7 HZ)YNC CW. Finally, ANBNaYZ")= AnBnra Y (Z)nW=CnWnr 1 (Z) =
CNr=Y(Z"). Clearly, the same remains true when replacing Z’ by any connected affinoid
neighborhood Z” C 7. O

(1)

Set W = {u € P3™ : |Piy i rl,\P]u > 7%,1,5}, where >q; (resp. b)) is

the strict version of <; (resp. < ), meamng for example if p<; is < then <,
is < . Set also A=Uz,B = Vg, and C = {u € P;™ : |R|, = r}. Remark
that: W is open, A B C are closed, AN BNW = {u € Pl Rl =
7y | Pilu 0 73, | Pl > 75,4, 5 = CNW, andAﬂBﬂF —UﬂV {77Rr} CNF,.

By Lemma 4.1.17, there exists a connected affinoid neighborhood Z’ of x such
that Uz NVy = {u € IF’l M |Rly, =1} = (UNV)y, and the same remains true
when replacing Z’ with any connected affinoid neighborhood Z” C Z’ of z.
Set W = {u € Pz™ D Py o %, = 1,...,m}, where pd’ is the strict version
ofD<1 .Set also A =C =Uy and B = {u € ]P’lan | P; ] < r1,|P |, D1 J J,z J}-
Clearly, W is open and A, B, C areclosed. Also, ANBNW = {u € IP’I MRy <oy Pyl by
Tis [Pl > 75,8, 51 = CNW.

Let us look at the affinoid domain V; = {y € IP’;_’[?;I) Py > g =

'7m} of ]P);i?;l)' As OV = {”R,rvnP},r}};ﬂ:h for any i # j, {‘P” M; T;} ¢
{IPjle<iri}. Otherwise, V. C {|P]| >} r;} C {|Pjp<ir’}, implying P! ¢V,

and so Int(V;) is W N P22

contradiction. By Lemma 4.1.3, 0V} = {7713/ /} ()"

Remark that V' C Vi, so nr, € V1.

Jj=b
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LemMA 4.1.18. {y € By ¢ R, <7} C Int(V1).

an

PROOF. Suppose there exists w € ]P’%_i(x) such that |R|, < r and w ¢ Vj.
Then, there exists jo € {1,2,...,m}, such that [P; [, Mgg 75> Where Dd;-g is the
inverse sign to b (e.g. if > is < then l>4’c is >). Let v € Int(V) C Int(17),

so that |R[, > r and |P; Let us look at the unique arc [v,w] in P} B(m)

‘” ~Jo ]0

Since |R|, > r and \R|w <71, MRy € [v,w]. The same is true for NP -
Jo’ Jo
We have that [w,v] = [w,np . | U [np . ,v]. Since [R|,,, , > r (recall
Jo’" Jjo Jo’ Jo 30" d0

an

npr gt € V and the only point of P;—i(m) satisfying |R| = r is nr,) and |R|, < r,
0’ Jo ’

we obtain that ng, € [w,n Pl ]. Thus, we can write the following decomposition
0

of the arc connecting v and w: [w,v] = [w, Nrr]U MR, P ]U[npj{ o ,v]. Simi-
0 0 0 0
larly, | P} [55.,b<; rj and [P [ ;gj jor S0P 1 € [w, nr ], which is in contradic-
tion with the injectivity of [w, v]. Thus, {y € IP’;{?;) DRy <r}={ye IP’l an Ry < r}uU
{nR r} cW.

We showed before that 0V} = {77P’ ,} 1- Since for any 7, P! € v, |R|np/ . >

1an

r. This implies that P! Z{y € Py |R]y < r}. Conbequently, ovin {y €

1 an CR|y <r} =0, 1mply1ng {y € ]P’l an DR[|y < r} CInt(Vh). O
From the lemma above, U C {y € IP’1 an J|R|ly <r} C Int(Vl) =Wn ]P’l"?n).

Thus, ANBNE, = {y € IP;;;‘) LRy < ,IHlu Dy T4y | Pl b 1704, j} = UNV =

U =CnF, C Vi CW. This means that Lemma 4.1.17 is applicable, so there exists

a connected affinoid neighborhood Z] C Z of x such that Uz N BN 7~ 1(Z}) =

Uz Nn~1(Z}), implying Uzi ©BN 771(Z1), and the same remains true for any

connected affinoid neighborhood Z{ C Z} of x.

Using similar arguments one shows that there exists a connected affinoid
neighborhood Z; C Z of x such that V; C BN 7=(Z}), and the same remains
true for any connected affinoid neighborhood Z§ C ZJ of x.

Thus, there exists a connected affinoid neighborhood 7' C Z of z such that
Uy UVy C By = {u € P : |Pl, > ris |Pilu > 77,4, 5}, and the same
is true for any connected affinoid neighborhood Z” - Z’ of z. Let u € Byn :=
BzNan=1(Z"). 1f |R|, < r,then u € Ugn. If |R|, > 7, then u € Vz». Consequently,
w € Ugzgn UVygn, and Ugn U Vg = Byun.

O

Let us show that this construction of affinoid domains in Pl’an, where Z is a connected
1,an

affinoid neighborhood of x, gives us a family of neighborhoods of the points of F, in P
(given we choose Z small enough)

LEMMA 4.1.19. Let A be an open subset of }P’l’(m such that ANF, #0. Let U = {u €

IP’;{?H |Pilo o<t 75,6 = 1,2, ..., n}, >y {<, =}, be any affinoid domain of P 7(1 contained
in AN F,, where P; € O4[T)] is irreducible over H(z) and r; € R>o,i =1,2,...,n. Then,
there exists a connected affinoid neighborhood Z of x, such that P; € (9( )[ ] for all i,

and Uy C A. The same is true for any connected affinoid neighborhood Z' C Z of x.
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PROOF. Let Zjy be a connected affinoid neighborhood of = for which the thickening
Uz, exists. Suppose Uz, € A. Then, Uz, \A is a non-empty compact subset of IP’I an
This implies that m(Uz,\A) is a compact subset of S. Furthermore, since U C A, x 9_1
m(Uz,\A), so there exists a connected affinoid neighborhood Z C Zj of x such that
Z N7(Ug\A) = 0. This implies that for any connected affinoid neighborhood Z’' C Z of
x, Uz \A =7"1(Z") N (Uz\A) = 0, and finally that Uz C A. O

Let U, be a nice cover of ]P’;_z?;l). Let Sy, = {m1,m2,...,m} be the set of intersection
points of the elements of U,. For any n; € Sy,,i = 1,2,...,t, there exist R; € Oy4[T] irre-
ducible over H(z) and r; € Rxo\+/|H(z)*|, such that n; = nr, ;. Since Uy, OU = Su,,
all pieces of U, are a combination of intersections of the affinoid domains {|R;| >; r;} of
P?l{?n) where ;€ {<, 2}, =1,2,.

For any affinoid neighborhood Za of x such that R; € O(Z,)[T] for all i, let us denote
by Uz, the set of Z,-thickenings of the elements of U,. Let Z’ be a fixed connected affinoid
neighborhood of 2 such that R; € O(Z')[T] for all i = 1,2,...,¢

THEOREM 4.1.20. There exists a connected affinoid neighborhood Z C Z' of x such
that the set Uz is a cover of ]P’l’an and
(1) for any U € Uy, the Z-thickening Uz is a connected affinoid domain of P
(2) for any different U,V € Uy, either UzNVyz = () or there exists a unique j € {1,...,t}
such that Uz NVz = {u € P;am Y|Rjlu =13 =(UNV)z is a connected aﬂinoid
domain of P;an; in particular, Uz N Vz # 0 if and only if UNV # 0;
(3) for any Uz, Vy; € Uz, Uz U Vy is either Pgan or a connected affinoid domain
of ]P’;an that is the Z-thickening of U U V.
The statement is true for any connected affinoid neighborhood Z" C Z of x.

lan

ProOOF. By Theorem 4.1.9, there exists a connected affinoid neighborhood Z of x, such
that R; € O(Z)[T] and the affinoid domains {u € P}* : |R;|, = r;} are all connected. We
may also assume that for any two non- d15301nt elements U = {u € IP’l an | Pifu > 7, | Ry <
i=1,.. n}andV—{uePlan | P
tion 4.1. 16 holds.

Let U, = {U1,Us,...,U,}. By Lemma 3.1.18, there exist n — 1 elements of U, whose
union is connected. Without loss of generality, let us assume that V := U;;l U, is con-
nected. By Theorem 1.8.15, this is a connected affinoid domain, and V U U,, = ]P’;_’[?;l).
Since V,U,, and U,, UV are connected subsets of P ?n) U, NV is a non-empty connected
set, hence a single type 3 point {ng,,;} for some j € {1,2,...,t}. In particular, this

1,an

implies that U, = {u € P, () : |Rjlu > 7}, where e {<, >}. Let us assume without

loss of generality that U, = {u € IP’1 an :|Rjly = r;}. Then, V ={u € IP’1 an Rl < 15}
(see Lemma 4.1.4 to recall what the 1nequahtles for the union of two nOH—dISJOIHt ele-

L Rly 2 j = 1,...,m} of U,., Proposi-

ments of a nice cover look like). Consequently, U, z = {u € IP’l “ ¢ |Rjly = r;} and
by Proposition 4.1.16, V; = (U?:_ll UZ-)Z = U?zll Uz = {u € ]P’lza” t |Rjlu < 715}, so
UnzUVy = P;a", and Uz is a cover of P;an

Let U #V € U,. Clearly, if UzNVy = 0, then UNV = (). Assume UNV = (. Suppose
A:=UzNVy # 0. Remark that AN F, = (). Since A is compact and 7 proper, w(A) is a
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compact subset of Z not containing z. Thus, there exists a connected affinoid neighborhood
Zy C Z, such that AN7=Y(Z;) = 0, and Uz, NVz, = 0. Thus, we may assume that for
any disjoint U,V € U,., Uz NVz = (), which, taking into account Proposition 4.1.16, shows
that property (2) of the statement is true.

Property (3) is a consequence of [6, Corollary 2.2.7(i)] if Uz NV = (), and of Proposi-
tion 4.1.16 if not. Let Z be such that property (2) is satisfied. Suppose there exists U € U,
such that Uy is not connected. Let C' be a connected component of Uy that doesn’t inter-
sect F},, and B the connected component that does. For any V' € U, for which UNV = 0,
CNVy; CUzNVy; = 0. For any V € U, for which UNV # (), there exists a unique j such that
Uz;NVy={uce Pgan :|Rjlu = rj} is a connected affinoid domain, so Uz N Vz = BN V3.

Consequently, C NV = (). This means that C' N ((UZ\C) UUvew, uzv VZ) = (), and

cu <(UZ\C) UlUvew, uzv VZ) = P,™", implying PL* is not connected, contradiction.
This proves the first part of the statement.
The last part is immediate from the nature of the proof. O

Finally:

DEFINITION 4.1.21. Let U, be a nice cover of P%—l?;l)’ and Z a connected affinoid neigh-
borhood of x such that the Z-thickening of all of the elements of U, exist. Let us denote
this set by Uz. We will say it is a Z-thickening of U,. The set Uy will be said to be a
Z-relative nice cover of P;an if the statement of Theorem 4.1.20 is satisfied.

REMARK 4.1.22. Whenever taking the thickening of a nice cover U, of P22 to obtain

a Z-relative nice cover of ]P’;an for a suitably chosen Z, we will suppose that a writing
was fixed simultaneously for all of the points of UUGL{Z OU, and that constructions were
made based on this “compatible” writing of the boundary points (as we did e.g. in
Proposition 4.1.16 and Theorem 4.1.20). The same principle goes for any family of affinoid
domains of IP’;{’?;) whose Z-thickenings we consider simultaneously.

We have shown:

1,an

THEOREM 4.1.23. Let U, be a nice cover of PH(a:)

neighborhood Z of x such that the Z-thickening of U, exists and is a Z-relative nice cover
of Pgan. The same is true for any other connected affinoid neighborhood Z' C Z of x.

. There exists a connected affinoid

COROLLARY 4.1.24. Let U be a connected affinoid domain of IP’;f(‘z) containing only

type 3 points in its boundary. There exists an affinoid neighborhood Z of x in S such that
the Z-thickening Uy exists and is connected. The same is true for any connected affinoid
neighborhood Z' C 7 of x.

ProOF. If U is a type 3 point, then this is Theorem 4.1.9. Suppose this is not the
case. By Lemma 3.1.11, there exists a nice cover U, of ]P’;{’?;l) such that U € U,. Let Z
be a connected affinoid neighborhood of = such that the Z-thickening Uz exists and is a
Z-relative nice cover. Then, Uz € Uz is connected. The last part of the statement is clear

since the same property is true in Theorem 4.1.20. O

REMARK 4.1.25. The notion of a Z-relative nice cover can be extended to connected

affinoid domains of P that are Z-thickenings of affinoid domains of IF’;_;?;I).
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4.2. A norm comparison

As seen in the previous section, when constructing relative nice covers we often have
to restrict to smaller neighborhoods of the fiber. The same phenomenon appears when
trying to apply the patching results of Chapter 2 to this setting. This is why we need
some uniform-boundedness-type results.

Recall Notation 4.1.5. Let Z be any connected affinoid neighborhood of = in S. Set
Az = O(Z). The k-algebra Ay is a k-affinoid algebra, and since Z is connected and
reduced (recall S is normal), Az is an integral domain. By Proposition 1.3.15(2), the
spectral norm pz of Ay is equivalent to the norm of Az, and it satisfies: for all f € Az,
|flp, = maxyez |fl|y. In this section, for any connected affinoid neighborhood Z of z in S,
we endow the corresponding affinoid algebra Az with its spectral norm pz.

For any positive real number 7, we will use the notation Az{rT~1} (where T is a fixed
variable on Pgan) for the Az-affinoid algebra {Zn20 an € Az, limy oo |anlp,r ™" = 0}
with corresponding submultiplicative norm [} o 7| = max, |an|,, 7"

REMARK 4.2.1. In what follows we suppose that the coefficient r is not an element of
V/|k*|. The only reason behind this assumption is to be able to guarantee the connect-
edness of the affinoid domains that are considered. If we assume connectedness, then the
rest works the same regardless of whether r € /|k*| or not.

4.2.1. The case of degree one polynomials. Let r € Ryo\\/|H(x)*].
(1) Set Xipj<rz = {u € Pgan 2 |T|, < r}. It is an affinoid domain of P;anj and
O(X71<r,z) = Az{r T}, where

-1 .
Az{r— T} = {; a, ", a, € AZ’nll)I-fI—loo |an|p, " = 0}
and it is endowed with the norm | Zn>0 anT™ 7)<z += MaXp20 [an]p, "
2) Set Xipisryz = {u € Py™ : |T|, > r}. It is an affinoid domain of P;™ and
( |T|/T7Z VA 7
OXi112r,2) = Az{rT~1}, where

1y _ an . -n _
Az{rT™"} = {Z Tn - 0n € AZ’nEIJIrloo |an|p,r™" = 0}
n=0
and it is endowed with the norm |} -, anT"| |7y z = maxy>0 |an |y, 77"
3) Set Xip—py = {u € PL™ . |T|, = r}. It is an affinoid domain of PL™ and
( |T|=r,Z z Z
OXi1)=rz) = Az {r=IT,rT~1}, where

-1 -1 n . 3 n _
Ag{r—T,vT"} = {n%:zanT tap € AZ’TLEI:EOO lan|p,r" =0}
and it is endowed with the norm |}, anT"| /7=y 7z := MaXpez |anlp, "
By Corollary 4.1.24, there exists a connected affinoid neighborhood Z7 of  in S such
that for any connected affinoid neighborhood Z C Zr of z, the affinoids X|p|<,, 7, X757z

and Xr|— 7 are connected (and hence integral). For the rest of this subsection, we suppose
Z C Zp.

LEMMA 4.2.2. The norms |- |iri<r,z> | * |[7|2r2 | * l|11=r,z defined above are equal to the
spectral norms on Az{r— T}, Az{rT='}, Az{r='T,rT~'}, respectively.
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PROOF. By Theorem 1.1.38, for any affinoid space X, its associated spectral norm px
has the property that |f|,, = max,cx |f|, for all f € O(X).

Let f = > ,50anT™" be any element of Az{r='T}. Let p|T|<r,z denote the spectral
norm on the integral affinoid space X|r|<, z. We will show that |f|ir<rz = |flpz <, - BY

the remark in the paragraph above, |f‘p\T\<rZ = MaXye Xy <,z |flu. For any y € Z, the
1,an

Hy) |T|, < r}, whose Shilov boundary is the
singleton {7¢ .} (i.e. the point 7o, € IP;{?;)) Consequently, in the fiber of X7\, 7 over y,

fiber of X|p|<, 7 over y is the disc {u € P

the function f attains its maximum on the point 7 ., implying ‘f|p\T|<r , = MaXycy \f|ng

(see also Lemma 4.2.24).
Since [flyy =135 anT"|,p = maxn>o|an|yr™, we obtain that

— n
|f’P\T\<r,Z - gleazxrﬁgéc ‘an’yr '

At the same time, |f||r|<rz = max,>o |anlp, " = max,>o maxyez |an ", implying the
equality of the statement.
The result is proven in the same way for the norms | - 7>,z and | - ||7=, 7 O

COROLLARY 4.2.3. Let Z1 C Z be a connected affinoid neighborhood of x. The re-
striction morphism O(X|pjsar,z) — O(X|1jpar,2,) 18 @ contraction with respect to the cor-
responding norms | - |irjsar,z and | - [|1jsar, 2, }NE {<, =, 2}

LEMMA 4.2.4. The restriction maps Az{r T}, Az{rT~'} — Az{r T, 7T~} are
isometries with respect to the corresponding norms | - [ir\<p,z, | * |[7|zr.z, and | - |7 2-

PrROOF. Let f = } - ,a, 1" € Az{r 'T}. Then, |f| =z = maxy |ap|,, " =
| fli7)<r.z- The same is true for A{rT~'}. O

Since Hl(X\TKT,Z U Xi75r,2,0) = Hl(P;an,O) = 0, we have the following exact
sequence:
0 Az = Az{r 'TYy® Az {rT'} = Az{r 'T,7T7'} — 0,
which gives us a surjective morphism Az{r T} @ Az{rT~'} - Az{r=1T,rT~1}. Ad-
missibility follows from Banach’s Open Mapping Theorem if k is non-trivially valued (for
a proof see [14]), and by a change of basis followed by the Open Mapping Theorem if it
is (see Proposition 1.3.8).

