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Abstract. Field patching, introduced by Harbater and Hartmann in [33], and extended
by the aforementioned authors and Krashen in [34], has recently seen numerous appli-
cations. We present an extension of this technique to the setting of Berkovich analytic
geometry and applications to the local-global principle.

In particular, we show that this adaptation of patching can be applied to Berkovich
analytic curves, and as a consequence obtain local-global principles over function fields
of curves defined over complete ultrametric fields. Because of the connection between
the points of a Berkovich analytic curve and the valuations that its function field can be
endowed with, one of these local-global principles is given with respect to completions,
thus evoking some similarity with more classical versions. As an application, we obtain
local-global principles for quadratic forms and results on the u-invariant. These findings
generalize those of [34].

As a starting point for higher-dimensional patching in the Berkovich setting, we show
that this technique is applicable around certain fibers of a relative Berkovich analytic
curve. As a consequence, we prove a local-global principle over the germs of meromorphic
functions on said fibers. By showing that said germs of meromorphic functions are
algebraic, we also obtain local-global principles over function fields of algebraic curves
defined over a larger class of ultrametric fields.

Résumé. Recollement sur les espaces de Berkovich et principe local-global.

Le recollement sur les corps, introduit par Harbater et Hartmann dans [33], et étendu
par ces auteurs et Krashen dans [34], a récemment trouvé de nombreuses applications.
Nous présentons ici une extension de cette technique au cadre de la géométrie analytique
de Berkovich et des applications au principe local-global.

Nous montrons que cette adaptation du recollement peut s’appliquer aux courbes
analytiques de Berkovich, et par conséquent obtenons des principes locaux-globaux sur
les corps de fonctions de courbes définies sur des corps ultramétriques complets. Grâce
à la connexion entre les points d’une courbe analytique de Berkovich et les valuations
dont on peut munir son corps de fonctions, nous obtenons un principe local-global par
rapport à des complétés du corps de fonctions considéré, ce qui présente une ressemblance
avec des versions plus classiques. En application, nous établissons des principes locaux-
globaux dans le cas plus précis des formes quadratiques et en déduisons des bornes sur
l’u-invariant de certains corps. Nos résultats généralisent ceux de [34].

Comme point de départ pour le recollement en dimension supérieure dans un cadre
d’espaces de Berkovich, nous montrons que cette technique peut s’appliquer autour de
certaines fibres d’une courbe analytique relative. Nous l’utilisons ensuite pour démontrer
un principe local-global sur les germes des fonctions méromorphes sur ces fibres. En
montrant que ces germes de fonctions méromorphes sont algébriques, nous obtenons
aussi des principes locaux-globaux sur les corps de fonctions des courbes algébriques
définies sur une famille plus vaste de corps ultramétriques.
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Introduction

In this thesis we use the language of Berkovich’s theory to prove results on the local-
global principle as well as applications to quadratic forms and a related invariant. We
do this by using the crucial tool of patching. This technique has seen many applications,
and has recently become the main instrument in an ongoing series of papers. We extend
patching from an algebraic setting to one of Berkovich spaces.

With the Berkovich point of view, patching becomes of highly geometric nature: it
can be interpreted as the sheaf-theoretical gluing of meromorphic functions, thus providing
clarity into the overall strategy of proof. This is one of the reasons why we believe this
approach to be a nice framework for further generalizations.

More precisely, we show that patching is applicable to Berkovich analytic curves, and
thus obtain a local-global principle over function fields of curves, generalizing the results
of the founding paper [34]. We recall that a variety X defined over a field F is said to
satisfy the local-global principle if there exists a family (Fi)i of fields containing F (from
now on referred to as overfields) such that X(F ) 6= ∅ if and only if X(Fi) 6= ∅ for all i. We
provide two possible families of overfields in this setting: one appearing quite naturally
in Berkovich’s theory (germs of meromorphic functions), and one of more classical nature
consisting of completions of the function field. The connection between the two is a
consequence of the connection between the points of a Berkovich analytic curve and the
valuations that its function field can be endowed with, which we make precise.

Said local-global principle is applicable to quadratic forms. This, combined with the
nice algebraic properties of local rings of Berkovich analytic curves, allows us to obtain
applications on the u-invariant.

As a first step towards higher dimensional versions of this technique, we show that
patching is possible around certain fibers of a relative Berkovich analytic curve. This
way, we obtain a local-global principle over the germs of meromorphic functions on said
fibers, which is applicable to quadratic forms. As before, there are two possible families of
overfields: the germs of meromorphic functions on the points of the fiber, and completions
of the field of meromorphic germs. In particular, we show that the latter are algebraic.

By using the theory of projective limits of schemes, we also obtain a local-global
principle over function fields of algebraic curves over a larger class of ultrametric fields
(which aren’t necessarily complete).

Presentation of the major directions

Local-global principle. The local-global principle first appeared in the ’20s under
the name Hasse-Minkowski principle, which states that a rational quadratic form has non-
trivial solutions over Q if and only if it has non-trivial solutions over R and Qp for any
prime number p. Modern versions deal with varieties defined over a field K, which have

i
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a K-rational point if and only if they have Ki rational points for all i, where (Ki)i is a
family of overfields of K.

The local-global principle does not always hold. Amongst the first counter-examples
was one given by Reichardt and Lind, who showed that the equation 2Y 2 = X4 − 17Z4

has solutions over all the completions of Q, but no rational solutions. There have since
been found many other counter-examples. Determining for which fields, overfields, and
varieties there is a local-global principle and studying the obstructions to this property
has been an active area of research for decades (see for example [9] and [51]).

The development of arithmetic geometry brought powerful new techniques to the pic-
ture, causing the main focus to shift upon questions that have some geometrical meaning.
More precisely, using the notation above, K is taken to be the function field of some al-
gebraic variety, and the family of overfields are interpreted in a geometrical setting. So
far, known results cover only special cases, with the majority concerning curves (see e.g.
[34] and [39]). Moreover, typically, the family of overfields is one of completions of K
with respect to discrete valuations (which can be read from a “fine enough” model of the
curve).

A particular class of varieties that behaves well with respect to the local-global principle
is the class of homogeneous varieties over certain linear algebraic groups (e.g. see [16] for
a survey). We recall that given a field F , a variety X/F is said to be homogeneous over
a linear algebraic group G/F if G acts on X and the group G(F ) acts transitively on
the set X(F ), where F is an algebraic closure of F. For example, it was shown in [9]
that, under certain additional conditions, the only obstruction to a local-global principle
for homogeneous varieties is the so-called Brauer-Manin obstruction introduced by Manin
in [51].

A new approach to local-global principles for homogeneous varieties over function
fields of curves defined over complete discretely valued fields was introduced by Harbater,
Hartmann, and Krashen in [34] via patching.

Patching. Patching techniques were introduced as one of the main approaches to
inverse Galois theory. Originally of purely formal and geometric nature, this method
provided a way to obtain a global Galois covering from local ones, see for example [32].
This is how the inverse Galois problem for Qp(T ), where p is a prime number, was shown
to have an affirmative answer. Formal patching was translated to rigid geometry by Liu
in [50]. Another example is [61], where Poineau used patching on analytic curves in the
Berkovich sense and consequently generalized results shown by Harbater in [30] and [31].

In [33], Harbater and Hartmann combined formal patching with algebraic patching
in the sense of [40], and this way extended the technique to structures over fields, while
constructing a setup of heavily algebraic flavor. Since then, patching over fields has seen
many applications and is the crucial ingredient in an ongoing series of papers (see e.g.
[34], [35], [39], [36], [17]).

One of the main points of focus of these works are local-global principles over func-
tion fields of algebraic curves defined over complete discretely valued fields. Namely, it
was this form of patching that provided a new approach to the local-global principles of
homogeneous varieties over certain linear algebraic groups (for example see [34] and [39]).

In particular, in [34], Harbater, Hartmann, and Krashen (from now on referred to as
HHK) obtained local-global principles for quadratic forms and results on the u-invariant,
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generalizing those of Parimala and Suresh [58], which were proven through different meth-
ods. Another source for results on the u-invariant is Leep’s article [47]. In [34], the authors
apply the obtained local-global principles also to central simple algebras.

Let us briefly describe the overfields appearing in the local-global principles proven
in [34]. Let k be a complete discretely valued field, and k◦ the corresponding valuation
ring. Let π denote a uniformizer of k◦. Let C/k be an algebraic curve. Let C be a
normal irreducible projective flat model of C over k◦ with special fiber Cs. Let F denote
the function field of C (and hence of C). For any point P ∈ Cs, set RP = OC,P . We

denote by R̂P the completion of the local ring RP with respect to its maximal ideal.

Set FP = Frac R̂P . Let U be a strict subset of an irreducible component of Cs. Set
RU =

⋂
P∈U RP . We denote by R̂U the π-adic completion of RU . Set FU = Frac R̂U .

Let P be any finite set of closed points of Cs containing all points at which the different
irreducible components of Cs intersect. Let U be the set of connected components of Cs\P.
Then, the overfields in question are {FP , FU : P ∈ P, U ∈ U}. More precisely, HHK show
that for a variety X/F satisfying certain conditions:

X(F ) 6= ∅ ⇐⇒ X(FP ) 6= ∅, X(FU ) 6= ∅ for all P ∈ P, U ∈ U .
See subsection 3.3.2 for a somewhat more detailed account of the local-global principle
of [34].

For a survey on the historic development of different variants of patching, see [37]. We
have adapted field patching to the setting of Berkovich spaces.

Berkovich spaces. Tate’s study of elliptic curves with bad reduction over Qp in the
’60s led to him developing the first approach to non-Archimedean analytic geometry, the
so-called rigid geometry ([63]). Since Qp is totally disconnected as a topological space,
the naive approach of defining analytic functions to be locally given by convergent power
series does not work because we wind up with too many analytic functions. An example
of this is the function f : Qp → R, given by

f(x) =

{
0, if |x|p 6 1

1, otherwise

which would be analytic. In order to avoid this issue, Tate allows only certain opens and
certain covers. Consequently, rigid spaces don’t possess a genuine topology, but only a
Grothendieck one.

Since then, there have been several other approaches to non-Archimedean analytic
geometry: Raynaud’s theory of formal models, Berkovich spaces, and Huber’s adic geom-
etry.

Developped in the late ’80s (see [6]), Berkovich’s approach was originally motivated by
questions in spectral theory. Roughly speaking, Berkovich spaces are obtained by adding
points to rigid spaces. This way one obtains topological spaces with nice properties such
as local compactness and local arcwise-connectedness. As a consequence, these objects
can be thought of geometrically. As opposed to rigid geometry, Berkovich spaces can also
be defined over trivially valued fields.

An analogy can be drawn with the classical complex setting: analytic functions over
certain analytic domains are convergent power series, there is a maximum modulus prin-
ciple, a principle of analytic continuation, and GAGA-type theorems. There is also an
analogy with algebraic geometry in the sense that Berkovich spaces, just like schemes,
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have building blocks. The latter are called affinoid spaces. The main difference between
these two settings (the algebraic and Berkovich analytic one) is that the building blocks
of Berkovich spaces are compact, meaning also Hausdorff, so not always open. This is also
a source of many difficulties in Berkovich’s theory, seeing as there isn’t a basis of open
neighborhoods for which the sheaf of analytic functions is easy to describe.

Since its appearance, the theory of Berkovich spaces has been extended in several
directions (e.g. Berkovich spaces over Z [59]), and many applications have been obtained,
most of which, thanks to the GAGA theorems, to arithmetic geometry. These include:
dynamical systems, the theory of p-adic dessins d’enfants, Bruhat-Tits buildings, inverse
Galois theory, etc. See [23] and [19] for more. Recently, connections have been made
between Berkovich’s theory and other domains such as tropical geometry (e.g. [2]) and
model theory (e.g. [38]).

Organization of the manuscript

The first chapter is dedicated to an introduction of the theory of Berkovich spaces.
In Chapter 2, field patching is extended to a general formal setup that corresponds to
Berkovich spaces. Chapter 3 deals with patching over Berkovich analytic curves and
the corresponding applications to the local-global principle; its contents gave rise to an
article titled “Patching over Berkovich Curves and Quadratic Forms”, see [54]. Lastly,
in Chapter 4, we show patching to be possible around certain fibers of relative analytic
curves and obtain local-global principles as a consequence; the contents of this chapter
will be the topic of an upcoming paper.

Here is a more detailed description of the organization of this manuscript.

Chapter 1: Introduction to Berkovich Spaces.

This chapter is aimed at giving an introduction to the theory of Berkovich spaces with
the purpose of making the manuscript more self-contained. We give an overview of the
construction of these objects starting from the basic algebraic setup on which it relies.
The latter is a generalization by Berkovich of the algebraic counterpart of Tate’s rigid
geometry (more precisely, a generalization of the theory of Tate affinoid algebras).

A point of particular focus is the case of analytic curves, which is, arguably, the class
of Berkovich spaces that is best understood, and also of most interest to us. We show
some properties for them that will be needed for the next chapters. In particular, their
graph-like structure gives rise to nice topological properties, which we use throughout the
manuscript.

Another point of focus is the sheaf of meromorphic functions, which is crucial for
the work presented in this manuscript seeing as patching is interpreted as the gluing of
meromorphic functions over certain Berkovich spaces. Its construction is similar to the
sheaf of meromorphic functions for schemes and so are the properties it satisfies.

We also provide a detailed description of a typical example of a Berkovich space, the
analytic affine line A1,an, and its points (see section 1.2 and subsection 1.8.4). For a

complete ultrametric field (k, | · |), A1,an
k is the set of all the multiplicative semi-norms on

k[T ] extending the norm of k. In particular, k is embedded in A1,an
k via a 7→ | · |a, where for

any polynomial P (T ) ∈ k[T ], |P (T )|a := |P (a)|. The set A1,an
k is endowed with a topology

of pointwise convergence.
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The analytic affine line has a tree-like structure with infinite branching. The following
is an illustration of this Berkovich analytic space. By adding an “∞” point to the tree,
we obtain the analytic projective line P1,an

k . The k-points are situated in the extremities
of the tree, or in other words, they are leaves of the tree. Of particular importance to us
will be the non-extremal points where there is no branching (an example of such a point
is given by x in Figure 1).

Figure 1: A1,an
k

x

Most of the results of this chapter are well-known in the field and we only provide
references for them. Others are more specialized and, to our knowledge, not found in the
litterature, so we give proofs.

Chapter 2: Patching.

The general abstract setup for patching is the following.
Let the diagram below be a tower of fields. Suppose we are given algebraic structures

A1 and A2 over F1 and F2, respectively. The goal is to find conditions under which they
induce an algebraic structure of the same kind over F1 ∩ F2. Typically, these algebraic
structures are F1, resp. F2-rational points of some variety defined over the smaller field F.
Another example would be zero-cycles of degree one.

(1)

F

F1 ∩ F2

F1 F2

F0
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We focus on the case where these algebraic structures are rational points of some vari-
ety H/F. If A1 and A2 are compatible over F0, then they lift to F1 ∩ F2. However, if this
is not the case, then we can’t in general lift them to F1 ∩F2. One way of approaching this
problem is to find a way to render the rational points compatible on F0.

Ideally, there exists a linear algebraic group G/F acting on H in such a way that these
rational points (or more generally, algebraic structures) can always be altered just enough
via the action of G in order to be made compatible over F0. To make this work, we need
not only a special action of G on H (which we give in Definition 3.2.1), but also that G
itself satisfy certain conditions. The latter is the point of interest of this chapter; let us
now make it more precise.

Let G/F be a linear algebraic group. The condition we need for the setup above is the
following: for any g ∈ G(F0), there exist gi ∈ G(Fi), i = 1, 2, such that g = g1 ·g2 in G(F0).
To see this, suppose g is such that g · A2 = A1 in H(F0). Set A′

1 := g−1
1 · A1 ∈ H(F1)

and A′
2 := g2 · A2 ∈ H(F2). Then, by construction, A′

1 = A′
2 in H(F0), so they lift to

F1 ∩ F2. The existence of an element g ∈ G(F0) satisfying g · A2 = A1 is at the source of
a hypothesis we will adopt on the action of G over H (see Definition 3.2.1).

From now on, we will refer to the “matrix decomposition” property of the paragraph
above as patching. The following class of linear algebraic groups will be shown to satisfy
patching (with a certain choice of fields appearing in the tower above).

Definition. A linear algebraic group G/F is said to be rational (over F ) if there exists
a Zariski open subset of G isomorphic to a Zariski open subset of AnF for some n ∈ N.

We fix a general formal setup (Setting 2.1.1) over which we show the main result
of this chapter (see Theorem 2.1.10). The latter is fundamental to patching. It is a
generalization of [34, Theorem 3.2]. The main difference is that the objects considered in
loc.cit. are defined over a complete discretely valued field, whereas we don’t require the
discretness assumption. A rather direct consequence is that patching is true in a Zariski
neighborhood of the identity of G. The proof (and statement) of Theorem 2.1.10 is of very
technical nature, and follows the main lines of the proof of [34, Theorem 3.2].

The interest of the formal setting over which we work is that it is realised in a natural
(and very geometrical) way in Berkovich’s theory.

In particular, we show that in a special case of Setting 2.1.1, which is realised by
Berkovich analytic curves, Theorem 2.1.10 can be strengthened to show that patching
is true in G (Theorem 2.2.3). This is the fundamental tool to showing that patching is
possible over Berkovich analytic curves.

Chapter 3: Patching over Berkovich Curves and Quadratic Forms.

In this chapter we show that patching is possible over Berkovich analytic curves and that
it can be interpreted as the gluing of meromorphic functions. More concretely, we show
that the fields Fi of diagram (1) can be chosen to be fields of meromorphic functions of
certain parts (called analytic domains) of an analytic curve. We then use this to prove
a local-global principle and provide applications to quadratic forms and the u-invariant.
The results we obtain generalize those of [34].

Before presenting the main results of this chapter, let us introduce some terminology.

Definition (HHK). Let K be a field. Let X be a K-variety, and G a linear algebraic
group over K. We say that G acts strongly transitively on X if G acts on X, and for any
field extension L/K, either X(L) = ∅ or G(L) acts transitively on X(L).
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In general, asking that G act strongly transitively on X is more restrictive than asking
that X be homogeneous over G. However, it is shown in [34, Remark 3.9] that if G is a
reductive linear algebraic group over K and X/K is a projective variety, then the two
notions are equivalent.

Our main results, the local-global principles we show, are:

Theorem. Let k be a complete non-trivially valued ultrametric field. Let C be a
normal irreducible projective k-algebraic curve. Denote by F the function field of C. Let
X be an F -variety, and G a connected rational linear algebraic group over F acting strongly
transitively on X.

Let V (F ) be the set of all non-trivial rank 1 valuations on F which either extend the
valuation of k or are trivial when restricted to k.

Denote by Can the Berkovich analytification of C, so that F = M (Can), where M

denotes the sheaf of meromorphic functions on Can. Then, the following local-global prin-
ciples hold:

• (Theorem 3.2.11) X(F ) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ Can.
• (Corollary 3.2.18) If char k = 0 or X is a smooth variety, then:

X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ for all v ∈ V (F ),

where Fv denotes the completion of F with respect to v.

The statement above remains true for affinoid curves if
√
|k×| 6= R>0, where

√
|k×|

denotes the divisible closure of the value group |k×|. Being a local-global principle with
respect to completions, the second equivalence evokes some resemblance to more classical
versions of local-global principles. The statement can be made to include trivially valued
base fields, even though in this case we obtain no new information (since at least one of
the overfields will be equal to F ).

Remark. In order to prove our main results, we need less than strong transitivity.

More precisely, it suffices to assume that for any completion F̂ of F with respect to a

valuation extending that of k, either X(F̂ ) = ∅ or the group G(F̂ ) acts transitively on

the set X(F̂ ). We may even restrict to only certain completions, namely those for which

deg tr
k̃

˜̂
F = 0 and rankQ|F̂×|/|k×| ⊗Z Q = 1, where k̃ resp.

˜̂
F , is the residue field of k,

resp. F̂ . (These are the completions with respect to the valuations induced by the type 3
points of the curve, see Definition 1.8.1).

We recall that for any finitely generated field extension F/k of transcendence degree 1,
there exists a unique normal projective k-algebraic curve with function field F. Thus, the
result of the theorem above is applicable to any such field F.

To show the local-global principles above, we construct certain covers of curves over
which patching can be realised (the so-called nice covers, see Definition 3.1.6). For this,
type 3 points are crucial. A type 3 point has nice topological and algebraic properties.
More precisely, an analytic curve is a real graph over which a type 3 point has arity 2; also,
the stalk of a type 3 point is a field. In Figure 1, x is a type 3 point. The existence of such
points is equivalent to the condition

√
|k×| 6= R>0, which is why Theorem 3.2.11 is first

shown under this hypothesis. The result is then shown in all generality by using arguments
from model theory. Here is a quick outline of the proof in the case

√
|k×| 6= R>0.

We recall that an affinoid domain of a Berkovich analytic space is an analytic domain
(meaning the structural sheaf is well-defined over it), isomorphic to an affinoid space.



viii INTRODUCTION

Moreover, the intersection of affinoid domains of an analytic curve (and, more generally,
of any separated Berkovich analytic space) is again an affinoid domain. Let us start by
introducing the crucial notion of a nice cover.

Definition (Definition 3.1.6). A finite cover U of a k-analytic curve will be called
nice if:

(1) the elements of U are connected affinoid domains with only type 3 points in their
topological boundaries;

(2) for any different U, V ∈ U , U ∩ V = ∂U ∩ ∂V, or equivalently, U ∩ V is a finite
set of type 3 points;

(3) for any two different elements of U , neither is contained in the other.

Figure 2: an example of a nice cover for the Berkovich projective line

For a normal irreducible projective analytic curve C, let U, V be connected affinoid
domains of C such that U ∩ V is a single type 3 point {η}. (This is a special case of a
nice cover.) Then, following the notation of diagram (1), set F = M (C), F0 = M ({η}),
F1 = M (U), F2 = M (V ). We start by showing that patching is possible with this choice
of fields for any rational linear algebraic group G/F. This is then generalized to any nice
cover of the analytic projective line. To obtain the same generalization for any normal
irreducible projective analytic curve C, we make use of the Weil restriction of scalars in
order to “descend” to the case of the projective line (as HHK do in [34]).

Finally, once patching is shown to be possible, the local-global principle of Theo-
rem 3.2.11 is a rather direct consequence.

To obtain Corollary 3.2.18 from Theorem 3.2.11, we establish a precise connection
between the points of a Berkovich analytic curve and the valuations that its function field
can be endowed with. This is done in Proposition 3.2.14. The rest is then a consequence
of the nice algebraic properties of the fields Mx, x ∈ C, namely their Henselianity.

While HHK work over models of an algebraic curve, we work directly over analytic
curves. Remark that we put no restrictions on the complete valued base field k. Apart from
the framework, this is one of the fundamental differences with Theorem 3.7 of [34], where
the base field needs to be complete with respect to a discrete valuation. Another difference
lies in the nature of the overfields, which here are completions or fields of meromorphic
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functions. Section 4 shows that the latter contain the ones appearing in HHK’s article,
and thus that [34, Theorem 3.7] is a direct consequence of the local-global principle stated
in Theorem 3.2.11. Moreover, we show the converse is true as well provided we choose a
“fine” enough model. The proof of the theorem above is based on the patching method,
but used in a different setting from the one of [34].

As a consequence of our main results, in the context of quadratic forms, we obtain
the following theorem, which is a generalization of [34, Theorem 4.2]. This is because
the projective variety determined by a quadratic form satisfies all of the hypotheses of
Theorem 3.2.11 (including the existence of a connected rational linear algebraic group
acting strongly transitively on it).

Theorem. Let k be a complete non-trivially valued ultrametric field. Let C be a normal
irreducible projective k-algebraic curve. Denote by F the function field of C. Suppose
char(F ) 6= 2. Let q be a quadratic form over F of dimension different from 2.

Let V (F ) be the set of all non-trivial rank 1 valuations on F which either extend the
valuation of k or are trivial when restricted to k.

Let Can be the Berkovich analytification of C, so that F = M (Can), where M is the
sheaf of meromorphic functions on Can.

(1) (Theorem 3.4.1) The quadratic form q is isotropic over F if and only if it is
isotropic over Mx for all x ∈ Can.

(2) (Corollary 3.4.2) The quadratic form q is isotropic over F if and only if it is
isotropic over Fv for all v ∈ V (F ), where Fv is the completion of F with respect
to v.

As mentioned in the introduction of [34], it is expected that for a “nice enough” fieldK
the u-invariant remains the same after taking finite field extensions, and that it becomes
2du(K) after taking a finitely generated field extension of transcendence degree d. Since
we work only in dimension one, this explains the motivation behind the following:

Definition. Let K be a field.

(1) [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal dimension
of anisotropic quadratic forms over K. We say that u(K) = ∞ if there exist
anisotropic quadratic forms over K of arbitrarily large dimension.

(2) [HHK] The strong u-invariant of K, denoted by us(K), is the smallest real num-
ber m, such that:
• u(E) 6 m for all finite field extensions E/K;
• 1

2u(E) 6 m for all finitely generated field extensions E/K of transcendence
degree 1.

We say that us(K) = ∞ if there exist such field extensions E of arbitrarily
large u-invariant.

The theorem above leads to applications on the u-invariant. Let k be a complete non-

Archimedean valued field with residue field k̃, such that char(k̃) 6= 2. Suppose that either

|k×| is a free Z-module with rankZ|k×| =: n, or, more generally, that dimQ

√
|k×| =: n,

where n is a non-negative integer. This is yet another difference with the corresponding
results of HHK in [34], where the requirement on the base field is that it be complete
discretely valued, i.e. that its value group be a free Z-module of rank 1.We obtain an upper
bound on the u-invariant of a finitely generated field extension of k with transcendence
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degree at most 1, which depends only on us(k̃) and n. More precisely, in terms of the
strong u-invariant:

Corollary (Corollary 3.4.28). Let k be a complete ultrametric field. Suppose char(k̃) 6= 2.

(1) If dimQ

√
|k×| =: n, n ∈ Z, then us(k) 6 2n+1us(k̃).

(2) If |k×| is a free Z-module with rankZ|k×| =: n, n ∈ Z, then us(k) 6 2nus(k̃).

Corollary 3.4.28 is a consequence of the local-global principle we obtained for quadratic
forms (Theorem 3.4.1), and also of the very nice algebraic properties that the local rings
of an analytic curve satisfy, especially Henselianity.

It is unknown to the author whether there is equality in the corollary above. This is
true in the particular case of n = 1 by using [34, Lemma 4.9], whose proof is independent
of patching. This way we recover [34, Theorem 4.10], which is the main result of [34] on
quadratic forms. It also provides one more proof that u(Qp(T )) = 8, where p is a prime
number different from 2, originally proven in [58].

Corollary (Corollary 3.4.30). Let k be a complete discretely valued field such that

char(k̃) 6= 2. Then, us(k) = 2us(k̃).

Chapter 4: Patching over Analytic Fibers and the Local-Global Principle.

In this chapter we show that patching is possible “around” certain fibers of relative analytic
curves. This is then applied to obtain a local-global principle over the field of overconver-
gent meromorphic functions on said fibers. We also show that the latter can be interpreted
as the function field of a particular algebraic curve. As before, the local-global principles
obtained are applicable to quadratic forms (provided the setting is one of characteristic
different from 2).

The goal of this chapter is twofold:

(1) to establish the very first steps of a strategy for higher dimensional patching and
the corresponding applications to the local-global principle;

(2) to generalize the results obtained in Chapter 3; more precisely, to show a local-
global principle over algebraic curves (i.e. their function fields) defined over a
larger class of ultrametric fields (which aren’t necessarily complete).

One of the main results we show is the following (see Theorem 4.6.8 for the exact
statement):

Theorem (Theorem 4.6.8). Let k be a complete non-trivially valued ultramet-
ric field. Let S,C be good k-analytic spaces such that S is normal. Suppose that
dimS < dimQR>0/|k×| ⊗Z Q. Suppose there exists a morphism π : C → S that makes C a
proper flat relative S-analytic curve. For any affinoid domain Z of S, set CZ := π−1(Z),
and FZ := M (CZ), where M denotes the sheaf of meromorphic functions on C. Let x ∈ S
be such that OS,x is a field. Let Fx denote the fiber of x in C.

Assume there exists a connected affinoid neighboorhood Z0 of x such that: (1) all the
fibers of π on Z0 are normal irreducible projective analytic curves; (2) CZ0 is normal;
(3) π|CZ0

: CZ0 → Z0 is algebraic.

Let G/FZ0 be a connected rational linear algebraic group acting strongly transitively
on a variety H/FZ0 . Then, the following local-global principle holds:

H(lim−→
x∈Z

FZ) 6= ∅ ⇐⇒ H(MC,u) 6= ∅ for all u ∈ π−1(x),
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where the direct limit is taken with respect to connected affinoid neighborhoods Z ⊆ Z0

of x.

Remark that the direct limit appearing on the left side of the local-global principle
above is the field of germs of meromorphic functions on the fiber of x in C.

We work only over fibers of points for which the local ring is a field. The set of such
points is dense. In fact, in the case of curves, if x is any point that is not rigid (see
Definition 1.5.10; rigid points are those that we see in rigid spaces), then Ox is a field.
Although this might not appear explicitely during the chapter, the reason behind this
hypothesis is that to make the transition from Chapter 2 to patching “around” the fiber,
we need the fiber to not be a divisor.

To show Theorem 4.6.8, as fibers of an analytic relative curve are endowed with
the structure of an analytic curve, we follow a similar line of reasoning as in the one-
dimensional case. However, there are many additional technical difficulties that appear in
this relative setting. Here is a brief outline of the proof.

We construct particular covers of a neighborhood of the fiber over which patching is
possible (the so-called relative nice covers); this is a relative analogue of nice covers as

introduced in Chapter 3. We first treat the case of P1,an
S - the relative projective analytic

line over S. To do this, we use the notion of thickening of an affinoid domain, the idea
for which (in the case of P1,an) appears in some unpublished notes of Jérôme Poineau.

Given an affinoid domain U in the fiber Fx of x in P1,an
S , a Z-thickening of U is an affinoid

domain UZ of P1,an
Z such that UZ ∩ Fx = U , where Z is an affinoid neighborhood of x

in S. Thickenings of affinoid domains of Fx exist and have good properties provided we
choose Z small enough.

Let U be any nice cover of the fiber Fx. Then, there exists an affinoid neighborhood
Z of x such that for any U ∈ U , the Z-thickening UZ of U exists. Let UZ denote the set of
these Z-thickenings of the elements of U . We show that for a small enough Z, UZ satisfies
the necessary properties for the results of Chapter 2 to be applicable. In that case, UZ is
said to be a Z-relative nice cover of P1,an

Z . In particular, we remark that type 3 points play
once again an important role. Their existence on the fiber is guaranteed by the hypothesis
on the dimension of S. We then show that patching can be applied to relative nice covers
in the case of P1,an.

By using pullbacks of finite morphisms towards P1,an, a notion of relative nice cover
can be constructed more generally for the case of normal relative proper curves. By adding
to this the Weil restriction of scalars, patching is shown to be possible over relative nice
covers in this more general framework as well.

Finally, once patching is shown to be possible around the fiber, the local-global prin-
ciple of Theorem 4.6.8 can be obtained as a consequence, albeit not as direct as in the
one-dimensional case.

There is a connection between the points of the fiber and the valuations that the field
of its overconvergent meromorphic functions can be endowed with. We make this precise
in Proposition 4.6.6. As in the one-dimensional case, combined with the Henselianity of
the fields MC,z, π(z) = x, this connection allows us to obtain a local-global principle with
respect to completions. Before stating this result precisely, let us recall that the field OS,x
is naturally endowed with a valuation | · |x.
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Theorem (Theorem 4.6.8’). Using the same notation as in the statement of Theo-
rem 4.6.8 above, set FOx = lim−→Z

M (CZ). Let V (FOx) denote the set of non-trivial rank 1

valuations on FOx which induce either | · |x or the trivial valuation on Ox. For v ∈ V (FOx),
let FOx,v denote the completion of the field FOx with respect to v.

If char k = 0 or H is smooth, then the following local-global principle holds:

H(FOx) 6= ∅ ⇐⇒ H(FOx,v) 6= ∅ for all v ∈ V (FOx).

Remark that, with the same notation as in the theorem above, OS,x = lim−→Z
OS(Z),

where the direct limit is taken with respect to affinoid neighborhoods Z of x in S. Using
Grothendieck’s work on projective limits of schemes to construct a relative algebraic curve
over O(Z) from an algebraic curve over Ox, as a consequence of the theorem above, we
obtain the following generalization of Corollary 3.2.18.

Theorem (Theorem 4.6.9). Let S be a good normal k-analytic space such that dimS <
dimQR>0/|k×| ⊗ZQ. Let x ∈ S be such that Ox is a field. Let COx be a smooth geometri-
cally irreducible algebraic curve over the field Ox. Let FOx denote the function field of COx .

Let G/FOx be a connected rational linear algebraic group acting strongly transitively
on a variety H/FOx . Then, if char k = 0 or H is smooth:

H(FOx) 6= ∅ ⇐⇒ H(FOx,v) 6= ∅ for all v ∈ V (FOx),

where V (FOx) is given as in Theorem 4.6.8’ above.

A crucial element for showing Theorem 4.6.9, and more generally, to highlight the
interest of this chapter, is that, in the setting of Theorem 4.6.8, meromorphic functions
around the fiber of x are algebraic. More precisely, the field of overconvergent meromorphic
functions on the fiber of x is the function field of an algebraic curve over Ox (which is
basically an “algebraization” of a neighborhood of the fiber succeeded by a base change
to Ox; see Corollary 4.4.15). To show this non-trivial result, we use GAGA-type theorems
for the sheaf of meromorphic functions (see Theorem 1.7.8).

At the end of this chapter we provide some examples of local rings of analytic spaces
that are fields and over which the results above can be applied. More precisely, we calculate
the stalks of the points of A1,an for which the corresponding local ring is a field. In addition
to that, we also give a description of the stalk of a certain point of An,an, n ∈ N. Here is
an example of such a field, corresponding to a type 3 point of the analytic affine line.

Example. Let (k, | · |) be a complete ultrametric field. Let r ∈ R>0\
√
|k×|. Let

x ∈ A1,an
k be a multiplicative semi-norm on k[T ] such that |T |x = r (in fact, x is the

unique such point of A1,an
k ).

For any r1, r2 ∈ R>0 such that r1 < r < r2, set

Ar1,r2 :=

{∑

n∈Z

anT
n : an ∈ k, lim

n→+∞
|an|rn2 = 0, lim

n→−∞
|an|rn1 = 0

}
.

Then, OA1,an
k

,x
= lim−→r1<r<r2

Ar1,r2 .

As in Chapter 3, seeing as the projective variety determined by a quadratic form
satisfies the hypotheses of the results presented, the prime example to which the state-
ments of this chapter can be applied is the case of quadratic forms (under the assumption
char k 6= 2).
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Dans cette thèse nous utilisons le langage de la théorie de Berkovich pour démontrer
des résultats sur le principe local-global et obtenons des applications aux formes quadra-
tiques et à un invariant qui leur est lié. Pour ce faire, nous utilisons l’outil fondamental
du recollement. Cette technique admet déjà plusieurs applications, et apparâıt récemment
comme l’ingrédient principal dans une série d’articles en cours. Nous étendons le recolle-
ment d’un cadre algébrique au cadre des espaces de Berkovich.

En adoptant ce point de vue, le recollement acquiert une nature très géométrique : il
peut s’interpréter comme le recollement faisceautique de fonctions méromorphes, éclairant
ainsi la stratégie globale de preuve. Ceci nous laisse penser que cette approche est propice
à des généralisations futures.

Plus précisément, nous montrons que le recollement peut s’appliquer aux courbes ana-
lytiques de Berkovich, et obtenons ainsi un principe local-global sur les corps de fonctions
de telles courbes, généralisant de cette façon les résultats de l’article fondateur [34]. Nous
rappelons qu’une variétéX définie sur un corps F satisfait le principe local-global s’il existe
une famille (Fi)i de corps contenant F (qu’on appelera des surcorps) telle que X(F ) 6= ∅
si et seulement si X(Fi) 6= ∅ pour tout i. Nous définissons deux familles de surcorps :
une qui apparâıt très naturellement dans la théorie de Berkovich (des germes de fonctions
méromorphes), et une de nature plus classique constituée de complétés du corps de fonc-
tions. Nous établissons une connexion entre ces deux familles en rendant précis le lien qui
existe entre les points d’une courbe analytique de Berkovich et les valuations dont on peut
munir son corps de fonctions.

Le principe local-global obtenu peut s’appliquer aux formes quadratiques. Ceci, com-
biné avec les bonnes propriétés algébriques des anneaux locaux d’une courbe analytique
de Berkovich, nous permet d’obtenir des application à l’u-invariant.

Comme premier pas vers des versions en dimension supérieure de cette technique, nous
montrons que le recollement est possible autour de certaines fibres d’une courbe relative
analytique de Berkovich. Ainsi, nous obtenons un principe local-global sur les germes
de fonctions méromorphes sur ces fibres, qui peut de nouveau s’appliquer aux formes
quadratiques. Comme précédemment, il y a deux familles possibles de surcorps : les
germes de fonctions méromorphes en les points de la fibre, et des complétés du corps des
germes méromorphes. En particulier, nous montrons que ces derniers sont algébriques.

En utilisant la théorie des limites projectives de schémas, nous obtenons aussi un
principe local-global sur le corps de fonctions d’une courbe algébrique définie sur des
corps ultramétriques qui ne sont pas nécessairement complets.

Présentation des directions majeures

Principe local-global. Le principe local-global est apparu pour la première fois dans
les années ’20 sous le nom de principe de Hasse-Minkowski, et énonce alors qu’une forme

xiii
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quadratique rationnelle a une solution non triviale sur Q si et seulement si elle a des
solutions non triviales sur R et Qp pour tout nombre premier p. Les versions modernes
traitent plus généralement de variétés définies sur un corps K qui ont un point K-rationnel
si et seulement si elles ont des points Ki-rationnels poir tout i, où (Ki)i est une famille de
surcorps de K.

Le principe local-global n’est pas toujours vrai. Parmi les premiers contre-exemples
historiques, mentionnons celui obtenu par Reichardt et Lind, qui ont montré que l’équation
2Y 2 = X4 − 17Z4 a des solutions sur tous les complétés de Q, mais pas de solutions
rationnelles. Depuis, beaucoup d’autres contre-exemples ont été trouvés. Détérminer pour
quels corps, surcorps et variétés il y a un principe local-global et étudier les obstructions à
cette propriété a été un domaine actif de recherche depuis des décennies (cf. par exemple
[9] et [51]).

Le dévelopement de la géométrie arithmétique a apporté de nouvelles techniques puis-
santes qui s’appliquent à l’étude du principe local-global, mettant ainsi au premier plan des
questions possédant un sens géométrique. Plus précisement, en utilisant la même notation
que précédemment, K est le corps de fonction d’une variété algébrique, et la famille de
surcorps est interprétée dans un cadre géométrique. Jusqu’à présent, les résultats connus
ne couvrent que des cas spécifiques, la majorité concernant les courbes (cf. par exemple
[34] et [39]). De plus, en général, la famille de surcorps considérée contient des complétés
de K par rapport à des valuations discrètes (qui peuvent se lire sur un modèle “assez fin”
de la courbe).

Une classe particulière de variétés qui se comportent bien par rapport au principe
local-global est celle des variétés homogènes sous certains groupes linéaires algébriques
(voir e.g. [16] pour une brève exposition du sujet). Nous rappelons qu’étant donné un
corps F , une variété X/F est dite homogène sous un groupe linéaire algébrique G/F si
G agit sur X et si le groupe G(F ) agit transitivement sur l’ensemble X(F ), où F est
une clôture algébrique de F. Il a été démontré dans [9] que, sous certaines conditions
additionnelles, la seule obstruction au principe local-global pour les variétés homogènes
est l’obstruction de Brauer-Manin introduite par Manin dans [51].

Une nouvelle approche au principe local-global pour les variétés homogènes sur des
corps de fonctions de courbes définies sur des corps complets discrètement valués a été
introduite par Harbater, Hartmann et Krashen dans [34] via le recollement.

Le recollement. La méthode de recollement a été introduite comme une des ap-
proches principales à la théorie inverse de Galois. Originellement de nature formelle et
géométrique, cette technique a fourni une façon d’obtenir un revêtement galoisien global à
partir de revêtements locaux (voir par exemple [32]). Par cette technique, il a été démontré
que le problème inverse de Galois pour Qp(T ), où p est un nombre premier, admet une
réponse affirmative. Le recollement formel a été traduit dans le langage de la géométrie
rigide par Liu dans [50]. Un autre exemple est [61], où Poineau utilise le recollement sur
des courbes analytiques au sens de Berkovich et généralise ainsi les résultats montrés par
Harbater dans [30] et [31].

Dans [33], Harbater et Hartmann ont combiné le recollement formel avec le recollement
algébrique au sens de [40], et ont ainsi étendu la technique aux structures définies sur des
corps, en construisant un cadre de nature très algébrique. Depuis, le recollement sur
les corps a trouvé de nombreuses applications et est l’ingrédient crucial dans une série
d’articles en cours (voir par exemple [34], [35], [39], [36], [17]).
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Parmi les principaux problèmes abordés dans ces travaux, on retrouve les principes
locaux-globaux sur des corps de fonctions de courbes algébriques définies sur des corps
complets discrètement valués. C’est cette forme de recollement qui a fourni une nou-
velle approche au principe local-global pour les variétés homogènes sous certains groupes
linéaires algébriques (voir par exemple [34] et [39]).

En particulier, dans [34], Harbater, Hartmann et Krashen (abrégé par la suite en
HHK) obtiennent un principe local-global pour les formes quadratiques et des résultats
sur l’u-invariant, généralisant ainsi ceux de Parimala et Suresh [58], qui ont été montrés
en utilisant d’autres méthodes. Une autre source pour des résultats sur l’u-invariant est
l’article [47] de Leep. Dans [34], les auteurs appliquent aussi les résultats locaux-globaux
obtenus aux algèbres centrales simples.

Décrivons brièvement les surcorps qui apparaissent dans les principes locaux-globaux
démontrés dans [34]. Soit k un corps complet discrètement valué, et k◦ l’anneau de
valuation correspondant. Soit π une uniformisante de k◦. Soit C/k une courbe algébrique.
Soit C un modèle plat normal irréductible projectif de C sur k◦ avec fibre spéciale Cs.
On note avec F le corps de fonctions de C (et donc de C). Pour tout point P ∈ Cs,
soit RP = OC,P . On note par R̂P le complété de l’anneau local RP par rapport à son

idéal maximal. Soit FP = Frac R̂P . Soit U un sous-ensemble propre d’une composante

irréductible de Cs. Soit RU =
⋂
P∈U RP . On note R̂U le complété π-adique de RU . Soit

FU = Frac R̂U .
Soit P un ensemble fini de points fermés de Cs contenant tous les points d’intersection

des composantes irréductibles de Cs. Soit U l’ensemble des composantes connexes de Cs\P.
Alors les surcorps en question sont {FP , FU : P ∈ P , U ∈ U}. Plus précisement, HHK
montrent que pour une variété X/F satisfaisant certaines conditions :

X(F ) 6= ∅ ⇐⇒ X(FP ) 6= ∅, X(FU ) 6= ∅ pour tout P ∈ P, U ∈ U .
Voir la sous-section 3.3.2 pour plus de détails sur le principe local-global de [34].
Pour un survol sur le développement historique des différentes versions du recollement,

voir [37]. Nous avons adapté le recollement sur les corps au cadre des espaces de Berkovich.

Les espaces de Berkovich. L’étude de Tate des courbes elliptiques avec mauvaise
réduction sur Qp dans les années ’60 a mené au développement d’une première approche
à la géométrie analytique non-archimédienne, appelée géométrie rigide ([63]). Comme Qp

est totalement discontinu en tant qu’espace topologique, l’approche näıve de définir une
fonction analytique comme étant localement développable en série entière ne fonctionne
pas : on obtiendrait trop de fonctions. Par exemple, la fonction f : Qp → R, définie par

f(x) =

{
0, si |x|p 6 1

1, sinon

serait alors analytique. Pour éviter ce problème, Tate ne permet que certains ouverts et
recouvrements. Par conséquent, les espaces rigides ne sont pas dotés d’une vraie topologie,
mais seulement d’une topologie de Grothendieck.

Depuis, il y a eu plusieurs autres approches à la géométrie analytique non-archimédienne :
la théorie de Raynaud des modèles formels, les espaces de Berkovich et la géométrie adique
de Huber.

Developpée à la fin des années ’80 (voir [6]), l’approche de Berkovich a originellement
été motivée par des question de théorie spectrale. Grossièrement, les espaces de Berkovich
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sont obtenus en ajoutant des points aux espaces rigides. De cette manière on obtient des
espaces topologiques avec de bonnes propriétés comme la compacité locale et la connexité
par arcs locale. Par conséquent, on peut penser à ces objets géométriquement. Contraire-
ment à la géométrie rigide, les espaces de Berkovich peuvent aussi être définis sur des
corps trivialement valués.

Une analogie peut être établie avec le cadre classique complexe : les fonctions analy-
tiques sur certains domaines analytiques sont des séries entières convergentes, il existe un
principe de prolongement analytique, ainsi que des théorèmes du type GAGA. On peut
aussi observer un parallèle avec la géométrie algébrique dans le sens où les espaces de
Berkovich, comme les schémas, sont construits à partir de blocs de base. Ces derniers sont
appelés espaces affinöıdes. La différence principale entre ces deux cadres (algébrique et
Berkovich) est que les blocs de base des espaces de Berkovich sont compacts, donc aussi
Hausdorff, et par conséquent pas toujours ouverts. Ceci est une source de nombreuses
difficultés dans la théorie de Berkovich, puisqu’il n’y a pas de base d’ouverts pour lesquels
on peut décrire facilement le faisceau de fonctions analytiques.

Depuis son apparition, la théorie des espaces de Berkovich a trouvé plusieurs applica-
tions, la plupart, grâce aux théorèmes GAGA, à la géométrie arithmétique, et a été étendue
dans plusieurs directions (par exemple les espaces de Berkovich sur Z [59]). Celles-ci in-
cluent : les systèmes dynamiques, la théorie des dessins d’enfants p-adiques, les immeubles
de Bruhat-Tits, la théorie inverse de Galois, etc. Voir [23] et [19] pour plus d’exemples.
Récemment, des connexions ont été établies entre la théorie de Berkovich et d’autres
domaines comme la géométrie tropicale (e.g. [2]) et la théorie de modèles (e.g. [38]).

Organisation du manuscrit

Le premier chapitre est dédié à l’introduction de la théorie des espaces de Berkovich.
Dans le chapitre 2, le recollement sur les corps est étendu à un cadre général formel qui
correspond aux espaces de Berkovich. Le chapitre 3 traite du recollement sur les courbes
analytiques de Berkovich et de ses applications au principe local-global ; son contenu a
donné lieu à un article intitulé “Patching over Berkovich Curves and Quadratic Forms”,
voir [54]. Finalement, dans le chapitre 4, nous montrons que le recollement est possible
autour de certaines fibres de courbes analytiques relatives et en déduisons des principes
locaux-globaux ; le contenu de ce chapitre sera le sujet d’un futur article.

Voici une description plus détaillée de l’organisation de ce manuscrit.

Chapitre 1 : Introduction aux espaces de Berkovich.

Ce chapitre a comme but de donner une introduction à la théorie des espaces de Berkovich
afin de rendre le manuscrit plus auto-suffisant. Nous donnons un rappel rapide de la
construction des principaux objets qui interviennent dans cette théorie en commençant
par le cadre algébrique sur lequel elle se base. Ce dernier est une généralisation par
Berkovich du pendant algébrique de la géométrie rigide de Tate (plus précisement, une
généralisation de la théorie des algèbres affinöıdes de Tate).

Nous nous attardons particulièrement sur le cas des courbes analytiques, qui est sans
doute la famille d’espaces de Berkovich la mieux comprise, ainsi que celle qui présente le
plus d’intérêt pour nous. Nous en montrons quelques propriétés qui nous seront nécessaires
dans les chapitres suivants. En particulier, leur structure de graphe est source de nom-
breuses bonnes propriétés topologiques, que nous utiliserons dans ce manuscrit.
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Un autre point important que nous traitons est le faisceau des fonctions méromorphes,
qui est crucial pour le travail presenté ici vu que le recollement est interprété comme le
recollement de fonctions méromorphes sur certains espaces de Berkovich. Sa construction,
ainsi que les propriétés qu’il satisfait, sont similaires à celles du faisceau de fonctions
méromorphes sur les schémas.

Nous donnons aussi une description d’un exemple typique d’espace de Berkovich, la
droite analytique affine A1,an, et de ses points (voir la section 1.2 et la sous-section 1.8.4).

Pour un corps ultramétrique complet (k, | · |), A1,an
k est l’ensemble des semi-normes multi-

plicatives sur k[T ] qui étendent la norme de k. En particulier, k se plonge dans A1,an
k via

a 7→ | · |a, où pour tout polynôme P (T ) ∈ k[T ], |P (T )|a := |P (a)|. L’ensemble A1,an
k est

muni d’une topologie de convergence simple.
La droite analytique affine a une structure d’arbre infiniment branché. La Figure 3 est

une illustration de cet espace de Berkovich. En ajoutant un point ”∞” à cet arbre, nous
obtenons la droite analytique projective P1,an

k . Les k-points sont situés aux extrémités de
l’arbre, ce sont des feuilles de l’arbre. Un rôle particulièrement important pour nous est
joué par les points non extrémaux où il n’y a pas de branchement (un exemple d’un tel
point est donné par x dans la Figure 3).

Figure 3 : A1,an
k

x

La plupart des résultats de ce chapitre sont bien connus dans le domaine et nous nous
contentons de donner des références pour leurs preuves. Certains autres, plus spécialisés,
ne sont à notre connaissance pas présents dans la littérature, nous en proposons donc des
démonstrations.

Chapitre 2 : Le recollement.

Le cadre général abstrait pour le recollement est le suivant.
Considérons la tour de corps illustrée dans le diagramme (2) ci-dessous. Supposons

qu’on a des structures algébriques A1 et A2 sur F1 et F2, respectivement. Le but est
de trouver des conditions sous lesquelles elles induisent une structure algébrique du même
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type sur F1∩F2. Typiquement, ces structures algébriques sont des points rationnels sur F1,
respectivement F2, d’une variété définie sur un corps plus petit F . Un autre exemple est
le cas des zéro-cycles de degré un.

(2)

F

F1 ∩ F2

F1 F2

F0

Nous nous concentrons sur le cas où ces structures algébriques sont des points rationnels
sur une variété H/F. Si A1 et A2 sont compatibles sur F0, alors elles se relèvent sur
F1 ∩ F2. Si ce n’est pas le cas, on ne peut pas généralement les relever à F1 ∩ F2. Une
manière d’approcher ce problème est de trouver une façon de rendre ces points rationnels
compatibles sur F0.

Idéalement, il existe un groupe linéaire algébrique G/F qui agit sur H de façon à
ce que ces points rationnels (ou, plus généralement, ces structures algébriques) puissent
toujours être déplacés par l’action de G et rendus compatibles sur F0. Pour que cette
idée fonctionne, il nous faut à la fois une action particulière de G sur H (donnée dans la
définition 3.2.1), et des conditions sur le groupe G. Ces conditions font l’objet principal
de ce chapitre.

Plus précisément, soit G/F un groupe linéaire algébrique. La condition dont nous
avons besoin est la suivante : pour tout g ∈ G(F0), il existe gi ∈ G(Fi), i = 1, 2, tels que
g = g1 · g2 dans G(F0). En effet, supposons que g est tel que g · A2 = A1 dans H(F0). Soit
A′

1 := g−1
1 · A1 ∈ H(F1) et A′

2 := g2 · A2 ∈ H(F2). Alors, par construction, A′
1 = A′

2 dans
H(F0), donc elles peuvent se relever sur F1 ∩ F2. L’existence d’un élément g ∈ G(F0) qui
satisfait g · A2 = A1 est à l’origine de l’hypothèse que nous adoptons sur l’action de G sur
H (voir la définition 3.2.1).

Par la suite, nous appellerons la propriété de “décomposition matricielle” décrite dans
le paragraphe précédent recollement. Nous montrerons que la famille suivante de groupes
linéraires algébriques satisfait le recollement (avec un certain choix de corps dans la tour
du diagramme (2)).

Définition. Un groupe linéaire algébrique G/F est dit rationnel (sur F ) s’il existe
un ouvert de Zariski de G isomorphe à un ouvert de Zariski de AnF pour un certain n ∈ N.

Nous fixons un cadre général formel (Setting 2.1.1) sur lequel nous montrons le résultat
principal de ce chapitre (voir le théorème 2.1.10). Ce dernier est fondamental pour le
recollement. Il est une généralisation de [34, Theorem 3.2]. La différence principale est
que les objets considérés dans loc.cit. sont définis sur un corps complet discrètement
valué, alors que nous ne demandons pas aux valuations d’être discrètes. Une conséquence
assez directe est que le recollement est vrai sur un voisinage de Zariski de l’identité de G.
La preuve (ainsi que l’enoncé) du théorème 2.1.10 est très technique, et suit les lignes
principales de la preuve de [34, Theorem 3.2].
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L’intérêt du cadre formel sur lequel on travaille est qu’il est réalisé de façon naturelle
(et très géométrique) dans la théorie de Berkovich.

En particulier, nous montrons que dans un cas particulier du Setting 2.1.1, realisé par
les courbes analytiques de Berkovich, le théorème 2.1.10 peut se généraliser pour montrer
que le recollement est vrai dans G (théorème 2.2.3). Ceci est l’outil fondamental pour
obtenir un recollement sur les courbes analytiques de Berkovich.

Chapitre 3 : Recollement sur les courbes de Berkovich et formes quadra-
tiques.

Dans ce chapitre nous montrons que le recollement est possible sur les courbes analytiques
de Berkovich et qu’il peut s’interpréter comme le recollement de fonctions méromorphes.
Plus concrètement, nous montrons que les corps Fi du diagramme (2) peuvent être choisis
comme les corps de fonctions méromorphes de certaines parties (appelées domaines ana-
lytiques) d’une courbe analytique. Nous utilisons ensuite ce résultat pour démontrer un
principe local-global et donner des applications aux formes quadratiques et à l’u-invariant.
Les résultats obtenus généralisent ceux de [34].

Avant de présenter les résultats principaux de ce chapitre, nous introduisons un peu
de terminologie.

Définition. SoitK un corps. SoitX uneK-variété et G un groupe linéaire algébrique
sur K. On dit que G agit fortement transitivement sur X si G agit sur X et que pour
toute extension de corps L/K, soit X(L) = ∅ soit G(L) agit transitivement sur X(L).

En général, demander que G agisse fortement transitivement sur X est plus restric-
tif que demander que X soit homogène sous G. En revanche, il est montré dans [34,
Remark 3.9] que si G est un groupe linéaire algébrique sur K et X/K est une variété
projective, alors les deux notions sont équivalentes.

Nos résultats principaux, les principes locaux-globaux que nous montrons, sont :

Théorème. Soit k un corps ultramétrique complet non trivialement valué. Soit C
une courbe k-algébrique normale irréductible projective. On note F le corps de fonctions
de C. Soit X une F -variété et G un groupe linéaire algébrique connexe rationnel sur F
qui agit fortement transitivement sur X.

Soit V (F ) l’ensemble de toutes les valuations non triviales de rang 1 sur F qui ou bien
prolongent la valuation de k ou bien sont triviales sur k.

Soit Can l’analytifié au sens de Berkovich de C ; alors F = M (Can), où M désigne
le faisceau de fonctions méromorphes sur Can. Alors les principes locaux-globaux suivants
sont vrais :

• (Theorem 3.2.11) X(F ) 6= ∅ ⇐⇒ X(Mx) 6= ∅ pour tout x ∈ Can.
• (Corollary 3.2.18) Si car k = 0 ou X est une variété lisse, alors :

X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ pour tout v ∈ V (F ),

où Fv désigne le complété de F par rapport à v.

L’énoncé ci-dessus reste vrai pour les courbes affinöıdes si
√
|k×| 6= R>0, où

√
|k×|

est la clôture divisible du groupe des valeurs |k×| de k. Étant un principe local-global par
rapport aux complétés, la deuxième équivalence ressemble à des versions plus classiques
de principes locaux-globaux. L’énoncé peut se formuler de façon à inclure les corps de
base trivialement valués, même si cela ne nous donnerait pas de nouvelles informations
puisqu’au moins un des surcorps serait alors égal à F .
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Remarque. Pour démontrer nos résultats principaux, nous avons besoin de moins
que la transitivité forte. Plus précisement, il suffit de supposer que pour tout complété

F̂ de F par rapport à une valuation qui prolonge celle de k, soit X(F̂ ) = ∅ soit le

groupe G(F̂ ) agit transitivement sur l’ensemble X(F̂ ). Nous pouvons même nous re-

streindre à certains de ces complétés, notamment à ceux pour lesquels deg tr
k̃

˜̂
F = 0 et

rangQ|F̂×|/|k×| ⊗Z Q = 1, où k̃, respectivement
˜̂
F , est le corps résiduel de k, respective-

ment F̂ . (Ce sont les complétés par rapport aux valuations induites par les points de type 3
de la courbe, voir la définition 1.8.1).

Nous rappelons que pour toute extension de corps F/k finiment engendrée de degré
de transcendance 1, il existe une unique courbe normale projective algébrique sur k avec
corps de fonctions F . Donc, le résultat du théorème ci-dessus s’applique à tout tel corps F .

Pour montrer les principes locaux-globaux énoncés ci-dessus, nous construisons des
recouvrements particuliers des courbes sur lesquels le recollement peut se réaliser (appelés
bons recouvrements, voir la définition 3.1.6). Lors de cette étape, les points de type 3 sont
cruciaux. Un point de type 3 a de bonnes propriétés topologiques et algébriques. Plus
précisément, une courbe analytique est un graphe réel sur laquelle un point de type 3 est
d’arité 2 ; de plus, l’anneau local du faisceau structural d’un point de type 3 est un corps.
Dans la Figure 3, x est un point de type 3. L’existence de tels points est équivalente à
la condition

√
|k×| 6= R>0 ; ceci est la raison pour laquelle le théorème 3.2.11 est d’abord

montré sous cette hypothèse. Le résultat est ensuite démontré dans toute sa généralité en
utilisant des arguments de théorie des modèles. Voici un bref résumé de la preuve dans le
cas où

√
|k×| 6= R>0.

Nous rappelons qu’un domaine affinöıde d’un espace analytique de Berkovich est un
domaine analytique (i.e. le faisceau structural y est bien défini), isomorphe à un espace
affinöıde. De plus, une intersection finie de domaines affinöıdes d’une courbe analytique (et
plus généralement, de tout espace de Berkovich séparé) est encore un domaine affinöıde.
Nous commençons par introduire la notion cruciale de bon recouvrement.

Définition (Definition 3.1.6). Un recouvrement fini U d’une courbe k-analytique est
appelé bon si :

(1) les éléments de U sont des domaines affinöıdes ne contenant que des points de
type 3 dans leur bord topologique ;

(2) pout tous U, V ∈ U , U 6= V, U ∩ V = ∂U ∩ ∂V, ou, de façon équivalente, U ∩ V
est un ensemble fini de points de type 3 ;

(3) aucun élément de U n’est contenu dans un autre élément de U .
Voir la Figure 4 ci-dessous pour un exemple de bon recouvrement de la droite analy-

tique projective.
Pour une courbe normale irréductible projective k-analytique C, soient U, V des do-

maines affinöıdes connexes de C tels que U ∩ V soit un seul point de type 3, noté {η}.
(Ceci est un cas particulier d’un bon recouvrement.) Alors, en suivant les notations du
diagramme (2), on note F := M (C), F0 := M ({η}), F1 := M (U), F2 := M (V ). Nous
commençons par montrer que le recollement est possible avec ce choix de corps pour tout
groupe linéaire algébrique rationnel G/F. Ceci est ensuite généralisé à un bon recouvre-
ment quelconque de la droite analytique projective. Pour étendre le résultat à toute courbe
analytique normale irréductible projective C, nous utilisons la restriction des scalaires de
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Weil pour “descendre” au cas de la droite analytique projective (cette idée est aussi em-
ployée par HHK dans [34]).

Figure 4 : exemple d’un bon recouvrement pour P1,an
k

Finalement, après avoir démontré que le recollement est possible, le principe local-
global du théorème 3.2.11 est obtenu comme conséquence relativement directe du recolle-
ment.

Pour obtenir le corollaire 3.2.18 à partir du théorème 3.2.11, nous établissons une
connexion précise entre les points d’une courbe analytique de Berkovich et les valuations
dont on peut munir son corps de fonctions. Ceci est l’objet de la proposition 3.2.14. Le
reste est alors une conséquence des bonnes propriétés algébriques des corps Mx, x ∈ C,
notamment de leur henselianité.

À la différence de HHK qui travaillent sur des modèles d’une courbe algébrique, nous
travaillons directement sur des courbes analytiques. Remarquons que nous n’imposons pas
de conditions supplémentaires au corps complet ultramétrique de base k. Ceci est une des
différences fondamentales avec le Theorem 3.7 de [34], où le corps de base doit être complet
par rapport à une valuation discrète. Une autre différence est dans la nature des surcorps,
qui ici sont des complétés ou des corps de fonctions méromorphes. La section 3.4 montre
que ces derniers contiennent ceux qui apparaissent dans l’article de HHK, et donc que [34,
Theorem 3.7] est une conséquence du principe local-global énoncé dans le théorème 3.2.11.
De plus, nous montrons que l’inverse est aussi vrai si on choisit un modèle “assez fin”. La
preuve du théorème ci-dessus est basé sur la méthode de recollement, mais utilisé dans un
cadre différent de celui de [34].

Comme conséquence de nos résultats principaux, dans le contexte des formes quadra-
tiques, nous obtenons le théorème suivant, qui généralise [34, Theorem 4.2]. Il est un
corollaire direct des principes locaux-globaux mentionnés précédemment car la variété pro-
jective définie par une forme quadratique satisfait toutes les hypothèses du théorème 3.2.11
(en particulier l’existence d’un groupe linéaire algébrique connexe rationnel qui agit forte-
ment transitivement sur elle).

Théorème. Soit k un corps ultramétrique complet non trivialement valué. Soit C une
courbe normale irréductible projective algébrique sur k. On note F le corps de fonctions
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de C. Supposons que car(F ) 6= 2. Soit q une forme quadratique sur F de dimension
différente de 2.

Soit V (F ) l’ensemble de toutes les valuations non triviales de rang 1 sur F qui soit
prolongent la valuation de k soit sont triviales sur k.

Soit Can l’analytifié au sens de Berkovich de C. Alors F = M (Can), où M est le
faisceau de fonctions méromorphes sur Can.

(1) (Theorem 3.4.1) La forme quadratique q est isotrope sur F si et seulement si elle
est isotrope sur Mx pout tout x ∈ Can.

(2) (Corollary 3.4.2) La forme quadratique q est isotrope sur F si et seulement si elle
est isotrope sur Fv pour tout v ∈ V (F ), où Fv est le complété de F par rapport
à v.

Comme mentionné dans l’introduction de [34], on s’attend à ce que pour des corps assez
“gentils”K, l’u-invariant reste le même pour les extensions finies, et devienne 2du(K) pour
les extensions finiment engendrées de degré de transcendence d. Puisque nous ne travaillons
qu’en dimension 1 ici, ceci explique la motivation derrière la définition suivante :

Définition. Soit K un corps.

(1) (Kaplansky) L’u-invariant de K, noté u(K), est la dimension maximale des
formes quadratiques anisotropes sur K. On dit que u(K) = ∞ s’il existe des
formes quadratiques anisotropes sur K de dimension arbitrairement grande.

(2) (HHK) L’u-invariant fort de K, noté us(K), est le plus petit nombre réel m tel
que :
• u(E) 6 m pour toute extension finie de corps E/K ;
• 1

2u(E) 6 m pour toute extension de corps finiment engendrée E/K de degré
de transcendance 1.

On dit que us(K) = ∞ s’il existe de telles extensions E/K d’u-invariant arbi-
trairement grand.

Le théorème ci-dessus mène à des applications sur l’u-invariant. Soit k un corps

ultramétrique complet avec corps résiduel k̃ tel que car(k̃) 6= 2. On suppose que soit |k×|
est un Z-module libre avec rangZ|k×| =: n, ou, plus généralement, que dimQ

√
|k×| =: n,

où n est un entier naturel. Ceci est encore une différence avec les résultats correspondants
de HHK dans [34], où l’hypothèse sur le corps de base est qu’il soit complet par rapport
à une valuation discrète, c’est-à-dire que son groupe de valeurs soit un Z-module libre de
rang 1. Nous obtenons une borne supérieure sur l’u-invariant d’une extension finiment

engendrée de k de degré de transcendance au plus 1, qui ne dépend que de us(k̃) et n.
Plus précisement, en terme de l’u-invariant fort :

Corollaire (Corollary 3.4.28). Soit k un corps ultramétrique complet. Supposons

que car(k̃) 6= 2.

(1) Si dimQ

√
|k×| =: n, n ∈ Z, alors us(k) 6 2n+1us(k̃).

(2) Si |k×| est un Z-module libre avec rangZ|k×| =: n, n ∈ Z, alors us(k) 6 2nus(k̃).

Le corollaire 3.4.28 est une conséquence du principe local-global obtenu pour les formes
quadratiques (théorème 3.4.1) et des bonnes propriétés algébriques que les anneaux locaux
d’une courbe analytique satisfont, notamment l’hensélianité.

L’auteure ignore s’il y a égalité dans le corollaire ci-dessus. Ceci est vrai dans le
cas particulier où n = 1 en utilisant [34, Lemma 4.9], dont la preuve n’utilise pas le
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recollement. De cette manière nous obtenons [34, Theorem 4.10], qui est un des résultats
principaux de [34] sur les formes quadratiques. Ceci est une nouvelle preuve du fait
que u(Qp(T )) = 8, où p est un nombre premier différent de 2, originellement démontré
dans [58].

Corollaire (Corollary 3.4.30). Soit k un corps complet par rapport à une valuation

discrète tel que car(k̃) 6= 2. Alors us(k) = 2us(k̃).

Chapitre 4 : Recollement sur des fibres analytiques et le principe local-
global.

Dans ce chapitre nous montrons que le recollement est possible “autour” de certaines
fibres d’une courbe analytique relative. Ceci est ensuite appliqué pour obtenir un principe
local-global sur le corps des fonctions méromorphes surconvergentes sur ces fibres. Nous
montrons aussi que ce dernier peut s’interpréter comme le corps de fonctions d’une certaine
courbe algébrique. Comme précédemment, les principes locaux-globaux obtenus peuvent
s’appliquer aux formes quadratiques (si le corps de base est de caractéristique différente
de 2).

Ce chapitre a deux objectifs principaux :

(1) établir un premier pas vers une stratégie pour le recollement en dimension supérieure
et les applications correspondantes au principe local-global ;

(2) généraliser les résultats obtenus dans le Chapitre 3 ; plus précisément, démontrer
un principe local-global sur des courbes algébriques (c’est-à-dire leurs corps de
fonctions) définies sur une famille plus grande de corps ultramétriques (qui ne
sont pas nécessairement complets).

Les résultats principaux que nous démontrons sont les suivants (voir le théorème 4.6.8
pour l’énoncé précis) :

Théorème (Theorem 4.6.8). Soit k un corps ultramétrique complet non trivialement
valué.

Soient S,C deux bons espaces k-analytiques tels que S soit normal. On suppose que
dimS < dimQR>0/|k×| ⊗ZQ. On suppose qu’il existe un morphisme π : C → S tel que C
est une courbe propre plate relative sur S. Pour tout domaine affinöıde Z de S, on pose
CZ := π−1(Z) et FZ := M (CZ), où M désigne le faisceau des fonctions méromorphes
sur C. Soit x ∈ S tel que OS,x soit un corps. On désigne par Fx la fibre de x dans C.

Supposons qu’il existe un voisinage connexe affinöıde Z0 de x tel que : (1) toutes les
fibres de π sur Z0 sont des courbes analytiques projectives normales irréductibles ; (2) CZ0

est normale ; (3) π|CZ0
: CZ0 → Z0 est algébrique.

Soit G/FZ0 un groupe linéaire algébrique connexe rationnel qui agit fortement transi-
tivement sur une variété H/FZ0 . Alors le principe local-global suivant est vrai :

H(lim−→
x∈Z

FZ) 6= ∅ ⇐⇒ H(MC,u) 6= ∅ pour tout u ∈ π−1(x),

où la limite directe est prise sur tous les voisinages affinöıdes connexes Z ⊆ Z0 de x.

Nous remarquons que la limite directe qui apparâıt à gauche du principe local-global
est le corps des germes de fonctions méromorphes sur la fibre de x dans C.

Nous ne travaillons que sur les fibres de points en lesquels l’anneau local est un corps.
L’ensemble de tels points est toujours dense. En particulier, dans le cas des courbes, si x
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est un point qui n’est pas rigide (voir la définition 1.5.10 ; les points rigides sont ceux
qu’on voit dans les espaces rigides), alors Ox est un corps. Même si cela n’apparâıt pas
explicitement pendant le chapitre, la raison derrière cette hypothèse est que pour pouvoir
appliquer les résultats du Chapitre 2 et recoller “autour” de la fibre, nous avons besoin
que la fibre ne soit pas un diviseur.

Pour montrer le théorème 4.6.8, comme les fibres d’une courbe analytique relative sont
munies d’une structure de courbe analytique, nous suivons un raisonnement similaire à
celui du cas de dimension un. Cependant, beaucoup de difficultés techniques apparaissent
dans ce cadre relatif. Voici un bref résumé de la preuve.

Nous construisons des recouvrements particuliers d’un voisinage de la fibre sur lesquels
le recollement est possible (qu’on appelle bons recouvrements relatifs) ; ils représentent
l’analogue relatif des bons recouvrements introduits dans le Chapitre 3. Nous traitons
d’abord le cas de P1,an

S - la droite analytique projective relative sur S. Pour ce faire, nous
utilisons la notion d’épaississement d’un domaine affinöıde, dont l’idée apparâıt dans un
texte non publié de Jérôme Poineau. Si U est un domaine affinöıde de la fibre Fx de x dans
P1,an
S , un Z-épaississement de U est un domaine affinöıde UZ de P1,an

Z tel que UZ∩Fx = U,
où Z est un voisinage affinöıde de x dans S. Les épaississements des domaines affinöıdes
de Fx existent et ont de bonnes propriétés si Z est choisi assez petit.

Soit U un bon recouvrement de la fibre Fx. Alors, il existe un voisinage affinöıde Z de
x tel que pour tout U ∈ U , le Z-épaississement UZ de U existe. Soit UZ l’ensemble de tous
ces Z-épaississements d’éléments de U . Nous montrons que pour Z assez petit, UZ satisfait
les propriétés pour que les résultats du Chapitre 2 puissent s’appliquer. Dans ce cas, UZ
est dit être un bon recouvrement Z-relatif de P1,an

Z . En particulier, nous remarquons que
les points de type 3 jouent encore un rôle très important. Leur existence dans la fibre est
garantie par l’hypothèse sur la dimension de S. Nous montrons alors que le recollement
peut s’appliquer aux bons recouvrements relatifs dans le cas de P1,an.

En utilisant des tirés en arrière de morphismes finis vers P1,an, une notion de bon
recouvrement relatif peut se construire plus généralement dans le cas des courbes normales
propres relatives. En rajoutant à ceci la restriction des scalaires à la Weil, on montre que
le recollement est possible sur des bons recouvrements relatifs dans ce cadre plus général.

Finalement, après avoir démontré que le recollement est possible autour de la fibre, le
principe local-global du théorème 4.6.8 peut être démontré. Ceci nécessite toutefois plus
de travail que dans le cas de la dimension un.

Il existe une connexion entre les points d’une fibre et les valuations dont son corps de
fonctions méromorphes surconvergentes peut être muni. Nous rendons cela précis dans la
proposition 4.6.6. Comme dans le cas de la dimension un, combiné avec l’hensélianité des
corps MC,z, π(z) = x, cette connexion nous permet d’obtenir un principe local-global par
rapport aux complétés. Avant d’énoncer ce résultat, nous rappelons que le corps OS,x est
naturellement muni d’une valuation | · |x.

Théorème (Theorem 4.6.8’). Avec les mêmes notations que dans l’énoncé du
théorème 4.6.8, on note FOx = lim−→Z

M (CZ). Soit V (FOx) l’ensemble des valuations non

triviales de rang 1 sur FOx qui induisent ou bien | · |x ou bien la valuation triviale sur Ox.
Pour v ∈ V (FOx), soit FOx,v le complété de FOx par rapport à v.

Si car k = 0 ou H est lisse, alors le principe local–global suivant est vrai :

H(FOx) 6= ∅ ⇐⇒ H(FOx,v) 6= ∅ pour tout v ∈ V (FOx).
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Nous remarquons que, avec les mêmes notations que dans le théorème ci-dessus,
OS,x = lim−→Z

OS(Z), où la limite directe est prise sur les voisinages affinöıdes Z de x
dans S. En utilisant les travaux de Grothendieck sur les limites projectives de schémas
pour construire une courbe relative algébrique sur O(Z) à partir d’une courbe algébrique
sur Ox et comme conséquence du théorème ci-dessus, nous obtenons la généralisation
suivante du corollaire 3.2.18.

