Directeur M Mustapha Lebbah

M Gilles Venturini

Christophe Cerin

devant le jury composé de

Keywords: unsupervised machine learning, clustering, bi-clustering, self-organizingmap, big data, map reduce, Spark, distributed machine learning apprentissage non supervisé, clustering, bi-clustering, Self-organizing map, big data, map reduce, Spark, apprentissage distribué

In recent years, the amount of data analysed by companies and research laboratories increased strongly, opening the era of BigData. However, these raw data are frequently non-categorized and uneasy to use. This thesis aims to improve and ease the pre-treatment and comprehension of these big amount of data by using unsupervised machine learning algorithms.

 in big data environment. Our algorithm (SOM-MR) provides the same advantages as the original algorithm, namely the creation of data visualisation map based on data clusters. Moreover, it uses the Spark platform that makes it able to treat a big amount of data in a short time. Thanks to the popularity of this platform, it easily fits in many data mining environments. This is what we demonstrated it in our project "Square Predict" carried out in partnership with Axa insurance. The aim of this project was to provide a real-time data analysing platform in order to estimate the severity of natural disasters or improve residential risks knowledge. Throughout this project, we proved the efficiency of our algorithm through its capacity to analyse and create visualisation out of a big volume of data coming from social networks and open data.

The second part of this work is dedicated to a new bi-clustering algorithm.

BiClustering consists in making a cluster of observations and variables at the same time. In this contribution we put forward a new approach of bi-clustering based on the self-organizing maps algorithm that can scale on big amounts of data (BiTM-MR). To reach this goal, this algorithm is also based on a the Spark platform. It brings out more information than the SOM-MR algorithm because besides producing observation groups, it also associates variables to these groups, thus creating bi-clusters of variables and observations.

Résumé

Lors de ces dernières années les volumes de données analysées par les entreprises et les laboratoires de recherches ont fortement augmentés ouvrant ainsi l'ère du BigData. Cependant ces données brutes sont fréquemment non catégorisées et difficilement exploitables. Cette thèse vise à améliorer et faciliter le pré-traitement et la compréhension de grands volumes de données en fournissant des algorithmes d'apprentissage non supervisés.

La première partie de cette thèse est consacré à un état de l'art des algorithmes de partitionnement et bi-partitionnement ainsi qu'une présentation des technologies du BigData. La première contribution de cette thèse est dédiée à la conception de l'algorithme de clustering Self-Organizing Map ou carte auto-organisatrice [START_REF] Kohonen | Self-organizing Maps[END_REF]] dans un environnement Big data. Notre algorithme (SOM-MR) fournit les mêmes avantages que l'algorithme de base, à savoir la création de partition de données et leur visualisation sous la forme de carte. De plus il utilise la plateforme Spark, ce qui lui permet à la fois de traiter de grands volumes de données en peu de temps. De part la popularité de cette plateforme il s'intègre facilement dans dans de nombreux environnements de traitement de données. C'est ce que nous avons démontré dans notre projet "Square Predict" réalisé en partenariat avec l'assurance Axa. Ce projet avait pour objectif de fournir une plateforme d'analyse de données en temps réel afin d'évaluer la sévérité d'une catastrophe naturelle ou d'améliorer la connaissance des risques résidentiels. Durant ce projet nous avons démontré l'efficacité de notre algorithme pour analyser et fournir des visualisation à partir de grands volumes de données provenant des réseaux sociaux et d'Open data.

La deuxième contribution de cette thèse est consacrée à un nouvel algorithme de BiClustering. Le BiClustering consiste à réaliser un clustering simultanément sur les observations et les variables. Dans cette contribution nous proposons une nouvelle approche de biclustering basé sur l'algorithme self-organizing maps capable de passer à l'échelle sur de grands volumes de données (BiTM-MR). Pour ce faire il est également basé sur la plateforme des technologies Big data. Mais il apporte davantage d'informations que notre algorithme SOM-MR car en plus de produire des groupes d'observations il associe des variables à ces groupes, formant ainsi des bi-groupes d'observations et variables. [START_REF] Demchenko | Addressing big data issues in scientific data infrastructure[END_REF] [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF]. 9, 30, 98, 99, 97, 94, 5, 1, 19, 91, 6, 72. 7.2 Decision trees for the enriched AXA data for charge inc (fire damages) payouts, sorted by SOM cluster payouts: NumCluster = 94,17,37,69,96,80,8,79,68. 7.3 Decision trees for the enriched AXA data for charge dde (water damages) payouts, sorted by SOM cluster payouts: NumCluster = all, 30, 9, 6, 91, 99, 97, 5, 1, 19, 98, 1, 80. 7.4 Decision trees for the enriched AXA data for charge dde (water damages) payouts, sorted by SOM cluster payouts: NumCluster = 94,72,17,69,37,96,8,79,68

List of Figures

5 Vs of Big Data

List of publications

International conferences with reading committee The present work proposes to develop data mining tools based on learning techniques for mining Big Data. In a nutshell, this thesis pertains to the fields of Machine Learning (ML) and Big Data. Machine Learning methods traditionally fall into three categories: supervised, semi-supervised, and unsupervised methods [START_REF] Han | Data mining: concepts and techniques[END_REF]. Clustering is considered as the most important unsupervised learning problem. It is a main task of data mining and the common technique that has been used in many fields, including machine learning, data mining, pattern recognition, web mining, textual document collection, image segmentation, biology, etc. [START_REF] Everitt | Cluster Analysis[END_REF].

However, applying data mining techniques, and specifically clustering algorithms, to large datasets (Big Data) raise more challenges and difficulties. Big Data has become recently a new ubiquitous term. Big Data is transforming science, engineering, medicine, healthcare, finance, business, and ultimately our society itself. Currently, the Big Data domain can be characterized by the 5 V's:

Volume, Velocity, Variety, Value and Veracity (see chapter 4 for more details).

Given the interest of mining Big Data, organisations are increasingly relying on Big Data to provide the opportunities to discover correlations and patterns in data that would have previously remained hidden, and to subsequently use this new information to increase the quality of their business activities. Learning from Big Data has become a significant challenge and requires development of new types of algorithms. Most machine learning algorithms can not easily scale up to Big Data. MapReduce is a simplified programming model for processing large datasets in a distributed and parallel manner.

Our contributions

As already mentioned, the present work is concerned with the modelling of largescale data within a Big Data framework, using Machine Learning methods, specifically the Self-Organizing Maps approach, and Big Data concepts and technologies.

Chapter 3 surveys clustering and scalable clustering methods implemented with MapReduce. Chapter 4 presents a thorough survey of the state-of-the-art for a range of bi-clustering algorithms. Chapter 2 is devoted to introducing the Big Data ecosystem and the fundamentals for data science.

In the subsequent chapters are our main contributions, summarized as follows:

1. In chapter 5 we present a scalable Self-Organizing Maps method, called SOM-MR which consists of a novel re-formalization of the dynamic clusters "nuées dynamiques". The proposed SOM-MR algorithm is implemented with the Spark framework which represents a new way of writing using the MapReduce paradigm. The major research challenge addressed is how to minimize the input and output of primitives (map and reduce) for topological clustering algorithm. So, we show that we can save computation time by changing the (key, value) parameters.

2. After that, in chapter 6, we presented our second contribution consisting of proposing a model for bi-clustering using MapReduce. The proposed model, called BiTM, is a distributed algorithm for scalable bi-clustering based on topological maps. We defined a new cost function and so a new formalization of topological bi-clustering. After that, we proposed a model for scalability. This model consists of decomposing the db-clustering problem into the elementary functions, Map and Reduce. The SOM-MR and the BiTM implementations are assured in the Spark platform.

3. In chapter 7, we present an application of our SOM-MR algorithm on the insurance Big Data provided by AXA. The utility of the SOM-MR scalable approach is demonstrated and validated on the insurance Big Data as an example of unsupervised learning. Afterwards, a predictive and analysis system is proposed by combining the clustering result with decision trees.

The different assessments carried out in this thesis (performance measurements and visualizations) obtained promising results.

The thesis manuscript is organized as follows. Chapter 3 reviews and dis- Chapter 2

Fundamentals of Big Data

This chapter gives an introduction to the Big Data ecosystem. Indeed, we will review and discuss the fundamentals that a data scientist needs in order to extract knowledge or insights from large data in various forms, with a focus on the data stream use case.

Big Data

To our knowledge, the term "Big Data" appeared for first time in 1998 in a Silicon Graphics (SGI) slide deck by John Mashey with the title of "Big Data and the Next Wave of InfraStress" [START_REF] Mashey | Big data and the next wave of infrastress problems, solutions[END_REF]. It is a term used to identify the datasets that due to their large size and complexity, we can not manage them with our current methodologies or data mining software tools [START_REF] Fan | Mining big data: current status, and forecast to the future[END_REF]. Despite that the "Big Data" has become a new buzz-word, there is no consistent definition for Big Data, or any detailed analysis of this new emerging technology. Most discussions until now have been going in the blogosphere where active contributors have generally converged on the most important features and incentives of the Big Data [START_REF] Demchenko | Addressing big data issues in scientific data infrastructure[END_REF].

The work presented in [START_REF] Laney | 3D data management: Controlling data volume, velocity, and variety[END_REF] was the first one to talk about 3 Vs in Big Data management, i.e., Volume (great volume), Velocity (rapid generation),

Variety (various modalities), to which were added Value (huge value but very low density) [START_REF] Gantz | Extracting value from chaos[END_REF] and Veracity (consistency and trustworthiness) [START_REF] Demchenko | Addressing big data issues in scientific data infrastructure[END_REF] more recently proposed. Figure 2.1 resumes the 5

Vs of Big Data [START_REF] Demchenko | Addressing big data issues in scientific data infrastructure[END_REF]:

2.2 Distributed data storage systems

Google File System (GFS)

GFS [START_REF] Ghemawat | The google file system[END_REF]] uses a simple design with a single master server for hosting the entire metadata (the namespace, access control information, the mapping from files to chunks, and the current locations of chunks) and where the data is split into chunks and stored in chunk-servers. Files are divided into fixedsize chunks. Chunkservers store chunks on local disks and read or write chunk data specified by a chunk handle and byte range. For reliability, each chunk is replicated on multiple chunkservers. However the GFS master is now made fault tolerant using the Chubby [START_REF] Burrows | The chubby lock service for loosely-coupled distributed systems[END_REF] abstraction.

Hadoop Distributed File System (HDFS)

HDFS [START_REF] Borthakur | The hadoop distributed file system: Architecture and design[END_REF] is a distributed file system designed to run on top of the local file systems of the cluster nodes and store extremely large files. HDFS consists of two types of nodes, namely, a namenode called "master" and several datanodes called "slaves". HDFS can also include secondary namenodes. The namenode manages the hierarchy of file systems and director namespace (i.e., metadata).

File systems are presented in a form of a namenode that registers attributes, such as access time, modification, permission, and disk space quotas. The file content is split into large blocks, and each block of the file is independently replicated across datanodes for redundancy and to periodically send a report of all existing blocks to the namenode.

HDFS is highly fault tolerant and can scale up from a single server to thousands of machines, each offering local computation and storage. For example, according to Figure 2.2, the record #2 is replicated on nodes A, B, and D. When a process needs this record, it can retrieve it from the node which optimises the response time.

scientific prototyping.

In the next chapter, we will detail our first contribution, concerning the SOM-MR algorithm which is a scalable clustering method based on the SOM approach and implemented with MapReduce.

Chapter 3

Clustering and Scalable

Algorithms

The first part of this chapter reviews and discusses the state of the art related to clustering methods. In the second part, we detail some scalable clustering methods implemented with MapReduce, allowing the reader to have a clear idea on how to scale any data clustering algorithm using the MapReduce paradigm.

There are too many clustering algorithms to cover comprehensively here so we will focus on the algorithms which we have utilised ourselves or those which appear to be most relevant to our work.

Introduction

Clustering is a key data mining task. This is the problem of partitioning a set of observations into clusters such that observations assigned in the same cluster are similar (or close) and the inter-cluster observations are dissimilar (or distant).

The other objective of clustering is to quantify the data by replacing a group of observations (cluster) with one representative observation (prototype).