LEMMA 4.2.5. For anyc € Az{r T, rT~}, there evista € Az{r—1T},b € Az{rT1}
such that a +b = c and |c||p|=,z = max(|alir|<r,z, [0lj7)2r,2)-

PROOF. Let ¢ = Y, ,a,T" € Az{r 'T,rT'}. Set a = YonsoanT™ and b =
SncoanI™. Clearly, a € Az{rT™'},b € Az{r 'T} and a + b = c. Furthermore,
|a]|T|<r7Z = Maxp>o |an|p,r" < Maxpez |anlp, ™ = |c||T‘:r7Z, and the same is true for
b. Consequently, max(|a|ir|<, z, [bli7j=r) < |c|ir|=r,z- At the same time, [c|j=,z <
max(|alir|=r,z; [bl|7|=r,z) and by Lemma 4.2.4, this is equal to max(|alir|<y z, [bl|7]>r,2)-

REMARK 4.2.6. All of the results of this subsection remain true if we replace T by
T — «for any v € Ag.
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4.2.2. The general case. Let P(T) be a unitary polynomial over O, irreducible
over H(z), and of degree bigger than 1. Then, there exists an affinoid neighborhood Z’
of z such that P(T) € O(Z')[T]. The connected affinoid neighbrohood Z of z in this
subsection will always be assumed to satisfy Z C Z’' N Z.

NOTATION 4.2.7. Let r € Rxo\v/[H(2)*|. Set X|pj<p,z = {u € Pgan . |Pl, < 7}
Xipsrz = {u € Py : |Ply, > r} and Xjp—r.z = {u € P;™ : |P|, = r}. These
are affinoid domains of P;aﬂ (furthermore, X|p|<, 7 and X|p—, 7 are affinoid domains of

Agan). By Corollary 4.1.24, there exists an affinoid neighborhood Zp of x such that for any
connected affinoid neighborhood Z C Zp, X |p|<;,z, X|p|>r,z and X|p|—, 7 are connected
(hence integral). For the rest of this subsection, we assume that Z C Z' N Zr N Zp.

The rings O(X|p|<;,7z) and O(X|p|—, z) have been studied extensively and under more
general conditions by Poineau in [59, Chapter 5|. Restricted to our setting, the following
is shown:

LEMMA 4.2.8. Let Z be a connected affinoid neighborhood of x, such that Z C Z' N
ZpNZp. Then, O(X|pj<r,z) = O(Xr)<r,2)[X]/(P(X) = T) = Az{r ' T}X]/(P(X) - T),
and O(Xp|=r.z) = O(X|7)=,2)[Y]/(P(Y) = T) = Az{r 'T,rT~'}[Y]/(P(Y) - T).

PROOF. The statement can be seen by considering the finite morphism P;an — P;an
induced by Az[T] — Az[T]|,T — P(T). O

LEMMA 4.2.9. Let jp denote the restriction morphism O(X|pi<;z) = O(X|pj=yz)-
Then, the following diagram commutes and jp(X) =Y.

Az{r ' TYX]/(P(X) = T) 22 Az {r'T,r T }[Y]/(P(Y) - T)

I | I

Az{r~T} & Az {r=1T, 771}

Taking this into account, we will from now on write Az{r 'T}[X]/(P(X) — T) and
Az{r YT, »T1}[X]/(P(X) —T) (i.e. using the same variable X).

PRrOOF. This follows again from the work of Poineau in [59, Chapter 5]. Remark that
the finite morphism Az[T| — Az[T],T — P(T), induces a finite morphism ¢ : X|p|<,. 7 —
X\|7|<r,z and gofl(Xm:r,Z) = X|p|=r,z- The vertical maps of the diagram above are
induced by ¢, which implies its commutativity. Remark that jp(T) =T. Also, since
¢ (Xi71=r.2) = X|P|=r.z, we have that O(X|p|=.z) = O(X|p|<r.2) @0 (x,1c,) O X|T|=r.2)-
The restriction morphism jp is given by f +— f ® 1, implying jp(X) =Y. O

Recall that O(X|p|<;,z), O(X|p|>r,z), and O(X|p|—, z) are affinoid algebras, meaning
they are naturally endowed with submultiplicative norms |- |<,|-|> and |- |=, respectively.
(These norms are uniquely determined only up to equivalence.) We start by giving an
explicit choice for |- |< and |- |=.

The morphism Az[T] — Az[T],T ~— P(T) induces a finite morphism ¢z : PL* —
Pgan, for which cpgl(X|T‘,><]Tyz) = X|plsar,z, Where € {<, =, >}. In particular, this gives
rise to a finite morphism X|pjuq, 7 — X|7)sar,z, hence to a finite morphism O(X |7y, z) —
O(X|ppar,z)- The latter gives rise to a surjective morphism 11 : O(X|pjsp,2)" = O(X|pjsar, 2)
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for some n € N. Let |- |, denote the norm (determined up to equivalence) on O(X|pjsqr,7)
obtained by 1, 7.e. making 1 admissible.

PROPOSITION 4.2.10. The norms | - | and | - |, are equivalent, e {<, =, >}.

PRrROOF. By Lemma 1.3.7, there exists a complete non-trivially valued field extension K
of k such that O(X|T|l>4r,Z)®kK = O(X|T|I>QT,ZK) and O(X|P|I>QT‘,Z)®’€K =: O(X|T|I><IT,ZK)
are strict K-affinoid algebras, where Zx := Z x; K. Moreover, we have the following
commutative diagram

Tes P(T)
O(X 7, 2) QasaLy O(X | plpar,z)

T P(T)
OXi1sar,zic) — O(X|pjsar, 21 )
which gives rise to the following commutative diagram, where 1), is a surjective admissible
morphism induced by 1)1:

OX\1par,z) — O(X|1)par,2)" —h, O(X)plpar,z)

n ¥
O(X|T|D4T,ZK) B— O(X|T|l>4r,ZK) — O(X|P|D<1T,ZK>

Let | - |y, be the norm (determined up to equivalence) on O(X|p|wy, z, ) induced by the
morphism 2. Then, O(X|pjser, 7, ) is a Banach K-algebra with respect to | - [y, .

Since O(| X |i7par,z) = O(X|Tppar, 2, ) is an isometry (see [60, Lemme 3.1]), the diagram
above implies that (O(|X|pjsar,2); | - [t) = (O(X|ppsar, 2 )5 | - |4, is also an isometry.

Let | - |,k denote the norm that the K-affinoid algebra O(X|p|sq,z, ) is naturally
endowed with. Then, (O(|X|ipparz):| - ) < (O(X|Psar,zi )5 | - i) is an isometry
(again, see [60, Lemme 3.1]).

Since O(X|pjpar,z, ) 18 a strict K-affinoid algebra, by [11, 6.1.3/2], there is a unique
way to define the structure of a Banach K-algebra on it. Hence, |- |y, is equivalent to
| - |1, 80 the morms | - [L, resp. |- [, they induce on O(X|pjy,z), are equivalent. O

NOTATION 4.2.11. Set d = deg P. Since P(X) is unitary, any f € Az{r T} X]/(P(X)—
T) (resp. f € Az{r 'T,rT~'}[X]/(P(X) — T)) has a unique representation of the form
E?:_OI a; X' where o € Az{r T} (vesp. oy € Az{r 'T,vT~'}) foralli=0,1,...,d— 1.

Set |f|\P\<r,z = maxi(’ai“ﬂgr,z) (resp. |f’|P|:r,Z = HlaXi(|0<i|\T\:r,Z))- By Proposi-
tion 4.2.10, we can take |- |< = | - ||p|<z and |- |= = | - [|p|=rz- (This kind of norm is
called || - [|yaiv in [59, 5.2]; here U is X|r|<yz or X|p—, 2.)

Let us now find a good representative for O(X|p|>, z) and its norm. In what follows,
we identify the k-affinoid algebras O(X|p|<,z) and O(X|p|>,z) with Az-subalgebras of

O(X|p|=r,z) via the respective restriction morphisms. As before, since H ! (P;an, 0) =0,
we have the following short exact sequence:

0= Az = O(X|pi<r,2) ® O(X|p|2rz) = O(X|p=r2z) — 0. (4)
Let f € O(Xpj=yz) = Az{r 'T,rT~'}[X]/(P(X) — T). Suppose its unique rep-
resentative of degree < d in X is fo = E‘Z-i:_ol Y onez an T X", where Y onez Gnidl™ €
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Az{r=YT,vT~1} for all i. Then, we can write the following decomposition for fy:

d—1 d—1
fo=aoo + (Z anoT™ + Z Z amiTnXi) i (Z Z am-Tan) .
n>1 i=1 n=>0 =0 n<—1
af 8
Remark that ay € Az{r'T}X]/(P(X)-T).

PROPOSITION 4.2.12. The Az-subalgebra O(X|p|>r,z) of O(X|p|=yz) is equal to

d—1
B:= {f € Az{r ' T T }[X]/(P(X)=T): f=aoo+ > Y %X} :
i=0 n>1
PROOF. Let us first show that B is closed with respect to multiplication. Let f = ag o+
Z?:_ol n>1 X' g =bop + Zf:_ol D ons1 %Xi € B. For any m such that d < m < 2d,
the coefficient corresponding to X" in the product fg is of the form Zn22 C;i—;" where
cnm € Agz for all n,m. By using Euclidian division, since P(X) is unitary, we obtain
X™ = P(X)Q(X) + R(X) where Q,R € Az[X], degR < d and deg@ = m —d < d.
Hence, 37, oo “F X™ = 32,20 T P(X)Q(X) + X000 FR(X) = 3,0 FQX) +
> onso FR(X) in Az{r=IT, rT=1}[X]/(P(X) — T), which is an element of B seeing as
deg @), deg R < d. Consequently, fg € B, and B is an Az-algebra.
Let us consider the restriction morphism ¢ : Az = O(Pgan) — O(X|p|zr, Z), a section
of which is given as follows: for any f € O(X|p|>,, Z), let f denote the restriction of f
to the Zariski closed subset Z := {z € X|p|>, 7 : |T~1|, = 0}. Remark that in the copy of
AL™ in PL™ with coordinate T, Z = {u € Ay™ : [T, = 0}, s0 O(Z) = Ay.
The morphism s : O(X|pj>r, Z) = Az, f = foo, is a section of 9. Let O(X|p|>r z)o
denote the kernel of s. Then, O(X|p|>yz) = Az © O(X|pzr, Z)oo-
Let us consider the following commutative diagram that is obtained from the short
exact sequence 4 above.

O(X\p|<r,z) ® O(X|p>r 2)

O(X\p|<r,z) ® O(X|p2r,z)0 h O(X\p|=r,z)

Let f € O(X|p|=r z)- By the surjectivity of 2" (from the short exact sequence 4) there
exist fi € O(X|p|<r,z) and fo € O(X|p|>,,z) such that fi + fo = f. Let f5 € Az and
f3 € O(X|p|>r,z)00 be such that fo = f5 + f) (as we saw above, such f3, f3’ are unique).
Set fi := fi1+ f5 and remark that f; € O(X|p|<y z)- By the commutativity of the diagram,
h(f1, f3) = f, i.e. his surjective. Let us also show it is injective. Suppose h(a,b) = 0 for
some a € O(X|pj<rz) and b € O(X|p|>y,z)o0 € O(X|p|zr,z). Then, a + b = h"(a,b) = 0,
and the exact sequence 4 implies that a = —b € Az. Since b € Az and b € O(X|p|>y z) o>
we obtain that b = 0 and @ = 0, i.e. h is injective.

By Lemma 4.2.9, the map s’ : O(X|p=.,z) — O(X|p|<rz), Which to an element
fo = Z?:_ol > nez dni I X" associates the element f> := Zf;ol > et AT X, is a
section of the isomorphism O(X|pj<r,z) ® O(X|p|>rz)e — O(X|p|=r,z). Consequently,

OXpjzrz)00 = {f € O(X\pj=r,z) : f = Z?;& Y onc—1 anJTnXi} .
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Finally, since O(X|p|>yz) = Az © O(X|p|r,z) 00, We get:

i1 o
OX|pjzrz) = {f € Az{r 'T,vT~"}X]/(P(X) = T): f = aop + ZZ %XZ} :

=0 n>1

O

REMARK 4.2.13. Let I be the ideal of Az{rT~1} generated by T~!. Denote by I[X]?"*
the polynomials on X with coefficients in I and degree at most d — 1. Then, the k-affinoid
algebra B can be written as (A7 @ I[X]?1)/(P(X)T~! —1), where multiplication is done
using Euclidian division, just like in B.

NOTATION 4.2.14. The morphism Az{rT~'} — B, T~! — 1 is finite (it is the one
induced by Az[T] — Az[T],T — P(T)), and 1,X,..., X9 ! is a set of generators of

B as an Az-module. Let |- [|p>,z be the norm on B induced by the norm | - |71, 2

on Az{rT~'}. By Theorem 1.3.9, B is complete with respect to this norm. As before,

by Proposition 4.2.10, we can take |- |> := |- |/p|>yz. Explicitely, for any f := ago +
d—1 n,i 3 d—1 3

D20 Dn>1 FEX =30 i X' € B, |fl|p|zrz = max; il 7)<, 2-

LEMMA 4.2.15. The restriction maps from Az{r 'T}[X]/(P(X) — T) and B to
Az{r YT, vT1}[X]/(P(X) — T) are isometries with respect to the corresponding norms

| - \\P|<r,z7 |- \\P\>r,z and | - ’|P|=T,Z~

PRrOOF. Let f = Z?:_ol > ns0 T X" € Az{r~'T}[X]/(P(X)—T). Then, by Lemma 4.2.4,
|f||P|:7~7Z = max; \ 2@0 an,iT”“T':hZ = max; | 2@0 a”’iTnhTKnZ = |f||P|<r,Z- The
statement for B is proven in the same way. O

The exact sequence 4 above gives rise to a surjection Az{r 'T}[X]/(P(X)—T)® B —»
Az{r T, rT71}[X]/(P(X) — T). Admissibility follows from Banach’s Open Mapping
Theorem if k is non-trivially valued (for a proof see [14]), and by a change of basis
followed by the Open Mapping Theorem if it is (see Proposition 1.3.8).

LEMMA 4.2.16. For any ¢ € Az{r 'T,vT1}[X]/(P(X) — T), there exist a €
Az{r 'T}X]/(P(X)—=T) and b € B such that a+b = ¢ and max(|a| p|<, z, [b||p>r,2) =
lclipl=r,z-

PROOF. There exists a unique degree < d polynomial co(X) over Az{r='T,rT1}
such that ¢ = cg in Az{r 1T, 7T~} [X]/(P(X) —T). Let co = Z?:_ol > ez ani T X" Let
a and b be given as follows:

o = (SZ%T“X> + (di > amT”Xi) :

1=0 n>0 1=0 n<—1

a b

Clearly, a € Az{r 1T}[X]/(P(X) —T) and b € B.
Then,
|a||P|<r,Z = max | nzx)an,iTﬂTgnz = max I;leai%( |an,ilpy ™

< maxma o 1" = [elpior.z

and the same is true for |b||p|>, z. Consequently, max(|al|p|<y z, [bl|pj=r.z) < |c||p|=r,z-
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On the other hand, ¢ = a + b, so |c||p|=rz < max(|a||p=z,|0|p|=rz), Which, by
Lemma 4.2.15, is the same as max(|al|p|<r.z; [b]|p>r,7)-
O

Let Z1 C Z be a connected affinoid neighborhood of .

LEMMA 4.2.17. The restriction morphism O(X|p=yz) — O(X|p|=yz,) is a contrac-
tion with respect to the corresponding norms | - |\pj=pz and |- ||p|=r 7,

PROOF. Let the restriction morphism O(X|p|—z) < O(X|p|=rz,) be denoted by
jp1. Similarly to Lemma 4.2.9, the following diagram is commutative and jp;(X) =Y
(remark that jr.(T) = T,jTJ(T*l) = T~ !, and the restriction of Jjr1 to Az is the
restriction morphism Az — Az, ).

Jjp1

Az{r T T Y (X]/(P(X) = T) 25 Ay (r 1T T} Y]/(P(Y) - T)

| | l

Az{r’lT, rT’l} ki AZl{rflT, rT’l}

Let f = 300 Y enaniT" X' € O(Xpj=pz) = Az{r7'T,rT~}X]/(P(X) - T).
Then, |f|pj=rz = max;maxy an;|,, r". Since Az and Az, are equipped with their re-
spective spectral norms, |an,il,, < |n,ilpy, implying | f]|pj=, 7z, < max; max, |anil,,r" =
| flip|=r.z- O

REMARK 4.2.18. By applying the above to the case when S is a point (i.e. if everything
is defined over a complete ultrametric field), it makes sense to speak of the affinoid domains
X plsar,z Of IP;{’?;), and their norms | - ||pjugr s, for e {<, =, >}, which satisfy all of the
properties we have proven so far.

Furthermore, if P is a unitary polynomial of degree d over Ay that is irreducible
over H(x), then there exists a “restriction morphism” (O(X|pparz):| - ||Pjsar,z) —
(O(X|plpar,z)s ||| Plsar,z) o1 the fiber (corresponding to base change), which is a contraction.
To see this, let f = Z?:_ol Y onez an; T"X" € O(X|ppar,z) (with certain a,; possibly 0 de-
pending on what > is). Then, |f| pjsy, = max; maxy, |a, 7" < max; maxy, [a, i|,, " =
|f||P|l><r,Z‘

4.2.3. The explicit norm comparison. The following is mainly a special case of
[59, 5.2] (or a rather direct consequence thereof), which we summarize here with an
emphasis on the results that interest us.

Let P be a unitary polynomial of degree d > 1 over O, that is irreducible over H(z).
Also, let r € Roo\/|H(z)*]|. As before, let Z be any connected affinoid neighborhood of x
contained in Z' N Zr N Zp.

For t € {z,Z} (we understand here that ¢ can be = or any connected affinoid neigh-
borhood of = with the property we just mentioned), let (Ry, |- |.+) be (Az{r T, rT~1},]
\rj=rz) if t = Z and (H(z){r 'T,rT'},| - |/7|= ) otherwise. Remark that (Ry, |- |.¢)
is an affinoid algebra over Az if t = Z and over H(x) if ¢ = x. As mentioned in Remark
4.2.18, there is a contraction Ry < R, induced from the restriction Ay — O, — H(x).

For any s € Ry, let | - |5 denote the norm on R[X] induced from the R;-affinoid
algebra R;{s ' X}. Let |- |tsres denote the residue norm on R:[X]/(P(X) — T) induced
by ‘ . ’t,s-
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LEMMA 4.2.19. For any t € {x,Z}, there exists v; > 0, such that for any s > vy, the
norm | - |y s res 15 equivalent to | - ||pj=ps. Eplicitely, for any f € Ry[X]/(P(X) —T),

|f|t,s,res < ’f“P\:r,t < Ct 1£1<aj{_1(5_i)|f|t,s,resa

where C; = max(2, 2v,9).
Fiz a connected affinoid neighborhood Zy C Z' N\ Zy N Zp of x. There exist v',C" > 0
such that the statement is true for any s > v' and any t € {x,Z : Z C Zy}.

PROOF. For the first part of the statement, see [59, Lemme 5.2.3]. The norm | |¢ s res
is the analogue of what in loc.cit. is denoted by | - |ywres (here U is X|p—,, and s = w).