Théorème (Theorem 4.6.9). Soit S un bon espace normal k-analytique tel que dimS <
dimQR>0/|k×|⊗ZQ. Soit x ∈ S tel que Ox soit un corps. Soit COx une courbe algébrique
lisse géométriquement irréductible sur le corps Ox. On note FOx le corps de fonctions
de COx .

Soit G/FOx un groupe linéaire algébrique connexe rationnel qui agit fortement transi-
tivement sur une variété H/FOx . Si car k = 0 ou H est lisse, alors :

H(FOx) 6= ∅ ⇐⇒ H(FOx,v) 6= ∅ pour tout v ∈ V (FOx),

où V (FOx) est comme dans le théorème 4.6.8’ ci-dessus.

Un élément crucial pour démontrer le théorème 4.6.9, et plus généralement, pour
mettre en valeur l’interêt de ce chapitre, est que, dans le cadre du théorème 4.6.8, les
fonctions méromorphes autour de la fibre de x sont algébriques. Plus précisement, le corps
des fonctions méromorphes surconvergentes sur la fibre de x est le corps de fonctions d’une
courbe algébrique sur Ox (qui est l’algébrisation d’un voisinage de la fibre suivi par un
changement de base à Ox ; voir le corollaire 4.4.15). Pour montrer ce résultat non trivial,
nous utilisons un théorème du type GAGA pour le faisceau des fonctions méromorphes
(voir le théorème 1.7.8).

À la fin de ce chapitre nous calculons quelques exemples d’anneaux locaux des espaces
analytiques de Berkovich qui sont des corps et auxquels les résultats ci-dessus peuvent
s’appliquer. Plus précisément, nous calculons les anneaux locaux en les points de A1,an

pour lesquels l’anneau local correspondant est un corps. De plus, nous donnons une
description de l’anneau local en certains points de An,an, n ∈ N. Voici un exemple d’un tel
corps, qui correspond à un point de type 3 d’une droite analytique affine.

Exemple. Soit (k, | · |) un corps ultramétrique complet. Soit r ∈ R>0\
√
|k×|. Soit

x ∈ A1,an
k une semi-norme multiplicative sur k[T ] telle que |T |x = r (en fait, x est le seul

tel point de A1,an
k ).

Pour tous r1, r2 ∈ R>0 tels que r1 < r < r2, on pose

Ar1,r2 :=

{∑

n∈Z

anT
n : an ∈ k, lim

n→+∞
|an|rn2 = 0, lim

n→−∞
|an|rn1 = 0

}
.

Alors, OA1,an
k

,x
= lim−→r1<r<r2

Ar1,r2 .

Comme dans le Chapitre 3, puisque la variété projective définie par une forme quadra-
tique satisfait les hypothèses des résultats présentés, l’exemple naturel auquel les énoncés
de ce chapitre peuvent s’appliquer est celui des formes quadratiques (sous l’hypothèse
car k 6= 2).





CHAPTER 1

Introduction to Berkovich Spaces

The aim of this chapter is to give an overview of the construction of Berkovich spaces
and prove certain properties for them that we need for the next parts of the manuscript.
The content of the first six sections is classical, so we only provide references for most
of the results. The exposition follows [6], [42], and [64]. The last two sections are more
specialized, containing for the most part results (including proofs) that will be applied in
the next chapters.

We start by presenting the algebraic setting on which Berkovich’s theory is founded.
Since the objects in question are analytic, their algebraic counterparts will be rings en-
dowed with some norm structure with respect to which they are complete (i.e. Banach
rings). We make this more precise in Section 1.1, where the notion of (semi-)norm is
defined and some of its properties are presented. Finally, we give the notion of Berkovich
analytic spaces over Banach rings. More precisely, the analogue of the affine spectrum,
called Berkovich spectrum, is discussed.

In Section 1.2, we give a classical example (on a topological level) of a Berkovich space,
the analytic affine line. This is one of the most understood objects in the theory, and its
properties are a good indicator of the kind of properties that analytic curves satisfy.

Like schemes, Berkovich spaces have “building blocks”, called affinoid spaces. Roughly,
affinoid spaces are to Berkovich spaces (or at least a certain subclass thereof known as good
Berkovich spaces) what finite type affine schemes are to a finite type scheme. One funda-
mental difference between the two is that affinoid spaces are compact (meaning Hausdorff
and hence not necessarily open), which is the cause of many technical difficulties in the
Berkovich setting. Another particularity is that there are several notions of boundary for
affinoid spaces. These objects are the topic of Section 1.4. We start with their algebraic
counterpart, affinoid algebras (which are a generalization of Tate’s affinoid algebras) in
Section 1.3, and continue with the construction of the structural sheaf.

In Section 1.5, good analytic spaces and some of their main properties are presented.
Local properties as being reduced, normal, regular, etc., exist for Berkovich analytic spaces
and are briefly discussed in this section. Several classes of morphisms in the category of
good Berkovich spaces and their main properties are presented. Most of these notions
are similar to their algebraic counterparts, but not all; this is due to the (sometimes) bad
behaviour of boundary points. Berkovich spaces possess very nice topological properties
(such as being locally arcwise-connected).

An analytification functor and GAGA-type theorems exist for Berkovich spaces and
are the main tool for applying Berkovich’s theory to arithmetic geometry. A topology is
induced from a scheme to its Berkovich analytification, called the Zariski topology with
respect to which the notion of irreducibility can be obtained. This is coarser than the
Berkovich topology, but behaves quite nicely with respect to GAGA-principles. These
facts are the topic of Section 1.6.

1
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In Section 1.7, we discuss a somewhat less classical topic, the sheaf of meromorphic
functions for Berkovich spaces. The definition and main properties resemble those of the
sheaf of meromorphic functions for schemes. Seeing as later on we interpret patching as the
gluing of meromorphic functions, this notion is crucial to our work. In particular, we give
a detailed proof of a GAGA-type result coming from a MathOverflow thread (see [57]).

Finally, in Section 1.8, a more detailed account of analytic curves is given, seeing as
it is the case of most interest to us. It includes some general results on curves (most
of which shown in [20]), and some specific statements that we will need later. This is
arguably the class of Berkovich spaces that is best understood and most studied: in [20],
Ducros shows that Berkovich analytic curves have a(n infinite) graph-like structure; many
of the notions defined on Berkovich spaces are much better behaved in the case of curves
than in general (e.g. boundaries); an algebraic classification of points can be given, and
it is usually possible to interpret it topologically. At the end of this section, we give a
description of the points of the analytic affine line.

1.1. Banach rings and the Berkovich spectrum

All rings considered here are assumed to be commutative with unity.

1.1.1. Valued Fields. Let k be a field.

Definition 1.1.1. An absolute value on k is a function | · | : k → R>0 such that:

(1) |1| = 1,
(2) for x ∈ k, |x| = 0 if and only if x = 0,
(3) ∀x, y ∈ k, |xy| = |x||y|,
(4) ∀x, y ∈ k, |x− y| 6 |x|+ |y|.

We will say that (k, | · |) is a field endowed with an absolute value.
If instead of (4), the following stronger condition is satisfied,
(4’) ∀x, y ∈ k, |x− y| 6 max(|x|, |y|),

then we say that | · | is a non-Archimedean or ultrametric absolute value on k. In that
case, we will say that (k, | · |) is a non-Archimedean valued (or ultrametric) field. When
there is no risk of ambiguity, we will simply say that k is an ultrametric field.

An absolute value which is not ultrametric will be called Archimedean.

Example 1.1.2. (1) For any field k, the function | · |0 : k → R>0, x 7→ 1 if x 6= 0,
and x 7→ 0 otherwise, determines an absolute value on k. We call | · |0 the trivial valuation
on k. Remark that | · |0 is ultrametric. The trivial valuation is the only absolute value
with which a finite field can be endowed.

(2) The standard Euclidean norm | · |∞ is an absolute value in C. It is Archimedean.
(3) Let p be a prime number. For x ∈ Q×, let ax, bx be the unique integers such that

bx > 0, (ax, bx) = 1, and x = ax
bx
. Then, the function | · |p : Q→ R>0,

x 7→
{
p−(vp(ax)−vp(bx)) if x 6= 0,

0 otherwise,

where for c ∈ Z\{0}, c = pvp(c) · d and p 6 |d, is a non-Archimedean absolute value on Q. It
is said to be the p-adic valuation on Q.

(4) Let p be a prime number. Then, the function | · |T : Fp(T ) → R>0, 0 7→ 0, and

x 7→ α−vT (x) for x 6= 0, where α > 1 and vT (x) is the largest integer n for which x ∈ (T )n,
is a non-Archimedean absolute value on Fp(T ).
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The following tells us how to distinguish between Archimedean and non-Archimidean
absolute values.

Proposition 1.1.3. An absolute value | · | on k is non-Archimedean if and only if
|n| 6 1 for all n ∈ Z.

Remark that an absolute value on k determines a metric, and thus a topology on k.
The following definition gives a criterion for when two absolute values induce the same
topology on the underlying field.

Definition 1.1.4. Two absolute values | · |1, | · |2 are said to be equivalent if there
exists α > 0 such that | · |1 = | · |α2 .

Ostrowski’s Theorem (see e.g. [44, Theorem 1, Section 1.2]) tells us that, up to
equivalence, Q can only be endowed with the following absolute values: | · |0, | · |∞, and
| · |p, p a prime number.

Let | · | be an absolute value on k. We will say that k is complete with respect to | · |
(or simply complete when there is no risk of ambiguity) if it is complete with respect to

the metric | · | induces on k. As usual, one can define the completion (k̂, | · |) of (k, | · |) by
using the Cauchy sequence construction. Then, (k̂, | · |) is complete.

Example 1.1.5. (1) The field k is complete with respect to its trivial absolute valuation
| · |0.

(2) The field C is complete with respect to | · |∞. By the Gelfand-Mazur theorem
(cf. [15], VI, 6, n◦4, Théorème 1), the only complete fields with respect to Archimedean
absolute values are R and C.

(3) Let p be a prime number. We denote the completion of (Q, | · |p) by Qp. It is called
the field of p-adic numbers.

(4) Let p be a prime number. Then, the completion of (Fp(T ), | · |T ) is the field Fp((T ))
of Laurent series over Fp.

Theorem 1.1.6. Let (k, | · |) be a complete field. Let us fix an algebraic closure k of k.

(1) The absolute value | · | can uniquely be extended to k.

(2) The completion k̂ of (k, | · |) is a complete algebraically closed field.

For a prime number p, we will denote by Cp the field Q̂p. It is the p-adic analogue
of C.

Finally, let us mention a few topological particularities of non-Archimedean valued
fields.

Proposition 1.1.7. Let (k, | · |) be a non-Archimedean valued field.

(1) For any x, y ∈ k such that |x| 6= |y|, one has |x+ y| = max(|x|, |y|).
(2) A closed disc of positive radius in k is open.
(3) For any a ∈ k and r ∈ R>0, let B(a, r) denote the closed disc in k centered at a

and of radius r. Then, for any b ∈ B(a, r), one has B(a, r) = B(b, r).
(4) The field k is a totally disconnected topological space (with respect to the topology

induced by | · |).
Notation 1.1.8. For any field k endowed with an absolute value | · |, we denote by |k|

the set {r ∈ R>0 : ∃a ∈ k, |a| = r}. Set |k×| = {r ∈ |k| : r 6= 0}. This is a multiplicative

subgroup of R>0. We denote by
√
|k×| its divisible closure.
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Let k be a complete ultrametric field. We will say that K/k is a complete ultrametric
field extension if: (1) K is a field extension of k; (2) K is complete with respect to an
absolute value that extends that of k.

1.1.2. Semi-normed rings. Let A be a ring.

Definition 1.1.9. A semi-norm on A is a function | · | : A→ R>0 such that

(1) |0| = 0, |1| = 1,
(2) ∀x, y ∈ A, |xy| 6 |x||y|,
(3) ∀x, y ∈ A, |x− y| 6 |x|+ |y|.

If condition (2) is strengthened: ∀x, y ∈ A, |xy| = |x||y|, we will say that | · | is a multi-
plicative semi-norm on A.

If ker | · | = {0}, we will say that | · | is a norm on A. If | · | is a multiplicative semi-norm
and a norm, we will say that it is a multiplicative norm on A.

If instead of condition (3) we take the following stronger hypothesis:
(3’) ∀x, y ∈ A, |x− y| 6 max(|x|, |y|),

then | · | is said to be non-Archimedean.

We will sometimes say that A is a (semi-)normed ring.

Example 1.1.10. (1) The function | · |0 : A → R>0, x 7→ 1 if x 6= 0, and x 7→ 0
otherwise, determines an multiplicative norm on A, called the trivial norm.

(2) The Euclidean norm | · |∞ is a multiplicative norm on Z. For a prime number p,
the p-adic absolute value | · |p determines a non-Archimedean multiplicative norm on Z.

(3) Let (k, | · |) be a field endowed with an absolute value. Let a ∈ k. Then, the
function | · |a : k[T ] → R>0, P (T ) 7→ |P (a)|, is a multiplicative semi-norm on k[T ]. It is
non-Archimedean if | · | is so.

(4) Let Mn(C) be the ring of n× n matrices over C. Let ||| · ||| :Mn(C)→ R>0 be the

function given by M 7→ supv∈Cn\{0}
‖Mv‖
‖v‖ , where ‖ · ‖ : Cn → R>0 is the Euclidean norm,

i.e. (t1, t2, . . . , tn) 7→
√
|t1|2∞ + |t2|2∞ + · · · |tn|2∞. Then, ||| · ||| is a norm on Mn(C).

As before, a semi-norm |·| on A determines a topology on A. Remark that this topology
is Hausdorff if and only if |·| is a norm. A sufficient condition for two semi-norms to induce
the same topology on A is given by the following:

Definition 1.1.11. Two semi-norms | · |1, | · |2 on A are said to be equivalent if there
exist real numbers C1, C2 > 0 such that C1| · |1 6 | · |2 6 C2| · |1.

In particular, remark that ker| · |1 = ker| · |2, so | · |1 is a norm if and only if | · |2 is a
norm.

Lemma 1.1.12. A multiplicative semi-norm | · | on A is non-Archimedean if and only
if Z is bounded.

Let I be an ideal of A. Then, any semi-norm | · | on A induces a semi-norm on A/I
via x+ I → inf{|y| : x− y ∈ I}, called the quotient semi-norm on A/I induced by | · |. If
| · | is non-Archimedean, then so is the quotient semi-norm.

Let us introduce the class of morphisms between semi-normed rings that will be of
interest to us.

Definition 1.1.13. Let (A, | · |A), (B, | · |B) be two semi-normed rings (i.e. rings
endowed with semi-norms). A morphism f : A → B is said to be bounded (with respect
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to these semi-norms on A,B, respectively) if there exists a real number C > 0, such that
for any a ∈ A, |f(a)|B 6 C · |a|A.

The morphism f is said to be admissible if the quotient semi-norm on A/kerf induced
by | · |A is equivalent to the semi-norm induced on Im(f) by | · |B.

Let | · | be a norm on A. As usual, we will say that (A, | · |) is complete if any Cauchy
sequence in A has a limit in A (with respect to | · |). In that case, A is said to be a Banach
ring. In Berkovich’s theory, Banach rings plays a role analoguous to commutative rings in
algebraic geometry.

In Example 1.1.10, (Z, | · |∞), (Mn(C), ||| · |||) are Banach rings.

Definition 1.1.14. Let (A, | · |A), (B, | · |B) be Banach rings, such that B is an A-
algebra. We say that (B, | · |B) is a Banach A-algebra if the morphism A→ B is bounded.

Lemma 1.1.15. Let I be a closed ideal of A. If | · | is a norm on A, then the quotient
semi-norm | · |A/I on A/I induced by | · | is a norm on A/I. Moreover, if (A, | · |) is a
Banach ring, then so is (A/I, | · |A/I).

If | · | is merely a semi-norm on A, it does not make sense to speak of completeness
seeing as the Cauchy sequences in A may have more than one accumulation point. There
is, however, a notion of completion.

Theorem 1.1.16. Let (A, | · |) be a semi-normed ring. The set of equivalence classes of

Cauchy sequences in A forms a ring Â naturally endowed with a norm | · |′. Then, (Â, | · |′)
is a Banach ring, and there is a natural admissible morphism A→ Â such that the image
of A is dense. Moreover, | · | is non-Archimedean if and only if | · |′ is non-Archimedean.

We will say that (Â, | · |′) is the completion (in some texts referred to as separated

completion) of (A, | · |). The admissible morphism A → Â is an embedding if and only if
| · | is a norm. It is an isomorphism if and only if (A, | · |) is a Banach ring. Remark that

(Â, | · |′) is the completion of A/ker | · | with respect to the quotient semi-norm.

1.1.3. The spectral radius. Let (A, | · |) be a Banach ring. We present here a
canonical way to obtain from | · | a semi-norm with particularly nice properties (e.g. as
close as possible to being multiplicative).

Lemma 1.1.17 (Fekete’s Lemma). Let x ∈ A. Then, ρA(x) := limn→+∞ |xn|1/n exists.

Moreover, ρA(x) = infn∈N |xn|1/n.
Definition 1.1.18. For any x ∈ A, ρA(x) is called the spectral radius of x.

Lemma 1.1.19. (1) ρA(1) = 1;
(2) ∀x, y ∈ A, ρA(x− y) 6 ρA(x) + ρA(y);
(3) ∀x, y ∈ A, ρA(xy) 6 ρA(x)ρA(y);
(4) ∀n ∈ N, ∀x ∈ A, ρA(xn) = ρA(x)

n.
If A is non-Archimedean, then ∀x, y ∈ A, ρA(x− y) 6 max(ρA(x), ρA(y)).

We will call ρA the spectral semi-norm of A.
Another important property of the spectral semi-norm is that it remains the same

even if | · | is replaced by an equivalent norm.
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1.1.4. Semi-normed modules. Let (A, | · |) be a ring endowed with a semi-norm.
Let M be an A-module.

Definition 1.1.20. A semi-norm on the A-module M is a function ‖ · ‖ :M → R>0,
satisfying:

(1) ∀x, y ∈M, ‖x− y‖ 6 ‖x‖+ ‖y‖;
(2) there exists a real number C > 0 such that ∀a ∈ A, ∀m ∈M, ‖am‖ 6 C|a|‖m‖.

If ker‖ · ‖ = 0, we will say that ‖ · ‖ is a norm on M.
If condition (1) is strengthened to: ∀x, y ∈ M, ‖x − y‖ 6 max(‖x‖, ‖y‖), then ‖ · ‖ is

said to be non-Archimedean.

Remark that for any semi-norm ‖ · ‖ on M, ‖0‖ = 0 (because of condition (2) above
and the fact that |0| = 0).

A semi-norm ‖·‖ defines a topology onM, which is Hausdorff if and only if ‖·‖ is a norm.
There is once again a notion of equivalent semi-norms which gives a sufficient condition for
semi-norms to induce the same topology on M : two semi-norms ‖ · ‖1, ‖ · ‖2 are said to be
equivalent if there exist positive real numbers C1, C2 such that C1‖ · ‖1 6 ‖ · ‖2 6 C2‖ · ‖1.

Hence, ‖ · ‖ can be replaced by an equivalent semi-norm for which in condition (2) of
Definition 1.1.20 we can take C = 1.

Let M ′ be an A-submodule of M. Then, a (non-Archimedean) semi-norm ‖ · ‖ on M
induces a (non-Archimedean) semi-norm on M/M ′ via x +M ′ 7→ inf{‖y‖ : x − y ∈ M ′},
called the quotient semi-norm.

We can define in the same way as in Definition 1.1.13 the notion of bounded and
admissible morphisms between semi-normed A-modules.

Let ‖ · ‖ be a norm on M. Then, M is said to be complete with respect to ‖ · ‖ if
any Cauchy sequence in M has a limit in M. In that case, we will say that (M, ‖ · ‖) is a
Banach A-module.

Lemma 1.1.21. Let M ′ be a closed A-submodule of M. If ‖ · ‖ is a norm on M , then
the quotient semi-norm ‖·‖M/M ′ on M/M ′ induced by ‖·‖ is a norm on M/M ′. Moreover,
if (M, ‖ · ‖) is a Banach A-module, then so is (M/M ′, ‖ · ‖M/M ′).

With the same remarks as in the case of semi-normed rings, there is a notion of
completion.

Theorem 1.1.22. Let (M, ‖ · ‖) be a semi-normed A-module. The set of equivalence

classes of Cauchy sequences in M forms an Â-module M̂ naturally endowed with a norm

‖ · ‖′. Then, (M̂, ‖ · ‖′) is a Banach module over both A and Â, and there is a natural

admissible morphism M → M̂ such that the image of M is dense. Moreover, ‖ · ‖ is
non-Archimedean if and only if ‖ · ‖′ is non-Archimedean.

We will say that (M̂, ‖ · ‖′) is the completion (in some texts referred to as separated

completion) of (M, ‖·‖). The admissible morphismM → M̂ is an embedding if and only if
‖·‖ is a norm. It is an isomorphism if and only if (M, ‖·‖) is a Banach A-module. Remark

that (M̂, ‖ · ‖′) is the completion of M/ker ‖ · ‖ with respect to the quotient semi-norm.

1.1.5. Complete tensor product of modules in the non-Archimedean case.
Let (A, | · |) be a non-Archimedean normed ring. Let (M, | · |M ), (N, | · |N ) be two normed
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non-Archimedean A-modules. We can endow the tensor product M ⊗A N with the semi-
norm

‖x‖ := inf

{
max
i=1,...,n

|mi|M |ni|N : x =
n∑

i=1

mi ⊗ ni
}
.

Definition 1.1.23. The complete tensor product ofM and N , denotedM⊗̂AN, is the
completion of M ⊗A N with respect to the semi-norm ‖ · ‖. It is a Banach module over

both A and Â.

The complete tensor product satisfies a universal property.

Definition 1.1.24. Let (P1, | · |1), (P2, | · |2), (P3, | · |3) be normed A-modules. A mor-
phism ϕ : P1 × P2 → P3 of A-modules is said to be a bounded bilinear morphism if there
exists C > 0 such that for any x ∈ P1, y ∈ P2, |ϕ(x, y)|3 6 C|x|1|y|2.

Proposition 1.1.25 ([11, 2.1.7/1]). Let P be a Banach A-algebra. Any bounded
bilinear morphism M ×N → P is uniquely factorised through M⊗̂AN.

Other useful properties of this construction that we need are the following (non-trivial)
results:

Theorem 1.1.26 ([29], Section 3, Thm. 1(4)). Let k be a complete ultrametric field.
Let M,N be non-Archimedean k-Banach vector spaces. Then, the canonical map M ⊗k
N →M⊗̂kN is an embedding with a dense image.

Theorem 1.1.27. [41, Appendix D.4.2] Let A be a non-Archimedean Banach ring.
Let M,N,M ′, N ′ be Banach A-modules. If there exist A-linear maps ϕ : M → M ′ and
ψ : N → N ′ that are surjective and admissible, then ϕ⊗̂Aψ : M⊗̂AN → M ′⊗̂AN ′ is
surjective and admissible.

For a detailed treatment of complete tensor products, see [11, 2.1.7].

1.1.6. The Berkovich spectrum. All rings considered here are assumed to be com-
mutative with unity. We now define and explore the Berkovich analogue of the affine
spectrum, defined in [6, Section 1.2].

Definition 1.1.28. Let (A, ‖ · ‖) be a ring endowed with a semi-norm. A semi-norm
| · | on A is said to be ‖ · ‖−bounded if there exists a positive real number C, such that
| · | 6 C‖ · ‖.

When there is no risk of ambiguity, we will simply say that | · | is a bounded semi-norm
on A.

Definition 1.1.29 (The Berkovich Spectrum). Let (A, ‖ · ‖) be a Banach ring. The
Berkovich spectrum of A, denoted M(A), is the set of all bounded multiplicative semi-
norms on A.

We endowM(A) with the coarsest topology for which the function vy :M(A)→ R>0,
| · | 7→ |f |, is continuous for all f ∈ A.

Remark 1.1.30. For any | · | ∈ M(A), | · | 6 ‖ · ‖. To see this, fix | · | ∈ M(A), and
let C > 0 be such that | · | 6 C‖ · ‖. Then, for any a ∈ A and any n ∈ N, we have

|a|n = |an| 6 C‖an‖ 6 C‖a‖n, so |a| 6 n
√
C‖a‖. By taking n→ +∞, we obtain |a| 6 ‖a‖,

so | · | 6 ‖ · ‖.
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Remark that because of their multiplicativity,M(A) does not contain equivalent semi-
norms. Also,M(A) does not change if we replace ‖ · ‖ by an equivalent norm.

Convention 1.1.31. For a point x of the spaceM(A), we will also use the notation
| · |x when considering it as a semi-norm on A.

Example 1.1.32. (1) Let (k, | · |) be a complete ultrametric field. Then,M(k) is the
single point {| · |}.

(2) Let us briefly describe M(Z), where Z is endowed with | · |∞. This can be done
using Ostrowski’s theorem on the classification, up to equivalence, of all absolute values
that Q can be endowed with.

Let | · |x be a multiplicative norm on Z. Then, this defines an absolute value on Q, so
we have the following possibilities:

• | · |x = | · |0-the trivial norm on Z;
• | · |x = | · |α∞ for some α > 0, and in order for this to be an absolute value on Q,
α ∈ (0, 1];

• there exists a prime number p such that | · |x = | · |βp for some β > 0; here
β ∈ (0,+∞).

Suppose that | · |x is a multiplicative semi-norm on Z that is not a norm. Then, ker| · |x
determines a non-zero prime ideal Px of Z. Consequently, there exists a prime number
p ∈ Z, such that Px = pZ. The quotient semi-norm on Z/pZ = Fp is a norm, so it is
trivial. Consequently, | · |x = | · |p,0, where |x|p,0 := 1 if p 6 |x, and |x|p,0 := 0 otherwise.

(Remark that, informally, “limβ→+∞ | · |βp = | · |p,0”.)

0

1

0

+∞

| · |β2
| · |2,0

| · |3,0 | · |p,0

| · |βp| · |β3

| · |α∞
M(Z)

| · |0

α

β

Finally,M(Z) = {| · |0, | · |α∞, | · |βp , | · |p,0 : 0 < α 6 1, β > 0, p−prime}. This gives us the
following “tree-like” illustration ofM(Z). For any prime p, there is a “branch” associated
to it that is homeomorphic to an interval. There is an additional branch associated to the
Euclidean norm | · |∞, which is also homeomorphic to an interval. All of these branches
come together at the “central” point of the tree, corresponding to the trivial valuation.
The open neighborhoods of | · |0 have only finitely many boundary points, meaning they
contain all but a finite amout of the branches of the tree.

We will see other important examples later. Berkovich spaces will be defined over a
complete ultrametric field, for which the space M(k) will be relevant. There also exist
Berkovich spaces defined over Z (i.e. overM(Z)), which include at the same time elements
of the Archimedean and non-Archimedean worlds (see [59]). This is an area of research
that is in the rise.
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Let A be a Banach ring, and x ∈ M(A). Then, ker | · |x is a closed and prime ideal
of A, so x induces a semi-norm | · |′x on the domain A/ker| · |x. Moreover, for any f, g ∈ A
such that |f − g|x = 0, we have that |f |x = |g|x. Thus, |f |x = |f̃ |′x, where f̃ is the image
of f in A/ker| · |x. Consequently, the quotient semi-norm in A/ker| · |x is a multiplicative
norm, and can thus be extended to Frac (A/ker| · |x).

Definition 1.1.33. Let A be a Banach ring. For any x ∈ M(A), let us denote by
H(x) the completion of Frac(A/ker| · |x) with respect to the quotient norm. We call it the
completed residue field of x.

Remark that there is a canonical isometric embedding k →֒ H(x), implying H(x) is a
complete ultrametric field.

The completed residue fields are important objects in Berkovich’s theory. These are
the fields where analytic functions take their values.

Before stating the main properties of the Berkovich spectrum, let us present another
construction of it, which draws an analogy with the affine spectrum.

Definition 1.1.34. Let A be a Banach ring. Let K,L be two complete ultrametric
fields, such that there exist bounded maps φK : A→ K,φL : A→ L.

The morphisms φK , φL are said to be equivalent if there exists a complete field M , a
bounded morphism A→M, and embeddingsM →֒ L,M →֒ K corresponding to complete
ultrametric field extensions, such that the following diagram commutes.

K A L

M

φK φL

Lemma 1.1.35. [6, Remark 1.2.2(ii)] Let A be a Banach ring. The points of M(A)
are the equivalence classes (Definition 1.1.34) of bounded morphisms A→ K, where K is
a complete ultrametric field.

For a proof of Lemma 1.1.35, see [41, pg. 7, Algebraic Characters].
A crucial property of the Berkovich spectrum is the following:

Theorem 1.1.36. [6, Theorem 1.2.1] Let A be a Banach ring. Then, M(A) is a
non-empty compact space.

Remark 1.1.37. In this text, compact will always mean quasi-compact and Hausdorff.

The fact thatM(A) is compact (and hence Hausdorff) is one of the main differences
with the algebraic setting. As we will later see, the spectra of certain Banach rings form
the building blocks of Berkovich spaces, and the fact that the building blocks are compact
is a source of technical difficulties. Namely, the structural sheaf of analytic functions will
be defined over these building blocks and will be “nice” there, but this will generally not
be the case for opens.

Another very important property is the following:

Theorem 1.1.38 (The maximum modulus principle, [6, Theorem 1.3.1]). Let A be a
Banach ring. Then, for any a ∈ A, ρA(a) = maxx∈M(A) |a|x, where ρA is the spectral
radius associated to the norm on A.
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Information can be obtained on the Banach ring A by looking at the infinite vector
(| · |x)x∈M(A). Here is an example.

Lemma 1.1.39 ([42, Corollary 3.15]). Let A be a Banach ring. An element a ∈ A is
invertible if and only if |a|x 6= 0 for all x ∈M(A).

Let us finish the construction of a functor from the category of Banach rings to the
category of topological spaces (A 7→ M(A)) by giving the class of morphisms that we
consider.

Lemma 1.1.40. Let A,B be Banach rings. Any bounded morphism A → B gives rise
to a continuous map ϕ :M(B)→M(A).

For a proof, see [41, pg. 8, Induced maps].

Remark 1.1.41. Let f : A → B be a bounded morphism of Banach rings. Let
ϕ :M(B)→M(A) be the induced continuous morphism of their spectra. For any x ∈
M(B), there exists a natural isometric embedding H(y) →֒ H(x), where y := ϕ(x).

Here is a description of the fibers of these morphisms.

Lemma 1.1.42. Let A,B be Banach rings. Let f : A → B be a bounded morphism,
and ϕ :M(B)→M(A) the induced morphism of their spectra. Then, for any x ∈M(A),
the fiber ϕ−1(x) is homeomorphic toM(B⊗̂AH(x)).

For a proof, see [41, pg. 14, Fibers].
Finally, the following important result will be very useful.

Proposition 1.1.43 ([6, Corollary 1.3.6]). Let k be a complete field. Let A be a
Banach k-algebra. Set G = Gal(ks/k), where ks is the separable closure of k. Then, G

acts on k̂ andM(A⊗̂kk̂). Moreover, there is a homeomorphismM(A⊗̂kk̂)/G→M(A).

1.2. The Analytic Affine Line

Before continuing with an overview on the construction of Berkovich spaces, we make a
digression in order to describe in detail (only as a topological space) a fundamental example
of these objects. As we will later see, said example illustrates well the main geometric
properties of Berkovich analytic curves. The objects presented here were originally defined
in [6, Section 1.5].

1.2.1. The analytic affine space. Let A be a Banach ring. Set

An,anA = {multiplicative semi-norms on A[T1, T2, . . . , Tn] that are bounded on A}.
We endow the above set with the coarsest topology for which the map

An,anA → R>0, x 7→ |f |x, is continuous for all f ∈ A[T1, T2, . . . , Tn].
The space An,anA is called the n-dimensional analytic affine space over A. If n = 1,

we say that A1,an
A is the analytic affine line over A. The analytic affine space has nice

topological properties (cf. [59, Théorème 1.1.13]).

Example 1.2.1. If A is C endowed with | · |∞, then by the Gelfand-Mazur theorem
we obtain the usual complex affine n-dimensional space An,anC homeomorphic to Cn.

The case of most interest to us is when A is a complete ultrametric field k and n = 1.
Arguably, these are the (non-trivial) Berkovich spaces that can be described the best. We
now focus on that.
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Definition 1.2.2. For any x ∈ A1,an
k , let H(x) be the completion of Frac(k[T ]/ker| · |x)

with respect to the quotient semi-norm. Remark that H(x) is a complete ultrametric field

and there is a canonical isometric embedding k →֒ H(x). We denote by k̃, resp. H̃(x), the
residue field of k, resp. H(x).

1.2.2. A1,an
k : the trivially valued case. Let k be a trivially valued field. For any

x ∈ A1,an
k , let px := ker| · |x.

If px 6= 0, then there exists an irreducible polynomial P (T ) ∈ k[T ] such that px = (P ).
Then, H(x) = k[T ]/(P ), and since k is trivially valued, we obtain that H(x) is trivially
valued. Consequently, x determines the following semi-norm on k[T ]: Q 7→ 0 if P |Q, and
Q 7→ 1 otherwise. We denote ηP,0 := x.

Suppose px = 0. Then, | · |x is a multiplicative norm on k[T ] (and hence on k(T )) which
when restricted to k is the trivial norm. This implies that | · |x is non-Archimedean (see
Lemma 1.1.12).

• If |T |x 6 1, then for any polynomial P over k, |P |x 6 1. Let mx := {P ∈ k[T ] :
|P |x < 1}. If mx = 0, then x is the trivial norm on k[T ], which we denote by
ηT,1. If mx 6= 0, then there exists an irreducible polynomial Q over k, such that

mx = (Q). Set r := |Q|x ∈ (0, 1). Then, for any P ∈ k[T ]\{0}, |P |x = rvQ(P ),
where vQ(P ) is the largest n ∈ N such that Qn|P. We will denote this point by
ηQ,r. Remark that H(ηQ,r) is the completion of k[T ] with respect to the Q-adic
valuation.
• Suppose |T |x > 1, and set s := |T |x > 1. Then, for any P ∈ k[T ]\{0}, |P |x =
sdegP . We denote this point by ηT,s. The field H(ηT,s) is then isomorphic to the
field of Laurent series k((T−1)).

ηP,0
ηT,0 0

1

1

+∞

ηT,1

ηT,s

ηT,r ηP,r

Figure 1: A1,an
k for k-trivially valued

s

r

We obtain the above “tree-like” illustration of A1,an
k . To each irreducible polynomial

over k, a branch homeomorphic to an interval is associated. There is an additional branch
corresponding to ηT,s, s > 1, which is also homeomorphic to an interval. They all come
together at the “central point” ηT,1 - the trivial valuation. An open neighborhood of ηT,1
contains all but a finite number of these branches (i.e. it has finite boundary).
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1.2.3. A1,an
k : the algebraically closed case ([6, 1.4.4]). Let (k, | · |) be a complete

non-trivially valued ultrametric field that is algebraically closed.

• For any a ∈ k, let ηT−a,0 : k[T ] → R>0, P (T ) 7→ |P (a)|. This determines a
multiplicative semi-norm on k[T ] extending the absolute value on k, so ηT−a,0 is

a point of A1,an
k ; it is said to be a type 1 point. Remark that H(x) = k. We will

sometimes denote this point by ηa,0.
• For any a ∈ k and r ∈ R>0, let ηT−a,r : k[T ] → R>0, P (T ) =

∑
n an(T − a)n 7→

maxn |an|rn. This is a multiplicative norm on k[T ] extending the absolute value

on k, so ηT−a,r ∈ A1,an
k . Remark that ηT−a,r does not depend on a, but only on

the closed disc B(a, r) in k centered at a and of radius r (i.e. for any b ∈ B(a, r),
ηT−b,r = ηT−a,r). We will sometimes simply denote ηa,r.

These kinds of points behave differently depending on r. If r ∈ |k×|, ηa,r is

said to be a type 2 point. In that case, H̃(x) ∼= k̃(T ) and |H(x)| = |k|.
If r 6∈ |k|, then ηa,r is said to be a type 3 point. If that is the case, then

H̃(x) = k̃, and |H(x)×| is generated by |k×| and r.
Let B := (Bn)n∈N be a sequence of decreasing closed discs in k, i.e. Bn+1 ⊆ Bn for all

n ∈ N. Let an ∈ k and rn ∈ R>0 be such that Bn = B(an, rn). Let us denote by | · |Bn the

(unique) point ηan,rn of A1,an
k determined by Bn as above. Then, B determines a point of

A1,an
k as follows: | · |B : k[T ]→ R>0, P (T ) 7→ infn |P (T )|Bn .

Berkovich showed that all of the points of A1,an
k are of the form described above. In

particular, remark that: (1) if
⋂
nBn is a single point a ∈ k, then | · |B is the type 1 point

ηa,0; (2) if
⋂
nBn is a closed disc centered at a ∈ k and of radius r ∈ R>0, then | · |B is the

point ηa,r, which is of type 2 or 3 depending on the nature of r.
However, this does not always cover all of the possibilites. Namely, it could happen

that
⋂
nBn = ∅, in which case we say that the field k is spherically complete. If this is

the case, B gives rise to a point said of type 4 (these are in general the most complicated

points to work with). Let x ∈ A1,an
k be a type 4 point. By [6, 1.4.4], |H(x)| = |k|, and

H̃(x) = k̃.

The above is an illustration of A1,an
k in this case. Remark that it is an “infinitely

branched tree”. The types of points can be read in the drawing. Namely:

• type 2 points are the points of branching in the tree (e.g. ηT,1 = ηT−1,1);
• type 3 points are those where there is no branching (e.g. ηT,r with r 6∈ |k|);
• type 1 and 4 points are the “leaves” of the tree.

The topology on A1,an
k is quite complicated. All of the injective “paths” are isomorphic to

a segment. For points of type 2, neighborhoods resemble somewhat to the neighborhoods
of the “central” point in the trivially valued case.

1.2.4. A1,an
k : the general case. Suppose k is a complete ultrametric field (not nec-

essarily algebraically closed).

There is a canonical continuous open surjective morphism ϕ : A1,an

k̂
→ A1,an

k . More-

over, let G denote the absolute Galois group of k, i.e. G = Gal(ks/k), where ks is the

separable closure of k. Then, G acts on A1,an

k̂
preserving the types of points, and by

Proposition 1.1.43, there is an isomorphism A1,an

k̂
/G ∼= A1,an

k .
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ηT−a,0, s := |a|

ηT,s = ηT−a,s

ηT,r, r 6∈ |k×|

ηT−1,0

ηT,0

Figure 2: A1,an
k for k algebraically closed

ηT,1 = ηT−1,1

- type 1 point

- type 2 point

- type 3 point

- type 4 point

A point x ∈ A1,an
k is said to be of type i if there exists y ∈ ϕ−1(x) that is of type i,

i = 1, 2, 3, 4. (This is well defined seeing as then all of the points of ϕ−1(x) will be of
type i.)

For any a ∈ k and any r ∈ R>0, we denote by ηa,r the point ϕ(ηa,r) of A
1,an
k .

Definition 1.2.3. A point x ∈ A1,an
k is said to be rigid if H(x)/k is a finite field

extension.

Lemma 1.2.4. There is a bijection between the rigid points of A1,an
k and the irreducible

polynomials over k (up to multiplication by an element of k×), given by x 7→ ker| · |x.
Proof. By their definition, the rigid points of A1,an

k are exactly the ones that deter-

mine semi-norms on k[T ] of non-zero kernel. Let x ∈ A1,an
k be a rigid point. Then, ker| · |x

is a non-zero proper prime ideal of k[T ], and as such is generated by a (unique up to
multiplication by an element of k×) irreducible polynomial Px over k.

Let P ∈ k[T ] be an irreducible polynomial. Let α ∈ k̂ be a root of P. Then,

|P |ϕ(ηα,0) = 0, so xP := ϕ(ηα,0) ∈ A1,an
k is a rigid point, and ker| · |xP = (P ). �

For any irreducible polynomial P over k, let us denote the unique rigid point x ∈ A1,an
k

such that |P |x = 0 by ηP,0. By the lemma above, the set of rigid points of A1,an
k is given

by {ηP,0 : P an irreducible polynomial over k}.
The illustration of A1,an

k in the general case is very similar to that in the algebraically
closed case. It is an infinitely branched tree, where type 2 points are the branching ones,
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type 3 points the non branching ones, and type 1 and 4 the “leaves”. In particular, ηP,0
is a leaf of the tree for any irreducible polynomial P over k.

Remark 1.2.5. With the terminology introduced here, remark that in the trivially
valued case, the only type 2 point is η0,1. The type 1 points are the rigid points, and all

the rest are type 3 points of A1,an
k .

Also, remark that in the algebraically closed case, the type 1 points are the rigid points.
This is only true if k is algebraically closed or trivially valued.

We give a more detailed description of the points of A1,an
k in part 1.8.4.

1.2.5. The analytic projective line.

Definition 1.2.6. As usual, one can obtain the n-dimensional projective analytic space
over k, denoted Pn,ank , by gluing n+1 copies of An,ank , or equivalently, compactifying An,ank .

In particular, for n = 1, the projective analytic line over k is obtained by adding an
∞ point to A1,an

k .

The ∞ point of P1,an
k is a rigid (even rational) point (it is the unique point for which

|1/T | = 0). We will say that ∞ is a type 1 point of P1,an
k . For any other point x ∈ P1,an

k ,

we will say that x is of type i if it is of type i as a point of A1,an
k , i = 1, 2, 3, 4.

We give a more detailed description of the points of A1,an
k (and thus of P1,an

k ) in 1.8.4.

1.3. Affinoid Algebras

Affinoid algebras in Berkovich’s theory are the analogue of finite type algebras in
algebraic geometry. Throughout this section, let (k, | · |) denote a complete ultrametric
field.

1.3.1. Definition and some properties.

Definition 1.3.1. Let n ∈ N and r1, r2, . . . , rn ∈ R>0. We denote

k{r−1
1 T1, r

−1
2 T2, . . . , r

−1
n Tn} :=

{∑

l∈Nn

alT
l : al ∈ k, lim

|l|→+∞
|al|rl = 0

}
,

where for any l = (l1, l2, . . . , ln) ∈ Nn, |l| := l1 + l2 + · · · + ln, and for any n-tuple

α := (α1, α2, . . . , αn), α
l :=

∏n
i=1 α

li
i . We sometimes use the notation k{r−1T} for

k{r−1
1 T1, r

−1
2 T2, . . . , r

−1
n Tn}. This is a k-algebra.

For r1 = r2 = · · · = rn = 1, we obtain the so-called Tate affinoid algebra k{T}.
Lemma 1.3.2. For any n ∈ N and any r ∈ Rn>0, the map ‖ · ‖ : k{r−1T} → R>0,∑

l∈Nn alT
l 7→ maxl∈Nn |al|rl, defines a non-Archimedean multiplicative norm on k{r−1T},

which satisfies ‖ · ‖|k = | · |. Moreover, (k{r−1T}, ‖ · ‖) is a Banach k-algebra.

For a proof, see [42, Lemma 4.8]. In fact, k{r−1T} is the completion of k[T ] with
respect to the norm ‖ · ‖ introduced in Lemma 1.3.2.

Definition 1.3.3. A Banach k-algebra A is said to be a k-affinoid algebra if there
exist n ∈ N, r ∈ Rn>0, and a surjective admissible morphism k{r−1T}։ A.

The Banach k-algebra A is said to be a strict k-affinoid algebra if there exist n ∈ N,
and a surjective admissible morphism k{T}։ A.
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Before anything else, let us note that for any complete ultrametric field extension K
of k, the Banach K-algebra A⊗̂kK is a K-affinoid algebra. Also, the completed tensor
product of two k-affinoid algebras is also a k-affinoid algebra (for both of these statements,
recall Theorem 1.1.27).

Remark that the norm of an affinoid algebra always has a representative in its equiva-
lence class that is non-Archimedean. Before saying anything else about affinoid algebras,
let us remark the following.

Lemma 1.3.4. Let (A, ‖ · ‖) be a k-affinoid algebra, where we suppose that ‖ · ‖ is the
norm obtained from some surjective admissible morphism k{r−1T} ։ A. The norm ‖ · ‖
is k-linear, meaning: ∀a ∈ k, ∀x ∈ A, ‖ax‖ = |a|‖x‖. Moreover, ‖ · ‖|k = | · |.

In practice, when working with k-affinoid algebras, we usually (in this text, always)
only encounter norms obtained like the one in Lemma 1.3.2.

Strict affinoid algebras are the central algebraic object in Tate’s rigid geometry (where
they are simply called “affinoid algebras”). As a consequence, they have been extensively
studied (e.g. in [11]). They share many algebraic properties with finite type algebras, e.g.
there is a Nullstellensatz and a Noether Normalization Lemma (meaning for any strict
k-affinoid algebra A, there exists a finite bounded morphism k{T1, T2, . . . , Tn} →֒ A).

Lemma 1.3.5 ([11, 6.1.5/4]). A k-affinoid algebra A is strict if and only if there exist

n ∈ N, ri ∈
√
|k×|, i = 1, 2, . . . , n, and a surjective admissible morphism k{r−1T}։ A.

There is a “trick” to study affinoid algebras by using known information on strict
affinoid algebras. The following example gives us the main tool for this trick.

Example 1.3.6 ([6, pg. 21], [22, 1.2]). Let n ∈ N and r ∈ Rn>0. Let Kr denote the
k-algebra {∑

l∈Zn

alT
l : al ∈ k, lim

|l|→∞
|al|rl = 0

}
.

The map ‖ · ‖ :∑l∈Zn alT
l 7→ maxl |al|rl determines a multiplicative norm on Kr.

Moreover, there is an isometric isomorphism of k-algebrasKr
∼= k{r−1X, r Y }/(XiYi − 1)i,

where the norm on the right is the quotient one, so Kr is a k-affinoid algebra.

If r1, r2, . . . , rn are linearly independent over
√
|k×|, then Kr is a field.

The construction above can be obtained by starting with n = 1 and then iterating.
This is because Kr

∼= Kr1⊗̂kKr2⊗̂k · · · ⊗̂kKrn .

Lemma 1.3.7. For any k-affinoid algebra A, there exists a non-trivially field Kr con-

structed as in Example 1.3.6, such that A⊗̂kKr is a strict Kr-affinoid algebra.

For a proof of the above, see [41, pg. 30].

Proposition 1.3.8 ([6, Proposition 2.1.2]). Let A be a k-affinoid algebra and r 6∈
√
|k×|.

(1) The map A→ A⊗̂kKr is an isometric embedding.
(2) Let B,C be two k-affinoid algebras. Then, A → B → C is exact and admissible

if and only if A⊗̂kKr → B⊗̂kKr → C⊗̂kKr is exact and admissible.

For a proof, see [41, pg. 29, Proof of Proposition 2.1.2].
A few of the most important algebraic properties of affinoid algebras are the following:
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Theorem 1.3.9. (1) Any ideal of a k-affinoid algebra is closed.
(2) A k-affinoid algebra is Noetherian and excellent.

For the Noetherianity and the fact that all ideals are closed, see [6, Proposition 2.1.3].
The property of being excellent was shown to be true more recently, in [21, Théorème 2.13].

In particular, part (1) of Theorem 1.3.9 tells us that for any n ∈ N and r ∈ Rn>0,
the k-algebra k{r−1T}/I, where I is an ideal of k{r−1T}, is a k-affinoid algebra (with
respect to the quotient norm). More generally, any quotient of a k-affinoid algebra is a
k-affinoid algebra with respect to the quotient norm. (We will see later, in Section 4.2,
that a k-affinoid algebra can be endowed with the structure of a Banach k-algebra in a
unique way. This is proven for strict affinoid algebras in [11, 6.1.3/2]. The general case
follows quickly from that.)

The set of k-affinoid algebras endowed with bounded morphisms forms a category.

Definition 1.3.10. For a k-affinoid algebra (A, | · |), n ∈ N, and r ∈ Rn>0, let

A{r−1T} :=
{∑

l∈Nn alT
l : al ∈ A, lim|l|→+∞ |al|rl = 0

}
.

We endow this k-algebra with the norm:∥∥∥∥∥
∑

l∈Nn

alT
l

∥∥∥∥∥ = max
l∈Nn
|al|rl,

which makes it a Banach A-algebra.

Definition 1.3.11. Let A be a k-affinoid algebra. A Banach A-algebra is said to be
an A-affinoid algebra if there exist n ∈ N, r ∈ Rn>0, and a surjective admissible morphism
A{r−1T}։ B.

The following is a consequence of Theorem 1.1.27.

Lemma 1.3.12. Let A be a k-affinoid algebra. Any A-affinoid algebra is a k-affinoid
algebra.

Another useful result is the following:

Lemma 1.3.13 ([6, Corollary 2.1.5]). Let K1,K2 be two complete ultrametric field
extensions of k. Let f : A→ B be a bounded k-linear morphism going from a K1-affinoid
algebra to a K2-affinoid algebra.

Let bi ∈ B and ri ∈ R>0, i = 1, 2, . . . , n, such that ρB(bi) 6 ri for all i, where ρB is
the spectral semi-norm on B. There exists a unique bounded morphism g : A{r−1T} → B
extending f, such that Ti 7→ bi for all i.

1.3.2. Affinoid algebras and the spectral radius. As we saw in Subsection 1.1.3,
the spectral radius ρA of a Banach ring A determines naturally a non-Archimedean semi-
norm on A (which doesn’t depend on the representative of the equivalence class of the
norm on A).

Proposition 1.3.14 ([6, Corollary 2.1.6]). A k-affinoid algebra A is strict if and only

if ρA(a) ∈
√
|k×| ∪ {0} for all a ∈ A.

The following is a good example of why the spectral semi-norm is very useful.

Proposition 1.3.15. Let A be a k-affinoid algebra, and ρA the corresponding spectral
semi-norm.
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(1) [3, Proposition 2.7.3(2)] Let f ∈ A. Then, ρA(f) = 0 if and only if f is nilpotent.
The spectral semi-norm ρA on A is a norm if and only if A is reduced.

(2) [42, Proposition 9.13] If A is reduced, then ρA is equivalent to the norm on A.

1.3.3. Finite modules/algebras over a k-affinoid algebra.

Definition 1.3.16. Let A be a k-affinoid algebra. A Banach A-module M is said to
be finite if there exists a surjective admissible morphism An ։M.

A Banach A-algebra B is said to be finite if it is a finite A-module.

Theorem 1.3.17 ([6, Proposition 2.1.9]). Let A be a k-affinoid algebra. The forgetful
functor induces an isomorphism between the categories of finite Banach A-modules (with
bounded A-linear maps) and finite A-modules (with A-linear maps).

The same result remains true when replacingmodule by algebra (see [6, Proposition 2.1.12]).
The following are properties that we will use in the next chapters.

Proposition 1.3.18 ([6, Proposition 2.1.14(i)]). A k-affinoid algebra that is an integral
domain is Japanese.

Proposition 1.3.19. Let A be a k-affinoid algebra. Any finite A-algebra is a k-affinoid
algebra.

The above is shown for strict affinoid algebras in [11, 6.1.3, Proposition 4]. The general
case can be deduced from [6]: Proposition 2.1.11 and Corollary 2.1.8.

Remark 1.3.20. As there is a Banach Open Mapping Theorem for any non-trivially
valued complete ultrametric field k, if A,B are k-affinoid algebras, any bounded surjective
morphism A։ B is admissible.

1.4. Affinoid Spaces

Throughout this section, let (k, | · |k) be a complete ultrametric field.

1.4.1. A first definition. In order to simplify the terminology we will soon use, let
us, for now, fix the following (we hold off on making this a definition until the construction
of the sheaf of analytic functions):

Convention 1.4.1. A k-affinoid space is the Berkovich spectrum of a k-affinoid alge-
bra.

A k-affinoid space X is said to be strict if there exists a strict k-affinoid algebra A
such that X =M(A).

A morphism X → Y of k-affinoid spaces is one induced by a bounded k-linear mor-
phism AY → AX of the corresponding k-affinoid algebras.

Lemma 1.4.2. Let A be a k-affinoid algebra. For any x ∈ M(A), the multiplicative
semi-norm | · |x is non-Archimedean. Moreover, | · |x|k = | · |k.

1.4.2. Affinoid domains. The goal here is to present, for Berkovich spaces, the
analogue of an open affine subscheme. This is also a crucial step for the construction
of the structural sheaf. Historically, the notion of an affinoid domain appears in Tate’s
rigid geometry. The main difference is that here these are closed subsets (even compact),
whereas in rigid geometry they are open.
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Convention 1.4.3. Let ψ : A → B be a bounded morphism of Banach rings. From
now on, we will denote by ψ′ the induced continuous morphismM(B)→M(A).

Let (k, | · |) be a complete ultrametric field.

Definition 1.4.4. Let A be a k-affinoid algebra, and X the corresponding k-affinoid
space. An affinoid domain in X is a pair (V,AV ) such that:

(1) V is a closed subset of X, and AV is a k-affinoid algebra;
(2) there exists a bounded morphism φ : A→ AV , such that φ′(M(AV )) ⊆ V ;
(3) the following universal property is satisfied: for any bounded k-linear morphism

ϕ : A → B such that ϕ′(M(B)) ⊆ V, where B is a K-affinoid algebra for
some complete ultrametric field extension K/k, there exists a unique bounded
morphism AV → B such that the following diagram is commutative.

A AV

B

φ

ϕ

We will say that (V,AV ) is a strict affinoid domain in X if AV is a strict k-affinoid algebra.

We start by giving important examples of these objects (that come from rigid geome-
try). Let A be a k-affinoid algebra, and X the corresponding k-affinoid space.

Example 1.4.5 (Weierstrass domains). Let n ∈ N, f1, f2, . . . , fn ∈ A, and r1, r2, . . . , rn ∈ R>0.
Then, V := {x ∈ X : |fi|x 6 ri, i = 1, 2, . . . , n} is called a Weierstrass domain of X. Set
AV := A{r−1T}/(Ti−fi)i. This is an A-affinoid algebra with respect to the quotient norm
(and thus also a k-affinoid algebra).

We will see in Lemma 1.4.8 that (V,AV ) is an affinoid domain in X.

Example 1.4.6 (Laurent domains). Let m,n ∈ N, fi, gj ∈ A, and ri, sj ∈ R>0, i =
1, 2, . . . , n, j = 1, 2, . . . ,m. The set V := {x ∈ X : |fi|x 6 ri, |gj |x > rj , i, j} is called a
Laurent domain of X. Set AV := A{r−1T , sS}/(Ti − fi, gjSj − 1)i,j . This is an A-affinoid
algebra with respect to the quotient norm (and thus also a k-affinoid algebra).

We will see in Lemma 1.4.8 (by applying Lemma 1.4.9) that (V,AV ) is an affinoid
domain in X. Remark that a Weierstrass domain is a Laurent domain.

Laurent domains form a basis of neighborhoods of the topology on X. To see this,
recall that the topology on X is the coarsest one for which the map X → R>0, x 7→ |a|x,
is continuous for all a ∈ A.

Example 1.4.7 (Rational domains). Let n ∈ N, g, fi ∈ A, i = 1, 2, . . . , n, be such
that (g, f1, . . . , fn) = A. Let ri ∈ R>0, i = 1, 2, . . . , n. Then, the set V := {x ∈ X : |fi|x 6

ri|g|x, i = 1, 2, . . . , n} is said to be a rational domain inX. Set AV := A{rT−1}/(gTi−fi)i.
This is an A-affinoid algebra with respect to the quotient norm (and thus also a k-affinoid
algebra). We will soon see that Laurent (and hence Weierstrass) domains are rational
domains.

Lemma 1.4.8. The pair (V,AV ) from Example 1.4.7 is an affinoid domain in X.

Proof. The subset V is clearly closed (again, recall the topology on X). Let the
morphism φ : A → AV be the canonical one. Then, for any x ∈ M(AV ), |g|x|Ti|x = |fi|x
for all i. Let ‖ · ‖ denote the (quotient) norm on AV . Then, ‖Ti‖ 6 ri for all i, so |Ti|x 6 ri



1.4. AFFINOID SPACES 19

for all x ∈ M(AV ), implying |fi|x = |Ti|x|g|x 6 ri|g|x. Consequently, |fi|φ′(x) 6 ri|g|φ′(x)
for all i, so φ′(x) ∈ V, and φ′(M(AV )) ⊆ V.

Let ϕ : A→ B be a bounded k-linear morphism such that ϕ′(M(B)) ⊆ V, where B is
a K-affinoid algebra for some complete ultrametric field extension K/k. This means that
for any x ∈M(B), |ϕ(fi)|x 6 ri|ϕ(g)|x for all i. In turn, this implies that ϕ(g) is invertible
in B: otherwise, by Lemma 1.1.39, there would exist y ∈M(B) such that |ϕ(g)|y = 0, im-
plying |ϕ(fi)|y = 0 for all i. Thus, |g|ϕ′(y) = |fi|ϕ′(y) = 0 for all i, which contradicts the as-

sumption (g, f1, . . . , fn) = A. Hence, ϕ(g) is invertible in B, and ϕ(fi)
ϕ(g) ∈ B for all i. Remark

that for any x ∈M(B),
∣∣∣ϕ(fi)ϕ(g)

∣∣∣
x
6 ri, so ρB(

ϕ(fi)
ϕ(g) ) 6 ri, i = 1, 2, . . . , n. By Lemma 1.3.13,

there is a unique bounded morphism A{r−1T} → B, Ti 7→ ϕ(fi)
ϕ(g) , i = 1, 2, . . . , n, extend-

ing the morphism A → B. Clearly, this factorizes through AV via bounded morphisms:
A{r−1T} → AV → B. The uniqueness of the obtained morphism AV → B is clear from
the construction. �

Lemma 1.4.9. A Laurent domain is a rational domain.

The proof comes down to showing that the intersection of rational domains is a rational
domain. For this, see [11, 7.2.3/7].

Let us describe precisely the relationship between V and AV .

Proposition 1.4.10 ([6, Proposition 2.2.4]). Let A be a k-affinoid algebra and X the
corresponding k-affinoid space. Let (V,AV ) be an affinoid domain in X.

(1) The morphismM(AV )→ X is injective with image V. In other words,M(AV ) = V .
In particular, the morphism A→ AV is uniquely determined by V .

(2) The morphism A→ AV is flat.

Affinoid domains behave well (these can be checked using the definition):

Proposition 1.4.11. (1) Let φ′ : X → Y be a morphism of k-affinoid spaces,
where X = M(B) and Y = M(A). Let (V,AV ) be an affinoid domain in Y.
Then, (φ′−1(V ), AV ⊗̂AB) is an affinoid domain in X.

(2) Let X be a k-affinoid space and A its corresponding k-algebra. Let (U,AU ), (V,AV )
be affinoid domains in X. Then, (U ∩ V,AU ⊗̂AAV ) is an affinoid domain in X.

(3) Let X be a k-affinoid space. Let (U,AU ) be an affinoid domain in X. Let (V,AV )
be an affinoid domain in U. Then, (V,AV ) is an affinoid domain in X.

The first two parts of the statement above remain true when replacing affinoid by
Weierstrass or Laurent or rational. The third one remains true for Weierstrass and rational
domains, but not always for Laurent ones.

As a direct consequence of the universal property for affinoid domains, we can show
that the completed residue field of a point does not depend on the affinoid domain con-
taining it.

Lemma 1.4.12. Let X be a k-affinoid space. Let (V,AV ) be an affinoid domain in
V. For any x ∈ V, let us denote by H(x) (resp. HV (x)) the completed residue field of x
when considering x as a point in X (resp. V ). Then, there is an isometric isomorphism
H(x)→ HV (x).

Remark 1.4.13. From now on, we will denote an affinoid domain simply by V (instead
of (V,AV )). This causes no ambiguity considering Proposition 1.4.10.
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The following outstanding result is used to simplify the construction of the structural
sheaf (it had not yet been shown when Tate wrote [63]). In the rigid case it was proven
by Gerritzen and Grauert, and it was generalized to the setting of Berkovich spaces by
both Ducros and Temkin (see e.g. [65]).

Theorem 1.4.14 (Gerritzen-Grauert). Let X be a k-affinoid space. Any affinoid do-
main in X is a finite union of rational domains.

The following two results will be useful to us in the next chapters.

Proposition 1.4.15 ([6, Proposition 2.2.3(iii)]). Suppose k is non-trivially valued.
Let X be a strict k-affinoid space. Then, the strict affinoid domains in X form a basis of
neighborhoods of the topology on X.

Lemma 1.4.16 ([6, Corollary 2.2.10]). Let V → X be a morphism of k-affinoid spaces
such that V is a rational domain in X. Let us denote by AV , resp. AX , the corresponding
k-affinoid algebras. Set SV := {a ∈ AX : |a|x 6= 0 for all x ∈ V }. Then, S−1

V AX is dense
in AV .

1.4.3. The structural sheaf. Recall that (k, | · |) denotes a complete ultrametric
field. Let A be a k-affinoid algebra and X the corresponding k-affinoid space.

The Gerritzen-Grauert Theorem is a very useful tool for proving the next results as it
allows one to reduce to the case of rational domains.

Theorem 1.4.17 (Tate’s Acyclicity Theorem, [6, Proposition 2.2.5]). Let (Vi, AVi)
n
i=1

be a cover of X, where (Vi, AVi) is an affinoid domain in X for all i. The following Čech
complex is exact and admissible:

0 −→
∏

i

AVi −→
∏

i,j

AVi∩Vj −→ · · ·

(fi)i 7→ ((fi − fj)|AVi
∩AVj

)i,j 7→ · · ·

Let S(X) denote the family of finite unions of affinoid domains in X. An element V
of S(X) is said to be a special subset of X. Then, the special subsets of X determine a
G-topology on X, and Tate’s Acyclicity theorem allows us to construct a sheaf for it.

Corollary 1.4.18 ([6, Corollary 2.2.6]). For any V ∈ S(X), set

AV := ker


∏

i

AVi →
∏

i,j

AVi∩Vj


 ,

where (Vi)
n
i=1 is a finite cover by affinoid domains of V. Then:

• AV is a Banach k-algebra which does not depend on the affinoid cover (Vi)
n
i=1

of V ;
• V 7→ AV determines a sheaf on the G-topology of X;
• V is an affinoid domain if and only if AV is a k-affinoid algebra and V ∼=M(AV ).

Let us mention one result that will be important for the next chapters. As we will see
later, it is true in much more generality in the case of analytic curves.

Corollary 1.4.19 ([6, Corollary 2.2.7]). Let U, V be closed disjoint subsets of X.
Then, W := U ∪ V is an affinoid domain in X if and only if U and V are affinoid
domains. In that case, the corresponding affinoid algebras satisfy: AW ∼= AU ×AV .
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We are finally in a position to give the following:

Definition 1.4.20. For any open U ⊆ X (with respect to the Berkovich topology),
set

OX(U) := lim←−
V⊆U

V−special

AV

in the category of k-algebras. This determines a sheaf on X which we call the sheaf of
analytic functions on X.

Remark that any f ∈ OX(U) can be seen as a function in the sense f : U →∏
x∈U H(x),

x 7→ (|f |x)x∈U .
1.4.4. The stalks. As before, X denotes a k-affinoid space.

Lemma 1.4.21. (1) For any x ∈ X, OX,x = lim−→x∈V
AV , where the limit is taken

over neighborhoods V of x that are affinoid domains in X. The ring OX,x inherits a
multiplicative semi-norm induced by the point x on AV , with V as above. We will continue
to denote it by | · |x.

(2) The ring OX,x is local with maximal ideal mx := {f ∈ OX,x : |f |x = 0}.
Proof. The first part is a consequence of the fact that Laurent (hence affinoid) do-

mains form a basis of neighborhoods of the Berkovich topology on X.
For the second part, clearly mx is a proper ideal of OX,x (for instance, |1|x = 1). It

suffices to show that for any f ∈ OX,x such that |f |x 6= 0, f is invertible.
Let g ∈ OX,x be such that |g|x 6= 0. There exists a neighborhood (W,AW ) of x

that is an affinoid domain such that g ∈ AW \{0}. Let r > 0 be such that |g|x > r.
Then, the Laurent domain W ′ := {y ∈ W : |g|y > r} of W contains x. Remark that
AW ′ := OX(W ′) = AW {rT}/(gT − 1), and g ∈ AW ′ is invertible. Consequently, g is in-
vertible in OX,x. �

The field κ(x) := OX,x/mx is said to be the residue field of x.
Another very important property for the next chapters is the relationship between

OX,x and H(x), which is a direct consequence of Lemmas 1.4.12 and 1.4.21 (recall also
Definition 1.1.33).

Lemma 1.4.22. For any x ∈ X, there is a canonical embedding κ(x) →֒ H(x). More-
over, κ(x) is dense in H(x).

The stalks of OX are crucial for our work in the next chapters. In Section 4.7, we will
see some examples of them. For now, let us mention that they have very nice algebraic
properties.

Theorem 1.4.23. For any x ∈ X, OX,x is a Noetherian, Henselian, and excellent local
ring.

Noetherianity is shown in [4, Theorem 2.1.4], and Henselianity in [4, Theorem 2.1.5].
The property of being excellent was shown more recently in [21, Théorème 2.13].

1.4.5. Back to affinoid spaces. We may now revisit Convention 1.4.1.

Definition 1.4.24. A k-affinoid space X is the Berkovich spectrum of a k-affinoid
algebra endowed with the sheaf OX constructed above. The space X is said to be strict
if there exists a strict k-affinoid algebra A such that X =M(A).
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These are the building blocks of good Berkovich spaces. Remark that for any k-affinoid
space X, there exists a canonical morphism X →M(k).

Example 1.4.25. Let n be a positive integer, and r ∈ R>0. Then,M(k{r−1T}) is said
to be the closed Berkovich polydisc of polyradius r.

In particular, if n = 1, then we obtain the closed Berkovich disc of radius r.

Definition 1.4.26. A morphism of k-affinoid spaces (Y,OY ) → (X,OX) is a mor-
phism of k-locally ringed spaces which comes from a bounded morphism of the corre-
sponding k-affinoid algebras.

Remark that the category of k-affinoid spaces (endowed with the morphisms above),
denoted k-aff, is the opposite of the category of k-affinoid algebras with respect to bounded
k-linear morphisms.

The category k-aff admits fiber products (the relationship between fiber products and
completed tensor products for k-affinoid spaces in Berkovich’s theory is the same as that
of fiber products and tensor products for affine schemes in algebraic geometry).

Definition 1.4.27. One can also define the category aff -k, where the objects are K-
affinoid spaces over a complete ultrametric field extension K/k, and the morphisms are
those of locally ringed spaces induced by a bounded k-linear morphism of the corresponding
affinoid algebras.

For an object of aff -k, we will say that it is an affinoid k-space. For X,Y ∈ aff -k,
and a morphism ϕ : Y → X of the same category, we will simply say that ϕ : Y → X is a
morphism of affinoid k-spaces.

The category aff -k admits base change by complete ultrametric field extensions of k.
However, it does not in general admit fiber products.

1.4.6. The boundaries of an affinoid space. Since affinoid spaces are compact
(so closed), we want to have a notion of boundary for them.

1.4.6.1. Relative interior and boundary. These are amongst the rare notions that are
exclusive to Berkovich’s theory, meaning there is no analogue in rigid/complex/algebraic
geometry. See [6, 2.5] for more details.

Definition 1.4.28. Let ϕ : Y → X be a morphism of k-affinoid spaces, where X =
M(A1) and Y =M(A2). The Berkovich relative interior of ϕ, denoted IntB(Y/X), is the
set of points y ∈ Y such that there exist n ∈ N, ri ∈ R>0, i = 1, 2, . . . , n, and a surjective
admissible A1-linear morphism ψ : A1{r−1T}։ A2 satisfying |ψ(Ti)|y < ri for all i.

The set Y \IntB(Y/X) is called the Berkovich relative boundary of ϕ, and is denoted
by ∂B(Y/X). We say that ϕ is boundaryless if ∂B(Y/X) = ∅ (Berkovich calls this closed).

If Y →M(k) is the canonical morphism, then we denote by IntB(Y ) (resp. ∂B(Y )) the
set IntB(Y/M(k)) (resp. ∂B(Y/X)), and call it the Berkovich interior (resp. Berkovich
boundary) of Y. If ∂B(Y ) = ∅, then Y is said to be boundaryless.

Remark that in the litterature these objects are called relative interior, relative bound-
ary, and absolute interior, absolute boundary, respectively, and are denoted as above but
without the index “B”.

As Temkin remarks in [64, Remark 3.4.10], the geometric interpretation of the defini-
tion above is that the morphism ψ induces a closed immersion of Y into the closed polydisc
over A1 of polyradius r (i.e. into M(A1{r−1T})) such that the image of Y is contained
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in the open polydisc over A1 of polyradius r (i.e. in {x ∈ M(A1{r−1T}) : |Ti|x < ri, i =
1, 2, . . . , n}).

Here are some of the main properties of these notions. The first one is immediate from
the definition.

Theorem 1.4.29. Let ϕ : Y → X be a morphism of k-affinoid spaces.

(1) IntB(Y/X) is open, and ∂B(Y/X) is closed in Y.
(2) [6, Prop. 2.5.8(iii)] Let φ : Z → Y be a morphism of k-affinoid spaces. This in-

duces a morphism ϕ ◦ φ : Z → X. Then, IntB(Z/X) = IntB(Z/Y )∩φ−1(IntB(Y/X)).
(3) [6, Cor. 2.5.13(i)] ∂B(Y/X) = ∅ if and only if ϕ is finite, i.e. the corresponding

morphism A1 → A2 is finite.
(4) [6, Cor. 2.5.13(ii)] If Y is an affinoid domain of X, then IntB(Y/X) is the

topological interior of Y in X.

Remark that by part (3) of Theorem 1.4.29, a k-affinoid space is boundaryless if and
only if the corresponding k-affinoid algebra is a finite k-algebra.

1.4.6.2. Shilov boundary. As usual, let k be a complete ultrametric field, and A a
k-affinoid algebra. Set X =M(A).

A closed subset Γ of X is said to be a boundary of X if any element f ∈ A attains
its maximum at a point of Γ. The set of boundaries of X forms a partially ordered set
(via inclusion). By Zorn’s Lemma, there exist minimal boundaries of X. If there exists a
unique minimal boundary, then it is said to be the Shilov boundary of X, and is denoted
by Γ(X).

Proposition 1.4.30 ([6, Corollary 2.4.5]). The Shilov boundary Γ(X) of X exists and
is finite.

In particular, this means that for any f ∈ A, ρA(f) = maxx∈Γ(X) |f |x, where ρA
denotes the spectral semi-norm of A.

The following is a useful property (see the proof of [22, Lemme 2.1]):

Lemma 1.4.31. If A is integral, then for any f ∈ A\{0}, |f |x 6= 0 for any x ∈ Γ(X).

The two kinds of boundaries we have just seen are related as follows:

Proposition 1.4.32 ([6, Proposition 2.5.20]). For any affinoid domain (V,AV ) of X,

Γ(X) ∩ V ⊆ Γ(V ) ⊆ ∂B(V/X) ∪ (Γ(X) ∩ V ).

We will later see (Lemma 1.8.8) that in the case of curves the Berkovich and Shilov
boundaries coincide for a k-affinoid space.

1.4.7. The reduction map. The notion of the reduction map will be very useful to
us for comparing our results from Chapter 3 to others in the litterature.

Recall that (k, | · |) is a complete ultrametric field. Let A,B be two Banach k-algebras.
Let ϕ : A → B be a bounded morphism. Let ρA (resp. ρB) denote the spectral radius
of A (resp. B). Then, for any a ∈ A, ρB(ϕ(a)) 6 ρA(a).

Set A◦ = {a ∈ A : ρA(a) 6 1} and A◦◦ = {a ∈ A : ρA(a) < 1}; A◦ is a subring of A,

and A◦◦ is an ideal of A◦. Set Ã = A◦/A◦◦. Let B◦, resp. B◦◦, resp. B̃, be the analoguous
notations for B. By the paragraph above, the morphism ϕ : A → B induces canonically

morphisms ϕ◦ : A◦ → B◦ and ϕ̃ : Ã → B̃. In the case of k-affinoid algebras, a lot of
information can be obtained on ϕ through ϕ̃ and vice-versa (cf. [6, 2.4]).
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In particular, for any x ∈ M(A), the canonical morphism χx : A → H(x) induces a

morphism χ̃x : Ã → H̃(x). Clearly, ker χ̃x is a prime ideal of Ã. This gives rise to a map

r :M(A)→ Spec Ã, x 7→ ker χ̃x.

Definition 1.4.33. Suppose A is a Banach k-algebra. Then, the map r : M(A) →
Spec Ã constructed as above is called the reduction map of A.

Proposition 1.4.34 ([6, Proposition 2.4.4]). Let A be a strict k-affinoid algebra.

(1) The reduction map r of A is surjective and anticontinuous.

(2) r−1((Spec Ã)gen) = Γ(M(A)), where (Spec Ã)gen is the set of generic points of

the irreducible components of Spec Ã.