This chapter reviews and discusses the state of the art related to clustering methods. Even if we do not propose an exhaustive survey, we argue that we present in detail the most well-known data clustering algorithms. Furthermore, we present an understandable section on how to scale traditional clustering algorithms using the MapReduce paradigm.

We assume that a set of n data-points X = {x 1 , x 2 , ..., x n } are given, where

x i = (x 1 i , x 2 i , ..., x d i) is a vector in the R d space.
We denote by C the set of clusters produced by the clustering task. Each cluster has a prototype variable, denoted by w c = (w 1 c , w 2 c , ..., w d c), which represents the position of the cluster in R d .

Data clustering algorithms

k -means

The most common example of clustering algorithms is k-means [START_REF] Anil | Algorithms for Clustering Data[END_REF]. Clusters are represented by a mean vector called the weighted vector or prototype w j , where j = 1, ..., k, which may not necessarily be a physical point in the data space. Thus we can re-define the clustering problem as an optimization problem: find the cluster centers such that the intra-class variance is minimized, i.e., the sum of squared distances from each object within a cluster to its corresponding prototype. k-means finds k classes from a set of n observations, by minimizing the following cost function:

R k-means (φ, W) = n i=1 k j=1 x i -w j 2 (3.1)
The method used for the minimization of the function R k-means (φ, W) is an iterative method whose basic iteration has two phases:

• Assignment step: it is, in this phase, to minimize the function R k-means (φ, W)

with respect to the assignment function φ assuming that the prototype vectors W are constant; The minimization is achieved by assigning each observation x i to the referent w c using the assignment function φ:

φ(x i) = arg min j=1,...,k x i -w j 2 (3.2)
assign data points to the nearest prototype (best match unit). This assures that the cost function R(φ, W) is minimized with respect to the assignment function φ assuming that the prototype vectors are constant. Additionally, this step maps data to the network nodes.

for i = 1 to N do 4: k = argmin k=1,..,K x i -w k 2 5: C k = C k ∪ x i {assign x i to cluster C k } 6:
end for 7:

for k = 1 to K do 8:

w k = 1 n C k n C k j=1 x j {update prototype k, where n C k is the cardinality of cluster C k } 9:
end for 10: until stopping criterion has been fulfilled

Self-Organizing Map (SOM)

The SOM algorithm, proposed by Kohonen [START_REF] Kaski | Bibliography of self-organizing map (som) papers: 1981-1997[END_REF], is a type of artificial neural network for unsupervised learning. SOM has the ability of creating spatially organized internal representations of input objects and their abstractions.

As in Figure 3.2, SOM produces a low-dimensional (1D or 2D) discretized representation (called a map or network) from the high-dimensional space of the input data. SOM uses a neighborhood function to preserve the topological properties of the input space, and forms a discretely topological map where similar objects are grouped close together and dissimilar ones apart. Like most artificial neural networks [START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF], SOM has a two-fold objective:

1. Training map: build the topological map using the input data. A map consists of a number of network nodes arranged according to a structure defined a priori. The usual arrangement of the network nodes is a 1D or 2D, hexagonal or rectangular grid. Associated with each network node is a prototype, w c , of the same dimension as the input data points.

2. Mapping (quantization): put the input data into a non-linear, discrete map. Vector quantization techniques assign a data point to a prototype such that the distance from this point to the best match prototype is the smallest. This process will respect the neighborhood function to preserve data topology. Data points which are similar into the input space will be put onto neighbor network nodes.

At the start of the learning, a discrete topological map of size p × q = k is initialized. We denote C = {c 1 , ..., c k } where c i (i = 1, ..., k) is a network node.

There are mainly two versions of SOM algorithm: stochastic and batch, both aim to minimize the cost function presented in equation 3.6.

R SOM (φ, W) = n i=1 k j=1 K T δ(φ(x i), c j) x i -w j 2 (3.6)
where φ(x i) is the assignment function which returns the network node to which x i is assigned:

φ(x i) = arg min j=1,...,k x i -w j 2 (3.7)
The learning steps are similar to the steps of k-means:

1. Initialization step: initialize the map structure, i.e., the number of network nodes (or k clusters), the arrangement shape: hexagonal or rectangular and the initial prototypes.

2. Assignment step: assign data points to the nearest prototype (best match unit). This assures that the cost function R(φ, W) is minimized with respect to the assignment function φ assuming that the prototype vectors are constant. Additionally, this step maps data to the network nodes.

3. Update step: re-compute the prototype vectors. The prototypes and their neighbors move along together towards the assigned data such that the map tends to approximate the data distribution. It includes minimizing the cost function R(φ, W) with respect to the prototypes vectors assuming that data are all assigned to the best match unit.

Batch SOM

In batch version, the prototypes are updated according to the following equation:

w c = r=1 K T (δ(c, r)) nr i=1 x i r=1 K T (δ(c, r))n r (3.8)
where n r is the number of data assigned to cluster r. This formula is obtained by fixing φ and minimizing R with respect to W. The assignment function in the batch version is calculated according to the following equation:

φ(x i) = arg min j=1,...,k K T (δ(x i , w j)) x i -w j 2 (3.9)
Algorithm 2 Batch SOM version 1: initialize K prototypes and W 2: while stopping criteria have not been fulfilled do 3:

for i = 1 → N do 4: φ(x i) = argmin k=1,..,K K T (d(x i , w k)) x i -w k
2 {Find the best match unit to the current selected vector.} 5:

C φ(x i) = C φ(x i) ∪ {x i } {Put x i into cluster φ(x i)} 6: end for 7: for k = 1 → K do 8: w k = K r=1 K T (δ(Cc,Cr)) n Cr j=1 x j K r=1 K T (δ(Cc,Cr))nr
{Update prototype vectors where n r is the number of data found in cluster r } 9:

end for 10: end while

Stochastic SOM

In the stochastic version, each iteration consists of presenting the SOM map a data point randomly selected. The best match unit (the neatest node) as well as its neighbors move to the input point (see Figure 3.2).

Unlike the batch version, the stochastic version uses the gradient descent method in order to update prototypes:

w t c = w t-1 c -µ t K T (δ(c, c φ(x i)))(w t-1 c -x i) (3.10)
where µ t is an adaptation parameter, called "the learning rate" which decreases with time t.

Stochastic SOM

Neural Gas

Neural Gas (NG) [START_REF] Martinetz | A "Neural-Gas" Network Learns Topologies[END_REF] is inspired by the SOM. While the SOM map dimensionality must be chosen a priori; depending on the data distribution, the topological network of neural gas may have a different arrangement.

Neural Gas is a more flexible network capable of quantizing topological data and learning the similarity among the input data without defining a network topology.

Unlike SOM, the adaptation strength in Neural Gas is constant over time and only

Algorithm 3 Stochastic SOM version

1: initialize K prototypes and W 2: while stopping criteria have not been fulfilled do 3:

for i = 1 → N do 4:
φ(x i) = argmin k=1,..,K x i -w k 2 {Find the best match unit to the current selected vector.}

5:

for all C r is a neighbor of φ(x i) (including φ(x i) itself) do 6:

w r = w r + K T (δ(C φ(x i) , C r))(x i -w r)
{Update the nodes in the neighborhood of φ(x i) (including the node φ(x i) itself) by pulling them closer to the input vector.} 7:

end for 8:

end for 9: end while the best match prototype and its direct topological neighbors are adapted.

Given a network of k clusters C = {c 1 , ..., c k } associated with k prototypes W = {w 1 , ..., w k }, they are adapted independently of any topological arrangement of the network nodes within the network. Instead, the adaptation step is affected by the topological arrangement within the input space. For each data point x i is selected, prototypes will be ajusted by distortions D(x i , c j) = x i -w j , ∀j = 1, ..., k.

The resulting adaptation rule can be described as a "winner takes most" instead of a "winner takes all" rule [START_REF] Fritzke | Unsupervised clustering with growing cell structures[END_REF]. The winner network node denoted by j 0 is determined by the assignment function

j 0 = φ(x i) = arg min j=1,...,k x i -w j 2 .
(3.11)

An edge that connects the network node adjacent, denoted by j 1 , to the winner node j 0 which is then stored in a matrix S representing the neighborhood relationships among the input data:

S ij = 1 if a connection exists between c i and c j (∀i, j = 1, ..., k, i = j) 0 otherwise
When an observation is selected, the prototypes move toward it by adjusting the distortion D(x i , c j 0), controlled by a neighborhood function K T . In [START_REF] Fritzke | Unsupervised clustering with growing cell structures[END_REF], this function is fixed, e.g. K T = exp knn j /T where knn j is the number of neighborhood network nodes of c j . This affects directly to the adaptation step for w j which is determined by:

w t j = w t-1 j -εK T (δ(c j , c φ(x i)))(x i -w j) (3.12)
To capture the topological relations between the prototypes, each time an observation is presented, the connection between j 0 and j 1 is incremented by one. Each connection is associated with an "age" variable. Only the connection between j 0 and j 1 is reset, the other connections of j 0 age, i.e. their age increment. When the age of a connection exceeds a specific lifetime M ax age , it is removed. The way to update the age of the connections is to increase with each incoming input object is learnt. Finally, Neural Gas can be summarized by the Algorithm ??.

Algorithm 4 Neural Gas algorithm 1: Initialize K prototypes and set all S ij to zero 2: for all x i ∈ X do 3:

determine the sequence (C k 0 , C k 1 , ..., C k N -1) such that x i -w k 0 < x i -w k 1 < .. < x i -w k K-1
{w k 0 is the best match prototype, i.e the nearest prototype; w k 1 is the second nearest prototype to

x i } 4:
for all C j with S k 0 ,j == 1 do 5:

w j = w j + ǫK T (x iw j) {perform an adaptation step for the prototypes} 6:

end for end for 17: end for In this algorithm, stopping criteria can be either:

7: if S k 0 ,k 1 == 0 then 8: S k 0 ,k 1 =
• a number of iterations • a threshold for the quantization error.

Growing Neural Gas

Growing Neural Gas (GNG) [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF] is an incremental self-organizing approach which belongs to the family of topological maps such as Self-Organizing Maps (SOM) [Kohonen et al., 2001a] or Neural Gas (NG) [START_REF] Martinetz | A "Neural-Gas" Network Learns Topologies[END_REF]. It is an unsupervised clustering algorithm capable of representing a high dimensional input space in a low dimensional feature map. Typically, it is used for finding topological structures that closely reflect the structure of the input distribution. Therefore, it is used for visualization tasks in a number of domains [START_REF] Martinetz | A "Neural-Gas" Network Learns Topologies[END_REF]Schulten, 1991, Beyer and[START_REF] Beyer | Online semi-supervised growing neural gas[END_REF] as neurons (nodes), which represent prototypes, are easy to understand and interpret.

The GNG method has no input parameters which change over time and is able to continue learning, adding network units and connections. As an incremental variant of Neural Gas, GNG inherits its principle; however it does not impose the strict network-topology preservation rule. The network incrementally learns the topological relationships inherent in the dataset, and continues until a stopping criterion is fulfilled. Before learning, only k = 2 prototypes are initialized. Step by step, after a certain number of iterations (called epoch), a new network node is successively added into the topological network. But how to add a new network node? Now, this relates to quantization error.

In the clustering problem, the goal is always to minimize the quantization error of datasets or data within the clusters. Therefore, the cluster that provides a high value of quantization error is not a good one. We should divide this cluster into smaller clusters. GNG finds the two clusters c 1 and c 2 which have the highest quantization error. Then a new node is inserted halfway between these two nodes by the following expression:

w new = 1 2 (w 1 + w 2) (3.13)
The node insertion will be repeated until a stoping criterion is fulfilled.

DBSCAN

Density-based clustering has the ability to discover arbitrary-shape clusters and to handle noise [START_REF] Amini | On density-based data streams clustering algorithms: A survey[END_REF]. In density-based clustering methods, clusters are formed based on the dense areas that are separated by sparse areas. DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] is one of the most well-known density-based clustering algorithms.