To see the last part of the statement, let us describe v] explicitely. Let av, ..., aq—1 € Az
be the coefficients of P, and fy, ..., S4—1 € Az[T] C Rz the coefficients of P(X) — T (i.e.
Bo=aog—T,5; =a; for 1 <i<d—1). By the proof of Théoreme 5.2.1 of [59], we only
require that v; > 0 satisfy Zf-l;ol |Bilrevy < 5. Set v/ = vy, . Then, Z?;()l |Bilr, 20" < 3.
By Lemma 4.2.17 and Remark 4.2.18, [B;|r+ < |Bilr,z, for any t € {z,Z : Z C Zy}, so

d—1 d—1
D 1Bilrat <Y |Bilrzev" <
=0 =0

Set C" = max(2,2v'~%). The statement is true with this choice of v' and C’. O

N |

THEOREM 4.2.20. Let Zy be as in the previous lemma. There exist m,s,C’ > 0 such
that for any t € {x,Z : Z C Zp} and any [ € Ry X]/(P(X) —T):
A d2(28)d27d
/ —1
Floprene < flipre < O max (7 20—

where p\p|—y; is the spectral norm on Ry[X]/(P(X) —T) = O(X|p|=ps)-

|f|p|P|:r,t7

PRrOOF. The first inequality is immediate from the definition of the spectral norm.

By the previous lemma, there exist v’ > 0 and C’ > 0 such that for any s > v’ and any
tel{e,Z: 2 C 2o}, |- ||pj=ry < C’ maxicicd—1(57%)| - |t.s.res- Thus, it suffices to compare
the norm | - |¢ s res to the spectral one. For a fixed ¢, this is done in [59, Proposition 5.2.7]
as follows.

Let Res(+,-) denote the resultant of two polynomials (we assume the ambient ring
is unambiguously determined). Let us show that Res(P(X) — T, P'(X)) # 0 in Ag,[T].
Otherwise, the polynomials P(X)—T and P’(X) would have a common divisor of positive
degree, i.e. there would exist Q, R, Ry € Ay, [T][X], with degx@ > 0 such that P(X)—-T =
Q(X,T)R(X,T) and P'(X) = Q(T, X)R1(T, X). The second expression implies that the
degree in T of @ and R; is 0, meaning Q, Ry € Az, [X]. Consequently, P(X) — T =
Q(X)R(X,T), which is impossible if degy @ > 0. Finally, this means that Res(P(X) —
T,P'(X)) # 0 in Ag[T]. As the resultant doesn’t depend on the ring in which it is
computed, Res(P(X) — T, P'(X)) # 0 in Ry, so |Res(P(X) — T, P'(X))l|r+ # 0 for any ¢.

Let ag, B1, ..., Bi—1 € Az, be the coefficients of P(X), and By := a9 — T, 1, ..., Bd—1 €

1

Az, [T] C Ry, the coefficients of P(X)—T. Set vy := maxi<i<q—1(|5i f) Set v; = max(v', vy).
Let m¢ > 0 be such that |[Res(P(X) — T, P'(X))|,+ > m; (such an m; exists by the para-
graph above).
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Let s > v;. Then, for any f € R[X]/(P(X) —T) (see [59, Proposition 5.2.7]):

d2(2s)—d
|f|t,s,res X #

‘f|p\P\ =rt"’

By Lemma 4.2.17 and Remark 4.2.18, for any t € {x,Z : Z C Zo}, v/ < vy, Set
v = max(v', vy ), so that for any ¢, v; < v.
Set m = m,. Note that for any ¢,

0<m<|Res(P(X)—T,P(X))|roe < |Res(P(X) — T, P(X))]p.s.
Consequently, for any ¢t € {z,Z : Z C Zy} and any s > v

d2(28)d —d
— o

From Lemma 4.2.19, |f]|pj=p+ < < C'maxycicd—1(8~ )|f|t sres for all ¢, so finally

‘f|t,s,7"es X

L 2(2s)"
’f“P| Tt\C 1<m<a:ixl(s )7|f|p|p| )
for all f € R[X]/(P(X)—T)and allt € {z,Z: Z C Zy}. O

REMARK 4.2.21. The previous theorem gives an explicit comparison between the norms
| - l|p|=rt and pjp|=r; With a constant that is valid for all t € {z,Z : Z C Zp}. By
Lemma 4.2.2, in the case of degree one polynomials, this constant is simply 1.

_ / , —iy a2t o
Set C' = max | 1,C" max;<j<qg—1(s7")—= . We have shown the following;:

COROLLARY 4.2.22. Let P(T') be a unitary polynomial in O[T irreducible over H(x)

and r € Rso\\/|H(x)*|. There exists a connected affinoid neighborhood Zy of x in S such
that for any t € {x,Z : Z C Zy is a connected affinoid neighborhood of =},

" ’ﬂ\P\:M X ’ ‘|P\ =rt C’ ‘P\P\

REMARK 4.2.23. From now on, whenever we consider spaces of the form Xpjq. s,
t € {x,Z}, =e {<,=, >}, we will always assume its corresponding affinoid algebra to be
endowed with the norm | - ||pj; defined in Notation 4.2.11, resp. Notation 4.2.14.

4.2.4. A useful proposition. Recall the notion of complete residue field of a point
(Definition 1.1.33, Lemma 1.4.22). We will need the following;:

LEMMA 4.2.24. Let Y1 = M(A) be a k-affinoid space. Let Yo = M(B) be a relative
affinoid space over Y1 and ¢ : Yo — Y1 the corresponding morphism. Let y € Y1 and
set Fy = ¢~ 1(y), which we identify with the H(y)-analytic space M(B&4H(y)). For any
z € Fy, Hpqp)(2) = HE,(2), where Hy(z) is the completed residue field of z when regarded
as a point of N, N € {M(B), Fy}.

PrOOF. Considering the bounded embedding H(y) — H(p)(2), we have the follow-
ing commutative diagram where all the maps are bounded:
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Hap) (2)

—

B = B®4H(y)
x

Hr,(2)

The proof is based on the identification of F, to M(B®aH(x)). Remark that the map o
induces on B® AH(y) the semi-norm determined by z, implying there is a bounded em-
bedding Hr,(z) < Haqp)(2) on the diagram above. Similarly, since the map 3 induces
on B the semi-norm determined by 2, we obtain that Hp, (2) = Haqp)(2)- O

COROLLARY 4.2.25. With the same notation as in Lemma 4.2.24 and with Yo integral,
if Oy, OF, . are fields and z is a smooth point of Ya, then Oy, . is a field.

PRroor. Suppose that Oy, . is not a field. Then, its maximal ideal is non-zero, meaning
there exists a non-zero f € Oy, . such that f(z) = 0in H(z). As we saw in Lemma 4.2.24,
this field is the same regardless of which ambient space we consider z in. In particular, this
means that the image f, of f in OF, . satisfies f,(z) = 0 in H(2). Since OF, . was assumed
to be a field, this means that f, = 0 in OF, . so there exists a neighborhood of z in F,
where f = 0. By [18, Proposition 6.3.1], which is where the smoothness assumption is
needed, this means that there exists a neighborhood of z in Y3 on which |f| = 0, implying
f =0, which is in contradiction with the assumptions we made. Consequently, Oy, . is a

field. O

Applied to our setting, this means that for any type 3 point 1 of P;_ﬁ;), the stalk
OHDLan . is a field. We aim to show the same for the stalks O X pler.z/" The corollary above
s o =

does not apply, since the smoothness condition is no longer satisfied.

REMARK 4.2.26. Recall Notation 4.1.5. Let P be a unitaty polynomial in O.[T] irre-

ducible over H(x), and r € Rso\\/|H(z)*|. Let n :=np, € IP’;&?E). As seen in Lemma 4.2.8

(cf. also Remark 4.2.18), H(x){r~'T,rT~'}[X]/(P(X) —T) is isomorphic to (’)PL?U ({n})-
H(x)
By Lemma 3.1.1, Opran ({n}) = H(n). By Proposition 4.2.10 (see also Remark 4.2.18),
H(z)
| - ||p|=r,» s equivalent to the norm |- |, on H(n).

Following Notation 4.2.7, let Zy C Z' N Z7 N Zp be a connected affinoid neighborhood
of z.

Let us consider the following commutative diagram for any connected affinoid neigh-
borhood Z C Zj of x:

Ay {r=1T,p7~1} ey A L1 v 71} X]/(P(X) = T)
(5) |Bazua |8z
H(z){r= 1T, rT=1} 2 2 () {r=1T, v T} Y]/ (P(Y) = T)
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The horizontal arrows are induced by the finite morphism 7" — P(T"). The vertical arrows
correspond to taking the restriction of analytic functions on Xr|—, 7, resp. X|p|—, 7, to
the fiber F,. In particular, remark that X — Y, so we will use the same variable X.

We start by showing an auxiliary result.

LEMMA 4.2.27. The family {X|pj=z : Z C Zo} (where Z is always considered to be a
connected affinoid neighborhood of x) forms a basis of neighborhoods of n in X|p|—. z,-

PROOF. Let U be an open neighborhood of n in X|p|—, z,. There exists a connected
affinoid neighborhood Z C Zj of z such that X|p—.z C U. To see this, remark that
X|p|=r,z,\U is a compact subset of IP’Z?H, 80 m(X|p|=r,z, \U) is a compact subset of Zy. Fur-
thermore, x ¢ 7(X|p|—,z, \U), so there exists a connected affinoid neighborhood Z C Z, of
a such that ZNw(X|p|=y, z,\U) = 0. Consequently, X|p|—, z\U = 7~ H(Z)N(X|p|=r 2,\U) =
0, so X|p|=rz C U. O

PROPOSITION 4.2.28. The local ring OX|P|=7‘,Z()’77 s a field.

PROOF. Suppose that O X\ pler, 271 is not a field. Then, its maximal ideal is non-zero,
so there exists f € Ox,_, , » such that f # 0 and f(n) = 0in H(n) (i.e. [fl; = 0).
By Lemma 4.2.27, there exists a connected affinoid neighborhood Z C Zj of x such that
fe O(X|P|:7‘,Z)'

By Lemma 4.2.24, evaluating f € O(X|p—,z) at the point n € O(X|p|—, z) is the
same as evaluating the restriction of f to the fiber (see the vertical map on the right of
the diagram 5 above) at the point 7 on the fiber. Consequently, since the norm | - |,
is equivalent to | - ||p|=, (see Proposition 4.2.10 and Remark 4.2.18), we obtain that
|f||P|:T‘,CC =0.

Let f = Zgl;ol Y nez an,iT”Xi € O(X|p|:7.’z). Then, |f\|p|:m€ = max; Mmaxy |ani|,r".
If |f||p|=r, = 0, this implies that for any n and any 4, |ay, |, = 0, and since O, is a field,
we obtain a,; = 0 in Az. Consequently, f =0 over X p—, 7.

By Lemma 4.2.27, this means that f = 0 in OX\P\:r,ZOJI’ contradiction. Hence, the
local ring Ox_, , . Is a field. U

4.3. Patching on the Relative Projective Line

The goal of this section is to prove a relative analogue of Proposition 3.2.3. As before,
let k£ be a complete ultrametric field.

4.3.1. A few preliminary results. Recall Notation 4.1.5.

REMARK 4.3.1. By Theorem 1.7.8, for any integral k-affinoid space Z, ///(}P’Zan) =
AM(Z)(T).

LEMMA 4.3.2. Let X be an integral k-affinoid space with corresponding affinoid alge-
bra Rx. Set Fx = M (X). Let z € X be such that O, is a field.

The function | - |py = max(| - |y : y € T'(X) U{z}) defines a submultiplicative norm
on Fx which when restricted to Rx gives the spectral norm px.

Let X' be an integral k-affinoid space such that X is a rational domain of X'. Set
Fxr = #(X'"). The field Fx: is dense in (Fx,| - |ry).

PRrROOF. Remark that z (since O, is a field) and all y € I'(X) (because of Lemma 1.4.31)
determine multiplicative norms on Ry, and hence also on Fx.
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As a consequence, | - |p, is well-defined. That it is a submultiplicative norm on Fx
extending py follows from the fact that |-|,, = max(|-|, :y € I'(X)). Since X is reduced,
px is equivalent to the norm on the affinoid algebra Rx (Proposition 1.3.15).

By Lemma 1.4.16, for Sx := {g € O(X') : |g|, # 0 for all z € X}, the set S O(X’) is
dense in O(X) = Ry. As Sx € O(X")\{0}, by Lemma 1.7.6, Sx'O(X') C .#(X') = Fx,
so Rx N Fx: C Fx is a dense subset of Rx.

Let f = & € Fx, where u,v € Rx. Then, by the above, u,v can be approximated
by some ug,vg € Rx N Fx. We will show that Z—g approximates ¥ in Flx, implying (since
%8 € Fx/) that Fx/ is dense in Fly.

Since both |u — g,y and |v —vg|,, may be assumed to be arbitrarily small, we may
suppose that |ul, = |ug|y and |vgly = |v], for all y € I'(X) U {z}. Then, |1|p, = |%|Fx'
sE = luvo — ugv|Ry - \%%X — 0 when up — v and
vg — v in Rx. (]

Finally, [f — 3]y < [uvo — uov|py - =12

The following is an example of Setting 2.1.5 which we will be working with.

PROPOSITION 4.3.3. Let U,V be connected affinoid domains of IP’;E?;) containing only

type 3 points in their boundaries such that U NV is a single type 3 point {n}. Let Z be
a connected affinoid neighborhood of x in S such that there exist Z-thickenings Uz, Vz
of U, V, respectively. Assume that Z is such that the statement of Proposition 4.1.16 is
satisfied. Then, the conditions of Setting 2.1.5 are satisfied for: F = #(Z)(T), Ry :=
OUzNVyz), R = A1 :=0(Uyz),Ry = Ay := O(Vy), and F; := Frac R;,i =0,1,2.

PrOOF. The field F is clearly infinite and embeds in both F} and Fb. Also, the rings
R;, i = 0,1,2, are integral domains containing k& and endowed with a non-Archimedean
submultiplicative norm that extends that of k and is k-linear. The morphisms R; — Ry,
7 = 1,2, are bounded seeing as they are restriction morphisms.

Remark that regardless of whether Uy U Vz is an affinoid domain or all of P;an,
H'(UzUVyz,0) = 0. Consequently, as usual, there exists a surjective admissible morphism
R1 ® Ry — Ry. O

NoTATION 4.3.4. In addition to Notation 4.1.5, let G be a rational linear algebraic
group defined over O, (T'). Let H/O4(T) be a variety on which G acts strongly transitively
(Definition 3.2.1).

Seeing as O(T) = lim A (Z)(T), where the direct limit is taken with respect to
connected affinoid neighborhoods of x, there exists such a Zg for which G is a rational
linear algebraic group defined over .#(Zg)(T). The same remains true for any connected
affinoid neighborhood Z C Zg of z.

4.3.2. Patching over P, We now have all the necessary elements to show that
patching is possible over P;an for a well-enough chosen affinoid neighborhood Z of = (both
in the sense of Chapter 2 and of Proposition 3.2.2).

For the rest of this section, we assume that k is a complete non-trivially valued ultra-
metric field. Recall Notation 4.1.5.

REMARK 4.3.5. In order for the results of Section 4.2 to be applicable, from now on,
whenever taking a thickening of an affinoid domain with respect to a certain writing of
its boundary points (see Definition 4.1.14), we will always assume that the corresponding
polynomials were chosen to be unitary (since O, is a field, this can be done without causing
any restrictions to our general setting).
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1,an

SETTING 4.3.6. Let n be a type 3 point of P%(z)‘ There exists a unitary polynomial

P € O.[T] that is irreducible over H(x) and a real number r € R<\/|H(x)*| such that
n = np,. Let Zy be a connected affinoid neighborhood of z in S such that P € O(Zy)[T]
and the Zo-thickenings of {u € IP’;_&?;I) T ar}, {u e IP);_’[?;) D | Pl >}, e {<, >}, are
connected. Let Z C Zjy be any connected affinoid neighborhood of x.

As before, set X|rjpq, 7 := {u € Pgan DTy >}, and X plgrz 1= {u € P;am 2| Py >
T}a where e {<7 = 2} Set (RO,Za ’ ’ |R0,Z) = (O(X\P|:7’,Z)a | ) ||P|:7‘,Z)a (Rl,Zv | ’ |Rl,Z) =
(OX|pi<r2)s | 1p<r,z) and (Ra,z, |- |R, 2) = (O(X|p|>r.2), || P|>r,z) (see Remark 4.2.23).
Also, set F; 7 := Frac(Ro;),i=0,1,2, and F := .#(Z)(T).

Assume that Z is chosen so that all of the results of Section 4.2 are satisfied. Moreover,
assume Zg C Zg (see Notation 4.3.4).

Throughout this subsection, suppose we are in the situation of Setting 4.3.6.

PARAMETER 1. Since H! (]P’;an, O) = 0, there is an admissible surjection Ry z & Rs 7z — Ro z.
Furthermore, by Lemmas 4.2.5 and 4.2.16, for any ¢ € Ry z, there exist a € Ry 7z and
b € Ry 7 such that %max(|a]Rl’Z, 1blr, ,) < lclRry - Set d = %

As mentioned in Remark 2.1.8, since G is a rational linear algebraic group over F :=
A (Zy)(T), by definition there exists a Zariski open S’ of G which is isomorphic (via
a morphism ¢) to an open S” of some A%. If we denote by m the multiplication on
G, this leads to the following commutative diagram (which is defined over F'), where
S = m~1(S") N (S" x S') is an open of G x G, S” is an open of A?", the vertical maps are
isomorphisms, and f is the map induced from m:

_ Mg

S’ S’
(p x s0)|§,[ lgo

S S"

(6)

Furthermore, by translating if necessary, we may assume that the identity I of G is in
S" and that ¢(I) = 0. Then, 0 € S , and f is a rational morphism AZ' --» A% defined
over the open S”. In particular, this means that f = (f1,..., fn), where f; = Z—i for some
gi-hi € F[S1,..., 80,1, Tul(sy,....80,0, ) = F[ﬁg](ﬁl), i = 1,2,...,n. Remark

also that f(z,0) = f(0,x) = x whenever (0, ), (z,0) € S".
PARAMETER 2. Let us look at the diagram above over the field Fp z,. We may suppose
that gi, hi € Ro,z,[S,T] for all i. Since h;(0) # 0 and Ox,,_, , » is a field, [h;(0)], # 0.