Temkin generalized this to any affinoid space using what is referred to in the litterature
as Temkin’s graded reduction [66]. The (graded) reduction map does not have nice gluing
properties, so it is only defined over affinoid spaces.

1.5. Good Berkovich analytic spaces

Throughout this section, let k be a complete ultrametric field.

1.5.1. The category of good analytic spaces.

Definition 1.5.1 (Non-rigorous). A good k-analytic space is a locally ringed space
(X,OX), where each point has a neighborhood isomorphic to a k-affinoid space. The
structural sheaf OX is said to be the sheaf of analytic functions on X.

The analytic space X is said to be strict if any point has a neighborhood isomorphic
to a strict k-affinoid space.

The morphisms between good k-analytic spaces are the morphisms of locally ringed
spaces induced by morphisms of k-affinoid spaces. Remark there is a canonical morphism
X →M(k).

The good k-analytic spaces with the above morphisms form a category, which we
denote by k-An.

The precise definition requires a condition (which we will continue to omit without
consequences) on the G-topology we mentioned before.

The fiber product exists in the category of good k-analytic spaces seeing as it exists
for k-affinoid spaces.

The fact that affinoid spaces are compact (hence closed) is the reason why the definition
above is not enough for all Berkovich spaces (in the sense that there are rigid spaces that
don’t have a Berkovich analogue). In general, it can happen that a point does not have
a neighborhood isomorphic to an affinoid space, but is only contained in the boundary
of subsets isomorphic to affinoid spaces. The theory of general Berkovich spaces was
developed by Berkovich afterwards, in [4]. We will later see that analytic curves are
always good analytic spaces.

Example 1.5.2. Remark that for any n ∈ N, and r ∈ Rn>0, we have an embedding
M(k{r−1T}) ⊆ An,ank . To see this, recall that (k{r−1T}, ‖ · ‖) (with ‖ · ‖ defined as in
Lemma 1.3.2) is the completion of k[T ]. On the other hand, because of the same reason,
for any x ∈ An,ank , if |Ti|x = si, i = 1, 2, . . . , n, then x ∈ M(k{r−1T}) for any r ∈ Rn>0

such that ri > si for all i. Consequently, A
n,an
k =

⋃
r∈Rn

>0
M(k{r−1T}).
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For the compatibility of topologies, it is direct from the definition that the set-wise
embedding ιr,n :M(k{r−1T}) →֒ An,ank is continuous. It is also a direct consequence of the
definition that An,ank is a Hausdorff space. Thus, ιr,n is an injective continuous morphism
from a compact space to a Hausdorff one. Consequently, it is a homeomorphism onto its
image.

The two paragraphs above can be used to endow An,ank (and hence Pn,ank ) with the
structure of a good k-analytic space. Moreover, if k is non-trivially valued, by Lemma
1.3.5, these spaces are also strict.

A full classification of points of Berkovich closed discs can thus be deduced from that
of A1,an

k (see part 1.2.4).

Remark 1.5.3. Using the universal property for affinoid domains, one can show that
the notation H(x) as introduced in Definition 1.2.2 for the points of A1,an

k is coherent with
the one of completed residue fields.

As in the affinoid case, one can also define a larger category:

Definition 1.5.4. Let An-k denote the category whose objects are good K-analytic
spaces, where K is a complete ultrametric field extension K/k, and the morphisms are
morphisms of k-locally ringed spaces induced by those of the category aff -k. An object of
An-k will be said to be a good analytic k-space.

For X,Y ∈ An-k, and a morphism ϕ : Y → X of the same category, we will simply say
that ϕ : Y → X is a morphism of good analytic k-spaces or sometimes just a morphism of
good analytic spaces when there is no risk of ambiguity.

The category An-k admits base change by complete ultrametric field extensions of k,
but does not in general admit fiber products (as in the case of aff -k).

The following is a class of subsets of X over which the structural sheaf is defined
(examples are opens and affinoid domains).

Definition 1.5.5. A morphism of good k-analytic spaces ϕ : Y → X is said to be an
analytic domain in X if ϕ induces a homeomorphism of Y with its image in X, and for
any morphism of good analytic k-spaces ψ : Z → X such that ψ(Z) ⊆ ϕ(Y ), there exists
a unique morphism of good analytic k-spaces σ : Z → Y such that ψ = ϕ ◦ σ.

If Y is isomorphic to a (strict) k-affinoid space, then Y is said to be a (strict) affinoid
domain of X.

We identify an analytic domain with its image in the corresponding analytic space. It
is clear from the definition that the property of being an analytic (resp. affinoid) domain
is transitive.

Let X be a good k-analytic space. By definition, for any x ∈ X, there exists a
neighborhood of x isomorphic to (M(A),OM(A)) for some k-affinoid algebra A. Remark
that the affinoid domains of M(A) are affinoid domains of X. Hence, affinoid domains
form a basis of neighborhoods for the topology of any good k-analytic space.

Remark 1.5.6. Let ϕ : X → Y be a morphism of good k-analytic spaces. Let U be an
analytic domain in Y. Then, the topological space ϕ−1(U) is homeomorphic to U ×Y X,
and the two can be identified. It is shown as a direct application of Definition 1.5.5 that
ϕ−1(U) is an analytic domain of X.

Similarly, if V,W are analytic domains of the good k-analytic space Z, U ∩ V is
identified with the good k-analytic space V ×Z W which is an analytic domain of X.
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Along the same lines (and very useful for the next chapters):

Proposition 1.5.7. Let ϕ : X → Y be a morphism of good k-analytic spaces. Let
y ∈ Y. The fiber product Xy := X ×Y M(H(y)) exists in the category Aff-k, and is
homeomorphic to ϕ−1(y).

Remark 1.5.8. It can be shown from the universal property of fiber products that
Xy
∼= (X ×kM(H(y)))×Y×kM(H(y))M(H(y)), so X ×Y M(H(x)) exists as a good H(x)-

analytic space. Consequently, the fiber of any point y ∈ Y can be endowed with the
structure of a good H(y)-analytic space. From now on, we will always identify the two.

Remark 1.5.9. More generally, let Y → X be a morphism of good k-analytic spaces,
and Z → X a morphism of good analytic spaces in the category An-k. Suppose Z is a good
K-analytic space, where K/k is a complete ultrametric field extension. Then, Y ×X Z
exists as a good K-analytic space. To show this, one can check via the universal property
of fiber products that Y ×X Z ∼= (Y ×k K)×X×kK Z, and the latter exists.

From now on, we will usually denote X ×Y H(x) (resp. X ×k Y ) instead of X ×Y
M(H(x)) (resp. X ×M(k) Y ).

Definition 1.5.10. Let X be a good k-analytic space. A point x ∈ X is said to be
rigid if the field extension H(x)/k is finite.

Rigid points are those that we see when considering Tate’s rigid spaces.

Proposition 1.5.11 ([6, Proposition 2.1.15]). Suppose k is non-trivially valued. The
set of rigid points of a strict k-affinoid space is dense. Consequently, the set of rigid points
in a strict good k-analytic space is dense.

Convention 1.5.12. We will say that a neighborhood of a point which is an affinoid
domain is an affinoid neighborhood of the point. A cover U of a good analytic space is
said to be affinoid if for any U ∈ U , U is an affinoid domain thereof.

1.5.2. Examples of affinoid domains. Let us give a few examples of affinoid do-
mains in An,ank and Pn,ank .

Example 1.5.13. By Example 1.5.2, for any n ∈ N and any r ∈ R>0
n, the closed

polydisc M(k{r−1T}) of polyradius r can be identified with {x ∈ An,ank : |Ti|x 6 ri, i =
1, 2, . . . , n}, and its ring of analytic functions with k{r−1T}. The closed polydisc of polyra-
dius r is an affinoid domain in An,ank .

The open subspace {x ∈ An,ank : |Ti|x < ri, i = 1, 2, . . . , n} of An,ank is said to be a
Berkovich polydisc of polyradius r. If n = 1, it is said to be a Berkovich disc of radius r.

Let s ∈ Rn>0 be such that si 6 ri for all i = 1, 2, . . . , n. Again, using Example 1.5.2 we
obtain that {x ∈ An,ank : si 6 |Ti|x 6 ri} is an affinoid domain in An,ank . It can be identified
with M(k{r−1T , s S}/(SiTi − 1)i), and its ring of analytic functions with the k-affinoid
algebra k{r−1T , s S}/(SiTi − 1)i. Remark that if si = ri for all i, this coincides with Kr

from Example 1.3.6.
Since these subsets are contained in Pn,ank , all of the above remains true

when replacing An,ank by Pn,ank . For n = 1, let us fix the following notations:

D(0, r) := {x ∈ A1,an
k : |T |x 6 r} = {x ∈ P1,an

k : |T |x 6 r}, and C(0; s, r) :=

{x ∈ A1,an
k : s 6 |T |x 6 r} = {x ∈ P1,an

k : s 6 |T |x 6 r}. The affinoid space C(0; s, r)
is said to be the closed Berkovich annulus of inner radius s and outer radius r.
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The open subspace {x ∈ A1,an
k : s < |T |x < r} is said to be a Berkovich annulus of

inner radius s and outer radius r.

Example 1.5.14. Let P ∈ k[T ]. Also, let r, s ∈ R>0 be such that s 6 r. Set D1 =

{x ∈ A1,an
k : |P |x 6 r} and D2 = {x ∈ A1,an

k : s 6 |P |x 6 r}.
Seeing as P is bounded in these sets, T has to be so as well. Consequently, there

exists t > 0 such that D1, D2 ⊆ D(0, t). By Example 1.4.6, D1, D2 are affinoid domains in

D(0, t), so they are affinoid domains in A1,an
k .

As D1, D2 ⊆ P1,an
k , all of the above remains true when replacing A1,an

k by P1,an
k .

In Section 4.2, we will see that O(D1) = k{r−1T}[X]/(P (T ) − X) and O(D2) =
k{r−1T, sS}[X]/(TS − 1, P (T )−X).

Example 1.5.15. Let r ∈ R>0. Let us fix a copy of A1,an
k of P1,an

k so that we have a

coordinate T. The subset {x ∈ P1,an
k : |T |x > r} is an affinoid domain in P1,an

k .

To see this, remark that {x ∈ P1,an
k : |T |x > r} = {x ∈ P1,an

k : |1/T |x 6 1/r}, which is

an affinoid domain in the copy of A1,an
k with coordinate 1/T. Consequently, it is an affinoid

domain in P1,an
k .

The isomorphism k[T ] → k[1/T ] induces an isomorphism between the corresponding
analytic affine lines (with coordinate T , resp. 1/T ), which induces an isomorphism between

{x ∈ A1,an
k : |T |x 6 1/r} and {x ∈ A1,an

k : |1/T |x 6 1/r}. Taking this into account, we

obtain that O({x ∈ P1,an
k : |T |x > r}) = k{rT−1}, where k{rT−1} is the k-affinoid algebra

{∑n
an
Tn : an ∈ k, limn→∞ |an|r−n = 0}.

Example 1.5.16. Let P (T ) ∈ k[T ], and r ∈ R>0. Set D = {x ∈ P1,an
k : |P |x > r}.

The finite morphism k[T ]→ k[T ], T 7→ P (T ), induces a finite morphism ϕ : P1,an
k → P1,an

k

such that ϕ−1({x ∈ Pn,ank : |T |x > r}) = D. By Example 1.5.15 and Proposition 1.5.34(1),

we obtain that D is an affinoid domain in P1,an
k . We will talk about its corresponding

k-affinoid algebra in detail in Section 4.2.

1.5.3. Local properties and dimension of good analytic spaces. Most of the
notions that exist for schemes also exist for Berkovich analytic spaces. We will mostly
focus on defining those that we use in the next chapters. Recall that k is a complete
ultrametric field.

Definition 1.5.17. Let X be a good k-analytic space. Let x ∈ X. Then, x is said to
be a reduced (resp. normal, Cohen-Macaulay, regular) point if OX,x is a reduced (resp.
normal, Cohen-Macaulay, regular) ring.

The analytic space X is said to be reduced (resp. normal, Cohen-Macaulay, regular)
if for any x ∈ X, x is reduced (resp. normal, Cohen-Macaulay, regular).

Remark 1.5.18. In [21, Théorème 3.4], it is shown that an analytic domain of a
reduced (resp. normal, Cohen-Macaulay, regular) good analytic space is also reduced
(resp. normal, Cohen-Macaulay, regular).

Let A be a k-affinoid algebra. Using Noether’s Normalization Lemma for strict affinoid
algebras, one obtains that for any complete ultrametric field extension K/k such that
A⊗̂kK is a strictK-affinoid algebra (by Lemma 1.3.7, such aK exists), the Krull dimension
of A⊗̂kK is constant [22, 1.5].
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Definition 1.5.19. The dimension of X := M(A), denoted dim(X), is the Krull
dimension of the ring A⊗̂kK.

The dimension of any good k-analytic space Y is denoted by dim(Y ), and defined to
be supV dim(V ), where the supremum is taken with respect to all the affinoid domains V
in Y.

For any x ∈ Y, the dimension of x in Y , denoted dimx(Y ), is infx∈V dim(V ), where
the infimum is taken with respect to all affinoid domains V in Y that are neighborhoods
of x.

The space Y is said to be pure-dimensional if dimx(Y ) = dim(Y ) for all x ∈ Y.
Dimension is invariant with respect to base change by a complete ultrametric field

extension.

Example 1.5.20. The following is an example showing the necessity of base
change to calculate the dimension of a k-affinoid space: for r ∈ R>0\

√
|k×|, let

D := {x ∈ A1,an
k : |T |x = r}. Recall that O(D) = Kr - the field of Example 1.3.6. Then,

the Krull dimension of Kr is 0, whereas the dimension of D is 1.

The notion of dimension brings us to the introduction of very important invariants of
points.

Definition 1.5.21. Let X be a good k-analytic space. Recall that for any x ∈ X,

there is a canonical isometric embedding k →֒ H(x). For any x ∈ X, set sx := deg tr
k̃
H̃(x)

and tx := rankQ|H(x)×|/|k×| ⊗Z Q, where H̃(x) (resp. k̃) denotes the residue field of H(x)
(resp. k).

Lemma 1.5.22 ([4, Lemma 2.5.2], [22, 1.14]). Let X be a good k-analytic space. Then,
dimX = supx∈X(sx + tx).

Definition 1.5.23 (Abhyankar points). Let X be a good k-analytic space. Then,
x ∈ X is said to be an Abhyankar point if sx + tx = dimx(X).

In Example 3.2.10 of [18], it is shown that if x ∈ X is an Abhyankar point, then OX,x
is Artinian. Consequently, if OX,x is reduced (for example if X is reduced), then it is a
field.

Proposition 1.5.24 ([60, Proposition 4.7]). Let X be a k-affinoid space. Then, any
point of the Shilov boundary of X is an Abhyankar point. In particular, Abhyankar points
are dense in X.

Definition 1.5.25. Let ϕ : X → Y be a morphism of good analytic spaces. For any
y ∈ Y, the relative dimension of ϕ at y is the dimension of ϕ−1(y) as a good H(y)-analytic
space.

We will say that X is a relative curve over Y if ϕ−1(y) is of pure dimension 1 as an
H(y)-analytic space for all y ∈ Y (we use this in Chapter 4).

The notions of dimension and relative dimension of a morphism are extensively studied
by Ducros in [22].

1.5.4. Morphisms, relative boundary and interior. We briefly mention some
classes of morphisms between good analytic spaces, and a generalization of the notions of
relative boundary and interior.
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Definition 1.5.26. Let ϕ : Y → X be a morphism of good k-analytic spaces. The
Berkovich relative interior of ϕ, denoted IntB(Y/X), is the set of points y ∈ Y , such
that there exist affinoid neighborhoods Y ′ of y and X ′ of ϕ(x) with ϕ(Y ′) ⊆ X ′ and y ∈
IntB(Y

′/X ′). The Berkovich relative boundary of ϕ, denoted ∂B(Y/X) is the complement
of IntB(Y/X) in Y. If ∂B(Y/X) = ∅, ϕ is said to be boundaryless.

If X = M(k), then we write IntB(Y ), resp. ∂B(Y ), and call them the Berkovich
interior, resp. Berkovich boundary, of Y. If ∂B(Y ) = ∅, Y is said to be boundaryless.

Theorem 1.5.27 ([4, Prop. 1.5.5]). Let ϕ : Y → X be a morphism of good k-analytic
spaces.

(1) Let φ : Z → Y be a morphism of good k-analytic spaces. This induces a morphism
ϕ ◦ φ : Z → X. Then, IntB(Z/X) = IntB(Z/Y ) ∩ φ−1(IntB(Y/X)).

(2) If Y is an analytic domain of X, then IntB(Y/X) is the topological interior of Y
in X.

Example 1.5.28. By Example 1.5.2, for any n ∈ N, An,ank (and hence Pn,ank ) is a
boundaryless space. For any r, s ∈ R>0, r < s, ∂B(D(0, r)) = {η0,r}, and ∂B(C(0; r, s)) =
{η0,r, η0,s} (see [20, 3.6.4.1, 3.6.4.3]).

Definition 1.5.29 (Immersions). A morphism of good k-analytic spaces ϕ : Y → X is
an open immersion if it induces an isomorphism of Y with an open subset of X (endowed
with the induced analytic structure from X).

The morphism ϕ is said to be a closed immersion if Y is homeomorphic to a closed
subset of X, ϕ∗OY is a coherent sheaf of OX -modules, and the morphism OX → ϕ∗OY is
surjective.

As usual, there is a bijection between the closed immersions of a good k-analytic
space Y and the ideal sheaves I of OY (cf. Proposition 3.1.4(ii) of [6]).

Definition 1.5.30 (Proper and finite). A morphism of good k-analytic spaces ϕ :
Y → X is said to be proper if it is compact and boundaryless. A good k-analytic space Y
is said to be proper if the canonical morphism Y →M(k) is proper.

A morphism of affinoid spacesM(B)→M(A) is said to be finite if the corresponding
bounded morphism A→ B is finite.

For any x ∈ X, the morphism ϕ : Y → X of good k-analytic spaces is said to be finite
at x if there exists an affinoid neighborhood V of x such that ϕ−1(V ) → V is a finite
morphism of affinoid spaces. The morphism ϕ is said to be finite if it is finite at any point
of X.

Finite morphisms will be of particular importance in the rest of the manuscript.

Proposition 1.5.31. Let ϕ : Y → X be a finite morphism of good k-analytic spaces.
Then, ∂B(Y/X) = ∅, i.e. ϕ is boundaryless.

Proposition 1.5.31 is immediate from Theorem 1.4.29(3), and the fact that being an
element of the Berkovich interior IntB(Y/X) is a local property.

Remark 1.5.32. In [4, Lemma 1.3.7] it is shown that if ϕ : Y → X is a finite mor-
phism of k-analytic spaces, then for any affinoid domain V of X, the induced morphism
ϕ−1(V )→ V is a finite morphism of k-affinoid spaces.

As usual, for any y ∈ Y, the induced homomorphism of local rings OX,ϕ(y) → OY,y is
finite. Finite morphisms have finite fibers.
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Example 1.5.33. For any n ∈ N, Pn,ank is proper.

Remark that a k-affinoid space is boundaryless, and hence proper, if and only if its
corresponding k-affinoid algebra is a finite k-algebra.

Proposition 1.5.34 ([6, Prop. 3.1.7]). (1) The pre-image of an affinoid domain by a
finite morphism is an affinoid domain.

(2) Let X be a good analytic space. There is an equivalence between the category of
finite morphisms over X and the category of coherent OX-algebras.

(3) A closed immersion is a finite morphism.
(4) A finite morphism is proper.

Definition 1.5.35 (Separated). A morphism ϕ : Y → X of k-analytic spaces is said
to be separated if the canonical induced morphism Y → Y ×X Y is a closed immersion.

A good k-analytic space Y is said to be separated if the canonical morphism Y →M(k)
is separated.

A good k-analytic space is locally Hausdorff by construction, but, in general, not
necessarily Hausdorff. Separatedness is equivalent to Hausdorff by [6, Proposition 3.1.5].
As a consequence:

Corollary 1.5.36 ([6, Cor. 3.1.6]). If a good k-analytic space is separated, then
affinoid domains are closed, and the intersection of two affinoid domains is an affinoid
domain.

The following is a central object of this manuscript:

Definition 1.5.37. A (good) k-analytic space is said to be a k-analytic curve if it is
separated and of pure dimension 1.

The hypothesis of goodness can be omitted from the above definition. In [20, Propo-
sition 3.3.7] it is shown that any k-analytic curve is a good k-analytic space.

Definition 1.5.38 (Flatness). A morphism of analytic spaces ϕ1 : Y1 → X1 is said to
be naively flat at y ∈ Y1 if for x := ϕ1(y), OY1,y is a flat OX1,x-module. (Naive flatness is
generally not stable with respect to base change.)

A morphism ϕ : Y → X of good k-analytic spaces is said to be flat at y ∈ Y if for any
morphism X ′ → X of good analytic k-spaces, and any y′ ∈ Y ′ := Y ×X X ′ lying above y,
the induced morphism Y ′ → X ′ is naively flat at y′ ∈ Y ′. The morphism ϕ is said to be
flat if it is flat at all y ∈ Y.

In [18, Theorem 8.3.4], it is shown that for y ∈ IntB(Y/X), the morphism ϕ is flat at
y if and only if it is naively flat at y. Consequently, if ϕ is boundaryless, then the notion
of flatness above coincides with that of flatness for locally ringed spaces.

Flat morphisms have been extensively studied by Ducros in [18]. A special case is the
class of (quasi-)smooth morphisms.

Definition 1.5.39 (Quasi-smoothness, [18, Definition 5.2.4]). Amorphism ϕ : Y → X
of good k-analytic spaces is said to be quasi-smooth at y ∈ Y if there exists an affinoid
neighborhood V of y such that V → X factorizes through a closed immersion V → W ,
where W is an affinoid domain of An,anX := An,ank ×kX for some n ∈ N (and satisfies a sort
of Jacobian-presentation condition). The morphism ϕ is said to be quasi-smooth if it is
quasi-smooth at all y ∈ Y.
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A good k-analytic space X is said to be quasi-smooth if the canonical morphism
X →M(k) is quasi-smooth.

Definition 1.5.40 (Smoothness). A morphism ϕ : Y → X of good k-analytic spaces
is said to be smooth at y ∈ Y if it is quasi-smooth at y and y 6∈ ∂B(Y/X).

A good k-analytic space X is said to be smooth if the canonical morphism X →M(k)
is smooth.

Berkovich gave a different definition of smoothness in [4, 3.5]. Seeing as said defi-
nition excludes boundary points from consideration, this led to the introduction of the
more general notion of quasi-smoothness by Ducros (see [18, Chapter 5] for a detailed
treatment). In [18, Corollary 5.4.8], it is shown that Berkovich’s definition is equivalent
to Definition 1.5.40.

All the morphisms that we have defined above are stable under composition, base
change, and ground field extension.

1.5.5. Topological properties. By construction, good analytic spaces are locally
compact. Let us mention some other very remarkable topological properties of these
objects.

Definition 1.5.41. Let X be a topological space. Let x, y ∈ X. A continuous map
γ : [0, 1]→ X such that γ(0) = x and γ(y) = 1 is said to be a path in X connecting x and
y. If, moreover, γ induces a homeomorphism with its image in X, then it is said to be an
arc in X connecting x and y.

We will say that a topological space X is path-connected (resp. arcwise-connected) if
for any different x, y ∈ X, there exists a path (resp. an arc) in X connecting x and y. If,
moreover, the arc connecting x and y is unique, then X is said to be uniquely arcwise-
connected.

Theorem 1.5.42 ([6, Thm. 3.2.1]). A connected good analytic space is path-connected.
Consequently, a good analytic space is locally path-connected.

By [70, Corollary 31.6], a Hausdorff topological space that is path-connected is arcwise-
connected.

Corollary 1.5.43. A separated connected good analytic space is arcwise-connected.
Consequently, a separated good analytic space is locally arcwise connected.

The following theorem is shown in [5].

Theorem 1.5.44. A smooth (good) analytic space is locally contractible.

The result above was generalized by Hrushovski and Loeser to a larger class of analytic
spaces. This was done in their ground-breaking work [38], where they use model theory
to study Berkovich spaces. The interplay between these two fields is a rising domain of
research.

1.6. Analytification functor and GAGA theorems

As in the complex setting, there exists an analytification functor and GAGA-type
theorems for Berkovich spaces. For the most part of this manuscript, we will work with
good analytic spaces that are obtained from finite type schemes over a complete ultrametric
field.
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1.6.1. The kernel map. The following gives a strong connection between the Berkovich
and affine spectra.

Definition 1.6.1. Let A be a k-affinoid algebra. There is a canonical morphism
M(A)→ Spec A, x 7→ ker| · |x, which will be called the kernel map and will be denoted
by kerA.

Lemma 1.6.2 ([6, Remark 1.2.5(i)]). Let A be a k-affinoid algebra. The kernel map
kerA is continuous.

Remark that there is a bijective correspondence between the closed immersions of
Spec A and those ofM(A).

The kernel map has very nice properties.

Proposition 1.6.3 ([4, Prop. 2.1.1, Thm. 2.1.4]). Let A be a k-affinoid algebra.
Then, kerA is faithfully flat.

Theorem 1.6.4. [4, Thm. 2.2.1] Let A be a k-affinoid algebra. Set X = M(A)
and X = Spec A. Let PX be the set of points on X which are reduced (resp. normal,
Cohen-Macaulay, regular), and similarly for PX . Then, PX = ker−1

A (PX ).
In particular, we obtain from the above that a k-affinoid space X is reduced (resp.

normal) if and only if O(X) is reduced (resp. normal).

1.6.2. Analytification over a field. Let k be a complete ultrametric field.

Definition 1.6.5. Let X be a scheme of locally finite type over k. The Berkovich
analytification of X, denoted X an, is a good k-analytic space together with a morphism
of k-locally ringed spaces X an → X , which represents the functor An-k → Set, Y 7→
Homk(Y,X ), where Homk(·, ·) denotes morphisms in the category of k-locally ringed
spaces.

Theorem 1.6.6 ([6, Thm. 3.4.1, 3.5.1]). Let X be a scheme of locally finite type over k.
The Berkovich analytification X := X an of X exists.

(1) For any complete ultrametric field extension K/k, X(K) ∼= X (K). Moreover, the
canonical morphism π : X → X is surjective, and induces a bijection between the
rigid points of X and the closed points of X .

(2) For any x ∈ X, the canonical morphism πx : OX ,π(x) → OX,x is faithfully flat.
Furthermore, if x is a rigid point, then πx induces an isomorphism of completions

ÔX ,π(x) → ÔX,x.
Let us briefly describe how the space X is constructed.
If X = Ank for some n ∈ N, then its Berkovich analytification is An,ank , and the canonical

map is a kernel map π : An,ank → Ank , x 7→ ker| · |x. This also allows us to construct the
analytifications of closed subschemes of Ank . Namely, for any finitely generated k-algebra A,
the analytification of X := Spec A is given by

X := {multiplicative semi-norms on A which extend the norm on k}.
The canonical map π : X → X is still a kernel map; if I is the ideal sheaf corresponding
to X as a Zariski closed subset of An,ank , then the analytic structure on X is given by
OX := OAn,an

k
/π∗I.
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In the general case, i.e. when X is any locally finite type scheme over k, we obtain X
and the canonical map by gluing the analytifications and the canonical maps of any open
affine cover of X .

Remark that the analytification of a locally finite type scheme over k is boundaryless.
This follows from the construction: it is true for Ank , and it is true for its Zariski closed sub-
sets by part (1) of Theorem 1.5.27. Finally, the general case is an immediate consequence
of the latter, seeing as being boundaryless is a local property. If k is non-trivially valued,
the same remains true when replacing boundaryless by strict (recall Example 1.5.2).

Remark 1.6.7. Let X = Spec A be a finite type affine scheme over k, and denote by X
its Berkovich analytification (which can be described via multiplicative semi-norms in a

similar way to A1,an
k , see above). For x ∈ A, let H′(x) be the completion of Frac(A/ker| · |x)

with respect to the quotient norm induced by |·|x. As in Lemma 1.4.12, using the universal
property for affinoid domains, we can show that H′(x) = H(x) - the completed residue
field of x.

Moreover, if X is a curve, then there is a bijection between the rigid points of X and
the maximal ideals of A. If x ∈ X is a rigid point, then H(x)/k is a finite field extension,
implying ker| · |x is a maximal ideal of A. Let P be a maximal ideal of A. Then, by the
surjectivity of the kernel map (i.e. analytification) X → X there exists x ∈ X such that
ker| · |x = P. Since A/P is a finite field extension of k, we obtain that x is a rigid point
of X.

Example 1.6.8. The analytification of Pnk is Pn,ank . The canonical map can be described
using the canonical maps corresponding to the copies of Ank in Pnk .

Let f : X → Y be a morphism of locally finite type schemes over k. Set X = X an and
Y = Yan. We have a morphism X → X → Y of k-locally ringed spaces. By the universal
property of analytification, this induces a morphism of good k-analytic spaces X → Y.
Remark that, by construction, the following induced diagram is commutative.

X Y

X Y

f

Definition 1.6.9. Let f : Y → X be a morphism of locally finite type schemes
over k. The corresponding morphism Y → X of their analytifications (constructed in the
paragraph above) will be denoted by fan, and called the analytification of f .

Let F be any coherent sheaf of OX -modules. Let π denote the canonical morphism
X → X . Then, Fan := π∗F is a coherent sheaf of OX -modules. It is called the analytifi-
cation of F .

We now mention the main results that compare properties in the algebraic and analytic
setting.

Theorem 1.6.10 ([6, Prop 3.4.6, 3.4.7]). Let f : Y → X be a morphism of locally
finite type schemes over k. Then, f is: (1) flat, (2) separated, (3) surjective, (4) injective,
(5) smooth, (6) an open immersion if and only if fan possesses the same property.

If f is of finite type, then it is: (1’) dominant, (2’) a closed immersion, (3’) proper,
(4’) finite if and only fan has the same property.
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Theorem 1.6.11 ([6, Prop. 3.4.3]). A scheme of locally finite type over k is reduced,
normal, Cohen-Macaulay, regular, smooth or of dimension n if and only if its analytifica-
tion satisfies the corresponding property.

Theorem 1.6.12 ([6, Cor. 3.4.10, Prop. 3.4.11]). Let X be a proper scheme over k.

(1) Let F be a coherent sheaf on X . Then, for any integer p > 0, the canonical
morphism Hp(X ,F)→ Hp(X an,Fan) is an isomorphism.

(2) The functor F 7→ Fan, induces an equivalence of categories between coherent
sheaves of OX -modules and the coherent sheaves of OX an-modules.

If k is trivially valued, then the properness assumption in Theorem 1.6.12 is not needed
(cf. [6, Theorem 3.5.1(iii)]).

Since we will be working with curves in Chapter 3, the following result is very useful:

Proposition 1.6.13 ([20, Théorème 3.7.2]). For any proper k-analytic curve X, there
exists a projective algebraic curve X over k, such that X an ∼= X.

Hence, we will often refer to reduced proper k-analytic curves as being reduced and
projective. The above result was first shown for reduced curves in [6, Cor. 3.4.14].

1.6.3. Analytification over an affinoid space. The construction of the analyti-
fication functor can be given more generally, over affinoid spaces. We will need this for
Chapter 4.

Let k be a complete ultrametric field and A a k-affinoid algebra. Set X := Spec A,
and X :=M(A). We will say that a good analytic k-space Y is a good X-analytic space
if there is a morphism of good analytic k-spaces ϕY : Y → X. A morphism f : Y → Z
of X-analytic spaces is a morphism of analytic k-spaces such that ϕZ ◦ f = ϕY . Let us
denote the category of good X-analytic spaces by X-An.

Let Y be a locally finite type scheme over X . Let F denote the functor X-An → Set,
Z 7→ HomX (Z,Y), where HomX (·, ·) denotes the set of morphisms in the category of
X -locally ringed spaces.

Theorem 1.6.14 ([4, Prop. 2.6.1]). The functor F is represented by a good X-analytic
space Yan that is a good k-analytic space, and a morphism Yan → Y of X -locally ringed
spaces.

The space Yan is called the Berkovich analytification of Y over X (when there is no
risk of ambiguity, we will simply say that Yan is the analytification of Y). Remark that
the analytification of X over X is simply X.

Remark that as in the case of fields, if f : Y1 → Y2 is a morphism of locally finite type
X -shemes, it gives rise to a morphism fan : Yan

1 → Yan
2 of good X-analytic spaces, called

the analytification of f . This induces the following commutative diagram:

Y1 Y2

Yan
1 Yan

2

f

fan

Analytification of schemes over strict affinoid algebras was introduced by Köpf [45]
in the setting of rigid geometry, and several GAGA-type properties were shown in the
same paper. In [4, 2.6], Berkovich defined and studied the analytification of schemes over
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general affinoid algebras in the setup of Berkovich spaces. It has since been systematically
studied by Ducros in several of his papers (e.g. [21], [18], [61, Annexe A]).

All of the properties that we mentioned for the analytification of schemes over fields
(with the exception of Proposition 1.6.13) hold in this setting as well. However, seeing as
the proofs are dispersed in several papers, we will directly give the references when using
certain (most) of these results.

Example 1.6.15. (AnX )
an = An,ank ×k X =: An,anX , and (PnX )

an = Pn,ank ×k X =: Pn,anX
for any n ∈ N.

The examples of affinoid domains we saw in part 1.5.2 are applicable (using the same
arguments) to An,anX and Pn,anX as well.

Let us make a few useful remarks for the next chapters.

Lemma 1.6.16. Analytification commutes with respect to affinoid base change. More
precisely, let Z → X be a morphism of affinoid k-spaces. Set Z := Spec O(Z). Let Y be
any locally finite type scheme over X . Set Y := Yan. Then, (Y ×X Z)an = Y ×X Z as good
Z-analytic spaces.

Proof. By Remark 1.5.9, Y ×X Z exists. It is clearly a good Z-analytic space.
We only needs to check that the universal property is satisfied. Let T be a good

Z-analytic space and T → Y ×X Z a morphism of Z-locally ringed spaces. This in-
duces a morphism T → Y contained in HomX (T,Y), and a morphism of analytic spaces
T → Z → X, meaning T → Z can be interpreted as a morphism inX-An. By the universal
property of analytification, we obtain a morphism T → Y in X-An. Consequently, there
is a morphism of good Z-analytic spaces T → Y ×X Z, thus implying the statement. �

Recall that the fiber of a morphism of analytic spaces can be identified with a good
analytic space (see Proposition 1.5.7).

Corollary 1.6.17. Let f : Y1 → Y2 be a morphism of X -schemes of locally finite
type. For x ∈ Yan

2 , let x denote its image via Yan
2 → Y2. Then, the fiber (fan)−1(x) is

isomorphic to (f−1(x)×κ(x)H(x))an as an H(x)-analytic space, where κ(x) is the residue
field of x in Y2.

Proof. By Proposition 1.5.7, (fan)−1(x) is identified to the good H(x)-analytic space
Yan
1 ×Yan

2
H(x). By Lemma 1.6.16:

Yan
1 ×Yan

2
H(x) = (Y1 ×Y2 H(x))an = (Y1 ×Y2 κ(x)×κ(x)H(x))an = (f−1(x)×κ(x)H(x))an.

�

1.6.4. The Zariski topology. Let k be a complete ultrametric field.

Definition 1.6.18. Let X =M(A) be a k-affinoid space. The Zariski topology on X
is the topology induced by the kernel map kerA : X → Spec A (see Definition 1.4.12).

More generally, let Y be a good k-analytic space. A Zariski closed subset of Y is the
zero-locus of a coherent ideal of sheaves over Y (remark that these are exactly the closed
immersions to Y , and in particular analytic spaces themselves). These are the closed sets
of a topology on Y , called the Zariski topology.

Remark that the Berkovich topology is finer than the Zariski one.
If X is a finite type scheme over k, then the Zariski topology on X an is the one induced

by the canonical analytification map X an → X (see Theorem 1.6.10 (3’)).
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Definition 1.6.19. Let X be a good k-analytic space. A Zariski closed subset of X
is said to be irreducible if it is irreducible for the Zariski topology on X.

Remark 1.6.20. Let X be a locally finite type scheme over k. Then, X is irreducible
if and only X an is irreducible.

Moreover, in [18, Proposition 2.7.16], Ducros showed that the irreducible components
of X an are the analytifications of the irreducible components of X in the more general case
of analytic spaces over an affinoid space (we won’t define what an irreducible component
of a good analytic space is; for that, see [18, Definition 1.5.2]).

Remark 1.6.21. In [21, Proposition 5.14], it is shown that if X is a normal good
k-analytic space, then its irreducible components are its connected components.

Taking Remark 1.5.18 into account, this means that a connected analytic domain of a
normal good k-analytic space is always irreducible, and so integral.

Definition 1.6.22. We will say that a good k-analytic space is integral if it is reduced
and irreducible.

Remark that a k-affinoid space is integral if and only if O(X) is a domain. (This does
not necessarily imply that all the stalks are domains.)

Remark 1.6.23. One can also define the notion of codimension for the Zariski topology,
see for example [18, 1.5.15]. In particular, for a good k-analytic space X, a divisor on X
is a Zariski closed subset of X of codimension 1. If X is the analytification of a locally
finite type scheme X , then a divisor on X is simply the pullback of a divisor on X via the
canonical map X → X see [18, Corollary 2.7.13].

The Zariski topology on Berkovich spaces has been extensively studied by Ducros in
several of his papers (see e.g. [18]).

Proposition 1.6.24 (Analytic continuation). Let X be an integral good k-analytic
space.

(1) Let Y be any analytic domain of X. The restriction morphism O(X) → O(Y ) is
injective.

(2) For any x ∈ X, the restriction morphism O(X)→ Ox is injective.

Proof. Let f ∈ O(X) be such that its restriction to Y is zero. Let Z denote the
Zariski closed subset of X determined by the zero locus of f . Then, Y ⊆ Z, so by [21,
Corollaire 4.14], Z = X. This means that for any x ∈ X, |f |x = 0. Let V be an affinoid
neighborhood of x in X. Then, |f |y = 0 for all y ∈ V, which by Proposition 1.3.15(1)
(see also Theorem 1.1.38) implies that f|V is nilpotent in O(V ). By Remark 1.5.18, the
reducedness of X implies that of V, so f|V = 0. We have shown that for any x ∈ X, f = 0
in OX,x, so f = 0 in O(X), and the restriction morphism to Y is injective.

The second part is a direct consequence of the first one. �

1.7. Complement I: The sheaf of meromorphic functions

As in the complex setting, a sheaf of meromorphic functions can be defined satis-
fying similar properties. Moreover, its definition resembles heavily that of the sheaf of
meromorphic functions for schemes (including the subtleties of the latter, see [43]).

Let k denote a complete ultrametric field.
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Definition 1.7.1. Let X be a good k-analytic space. Let SX be the presheaf of
functions on X, which associates to any analytic domain U the set of analytic functions
on U whose restriction to any affinoid domain in it is not a zero-divisor. Let M− be the
presheaf on X that associates to any analytic domain U the ring SX(U)−1OX(U). The
sheafification MX of the presheaf M− is said to be the sheaf of meromorphic functions
on X.

It is immediate form the definition that for any analytic domain U of X, SX(U)
contains no zero-divisors of OX(U).

Remark 1.7.2. The sheaf of meromorphic functions for schemes is given as in Defini-
tion 1.7.1 when replacing affinoid and analytic domain with open subset. Recall that if X
is an integral scheme, then the ring of global sections of the sheaf of meromorphic func-
tions on X coincides with its function field. See [48, 7.1.1] for a treatment of meromorphic
functions in the algebraic setting.

Proposition 1.7.3. Let X be a good k-analytic space. Let U be an analytic domain
of X. Then,

(1) SX(U) = {f ∈ OX(U) : f is a non-zero-divisor in OU,x for all x ∈ U}.
(2) SX(U) = {f ∈ OX(U) : f is a non-zero-divisor in OU (G) for any open subset G of U}.
Proof. (1) By a direct application of the definition, the elements of SX(U) are non-

zero-divisors on OU,x for all x ∈ U.
Let f ∈ OX(U) be such that f is a non-zero-divisor in OU,x for all x ∈ U. This means

that OU,x → OU,x, a 7→ f · a, is an injective map for x ∈ U.
Let V be any affinoid domain in U. By [18, 4.1.11], for any x ∈ V, the morphism

OU,x → OV,x is flat. Consequently, the map OV,x → OV,x, b 7→ f · b, is injective, or
equivalently, f is a non-zero-divisor in OV,x. Suppose there exists c ∈ OU (V ) such that
f · c = 0. Then, c = 0 in OV,x for all x ∈ V, implying c = 0 in OU (V ). As a consequence,
f is a non-zero-divisor in OU (V ). We have shown that f ∈ SX(U), concluding the proof
of the first part of the statement.

Finally, (2) is a direct consequence of (1). �

Lemma 1.7.4. Let X be a good k-analytic space. Let U be an affinoid domain in X.
Then, SX(U) is the set of non-zero divisors of OX(U).

Proof. By definition, the elements of SX(U) are not zero-divisors in OX(U).
Let f be an element of AU := OX(U) that is a non-zero-divisor, i.e. such that the map

AU → AU , a 7→ f · a, is injective. Let V ⊆ U be any affinoid domain. Set AV := OX(V ).
Then, by Proposition 1.4.10(2), the restriction map AU → AV is flat. Consequently, the
map AV → AV , b 7→ f · b, remains injective, meaning f is not a zero divisor in AV . This
implies that f ∈ SX(U), proving the statement. �

The proof of the following statement resembles the proof of its algebraic analogue.

Corollary 1.7.5. Let X be a good k-analytic space. Then, for any x ∈ X, SX,x is
the set of elements of OX,x that are non-zero-divisors.

Proof. Let x ∈ X. Clearly, the elements of SX,x are not zero divisors in OX,x.
Let f ∈ OX,x be a non-zero-divisor. By restricting to an affinoid neighborhood of x

if necessary, we may assume, without loss of generality, that X is an affinoid space and
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f ∈ OX(X). Set A = OX(X). Set I = {a ∈ A : f · a = 0}. This is an ideal of A, and gives
rise to the following short exact sequence

0→ I → A→ A,

where A → A is given by a 7→ f · a. Seeing as f is a non-zero-divisor in OX,x, we obtain
that IOX,x = 0.

The ring A is an affinoid algebra, and hence Noetherian (cf Theorem 1.3.9). Conse-
quently, I is finitely generated. Let a1, a2, . . . , an ∈ A be such that I = (a1, a2, . . . , an). By
the above, the germs ai,x ∈ OX,x of ai at x are zero for all i ∈ {1, 2, . . . , n}. Consequently,
there exists an affinoid neighborhood V of x in X such that ai|V = 0 for all i, implying
IOX(V ) = 0.

Set AV := OX(V ). By Proposition 1.4.10(2), the restriction morphism A→ AV is flat,
so the short exact sequence above induces the following short exact sequence:

0→ I ⊗A AV → AV → AV ,

where AV → AV is given by b 7→ f|V · b. Seeing as AV is a flat A-module, I ⊗A AV is
isomorphic to IAV = 0. Consequently, multiplication by f|V is injective in AV , or equiv-
alently f|V is a non-zero-divisor in AV . By Lemma 1.7.4, this implies that f|V ∈ SX(V ),
and finally that f ∈ SX,x. �

By Corollary 1.7.5, if X is a good k-analytic space, then for any x ∈ X, MX,x is the
total ring of fractions of OX,x. In particular, if OX,x is a domain, then MX,x = Frac OX,x.
When there is no risk of confusion, we will simply denote O, resp. M , for the sheaf of
analytic, resp. meromorphic functions on X. We make note of the following, well known,
fact:

Lemma 1.7.6. Let X be an integral k-affinoid space. Then, M (X) = Frac O(X).

Proof. Since O(X) is an integral domain, Frac O(X) ⊆ M (X) by the definition
of M . Let f ∈ M (X). The sheaf fO ∩ O ⊆ M is non-zero and coherent, so by Kiehl’s
Theorem [6, Proposition 2.3.1], it has a non-zero global section x. Then, there exists
y ∈ O(X)\{0}, for which f = x

y ∈ Frac O(X).

�

A very important non-trivial result for us is the following:

Proposition 1.7.7 (Hurwitz-Weierstrass Theorem, [6, Prop. 3.6.2]). Let X be a
reduced proper scheme over k. Then, the canonical map MX (X ) → MX an(X an), where
MX denotes the sheaf of meromorphic functions on X , is an isomorphism.

This can be generalized to schemes over an affinoid algebra. It is a non-trivial result
for which GAGA-type theorems (cf. [45], [61, Annexe A]) are crucial. The arguments to
prove the following result were given in a Mathoverflow thread (see [57]).

Let us first mention some brief reminders on the notion of depth. Let R be a ring, I an
ideal of R, and M a finitely generated R-module. An M -regular sequence of length d over
I is a sequence r1, r2, . . . , rd ∈ I such that ri is not a zero divisor in M/(r1, . . . , ri−1)M
for i = 1, 2, . . . , d. The depth of M over I, denoted depthR(I,M) in [13, Section 1], is

• ∞ if IM =M,
• the supremum of the length of M -regular sequences over I, otherwise.
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In what follows, when M = R, we will denote depthR(I, R) by depthIR. Remark that
depthIR > 0 if and only if I contains a non-zero divisor of R.

Theorem 1.7.8. Let k be a complete ultrametric field. Let A be a k-affinoid algebra.
Let X be a proper scheme over Spec A. Let Xan/M(A) denote the Berkovich analytifica-
tion of X. Then, MXan(Xan) = MX(X), where MXan (resp. MX) denotes the sheaf of
meromorphic functions on Xan (resp. X).

When there is no risk of ambiguity and the ambient space is clear from context, we
will simply write M for the sheaf of meromorphic functions.

Proof. As in Definition 1.7.1, let SXan denote the presheaf of analytic functions
on Xan, which associates to any analytic domain U the set of analytic functions on U
whose restriction to any affinoid domain in it is not a zero divisor. By Corollary 1.7.5, for
any x ∈ Xan, SXan,x is the set of non-zero-divisors of OXan,x.

Let I be a coherent ideal sheaf on Xan that locally on Xan contains a section of SXan .
This means that for any x ∈ Xan, SXan,x∩Ix 6= ∅. Let s ∈ SXan,x∩Ix. Then, s is a non-zero
divisor in OXan,x, which implies depthIxOXan,x > 0. Suppose, on the other hand, that
I is a coherent ideal sheaf on Xan such that depthIxOXan,x > 0 for all x ∈ Xan. Then,
there exists at least one element s ∈ Ix which is a non-zero-divisor in OXan,x, implying
s ∈ SXan,x. To summarize, a coherent ideal sheaf I on Xan contains locally on Xan a
section of SXan if and only if depthIx(OXan,x) > 0 for all x ∈ Xan.

Let us show that for any coherent ideal sheaf I on Xan containing locally on Xan a sec-
tion of SXan , there is an embedding HomXan(I,OXan) ⊆MXan(Xan), where HomXan(I,OXan)
denotes the global sections onXan of the hom sheaf H om(I,OXan). Let ϕ ∈ HomXan(I,OXan).
For any x ∈ Xan, ϕ induces a morphism ϕx : Ix → OXan,x. Let sx ∈ SXan,x ∩ Ix,
and set ax = ϕx(sx). There exists a neighborhood Ux of x, such that sx ∈ I(Ux) ∩
SXan(Ux), ax ∈ OXan(Ux), and ϕ(Ux)(sx) = ax. Set fx = ax

sx
∈ SXan(Ux)

−1OXan(Ux) ⊆
MXan(Ux) (the presheaf S−1

XanOXan is separated, so S−1
XanOXan ⊆MXan).

Let Uy, Uz be any non-disjoint elements of the cover (Ux)x∈Xan of Xan. Then, consid-
ering ϕ is a morphism of sheaves of OXan-modules, ϕ(Uy ∩ Uz)(sy · sz) = sy · az = ay · sz
in OXan(Uy ∩ Uz). Consequently, fy|Uy∩Uz

= fz|Uy∩Uz
in MXan(Uy ∩ Uz), implying there

exists f ∈MXan(Xan) such that f|Ux
= fx in MXan(Ux) for all x ∈ Xan.

We associate to ϕ the meromorphic function f. Remark that if f = 0, then ax = 0 for
all x. This implies that for any α ∈ Ix, ϕx(sx · α) = sx · ϕx(α) = ax · ϕx(α) = 0, which,
taking into account sx ∈ SXan,x a non-zero-divisor, means that ϕx(α) = 0. Consequently,
ϕx = 0 for all x ∈ Xan, so ϕ = 0. Thus, the map ψI : HomXan(I,OXan) → MXan(Xan)
we have constructed is an embedding.

Remark that the set of coherent ideal sheaves on Xan containing locally on Xan a
section of SXan forms a directed set with respect to reverse inclusion (i.e. if I,J satisfy
these properties, then so does I · J ⊆ I,J ). Thus, by the paragraph above, there is
an embedding lim−→I

HomXan(I,OXan) →֒MXan(Xan), where the direct limit is taken with
respect to the same kind of coherent ideal sheaves I as above. Let us show that this
embedding is an isomorphism.

For any f ∈MXan(Xan), define the ideal sheaf Df as follows: for any analytic domain
U of Xan, set Df (U) = {s ∈ O(U) : s · f ∈ OXan(U) ⊆ MXan(U)}. This is a coherent

ideal sheaf on Xan. Since MXan,x = S−1
Xan,xOXan,x for any x ∈ Xan, there exist sx ∈ SXan,x

and ax ∈ OXan,x such that fx = ax
sx

in MXan,x. Considering Df,x = {s ∈ OXan,x : s · fx ∈
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OXan,x}, we obtain that sx ∈ Df,x, so Df contains locally on Xan a section of SXan .
To f ∈ MXan(Xan) we associate the morphism ϕf : Df → OXan which corresponds to
multiplication by f (i.e. for any open subset U of Xan, Df (U) → OXan(U), s 7→ f · s).
Clearly, ψDf

(ϕf ) = f, implying the embedding lim−→I
HomXan(I,OXan) →֒ MXan(Xan) is

surjective, so an isomorphism.
Let SX denote the presheaf on X through which MX is defined (see [48, Section

7.1.1]). Remark that since A is Noetherian ([6, Proposition 2.1.3]), the scheme X is
locally Noetherian. Under this assumption, for any x ∈ X, SX,x is the set of all non-
zero-divisors of OX,x (see [48, 7.1.1, Lemma 1.12(c)]). Taking this into account, all the
reasoning above does not make use of the fact that Xan is an analytic space, and can
be applied mutatis mutandis to the scheme X and its sheaf of meromorphic functions
MX . Thus, MX(X) ∼= lim−→J

HomX(J ,OX), where the direct limit is taken with respect

to coherent ideal sheaves J on X, for which depthJX,x
OX,x > 0 for all x ∈ X.

Consequently, to show the statement, we need to show that lim−→J
HomX(J ,OX) =

lim−→I
HomXan(I,OXan), where the direct limits are taken as above.

By [61, Annexe A] (which was proven in [45] in the case of rigid geometry), there is
an equivalence of categories between the coherent sheaves on X and those on Xan. Let us
show that this induces an equivalence of categories between the coherent ideal sheaves onX
and those on Xan. To see this, we only need to show that if F is a coherent sheaf on X such
that Fan is an ideal sheaf on Xan, then F is an ideal sheaf on X. By [61, A.1.3], we have a
sheaf isomorphism H om(F ,O)an ∼= H om(Fan,OXan), so H om(F ,O)an has a non-zero
global section ι corresponding to the injection Fan ⊆ OXan . By [61, Théorème A.1(i)],
H om(F ,O)an(Xan) ∼= H om(F ,O)(X). Let ι′ ∈ H om(F ,O)(X) denote the element
corresponding to ι. Then, the analytification of ι′ : F → OX is the morphism ι : Fan →֒
OXan . By flatness ofXan → X, we obtain that (ker ι′)an = ker ι′an = ker ι, so (ker ι′)an = 0,
implying ker ι′ = 0. Consequently, there exists an embedding F →֒ OX , implying F is an
ideal sheaf on X.

If to a coherent ideal sheaf J on X we associate the coherent ideal sheaf J an on Xan,
then as seen above HomX(J ,OX) ∼= HomXan(J an,OXan).

Let us also show that a coherent ideal sheaf J on X satisfies depthJx
OX,x > 0 for

all x ∈ X if and only if depthJ an
y
OXan,y > 0 for all y ∈ Xan. To see this, recall that by

[4, Proposition 2.6.2], the morphism φ : Xan → X is surjective and for any y ∈ Xan,
the induced morphism of local rings OX,x → OXan,y is faithfully flat, where x := φ(y).
By [13, 1.3, Proposition 6], depthJx

OX,x = depthJxOXan,y
OXan,y ⊗OX,x

OX,x. At the same

time, seeing as the morphism OX,x → OXan,y is flat, J an
y = Jx ⊗OX,x

OXan,y = JxOXan,y,
so depthJx

OX,x = depthJ an
y
OXan,y.

From the above, lim−→J
HomX(J ,OX) = lim−→I

HomXan(I,OXan), where the direct limits

are taken with respect to coherent ideal sheaves J on X (resp. I on Xan), for which
depthJx

OX,x > 0 for all x ∈ X (resp. depthIxOXan,x > 0 for all x ∈ Xan). Finally, this
implies that MX(X) = MXan(Xan). �

As an immediate consequence of the theorem above, we obtain that for any integral
k-affinoid space Z, M (P1,an

Z ) = M (Z)(T ).
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1.8. Complement II: Analytic curves

Arguably, analytic curves in the sense of Berkovich form the class of Berkovich spaces
that is understood the best and on which the most progress has been made. In [20],
Ducros proves the semi-stable reduction theorem using only Berkovich’s theory, which is
why one can find an extensive study of these spaces in loc.cit. Among other things, the
relationship between formal models of an algebraic curve and its Berkovich analytification
is explored. Also, it is shown that Berkovich curves have a graph-like structure preserving
their homotopy type, which then led to studies of combinatorial nature of these objects.
Namely, connections have been made between tropical and Berkovich’s geometry, and this
is a rising area of research.

We give here a brief overview on analytic curves, focusing mainly on: major results
or ones that are needed for the next chapters and which exist in the litterature (with
references), and results that we need (which to our knowledge are not in the litterature)
for which we provide proofs. There remain certain results of the latter type which will
be proven when needed in the next chapters (we consider this to be a more natural
presentation).

Throughout this section, let k denote a complete ultrametric field.

1.8.1. The points of an analytic curve. Recall the definition of a good analytic
curve (Definition 1.5.37) and the remark below it. The latter justifies the fact that we will
simply say analytic curves from now on (instead of good analytic curves).

As in the case of A1,an
k , for any analytic curve there is a full classification of points. Let

C be a k-analytic curve. In Definition 1.5.21, for any x ∈ C, we introduced the invariants

sx := deg tr
k̃
H̃(x) and tx := dimQ |H(x)×|/|k×|⊗ZQ, where H(x) is the completed residue

field of x, and k̃, H̃(x) are the residue fields of k,H(x), respectively. By Lemma 1.5.22,
for any x ∈ C, sx + tx 6 1. Let us fix an algebraic closure k of k. The absolute value of k

extends uniquely to k. We denote by k̂ the completion of k with respect to said absolute
value.

Definition 1.8.1. The point x is said to be

(1) of type 1 if H(x) ⊆ k̂; remark that sx = tx = 0;
(2) of type 2 if sx = 1;
(3) of type 3 if tx = 1;
(4) of type 4 if sx = tx = 0 and x is not of type 1.

Remark that type 2 and 3 points are the Abhyankar points of C. By Proposition 1.5.24,
for any affinoid domain in C, the points in its Shilov boundary are of type 2 or 3. Also,
rigid points are type 1 points (but not necessarily vice-versa unless k is algebraically closed
or trivially valued). Definition 1.8.1 is compatible with the terminology we introduced in
Subsection 1.2.4.

Here are a few results that we will need for the next chapters.

Lemma 1.8.2. Let f : C1 → C2 be a finite morphism of k-analytic curves. If x ∈ C2

is a type i point, then for any y ∈ f−1(x), y is a type i point in C1, i = 1, 2, 3, 4.

Proof. This is immediate from the fact that for any y ∈ C1, the morphism OC2,f(y) →
OC1,y is finite. �
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Lemma 1.8.3 ([18, Lm. 4.4.5]). Let C be a reduced k-analytic curve. Then, for any
x ∈ C that is not rigid, OC,x is a field.

Lemma 1.8.4. Let C be a normal k-analytic curve. Then, for any x ∈ C, OC,x is
either a field or a discrete valuation ring. Moreover, OC,x is a discrete valuation ring if
and only if x is a rigid point of C.

Proof. By Corollary 3.2.9 of [18], dimOC,x 6 dimx(C) = 1. If dimOC,x = 0, then
OC,x is a normal local ring of Krull dimension 0, so it is a field. If dimOC,x = 1, then
OC,x is a Noetherian normal local ring of Krull dimension 1, so it is a discrete valuation
ring.

To show the last part of the statement, by Lemma 1.8.3, it suffices to prove that if
OC,x is a field for some x ∈ C, then x is not a rigid point. This is a consequence of [18,
Corollary 3.2.9]. �

Lemma 1.8.5. Let C be an irreducible k-analytic curve. Then, any proper Zariski
closed subset of C is discrete and contains only rigid points.

Proof. Recall that a Zariski closed subset of C is a k-analytic space, so it makes
sense to speak of its dimension.

Let Z be a proper Zariski closed subset of C. By [21, Cor. 4.14], dimZ = 0. Hence,
for any x ∈ Z, dimx(Z) = 0, which by [22, 1.21] is equivalent to the fact that x is a rigid
and isolated point. �

Lemma 1.8.6. Let k be a trivially valued field. Let C be an integral projective k-analytic
curve. Then, C contains exactly one type 2 point x, and Ox = M (C).

Proof. By Proposition 1.6.13, the curve C is the analytification of an integral pro-
jective algebraic curve C over k. Let π : C → C denote the canonical morphism.

Let U be any affine open subset of C. Then, by Lemma 1.8.5, all type 2 points are
contained in π−1(U) = Uan. Seeing as U is affine, Uan is the set of multiplicative semi-
norms on OC(U) which extend the absolute value of k. Remark that the trivial norm on
OC(U) determines a unique point of Uan.

Let x ∈ U be any type 2 point. Then, seeing as
√
|k×| = {1}, we obtain that√

|H(x)×| = |H(x)×| = {1}, i.e. x induces the trivial norm on OC(U). Consequently, by
the description of the points of Uan, there is exactly one type 2 point in Uan, and hence
in C. By Lemma 1.4.12, H(x) is the completion of the residue field κ(x) with respect to
the trivial norm, implying κ(x) = H(x). As x is of type 2, κ(x) = Ox.

By Remark 1.6.7, H(x) is the completion of Frac OC(U) with respect to the trivial
norm | · |x, so H(x) = Frac OC(U). As C is irreducible, M (C) = Frac OC(U) = H(x). �

Type 3 points are crucial for the constructions we will make, which is why it is very
important to know when they exist.

Proposition 1.8.7. Let C be a k-analytic curve. Type 3 points exist in C if and only
if
√
|k×| 6= R>0, in which case they are dense.
Moreover, the family of connected affinoid domains with only type 3 points in their

topological boundaries forms a basis of neighborhoods of the Berkovich topology on C.

Proof. Since curves are good analytic spaces, we may assume that C is an affinoid
space. Let U be an open neighborhood of x in C. There exists an open neighborhood
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of x in U given by {|fi| < ri, |gj | > sj : i = 1, 2, . . . , n, j = 1, 2, . . . ,m}, where fi, gj are
analytic functions on C and ri, sj ∈ R>0.

Let r′i, s
′
j ∈ R>0\

√
|k×|, such that r′i < ri and s

′
j > sj , and |fi(x)| < r′i, |gj(x)| > s′j , for

all i and j. Set V = {|fi| 6 r′i, |gj | > s′j}. It is an affinoid domain of C and a neighborhood
of x contained in U.

As {|fi| < r′i, |g′j | > sj} is open, it is contained in Int(V ), so ∂V ⊆ ⋃n
i=1{|fi| =

r′i} ∪
⋃m
j=1{|gj | = s′j}. Let y ∈

⋃n
i=1{|fi| = r′i} ∪

⋃m
j=1{|gj | = s′j}. Since there exists an

analytic function f on C such that |f(y)| 6∈
√
|k×|, the point y is of type 3, implying that

the boundary of V contains only type 3 points. �

1.8.2. Boundaries in dimension 1.

Lemma 1.8.8. Let V be a k-affinoid curve. The following sets are equal:

(1) the Berkovich boundary ∂B(V ) of V ;
(2) the Shilov boundary Γ(V ) of V.

Proof. If V is strictly affinoid, this is [69, Lemma 2.3]. The proof can be extended
to the general case by replacing classical reduction with Temkin’s graded reduction (see
Propositions 3.3 and 3.4 of [67]). �

Remark 1.8.9. If C is a k-analytic curve and U an analytic domain of C, then by
Theorem 1.5.27, ∂U ⊆ ∂B(U).

Proposition 1.8.10. Let C be a k-analytic curve such that ∂B(C) = ∅. Let V be an
affinoid domain of C. The three following sets coincide:

(1) the topological boundary ∂V of V in C;
(2) the Berkovich relative boundary ∂B(V/C) of V in C;
(3) the Shilov boundary Γ(V ) of V.

Proof. By Theorem 1.5.27(2), ∂B(V/C) = ∂V. By Theorem 1.5.27(1), since C is
boundaryless, ∂B(V/C) = ∂B(V ). Finally, in view of Lemma 1.8.8, ∂V = ∂B(V/C) = Γ(V ).

�

In particular, the results above tell us that the topological (and Berkovich) boundary
of any affinoid domain of an analytic curve is finite. As an immediate consequence:

Corollary 1.8.11. Let C be a k-analytic curve. For any affinoid domain U in C,
(Int U) = U.

The following is a direct consequence of [60, Lemme 4.4] and Proposition 1.3.14.

Proposition 1.8.12. Let V be a k-affinoid curve. Then, V is strict if and only if
Γ(V ) contains only type 2 points.

1.8.3. Some general results on curves. Informally, a real graph is an infinite graph
where there can be “infinite branching” even locally (for example, the tree corresponding

to A1,an
k is a real graph). The precise notion has many nice properties, e.g. it is locally

uniquely arcwise-connected. For the precise definition, see [20, 1.3.1].

Theorem 1.8.13 ([20, Théorème 3.5.1]). An analytic curve is a real graph.

Type 3 points are the points of arity 2 in the real graph associated to the analytic
curve. Type 1 and 4 points have arity 1, and type 2 points infinity.

Here is a useful (for the next chapters) application of this.
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Proposition 1.8.14. Let C be a compact k-analytic curve. For any x, y ∈ C, there
exist only finitely many arcs in C connecting x and y.

Proof. By [20, Théorème 3.5.1], C is a real graph. By [20, 1.3.13], for any z ∈ C,
there exists an open neighborhood Uz of z such that: (1) Uz is uniquely arcwise-connected;
(2) the closure Uz of Uz in C is uniquely arcwise-connected; (3) the boundary ∂Uz is finite,
implying in particular ∂Uz = ∂Uz. Seeing as C is compact, the finite open cover {Uz}z∈C
admits a finite subcover U := {U1, U2, . . . , Un}. Set S :=

⋃n
i=1 ∂Ui. This is a finite subset

of C.
Let x, y be any two points of C. Let γ : [0, 1] → C be any arc in C connecting x

and y. Set Sγ := S ∩ γ([0, 1])\{x, y}. It is a finite (possibly empty) subset of C. For any
α ∈ Sγ , there exists a unique a ∈ [0, 1] such that γ(a) = α. This gives rise to an ordering
of the points of Sγ . Set Sγ = {α1, α2, . . . , αm} such that the order of the points is the
following: α1 < α2 < · · · < αm (meaning γ−1(α1) < γ−1(α2) < · · · < γ−1(αm)). To the
arc γ we associate the finite sequence γ := (α1, α2, . . . , αm) of points of Sγ . Set α0 = x,
and αm+1 = y.

For any i ∈ {0, 1, . . . ,m + 1}, set γi := γ([γ−1(αi), γ
−1(αi+1)]). This is an arc in C

connecting αi and αi+1. By construction, for any i, γi ∩ S ⊆ {αi, αi+1}. Remark that

γ([0, 1]) =
⋃m+1
i=0 γi.

Let us show that for any i ∈ {0, 1, . . . ,m}, there exists a unique arc [αi, αi+1]0 in C
connecting αi and αi+1 such that [αi, αi+1]0 ∩ S ⊆ {αi, αi+1}. Let [αi, αi+1] be any such
arc (the existence is guaranteed by the paragraphs above). Let j ∈ {1, 2, . . . , n} be such
that [αi, αi+1] ∩ Uj 6= ∅. Let z ∈ [αi, αi+1] ∩ Uj ; since [αi, αi+1] ∩ Uj is open in [αi, αi+1],
we may choose z such that z 6∈ {αi, αi+1}. Let us denote by [αi, z], resp. [z, αi+1] the
arc in C induced by [αi, αi+1] connecting αi and z, resp. z and αi+1. Clearly, [αi, αi+1] =
[αi, z] ∪ [z, αi].

Suppose there exists u ∈ [αi, αi+1]\Uj . Again, as [αi, αi+1]\Uj is open in [αi, αi+1], we
may assume that u 6∈ {αi, αi+1}.Without loss of generality, let us suppose that u ∈ [αi, z].
Let [αi, u], resp. [u, z], be the induced arcs connecting αi and u, resp. u and z. Seeing as
z ∈ Uj and u 6∈ Uj , [z, u]∩∂Uj 6= ∅. At the same time, ∅ 6= [z, u]∩∂Uj ⊆ [αi, αi+1]∩∂Uj ⊆
[αi, αi+1] ∩ S ⊆ {αi, αi+1}, which contradicts the injectivity of [αi, αi+1].

Consequently, [αi, αi+1] ⊆ Uj . Seeing as Uj is uniquely arcwise-connected, we obtain
that the arc [αi, αi+1] in C connecting αi and αi+1, and satisfying the property [αi, αi+1]∩
S ⊆ {αi, αi+1}, is unique. Thus, γi = [αi, αi+1], and the arc γ is uniquely determined by
its associated ordered sequence γ.

Seeing as S is finite, the set of all finite sequences (βl)l over S such that βl′ 6= βl′′
whenever l′ 6= l′′, is also finite. Consequently, the set of arcs in C connecting x and y is
finite. �

The following result is crucial for our work in the next chapters. It is among the main
reasons why the case of curves is the most pleasant one to treat. The proof is obtained by
applying Théorème 6.1.3 of [20].

Theorem 1.8.15. (1) An irreducible compact k-analytic curve is either projective or
an affinoid space.

(2) The finite union of affinoid domains in an irreducible k-analytic curve is the curve
itself or an affinoid domain.
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Proof. (1) Let C be an irreducible compact k-analytic curve. Then, if ∂B(C) 6= ∅,
C is an affinoid curve by [20, Théorème 6.1.3]. If ∂B(C) = ∅, then the canonical map
C →M(k) is proper, so C is a projective curve.

(2) Let C be an irreducible k-analytic curve. It suffices to show the result for two
affinoid domains. Let U1, U2 be affinoid domains in C. Set X = U1 ∪ U2. This is an
analytic domain in the sense of [4, 1.3] by definition. As X is an analytic curve, by
[20, Proposition 3.3.7], it is a good k-analytic space. It can be shown that X is also an
analytic domain of C in the sense of Definition 1.5.5 (see [4, pg. 23]). If ∂B(X) = ∅,
then by Remark 1.8.9, ∂X = ∅. As X is a compact, hence closed, subset of the connected
curve C, this is possible if and only ifX = C. In particular, C is projective (as ∂B(C) = ∅).

Suppose ∂B(X) 6= ∅. Let X0 be an irreducible component of X, meaning it is a
Zariski closed subset of X, and the inclusion X0 → X is a closed immersion, hence
finite. By Proposition 1.5.31 and Theorem 1.5.27, ∂B(X0) = X0\IntB(X), meaning
∂B(X0) ⊆ ∂B(X).

If ∂B(X0) = ∅, by [20, 3.2.3], X0 = C, so X = C, and X is proper, which is in
contradiction with the assumption ∂B(X) 6= ∅. Thus, for any irreducible component X0

of X, ∅ 6= ∂B(X0) ⊆ ∂B(X). We conclude by [20, Théorème 6.1.3] that X is an affinoid
space which is an analytic domain of C, hence an affinoid domain in C. �

Here is another way to obtain affinoid domains on a curve. This is again an application
of [20, Théorème 6.1.3].

Lemma 1.8.16. Let C be a normal irreducible projective k-analytic curve. Let U be a
connected affinoid domain of C such that its boundary contains only type 3 points. Then,
for any S ⊆ ∂U, U\S is connected.

Proof. Suppose that C is generically quasi-smooth. Since ∂S contains only type 3
points, all of the points of S are quasi-smooth in C.

Let x, y ∈ Int U. Since U is connected, there exists an arc [x, y] ⊆ U connecting x
and y. Let z ∈ S. We aim to show that z 6∈ [x, y], implying [x, y] ⊆ U\S, and thus the
connectedness of U\S.

By [20, Théorème 4.5.4], there exists an affinoid neighborhood V of z in U such that it
is a closed virtual annulus, and its Berkovich boundary is ∂B(V ) = {z, u} for some u ∈ U.
We may assume that x, y 6∈ V. Since V is an affinoid domain in U, by Theorem 1.5.27,
the topological boundary ∂UV of V in U is a subset of ∂B(V ) = {z, u}. Since V is a
neighborhood of z, ∂UV = {u}.

Suppose z ∈ [x, y]. Then, we could decompose [x, y] = [x, z] ∪ [z, y]. Since x, y 6∈ V ,
and z ∈ V, the sets [x, z] ∩ ∂UV, [z, y] ∩ ∂UV are non-empty, thus implying u is contained
in both [x, z] and [z, y], which contradicts the injectivity of [x, y]. Consequently, U\S is
connected.

Let us get back to the general case. Let Calg denote the algebraization of C (i.e. the
normal irreducible projective algebraic curve over k whose analytification is C). Since it
is normal, there exists a finite surjective morphism Calg → P1

k. This induces a finite field
extension k(T ) →֒ k(Can) = M (C) of their function fields. Let F denote the separable
closure of k(T ) in k(C). Then, there exists an irreducible normal algebraic curve X over k
such that k(X) = F. Seeing as k(T ) →֒ k(C) is separable, the induced morphism X → P1

k
is generically étale, soX is generically smooth. On the other hand, the finite field extension
k(C)/F is purely inseparable, implying the corresponding finite morphism Calg → X is a
homeomorphism.
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Finally, the analytification Xan is a normal irreducible projective k-analytic curve
that is generically quasi-smooth, and there is a finite morphism f : C → Xan that is a
homeomorphism. By [20, Proposition 4.2.14], f(U) is a connected proper closed analytic
domain of Xan. By [20, Théorème 6.1.3], f(U) is an affinoid domain of Xan. Clearly,
∂f(U) = f(∂U). Let S ⊆ ∂U, and set S′ = f(S). As shown above, f(U)\S′ is connected.
Consequently, U\S is connected. �

Corollary 1.8.17. Let C be a normal irreducible k-analytic curve. Let U be an
affinoid domain in C containing only type 3 points in its boundary. If Int(U) 6= ∅, then
(Int U)c is an affinoid domain in C containing only type 3 points in its boundary.

Proof. Seeing as U is an affinoid domain, it has a finite number of connected com-
ponents, and by Corollary 1.4.19, they are all affinoid domains in C. Furthermore, each
of the connected components of U contains only type 3 points in its boundary. Conse-
quently, by Lemma 1.8.16, Int(U) has only finitely many connected components. Thus,
by [20, Proposition 4.2.14], (Int U)c is a closed proper analytic domain of C. By [20,
Théorème 6.1.3], it is an affinoid domain in C. �

Until the end of this part, we briefly mention some of the cornerstones of the theory
of Berkovich curves.

Triangulations. In [20], Ducros introduces the notions of virtual discs and virtual
annuli (resp. closed virtual discs and closed virtual annuli), which are generalizations
of discs and annuli (resp. closed discs and annuli) as we saw them in Examples 1.4.25
and 1.5.13; more precisely, a (closed) virtual disc, resp. annulus, becomes isomorphic to a
disjoint union of (closed) discs, resp. annuli, after a base change. The Berkovich boundary
of a virtual disc (resp. annulus) is a single point (resp. a set of 2 points), and the same
remains true if we replace disc (resp. annulus) by closed disc (resp. closed annulus).
Using these spaces, Ducros provides bases of neighborhoods for all of the types of points
of a quasi-smooth Berkovich curve. In particular, he shows that a basis of neighborhoods
of type 3 points of a quasi-smooth curve is given by closed virtual annuli.

In [20], the notion of triangulation of a quasi-smooth k-analytic curve is introduced;
it is a locally finite set of type 2 and 3 points of the curve satisfying certain topological
and analytic properties (see [20, 5.1.13]). To any triangulation we can associate a locally
finite graph, called a skeleton of the curve, and there is a strong deformation retraction
from the curve to this skeleton. If T is a triangulation of a k-analytic curve C, then the
connected components of C\T are virtual discs and virtual annuli.