DBSCAN is developed for clustering large spatial databases with noise, based on connected regions with high density. The density of each point is defined based on the number of points close to that particular point called the point's neighborhood. The dense neighborhood is defined based on two user-specified parameters: the radius (ε) of the neighborhood (ε-neighborhood), and the number of the objects in the neighborhood (M inP ts).

The basic definitions in DBSCAN are introduced in the following, where X is a current set of data points:

• ε-neighborhood of a point: the neighborhood within a radius of ε of a point

x p is denoted by N ε (x p):

N ε (x p) = {x q ∈ X |dist(x p , x q) ε},
where dist(x p , x q) denotes the Euclidean distance between points x p and x q ;

• M inP ts: the minimum number of points around a data point in the εneighborhood;

• core point: a point where the cardinality of its ε-neighborhood is at least M inP ts (see Figure 3.3);

• border point: a point is a border point if the cardinality of its ε-neighborhood is less than M inP ts and at least one of its ε-neighbors is a core point (see Figure 3.3);

• noise point: a point is a noise point if the cardinality of its ε-neighborhood is less than M inP ts and none of its neighbors is a core point (see Figure 3.3);

• directly density reachable: a point x p is directly density reachable from point

x q , if x p is in the ε-neighborhood of x q and x q is a core point;

• density reachable: a point x p is density reachable from point x q , if x p is in the ε-neighborhood of x q and x q is not a core point but they are reachable through chains of directly density reachable points;

• density-connected: if two points x p and x q are density reachable from a core point x o , x p and x q are density-connected;

• cluster: a maximal set of density-connected points.

DBSCAN starts by randomly selecting a point and checking whether the εneighborhood of the point contains at least M inP ts points. If not, it is considered ∀j = 1, ..., k, π j ∈ [0, 1] and k j=1 π j = 1 where:

• ϕ j (x i ; α j) represents the probability density.

• π j denotes the probability that an element of the sample follows the law ϕ.

• θ = (π 1 , ..., π k ; α 1 , ..., α k) represents the unknown parameter of the mixture model.

By introducing the log-likelihood, the Equation (3.14) can be rewritten as follows:

L(x 1 , ..., x n ; θ) = n i=1 log k j=1 π j ϕ j (x i ; α j) (3.15)
Log-likelihood serves as an objective function, which gives rise to the EM method. EM is a two-step iterative optimization:

• The Step E estimates probabilities ϕ j (x i ; α j), which is equivalent to a soft reassignment.

• The Step M finds an approximation to a mixture model, given current soft assignments.

This boils down to finding mixture model parameters that maximize log-likelihood.

The process continues until log-likelihood convergence is achieved.

In [START_REF] Attar | Robust estimation of a global gaussian mixture by decentralized aggregations of local models[END_REF][START_REF] El | Estimation robuste des modèles de mélange sur des données distribuées[END_REF], the authors have proposed an estimation of probability distribution over a data set which is distributed into subsets located on the nodes of a distributed system. More precisely, the global distribution is estimated by aggregating local distributions which are modelled as a Gaussian mixture.

Computational complexity

In Table 3.1, we report the computational complexity of the data clustering algorithms presented above, where n is the number of data points and k is the number of network nodes (or clusters).

Scalable clustering

In this section, we will describe in details the implementation of some of the most well-known and commonly used clustering methods, using the MapReduce paradigm. This will give the reader a clear idea on how to scale any data clustering algorithm in MapReduce.

As described in chapter 2, MapReduce [Dean andGhemawat, 2008a, Lämmel, 2008] is a programming model and an associated implementation for processing and generating large datasets that is amenable to a broad variety of real-world tasks. Users specify the computation in terms of a map and a reduce function, and the underlying runtime system automatically parallelizes the computation across large-scale clusters of machines, handles machine failures, and schedules inter-machine communication to make efficient use of the network and disks.

General Framework

In contrast to the typical single machine clustering, parallel and distributed (scalable) algorithms use multiple machine to speed up the computation and increase the scalability.

Most parallel and distributed clustering algorithms follow the general framework depicted in Figure 3.4 [START_REF] Januzaj | Dbdc: Density based distributed clustering[END_REF][START_REF] Sarazin | SOM clustering using spark-mapreduce[END_REF][START_REF] Zhao | Parallel k-means clustering based on mapreduce[END_REF] 1. Partition. Data are partitioned and distributed over machines.

2. Local Clustering. Each machine performs local clustering on its partion of the data.

file of < key, value > pairs, each of which represents a record in the dataset. The key is the offset in bytes of this record to the start point of the data file, and the value is a string of the content of this record. The dataset is split and globally broadcast to all mappers. Consequently, the distance computations are executed in parallel. For each map task, PKMeans construct a global variable clusters which is an array containing the information about centers of the clusters. Given the information, a mapper can compute the closest cluster for each data-point.

The intermediate values are then composed of two parts: the index of the closest cluster and the data-point information [START_REF] Zhao | Parallel k-means clustering based on mapreduce[END_REF]. The pseudocode of the map function is shown in Algorithm 5.

Algorithm 5 map(key, value) Require: Global variable clusters, the offset key, the data-point value Ensure: < key ′ , value ′ > pair, where the key ′ is the index of the closest cluster and value ′ is a string comprise of data-point information 1: Construct the data-point instance from value

2: minDist = Double.MAX VALUE 3: index = -1 4: for each cluster c i ∈ C do 5: dist = ComputeDistance(instance, c i) 6: if dist < minDist then 7: minDist = dist 8: index = i 9:
end if 10: end for 11: Take index as key ′ 12: Construct value ′ as a string comprise of the values of different dimensions 13: output < key ′ , value ′ > pair In the combine function, we partially sum the values of the points assigned to the same cluster. In order to calculate the mean value of the objects for each cluster, we should record the number of data-points in the same cluster in the same map task. This procedure does not consume the communication cost because the intermediate data is stored in local disk of the host. The pseudocode for the combine function is shown in Algorithm 6.

In the reduce function, we sum all the data-points and compute the total number of data-points assigned to the same cluster. Therefore, we can obtain the new cluster centers which are used for next iteration. The pseudocode for the reduce function is shown in Algorithm 7.

Algorithm 6 combine(key, V) Require: key is the index of the cluster, V is the list of the data-points assigned to the same cluster Ensure: < key ′ , value ′ > pair, where the key ′ is the index of the cluster and value ′ is a string comprised of sum of the data-points in the same cluster and the data-point number Initialize one array to record the sum of value of each dimensions of the datapoints contained in the same cluster, i.e. the data-points in the list V Initialize a counter num as 0 to record the number of data-points in the same cluster

1: for each value v ∈ V do 2: Construct the data-point instance from v 3:
Add the values of different dimensions of instance to the array 4: num = num + 1 5: end for 6: Take key as key ′ 7: Construct value ′ as a string comprised of the sum values of different dimensions and num 8: output < key ′ , value ′ > pair Algorithm 7 reduce(key, V) Require: key is the index of the cluster, V is the list of the partial sums from different host Ensure: < key ′ , value ′ > pair, where the key ′ is the index of the cluster and value ′ is a string representing a new cluster center Initialize one array record the sum of value of each dimensions of the datapoints contained in the same cluster, e.g. the data-points in the list V Initialize a counter NUM as 0 to record the number of data-points in the same cluster

1: for each value v ∈ V do 2: Construct the data-point instance from v 3:
Add the values of different dimensions of instance to the array 4:

N U M = N U M + num 5: end for 6: Divide the entries of the array by NUM to get the new cluster's coordinates 7: Take key as key ′ 8: Construct value ′ as a string comprise the cluster's coordinates 9: output < key ′ , value ′ > pair

Scalable DBSCAN using MapReduce

A recent proposed algorithm is MR-DBSCAN [START_REF] He | Mrdbscan: a scalable mapreduce-based dbscan algorithm for heavily skewed data[END_REF]

Scalable EM using MapReduce

Expectation Maximization (EM) is used to learn the maximum likelihood parameters in the presence of incomplete data.

Many works have been proposed to scale-up the EM algorithm [START_REF] Abhinandan S Das | Google news personalization: scalable online collaborative filtering[END_REF], Cui et al., Basak et al., 2012]. The parallel implementation of EM proposed in [Cui et al.] is coded in Spark.

• Each E-step is a Spark map transformation which runs in parallel mapping each x i to a vector of conditional probability densities.

• Each M-step is a reduce action which goes through all the observations in the RDD, aggregating results from E-step.

In their implementation, each iteration consists of two map operations and two reduce operations. In the first map operation, we calculate the responsibility (the log-likelihood, L) of each cluster for each data point, along with the product of the data point and L and the sum of the products for all clusters. Then we do a reduce operation to calculate the new centers for each cluster. In the las step, we do another map and reduce to calculate the covariance of each cluster.

MapReduce-based Models and Libraries

Due to the interest of the MapReduce framework, some studies have used it for scaling clustering algorithms. As examples, we can cite the implementation of the EM algorithm in MapReduce [START_REF] Abhinandan S Das | Google news personalization: scalable online collaborative filtering[END_REF], the parallel version of the k -means++ initialization algorithm [START_REF] Bahmani | Scalable k-means++[END_REF], and the work considered in [Ene et al., 2011a] which is a MapReduce implementation of the k -medean problem.

Currently, more and more libraries have emerged offering MapReduce-based implementations of machine learning algorithms:

• MLlib.2 This is Spark's machine learning library. It consists of common learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, as well as lower-level optimization primitives and higher-level pipeline APIs.

• Apache Mahout.3 Is a project of the Apache Software Foundation to produce free implementations of distributed or otherwise scalable machine learning algorithms focused primarily in the areas of collaborative filtering, clustering and classification. Currently, the supported algebraic platforms are Apache Spark4 and H205 , and Apache Flink6 . Since April 2014, support for Hadoop MapReduce7 algorithms is being gradually phased out.

Conclusion

As data clustering has attracted a significant amount of research attention, many clustering algorithms have been proposed in the past decades. However, the engrowing volumes of information made possible by technological advances, makes clustering of very large data a challenging task.

Currently, the MapReduce paradigm has met with a resounding success in this era of Data Science due to, amongst others, its simplicity. The challenge in scaling a data clustering method is not only to use the MapReduce paradigm but also to decompose the problem in small functions, the map and reduce functions. Usually, scaling an algorithm using MapReduce needs a redefintion of the initial problem.

In the next chapter, we will review and discusse ...

Chapter 4

Bi-Clustering Algorithms

This chapter represents a comprehensive survey on bi-clustering methods. These are algorithms that perform simultaneous clustering on the row and column dimensions of the data matrix. We analyze a large number of existing approaches to biclustering, and classify them in accordance with the type of biclusters they can find, the patterns of biclusters that are discovered, the methods used to perform the search.

Introduction

In the field of clustering, although most of methods used aim to construct partitions either on the set of observations or on the variables separately, there are other methods of bi-clustering that simultaneously consider the two sets [START_REF] Govaert | Classification croisée[END_REF][START_REF] Abdullah | A new biclustering technique based on crossing minimization[END_REF][START_REF] Govaert | Un modèle de mélange pour la classification croisée d'un tableau de données continue[END_REF][START_REF] Kwon | Scalable co-clustering algorithms[END_REF][START_REF] Ayadi | Pattern-driven neighborhood search for biclustering of microarray data[END_REF][START_REF] Olivetti De França | Predicting missing values with biclustering: A coherence-based approach[END_REF]. Compared to the classical clustering, by not privileging one set over another, bi-clustering is more efficient for discovering homogeneous blocks in a data matrix. In recent years, this family of approaches has attracted great interest in different scientific communities and in various fields such as data mining.

Bi-clustering approaches have become a topic of major interest because of its many applications in the field of data mining. A bi-partitioning method, also called "bi-clustering", co-clustering or cross-classification, is a method of analysis that aims to group data according to their similarity. The traditional strategy of bi-partitioning methods seeks to find sub-matrices, or blocks that represent subgroups of rows and subgroups of columns in a data matrix.

One of the objectives of a bi-classification method is the search for a pair of partitions, one on the observations (the lines of a data matrix), the other on the columns (columns of a data matrix), such as the "loss of information" due to grouping is minimal; That is to say, so that the difference between the information provided by the initial table and that provided by the table obtained after grouping is minimal.