Consequently, by Lemma 4.2.27, there exists a connected affinoid neighborhood Z; C Z

of x such that |h;(0)|u # 0 for all u € X|p|—,z,, - By Lemma 1.1.39, h;(0) € R , for all

i. This implies that h;(0) € R, for all connected affinoid neighborhoods Z C Z; of .
By Lemmas 2.1.2 and 2.1.?;, there exists M > 1 such that

fi=Si+Ti+ Y ¢ uS'T™€ RozlS,T),
[(l,m)[>2
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and |C§m|R0,zl < MG for all 4, and all (1, m) € N2 such that |(I,m)| > 2, where |(I,m)|
is the sum of the coordinates of (I,m).
By Lemma 4.2.17 (see also Corollary 4.2.3), for any connected affinoid neighborhood
Z C Zyofw, fi = St Tit X 1y 52 S T™ € Roz[[S, T), and |¢] R, , < 6] | Ro ,, < MIE™)]
for all i and all (I,m) € N?" such that |(I,m)| > 2,.

PARAMETER 3. Since S” is a Zariski open of AQF” and F' — H(n), we have that
57(7-[(77)) is a Zariski open of H(n)?". Since the topology induced by the norm on H(n)
is finer than the Zariski one and 0 € S” , there exists § > 0 such that the open disc
Dyy(y)2n (0, 6) in H(n)*" (with respect to the max-norm), centered at 0 and of radius &, is

contained in S”(#(n)) C S.
Then, for any connected affinoid neighborhood Z C Z; of «, the open disc D R2n, (0,0) in

R2", (with respect to the max-norm), centered at 0 and of radius 8, satisfies: Dp2n (0,8) C
) 0,Z

Diy(y2n(0,6) C S”. This is clear seeing as for any a € Ry z, lal, < |a\pX‘P‘7 , Slalrg

where px , _, , is the spectral norm on X p|—, 7.

Z
REMARK 4.3.7. Putting Parameters 1, 2, 3 together, let ¢ > 0 be such that

€ < min (ﬁ, z\dTi’ %‘5) Then, all of the conditions of Theorem 2.1.10 are satisfied for
Ry :=Ro.z,A1 = Ry z,A2 := Ry 7z, Fy = Frac Ry. where Z is any connected affinoid
neighborhood of x contained in Z;, with Z; as in Parameter 2.

PROPOSITION 4.3.8. Let g € G(Fo.z,) (with Zy as in Parameter 2). Suppose g € S’
(see diagram 6), and |p(g)|, < &, where C is the constant obtained in Corollary 4.2.22
corresponding to the polynomial P. Then, there exists a connected affinoid neighborhood
Z CZy ofx, and g; € G(Fj z),i = 1,2, such that g = g1 - g2 in G(Fp 7).

PROOF. Since ¢(g) € A%(Fo,z,) = I 7, there exist oy, 8; € Ry z, such that p(g) = (ai/Bi)i; .
Since f; # 0, by Proposition 4.2.28, |5;],, # 0. Thus, by Lemma 4.2.27, there exists a con-
nected affinoid neighborhood Z" C Z; of x such that |3;|, # 0 for all u € X|p|—, z, and
all i. By Lemma 1.1.39, §; € Rj ,, for all i. In particular, this means that ¢(g) € RG 4.
Remark that for any connected affinoid neighborhood Z C 7’ of z, ¢(g) € Ry 4

Since |¢(g)|l, < €/C, there exists a connected affinoid neighborhood Z C Z’ of z
such that [p(g)l. < €/C for all u € X|p|—,z. Consequently, [p(g) < ¢/C,

’pX|P\:r,Z

where PX|pj=rz 18 the spectral norm on X|p|—, 7. By Corollary 4.2.22, this means that
lo(9)| Ry, <&

By Remark 4.3.7, the conditions of Theorem 2.1.10 are satisfied, meaning there exist
gi € G(Fy z),1=1,2, such that g = g1 - g2 in G(Fo,2). O

Remark that in the proposition above, we can in the same way show that there exist
g € G(F; z),1 =1,2, such that g = g4 - ¢ in G(Fp z).
We recall the following from Chapter 2:

CONVENTION 4.3.9. Let us fix once and for all an embedding of G into A% for some
m € N. Let K/F be a field extension, and M C K. Set Gxg = G xp K. Let U be a
Zariski open subset of G . Seeing as G is affine, there is a notion of “M-points” of U.
More precisely, these are the points in U(K) whose coordinates are in M. Let us denote
this set by U(M).
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PROPOSITION 4.3.10. With the same notation as in Proposition 4.3.8, let g € G(Fy,z,).
Suppose g € S’. Then, there exists a connected affinoid neighborhood Z C Zy of x, and
9i € G(Fy z),1 = 1,2, such that g = g1 - g2 in G(Fo,z).

PRrROOF. We will reduce to the first case (i.e. Proposition 4.3.8). Recall that the fields
Fy 7z, can be endowed with a submultiplicative norm | - | Fyz, as in Lemma 4.3.2, where
the role of the point z is played by 7 here.

Let ¢ : gS'NS" — A%O,Zl be the morphism given by h — (g~ 1h). Remark 0 € Im(v).
The preimage 1/1_1(DF6LZ1 (0,e/C)) is open in (¢S" N S")(Fy, z,)-

Since X|p|—,z, is a rational domain in X\p|<r,z,» by Lemma 4.3.2, Fy 7, is dense in
Fo.z,, 50 (gS"NS")(F1,z,) is dense in (¢S5'NS")(Fy,z,) (see Convention 4.3.9). This means
there exists h € (95" NS")(F1,z,) € G(F} z,) such that \go(g_lh)hroz1 < ¢/C, implying
that (g~ th)|, < e/C.

By Proposition 4.3.8, there exists a connected affinoid neighborhood Z C Z; of x
and ¢} € G(Fy z), g5 € G(Fy,z), such that g7'h = g - g] in G(Fpz). Hence, there exist
g1:=hgy ' € G(F1z) and go := g5 ' € G(Fyz) such that g = g1 - g2 in G(Fo 2). O

THEOREM 4.3.11. Recall Setting 4.3.6. For any g € G(Fy, z,), there exists a connected
affinoid neighborhood Z C Zy of x, and g; € G(F; z),i = 1,2, such that g = g1 - g2 in
G(Fo,z).

PROOF. Recall the construction of the connected affinoid neighborhood Z; C Zj of x
in Parameter 2. By [34, Lemma 3.1], there exists a Zariski open S] of G isomorphic to an
open S7 of A% such that g € S|(Fp z,). Since F is infinite and 57 is isomorphic to an open
of some A%, there exists a € S|(F). Set Sy := a~15]. Then, I € S1, and S; is isomorphic
to an open subset of A%L. By translation, we may assume that this isomorphism sends
Ito0 e AlF). Set ¢’ :== a~'g € S1(Fy.z,). Then, by Proposition 4.3.10, there exists a
connected affinoid neighborhood Z C Z; of z, and ¢} € G(F1 z), g2 € G(F2,z), such that
g =g} - g2 in G(Fy, z). Consequently, for g1 := a- gf € G(F1,z), we obtain that g = g1 - g2
in G(FO,Z)- U

As a consequence, the following, which is the main tool for showing a local-global
principle over the relative P" can be shown.
Recall that in this chapter we are working in Setting 4.1.5.

PROPOSITION 4.3.12. Let U,V be connected affinoid domains in IP’;{’?;) containing only
type 3 points in their boundaries, such that U NV is a single type 8 point {np,}, with
P € O4[T] irreducible over H(x) and r € Ryo\\/|H(z)*]. Set W :=UNV.

Let G be as in Notation 4.3.4, and Zy as in Setting 4.3.6. Let Z' C Zy be a connected
affinoid neighborhood of x for which the Z'-thickenings Uz, Vi, Wy exist, are connected,
and Proposition 4.1.16 is satisfied.

Then, for any g € G(M(Wy)) (resp. g € G(///WZ,,MW)), there exists a connected
affinoid neighborhood Z C Z' of x, and g € G(M (Uz)),gv € G(AM(Vy)), such that
g=gu-gv in GA(Wz)) = G(A(UzNVyz)).

PROOF. Remark that for any g € G(.#p1,an 77)’ by Lemma 4.1.19, there exists a con-
z!

nected affinoid neighborhood Z C Z’ of z, such that g € G(.# (Wy)). Thus, it suffices to
show the result for any g € G(A4 (Wz)).
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By Theorem 4.3.11, there exists a connected affinoid neighborhood Z C Z’ of x, and
gi € G(Fj z),i=1,2, such that g = g1 - g2 in G(.#(Wz)) (once again, recall Setting 4.3.6).
Set OU = {np;,np;r;»j = 1,2,...,n}, where P; € O,[T] are unitary polynomials that are
irreducible over H(x), and r; € Ruo\+/|H(x)*], for all j.

1,an

Seeing as U = {u € Py © [Plu b 7| Pjlu < rj,j}, where pa, ;€ {<, >} for all
j (Proposition 4.1.1), Uz C {u € P,* : |P|, b1 r}. Without loss of generality, suppose
that bq is <. Then, Uy C {u € Py™ : |P|, < r} and Vg C {u € PJ™ : |Pl, > r} (see
Lemma 4.1.4).

Consequently, for gy := g1y, € G(#(Uz)) and gv = gojz € G(H#(Vz)), 9 = gu - gv
in G(A(Wz)) = G(A(UzNVz)). O

4.3.3. Patching over relative nice covers. Proposition 4.3.12 is enough in itself
to directly show a local-global principle over the relative projective line. However, just like
in the one-dimensional case, when showing a local-global principle for relative projective
curves, we use arguments that make it possible to descend to the line. The goal of this
part is to present the necessary arguments to make this descent.

Recall Notation 4.1.5.

THEOREM 4.3.13. Let U, be a nice cover of ]P’;{’?;), and Ty, a parity function corre-
sponding to Uy (see Definition 3.1.16). Let Sy, be the set of intersection points of the
different elements of U,. Let Zy be a connected affinoid neighborhood of x such that the
Zy-thickening Uz, of U, exists and is a Zy-relative nice cover of ]P’Z?n.

Let G /.M (Zo)(T) be a rational linear algebraic group. Then, for any element (gs)ses,,
of Hsesux G <‘///P12’§":5>’ there exists a connected affinoid neighborhood Z C Zy of x,

and (guy)veu, € [lyey, G(A(Uz)), satisfying: for any s € Sy,, there exist evactly two
Us, Vs € Uy containing s, gs € G(M (Us,zNVs 7)), and if Ty, (Us) = 0, then g5 = gUS’Z-g‘};Z
m G(//(US’Z N ‘/;72)).

Proor. Set U, = {U1,Us,...,U,}. If n = 1 there is nothing to prove. Otherwise,
using induction we will show the following statement for all ¢ such that 2 < i < n:

STATEMENT 1. Let I C {1,2,...,n} be such that [I| = i and {J,.; U is con-
nected. Let S; (C Sy,) denote the set of intersection points of the different elements
of {Up}ther. Let Z' C Zy be any connected affinoid neighborhood of z. Then, for any
(9s)ses; € [lses, G(Mpran ), there exists a connected affinoid neighborhood Z; C Z” of

z!

x and (gu,.z, )ner € [Iper G(A (Un,z,)), satistying: for any s € St there exist exactly two
elements Us, Vs € {Up}her containing s, gs € G(A# (Us,z, N'Vs z,)), and if Ty, (Us) = 0,
then gs = gu, z; '9\75121 in G(A (Us,z,NVs,z,)). The same is true for any connected affinoid
neighborhood Z"” C Z; of .

For ¢ = 2, this is Proposition 4.3.12. Suppose it is true for some i — 1,2 < 7 < n,
and let us show that it is true for i. Without loss of generality, we may assume that
I ={1,2,...,i}, ie. that {J;_, Uy is connected. By Lemma 3.1.18, there exist ¢ — 1
elements of {Uh}%:1 whose union is connected. Without loss of generality, let us assume
that (J;_'| U, is connected. Set I’ = I\{i}. 4

Let us start by making a comparison between St and Sy. Set V;_1 = UZ_:11 U;,. This is
a connected affinoid domain containing only type 3 points in its boundary. Since V;_1, U;
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and V;_; UU; are connected subsets of IP’;{’?%, Vi—1 NU; is non-empty and connected (see

Lemma 1.8.20). Furthermore, since V;_; NU; C Sy, (i.e. it is contained in a finite set of
type 3 points), V;_1 NU; is a single type 3 point {n}. Hence, there exists hg € I’ such that
Un, NU; # (. By Lemma 3.1.9, such an hg is unique. Consequently, St = Sp U {n}.

For some Z' C Zy as in Statement 1, let (gs)ses; € [lses, G(#pran ). From the

induction hypothesis, for (gs)ses, € ¢ Sy G(AMp1.an ), there exist a connected affinoid
z!

1,an
g1 S

neighborhood Zp C Z' of x and (gUh,zI,)hEI’ € [lher G(A (Un,z,,)), satisfying: for any
s € Sy, there exist exactly two Us, Vs € {Up }ner containing s, gs € G(A (Us,z,, NVs z,,)),
and if Ty, (Uy) = 0, 9 = gu, 5, * 9v,., 10 G(A(Usz, 0 Viz,)).

Remark that the affinoid domains V;_; and U; satisfy the properties of Proposi-
tion 4.3.12 with V;_1 NU; = {n}. As seen above, there exist exactly two elements of
{Un}ner containing 1. Also, since g, € G(///]P,lz,/anm), by Lemma 4.1.19, we may assume
that g, € G(A#(Vi_1,22 NU; z)). Hence, we may also assume that for any connected
affinoid domain Z" C Z' of x, g, € G(AM (Vi_1,zm NU; zm)).

e Suppose Ty, (U;) = 0. By Proposition 4.3.12, there exists a connected affinoid
neighborhood Z; C Zp C Z' of z, and a € G(M (Ui z,)),b € G(AM(Vi-1,z,)),
such that g, - gu,_,,z, = a-bin G(A# (Ui z, N Vic1,z,)). For any h € I, set
g&h,zl = 9u,.Z; b~!in G(.///(thl)). Also, set g/Ui,ZI = a in G(%(Uz,Z]»

e Suppose Ty, (U;) = 1. By Proposition 4.3.12, there exists a connected affinoid
neighborhood Z; C Zp C Z' of z and ¢ € G(A(Vi—1,7,)).d € G(AM (Ui z,)),
such that g[_]il_hzl gy = c-din G(AM(Vici,z; NUiz,)). For any h € I', set
9,2, = Uy 2z - ¢ In G(AM (Un,z,)). Also, set gy 5 = d~tin G(A (Ui z,)).

The family (g5, 7, )ner € [pe; G4 (Up,z,)) satisfies the conditions of Statement 1 for
the given (gs)ses,. The last part of Statement 1 is obtained directly by taking restrictions
of g’Uh’ZI to G(A (Up,zv)), h € 1.

In particular, for i = n, we obtain the result that was announced. O

4.4. Relative proper curves

Throughout this section, let k& denote a complete ultrametric field. Let us fix and
study the following framework.

SETTING 4.4.1. Let S, C be good k-analytic spaces such that S is normal. Suppose
there exists a morphism 7 : C' — S that makes C a proper flat relative analytic curve (i.e.
all the fibers are curves) over S. Assume 7 is surjective. Let 2 € S be such that the stalk
O, is a field.

Assume there exists a connected affinoid neighborhood Zj of x such that:

(1) for any y € Zy, the fiber 771(y) is a normal irreducible projective H(y)-analytic
curve Cy;

(2) there exists a normal proper scheme Cpz,) over Spec O(Zp), such that the an-
alytification of the structural morphism 7oz, : Coz,) — Spec O(Zp) (in the
sense of Subsection 1.6.3) is the projection Cy, := C xg Zy — Zp.

Let us mention some immediate consequences of Setting 4.4.1.
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For any connected affinoid neighborhood Z C Z of z, set Co(z) = Co(z,) X 0(2,) O(Z).
Let us denote by mp(z) the structural morphism Cpz) — Spec O(Z). Seeing as it is a
base change of To(z,), To(z) is proper.

Let Cz denote the Berkovich analytification of Cp(z) (in the sense of Subsection 1.6.3).
Remark that by Lemma 1.6.16, Cz = (Co(z))™" = (Co(z,) X0(zy) O(Z2))*" = Czy Xz, Z
=C xgZ. Let mz : Cz — Z denote the structural morphism (i.e. the analytification
of mo(z))- By [4, Proposition 2.6.9], 7z is proper.

Before exploring in more depth the properties of Setting 4.4.1, let us present a partic-
ular situation which leads to this setup, and which allows us to generalize the results of
Chapter 3.

4.4.1. Example: Realization of an algebraic curve over O, as the thickening
of an analytic curve over H(x).

NOTATION 4.4.2. Let S’ be a normal good k-analytic space. Let € S’ be such that
O, is a field. Let Cp, be a smooth geometrically irreducible projective algebraic curve
over O,. Let us denote by 7, the structural morphism Cp, — Spec O,.

Remark that O, = lim O(Z), where the limit is taken over connected affinoid neigh-
borhoods Z of z in S, implying Spec O, = @Z Spec O(Z). By [27, Théoreme 8.8.2],
there exists a connected affinoid neighborhood Zj of x, such that for any connected affinoid
neighborhood Z C Zj of z, there exists a finitely presented scheme Cy() over Spec O(Z)
satistying Co(z) Xspec 0(z) Spec Oz = Co,. Let us denote by mp(z) the structural mor-
phism Cy(z) — Spec O(Z).

Remark that m, is a proper smooth surjective morphism. The affinoid domain Zy can
be chosen so that for any connected affinoid neighborhood Z C Zj of x, the morphism
To(z) : Co(z) — Spec O(Z) remains proper, surjective (by [27, Théoreme 8.10.5]), and
smooth (by [62, Tag 0CNU]J). Furthermore, by [62, Tag 0EY2], we may assume that Co(z)
is a relative curve over O(Z). Let Cz (defined over Z) denote the Berkovich analytification
of the finite type scheme Cp(z) over Spec O(Z) (in the sense of Subsection 1.6.3). We
denote by mz : Cz — Z the analytification of 7o z).

PROPOSITION 4.4.3. Let Z C Zy be a connected affinoid neighborhood of x.

(1) The morphism wyz : Cz — Z is quasi-smooth, proper, and surjective. Further-
more, Cz is a relative curve over Z.
(2) The spaces Co(z),Cz are normal.

PROOF. Surjectivity of 7z can be obtained as in the proof of [6, Proposition 3.4.6(7)]
from the surjectivity of mo(z). Properness is given by [4, Proposition 2.6.9]. Quasi-
smoothness is a consequence of the smoothness of 7o (z) via [18, 5.2.14]. The dimension
property is given by [18, Proposition 2.7.7].

Since mo(z) : Coz)y — Spec O(Z) is smooth, for any point y € Cp(z), there exists
an open neighborhood U of y such that there is a factorization of U — Spec O(Z) as:
U— A((io(z) — Spec O(Z) for some d € N, where U — A((jo(z) is étale. Moreover, by [28,

I, Remarque 1.5], d = 1. By [28, I, Théoreme 9.5], U is normal at y if and only if A}O

is normal at its image.
Seeing as S is normal, so is Z (by [21, Théoreme 3.4]). This implies that O(Z) is an
integrally closed domain (recall Z is connected in a normal space, so it is irreducible), hence

(2)
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so is O(Z)[T)] (where T is an indeterminate), implying Aé( 7) 1s normal. Consequently, by

the above paragraph, Cp(z) is normal. By [21, Théoreme 3.4], its analytification Cz is
also normal. (]

Seeing as a quasi-smooth morphism is flat (see [18, Theorem 5.3.4]), it remains to
show that property (1) of Setting 4.4.1 is satisfied.