The specialization map. There is a more thorough treatment of the following content
in Section 3.3. We give here a brief overview (without the relevant references, which will
be given in Section 3.3).

For a complete ultrametric field k, let k◦ denote its ring of integers. Given an adequate
formal model C of an algebraic curve over k◦, there is a notion of an analytic generic fiber
C of C , where C is a k-analytic curve. This is the analytification of the algebraic generic
fiber of C if the latter is projective. In general, there exists a specialization map (sometimes
called reduction map, which we will avoid because of Subsection 1.4.7) C → Cs, where Cs

is the special fiber of C . The specialization map is anti-continuous.
Let C be a normal irreducible projective k-analytic curve. Let Calg be the algebraic

curve over k such that (Calg)an = C (recall Proposition 1.6.13). Ducros showed in [20] that
under certain conditions, for any finite set of type 2 points S of C, there exists a model C

of Calg over k◦ such that the corresponding specialization map induces a bijection between
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S and the generic points of the irreducible components of the special fiber of C . We will
need this connection between fibers when comparing the statements of Chapter 3 to those
of [34]. This result is shown more generally for certain subsets S of C which are called
vertex sets (or in French, ensemble sommitaux, see [20, 6.3.17] for the definition).

1.8.4. Additional properties of P1,an. Let k be a complete ultrametric field.
Recall that (Definition 1.5.41) that a topological spaceX is said to be uniquely arcwise-

connected if for any x, y ∈ X, there exists a unique arc in X connecting x and y.

Proposition 1.8.18. The analytic affine line A1,an
k is locally compact, uniquely arcwise-

connected, and contractible.

Proposition 1.8.19. The projective analytic line P1,an
k is compact, uniquely arcwise-

connected, and contractible.

For a proof, see [20, 3.4.20].

For any x, y ∈ P1,an
k , let us denote by [x, y] the unique arc connecting them. The next

few properties are a direct consequence of Proposition 1.8.19.

Lemma 1.8.20. Let A ⊆ P1,an
k . Then, A is connected if and only if for any x, y ∈ A,

[x, y] ⊆ A. Furthermore, the intersection of any two connected subsets of P1,an
k is connected.

Lemma 1.8.21. Let U, V be two non-disjoint connected affinoid domains of P1,an
k , such

that they have disjoint interiors. Then, U ∩ V is a single point.

Proof. Since U ∩ V = ∂U ∩ ∂V, it is a finite set of points. At the same time, by
Lemma 1.8.20, U ∩ V is connected, so it must be a single point. �

We will now give a more precise description of points in A1,an
k (or equivalently, P1,an

k ).

Let us fix an algebraic closure k of k. There is a canonical surjective open contin-

uous morphism ϕ : A1,an

k̂
→ A1,an

k induced by the inclusion k[T ] →֒ k̂[T ]. Let G denote

Gal(ks/k), where ks is a separable closure of k. Then, by Proposition 1.1.43, G acts on

A1,an

k̂
, and ϕ induces a homeomorphism A1,an

k̂
/G ∼= A1,an

k . Remark that for any a ∈ k,

r′, r ∈ R>0, the elements of G act on {x ∈ A1,an

k̂
: r′ 6 |T − a|x 6 r} by sending it

homeomorphically to {x ∈ A1,an

k̂
: r′ 6 |T − b|x 6 r}, where b is a conjugate of a.

Lemma 1.8.22. Let P (T ) be a monic irreducible polynomial over k. Let α ∈ k be such
that P (α) = 0. Then, for any s, s′ ∈ R>0 such that s′ 6 s, there exist unique r, r′ ∈ R>0

such that r′ 6 r, satisfying: ϕ({x ∈ A1,an

k̂
: r′ 6 |T − α|x 6 r}) = {y ∈ A1,an

k : s′ 6 |P |y 6 s}.
Moreover, s > 0 (resp. s′ > 0) if and only if r > 0 (resp. r′ > 0). Consequently,

ϕ−1({y ∈ A1,an
k : s′ 6 |P |y 6 s}) =

⋃

α∈k
P (α)=0

{x ∈ A1,an

k̂
: r′ 6 |T − α|x 6 r}.

Proof. Let us suppose s′ = 0. The general statement can be shown using the same
type of argument.

For any root β of P (T ) over k, let nβ be its multiplicity, so that P (T ) =
∏
P (β)=0(T − β)nβ .

The function f : R>0 → R>0, t 7→ tnα
∏
P (β)=0,α 6=β max(t, |α − β|)nβ , is strictly increasing

and continuous, so bijective. Thus, for any s ∈ R>0, there exists a unique positive real
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number r ∈ R>0, such that f(r) = s. Moreover, r = 0 if and only if s = 0. Remark that
rdegP 6 s.

Let x ∈ A1,an

k̂
be such that |T − α|x 6 r. Then, |P (T )|ϕ(x) =

∏
P (β)=0 |T − β|

nβ
x 6

rnα
∏
P (β)=0,α 6=β |T −β|

nβ
x . Also, since | · |x is non-Archimedean, we obtain that |T −β|x 6

max(|T−α|x, |α−β|x) 6 max(r, |α−β|), implying |P (T )|ϕ(x) 6 s.Hence, ϕ(x) ∈ {y : |P |y 6 s}.
Let y ∈ A1,an

k be such that |P (T )|y 6 s. Let x ∈ ϕ−1(y). Suppose that for any root β

of P (T ) we have |T − β|x > r. Then, s > |P (T )|y =
∏
P (β)=0 |T − β|

nβ
x > rdegP , which is

impossible. Thus, there exists a root β0 of P in k such that |T − β0|x 6 r. By the Galois
action, there exists x′ ∈ ϕ−1(y) such that |T − α|x′ 6 r.

The last part of the statement is a direct consequence of the Galois action on A1,an

k̂
. �

Corollary 1.8.23. Let P (T ) be an irreducible polynomial over k. Let α ∈ k be such
that P (α) = 0. Let s, s′ be positive real numbers such that s > s′, and r, r′, with r > r′,
the corresponding positive real numbers obtained by applying Lemma 1.8.22.

Then, the (topological or Shilov or Berkovich) boundary of {x : |P |x 6 s} (resp.
{x : s′ 6 |P |x 6 s}) is {ϕ(ηα,r)} (resp. {ϕ(ηα,r′), ϕ(ηα,r)}).

Proof. We may, without loss of generality, assume that P is monic (re-
call Lemma 1.4.2). Seeing as ϕ is open and continuous, by Lemma 1.8.22,
ϕ−1(∂{x : |P |x 6 s}) = ∂

⋃
P (β)=0{y : |T − β|y 6 r}. By [20, 3.6.4.1], for any β ∈ k

such that P (β) = 0, the Shilov boundary of {y : |T − β|y 6 r} is {ηβ,r}. Thus,

ϕ−1(∂{x : |P |x 6 s}) = {ηβ,r ∈ A1,an

k̂
: P (β) = 0}.

Seeing as ηβ,r is the topological boundary of {x : |T −β|x 6 r} in A1,an

k̂
, we obtain that

ϕ(ηβ,r) = ϕ(ηα,r) for any β ∈ k such that P (β) = 0. Finally, ∂{x : |P |x 6 s} = {ϕ(ηα,r)}.
We can conclude seeing as {x : |P |x 6 s} and {y : |T |y 6 r} are affinoid domains in

A1,an

k̂
, resp. A1,an

k , and taking into account Proposition 1.8.10 and Example 1.5.2.

The other case is shown similarly. �

Definition 1.8.24. Let P ∈ k[T ] be any irreducible polynomial. Recall that we denote

by ηP,0 the only (type 1) point of A1,an
k for which |P | = 0. For s ∈ R>0, we will denote by

ηP,s the point of A
1,an
k that is the Shilov boundary of the affinoid domain {|P | 6 s} ⊆ A1,an

k .

Proposition 1.8.25. For any point η ∈ A1,an
k of type 2 or 3, there exist an irreducible

polynomial P ∈ k[T ] and r ∈ R>0, such that η = ηP,r. Then, |P |η = r and:

(1) r ∈
√
|k×| if and only if η is a type 2 point;

(2) r 6∈
√
|k×| if and only if η is a type 3 point, in which case η is the only element

of A1,an
k for which |P | = r.

Proof. This was shown to be true in Subsection 1.2.2 if k is trivially valued, so let
us assume that that is not the case.

We recall that the projective line P1,an
k can be obtained by adding a rigid point ∞

to A1,an
k . Let A be a connected component of P1,an

k \{η} that doesn’t contain ∞. In partic-

ular, A ⊆ A1,an
k . Seeing as it is open, by Proposition 1.5.11, there exists a rigid point η0

in A. By Lemma 1.2.4, there exists a unique irreducible polynomial P ∈ k[T ], such that
η0 = ηP,0. Then, η ∈ [ηP,0,∞].
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Let φ be the finite morphism P1,an
k → P1,an

k determined by the map k[T ]→ k[T ],
T 7→ P (T ). Seeing as φ(ηP,0) = ηT,0 and φ(∞) =∞, [ηP,0,∞] is mapped by φ to [ηT,0,∞].

Set η′ = φ(η). The arc connecting ηT,0 to ∞ in P1,an
k is {ηT,s : s ∈ R>0} ∪ {∞}. For any

s > 0, |T |ηT,s
= s, and if ηT,s is a type 3 point, then it is the only one in P1,an

k for which

|T | = s. Furthermore, ηT,s is a type 2 (resp. type 3) point if and only if s ∈
√
|k×| (resp.

s 6∈
√
|k×|).

Thus, there exists r > 0, such that η′ = ηT,r. Since φ(η) = ηT,r, by construction,
η = ηP,r and |P |ηP,r

= r. Seeing as a finite morphism preserves the type of the point (i.e.
ηT,r is a type 2 (resp. 3) point if and only if ηP,r is so), we obtain (1) and the first part
of (2).

To prove the second part of (2), we need to show that if r 6∈
√
|k×|, ηP,r is the only

point in A1,an
k for which |P | = r. Since P is irreducible, by [20, 3.4.24.3], |P | is strictly

increasing in [ηP,0,∞), and locally constant elsewhere. Hence, ηP,r is the only point in

[ηP,0,∞) for which |P | = r, and since it is a type 3 point (i.e. A1,an
k has exactly two

connected components), it is the only such point in A1,an
k . �

Remark 1.8.26. As we saw in the proof of Proposition 1.8.24, the unique arc connect-
ing ηP,0 to ∞ in P1,an

k is {ηP,s : s ∈ R>0} ∪ {∞}.





CHAPTER 2

Patching

The purpose of this chapter is to develop the necessary tools for proving a “matrix
decomposition” statement generalizing [34, Theorem 2.5] and applicable to a Berkovich
framework. To do this, we follow along the lines of proof and reasoning of [34, Section 2.1]
making the necessary adjustements.

We work over a general formal setup (Setting 2.1.5), which is partly why the content
of this chapter is of very technical nature. It will be shown in the next parts of this
manuscript that the hypotheses we adopt here are satisfied in a very natural way in
Berkovich’s geometry. After showing the main result (Theorem 2.1.10), we focus on a
somewhat more restrictive formal setup (which is realised by curves) over which we prove
that patching is possible.

2.1. The general case

Setting 2.1.1. Let k be a complete non-trivially valued ultrametric field. Let R be
an integral domain containing k, endowed with a non-Archimedean (submultiplicative)
norm | · |R. Suppose that for any a ∈ R and b ∈ k, |ab|R = |a|R · |b|.

Remark that the last assumption implies the norm | · |R extends | · |.
For p ∈ N, and indeterminates X1, . . . , Xp, let us use the notation X for the p-tuple

(X1, . . . , Xp). Following [34, Section 2], set A := R[X] and Â := R[[X]]. For any M ≥ 1,
set

ÂM :=

{∑

l∈Np

clX
l ∈ Â : ∀l ∈ Np, |cl|R 6M |l|

}
,

where for l = (l1, l2, . . . , ln) ∈ Np, X l :=
∏p
i=1X

li
i and |l| := l1 + l2 + · · ·+ lp.

This is a subring of Â, and for any M ′,M ′′ ≥ 1, if M ′ 6 M ′′ then ÂM ′ ⊆ ÂM ′′ .

Furthermore, ÂM is complete with respect to the (X)-adic topology: if (fn)n is a Cauchy

sequence in ÂM , then for any l ∈ Np and large enough n, fn+1 − fn ∈ (X)|l|, implying
that fn and fn+1 have the same “first few” coefficients (the larger |l|, the more “first few”
coefficients that are the same).

Remark also that for any element f = g
h of the local ring R[X](X), where

g, h ∈ R[X], h(0) 6= 0, if h(0) ∈ R×, then f can be expanded into a formal power series

over R, meaning in this case f ∈ Â.
The following two lemmas are generalizations of Lemmas 2.1 and 2.3 of [34] (and their

proofs follow the line of reasoning of the latter). For any n ∈ N, we keep the notation | · |R
for the max norm on Rn induced by the norm of R. For a := (a1, a2, . . . , an) ∈ Rn and

l := (l1, l2, . . . , ln) ∈ Nn, we denote al := al11 · · · alnn . Clearly, al ∈ R.

51
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Lemma 2.1.2. (1) Let u =
∑

l∈Np clX
l ∈ ÂM . If a ∈ Rp is such that |a|R < M−1,

then the series
∑

l∈Np cla
l is convergent in R. Let us denote its sum by u(a).

(2) For M > 1, let v, w ∈ ÂM be such that w and vw are polynomials. If a ∈ Rp is
such that |a|R < M−1, then vw(a) = v(a)w(a).

(3) Let f = g
h ∈ R[X](X), g, h ∈ R[X], h(0) 6= 0, be such that g(0) = 0 and h(0) ∈ R×.

There exists M ≥ 1 such that f ∈ ÂM and h ∈ ÂM
×
.

Let f =
∑

l∈Np clX
l be the series representation of f. Then, for any a ∈ Rp

with |a|R < M−1, the series
∑

l∈Np cla
l is convergent in R and f(a) = g(a)

h(a) .

Proof. (1) Set m = |a|R < M−1. Then, |clal|R 6 (Mm)|l|. Since Mm < 1, cla
l

tends to zero as |l| tends to +∞, implying
∑

l∈Np cla
l converges in R.

(2) Let d > deg vw, and C := maxl∈Np(|vwl|R, |wl|R), where vwl, wl, l ∈ Np, are the
coefficients of the polynomials vw,w, respectively. Let v =

∑
l∈Np blX

l be the

series representation of v. For any s ∈ N, set vs =
∑

|l|<s blX
l. By the first part,

the sequence (vs(a))s∈N converges in R, and we denote limit by v(a). For s ≥ d,
rs := vsw − vw = (vs − v)w is a polynomial whose monomials are of degree at
least s. The coefficient Cj corresponding to any degree j > s monomial of rs is a
finite sum of products of coefficients of vs−v and w. Since R is non-Archimedean,

M > 1, and vs − v ∈ ÂM , we obtain |Cj |R 6 M jC (recall the definition of C
above).

Set m = |a|R. By the paragraph above, every degree j monomial of rs eval-
uated at a has absolute value at most (mM)jC. Since j > s and Mm < 1,
using the fact that R is non-Archimedean, we obtain |rs(a)|R 6 (Mm)sC, im-
plying rs(a)→ 0, s → ∞. Consequently, vs(a)w(a) → vw(a) when s → ∞, i.e.
v(a)w(a) = vw(a).

(3) Set b = h(0). Then, b−h ∈ (X), and thus 1−b−1h ∈ (X). Set e = 1−b−1h, so that

b−1h = 1− e with e ∈ (X). This implies (b−1h)−1 = bh−1 = 1
1−e =

∑
i∈N e

i ∈ Â,
and so h−1 =

∑
i∈N b

−1ei ∈ Â. Consequently, f = gh−1 =
∑

i∈N b
−1gei ∈ Â.

SetM = maxl∈Np(1, |b−1|R, |l|
√
|gl|R, |l|

√
|el|R, |l|

√
|hl|R), where gl (resp. el, hl),

l ∈ Np, are the coefficients of the polynomial g (resp. e, h). Then, b−1, g, e ∈ ÂM ,

and since ÂM is a ring, b−1ei, b−1gei ∈ ÂM for any i ∈ N. Finally, since ÂM is

complete with respect to the (X)−adic norm, h−1, f ∈ ÂM , and so h ∈ ÂM
×
.

The rest is a direct consequence of the first two parts of the statement.
�

Let n ∈ N and Si, Ti, i = 1, 2, . . . , n, be indeterminates. As before, we use the notation
S (resp. T ) for the n-tuple (S1, . . . , Sn) (resp. (T1, . . . , Tn)). For l,m ∈ Nn, we denote by
|(l,m)| the sum |l| + |m|, where |l| (resp. |m|) is the sum of coordinates of l (resp. m).

Also, Sl :=
∏n
i=1 S

li
i and Tm :=

∏n
i=1 T

mi

i . For any vector a ∈ Rn, we denote by ai
the i-th coordinate of a, i = 1, 2, . . . , p, meaning a = (a1, a2, . . . , an), ai ∈ R. As before,

al := al11 · · · alnn .
Lemma 2.1.3. Let f = h1

h2
∈ R[S, T ](S,T ), h1, h2 ∈ R[S, T ], h2(0) 6= 0, be such that

h2(0) ∈ R×. Suppose there exists i ∈ {1, 2, . . . , n} such that f(a, 0) = f(0, a) = ai for any
a ∈ Rn for which f(a, 0) and f(0, a) converge in R.
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Then, there exists M ≥ 1 such that f ∈ ÂM and its series representation is:

f = Si + Ti +
∑

|(l,m)|≥2

cl,mS
lTm.

Proof. Set g = f − Si − Ti. Then, g(a, b) = 0 if it is well defined and a = 0 or b = 0.

By Lemma 2.1.2, there exists M ≥ 1 such that f ∈ ÂM , implying g ∈ ÂM . Let g =∑
(l,m)∈N2n cl,mS

lTm, |cl,m|R 6 M |(l,m)| for all (l,m) ∈ N2n, be the series representation

of g. Since g(0, 0) = 0, c0,0 = 0. It remains to show that cl,m = 0 for all (l,m) ∈ N2n for
which |(l,m)| = 1.

We proceed by contradiction. Let us assume, without loss of generality, that for l0 :=
(1, 0, . . . , 0) andm0 := (0, . . . , 0), cl0,m0 6= 0. Let 0 < q < 1 be such that q 6 |cl0,m0 |R 6M.
Let α ∈ k× be such that |α| < q

M2 (it exists seeing as k is non-trivially valued). Set
a := (α, 0, · · · , 0) ∈ Rn, b = (0, . . . , 0) ∈ Rn, and v := (a, b). Then, g(v) = 0.

Let L be the part of g that has degree 1. Then, L(v) = cl0,m0α 6= 0. At the same time,
|L(v)|R = |cl0,m0 |R|α| > q|α|.

Let h = cl,mS
lTm be any non-zero monomial of g of degree j := |(l,m)| > 2. Let us

show that |h(v)|R < |L(v)|R. If h(v) = 0, this is clear. If h(v) 6= 0 then h = cl,mS
j
1 and

|h(v)|R = |cl,m|R|α|j . Consequently:
|L(v)|R
|h(v)|R

>
q|α|

|cl,m|R|α|j
>

q

M j |α|j−1
>

q

M j
·
(
M2

q

)j−1

=
M j−2

qj−2
≥ 1.

Consequently, |h(v)|R < |L(v)|R implying |g(v)|R = |L(v)|R, which is impossible seeing as
|g(v)|R = 0 and |L(v)|R 6= 0. �

Remark 2.1.4. Lemma 2.1.3 is the only reason behind the hypothesis that k is non-
trivially valued.

We now introduce a general formal setting on which patching results will be proven.
As already mentioned, these are hypotheses that are satisfied naturally in the framework
of Berkovich’s geometry that we will work in.

Setting 2.1.5. Let (k, | · |) be a complete non-trivially valued ultrametric field. Let
Ri, i = 0, 1, 2, be an integral domain containing k, endowed with a non-Archimedean
(submultiplicative) norm | · |Ri

with respect to which it is complete. Assume that | · |Ri
is k-

linear, meaning for any a ∈ k and any b ∈ Ri, |ab|Ri
= |a|·|b|Ri

. In particular, |·|Ri
extends

|·|. Suppose there exist bounded morphisms Rj →֒ R0, j = 1, 2. Set Fi = Frac Ri, i = 0, 1, 2.
Let F be an infinite field embedded in both F1 and F2.

Let Aj be a finite Rj-module such that Aj ⊆ Fj , j = 1, 2. Suppose that there exist
embeddings Aj →֒ R0. Let us endow Aj with the quotient semi-norm induced from a
surjective morphism ϕi : R

ni

j ։ Aj , j = 1, 2; we assume that these semi-norms are norms.
Assume that Aj is complete and the morphism Aj →֒ R0 is bounded for j = 1, 2. Suppose
the induced map ψ : A1 ⊕ A2 → R0 is surjective. Finally, suppose the norm of R0 is
equivalent to the quotient norm induced by the surjective morphism ψ : A1 ⊕ A2 ։ A0,
where A1 ⊕ A2 is endowed with the usual max norm | · |max, i.e. that the morphism ψ is
admissible (see Definition 1.1.13).

Before giving an analogue to [34, Theorem 2.5] (which is fundamental to patching) in
this setting, let us give some motivation behind its interest to us.
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Definition 2.1.6. Let K be a field. A rational variety over K is a K-variety that has
a Zariski open isomorphic to an open of some AnK .

Remark 2.1.7. The definition above does not coincide with the standard notion of
rational variety. We adopt it here because we will only use it for linear algebraic groups,
in which case a connected rational linear algebraic group is rational in the traditional
sense (i.e. birationally equivalent to some Pn). We make this distinction because there
are certain statements we will show that don’t require connectedness and others that do.

Using the same notation as in Setting 2.1.5, let G/F be a rational linear algebraic
group (rational here means that G is a rational variety over F ). Our main goal will be
to show that under certain conditions (which we will interpret geometrically in the next
chapters), for any g ∈ G(F0), there exist gj ∈ G(Fj), j = 1, 2, such that g = g1 · g2 in
G(F0).

Remark 2.1.8. Let K/F be any field extension. Since G has a non-empty Zariski
open subset S′ isomorphic to an open subset S of an affine space AnK , by translation we
may assume that the identity element of G is contained in S′, that 0 ∈ S, and that the
identity is sent to 0. Let us denote the isomorphism S′ → S by ϕ.

Let m be the multiplication in G, and set S̃′ = m−1(S′) ∩ (S′ × S′), which is an open

of G × G. It is isomorphic to an open S̃ of A2n
K , and m

|S̃′ gives rise to a map S̃ → S,

i.e. to a rational function f : A2n
K 99K AnK (see the diagram below). Note that for any

(x, 0), (0, x) ∈ S̃, this function sends them both to x.

S̃′ S′

S̃ S

(ϕ× ϕ)
|S̃′

m
|S̃′

f

ϕ

The result we are interested in can be interpreted in terms of the map f . Theo-
rem 2.1.10 below shows that (under certain conditions) said result is true on some neigh-
borhood of the origin of an affine space.

Let us start with an auxiliary lemma. Referring to Setting 2.1.5, let | · |inf be the norm
on R0 obtained from the admissible morphism ψ : A1⊕A2 ։ R0. Since it is equivalent to
| · |R0 , there exist positive real numbers C1, C2 such that C1| · |R0 6 | · |inf 6 C2| · |R0 .

Since the morphisms Aj →֒ R0, j = 1, 2, are bounded, there exists C > 0 such that
for any xj ∈ Aj , one has |xj |R0 6 C|xj |Aj

. By changing to an equivalent norm on Aj if
necessary, we may assume that C = 1.

Lemma 2.1.9. There exists d ∈ (0, 1) such that for all c ∈ R0, there exist a ∈ A1,
b ∈ A2, for which ψ(a+ b) = c and d ·max(|a|A1 , |b|A2) 6 |c|R0 .

Proof. Suppose c 6= 0. Let D be a real number, such that D > max(1, 1/C2). Then,
for any c ∈ R0, there exist a ∈ A1, b ∈ A2, with ψ(a + b) = c and max(|a|A1 , |b|A2) 6

D · |c|inf . Otherwise, for any x ∈ A1 and any y ∈ A2 for which ψ(x + y) = c, we would
have

|x+ y|max := max(|x|A1 , |y|A2) > D · |c|inf .
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But, |c|inf = infx,y |x+ y|max ≥ D · |c|inf , where D > 1 and |c|inf 6= 0, so this is impossible.
Set d′ = 1/D < C2. Then, d

′ · max(|a|A1 , |b|A2) 6 |c|inf 6 C2 · |c|R0 . We obtain the

wanted result by setting d = d′

C2
∈ (0, 1).

If c = 0, the statement is true regardless of the choice of d. �

From now on, instead of writing ψ(x + y) = c for x ∈ A1, y ∈ A2, c ∈ R0, we will
simply put x+ y = c when there is no risk of ambiguity.

In what follows, for any positive integer n, let us endow Rn0 with the max norm induced
from the norm on R0, and let us also denote it by | · |R0 . For a normed ring A and δ > 0,
we denote by DA(0, δ) the open disc in A centered at 0 and of radius δ.

Theorem 2.1.10. For n ∈ N, let f : AnF0
×AnF0

99K AnF0
be a rational map defined on a

Zariski open S̃, such that (0, 0) ∈ S̃, and f(x, 0) = f(0, x) = x whenever (x, 0), (0, x) ∈ S̃.
Write f = (f1, f2, . . . , fn), where fi = gi

hi
for some gi, hi ∈ R0[S, T ], i = 1, 2, . . . , n.

Suppose hi(0) ∈ R×
0 for all i.

Let M > 1 be such that fi ∈ ÂM and hi ∈ ÂM
×

for all i (applying Lemma 2.1.2 with

R = R0). Suppose there exists δ > 0 such DR2n
0
(0, δ) ⊆ S̃(F0). Let d be as in Lemma

2.1.9. Let ε > 0 be such that ε < min( d
2M ,

d3

M4 ,
dδ
2 ). Then, for any a ∈ An(F0) with a ∈ Rn0

and |a|R0 6 ε, there exist u ∈ An1 and v ∈ An2 for which (u, v) ∈ S̃(F0) and f(u, v) = a.

Proof. Since fi(0, 0) = 0 for all i, the functions gi belong to the maximal ideal (S, T )
of R0[S, T ]. From Lemmas 2.1.2 and 2.1.3:

(1) we can see these rational functions as elements of R0[[S, T ]];
(2) the constant M is such that

fi = Si + Ti +
∑

|(l,m)|≥2

cil,mT
lSm ∈ R0[[S, T ]],

with |cil,m|R0 6 M |(l,m)|, for i = 1, 2, . . . , n and (l,m) ∈ N2n, where |(l,m)| is the
sum of the coordinates of (l,m).

By the choice of δ, for any (x, y) ∈ R2n
0 satisfying |(x0, y0)|R0 < δ, (x, y) ∈ S̃(F0), so

the function f(x, y) is well-defined (meaning the functions fi are well-defined for all i).
Set ε′ = ε

d . Then, 0 < ε′ < min{1/2M,d2/M4, δ/2}. Since ε < ε′ < min(1/M, δ/2), for

any (x, y) ∈ S̃(F0) satisfying (x, y) ∈ R2n
0 and |(x, y)|R0 6 ε′, f(x, y) is well defined, and

by Lemma 2.1.2, the series fi is convergent in R0 at (x, y), i = 1, 2, . . . , n.
Let a = (a1, a2, . . . , an) ∈ An(F0) be such that a ∈ Rn0 and |a|R0 6 ε. Let u0 = 0 ∈ An1 ,

and v0 = 0 ∈ An2 . Using induction, one constructs sequences (us)s in A
n
1 , and (vs)s in A

n
2 ,

such that the following conditions are satisfied:

(1) |us|A1 , |vs|A2 6 ε′ for all s ≥ 0;

(2) |us − us−1|A1 , |vs − vs−1|A2 6 ε′
s+1
2 for all s ≥ 1;

(3) |f(us, vs)− a|R0 6 dε′
s+2
2 for all s ≥ 0.

The first terms u0 and v0 satisfy conditions 1 and 3. We notice that the first condition
implies |(us, vs)|R0 6 ε′, so f(us, vs) is well-defined, and fi is convergent in R0 at (us, vs) for
i ∈ {1, 2, . . . , n}. Suppose that for j ≥ 0, we have constructed uj and vj satisfying all three

conditions above. Then, dj := a − f(uj , vj) ∈ Rn0 is well defined, and |dj |R0 6 dε′
j+2
2 .
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From Lemma 2.1.9, there exist u′j ∈ An1 and v′j ∈ An2 , such that dj = u′j + v′j , and

d ·max(|u′j |A1 , |v′j |A2) 6 |dj |R0 6 dε′
j+2
2 .

Set uj+1 = uj + u′j and vj+1 = vj + v′j . Then, |uj+1|A1 6 max
(
ε′, ε′

j+2
2

)
= ε′,

and the same is true for vj+1. Also, |uj+1 − uj |A1 = |u′j |A1 6 ε′
j+2
2 , and similarly,

|vj+1 − vj |A2 6 ε′
j+2
2 .

For r ∈ N, i ∈ {1, 2, . . . , r}, and λ ∈ F r0 , let λi be the i-th coordinate of λ. For
p = (p1, p2, . . . , pr) ∈ Nr, set λp :=

∏r
i=1 λ

pi
i . For any ν, ν

′ ∈ Nr, ν 6 ν ′ will mean νi 6 ν ′i
for all i = 1, 2, . . . , r. Then, for the third condition,

|fi(uj+1, vj+1)− ai|R0 =

∣∣∣∣∣∣
uj+1,i + vj+1,i − ai +

∑

|(l,m)|≥2

cil,mu
l
j+1v

m
j+1

∣∣∣∣∣∣
R0

=

∣∣∣∣∣∣
uj,i + vj,i + u′j,i + v′j,i − ai +

∑

|(l,m)|≥2

cil,mu
l
j+1v

m
j+1

∣∣∣∣∣∣
R0

=

∣∣∣∣∣∣
fi(uj , vj)− ai + u′j,i + v′j,i +

∑

|(l,m)|≥2

cil,m(u
l
j+1v

m
j+1 − uljvmj )

∣∣∣∣∣∣
R0

=

∣∣∣∣∣∣
−dj,i + u′j,i + v′j,i +

∑

|(l,m)|≥2

cil,m(u
l
j+1v

m
j+1 − uljvmj )

∣∣∣∣∣∣
R0

=

∣∣∣∣∣∣
∑

|(l,m)|≥2

cil,m(u
l
j+1v

m
j+1 − uljvmj )

∣∣∣∣∣∣
R0

6 max
|(l,m)|≥2

|cil,m|R0 · |ulj+1v
m
j+1 − uljvmj |R0 .

Moreover,

ulj+1v
m
j+1 − uljvmj =(uj + u′j)

l(vj + v′j)
m − uljvmj

=
∑

06β6l
06γ6m

AβBγu
β
j u

′l−β
j vγj v

′m−γ
j − uljvmj

=
∑

06α6(l,m)

∑

β+γ=α
06β6l
06γ6m

AβBγu
β
j u

′l−β
j vγj v

′m−γ
j − uljvmj

=
∑

06α<(l,m)

∑

β+γ=α
06β6l
06γ6m

AβBγu
β
j u

′l−β
j vγj v

′m−γ
j
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where Aβ , Bγ are integers (implying they are of norm at most one on R0). Finally, since
the norm | · |R0 is non-Archimedean:

|ulj+1v
m
j+1 − uljvmj |R0 6 max

06β+γ<(l,m)
06β6l,06γ6m

|uβj |R0 |vγj |R0 |u′l−βj |R0 |v′m−γ
j |R0

6 max
06β+γ<(l,m)
06β6l,06γ6m

ε′|(β,γ)|(ε′
j+2
2 )|(l,m)|−|(β,γ)|,

so |ulj+1v
m
j+1 − uljv

m
j |R0 6 max06θ<|(l,m)| ε

′θ · (ε′ j+2
2 )|(l,m)|−θ. This, combined with

|cil,m|R0 6M |(l,m)|, implies that:

|fi(uj+1, vj+1)− ai|R0 6 max
|(l,m)|≥2

06θ<|(l,m)|

M |(l,m)|ε′θ · (ε′ j+2
2 )|(l,m)|−θ

= max
|(l,m)|≥2

06θ<|(l,m)|

(Mε′)θ · (Mε′
j+2
2 )|(l,m)|−θ.

Since ε′ ≥ ε′
j+2
2 , we have: |fi(uj+1, vj+1) − ai|R0 6 max|(l,m)|≥2(Mε′)|(l,m)|−1 · (Mε′

j+2
2 ).

Since Mε′ < 1, one obtains: max|(l,m)|≥2(Mε′)|(l,m)|−1 · (Mε′
j+2
2 ) 6Mε′ ·Mε′

j+2
2 . We have

shown that
|fi(uj+1, vj+1)− ai|R0 6Mε′ ·Mε′

j+2
2 =M2ε′1+

j+2
2 .

At the same time, seeing as ε′ < d2

M4 , we obtain M2 · ε′1+ j+2
2 = (M

2

d ε
′1/2)dε′

j+3
2 6 dε′

j+3
2 ,

which concludes the induction argument.
The second property of the sequences (us)s, (vs)s tells us that they are Cauchy (hence

convergent) in the Banach modules An1 , A
n
2 , respectively. Let u ∈ An1 and v ∈ An2 be the

corresponding limits. The first property implies that |(u, v)|R0 6 ε′ < δ, so (u, v) ∈ S̃(F0),
and f(u, v) is well-defined. Lastly, the third property implies that f(u, v) = a. �

Using the same notation, we have proven:

Proposition 2.1.11. Suppose hi(0) ∈ R×
0 and there exists an open disc of R2n

0 centered

at 0 that is contained in S̃. Then, there exists ε > 0 such that for any g ∈ S′(F0) with
ϕ(g) ∈ Rn0 and |ϕ(g)|R0 6 ε, there exist gi ∈ G(Fi), i = 1, 2, satisfying g = g1 ·g2 in G(F0).

2.2. A special case fundamental for patching over curves

Proposition 2.1.11 can significantly be strengthened under a few additional hypotheses.
This setup is of fundamental importance for patching over analytic curves.

The following is a result shown in [34] that we will need.

Lemma 2.2.1 ([34, Lemma 3.1]). Let G be a rational linear algebraic group defined
over an infinite field F. Let F0/F be a field extension and g ∈ G(F0). There exists a
Zariski open subset U of G isomorphic to a Zariski open subset of some AnF and such that
g ∈ U(F0).
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Under the hypotheses of Setting 2.1.5, let G/F be a rational linear algebraic group. As
in Remark 2.1.8, let S′ be a Zariski open subset of G isomorphic to an open subset S of an
affine space AnF . By translation we may assume that the identity element of G is contained
in S′, that 0 ∈ S, and that the identity is sent to 0. Let us denote the isomorphism S′ → S
by ϕ. Let the diagram below and the corresponding notations be as in Remark 2.1.8. As
noted there, the vertical arrows are isomorphisms.

S̃′ S′

S̃ S

(ϕ× ϕ)
|S̃′

m
|S̃′

f

ϕ

Convention 2.2.2. Let us fix once and for all an embedding of G into AmF for some
m ∈ N. Let K/F be a field extension, and M ⊆ K. Set GK = G ×F K. Let U be a
Zariski open subset of GK . Seeing as G is affine, there is a notion of “M -points” of U.
More precisely, these are the points in U(K) whose coordinates are in M . Let us denote
this set by U(M).

An outline of proof (which we follow) of a special case of the following result is given
in the proof of [34, Theorem 3.2]. Recall that for a normed ring A and r > 0, we denote
by DA(0, r) the open disc in A centered at 0 and of radius r.

Theorem 2.2.3. Under the hypotheses of Setting 2.1.5, suppose F0 = R0. Suppose
that F1 is dense in F0. Then, for any g ∈ G(F0), there exist g1 ∈ G(F1) and g2 ∈ G(F2)
such that g = g1 · g2 in G(F0).

Proof. As already noted in Remark 2.1.8, the function f satisfies the properties of
Theorem 2.1.10. Seeing as F0 is a normed field, if F 2n

0 is endowed with the max-norm
(which we still denote | · |F0), then the induced topology in F 2n

0 is finer than the Zariski

one. Consequently, there exists δ > 0 such that DF 2n
0
(0, δ) ⊆ S̃(F0). Hence, all of the

hypotheses of Theorem 2.1.10 are satisfied, implying there exists ε > 0 such that for any
a ∈ An(F0) satisfying |a|F0 6 ε, there exist u ∈ An1 and v ∈ An2 such that f(u, v) = a.

(1) Suppose g ∈ S′(F0) and |ϕ(g)|F0 6 ε. Then, by the paragraph above, there exist
gi ∈ G(Ai) ⊆ G(Fi), i = 1, 2, such that g = g1 · g2 in G(F0). Similarly, there exist
g′i ∈ G(Fi), i = 1, 2, such that g = g′2 · g′1 in G(F0).

(2) Suppose g ∈ S′(F0) with no further restrictions. Remark that gS′ ∩ S′ is a non-
empty (seeing as g ∈ gS′ ∩ S′) Zariski open subset of G. Let ψ : gS′ ∩ S′ → AnF0

be

the morphism given by h 7→ ϕ(g−1h). Remark 0 ∈ Im(ψ). The preimage ψ−1(DFn
0
(0, ε))

is open in (gS′ ∩ S′)(F0). As F1 is dense in F0, we obtain that (gS′ ∩ S′)(F1) is dense
in (gS′ ∩ S′)(F0) with respect to the topology induced by | · |F0 . Hence, there exists
h ∈ (gS′ ∩ S′)(F1) ∩ ψ−1(DFn

0
(0, ε)). More precisely, h ∈ (gS′ ∩ S′)(F1) ⊆ G(F1), and

|ϕ(g−1h)|F0 6 ε. Then, by part (1), there exist g′1 ∈ G(F1) and g′2 ∈ G(F2) such that

g−1h = g′2 · g′1 in G(F0). Set g1 := h · g′−1
1 ∈ G(F1), and g2 := g′−1

2 in G(F2). Then,
g = g1 · g2 in G(F0).

(3) Suppose g ∈ G(F0) with no further restrictions. By Lemma 2.2.1, there exists
a Zariski open subset U of G isomorphic to a Zariski open U ′ of some AnF such that
g ∈ U(F0). As F is infinite, there exists α ∈ U(F ). Set S = α−1U. It is a Zariski open
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subset of G containing the identity, which is isomorphic to an open subset of AnF . By
translating (over F ) if necessary, we may assume that this isomorphism sends the identity
to 0 in AnF .

By part (2), there exist g′1 ∈ G(F1) and g2 ∈ G(F2) such that α−1g = g′1 · g2 in G(F0).
Set g1 = α · g′1 ∈ G(F1). Then, g = g1 · g2 in G(F0). �





CHAPTER 3

Patching over Berkovich Curves and Quadratic Forms

In this chapter we show that patching can be applied to analytic curves. As a conse-
quence, we obtain a local-global principle for function fields of curves, which is applicable
to quadratic forms. Moreover, we also obtain applications to the u-invariant of function
fields of curves. The results of this chapter generalize those of [34].

In Section 3.1 we study a special class of covers of an analytic curve, called nice covers.
The motivation for their study comes from the fact that patching (or, more precisely, a
generalized form of patching as seen in Chapter 2) can be applied to these covers. We
start by exhibiting a special case to which the results of Chapter 2 are directly applicable,
and then use it to obtain said generalization. More precisely, let C be a k-analytic curve.
Let U, V be connected affinoid domains in C such that W = U ∩ V is a single type 3
point. We show that given two reasonable algebraic structures over M (U), M (V ), and
a suitable group action on them, they can be patched to give the same type of algebraic
structure over M (U ∪ V ). Roughly, nice covers are a generalization of this situation (cf.
Definition 3.1.6). In particular, note that type 3 points play a very important role, and
so their existence is crucial. We study the properties of these covers, and show that any
open cover can be refined by a nice cover.

The second section of this chapter contains its main results. We show a local-global
principle (Theorem 3.2.11) for fields of meromorphic functions of normal projective k-
analytic curves (or, equivalently, the function fields of such algebraic curves). In the
simplest cases, the proofs use patching on nice covers and induction on the number of
elements of said covers. We first prove these results over a complete ultrametric base field
k such that

√
|k×| 6= R>0. This is then generalized for projective curves over any complete

ultrametric field using a descent argument that is based on results of model theory. We
also prove similar results for affinoid curves. Finally, we show that there is a connection
between the points of a Berkovich analytic curve and the valuations on its function field
(i.e. its field of meromorphic functions). We then use this to prove a local-global principle
with respect to completions (Corollary 3.2.18, Corollary 3.4.2).

In Section 3.3, using the theory of generic analytic fibers, we interpret the overfields
of HHK’s [34] in the Berkovich setting. Then, we use a result of Bosch to show that
the local-global principle [34, Theorem 3.7] is a consequence of the local-global principle
obtained here (Theorem 3.2.11). Using the theory of analytic curves developed by Ducros,
we prove that the converse is true as well provided one works over a “fine” enough model.

The purpose of Section 3.4 is to give applications to quadratic forms and the u-invariant
of a field. We start by applying Theorem 3.2.11 to obtain a local-global principle for
quadratic forms (Theorem 3.4.1).

Then, we find conditions under which there is local isotropy of a quadratic form q over
analytic curves. The setup will be somewhat more general, which is partly why it is the
most technical section of the chapter. The idea is to find a nice enough representative of

61
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the isometry class of q to work with and then use Henselianity conditions. The hypotheses
on the base field become stronger here. Namely, we require our complete valued non-
Archimedean base field k to be such that the dimension of the Q-vector space

√
|k×| be

finite (a special case being when |k×| is a free module of finite rank over Z), and the residue
characteristic unequal to 2. The restriction on the value group is not very strong: when
working over a complete ultrametric field k satisfying this property, for every k-analytic
space X and every point x ∈ X, the completed residue field H(x) of x satisfies it as well.

Finally, we combine the local-global principle for quadratic forms and these local
isotropy conditions to give a condition for global isotropy of a quadratic form over an
analytic curve. From there we deduce applications to the (strong) u-invariant of a com-
plete ultrametric field k with residue characteristic different from 2, and such that the
dimension of the Q-vector space

√
|k×| is finite.

3.1. Nice covers

In this section we construct a class of covers of analytic curves over which we can apply
patching, and study some of their properties.

3.1.1. An interpretation of patching over analytic curves. We present here
the main example of Setting 2.1.5 which we will be dealing with in this Chapter. Let k
be a complete ultrametric field.

Let us start with a couple of auxuliary results.

Lemma 3.1.1. Let V be a reduced affinoid space containing a single point x. Then,
O(V ) = M (V ) = H(x) - the completed residue field of x.

Proof. Let (A, ‖ · ‖) be the corresponding affinoid algebra of V. Let f ∈ A\{0}.
If |f |x = 0, then by Proposition 1.3.15, f is nilpotent in A. As A is reduced, f = 0,
contradiction. Thus, |f |x 6= 0, so by Lemma 1.1.39 f is invertible in A. This means that A
is a field, i.e. O(V ) = M (V ). Remark that we have also shown that | · |x is a norm on A.

Since A is reduced, by Proposition 1.3.15, the spectral norm ρA of A is equivalent to ‖·‖.
Remark that the Shilov boundary Γ(V ) of V is {x}. Hence, by Theorem 1.1.38, ρA = | · |x.
Consequently, the field A is complete with respect to |·|x, implying H(x) = A = O(V ). �

Lemma 3.1.2. Let C be a normal irreducible k-analytic curve. Let U, V be connected
affinoid domains of C, such that U ∩ V = {η}, where η is a point of type 3. Then, the
images of M (U) and M (V ) in M ({η}) are dense.

Proof. The subset {η} is an affinoid domain in both U and V by Corollary 1.5.36.
By the Gerritzen-Grauert theorem (Theorem 1.4.14), it is a rational domain. By [21,
Théorème 3.4], U, V, {η} are normal. Hence, as they are connected, they are irreducible.
In particular, O(U),O(V ) are integral domains.

Set SU := {f ∈ O(U) : |f |η 6= 0}. By Lemma 1.4.16, S−1
U O(U) is dense in O({η}).

Suppose f ∈ O(U) is such that |f |η = 0. As η is a type 3 point, by Lemma 1.8.3,
Oη is a field, implying f = 0 there. By Proposition 1.6.24, this implies that f = 0 in
O(U). Thus, SU = O(U)\{0}, meaning Frac O(U) is dense in O({η}). By Lemmas 3.1.1
and 1.7.6, this is the same as saying that the image of M (U) is dense in M ({η}).

The same is true for V. �

The example of Setting 2.1.5 we will be working with is the following:
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Proposition 3.1.3. Let C be a normal irreducible k-analytic curve. Set FC = M (C).
Let D be an effective divisor of degree n on C. Take two connected affinoid domains U, V
in C, such that W = U ∩ V = {η}, where η is a type 3 point. Set RU = O(U), FU =
Frac RU , RV = O(V ), FV = Frac RV , and FW = RW = O(W ). Set AU = O(D)(U),
AV = O(D)(V ).

For large enough n such that H1(C,O(D)) = 0, the conditions of Setting 2.1.5 are
satisfied for R0 := RW , R1 := RU , R2 := RV , A1 := AU , A2 := AV , and F := FC .
Moreover, F0 = R0 and FU , FV are dense in F0.

Proof. As U, V,W are connected affinoid domains of a normal curve, they are inte-
gral, so RU , RV , RW are integral k-affinoid algebras, meaning they are integral domains
that are complete with respect to non-Archimedean norms. Moreover, k is contained
in RU , RV , RW and the norms of the latter are k-linear. Since RW = O(W ) = H(η)
(Lemma 3.1.1), the normed ring RW is a field. By Lemma 1.7.6, M (U) = FU , M (V ) =
FV , and M (W ) = FW = RW . This shows the existence of embeddings of FC in FU , FV ,
and FW . The restriction morphisms RU , RV → RW are bounded by construction. Clearly,
FC is an infinite field.

Notice that for Z ∈ {U, V,W}, O(Z) →֒ O(D)(Z) →֒ M (Z). In particular, this
means that O(D)(W ) = O(W ) = M (W ). Since O(D) is a coherent sheaf, AU (resp. AV )
is a finite RU -module (resp. RV -module). The completness of AU (resp. AV ) follows
from the fact that ideals of affinoid algebras are closed (see [6, Proposition 2.1.3]). The
morphism O(D)(U) = AU →֒ RW = O(D)(W ) is the restriction morphism of the sheaf
O(D), so it is bounded. The same is true for AV →֒ RW .

If U ∪ V is not the entire C, it is an affinoid domain thereof (see Theorem 1.8.15). By
Tate’s Acyclicity Theorem (Theorem 1.4.17),

0→ H0(U ∪ V,O(D))→ H0(U,O(D))⊕H0(V,O(D))→ H0(U ∩ V,O(D))→ 0

is an exact admissible sequence, from which we obtain the surjective admissible mor-
phism AU ⊕AV ։ O(D)(W ) = FW .

Suppose U ∪ V = C. Since C is then compact and integral, by Theorem 1.8.15, it
is either an affinoid space (a case we dealt with in the paragraph above) or a projec-
tive curve. If C is projective, by [49, Section 7.5, Proposition 5.5] for large enough n,
H1(U ∪ V,O(D)) = 0. The Mayer-Vietoris exact sequence now produces a bounded sur-
jective morphism AU ⊕AV ։ O(D)(W ) = FW . Admissibility follows from Banach’s Open
Mapping Theorem if k is non-trivially valued (for a proof see [14]), and by a change of
basis followed by the Open Mapping Theorem if it is (see Proposition 1.3.8).

The remaining part of the statement was shown in Lemma 3.1.1 and Lemma 3.1.2. �

Remark 3.1.4. Other examples of Setting 2.1.5 can be obtained by taking instead of
O(D) any coherent sheaf F of O-algebras that is a subsheaf of M , for which H1(C,F) = 0.

We make note of the fact that Proposition 3.1.3 assumes the existence of a point of
type 3, which is equivalent to

√
|k×| 6= R>0.

Remark 3.1.5. Remark 2.1.4 tells us that the only reason k was assumed to be non-
trivially valued in Chapter 2 is for the proof Lemma 2.1.3 to work. As we saw in Proposi-
tion 3.1.3, in the case of curves, the role of the ring R0 is played by the field of meromorphic
functions of a type 3 point. This means that R0 is a non-trivially valued complete ultra-
metric field. As a consequence, the proof of Lemma 2.1.3 is valid regardless of the absolute
value k is endowed with.
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Thus, in the case of curves, patching is true even if the base field is trivially valued.
As we will see, the trivially valued case provides no new information on the local-global
principle, which is why we continue to disregard it.

Keeping the same notation as in Proposition 3.1.3, let G/FC be a rational linear
algebraic group. By Theorem 2.2.3, for any g ∈ G(M ({η})), there exist gU ∈ G(M (U))
and gV ∈ G(M (V )) such that g = gU · gV in G(M ({η})). We will generalize this result
to one that applies to certain covers of the analytic curve. The latter generalize the the
conditions of Proposition 3.1.3.

The above should serve as motivation for the following:

Definition 3.1.6. A finite cover U of a k-analytic curve will be called nice if:

(1) the elements of U are connected affinoid domains with only type 3 points in their
topological boundaries;

(2) for any different U, V ∈ U , U ∩ V = ∂U ∩ ∂V, or equivalently, U ∩ V is a finite
set of type 3 points;

(3) for any two different elements of U , neither is contained in the other.

Let V be a cover of a k-analytic curve. We will say that a cover U of the same curve
is a nice refinement of V if it is a refinement of V that is a nice cover.

We recall that we use the term boundary for the topological boundary.

Figure 3. Examples of nice covers for:
a) a uniquely arcwise-connected curve; b) a non-uniquely arcwise-connected curve.

a) b)

The definition above (as well as Proposition 3.1.3) highlights the importance of type 3

points. To insure their existence, for the rest of this section we assume that
√
|k×| 6= R>0

(recall Proposition 1.8.7).
We start our study of these covers by showing that, under certain conditions, for any

open cover of a k-analytic curve, there exists a nice refinement.

3.1.2. Nice covers of P1,an
k . Recall that P1,an

k is uniquely arcwise-connected. For

any x, y ∈ P1,an
k , let us denote by [x, y] the unique arc connecting them. The next few

properties of the projective line will be essential to the remainder of this section.
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We can now show a special case of the result we prove in this section.

Lemma 3.1.7. Let C,D be connected affinoid domains of P1,an
k with only type 3 points

in their boundaries. There exists a nice refinement {C1, . . . , Cn, D} of the cover {C,D}
of C ∪D, such that Ci ∩ Cj = ∅ for any i 6= j.

Proof. If C = D, it is straightforward. Otherwise, suppose C 6⊆ D. By Corol-
lary 1.8.17, C\Int D is an affinoid domain in P1,an

k containing only type 3 points in its
boundary. Let C ′

1, C
′
2, . . . , C

′
m be its connected components. They are mutually disjoint

connected affinoid domains with only type 3 points in their boundaries. Furthermore, for
any i, C ′

i ∩ D ⊆ (Int D)c ∩ D ⊆ ∂D is a finite set of type 3 points. As C ′
i and D are

connected, by Lemma 1.8.20, so is C ′
i ∩D, meaning it is either empty or a single type 3

point. By construction, C ′
i∩C ′

j = ∅ for all i 6= j, and {C ′
1, C

′
2, . . . , C

′
m, D} is a refinement of

{C,D}. For any i, if C ′
i is a single point, i.e. C ′

i ⊆ D, we remove it from {C ′
1, C

′
2, . . . , C

′
m},

and if not, we keep it there. Let C1, C2, . . . , Cn be the remaining connected components of
C\Int D. Then, {C1, C2, . . . , Cn, D} is a nice refinement of the cover {C,D} of C ∪D. �

The main result of this section in the case of the projective line is the following gen-
eralization:

Proposition 3.1.8. For any n ∈ N, let {Ui}ni=1 be a set of affinoid domains of P1,an
k

with only type 3 points in their boundaries. Set Vn =
⋃n
i=1 Ui. Then, there exists a nice

cover of Vn that refines {Ui}ni=1, satisfying the following properties:

(1) the intersection of any two of its elements is either empty or a single type 3 point;
(2) if two domains of the refinement intersect, there is no third one that intersects

them both.

Proof. We will use induction on the number of affinoids domains n. For n = 1, the
statement is trivial. Suppose the proposition is true for any positive integer smaller or
equal to some n − 1. Let {Ui}ni=1 be affinoid domains of P1,an

k with only type 3 points in
their boundaries. If they are all of empty interior, i.e. unions of points, then the statement
is trivially true. Otherwise, let i0 ∈ {1, 2, . . . , n} be any index for which Ui0 has non-empty
interior. To simplify the notation, suppose i0 = n. By removing the Ui’s contained in Un
if necessary, we may assume that for all i, Ui 6⊆ Un.

From Lemmas 1.8.17 and 3.1.7, U := {Un} ∪ {Ui ∩ (Int Un)
c}n−1
i=1 is a refinement of

{Ui}ni=1 containing affinoid domains with only type 3 points in their boundaries. Let

{Wl}sl=1 be a nice refinement of {Ui ∩ (Int Un)
c}n−1
i=1 . Then, for any l, Un ∩Wl ⊆ ∂Un. By

removing those Wl for which Wl ⊆ Un if necessary, we obtain that {Un} ∪ {Wl}sl=1 is a
nice refinement of {Ui}ni=1. The first condition of the statement is a direct consequence of
Lemma 1.8.21.

We have proven that for any positive integer n, there exists a nice refinement of
{Ui}ni=1, which satisfies the first property of the statement. Property 2 is immediate from
the following:

Lemma 3.1.9. Let W1,W2,W3 be three connected affinoid domains of P1,an
k with non-

empty interiors and only type 3 points in their boundaries. Suppose their interiors are
mutually disjoint. Then, at least one of W1 ∩W2,W2 ∩W3,W3 ∩W1 is empty.

Proof. Suppose thatW1∩W2,W2∩W3, andW3∩W1 are all non-empty. IfW1∩W2∩
W3 6= ∅, then by Lemma 1.8.20, it is a single type 3 point {z}. Since P1,an

k \{z} has exactly
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two connected components, and the interiors of W1,W2,W3 are non-empty and mutually
disjoint, this is impossible. Hence,W1∩W2∩W3 = ∅, and soW1∩W2,W2∩W3 andW3∩W1

are all non-empty and different. SinceW1∩W2 6= ∅,W1∪W2 is a connected affinoid domain
with only type 3 points in its boundary. Furthermore, Int(W3) ∩ Int(W1 ∪W2) ⊆ (W3 ∩
W1)∪(W3∩W2), and since this is a finite set of type 3 points, Int(W3)∩ Int(W1∪W2) = ∅.

Thus, the interior of W1 ∪ W2 is disjoint to the interior of W3. By Lemma 1.8.21,
(W1∪W2)∩W3 is a single type 3 point. But, W1∩W3 and W2∩W3 were both assumed to
be non-empty and shown to be different, implying (W1∩W3)∪(W2∩W3) = (W1∪W2)∩W3

contains at least two different points, contradiction.
Thus, at least one of W1 ∩W2,W2 ∩W3, W3 ∩W1 must be empty. �

This completes the proof of the proposition. �

In view of Theorem 1.8.7, we obtain:

Theorem 3.1.10. Any open cover of a compact subset of P1,an
k has a nice refinement.

The following will be needed later:

Lemma 3.1.11. Let A be a connected affinoid domain of P1,an
k . Let S be a finite subset

of Int(A) containing only type 3 points. There exists a nice cover A of A, such that the
set of points of intersection of different elements of A is S.

Proof. Seeing as S consists of type 3 points, they are all contained in a copy of A1,an
k

in P1,an
k . Thus, for any element η ∈ S, there exists an irreducible polynomial P over k and

a real number r 6∈
√
|k×|, such that η = ηP,r (cf. Proposition 1.8.25).

Let us prove the statement using induction on the cardinality of S. If S is empty, then
the statement is trivially true. Suppose we know the statement is true if the cardinality
of S is equal to some n− 1.

Let us assume S contains n points. Fix some element ηP,r ∈ S. Let U be a nice
cover of A that satisfies the properties of the statement for S′ := S\{ηP,r}. There
exists a unique U ∈ U , such that ηP,r ∈ U, in which case ηP,r ∈ Int(U). Then,
{U ∩ {|P | 6 r}, U ∩ {|P | > r}} ∪ {V ∈ U : V 6= U} is a nice cover that fulfills our require-
ments. �

3.1.3. Nice Covers of a Berkovich Curve.

Proposition 3.1.12. Let C be an irreducible projective generically smooth k-analytic
curve. There exists a type 3 point η in C such that C\{η} has exactly two connected
components E1, E2. Furthermore, E1 ∪ {η}, E2 ∪ {η} are affinoid domains of C.

Proof. By [20, Théorème 3.7.2], there exists an algebraic projective curve Calg/k
such that (Calg)an = C. By [6, Theorem 3.4.1], there is a bijection between the closed
points of Calg and the rigid points of C, meaning the latter are Zariski dense in C. As C is
generically smooth, by [21, Théorème 3.4], the smooth locus of C is a non-empty Zariski
open of C. Consequently, there exists η0 - a rigid smooth point in C.

By [20, Théorème 4.5.4], there exists a neighborhood D′ of η0 in C which is a virtual
disc. By density of type 3 points in C (Proposition 1.8.7), there exists a type 3 point
η ∈ D′. By [20, 3.6.34], D′ is uniquely arcwise-connected with a single boundary point x.
By [20, 1.4.21], D := D′ - the closure of D in C, is uniquely arcwise-connected. Remark
that ∂D = {x}, and D = D′ ∪ {x}.
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As it is of type 3, by [20, 4.2.11.2], there exist at most two branches coming out
of η, and there are exactly two if and only if η ∈ IntB(D). As η ∈ Int(D) = IntB(D)
(Theorem 1.5.27), there are two branches coming out of η. As D is uniquely arcwise-
connected, by [20, 1.3.12], this means that D\{η} has exactly two connected components.
Let us denote them by A and B, and assume, without loss of generality, that x ∈ B.
Remark that A ⊆ D′.

Set E := (C\D)∪{x} = C\D′. Let us show that E is connected. Let a, b ∈ E. Since C
is connected, by Corollary 1.5.43, there exists an arc [a, b] in C connecting a and b. Suppose
[a, b]∩D′ 6= ∅. Let d ∈ [a, b]∩D′. Then, [a, b] induces arcs [a, d] and [d, b] in C connecting
a and d, resp. d and b. As a, b 6∈ D′ and d ∈ D′, we obtain that [a, d]∩∂D, [d, b]∩∂D 6= ∅,
so x ∈ [a, d] and x ∈ [d, b]. This contradicts the injectivity of [a, b] unless x = d, which is
impossible seeing as x 6∈ D′. Thus, [a, b]∩D′ = ∅, i.e. [a, b] ⊆ E, implying E is connected.

AsB,E are connected, andB∩E = {x}, G := B∪E is a connected subset of C. Remark
that A∩G = (A∩B)∪(A∩E) ⊆ D′∩E = ∅. Also, A∪G∪{η} = A∪B∪E∪{η} = D∪E = C.

It only remains to show that A′ := A∪{η} and G′ := G∪{η} are affinoid domains in C.
By [20, Proposition 4.2.14], they are both closed analytic domains in C. As C is projective,
it is boundaryless, so ∂B(A

′) = ∂A′ = {η}, and the same is true for G′ (Proposition 1.8.10).
Let I be an irreducible component of A′ (resp. G′). By [20, 3.2.3], if ∂B(I) = ∅, then
I = C, implying A′ (resp. G′) is C, which is false. Hence, ∂B(I) 6= ∅.

As I is a Zariski closed subset of A′ (resp. G′), there exists a closed immersion (hence,
a finite morphism) I → A′ (resp. I → G′). By Proposition 1.5.31 and Theorem 1.5.27,
∂B(I) is a subset of I\IntB(A′) (resp. I\IntB(G′)). Hence, ∂B(I) is a non-empty subset
of ∂B(A

′) (resp. ∂B(G
′)). We conclude by [20, Théorème 6.1.3]. �

Remark 3.1.13. In general, C\{η} has at most two connected components “around” η,
and it might happen that it has exactly one (for example in a Tate curve), see also
[20, 4.2.11.2] and the remarks made after Lemma 3.2.7.

Proposition 3.1.14. Let C be a normal connected projective k-algebraic curve. Then,
there exists a nice cover {U1, U2} of Can - the Berkovich analytification of C, such that
U1 ∩ U2 is a single type 3 point.

Proof. Let C → P1
k be a finite morphism. It induces an embedding of function fields

k(P1
k) →֒ k(C). Let K be the separable closure of k(P1

k) in k(C). There exists a connected
normal projective algebraic curve Y over k, such that k(Y ) = K. Since the field extension
K/k(P1

k) is separable, the induced morphism Y → P1
k is generically étale, so Y is a generi-

cally smooth curve. In particular, this implies that the k-analytic curve Y an is generically
smooth ([21, Théorème 3.4]). At the same time, since the finite extension k(C)/K is
purely inseparable, the induced finite type morphism C → Y is a homeomorphism. Con-
sequently, by [6, Proposition 3.4.6], its analytification f : Can → Y an is a finite morphism
that is a homeomorphism.

By Proposition 3.1.12, there exists a nice cover {U ′
1, U

′
2} of Y an, such that U ′

1 ∩ U ′
2 is

a single type 3 point. Seeing as f is finite and a homeomorphism, Ui := f−1(U ′
i), i = 1, 2,

is a connected affinoid domain, and U1 ∩ U2 is a single type 3 point. �

Definition 3.1.15. For a nice cover U of a k-analytic curve, let us denote by SU the
finite set of type 3 points that are in the intersections of different elements of U .
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Remark that for a nice cover U of a k-analytic curve C, if s ∈ SU , the set {s} is an
affinoid domain of C. This is because {s} is a connected component of the intersection of
two affinoid domains.

The following notion will be needed in what follows.

Definition 3.1.16. Let C be a k-analytic curve. Let U be a nice cover of C. A function
TU : U → {0, 1} will be called a parity function for U if for any different U ′, U ′′ ∈ U such
that U ′ ∩ U ′′ 6= ∅, one has TU (U

′) 6= TU (U
′′).

Lemma 3.1.17. For any n ∈ N, let U1, U2, . . . , Un be affinoid domains in P1,an
k such

that Un := {Ui}ni=1 is a nice cover of Kn :=
⋃n
i=1 Ui. Then, there exists a parity function

TUn for Un.
Proof. It suffices to prove the result under the assumption that Kn is connected.

We will use induction on the cardinality n of Un. If n = 1, the statement is trivially true.
Suppose it to be true for some n− 1.

Lemma 3.1.18. Let Z be a topological space. For any positive integer m, let {Wi}mi=1
be a set of closed connected subsets of Z. Suppose

⋃m
i=1Wi is connected. Then, there exists

i0 ∈ {1, 2, . . . ,m}, such that
⋃
i 6=i0

Wi is connected.

Proof. Let l be the largest integer such that l < m and there exist Wi1 ,Wi2 , . . . ,Wil ,

with
⋃l
j=1Wij connected. As all theWi are connected, l > 0. Set J = {1, 2, . . . ,m}\{i1, i2, . . . , il}.

If l < m − 1, then for any p ∈ J, we obtain Wp ∩
⋃l
j=1Wij = ∅. This implies that(⋃

p∈JWp

)
∩
(⋃l

j=1Wij

)
= ∅, which contradicts the connectedness of

⋃m
i=1Wi. Thus, l = m− 1.

�

Seeing as
⋃n
i=1 Ui is connected, from Lemma 3.1.18, there exist n − 1 elements of

Un whose union remains connected. For simplicity of notation, assume them to be the
elements of Un−1 := {U1, U2, . . . , Un−1}. Then, Un−1 is a nice cover of the connected set

Kn−1 :=
⋃n−1
i=1 Ui. Let TUn−1 be a parity function for Un−1. By Lemma 1.8.21, Un∩

⋃n−1
i=1 Ui

is a single type 3 point, so by Lemma 3.1.9, Un intersects exactly one of the elements of
Un−1. Without loss of generality, suppose it to be Un−1. Define TUn as follows:

(1) for any U ∈ Un−1, TUn(U) := TUn−1(U);
(2) TUn(Un) := 1− TUn−1(Un−1).

The function TUn is a parity function for Un. �

Proposition 3.1.19. Let Y, Z be k-analytic curves with Y normal and Z compact. Let
f : Z → Y be a finite surjective morphism. Suppose V is a nice cover of Y. Then, the con-
nected components of f−1(V ), V ∈ V, form a nice cover U of Z, such that f−1(SV) = SU .

Furthermore, if TV is a parity function for V, then the function TU that to an element
U ∈ U associates TV(f(U)), is a parity function for U .

Proof. Since Z is compact and Y is Hausdorff, f is a closed morphism. By [20, 3.5.12],
f is open.

If V is any connected affinoid domain of Y, for any connected component V ′
0 of f−1(V ),

f(V ′
0) = V. To see this, recall that by [4, Lemma 1.3.7], f|f−1(V ) : f

−1(V )→ V is a finite
morphism of affinoid spaces, and by [21, Théorème 3.4], as Y is normal, so is V. Thus,
f|f−1(V ) is open and closed. Seeing as V ′

0 is a connected component of f−1(V ), it is both
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open and closed in f−1(V ), so its image is both open and closed in V. As V is connected,
f(V ′

0) = V.
The connected components of f−1(V ) for all V ∈ V form a finite cover U of Z consisting

of affinoid domains (see Corollary 1.4.19). As f is open, for any V ∈ V, ∂(f−1(V )) =
f−1(∂V ). Since a finite morphism preserves the type of point (Lemma 1.8.2), ∂f−1(V ) is
an affinoid domain containing only type 3 points in its boundary. Thus, the elements of
U are connected affinoid domains containing only type 3 points in their boundaries.

Let U1, U2 ∈ U be such that U1 ∩ U2 6= ∅. Set Vi = f(Ui), i = 1, 2. Then, V1, V2 ∈ V,
and V1 6= V2. To see the second part, if V1 = V2, then U1, U2 would be connected compo-
nents of f−1(V1), thus disjoint, which contradicts the assumption U1 ∩ U2 6= ∅. Seeing as
U1∩U2 ⊆ f−1(V1∩V2), U1∩U2 is a finite set of type 3 points. Hence, U1∩U2 = ∂U1∩∂U2.
The third condition of a nice cover is trivially satisfied. Since f−1(∂V ) = ∂f−1(V ) for all
V ∈ V, it follows that f−1(SV) = SU . Finally, TU (U1) = TV(V1) 6= TV(V2) = TU (U2), so
TU is a parity function for U . �

Corollary 3.1.20. Let C be a normal projective k-analytic curve or a strict k-affinoid
curve. Any open cover of C has a nice refinement.

Proof. By Theorem 1.8.7, we may assume that the open cover only contains elements
with finite boundary consisting of type 3 points. Since C is compact, there is a finite sub-
cover U of the starting open cover. Set S :=

⋃
U∈U ∂U. Suppose C is projective. Then,

there exists a finite surjective morphism C → P1,an
k . Set S′ = f(S). By Lemma 3.1.11,

there exists a nice cover D of P1,an
k , such that SD = S′. We conclude by applying Propo-

sition 3.1.19.
If C is a strict k-affinoid curve, by Noether’s Normalization Lemma there exists a

finite surjective morphism C → D, where D is the closed unit disc in P1,an
k . We conclude

as above. �

3.2. A Local-Global Principle over Berkovich Curves

Unless mentioned otherwise, throughout this section we assume that k is a complete
non-trivially valued ultrametric field such that

√
|k×| 6= R>0.

Definition 3.2.1 (HHK). Let F be a field. A linear algebraic group G over F acts
strongly transitively on an F -variety X if G acts on X and for any field extension E/F,
either X(E) = ∅ or the action of G(E) on X(E) is transitive.

We start by showing some patching results over nice covers. Recall that we denote by
M the sheaf of meromorphic functions.

3.2.1. Patching over nice covers. We show a generalized form of patching (with
respect to the one seen in Chapter 2) with is applicable to nice covers.

Proposition 3.2.2. Let D be P1,an
k or a connected affinoid domain of P1,an

k . Let
D be a nice cover of D, and TD a parity function for D. Let G/M (D) be a ratio-
nal linear algebraic group. Then, for any (gs)s∈SD

∈ ∏s∈SD
G(M ({s})), there exists

(gU )U∈D ∈
∏
U∈DG(M (U)), satisfying: for any s ∈ SD, if U0, U1 are the elements of D

containing s, and TD(U0) = 0, then gs = gU0 · g−1
U1

in G(M ({s})).
Proof. We will use induction on the cardinality n of a nice cover. If n = 2, then this is

Theorem 2.2.3 (considering Proposition 3.1.3 with O(D) = O). Suppose the result is true



70 3. PATCHING OVER BERKOVICH CURVES AND QUADRATIC FORMS

for some n− 1. If D := {U1, U2, . . . , Un}, since
⋃n
i=1 Ui is connected, from Lemma 3.1.18,

there exist n − 1 elements of U whose union remains connected. For simplicity of nota-
tion, suppose them to be the elements of D′ := {U1, U2, . . . , Un−1}. By Lemma 1.8.21,⋃n−1
i=1 Ui ∩ Un is single type 3 point, so by Lemma 3.1.9, Un intersects exactly one of the

elements of D′. To simplify the notation, suppose it to be Un−1. Set {η} := Un−1 ∩ Un, so
that SD = SD′ ∪ {η}.

Let (gs)s∈SD
be any element of

∏
s∈SD

G(M ({s})). By the induction hypothesis, for

(gs)s∈SD′ ∈
∏
s∈SD′

G(M ({s})), there exists (gU )U∈D′ ∈ ∏U∈D′ G(M (U)), satisfying the

conditions of the statement.

• Suppose TD(Un) = 0. By Theorem 2.2.3, there exist a ∈ G(M (Un)) and b ∈
G(M (

⋃n−1
i=1 Ui)) such that gη · gUn−1 = a · b in G(M ({η})). For any i 6= n, set

g′Ui
:= gUi

· b−1 in G(M (Ui)). Also, set g
′
Un

:= a in G(M (Un)).

• Suppose TD(Un) = 1. By Theorem 2.2.3, there exist c ∈ G(M (
⋃n−1
i=1 Ui)) and

d ∈ G(M (Un)) such that g−1
Un−1

· gη = c · d in G(M ({η})). For any i 6= n, set

g′Ui
:= gUi

· c in G(M (Ui)). Also, set g
′
Un

:= d−1 in G(M (Un)).

The family (g′Ui
)ni=1 ∈

∏n
i=1G(M (Ui)) satisfies the conditions of the statement for (gs)s∈SD

.
�

Proposition 3.2.3. Let Y be an integral strict k-affinoid curve. Set K = M (Y ).
Let G/K be a connected rational linear algebraic group. For any open cover V of Y,
there exists a nice refinement U of V with a parity function TU , such that for any given
(gy)y∈SU

∈∏y∈SU
G(M ({y})), there exists (gU )U∈U ∈

∏
U∈U G(M (U)), satisfying: for

any y ∈ SU , there are exactly two elements U ′, U ′′ of U containing s, and if TU (U
′) = 0,

then gy = gU ′ · g−1
U ′′ in G(M {y}).

Proof. By Proposition 1.8.7, we may assume that the cover V only contains elements
with finite boundary consisting of only type 3 points. Since Y is compact, we may also
assume that V is finite.

Let f : Y → D be a finite surjective morphism we obtain from Noether’s Normalization
Lemma, where D is the closed unit disc in P1,an

k . Set S = f(
⋃
V ∈V ∂V ). It is a finite set

of type 3 points. By Lemma 3.1.11, there exists a nice cover D of D such that SD = S.
Let TD be a parity function for D (it exists by Lemma 3.1.17). From Proposition 3.1.19, the
connected components of f−1(Z ′), Z ′ ∈ D, form a nice cover U of Y such that f−1(SD) =
SU , and TD induces a parity function TU for U .

Let us show that U refines V. Suppose, by contradiction, that Z ∈ U is such that there
does not exist an element of V containing it. Then, there must exist a ∈ ⋃V ∈V ∂V ⊆ SU
such that a ∈ Int(Z). Since a ∈ SU there exists U ∈ U , such that a ∈ ∂U. But then,
Z ∩U 6= ∂Z ∩ ∂U, which contradicts the fact that U is a nice cover of Y. Consequently, U
must refine V.

Suppose that for s ∈ SU there exist different U1, U2, U3 ∈ U containing s. Then,
f(s) ∈ V1 ∩ V2 ∩ V3, where Vi := f(Ui) ∈ D, i = 1, 2, 3, (the fact that Vi ∈ D was shown in
the beginning of the proof of Proposition 3.1.19). By Lemma 3.1.9, this is only possible if
at least two of the V1, V2, V3 coincide. Suppose, without loss of generality, that V1 = V2.
Then, U1, U2 are connected components of f−1(V1), so U1 ∩U2 = ∅, contradiction. Hence,
for any s ∈ SU , there exist at most two elements of U containing s. Considering the
definition of SU , there must exist exactly two.
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Set G′ = RK/M (D)(G) - the Weil restriction of scalars from K to M (D) of G. It is still
a connected rational linear algebraic group (see [12, 7.6] or [55, Section 1], this is where
the connectedness assumption is necessary).