Since the first bi-partitioning algorithm, called "Block Clustering", proposed by [Hartigan], many techniques have been proposed, such as ([START_REF] Tanay | Discovering statistically significant biclusters in gene expression data[END_REF]), spectral analysis ([START_REF] Greene | Spectral co-clustering for dynamic bipartite graphs[END_REF]), [START_REF] Shan | Residual bayesian co-clustering for matrix approximation[END_REF]) and others ([START_REF] Angiulli | A greedy search approach to co-clustering sparse binary matrices[END_REF]). The authors of [START_REF] Charrad | Le bipartitionnement: Etat de l'art sur les approches et les algorithmes[END_REF] classify the bi-partitioning methods into four major categories: divisive, constructive, probabilistic and partitioning-based methods.

Partitioning-based methods

K-means algorithms have long been used in bi-partitioning. Indeed, [START_REF] Govaert | Classification croisée[END_REF] defined a bi-partitioning algorithm called "Croeuc" which consists in determining a series of pairs of partitions minimizing a cost function on the matrix of the data by applying the K-means alternatively on rows and columns. The Croeuc algorithm is proposed for continuous data.

Let A a data matrix with N observations and d variables, x j i such that 1 < i < N, 1 < j < d are the elements of the matrix A. The observations are partitioned into K classes. Similarly, variables are partitioned into L classes. P k and Q l represent the row and column partitions, respectively. The optimal partitions P and Q are obtained by means of an iterative algorithm which uses the sum of the Euclidean distances as a measurement of the deviation between the data matrix A.

The goal of the Croeuc algorithm is to find a pair of partitions (P, Q) and g, such that the following criterion is minimized [START_REF] Jollois | Contribution de la classification automatique à la Fouille de Données[END_REF]:

1 W (P, Q, g) = K k=1 L l=1 i∈P k j∈Q l (x j i -g l k) 2 (4.1)
where

• P = (P 1 , . . . , P K) is the partition of observations into K classes, • Q = (Q 1 . . . , Q L) is the partition of variables into L classes,
• g l k the center of the block x l k (prototype).

It is easy to see that for (P, Q) the optimal values of g l k are the averages of each x j i belonging to block x l k . The main steps of the Croeuc algorithm are:

Algorithm 8 : Croeuc Algorithm Start from an initial position (P 0 , Q 0 , g 0) Calculate (P (c+1) , Q (c+1) , g (c+1)) from (P (c) , Q (c) , g (c)): • 2(a) Calculate (P (c) , Q (c) , g ′) from (P (c) , Q (c) , g (c)), • 2(b) Calculate (P (c+1) , Q (c+1) , g (c+1)) from (P (c) , Q (c) , g ′).
Repeat step 2 until the convergence of the algorithm.

It should be noted that in step 2, the algorithm 8 uses a double K-means (first phase K-means on the lines, second phase K-means on the columns). It is therefore necessary to optimize alternately the following criteria (deduced from 4.1):

W (P, g/Q) = K k=1 i∈P k L l |Q l |(u l i -g l k) 2 (4.2)
where u l i = j∈Q l

x j i |Q l | , and

W (Q, g/P) = L l=1 j∈Q l K k=1 |P k |(v j k -g l k) 2 (4.3) where v j k = i∈P k x j i |P l |
Step 2 (a) of algorithm 8 is performed by the K-means algorithm using the matrix u l i . Alternatively, step 2 (b) is obtained by the K-means algorithm using the matrix v j k . Thus, at convergence, homogeneous blocks are obtained by reorganizing the rows and the columns according to the partitions P and Q. Each block (k, l), defined by the elements x j i for i inP k and j inQ l is characterized by g k L.

The advantage of this algorithm was highlighted in comparison with K-means applied separately on the observations and variables of a data matrix [?]. Because of its simplicity and speed, the Croeuc algorithm can be applied to large data sets.

However, it requires prior knowledge of the number of classes in rows and columns.

Probabilistic methods

In most cases, probabilistic methods are methods based on mixing models. The models of finite mixtures of probability laws are particularly used in bi-partitioning.

Their use, as in clustering, amounts to assuming that the observations to be classified are derived from a model of mixture of which each component represents a class.

The authors assert that the data of a finite mixture of laws of probability A = (x 1 , . . . , x n) constitute a sample of n independent realizations of a random variable whose density function can be written as the following 4.4 equation:

∀x i f (x i ; θ) = K k=1 π k ϕ k (x i ; α k) (4.4) With: ∀k = 1, . . . , K, π k ∈ [0, 1] et K k=1 π k = 1
Where:

• ϕ k (x i ; α k) represents the probability density.

• π k refers to the probability that an element of the sample follows the law ϕ.

• θ = (π 1 , . . . , π K ; α 1 , . . . , α K) represents the unknown parameter of the mixing model.

Mixing model for bi-clustering

As mentioned in the article [START_REF] Govaert | Un modèle de mélange pour la classification croisée d'un tableau de données continue[END_REF], the formulation of the bipartitioning problem uses the classical mixing model (equation 4.4), in which the partition of the variables w is considered as a parameter of the model. The density of the mixture can be written as follows:

f (x i ; θ) = k π k ϕ k (x i ; w, α) (4.5) ϕ k (x i ; w, α) = j,l 1 2πσ 2 kl exp -1 2σ 2 kl (x ij -µ kl) 2
w jl (4.6)

• θ = (π, w, α) represents the parameter of the mixture model which is formed by the proportions π = (π 1 , . . . , π g),

• the partition of variables w and the parameters of each component α = (µ 11 , . . . , µ gm , σ 2 11 , . . . , σ 2 gm), where the µ k and the σ k represent the mean and the variances of each block.

The log-likelihood is written as follows:

L(θ) = log f (x; θ) = i log k π k ϕ k (x i ; w, α) (4.
L c (z; w, θ) = i,k z ik log (π k ϕ k (x i ; w, α)) (4.8)
In the case where the additive constant is equal to nd 2 log 2 π, the equation 4.8 takes the following form:

L c (z; w, θ) = k z k log π k - 1 2 i,j,k,l z ik w jl log σ 2 kl + 1 σ 2 kl (x ij -µ kl) 2 (4.9)
The writing of the classifying log-likelihood L c , defined for a partition z, can then be extended to the fuzzy partition s = (s k i ; i = 1, . . . , n; k = 1, . . . , g) associated to the classification matrix defined by the conditional probabilities [START_REF] Govaert | Un modèle de mélange pour la classification croisée d'un tableau de données continue[END_REF].

L c (s; w, θ) = i,k s ik log (π k ϕ k (x i ; w, α)) (4.10)
Which can be written:

L c (s; w, θ) = k s k log π k - 1 2 i,j,k,l s ik w jl log σ 2 kl + 1 σ 2 kl (x ij -µ kl) 2 (4.11)
Where

s k = i s ik .
In [START_REF] Govaert | Un modèle de mélange pour la classification croisée d'un tableau de données continue[END_REF], the authors used the generalized EM (GEM) algorithm to maximize the likelihood of the observed data in order to estimate the parameters of the model. From an initial position (w(0), θ(0)), the different steps of this EM algorithm are described as follows:

-Step E

This step is reduced to the calculation of conditional a posteriori probabilities,

s c ik s (c) ik = π c k ϕ k (x i ; w (c) , α (c)) k ′ π (c) k ′ ϕ k ′ (x i ; w (c) , α (c)) (4.12)
These conditional probabilities can be written

s ik = e s ik k ′ e s ik
′ where

S ik = log(π k ϕ k (x i ; w, α)) (4.13)
After some algebraic calculations, the term S ik takes the following form:

logπ k - 1 2 l w l log σ 2 kl + 1 σ 2 kl (e il + w l (u il -µ kl) 2 (4.14)
With:

u il = j w jl x ij w l et e il = j w jl (x ij -u il) 2 , easier to calculate than initial probability s ik -Step M
In this algorithm, we use a Generalized EM algorithm, GEM [Dempster et al., 1977b] to increase the quantity Q(θ, θ (c)). Knowing that conditional expectation c)) can also be expressed as the fuzzy classifying log-likelihood L c (s (c) , w, θ), this function Q can also be written as:

Q(θ, θ (
k s (c) k log π k - 1 2 i,j,k,l s (c) ik w jl log σ 2 kl + 1 σ 2 kl (x ij -µ kl) 2 (4.15)
To increase Q, the authors propose iterating until the convergence of the two following steps: maximization of Q(θ, θ (c)) with regards to w while s and θ(c) are fixed then maximization of Q(θ, θ (c)) with regards to θ while w and s are fixed.

Calculation of w:

This step is to maximize Q(θ, θ (c)) with regards to w. The expression 4.15 of L c (s (c) , w, θ) can be written as:

k s (c) k log π k + j,l w jl T (c) jl (4.16)
Where:

T (c) jl = -1 2 i,k s (c) ik log σ 2 kl + 1 σ 2 kl (x ij -µ 2 kl)
. The variable j belongs to the maximizing class T (c) jl :

w (c) jl = 1 si l = arg max l ′ =1,...,m T (c) jl ′ ; 0 sinon.
As for the calculation of S ik , The authors have shown that the term T jl takes the following form:

- 1 2 k s (c) k log σ 2 kl + 1 σ 2 kl (f jk + s k (v kj -µ kl) 2 .
(4.17)

Where:

v kj = i s ik x ij s k et f jk = i s ik (x ij -v jk) 2
Calculation of α from w and s

This step is to maximize Q(θ|θ (c)) with regards to π and α = (µ 11 , . . . , µ gm , σ 2 11 , . . . , σ 2 gm). By writing the classifying log-likelihood in the form:

L c (s, w, θ) = k s k log π k - 1 2 k,l s k w j log σ 2 kl + 1 σ 2 kl i,j s ik w jl (x ij -µ kl) 2 (4.18) Then: π (c+1) k = s (c) k n , µ (c+1) kl = ij s (c) ik w (c) jl x ij s (c) k w (c) l and (σ 2 kl) (c+1) = ij s (c) ik w (c) jl (x ij -µ kl) 2 s (c) k w (c) l
These calculations can be optimized by using the previously defined v jk and f jk values, which accelerates this step. The center and the variance of each block are:

µ (c+1) kl = j w (c) jl v jk s (c) k w (c) l et (σ 2 kl) (c+1) = j w (c) jl f jk +s (c) k (v jk -µ kl) 2 s (c) k w (c

Topological methodes

The bi-partitioning methods using the self-organizing maps (SOM) ([START_REF] Kohonen | Self-Organizing Maps[END_REF]) have been defined by several authors (DCC [START_REF] Busygin | Double conjugated clustering applied to leukemia microarray data[END_REF],

KDISJ [START_REF] Cottrell | Som-based algorithms for qualitative variables[END_REF], BCDSM [START_REF] Benabdeslem | Bi-clustering continuous data with self-organizing map[END_REF], etc.). This type of methods falls within the category of partitioning-based approaches because they often use simple clustering algorithms applied separately on the rows and columns of a data matrix.

Stanislav et al. [START_REF] Busygin | Double conjugated clustering applied to leukemia microarray data[END_REF] proposed the Double Conjugated Clustering (DCC) approach, which allows all rows and all columns to be partitioned using self-organizing maps. The basic principle of this approach and that of linking the two partitions through a bijection associating to each referent of one of the two spaces a referent of the other space called "conjugate". This method has the advantage of relatively rapid convergence and leads to the construction of two partitions, one in the space of the lines and the other in the space of the columns.

Each of these partitions is the conjugate of the other.

One of the algorithms that we find frequently in the literature is that introduced by Corttell, called KDISJ [START_REF] Cottrell | Som-based algorithms for qualitative variables[END_REF]. KDISJ is a variant of topological maps for the processing of qualitative variables in a data table.

KDISJ Algorithm

We recall that a complete disjunctive table consists of coding qualitative variables with the code 1 for the observed modality and 0 for all the other modalities.