NOTATION 4.4.4. Let Z C Z; be any connected affinoid neighborhood of .

e For any y € Z, the fiber 7,'(y) can be endowed with the structure of an H(y)-
analytic curve Cy := Cz xz H(y) (see Proposition 1.5.7). Remark that C, does
not depend on Z.

e For any y' € Spec O(Z), the fiber 7, (y') can be endowed with the structure of
a r(y')-algebraic curve Coy(z) x(y) = Co(z) Xo(z) K(y'), where k(y') denotes the
residue field of 3" in Spec O(Z). We will use the notation Cj(,y whenever there
is no risk of ambiguity.

Since Spec O(Z)y) is Noetherian, the proper morphism 7y, is of finite presentation.
Since it is smooth, mp(z,) is flat. By [27, Théoreme 12.2.4], the set

A= {u € Spec O(Zy) : Co(z,)x(u) is geometrically integral and smooth}

is Zariski open in Spec O(Zy).

Let 2’ denote the image of x via the analytification Zy — Spec O(Zy). Since O, is a
field, there is a natural embedding x(z') < O,, from where we obtain that Cr@z') Xr(z) Oz = Co,.
Since Cp, is smooth and geometrically irreducible, it is geometrically normal and integral,
implying so is Cy(,). Consequently, ' € A, so A is a non-empty Zariski open subset of
Spec O(Zp).

LEMMA 4.4.5. Let ) denote the analytification Zy — Spec O(Zy). For anyy € Zy such
that ¥ (y) € A, Cy is a geometrically irreducible smooth projective H(y)-analytic curve.
The same is true for any connected affinoid neighborhood Z C Zy of x.

PROOF. Let y € Zg be such that y' := ¥(y) € A, i.e. that Cyy is geometrically
integral. By Corollary 1.5.7, Cy is isomorphic to the analytification of Cy () X .(y) H(y),
so Cy is an H(y)-analytic curve that is geometrically integral, hence geometrically ir-
reducible. Since 7z is proper, C, is a proper curve. Since mz is quasi-smooth, Cy is
quasi-smooth (by [18, Theorem 5.3.4]). As it is proper, it is boundaryless, so smooth (see
[18, Corollary 5.4.8]).

The last part of the statement is a direct consequence of the fact that C, does not
depend on Zj (i.e. remains the same for any connected affinoid neighborhood Z C Z of x
containing y). O

The preimage of A with respect to the analytification morphism v : Zy — Spec O(Z))
is a Zariski open in Zy. Consequently, there exists a connected affinoid neighborhood
7y C Zy of z, such that Z; C ¢»~!(A). This means that for any connected affinoid neigh-
borhood Z C Z; of z, the fiber Cy of any y € Z in Cz is a geometrically irreducible
smooth projective H(y)-analytic curve. Consequently, Setting 4.4.1 is satisfied for S = Z;
and C = Cy,.
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4.4.2. Consequences of Setting 4.4.1. Recall that for any affinoid neighborhood
Z of x in S, we denote by m the structural morphism Cy = C xg Z — Z.

PROPOSITION 4.4.6. Let Z C Zy be a connected affinoid neighborhood of x.
(1) The space Cz is a normal proper flat relative analytic curve over Z. Furthermore,
7z 1s surjective. The same properties are true for Coz) and mo(z).
(2) Any connected affinoid domain of Cz is normal and irreducible.

PROOF. Since 7z is obtained by a base change of 7 : C' — S, we immediately obtain
that 7z is proper, surjective, flat, and of relative dimension 1.

Seeing as Cy, is the analytification of the normal proper O(Zp)-scheme Cp(z,), it is
normal by [21, Théoreme 3.4]. Seeing as Cz = 77201(Z ) is an analytic domain of the normal
analytic space Cg,, by loc.cit., it is normal. By the same result, Cp(z) is also normal.

The morphism 77y was already remarked to be proper, as a base change of a proper
morphism. Surjectivity of mp(z) can be obtained from the surjectivity of 7z as in Propo-
sition 3.4.6(7) of [6]. The relative dimension of 7y () is the same as that of 7z by [18,
Proposition 2.7.7]. Its flatness is a consequence of [18, Lemma 4.2.1].

Any connected affinoid domain of C'z is normal by [21, Théoréme 3.4] and irreducible
by [21, Théoreme 5.17]. O

The object the following lemma deals with will be central for the rest of this chapter.

LEMMA 4.4.7. Set Cp, = CO(ZO) X0(Zo) Og. Then, Co, s an irreducible normal
projective k-algebraic curve.

PROOF. Let C, denote the fiber of 7z, : Cz, — Zy. It is a normal irreducible projective
H(zx)-curve by definition. Let T denote the image of x via the analytification morphism
Y : Zy — Spec O(Zp). By Corollary 1.6.17, Cy = (Cyy(z) X (@) H(7))™, where £(T) denotes
the residue field of z in O(Zy), and Cy(z) := Co(z,) X0(z,) £(T) - the algebraic fiber of T
with respect to Cp(z,) — Spec O(Zp).

Set C28 .= Cu(@) Xu(z) H(x). Seeing as ¥(r) =T and O, is a field, there is a canonical
embedding x(Z) < O,. Consequently, Co, = Cy(z) X ) Oz, and

C3® = O *u(m) H(2) = Cu@) Xu@) Oa X0, H(z) = Co, X0, H(2).

As (C38)m =~ ¢, and C, is a normal irreducible H(z)-analytic curve, C2'% is a connected
([6, Thm. 3.5.8(iii)]) normal algebraic curve ([6, Prop. 3.4.3]) over H(x).

Consequently, Co, is connected, and by [26, Corollaire 6.5.4], it is normal. Properness
is immediate seeing as Cp, — Spec O, is a base change of a proper morphism. U

Recall Notation 4.4.4, which is applicable here. A very important property for the
constructions we make is the following:

LEMMA 4.4.8. For any non-rigid point n of Cy, the local ring Oc,, is a field. If n € Cy
is rigid, then Oc,y, 1s a discrete valuation ring.

In particular, this implies that for any type 3 point n € C,, the local ring O¢,, is a
field.

PROOF. Seeing as x € Int Zp, for any n € Cy, n € Int Cy,, so O¢,,, = 00207777 and we
can use the two interchangeably.
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The morphism 7z, : Cz, = Zy is proper, so boundaryless. As 7z, is flat, by the proof
of [18, Lemma 4.5.11], dim O¢,, = dim O¢, , + dim O,. Since O, is a field, we obtain
dim O¢,; = dim O¢, .

By [18, Lemma 4.4.5], if n € C; is not rigid, then O, ,, is a field, implying dim O¢,,, =
0, so Ocyy, is a field (recall Cz, is normal). If n € C, is rigid, by loc.cit. O¢, , is a discrete
valuation ring, implying dim O¢,, = 1. Hence, O¢, is a Noetherian normal local ring with
Krull dimension 1, meaning a discrete valuation ring. (]

We proved a result somewhat similar to Lemma 4.4.8 in Corollary 4.2.25 and applied
it to P13, Note that Lemma 4.4.8 is also applicable to the relative projective line.

LEMMA 4.4.9. Let Z C Zy be a connected affinoid neighborhood of x. For any pair of
different points ui,us € Cz, there exist neighborhoods By of uy and Bo of ug in Cyz, such
that By N By = 0.

PROOF. Seeing as mp(z) is proper, it is separated, so by [4, Corollary 2.6.7], 7z is
separated. Seeing as Z is Hausdorff, by [6, Proposition 3.1.5], Z — M(k) is separated.
Consequently, the canonical morphism C; — M(k) is separated, and we can conclude by
loc.cit. O

LEMMA 4.4.10. Let Z C Zy be a connected affinoid neighborhood of x. The spaces
Cz,Co(z) are irreducible.

PRrOOF. Since all the fibers of C'y; — Z are connected, Cy is connected: if, by contra-
diction, C'z can be written as the disjoint union of two closed (hence compact) subsets U
and V, then Z = mz(U)Umz(V). Since mz(U) and 7z (V') are compact, and Z is connected,
their intersection is non-empty. Consequently, there exists y € Z, such that C, N U # ()
and Cy NV # (. Since Cy, is connected and covered by the compacts C, N U, C, NV, this
is a contradiction.

Thus, Cyz is a connected normal analytic space. By [21, Proposition 5.14], it is irre-
ducible. Then, by [18, Proposition 2.7.16], Co(z) is also irreducible. O

PROPOSITION 4.4.11. There exists a connected affinoid neighborhood Z1 C Zy of x such
that for any connected affinoid neighborhood Z C Z1 of x, there exists a finite surjective
. 1,an . .
morphism fz : Cz — P, satisfying:
(1) fz is the analytification of a finite surjective morphism foz) : Co(z) — IP’%Q’?E);
(2) for any connected affinoid neighborhood Z' C Z of x, fz Xz Z' = [z, i.e. the
following diagram (where the horizontal arrows correspond to the base change
Z' — Z) is commutative.

CZ/ —_— CZ

W e

1, 1,
IP)Z/an ]:P)Z&Il
PRrROOF. Remark that O, = ligz O(Z), where the limit is taken with respect to con-
nected affinoid neighborhoods Z C Zy of x. Consequently, Spec O, = gn 7 Spec O(Z),
and C@w = CO(ZO) X O(Zo) O, = CO(ZO) X 0(Zy) mZO(Z) = T&nz CO(Z)- Recall that C@w
is an irreducible normal projective curve (see Lemma 4.4.7).
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Let fo, : Co, — ]P’%% be any finite non-constant (hence surjective) morphism. By
[27, Théoreme 8.8.2], we may assume that Zj is such that for any connected affinoid
neighborhood Z C Zj of z, there exists a morphism fo(z) : Co(z) — ]P’}o(z), such that

the following diagram (where the horizontal arrows are the corresponding base changes)
is commutative for any connected affinoid neighborhood Z’ C Z of z.

Cox —_— CO (2" —_— C@ (2)

Jfox lfo(zf lfO(Z>

Py, — IP’O(Z,) — PO(Z)

Furthermore, by [27, Théoreme 8.10.5], Zy can be chosen so that for any connected affinoid
neighborhood Z C Zj of z, the morphism fo(z) is finite and surjective.

Let fz:Cyz — P;an denote the Berkovich analytification of fo(z) in the sense of
Subsection 1.6.3. Then, as in [6, Proposition 3.4.6(7)], fz is surjective; by [4, Propo-
sition 2.6.9], it is finite.

Part (2) is a direct consequence of the commutativity of the diagram above. U

Remark that the finite surjective morphism f : Cy — Pgan induces a finite surjective
morphism f, : C, — IP’;’LB(LE) between the fibers of z € Z in Cz and Pgan, respectively (recall
Notation 4.4.4 which is applicable here).

PROPOSITION 4.4.12. Let Z C Zy be a connected affinoid neighborhood of x. Let y
be a type 3 point in the fiber IP’;{’?% of x on ]P’gan. Let {z1,20,..., 20} := [, (y). Then,
Mpran @ g (z)1) A (Cz) = iy Moy 2

PROOF. Let us look at the finite surjective morphism fo(z) : Coz) — Pl 0(2) of

Let
oz
A := Spec A be an open affine neighborhood of ' in ]P’%D( 7)" Its preimage by v is a Zariski

1,an

O(Z)-schemes. Let y' be the image of y via the analytification 1/1 P — P!

I 1,an o .
open A’ of P;™" containing y.
Let B := Spec B be the pre-image of A by fo(z). It is an affine open subset of Cp(z),
and fo(z) induces a finite surjective morphism B — A. By construction, B contains

f(;(lz)(y’). By the proof of [4, Proposition 2.6.10], there is an isomorphism [[;"; Oc, ., =
Opran , @4 B. Since Cp(z) and P! are irreducible, the function field of Cp(z) is Frac B,
Py 0(2)
and the function field of IP’1 0(2) is Frac A.
By Theorem 1.7.8, we obtain that .#(Cy) = Frac B, and .# (P} ") = Frac A. Since
B is a finite A—module by the last paragraph of the proof of Lemma 3.2.4, [T, Ocy ., =
OIPIZ,an7y ®@Frac 4 Frac B, so [, Ocy .., = Olp,lz,anﬁy ®@.4(z)(r) #(Cz). Finally, since y and
zi,t=1,2,...,n, are type 3 points in Pk ?;l) and Cy, respectively, Op1,an y = M p1,n " and
zZ zZ
Ocy.zi = ~///Cz,zi for all ¢, concluding the proof of the statement. O
PROPOSITION 4.4.13. For any connected affinoid neighborhoods Z,7' C Zy of x such
that Z' C Z, the base change morphism vz z : Cozry = Co(z) is dominant. Furthermore,
if nz (resp. nz:) is the generic point of Co(zy (resp. Co(z1)), then vz z:/(nz') = nz.

PROOF. By Lemma 4.4.10, Cp(z), CO(ZI) are irreducible, so it makes sense to speak
of their generic points 71z, 7z, respectively. It suffices to show that 1z is in the image
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of tz7,7:. Let a be any point of Cz. Let o' be its image in Cp(z) via the analytification
¢ : Cz — Co(z). Let U be an open affine neighborhood of o in Co(z)- Then, nz € U, and
the closure of {1z} in U is U.

By [4, Proposition 2.6.8], ¢! (U) = U®-the analytification of U. Remark that U?"
is an open subspace of Cz. Let B, be any open neighborhood of o in C'z. Then, since
a € U B, NU" is an open neighborhood of « in U*", so by [4, Lemma 2.6.5|, there
exists a point 8 € B, N U C B, such that ¢(3) = nz. Thus, for any point a € Cz and
any open neighborhood B, of a in Cy, there exists 8 € B, such that ¢(5) = nz. In other

words, ¢~ ({nz}) = Cz.

CZ’ L} CO(Z’)

QZ’ZI\L lbz,z’

Cy; — CO(Z)

Let us now look at the commutative diagram above, where the horizontal lines cor-
respond to analytification, and the vertical ones to base change. In particular, remark
that since Cz = n~1(Z) and Cz = n=1(Z"), we have Cz C Cyz, so 0z z is an inclusion.
Let v € 71 (Int(Z’)) (which is non-empty considering x € Int(Z’)). Let B, be an open
neighborhood of 7 in the open 7~ 1(Int(Z’)). Then, B, is open in both Cz and Cz. By
the paragraph above, there exists 4/ € B, such that ¢(6z 2 (7)) = #(7') = nz. By the
commutativity of the diagram, 77 is in the image of 1z 7/, so 1z 7/ is dominant.

Let nz be the generic point of Cp (7). Since Cp(z), Co(z/) are integral schemes, this
means tz z(nz) = nz. O

Recall that Co, = Co(z,) X0(z,) Oz = I.&HZ Co(z), where the limit is taken with
respect to the connected affinoid neighborhoods Z C Zj of z. By the lemma above, the
generic points 7z of Cp(z) determine a unique point n € Co, .

PROPOSITION 4.4.14. The curve Co, is integral with generic point 7.

Proor. Note that Cp, was already shown to be integral in Lemma 4.4.7.

For any connected affinoid neighborhoods Z, Z' C Zy of x such that Z’ C Z, the base
change 1z 7/ : Cozry = Coz) Xoz) O(Z") — Co(z) is an affine morphism. Furthermore,
since Cp(z) is normal, it is reduced.

By [62, Tag 0CUG], lim 2} ed = {0} eeq- Seeing as {nz}.q = Co(z), we obtain that

Wred = @ 5 Co(z) = Co,, so Co, is reduced and irreducible, i.e. integral, with generic
point 7. (]

Let Fy denote the function field of the integral scheme C}p, where
N €{0,,0(Z):Z C Zy} (Z is as usual considered to be a connected affinoid neighbor-
hood of z).

COROLLARY 4.4.15. Fp, = ligz Fo(z), where the limit is taken with respect to con-
nected affinoid neighborhoods Z C Zy of x.

PrOOF. The projective system of integral schemes {CO(Z)}Z gives rise to a direct
system of fields { Fi(z)}z. For connected affinoid neighborhoods Z, Z’ C Zj of  such that
Z' C Z, let us denote the corresponding transition morphism Fyz) — Foz) by xz',z-
Let us denote by F’ the field @Z Fo(z)-



130 4. PATCHING OVER ANALYTIC FIBERS AND THE LOCAL-GLOBAL PRINCIPLE

The projections vz : Co, — Cp(z) give rise to maps Xz Fo(z) — Fo,. Since for any
Z' C Z, 1z = 172 oy, we have that x’, = X'y o xz.z. Consequently, there is a map
F' — Fo,. To show that this is an equality it suffices to show that for any field K and
morphisms Az : Fp(z) — K such that for any Z' C Z, Az = Agr 0 Xz z, there is a map
A : Fo, — K, satisfying Az = Ao x/,.

The maps Az : Fp(z) — K give rise to maps X, : Spec K — Spec Fozy = Coz)
where the image of X, is the generic point {nz} of Co(z)- Consequently, by Proposi-
tion 4.4.13, for any Z' C Z, we have X, = 1z 7z o X, implying there is a morphism
X' : Spec K — Cop, that satisfies A}, = 1z o X’ for all Z. In turn, this gives rise to a mor-
phism A : Fp, — K, which satisfies Az = Ao x/,. O

COROLLARY 4.4.16. Fp, = hﬂlz A (Cyz), where the limit is taken over connected affi-
noid neighborhoods Z C Zy of x.

Proovr. This is a direct consequence of Corollary 4.4.15 and Theorem 1.7.8. (]

4.5. Nice Covers of a Relative Proper Curve and Patching

We work under the hypotheses of Setting 4.4.1 and the notations we have introduced
along the way. Here is a summary:

NOTATION 4.5.1. In addition to Setting 4.4.1, for any connected affinoid neighborhood
7 C Zg of x, let Cx = CZ Xz ,H(.%), CZ =C Xs Z, CO(Z) = CO(ZO) XO(ZO) O(Z),
and Co, = Co(z,) X0(zy) Oxz- Moreover, we denote by 7z, resp. mo(z), the structural
morphisms Cz — Z, resp. Cp(z) — Spec O(Z).

Finally, let fz : Cyz — P;an, fo, : Cowzy — IP’%Q’?Z) be finite surjective morphisms such
that fgrzz) = fz, and for any connected affinoid neighborhood Z’ C Z of x, fz x 7z Z" = fz.

4.5.1. Nice covers of a relative proper curve. As in the case of P12 in addition
to Setting 4.4.1, we assume that dim S < dimgRso/|k*| ®z Q. The reason behind this
hypothesis is the same as before: it is sufficient for the existence of type 3 points on the
fiber C; (see Lemma 4.1.6).