Lemma 3.2.4. For any point s of type 3 in D, M ({s})⊗M (D) M (Y ) =
∏
x∈f−1(s) M ({x}).

Proof. Seeing as s is a type 3 point, the set f−1(s) is finite consisting of only type 3
points. Hence, O({s}) = M ({s}), and O({x}) = M ({x}) for all x ∈ f−1(s) (recall
Lemma 3.1.1).

Set A := O(D), B := O(Y ), and C := O({s}). Let us denote by T the set of non-
zero elements of A. We know that C ⊗A B =

∏
x∈f−1(s)O({x}) =

∏
x∈f−1(s) M ({x}).

Then, localizing on both sides, we obtain: T−1(C ⊗A B) = C ⊗S−1A T
−1B and

T−1
(∏

x∈f−1(s) M ({x})
)
=
∏
x∈f−1(s) M ({x}).

Since B is a finite A-module, T−1B is a domain that is a finite dimensional T−1A-
vector space. Then, for any b ∈ B\{0}, the map T−1B → T−1B,α 7→ bα is injective,
so surjective. Thus, there exists b′ ∈ T−1B such that bb′ = 1, implying T−1B = Frac T.
Consequently, T−1(C ⊗A B) = M ({s})⊗M (D) M (Y ). �

By the universal property of theWeil restrictio of scalars, for any s ∈ SD, G′(M ({s})) =
G(M ({s})⊗M (D) M (Y )). By the lemma above, G′(M ({s})) =∏x∈f−1(s)G(M ({x})).

Consequently, (gy)y∈SU
∈∏y∈SU

G(M ({y})) determines uniquely an element (hs)s∈SD

of
∏
s∈SD

G′(M ({s})). By Proposition 3.2.2, there exists (hZ)Z∈D ∈
∏
Z∈DG

′(M (Z)),

such that if for two different Z0, Z1 ∈ D with TD(Z0) = 0, s ∈ Z0∩Z1, then hs = hZ0 ·h−1
Z1

in G′(M ({s})).
For any Z ∈ D, let Z1, Z2, . . . , Zr be the connected components of f−1(Z). The applica-

tion M (Z)⊗M (D)M (Y )→∏r
i=1 M (Zi) induces a mapG′(M (Z)) = G(M (Z)⊗M (D)M (Y ))

→ ∏r
i=1G(M (Zi)), which sends hZ to an element (gZ1 , gZ2 , . . . , gZr) of

∏r
i=1G(M (Zi)).

Thus, for any U ∈ U , we have an element gU ∈ G(M (U)). It remains to show that given
different U0, U1 ∈ U with TU (U0) = 0, such that y ∈ U0 ∩ U1 for some y ∈ SU , we have
gy = gU0 · g−1

U1
in G(M ({y})). This is a consequence of the analogue result for (hs)s∈SD

and (hZ)Z∈D, the relation between TD and TU , and of the commutativity of the following
diagram for any Z ∈ D and any s ∈ Z of type 3:

M (Z) MD({s})

∏r
i=1 M (Zi)

∏
y∈f−1(s) MY ({y})

�

3.2.2. Local-global principles over analytic curves. We now apply patching over
nice covers to obtain local-global principles. Throughout this section, unless mentioned
otherwise, k denotes a non-trivially valued complete ultrametric field such that

√
|k×| 6=

R>0.
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Proposition 3.2.5. Let Y be a normal irreducible strict k-affinoid curve. Set K = M (Y ).
Let X/K be a variety, and G/K a connected rational linear algebraic group acting strongly
transitively on X. The following local-global principles hold:

• X(K) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ Y ;
• for any open cover P of Y, X(K) 6= ∅ ⇐⇒ X(M (U)) 6= ∅ for all U ∈ P.

Proof. Since Y is irreducible and normal, Ox is a domain for all x ∈ Y, and Mx =
Frac Ox.

Seeing as K →֒Mx for all x ∈ Y, the implication “⇒ ” is true.
Suppose X(Mx) 6= ∅ for all x ∈ Y. Then, there exists an open cover V of Y such that

for any V ∈ V, X(M (V )) 6= ∅. Let U be a nice refinement of V given by Proposition 3.2.3,
and TU its associated parity function. Remark that for any U ∈ U , we have X(M (U)) 6= ∅.

For U ∈ U , let xU ∈ X(M (U)). For any y ∈ SU , there exists exactly one element
Ui ∈ U , with TU (Ui) = i, i = 0, 1, containing y. From the transitivity of the ac-
tion of G, there exists gy ∈ G(M ({y})) such that xU0 = gy · xU1 in G(M ({y})). This
gives us an element (gy)y∈SU

∈ ∏y∈SU
G(M ({y})). By Proposition 3.2.3, there exists

(gU )U∈U ∈
∏
U∈U G(M (U)), satisfying: for any different U ′, U ′′ ∈ U containing some point

y ∈ SU such that TU (U
′) = 0 (implying TU (U

′′) = 1), gy = gU ′ · g−1
U ′′ in G(M {y}).

For any U ∈ U , set x′U = g−1
U · xU ∈ X(M (U)). We have construced a mero-

morphic function over U for any U ∈ U . Let us show that these meromorphic func-
tions are compatible, i.e. that they coincide on the intersections of the elements of U .
Let D,E ∈ U be such that D ∩ E 6= ∅. Suppose TU (D) = 0. For any s ∈ D ∩ E,
x′E = g−1

E · xE = g−1
D (gDg

−1
E ) · xE = g−1

D (gs · xE) = g−1
D xD = x′D in X(M ({s})). Conse-

quently, x′E = x′D in X(M (E ∩D)).
Compatibility of these meromorphic functions implies they can be glued to give a

meromorphic function on the entire Y. Thus, X(K) = X(M (Y )) 6= ∅.
The second version of this local-global principle is a direct consequence of the first one.

�

Let us show the same result (Theorem 3.2.9) for any k-affinoid space. Recall that we
denote by Γ(·) the Shilov boundary of an affinoid space.

Lemma 3.2.6. Let k be a complete ultrametric field. Let E be a k-affinoid space. Let e
be any point of E. Then, the following statements are equivalent:

(1) there exists an affinoid neighborhood N0 of e in E such that e ∈ Γ(N0);
(2) for any affinoid neighborhood N of e in E, e ∈ Γ(N);
(3) e ∈ Γ(E).

Proof. Suppose there exists an affinoid neighborhoodN0 of e in E, such that e ∈ Γ(N0).
By [6, Proposition 2.5.20], Γ(N0) ⊆ ∂B(N0/E)∪ (Γ(E)∩N0). Since ∂B(N/E) is the topo-
logical boundary of N0 in E (see [6, Corollary 2.5.13 (ii)]), we obtain that e 6∈ ∂B(N0/E),
implying e ∈ Γ(E) ∩N0 ⊆ Γ(E).

On the other hand, if e ∈ Γ(E), for any affinoid neighborhood N of e in E, since
Γ(E) ∩N ⊆ Γ(N) (see [6, Proposition 2.5.20]), we obtain e ∈ Γ(N). �

Lemma 3.2.7. Let Y be an integral k-affinoid curve. Let y ∈ Y be any point of type 3,
and Z a connected affinoid neighborhood of y in Y. Then,

(1) the subspace Y \{y} has at most two connected components at the neighborhood
of y; it is connected at the neighborhood of y if and only if y ∈ Γ(Y );
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(2) if y ∈ Γ(Y ), then there exist connected affinoid domains A,B of Y, such that A
is a neighborhood of y in Z, Γ(Y ) ∩ A = {y}, A ∪ B = Y, and A ∩ B is a single
type 3 point;

(3) if k is non-trivially valued and y 6∈ Γ(Y ), there exists a strict affinoid neighborhood
of y in Y.

Proof. Let p denote the characteristic exponent of k. Then, by [21, Théorème 6.10],

there exists n such that Y ′ := (Y × k1/p
n
)red is geometrically reduced. Since k1/p

n
/k

is a purely inseparable field extension, the map f : Y ′ → Y is a homeomorphism (see
[21, Remarque 0.5]). As Y ′ is geometrically reduced, the set of its smooth points is a
non-empty Zariski-open subset (see [21, Théorème 3.4]), i.e. by Lemma 1.8.5, the com-
plement of a set of rigid points. Consequently, since y′ := f−1(y) is non-rigid, it is smooth
in Y ′. Remark also that by [20, Proposition 4.2.14], the image (resp. preimage) of a con-
nected affinoid domain is a connected analytic domain, and thus by [20, Théorème 6.1.3],
a connected affinoid domain. Finally, for any affinoid domain U of Y ′, we have that
Γ(U) = f−1(Γ(f(U))): by Proposition 1.5.31 and Theorem 1.5.27 (while taking into ac-
count Proposition 1.8.10), this is true for finite morphisms, and taking the reduction of an
affinoid space does not change its Shilov boundary. Set Z ′ := f−1(Z). It suffices to prove
the statement for Y ′, y′, Z ′.

(1) By [20, Théorème 4.5.4], y′ has an affinoid neighborhood A′ in Y ′ that is a closed
virtual annulus, implying ∂B(A

′) contains exactly 2 points. We may assume, seeing as
type 3 points are dense in Y ′ (Proposition 1.8.7), that ∂A′ constists of only type 3 point.

Thus, A′ has at most two connected components at the neighborhood of y′, and it is
connected there if and only if y′ ∈ Γ(A′).

Finally, Y ′ has at most two connected components at the neighborhood of y′, and by
Lemma 3.2.6, it is connected there if and only if y′ ∈ Γ(Y ′).

(2) Suppose furthermore that y′ ∈ Γ(Y ′), implying y′ ∈ Γ(A′). Set Γ(A′) = {y′, z′},
where z′ is a type 3 point. Then, ∂A′ = {z′} and by Theorem 1.8.15, B′ := (Y ′\A′)∪{z′}
is an affinoid domain. We have: A′ ∪ B′ = Y ′, A′ ∩ B′ = {z′} (which implies B′ is
connected). Finally, by shrinking A′ if necessary, we can always assume z′ 6∈ Γ(Y ′), and
since Γ(Y ′) ∩A′ ⊆ Γ(A′), this implies Γ(Y ′) ∩A′ = {y′}.

(3) If y′ 6∈ Γ(Y ′), then y′ 6∈ Γ(A′), and for the non-trivially valued field k1/p
n
, the

statement follows from the fact that A′ is a closed virtual annulus. �

By the terminology introduced in [20, Section 1.7] and [20, Théorème 3.5.1], the first
part of Lemma 3.2.7 shows that points of type 3 of certain k-analytic curves have at most
two branches. Furthermore, in view of Lemma 1.8.8 and Theorem 1.5.27(1), it has one
branch if and only if it is in the Berkovich boundary of the curve.

The following argument will be used often in what follows.

Lemma 3.2.8. Let k be a complete ultrametric field. Let C be a normal irreducible
k-analytic curve. Set F = M (C). Let X/F be a variety, and G/F a connected rational
linear algebraic group acting strongly transitively on X.

(1) Suppose X(Mx) 6= ∅ for all x ∈ C. Let Z be any affinoid domain of C. Then,
GZ := G×F M (Z) is a connected rational linear algebraic group over M (Z) act-
ing strongly transitively on the M (Z)-variety XZ := X ×F M (Z). Furthermore,
XZ(MZ,x) 6= ∅ for all x ∈ Z, where MZ is the sheaf of meromorphic functions
over Z.
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(2) Let U1, U2 be connected affinoid domains of C such that U1 ∩ U2 = {s}, where s
is a type 3 point. If X(M (Ui)) 6= ∅, i = 1, 2, then X(M (U1 ∪ U2)) 6= ∅.

Proof. (1) That GZ = G×F M (Z) is still a connected rational linear algebraic group
acting strongly transitively on the variety XZ = X ×F M (Z) is immediate. Also, seeing
as X,Z are normal, Mx and MZ,x are fields, so the restriction morphism Mx →֒ MZ,x

is injective for all x ∈ Z. Thus, X(Mx) 6= ∅ implies X(MZ,x) = XZ(MZ,x) 6= ∅ for any
x ∈ Z.

(2) Let xi ∈ X(M (Ui)), i = 1, 2. By the transitivity of the action of G, there exists
g ∈ G(M ({s})), such that x1 = g · x2 in X(M ({s})). By Theorem 2.2.3, there exist
gi ∈ G(M (Ui)) such that g = g1 · g2 in G(M ({s})). Thus g−1

1 ·x1 = g2 ·x2 in X(M ({s})).
Set x′1 = g−1

1 · x1 and x′2 = g2 · x2. They represent meromorphic functions over U1 and
U2, respectively, whose restrictions to U1 ∩ U2 are compatible. Thus, they can be glued
to give a meromorphic function x over M (U1 ∪U2), where x ∈ X(M (U1 ∪U2)), implying
X(M (U1 ∪ U2)) 6= ∅. �

Recall that unless mentioned otherwise, k is a complete non-trivially valued ultrametric
field such that

√
|k×| 6= R>0.

Theorem 3.2.9. Let Y be a normal irreducible k-affinoid curve. Set K = M (Y ). Let
X/K be a variety, and G/K a connected rational linear algebraic group acting strongly
transitively on X. The following local-global principles hold:

• X(K) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ Y ;
• for any open cover P of Y, X(K) 6= ∅ ⇐⇒ X(M (U)) 6= ∅ for all U ∈ P.

Proof. Seeing as K →֒Mx for any x ∈ Y, the implication “⇒” is true.
For the other one, let us use induction on the number n of type 3 points in the Shilov

boundary of Y. If n = 0, then by Proposition 1.8.12, Y is a strict k-affinoid curve, in which
case the statement has already been proven in Proposition 3.2.5. Assume we know the
statement for any positive integer not larger than n− 1, n > 0.

Suppose Γ(Y ) contains n type 3 points. Let u ∈ Γ(Y ). Since X(Mu) 6= ∅, there
exists a connected affinoid neighborhood U ′

1 of u in Y, such that X(M (U ′
1)) 6= ∅. By

Lemma 3.2.7(2), there exist two connected affinoid domains U1, U2 of Y, such that U1 is
a neighborhood of u in U ′

1, Γ(Y ) ∩ U1 = {u}, U1 ∪ U2 = Y, and U1 ∩ U2 = {s}, where s is
a type 3 point. Since U1 ⊆ U ′

1, we obtain X(M (U ′
1)) ⊆ X(M (U1)), so X(M (U1)) 6= ∅.

Let Us be a connected strict affinoid neighborhood of s in Y (see Lemma 3.2.7(3)). Set
Zi := Ui ∪ Us, i = 1, 2. It is an integral affinoid domain. Let us show Γ(Z2) contains at
most n− 1 type 3 points.

For any y ∈ Us of type 3, seeing as Γ(Us) doesn’t contain any type 3 points, y 6∈ Γ(Us).
Taking into account Γ(Zi)∩Us ⊆ Γ(Us), we obtain y 6∈ Γ(Zi). Similarly, for any y ∈ Ui\Γ(Ui),
we have y 6∈ Γ(Zi). Thus, if z is a type 3 point in the Shilov boundary of Zi, then

z 6∈ Us ∪
⋃2
i=1(Ui\Γ(Ui)), implying z ∈ Γ(Ui). For a subset S of Y, let us denote by S3 the

set of type 3 points contained in S.We have just shown that Γ(Zi)3 = Γ(Ui)3\{s}, i = 1, 2.
At the same time, Γ(Y )3 is a disjoint union of Γ(Ui)3\{s}, i = 1, 2. By construction,
u ∈ Γ(U1)3\{s}, so the cardinality of Γ(Z2)3 is at most n− 1.

By the first part of Lemma 3.2.8, XZ2(MZ2,x) 6= ∅ for any x ∈ Z2. In view of the
paragraph above and the induction hypothesis, X(M (Z2)) = XZ2(M (Z2)) 6= ∅. Seeing as
M (Z2) ⊆ M (U2), we obtain X(M (U2)) 6= ∅. Considering we also have X(M (U1)) 6= ∅,
we can conclude by applying the second part of Lemma 3.2.8.
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The second version of this local-global principle is a direct consequence of the first one.
�

We are now able to prove the following:

Theorem 3.2.10. Let k be a complete ultrametric field such that
√
|k×| 6= R>0. Let C

be a normal irreducible projective k-analytic curve. Set F = M (C). Let X/F be a variety,
and G/F a connected rational linear algebraic group acting strongly transitively on X. The
following local-global principles hold:

• X(F ) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ C;
• for any open cover P of C, X(F ) 6= ∅ ⇐⇒ X(M (U)) 6= ∅ for all U ∈ P.

Proof. Since F →֒Mx for any x ∈ C, the direction “⇒ ” is true.
Suppose k is non-trivially valued. By Proposition 3.1.14, there exists a nice cover

{Z1, Z2} of C, such that Z1∩Z2 is a single type 3 point η. By the first part of Lemma 3.2.8,
GZi

is a connected rational linear algebraic group acting strongly transitively on the variety
XZi

, and XZi
(MZi,x) 6= ∅ for any x ∈ Zi, i = 1, 2. Thus, by Theorem 3.2.9, X(M (Zi)) =

XZi
(M (Zi)) 6= ∅. We now conclude by the second part of Lemma 3.2.8.
Suppose k is trivially valued. Being a projective analytic curve over a trivially valued

field, the curve C has exactly one type 2 point x (see Lemma 1.8.6). In that case, Mx = F,
so the statement is trivially satisfied.

The second version of this local-global principle is a direct consequence of the first one.
�

The condition on the value group of k can be removed using model-theoretic arguments.
We are very grateful to Antoine Ducros for bringing this to our attention.

Theorem 3.2.11. Let k be a complete ultrametric field. Let C be an irreducible normal
projective k-analytic curve. Set F = M (C). Let X/F be a variety, and G/F a connected
rational linear algebraic group acting strongly transitively on X. The following local-global
principles hold:

• X(F ) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ C;
• for any open cover P of C, X(F ) 6= ∅ ⇐⇒ X(M (U)) 6= ∅ for all U ∈ P.

Proof. If
√
|k×| 6= R>0, then the statement was already proven in Theorem 3.2.10.

Let us show that we can always reduce to this case.
Since F →֒ Mx for all x ∈ C, the direction “ ⇒ ” is clear. Assume X(Mx) 6= ∅ for

all x ∈ C. Since C is compact, there exists a finite cover V of C containing only affinoid
domains, such that {Int(V ) : V ∈ V} is also a cover of C, and X(M (V )) 6= ∅ for all V ∈ V.
Let xV ∈ X(M (V )).

Recall that for any V, M (V ) is the fraction field of an algebra of convergent series
over k. Hence, C,X,G, the action of G on X, the isomorphism of a Zariski open of G to
an open of some AnF , and xV , V ∈ V, are all determined by countably many elements of
k. Let S ⊆ k denote a countable subset containing all these elements.

Let k0 be the prime subfield of k. Let k1 be the field extension of k0 generated by S.
Remark that k1 is countable. By [52, Theorem 2.3.7], there exists a subfield k2 of k that is
a countable extension of k1, such that k2 ⊆ k is an elementary embedding in the language
of valued fields.
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Then, by [52, Theorem 2.5.36], there exists a field extension K of k, such that
K = kI2/D, where I is an index set and D is a non-principal ultra-filter on I. Further-
more, by [52, Exercise 2.5.22], it is an elementary extension.

Since k2 is a countable subfield of k, the value group of k2 with respect to the valuation

induced by that of k satisfies
√
|k×2 | 6= R>0. Let k

′ be the completion of k2 with respect

to this valuation. Then,
√
|k′×| 6= R>0.

Since C is defined over k′, there exists a connected compact normal k′-analytic curve
C ′, such that C ′ ×k′ k = C. Since C is projective, by Theorem 1.8.15, C ′ is projective as
well.

Set F ′ = M (C ′). By construction, there exists an F ′-variety X ′, and a connected
rational linear algebraic group G′/F ′ acting on X ′, such that X = X ′×F ′ F, G = G′×F ′ F,
and the action of G induced on X is the one given in the statement. Let us show that
G′ acts strongly transitively on X ′. Let L/F ′ be any field extension such that X ′(L) 6= ∅.
Set L1 = LI/D. This is a field containing F ′ and k (since k ⊆ k′I/D ⊆ L1), so it is a field
extension of F. Consequently, G′(L1) = G(L1) acts transitively on X ′(L1) = X(L1), and
since by [52, Exercise 2.5.22], L ⊆ L1 is an elementary embedding, G′(L) acts transitively
on X ′(L).

For any V ∈ V, let V ′ denote the image of V with respect to the projection morphism
C → C ′. By construction, X ′(M (V ′)) 6= ∅. Hence, X ′(Mx) 6= ∅ for all x ∈ C ′, implying
X ′(F ′) 6= ∅, thus in particular X ′(F ′) = X(F ′) ⊆ X(F ) 6= ∅.

The second part of the statement is a direct consequence of the first one. �

3.2.3. Valuations, Berkovich Curves, and the local-global principle. Because
of the relation of Berkovich points to valuations of the function field of a curve, as a result
of Theorem 3.2.11 we will obtain a local-global principle with respect to completions, thus
evoking some resemblance to “classical local-global principles”. Let us start by making
said relation precise.

Definition 3.2.12. Let k be a complete ultrametric field. Let F be a field extension
of k. For any valuation v on F, we denote by Rv the valuation ring of F with respect to v,
and mv its maximal ideal. We denote by Fv the completion of F with respect to v. We
use the following notations:

• Vk(F ) is the set of all rank 1 valuations v on F that extend the valuation of k;
• V0(F ) is the set of all non-trivial rank 1 discrete valuations on F that when
restricted to k are trivial;
• for a k-subalgebra R of F, R 6= k, V ′

R(F ) is the set of valuations v ∈ V0(F ) such
that R ⊆ Rv;
• V (F ) := Vk(F ) ∪ V0(F );
• for a k-subalgebra R of F , R 6= k, VR(F ) := Vk(F ) ∪ V ′

R(F ).

Remark that if k is trivially valued, then V (F ) contains the trivial valuation on F .

Remark 3.2.13. Let C be a normal irreducible k-analytic curve. Then, for any point
x ∈ C, Ox is either a field or a discrete valuation ring (see Lemma 1.8.4). If Ox is a field,
then Mx = Ox →֒ H(x), so we endow Mx with the valuation induced from H(x). If Ox is
a discrete valuation ring, then we endow Mx with the corresponding discrete valuation.

Proposition 3.2.14. Let k be a non-trivially valued complete ultrametric field. Let C
be a normal irreducible k-analytic curve.
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(1) Suppose there exists an affine curve S over k, such that San = C. Let F denote the
function field of S. Then, there exists a bijective correspondence C ←→ VO(S)(F ).

(2) If C is projective, set F = M (C). Then, there exists a bijective correspondence
C ←→ V (F ).

In either case, if to x ∈ C is associated the valuation v of F, then M̂x = Fv, where the
completion of Mx is taken with respect to the valuation introduced in Remark 3.2.13.

Proof. (1) Let x ∈ C. If x is a non-rigid point, then Ox is a field (Lemma 1.8.3), so
| · |x is a norm on A := O(S) extending that of k. Consequently, it extends to F = Frac A
and defines a valuation vx on F extending that of k, i.e. vx ∈ Vk(F ). If x is a rigid point,
OC,x is a dvr (Lemma 1.8.4), and k× ⊆ O×

C,x, so the embedding A →֒ OC,x induces a
discrete valuation on A whose restriction to k is trivial, i.e. a discrete valuation vx on F
whose restriction to k is trivial. Moreover, A ⊆ Rvx by definition, so vx ∈ V ′

A(F ).
Let us look at the function C −→ VA(F ), x 7→ vx. It is injective by the paragraph

above. It is also surjective: if v ∈ Vk(F ), then it determines a norm on A that extends
that of k, so it corresponds to a non-rigid point of C; if v ∈ V ′

A(F ), then A ⊆ Rv, and
P := A ∩ mv is a prime ideal of A, so it corresponds to a rigid point x of C for which
ker| · |x = P (see Theorem 1.6.6(1)).

If x ∈ C is non-rigid, then M̂x = H(x), which is the completion of F with respect
to vx (see Remark 1.6.7). If x is a rigid point of C, and P its corresponding prime ideal

in A, then by Theorem 1.6.6(2), ÔC,x = ÂP = Â, where Â denotes the completion of A

with respect to the ideal P. Consequently, M̂x = Frac Â = Fvx .
(2) Suppose C is projective. Let Calg be the normal irreducible projective k-algebraic

curve such that its Berkovich analytification is C, and π : C → Calg the canonical analyti-
fication morphism. Let x ∈ C. Let S′ be an affine Zariski open of Calg containing π(x).
Since C is irreducible, the function field of S′ is F. By (1), there exists an injective map:
C −→ V (F ), x 7→ vx.

Let us show it is also surjective. Let v ∈ V (F ) such that v|k is the starting valuation

on k. Then, by taking any affine Zariski open subset S′ of Calg (as in the paragraph
above), seeing as its function field is F, we obtain that v corresponds to some non-rigid
point of S′an ⊆ C.

Suppose v ∈ V (F ) is such that v|k is trivial. Let us consider an embedding Calg → Pnk =

Proj k[x0, x1, . . . , xn]. Let {Ui := Spec k[xj/xi]j 6=i/Ii}ni=1 be a cover of Calg by standard
open sets. Let i0 be such that |xi0 |v > |xi|v for all i. Since |xi/xi0 |v ≤ 1, O(Ui0) ⊆ Rv, so
by (1), v corresponds to a rigid point of Uan

i0
⊆ C.

That M̂x = Fvx for all x ∈ C follows from part (1) by taking an affine Zariski open
containing the point x. �

Remark 3.2.15. Proposition 3.2.14 shows that ifX/k is a normal irreducible projective
algebraic curve over k with function field F, then there is a bijective correspondence

Xan → V (F ), x 7→ vx, and Fvx = M̂C,x.

Let us now show a local-global principle with respect to all such completions of the
field F.

We are very greatful to the referee (of the article that arose from the contents of this
chapter) for bringing to our attention the following lemma:
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Lemma 3.2.16. Let K be a complete valued field and K0 a dense Henselian (called
quasicomplete in [4, Definition 2.3.1]) subfield. Let F be a subfield of K0 and X an F -
variety. Then, if F is perfect or X is smooth,

X(K0) 6= ∅ ⇐⇒ X(K) 6= ∅.
Proof. Since K0 is a subfield of K, the implication “⇒” is clear. Suppose X(K) 6= ∅.
Suppose F is perfect. By taking the reduction of X if necessary, we may assume that

X is reduced. Let a ∈ X(K). Denote by X ′ the (reduced) Zariski closure of {a} in X. Since
F is perfect, the smooth locus X ′′ of X ′ is a dense Zariski open subset of X ′ containing a.
Thus, X ′′ is a smooth F -variety such that X ′′(K) 6= ∅, implying it suffices to prove the
statement in the case X is smooth.

Suppose X is smooth. Let a ∈ X(K). Since X is smooth, there exists a neighborhood
U of a in X, such that there exists an étale morphism ϕ : U → AdF for some d ∈ N.
Let ϕK : UK → AdK be the tensorization by K, and let us look at its analytification ϕan

K .
Since a is a rational point, ϕan

K induces an isomorphism between a neighborhood V of x

in Uan
K and an open V ′ of Ad,anK . Since K0 is dense in K, there exists b in V ′, such that

b ∈ Ad(K) = Kd has coordinates over K0 (recall Theorem 1.6.6(1)). Let c be the only
pre-image of b in V. Then, c is a K-rational point over b.

UK UK0

AdK AdK0

ϕK

g

ϕK0

Set b′ := g(b) ∈ AdK0
. By commutativity of the diagram, since b has coordinates over K0,

b′ is a closed point of AdK0
which is in the image of ϕK0 .

Since ϕ is étale, ϕ−1
K0

(b′) is a disjoint union
⊔
i Spec Fi, where Fi are separable finite

field extensions of κ(b′) = K0. At the same time, ϕ−1
K (b) =

⊔
i Fi⊗K0K. Set F̂i := Fi⊗K0K.

It is a field by [4, Proposition 2.4.1].

We know that ϕ−1
K (b)(K) 6= ∅. Then, there exists i, such that (Spec F̂i)(K) 6= ∅, so

F̂i = K. By Proposition 2.4.1 of [4], this implies that Fi = K0, and so ϕ−1
K0

(b′)(K0) 6= ∅,
implying X(K0) 6= ∅. �

Corollary 3.2.17. Let k be a complete ultrametric field. Let C be a normal irreducible
k-analytic curve. Set F = M (C). Let X be an F -variety. Then, if char k = 0 or X is
smooth:

X(Mx) 6= ∅ ⇐⇒ X(M̂x) 6= ∅
for all x ∈ C, where the completion M̂x of Mx is taken with respect to the valuations
introduced in Remark 3.2.13.

Proof. Remark that F is perfect if and only if char k = 0.
If Ox is a field, then Mx is Henselian by [4, Theorem 2.3.3]. If Ox is not a field, then it

is a discrete valuation ring that is Henselian (see [4, Theorem 2.1.5]), so Mx is Henselian
by [4, Proposition 2.4.3]. We conclude by Lemma 3.2.16. �
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Recall once again that an irreducible compact analytic curve is either projective or
affinoid (see Theorem 1.8.15).

Corollary 3.2.18. Let k be a complete ultrametric valued field. Let C be a compact
irreducible normal k-analytic curve. Set F = M (C). Let X/F be a variety, and G/F a
connected rational linear algebraic group acting strongly transitively on X. The following
local-global principles hold if char k = 0 or X is smooth:

(1) if C is affinoid and
√
|k×| 6= R>0,

X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ for all v ∈ VO(C)(F );

(2) if C is projective,

X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ for all v ∈ V (F ).

Proof. If k is trivially valued, then the trivial valuation v0 of F is in VO(C)(F ) (resp.
V (F )), and since Fv0 = F, the statement is clear in this case.

Otherwise, it is a consequence of Theorem 3.2.9, and Theorem 3.2.11 in view of Propo-
sition 3.2.14 and Corollary 3.2.17. �

Remark 3.2.19. Recall that for any finitely generated field extension F/k of transcen-
dence degree 1, there exists a unique normal projective k-algebraic curve Calg with function
field F. Let C be the analytification of Calg. Then, M (C) = F (see [6, Proposition 3.6.2]),
so the local-global principles above are applicable to any such field F.

In particular, Corollaries 3.2.18 and 3.4.2 can be stated independently from Berkovich’s
theory.

By Corollary 3.8 of [34], if G1 and G2 are linear algebraic groups such that G1 ×G2

is a connected rational linear algebraic group, then all the results proven in this section
remain true for G1 and G2.

3.3. Comparison of Overfields

The purpose of this section is to draw a comparison between one of the local-global
principles we proved (Theorem 3.2.11) and the one proven in ([34, Theorem 3.7]). More
precisely, we will interpret what the overfields appearing in [34] represent in the Berkovich
setting, and show that [34, Theorem 3.7] can be obtained as a consequence of Theorem
3.2.11. When working over a “fine” enough model, we show that the converse is also true.

Throughout this section, for a non-Archimedean valued field E, we will denote by E◦

the ring of integers of E, E◦◦ the maximal ideal of E◦, and by Ẽ the residue field of E.
Until the end of this section, we assume k to be a complete discretely valued field.

3.3.1. Analytic generic fiber and the specialization map. We will be using the
notion of generic fibre in the sense of Berkovich. To see the construction in more detail and
under less constrictive conditions, we refer the reader to [7, Section 1] and [8, Section 1].

Let X = Spec A be a flat finite type scheme over k◦. Then, the formal completion X̂

of X along its special fiber is Spf(Â), where Â is a topologically finitely presented ring
over k◦ (i.e. isomorphic to some k◦{T1, . . . , Tn}/I, where I is a finitely generated ideal).

Remark that Â⊗k◦ k is a strict k-affinoid algebra.

The analytic generic fiber of X̂ , denoted by X̂η, is defined to beM(Â⊗k◦ k), where
M(·) denotes the Berkovich spectrum. There exists a specialization map π : X̂η → X̂s
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(often called reduction map in the litterature, which we avoid because of Subsection 1.4.7),

where X̂s is the special fiber of X̂ , which is anti-continuous, meaning the pre-image of a

closed subset is open. We remark that X̂s = Xs, where Xs is the special fiber of X . Let
us describe π more explicitly.

There are embeddings A →֒ Â →֒ (Â ⊗k◦ k)◦, where (Â ⊗k◦ k)◦ is the set of all

elements f of Â⊗k◦ k for which |f |x 6 1 for all x ∈M(Â⊗k◦ k) (if ρ is the spectral semi-

norm on Â ⊗k◦ k, this is equivalent to asking that ρ(f) 6 1). Let x ∈ M(Â ⊗k◦ k). This
point then determines a bounded morphism A → H(x)◦, which induces an application

ϕx : A⊗k◦ k̃ → H̃(x). The specialization map π sends x to kerϕx.

The following commutative diagram, where φ : Spec( ̂̃A⊗k◦ k)→ Spec(A⊗k◦ k̃) is the
canonical map, gives the relation between the specialization map and the reduction map
from [6, Section 2.4]. The morphism φ is finite and dominant (see [11, 6.1.2 and 6.4.3]
and [68, pg. 17]).

(3)

M(Â⊗k◦ k) Spec( ̂̃A⊗k◦ k)

Spec(A⊗k◦ k̃)

r

π
φ

The construction above has nice gluing properties. Let X be a finite type scheme

over k◦, and X̂ its formal completion along the special fiber. Then, the analytic generic

fiber X̂η of X̂ is the k-analytic space we obtain by gluing the analytic generic fibers of an

open affine cover of the formal scheme X̂ . In general, X̂η is a compact analytic domain

of the Berkovich analytification X an of X . If X is proper, then X an = X̂η (see [56,

2.2.2]). Similarly, there exists an anti-continuous specialization map π : X̂η → Xs, where
Xs is the special fiber of X .

Recall k is assumed to be discretely valued. A property we will need is the following:

Proposition 3.3.1. With the same notation as above, suppose A is a normal domain.

Then, Â = (Â⊗k◦ k)◦, and the finite morphism φ from the diagram above is a bijection.

Proof. Let us denote by t a uniformizer of k◦, and by I the ideal tÂ. Recall that

Â is the completion of A with respect to the ideal tA (and is isomorphic to some

k◦{T1, T2, . . . , Tn}/P ; remark that then Â ⊗k◦ k is isomorphic to the k-affinoid algebra
k{T1, T2, . . . , Tn}/P ).

Set B = (Â⊗k◦ k)◦ and J = (Â⊗k◦ k)◦◦ - the elements f of Â⊗k◦ k such that |f |x < 1

for all x ∈M(Â⊗k◦ k) (i.e. ρ(f) < 1, where the ρ is the spectral norm on Â⊗k◦ k).
Remark that for any maximal ideal m of A, t ∈ m (i.e. the closed points of Spec A

are in the special fiber). This means that tA is contained in the Jacobson radical of A.

Considering this and the fact that A is excellent and normal, by [26, 7.8.3.1], Â is also

normal. At the same time, by [11, 6.1.2, 6.3.4], B is the integral closure of Â in Â⊗ko k.
Since Frac Â = Frac B, we obtain Â = B.

Let us look at the canonical map A/t = Â/I → B/J inducing φ. Let | · | be the norm

on the affinoid algebra Â⊗k◦ k.
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Remark that
√
I = J : let x ∈ J, so that ρ(x) = limn→∞ |xn|1/n < 1, implying |xn| → 0,

n→ +∞. Thus, for large enough n, xn ∈ I, so J ⊆
√
I. The other containment is clear

seeing as ρ(·) 6 | · |. This means that any prime ideal of Â contains I if and only if it
contains J, and thus that φ is a bijection. �

3.3.2. The setup of HHK’s [34]. Let us start by recalling HHK’s framework (see
[34, Notation 3.3]):

Notation 3.3.2. Let T = k◦ be a complete discrete valuation ring with uniformizer t,

fraction field k, and residue field k̃. Let C be a flat normal irreducible projective T -curve
with function field F. Let us denote by Cs the special fiber of C .

For any point P ∈ Cs, set RP = OC ,P . Since T is complete discretely valued, RP is

an excellent ring. Let us denote by R̂P the completion of RP with respect to its maximal

ideal. Since RP is normal and excellent, R̂P is also a domain. Set FP = Frac R̂P .
Let U be a proper subset of one of the irreducible components of Cs. SetRU =

⋂
P∈U OC ,P .

Let us denote by R̂U the t-adic completion of RU . By [34, Notation 3.3], for any Q ∈ U,
R̂U ⊆ R̂Q. Thus, R̂U is an integral domain. Set FU = Frac R̂U .

Let P be a finite set of closed points of Cs containing all points at which distinct
irreducible components of Cs meet. Let U be the set of all irreducible components of
Cs\P (which here are also its connected componenets).

The following is the local-global principle proven by HHK in [34] and [35]:

Theorem 3.3.3 ([34, Theorem 3.7], [35, Theorem 9.1]). Let G be a connected ratio-
nal linear algebraic group over F that acts strongly transitively on an F -variety X. The
following statements are equivalent:

(1) X(F ) 6= ∅;
(2) X(FP ) 6= ∅ for all P ∈P and X(FU ) 6= ∅ for all U ∈ U ;
(3) X(FQ) 6= ∅ for all Q ∈ Cs.

The implication (1) ⇒ (2) is immediate seeing as F is embedded into FP and FU for
all P ∈P and U ∈ U . Considering for any U ∈ U and any Q ∈ U, FU ⊆ FQ, we obtain
that (2)⇒ (3).

We now proceed to show that the remaining implication (3)⇒ (1) is a consequence of
Theorem 3.2.11. To do this, a comparison will be drawn between the fields FQ, Q ∈ Cs,
and the ones appearing in Theorem 3.2.11.

3.3.3. The comparison. Let us denote by C the Berkovich analytification of the
generic fiber of C . It is a normal irreducible projective k-analytic curve. By [6, Proposi-
tion 3.6.2], M (C) = F, where M is the sheaf of meromorphic functions on C. Since C is

projective, C = Ĉη. Let π : C → Cs be the specialization map.
Let µ be the generic point of one of the irreducible components of Cs. Then, OC ,µ is

a discrete valuation ring with fraction field F, whose valuation extends that of k. Consid-

ering the residue field of µ is of transcendence degree one over k̃, µ determines a unique
type 2 point xµ on the Berkovich curve C (recall the classification of points in a curve,
Definition 1.8.1). Moreover:

Lemma 3.3.4. Let µ be the generic point of one of the irreducible components of Cs.
Then, π−1(µ) = {xµ}.
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Proof. Let U = Spec A be an open affine neighborhood of µ in C . Since C is

irreducible, we obtain that Frac A = F. By [7, pg. 541], π−1(Us) = Ûη, and the restriction

of π on Ûη is the specialization map Ûη → Us. Explicitly, we have π :M(Â⊗k◦ k) →
Spec(A ⊗k◦ k̃), where x ∈ M(Â ⊗k◦ k) is sent to the kernel of the map A ⊗k◦ k̃ =

A/k◦◦A→ H̃(x).
By construction, for any x ∈ π−1(µ) and any f ∈ A, f(µ) = 0 if and only if |f |x < 1,

and f(µ) 6= 0 if and only if |f |x = 1. As a consequence, |f |xµ < 1 if and only if |f |x < 1,
and |f |xµ = 1 if and only if |f |x = 1. This implies that x and xµ define the same norm on

A (and hence on F ), so xµ = x in C, and π−1(µ) = {xµ}. �

Proposition 3.3.5. Let µ be the generic point of one of the irreducible components of
Cs. Set {xµ} := π−1(µ). Then, Fµ = H(xµ). Let X be an F -variety. If X(Fµ) 6= ∅, then
X(MC,xµ) 6= ∅.

Proof. Remark that Fµ = Frac ÔC ,µ is the completion of F with respect to the valu-

ation xµ. Seeing as xµ is of type 2, OC,xµ = MC,xµ , and by Proposition 3.2.14, Fµ = M̂C,xµ

= H(xµ).
If X is smooth or char k = 0, we can conclude by Corollary 3.2.17.
Otherwise, the restriction morphism of the sheaf of meromorphic functions gives us

Frac OC ,µ = F = M (C) →֒ OC,xµ , so there exist embeddings OC ,µ ⊆ OC,xµ ⊆ H(xµ).
Seeing as all elements of OC ,µ have norm at most 1, Rµ = OC ,µ ⊆ O◦

C,xµ
- the valuation

ring of OC,xµ .
By the proof of [35, Proposition 5.8], X(Fµ) 6= ∅ implies X(R̂µ) 6= ∅. The ring

Rµ = OC ,µ is excellent, so by Artin’s Approximation Theorem ([1, Theorem 1.10]),X(Rhµ) 6=
∅, where Rhµ denotes the henselization of the local ring Rµ. Seeing as OoC,xµ is Henselian

([4, Thm. 2.3.3, Prop. 2.4.3]), Rµ ⊆ Rhµ ⊆ O◦
C,xµ
⊆MC,xµ . Consequently, X(MC,xµ) 6= ∅.

�

We recall that the specialization map is anti-continuous. For any analytic domain U
of C, let us denote | · |sup := supx∈U | · |x.

Proposition 3.3.6. Let P be a closed point of Cs. Then, R̂P = O◦
C(π

−1(P )), where
O◦ is the sheaf of analytic functions f such that |f |sup 6 1. Consequently, if X(FP ) 6= ∅,
then X(M (π−1(P ))) 6= ∅.

Proof. Let V = Spec A be an open integral affine neighborhood of P in C . As C is
normal, so is A. Note that P ∈ Vs, where Vs is the special fiber of V.

Let π denote the specialization map correspoding to C . By cf. [7, pg. 541], π−1(V ) = V̂η
- the analytic generic fiber of V , and the restriction of π to V̂η is the specialization map

V̂η → Vs of V . Thus, π−1(P ) ⊆ V̂η. Let us come back to the commutative diagram 3:

V̂η =M(Â⊗k◦ k) Spec( ̂̃A⊗k◦ k)

Spec(A⊗k◦ k̃) = Vs

r

π
φ
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Set B = (Â ⊗k◦ k)◦. By Proposition 3.3.1, φ is a bijection, and B = Â. Let mP be
the maximal ideal of A corresponding to the point P on the special fiber, and m̂P the

corresponding ideal in Â, i.e. the completion of mP along the special fiber. Then, φ−1(P )

is a closed point of Spec( ̂̃A⊗k◦ k) corresponding to the maximal ideal m̂P of B = Â.

Since k◦◦A ⊆ mP , Â
mP =

̂̂
A
m̂P

= B̂m̂P , where the notation R̂S is used for the
completion of a ring R with respect to the topology induced by an ideal S.

As V is reduced, so is its analytification V an ([21, Théorème 3.4]). Since V̂η is an
analytic domain of V an, it is reduced (see [21, Théorème 3.4]). By a theorem of Bosch
(see [53, Theorem 3.1], [10, Theorem 5.8]),

B̂m̂P = O◦
V̂η
(r−1(φ−1(P ))) = O◦

V̂η
(π−1(P )).

As P is a closed point of Cs (resp. Vs), π
−1(P ) is an open subset of C (resp. V̂η), implying

O◦
V̂η
(π−1(P )) = O◦

C(π
−1(P )).

As a consequence,

R̂P = ÔC ,P = ÂmP = B̂m̂P = O◦
C(π

−1(P )).

This implies that FP = Frac O◦(π−1(P )) ⊆ M (π−1(P )). The last part of the statement
is now immediate. �

We are now able to state and prove the following argument, thus concluding the proof
that HHK’s local-global principle (Theorem 3.3.3) can be obtained as a consequence of
Theorem 3.2.11.

Proposition 3.3.7. Using the same notation as in Theorem 3.3.3, (3)⇒ (1).

Proof. Let x be any point of C. Recall π denotes the specialization map C → Cs.

(1) If π(x) = µ ∈ Cs is the generic point of one of the irreducible components of Cs,
then by Proposition 3.3.5, X(Fµ) 6= ∅ implies X(MC,x) 6= ∅.

(2) If π(x) = P ∈ Cs is a closed point, by Proposition 3.3.6, FP ⊆M (π−1(P )). Since
x ∈ π−1(P ) and π−1(P ) is open, we obtain M (π−1(P )) ⊆ Mπ−1(P ),x = MC,x.
Hence, X(FP ) 6= ∅ implies X(MC,x) 6= ∅.

Finally, seeing as X(Mx) 6= ∅ for all x ∈ C, by Theorem 3.2.11, X(F ) 6= ∅. �

Lastly, using Ducros’ work on semi-stable reduction in the analytic setting (see [20],
in particular Chapter 6), we can say something in the other direction as well:

Proposition 3.3.8. Let F be a finitely generated field extension of k of transcendence
degree 1. Let C be the normal irreducible projective Berkovich k-analytic curve for which
F = M (C). Let X/F be a variety. Then, there exists a flat normal irreducible projective
model C ′ over T = k◦ of F, such that

X(Mx) 6= ∅ for all x ∈ C ⇒ X(FP ) 6= ∅ for all P ∈ C
′
s,

where FP = ÔC ′,P , and C ′
s is the special fiber of C ′.

Consequently, a local-global principle with respect to the overfields FP , P ∈ C ′
s, implies

a local-global principle with respect to the Mx, x ∈ C.
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Proof. SupposeX(Mx) 6= ∅ for all x ∈ C. As the analytification of an algebraic curve,
C is strict, so the strict affinoid domains form a basis of neighborhoods ([6, Proposition
2.2.3(iii)]). Taking into account C is compact, there exists a finite cover U of C such that:

(1) for any U ∈ U , U is a connected strict affinoid domain in C;
(2)

⋃
U∈U Int(U) = C;

(3) for any U ∈ U , X(M (U)) 6= ∅.
Let S be the set of all boundary points of the elements of U . By construction, S is a finite
set of type 2 points.

Let us show that S is a vertex set of C using [20, Théorème 6.3.15] (see [20, 6.3.17]
for the definition of a vertex set, which is called ensemble sommital there). Since C
is projective (implying boundaryless) and irreducible, conditions α), β) and γ) of [20,
Théorème 6.3.15 (ii)] are satisfied. Finally, condition δ) is a consequence of the fact that
S contains only type 2 points (see [20, Commentaire 6.3.16]).

By [20, 6.3.23], this implies the existence of an irreducible projective model C ′ of F over
T with special fiber C ′

s, and specialization map π : C → C ′
s, such that π induces a bijection

between S and the generic points of the irreducible components of C ′
s. Furthermore, by

[20, 6.3.9.1], since k is discretely valued and C reduced, C ′ is locally topologically finitely
presented. Finally, by [20, 6.3.10], since C is normal, the model C ′ is flat and normal.

By Proposition 3.3.6, for any closed point P ∈ C ′, ÔC ′,P = Oo(π−1(P )), where Oo is
the sheaf of holomorphic functions f, such that |f |sup 6 1. In particular, remark that if
V is an affinoid domain of C, since all holomorphic functions are bounded on V, we have
Oo(V ) ⊆ O(V ). This implies Frac Oo(V ) ⊆M (V ). Let f

g ∈M (V ), with f, g ∈ O(V ). Let

α ∈ k be such that |αf |sup, |αg|sup 6 1 (it suffices to choose α so that |f |sup, |g|sup 6 |α−1|,
which is possible seeing as k is non-trivially valued). Then, fg = αf

αg ∈ FracOo(V ), implying

M (V ) = Frac Oo(V ). By construction, there exists U ∈ U such that π−1(P ) ⊆ U. In
particular, M (U) = Frac Oo(U) ⊆ Frac(Oo(π−1(P ))) = FP , so X(FP ) 6= ∅.

If P is a generic point of C ′
s, then π

−1(P ) is a single type 2 point xP , and by Propo-
sition 3.3.5, MxP ⊆ H(xP ) = FP . Thus X(FP ) 6= ∅.

Since π is surjective ([53, Lemma 4.11]), this implies that X(FP ) 6= ∅ for all P ∈ C ′
s.
�

3.4. Applications to Quadratic Forms and the u-invariant

We give applications to quadratic forms, and in particular, to the u-invariant of func-
tion fields. The results presented in this section generalize those of [34, Section 4].

3.4.1. Local-global principles for quadratic forms. The main example of a set-
ting satisfying the conditions we have seen so far (e.g. see Theorem 3.2.11) are quadratic
forms.

We can apply Theorem 3.2.11 to the projective variety X defined by a quadratic form q
over F. In [34, Theorem 4.2], HHK show that for a regular quadratic form q over F, if
char(F ) 6= 2, SO(q) - the special orthogonal group of q, acts strongly transitively on X
when dim q 6= 2, so in that case we can take G = SO(q). If dim q = 2, then X may not be
connected and consequently the group SO(q) doesn’t necessarily act strongly transitively
on X (see [34, Example 4.4] and the proof of [34, Theorem 4.2]).
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We will say that quadratic form q defined over F is isotropic over a field extension
K/F if there exists a non-zero v over K such that q(v) = 0. In other words, q is isotropic
over a field K if and only if the projetive variety defined by q has a K-rational point.

Recall that by Theorem 1.8.15, an irreducible compact k-analytic curve is either pro-
jective or an affinoid space.

Theorem 3.4.1. Let k be a complete ultrametric field. Let C be a compact irreducible
normal k-analytic curve. If |k×| = {1}, assume C is projective. Set F = M (C). Suppose
char(F ) 6= 2. Let q be a quadratic form over F of dimension different from 2.

(1) The quadratic form q is isotropic over F if and only if it is isotropic over Mx for
all x ∈ C.

(2) Let U be an open cover of C. Then, q is isotropic over F if and only if it is
isotropic over M (U) for all U ∈ U .

Proof. By Witt decomposition ([46, I.4.1]), q = qt⊥qr, where qr is regular and qt
is totally isotropic. If qt 6= 0, then q is isotropic, so we may assume that q is regular.
Consequently, Theorem 3.2.9, and Theorem 3.2.11 are applicable, proving the statement.

�

Corollary 3.4.2. Let k be a complete non-Archimedean valued field. Let C be a
compact irreducible normal k-analytic curve. Set F = M (C). Suppose char(F ) 6= 2. Let
q be a quadratic form over F of dimension different from 2. The following local-global
principles hold:

(1) If C is affinoid and
√
|k×| 6= R>0, q is isotropic over F if and only if it is isotropic

over all completions Fv, v ∈ VO(C)(F ), of F.
(2) If C is projective, q is isotropic over F if and only if it is isotropic over all

completions Fv, v ∈ V (F ), of F.

Proof. If k is trivially valued, then the trivial valuation v0 of F is in VO(C)(F ) (resp.
V (F )), and since Fv0 = F, the statement is clear in this case.

Otherwise, by Witt decomposition ([46, I.4.1]), q = qt⊥qr, where qr is regular and qt
is totally isotropic. If qt 6= 0, then q is isotropic. Otherwise, q is regular, so smooth, and
we conclude by Corollary 3.2.18. �

3.4.2. Local Calculations. In view of the local-global principle we proved for qua-
dratic forms (Theorem 3.4.1), we now want to find sufficient conditions under which there
is local isotropy. To do this, we will need to put further restrictions on the base field.
Throughout this section, we will suppose the dimension of

√
|k×| as a Q-vector space (i.e.

the rational rank of |k×|) is n ∈ Z. In the special case that |k×| is a free Z-module (e.g.
if k is a discretely valued field), the sufficient conditions for local isotropy can be refined.
The class of such fields is quite broad, especially when it comes to arithmetic questions:
if we work over a complete ultrametric base field k satisfying this condition, then for any
k-analytic space and any of its points x, the field H(x) also satisfies it.

For any valued field E, we denote by E◦ its ring of integers, by E◦◦ the corresponding

maximal ideal, and by Ẽ its residue field.
For the following two propositions, the case of characteristic 2 can be treated uniformly

with the general one. Afterwards, we will restrict to residual characteristic different from 2.

Proposition 3.4.3. Let l be a valued field. Suppose |l×| is a free Z-module of finite
rank n. Let L be a valued field extension of l. Let q be a non-zero diagonal quadratic form
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over L. Suppose for any non-zero coefficient a of q, |a| ∈ |l×|. There exists a family Q
of at most 2n quadratic forms with coefficients in (L◦)×, such that q is L-isometric to
⊥σ∈QCσ · σ, where Cσ ∈ L× for any σ ∈ Q.

Proof. Let us fix π1, π2, . . . , πn ∈ l×, such that their norms form a basis of the Z-
module |l×|. Set A = {∏n

i=1 π
δi
i |δi ∈ {0, 1}}. For any coefficient a of q, let p1, p2, . . . , pn ∈ Z

be such that |a| = ∏n
i=1 |πi|pi . Then, there exist va ∈ (Lo)× and sa ∈ A, such that

a ≡ vasa mod (L×)2. Consequently, for any A ∈ A, there exists a diagonal quadratic form
σA with coefficients in (L◦)×, such that q is L-isometric to ⊥A∈AA · σA. �

The following is the analogue of Proposition 3.4.3 in a more general case.

Proposition 3.4.4. Let l be a valued field, such that dimQ

√
|l×| equals an integer n.

Let L be a valued field extension of l. Let q be a non-zero diagonal quadratic form over
L. Suppose for any non-zero coefficient a of q, |a| ∈

√
|l×|. Then, there exists a family Q

of at most 2n+1 quadratic forms with coefficients in (L◦)×, such that q is L-isometric to
⊥σ∈QCσ · σ, where Cσ ∈ L× for any σ ∈ Q.

Proof. To ease the notation, let us start by introducing the following:

Notation 3.4.5. Let M be a multiplicative Z-module, such that the divisible closure√
M of M as a group is a finite dimensional Q-vector space. Set n = dimQ

√
M. Set

M2 = {m2 : m ∈M}.
There exist t1, t2, . . . , tn ∈M, such that for any t ∈M, there exist unique p1, p2, . . . , pn ∈ Q,

for which t =
∏n
i=1 t

pi
i . Let us fix such elements t1, t2, . . . , tn.

In the particular situation that is of interest to us,M = |l×|, and there exist π1, π2, . . . , πn ∈ l,
with |πi| = ti, such that for any ǫ ∈

√
|l×|, there exist unique p1, p2, . . . , pn ∈ Q, for which

ǫ =
∏n
i=1 |πi|pi . Let us fix such elements π1, π2, · · · , πn.

Definition 3.4.6. Let ǫ ∈ M. Suppose ǫ =
∏n
i=1 t

si
ri

i , for
si
ri
∈ Q with si, ri coprime,

i = 1, 2, . . . , n.

(1) Let r be the least common multiple of ri, i = 1, 2, . . . , n.We will say r is the order
of ǫ.

(2) Let si
ri

=
s′i
r , i = 1, 2, . . . , n. If there exists i0, such that s′i0 = 1, then ti0 will be

said to be a base of ǫ.

Let ǫ ∈M, and suppose ǫ =
∏n
i=1 t

pi
i , for pi ∈ Q, i = 1, 2, . . . , n. Let α be the order of

ǫ.

Lemma 3.4.7. If α is odd, then for any i = 1, 2, . . . , n, there exist δi ∈ {0, 1}, such
that ǫ ≡∏n

i=1 t
δi
i mod M2.

Proof. Remark that since α is odd, ǫ ≡ ǫα mod M2, and ǫα =
∏n
i=1 t

si
i , with si ∈ Z

for all i. Let si = 2s′i + δi, where s
′
i ∈ Z and δi ∈ {0, 1}. Then, ǫ ≡

∏n
i=1 t

δi
i mod M2. �

Lemma 3.4.8. If α is even, then there exist m ∈ M, xi, y ∈ Z, i = 1, 2, . . . , n, with
y > 0, satisfying:

(1) ǫ ≡ m mod M2;

(2) m =
∏n
i=1 t

xi/2
y

i ;
(3) there exists i0 ∈ {1, 2, . . . , n}, such that xi0 = 1.
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Remark that ti0 is a base of m and its order is 2y.

Proof. Let α = 2y · z, with z odd and y > 0. Then, ǫ ≡ ǫz mod M2, and (ǫz)2
y
=∏n

i=1 t
ei
i , with ei ∈ Z, i = 1, 2, . . . , n. Furthermore, there exists i0 ∈ {1, 2, . . . , n}, such

that ei0 is odd.
Seeing as (2y, ei0) = 1, there exist A,B ∈ Z, with A odd, such that Aei0 + 2yB = 1.

Then, ǫz ≡ ǫz · (ǫz)A−1 mod M2, and ǫzA = t
1/2y−B
i0

· ∏i 6=i0
t
Aei/2

y

i . Hence, there exists

m′
B ∈M, such that ǫzA ≡ m′

B mod M2, and

• m′
B = t

1/2y

i0

∏
i 6=i0

t
Aei/2

y

i if B is even;

• m′
B = t

1/2y+1
i0

∏
i 6=i0

t
Aei/2

y

i if B is odd.

If B is odd, m′′
B := m′

B ·m′
B
2y t−2−2y

i0
≡ m′

B mod M2, and m′′
B = t

1/2y

i0

∏
i 6=i0

t
Aei
2y

(2y+1)

i .
Consequently, in either case, there exist m ∈ M and xi ∈ Z, for i = 1, 2, . . . n, with

xi0 = 1, such that ǫ ≡ m mod M2, and m =
∏n
i=1 t

xi/2
y

i . �

For ε ∈ L, such that |ε| ∈
√
|l×|, we will say that the order of |ε| is the order of ε. If

|πi0 | is a base of |ε|, we will say πi0 is a base of ε. By applying the last two lemmas to the
valued field L, we obtain:

Corollary 3.4.9. Let ε ∈ L×. Suppose |ε| =∏n
i=1 |πi|pi for pi ∈ Q, i = 1, 2, . . . , n.

(1) If the order of |ε| is odd, then for any i = 1, 2, . . . , n, there exists δi ∈ {0, 1}, such
that ε ≡∏n

i=1 π
δi
i mod (L×)2(Lo)×.

(2) If the order of |ε| is even, then there exist ε′ ∈ L×, xi, y ∈ Z, i = 1, 2, . . . , n, with
y > 0, satisfying:
(a) ε ≡ ε′ mod (L×)2(Lo)×;

(b) |ε′| =∏n
i=1 |πi|xi/2

y
;

(c) there exists i0 ∈ {1, 2, . . . , n}, such that xi0 = 1.

We immediately obtain as a by-product of the proof:

Corollary 3.4.10. Let ε ∈ L×, such that |ε| ∈
√
|l×|. Suppose the order of |ε| is 2ν ,

so that there exist νi ∈ Z, i = 1, 2, . . . , n, such that |ε| = ∏n
i=1 |πi|νi/2

ν
. If νi′ is odd for

some i′, then there exists ε′ ∈ L×, such that ε ≡ ε′ mod (L×)2(L◦)×, and |πi′ | is a base of
|ε′|.

Let q1 (resp. q2) be the part of q whose coefficients have odd (resp. even) order. We
remark that q1, q2 are diagonal quadratic forms over L, and that q = q1⊥q2.

Decomposition of q1: Set A =
{∏n

i=1 π
δi
i |δi ∈ {0, 1}

}
. Let e be any coefficient of q1. By

Corollary 3.4.9 (1), there exist ue ∈ (L◦)× and Ae ∈ A, such that e ≡ ue ·Ae mod (L×)2.
Consequently, for any A ∈ A, there exists a diagonal quadratic form σA with coefficients
in (L◦)×, such that q1 is L-isometric to ⊥A∈AA · σA.

Decomposition of q2: We first need an auxiliary result, which requires the following:

Definition 3.4.11. Let ε ∈ L× be such that there exist pi ∈ Q, i = 1, 2, . . . , n, for
which |ε| =∏n

i=1 |πi|pi . Let I ⊆ {0, 1 . . . , n}, such that {i : pi 6= 0} ⊆ I. We will say that ε
is given in |I| parameters, where |I| is the cardinality of I, or that ε is given in parameters
over I.

Notice that a ∈ L is given in 0 parameters if and only if a ∈ (L◦)×.
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Lemma 3.4.12. Let τ be a diagonal quadratic form over L with coefficients of order
either 1 or an even number. Let I ⊆ {1, 2, . . . , n}, with 1 6 |I| = m 6 n, such that the
coefficients of τ are given in parameters over I. Then, there exist:

• J ⊆ I, with |J | = m− 1,
• x1, x2 ∈ L×,
• diagonal quadratic forms τ1, τ2 over L with coefficients of order either 1 or an
even number and in parameters over J,

such that τ is L-isometric to x1τ1⊥x2τ2.
Proof. Roughly, the idea is to find some i0 and a partition Aj , j = 1, 2, of the set of

coefficients, for which there exist xj ∈ L×, satisfying: if a ∈ Aj , there exists Ba ∈ L×, such
that, modulo squares, a = xj · Ba, and |Ba| =

∏
i 6=i0
|πi|pi,a , pi,a ∈ Q. In what follows, we

find suitable representatives of the coefficients modulo squares, from which we can read
the factorization xj ·Ba.

Without loss of generality, let us assume that I = {1, 2, . . . ,m}. Suppose the coeffi-
cients of τ are all of order 1. If they are given in zero parameters, the statement is clear.
Otherwise, suppose that there is a coefficient given over a set of parameters containing t1.

Let d be any coefficient of the quadratic form. There exist si ∈ Z, i = 1, 2, . . . , n, such
that |d| = ∏n

i=1 |πi|si . As a consequence, there exist d′ ∈ L× and s′i ∈ Z, i = 2, . . . , n,

for which d ≡ d′ mod (L×)2(L◦)×, and either |d′| = ∏n
i=2 |πi|s

′
i or |d′| = |π1| ·

∏n
i=2 |πi|s

′
i .

Hence, there exist diagonal quadratic forms τ1, τ2, whose coefficients are all of order 1, in
parameters over {2, 3, . . . ,m}, such that τ is L-isometric to π1τ1⊥τ2.

Suppose there exists at least one coefficient of τ of even order. Let τ ′ be the quadratic
form obtained from τ by:

(1) leaving the coefficients of order 1 intact;
(2) applying Corollary 3.4.9 (2) to the coefficients of even order to substitute them

by elements of L× that satisfy properties 2 and 3 of the lemma.

We remark that due to the proof of Corollary 3.4.9 (2) (i.e. Lemma 3.4.8), the set of
parameters over which the coefficients of τ ′ are given doesn’t change. The quadratic form
τ ′ is L-isometric to τ. Let us fix a′, one of the coefficients of τ ′ with largest order. Suppose
the order of a′ is 2α

′
. Without loss of generality, we may assume that π1 is a base of a′.

For i = 2, . . . ,m, let αi ∈ Z be such that |a′| = |π1|1/2α
′

·∏m
i=2 |πi|αi/2

α′

.
Let c be any other coefficient of τ ′. Let πi0 be a base of c, and 2γ , γ > 0, its order. For

i = 1, 2, . . . ,m, let γi ∈ Z be such that |c| =∏m
i=1 |πi|γi/2

γ
.

• Suppose α′ > γ. Set c′ = c · a′(2γ−γ1)·2α
′−γ

Then, c′ ≡ c mod (L×)2(L◦)×, and

|c′| = |π1| ·
∏m
i=2 |πi|

γi+αi(2
γ−γ1)

2γ .
• Suppose α′ = γ and γ1 is odd. By Corollary 3.4.10, there exist α′

i ∈ Z, i =

2, 3, . . . , n, and c′′ ∈ L× of order 2α
′
, having π1 as a base, such that c′′ ≡

c mod (L×)2(L◦)× and |c′′| = |π1|1/2α
′

·∏m
i=2 |πi|α

′
i/2

α′

.

• Suppose α′ = γ and γ1 is even. Let γ′1/2
δ be the reduced form of γ1/2

γ , mean-

ing γ′1 is odd. Set c′′′ = c · a′(2δ−γ′1)·2α
′−δ

. Then, c′′′ ≡ c mod (L×)2(L◦)×, and

|c′′′| = |π1| ·
∏m
i=2 |πi|

γi+αi(2
γ−γ1)

2γ .

To summarize, there exist c̄ ∈ L× and ǫ2, · · · , ǫm ∈ Z, such that c ≡ c̄ mod (L×)2(L◦)×,

and either |c̄| = |π1|1/2α ·
∏m
i=2 |πi|ǫi/2

α′

= |a′| ·∏m
i=2 |πi|

ǫi−αi

2α
′ or |c̄| = |π1| ·

∏m
i=2 |πi|ǫi/2

α′

.
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Therefore, there exist diagonal quadratic forms τ1, τ2 over L, such that τ ∼= π1τ1⊥a′τ2,
and for any coefficient h of τ1 or τ2, the order of h is either 1 or an even integer. Further-
more, h is with parameters over {2, 3, . . . ,m}. �

Using induction, an immediate consequence of Lemma 3.4.12 is that there exists a
family T of 2n quadratic forms with coefficients in (L◦)×, such that τ is L-isometric to
⊥σ∈TBσ · σ, where Bσ ∈ L× for any σ ∈ T.

Finally, by combining the decomposition results of q1 and q2, we obtain the statement
of Proposition 3.4.4. �

The following framework corresponds to Berkovich curves:

Setting 3.4.13. Let k be a complete ultrametric field. Let k ⊆ R be a Henselian
valuation ring with maximal ideal mR, and fraction field FR = Frac R. Set L′ = R/mR,
and suppose it is endowed with a valuation making it a Henselian (called quasicomplete
in [4]) valued field extension of k. Let L/L′ be an immediate Henselian extension. Set t =

rankQ(|L×|/|k×| ⊗Z Q) = rankQ(|L′×|/|k×| ⊗Z Q) and s = deg tr
k̃
L̃ = deg tr

k̃
L̃′. Suppose

s+ t 6 1.

The motivation behind this setup is:

Example 3.4.14. Let C be any k-analytic curve, and x ∈ C any point. The hypotheses
of the setting above are satisfied for R = Ox, FR = Mx, L

′ = κ(x), and L = H(x).
For any quadratic form σ with coefficients in R, let us denote by σL (resp. σL′) its

image over L (resp. L′).
We recall:

Definition 3.4.15. Let K be a field.

(1) [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal dimension
of anisotropic quadratic forms over K. We say that u(K) = ∞ if there exist
anisotropic quadratic forms over K of arbitrarily large dimension.

(2) [HHK] The strong u-invariant of K, denoted by us(K), is the smallest real num-
ber m, such that:
• u(E) 6 m for all finite field extensions E/K;
• 1

2u(E) 6 m for all finitely generated field extensions E/K of transcendence
degree 1.

We say that us(K) = ∞ if there exist such field extensions E of arbitrarily
large u-invariant.

Notation 3.4.16. From now on, let k be a complete ultrametric field, such that

dimQ

√
|k×| equals an integer n. Also, suppose char k̃ 6= 2.

Proposition 3.4.17. Let L/k be a valued field extension, such that rankQ(|L×|/|k×|
⊗ZQ) = 0 and deg tr

k̃
L̃ = 0. Let τ be a quadratic form over L, with dim τ > 2n+1us(k̃).

(1) Suppose L is Henselian. Then, τ is isotropic.
(2) Under the same hypotheses as in Setting 3.4.13, let q be a diagonal quadratic

form over R, such that qL = τ. Then, q is isotropic over FR.

Proof. Since char(L) 6= 2, we may assume that τ is a diagonal quadratic form. Seeing

as dimQ

√
|L×| = n, by Proposition 3.4.4 there exists a set Q of at most 2n+1 quadratic
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forms with coefficients in (L◦)×, such that τ is L-isometric to ⊥σ∈QCσ · σ, with Cσ ∈ L×

for every σ ∈ Q.
Since dim τ > 2n+1us(k̃), there exists τ ′ ∈ Q, such that dim τ ′ > us(k̃). Let τ̃ ′ be the

image of τ ′ over L̃. Seeing as the coefficients of τ ′ are all in (L◦)×, dim τ̃ ′ = dim τ ′ > us(k̃).

Since deg tr
k̃
L̃ = 0, the extension L̃/k̃ is algebraic. Let E be the finite field extension of k̃

generated by the coefficients of τ̃ ′. Then, u(E) 6 us(k̃) < dim τ̃ ′, implying τ̃ ′ is isotropic

over E, and hence over L̃. Since L is Henselian, τ ′ is isotropic over L, and thus so is τ.

For the second part, if τ = qL for some diagonal R-quadratic form q, seeing as τ̃ ′ is

isotropic over L̃ = L̃′, the image of q in L̃′ is so as well. From Henselianity of L′, we obtain
that the image of q in L′ is isotropic there. Finally, from Henselianity of R, the quadratic
form q is isotropic over FR. �

The bound 2n+1us(k̃) in Proposition 3.4.17 will remain the same regardless of whether
we demand |k×| to be a free Z-module or not. The reason behind this is that in any case,

the hypotheses of said proposition tell us only that dimQ

√
|L×| = n, but not necessarily

that |L×| is a free Z-module.

Proposition 3.4.18. Let L/k be a valued field extension, such that rankQ(|L×|/|k×|
⊗ZQ) = 0 and deg tr

k̃
L̃ = 1. Let τ be a quadratic form over L, with dim τ > 2n+2us(k̃).

(1) Suppose L is Henselian. Then, τ is isotropic.
(2) Under the same hypotheses as in Setting 3.4.13, let q be a diagonal quadratic

form over R, such that qL = τ. Then, q is isotropic over FR.

If |L×| is a free Z-modules of dimension n, the statement is true for dim τ > 2n+1us(k̃).

Proof. Since char(L) 6= 2, we may assume that τ is a diagonal quadratic form. Again,
let ⊥σ∈QCσσ be the L-quadratic form isometric to τ obtained from Proposition 3.4.4 (resp.
Proposition 3.4.3), where Q has cardinality at most 2n+1 (resp. 2n). Then, there exists

τ ′ ∈ Q, such that dim τ ′ > 2us(k̃). Let τ̃ ′ be the image of τ ′ over L̃. Since the coefficients

of τ ′ are all in (Lo)×, dim τ̃ ′ = dim τ ′ > 2us(k̃).

As the extension L̃/k̃ is finitely generated of transcendence degree 1, one obtains

u(L̃) 6 2us(k̃) < dim τ ′. This implies that τ ′ is isotropic over L̃. Since L is Henselian, the
quadratic form τ ′ is isotropic over L, and thus so is τ.

For the second part, if τ = qL for some diagonal quadratic form q over R, we conclude

by using the same argument as in Proposition 3.4.17, seeing as τ̃ ′ is isotropic over L̃′. �

Proposition 3.4.19. Let L/k be a valued field extension, such that rankQ(|L×|/|k×|
⊗ZQ) = 1 and deg tr

k̃
L̃ = 0. Let τ be a quadratic form over L, with dim τ > 2n+2us(k̃).

(1) Suppose L is Henselian. Then, τ is isotropic.
(2) Under the same hypotheses as in Setting 3.4.13, let q be a diagonal quadratic

form over R, such that qL = τ. Then, q is isotropic over FR.

If |k×| is a free Z-module, the statement is true for dim τ > 2n+1us(k̃).

Proof. Since char(L) 6= 2, we may assume that τ is a diagonal quadratic form. Since

rankQ(|L×|/|k×| ⊗Z Q) = 1, there exists ρ ∈ R>0\
√
|k×|, such that the group |L×| is

generated by |k×| and ρ. Let T be an element of L with |T | = ρ. Then, for any a ∈ L×,
there exist m ∈ Z, pi ∈ Q (resp. pi ∈ Z), i = 1, 2, . . . , n, such that |a| = |T |m ·∏n

i=1 |πi|pi .
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Consequently, there exist diagonal quadratic forms q1, q2 over L, for which τ is isometric
to q1⊥Tq2, where the coefficients of q1, q2 have norms in |k×|.

By applying Proposition 3.4.4 (resp. Proposition 3.4.3) to q1 and q2, we obtain a
family S of at most 2n+2 (resp. 2n+1) diagonal quadratic forms with coefficients in (L◦)×,
such that τ is isometric to ⊥σ∈SCσ · σ, where Cσ ∈ L× for every σ ∈ S. Thus, there exists

τ ′ ∈ S, such that dim τ ′ > us(k̃). Let τ̃ ′ be the image of τ ′ in L̃. Seeing as the coefficients

of τ ′ are all in (L◦)×, dim τ̃ ′ = dim τ ′ > us(k̃).

The extension L̃/k̃ is finite algebraic, so u(L̃) 6 us(k̃) < dim τ̃ ′, implying τ̃ ′ is isotropic

over L̃. Since L is Henselian, τ ′ is isotropic over L, and thus so is τ.

For the second part, if τ = qL for some q, as τ̃ ′ is isotropic over L̃′, we conclude as in
Proposition 3.4.17. �

Keeping the same notation, the three propositions above can be summarized into:

Theorem 3.4.20. Let L/k be a valued field extension. Suppose that the inequality

rankQ(|L×|/|k×| ⊗Z Q) + deg tr
k̃
L̃ 6 1 holds. Let τ be a quadratic form over L, with

dim τ > 2n+2us(k̃).