The complete disjunctive coding thus makes it possible to transform qualitative variables into variables of quantitative type between which it is permissible to calculate correlations.

d c ij = d ij d i .d j (4.19)
Where:

d i = M j=1 d ij et d j = N i=1 d ij
In the case of a complete disjunctive array, d i is k, whatever i. The term d j is the number of the modality j. The corrected table is denoted by D c (corrected disjunctive table). After this transformation, it is possible to use the Euclidean distance on D c which is equivalent to χ 2 weighted on D. These corrections are equivalent to those used traditionally in the correspondence analysis, which in fact amounts to a weighted principal components, using the simultaneous χ 2 distance on rows and columns. The transition to topological maps is done by using the classical architecture of the SOM model by associating with each referent w a reference vector C w formed of (M + N) components, the first M evolve in The space of observations (represented by the lines of D c), the last N in modal space (represented by the D c columns).

The notation:

C w = (C M + C N) w = (C M,w + C N,x) (4.20)
makes it possible to highlight the structure of the reference vector C w . The learning steps of the topological map are double. A line of D c (ie an observation i), then a column (that is, a modality j) are drawn alternately. When an observation i is pulled, the modality j (i) associated with it. It is defined by:

j(i) = arg max j d c ij (4.21)
which maximizes the coefficient d c ij , that is to say the rarest modality in the total population among the modalities corresponding to it. Then, an extended observation vector

X = (i, j(i)) = (XM, XN) of dimension (M + N) is created.
Then, the procedure searches among the codevectors which is closest, in the sense of the Euclidean distance restricted to the first M components.

Let w 0 be the winning referent. The minimization step is formulated as follows:

   w 0 = arg min w X M -C M,w C (t) w = C (t-1) w + ε K(w, w 0)(X -C (t-1) w) .
Where ε is the learning step and K is the neighborhood radius of the map.

When a modality j of dimension N (a column of D c) is picked, the algorithm of [START_REF] Cottrell | Som-based algorithms for qualitative variables[END_REF] searches among the codevectors which is closest in the sense of Euclidean distance restricted to the last N components. Let z 0 be the winning unit. The procedure approximates the previous N components of the winning vector-code associated with z 0 and its neighbors with those of the mode vector j, without modifying the first M components. Let Y The column vector of dimension N corresponding to the modality j. This step can be written:

   z 0 = arg min w Y -C N,w C (t) N,u = C (t-1) N,u + ε K(w, w 0)(Y -C (t-1) N,u) .
After convergence, the observations and the modalities are classified in the classes of the obtained map. observations or "close" modalities are classified in the same class or in neighboring classes. The algorithm thus defined is called KDISJ.

Divisive methods

The basic strategy of this type of method is the iterative division of the database, which makes it possible to find the data blocks which optimize certain criteria.

Instead of proposing only a partition in rows and a partition in columns, this type of method proposes a division into homogeneous blocks of the data. One of the oldest and most used algorithms is One-way Splitting [Hartigan]. It is part of the "divisive" algorithms and allows to divide a matrix of data into several submatrices corresponding to blocks. The basic principle of this method is to perform permutations of rows and columns in order to define the block structure.

The basic idea of the algorithm is to use only variables with a variance greater than the threshold in a given class to split this class. Let A(I, J) be a data matrix with 1 ≤ I ≤ N, 1 ≤ J ≤ d. The classes in rows 1, 2, . . . , K are constructed so that the I class is determined by the classes that divide it M in(I) and M ax(I). The algorithm proceeds by division of successive classes. In the p step, there are p classes I(1), I(2), . . . , I(p) separating the rows, which are the minimum classes in the set 1, 2, 3, . . . , 2p -1. V [I(J)] represents the set of variables with a variance greater than the threshold T for any larger class [START_REF] Jollois | Contribution de la classification automatique à la Fouille de Données[END_REF]. Splitting in half is done on the I(J) classes, using only the variables in V [I(J)] which have a variance greater than the threshold. The two new classes 2p and 2p + 1 will have V (2p) = V (2p + 1) defined as the set of variables of I(J) which have a variance greater than T in I(J). Therefore, V [I(J)] will be changed to the set of variables of V [I(J)] which will therefore have a variance less than T in I(J). Cutting stops when all V [I(J)] sets contain variables with a variance lower than the threshold in I(J).

Hierarchical methods

We find in the literature several bi-partitioning approaches that use hierarchical algorithms. We cite the work of [START_REF] Caldas | Hierarchical generative biclustering for microrna expression analysis[END_REF]Kaski, 2011] [Mao et al., 2005] and [Getz et al., 2000a]. One of the most widely used approaches in this family of models is CTWC (Coupled Two-Way Clustering) [Getz et al., 2000a]. CTWC is to apply an algorithm of hierarchical classification, the SPC "Super Paramagnetic

Clustering" [Getz et al., 2000b], on the columns using all the rows and then on the rows using all the columns. All sub-matrices (I, J), knowing that I is a class on the rows and J a class on the columns are computed. Only sub-matrices that satisfy a certain criterion such as stability or a minimum size are retained [START_REF] Charrad | Le bipartitionnement: Etat de l'art sur les approches et les algorithmes[END_REF]. Then, the process is reiterated: row and column classes are extracted from these submatrices. CTWC operates on the set of subsets of the v and on the subsets of the {u} variables. Initially, {v} = {V } and {v} = {U }, the algorithm iteratively selects a subset of {V } ′ ∈ v, and a subset of variables {U } ′ ∈ u; Then the SPC algorithm is applied to {V } ′ and {U } ′ . The corresponding algorithm is described as follows:

Algorithm 9 : CTWC Algorithm Inputs: A: data matrix.

Outputs: the partitions of the observations v and the partitions of the variables u.

Initialization phase:

• v 1 = {V }, u 1 = {U }, v = ⊘, u = ⊘.
• Initialize the hierarchical array H v to save the clusters of observations.

• Initialize the H u hierarchical array for saving variable clusters.

While (u 1 = ⊘ or v 1 = ⊘) do For (U ′ , V ′) ∈ (u 1 × v 1) ∪ (u 1 × v) ∪ (u× 1) do Apply the SPC algorithm (E U ′ V ′) for the clustering of observations V ′ • Add to all stable observations v 2 • H V [V ′′] = U ′ for all new clusters V ′′ Apply the SPC algorithm (E U ′ V ′) for the clustering of observations U ′ • Add to all stable observations u 2 • H U [V ′′] = V ′ for all new clusters U ′′ u = u ∪ u 1 , v = v ∪ v 1 u 1 = u 1 , v 2 = v 2
Return u, v and their hierarchy H U , H V .

Constructive methodes

In this type of approaches, the data blocks are constructed in different ways [START_REF] Charrad | Le bipartitionnement: Etat de l'art sur les approches et les algorithmes[END_REF]. For example: by adding and removing rows and columns (δbiclusters [Cheng and Church, 2000]), by row and column permutation (OPSM [START_REF] Ben-Dor | Discovering local structure in gene expression data: the order-preserving submatrix problem[END_REF]), by estimating the parameters of the models (Plaid models [START_REF] Lazzeroni | Plaid models for gene expression data[END_REF]) or from a bipartite graph (SAMBA [START_REF] Tanay | Discovering statistically significant biclusters in gene expression data[END_REF]), and so on.

The SAMBA algorithm proposed by Tanay et al. [START_REF] Tanay | Discovering statistically significant biclusters in gene expression data[END_REF] represents a matrix of data by a weighted biparti G graph where each node n i corresponds to a row and each node n j corresponds to a column. The edge between the node n i and the node n j has a weight a j i corresponding to the element of the matrix located at the intersection of the line i and The column j. A biclass corresponds to the subgraph (H, J, E) of G and represents a subset I of observations whose value changes significantly under a set of variables J. The objective of the SAMBA algorithm is to look for maximum biclasses in the data. The application of the SAMBA algorithm is carried out in two steps:

1. The data are normalized and represented by a bipartite graph, 2. The algorithm identifies the maximal k bi-cliques.

In a later phase, SAMBA brings local improvements to the biclasses by adding or removing the vertices, and selects the similar biclasses having a large number of vertices in common.

The δ-biclusters approach [Cheng and Church, 2000] is a constructive biclustering method. The principle of the δ-biclusters algorithm consists of iteratively deleting rows and columns from the initial matrix until the distance measurement is less than a certain threshold, then adding rows and columns Iteratively without causing an increase in this distance measurement [START_REF] Charrad | Le bipartitionnement: Etat de l'art sur les approches et les algorithmes[END_REF].

At each iteration, a biclass is generated and replaced in the initial matrix by random values. One limitation of this approach is that the number of biclasses to be searched must be set by the user just as the δ threshold used for quality measurement. In addition, the quality of the biclasses decreases with each iteration because of the random values added to each iteration.

The authors of [START_REF] Ben-Dor | Discovering local structure in gene expression data: the order-preserving submatrix problem[END_REF]] defined a block as a submatrix preserving the order of the data. Unlike the [START_REF] Lazzeroni | Plaid models for gene expression data[END_REF] parameter estimation methods where the uniformity of the data in the data matrix is considered, they focus instead on the relative order of the columns in the blocks. The objective of OPSM is the identification of large blocks. A submatrix is preservative of the order if there is a permutation of the columns making it possible to have strictly increasing values on each line.

Matrix decomposition for bi-clustering

Recently, new bi-partitioning approaches based on matrix factorization are proposed ([START_REF] Long | Co-clustering by block value decomposition[END_REF], [START_REF] Yoo | Orthogonal nonnegative matrix tri-factorization for co-clustering: Multiplicative updates on stiefel manifolds[END_REF], [START_REF] Labiod | Co-clustering under nonnegative matrix tri-factorization[END_REF], [START_REF] Shang | Graph dual regularization non-negative matrix factorization for co-clustering[END_REF]). In this type of approach, the bi-partitioning problem can be seen as a matrix approximation problem where the objective is to minimize the approximation error between the data of the original matrix A And the reconstructed matrix on the basis of the class structures. Given a non-negative matrix A, the general strategy of a bi-partitioning approach in this context is to find a decomposition of A in the form of three matrices ZGW T . The matrix Z represents the partitioning of the A rows, the W matrix represents the partitioning of the A columns and the G is an intermediate matrix. Most of the algorithms proposed in this sense are iterative. Only the rules for updating the three matrices (chosen optimization method or constraints imposed on the three matrices) may be different.

CUNMTF Algorithm

The Co-clustering Under Nonnegative Matrix Tri-Factorization (CUNMTF) approach by Labiod and Nadif [START_REF] Labiod | Co-clustering under nonnegative matrix tri-factorization[END_REF] proposes a new formulation of the NMF [Lee and Seung, 1999] To bi-partitioning. The authors propose two approaches that optimize a relaxed formulation of the double K-means criterion in an NMF style. The first is called DNMF and the second ODNMF when the orthogonality constraints on Z and Z are considered.

The main idea of this approach is that the latent block structure in a nonnegative rectangular data matrix is factored into two factors rather than three: Given a matrix A = (a j i) ∈ R N ×d , the goal of the double K-means is to find simultaneously A partition in K classes P = {P 1 , . . . , P K } of the set of I = {1, . . . , N } rows and a partition Q = {Q 1 , . . . , Q L } into L classes of the set of columns J = {1, . . . , d}. The two partitions P and Q naturally induce respectively the classification matrices Z = (z k i) ∈ {0, 1} N ×K and W = (w l j) ∈ {0, 1} d×L ; z k i = 1 (resp. w l j = 1), if the line a i ∈ P k (resp. the column a j ∈ Q l), and 0 otherwise.

The reorganization of the rows and columns following P and Q reveals a homogeneous block structure. Each block A l k is therefore defined by {(a j i)|z k i w l j a j i = 1}. On the other hand, G = (g l k) ∈ R K×L is the small representative of A (g l k is the centroid of A l k). The detection of the homogeneous blocks in A can be obtained by searching for the three matrices Z, W and G by minimizing

J (A, ZGW T) = ||A -ZGW T || 2
The term ZGW T characterizes the information of A which can be described by a class structure. This matrix formulation can take the following form:

J (A, ZGW T) = i,j,kl z k i w l j (a j i -g l k) 2
with P k , Q l fixed, the general term of G is obtained by:

g l k = i,j,k,l z k i w l j a j i z k w l Où z k = |P k | ; w l = |Q l |.
In the context of the double K-means, the objective function to minimize is the distance to the square between each row (each column) of the center.