Goal: Let V be an open cover of C, in C. We construct a refinement of V and show that
it satisfies certain properties which are necessary for patching.

(1) The construction. Remark that the finite surjective morphism fz, : Cz, — Pgsn

induces a finite surjective morphism f, : C, — IP’;{’?E) on the corresponding fibers of x.

Without loss of generality, we may assume that ) is an affinoid cover of C, in C
such that {Int V' : V € V} is an open cover of C, in C. Since C, is compact, we may
assume V is finite. Let V, denote the finite affinoid cover V induces on C,. Remark that
V! = {Intc,V : V € V,} remains an open cover of Cy. Since V, is an affinoid cover, for
any V € V,, the topological boundary dc,V of V in C, is finite. Consequently, for any
VeV, dc,V is finite. Set S" = Uvey, dc, V. This is a finite set of points on C;.

Seeing as C, is a connected curve, for any two points u,v of S’, there exist finitely
many arcs [u,v];, i = 1,2,...,1, in C, connecting them (Proposition 1.8.14). Let us take
a type 3 point on each [u,v];, for any two points u,v € S’. We denote this set by Si. By
construction of Si, since type 3 points are dense in C, (Proposition 1.8.7) and f, 1(f.(S"))
is a finite set, we may assume that Sy N f, 1 (f:(S")) = 0.
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Since 57 is a finite set of type 3 points in Cy, f;(S1) is a finite set of type 3 points in

the fiber P;-Z?E) of z in ]P’gjn. By Lemma 3.1.11, there exists a nice cover D, of ]P’;{’?g) such

that f(S1) = Sp, (recall this notation in Definition 3.1.15). Let Tp, be a parity function
(Definition 3.1.16) for D, (it exists by Lemma 3.1.17).

LEMMA 4.5.2. The connected components of f; (D), D € Dy, form a cover Uy of Cy
which is nice and refines V. Furthermore, Sy, = f.1(Sp,), and the map Ty, : U, —
{0,1}, U — fp,(f=(U)), is a parity function for Uy.

PROOF. That U, is a nice cover of Cy, Sy, = f; *(Sp,), and Ty, is a parity function
for U, has been shown in Proposition 3.1.19. It remains to show that U, refines V,. For
that, it suffices to show that U, refines the open cover V. of C,.

Let us start by proving that Sy, NS’ = (. Suppose, by contradiction, that there exists
a€ Sy, NS = f1(f:(S1)) NS’ Then, f.(a) € f(S1)Nfx(S"), so there exists b € S such
that fi(a) = fz(b) € f(S1) N fz(S"). Consequently, b € £ 1(f.(S")) NSy = 0, which is
impossible, so Sy, N S" = 0. Considering Sy, = Upey, OU and S" = Uyeyy 9V, for any
U€el, and any V € V., U NIV = (.

Let us now show that U, refines V.. Suppose, by contradiction, that there exists
U € Uy, such that for any V € V,, U € V. Let V},j = 1,2,...,m, be the elements of V,,
intersecting U (m # 0 seeing as V; is a cover of Cy). Then, U C JiL, V;. Considering
U ¢ Vj and U is connected, U N 9V; # () for all j. If JjL, U N9V is a single point {w},
then w € U\ JjL, V; (because the V; are open), which is impossible seeing as U C |Ji, V.
Let x1, 72 be two different points of (JL, U N 9Vj. Since 9U N 9V; = { for all j (this was
shown in the paragraph above), z; € Int(U),i =1, 2.

Since U is connected, by Lemma 1.8.16, Int U is connected, so there exists an arc
[x1,x2] connecting x; and x2, which is contained entirely in Int U. But then, by the
construction of Si, since x1,z9 € S’ there exists y € S; such that y € [z1,22] C Int U.
Considering y € S1 C f,1(Sp,) = Sy, , there exists U’ € U,, such that y € OU’. But then,
OU NOU’ # U NU’ which is in contradiction with the fact that U/, is a nice cover of C..

Thus, there must exist Viy € V. such that U C Vy, implying U, refines the cover
V. O

The following result will be used several times in what is to come.

LEMMA 4.5.3. Let Z C Zy be a connected affinoid neighborhood of x. Let D’ be a

connected affinoid domain ofIP’;an, such that D'NF, is non-empty and connected, where F,

is the fiber of © with respect to the morphism P;an — Z. Then, the connected components
of fgl(D’) are connected affinoid domains of Cy that intersect the fiber C, of x. Moreover,

if U is a connected component of f,*(D"), then fz(U) = D'.

PROOF. Seeing as fz is a finite morphism, fgl(D’) is an affinoid domain in C'z, and
thus so are its connected components.

Seeing as Cz and Pgan are irreducible, they are pure-dimensional (see [21, Corol-
laire 4.14]). Seeing as fz is finite, its relative dimension is pure and equal to 0 (i.e. all
its fibers are of dimension 0). By [18, 1.4.14(3)], the dimension of Cz is the same as the
dimension of ]P’gan. Consequently, by [6, Lemma 3.2.4], fz is open.

Let U be any connected component of f, L(D'). 1t is an open and a closed subset of
f;1(D"). Seeing as fz is open and closed, fz(U’) is an open and closed subset of D'.
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Considering D’ is connected, this implies D' = fz(U). Since D' N F, # (), we obtain
UNnCy, # 0. O

Let Zp C Zy be a connected affinoid neighborhood of x, such that the Zp-thickening
Dy, of D, exists and is a Zp-relative nice cover for IP’;ZH (see Theorem 4.1.23).

Let Z C Zp be any connected affinoid neighborhood of z. We denote by Uz the set
of connected components of fz_l(DZ),D € D,. By Lemma 4.5.3, Uz is a finite affinoid
cover of Cz. Furthermore, for any U € Uz, UNC, # () and fz(U) € Dz. Remark that
the nice cover U, of Lemma 4.5.2 is obtained by taking the connected components of
UNC,,U e Uyg.

(2) The elements of U intersect the fiber nicely. We show that the connected
affinoid neighborhood Z C Zp of x can be chosen such that U N C is connected for
any U € Uy, and the same remains true when replacing Z with any connected affinoid
neighborhood Z' C Z of x. Let us start with a couple of auxiliary results.

LEMMA 4.5.4. Let Z C Zy be a connected affinoid neighborhood of x. Let A1, Ay be
two disjoint compact subsets of C,. Then, there exist two open subsets By, Bo of Cz such
that A; C B;,i = 1,2, and By N By = 0.

PROOF. Let a € A;. By Lemma 4.4.9, for any b € A, there exist an open neighborhood
Ngp of a in Cz, and an open neighborhood B, of b in Cyz, such that N, N Bgyp = 0.
The family {Bgp}pca, forms an open cover of A;. Considering As is a compact subset
of Cy, it is compact in Cz, so there exists a finite subcover {Bgy, }7; of {Bgp}pca,. Set
No = N4y Ny, and B, = ;% Bap,- Then, Ny, B, are open subsets of Cz, Ay C By,
and N, N B, = 0.

The family {Ng}qc4, is an open cover of A;y. Since A; is compact, there exists an open
subcover {Ng; }2:1. Set B; = Ué’:1 Ng; and By = ﬂ§:1 B,;. Then, By and By satisfy the
statement. O

LEMMA 4.5.5. Let D be a connected affinoid domain of IP’;_’L?;) containing only type 3
points in its boundary. Let Z C Zy be a connected affinoid neighborhood of x such that
the Z-thickening Dy exists, and for any connected affinoid neighborhood Z' C Z of x, the
Z'-thickening Dz of D is connected. Let Uy z,Us z,...,Up 7z be the connected components
of f7'(Dz).

Then, the connected components of fg,l(DZ/) are the connected components of U; z N Cyr,
i=1,2,...,n.

PrOOF. By commutativity of the diagram below, fgl(DZ) NCy = fZ_,l(DZ ﬂIP’;,an) =

fg/l(DZ/), SO fg,l(DZ/) =, Ui,z N Cyz for any i. The statement follows immediately.

CZ’ e CZ

fz’l lfz

We can now show property (2):
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PROPOSITION 4.5.6. Let D be a connected affinoid domain of P;{’?;) containing only
type 8 points in its boundary. Let Z C Zy be a connected affinoid neighborhood of x such
that the Z-thickening Dy exists, and for any connected affinoid neighborhood Z' C Z of
x, the Z'-thickening Dy of D is connected.

Let Uy z,Us 7, ...,Up z be the connected components of fgl(DZ). The affinoid neigh-
borhood Z of x can be chosen such that:

o U; 7 NCy is a non-empty connected affinoid domain of Cy for all i;

e there is a bijection between the connected components of fz_l(DZ) and the con-
nected components of f;1(D) given by U; z + U; z N Cy;

e for any connected affinoid neighborhood Z' C Z of x, the connected components
of fg,l(Z’) are Uy 7 :=U; 7N Cyp,i=1,2,... n.

PRrROOF. Recall that the finite morphism fz : Cz — Pgan induces a finite morphism
fo : Cp — IP’;{’?;) on the corresponding fibers of x. Let Ly, Lo,..., Ls be the connected

components of f-1(D). They are connected affinoid domains of C,..

Seeing as (follow the diagram below) | |°_, L; = - 2(D) = f,*(Dz) N Cy = |-, Uiz N Cy,
for any ¢, Ly C || U z. Since L; is connected, there exists a unique ; such that
Ly CU;, zNCy.

C, —— Cy

| |12

1,an 1,an
PH(w) IP>Z

Suppose there exists ig such that U;, z N C; is not connected. Suppose, without loss of
generality, that Ly, Lo, ..., L, are the connected components of C;NU;, 7. By Lemma 4.5.4,
there exist mutually disjoint open subsets B; of C'; such that L; C B;, t =1,2,...,r. The
set Uiy z\li_; Bt is a compact subset of Cz that doesn’t intersect the fiber Cy. It is
a non-empty set: otherwise, U;, z C |_|::1 By; seeing as Uj, z N By D Uiy z N Ly # 0 for
allt =1,2,...,r, we obtain that U, 7 is not connected, contradiction.

Since 7z is proper, 7z (Ui, z\ | l;_; Bt) is a non-empty compact subset of Z that does
not contain x. Thus, there exists a connected affinoid neighborhood Z; C Z of x such that
ﬂ'El(Zl) N (Ui07z\ |_|;:1 Bt) = @, implying Uio,Z N CZ1 - |_|I:1 Bt.

Let Vi z,, V2 z,, ..., Ve, z be the connected components of U;, zNCz,. By Lemma 4.5.5,
Vizi, J =1,2,... e, are connected components of fz_ll(DZI), so by Lemma 4.5.3, they
all intersect the fiber C,. Moreover, |_|?:1 Viz NCy =UyzNCyp = | ];_; Li. Hence, for
any t, there exists a unique e; such that L; C Vi, z, N C,. By the paragraph above,
for any j, there exists a unique ¢;, such that Vj 7, C By, hence a unique L¢; contained
in Vj z,. Consequently, r =e and {V; z, NCp:j=1,2,...,r} ={Ls:t=1,2,...,r}. We
may assume, without loss of generality, that V; zz N C, = L;,j = 1,2,...,r. Clearly, this
induces a bijection between the connected components of U;, z N Cz, and the connected
components of U, 7z N Cy, given by V; 7z, +— V; 7z NCp = Lj,j =1,2,...,7.

Let us show that for any connected affinoid neighborhood Z> C Z; of z, V; z, N Cz,
remains connected for all j = 1,2,...,r. By Lemma 4.5.5, the connected components of
Vj 2z, N Cyz, are connected components of fZ_21 (Dz,), so by Lemma 4.5.3, they all intersect
the fiber C. Seeing as L; = V; 7, NC, = Vj z, N Cz, N Cy is connected, V; z, N Cz, has to
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be connected for all j. In particular, the bijective correspondence obtained above remains
true when replacing Z; by Zs.

We have shown that for any ¢ = 1,2,...,n, there exists a connected affinoid neigh-
borhood Z¢ C Zjy of x, such that the connected components Viizisg = 1,2,...,7;, of
Ui,z N Cyi satisty: (a) Vj; i N Cy is non-empty and connected for all j; (b) there is a
bijection between the connected components of U; z N C'z: and the connected components
of Uiz N Cy, given by V;; 7i = Vi, 7i N Cy; (c) for any connected affinoid neighborhood
ARSWAS V; i ziNCz remains connected, implying the connected components of U; z NCz:
are ‘/}’i’Zz' NCyz,j=1,2,...,1;.

Let Z' C (v, Z" be a connected affinoid neighborhood of z. Since Z’ C Z, by
Lemma 4.5.5, the connected components of fZ_,l(DZ/) are the connected components of
Ui,z NCgz,i=1,2,...,n. By the paragraph above, these are V;; - N Cz/,j =1,2,...,1,
i=1,2,...,n, and they satisfy: (a’) V,; i N Cz N C, is non-empty and connected for
all j,i; (b’) for any 4, there is a bijection between the connected components of U; z N Cy
and the connected components of U; z N Cy, given by V; ; 7 N Cz — V; ; 7 N Cy, imply-
ing there is a bijection between the connected components of U; z N Cz,i = 1,2,...,n
(i.e. of fZ_,l(DZ/)) and the connected components of U; z N Cyp,i = 1,2,...,n (i.e. of
[ (D)), given by V;; 7 N Cgzr = Vi 7i N Cy, j,i; (¢7) for any connected affinoid neigh-
borhood Z"” C Z' of z, by the paragraph above, the connected components of fz_/} (Dyn)
are Vj’izi NCyz NCyn = Vj%zi NCyzn,j=1,2,....15,1=1,2,...,n. O

We have shown:

COROLLARY 4.5.7. There exists a connected affinoid neighbohrood Zy C Zp of x, such
that for any U € Uz,, UNC; is connected, and Uy, = {UNC,:U € lef}, where Uy, is the
nice cover of C, obtained in the statement of Lemma 4.5.2. Moreover, for any connected
affinoid neighborhood Z' C Zy of v, Uz = {UNCyz : U € Uz, }.

REMARK 4.5.8. By Corollary 4.5.7, for any connected affinoid neighborhood Z C Zy
of x, there is a bijective correspondence between Uz and U, given by V — V N C,.

Consequently, we will from now on sometimes write Uy for the unique element of Uy
corresponding to the element U of U,. In particular, Uy = {Uz : U € Uy}.

(8) Uz refines V. Let Z C Z; be a connected affinoid neighborhood of z. Let
Uz € Uy. Then, U :=UzNC, is a connected affinoid domain of C, and an element of
U, (recall Remark 4.5.8). By Lemma 4.5.2, there exists V' € V, such that U C V,, where
V. denotes the intersection of V' with the fiber C,. Assume Uy Z V. Then, Uz\V is a
non-empty compact subset of Cz not intersecting the fiber C,. Seeing as 7z is proper,
mz(Uz\V) is a compact subset of Z not containing z. Thus, there exists a connected
affinoid neighborhood Z; C Z of z, such that 7' (Z1)N(UZ\V) = 0, i.e. Cz,N(UZ\V) =0,
implying C'z, NUz C V. Clearly, the same remains true when replacing Z; by any connected
affinoid neighborhood Zs C Z; of x. Considering Uz is a finite cover, by repeating the
same argument for all of its elements, we obtain that there exists a connected affinoid
neighborhood Z’ C Z¢, such that {UzNCyz : U € U, } refines V, and the same remains true
when replacing Z’ with any connected affinoid neighborhood Z” C Z’. By Corollary 4.5.7,
Uy ={UzNCy : U € Uy}, implying Uy is a refinement of V. The same remains true for
any Z" C Z' as above.

We have shown:
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PROPOSITION 4.5.9. There exists a connected affinoid neighborhood Z, C Zy of x such
that for any connected affinoid neighborhood Z C Z,., the cover Uy refines V.

(4) The intersection of the elements of U/; between themselves. Let Z C Z,
be a connected affinoid neighborhood of x. Let Dy, Dy € D, such that Dy N Dy # (). Set
Dy N Dy = {y}. Then, £, 1(y) := {s1,82,...,8m} is a subset of Sy,. Set D = Dy N Ds.
As Z C Zp (with Zp as in part (1)), the Z-thickening Dz of D is a connected affinoid

l,an

domain of Pgan intersecting the fiber IP’H(:E) at the single type 3 point y.

Let W; z,% = 1,2,...,n, be the connected components of fgl(DZ). By Proposi-
tion 4.5.6, we may assume that: (a) W; z N C, is connected for all ¢; (b) there is a bijective
correspondence between the connected components of f, 1(D4) and the points of 4 w),
given by Wi 7z — W,; z N Cy,i = 1,2,...,n; (c) for any connected affinoid neighborhood
7' C Z, the connected components of fZ_,l(DZ/) are Wy, 27 =W; zNCy,i=1,2,...,n.

For any s € f;'(y), let us denote by Wy 7 the (unique) connected component of
f71(Dz) containing s, (i.e. Ws 7 N Cy = {s}), so the connected components of f,'(Dz)
are W5 z,s € 7 H(y).

Let Ujz,5 =1,2,...,p (resp. V; z,l =1,2,...,q), be the connected components of
f7'(D1,z) (vesp. f5'(Daz)). Then,

P q

L JUiznViz = f7'(D12) N f7 (Daz) = f7'(Dz) = || Waz

=1i=1 s€fa ' (y)
For some j,1, let s;; € U; N'V. Since s;; € WSN,Z, we obtain that WSN,Z CU;jzNV, 7.
Consequently, for any j,1, Uj z NV, z = UsermVl Ws.z.

Let Z' C Z be any connected affinoid neighborhood of z. Considering that the con-
nected components of fg/l(D17z/) (resp. fg/l(D2,Z’)) are UjzNCyz, j=1,2,...,p (resp.
VizNCyz,l=1,2,...,q), the same properties remain true when replacing Z by Z’.

The same argument can be repeated for any two non-disjoint elements of the finite
cover D,. We have shown:

PROPOSITION 4.5.10. There exists a connected affinoid neighborhood Z; C Z, of x such

that for any connected affinoid neighborhood Z C Zy, for any two non-disjoint elements
Dy, Dy of D, with Dy N Dy =: {y},

f7'(DizNDez)= || Wz
s€fz ' (v)

where Wy 7 is a connected affinoid neighborhood of Cz, and for any s, Wy 7 N Cy = {s}.
Moreover, for any connected affinoid neighborhood Z' C Z, the connected components of
fZ_II(DLZ’ N D2,Z’) are Ws,Z’ = W57Z N CZ/, s € f;l(y)

COROLLARY 4.5.11. Let Z C Z; be a connected affinoid neighborhood of x. For any
UV elU,, UNV # 0 if and only if Uz N Vy # (.