(1) Suppose L is Henselian. Then, τ is isotropic.
(2) Under the same hypotheses as in Setting 3.4.13, let q be a diagonal quadratic

form over R, such that qL = τ. Then, q is isotropic over FR.

If |k×| is a free Z-module, and |L×| is a free Z-module with rankZ|L×| = n if deg tr
k̃
L̃ = 1

and rankQ(|L×|/|k×| ⊗Z Q) = 0, then the statement is true for dim τ > 2n+1us(k̃).

A result we will be using often in what follows:

Lemma 3.4.21. Suppose |k×| is a free Z-module of dimension n. Let k′/k be a valued

field extension, such that |k′×| is finitely generated over |k×|, and |k′×|/|k×| is a torsion

group. Then, |k′×| is also a free Z-module of dimension n.
Suppose k′/k is a finite field extension. Let τ be a diagonal quadratic form over k′

with dim τ > 2nus(k̃). Then, q is k′-isotropic.

Proof. Seeing as |k′×|/|k×| is a torsion group, its rank as a Zmodule is 0. Considering

rankZ|k′×| = rankZ|k′×|/|k×|+ rankZ|k×|, we obtain rankZ|k′×| = n. Furthermore, being
a finitely generated torsion-free module over Z, it is free.

Let ⊥σ∈QCσ · σ be the quadratic form k′-isometric to τ obtained by applying Propo-
sition 3.4.3. There exists σ0 ∈ Q with coefficients in (k′◦)×, such that dim σ̃0 = dimσ0 >

us(k̃), where σ̃0 is the image of σ0 over k̃′. Suppose k′/k is a finite field extension. Seeing

as then k̃′/k̃ is also finite, σ̃0 is k̃′-isotropic. From Henselianity of k′, we obtain that σ0 is
k′-isotropic, thus so is τ. �

The following shows that if |k×| is a free finitely generated Z-module of dimension n,
the last conditions of Theorem 3.4.20 are satisfied in the Berkovich setting.

Corollary 3.4.22. Suppose |k×| is a free Z-module with rankZ|k×| = n. Let C be
a k-analytic curve. If x ∈ C is a type 2 point, then |H(x)×| is a free Z-module and
rankZ(|H(x)×|) = n.

Proof. Since x is an Abhyankar point, |H(x)×| is finitely generated over |k×|, and
since it is of type 2, |H(x)×|/|k×| is a torsion group, so this follows from Lemma 3.4.21. �
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Another result we will be needing in what is to come:

Lemma 3.4.23. Under the same hypotheses as in Setting 3.4.13, suppose R is a discrete
valuation ring. Let q be a diagonal quadratic form over FR. Then, there exist diagonal
FR-quadratic forms q1, q2 with coefficients in R, and a ∈ F×

R , such that:

• q is isometric to q1⊥aq2;
• qi,L has coefficients in (L◦)×, i = 1, 2;

• there exists i0 ∈ {1, 2}, such that dim qi0,L > 1
2 dim q.

In particular, if either of q1, q2 is isotropic over FR, then so is q.

Proof. Let π be a uniformizer ofR. For any coefficient b of q, either b ≡ 1 mod (F×
R )2(F ◦

R)
×

or b ≡ π mod (F×
R )2(F ◦

R)
×. Hence, there exist diagonal FR-quadratic forms q1, q2 with co-

efficients in (F ◦
R)

× = R×, such that q is FR-isometric to q′ = q1⊥πq2. Then, dim q = dim q′,

and there exists i0, such that dim qi0 > 1
2 dim q. Since the coefficients of q1, q2 are in R×,

their images over L are of same dimension, so dim qi0,L > 1
2 dim q. Finally, the last sentence

of the statement is obvious. �

The following theorem gives the motivation behind the hypotheses we put upon R,L′

and L.

Theorem 3.4.24. Suppose char(k̃) 6= 2. Let C be a normal irreducible k-analytic curve.

Set F = M (C). Let q be a quadratic form over F of dimension d, with d > 2n+2us(k̃).
Then, for any x ∈ C, the quadratic form q is isotropic over Mx for all x ∈ C.

If |k×| is a free Z-module, the statement is true for d > 2n+1us(k̃).

Proof. Seeing as char(k̃) 6= 2, neither of the overfields of k has characteristic 2. In
particular, char(F ) 6= 2, so there exists a diagonal quadratic form q′ over F isometric to q.
By replacing q with q′ if necessary, we may directly assume that q is a diagonal quadratic
form.

Recall that Ox and κ(x) are Henselian [4, Sections 2.1 and 2.3]. Furthermore, H(x)
is the completion of κ(x), so it is a Henselian immediate extension. We know that
for any x ∈ C, the field H(x) is either a finite extension of k or a completion of F
with respect to some valuation extending that of k. Abhyankar’s inequality tells us that

rankQ(|H(x)×|/|k×| ⊗Z Q) + deg tr
k̃
H̃(x) 6 1. We will apply part 2 of Theorem 3.4.20 by

taking R = Ox, FR = Mx, L
′ = κ(x), and L = H(x).

If H(x)/k is finite, i.e. if x is a rigid point, then H(x) = κ(x) = Ox/mx. Being a
normal Noetherian local ring with Krull dimension one, Ox is a discrete valuation ring.
By Lemma 3.4.23, there exists a diagonal Mx-quadratic form τ with coefficients in Ox,
such that dim τL > 1

2 dim q > 2n+1us(k̃) (resp. dim τL > 1
2 dim q > 2nus(k̃)) and the

isotropy of τ implies that of q. Seeing as rankQ(|H(x)×|/|k×| ⊗Z Q) = deg tr
k̃
H̃(x) = 0,

we can apply Proposition 3.4.17 (resp. Lemma 3.4.21) to τ .
Otherwise, Ox = κ(x) is a field, and H(x) is its completion. In the general case,

we conclude by a direct application of Theorem 3.4.20. In particular, if |k×| is a free
Z-module, then this is an application of Theorem 3.4.20 in view of Corollary 3.4.22. �

We also obtain:

Corollary 3.4.25. Suppose char(k̃) 6= 2. Let C be a normal irreducible k-analytic
curve. Let x be any point of C. Let q be a quadratic form over H(x), such that dim q >

2n+2us(k̃). Then, q is isotropic.
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If |k×| is a free Z-module, then the statement is true for dim q > 2n+1us(k̃).

Proof. This is a direct consequence of part (1) of Theorem 3.4.20 (in view of Corol-
lary 3.4.22 for the special case). �

3.4.3. The applications. We will now apply the results obtained in the previous
section to the (strong) u-invariant.

We recall:

Definition 3.4.26. Let K be a field.

(1) [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal dimension
of anisotropic quadratic forms over K. We say that u(K) = ∞ if there exist
anisotropic quadratic forms over K of arbitrarily large dimension.

(2) [HHK] The strong u-invariant of K, denoted by us(K), is the smallest real num-
ber m, such that:
• u(E) 6 m for all finite field extensions E/K;
• 1

2u(E) 6 m for all finitely generated field extensions E/K of transcendence
degree 1.

We say that us(K) = ∞ if there exist such field extensions E of arbitrarily
large u-invariant.

Let k be a complete ultrametric field.

Theorem 3.4.27. Suppose char(k̃) 6= 2. Let F be a finitely generated field extension
of k of transcendence degree 1. Let q be a quadratic form over F of dimension d.

(1) If dimQ

√
|k×| =: n ∈ N and d > 2n+2us(k̃), then q is isotropic.

(2) If |k×| is a free Z-module with rankZ|k×| =: n ∈ N and d > 2n+1us(k̃), then q is
isotropic.

Proof. There exists a connected normal projective k-analytic curve C such that
F = M (C). By Theorem 3.4.1, the quadratic form q is isotropic over F if and only if it is
isotropic over Mx for all x ∈ C. The statement now follows in view of Theorem 3.4.24. �

Corollary 3.4.28. Suppose char(k̃) 6= 2.

(1) If dimQ

√
|k×| =: n ∈ N, then us(k) 6 2n+1us(k̃).

(2) If |k×| is a free Z-module with rankZ|k×| =: n ∈ N, then us(k) 6 2nus(k̃).

Proof. Let l/k be a finite field extension. Let q be an l-quadratic form of dimen-

sion d > 2n+1us(k̃) (resp. d > 2nus(k̃)). Since char(k̃) 6= 2, we may assume q to be
diagonal. In view of part 1 of Proposition 3.4.17 (resp. Lemma 3.4.21), q is l-isotropic,

so u(l) 6 2n+1us(k̃) (resp. u(l) 6 2nus(k̃)). In combination with Theorem 3.4.27, this
completes the proof of the statement. �

Corollary 3.4.29. Suppose char(k̃) 6= 2. Let C be a normal irreducible k-analytic
curve. Let x be any point of C.

(1) If dimQ

√
|k×| =: n ∈ N, then u(H(x)) 6 2n+2us(k̃).

(2) If |k×| is a free Z-module with rankZ|k×| =: n ∈ N, then u(H(x)) 6 2n+1us(k̃).

Proof. See Corollary 3.4.25. �
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In particular, when k is discretely valued we obtain the upcoming corollary. It is the
most important result on quadratic forms in [34], and from it we obtain that u(Qp(T )) = 8
when p 6= 2, originally shown in [58].

Corollary 3.4.30. Let k be a complete discretely valued field, such that char(k̃) 6= 2.

Then, us(k) = 2us(k̃).

Proof. The inequality us(k) 6 2us(k̃) is a special case of Corollary 6.2. For the other
direction, a proof that is independent of the patching method and relies on the theory of
quadratic forms is given in [34, Lemma 4.9]. �



CHAPTER 4

Patching over Analytic Fibers and the Local-Global
Principle

In this chapter we generalize patching to neighborhoods of certain fibers of a relative
proper analytic curve. As an application, we obtain a local-global principle for the germs
of meromorphic functions on said fibers.

We treat the case of the relative projective line P1,an first. In Section 4.1, we construct
the notion of relative nice covers around a fiber of P1,an, analoguous to (and a generaliza-
tion of) nice covers for curves, and show that it possesses good properties, i.e. properties
that are necessary for patching. To do this, we start by showing some complementary
properties of affinoid domains in the analytic projective line that allow us to deduce a par-
ticular writing for them. This writing makes it possible to construct affinoid domains in a
neighborhood of a fiber (of a relative P1,an) from an affinoid domain on said fiber. We call
this process thickening1 of an affinoid domain. A relative nice cover of the neighborhood
of a fiber (of a relative P1,an) is the thickening of a nice cover of the fiber.

In order to be able to apply the results of Chapter 2 to this setting, it is necessary
to constantly “shrink” to smaller neighborhoods of the fiber. Because of this, we need
some uniform boundedness results and explicit norm comparisons, which is the topic of
Section 4.2. As a consequence, this is the most technical section of Chapter 4. It also
contains an explicit description of the Banach algebras of analytic functions on certain
affinoid domains of the relative projective line.

In Section 4.3, we show that the results of Chapter 2 are indeed applicable to relative
nice covers of fibers of the relative P1,an, and that patching (in the sense of Chapter 2)
can be obtained as a consequence thereof. This is then extended (in the sense of Propo-
sition 3.2.2) to include the level of generality necessary for proving the analoguous result
around fibers of relative analytic curves. The arguments used in this section are of very
topological nature.

In Section 4.4, we study the properties of the class of relative analytic curves over which
we know how to apply patching around certain fibers. The condition that is required is not
too restrictive; namely, the relative proper curve is assumed to be normal and algebraic
around the fiber, so this is satisfied for the Berkovich analytification of any normal proper
relative algebraic curve. Using Grothendieck’s work on the projective limit of schemes, we
show that smooth geometrically irreducible projective algebraic curves defined over certain
fields give rise to a proper relative analytic curve satisfying this condition. In particular,
this makes it possible to generalize some results from Chapter 3.

In Section 4.5, we construct covers (also called relative nice covers) on a neighborhood
of fibers of a relative proper analytic curve and show that they satisfy the necessary

1The idea for thickenings of affinoid domains of P1,an originally appears in some unpublished notes of
Jérôme Poineau.
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properties for patching to be applicable. For this, we use pullbacks of relative nice covers
in the case of P1,an. Once again, the arguments that are employed are of very topological
nature. We then use these covers, as well as the corresponding result in the case of relative
P1,an, to prove that patching is possible in this setting.

Finally, in Section 4.6, we apply patching to prove local-global principles for the germs
of meromorphic functions on a fiber of a proper relative curve. As in the case of curves,
we first show a local-global principle where the overfields are the stalks of the sheaf of
meromorphic functions, and then apply this to obtain a local-global principle with respect
to completions. In order to show the latter from the former, we first prove there is a
connection between the points of a fiber and the valuations on the field of germs of its
meromorphic functions (which we show to have nice algebraic properties; namely, it can
be realised as the function field of a certain algebraic curve).

The fibers around which we apply patching are those over points for which their
corresponding stalk is a field. In Section 4.7, we calculate some examples of these fields.

4.1. Nice covers for the relative projective line

As in the case of curves, we construct covers around fibers of the relative projective
line over which a generalized form of patching as seen in Proposition 3.2.2 will be possible.
More precisely, we construct relative analogues of nice covers (Definition 3.1.6).

4.1.1. Some results on the analytic projective line. Let us start with a couple
of auxiliary results on the analytic projective line. Recall the nature of the points of P1,an

presented in Subsection 1.8.4.

Proposition 4.1.1. Let K be a complete ultrametric field. Let U be a connected
affinoid domain of P1,an

K with only type 3 points in its boundary. Suppose U is not a

point. Let us fix a copy of A1,an
K and a coordinate T on it. Let ∂U = {ηRi,ri : i =

1, 2, . . . , n}, where Ri ∈ K[T ] are irreducible polynomials and ri ∈ R>0\
√
|K×|. Then,

U =
⋂
i{x : |Ri|x ⊲⊳i ri}, where ⊲⊳i∈ {6,>}, i = 1, 2, . . . , n.

Proof. We need the following two auxiliary results:

Lemma 4.1.2. For any i ∈ {1, 2, . . . , n}, either U ⊆ {x : |Ri|x 6 ri} or U ⊆ {x : |Ri|x > ri}.
Proof. To see this, assume that the open subsets V1 := U ∩ {x : |Ri|x < ri} and

V2 := U ∩ {x : |Ri|x > ri} of U are non-empty. As intersections of two connected subets

of P1,an
K , both V1 and V2 are connected. Assume Vj ∩ Int(U) = ∅, j = 1, 2. , This implies

Vj ⊆ ∂U, and since Vj is connected, it is a single type 3 point {ηj}. But then, this would be
an isolated point of U, which is in contradiction with the connectedness of U. Consequently,
there exist xj ∈ Vj ∩ Int(U), j = 1, 2. By Lemma 1.8.16, Int(U) is a connected set, so there
exists a unique arc [x1, x2] connecting x1, x2 that is entirely contained in Int(U). Since
|Ri|x1 < ri, |Ri|x2 > ri, there exists x0 ∈ [x1, x2] such that |Ri|x0 = ri. Since there is a
unique point satisfying this condition (Proposition 1.8.25), and it is ηRi,ri , we obtain that
ηRi,ri ∈ [x1, x2] ⊆ Int(U), which is in contradiction with the fact that ηRi,ri ∈ ∂U. Thus,
there exists j ∈ {1, 2} such that Vj = ∅, implying the statement. �

Lemma 4.1.3. For n ∈ N, let Wi := {x ∈ P1,an
K : |Pi| ⊲⊳i ri}, where Pi ∈ K[T ]

is irreducible, ri ∈ R>0\
√
|k×|, ⊲⊳i∈ {6,>}, i ∈ {1, 2, . . . , n}. Suppose for all i 6= j,

Wi 6⊆ Int(Wj). Then, for V :=
⋂n
i=1Wi, ∂V =

⋃n
i=1 ∂Wi.
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Proof. Since Int(V ) =
⋂n
j=1 Int(Wj), we obtain that ∂V =

(⋂n
j=1Wj

)
\ (⋂n

i=1 Int(Wi)) =⋃n
i=1

⋂n
j=1(Wi\Int(Wj)). Suppose there exist i, j ∈ {1, 2, . . . , n} such thatWi\Int(Wj) = ∅.

Then, Wi ⊆ Int(Wj), contradicting the hypothesis of the statement.
Hence, for any i, j, Wi\Int(Wj) 6= ∅. In particular, this means that Wi ∩ Int(Wj) is

a strict open subset ofWi, so contained in Int(Wi). Consequently, {ηPi,ri} =Wi\Int(Wi) ⊆
Wi\(Wi∩Int(Wj)) ⊆Wi\Int(Wj). This implies that for any i,

⋂n
j=1(Wi\Int(Wj)) = {ηPi,ri}.

Finally, ∂V = {ηPi,ri : i = 1, 2, . . . , n}, proving the statement. �

If U ⊆ {x : |Ri|x 6 ri} (resp. U ⊆ {x : |Ri|x > ri}), set Ui = {x : |Ri|x 6 ri}
(resp. Ui = {x : |Ri|x > ri}). Remark that for all i, Ui is connected and contains U. Set
V =

⋂n
i=1 Ui. Let us show that ∂V = ∂U. Assume there exist i, j such that Ui ⊆ Int(Uj).

Then, ηRj ,rj 6∈∈ Ui, so ηRj ,rj 6∈ U , contradiction. Thus, Lemma 4.1.3 is applicable, and so
∂V = {ηRi,ri} = ∂U.

Remark that V is a connected affinoid domain (as an intersection of connected affinoid

domains) of P1,an
K . Also, U ⊆ V and ∂U = ∂V. Let us show that U = V. Suppose there

exists some x ∈ V \U. Then, x ∈ Int(V ). Let y ∈ Int(U) ⊆ Int(V ). The unique arc

[x, y] in P1,an
K connecting x and y is contained in Int(V ) (by connectedness of the latter,

see Lemma 1.8.16). At the same time, since x 6∈ U and y ∈ U, the arc [x, y] intersects
∂U = ∂V, contradiction. Thus, U = V =

⋂n
i=1 Ui. �

In particular, the result above implies that every connected affinoid domain of P1,an
K

with only type 3 points in its boundary is a rational domain.
Recall Proposition 1.8.19. For any x, y ∈ P1,an

K , we denote by [x, y] the unique arc in

P1,an
K connecting x and y.

Lemma 4.1.4. Let K be a complete ultrametric field. Let U, V be connected affinoid
domains of P1,an

K containing only type 3 points in their boundaries, such that U ∩ V =
∂U ∩ ∂V is a single type 3 point {ηR,r} (i.e. R is an irreducible polynomial over K and

r ∈ R>0\
√
|K×|).

• If U ⊆ {x ∈ P1,an
K : |R|x 6 r} (resp. U ⊆ {x ∈ P1,an

K : |R|x > r}), then

V ⊆ {x ∈ P1,an
K : |R|x > r} (resp. V ⊆ {x ∈ P1,an

K : |R|x 6 r}).
• Suppose U ⊆ {x ∈ P1,an

K : |R|x 6 r}. Set ∂U = {ηR,r, ηPi,ri}ni=1 and ∂V =

{ηR,r, ηP ′
j ,r

′
j
}mj=1, so that U = {x ∈ P1,an

K : |R|x 6 r, |Pi|x ⊲⊳i ri, i} and V =

{x ∈ P1,an
K : |R|x > r, |P ′

j |x ⊲⊳′j r′j , j}, where ⊲⊳i, ⊲⊳′j∈ {6,>}, Pi, P ′
j ∈ K[T ] are

irreducible, and ri, r
′
j ∈ R>0\

√
|K×| for all i, j.

Then, U∪V = {x ∈ P1,an
K : |Pi|x ⊲⊳i ri, |P ′

j |x ⊲⊳′j r′j , i = 1, . . . , n, j = 1, . . . ,m}.
If n = m = 0, this means that U ∪ V = P1,an

K .

Proof. (1) Remark that if U ⊆ V, then U = {ηR,r}, so the statement is trivially
satisfied. The same is true if V ⊆ U. Let us suppose that neither of U, V is
contained in the other.

Suppose U ⊆ {x ∈ P1,an
K : |R|x 6 r} and V ⊆ {x ∈ P1,an

K : |R|x 6 r}. Let
u ∈ U\V and v ∈ V \U. Since u, v ∈ {x : |R|x < r} - which is a connected set
(Lemma 1.8.16), [u, v] ⊆ {x : |R|x < r}. At the same time, since [u, ηR,r] ⊆ U
and [ηR,r, v] ⊆ V, [u, ηR,r]∩ [ηR,r, v] = {ηR,r}, so the arc [u, v] = [u, ηR,r]∪ [ηR,r, v]
contains the point ηR,r. This is in contradiction with the fact that [u, v] ⊆ {x :
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|R|x < r}. The case U, V ⊆ {x ∈ P1,an
K : |R|x > r} is shown to be impossible

in the same way. (This property is true regardless of whether ∂U\{ηR,r} and
∂V \{ηR,r} contain only type 3 points or not.)

(2) The statement is clearly true if m = n = 0, so we may assume that is not the
case.

Remark that ∂(U ∪V ) ⊆ ∂U ∪∂V. Let η ∈ ∂U\V. Let G be any neighborhood

of η in P1,an
K . Since V is closed, there exists a neighborhood G′ ⊆ G of η such that

G′ ∩ V = ∅. Since η ∈ ∂U, G′ contains points of both U and UC . Consequently,
G′, and thus G, contain points of both U ∪V and UC ∩V C = (U ∪V )C . Seeing as
this is true for any neighborhood G of η, we obtain that η ∈ ∂(U ∪ V ), implying
∂U\V ⊆ ∂(U ∪ V ). Similarly, ∂V \U ⊆ ∂(U ∪V ). It only remains to check for the
point ηR,r.

Let x ∈ Int(U) ⊆ Int(U∪V ) and y ∈ Int(V ) ⊆ Int(U∪V ). Remark that x 6∈ V
and y 6∈ U. Furthermore, |R|x < r and |R|y > r. Consequently, ηR,r ∈ [x, y]. Since
U∪V is a connected affinoid domain containing only type 3 points in its boundary,
its interior is connected (see Lemma 1.8.16). Consequently, [x, y] ⊆ Int(U ∪ V ),
and hence ηR,r ∈ Int(U ∪ V ).

We have shown that ∂(U ∪ V ) = {ηPi,ri , ηP ′
j ,r

′
j
: i, j}. Since U ⊆ {x : |Pi|x ⊲⊳i ri}

and V ⊆ {x : |P ′
j |x ⊲⊳′j r′j} for all i, j, we obtain that

U ∪ V = {x : |Pi|x ⊲⊳i ri, |P ′
j |x ⊲⊳′j r′j , i, j}.

�

4.1.2. The general setting.

Notation 4.1.5. Let S be a normal good k-analytic space (i.e. affinoid domains form
a basis of the Berkovich topology on S). Suppose that dimS < dimQR>0/|k×| ⊗Z Q. Let
us denote by π the structural morphism P1,an

S → S. Let x ∈ S be such that OS,x is a

field. Let Fx be the fiber of x on P1,an
S , which can be endowed with the analytic structure

of P1,an
H(x) (see Proposition 1.5.7).

Remark that a connected affinoid domain of S is integral.
Let us explain the hypothesis on the dimension of S in Notation 4.1.5. As in Chapter 3,

type 3 points play a very important role for obtaining patching results around the fiber Fx.
Hence, their existence on the fiber is crucial and, as will be seen in the next lemma, this is
guaranteed by the condition we imposed on the dimension of S. Recall that for a complete
ultrametric field K, a K-analytic curve contains type 3 points if and only if

√
|K×| 6= R>0.

Lemma 4.1.6. Let Y be a k-analytic space such that dimY < dimQR>0/|k×| ⊗Z Q.

Then, for any y ∈ Y,
√
|H(y)×| 6= R>0.

Proof. For any y ∈ Y, we have

dimQ |H(y)×|/|k×| ⊗Z Q 6 d(H(y)/k) 6 dimY < dimQR>0/|k×| ⊗Z Q.

Consequently,
√
|H(y)×| 6= R>0. �

By Lemma 4.1.6, in Notation 4.1.5, P1,an
H(x) contains type 3 points.
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Lemma 4.1.7. Let U be a connected affinoid domain of P1,an
H(x) with only type 3 points

in its boundary. Then, all the polynomials Ri from Proposition 4.1.1 can be chosen so that
their coefficients are in Ox.

Proof. Let η ∈ ∂U. It suffices to show that there exist P ∈ Ox[T ] irreducible over
H(x) and p > 0, such that η = ηP,p.

The connected components of P1,an
H(x)\{η} are virtual discs. Let us fix one that does not

contain the point ∞. We need to show it contains a rigid point ηR,0 with R ∈ Ox[T ] with
R irreducible over H(x). This follows immediately from the density of Ox in H(x). �

Remark 4.1.8. Let U be a connected affinoid domain of P1,an
H(x) containing only type 3

points in its boundary. Then, there exist polynomials Ri ∈ Ox[T ] irreducible over H(x)
and positive real numbers ri, i = 1, 2, . . . , n, such that U = {u ∈ P1,an

H(x) : |Ri|u ⊲⊳i ri, i =
1, 2, . . . , n}, where ⊲⊳i∈ {6,>} for all i. Consequently, there exists some connected affinoid
neighborhood Z of x in S, such that Ri ∈ O(Z)[T ] for all i. Hence, the affinoid domain

U can be thickened to an affinoid domain {u ∈ P1,an
Z : |Ri|u ⊲⊳i ri, i = 1, 2, . . . , n} of

π−1(Z) = P1,an
Z . The role of nice covers in this relative setting will be played by covers

that are constructed by thickening affinoid domains of the fiber P1,an
H(x).We now study some

properties of such domains which make patching possible.

4.1.3. A Theorem: Thickenings of Type 3 Points. Following Notation 4.1.5,
the goal of this part is to show:

Theorem 4.1.9. Let ηR,r be a type 3 point of P1,an
H(x), where R ∈ Ox[T ] is irreducible

over H(x) and r ∈ R>0\
√
|H(x)×|. There exists a connected affinoid neighborhood Z0 of

x in S, such that

• R ∈ O(Z0)[T ],

• for any connected affinoid neighborhood Z ⊆ Z0 of x, the set {u ∈ P1,an
Z : |R|u =

r} is a connected affinoid domain of P1,an
Z .

Proof. Without loss of generality, since Ox is a field, we may assume that R(T ) is a
unitary polynomial.

To prove the statement, we need several auxiliary lemmas.

Lemma 4.1.10. Let K be a complete ultrametric field. Let R(T ) be a split unitary
polynomial over K. Let r ∈ R>0. Then, for any root α of R(T ) there exists a unique positive

real number sα such that {y ∈ P1,an
K : |R(T )|y = r} = ⋃R(α)=0{y ∈ P1,an

K : |T − α|y = sα}.
The point ηα,sα is the only point y of the arc [ηα,0,∞] in P1,an

K for which |R(T )|y = r.
Furthermore, r = sα ·

∏
R(β)=0,α 6=β max(sα, |α− β|).

Proof. Remark that if y ∈ P1,an
K is such that |R(T )|y = 0, then

∏
R(α)=0 |T − α|y = 0,

meaning there exists a root α0 of R(T ) such that |T − α0|y = 0 (notice that we haven’t
assumed R(T ) to be separable, i.e. there could be roots with multiplicities). This deter-

mines the unique point ηα0,0 in P1,an
K . Thus, the zeros of R(T ) in P1,an

K are ηα,0, R(α) = 0.

Remark also that R has only one pole in P1,an
K and that is the point ∞.

By [20, 3.4.23.1], the analytic function R(T ) on P1,an
K is locally constant everywhere

outside of the finite graph Γ :=
⋃
R(α)=0[ηα,0,∞]. Furthermore, its variation is compatible
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with the canonical retraction d : P1,an
K → Γ in the sense that |R(T )|y = |R(T )|d(y) for any

y ∈ P1,an
K (cf. [20, 3.4.23.8]). By [20, 3.4.24.3], R(T ) is continuously strictly increasing

in all the arcs [ηα,0,∞], R(α) = 0, where |R(T )|ηα,0 = 0 and |R(T )|∞ = +∞. Conse-
quently, |R(T )| attains the value r exactly one time on each arc [ηα,0,∞]. Suppose sα is
the unique positive real number for which |R(T )|ηα,sα

= r. Then,
∏
R(β)=0 |T − β|ηα,sα

=

sα ·
∏
R(β)=0,α 6=β max(sα, |α− β|) = r.

We have shown that there exist positive real numbers sα such that {y ∈ Γ : |R|y = r} =
{ηα,sα : R(α) = 0}. As mentioned before, the variation of R is compatible with the

canonical retraction d of P1,an
K to Γ. Since d−1(ηα,sα) = {y ∈ P1,an

K : |T − α|y = sα}, we
finally obtain that {y ∈ P1,an

K : |R|y = r} = ⋃R(α)=0{y ∈ P1,an
K : |T − α|y = sα} with sα as

above. �

Let Z1 be some connected affinoid neighborhood of x in S such that R ∈ O(Z1)[T ].
Let E be a finite field extension of M (Z1) on which R(T ) splits. Since O(Z1) is Japanese
(see [6, Proposition 2.1.14]), its integral closure in E is a finite O(Z1)-algebra, and in
particular, an integral k-affinoid algebra (see Proposition 1.3.19). Let us denote by Z ′ the
corresponding integral k-affinoid space.

By construction, we have a finite morphism ϕ : Z ′ → Z1 inducing a finite morphism
ψ : P1,an

Z′ → P1,an
Z1

, and the polynomial R(T ) is split over O(Z ′). Set {x1, x2, . . . , xt} :=

ϕ−1(x). Let us study the affinoid domain |R(T )| = ∏R(α)=0 |T − α| = r in P1,an
Z′ , i.e. the

affinoid {u ∈ P1,an
Z′ :

∏
R(α)=0 |T − α|u = r}.

Since ϕ is a finite morphism,
√
|H(x)×| =

√
|H(xi)×| for any i = 1, 2, . . . , t, so

r 6∈
√
|H(xi)×|. By Lemma 4.1.10, there exist positive real numbers sα,xi , R(α) = 0,

such that {u ∈ P1,an
H(xi)

: |R|u = r} =
⋃
R(α)=0{u ∈ P1,an

H(xi)
: |T − α|u = sα,xi}. Since r 6∈√

|H(xi)×|, {u ∈ P1,an
H(xi)

: |R|u = r} cannot contain any type 2 points, so sα,xi 6∈
√
|H(xi)×| ∪ {0}

and {u ∈ P1,an
H(xi)

: |R|u = r} = {ηα,sα,xi
: R(α) = 0} (for a ∈ k, r ∈ R>0, recall the notation

ηa,r in Subsection 1.2.4).

Lemma 4.1.11. For any i ∈ {1, 2, . . . , t}, and any root α of R(T ), there exists a con-
nected affinoid neighborhood Z ′

i of xi and a continuous function siα : Z ′
i → R>0 such that

for any y ∈ Z ′
i,

{u ∈ P1,an
H(y) : |R|u = r} =

⋃

R(α)=0

{u ∈ P1,an
H(y) : |T − α|u = siα(y)}.

Furthermore, we may assume that for any j 6= i, xj 6∈ Z ′
i.

Proof. Let us fix an i ∈ {1, 2, . . . , t} and a root α of R(T ) of multiplicity m. Let
α1, α2, . . . , αn be the rest of the roots (with multiplicity) of R(T ), ordered in such a way

that for any j 6 l, |α − αj |xi 6 |α − αl|xi . As remarked above, sα,xi 6∈
√
|H(xi)×| ∪ {0},

so sα,xi 6= |α − αj |xi for all j = 1, 2, . . . , n. Set α0 := α. Then, there exists a unique
j0 ∈ {0, 1, . . . , n}, such that |α− αj |xi < sα,xi < |α− αl|xi for all j, l for which j 6 j0 < l
(in particular, if j0 = 0, this means that 0 < sα,xi < |α − α1|xi , and if j0 = n, that

|α− αn|xi < sα,xi). Since in P1,an
H(xi)

:

r = |R|ηα,sα,xi
= |T − α|mηα,sα,xi

n∏

j=1

|T − αi|ηα,sα,xi
= smα,xi ·

n∏

j=1

max(sα,xi , |α− αj |xi),
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we obtain that sα,xi = j0+m

√
r∏n

j=j0+1 |α−αj |xi
(this means that sα,xi = n+m

√
r if j0 = n.)

Note that |α− αj |xi 6= 0 for all j > j0 seeing as sα,xi < |α− αj |xi .
Since the function Z ′ → R>0, y 7→ |α− αj |y is continuous for all j = 1, 2, . . . , n, there

exists a connected affinoid neighborhood Zi,1 of xi in Z ′ such that |α − αj |y 6= 0 for all
j > j0 and all y ∈ Zi,1.

Let us define siα : Zi,1 → R>0 by y 7→ j0+m

√
r∏n

j=j0+1 |α−αj |y
. It is a continuous function

and sα,xi = siα(xi). Also, |α − αj |xi < siα(xi) < |α − αl|xi for all j, l for which j 6 j0 < l.
Since on all sides of these strict inequalities we have continuous functions, there exists a
connected affinoid neighborhood Z ′

i of xi in Zi,1 such that for all y ∈ Z ′
i, s

i
α(y) is positive

and |α− αj |y < siα(y) < |α− αl|y for all j, l for which j 6 j0 < l.

Consequently, for y ∈ Z ′
i, in P1,an

H(y), |R(T )|ηα,siα(y)
= siα(y)

j0+m ·∏n
j=j0+1 |α− αj |y = r.

We can now conclude by using Lemma 4.1.10.
Finally, the last part of the statement is a direct consequence of the fact that Z ′ is

Hausdorff. �

Remark 4.1.12. Lemma 4.1.11 is clearly true for any connected affinoid neighborhood
of xi contained in Z ′

i.

Let Zi be any connected affinoid neighborhood of xi such that Zi ⊆ Z ′
i. In view of

Lemma 4.1.11, for any i ∈ {1, 2, . . . , t}, {u ∈ P1,an
Zi

: |R(T )|u = r} = ⋃
R(α)=0{u ∈ P1,an

Zi
:

|T−α|u = siα(π(u))}. For any root α ofR(T ), set Sα,Zi
:= {u ∈ P1,an

Zi
: |T−α|u = siα(π(u))}.

Lemma 4.1.13. For i ∈ {1, 2, . . . , t}, the set Sα,Zi
is connected.

Proof. Seeing as siα is a continuous function, Sα,Zi
is a closed and hence compact

subset of P1,an
Zi

. Suppose that Sα,Zi
is not connected and assume it can be written as

a disjoint union of two closed subsets S′
α,Zi

and S′′
α,Zi

. Since Sα,Zi
is compact in P1,an

Zi
,

so are S′
α,Zi

and S′′
α,Zi

. Since the morphism π is proper, π(S′
α,Zi

) and π(S′′
α,Zi

) are both

compact subsets of Zi. Also, π(Sα,Zi
) = Zi, implying Zi = π(S′

α,Zi
) ∪ π(S′′

α,Zi
). Assume

that π(S′
α,Zi

) ∩ π(S′′
α,Zi

) 6= ∅. This means that there exists a point y ∈ Zi, such that

both P1,an
H(y) ∩ S′

α,Zi
and P1,an

H(y) ∩ S′′
α,Zi

are non-empty. But then, the connected domain

{u ∈ P1,an
H(y) : |T − α|u = siα(y)} of P1,an

H(y) can be written as the union of two disjoint

closed subsets, which is impossible. Thus, π(S′
α,Zi

) ∩ π(S′′
α,Zi

) = ∅, so Zi can be written
as a disjoint union of two closed subsets. This is impossible seeing as Zi is connected.
Consequently, Sα,Zi

is connected. �

Recall that the finite morphism Z ′ → Z1 was denoted by ϕ. Let Ui ⊆ Z ′
i be open

neighborhoods of xi in Z ′, i = 1, 2, . . . , n. Then, by [25, Lemma I.1.2], there exists a

neighborhood U of x in Z, such that ϕ−1(U) ⊆ ⋃t
i=1 Ui ⊆

⋃t
i=1 Z

′
i. Let Z0 ⊆ U be any

connected affinoid neighborhood of x. Then, ϕ−1(Z0) (which is a subset of
⋃t
i=1 Z

′
i) is an

affinoid domain of Z ′.
Any connected component C of ϕ−1(Z0) is mapped surjectively onto Z0. To see this,

remark that ϕ is at the same time a closed and open morphism (see [6, Lemma 3.2.4]).
Consequently, ϕ(C) is a closed and open subset of Z0. Since Z0 is connected, ϕ(C) = Z0.
Thus, for any i, there exists exactly one connected component Zi of ϕ

−1(Z0) containing xi
and ϕ−1(Z0) =

⋃t
i=1 Zi. By construction, Zi ⊆ Z ′

i.
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Let us look at the induced finite morphism ψ : P1,an
ϕ−1(Z0)

=
⊔t
i=1 P

1,an
Zi
→ P1,an

Z0
. The

preimage of {u ∈ P1,an
Z0

: |R|u = r} by ψ is the affinoid {u ∈ P1,an
ϕ−1(Z0)

: |R|u = r}. Recall

that for any i, {u ∈ P1,an
Zi

: |R|u = r} = ⋃R(α)=0 Sα,Zi
, so

{u ∈ P1,an
ϕ−1(Z0)

: |R|u = r} =
t⋃

i=1

⋃

R(α)=0

Sα,Zi
.

By Lemma 4.1.13, each of the Sα,Zi
is connected, and thus so is ψ(Sα,Zi

). Since Sα,Zi
∩

{u ∈ P1,an
H(xi)

: |R|u = r} 6= ∅, we also have ψ(Sα,Zi
) ∩ {u ∈ P1,an

H(x) : |R|u = r} 6= ∅.
Consequently, the type 3 point ηR,r ∈ P1,an

H(x) is contained in all of the Sα,Zi
.

Finally, seeing as {u ∈ P1,an
ϕ−1(Z0)

: |R|u = r} can be written as a finite union of connected

sets, all of which contain a common point, it is connected.
It is immediate from the constructions we made that the same is true for any other

connected affinoid neighborhood of x contained in Z0. �

4.1.4. Towards Relative Nice Covers. We construct here a relative version of nice
covers around the fiber. We keep Notation 4.1.5.

Definition 4.1.14. Let Pi ∈ Ox[T ] be irreducible over H(x) and ri ∈ R>0, i =

1, 2, . . . , n. The set A = {u ∈ P1,an
H(x) : |Pi|u ⊲⊳i ri, i = 1, 2, . . . , n}, where ⊲⊳i∈ {6,>},

is an affinoid domain of P1,an
H(x). For any affinoid neighborhood Z of x for which

Pi ∈ O(Z)[T ] for all i = 1, 2, . . . , n, we will denote by AZ the affinoid domain

{u ∈ P1,an
Z : |Pi|u ⊲⊳i ri, i = 1, 2, . . . , n} of P1,an

Z and call it the Z-thickening of A.

Remark 4.1.15. The thickening of an affinoid domain of P1,an
H(x) depends on the poly-

nomials we choose to represent its boundary points. Hence, from now on, when speaking
of the thickening of such an affinoid, we will, unless it plays a specific role (in which case
we mention it explicitely), always assume that a writing of the boundary points was fixed
a priori.

Recall Notation 4.1.5.
Let U and V be connected affinoid domains of P1,an

H(x) containing only type 3 points

in their boundaries. Suppose that U ∩ V is a single type 3 point {η}. This means that
U ∩V = ∂U ∩∂V = {η}. By Lemma 4.1.7, there exist R(T ) ∈ Ox[T ] irreducible over H(x)
and r ∈ R>0\

√
|H(x)| such that η = ηR,r.

By Lemma 4.1.2, either U ⊆ {u ∈ P1,an
H(x) : |R|u 6 r} or U ⊆ {u ∈ P1,an

H(x) : |R|u > r}.
Without loss of generality, let us assume U ⊆ {u ∈ P1,an

H(x) : |R|u 6 r}. Then, by

Lemma 4.1.4, V ⊆ {u ∈ P1,an
H(x) : |R|u > r}. Set ∂U = {ηR,r, ηPi,ri}ni=1 and ∂V =

{ηR,r, ηP ′
j ,r

′
j
}mj=1, where Pi, P

′
j ∈ Ox[T ] are irreducible overH(x), and ri, r′j ∈ R>0\

√
|H(x)×|,

for all i and j. By Proposition 4.1.1:

U = {u ∈ P1,an
H(x) : |R|u 6 r, |Pi|u ⊲⊳i ri, i = 1, 2, . . . , n},

V = {u ∈ P1,an
H(x) : |R|u > r, |P ′

j |u ⊲⊳′j r′j , j = 1, 2, . . . ,m},
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where ⊲⊳i, ⊲⊳
′
j∈ {6,>} for all i, j. There exists a connected affinoid neighborhood Z of x

in S, such that Pi, P
′
j , R ∈ O(Z)[T ] for all i, j. Let us study the relationship between the

Z-thickenings UZ , VZ of U and V, respectively.

Proposition 4.1.16. There exists a connected affinoid neighborhood Z ′ ⊆ Z of x such
that:

(1) UZ′ ∩ VZ′ = (U ∩ V )Z′ = {u ∈ P1,an
Z′ : |R|u = r};

(2) UZ′ ∪ VZ′ = (U ∪ V )Z′ = {u ∈ P1,an
Z′ : |Pi|u ⊲⊳i ri, |P ′

j |u ⊲⊳′j r′j , i, j} (see

Lemma 4.1.4). If n = m = 0, this means that UZ′ ∪ VZ′ = P1,an
Z′ .

The same is true for any connected affinoid neighborhood Z ′′ ⊆ Z ′ of x.

Proof. Recall that we denote by Fx the fiber of x with respect to the morphism π.
We will make use of the following:

Lemma 4.1.17. Let A,B,C be closed subsets of P1,an
Z such that A ∩B ∩ Fx = C ∩ Fx.

Suppose there exists an open W of P1,an
Z such that A∩B ∩W = C ∩W and C ∩ Fx ⊆W.

Then, there exists a connected affinoid neighborhood Z ′ ⊆ Z of x such that for any con-
nected affinoid neighborhood Z ′′ ⊆ Z ′ of x, A ∩B ∩ π−1(Z ′′) = C ∩ π−1(Z ′′).

Proof. Set F1 = A ∩ B ∩W c, and F2 = C ∩W c, where W c is the complement of
W in P1,an

Z . Remark that Fi is a closed hence compact set, and that Fi ∩ Fx = ∅, i = 1, 2.
Since π is proper, π(Fi) is a closed subset of Z, and it does not contain x. Thus, there
exists a connected affinoid neighborhood Z ′ ⊆ Z of x such that Z ′ ∩ π(Fi) = ∅, i = 1, 2.
Consequently, π−1(Z ′) ∩ Fi = ∅.

Remark that π−1(Z ′)∩F1 = π−1(Z ′)∩A∩B∩W c = ∅, so π−1(Z ′)∩A∩B ⊆W. Similarly,
π−1(Z ′)∩C ⊆W. Finally, A∩B ∩ π−1(Z ′) = A∩B ∩ π−1(Z ′)∩W = C ∩W ∩ π−1(Z ′) =
C ∩ π−1(Z ′). Clearly, the same remains true when replacing Z ′ by any connected affinoid
neighborhood Z ′′ ⊆ Z ′. �

(1) Set W = {u ∈ P1,an
Z : |Pi|u ⊲⊳i ri, |P ′

j |u ⊲⊳′j r
′
j , i, j}, where ⊲⊳i (resp. ⊲⊳′j) is

the strict version of ⊲⊳i (resp. ⊲⊳′j), meaning for example if ⊲⊳i is 6 then ⊲⊳i
is < . Set also A = UZ ,B = VZ , and C = {u ∈ P1,an

Z : |R|u = r}. Remark

that: W is open, A,B,C are closed, A ∩ B ∩ W = {u ∈ P1,an
Z : |R|u =

r, |Pi|u ⊲⊳i ri, |P ′
j |u ⊲⊳′j r′j , i, j} = C∩W , and A∩B∩Fx = U∩V = {ηR,r} = C∩Fx.

By Lemma 4.1.17, there exists a connected affinoid neighborhood Z ′ of x such
that UZ′ ∩ VZ′ = {u ∈ P1,an

Z′ : |R|u = r} = (U ∩ V )Z′ , and the same remains true
when replacing Z ′ with any connected affinoid neighborhood Z ′′ ⊆ Z ′ of x.

(2) Set W = {u ∈ P1,an
Z : |P ′

j |u ⊲⊳′j r′j , j = 1, . . . ,m}, where ⊲⊳′j is the strict version

of ⊲⊳′j . Set also A = C = UZ and B = {u ∈ P1,an
Z : |Pi|u ⊲⊳i ri, |P ′

j |u ⊲⊳′j r′j , i, j}.
Clearly,W is open andA,B,C are closed. Also, A ∩B ∩W = {u ∈ P1,an

Z′ : |R|u 6 r,|Pi|u ⊲⊳i
ri, |P ′

j |u ⊲⊳′j r′j , i, j} = C ∩W.
Let us look at the affinoid domain V1 := {y ∈ P1,an

H(x) : |P ′
j |y ⊲⊳′j r

′
j , j =

1, . . . ,m} of P1,an
H(x). As ∂V = {ηR,r, ηP ′

j ,r
′
j
}mj=1, for any i 6= j, {|P ′

i | ⊲⊳′i r′i} 6⊆
{|P ′

j |⊲⊳′jr′j}. Otherwise, V ⊆ {|P ′
i | ⊲⊳′i r′i} ⊆ {|P ′

j |⊲⊳′jr′j}, implying ηP ′
j ,r

′
j
6∈ V,

contradiction. By Lemma 4.1.3, ∂V1 = {ηP ′
j ,r

′
j
}mj=1, and so Int(V1) is W ∩ P1,an

H(x).

Remark that V ⊆ V1, so ηR,r ∈ V1.
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Lemma 4.1.18. {y ∈ P1,an
H(x) : |R|y 6 r} ⊆ Int(V1).

Proof. Suppose there exists w ∈ P1,an
H(x) such that |R|w < r and w 6∈ V1.

Then, there exists j0 ∈ {1, 2, . . . ,m}, such that |P ′
j0
|w ⊲⊳′Cj0 r′j0 , where ⊲⊳′Cj0 is the

inverse sign to ⊲⊳′j0 (e.g. if ⊲⊳′j0 is 6 then ⊲⊳′Cj0 is >). Let v ∈ Int(V ) ⊆ Int(V1),

so that |R|v > r and |P ′
j0
|v⊲⊳′j0r′j0 . Let us look at the unique arc [v, w] in P1,an

H(x).

Since |R|v > r and |R|w < r, ηR,r ∈ [v, w]. The same is true for ηP ′
j0
,r′j0

.

We have that [w, v] = [w, ηP ′
j0
,r′j0

] ∪ [ηP ′
j0
,r′j0

, v]. Since |R|ηP ′
j0

,r′
j0

> r (recall

ηP ′
j0
,r′j0
∈ V and the only point of P1,an

H(x) satisfying |R| = r is ηR,r) and |R|w < r,

we obtain that ηR,r ∈ [w, ηP ′
j0
,r′j0

]. Thus, we can write the following decomposition

of the arc connecting v and w: [w, v] = [w, ηR,r]∪[ηR,r, ηP ′
j0
,r′j0

]∪[ηP ′
j0
,r′j0

, v]. Simi-

larly, |P ′
j0
|ηR,r

⊲⊳′j0rj and |P ′
j0
|z ⊲⊳′Cj0 r′j0 , so ηP ′

j0
,r′j0
∈ [w, ηR,r], which is in contradic-

tion with the injectivity of [w, v]. Thus, {y ∈ P1,an
H(x) : |R|y 6 r} = {y ∈ P1,an

H(x) : |R|y < r}∪
{ηR,r} ⊆ V1.

We showed before that ∂V1 = {ηP ′
j ,r

′
j
}nj=1. Since for any j, ηP ′

j ,r
′
j
∈ V, |R|ηP ′

j
,r′
j

>

r. This implies that ηP ′
j ,r

′
j
6∈ {y ∈ P1,an

H(x) : |R|y 6 r}. Consequently, ∂V1 ∩ {y ∈
P1,an
H(x) : |R|y 6 r} = ∅, implying {y ∈ P1,an

H(x) : |R|y 6 r} ⊆ Int(V1). �

From the lemma above, U ⊆ {y ∈ P1,an
H(x) : |R|y 6 r} ⊆ Int(V1) = W ∩ P1,an

H(x).

Thus, A∩B∩Fx = {y ∈ P1,an
H(x) : |R|y 6 r, |Pi|u ⊲⊳i ri, |P ′

j |u ⊲⊳′j r′j , i, j} = U ∩V1 =
U = C∩Fx ⊆ V1 ⊆W. This means that Lemma 4.1.17 is applicable, so there exists
a connected affinoid neighborhood Z ′

1 ⊆ Z of x such that UZ ∩ B ∩ π−1(Z ′
1) =

UZ ∩ π−1(Z ′
1), implying UZ′

1
⊆ B ∩ π−1(Z ′

1), and the same remains true for any

connected affinoid neighborhood Z ′′
1 ⊆ Z ′

1 of x.
Using similar arguments one shows that there exists a connected affinoid

neighborhood Z ′
2 ⊆ Z of x such that VZ′

2
⊆ B ∩ π−1(Z ′

2), and the same remains

true for any connected affinoid neighborhood Z ′′
2 ⊆ Z ′

2 of x.
Thus, there exists a connected affinoid neighborhood Z ′ ⊆ Z of x such that

UZ′ ∪ VZ′ ⊆ BZ′ := {u ∈ P1,an
Z′ : |Pi|u ⊲⊳i ri, |P ′

j |u ⊲⊳′j r
′
j , i, j}, and the same

is true for any connected affinoid neighborhood Z ′′ ⊆ Z ′ of x. Let u ∈ BZ′′ :=
BZ′∩π−1(Z ′′). If |R|u 6 r, then u ∈ UZ′′ . If |R|u > r, then u ∈ VZ′′ . Consequently,
u ∈ UZ′′ ∪ VZ′′ , and UZ′′ ∪ VZ′′ = BZ′′ .

�

Let us show that this construction of affinoid domains in P1,an
Z , where Z is a connected

affinoid neighborhood of x, gives us a family of neighborhoods of the points of Fx in P1,an
Z

(given we choose Z small enough).

Lemma 4.1.19. Let A be an open subset of P1,an
S such that A ∩ Fx 6= ∅. Let U = {u ∈

P1,an
H(x) : |Pi|u ⊲⊳i ri, i = 1, 2, . . . , n}, ⊲⊳i∈ {6,>}, be any affinoid domain of P1,an

H(x) contained

in A ∩ Fx, where Pi ∈ Ox[T ] is irreducible over H(x) and ri ∈ R>0, i = 1, 2, . . . , n. Then,
there exists a connected affinoid neighborhood Z of x, such that Pi ∈ O(Z)[T ] for all i,
and UZ ⊆ A. The same is true for any connected affinoid neighborhood Z ′ ⊆ Z of x.
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Proof. Let Z0 be a connected affinoid neighborhood of x for which the thickening
UZ0 exists. Suppose UZ0 6⊆ A. Then, UZ0\A is a non-empty compact subset of P1,an

S .
This implies that π(UZ0\A) is a compact subset of S. Furthermore, since U ⊆ A, x 6∈
π(UZ0\A), so there exists a connected affinoid neighborhood Z ⊆ Z0 of x such that
Z ∩ π(UZ0\A) = ∅. This implies that for any connected affinoid neighborhood Z ′ ⊆ Z of
x, UZ′\A = π−1(Z ′) ∩ (UZ0\A) = ∅, and finally that UZ′ ⊆ A. �

Let Ux be a nice cover of P1,an
H(x). Let SUx = {η1, η2, . . . , ηt} be the set of intersection

points of the elements of Ux. For any ηi ∈ SUx , i = 1, 2, . . . , t, there exist Ri ∈ Ox[T ] irre-
ducible over H(x) and ri ∈ R>0\

√
|H(x)×|, such that ηi = ηRi,ri . Since

⋃
U∈Ux

∂U = SUx ,
all pieces of Ux are a combination of intersections of the affinoid domains {|Ri| ⊲⊳i ri} of
P1,an
H(x), where ⊲⊳i∈ {6,>}, i = 1, 2, . . . , t.

For any affinoid neighborhood Za of x such that Ri ∈ O(Za)[T ] for all i, let us denote
by UZa the set of Za-thickenings of the elements of Ux. Let Z ′ be a fixed connected affinoid
neighborhood of x such that Ri ∈ O(Z ′)[T ] for all i = 1, 2, . . . , t.

Theorem 4.1.20. There exists a connected affinoid neighborhood Z ⊆ Z ′ of x such
that the set UZ is a cover of P1,an

Z , and

(1) for any U ∈ Ux, the Z-thickening UZ is a connected affinoid domain of P1,an
Z ;

(2) for any different U, V ∈ Ux, either UZ∩VZ = ∅ or there exists a unique j ∈ {1, . . . , t}
such that UZ ∩ VZ = {u ∈ P1,an

Z : |Rj |u = rj} = (U ∩ V )Z is a connected affinoid

domain of P1,an
Z ; in particular, UZ ∩ VZ 6= ∅ if and only if U ∩ V 6= ∅;

(3) for any UZ , VZ ∈ UZ , UZ ∪ VZ is either P1,an
Z or a connected affinoid domain

of P1,an
Z that is the Z-thickening of U ∪ V.

The statement is true for any connected affinoid neighborhood Z ′′ ⊆ Z of x.

Proof. By Theorem 4.1.9, there exists a connected affinoid neighborhood Z of x, such
that Ri ∈ O(Z)[T ] and the affinoid domains {u ∈ P1,an

Z : |Ri|u = ri} are all connected. We

may also assume that for any two non-disjoint elements U = {u ∈ P1,an
H(x) : |Pi|u ⊲⊳i ri, |R|u 6 r :

i = 1, . . . , n} and V = {u ∈ P1,an
H(x) : |P ′

j |u ⊲⊳′j r′j , |R|u > r : j = 1, . . . ,m} of Ux, Proposi-
tion 4.1.16 holds.

Let Ux = {U1, U2, . . . , Un}. By Lemma 3.1.18, there exist n− 1 elements of Ux whose

union is connected. Without loss of generality, let us assume that V :=
⋃n−1
l=1 Ul is con-

nected. By Theorem 1.8.15, this is a connected affinoid domain, and V ∪ Un = P1,an
H(x).

Since V,Un, and Un ∪ V are connected subsets of P1,an
H(x), Un ∩ V is a non-empty connected

set, hence a single type 3 point {ηRj ,rj} for some j ∈ {1, 2, . . . , t}. In particular, this

implies that Un = {u ∈ P1,an
H(x) : |Rj |u ⊲⊳ rj}, where ⊲⊳∈ {6,>}. Let us assume without

loss of generality that Un = {u ∈ P1,an
H(x) : |Rj |u > rj}. Then, V = {u ∈ P1,an

H(x) : |Rj |u 6 rj}
(see Lemma 4.1.4 to recall what the inequalities for the union of two non-disjoint ele-

ments of a nice cover look like). Consequently, Un,Z = {u ∈ P1,an
Z : |Rj |u > rj} and

by Proposition 4.1.16, VZ =
(⋃n−1

l=1 Ui

)
Z

=
⋃n−1
i=1 Ui,Z = {u ∈ P1,an

Z : |Rj |u 6 rj}, so
Un,Z ∪ VZ = P1,an

Z , and UZ is a cover of P1,an
Z .

Let U 6= V ∈ Ux. Clearly, if UZ ∩VZ = ∅, then U ∩V = ∅. Assume U ∩V = ∅. Suppose
A := UZ ∩ VZ 6= ∅. Remark that A ∩ Fx = ∅. Since A is compact and π proper, π(A) is a
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compact subset of Z not containing x. Thus, there exists a connected affinoid neighborhood
Z1 ⊆ Z, such that A ∩ π−1(Z1) = ∅, and UZ1 ∩ VZ1 = ∅. Thus, we may assume that for
any disjoint U, V ∈ Ux, UZ ∩VZ = ∅, which, taking into account Proposition 4.1.16, shows
that property (2) of the statement is true.

Property (3) is a consequence of [6, Corollary 2.2.7(i)] if UZ ∩VZ = ∅, and of Proposi-
tion 4.1.16 if not. Let Z be such that property (2) is satisfied. Suppose there exists U ∈ Ux
such that UZ is not connected. Let C be a connected component of UZ that doesn’t inter-
sect Fx, and B the connected component that does. For any V ∈ Ux for which U ∩V = ∅,
C∩VZ ⊆ UZ∩VZ = ∅. For any V ∈ Ux for which U∩V 6= ∅, there exists a unique j such that
UZ ∩ VZ = {u ∈ P1,an

Z : |Rj |u = rj} is a connected affinoid domain, so UZ ∩ VZ = B ∩ VZ .
Consequently, C ∩ VZ = ∅. This means that C ∩

(
(UZ\C) ∪

⋃
V ∈Ux,U 6=V VZ

)
= ∅, and

C ∪
(
(UZ\C) ∪

⋃
V ∈Ux,U 6=V VZ

)
= P1,an

Z , implying P1,an
Z is not connected, contradiction.

This proves the first part of the statement.
The last part is immediate from the nature of the proof. �

Finally:

Definition 4.1.21. Let Ux be a nice cover of P1,an
H(x), and Z a connected affinoid neigh-

borhood of x such that the Z-thickening of all of the elements of Ux exist. Let us denote
this set by UZ . We will say it is a Z-thickening of Ux. The set UZ will be said to be a
Z-relative nice cover of P1,an

Z if the statement of Theorem 4.1.20 is satisfied.

Remark 4.1.22. Whenever taking the thickening of a nice cover Ux of P1,an
H(x) to obtain

a Z-relative nice cover of P1,an
Z for a suitably chosen Z, we will suppose that a writing

was fixed simultaneously for all of the points of
⋃
U∈Ux

∂U, and that constructions were
made based on this “compatible” writing of the boundary points (as we did e.g. in
Proposition 4.1.16 and Theorem 4.1.20). The same principle goes for any family of affinoid

domains of P1,an
H(x) whose Z-thickenings we consider simultaneously.

We have shown:

Theorem 4.1.23. Let Ux be a nice cover of P1,an
H(x). There exists a connected affinoid

neighborhood Z of x such that the Z-thickening of Ux exists and is a Z-relative nice cover
of P1,an

Z . The same is true for any other connected affinoid neighborhood Z ′ ⊆ Z of x.

Corollary 4.1.24. Let U be a connected affinoid domain of P1,an
H(x) containing only

type 3 points in its boundary. There exists an affinoid neighborhood Z of x in S such that
the Z-thickening UZ exists and is connected. The same is true for any connected affinoid
neighborhood Z ′ ⊆ Z of x.

Proof. If U is a type 3 point, then this is Theorem 4.1.9. Suppose this is not the
case. By Lemma 3.1.11, there exists a nice cover Ux of P1,an

H(x) such that U ∈ Ux. Let Z
be a connected affinoid neighborhood of x such that the Z-thickening UZ exists and is a
Z-relative nice cover. Then, UZ ∈ UZ is connected. The last part of the statement is clear
since the same property is true in Theorem 4.1.20. �

Remark 4.1.25. The notion of a Z-relative nice cover can be extended to connected
affinoid domains of P1,an

Z that are Z-thickenings of affinoid domains of P1,an
H(x).
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4.2. A norm comparison

As seen in the previous section, when constructing relative nice covers we often have
to restrict to smaller neighborhoods of the fiber. The same phenomenon appears when
trying to apply the patching results of Chapter 2 to this setting. This is why we need
some uniform-boundedness-type results.

Recall Notation 4.1.5. Let Z be any connected affinoid neighborhood of x in S. Set
AZ = O(Z). The k-algebra AZ is a k-affinoid algebra, and since Z is connected and
reduced (recall S is normal), AZ is an integral domain. By Proposition 1.3.15(2), the
spectral norm ρZ of AZ is equivalent to the norm of AZ , and it satisfies: for all f ∈ AZ ,
|f |ρZ = maxy∈Z |f |y. In this section, for any connected affinoid neighborhood Z of x in S,
we endow the corresponding affinoid algebra AZ with its spectral norm ρZ .

For any positive real number r, we will use the notation AZ{rT−1} (where T is a fixed

variable on P1,an
Z ) for theAZ-affinoid algebra

{∑
n>0

an
Tn : an ∈ AZ , limn→+∞ |an|ρZr−n = 0

}

with corresponding submultiplicative norm |∑n>0
an
Tn | := maxn |an|ρZr−n.

Remark 4.2.1. In what follows we suppose that the coefficient r is not an element of√
|k×|. The only reason behind this assumption is to be able to guarantee the connect-

edness of the affinoid domains that are considered. If we assume connectedness, then the
rest works the same regardless of whether r ∈

√
|k×| or not.

4.2.1. The case of degree one polynomials. Let r ∈ R>0\
√
|H(x)×|.

(1) Set X|T |6r,Z = {u ∈ P1,an
Z : |T |u 6 r}. It is an affinoid domain of P1,an

Z , and

O(X|T |6r,Z) = AZ{r−1T}, where

AZ{r−1T} = {
∑

n>0

anT
n, an ∈ AZ , lim

n→+∞
|an|ρZrn = 0}

and it is endowed with the norm |∑n>0 anT
n||T |6r,Z := maxn>0 |an|ρZrn.

(2) Set X|T |>r,Z = {u ∈ P1,an
Z : |T |u > r}. It is an affinoid domain of P1,an

Z and

O(X|T |>r,Z) = AZ{rT−1}, where

AZ{rT−1} = {
∑

n>0

an
Tn

: an ∈ AZ , lim
n→+∞

|an|ρZr−n = 0}

and it is endowed with the norm |∑n>0 anT
n||T |>r,Z := maxn≥0 |an|ρZr−n.

(3) Set X|T |=r,Z = {u ∈ P1,an
Z : |T |u = r}. It is an affinoid domain of P1,an

Z and

O(X|T |=r,Z) = AZ{r−1T, rT−1}, where

AZ{r−1T, rT−1} = {
∑

n∈Z

anT
n : an ∈ AZ , lim

n→±∞
|an|ρZrn = 0}

and it is endowed with the norm |∑n∈Z anT
n||T |=r,Z := maxn∈Z |an|ρZrn.

By Corollary 4.1.24, there exists a connected affinoid neighborhood ZT of x in S such
that for any connected affinoid neighborhood Z ⊆ ZT of x, the affinoids X|T |6r,Z , X|T |>r,Z

andX|T |=r,Z are connected (and hence integral). For the rest of this subsection, we suppose
Z ⊆ ZT .

Lemma 4.2.2. The norms | · ||T |6r,Z , | · ||T |>r,Z , | · ||T |=r,Z defined above are equal to the

spectral norms on AZ{r−1T}, AZ{rT−1}, AZ{r−1T, rT−1}, respectively.
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Proof. By Theorem 1.1.38, for any affinoid space X, its associated spectral norm ρX
has the property that |f |ρX = maxy∈X |f |y for all f ∈ O(X).

Let f =
∑

n>0 anT
n be any element of AZ{r−1T}. Let ρ|T |6r,Z denote the spectral

norm on the integral affinoid space X|T |6r,Z . We will show that |f ||T |6r,Z = |f |ρ|T |6r,Z
. By

the remark in the paragraph above, |f |ρ|T |6r,Z
= maxu∈X|T |6r,Z

|f |u. For any y ∈ Z, the
fiber of X|T |6r,Z over y is the disc {u ∈ P1,an

H(y) : |T |y 6 r}, whose Shilov boundary is the

singleton {ηy0,r} (i.e. the point η0,r ∈ P1,an
H(y)). Consequently, in the fiber of X|T |6r,Z over y,

the function f attains its maximum on the point ηy0,r, implying |f |ρ|T |6r,Z
= maxy∈Z |f |ηy0,r

(see also Lemma 4.2.24).
Since |f |ηy0,r = |∑n>0 anT

n|ηy0,r = maxn>0 |an|yrn, we obtain that

|f |ρ|T |6r,Z
= max

y∈Z
max
n>0
|an|yrn.

At the same time, |f ||T |6r,Z = maxn>0 |an|ρZrn = maxn>0maxy∈Z |an|yrn, implying the
equality of the statement.

The result is proven in the same way for the norms | · ||T |>r,Z and | · ||T |=r,Z . �

Corollary 4.2.3. Let Z1 ⊆ Z be a connected affinoid neighborhood of x. The re-
striction morphism O(X|T |⊲⊳r,Z) → O(X|T |⊲⊳r,Z1

) is a contraction with respect to the cor-
responding norms | · ||T |⊲⊳r,Z and | · ||T |⊲⊳r,Z1

, ⊲⊳∈ {6,=,>}.
Lemma 4.2.4. The restriction maps AZ{r−1T}, AZ{rT−1} →֒ AZ{r−1T, rT−1} are

isometries with respect to the corresponding norms | · ||T |6r,Z , | · ||T |>r,Z , and | · ||T |=r,Z .
Proof. Let f =

∑
n>0 anT

n ∈ AZ{r−1T}. Then, |f ||T |=r,Z = maxn |an|ρZrn =

|f ||T |6r,Z . The same is true for A{rT−1}. �

Since H1(X|T |6r,Z ∪ X|T |>r,Z ,O) = H1(P1,an
Z ,O) = 0, we have the following exact

sequence:
0→ AZ → AZ{r−1T} ⊕AZ{rT−1} → AZ{r−1T, rT−1} → 0,

which gives us a surjective morphism AZ{r−1T} ⊕ AZ{rT−1} ։ AZ{r−1T, rT−1}. Ad-
missibility follows from Banach’s Open Mapping Theorem if k is non-trivially valued (for
a proof see [14]), and by a change of basis followed by the Open Mapping Theorem if it
is (see Proposition 1.3.8).

Lemma 4.2.5. For any c ∈ AZ{r−1T, rT−1}, there exist a ∈ AZ{r−1T}, b ∈ AZ{rT−1}
such that a+ b = c and |c||T |=r,Z = max(|a||T |6r,Z , |b||T |>r,Z).

Proof. Let c =
∑

n∈Z anT
n ∈ AZ{r−1T, rT−1}. Set a =

∑
n>0 anT

n and b =∑
n<0 anT

n. Clearly, a ∈ AZ{rT−1}, b ∈ AZ{r−1T} and a + b = c. Furthermore,
|a||T |6r,Z = maxn>0 |an|ρZrn 6 maxn∈Z |an|ρZrn = |c||T |=r,Z , and the same is true for
b. Consequently, max(|a||T |6r,Z , |b||T |>r,T ) 6 |c||T |=r,Z . At the same time, |c||T |=r,Z 6

max(|a||T |=r,Z , |b||T |=r,Z) and by Lemma 4.2.4, this is equal to max(|a||T |6r,Z , |b||T |>r,Z).
�

Remark 4.2.6. All of the results of this subsection remain true if we replace T by
T − α for any α ∈ AZ .
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4.2.2. The general case. Let P (T ) be a unitary polynomial over Ox, irreducible
over H(x), and of degree bigger than 1. Then, there exists an affinoid neighborhood Z ′

of x such that P (T ) ∈ O(Z ′)[T ]. The connected affinoid neighbrohood Z of x in this
subsection will always be assumed to satisfy Z ⊆ Z ′ ∩ ZT .

Notation 4.2.7. Let r ∈ R>0\
√
|H(x)×|. Set X|P |6r,Z = {u ∈ P1,an

Z : |P |u 6 r},
X|P |>r,Z = {u ∈ P1,an

Z : |P |u > r} and X|P |=r,Z = {u ∈ P1,an
Z : |P |u = r}. These

are affinoid domains of P1,an
Z (furthermore, X|P |6r,Z and X|P |=r,Z are affinoid domains of

A1,an
Z ). By Corollary 4.1.24, there exists an affinoid neighborhood ZP of x such that for any

connected affinoid neighborhood Z ⊆ ZP , X|P |6r,Z , X|P |>r,Z and X|P |=r,Z are connected
(hence integral). For the rest of this subsection, we assume that Z ⊆ Z ′ ∩ ZT ∩ ZP .

The rings O(X|P |6r,Z) and O(X|P |=r,Z) have been studied extensively and under more
general conditions by Poineau in [59, Chapter 5]. Restricted to our setting, the following
is shown:

Lemma 4.2.8. Let Z be a connected affinoid neighborhood of x, such that Z ⊆ Z ′ ∩
ZT ∩ZP . Then, O(X|P |6r,Z) ∼= O(X|T |6r,Z)[X]/(P (X)−T ) = AZ{r−1T}[X]/(P (X)−T ),
and O(X|P |=r,Z) = O(X|T |=r,Z)[Y ]/(P (Y )− T ) = AZ{r−1T, rT−1}[Y ]/(P (Y )− T ).

Proof. The statement can be seen by considering the finite morphism P1,an
Z → P1,an

Z
induced by AZ [T ]→ AZ [T ], T 7→ P (T ). �

Lemma 4.2.9. Let jP denote the restriction morphism O(X|P |6r,Z) →֒ O(X|P |=r,Z).
Then, the following diagram commutes and jP (X) = Y.

AZ{r−1T}[X]/(P (X)− T ) AZ{r−1T, rT−1}[Y ]/(P (Y )− T )

AZ{r−1T} AZ{r−1T, rT−1}

jP

jT

Taking this into account, we will from now on write AZ{r−1T}[X]/(P (X) − T ) and
AZ{r−1T, rT−1}[X]/(P (X)− T ) (i.e. using the same variable X).

Proof. This follows again from the work of Poineau in [59, Chapter 5]. Remark that
the finite morphism AZ [T ]→ AZ [T ], T → P (T ), induces a finite morphism ϕ : X|P |6r,Z →
X|T |6r,Z and ϕ−1(X|T |=r,Z) = X|P |=r,Z . The vertical maps of the diagram above are
induced by ϕ, which implies its commutativity. Remark that jT (T ) = T. Also, since
ϕ−1(X|T |=r,Z) = X|P |=r,Z , we have that O(X|P |=r,Z) = O(X|P |6r,Z)⊗O(X|T |6r)O(X|T |=r,Z).

The restriction morphism jP is given by f 7→ f ⊗ 1, implying jP (X) = Y. �

Recall that O(X|P |6r,Z), O(X|P |>r,Z), and O(X|P |=r,Z) are affinoid algebras, meaning
they are naturally endowed with submultiplicative norms | · |6, | · |> and | · |=, respectively.
(These norms are uniquely determined only up to equivalence.) We start by giving an
explicit choice for | · |6 and | · |=.

The morphism AZ [T ] → AZ [T ], T 7→ P (T ) induces a finite morphism ϕZ : P1,an
Z →

P1,an
Z , for which ϕ−1

Z (X|T |⊲⊳r,Z) = X|P |⊲⊳r,Z , where ⊲⊳∈ {6,=,>}. In particular, this gives
rise to a finite morphism X|P |⊲⊳r,Z → X|T |⊲⊳r,Z , hence to a finite morphism O(X|T |⊲⊳r,Z)→
O(X|P |⊲⊳r,Z). The latter gives rise to a surjective morphism ψ1 : O(X|T |⊲⊳r,Z)

n ։ O(X|P |⊲⊳r,Z)
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for some n ∈ N. Let | · |′⊲⊳ denote the norm (determined up to equivalence) on O(X|P |⊲⊳r,Z)
obtained by ψ1, i.e. making ψ1 admissible.

Proposition 4.2.10. The norms | · |⊲⊳ and | · |′⊲⊳ are equivalent, ⊲⊳∈ {6,=,>}.
Proof. By Lemma 1.3.7, there exists a complete non-trivially valued field extensionK

of k such that O(X|T |⊲⊳r,Z)⊗̂kK =: O(X|T |⊲⊳r,ZK
) and O(X|P |⊲⊳r,Z)⊗̂kK =: O(X|T |⊲⊳r,ZK

)
are strict K-affinoid algebras, where ZK := Z ×k K. Moreover, we have the following
commutative diagram

O(X|T |⊲⊳r,Z) O(X|P |⊲⊳r,Z)

O(X|T |⊲⊳r,ZK
) O(X|P |⊲⊳r,ZK

)

T 7→P (T )

⊗̂kK ⊗̂kK

T 7→P (T )

which gives rise to the following commutative diagram, where ψ2 is a surjective admissible
morphism induced by ψ1:

O(X|T |⊲⊳r,Z) O(X|T |⊲⊳r,Z)
n O(X|P |⊲⊳r,Z)

O(X|T |⊲⊳r,ZK
) O(X|T |⊲⊳r,ZK

)n O(X|P |⊲⊳r,ZK
)

⊗̂kK ⊗̂kK

ψ1

⊗̂kK

ψ2

Let | · |ψ2 be the norm (determined up to equivalence) on O(X|P |⊲⊳r,ZK
) induced by the

morphism ψ2. Then, O(X|P |⊲⊳r,ZK
) is a Banach K-algebra with respect to | · |ψ2 .

Since O(|X||T |⊲⊳r,Z) →֒ O(X|T |⊲⊳r,ZK
) is an isometry (see [60, Lemme 3.1]), the diagram

above implies that (O(|X||P |⊲⊳r,Z), | · |′⊲⊳) →֒ (O(X|P |⊲⊳r,ZK
), | · |ψ2) is also an isometry.