Let D -1 z ∈ R K×K and D -1 w ∈ R L×L two diagonal matrices defined by D -1 z = Diag(z -1 1 , . . . , z -1 K) and D -1 w = Diag(w -1 1 , . . . , w -1 L).
Using the matrices D z , D w , A, Z and W , the representation matrix G is written: The authors assert that this formulation is valid even if A is not nonnegative, and the approximation ZZ T AWW T of A is formed by the same value in each block A l k . More precisely, the matrix Z T AW acts as a summary of A, and absorbs scale differences A, Z and W. The matrices ZZ T A, AWW T give respectively the vectors of the averages of the row and column classes.

G = D -1 z Z T AW D -1 w . If G is
Then, the authors define the CUNMTF model by introducing the objective function:

arg min Z,W≥0
||A -ZZ T AWW T || 2 and taking into account the constraint of non-negativity. In order to optimize this objective function, the authors use the Karush-Kuhn-Tucker [START_REF] Boyd | Convex optimization[END_REF] conditions by introducing the Lagrange function:

L = ||A -ZZ T AWW T || 2 -T race(ΛZ T) -T race(ΓW T)
where the matrices Λ and Γ are the Lagrange multipliers introduced to impose the constraint of non-negativity respectively on Z and W. Let, X W = AWW T and X Z = ZZ T A. This leads to the following update rules:

Z ← Z ⊙ 2AX T W Z ZZ T X W X T W Z + X W X T W ZZ T Z (4.22) W ← W ⊙ 2AX T Z AW WW T X Z X T Z W + X Z X T Z WW T W (4.23)
The authors then propose an algorithm for calculating non-negative relaxation.

The algorithm contains the classical steps of the NMF approach. The estimation obtained by this algorithm is improved iteratively by updating the factors with the rules 4.22 and 4.23. To derive the update multiplicative rules under the orthogonality constraints on Z and W, authors calculate the "natural gradient" on the varieties of Stiefel [START_REF] Raphaël | K-théorie réelle des variétés de Stiefel sans torsion[END_REF]. The update rules are therefore:

Z ← Z ⊙ AWW T A T Z ZZ T AWW T A T Z W ← W ⊙ AZZ T AW WW T A T ZZ T AW
Long et al. [START_REF] Long | Co-clustering by block value decomposition[END_REF] proposed the non-negative Block Value Decomposition (NBVD) approach of A based on an iterative alternate least squares optimization procedure. At the convergence, ZA is normalized to ZAX (X is a diagonal matrix) The labels of the column classes are deduced from XX -1 W T .

The labels of the line classes are deduced by working on A T .

Conclusion

We have presented in this chapter some bi-partitioning approaches that are unsupervised classification techniques. The bi-clustering problem consists of partitioning the rows and columns of a database at the same time. These algorithms are categorized according to the nature of their underlying clustering approach, including partitioning, probabilistic, topological, hierarchical, divisive, and constructive bi-clustering methods. However, all the presented methods do not scale-up since they are based on non-scalable traditional clustering algorithms.

Chapter 5

SOM Clustering using

Spark-MapReduce

This chapter presents our first novel contribution, concerned with scaling-up the SOM approach using the MapReduce paradigm. For self-containedness, this chapter begins with a description of the SOM algorithm. Afterwards, the two versions of the SOM MapReduce clustering algorithm are presented. After that, the quality of the proposed method is evaluated in terms of various performance criteria on real-world datasets.

Introduction

Data clustering is a principal task in a variety of areas: machine learning, data mining, pattern recognition, social network. Consequently, there is a vast amount of research focused on the topic [START_REF] Jain | Data clustering: a review[END_REF][START_REF] Charikar | Incremental clustering and dynamic information retrieval[END_REF][START_REF] Matthew | Streaming algorithms for kcenter clustering with outliers and with anonymity[END_REF]. It is difficult to store and analyse a large volume of datas on a single machine with a sequential algorithm. Thus numerous successful, subspace clustering algorithms or clustering ensemble are proposed to deal with high and large dataset [START_REF] Parsons | Subspace clustering for high dimensional data: a review[END_REF][START_REF] Kriegel | Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering[END_REF].

However, the existing algorithms have difficult to deal with Terabytes and Petabytes of data. Clustering problems have numerous applications and are becoming more challenging as the size of the data increases. Nevertheless, good clustering algorithms are still extremely valuable, because we can (and should) rewrite them for parallel clustering using a new Mapr-Reduce paradigm [START_REF] Lv | Parallel k-means clustering of remote sensing images based on mapreduce[END_REF][START_REF] Lin | A parallel cop-kmeans clustering algorithm based on mapreduce framework[END_REF].

In situations where the amount of data is prohibitively large, the MapReduce (MR) programming paradigm is used to overcome this problem [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF]]. Thus, an increasing number of programmers have migrated to the MapReduce programming model [Ene et al., 2011b[START_REF] Sul | Parallelizing blast and som algorithms with mapreduce-mpi library[END_REF][START_REF] Robson | Clustering very large multi-dimensional datasets with mapreduce[END_REF][START_REF] Ghoting | Nimble: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce[END_REF]. The MR programming model was designed to simplify the processing of large files on a parallel system through user-defined Map and Reduce functions [START_REF] Karloff | A model of computation for mapreduce[END_REF]. A MR function consists of two phases: a Map phase and a Reduce phase. During the Map phase, the user-defined Map primitive transforms the input data into (key, value) pairs in parallel.

These pairs are stored and then sorted by the system so as to accumulate all values for each key. During the Reduce phase, the user-defined Reduce primitive is invoked on each unique key with a list of all the values for that key; usually, this phase is used to perform aggregations. Finally, the results are output in the form of (key, value) pairs. Each key can be processed in parallel during the Reduce While the Hadoop are very popular in their particular domains, we believe that they have a set of limitations that make them ill-suited to the implementation of parallel clustering algorithms. Many common clustering algorithms apply a primitives repeatedly to the same dataset to optimize a parameter. Thus the Map/Reduce primitives need to reload the data, incurring a significant performance penalty.

In this chapter, we are concerned with designing clustering algorithm named Self-organizing Map (SOM, [START_REF] Kohonen | Self-organizing Maps[END_REF]) using MapReduce. We use another emerged open-source implementation named Spark2 [Zaharia et al., 2010b], which is adapted to machine learning algorithms and supports applications with working sets while providing similar scalability and fault tolerance properties to MapReduce. The purpose in this work is not to present a new SOM algorithm, but a new way of writing using the MapReduce paradigm. The major research challenge addressed is how to minimize the input and output of primitives (map and reduce) for topological clustering algorithm. So, we show that we can save computation time by changing the (key, value) parameters. We design a complete distributed SOM clustering solution using Spark and Map-Reduce paradigm.

The rest of the chapter is organized as follows: Section 5.2 we provide the selforganizing maps batch algorithm. In Section 5.3, we propose our SOM MapReduce using Spark open source platform. Section 5.4 provides the experimental results and shows the comparisons between two manners to design MapReduce function.

Finally, Section 5.5 concludes and provides some future research.

Self-Organizing Maps (SOM)

Self-organizing maps are increasingly used as tools for visualization, as they allow projection in small spaces that are generally two dimensional. The basic model proposed by Kohonen consists on a discrete set C of cells called map. The size of the grid C is denoted by k and must be provided a priori. A variety of selforganizing models is derived from the first original model proposed by Kohonen [START_REF] Kohonen | Self-organizing Maps[END_REF][START_REF] Varsta | Temporal kohonen map and the recurrent self-organizing map: Analytical and experimental comparison[END_REF]. All models are different from each other but share the same idea: depict large data-sets on a simple geometric relationship projected on a reduced topology (1D or 2D). This grid has topological order of k cells. Each cell c has its own cluster denoted Cl c .

Self-organizing process requires neighbourhood functions to preserve topological relationships between cells. Hence the neighbourhood functions are needed to update prototypes. For each pair of cell c and r on the map, their mutual influence is defined by the function

K T (δ(c, r)) = exp(-δ(c, r) T)
where T represents the temperature which decreases the value of T between two values T max and T min , to control the size of the neighborhood influencing a given cell on the map :

T = T max T min T max t t f -1 (5.1)
t f is the number of iteration, and δ(c, r) is defined as the shortest distance between r and c on the grid W. We associate to cluster Cl c a prototype denoted w c = (w 1 c , w 2 c , ..., w d c). The cost function of self-organizing tree is expressed as:

R(φ, W) = x i ∈A k r=1 K T (δ(φ(x i), r))||x i -w r || 2 (5.2)
where W = ∪ k r=1 w r , φ is the assignment function.

Minimizing cost function R(φ, W) is a combinatorial optimization problem. In this work we propose to minimize the cost function in the same way as "batch" version performing two steps until stabilization.

1. Minimize R(φ, W) with respect to φ by fixing W. The expression is defined as follows:

φ(x i) = arg min r x i -w r 2 (5.3)
2. Minimize R(φ, W) with respect to W by fixing φ.

w c = r∈C K T (δ(c, r)) x i ∈Clr x i r∈C K T (δ(c, r))|Cl r | (5.4)
where |Cl r | the data size assigned to each cell r.

The learning algorithm described above allows us to estimate the parameters maximizing the cost function for a fixed neighborhood T . The outline of the algorithm is presented in algorithm 10. This batch approach offers advantage that separates the update expression of prototype (eq. 5.4) into sums (numerator and denominator) that allow parallelization using MapReduce.

Algorithm 10 Outline of SOM batch algorithm Ensure:

1: weight vectors initialized 2: while t ≤ t f do 3:

t+ = 1 4:
for all x i ∈ A do 5:

compute winning vector according to eq. 5.3

6:

end for 7:

for c = 1 :k do 8:

update weight vector w c according to eq. 5.4

9:

end for 10:

Update the temperature according to eq. 5.1 11: end while

Spark-MapReduce and SOM

The increase of data mining on BigData has resulted in the creation of a lot of new parallel programming models like MapReduce, Pregel, and PowerGraph [START_REF] Malewicz | Pregel: A system for large-scale graph processing[END_REF][START_REF] Low | Distributed graphlab: A framework for machine learning and data mining in the cloud[END_REF]. To handle this huge amount of data, it is necessary to use distributed architecture. This is not a simple task and several difficulties have to be dealt with, including loading data, failure safety, and algorithm design.

The MapReduce implementation on Spark takes care of failure-correction, data management and distribution.

It has become very important in MapReduce to decompose our problem in elementary function. The complexity of writing a MapReduce algorithm is to split the algorithm into atomic parts. Those parts are assigned to Map and Reduce phase. Knowing that Cl r = {x i , φ(x i) = r}, we can rewrite the quantization phase (eq. 5.4) of SOM algorithm as :

w c = x i ∈A K T (δ(c, φ(x i))x i x i ∈A K T (δ(c, φ(x i)))
(5.5)

In the case of SOM algorithm we identified theses atomic parts:

• Assign each observation x i to the best match unit using expression 5.3.

• Accumulate denominator and numerator for each cell c ∈ C

• Update weight vectors w c (eq. 5.5)

Hence we can propose two versions of the MapReduce steps. The first one is adopted in literature and the second is our proposition. The details are provided below.

Version 1 of SOM MapReduce

The first version of SOM MapReduce is inspired by K-means MapReduce algorithm [START_REF] Lv | Parallel k-means clustering of remote sensing images based on mapreduce[END_REF]]. It's easy to decompose SOM into MapReduce functions:

• The Map function has an input data vector and computes the best match units and the neighborhood factor for each prototypes K T (δ(c, φ(x i))). The size of the outputs is equal to the size of the prototypes of the model. The key of the output of the function is the id of the winning prototype. The values are the data vector x i multiplied by the neighborhood factor K T (δ(c, φ(x i))).