PRrROOF. IfUzNVy # 0, then f(U)Nf (V) # ), so by Proposition 4.5.10, Uz N V; N C, # 0,
i.e. UNYV # (). The other direction is immediate. O

In order to invoke more easily the properties we have just shown for Uz, we introduce
the following:
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an

DEFINITION 4.5.12. Let D, be a nice cover of ]P’;_i(m). For a connected affinoid neigh-

borhood Z of z, a cover Uz of Cz constructed as in (1) and satisfying properties (2), (4),
will be called a Z-relative nice cover of Cz induced by D,.

Remark that U, := {UNC, : U € Uz} is a nice cover of C, induced by D,
as in Lemma 4.5.2. Also, for any connected affinoid neighborhood Z' C Z of =z,
Uy ={UNCy :U €Uy} is a Z'-relative nice cover of Cz induced by D,.

REMARK 4.5.13. We have shown that for any open cover V of C in C, there exists a
nice cover D, of IP’;{’?;) and a connected affinoid neighborhood Z; of z, such that the Z;-
relative nice cover Uz, of Cy, induced by D, refines V. This remains true when replacing

Z; by any connected affinoid neighborhood Z C Z; of x.

4.5.2. Patching over Relative Proper Curves. We now generalize the results of
Section 4.3, and obtain an application of patching on relative proper curves.

Throughout this part, let k£ be a non-trivially valued complete ultrametric field. We
continue working with Setting 4.4.1 and Notation 4.5.1. Moreover, we assume that dim S <
dimg Rso/|k*| ®z Q, so type 3 points exist in Cy.

As in the case of Phan

NOTATION 4.5.14. Let G be a connected rational linear algebraic group defined over
Fo,. Since Fp, = lim M (Cyz) (Corollary 4.4.16), there exists a connected affinoid neigh-
borhood Zg C Zj of z, such that G is a connected rational linear algebraic group over

A (Cz,,).
The following is an analogue of Proposition 3.2.2.

THEOREM 4.5.15. For any open cover ¥V of C, in C| there exists a connected affinoid
neighborhood Z C Zg of x and a nice cover D, of IP’;{’?;) such that:

e the Z-relative nice cover Uy of Cy induced by D, refines V;

o for any (gs)sesy, € Ilses,, G(Ao.s), there exists (gu)veu, € [lyey, G4 (Uz)),
satisfying: for any s € Sy,, if Us, Vs are the elements of U, containing s, if W 7
is the connected component of Us 7z N Vs 7z containing s, and Ty, (Us) = 0, then
gs € G(M (Ws,2)), and gs = gu ~g‘;1 in G(AM(Ws,z)).

The same remains true when replacing Z by any connected affinoid neighborhood Z' C Z

of x.

PROOF. Seeing as for any connected affinoid neighborhood Z of z, z € Int(Z), for any
u e Cy, uelInt(Cy), so Moy, = M.

By Remark 4.5.13, there exists a connected affinoid neighborhood Z C Zg of x and a
nice cover D, of }P’;{’?;) which induce a refinement Uy of V obtained as in construction (1)
and satisfying properties (2) and (4) of Subsection 4.5.1. Let U, denote the corresponding
nice cover of Cy, Ty, its associated parity function, and Sy, the intersection points of the
different elements of Uf,.

The proof is organized in three parts: in (a) we explore some properties of the neigh-
borhoods of s € Sy, ; in (b) we make the descent to P where the statement has already

been proven; in (c) we conclude by using pull-backs.

(a) The neighborhoods of s € Sy, . We will need the following:
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LEMMA 4.5.16. For s € Sy,, let Bs be a neighborhood of s in C. There exists a con-
nected affinoid neighborhood Zy of x such that for any s € Sy,, if Us, Vs are the elements
of Uy containing s, and Wy z, is the connected component of Us 7z, NV 7z, containing s,
then Wy 7z, C Bs. The neighborhood Z1 can be chosen such that the statement remains true
when replacing Z1 by any connected affinoid neighborhood Zo C Z1 of x.

Proor. Let Z C Z; be a connected affinoid neighborhood of z, where Z; is as in
Proposition 4.5.10. By Lemma 4.4.9, we may suppose that Bs N Sy, = {s} for any
s € Suy,-

Let y € Sp,. By Lemma 4.1.19, there exists an open neighborhood A, of y in ]P’;an,
such that fz_l(Ay) - |_|8€f;1(y) Bs. Let D1, Dy be the elements of D, containing y. By
[25, Lemma 1.1.2], there exists a connected affinoid neighborhood Z; C Z; of x, such that
Dl,Zl N DQ,Zl = (D1 N DQ)Zl - Ay. Then,

fz (D12, N Daz) € f;1(Ay) = fz'(A4)NCz € || B
s€fat(y)

Let Ws 7,8 € f; }(y), be the connected components of fZ_l1 (D1,7z, N Dy, z,), where for any
s € f1(y), s € W z, (see Proposition 4.5.10). Seeing as |_|s€f;1(y) Wz, C |_|S€f;1(y) Bs
and Bs N Sy, = {s} for any s € f;1(y), we obtain that W; z, C Bs.

Let Zy C Z; be any connected affinoid neighborhood of x. Seeing as the connected
components of fZ;l (D1,2,NDs z,) are Wy z, = Wi 2,NCyz,,s € f.1(y) (Proposition 4.5.10),
all of the above remains true when replacing Z; by Zs.

We obtain the statement by applying the above to all points of Sp, . (]

SUMMARY 1. Let (gs)ses,, € Hsesuw G(Ac ). For any s € Sy, , there exists a neigh-
borhood B; of s in C, such that g; € G(.#(Bs)). By Lemma 4.5.16, there exists an affinoid
neighborhood Z C Z; (with Z; as in Proposition 4.5.10) of x such that for any s € Sy, , if
Us, Vs are the elements of U, containing s, then W, z C By, where W 7 is the connected
component of Us z NV; 7 containing s. Consequently, g; € G(.# (W5, z)). Seeing as for any
connected affinoid neighborhood Z' C Z, Wy 7 = W, zNCy, the same remains true when
replacing Z by Z'.

(b) The descent to Phan, Let Z be as in Summary 1. The fi-
nite surjective morphism fz; : Cz — P;an induces a finite field extension
//(CZ)///Z(]P’EM). Set G' = R(%(CZ)/(%(PIZ,M])(G) - the Weil restriction of scalars

from #(Cyz) to A (]P’;an) of G. This is still a connected rational linear alge-
braic group (see [12, 7.6] or [565, Section 1]). For any y € Sp,, by the univer-
sal property of R, G/(%Plz,an,y) = G(%Plz,an7y D @l M (Cz)). By Propo§ition 4.4..12,
G,(%]Plz,an7y) =Ilsesr1(y) G(AMeys)- Let (gs)sesy, € 1les,, G(Acy,s). This determines
uniquely an element (hy)yes, € HyESDx GI(%IPlz,an7y).

By Theorem 4.3.13, there exists a connected affinoid neighborhood Z’ C Z of uz,
and (hp)pep, € [lpep, G'(#(Dz)), satistying: for any y € Sp,, there exist exactly
two Dy, D), € Dy containing y, hy € G'(A(Dyz ND, 5)), and if Tp,(Dy) = 0, then
hy = hp, - hp in G' (M (Dy 7 N Dy, 7)). The same expression remains true for any con-

y K
nected affinoid neighborhood Z” C Z’ of .
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For any D € Dy, let Uy z/,Us 7/, ..., Uy 7/, be the connected components of fZ_,l(DZ/).
The natural map .# (D) ® 4@ M(Cz) = 1y A (Ui z) (obtained by pull-backs
zZ

and multiplication), induces a map

G'(A(Dg)) = G(M(Dz)) ® 4 prmy M (Cz)) = [[G(zU;z)).
i=1
Let the image of hp € G'(.#(Dz/)) by this map be the element (g9¢,,90,,---,9u,) of
[I[i-, G(#(U; 7). Thus, for any Uz € Uz, we have an element gy € G(# (Ug)).

(¢) The decomposition. Finally, it remains to show that for any Uy, U; € U, such
that Ty, (Up) = 0, and s € Uy N Uy, if W 2 is the connected component of Uy z» N Uy z
containing s, then gs = gy, - 9(}11 in G(.# (W 7)), and that the same expression remains
true when replacing Z’ by any connected affinoid neighborhood Z” C 7’ of x.

Let y € Sp,. Let D1, Dy be the elements of D, containing y. For any s € f.(y),
let Wy 7/ denote the connected component of fZ_,1 (Dy,z2 N Dy z) containing s. There is
a natural bilinear map .# (D1 z» N Dy ) x #(Cz) — Hsef:;l(y) MWy z1), (a,b) — ab,
which induces an application .# (D z N Dy z1) D@L M (Cz) — Hsefgjl(y) MW7)
(this is “compatible” with the isomorphism %Plz,an’y ®'%(Plz,an)%(cz) — Hsefz—l(y) Mcy s,
i.e. they are both induced by multiplication). Finally, this gives rise to a morphism
G’(%(DLZ/ﬁDQ,Z/)) = G(///(DLZ/ﬂD27Z/)®///(PIZ,an)///(CZ)) - Hsefl._l(y) G(J/(stz/)),
which sends (the restriction of) Ay to (the restriction of) (gs),. )

Let Us,i = 1,2,...,n, (rtesp. Vj, j = 1,2,...,m) be the connected compo-
nents of f; (D) (resp. f,;1(D3)). For any i,j, set U; NV, = (st a=1,2,... N
if U; nV; = 0 for some 4,5, then we take [;; = 0). Remark that
iy = {séj ra=1,...,l;i=1,...,n,j=1,...,m}. For any i, j, o, let Wi 5 be the
connected component of U; z» NV} 7/ containing sid.

For any i (resp. j), there is a restriction map .#(U; z/) — [[}%; HZ;l MW i z)

(resp. A (Vjz) — 117, HZ;I %(ngjVZ,)). This induces a restriction map

H///(Ui,Z') — H MW i 5) | resp. H///(VJ}Z’) — H MW )

=1 i,j,Oé ]:1 ivjva
The following commutative diagram
M (Dr,2) @ gy prany M(Cz) —— M (D170 D2,20) @ yprony M(Cz) «—— M(Do,z1) @ yyptany M (Cz)

| | |

H?:l ///(Ui,Z’) Hi,j,a ///(stj,z/) H;n:1 ///(VJZ’)

gives rise to the following (where A1, A2, A3 are isomorphisms):
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G' (A (Dy,z1)) G'(AM D1,z N Dy 7)) G'(AM (D, 7))

b b b

G(M(D1,z2) @ gy prony M (Cz)) —— G(M (D120 N D2,71) @ yyprimy M(C2)) s G(M(Da,z1) ® yprany A (Cz))

l | !

H?:l G(///(Ui,Z’)) Hz’,j,a G(//Z(ng,z/)) H;nzl G(%(V}Z’))

The factorization result is now a consequence of the analoguous result for (h)yes,, and
(hp)Dpeu,, the relationship between Tp, and Ty, and the commutativity of the diagram
above. More precisely, hy, = hp, -hBl in G' (M (D zNDy 7)), and hy is sent to (95) s 1)

so for any sq’ € f1(y), 9,05 = gu, - gy 0 G(AM (W s 4.))-

Considering for any connected affinoid neighborhood Z” C Z’ of x, Wy zn = Wy z» N Cyn
for any s € Sy, and Uzr = Uz N Cyn for all U € U, the same expressions remain true
when replacing Z' by Z". O

4.6. The Local-Global Principles

Let k£ be a non-trivially valued ultrametric field. Throughout this entire section, we
keep working with the hypotheses of Setting 4.4.1, and the related notations we have intro-
duced (see Notation 4.5.1). As before, we also suppose that dim S < dimg R~o/|k*| ®z Q.

REMARK 4.6.1. Recall in particular that for Co, = Co(z,) X0(z,) Oz, its function field
was denoted by Fo,. It was shown in Corollary 4.4.16 that Fo, = lim .#(Cz), where
A denotes the sheaf of meromorphic functions on C, and the direct limit is taken with
respect to connected affinoid neighborhoods of x in S.

4.6.1. With respect to germs of meromorphic functions. We show here the
relative analogue of Theorem 3.2.11.

Recall that . denotes the fiber at = of the relative proper curve C — S, and it is a
normal irreducible projective H(z)-analytic curve.

THEOREM 4.6.2. Let H/Fo, be a variety and G/Fp, a connected rational linear alge-
braic group acting strongly transitively over H. Then,

H(Fo,) #0 < H(AMcu)#0 for all u € Cy.

PROOF. (=): By Corollary 4.4.16, Fp, = lim A (Cyz), where the limit is taken over
connected affinoid neighborhoods Z C Zj of x. If H(Fp,) # 0, there exists a connected
affinoid neighborhood Z C Zj of x, such that H(.#(Cz)) # 0. Seeing as x € Int(Z), we
obtain that for any v € Cp, v € Int(Cyz), so Mc,w = Mc. Consequently, there is a
restriction morphism .#(Cyz) — ¢, for any u € Cy, implying H(Ac,,) # 0.

(«<): Let us now assume H(#c,,) # 0 for all u € C,. This implies that for any u € Cy,
there exists an open neighborhood N;, of u in C, such that H(.#(N)))) # 0. Let V denote
the open cover (N))uec, of Cy in C.

By Remark 4.5.13, there exists a connected affinoid neighborhood Z C Zg of z (Zg as
in Notation 4.5.14), and a nice cover D, of PL’?;) such that they induce a refinement Uz of
V obtained as in construction (1) and satisfying properties (2) and (4) of Subsection 4.5.1.
Let U, denote the corresponding nice cover of Cy, Ty, its associated parity function, and
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Su, the intersection points of the different elements of U,. As Uy refines V, for any U € U,
and any connected affinoid neighborhood Z' C Z of x, H(.# (Uz)) # 0.

For any U € Uy, let us fix an element U’ € V for which Uy C U’ for any connected
affinoid neighborhood Z C Z; N Zg of = (it exists seeing as Uy refines V, and for any
Z' C 7" C Z; that are connected affinoid neighborhoods of z, Uz = Uzn N Cyr).

(a) Finding good neighborhoods of s € Sy,. Let s € Sy,. Let Us, Vs be the elements
of U, containing s. Then, s € UsNV; CU.NV!. Let Ny C U, N V! be a neighborhood of s
in Cy, such that Ny N Sy, = {s} (this is possible considering Lemma 4.4.9).

Let us fix a connected affinoid neighborhood Z C Z; N Zg of x. Remark that for
any y € Sp,, |_|s€f;1(y) N is an open neighborhood of f;!(y) in Cyz,, hence in Cyz. By

l,an

(25, Lemma I.1.2], there exists a connected neighborhood A, of y in P;™, such that
fz_l(Ay) - Usefgl(y) N;. By Lemma 4.1.19 (and restricting to a smaller Z if necessary),

1,an
H(x
containing only type 3 points in its boundary. By Corollary 4.1.24, we may assume that éo%
any connected affinoid neighborhood Z’ C Z of x, the Z'-thickening Az of A is connected.

Let B; 7, =1,2,...,m, be the connected components of fz_l(AZ). By Lemma 4.5.3,
for any i, Biz N Cy # 0 and fz(B;z) = Az, implying B; z N f;1(y) # 0 for all i.
By Proposition 4.5.6, we may assume that B; z N C, is connected for all 7, and for any
connected affinoid neighborhood Z’ C Z of z, the connected components of fg,l (Ag) are
Bi,Z’ = Bi,Z NCyz,i=1,2,...,n.

Seeing as | || Bi z C usefgl(y) N, for any i, there exists exactly one s; € f.!(y)
such that B; z C N;,, which implies that B; z N f; 1 (y) = {s;}. As £, 1(y) C |\, Biz and
Biz N f; 1 (y) # 0, there exists a bijective correspondence between the points of f, (y)
and the connected components of f, 1(AZ). For s € £ 1(y), let By 7 be the corresponding

we may assume that A, is the Z-thickening Az of a connected affinoid domain A of IP

connected component of f, 1(AZ) containing s, so that B, z C N,. Since the connected

components of fZ_,1 (Az) are Bs zNCyz,s € f;1(y), the same remains true when replacing
Z by Z'.

(b) The transitivity of the action. For s € Sy, we denote by Us, Vy be the elements
of U, containing s, and suppose Ty, (Us) = 0. Then, s € B,z C U, NV], with Bz
constructed as in part (a). Let hy, € H(.#(U.)) and hy, € H(.# (V)). The restrictions of
hu,, hy, (which we keep denoting by hy,, hy,) to .4 (Bs,z) induce elements of G(.# (Bs.z)),
and the same remains true for any connected affinoid neighborhood 7’ C Z.

LEMMA 4.6.3. There exists a connected affinoid neighborhood Zs C Z of x such that
there exists gs € G(M (Bs,z,)) satisfying hy, = gs-hy, in H(# (Bs z,)). For any connected
affinoid neighborhood Z' C Zg of x, hy, = gs - hy, in H(.# (Bs z')).

PROOF. Set L = lim .#(B;z), where the limit is taken with respect to the con-
nected affinoid neighborhoods Z C Zy of x. As shown in Proposition 4.5.6, we may
assume that B 7z is connected for all such Z C Zj, so that .#(B; z) are fields. Conse-
quently, L is a field. The restriction morphisms .#(Cz) — .# (Bs, z) induce an embedding
Fo, =lim M (Cyz) — L. Hence, G(L) acts transitively on H(L).

As hy,,hy, € H(L), there exists g € G(L), for which hy, = gs - hy, in H(L).
Consequently, there exists a connected affinoid neighborhood Z; of z, such that g, €
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G( A (Bs,z,)) and hy, = gs - hy, in H(#(Bs,z,)). The same remains true for any con-
nected affinoid neighborhood Z’ C Z, of x seeing as B, 7z = B, z, N Cyr. O

By Lemma 4.5.16, there exists a connected affinoid neighborhood Z; C Z of «x, such
that for any s € Sy,, if Wy z, is the connected component of U, 7z, NV 7, containing s,
then Wy 7z, C By z, so Wz C Bsz N Cyz = Bsz . Similarly, for any connected affi-
noid neighborhood Z" C Z;, W, z» C Bj z. Consequently, for any s € Sy,, the equality
hu, = gs - hy, of Lemma 4.6.3 is well defined in H(.# (W, z)) for any connected affinoid
neighborhood Z’ C ﬂsesux ZsNZq of x.

(¢) The patching. Let us fix a connected affinoid neighborhood Z C Z; N Zg of =z,
where Z; is as in Remark 4.5.13, and Zg as in Notation 4.5.14. Then, Uy is a cover of Cy,
so {U" € V:U € U,} is an open cover of Cz in C. For any U’ € V), let us fix an element
hy € H(.#(U")). This gives rise to an element of H(.# (Uz/)) for any connected affinoid
neighborhood Z’ C Z of x, which we will keep denoting by h .

By part (b), there exists (gs)seu, € [[se Sus G(Ac s) and a connected affinoid neigh-
borhood Zy C Z of z, such that for any s € U,, if Uy, V; are the elements of U, containing s,
and Ty, (Us) = 0, then g; € G(A (Ws,z,)), and hy, = gs - hy, in H(# (W z,)), where
W z, is the connected component of U, 7, NV 7, containing s. Moreover, the same remains
true when replacing Zs by any connected affinoid neighborhood Z’' C Z5 of x.