Let | · |⊲⊳,K denote the norm that the K-affinoid algebra O(X|P |⊲⊳r,ZK
) is naturally

endowed with. Then, (O(|X||P |⊲⊳r,Z), | · |⊲⊳) →֒ (O(X|P |⊲⊳r,ZK
), | · |⊲⊳,K) is an isometry

(again, see [60, Lemme 3.1]).
Since O(X|P |⊲⊳r,ZK

) is a strict K-affinoid algebra, by [11, 6.1.3/2], there is a unique
way to define the structure of a Banach K-algebra on it. Hence, | · |ψ2 is equivalent to
| · |⊲⊳,K , so the norms | · |′⊲⊳, resp. | · |⊲⊳, they induce on O(X|P |⊲⊳r,Z), are equivalent. �

Notation 4.2.11. Set d = degP. Since P (X) is unitary, any f ∈ AZ{r−1T}[X]/(P (X)−
T ) (resp. f ∈ AZ{r−1T, rT−1}[X]/(P (X) − T )) has a unique representation of the form∑d−1

i=0 αiX
i, where αi ∈ AZ{r−1T} (resp. αi ∈ AZ{r−1T, rT−1}) for all i = 0, 1, . . . , d− 1.

Set |f ||P |6r,Z := maxi(|αi||T |6r,Z) (resp. |f ||P |=r,Z := maxi(|αi||T |=r,Z)). By Proposi-
tion 4.2.10, we can take | · |6 = | · ||P |6r,Z and | · |= = | · ||P |=r,Z . (This kind of norm is
called || · ||U,div in [59, 5.2]; here U is X|T |6r,Z or X|T |=r,Z .)

Let us now find a good representative for O(X|P |>r,Z) and its norm. In what follows,
we identify the k-affinoid algebras O(X|P |6r,Z) and O(X|P |>r,Z) with AZ-subalgebras of

O(X|P |=r,Z) via the respective restriction morphisms. As before, since H1(P1,an
Z ,O) = 0,

we have the following short exact sequence:

0→ AZ → O(X|P |6r,Z)⊕O(X|P |>r,Z)→ O(X|P |=r,Z)→ 0. (4)

Let f ∈ O(X|P |=r,Z) = AZ{r−1T, rT−1}[X]/(P (X) − T ). Suppose its unique rep-

resentative of degree < d in X is f0 =
∑d−1

i=0

∑
n∈Z an,iT

nXi, where
∑

n∈Z an,iT
n ∈
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AZ{r−1T, rT−1} for all i. Then, we can write the following decomposition for f0:

f0 = a0,0 +

(∑

n>1

an,0T
n +

d−1∑

i=1

∑

n>0

an,iT
nXi

)

︸ ︷︷ ︸
αf

+

(
d−1∑

i=0

∑

n6−1

an,iT
nXi

)

︸ ︷︷ ︸
βf

.

Remark that αf ∈ AZ{r−1T}[X]/(P (X)− T ).
Proposition 4.2.12. The AZ-subalgebra O(X|P |>r,Z) of O(X|P |=r,Z) is equal to

B :=

{
f ∈ AZ{r−1T, rT−1}[X]/(P (X)− T ) : f = a0,0 +

d−1∑

i=0

∑

n>1

an,i
Tn

Xi

}
.

Proof. Let us first show that B is closed with respect to multiplication. Let f = a0,0+∑d−1
i=0

∑
n>1

an,i

Tn Xi, g = b0,0 +
∑d−1

i=0

∑
n>1

bn,i

Tn Xi ∈ B. For any m such that d 6 m < 2d,

the coefficient corresponding to Xm in the product fg is of the form
∑

n>2
cn,m

Tn where
cn,m ∈ AZ for all n,m. By using Euclidian division, since P (X) is unitary, we obtain
Xm = P (X)Q(X) + R(X) where Q,R ∈ AZ [X], degR < d and degQ = m − d < d.
Hence,

∑
n>2

cn,m

Tn Xm =
∑

n>2
cn,m

Tn P (X)Q(X) +
∑

n>2
cn,m

Tn R(X) =
∑

n>1
cn,m

Tn Q(X) +∑
n>2

cn,m

Tn R(X) in AZ{r−1T, rT−1}[X]/(P (X) − T ), which is an element of B seeing as
degQ, degR < d. Consequently, fg ∈ B, and B is an AZ-algebra.

Let us consider the restriction morphism ψ : AZ = O(P1,an
Z )→ O(X|P |>r, Z), a section

of which is given as follows: for any f ∈ O(X|P |>r, Z), let f∞ denote the restriction of f

to the Zariski closed subset Z := {x ∈ X|P |>r,Z : |T−1|x = 0}. Remark that in the copy of

A1,an
Z in P1,an

Z with coordinate T−1, Z = {u ∈ A1,an
Z : |T−1|u = 0}, so O(Z) = AZ .

The morphism s : O(X|P |>r, Z) → AZ , f 7→ f∞, is a section of ψ. Let O(X|P |>r,Z)∞
denote the kernel of s. Then, O(X|P |>r,Z) = AZ ⊕O(X|P |>r, Z)∞.

Let us consider the following commutative diagram that is obtained from the short
exact sequence 4 above.

O(X|P |6r,Z)⊕O(X|P |>r,Z)

O(X|P |6r,Z)⊕O(X|P |>r,Z)∞ O(X|P |=r,Z)

h′′h′

h

Let f ∈ O(X|P |=r,Z). By the surjectivity of h′′ (from the short exact sequence 4) there
exist f1 ∈ O(X|P |6r,Z) and f2 ∈ O(X|P |>r,Z) such that f1 + f2 = f. Let f ′2 ∈ AZ and
f ′′2 ∈ O(X|P |>r,Z)∞ be such that f2 = f ′2 + f ′′2 (as we saw above, such f ′2, f

′′
2 are unique).

Set f ′1 := f1+f
′
2 and remark that f ′1 ∈ O(X|P |6r,Z). By the commutativity of the diagram,

h(f ′1, f
′′
2 ) = f, i.e. h is surjective. Let us also show it is injective. Suppose h(a, b) = 0 for

some a ∈ O(X|P |6r,Z) and b ∈ O(X|P |>r,Z)∞ ⊆ O(X|P |>r,Z). Then, a + b = h′′(a, b) = 0,
and the exact sequence 4 implies that a = −b ∈ AZ . Since b ∈ AZ and b ∈ O(X|P |>r,Z)∞,
we obtain that b = 0 and a = 0, i.e. h is injective.

By Lemma 4.2.9, the map s′ : O(X|P |=r,Z) → O(X|P |6r,Z), which to an element

f0 :=
∑d−1

i=0

∑
n∈Z dn,iT

nXi associates the element f> :=
∑d−1

i=0

∑
n6−1 dn,iT

nXi, is a
section of the isomorphism O(X|P |6r,Z) ⊕ O(X|P |>r,Z)∞ → O(X|P |=r,Z). Consequently,

O(X|P |>r,Z)∞ =
{
f ∈ O(X|P |=r,Z) : f =

∑d−1
i=0

∑
n6−1 an,iT

nXi
}
.
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Finally, since O(X|P |>r,Z) = AZ ⊕O(X|P |>r,Z)∞, we get:

O(X|P |>r,Z) =

{
f ∈ AZ{r−1T, rT−1}[X]/(P (X)− T ) : f = a0,0 +

d−1∑

i=0

∑

n>1

an,i
Tn

Xi

}
.

�

Remark 4.2.13. Let I be the ideal of AZ{rT−1} generated by T−1. Denote by I[X]d−1

the polynomials on X with coefficients in I and degree at most d− 1. Then, the k-affinoid
algebra B can be written as (AZ ⊕ I[X]d−1)/(P (X)T−1− 1), where multiplication is done
using Euclidian division, just like in B.

Notation 4.2.14. The morphism AZ{rT−1} → B, T−1 7→ 1
T is finite (it is the one

induced by AZ [T ] → AZ [T ], T 7→ P (T )), and 1, X, . . . , Xd−1 is a set of generators of
B as an AZ-module. Let | · ||P |>r,Z be the norm on B induced by the norm | · ||T |>1,Z

on AZ{rT−1}. By Theorem 1.3.9, B is complete with respect to this norm. As before,
by Proposition 4.2.10, we can take | · |> := | · ||P |>r,Z . Explicitely, for any f := a0,0 +∑d−1

i=0

∑
n>1

an,i

Tn Xi =
∑d−1

i=0 αiX
i ∈ B, |f ||P |>r,Z = maxi |αi||T |6r,Z .

Lemma 4.2.15. The restriction maps from AZ{r−1T}[X]/(P (X) − T ) and B to
AZ{r−1T, rT−1}[X]/(P (X) − T ) are isometries with respect to the corresponding norms
| · ||P |6r,Z , | · ||P |>r,Z and | · ||P |=r,Z .

Proof. Let f =
∑d−1

i=0

∑
n>0 an,iT

nXi ∈ AZ{r−1T}[X]/(P (X)−T ). Then, by Lemma 4.2.4,
|f ||P |=r,Z = maxi |

∑
n>0 an,iT

n||T |=r,Z = maxi |
∑

n>0 an,iT
n||T |6r,Z = |f ||P |6r,Z . The

statement for B is proven in the same way. �

The exact sequence 4 above gives rise to a surjection AZ{r−1T}[X]/(P (X)−T )⊕B ։

AZ{r−1T, rT−1}[X]/(P (X) − T ). Admissibility follows from Banach’s Open Mapping
Theorem if k is non-trivially valued (for a proof see [14]), and by a change of basis
followed by the Open Mapping Theorem if it is (see Proposition 1.3.8).

Lemma 4.2.16. For any c ∈ AZ{r−1T, rT−1}[X]/(P (X) − T ), there exist a ∈
AZ{r−1T}[X]/(P (X)− T ) and b ∈ B such that a+ b = c and max(|a||P |6r,Z , |b||P |>r,Z) =
|c||P |=r,Z .

Proof. There exists a unique degree < d polynomial c0(X) over AZ{r−1T, rT−1}
such that c = c0 in AZ{r−1T, rT−1}[X]/(P (X)− T ). Let c0 =

∑d−1
i=0

∑
n∈Z an,iT

nXi. Let
a and b be given as follows:

c0 =

(
d−1∑

i=0

∑

n>0

an,iT
nXi

)

︸ ︷︷ ︸
a

+

(
d−1∑

i=0

∑

n6−1

an,iT
nXi

)

︸ ︷︷ ︸
b

.

Clearly, a ∈ AZ{r−1T}[X]/(P (X)− T ) and b ∈ B.
Then,

|a||P |6r,Z = max
i
|
∑

n>0

an,iT
n||T |6r,Z = max

i
max
n∈N
|an,i|ρZrn

6 max
i

max
n∈Z
|an,i|ρZrn = |a||P |=r,Z ,

and the same is true for |b||P |>r,Z . Consequently, max(|a||P |6r,Z , |b||P |>r,Z) 6 |c||P |=r,Z .
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On the other hand, c = a + b, so |c||P |=r,Z 6 max(|a||P |=r,Z , |b||P |=r,Z), which, by
Lemma 4.2.15, is the same as max(|a||P |6r,Z , |b||P |>r,Z).

�

Let Z1 ⊆ Z be a connected affinoid neighborhood of x.

Lemma 4.2.17. The restriction morphism O(X|P |=r,Z) →֒ O(X|P |=r,Z1
) is a contrac-

tion with respect to the corresponding norms | · ||P |=r,Z and | · ||P |=r,Z1
.

Proof. Let the restriction morphism O(X|P |=r,Z) →֒ O(X|P |=r,Z1
) be denoted by

jP,1. Similarly to Lemma 4.2.9, the following diagram is commutative and jP,1(X) = Y
(remark that jT,1(T ) = T, jT,1(T

−1) = T−1, and the restriction of jT,1 to AZ is the
restriction morphism AZ → AZ1).

AZ{r−1T, rT−1}[X]/(P (X)− T ) AZ1{r−1T, rT−1}[Y ]/(P (Y )− T )

AZ{r−1T, rT−1} AZ1{r−1T, rT−1}

jP,1

jT,1

Let f =
∑d−1

i=0

∑
n∈Z an,iT

nXi ∈ O(X|P |=r,Z) = AZ{r−1T, rT−1}[X]/(P (X) − T ).
Then, |f ||P |=r,Z1

= maximaxn |an,i|ρZ1
rn. Since AZ and AZ1 are equipped with their re-

spective spectral norms, |an,i|ρZ1
6 |an,i|ρZ , implying |f ||P |=r,Z1

6 maximaxn |an,i|ρZrn =

|f ||P |=r,Z . �

Remark 4.2.18. By applying the above to the case when S is a point (i.e. if everything
is defined over a complete ultrametric field), it makes sense to speak of the affinoid domains

X|P |⊲⊳r,x of P1,an
H(x), and their norms | · ||P |⊲⊳r,x, for ⊲⊳∈ {6,=,>}, which satisfy all of the

properties we have proven so far.
Furthermore, if P is a unitary polynomial of degree d over AZ that is irreducible

over H(x), then there exists a “restriction morphism” (O(X|P |⊲⊳r,Z), | · ||P |⊲⊳r,Z) →
(O(X|P |⊲⊳r,x), |·||P |⊲⊳r,x) on the fiber (corresponding to base change), which is a contraction.

To see this, let f =
∑d−1

i=0

∑
n∈Z an,iT

nXi ∈ O(X|P |⊲⊳r,Z) (with certain an,i possibly 0 de-
pending on what ⊲⊳ is). Then, |f ||P |⊲⊳r,x = maximaxn |an,i|xrn 6 maximaxn |an,i|ρZrn =
|f ||P |⊲⊳r,Z .

4.2.3. The explicit norm comparison. The following is mainly a special case of
[59, 5.2] (or a rather direct consequence thereof), which we summarize here with an
emphasis on the results that interest us.

Let P be a unitary polynomial of degree d > 1 over Ox that is irreducible over H(x).
Also, let r ∈ R>0\

√
|H(x)×|. As before, let Z be any connected affinoid neighborhood of x

contained in Z ′ ∩ ZT ∩ ZP .
For t ∈ {x, Z} (we understand here that t can be x or any connected affinoid neigh-

borhood of x with the property we just mentioned), let (Rt, | · |r,t) be (AZ{r−1T, rT−1}, | ·
||T |=r,Z) if t = Z and (H(x){r−1T, rT−1}, | · ||T |=r,x) otherwise. Remark that (Rt, | · |r,t)
is an affinoid algebra over AZ if t = Z and over H(x) if t = x. As mentioned in Remark
4.2.18, there is a contraction RZ →֒ Rx induced from the restriction AZ →֒ Ox →֒ H(x).

For any s ∈ R>0, let | · |t,s denote the norm on Rt[X] induced from the Rt-affinoid
algebra Rt{s−1X}. Let | · |t,s,res denote the residue norm on Rt[X]/(P (X) − T ) induced
by | · |t,s.
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Lemma 4.2.19. For any t ∈ {x, Z}, there exists v′t > 0, such that for any s > v′t, the
norm | · |t,s,res is equivalent to | · ||P |=r,t. Explicitely, for any f ∈ Rt[X]/(P (X)− T ),

|f |t,s,res 6 |f ||P |=r,t 6 Ct max
16i6d−1

(s−i)|f |t,s,res,

where Ct = max(2, 2v′−dt ).
Fix a connected affinoid neighborhood Z0 ⊆ Z ′ ∩ ZT ∩ ZP of x. There exist v′, C ′ > 0

such that the statement is true for any s > v′ and any t ∈ {x, Z : Z ⊆ Z0}.
Proof. For the first part of the statement, see [59, Lemme 5.2.3]. The norm | · |t,s,res

is the analogue of what in loc.cit. is denoted by | · |U,w,res (here U is X|T |=r,t and s = w).
To see the last part of the statement, let us describe v′t explicitely. Let α0, . . . , αd−1 ∈ AZ

be the coefficients of P, and β0, . . . , βd−1 ∈ AZ [T ] ⊆ RZ the coefficients of P (X)− T (i.e.
β0 = α0 − T, βi = αi for 1 6 i 6 d− 1). By the proof of Théorème 5.2.1 of [59], we only

require that v′t > 0 satisfy
∑d−1

i=0 |βi|r,tv′t 6 1
2 . Set v′ := v′Z0

. Then,
∑d−1

i=0 |βi|r,Z0v
′ 6 1

2 .
By Lemma 4.2.17 and Remark 4.2.18, |βi|r,t 6 |βi|r,Z0 for any t ∈ {x, Z : Z ⊆ Z0}, so

d−1∑

i=0

|βi|r,tv′ 6
d−1∑

i=0

|βi|r,Z0v
′
6

1

2
.

Set C ′ = max(2, 2v′−d). The statement is true with this choice of v′ and C ′. �

Theorem 4.2.20. Let Z0 be as in the previous lemma. There exist m, s,C ′ > 0 such
that for any t ∈ {x, Z : Z ⊆ Z0} and any f ∈ Rt[X]/(P (X)− T ):

|f |ρ|P |=r,t
6 |f ||P |=r,t 6 C ′ max

16i6d−1
(s−i)

d2(2s)d
2−d

m
|f |ρ|P |=r,t

,

where ρ|P |=r,t is the spectral norm on Rt[X]/(P (X)− T ) = O(X|P |=r,t).

Proof. The first inequality is immediate from the definition of the spectral norm.
By the previous lemma, there exist v′ > 0 and C ′ > 0 such that for any s > v′ and any

t ∈ {x, Z : Z ⊆ Z0}, | · ||P |=r,t 6 C ′max16i6d−1(s
−i)| · |t,s,res. Thus, it suffices to compare

the norm | · |t,s,res to the spectral one. For a fixed t, this is done in [59, Proposition 5.2.7]
as follows.

Let Res(·, ·) denote the resultant of two polynomials (we assume the ambient ring
is unambiguously determined). Let us show that Res(P (X) − T, P ′(X)) 6= 0 in AZ0 [T ].
Otherwise, the polynomials P (X)−T and P ′(X) would have a common divisor of positive
degree, i.e. there would existQ,R,R1 ∈ AZ0 [T ][X], with degXQ > 0 such that P (X)−T =
Q(X,T )R(X,T ) and P ′(X) = Q(T,X)R1(T,X). The second expression implies that the
degree in T of Q and R1 is 0, meaning Q,R1 ∈ AZ0 [X]. Consequently, P (X) − T =
Q(X)R(X,T ), which is impossible if degX Q > 0. Finally, this means that Res(P (X) −
T, P ′(X)) 6= 0 in AZ0 [T ]. As the resultant doesn’t depend on the ring in which it is
computed, Res(P (X)− T, P ′(X)) 6= 0 in Rt, so |Res(P (X)− T, P ′(X))|r,t 6= 0 for any t.

Let α0, β1, . . . , βd−1 ∈ AZ0 be the coefficients of P (X), and β0 := α0 − T, β1, . . . , βd−1 ∈
AZ0 [T ] ⊆ RZ0 the coefficients of P (X)−T . Set v′′t := max16i6d−1(|βi|

1
d−i

r,t ). Set vt = max(v′, v′′t ).

Let mt > 0 be such that |Res(P (X)− T, P ′(X))|r,t > mt (such an mt exists by the para-
graph above).
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Let s > vt. Then, for any f ∈ Rt[X]/(P (X)− T ) (see [59, Proposition 5.2.7]):

|f |t,s,res 6
d2(2s)d

2−d

mt
|f |ρ|P |=r,t

.

By Lemma 4.2.17 and Remark 4.2.18, for any t ∈ {x, Z : Z ⊆ Z0}, v′′t 6 v′′Z0
. Set

v = max(v′, v′′Z0
), so that for any t, vt 6 v.

Set m = mx. Note that for any t,

0 < m < |Res(P (X)− T, P ′(X))|r,x 6 |Res(P (X)− T, P ′(X))|r,t.
Consequently, for any t ∈ {x, Z : Z ⊆ Z0} and any s > v,

|f |t,s,res 6
d2(2s)d

2−d

m
|f |ρ|P |=r,t

.

From Lemma 4.2.19, |f ||P |=r,t 6 C ′max16i6d−1(s
−i)|f |t,s,res for all t, so finally

|f ||P |=r,t 6 C ′ max
16i6d−1

(s−i)
d2(2s)d

2−d

m
|f |ρ|P |=r,t

,

for all f ∈ Rt[X]/(P (X)− T ) and all t ∈ {x, Z : Z ⊆ Z0}. �

Remark 4.2.21. The previous theorem gives an explicit comparison between the norms
| · ||P |=r,t and ρ|P |=r,t with a constant that is valid for all t ∈ {x, Z : Z ⊆ Z0}. By
Lemma 4.2.2, in the case of degree one polynomials, this constant is simply 1.

Set C = max

(
1, C ′max16i6d−1(s

−i)d
2(2s)d

2−d

m

)
. We have shown the following:

Corollary 4.2.22. Let P (T ) be a unitary polynomial in Ox[T ] irreducible over H(x)
and r ∈ R>0\

√
|H(x)×|. There exists a connected affinoid neighborhood Z0 of x in S such

that for any t ∈ {x, Z : Z ⊆ Z0 is a connected affinoid neighborhood of x},
| · |ρ|P |=r,t

6 | · ||P |=r,t 6 C| · |ρ|P |=r,t
.

Remark 4.2.23. From now on, whenever we consider spaces of the form X|P |⊲⊳r,t,
t ∈ {x, Z}, ⊲⊳∈ {6,=,>}, we will always assume its corresponding affinoid algebra to be
endowed with the norm | · ||P |⊲⊳r,t defined in Notation 4.2.11, resp. Notation 4.2.14.

4.2.4. A useful proposition. Recall the notion of complete residue field of a point
(Definition 1.1.33, Lemma 1.4.22). We will need the following:

Lemma 4.2.24. Let Y1 = M(A) be a k-affinoid space. Let Y2 = M(B) be a relative
affinoid space over Y1 and φ : Y2 → Y1 the corresponding morphism. Let y ∈ Y1 and
set Fy := φ−1(y), which we identify with the H(y)-analytic spaceM(B⊗̂AH(y)). For any
z ∈ Fy, HM(B)(z) = HFy(z), where HN (z) is the completed residue field of z when regarded
as a point of N , N ∈ {M(B), Fy}.

Proof. Considering the bounded embedding H(y) →֒ HM(B)(z), we have the follow-
ing commutative diagram where all the maps are bounded:
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HM(B)(z)

B B⊗̂AH(y)

HFy(z)

α

β

The proof is based on the identification of Fy toM(B⊗̂AH(x)). Remark that the map α

induces on B⊗̂AH(y) the semi-norm determined by z, implying there is a bounded em-
bedding HFy(z) →֒ HM(B)(z) on the diagram above. Similarly, since the map β induces
on B the semi-norm determined by z, we obtain that HFy(z) = HM(B)(z). �

Corollary 4.2.25. With the same notation as in Lemma 4.2.24 and with Y2 integral,
if Oy, OFy ,z are fields and z is a smooth point of Y2, then OY2,z is a field.

Proof. Suppose thatOY2,z is not a field. Then, its maximal ideal is non-zero, meaning
there exists a non-zero f ∈ OY2,z such that f(z) = 0 in H(z). As we saw in Lemma 4.2.24,
this field is the same regardless of which ambient space we consider z in. In particular, this
means that the image fy of f in OFy ,z satisfies fy(z) = 0 in H(z). Since OFy ,z was assumed
to be a field, this means that fy = 0 in OFy ,z so there exists a neighborhood of z in Fy
where f = 0. By [18, Proposition 6.3.1], which is where the smoothness assumption is
needed, this means that there exists a neighborhood of z in Y2 on which |f | = 0, implying
f = 0, which is in contradiction with the assumptions we made. Consequently, OY2,z is a
field. �

Applied to our setting, this means that for any type 3 point η of P1,an
H(x), the stalk

OP1,an
S ,η

is a field. We aim to show the same for the stalks OX|P |=r,Z ,η. The corollary above

does not apply, since the smoothness condition is no longer satisfied.

Remark 4.2.26. Recall Notation 4.1.5. Let P be a unitaty polynomial in Ox[T ] irre-
ducible over H(x), and r ∈ R>0\

√
|H(x)×|. Let η := ηP,r ∈ P1,an

H(x). As seen in Lemma 4.2.8

(cf. also Remark 4.2.18), H(x){r−1T, rT−1}[X]/(P (X)−T ) is isomorphic to OP1,an
H(x)

({η}).
By Lemma 3.1.1, OP1,an

H(x)
({η}) = H(η). By Proposition 4.2.10 (see also Remark 4.2.18),

| · ||P |=r,x is equivalent to the norm | · |η on H(η).
Following Notation 4.2.7, let Z0 ⊆ Z ′ ∩ZT ∩ZP be a connected affinoid neighborhood

of x.
Let us consider the following commutative diagram for any connected affinoid neigh-

borhood Z ⊆ Z0 of x:

(5)

AZ{r−1T, rT−1} AZ{r−1T, rT−1}[X]/(P (X)− T )

H(x){r−1T, rT−1} H(x){r−1T, rT−1}[Y ]/(P (Y )− T )

finite

⊗̂AZ
H(x) ⊗̂AZ

H(x)

finite



4.3. PATCHING ON THE RELATIVE PROJECTIVE LINE 117

The horizontal arrows are induced by the finite morphism T 7→ P (T ). The vertical arrows
correspond to taking the restriction of analytic functions on X|T |=r,Z , resp. X|P |=r,Z , to
the fiber Fx. In particular, remark that X 7→ Y, so we will use the same variable X.

We start by showing an auxiliary result.

Lemma 4.2.27. The family {X|P |=r,Z : Z ⊆ Z0} (where Z is always considered to be a
connected affinoid neighborhood of x) forms a basis of neighborhoods of η in X|P |=r,Z0

.

Proof. Let U be an open neighborhood of η in X|P |=r,Z0
. There exists a connected

affinoid neighborhood Z ⊆ Z0 of x such that X|P |=r,Z ⊆ U. To see this, remark that

X|P |=r,Z0
\U is a compact subset of P1,an

Z0
, so π(X|P |=r,Z0

\U) is a compact subset of Z0. Fur-

thermore, x 6∈ π(X|P |=r,Z0
\U), so there exists a connected affinoid neighborhood Z ⊆ Z0 of

x such that Z∩π(X|P |=r,Z0
\U) = ∅. Consequently, X|P |=r,Z\U = π−1(Z)∩(X|P |=r,Z0

\U) =
∅, so X|P |=r,Z ⊆ U. �

Proposition 4.2.28. The local ring OX|P |=r,Z0
,η is a field.

Proof. Suppose that OX|P |=r,Z0
,η is not a field. Then, its maximal ideal is non-zero,

so there exists f ∈ OX|P |=r,Z0
,η such that f 6= 0 and f(η) = 0 in H(η) (i.e. |f |η = 0).

By Lemma 4.2.27, there exists a connected affinoid neighborhood Z ⊆ Z0 of x such that
f ∈ O(X|P |=r,Z).

By Lemma 4.2.24, evaluating f ∈ O(X|P |=r,Z) at the point η ∈ O(X|P |=r,Z) is the
same as evaluating the restriction of f to the fiber (see the vertical map on the right of
the diagram 5 above) at the point η on the fiber. Consequently, since the norm | · |η
is equivalent to | · ||P |=r,x (see Proposition 4.2.10 and Remark 4.2.18), we obtain that
|f ||P |=r,x = 0.

Let f =
∑d−1

i=0

∑
n∈Z an,iT

nXi ∈ O(X|P |=r,Z). Then, |f ||P |=r,x = maximaxn |an,i|xrn.
If |f ||P |=r,x = 0, this implies that for any n and any i, |an,i|x = 0, and since Ox is a field,
we obtain an,i = 0 in AZ . Consequently, f = 0 over X|P |=r,Z .

By Lemma 4.2.27, this means that f = 0 in OX|P |=r,Z0
,η, contradiction. Hence, the

local ring OX|P |=r,Z0
,η is a field. �

4.3. Patching on the Relative Projective Line

The goal of this section is to prove a relative analogue of Proposition 3.2.3. As before,
let k be a complete ultrametric field.

4.3.1. A few preliminary results. Recall Notation 4.1.5.

Remark 4.3.1. By Theorem 1.7.8, for any integral k-affinoid space Z, M (P1,an
Z ) =

M (Z)(T ).

Lemma 4.3.2. Let X be an integral k-affinoid space with corresponding affinoid alge-
bra RX . Set FX = M (X). Let z ∈ X be such that Oz is a field.

The function | · |FX
:= max(| · |y : y ∈ Γ(X) ∪ {z}) defines a submultiplicative norm

on FX which when restricted to RX gives the spectral norm ρX .
Let X ′ be an integral k-affinoid space such that X is a rational domain of X ′. Set

FX′ = M (X ′). The field FX′ is dense in (FX , | · |FX
).

Proof. Remark that z (sinceOz is a field) and all y ∈ Γ(X) (because of Lemma 1.4.31)
determine multiplicative norms on RX , and hence also on FX .
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As a consequence, | · |FX
is well-defined. That it is a submultiplicative norm on FX

extending ρX follows from the fact that | · |ρX = max(| · |y : y ∈ Γ(X)). Since X is reduced,
ρX is equivalent to the norm on the affinoid algebra RX (Proposition 1.3.15).

By Lemma 1.4.16, for SX := {g ∈ O(X ′) : |g|x 6= 0 for all x ∈ X}, the set S−1
X O(X ′) is

dense in O(X) = RX . As SX ⊆ O(X ′)\{0}, by Lemma 1.7.6, S−1
X O(X ′) ⊆M (X ′) = FX′ ,

so RX ∩ FX′ ⊆ FX is a dense subset of RX .
Let f = u

v ∈ FX , where u, v ∈ RX . Then, by the above, u, v can be approximated
by some u0, v0 ∈ RX ∩ FX′ . We will show that u0

v0
approximates u

v in FX , implying (since
u0
v0
∈ FX′) that FX′ is dense in FX .

Since both |u− u0|ρX and |v − v0|ρX may be assumed to be arbitrarily small, we may
suppose that |u|y = |u0|y and |v0|y = |v|y for all y ∈ Γ(X) ∪ {z}. Then, | 1v |FX

= | 1v0 |FX
.

Finally, |f − u0
v0
|FX

6 |uv0 − u0v|FX
· | 1v |2FX

= |uv0 − u0v|RX
· | 1v |2FX

→ 0 when u0 → u and
v0 → v in RX . �

The following is an example of Setting 2.1.5 which we will be working with.

Proposition 4.3.3. Let U, V be connected affinoid domains of P1,an
H(x) containing only

type 3 points in their boundaries such that U ∩ V is a single type 3 point {η}. Let Z be
a connected affinoid neighborhood of x in S such that there exist Z-thickenings UZ , VZ
of U, V, respectively. Assume that Z is such that the statement of Proposition 4.1.16 is
satisfied. Then, the conditions of Setting 2.1.5 are satisfied for: F := M (Z)(T ), R0 :=
O(UZ ∩ VZ), R1 = A1 := O(UZ), R2 = A2 := O(VZ), and Fi := Frac Ri, i = 0, 1, 2.

Proof. The field F is clearly infinite and embeds in both F1 and F2. Also, the rings
Ri, i = 0, 1, 2, are integral domains containing k and endowed with a non-Archimedean
submultiplicative norm that extends that of k and is k-linear. The morphisms Rj →֒ R0,
j = 1, 2, are bounded seeing as they are restriction morphisms.

Remark that regardless of whether UZ ∪ VZ is an affinoid domain or all of P1,an
Z ,

H1(UZ∪VZ ,O) = 0. Consequently, as usual, there exists a surjective admissible morphism
R1 ⊕R2 ։ R0. �

Notation 4.3.4. In addition to Notation 4.1.5, let G be a rational linear algebraic
group defined over Ox(T ). Let H/Ox(T ) be a variety on which G acts strongly transitively
(Definition 3.2.1).

Seeing as Ox(T ) = lim−→Z
M (Z)(T ), where the direct limit is taken with respect to

connected affinoid neighborhoods of x, there exists such a ZG for which G is a rational
linear algebraic group defined over M (ZG)(T ). The same remains true for any connected
affinoid neighborhood Z ⊆ ZG of x.

4.3.2. Patching over P1,an. We now have all the necessary elements to show that
patching is possible over P1,an

Z for a well-enough chosen affinoid neighborhood Z of x (both
in the sense of Chapter 2 and of Proposition 3.2.2).

For the rest of this section, we assume that k is a complete non-trivially valued ultra-
metric field. Recall Notation 4.1.5.

Remark 4.3.5. In order for the results of Section 4.2 to be applicable, from now on,
whenever taking a thickening of an affinoid domain with respect to a certain writing of
its boundary points (see Definition 4.1.14), we will always assume that the corresponding
polynomials were chosen to be unitary (since Ox is a field, this can be done without causing
any restrictions to our general setting).
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Setting 4.3.6. Let η be a type 3 point of P1,an
H(x). There exists a unitary polynomial

P ∈ Ox[T ] that is irreducible over H(x) and a real number r ∈ R>0\
√
|H(x)×| such that

η = ηP,r. Let Z0 be a connected affinoid neighborhood of x in S such that P ∈ O(Z0)[T ]

and the Z0-thickenings of {u ∈ P1,an
H(x) : |T |u ⊲⊳ r}, {u ∈ P1,an

H(x) : |P |u ⊲⊳ r}, ⊲⊳∈ {6,>}, are
connected. Let Z ⊆ Z0 be any connected affinoid neighborhood of x.

As before, set X|T |⊲⊳r,Z := {u ∈ P1,an
Z : |T |u ⊲⊳ r}, and X|P |⊲⊳r,Z := {u ∈ P1,an

Z : |P |u ⊲⊳
r}, where ⊲⊳∈ {6,=,>}. Set (R0,Z , | · |R0,Z

) := (O(X|P |=r,Z), | · ||P |=r,Z), (R1,Z , | · |R1,Z
) :=

(O(X|P |6r,Z), |·||P |6r,Z) and (R2,Z , |·|R2,Z
) := (O(X|P |>r,Z), |·||P |>r,Z) (see Remark 4.2.23).

Also, set Fi,Z := Frac(R0,i), i = 0, 1, 2, and F := M (Z)(T ).
Assume that Z0 is chosen so that all of the results of Section 4.2 are satisfied. Moreover,

assume Z0 ⊆ ZG (see Notation 4.3.4).

Throughout this subsection, suppose we are in the situation of Setting 4.3.6.

Parameter 1. SinceH1(P1,an
Z ,O) = 0, there is an admissible surjectionR1,Z ⊕R2,Z ։ R0,Z .

Furthermore, by Lemmas 4.2.5 and 4.2.16, for any c ∈ R0,Z , there exist a ∈ R1,Z and

b ∈ R2,Z such that 1
2 max(|a|R1,Z

, |b|R2,Z
) < |c|R0,Z

. Set d = 1
2 .

As mentioned in Remark 2.1.8, since G is a rational linear algebraic group over F :=
M (Z0)(T ), by definition there exists a Zariski open S′ of G which is isomorphic (via
a morphism ϕ) to an open S′′ of some AnF . If we denote by m the multiplication on
G, this leads to the following commutative diagram (which is defined over F ), where

S̃′ := m−1(S′)∩ (S′×S′) is an open of G×G, S̃′′ is an open of A2n
F , the vertical maps are

isomorphisms, and f is the map induced from m:

(6)

S̃′ S′

S̃′′ S′′

(ϕ× ϕ)
|S̃′

m
|S̃′

f

ϕ

Furthermore, by translating if necessary, we may assume that the identity I of G is in

S′ and that ϕ(I) = 0. Then, 0 ∈ S̃′′, and f is a rational morphism A2n
F 99K A2n

F defined

over the open S̃′′. In particular, this means that f = (f1, . . . , fn), where fi =
gi
hi

for some

gi, hi ∈ F [S1, . . . , Sn, T1, . . . , Tn](S1,...,Sn,T1,...,Tn) =: F [S, T ](S,T ), i = 1, 2, . . . , n. Remark

also that f(x, 0) = f(0, x) = x whenever (0, x), (x, 0) ∈ S̃′′.

Parameter 2. Let us look at the diagram above over the field F0,Z0 . We may suppose
that gi, hi ∈ R0,Z0 [S, T ] for all i. Since hi(0) 6= 0 and OX|P |=r,Z0

,η is a field, |hi(0)|η 6= 0.

Consequently, by Lemma 4.2.27, there exists a connected affinoid neighborhood Z1 ⊆ Z0

of x such that |hi(0)|u 6= 0 for all u ∈ X|P |=r,Z1
, i. By Lemma 1.1.39, hi(0) ∈ R×

0,Z1
for all

i. This implies that hi(0) ∈ R×
0,Z for all connected affinoid neighborhoods Z ⊆ Z1 of x.

By Lemmas 2.1.2 and 2.1.3, there exists M > 1 such that

fi = Si + Ti +
∑

|(l,m)|>2

cil,mS
lTm ∈ R0,Z1 [[S, T ]],
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and |cil,m|R0,Z1
6M |(l,m)| for all i, and all (l,m) ∈ N2n such that |(l,m)| > 2, where |(l,m)|

is the sum of the coordinates of (l,m).
By Lemma 4.2.17 (see also Corollary 4.2.3), for any connected affinoid neighborhood

Z ⊆ Z1 of x, fi = Si+Ti+
∑

|(l,m)|>2 c
i
l,mS

lTm ∈ R0,Z [[S, T ]], and |cil,m|R0,Z
6 |cil,m|R0,Z1

6M |(l,m)|

for all i and all (l,m) ∈ N2n such that |(l,m)| > 2,.

Parameter 3. Since S̃′′ is a Zariski open of A2n
F and F →֒ H(η), we have that

S̃′′(H(η)) is a Zariski open of H(η)2n. Since the topology induced by the norm on H(η)
is finer than the Zariski one and 0 ∈ S̃′′, there exists δ > 0 such that the open disc
DH(η)2n(0, δ) in H(η)2n (with respect to the max-norm), centered at 0 and of radius δ, is

contained in S̃′′(H(η)) ⊆ S̃′′.
Then, for any connected affinoid neighborhood Z ⊆ Z0 of x, the open discDR2n

0,Z
(0, δ) in

R2n
0,Z (with respect to the max-norm), centered at 0 and of radius δ, satisfies: DR2n

0,Z
(0, δ) ⊆

DH(η)2n(0, δ) ⊆ S̃′′. This is clear seeing as for any a ∈ R0,Z , |a|η 6 |a|ρX|P |=r,Z
6 |a|R0,Z

,

where ρX|P |=r,Z
is the spectral norm on X|P |=r,Z .

Remark 4.3.7. Putting Parameters 1, 2, 3 together, let ε > 0 be such that

ε < min
(

d
2M ,

d3

M4 ,
dδ
2

)
. Then, all of the conditions of Theorem 2.1.10 are satisfied for

R0 := R0,Z , A1 := R1,Z , A2 := R2,Z , F0 = Frac R0. where Z is any connected affinoid
neighborhood of x contained in Z1, with Z1 as in Parameter 2.

Proposition 4.3.8. Let g ∈ G(F0,Z1) (with Z1 as in Parameter 2). Suppose g ∈ S′

(see diagram 6), and |ϕ(g)|η < ε
C , where C is the constant obtained in Corollary 4.2.22

corresponding to the polynomial P . Then, there exists a connected affinoid neighborhood
Z ⊆ Z1 of x, and gi ∈ G(Fi,Z), i = 1, 2, such that g = g1 · g2 in G(F0,Z).

Proof. Since ϕ(g) ∈ AnF (F0,Z1) = Fn0,Z1
, there exist αi, βi ∈ R0,Z1 such that ϕ(g) = (αi/βi)

n
i=1.

Since βi 6= 0, by Proposition 4.2.28, |βi|η 6= 0. Thus, by Lemma 4.2.27, there exists a con-
nected affinoid neighborhood Z ′ ⊆ Z1 of x such that |βi|u 6= 0 for all u ∈ X|P |=r,Z1

and

all i. By Lemma 1.1.39, βi ∈ R×
0,Z′ for all i. In particular, this means that ϕ(g) ∈ Rn0,Z′ .

Remark that for any connected affinoid neighborhood Z ⊆ Z ′ of x, ϕ(g) ∈ Rn0,Z .
Since |ϕ(g)|η < ε/C, there exists a connected affinoid neighborhood Z ⊆ Z ′ of x

such that |ϕ(g)|u < ε/C for all u ∈ X|P |=r,Z . Consequently, |ϕ(g)|ρX|P |=r,Z
< ε/C,

where ρX|P |=r,Z
is the spectral norm on X|P |=r,Z . By Corollary 4.2.22, this means that

|ϕ(g)|R0,Z
< ε.

By Remark 4.3.7, the conditions of Theorem 2.1.10 are satisfied, meaning there exist
gi ∈ G(Fi,Z), i = 1, 2, such that g = g1 · g2 in G(F0,Z). �

Remark that in the proposition above, we can in the same way show that there exist
g′i ∈ G(Fi,Z), i = 1, 2, such that g = g′2 · g′1 in G(F0,Z).

We recall the following from Chapter 2:

Convention 4.3.9. Let us fix once and for all an embedding of G into AmF for some
m ∈ N. Let K/F be a field extension, and M ⊆ K. Set GK = G ×F K. Let U be a
Zariski open subset of GK . Seeing as G is affine, there is a notion of “M -points” of U.
More precisely, these are the points in U(K) whose coordinates are in M . Let us denote
this set by U(M).
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Proposition 4.3.10. With the same notation as in Proposition 4.3.8, let g ∈ G(F0,Z1).
Suppose g ∈ S′. Then, there exists a connected affinoid neighborhood Z ⊆ Z1 of x, and
gi ∈ G(Fi,Z), i = 1, 2, such that g = g1 · g2 in G(F0,Z).

Proof. We will reduce to the first case (i.e. Proposition 4.3.8). Recall that the fields
F0,Z1 can be endowed with a submultiplicative norm | · |F0,Z1

as in Lemma 4.3.2, where
the role of the point z is played by η here.

Let ψ : gS′∩S′ → AnF0,Z1
be the morphism given by h 7→ ϕ(g−1h). Remark 0 ∈ Im(ψ).

The preimage ψ−1(DFn
0,Z1

(0, ε/C)) is open in (gS′ ∩ S′)(F0,Z1).

Since X|P |=r,Z1
is a rational domain in X|P |6r,Z1

, by Lemma 4.3.2, F1,Z1 is dense in
F0,Z1 , so (gS′ ∩S′)(F1,Z1) is dense in (gS′ ∩S′)(F0,Z1) (see Convention 4.3.9). This means
there exists h ∈ (gS′ ∩ S′)(F1,Z1) ⊆ G(F1,Z1) such that |ϕ(g−1h)|F0,Z1

< ε/C, implying

that |ϕ(g−1h)|η < ε/C.
By Proposition 4.3.8, there exists a connected affinoid neighborhood Z ⊆ Z1 of x

and g′1 ∈ G(F1,Z), g
′
2 ∈ G(F2,Z), such that g−1h = g′2 · g′1 in G(F0,Z). Hence, there exist

g1 := hg′−1
1 ∈ G(F1,Z) and g2 := g′−1

2 ∈ G(F2,Z) such that g = g1 · g2 in G(F0,Z). �

Theorem 4.3.11. Recall Setting 4.3.6. For any g ∈ G(F0,Z0), there exists a connected
affinoid neighborhood Z ⊆ Z0 of x, and gi ∈ G(Fi,Z), i = 1, 2, such that g = g1 · g2 in
G(F0,Z).

Proof. Recall the construction of the connected affinoid neighborhood Z1 ⊆ Z0 of x
in Parameter 2. By [34, Lemma 3.1], there exists a Zariski open S′

1 of G isomorphic to an
open S′′

1 of AnF such that g ∈ S′
1(F0,Z1). Since F is infinite and S′

1 is isomorphic to an open
of some AnF , there exists α ∈ S′

1(F ). Set S1 := α−1S′
1. Then, I ∈ S1, and S1 is isomorphic

to an open subset of AnF . By translation, we may assume that this isomorphism sends

I to 0 ∈ A(F ). Set g′ := α−1g ∈ S1(F0,Z1). Then, by Proposition 4.3.10, there exists a
connected affinoid neighborhood Z ⊆ Z1 of x, and g′1 ∈ G(F1,Z), g2 ∈ G(F2,Z), such that
g′ = g′1 · g2 in G(F0,Z). Consequently, for g1 := α · g′1 ∈ G(F1,Z), we obtain that g = g1 · g2
in G(F0,Z). �

As a consequence, the following, which is the main tool for showing a local-global
principle over the relative P1,an, can be shown.

Recall that in this chapter we are working in Setting 4.1.5.

Proposition 4.3.12. Let U, V be connected affinoid domains in P1,an
H(x) containing only

type 3 points in their boundaries, such that U ∩ V is a single type 3 point {ηP,r}, with
P ∈ Ox[T ] irreducible over H(x) and r ∈ R>0\

√
|H(x)×|. Set W := U ∩ V .

Let G be as in Notation 4.3.4, and Z0 as in Setting 4.3.6. Let Z ′ ⊆ Z0 be a connected
affinoid neighborhood of x for which the Z ′-thickenings UZ′ , VZ′ ,WZ′ exist, are connected,
and Proposition 4.1.16 is satisfied.

Then, for any g ∈ G(M (WZ′)) (resp. g ∈ G(MP1,an

Z′ ,η
)), there exists a connected

affinoid neighborhood Z ⊆ Z ′ of x, and gU ∈ G(M (UZ)), gV ∈ G(M (VZ)), such that
g = gU · gV in G(M (WZ)) = G(M (UZ ∩ VZ)).

Proof. Remark that for any g ∈ G(MP1,an

Z′ ,η
), by Lemma 4.1.19, there exists a con-

nected affinoid neighborhood Z ⊆ Z ′ of x, such that g ∈ G(M (WZ)). Thus, it suffices to
show the result for any g ∈ G(M (WZ′)).
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By Theorem 4.3.11, there exists a connected affinoid neighborhood Z ⊆ Z ′ of x, and
gi ∈ G(Fi,Z), i = 1, 2, such that g = g1 ·g2 in G(M (WZ)) (once again, recall Setting 4.3.6).
Set ∂U = {ηP,r, ηPj ,rj , j = 1, 2, . . . , n}, where Pj ∈ Ox[T ] are unitary polynomials that are

irreducible over H(x), and rj ∈ R>0\
√
|H(x)×|, for all j.

Seeing as U = {u ∈ P1,an
H(x) : |P |u ⊲⊳ r, |Pj |u ⊲⊳j rj , j}, where ⊲⊳, ⊲⊳j∈ {6,>} for all

j (Proposition 4.1.1), UZ ⊆ {u ∈ P1,an
Z : |P |u ⊲⊳ r}. Without loss of generality, suppose

that ⊲⊳ is 6. Then, UZ ⊆ {u ∈ P1,an
Z : |P |u 6 r} and VZ ⊆ {u ∈ P1,an

Z : |P |u > r} (see
Lemma 4.1.4).

Consequently, for gU := g1|UZ
∈ G(M (UZ)) and gV := g2|Z ∈ G(M (VZ)), g = gU · gV

in G(M (WZ)) = G(M (UZ ∩ VZ)). �

4.3.3. Patching over relative nice covers. Proposition 4.3.12 is enough in itself
to directly show a local-global principle over the relative projective line. However, just like
in the one-dimensional case, when showing a local-global principle for relative projective
curves, we use arguments that make it possible to descend to the line. The goal of this
part is to present the necessary arguments to make this descent.

Recall Notation 4.1.5.

Theorem 4.3.13. Let Ux be a nice cover of P1,an
H(x), and TUx a parity function corre-

sponding to Ux (see Definition 3.1.16). Let SUx be the set of intersection points of the
different elements of Ux. Let Z0 be a connected affinoid neighborhood of x such that the
Z0-thickening UZ0 of Ux exists and is a Z0-relative nice cover of P1,an

Z0
.

Let G/M (Z0)(T ) be a rational linear algebraic group. Then, for any element (gs)s∈SUx

of
∏
s∈SUx

G

(
MP1,an

Z0
,s

)
, there exists a connected affinoid neighborhood Z ⊆ Z0 of x,

and (gUZ
)U∈Ux ∈

∏
U∈Ux

G(M (UZ)), satisfying: for any s ∈ SUx , there exist exactly two

Us, Vs ∈ Ux containing s, gs ∈ G(M (Us,Z∩Vs,Z)), and if TUx(Us) = 0, then gs = gUs,Z
·g−1
Vs,Z

in G(M (Us,Z ∩ Vs,Z)).
Proof. Set Ux = {U1, U2, . . . , Un}. If n = 1 there is nothing to prove. Otherwise,

using induction we will show the following statement for all i such that 2 6 i 6 n:

Statement 1. Let I ⊆ {1, 2, . . . , n} be such that |I| = i and
⋃
h∈I Uh is con-

nected. Let SI (⊆ SUx) denote the set of intersection points of the different elements
of {Uh}h∈I . Let Z ′ ⊆ Z0 be any connected affinoid neighborhood of x. Then, for any
(gs)s∈SI

∈ ∏s∈SI
G(MP1,an

Z′ ,s
), there exists a connected affinoid neighborhood ZI ⊆ Z ′ of

x and (gUh,ZI
)h∈I ∈

∏
h∈I G(M (Uh,ZI

)), satisfying: for any s ∈ SI there exist exactly two
elements Us, Vs ∈ {Uh}h∈I containing s, gs ∈ G(M (Us,ZI

∩ Vs,ZI
)), and if TUx(Us) = 0,

then gs = gUs,ZI
·g−1
Vs,ZI

in G(M (Us,ZI
∩Vs,ZI

)). The same is true for any connected affinoid

neighborhood Z ′′ ⊆ ZI of x.

For i = 2, this is Proposition 4.3.12. Suppose it is true for some i − 1, 2 < i < n,
and let us show that it is true for i. Without loss of generality, we may assume that
I = {1, 2, . . . , i}, i.e. that

⋃i
h=1 Uh is connected. By Lemma 3.1.18, there exist i − 1

elements of {Uh}ih=1 whose union is connected. Without loss of generality, let us assume

that
⋃i−1
h=1 Uh is connected. Set I ′ = I\{i}.

Let us start by making a comparison between SI and SI′ . Set Vi−1 =
⋃i−1
h=1 Uh. This is

a connected affinoid domain containing only type 3 points in its boundary. Since Vi−1, Ui,
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and Vi−1 ∪ Ui are connected subsets of P1,an
H(x), Vi−1 ∩ Ui is non-empty and connected (see

Lemma 1.8.20). Furthermore, since Vi−1 ∩ Ui ⊆ SUx (i.e. it is contained in a finite set of
type 3 points), Vi−1∩Ui is a single type 3 point {η}. Hence, there exists h0 ∈ I ′ such that
Uh0 ∩ Ui 6= ∅. By Lemma 3.1.9, such an h0 is unique. Consequently, SI = SI′ ∪ {η}.

For some Z ′ ⊆ Z0 as in Statement 1, let (gs)s∈SI
∈ ∏s∈SI

G(MP1,an

Z′ ,s
). From the

induction hypothesis, for (gs)s∈SI′
∈ ∏s∈SI′

G(MP1,an

Z′ ,s
), there exist a connected affinoid

neighborhood ZI′ ⊆ Z ′ of x and (gUh,Z
I′
)h∈I′ ∈

∏
h∈I′ G(M (Uh,ZI′

)), satisfying: for any

s ∈ SI′ , there exist exactly two Us, Vs ∈ {Uh}h∈I′ containing s, gs ∈ G(M (Us,ZI′
∩Vs,ZI′

)),

and if TUx(Us) = 0, gs = gUs,Z
I′
· g−1
Vs,Z

I′
in G(M (Us,ZI′

∩ Vs,ZI′
)).

Remark that the affinoid domains Vi−1 and Ui satisfy the properties of Proposi-
tion 4.3.12 with Vi−1 ∩ Ui = {η}. As seen above, there exist exactly two elements of
{Uh}h∈I containing η. Also, since gη ∈ G(MP1,an

Z′ ,η
), by Lemma 4.1.19, we may assume

that gη ∈ G(M (Vi−1,Z′ ∩ Ui,Z′)). Hence, we may also assume that for any connected
affinoid domain Z ′′′ ⊆ Z ′ of x, gη ∈ G(M (Vi−1,Z′′′ ∩ Ui,Z′′′)).

• Suppose TUx(Ui) = 0. By Proposition 4.3.12, there exists a connected affinoid
neighborhood ZI ⊆ ZI′ ⊆ Z ′ of x, and a ∈ G(M (Ui,ZI

)), b ∈ G(M (Vi−1,ZI
)),

such that gη · gUi−1,ZI
= a · b in G(M (Ui,ZI

∩ Vi−1,ZI
)). For any h ∈ I ′, set

g′Uh,ZI
:= gUh,ZI

· b−1 in G(M (Uh,ZI
)). Also, set g′Ui,ZI

:= a in G(M (Ui,ZI
)).

• Suppose TUx(Ui) = 1. By Proposition 4.3.12, there exists a connected affinoid
neighborhood ZI ⊆ ZI′ ⊆ Z ′ of x and c ∈ G(M (Vi−1,ZI

)), d ∈ G(M (Ui,ZI
)),

such that g−1
Ui−1,ZI

· gη = c · d in G(M (Vi−1,ZI
∩ Ui,ZI

)). For any h ∈ I ′, set

g′Uh,ZI
:= gUh,ZI

· c in G(M (Uh,ZI
)). Also, set g′Ui,ZI

:= d−1 in G(M (Ui,ZI
)).

The family (g′Uh,ZI
)h∈I ∈

∏
h∈I G(M (Uh,ZI

)) satisfies the conditions of Statement 1 for

the given (gs)s∈SI
. The last part of Statement 1 is obtained directly by taking restrictions

of g′Uh,ZI
to G(M (Uh,Z′′)), h ∈ I.

In particular, for i = n, we obtain the result that was announced. �

4.4. Relative proper curves

Throughout this section, let k denote a complete ultrametric field. Let us fix and
study the following framework.

Setting 4.4.1. Let S,C be good k-analytic spaces such that S is normal. Suppose
there exists a morphism π : C → S that makes C a proper flat relative analytic curve (i.e.
all the fibers are curves) over S. Assume π is surjective. Let x ∈ S be such that the stalk
Ox is a field.

Assume there exists a connected affinoid neighborhood Z0 of x such that:

(1) for any y ∈ Z0, the fiber π−1(y) is a normal irreducible projective H(y)-analytic
curve Cy;

(2) there exists a normal proper scheme CO(Z0) over Spec O(Z0), such that the an-
alytification of the structural morphism πO(Z0) : CO(Z0) → Spec O(Z0) (in the
sense of Subsection 1.6.3) is the projection CZ0 := C ×S Z0 → Z0.

Let us mention some immediate consequences of Setting 4.4.1.
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For any connected affinoid neighborhood Z ⊆ Z0 of x, set CO(Z) = CO(Z0)×O(Z0)O(Z).
Let us denote by πO(Z) the structural morphism CO(Z) → Spec O(Z). Seeing as it is a
base change of πO(Z0), πO(Z) is proper.

Let CZ denote the Berkovich analytification of CO(Z) (in the sense of Subsection 1.6.3).
Remark that by Lemma 1.6.16, CZ = (CO(Z))

an = (CO(Z0) ×O(Z0) O(Z))an = CZ0 ×Z0 Z
= C ×S Z. Let πZ : CZ → Z denote the structural morphism (i.e. the analytification
of πO(Z)). By [4, Proposition 2.6.9], πZ is proper.

Before exploring in more depth the properties of Setting 4.4.1, let us present a partic-
ular situation which leads to this setup, and which allows us to generalize the results of
Chapter 3.

4.4.1. Example: Realization of an algebraic curve over Ox as the thickening
of an analytic curve over H(x).

Notation 4.4.2. Let S′ be a normal good k-analytic space. Let x ∈ S′ be such that
Ox is a field. Let COx be a smooth geometrically irreducible projective algebraic curve
over Ox. Let us denote by πx the structural morphism COx → Spec Ox.

Remark that Ox = lim−→Z
O(Z), where the limit is taken over connected affinoid neigh-

borhoods Z of x in S, implying Spec Ox = lim←−Z Spec O(Z). By [27, Théorème 8.8.2],
there exists a connected affinoid neighborhood Z0 of x, such that for any connected affinoid
neighborhood Z ⊆ Z0 of x, there exists a finitely presented scheme CO(Z) over Spec O(Z)
satisfying CO(Z) ×Spec O(Z) Spec Ox = COx . Let us denote by πO(Z) the structural mor-
phism CO(Z) → Spec O(Z).

Remark that πx is a proper smooth surjective morphism. The affinoid domain Z0 can
be chosen so that for any connected affinoid neighborhood Z ⊆ Z0 of x, the morphism
πO(Z) : CO(Z) → Spec O(Z) remains proper, surjective (by [27, Théorème 8.10.5]), and
smooth (by [62, Tag 0CNU]). Furthermore, by [62, Tag 0EY2], we may assume that CO(Z)

is a relative curve over O(Z). Let CZ (defined over Z) denote the Berkovich analytification
of the finite type scheme CO(Z) over Spec O(Z) (in the sense of Subsection 1.6.3). We
denote by πZ : CZ → Z the analytification of πO(Z).

Proposition 4.4.3. Let Z ⊆ Z0 be a connected affinoid neighborhood of x.

(1) The morphism πZ : CZ → Z is quasi-smooth, proper, and surjective. Further-
more, CZ is a relative curve over Z.

(2) The spaces CO(Z), CZ are normal.

Proof. Surjectivity of πZ can be obtained as in the proof of [6, Proposition 3.4.6(7)]
from the surjectivity of πO(Z). Properness is given by [4, Proposition 2.6.9]. Quasi-
smoothness is a consequence of the smoothness of πO(Z) via [18, 5.2.14]. The dimension
property is given by [18, Proposition 2.7.7].

Since πO(Z) : CO(Z) → Spec O(Z) is smooth, for any point y ∈ CO(Z), there exists
an open neighborhood U of y such that there is a factorization of U → Spec O(Z) as:
U → AdO(Z) → Spec O(Z) for some d ∈ N, where U → AdO(Z) is étale. Moreover, by [28,

II, Remarque 1.5], d = 1. By [28, I, Théorème 9.5], U is normal at y if and only if A1
O(Z)

is normal at its image.
Seeing as S is normal, so is Z (by [21, Théorème 3.4]). This implies that O(Z) is an

integrally closed domain (recall Z is connected in a normal space, so it is irreducible), hence
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so is O(Z)[T ] (where T is an indeterminate), implying A1
O(Z) is normal. Consequently, by

the above paragraph, CO(Z) is normal. By [21, Théorème 3.4], its analytification CZ is
also normal. �

Seeing as a quasi-smooth morphism is flat (see [18, Theorem 5.3.4]), it remains to
show that property (1) of Setting 4.4.1 is satisfied.

Notation 4.4.4. Let Z ⊆ Z0 be any connected affinoid neighborhood of x.

• For any y ∈ Z, the fiber π−1
Z (y) can be endowed with the structure of an H(y)-

analytic curve Cy := CZ ×Z H(y) (see Proposition 1.5.7). Remark that Cy does
not depend on Z.
• For any y′ ∈ Spec O(Z), the fiber π−1

Z (y′) can be endowed with the structure of
a κ(y′)-algebraic curve CO(Z),κ(y′) := CO(Z) ×O(Z) κ(y

′), where κ(y′) denotes the
residue field of y′ in Spec O(Z). We will use the notation Cκ(y′) whenever there
is no risk of ambiguity.

Since Spec O(Z0) is Noetherian, the proper morphism πO(Z0) is of finite presentation.
Since it is smooth, πO(Z0) is flat. By [27, Théorème 12.2.4], the set

A := {u ∈ Spec O(Z0) : CO(Z0),κ(u) is geometrically integral and smooth}
is Zariski open in Spec O(Z0).

Let x′ denote the image of x via the analytification Z0 → Spec O(Z0). Since Ox is a
field, there is a natural embedding κ(x′) →֒ Ox, from where we obtain that Cκ(x′) ×κ(x′) Ox = COx .
Since COx is smooth and geometrically irreducible, it is geometrically normal and integral,
implying so is Cκ(x′). Consequently, x

′ ∈ A, so A is a non-empty Zariski open subset of
Spec O(Z0).

Lemma 4.4.5. Let ψ denote the analytification Z0 → Spec O(Z0). For any y ∈ Z0 such
that ψ(y) ∈ A, Cy is a geometrically irreducible smooth projective H(y)-analytic curve.
The same is true for any connected affinoid neighborhood Z ⊆ Z0 of x.

Proof. Let y ∈ Z0 be such that y′ := ψ(y) ∈ A, i.e. that Cκ(y′) is geometrically
integral. By Corollary 1.5.7, Cy is isomorphic to the analytification of Cκ(y′) ×κ(y′) H(y),
so Cy is an H(y)-analytic curve that is geometrically integral, hence geometrically ir-
reducible. Since πZ is proper, Cy is a proper curve. Since πZ is quasi-smooth, Cy is
quasi-smooth (by [18, Theorem 5.3.4]). As it is proper, it is boundaryless, so smooth (see
[18, Corollary 5.4.8]).

The last part of the statement is a direct consequence of the fact that Cy does not
depend on Z0 (i.e. remains the same for any connected affinoid neighborhood Z ⊆ Z0 of x
containing y). �

The preimage of A with respect to the analytification morphism ψ : Z0 → Spec O(Z0)
is a Zariski open in Z0. Consequently, there exists a connected affinoid neighborhood
Z1 ⊆ Z0 of x, such that Z1 ⊆ ψ−1(A). This means that for any connected affinoid neigh-
borhood Z ⊆ Z1 of x, the fiber Cy of any y ∈ Z in CZ is a geometrically irreducible
smooth projective H(y)-analytic curve. Consequently, Setting 4.4.1 is satisfied for S = Z1

and C = CZ1 .
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4.4.2. Consequences of Setting 4.4.1. Recall that for any affinoid neighborhood
Z of x in S, we denote by πZ the structural morphism CZ = C ×S Z → Z.

Proposition 4.4.6. Let Z ⊆ Z0 be a connected affinoid neighborhood of x.

(1) The space CZ is a normal proper flat relative analytic curve over Z. Furthermore,
πZ is surjective. The same properties are true for CO(Z) and πO(Z).

(2) Any connected affinoid domain of CZ is normal and irreducible.

Proof. Since πZ is obtained by a base change of π : C → S, we immediately obtain
that πZ is proper, surjective, flat, and of relative dimension 1.

Seeing as CZ0 is the analytification of the normal proper O(Z0)-scheme CO(Z0), it is

normal by [21, Théorème 3.4]. Seeing as CZ = π−1
Z0

(Z) is an analytic domain of the normal
analytic space CZ0 , by loc.cit., it is normal. By the same result, CO(Z) is also normal.

The morphism πO(Z) was already remarked to be proper, as a base change of a proper
morphism. Surjectivity of πO(Z) can be obtained from the surjectivity of πZ as in Propo-
sition 3.4.6(7) of [6]. The relative dimension of πO(Z) is the same as that of πZ by [18,
Proposition 2.7.7]. Its flatness is a consequence of [18, Lemma 4.2.1].

Any connected affinoid domain of CZ is normal by [21, Théorème 3.4] and irreducible
by [21, Théorème 5.17]. �

The object the following lemma deals with will be central for the rest of this chapter.

Lemma 4.4.7. Set COx := CO(Z0) ×O(Z0) Ox. Then, COx is an irreducible normal
projective k-algebraic curve.

Proof. Let Cx denote the fiber of πZ0 : CZ0 → Z0. It is a normal irreducible projective
H(x)-curve by definition. Let x denote the image of x via the analytification morphism
ψ : Z0 → Spec O(Z0). By Corollary 1.6.17, Cx ∼= (Cκ(x)×κ(x)H(x))an, where κ(x) denotes
the residue field of x in O(Z0), and Cκ(x) := CO(Z0) ×O(Z0) κ(x) - the algebraic fiber of x
with respect to CO(Z0) → Spec O(Z0).

Set Calg
x := Cκ(x)×κ(x)H(x). Seeing as ψ(x) = x and Ox is a field, there is a canonical

embedding κ(x) →֒ Ox. Consequently, COx = Cκ(x) ×κ(x) Ox, and
Calg
x = Cκ(x) ×κ(x) H(x) = Cκ(x) ×κ(x) Ox ×Ox H(x) = COx ×Ox H(x).

As (Calg
x )an ∼= Cx, and Cx is a normal irreducible H(x)-analytic curve, Calg

x is a connected
([6, Thm. 3.5.8(iii)]) normal algebraic curve ([6, Prop. 3.4.3]) over H(x).

Consequently, COx is connected, and by [26, Corollaire 6.5.4], it is normal. Properness
is immediate seeing as COx → Spec Ox is a base change of a proper morphism. �

Recall Notation 4.4.4, which is applicable here. A very important property for the
constructions we make is the following:

Lemma 4.4.8. For any non-rigid point η of Cx, the local ring OC,η is a field. If η ∈ Cx
is rigid, then OC,η is a discrete valuation ring.

In particular, this implies that for any type 3 point η ∈ Cx, the local ring OC,η is a
field.

Proof. Seeing as x ∈ Int Z0, for any η ∈ Cx, η ∈ Int CZ0 , so OC,η = OCZ0
,η, and we

can use the two interchangeably.
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The morphism πZ0 : CZ0 → Z0 is proper, so boundaryless. As πZ0 is flat, by the proof
of [18, Lemma 4.5.11], dimOC,η = dimOCx,η + dimOx. Since Ox is a field, we obtain
dimOC,η = dimOCx,η.

By [18, Lemma 4.4.5], if η ∈ Cx is not rigid, then OCx,η is a field, implying dimOC,η =
0, so OC,η is a field (recall CZ0 is normal). If η ∈ Cx is rigid, by loc.cit. OCx,η is a discrete
valuation ring, implying dimOC,η = 1. Hence, OC,η is a Noetherian normal local ring with
Krull dimension 1, meaning a discrete valuation ring. �

We proved a result somewhat similar to Lemma 4.4.8 in Corollary 4.2.25 and applied
it to P1,an. Note that Lemma 4.4.8 is also applicable to the relative projective line.

Lemma 4.4.9. Let Z ⊆ Z0 be a connected affinoid neighborhood of x. For any pair of
different points u1, u2 ∈ CZ , there exist neighborhoods B1 of u1 and B2 of u2 in CZ , such
that B1 ∩B2 = ∅.

Proof. Seeing as πO(Z) is proper, it is separated, so by [4, Corollary 2.6.7], πZ is
separated. Seeing as Z is Hausdorff, by [6, Proposition 3.1.5], Z → M(k) is separated.
Consequently, the canonical morphism CZ →M(k) is separated, and we can conclude by
loc.cit. �

Lemma 4.4.10. Let Z ⊆ Z0 be a connected affinoid neighborhood of x. The spaces
CZ , CO(Z) are irreducible.

Proof. Since all the fibers of CZ → Z are connected, CZ is connected: if, by contra-
diction, CZ can be written as the disjoint union of two closed (hence compact) subsets U
and V , then Z = πZ(U)∪πZ(V ). Since πZ(U) and πZ(V ) are compact, and Z is connected,
their intersection is non-empty. Consequently, there exists y ∈ Z, such that Cy ∩ U 6= ∅
and Cy ∩ V 6= ∅. Since Cy is connected and covered by the compacts Cy ∩ U , Cy ∩ V, this
is a contradiction.

Thus, CZ is a connected normal analytic space. By [21, Proposition 5.14], it is irre-
ducible. Then, by [18, Proposition 2.7.16], CO(Z) is also irreducible. �

Proposition 4.4.11. There exists a connected affinoid neighborhood Z1 ⊆ Z0 of x such
that for any connected affinoid neighborhood Z ⊆ Z1 of x, there exists a finite surjective
morphism fZ : CZ → P1,an

Z , satisfying:

(1) fZ is the analytification of a finite surjective morphism fO(Z) : CO(Z) → P1,an
O(Z);

(2) for any connected affinoid neighborhood Z ′ ⊆ Z of x, fZ ×Z Z ′ = fZ′ , i.e. the
following diagram (where the horizontal arrows correspond to the base change
Z ′ →֒ Z) is commutative.

CZ′ CZ

P1,an
Z′ P1,an

Z

fZ′ fZ

Proof. Remark that Ox = lim−→Z
O(Z), where the limit is taken with respect to con-

nected affinoid neighborhoods Z ⊆ Z0 of x. Consequently, Spec Ox = lim←−Z Spec O(Z),
and COx = CO(Z0) ×O(Z0) Ox = CO(Z0) ×O(Z0) lim←−Z O(Z) = lim←−Z CO(Z). Recall that COx

is an irreducible normal projective curve (see Lemma 4.4.7).
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Let fOx : COx → P1
Ox

be any finite non-constant (hence surjective) morphism. By
[27, Théorème 8.8.2], we may assume that Z0 is such that for any connected affinoid
neighborhood Z ⊆ Z0 of x, there exists a morphism fO(Z) : CO(Z) → P1

O(Z), such that

the following diagram (where the horizontal arrows are the corresponding base changes)
is commutative for any connected affinoid neighborhood Z ′ ⊆ Z of x.

COx CO(Z′) CO(Z)

P1
Ox

P1
O(Z′) P1

O(Z)

fOx fO(Z′) fO(Z)

Furthermore, by [27, Théorème 8.10.5], Z0 can be chosen so that for any connected affinoid
neighborhood Z ⊆ Z0 of x, the morphism fO(Z) is finite and surjective.

Let fZ : CZ → P1,an
Z denote the Berkovich analytification of fO(Z) in the sense of

Subsection 1.6.3. Then, as in [6, Proposition 3.4.6(7)], fZ is surjective; by [4, Propo-
sition 2.6.9], it is finite.

Part (2) is a direct consequence of the commutativity of the diagram above. �

Remark that the finite surjective morphism fZ : CZ → P1,an
Z induces a finite surjective

morphism fz : Cz → P1,an
H(z) between the fibers of z ∈ Z in CZ and P1,an

Z , respectively (recall

Notation 4.4.4 which is applicable here).

Proposition 4.4.12. Let Z ⊆ Z0 be a connected affinoid neighborhood of x. Let y
be a type 3 point in the fiber P1,an

H(x) of x on P1,an
Z . Let {z1, z2, . . . , zn} := f−1

Z (y). Then,

MP1,an
Z ,y

⊗M (Z)(T ) M (CZ) =
∏n
i=1 MCZ ,zi .

Proof. Let us look at the finite surjective morphism fO(Z) : CO(Z) → P1
O(Z) of

O(Z)-schemes. Let y′ be the image of y via the analytification ψ : P1,an
Z → P1

O(Z). Let

A := Spec A be an open affine neighborhood of y′ in P1
O(Z). Its preimage by ψ is a Zariski

open A′ of P1,an
Z containing y.

Let B := Spec B be the pre-image of A by fO(Z). It is an affine open subset of CO(Z),
and fO(Z) induces a finite surjective morphism B → A. By construction, B contains

f−1
O(Z)(y

′). By the proof of [4, Proposition 2.6.10], there is an isomorphism
∏n
i=1OCZ ,zi =

OP1,an
Z ,y

⊗AB. Since CO(Z) and P1
O(Z) are irreducible, the function field of CO(Z) is Frac B,

and the function field of P1
O(Z) is Frac A.

By Theorem 1.7.8, we obtain that M (CZ) = Frac B, and M (P1,an
Z ) = Frac A. Since

B is a finite A-module, by the last paragraph of the proof of Lemma 3.2.4,
∏n
i=1OCZ ,zi =

OP1,an
Z ,y

⊗Frac A Frac B, so
∏n
i=1OCZ ,zi = OP1,an

Z ,y
⊗M (Z)(T ) M (CZ). Finally, since y and

zi, i = 1, 2, . . . , n, are type 3 points in P1,an
H(x) and Cx, respectively, OP1,an

Z ,y
= MP1,an

Z ,y
, and

OCZ ,zi = MCZ ,zi for all i, concluding the proof of the statement. �

Proposition 4.4.13. For any connected affinoid neighborhoods Z,Z ′ ⊆ Z0 of x such
that Z ′ ⊆ Z, the base change morphism ιZ,Z′ : CO(Z′) → CO(Z) is dominant. Furthermore,
if ηZ (resp. ηZ′) is the generic point of CO(Z) (resp. CO(Z′)), then ιZ,Z′(ηZ′) = ηZ .

Proof. By Lemma 4.4.10, CO(Z), CO(Z′) are irreducible, so it makes sense to speak
of their generic points ηZ , ηZ′ , respectively. It suffices to show that ηZ is in the image
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of ιZ,Z′ . Let α be any point of CZ . Let α
′ be its image in CO(Z) via the analytification

φ : CZ → CO(Z). Let U be an open affine neighborhood of α′ in CO(Z). Then, ηZ ∈ U, and
the closure of {ηZ} in U is U.

By [4, Proposition 2.6.8], φ−1(U) = Uan-the analytification of U . Remark that Uan

is an open subspace of CZ . Let Bα be any open neighborhood of α in CZ . Then, since
α ∈ Uan, Bα ∩ Uan is an open neighborhood of α in Uan, so by [4, Lemma 2.6.5], there
exists a point β ∈ Bα ∩ Uan ⊆ Bα, such that φ(β) = ηZ . Thus, for any point α ∈ CZ and
any open neighborhood Bα of α in CZ , there exists β ∈ Bα, such that φ(β) = ηZ . In other

words, φ−1({ηZ}) = CZ .