• The Reduce function accumulates each data vector assigned to each prototype and counts them. The new prototype vector is equal to the accumulation divided by the denominator. The different functions are defined as follows :

M apN umerator(x i , c) = K T (δ(c, φ(x i)))x i M apDenom(x i , c) = K T (δ(c, φ(x i))) Reduce(c) = x i ∈A M apN umerator(x i , c) x i ∈A M apDenom(x i , c)
The batch SOM MapReduce algorithm is shown in algorithm 11.

Version 2 of SOM MapReduce

The main drawback of the first version is the number of outputs. Indeed the number of map outputs is the number of observations multiplied by the number of prototypes n × k. In the second version, map outputs are merged in one value, so the key of the output is not used.

The Map value of the output is a matrix and a neighborhood vector. The matrix is constituted by rows of data vectors x i who are themselves multiplied by the neighborhood factors K T (δ(c, φ(x i))). All those neighborhood factors are stored in the neighborhood vector. So the size of the output matrix is the number of prototypes multiplied by the size of the data vectors (k × n). The size of the neighborhood vector is the number of prototypes.

The reduce function just sums all matrices and all neighborhood vectors together. The new model matrix is computed by dividing the sum of matrices and the sum of the neighborhood vectors.

We denote H(k × n) as neighborhood matrix, which elements are defined as follows: {MAP : distributed loop over all input vectors} {Compute φ(x i) : the best match cell which minimize the distance between its prototype w c and the input vector x i } 5:

H i,j = K T (δ(i, j)) (5.6)
for all x i ∈ A do 6:

for c = 1 : k do 7:

D[c] = x i -w c 2 8:
end for {the minimum function provides the index of the minimum value} 9:

φ(x i) = min(D) {Compute the numerator and the denominator for each cell c} 10:

for c = 1 : k do 11: M apN umerator c = K T (δ(c, φ(x i)))x i 12: M apDenom c = K T (δ(c, φ(x i))) 13:
end for 14:

end for 15:

{REDUCE : distributed sum of all the map outputs (numerator and denominator) for each prototype.} end for 25:

Update the temperature according to eq. 5.1 26: end while We also consider that H :,j denotes the column j of the matrix H and H i,:

denotes the row i of the matrix H.

As the first version, the Reduce function accumulates each data vector assigned to each prototype and counts them. The prototype matrix W is the accumulation divided by the denominator. Thus Map and Reduce functions are defined as follows:

M apN umerator(x i) = H :,φ(x i) × x i M apDenom(x i) = H :,φ(x i) Reduce() = x i ∈A M apN umerator(x i) x i ∈A M apDenom(x i)
The batch SOM MapReduce algorithm is shown in algorithm 12.

Algorithm 12 SOM MapReduce : Version 2 Ensure:

1: {Random initialization of prototypes} 2: while t ≤ t f do 3:

t+ = 1 4:
{MAP : distributed loop over all input vectors} {Compute φ(x i) : the best match cell which minimize the distance between its prototype w c and the input vector

x i } 5:
for all x i ∈ A do 6:

for c = 1 : k do M apN umerator = H :,φ(x i) x i {Compute the local neighborhood factor vector denominator} 11:

M apDenom = H :,φ(x i)

12:

end for 13:

REDUCE : distributed sum of all local matrix models and local neighborhood factor vectors. Update the temperature according to eq. 5.1 22: end while

Experiments

We implemented our algorithms SOM MapReduce in Spark 7.3 and we compared them on a amazon EC2 cluster of 24 xlarge computers. Each computer has 4 cores and 15GB of RAM, so the total capacity of the cluster is of 96 cores and 360 GB of RAM. The code of the version 2 is available in https: //github.com/TugdualSarazin/spark-clustering.

Firstly, we will provide the performances of SOM-MapReduce clustering algorithm comparing with SOM serial algorithm based on Matlab toolbox. For most of large datasets, to run a serial algorithm is an impractical task because it would require very long time. Thus secondly we have evaluated its execution time performances and its capacities to scale.

Comparison with SOM not MapReduce algorithm

To evaluate how much MapReduce affects the serial SOM clustering quality [START_REF] Kohonen | Self-organizing Maps[END_REF], we used datasets from UCI with known labels [START_REF] Frank | Uci machine learning repository[END_REF]. Tables below represents qualities measures of both algorithms (serial SOM and SOM MapReduce). To evaluate the clustering performance, two criterion are used, each of them should be maximized: Accuracy (ACC), Rand measure.

Speedup tests

For benchmarking the performance of our MapReduce SOM implementation, we generated 100 millions observations using two gaussian distributions with only two dimensions, only to test the performance. Then, we trained a 10 × 10 SOM with different core counts. whatever the number of computers used. For example the gap between algorithms (version 1 and version 2) is of 7200 seconds using 8 cores and of 400 seconds with 96 cores. For a fixed dataset, speedup captures the decrease in runtime when we increase the number of available cores. The SOM algorithm is linear this means that in a perfect case, the scaling factor is 2 when the number of cores and memory are doubled. In practice with second algorithm (version 2) the scaling factor is 1.7 using 8 to 16 cores and it decrease to 1.14 using 48 to 96 cores. This decrease is explained by the small size of the dataset compared to the high number of cores.

paper aims also to provide a package for clustering algorithm using Spark. The obtained preliminary evidence indicates that the design used for the SOM algorithm can be extended to the other algorithm based on self-organizing map.

We plan to investigate the applicability of the recent work on real and more difficult dataset in order to propose a complete package of clustering and bi-clustering in Spark.

In the next chapter, we will present in details the second contribution which is a bi-clustering algorithm. This algorithm is implemented using MapReduce paradigm under Spark.

Chapter 6

A new Topological Biclustering at scale

In this chapter, we will introduce our second contribution about the "BiTM" algorithm for simultaneous clustering of observations and their features. We start by defining a new cost function and so a new formalization of topological biclustering. After that, we propose a scalable model for biclustering. This model consists of decomposing the biclustering problem into the elementary functions, Map and

Reduce. Its implementation is assured in the Spark MapReduce platform.

Introduction

Biclustering refers to simultaneous clustering of observations and their features.

Biclustering dataset is a principal task in a variety of areas of machine learning, data mining, such as text mining, gene expression analysis and collaborative fil- Different formulations of the biclustering problem have been proposed, such as partitioning model [START_REF] Hartigan | Direct Clustering of a Data Matrix[END_REF], bayesian biclustering [START_REF] Shan | Residual bayesian co-clustering for matrix approximation[END_REF],

spectral analysis [START_REF] Greene | Spectral co-clustering for dynamic bipartite graphs[END_REF], greedy [START_REF] Angiulli | A greedy search approach to co-clustering sparse binary matrices[END_REF],

exhaustive enumeration [START_REF] Tanay | Discovering statistically significant biclusters in gene expression data[END_REF], self-organizing [START_REF] Benabdeslem | Bi-clustering continuous data with self-organizing map[END_REF]]. In the direct clustering approach (Block Clustering) [START_REF] Hartigan | Direct Clustering of a Data Matrix[END_REF],

the data matrix is divided into several sub-matrices corresponding to blocks. The division of a block depends on the variance of its values.

Indeed, more the variance is low, more the block is constant. Biclustering provides local patterns representing subsets of similar observations and features. Note that biclusters can cover just part of rows or columns. Biclustering is significantly useful and considerably harder problem than traditional clustering. Whereas a cluster is a set of observations with similar values over the entire set of attributes, a bicluster can be composed of observations with similarity over only a subset of attributes.

Recently, biclustering approaches based on matrix decomposition formulation have been proposed as in [Long et al., 2005, Labiod and[START_REF] Labiod | Co-clustering under nonnegative matrix tri-factorization[END_REF]. In [START_REF] Long | Co-clustering by block value decomposition[END_REF], the authors propose a method named NBVD, which factorizes the data matrix into three components: the row coefficient matrix, the block value matrix and the column coefficient matrix. In [START_REF] Labiod | Co-clustering under nonnegative matrix tri-factorization[END_REF], authors propose an approach named "Co-clustering Under Nonnegative Matrix Tri-Factorization" (CUNMTF), which generalizes the idea of NMF [Lee and Seung] to factorize the original matrix into three nonnegative matrices. Govaert et al introduce a k-mean like biclustering algorithm titled "Croeuc" to discover all biclusters at the same time. The author of [START_REF] Govaert | Classification croisée[END_REF] defines three algorithms for continuous, binary and contingency tables that proceed by optimizing partitions of rows and columns using an iterative k-means procedure. In [START_REF] Labiod | Co-clustering under nonnegative matrix tri-factorization[END_REF], authors prove that the double k-means is equivalent to algebraic problem of NMF under some suitable constraints. Other probabilistic model-based biclustering have been also proposed in [START_REF] Govaert | Classification croisée[END_REF][START_REF] Priam | The block generative topographic mapping[END_REF].

Biclustering problems have numerous applications and are becoming more challenging as the size of the data increases. Nevertheless, good clustering algorithms are still extremely valuable and we can (and should) rewrite them for parallel clustering using a new Map-Reduce paradigm [START_REF] Lv | Parallel k-means clustering of remote sensing images based on mapreduce[END_REF][START_REF] Lin | A parallel cop-kmeans clustering algorithm based on mapreduce framework[END_REF].

In situations where the amount of data is prohibitively large, the MapReduce (MR) programming paradigm is used to overcome this problem [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF]. Thus, in recent years, an increasing number of programmers have migrated to the MapReduce programming model [Ene et al., 2011b[START_REF] Sul | Parallelizing blast and som algorithms with mapreduce-mpi library[END_REF][START_REF] Robson | Clustering very large multi-dimensional datasets with mapreduce[END_REF][START_REF] Ghoting | Nimble: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce[END_REF]. The MR programming model was designed to simplify the processing of large files on a parallel system through user-defined Map and Reduce functions [START_REF] Karloff | A model of computation for mapreduce[END_REF]. A MR function consists of two phases : a Map phase and a Reduce phase.

During the Map phase, the user-defined Map primitive function transforms the input data into distributed pairs (key, value). These pairs are then sorted by the system so as to accumulate all values for each key. During the Reduce phase, the user-defined Reduce primitive is invoked on each unique key with a list of all the values for that key; usually, this phase is used to perform aggregations. Finally, the results are output in pairs (key, value). Each key can be processed in parallel during the Reduce phase.

Hadoop 1 , an open-source implementation of the MR programming model, has emerged as a popular platform for parallelization. A user can perform parallel computations by submitting MR jobs to Hadoop. While the Hadoop are very popular in their particular domains, we believe that they have a set of limitations that make them ill-suited to the implementation of parallel clustering algorithms.

Many common clustering algorithms apply primitive functions repeatedly to the same dataset to optimize a parameter. Thus the Map/Reduce primitive functions need to reload the data, incurring a significant performance penalty.

In this chapter, we are concerned with designing new serial biclustering algorithm and new formalization using MapReduce. We use another emerged opensource implementation named Spark 2 [Zaharia et al., 2010b], which is optimized to machine learning algorithms and supports applications with working sets while providing similar scalability and fault tolerance properties to MapReduce [START_REF] Sparks | Mli: An api for distributed machine learning[END_REF].

This chapter proposes a comprehensive new biclustering algorithm based on self-organizing model and distributed biclustering solution from the data to the end clusters using Spark MapReduce. We develop BiTM (Biclustering using Topological Maps) using Spark, an open source package which includes a freely available implementation of MapReduce and has been widely embraced by both commercial and academic worlds. The contributions of this chapter are:

• A new formalization of topological biclustering associated to a new cost function.

• A complete distributed Biclustering solution using Spark MapReduce (we demonstrate its scalability).

The major research challenge addressed is how to minimize the new cost function and the input and output of primitive function (Map and Reduce) for topological biclustering algorithm.

The rest of this chapter is organized as follows: Section 6.2 we propose a new biclustering approach (BiTM) based on topological map (self-organizing maps). In Section 6.2.3, we propose our BiTM MapReduce using Spark. Section 6.3 provides the experimental results and shows the comparisons between BiTM and Croeuc which is k-mean as for biclustering. Finally, Section 6.4 concludes and provides some future research.

6.2 A new Topological biclustering: BiTM Model

BiTM Model

Throughout this chapter, we denote a matrix by bold capital letters such as H.