By Theorem 4.5.15, we may assume that Z, is such that there exists an element
(gv)veu, of [Iyey, G4 (Uz,)), such that for any non-disjoint U, V' € Uy with Ty, (U) = 0,
and any s € UNV, g5 = gu -g;l in G(A# (Ws,z,)), where Wy z, is the connected component
of Us z, NV z, containing s. Moreover, the same remains true when replacing Zs with any
connected affinoid neighborhood Z’' C Z5 of x.

For any U € Uy, set hy; = g[}l -hy € H( A (Ug,)). If U,V are two non-disjoint elements
of Uy, and Ty, (U) = 0, for any s € U NV, one obtains b}, = gy, hy = g;' (gugy' )hv =
g(}lgshv = gl}th = hy in H(# (W z,)), where W 7, is the connected component of
Uz, N Vz, containing s. Thus, h’U|U22m/Z2 = h/V|UZ2r1VZQ in HA# (Uz, N Vz,)).

To summarize, we have an affinoid cover Uz, of Cz,, and for any Uz, € Ugz,, an
element hy; € H(#(Ugz,)). Moreover, for any Ugz,,Vz, € Uz,, h/U|U22r1VZZ = hlVlUZ2mVZ2'

Consequently, there exists h € H(.#(Cyz,)) such that hy, = hy for any Uz, € Uyz,.
Seeing as there is an embedding .#(Cyz,) — Fp,, we obtain that H(Fp,) # 0. O

4.6.2. With respect to valuations. Recall the notations mentioned at the begin-
ning of this Section.

Since O, is a field, there is an embedding O, — H(x), and it induces a valuation
on O,. We will say that this is the valuation induced by x on O,.

DEFINITION 4.6.4. We denote by V(Fp,) the set of non-trivial rank one valuations v
on Fp,, such that either v|p, is the valuation induced by xz on O, or v)p, is trivial. Set
V!(Fo,) ={v € V(Fo,) : vjo, is the norm induced by z on O,}. For any v € V(Fo,), we
denote by Fp, , the completion of Fp, with respect to v.

REMARK 4.6.5. For any non-rigid point y € C, Oc, 4 is a field, so by Lemma 4.4.8,
Oc,y is a field, and there is an embedding O¢,y = #c,y — H(y). We endow ¢, with
the valuation induced from H(y).
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For any rigid point y € C, O¢, 4 is a dvr, so by Lemma 4.4.8, O¢c, is a dvr. We
endow .#c, with the corresponding discrete valuation.

PROPOSITION 4.6.6. There exists a surjective map val : Cp, — V(Fp,), y — vy, such
that: if y € Cy is not rigid, then vy o, induces the norm determined by x on Oy, and
Fo, v, = ./7/(;\,1/; if y € Cy 1s rigid, then vy is discrete, vyp, s trivial, and Fo, ,, < ./7/0\3/

Let Cyurig denote the set of mnon-rigid points on C,. The restriction
valic, ot Crnrig — V' (Fo,) is a bijection.

,nrig
Proor. The construction of the map val: Let y € Cp be a non-rigid point. Then,
Oc,,y is a field, and so is Ocy Consequently, ///Cy = H(y), so for any connected affinoid

neighborhood Z of =z, ///(C’Z) ///Cy, where the completion of .Z(Cyz) is taken with
respect to the norm induced by the embedding .#(Cz) — H(y). Considering Fop, =

hﬂz M(Cyz) — Mcy, and as ////(C\’Z) = /%C\y for any connected affinoid neighborhood

Z C Zy of z, we obtain that Fo, ,, = //7@2 The fact that vye, is the norm determined
by x on O, is a direct consequence of the fact that y € C,.

Let y € C; be a rigid point. Then, O¢, , is a discrete valuation ring, and by Lemma
4.4.8,s0is Oc,y. As m(y) = x, this induces a morphism of local rings O, — Oc¢ . Further-
more, since O, is a field, O, — C’) Cu As seen above, there is an embedding Fp, — ¢, .
Let us endow .#c, with the discrete valuation arising from the dvr Oc¢ . This induces
a discrete valuation vy in Fp,. That vy, is trivial is immediate from the embedding

Oy — Oé’y. Clearly, this gives rise to an embedding Fp, v, < ///lc\y

The map valc, . ¢ It remains to show that the restriction valic, ..+ Cynrig — V'(Fo,)
is bijective. Let v € V/(Fp,). Then, since O < Fo,, there is an embedding H(z) < Fo, ,.
This implies that there is a morphism Fp, ®o, H(x) — Fo, ». Let C28 denote the normal
irreducible projective algebraic curve over H(x) whose Berkovich analytification is C,. Its
function ﬁeld is .# (C;) by [6, Proposition 3.6.2].

Let 2/ denote the image of z via the morphism Zy — Spec O(Zy), where Zj is as in
Setting 4.4.1. Using Notation 4.4.4, by Corollary 1.6.17, C;. = (Cozy)x(z') Xx(ar) H(x))™,
so C2l8 = Co(zo)k(z') Xr(zr) H(x). Seeing as O is a field, we have an embedding x(z’) —
Oy, 50 C28 = Cp. x o, H(x). This means that its function field is . (Cy) = Fo, ®0, H(z).

Consequently, there are embeddings Fo, — #(C,) — Fo, v, implying #(C,)" =

Fo, v, where ///(C’ )V is the completion of .# (C,) with respect to v. By Proposition 3.2.14,

there exists a unique (implying both injectivity and surjectivity of val|c, nrig) non-rigid
point y € Cy such that '%C\y =H(y) = %cjy = Fo, ». Clearly, v = val(y).
O

COROLLARY 4.6.7. With the notation of Theorem 4.6.2, if char k = 0 or H is smooth,
then:
H(F@I) 75 ) — H(FOI,U) 75 0 for all v € V(F@z).

PROOF. (=): Seeing as Fp, embeds in Fp, , for all v € V(Fp,), this direction is
immediate.

(«<): We remark that Fp, is perfect if and only if char k = 0. Suppose H(Fo, ) # 0
for all v € V(Fo,). By Proposition 4.6.6, for any y € C;, there exists v € V(Fp,), such
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that Fo, ., C @ Hence, H(/7lc\y) # () for all y € C,. If y is a non-rigid point of C,,
then O¢y = A, is a Henselian field by [4, Theorem 2.3.3]. If y is rigid point, then O¢,
is a dvr that is Henselian, so by [4, Proposition 2.4.3], .#c, = Frac Oc, is Henselian. By
Lemma 3.2.16, H(A#c,) # 0 for all y € C,. Finally, by Theorem 4.6.2, this implies that
H(Fo,) 0. 0

4.6.3. Summary of results. Recall that (k,|-|) denotes a complete non-trivially
valued ultrametric field. As usual, we denote by .# the sheaf of meromorphic functions.
Let us summarize the main results we have shown:

THEOREM 4.6.8. Let S,C' be good k-analytic spaces such that S is normal. Suppose
dim S < dimg R~o/|k*| ®z Q. Suppose there ezists a surjective morphism w: C — S that
makes C' a proper flat relative analytic curve. Let x € S be such that O, is a field. Set
Cp=n"1(2).

Assume there exists a connected affinoid neighboorhood Zy of x such that all the fibers
of ™ on Zy are normal irreducible projective analytic curves. Suppose that Cyz, := 7~ (Zy)
s normal, and Cyz, — Zy is algebraic, i.e. the analytification of an algebraic morphism
Co(zy) — Spec O(Zp). Set Co, = Cozy) X0(2) Ox- Let Fo, be the function field of Co, .

For any connected affinoid neighborhood Z C Zy of x, let us denote by Cyz the analytic
space C x5 Z. Then, Fo, = lim M (Cyz).

Let G/Fo, be a connected rational linear algebraic group acting strongly transitively
on a variety H/Fo,. The following local-global principles hold:

o H(Fp,) # 0 <= H(AMcy) # 0 for all u € Cy;
e if char k =0 or H is smooth,

H(F(’)gc) 75 ) — H(Fomﬂ,) 75 0 for all v € V(F@x),
where V(Fp,) is given as in Definition 4.6.4.

The theorem above tells us that there is a local-global principle in the neighborhood
of certain fibers of relative proper analytic curves. More generally, we have shown that
patching is possible in the neighborhood of said fibers. Note that the statement of The-
orem 4.6.8 is a local-global principle over the germs of meromorphic functions of a fixed
fiber.

Considering Subsection 4.4.1 which provides an example of Setting 4.4.1, we also obtain
the following theorem, which is a generalization of Corollary 3.2.18.

THEOREM 4.6.9. Let S be a good mnormal k-analytic space such that
dim S < dimgRso/|k*| ®7 Q. Let € S be such that Oy is a field. Let Co, be a
smooth geometrically irreducible projective algebraic curve over O. Let Fp, denote the
function field of Co, .

Let G/Fp, be a connected rational linear algebraic group acting strongly transitively
on a variety H/Fo,. Then, if char k =0 or H is smooth:

H(Fo,) #0 <= H(Fo,.) #0 for allv € V(Fo,),
where V(Fp,) is given as in Definition 4.6.4.

REMARK 4.6.10. Just as in Chapter 3, if char k # 2, the two theorems above can be
applied to quadratic forms.
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4.7. Examples of fields O,

To illustrate on which types of fields our local-global principles of this chapter can be
applied, we calculate a few examples of local rings O, that are fields. To do this, the key
is to find a “good” basis of neighborhoods of the point x.

We denote by (k,|-|) a complete ultrametric field such that dimg R~o/|k*| ®z Q = oo
(this condition is sufficient to guarantee the existence of type 3 points on the fiber of z).
In all of the following examples, x is chosen such that O, is a field.

Example 1. Suppose S = M(k), where M( - ) denotes the Berkovich spectrum.
Then, if S = {z}, we obtain that O, = k, so a special case of Theorem 4.6.2 is Theo-
rem 3.2.10.

Example 2. Let np, € A,lg’an be a type 3 point, meaning r ¢ +/|k*|. We can de-
duce from [20, 3.4.19.3], that the family of sets Ly, ,, == {y € Ay™ : r < [T, <

r2},0 < r1 < 1 < rg, forms a basis of neighborhoods of 7, in A,lc’an. Considering O(L;, r,) =
D onez anT™ 2 ap € k,lim, | |ag|ry = 0,1lim,, o |a,|r? = 0}, we obtain that

0, = { E apT" :ap € k,Iry,r9 € Rug, st rp <7 <1y, lim |ay|ry =0, lim |a,|r] = O}
7 n—-+00 n——oo
ne

The norm that x induces on O, is the following: |, anT"|; = max,ez |an|r".

NOTATION 4.7.1. For a € k and r € R>0, let us denote by By (a,r) the closed disc
in k centered at a and of radius r. Also, for P € k[T] irreducible, we denote D (P,r) :=
{y € A 1 |P|, < r} (resp. DY(P,r) := {y € A™ : |P|, < r}) the closed (resp. open)
virtual disc centered at npo and of radius r. In particular, if there exists o € k such that
P(T) =T — o, we will simply write Dy(a,r) (resp. D} (c,r)). When there is no risk of
ambiguity, we will forget the index k.

Example 3. Suppose k is algebraically closed. Let x = nr_,, € A,lg’an be a type 2
point, meaning r € |k*|. By [20, 3.4.19.2] that « has a basis of neighborhoods of the form
AR.a; i1 = D(a, R)\ | |;c; D°(, i), where I is a finite set, 0 < r; <rforalli € I, R > r,
a; € B(a,r), and for any 4, j € I,i # j, we have |a; — j| = r. The subset Ag o, r,1 is an
affinoid domain in Al’an. By [24, Proposition 2.2.6],

Qn g
O(Apg,
FRERIED ) pIT. e
n>0 zel n=0
Unyiran € k, lim |ap;|r;" =0,i€ 1, lim |a,|R" =0}.

n——+00 n—-+00
Consequently, f € O, if and only if there exist a finite set I C N, positive real numbers
R,r;,i € I, such that r; < r < R, and elements o; € B(a,7), such that |a; — a;| = for
any i,j € 1,1 # j, satisfying f € O(AR,a,r;,1)- The norm induced by x is

a
2:} : n,i +§ an(T = max (]ao\ |anilr™", lan|r™).
_al n>0,5el

n>0 ’LEI n=0
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Example 4. Suppose k is algebraically closed. Let z € Ai’an be a type 4 point,
meaning it is determined by a strictly decreasing family of closed discs Z := (B(ai, r;))ien
in k such that (), B(a;, ;) = 0. Then, for any Q(T') € k[T], |Q|s = inf; |Q|y,, .- Let us
remark that for any ¢ € N, z € D(a;,r;). Moreover, x € D°(a;,r;). To see the last part,
assume, by contradiction, that there exists j € N such that |T"— a;|, = r;. Then, for any
i > j, max(|a; — aj[,m;) = |T — ajly,. . = 7j, which is impossible seeing as Z is strictly
decreasing.

By [20, 3.4.19.1], the elements of 2’ := (D(a;,7)i));en form a basis of neighborhoods
of x. Finally, for any f € O,, there exists i’ € N such that f € O(D(a;,r;)), meaning
[ =2 nenbn(T —ay)", where b, € k for all n, and lim,, . |bs|r} = 0. Then, for any
i >, f € O(D(aj,r;)). Finally, the norm induced by z is |f|; = infisi [ fly,, .-

Example 5. Let us fix an algebraic closure k of k. Let = € A,lg’an be a non-rigid type 1

point. This means that there exists an element o € k\k, such that the image of 7,0 with
respect to the open surjective morphism ¢ : A%’an — A}C’an is z. There exists a sequence

(a;)ien in k such that lim; s oo ; = a. Set r; = |a — ag|. Then, in k, the point Nev,0
is determined by the strictly decreasing family of closed discs (Bi(ai,ri))ieN, meaning
for any Q € k[T, |Qly,, = inf; @l .,- As in Example 4, by [20, 3.4.19.1], the family
(]D%(ai, 7i))ien forms a family of neighborhoods of 7,0 in AL

Seeing as ¢ is an open morphism, (cp(]D)i(ai, 7;)))ien forms a basis of neighborhoods of
the point z in A;*. For any i, let P; € Q,[T] denote the minimal polynomial of o; over k.
Then, @(Di(ai,ri)) = Di(P;, s;), where s; = HPi(,B)zo max(|a; — 5], 7)) (Lemma 1.8.22).

Finally, for any f € Oy, there exists iy € N, such that f € O(Dg(P;,, si;)). As seen
in Lemma 4.2.8, O(Dg(P;;,s;;)) is isomorphic to O(Dx(0, s;,))[S]/(Fi;(S) — T), where
O1(0,5i,)) = {3 ey baT™ < b € b, ity o [Ba]s?, = 0},

Remark that for any ¢ > iy, f € O(Dg (P, s;)). The norm induced by  on O, is given
as follows: |fly = infisi, |flyp, ., -

Example 6. Let S,T denote the coordinates of Ai’an, and ¢ : Ai’an — A,lg’an the
projection to A,lc’an with coordinate T. Let s,t € Rsq be such that t ¢ \/|[k*| and s &
VIHr)*]. Let @ € A2™ denote a point such that |T|, = t,|S|, = s. Then, z €
¢~ (nr4), and considering the condition on s, z is a type 3 point on the fiber of 7. In
particular, z is the only point of Ai’an that satisfies |T'|, =t,|S|, = s.

By Lemma 4.1.19 and Example 2, a basis of neighborhoods of z is given by {y € A}C’an :
t1 < |T|y < ta,81 < |S]y < s2}, where 0 <ty <t <ty, 0<s1 <s < sy Consequently,

O, = { Z am,nTmSn D amn € k,3t1,ta,51,50 € Ry, s.t. t1 <t <tg,81 <8< 83,
mne”

: m.n __ : m._n __
L |amn|t3'ss =0, i |amn[t]"sT = 0}

The norm on O, is given by: Al ™S™|, = max a tmsn,
z 18§ y m,neZ “m,n x m,neZ |Am,n

By iterating the above, we can calculate the local ring of any point x € Aﬁ;an,l e N,
satisfying similar properties.
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RESUME. Field patching, introduced by Harbater and Hartmann in [33], and extended by
the aforementioned authors and Krashen in [34], has recently seen numerous applications.
We present an extension of this technique to the setting of Berkovich analytic geometry
and applications to the local-global principle.

In particular, we show that this adaptation of patching can be applied to Berkovich
analytic curves, and as a consequence obtain local-global principles over function fields
of curves defined over complete ultrametric fields. Because of the connection between
the points of a Berkovich analytic curve and the valuations that its function field can be
endowed with, one of these local-global principles is given with respect to completions,
thus evoking some similarity with more classical versions. As an application, we obtain
local-global principles for quadratic forms and results on the u-invariant. These findings
generalize those of [34].

As a starting point for higher-dimensional patching in the Berkovich setting, we show
that this technique is applicable around certain fibers of a relative Berkovich analytic
curve. As a consequence, we prove a local-global principle over the germs of meromorphic
functions on said fibers. By showing that said germs of meromorphic functions are
algebraic, we also obtain local-global principles over function fields of algebraic curves
defined over a larger class of ultrametric fields.

RESUME. Recollement sur les espaces de Berkovich et principe local-global.
Le recollement sur les corps, introduit par Harbater et Hartmann dans [33], et étendu
par ces auteurs et Krashen dans [34], a récemment trouvé de nombreuses applications.
Nous présentons ici une extension de cette technique au cadre de la géométrie analytique
de Berkovich et des applications au principe local-global.

Nous montrons que cette adaptation du recollement peut s’appliquer aux courbes
analytiques de Berkovich, et par conséquent obtenons des principes locaux-globaux sur
les corps de fonctions de courbes définies sur des corps ultramétriques complets. Grace
a la connexion entre les points d’une courbe analytique de Berkovich et les valuations
dont on peut munir son corps de fonctions, nous obtenons un principe local-global par
rapport a des complétés du corps de fonctions considéré, ce qui présente une ressemblance
avec des versions plus classiques. En application, nous établissons des principes locaux-
globaux dans le cas plus précis des formes quadratiques et en déduisons des bornes sur
lu-invariant de certains corps. Nos résultats généralisent ceux de [34].

Comme point de départ pour le recollement en dimension supérieure dans un cadre
d’espaces de Berkovich, nous montrons que cette technique peut s’appliquer autour de
certaines fibres d’une courbe analytique relative. Nous I'utilisons ensuite pour démontrer
un principe local-global sur les germes des fonctions méromorphes sur ces fibres. En
montrant que ces germes de fonctions méromorphes sont algébriques, nous obtenons
aussi des principes locaux-globaux sur les corps de fonctions des courbes algébriques
définies sur une famille plus vaste de corps ultramétriques.