CZ′ CO(Z′)

CZ CO(Z)

φ′

θZ,Z′ ιZ,Z′

φ

Let us now look at the commutative diagram above, where the horizontal lines cor-
respond to analytification, and the vertical ones to base change. In particular, remark
that since CZ = π−1(Z) and CZ′ = π−1(Z ′), we have CZ′ ⊆ CZ , so θZ′,Z is an inclusion.
Let γ ∈ π−1(Int(Z ′)) (which is non-empty considering x ∈ Int(Z ′)). Let Bγ be an open
neighborhood of γ in the open π−1(Int(Z ′)). Then, Bγ is open in both CZ′ and CZ . By
the paragraph above, there exists γ′ ∈ Bγ such that φ(θZ,Z′(γ′)) = φ(γ′) = ηZ . By the
commutativity of the diagram, ηZ is in the image of ιZ,Z′ , so ιZ,Z′ is dominant.

Let ηZ′ be the generic point of CO(Z′). Since CO(Z), CO(Z′) are integral schemes, this
means ιZ,Z′(ηZ′) = ηZ . �

Recall that COx = CO(Z0) ×O(Z0) Ox = lim←−Z CO(Z), where the limit is taken with
respect to the connected affinoid neighborhoods Z ⊆ Z0 of x. By the lemma above, the
generic points ηZ of CO(Z) determine a unique point η ∈ COx .

Proposition 4.4.14. The curve COx is integral with generic point η.

Proof. Note that COx was already shown to be integral in Lemma 4.4.7.
For any connected affinoid neighborhoods Z,Z ′ ⊆ Z0 of x such that Z ′ ⊆ Z, the base

change ιZ,Z′ : CO(Z′) = CO(Z) ×O(Z) O(Z ′)→ CO(Z) is an affine morphism. Furthermore,
since CO(Z) is normal, it is reduced.

By [62, Tag 0CUG], lim←−Z {ηZ}red = {η}red. Seeing as {ηZ}red = CO(Z), we obtain that

{η}red = lim←−Z CO(Z) = COx , so COx is reduced and irreducible, i.e. integral, with generic
point η. �

Let FN denote the function field of the integral scheme CN , where
N ∈ {Ox,O(Z) : Z ⊆ Z0} (Z is as usual considered to be a connected affinoid neighbor-
hood of x).

Corollary 4.4.15. FOx = lim−→Z
FO(Z), where the limit is taken with respect to con-

nected affinoid neighborhoods Z ⊆ Z0 of x.

Proof. The projective system of integral schemes {CO(Z)}Z gives rise to a direct
system of fields {FO(Z)}Z . For connected affinoid neighborhoods Z,Z ′ ⊆ Z0 of x such that
Z ′ ⊆ Z, let us denote the corresponding transition morphism FO(Z) → FO(Z′) by χZ′,Z .
Let us denote by F ′ the field lim−→Z

FO(Z).
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The projections ιZ : COx → CO(Z) give rise to maps χ′
Z : FO(Z) → FOx . Since for any

Z ′ ⊆ Z, ιZ = ιZ,Z′ ◦ ιZ′ , we have that χ′
Z = χ′

Z′ ◦ χZ′,Z . Consequently, there is a map
F ′ → FOx . To show that this is an equality it suffices to show that for any field K and
morphisms λZ : FO(Z) → K such that for any Z ′ ⊆ Z, λZ = λZ′ ◦ χZ′,Z , there is a map
λ : FOx → K, satisfying λZ = λ ◦ χ′

Z .
The maps λZ : FO(Z) → K give rise to maps λ′Z : Spec K → Spec FO(Z) → CO(Z),

where the image of λ′Z is the generic point {ηZ} of CO(Z). Consequently, by Proposi-
tion 4.4.13, for any Z ′ ⊆ Z, we have λ′Z = ιZ,Z′ ◦ λ′Z′ , implying there is a morphism
λ′ : Spec K → COx that satisfies λ′Z = ιZ ◦ λ′ for all Z. In turn, this gives rise to a mor-
phism λ : FOx → K, which satisfies λZ = λ ◦ χ′

Z . �

Corollary 4.4.16. FOx = lim−→Z
M (CZ), where the limit is taken over connected affi-

noid neighborhoods Z ⊆ Z0 of x.

Proof. This is a direct consequence of Corollary 4.4.15 and Theorem 1.7.8. �

4.5. Nice Covers of a Relative Proper Curve and Patching

We work under the hypotheses of Setting 4.4.1 and the notations we have introduced
along the way. Here is a summary:

Notation 4.5.1. In addition to Setting 4.4.1, for any connected affinoid neighborhood
Z ⊆ Z0 of x, let Cx := CZ ×Z H(x), CZ := C ×S Z, CO(Z) := CO(Z0) ×O(Z0) O(Z),
and COx := CO(Z0) ×O(Z0) Ox. Moreover, we denote by πZ , resp. πO(Z), the structural
morphisms CZ → Z, resp. CO(Z) → Spec O(Z).

Finally, let fZ : CZ → P1,an
Z , fOZ

: CO(Z) → P1,an
O(Z) be finite surjective morphisms such

that fanO(Z) = fZ , and for any connected affinoid neighborhood Z ′ ⊆ Z of x, fZ×ZZ ′ = fZ′ .

4.5.1. Nice covers of a relative proper curve. As in the case of P1,an, in addition
to Setting 4.4.1, we assume that dimS < dimQR>0/|k×| ⊗Z Q. The reason behind this
hypothesis is the same as before: it is sufficient for the existence of type 3 points on the
fiber Cx (see Lemma 4.1.6).

Goal: Let V be an open cover of Cx in C. We construct a refinement of V and show that
it satisfies certain properties which are necessary for patching.

(1) The construction. Remark that the finite surjective morphism fZ0 : CZ0 → P1,an
Z0

induces a finite surjective morphism fx : Cx → P1,an
H(x) on the corresponding fibers of x.

Without loss of generality, we may assume that V is an affinoid cover of Cx in C
such that {Int V : V ∈ V} is an open cover of Cx in C. Since Cx is compact, we may
assume V is finite. Let Vx denote the finite affinoid cover V induces on Cx. Remark that
V ′x := {IntCxV : V ∈ Vx} remains an open cover of Cx. Since Vx is an affinoid cover, for
any V ∈ Vx, the topological boundary ∂CxV of V in Cx is finite. Consequently, for any
V ∈ V ′x, ∂CxV is finite. Set S′ =

⋃
V ∈V ′

x
∂CxV. This is a finite set of points on Cx.

Seeing as Cx is a connected curve, for any two points u, v of S′, there exist finitely
many arcs [u, v]i, i = 1, 2, . . . , l, in Cx connecting them (Proposition 1.8.14). Let us take
a type 3 point on each [u, v]i, for any two points u, v ∈ S′. We denote this set by S1. By
construction of S1, since type 3 points are dense in Cx (Proposition 1.8.7) and f−1

x (fx(S
′))

is a finite set, we may assume that S1 ∩ f−1
x (fx(S

′)) = ∅.
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Since S1 is a finite set of type 3 points in Cx, fx(S1) is a finite set of type 3 points in

the fiber P1,an
H(x) of x in P1,an

Z0
. By Lemma 3.1.11, there exists a nice cover Dx of P1,an

H(x) such

that f(S1) = SDx (recall this notation in Definition 3.1.15). Let TDx be a parity function
(Definition 3.1.16) for Dx (it exists by Lemma 3.1.17).

Lemma 4.5.2. The connected components of f−1
x (D), D ∈ Dx, form a cover Ux of Cx

which is nice and refines Vx. Furthermore, SUx = f−1
x (SDx), and the map TUx : Ux →

{0, 1}, U 7→ fDx(fx(U)), is a parity function for Ux.
Proof. That Ux is a nice cover of Cx, SUx = f−1

x (SDx), and TUx is a parity function
for Ux has been shown in Proposition 3.1.19. It remains to show that Ux refines Vx. For
that, it suffices to show that Ux refines the open cover V ′x of Cx.

Let us start by proving that SUx ∩S′ = ∅. Suppose, by contradiction, that there exists
a ∈ SUx ∩ S′ = f−1

x (fx(S1)) ∩ S′. Then, fx(a) ∈ fx(S1)∩fx(S′), so there exists b ∈ S1 such
that fx(a) = fx(b) ∈ fx(S1) ∩ fx(S′). Consequently, b ∈ f−1

x (fx(S
′)) ∩ S1 = ∅, which is

impossible, so SUx ∩ S′ = ∅. Considering SUx =
⋃
U∈Ux

∂U and S′ =
⋃
V ∈V ′

x
∂V, for any

U ∈ Ux and any V ∈ V ′x, ∂U ∩ ∂V = ∅.
Let us now show that Ux refines V ′x. Suppose, by contradiction, that there exists

U ∈ Ux, such that for any V ∈ V ′x, U 6⊆ V. Let Vj , j = 1, 2, . . . ,m, be the elements of V ′x
intersecting U (m 6= 0 seeing as V ′x is a cover of Cx). Then, U ⊆ ⋃m

j=1 Vj . Considering

U 6⊆ Vj and U is connected, U ∩ ∂Vj 6= ∅ for all j. If
⋃m
j=1 U ∩ ∂Vj is a single point {w},

then w ∈ U\⋃m
j=1 Vj (because the Vj are open), which is impossible seeing as U ⊆ ⋃m

j=1 Vj .

Let x1, x2 be two different points of
⋃m
j=1 U ∩ ∂Vj . Since ∂U ∩ ∂Vj = ∅ for all j (this was

shown in the paragraph above), xi ∈ Int(U), i = 1, 2.
Since U is connected, by Lemma 1.8.16, Int U is connected, so there exists an arc

[x1, x2] connecting x1 and x2, which is contained entirely in Int U. But then, by the
construction of S1, since x1, x2 ∈ S′, there exists y ∈ S1 such that y ∈ [x1, x2] ⊆ Int U.
Considering y ∈ S1 ⊆ f−1

x (SDx) = SUx , there exists U ′ ∈ Ux, such that y ∈ ∂U ′. But then,
∂U ∩ ∂U ′ 6= U ∩ U ′ which is in contradiction with the fact that Ux is a nice cover of Cx.

Thus, there must exist VU ∈ V ′x such that U ⊆ VU , implying Ux refines the cover
V ′x. �

The following result will be used several times in what is to come.

Lemma 4.5.3. Let Z ⊆ Z0 be a connected affinoid neighborhood of x. Let D′ be a
connected affinoid domain of P1,an

Z , such that D′∩Fx is non-empty and connected, where Fx
is the fiber of x with respect to the morphism P1,an

Z → Z. Then, the connected components

of f−1
Z (D′) are connected affinoid domains of CZ that intersect the fiber Cx of x. Moreover,

if U is a connected component of f−1
Z (D′), then fZ(U) = D′.

Proof. Seeing as fZ is a finite morphism, f−1
Z (D′) is an affinoid domain in CZ , and

thus so are its connected components.
Seeing as CZ and P1,an

Z are irreducible, they are pure-dimensional (see [21, Corol-
laire 4.14]). Seeing as fZ is finite, its relative dimension is pure and equal to 0 (i.e. all
its fibers are of dimension 0). By [18, 1.4.14(3)], the dimension of CZ is the same as the

dimension of P1,an
Z . Consequently, by [6, Lemma 3.2.4], fZ is open.

Let U be any connected component of f−1
Z (D′). It is an open and a closed subset of

f−1
Z (D′). Seeing as fZ is open and closed, fZ(U

′) is an open and closed subset of D′.
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Considering D′ is connected, this implies D′ = fZ(U). Since D′ ∩ Fx 6= ∅, we obtain
U ∩ Cx 6= ∅. �

Let ZD ⊆ Z0 be a connected affinoid neighborhood of x, such that the ZD-thickening
DZD

of Dx exists and is a ZD-relative nice cover for P1,an
ZD

(see Theorem 4.1.23).
Let Z ⊆ ZD be any connected affinoid neighborhood of x. We denote by UZ the set

of connected components of f−1
Z (DZ), D ∈ Dx. By Lemma 4.5.3, UZ is a finite affinoid

cover of CZ . Furthermore, for any U ∈ UZ , U ∩ Cx 6= ∅ and fZ(U) ∈ DZ . Remark that
the nice cover Ux of Lemma 4.5.2 is obtained by taking the connected components of
U ∩ Cx, U ∈ UZ .

(2) The elements of UZ intersect the fiber nicely. We show that the connected
affinoid neighborhood Z ⊆ ZD of x can be chosen such that U ∩ Cx is connected for
any U ∈ UZ , and the same remains true when replacing Z with any connected affinoid
neighborhood Z ′ ⊆ Z of x. Let us start with a couple of auxiliary results.

Lemma 4.5.4. Let Z ⊆ Z0 be a connected affinoid neighborhood of x. Let A1, A2 be
two disjoint compact subsets of Cx. Then, there exist two open subsets B1, B2 of CZ such
that Ai ⊆ Bi, i = 1, 2, and B1 ∩B2 = ∅.

Proof. Let a ∈ A1. By Lemma 4.4.9, for any b ∈ A2, there exist an open neighborhood
Na,b of a in CZ , and an open neighborhood Ba,b of b in CZ , such that Na,b ∩ Ba,b = ∅.
The family {Ba,b}b∈A2 forms an open cover of A2. Considering A2 is a compact subset
of Cx, it is compact in CZ , so there exists a finite subcover {Ba,bi}mi=1 of {Ba,b}b∈A2 . Set
Na =

⋂m
i=1Na,bi and Ba =

⋃m
i=1Ba,bi . Then, Na, Ba are open subsets of CZ , A2 ⊆ Ba,

and Na ∩Ba = ∅.
The family {Na}a∈A1 is an open cover of A1. Since A1 is compact, there exists an open

subcover {Naj}lj=1. Set B1 =
⋃l
j=1Naj and B2 =

⋂l
j=1Baj . Then, B1 and B2 satisfy the

statement. �

Lemma 4.5.5. Let D be a connected affinoid domain of P1,an
H(x) containing only type 3

points in its boundary. Let Z ⊆ Z0 be a connected affinoid neighborhood of x such that
the Z-thickening DZ exists, and for any connected affinoid neighborhood Z ′ ⊆ Z of x, the
Z ′-thickening DZ′ of D is connected. Let U1,Z , U2,Z , . . . , Un,Z be the connected components

of f−1
Z (DZ).

Then, the connected components of f−1
Z′ (DZ′) are the connected components of Ui,Z ∩ CZ′ ,

i = 1, 2, . . . , n.

Proof. By commutativity of the diagram below, f−1
Z (DZ)∩CZ′ = f−1

Z′ (DZ ∩P1,an
Z′ ) =

f−1
Z′ (DZ′), so f−1

Z′ (DZ′) =
⊔n
i=1 Ui,Z ∩ CZ′ for any i. The statement follows immediately.

CZ′ CZ

P1,an
Z′ P1,an

Z

fZ′ fZ

�

We can now show property (2):
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Proposition 4.5.6. Let D be a connected affinoid domain of P1,an
H(x) containing only

type 3 points in its boundary. Let Z ⊆ Z0 be a connected affinoid neighborhood of x such
that the Z-thickening DZ exists, and for any connected affinoid neighborhood Z ′ ⊆ Z of
x, the Z ′-thickening DZ′ of D is connected.

Let U1,Z , U2,Z , . . . , Un,Z be the connected components of f−1
Z (DZ). The affinoid neigh-

borhood Z of x can be chosen such that:

• Ui,Z ∩ Cx is a non-empty connected affinoid domain of Cx for all i;

• there is a bijection between the connected components of f−1
Z (DZ) and the con-

nected components of f−1
x (D) given by Ui,Z 7→ Ui,Z ∩ Cx;

• for any connected affinoid neighborhood Z ′ ⊆ Z of x, the connected components
of f−1

Z′ (Z ′) are Ui,Z′ := Ui,Z ∩ CZ′ , i = 1, 2, . . . , n.

Proof. Recall that the finite morphism fZ : CZ → P1,an
Z induces a finite morphism

fx : Cx → P1,an
H(x) on the corresponding fibers of x. Let L1, L2, . . . , Ls be the connected

components of f−1
x (D). They are connected affinoid domains of Cx.

Seeing as (follow the diagram below)
⊔s
t=1 Lt = f−1

x (D) = f−1
Z (DZ) ∩ Cx =

⊔n
i=1 Ui,Z ∩ Cx,

for any t, Lt ⊆
⊔n
i=1 Ui,Z . Since Lt is connected, there exists a unique it such that

Lt ⊆ Uit,Z ∩ Cx.
Cx CZ

P1,an
H(x) P1,an

Z

fx fZ

Suppose there exists i0 such that Ui0,Z ∩Cx is not connected. Suppose, without loss of
generality, that L1, L2, . . . , Lr are the connected components of Cx∩Ui0,Z . By Lemma 4.5.4,
there exist mutually disjoint open subsets Bt of CZ such that Lt ⊆ Bt, t = 1, 2, . . . , r. The
set Ui0,Z\

⊔r
t=1Bt is a compact subset of CZ that doesn’t intersect the fiber Cx. It is

a non-empty set: otherwise, Ui0,Z ⊆
⊔r
t=1Bt; seeing as Ui0,Z ∩Bt ⊇ Ui0,Z ∩ Lt 6= ∅ for

all t = 1, 2, . . . , r, we obtain that Ui0,Z is not connected, contradiction.
Since πZ is proper, πZ(Ui0,Z\

⊔r
t=1Bt) is a non-empty compact subset of Z that does

not contain x. Thus, there exists a connected affinoid neighborhood Z1 ⊆ Z of x such that
π−1
Z (Z1) ∩ (Ui0,Z\

⊔r
t=1Bt) = ∅, implying Ui0,Z ∩ CZ1 ⊆

⊔r
t=1Bt.

Let V1,Z1 , V2,Z1 , . . . , Ve,Z1 be the connected components of Ui0,Z∩CZ1 . By Lemma 4.5.5,

Vj,Z1 , j = 1, 2, . . . , e, are connected components of f−1
Z1

(DZ1), so by Lemma 4.5.3, they

all intersect the fiber Cx. Moreover,
⊔e
j=1 Vj,Z1 ∩ Cx = Ui0,Z ∩ Cx =

⊔r
t=1 Lt. Hence, for

any t, there exists a unique et such that Lt ⊆ Vet,Z1 ∩ Cx. By the paragraph above,
for any j, there exists a unique tj , such that Vj,Z1 ⊆ Btj , hence a unique Ltj contained
in Vj,Z1 . Consequently, r = e and {Vj,Z1 ∩ Cx : j = 1, 2, . . . , r} = {Lt : t = 1, 2, . . . , r}. We
may assume, without loss of generality, that Vj,Z1 ∩ Cx = Lj , j = 1, 2, . . . , r. Clearly, this
induces a bijection between the connected components of Ui0,Z ∩ CZ1 and the connected
components of Ui0,Z ∩ Cx, given by Vj,Z1 7→ Vj,Z1 ∩ Cx = Lj , j = 1, 2, . . . , r.

Let us show that for any connected affinoid neighborhood Z2 ⊆ Z1 of x, Vj,Z1 ∩ CZ2

remains connected for all j = 1, 2, . . . , r. By Lemma 4.5.5, the connected components of
Vj,Z1 ∩CZ2 are connected components of f−1

Z2
(DZ2), so by Lemma 4.5.3, they all intersect

the fiber Cx. Seeing as Lj = Vj,Z1 ∩Cx = Vj,Z1 ∩CZ2 ∩Cx is connected, Vj,Z1 ∩CZ2 has to
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be connected for all j. In particular, the bijective correspondence obtained above remains
true when replacing Z1 by Z2.

We have shown that for any i = 1, 2, . . . , n, there exists a connected affinoid neigh-
borhood Zi ⊆ Z0 of x, such that the connected components Vj,i,Zi , j = 1, 2, . . . , ri, of
Ui,Z ∩ CZi satisfy: (a) Vj,i,Zi ∩ Cx is non-empty and connected for all j; (b) there is a
bijection between the connected components of Ui,Z ∩CZi and the connected components
of Ui,Z ∩ Cx, given by Vj,i,Zi 7→ Vj,i,Zi ∩ Cx; (c) for any connected affinoid neighborhood

Z ′ ⊆ Zi, Vj,i,Zi ∩CZ′ remains connected, implying the connected components of Ui,Z ∩CZ′

are Vj,i,Zi ∩ CZ′ , j = 1, 2, . . . , ri.

Let Z ′ ⊆ ⋂n
i=1 Z

i be a connected affinoid neighborhood of x. Since Z ′ ⊆ Z, by

Lemma 4.5.5, the connected components of f−1
Z′ (DZ′) are the connected components of

Ui,Z ∩CZ′ , i = 1, 2, . . . , n. By the paragraph above, these are Vj,i,Zi ∩CZ′ , j = 1, 2, . . . , ri,
i = 1, 2, . . . , n, and they satisfy: (a’) Vj,i,Zi ∩ CZ′ ∩ Cx is non-empty and connected for
all j, i; (b’) for any i, there is a bijection between the connected components of Ui,Z ∩CZ′

and the connected components of Ui,Z ∩ Cx, given by Vi,j,Zi ∩ CZ′ 7→ Vi,j,Zi ∩ Cx, imply-
ing there is a bijection between the connected components of Ui,Z ∩ CZ′ , i = 1, 2, . . . , n

(i.e. of f−1
Z′ (DZ′)) and the connected components of Ui,Z ∩ Cx, i = 1, 2, . . . , n (i.e. of

f−1
x (D)), given by Vj,i,Zi ∩ CZ′ 7→ Vj,i,Zi ∩ Cx, j, i; (c’) for any connected affinoid neigh-

borhood Z ′′ ⊆ Z ′ of x, by the paragraph above, the connected components of f−1
Z′′ (DZ′′)

are Vj,i,Zi ∩ CZ′ ∩ CZ′′ = Vj,i,Zi ∩ CZ′′ , j = 1, 2, . . . , ri, i = 1, 2, . . . , n. �

We have shown:

Corollary 4.5.7. There exists a connected affinoid neighbohrood Zf ⊆ ZD of x, such
that for any U ∈ UZf

, U ∩Cx is connected, and Ux = {U ∩Cx : U ∈ UZf
}, where Ux is the

nice cover of Cx obtained in the statement of Lemma 4.5.2. Moreover, for any connected
affinoid neighborhood Z ′ ⊆ Zf of x, UZ′ = {U ∩ CZ′ : U ∈ UZf

}.
Remark 4.5.8. By Corollary 4.5.7, for any connected affinoid neighborhood Z ⊆ Zf

of x, there is a bijective correspondence between UZ and Ux given by V 7→ V ∩ Cx.
Consequently, we will from now on sometimes write UZ for the unique element of UZ

corresponding to the element U of Ux. In particular, UZ = {UZ : U ∈ Ux}.
(3) UZ refines V. Let Z ⊆ Zf be a connected affinoid neighborhood of x. Let

UZ ∈ UZ . Then, U := UZ ∩ Cx is a connected affinoid domain of Cx and an element of
Ux (recall Remark 4.5.8). By Lemma 4.5.2, there exists V ∈ V, such that U ⊆ Vx, where
Vx denotes the intersection of V with the fiber Cx. Assume UZ 6⊆ V. Then, UZ\V is a
non-empty compact subset of CZ not intersecting the fiber Cx. Seeing as πZ is proper,
πZ(UZ\V ) is a compact subset of Z not containing x. Thus, there exists a connected
affinoid neighborhood Z1 ⊆ Z of x, such that π−1

Z (Z1)∩(UZ\V ) = ∅, i.e. CZ1∩(UZ\V ) = ∅,
implying CZ1∩UZ ⊆ V. Clearly, the same remains true when replacing Z1 by any connected
affinoid neighborhood Z2 ⊆ Z1 of x. Considering UZ is a finite cover, by repeating the
same argument for all of its elements, we obtain that there exists a connected affinoid
neighborhood Z ′ ⊆ Zf , such that {UZ∩CZ′ : U ∈ Ux} refines V, and the same remains true
when replacing Z ′ with any connected affinoid neighborhood Z ′′ ⊆ Z ′. By Corollary 4.5.7,
UZ′ = {UZ ∩CZ′ : U ∈ Ux}, implying UZ′ is a refinement of V. The same remains true for
any Z ′′ ⊆ Z ′ as above.

We have shown:
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Proposition 4.5.9. There exists a connected affinoid neighborhood Zr ⊆ Zf of x such
that for any connected affinoid neighborhood Z ⊆ Zr, the cover UZ refines V.

(4) The intersection of the elements of UZ between themselves. Let Z ⊆ Zr
be a connected affinoid neighborhood of x. Let D1, D2 ∈ Dx such that D1 ∩D2 6= ∅. Set
D1 ∩ D2 = {y}. Then, f−1

x (y) := {s1, s2, . . . , sm} is a subset of SUx . Set D = D1 ∩ D2.
As Z ⊆ ZD (with ZD as in part (1)), the Z-thickening DZ of D is a connected affinoid

domain of P1,an
Z intersecting the fiber P1,an

H(x) at the single type 3 point y.

Let Wi,Z , i = 1, 2, . . . , n, be the connected components of f−1
Z (DZ). By Proposi-

tion 4.5.6, we may assume that: (a) Wi,Z ∩Cx is connected for all i; (b) there is a bijective

correspondence between the connected components of f−1
Z (DZ) and the points of f−1

x (y),
given by Wi,Z 7→ Wi,Z ∩ Cx, i = 1, 2, . . . , n; (c) for any connected affinoid neighborhood

Z ′ ⊆ Z, the connected components of f−1
Z′ (DZ′) are Wi,Z′ =Wi,Z ∩ CZ′ , i = 1, 2, . . . , n.

For any s ∈ f−1
x (y), let us denote by Ws,Z the (unique) connected component of

f−1
Z (DZ) containing s, (i.e. Ws,Z ∩ Cx = {s}), so the connected components of f−1

Z (DZ)
are Ws,Z , s ∈ f−1

x (y).
Let Uj,Z , j = 1, 2, . . . , p (resp. Vl,Z , l = 1, 2, . . . , q), be the connected components of

f−1
Z (D1,Z) (resp. f

−1
Z (D2,Z)). Then,

p⊔

j=1

q⊔

l=1

Uj,Z ∩ Vl,Z = f−1
Z (D1,Z) ∩ f−1

Z (D2,Z) = f−1
Z (DZ) =

⊔

s∈f−1
x (y)

Ws,Z .

For some j, l, let sj,l ∈ Uj ∩ Vl. Since sj,l ∈ Wsj,l,Z , we obtain that Wsj,l,Z ⊆ Uj,Z ∩ Vl,Z .
Consequently, for any j, l, Uj,Z ∩ Vl,Z =

⊔
s∈Uj∩Vl

Ws,Z .

Let Z ′ ⊆ Z be any connected affinoid neighborhood of x. Considering that the con-
nected components of f−1

Z′ (D1,Z′) (resp. f−1
Z′ (D2,Z′)) are Uj,Z ∩ CZ′ , j = 1, 2, . . . , p (resp.

Vl,Z ∩ CZ′ , l = 1, 2, . . . , q), the same properties remain true when replacing Z by Z ′.
The same argument can be repeated for any two non-disjoint elements of the finite

cover Dx. We have shown:

Proposition 4.5.10. There exists a connected affinoid neighborhood Zt ⊆ Zr of x such
that for any connected affinoid neighborhood Z ⊆ Zt, for any two non-disjoint elements
D1, D2 of Dx with D1 ∩D2 =: {y},

f−1
Z (D1,Z ∩D2,Z) =

⊔

s∈f−1
x (y)

Ws,Z ,

where Ws,Z is a connected affinoid neighborhood of CZ , and for any s, Ws,Z ∩ Cx = {s}.
Moreover, for any connected affinoid neighborhood Z ′ ⊆ Z, the connected components of
f−1
Z′ (D1,Z′ ∩D2,Z′) are Ws,Z′ :=Ws,Z ∩ CZ′ , s ∈ f−1

x (y).

Corollary 4.5.11. Let Z ⊆ Zt be a connected affinoid neighborhood of x. For any
U, V ∈ Ux, U ∩ V 6= ∅ if and only if UZ ∩ VZ 6= ∅.

Proof. If UZ∩VZ 6= ∅, then f(U)∩f(V ) 6= ∅, so by Proposition 4.5.10, UZ ∩ VZ ∩ Cx 6= ∅,
i.e. U ∩ V 6= ∅. The other direction is immediate. �

In order to invoke more easily the properties we have just shown for UZ , we introduce
the following:
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Definition 4.5.12. Let Dx be a nice cover of P1,an
H(x). For a connected affinoid neigh-

borhood Z of x, a cover UZ of CZ constructed as in (1) and satisfying properties (2), (4),
will be called a Z-relative nice cover of CZ induced by Dx.

Remark that Ux := {U ∩ Cx : U ∈ UZ} is a nice cover of Cx induced by Dx
as in Lemma 4.5.2. Also, for any connected affinoid neighborhood Z ′ ⊆ Z of x,
UZ′ = {U ∩ CZ′ : U ∈ UZ} is a Z ′-relative nice cover of CZ induced by Dx.

Remark 4.5.13. We have shown that for any open cover V of Cx in C, there exists a
nice cover Dx of P1,an

H(x) and a connected affinoid neighborhood Zt of x, such that the Zt-

relative nice cover UZt of CZt induced by Dx refines V. This remains true when replacing
Zt by any connected affinoid neighborhood Z ⊆ Zt of x.

4.5.2. Patching over Relative Proper Curves. We now generalize the results of
Section 4.3, and obtain an application of patching on relative proper curves.

Throughout this part, let k be a non-trivially valued complete ultrametric field. We
continue working with Setting 4.4.1 and Notation 4.5.1. Moreover, we assume that dimS <
dimQR>0/|k×| ⊗Z Q, so type 3 points exist in Cx.

As in the case of P1,an :

Notation 4.5.14. Let G be a connected rational linear algebraic group defined over
FOx . Since FOx = lim−→Z

M (CZ) (Corollary 4.4.16), there exists a connected affinoid neigh-
borhood ZG ⊆ Z0 of x, such that G is a connected rational linear algebraic group over
M (CZG

).

The following is an analogue of Proposition 3.2.2.

Theorem 4.5.15. For any open cover V of Cx in C, there exists a connected affinoid
neighborhood Z ⊆ ZG of x and a nice cover Dx of P1,an

H(x) such that:

• the Z-relative nice cover UZ of CZ induced by Dx refines V;
• for any (gs)s∈SUx

∈∏s∈SUx
G(MC,s), there exists (gU )U∈Ux ∈

∏
U∈Ux

G(M (UZ)),

satisfying: for any s ∈ SUx , if Us, Vs are the elements of Ux containing s, if Ws,Z

is the connected component of Us,Z ∩ Vs,Z containing s, and TUx(Us) = 0, then

gs ∈ G(M (Ws,Z)), and gs = gU · g−1
V in G(M (Ws,Z)).

The same remains true when replacing Z by any connected affinoid neighborhood Z ′ ⊆ Z
of x.

Proof. Seeing as for any connected affinoid neighborhood Z of x, x ∈ Int(Z), for any
u ∈ Cx, u ∈ Int(CZ), so MCZ ,u = MC,u.

By Remark 4.5.13, there exists a connected affinoid neighborhood Z ⊆ ZG of x and a
nice cover Dx of P1,an

H(x) which induce a refinement UZ of V obtained as in construction (1)

and satisfying properties (2) and (4) of Subsection 4.5.1. Let Ux denote the corresponding
nice cover of Cx, TUx its associated parity function, and SUx the intersection points of the
different elements of Ux.

The proof is organized in three parts: in (a) we explore some properties of the neigh-
borhoods of s ∈ SUx ; in (b) we make the descent to P1,an where the statement has already
been proven; in (c) we conclude by using pull-backs.

(a) The neighborhoods of s ∈ SUx . We will need the following:
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Lemma 4.5.16. For s ∈ SUx , let Bs be a neighborhood of s in C. There exists a con-
nected affinoid neighborhood Z1 of x such that for any s ∈ SUx , if Us, Vs are the elements
of Ux containing s, and Ws,Z1 is the connected component of Us,Z1 ∩ Vs,Z1 containing s,
then Ws,Z1 ⊆ Bs. The neighborhood Z1 can be chosen such that the statement remains true
when replacing Z1 by any connected affinoid neighborhood Z2 ⊆ Z1 of x.

Proof. Let Z ⊆ Zt be a connected affinoid neighborhood of x, where Zt is as in
Proposition 4.5.10. By Lemma 4.4.9, we may suppose that Bs ∩ SUx = {s} for any
s ∈ SUx .

Let y ∈ SDx . By Lemma 4.1.19, there exists an open neighborhood Ay of y in P1,an
Z ,

such that f−1
Z (Ay) ⊆

⊔
s∈f−1

x (y)Bs. Let D1, D2 be the elements of Dx containing y. By

[25, Lemma I.1.2], there exists a connected affinoid neighborhood Z1 ⊆ Zt of x, such that
D1,Z1 ∩D2,Z1 = (D1 ∩D2)Z1 ⊆ Ay. Then,

f−1
Z1

(D1,Z1 ∩D2,Z1) ⊆ f−1
Z1

(Ay) = f−1
Z (Ay) ∩ CZ1 ⊆

⊔

s∈f−1
x (y)

Bs.

Let Ws,Z1 , s ∈ f−1
x (y), be the connected components of f−1

Z1
(D1,Z1 ∩D2,Z1), where for any

s ∈ f−1
x (y), s ∈ Ws,Z1 (see Proposition 4.5.10). Seeing as

⊔
s∈f−1

x (y)Ws,Z1 ⊆
⊔
s∈f−1

x (y)Bs

and Bs ∩ SUx = {s} for any s ∈ f−1
x (y), we obtain that Ws,Z1 ⊆ Bs.

Let Z2 ⊆ Z1 be any connected affinoid neighborhood of x. Seeing as the connected
components of f−1

Z2
(D1,Z2∩D2,Z2) areWs,Z2 =Ws,Z1∩CZ2 , s ∈ f−1

x (y) (Proposition 4.5.10),
all of the above remains true when replacing Z1 by Z2.

We obtain the statement by applying the above to all points of SDx . �

Summary 1. Let (gs)s∈SUx
∈∏s∈SUx

G(MC,s). For any s ∈ SUx , there exists a neigh-

borhood Bs of s in C, such that gs ∈ G(M (Bs)). By Lemma 4.5.16, there exists an affinoid
neighborhood Z ⊆ Zt (with Zt as in Proposition 4.5.10) of x such that for any s ∈ SUx , if
Us, Vs are the elements of Ux containing s, then Ws,Z ⊆ Bs, where Ws,Z is the connected
component of Us,Z ∩Vs,Z containing s. Consequently, gs ∈ G(M (Ws,Z)). Seeing as for any
connected affinoid neighborhood Z ′ ⊆ Z, Ws,Z′ =Ws,Z ∩CZ′ , the same remains true when
replacing Z by Z ′.

(b) The descent to P1,an. Let Z be as in Summary 1. The fi-

nite surjective morphism fZ : CZ → P1,an
Z induces a finite field extension

M (CZ)/M (P1,an
Z ). Set G′ = R

M (CZ)/M (P1,an
Z )

(G) - the Weil restriction of scalars

from M (CZ) to M (P1,an
Z ) of G. This is still a connected rational linear alge-

braic group (see [12, 7.6] or [55, Section 1]). For any y ∈ SDx , by the univer-
sal property of R, G′(MP1,an

Z ,y
) = G(MP1,an

Z ,y
⊗

M (P1,an
Z )

M (CZ)). By Proposition 4.4.12,

G′(MP1,an
Z ,y

) =
∏
s∈f−1

x (y)G(MCZ ,s). Let (gs)s∈SUx
∈ ∏s∈SUx

G(MCZ ,s). This determines

uniquely an element (hy)y∈SDx
∈∏y∈SDx

G′(MP1,an
Z ,y

).

By Theorem 4.3.13, there exists a connected affinoid neighborhood Z ′ ⊆ Z of x,
and (hD)D∈Dx ∈

∏
D∈Dx

G′(M (DZ′)), satisfying: for any y ∈ SDx , there exist exactly
two Dy, D

′
y ∈ Dx containing y, hy ∈ G′(M (Dy,Z′ ∩D′

y,Z′)), and if TDx(Dy) = 0, then

hy = hDy · h−1
D′

y
in G′(M (Dy,Z′ ∩D′

y,Z′)). The same expression remains true for any con-

nected affinoid neighborhood Z ′′ ⊆ Z ′ of x.
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For any D ∈ Dx, let U1,Z′ , U2,Z′ , . . . , Un,Z′ , be the connected components of f−1
Z′ (DZ′).

The natural map M (DZ′)⊗
M (P1,an

Z )
M (CZ)→

∏n
i=1 M (Ui,Z′) (obtained by pull-backs

and multiplication), induces a map

G′(M (DZ′)) = G(M (DZ′)⊗
M (P1,an

Z )
M (CZ))→

n∏

i=1

G(M (Ui,Z′)).

Let the image of hD ∈ G′(M (DZ′)) by this map be the element (gU1 , gU2 , . . . , gUn) of∏n
i=1G(M (Ui,Z′)). Thus, for any UZ′ ∈ UZ′ , we have an element gU ∈ G(M (UZ′)).

(c) The decomposition. Finally, it remains to show that for any U0, U1 ∈ Ux such
that TUx(U0) = 0, and s ∈ U0 ∩ U1, if Ws,Z′ is the connected component of U0,Z′ ∩ U1,Z′

containing s, then gs = gU0 · g−1
U1

in G(M (Ws,Z′)), and that the same expression remains

true when replacing Z ′ by any connected affinoid neighborhood Z ′′ ⊆ Z ′ of x.
Let y ∈ SDx . Let D1, D2 be the elements of Dx containing y. For any s ∈ f−1

x (y),
let Ws,Z′ denote the connected component of f−1

Z′ (D1,Z′ ∩ D2,Z′) containing s. There is
a natural bilinear map M (D1,Z′ ∩D2,Z′) ×M (CZ) →

∏
s∈f−1

x (y) M (Ws,Z′), (a, b) 7→ ab,

which induces an application M (D1,Z′ ∩D2,Z′)⊗
M (P1,an

Z )
M (CZ)→

∏
s∈f−1

x (y) M (Ws,Z′)

(this is “compatible” with the isomorphism MP1,an
Z ,y

⊗
M (P1,an

Z )
M (CZ)→

∏
s∈f−1

x (y) MCZ ,s,

i.e. they are both induced by multiplication). Finally, this gives rise to a morphism
G′(M (D1,Z′∩D2,Z′)) = G(M (D1,Z′∩D2,Z′)⊗

M (P1,an
Z )

M (CZ))→
∏
s∈f−1

x (y)G(M (Ws,Z′)),

which sends (the restriction of) hy to (the restriction of) (gs)s∈f−1
x (y).

Let Ui, i = 1, 2, . . . , n, (resp. Vj , j = 1, 2, . . . ,m) be the connected compo-

nents of f−1
x (D1) (resp. f−1

x (D2)). For any i, j, set Ui ∩ Vj = {si,jα : α = 1, 2, . . . , li,j}
(if Ui ∩ Vj = ∅ for some i, j, then we take li,j = 0). Remark that

f−1
x (y) = {si,jα : α = 1, . . . , li,j , i = 1, . . . , n, j = 1, . . . ,m}. For any i, j, α, letW

si,jα ,Z′ be the

connected component of Ui,Z′ ∩ Vj,Z′ containing si,jα .

For any i (resp. j), there is a restriction map M (Ui,Z′) → ∏m
j=1

∏li,j
α=1 M (W

si,jα ,Z′)

(resp. M (Vj,Z′)→∏n
i=1

∏li,j
α=1 M (W

si,jα ,Z′)). This induces a restriction map

n∏

i=1

M (Ui,Z′)→
∏

i,j,α

M (W
si,jα ,Z′)


resp.

m∏

j=1

M (Vj,Z′)→
∏

i,j,α

M (W
si,jα ,Z′)


 .

The following commutative diagram

M (D1,Z′)⊗
M (P1,an

Z )
M (CZ) M (D1,Z′ ∩D2,Z′)⊗

M (P1,an
Z )

M (CZ) M (D2,Z′)⊗
M (P1,an

Z )
M (CZ)

∏n
i=1 M (Ui,Z′)

∏
i,j,α M (W

sijα ,Z′)
∏m
j=1 M (Vj,Z′)

gives rise to the following (where λ1, λ2, λ3 are isomorphisms):
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G′(M (D1,Z′)) G′(M (D1,Z′ ∩D2,Z′)) G′(M (D2,Z′))

G(M (D1,Z′)⊗
M (P1,an

Z )
M (CZ)) G(M (D1,Z′ ∩D2,Z′)⊗

M (P1,an
Z )

M (CZ)) G(M (D2,Z′)⊗
M (P1,an

Z )
M (CZ))

∏n
i=1G(M (Ui,Z′))

∏
i,j,αG(M (W

sijα ,Z′))
∏m
j=1G(M (Vj,Z′))

λ1 λ2 λ3

The factorization result is now a consequence of the analoguous result for (hy)y∈SDx
and

(hD)D∈Ux , the relationship between TDx and TUx , and the commutativity of the diagram
above. More precisely, hy = hD1 ·h−1

D2
inG′(M (D1,Z′∩D2,Z′)), and hy is sent to (gs)s∈f−1

x (y),

so for any si,jα ∈ f−1
x (y), g

si,jα
= gUi

· g−1
Vj

in G(M (W
si,jα ,Z′)).

Considering for any connected affinoid neighborhood Z ′′ ⊆ Z ′ of x, Ws,Z′′ =Ws,Z′ ∩ CZ′′

for any s ∈ SUx , and UZ′′ = UZ′ ∩ CZ′′ for all U ∈ Ux, the same expressions remain true
when replacing Z ′ by Z ′′. �

4.6. The Local-Global Principles

Let k be a non-trivially valued ultrametric field. Throughout this entire section, we
keep working with the hypotheses of Setting 4.4.1, and the related notations we have intro-
duced (see Notation 4.5.1). As before, we also suppose that dimS < dimQR>0/|k×| ⊗Z Q.

Remark 4.6.1. Recall in particular that for COx = CO(Z0)×O(Z0)Ox, its function field
was denoted by FOx . It was shown in Corollary 4.4.16 that FOx = lim−→Z

M (CZ), where

M denotes the sheaf of meromorphic functions on C, and the direct limit is taken with
respect to connected affinoid neighborhoods of x in S.

4.6.1. With respect to germs of meromorphic functions. We show here the
relative analogue of Theorem 3.2.11.

Recall that Cx denotes the fiber at x of the relative proper curve C → S, and it is a
normal irreducible projective H(x)-analytic curve.

Theorem 4.6.2. Let H/FOx be a variety and G/FOx a connected rational linear alge-
braic group acting strongly transitively over H. Then,

H(FOx) 6= ∅ ⇐⇒ H(MC,u) 6= ∅ for all u ∈ Cx.
Proof. (⇒): By Corollary 4.4.16, FOx = lim−→Z

M (CZ), where the limit is taken over

connected affinoid neighborhoods Z ⊆ Z0 of x. If H(FOx) 6= ∅, there exists a connected
affinoid neighborhood Z ⊆ Z0 of x, such that H(M (CZ)) 6= ∅. Seeing as x ∈ Int(Z), we
obtain that for any u ∈ Cx, u ∈ Int(CZ), so MCZ ,u = MC,u. Consequently, there is a
restriction morphism M (CZ) →֒MC,u for any u ∈ Cx, implying H(MC,u) 6= ∅.

(⇐): Let us now assume H(MC,u) 6= ∅ for all u ∈ Cx. This implies that for any u ∈ Cx,
there exists an open neighborhood N ′

u of u in C, such that H(M (N ′
u)) 6= ∅. Let V denote

the open cover (N ′
u)u∈Cx of Cx in C.

By Remark 4.5.13, there exists a connected affinoid neighborhood Z ⊆ ZG of x (ZG as

in Notation 4.5.14), and a nice cover Dx of P1,an
H(x) such that they induce a refinement UZ of

V obtained as in construction (1) and satisfying properties (2) and (4) of Subsection 4.5.1.
Let Ux denote the corresponding nice cover of Cx, TUx its associated parity function, and
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SUx the intersection points of the different elements of Ux. As UZ refines V, for any U ∈ Ux
and any connected affinoid neighborhood Z ′ ⊆ Z of x, H(M (UZ′)) 6= ∅.

For any U ∈ Ux, let us fix an element U ′ ∈ V for which UZ ⊆ U ′ for any connected
affinoid neighborhood Z ⊆ Zt ∩ ZG of x (it exists seeing as UZ refines V, and for any
Z ′ ⊆ Z ′′ ⊆ Zt that are connected affinoid neighborhoods of x, UZ′ = UZ′′ ∩ CZ′).

(a) Finding good neighborhoods of s ∈ SUx . Let s ∈ SUx . Let Us, Vs be the elements
of Ux containing s. Then, s ∈ Us ∩ Vs ⊆ U ′

s ∩ V ′
s . Let Ns ⊆ U ′

s ∩ V ′
s be a neighborhood of s

in CZ0 such that Ns ∩ SUx = {s} (this is possible considering Lemma 4.4.9).
Let us fix a connected affinoid neighborhood Z ⊆ Zt ∩ ZG of x. Remark that for

any y ∈ SDx ,
⊔
s∈f−1

x (y)Ns is an open neighborhood of f−1
x (y) in CZ0 , hence in CZ . By

[25, Lemma I.1.2], there exists a connected neighborhood Ay of y in P1,an
Z , such that

f−1
Z (Ay) ⊆

⊔
s∈f−1

Z (y)Ns. By Lemma 4.1.19 (and restricting to a smaller Z if necessary),

we may assume that Ay is the Z-thickening AZ of a connected affinoid domain A of P1,an
H(x)

containing only type 3 points in its boundary. By Corollary 4.1.24, we may assume that for
any connected affinoid neighborhood Z ′ ⊆ Z of x, the Z ′-thickening AZ′ of A is connected.

Let Bi,Z , i = 1, 2, . . . ,m, be the connected components of f−1
Z (AZ). By Lemma 4.5.3,

for any i, Bi,Z ∩ Cx 6= ∅ and fZ(Bi,Z) = AZ , implying Bi,Z ∩ f−1
x (y) 6= ∅ for all i.

By Proposition 4.5.6, we may assume that Bi,Z ∩ Cx is connected for all i, and for any

connected affinoid neighborhood Z ′ ⊆ Z of x, the connected components of f−1
Z′ (AZ′) are

Bi,Z′ = Bi,Z ∩ CZ′ , i = 1, 2, . . . , n.
Seeing as

⊔n
i=1Bi,Z ⊆

⊔
s∈f−1

x (y)Ns, for any i, there exists exactly one si ∈ f−1
x (y)

such that Bi,Z ⊆ Nsi , which implies that Bi,Z ∩f−1
x (y) = {si}. As f−1

x (y) ⊆ ⊔n
i=1Bi,Z and

Bi,Z ∩ f−1
x (y) 6= ∅, there exists a bijective correspondence between the points of f−1

x (y)

and the connected components of f−1
Z (AZ). For s ∈ f−1

x (y), let Bs,Z be the corresponding

connected component of f−1
Z (AZ) containing s, so that Bs,Z ⊆ Ns. Since the connected

components of f−1
Z′ (AZ′) are Bs,Z ∩CZ′ , s ∈ f−1

x (y), the same remains true when replacing
Z by Z ′.

(b) The transitivity of the action. For s ∈ SUx , we denote by Us, Vs be the elements
of Ux containing s, and suppose TUx(Us) = 0. Then, s ∈ Bs,Z ⊆ U ′

s ∩ V ′
s , with Bs,Z

constructed as in part (a). Let hUs ∈ H(M (U ′
s)) and hVs ∈ H(M (V ′

s )). The restrictions of
hUs , hVs (which we keep denoting by hUs , hVs) to M (Bs,Z) induce elements of G(M (Bs,Z)),
and the same remains true for any connected affinoid neighborhood Z ′ ⊆ Z.

Lemma 4.6.3. There exists a connected affinoid neighborhood Zs ⊆ Z of x such that
there exists gs ∈ G(M (Bs,Zs)) satisfying hUs = gs ·hVs in H(M (Bs,Zs)). For any connected
affinoid neighborhood Z ′ ⊆ Zs of x, hUs = gs · hVs in H(M (Bs,Z′)).

Proof. Set L = lim−→Z
M (Bs,Z), where the limit is taken with respect to the con-

nected affinoid neighborhoods Z ⊆ Z0 of x. As shown in Proposition 4.5.6, we may
assume that Bs,Z is connected for all such Z ⊆ Z0, so that M (Bs,Z) are fields. Conse-
quently, L is a field. The restriction morphisms M (CZ) →֒M (Bs,Z) induce an embedding
FOx = lim−→Z

M (CZ) →֒ L. Hence, G(L) acts transitively on H(L).

As hUs , hVs ∈ H(L), there exists g ∈ G(L), for which hUs = gs · hVs in H(L).
Consequently, there exists a connected affinoid neighborhood Zs of x, such that gs ∈
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G(M (Bs,Zs)) and hUs = gs · hVs in H(M (Bs,Zs)). The same remains true for any con-
nected affinoid neighborhood Z ′ ⊆ Zs of x seeing as Bs,Z′ = Bs,Zs ∩ CZ′ . �

By Lemma 4.5.16, there exists a connected affinoid neighborhood Z1 ⊆ Z of x, such
that for any s ∈ SUx , if Ws,Z1 is the connected component of Us,Z1 ∩ Vs,Z1 containing s,
then Ws,Z1 ⊆ Bs,Z , so Ws,Z1 ⊆ Bs,Z ∩ CZ1 = Bs,Z1 . Similarly, for any connected affi-
noid neighborhood Z ′ ⊆ Z1, Ws,Z′ ⊆ Bs,Z′ . Consequently, for any s ∈ SUx , the equality
hUs = gs · hVs of Lemma 4.6.3 is well defined in H(M (Ws,Z′)) for any connected affinoid
neighborhood Z ′ ⊆ ⋂s∈SUx

Zs ∩ Z1 of x.

(c) The patching. Let us fix a connected affinoid neighborhood Z ⊆ Zt ∩ ZG of x,
where Zt is as in Remark 4.5.13, and ZG as in Notation 4.5.14. Then, UZ is a cover of CZ ,
so {U ′ ∈ V : U ∈ Ux} is an open cover of CZ in C. For any U ′ ∈ V, let us fix an element
hU ∈ H(M (U ′)). This gives rise to an element of H(M (UZ′)) for any connected affinoid
neighborhood Z ′ ⊆ Z of x, which we will keep denoting by hU .

By part (b), there exists (gs)s∈Ux ∈
∏
s∈SUx

G(MC,s) and a connected affinoid neigh-

borhood Z2 ⊆ Z of x, such that for any s ∈ Ux, if Us, Vs are the elements of Ux containing s,
and TUx(Us) = 0, then gs ∈ G(M (Ws,Z2)), and hUs = gs · hVs in H(M (Ws,Z2)), where
Ws,Z2 is the connected component of Us,Z2∩Vs,Z2 containing s.Moreover, the same remains
true when replacing Z2 by any connected affinoid neighborhood Z ′ ⊆ Z2 of x.

By Theorem 4.5.15, we may assume that Z2 is such that there exists an element
(gU )U∈Ux of

∏
U∈Ux

G(M (UZ2)), such that for any non-disjoint U, V ∈ Ux with TUx(U) = 0,

and any s ∈ U∩V, gs = gU ·g−1
V in G(M (Ws,Z2)), whereWs,Z2 is the connected component

of Us,Z2 ∩Vs,Z2 containing s. Moreover, the same remains true when replacing Z2 with any
connected affinoid neighborhood Z ′ ⊆ Z2 of x.

For any U ∈ Ux, set h′U = g−1
U ·hU ∈ H(M (UZ2)). If U, V are two non-disjoint elements

of Ux, and TUx(U) = 0, for any s ∈ U ∩ V, one obtains h′V = g−1
V hV = g−1

U (gUg
−1
V )hV =

g−1
U gshV = g−1

U hU = h′U in H(M (Ws,Z2)), where Ws,Z2 is the connected component of
UZ2 ∩ VZ2 containing s. Thus, h′U |UZ2

∩VZ2
= h′V |UZ2

∩VZ2
in H(M (UZ2 ∩ VZ2)).

To summarize, we have an affinoid cover UZ2 of CZ2 , and for any UZ2 ∈ UZ2 , an
element h′U ∈ H(M (UZ2)). Moreover, for any UZ2 , VZ2 ∈ UZ2 , h

′
U |UZ2

∩VZ2
= h′V |UZ2

∩VZ2
.

Consequently, there exists h ∈ H(M (CZ2)) such that h|UZ2
= h′U for any UZ2 ∈ UZ2 .

Seeing as there is an embedding M (CZ2) →֒ FOx , we obtain that H(FOx) 6= ∅. �

4.6.2. With respect to valuations. Recall the notations mentioned at the begin-
ning of this Section.

Since Ox is a field, there is an embedding Ox →֒ H(x), and it induces a valuation
on Ox. We will say that this is the valuation induced by x on Ox.

Definition 4.6.4. We denote by V (FOx) the set of non-trivial rank one valuations v
on FOx , such that either v|Ox

is the valuation induced by x on Ox or v|Ox
is trivial. Set

V ′(FOx) = {v ∈ V (FOx) : v|Ox
is the norm induced by x on Ox}. For any v ∈ V (FOx), we

denote by FOx,v the completion of FOx with respect to v.

Remark 4.6.5. For any non-rigid point y ∈ Cx, OCx,y is a field, so by Lemma 4.4.8,
OC,y is a field, and there is an embedding OC,y = MC,y →֒ H(y). We endow MC,y with
the valuation induced from H(y).
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For any rigid point y ∈ Cx, OCx,y is a dvr, so by Lemma 4.4.8, OC,y is a dvr. We
endow MC,y with the corresponding discrete valuation.

Proposition 4.6.6. There exists a surjective map val : Cx → V (FOx), y 7→ vy, such
that: if y ∈ Cx is not rigid, then vy|Ox

induces the norm determined by x on Ox, and

FOx,vy = M̂C,y; if y ∈ Cx is rigid, then vy is discrete, vy|Ox
is trivial, and FOx,vy →֒ M̂C,y.

Let Cx,nrig denote the set of non-rigid points on Cx. The restriction
val|Cx,nrig

: Cx,nrig → V ′(FOx) is a bijection.

Proof. The construction of the map val: Let y ∈ Cx be a non-rigid point. Then,

OCx,y is a field, and so is OC,y. Consequently, M̂C,y = H(y), so for any connected affinoid

neighborhood Z of x, M̂ (CZ) = M̂C,y, where the completion of M (CZ) is taken with
respect to the norm induced by the embedding M (CZ) →֒ H(y). Considering FOx =

lim−→Z
M (CZ) →֒ MC,y, and as M̂ (CZ) = M̂C,y for any connected affinoid neighborhood

Z ⊆ Z0 of x, we obtain that FOx,vy = M̂C,y. The fact that vy|Ox
is the norm determined

by x on Ox is a direct consequence of the fact that y ∈ Cx.
Let y ∈ Cx be a rigid point. Then, OCx,y is a discrete valuation ring, and by Lemma

4.4.8, so is OC,y. As π(y) = x, this induces a morphism of local rings Ox → OC,y. Further-
more, since Ox is a field, Ox →֒ O×

C,y. As seen above, there is an embedding FOx →֒MC,y.
Let us endow MC,y with the discrete valuation arising from the dvr OC,y. This induces
a discrete valuation vy in FOx . That vy|Ox

is trivial is immediate from the embedding

Ox →֒ O×
C,y. Clearly, this gives rise to an embedding FOx,vy →֒ M̂C,y.

The map val|Cx,nrig
: It remains to show that the restriction val|Cx,nrig

: Cx,nrig → V ′(FOx)

is bijective. Let v ∈ V ′(FOx). Then, sinceOx →֒ FOx , there is an embeddingH(x) →֒ FOx,v.

This implies that there is a morphism FOx ⊗Ox H(x)→ FOx,v. Let C
alg
x denote the normal

irreducible projective algebraic curve over H(x) whose Berkovich analytification is Cx. Its
function field is M (Cx) by [6, Proposition 3.6.2].

Let x′ denote the image of x via the morphism Z0 → Spec O(Z0), where Z0 is as in
Setting 4.4.1. Using Notation 4.4.4, by Corollary 1.6.17, Cx = (CO(Z0),κ(x′) ×κ(x′) H(x))an,
so Calg

x = CO(Z0),κ(x′) ×κ(x′)H(x). Seeing as Ox is a field, we have an embedding κ(x′) →֒
Ox, so Calg

x = COx×OxH(x). This means that its function field is M (Cx) = FOx⊗OxH(x).
Consequently, there are embeddings FOx →֒ M (Cx) →֒ FOx,v, implying M̂ (Cx)v =

FOx,v, where M̂ (Cx)v is the completion of M (Cx) with respect to v. By Proposition 3.2.14,
there exists a unique (implying both injectivity and surjectivity of val|Cx,nrig

) non-rigid

point y ∈ Cx such that M̂C,y = H(y) = M̂Cx,y = FOx,v. Clearly, v = val(y).
�

Corollary 4.6.7. With the notation of Theorem 4.6.2, if char k = 0 or H is smooth,
then:

H(FOx) 6= ∅ ⇐⇒ H(FOx,v) 6= ∅ for all v ∈ V (FOx).

Proof. (⇒): Seeing as FOx embeds in FOx,v for all v ∈ V (FOx), this direction is
immediate.

(⇐): We remark that FOx is perfect if and only if char k = 0. Suppose H(FOx,v) 6= ∅
for all v ∈ V (FOx). By Proposition 4.6.6, for any y ∈ Cx, there exists v ∈ V (FOx), such
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that FOx,v ⊆ M̂C,y. Hence, H(M̂C,y) 6= ∅ for all y ∈ Cx. If y is a non-rigid point of Cx,
then OC,y = MC,y is a Henselian field by [4, Theorem 2.3.3]. If y is rigid point, then OC,y
is a dvr that is Henselian, so by [4, Proposition 2.4.3], MC,y = Frac OC,y is Henselian. By
Lemma 3.2.16, H(MC,y) 6= ∅ for all y ∈ Cx. Finally, by Theorem 4.6.2, this implies that
H(FOx) 6= ∅. �

4.6.3. Summary of results. Recall that (k, | · |) denotes a complete non-trivially
valued ultrametric field. As usual, we denote by M the sheaf of meromorphic functions.

Let us summarize the main results we have shown:

Theorem 4.6.8. Let S,C be good k-analytic spaces such that S is normal. Suppose
dimS < dimQR>0/|k×| ⊗Z Q. Suppose there exists a surjective morphism π : C → S that
makes C a proper flat relative analytic curve. Let x ∈ S be such that Ox is a field. Set
Cx = π−1(x).

Assume there exists a connected affinoid neighboorhood Z0 of x such that all the fibers
of π on Z0 are normal irreducible projective analytic curves. Suppose that CZ0 := π−1(Z0)
is normal, and CZ0 → Z0 is algebraic, i.e. the analytification of an algebraic morphism
CO(Z0) → Spec O(Z0). Set COx = CO(Z0) ×O(Z0)Ox. Let FOx be the function field of COx .

For any connected affinoid neighborhood Z ⊆ Z0 of x, let us denote by CZ the analytic
space C ×S Z. Then, FOx = lim−→Z

M (CZ).

Let G/FOx be a connected rational linear algebraic group acting strongly transitively
on a variety H/FOx . The following local-global principles hold:

• H(FOx) 6= ∅ ⇐⇒ H(MC,u) 6= ∅ for all u ∈ Cx;
• if char k = 0 or H is smooth,

H(FOx) 6= ∅ ⇐⇒ H(FOx,v) 6= ∅ for all v ∈ V (FOx),

where V (FOx) is given as in Definition 4.6.4.

The theorem above tells us that there is a local-global principle in the neighborhood
of certain fibers of relative proper analytic curves. More generally, we have shown that
patching is possible in the neighborhood of said fibers. Note that the statement of The-
orem 4.6.8 is a local-global principle over the germs of meromorphic functions of a fixed
fiber.

Considering Subsection 4.4.1 which provides an example of Setting 4.4.1, we also obtain
the following theorem, which is a generalization of Corollary 3.2.18.

Theorem 4.6.9. Let S be a good normal k-analytic space such that
dimS < dimQR>0/|k×| ⊗Z Q. Let x ∈ S be such that Ox is a field. Let COx be a
smooth geometrically irreducible projective algebraic curve over Ox. Let FOx denote the
function field of COx .

Let G/FOx be a connected rational linear algebraic group acting strongly transitively
on a variety H/FOx . Then, if char k = 0 or H is smooth:

H(FOx) 6= ∅ ⇐⇒ H(FOx,v) 6= ∅ for all v ∈ V (FOx),

where V (FOx) is given as in Definition 4.6.4.

Remark 4.6.10. Just as in Chapter 3, if char k 6= 2, the two theorems above can be
applied to quadratic forms.
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4.7. Examples of fields Ox
To illustrate on which types of fields our local-global principles of this chapter can be

applied, we calculate a few examples of local rings Ox that are fields. To do this, the key
is to find a “good” basis of neighborhoods of the point x.

We denote by (k, | · |) a complete ultrametric field such that dimQR>0/|k×| ⊗Z Q =∞
(this condition is sufficient to guarantee the existence of type 3 points on the fiber of x).
In all of the following examples, x is chosen such that Ox is a field.

Example 1. Suppose S = M(k), where M( · ) denotes the Berkovich spectrum.
Then, if S = {x}, we obtain that Ox = k, so a special case of Theorem 4.6.2 is Theo-
rem 3.2.10.

Example 2. Let ηT,r ∈ A1,an
k be a type 3 point, meaning r 6∈

√
|k×|. We can de-

duce from [20, 3.4.19.3], that the family of sets Lr1,r2 := {y ∈ A1,an
k : r1 6 |T |y 6

r2}, 0 < r1 < r < r2, forms a basis of neighborhoods of ηT,r in A1,an
k . ConsideringO(Lr1,r2) =

{∑n∈Z anT
n : an ∈ k, limn→+∞ |an|rn2 = 0, limn→−∞ |an|rn1 = 0}, we obtain that

Ox =

{∑

n∈Z

anT
n : an ∈ k, ∃r1, r2 ∈ R>0, s.t. r1 < r < r2, lim

n→+∞
|an|rn2 = 0, lim

n→−∞
|an|rn1 = 0

}

The norm that x induces on Ox is the following: |∑n∈Z anT
n|x = maxn∈Z |an|rn.

Notation 4.7.1. For α ∈ k and r ∈ R>0, let us denote by Bk(α, r) the closed disc
in k centered at a and of radius r. Also, for P ∈ k[T ] irreducible, we denote Dk(P, r) :=
{y ∈ A1,an

k : |P |y 6 r} (resp. D◦
k(P, r) := {y ∈ A1,an

k : |P |y < r}) the closed (resp. open)
virtual disc centered at ηP,0 and of radius r. In particular, if there exists α ∈ k such that
P (T ) = T − α, we will simply write Dk(α, r) (resp. D◦

k(α, r)). When there is no risk of
ambiguity, we will forget the index k.

Example 3. Suppose k is algebraically closed. Let x = ηT−α,r ∈ A1,an
k be a type 2

point, meaning r ∈ |k×|. By [20, 3.4.19.2] that x has a basis of neighborhoods of the form
AR,αi,ri,I := D(α,R)\⊔i∈I D

◦(αi, ri), where I is a finite set, 0 < ri < r for all i ∈ I, R > r,
αi ∈ B(α, r), and for any i, j ∈ I, i 6= j, we have |αi − αj | = r. The subset AR,αi,ri,I is an

affinoid domain in A1,an
k . By [24, Proposition 2.2.6],

O(AR,αi,ri,I) =
{∑

n>0

∑

i∈I

an,i
(T − αi)n

+
∑

n>0

an(T − α)n :

an,i, an ∈ k, lim
n→+∞

|an,i|r−ni = 0, i ∈ I, lim
n→+∞

|an|Rn = 0
}
.

Consequently, f ∈ Ox if and only if there exist a finite set I ⊆ N, positive real numbers
R, ri, i ∈ I, such that ri < r < R, and elements αi ∈ B(α, r), such that |αi − αj | = r for
any i, j ∈ I, i 6= j, satisfying f ∈ O(AR,αi,ri,I). The norm induced by x is

∣∣∣∣∣
∑

n>0

∑

i∈I

an,i
(T − αi)n

+
∑

n>0

an(T − α)n
∣∣∣∣∣
x

= max
n>0,i∈I

(|a0|, |an,i|r−n, |an|rn).
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Example 4. Suppose k is algebraically closed. Let x ∈ A1,an
k be a type 4 point,

meaning it is determined by a strictly decreasing family of closed discs D := (B(ai, ri))i∈N
in k such that

⋂
i∈NB(ai, ri) = ∅. Then, for any Q(T ) ∈ k[T ], |Q|x = infi |Q|ηai,ri . Let us

remark that for any i ∈ N, x ∈ D(ai, ri). Moreover, x ∈ D◦(ai, ri). To see the last part,
assume, by contradiction, that there exists j ∈ N such that |T − aj |x = rj . Then, for any
i > j, max(|ai − aj |, ri) = |T − aj |ηai,ri > rj , which is impossible seeing as D is strictly
decreasing.

By [20, 3.4.19.1], the elements of D ′ := (D(ai, r)i))i∈N form a basis of neighborhoods
of x. Finally, for any f ∈ Ox, there exists i′ ∈ N such that f ∈ O(D(ai′ , ri′)), meaning
f =

∑
n∈N bn(T − ai′)n, where bn ∈ k for all n, and limn→+∞ |bn|rni′ = 0. Then, for any

i > i′, f ∈ O(D(ai, ri)). Finally, the norm induced by x is |f |x = infi>i′ |f |ηai,ri .

Example 5. Let us fix an algebraic closure k of k. Let x ∈ A1,an
k be a non-rigid type 1

point. This means that there exists an element α ∈ k̂\k, such that the image of ηα,0 with

respect to the open surjective morphism ϕ : A1,an

k̂
→ A1,an

k is x. There exists a sequence

(αi)i∈N in k such that limi→+∞ αi = α. Set ri = |α − αi|. Then, in k̂, the point ηα,0
is determined by the strictly decreasing family of closed discs (B

k̂
(αi, ri))i∈N, meaning

for any Q ∈ k̂[T ], |Q|ηα,0 = infi |Q|ηαi,ri
. As in Example 4, by [20, 3.4.19.1], the family

(D
k̂
(αi, ri))i∈N forms a family of neighborhoods of ηα,0 in A1,an

k̂
.

Seeing as ϕ is an open morphism, (ϕ(D
k̂
(αi, ri)))i∈N forms a basis of neighborhoods of

the point x in A1,an
k . For any i, let Pi ∈ Qp[T ] denote the minimal polynomial of αi over k.

Then, ϕ(D
k̂
(αi, ri)) = Dk(Pi, si), where si =

∏
Pi(β)=0max(|αi − β|, ri) (Lemma 1.8.22).

Finally, for any f ∈ Ox, there exists if ∈ N, such that f ∈ O(Dk(Pif , sif )). As seen
in Lemma 4.2.8, O(Dk(Pif , sif )) is isomorphic to O(Dk(0, sif ))[S]/(Pif (S) − T ), where
O(Dk(0, sif )) = {

∑
n∈N bnT

n : bn ∈ k, limn→+∞ |bn|snif = 0}.
Remark that for any i > if , f ∈ O(Dk(Pi, si)). The norm induced by x on Ox is given

as follows: |f |x = infi>if |f |ηPi,si
.

Example 6. Let S, T denote the coordinates of A2,an
k , and ϕ : A2,an

k → A1,an
k the

projection to A1,an
k with coordinate T. Let s, t ∈ R>0 be such that t 6∈

√
|k×| and s 6∈√

|H(ηT,t)×|. Let x ∈ A2,an
k denote a point such that |T |x = t, |S|x = s. Then, x ∈

ϕ−1(ηT,t), and considering the condition on s, x is a type 3 point on the fiber of ηT,t. In

particular, x is the only point of A2,an
k that satisfies |T |x = t, |S|x = s.

By Lemma 4.1.19 and Example 2, a basis of neighborhoods of x is given by {y ∈ A1,an
k :

t1 6 |T |y 6 t2, s1 6 |S|y 6 s2}, where 0 < t1 < t < t2, 0 < s1 < s < s2. Consequently,

Ox =
{ ∑

m,n∈Z

am,nT
mSn : am,n ∈ k, ∃t1, t2, s1, s2 ∈ R>0, s.t. t1 < t < t2, s1 < s < s2,

lim
m+n→+∞

|am,n|tm2 sn2 = 0, lim
m+n→−∞

|am,n|tm1 sn1 = 0
}
.

The norm on Ox is given by: |∑m,n∈Z am,nT
mSn|x = maxm,n∈Z |am,n|tmsn.

By iterating the above, we can calculate the local ring of any point x ∈ Al,ank , l ∈ N,
satisfying similar properties.
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[11] S. Bosch, U. Güntzer, and R. Remmert. Non-Archimedean analysis, volume 261 of Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin. A systematic approach to rigid analytic geometry.

[12] W. Bosch, S.and Lütkebohmert and M. Raynaud. Néron models, volume 21 of Ergebnisse der Math-
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Math., pages 37–86. Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg, 2013.
[38] E. Hrushovski and F. Loeser. Non-archimedean tame topology and stably dominated types, volume 192

of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ.
[39] Colliot-Thélène J.-L., R. Parimala, and V. Suresh. Patching and local-global principles for homoge-

neous spaces over function fields of p-adic curves. Comment. Math. Helv., 87(4):1011–1033.
[40] M. Jarden. Algebraic patching. In Travaux mathématiques. Vol. XXIII, volume 23 of Trav. Math.,
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Publications.

[49] Q. Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathemat-
ics. Oxford University Press, Oxford. Translated from the French by Reinie Erné; Oxford Science
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[61] J. Poineau. Raccord sur les espaces de Berkovich. Algebra Number Theory, 4(3):297–334.
[62] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2019.
[63] J. Tate. Rigid analytic spaces. Invent. Math., 12:257–289, 1971.
[64] M. Temkin. Introduction to Berkovich analytic spaces. pages 3–66.
[65] M. Temkin. A new proof of the Gerritzen-Grauert theorem. Math. Ann., 333(2):261–269.
[66] M. Temkin. On local properties of non-Archimedean analytic spaces. ii. Israel J. Math., 140:1–27.
[67] M. Temkin. On local properties of non-Archimedean analytic spaces. ii. Israel J. Math., 140:1–27.
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Résumé. Field patching, introduced by Harbater and Hartmann in [33], and extended by
the aforementioned authors and Krashen in [34], has recently seen numerous applications.
We present an extension of this technique to the setting of Berkovich analytic geometry
and applications to the local-global principle.

In particular, we show that this adaptation of patching can be applied to Berkovich
analytic curves, and as a consequence obtain local-global principles over function fields
of curves defined over complete ultrametric fields. Because of the connection between
the points of a Berkovich analytic curve and the valuations that its function field can be
endowed with, one of these local-global principles is given with respect to completions,
thus evoking some similarity with more classical versions. As an application, we obtain
local-global principles for quadratic forms and results on the u-invariant. These findings
generalize those of [34].

As a starting point for higher-dimensional patching in the Berkovich setting, we show
that this technique is applicable around certain fibers of a relative Berkovich analytic
curve. As a consequence, we prove a local-global principle over the germs of meromorphic
functions on said fibers. By showing that said germs of meromorphic functions are
algebraic, we also obtain local-global principles over function fields of algebraic curves
defined over a larger class of ultrametric fields.

Résumé. Recollement sur les espaces de Berkovich et principe local-global.

Le recollement sur les corps, introduit par Harbater et Hartmann dans [33], et étendu
par ces auteurs et Krashen dans [34], a récemment trouvé de nombreuses applications.
Nous présentons ici une extension de cette technique au cadre de la géométrie analytique
de Berkovich et des applications au principe local-global.

Nous montrons que cette adaptation du recollement peut s’appliquer aux courbes
analytiques de Berkovich, et par conséquent obtenons des principes locaux-globaux sur
les corps de fonctions de courbes définies sur des corps ultramétriques complets. Grâce
à la connexion entre les points d’une courbe analytique de Berkovich et les valuations
dont on peut munir son corps de fonctions, nous obtenons un principe local-global par
rapport à des complétés du corps de fonctions considéré, ce qui présente une ressemblance
avec des versions plus classiques. En application, nous établissons des principes locaux-
globaux dans le cas plus précis des formes quadratiques et en déduisons des bornes sur
l’u-invariant de certains corps. Nos résultats généralisent ceux de [34].

Comme point de départ pour le recollement en dimension supérieure dans un cadre
d’espaces de Berkovich, nous montrons que cette technique peut s’appliquer autour de
certaines fibres d’une courbe analytique relative. Nous l’utilisons ensuite pour démontrer
un principe local-global sur les germes des fonctions méromorphes sur ces fibres. En
montrant que ces germes de fonctions méromorphes sont algébriques, nous obtenons
aussi des principes locaux-globaux sur les corps de fonctions des courbes algébriques
définies sur une famille plus vaste de corps ultramétriques.