Vectors are denoted by small boldface letters such as g and matrix and vector elements are represented respectively by small letters such as g j i and h j i . Table 6.1 lists all notations used in BiTM.

As traditional self-organizing maps, which is increasingly used as tools for clustering and visualization, BiTM (Biclustering using Topological Maps) consists of a discrete set of cells C called map with K cells. This map has a discrete topology defined as an undirected graph, it is usually a regular grid in 2 dimensions. For each pair of cells (c,r) on the map, the distance δ(c, r) is defined as the length of the shortest chain linking cells r and c on the grid. For each cell c this distance defines a neighbor cell. Let ℜ d be the euclidean data space and D the matrix of data, where each

observation x i = (x 1 i , x 2 i , ..., x j i , .., x d i) is a vector in D ⊂ ℜ d .
The set of rows (observations) is denoted by I = {1, ..., N }. Similarly, the set of columns (features) is denoted by J = {1,, d}. We are interested in simultaneously clustering observation I into K clusters {P 1 , P 2 , ..., P k , .., P K }, where

P k = {x i , φ z (x i) = k} and features J into L clusters {Q 1 , Q 2 , ..., Q l , .., Q L } where Q l = {x j , φ w (x j) = l}.
We denote by φ z the assignment function of row (observation) and φ w the assignment function of column (feature).

The main purpose of BiTM is to transform a data matrix D into a block structure organized in a topological map does. In BiTM, each cell r ∈ C is associated with a prototype g k = (g 1 k , g 2 k ..., g l k , ..., g L k), where L < d and g l k ∈ ℜ. To facilitate formulation, we define two binary matrices Z = [z k i] and W = [w l j] to save the assignment associated respectively to observations and features:

z k i = 1 if x i ∈ P k , 0 else w l j = 1 if x j ∈ Q l 0 else
To cluster D into K and L clusters in both observations and features, we propose the new following objective function to optimize in the biclustering process:

R(W, Z, G) = K k=1 L l=1 N i=1 d j=1 K r=1 K T (δ(r, k)) × z k i × w l j × (x j i -g l r) 2 (6.1)
We can detect the block or bicluster of data denoted by The objective function (Eq. 8.1) can be locally minimized by iteratively solving the following three minimization problems:

B l k = {(x j i |z k i × w l j = 1}. G = {g 1 ,, g k }
• Problem 1: Fix G = Ĝ and W = Ŵ, solve the reduced problem R(Ŵ, Z, Ĝ);

• Problem 2: Fix G = Ĝ and Z = Ẑ, solve the reduced problem R(W, Ẑ, Ĝ);

• Problem 3: Fix W and Z, solve the reduced problem R(Ŵ, Ẑ, G).

In order to reduce the computational time, we assign each observation and feature without using neighborhood cell as the traditional topological map.

Problem 1 is solved by defining z j k as:

z k i = 1 if x i ∈ P k , k = φ z (x i) 0 else Table 6.1: Table of symbols. C Topological map D data matrix N × d x i observation vector (x i = (x 1 i , x 2 i , ..., x d i), i ∈ I = 1, 2,N) x j feature vector ((x j) T = (x j
1 , x j 2 , ..., x j N), j ∈ J = 1, 2,d) K the size of observation partition L the size of feature partition G prototype Matrix K × L g r prototype vector (g r = (g 1 r , g 2 i , ..., g L r), L < d P k cluster of observation (rows) Q l cluster of features (column) Z binary matrix after row assignment φ z (x i) W binary matrix after column assignment

φ w (x j) B l k bicluster B l k = {(x j i |z k i × w l j = 1} H neighborhood matrix K × K, h j i = K T (δ(i, j)) h j column j of the matrix H h i row i of the matrix H
Where each observation x i is assigned to the closest prototype g k using the assignment function, defined as follows:

φ z (x i) = arg min c d j=1 L l=1 w l j (x j i -g l c) 2 (6.2)
Problem 2 is solved by defining w j k as

w l j = 1 if x j ∈ Q l , l = φ w (x j) 0 else
Where each feature x j is assigned to the closest prototype g l using the assignment function, defined as follows:

φ w (x j) = arg min l N i=1 K k=1 z k i (x j i -g l r) 2 (6.3)
Problem 3 is resolved for the numerical features by :

g l r = K k=1 N i=1 d j=1 K T (δ(k, r)z k i × w l j × x j i K k=1 N i=1 d j=1 K T (δ(k, r))z k i × w l j
this value is obtained by resolving the gradients ∂R ∂g l r = 0

g l r = K k=1 K T (δ(k, r)) N i=1 d j=1 z k i × w l j × x j i K k=1 K T (δ(k, r)) N i=1 d j=1 z k i × w l j g l r = K k=1 x j i ∈B l k K T (δ(k, r))x j i K k=1 x j i ∈B l k K T (δ(k, r))
We can rewrite the equation as follows:

g l r = K k=1 K T (δ(k, r)) x j i ∈B l k x j i K k=1 K T (δ(k, r)) x j i ∈B l k (6.4)
The main phases of BiTM algorithm are presented in Algorithm 13.

BiTM Model vs. Croeuc

The decomposition of the cost function R (Eq. 8.1) that depends on the value of T , permits to rewrite its expression as follows:

R(W, Z, G) = K k=1 L l=1 x i ∈P k x j ∈Q l K r=1 K T (δ(r, k))(x j i -g l r) 2 R(W, Z, G) = R 1 (W|Q., Z|P., G) + R 2 (W|Q., Z|P., G)
Algorithm 13 : BiTM Algorithm 1: Inputs:

• The data D, prototypes G (Initialization).

• t f : the maximum number of iterations.

2: Outputs:

• Assignment matrix Z, W. Prototypes G 3: while t ≤ t f do 4:
for all x i ∈ D do 5:

Observation assignment phase: Each observation x i is assigned to the closest prototype g k using the assignment function, defined in equation 8.2

6:

Features assignment phase: Each feature x j is assigned to the closest prototype g l using the assignment function, defined in equation 8.3

7:

Quantization phase: The prototype vectors are updated using following expression defined in equation 6.4

8:

end for 9:

Update T { T varies from T max until T min } 10:

t++ 11: end while where R 1 (W|Q., Z|P., G) = K k=1 L l=1 x i ∈P k x j ∈Q l K r=1,r =k K T (δ(r, k)) × (x j i -g l r) 2 and R 2 (W|Q., Z|P., G) = K T (δ(k, k)) K r=1 L l=1 x i ∈P k x j ∈Q l (x j i -g l r) 2 where δ(k, k) = 0
The cost function R is decomposed in two terms. In order to maintain the topological order between blocks, minimizing the first term R 1 (W|Q., Z|P., G)

will bring the block corresponding to neighboring cells. Indeed, if c and r are neighbors on the map C, the value of δ(r, k) is low and in this case the value of K T (δ(r, k)) is high. Thus, minimizing the first term has for effect to reduce the value of the cost function. Minimizing the second term R 2 (W|Q., Z|P., G)

corresponds to the minimization of the local inertia of component assigned to block B l r as follows

R 2 (W|Q., Z|P., G) = L l=1 x j i ∈B l r (x j i -g l r) 2
Where R 2 (W|Q., Z|P., G) presents the cost function proposed by [START_REF] Govaert | Classification croisée[END_REF]].

Hence, for different values of temperature T , each term of the cost function has a relative relevance in the minimization process. We can define two steps in the operating of the algorithm:

• The first step corresponds to high T values where the first term R 1 (W|Q., Z|P., G)

is dominant and in this case, the priority is to preserve the topology.

• The second step corresponds to small T where the second term R 2 (W|Q., Z|P., G)

is considered in the cost function. Therefore, the adaptation is very local and BiTM algorithm converge to Croeuc algorithm.

The computational cost of our BiTM model is more expensive than Croeuc, because the neighborhood of the topological map increases the number of output pairs (k, r) of map function.

BiTM and MapReduce

To handle this huge amount of data, it is necessary to use distributed architecture. This is not a simple task and several difficulties have to be dealt with, including loading data, failure safety, and algorithm design. The MapReduce implementation on Spark takes care of failure-correction, data management and distribution.

It has become very important in MapReduce to decompose our problem in elementary functions. The idea is to initiate two Map-Reduce functions for row and column iterations, and a synchronization to update the parameters G, W, Z.

In the case of BiTM algorithm we identified these atomic parts:

Algorithm 14 BiTM -Main Initilization {Random initialization of prototypes} {Random initialization of columns assignements W} {Main loop} while t ≤ t f do

{Assignment of columns } for all x i ∈ D do (J, L); V ← ColMapper(x i) end for (J, L); V ← ColReducer((J, L); V) for each column reduce value j ∈ J do φ w (x j) = arg min((j, L); V) end for {Assignment of rows } for all x i ∈ D do (CM, CN) = RowMapper(x i) end for (CMs, CNs) = RowReducer((CM, CN)) {Update prototypes} G = CMs/CNs t+ = 1 end while Algorithm 15 ColMapper(x i)
for each column j = 1..d do for each feature prototype l = 1..L do emit (j, l); (x j ig l r) 2 end for end for Algorithm 16 ColReducer(key(j, l), V) An open source Spark library that include the BiTM and our implementation of SOM (self-organizing map) is available on Github (https://github.com/ TugdualSarazin/spark-clustering).

s v = 0 for each map value v ∈ V do s v + = v end for emit (j, l); s v Algorithm 17 RowMapper(x i) {MAP rows distance: distributed loop over all input vectors (x i = (x 1 i , x 2 i , ..., x d i)) } for each k = 1..K do bmu(k) = x i -g k 2 end for φ z (x i) = arg min(bmu) {Contrsuct a new compressed vector : cm with 1 × L dimensions} cm(l) = x j i ∈B l φz (x i) x j i CM = h φz × cm {Contrsuct a new compressed vector : cm with 1 × L dimensions} cn(l) = x j ∈B l φz (x i) 1 CN = h φz × cn {So CM

BiTM versus Croeuc

Firstly, we're interested in comparing our model with algorithms that possess similar architecture to ours, such as Croeuc. We report the Acc (accuracy) and NMI, and plot the quantization error vs.the number of iterations, a common measure for evaluation clustering and biclusteing methods [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF].

For the setup of experiments, we have to consider various parameters. For both methods (BiTM and Croeuc), we choose a fixed number of clusters (size of the map), indicated in table 6.2. For both algorithms we randomly select 10 initial cluster centers with 40 epochs. algorithms. They have the same process, they decrease quickly during the first iterations and stabilized after.

The main difference between them is the weak decrease of BiTM during the stabilization phase. We can see this phenomenon on the figure 6.1. This difference could be explained by the topological order added in BITM. BitM as Self-Organinzing Map has two phase: self-organizing step and quantization phase. For benchmarking the performance of our BiTM MapReduce implementation, In the figure (6.4(a)) the ideal time is much lower than in the following figures.

That could be explained by the low size of the data matrix (1 million elements).

When the size of the data matrix is low the performances of the initialization of the system decrease. But with a huge data matrix the initialization tends to be insignificant proportionally to the global run time. As we can see in the following figures 6.4(b), 6.4(c), 6.4(d), 6.4(e). The implementation exhibited excellent linear scaling, and is close to ideal times.

This chapter aims also to provide a library for clustering and biclustering algorithms using Spark. The obtained preliminary results indicate that the design used for the BiTM algorithm can be extended to the other biclustering algorithms. In the future, we plan also to develop a method that can automatically divide features into cluster using the weighted biclustering process.

Chapter 7

Application to Insurance Dataset

This chapter is devoted to explain our work carried in the context of the Big Data project, named Square Predict1 . We illustrate the utility of the SOM-MR algorithm, presented in the chapter 5, as an unsupervised learning for an insurance Big Data.

Introduction

Organisations are increasingly relying on Big Data to provide the opportunities to discover correlations and patterns in data that would have previously remained hidden, and to subsequently use this new information to increase the quality of their business activities.

Classification and regression trees (CART) are a useful technique for creating easily interpretable decision rules, see [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]. The R package rpart provides a convenient interface to classification and regression trees and whose plotting is extended by the rpart.plot package.

In this chapter we prensent an analysis combining an unsupervised learning with a supervised method. The SOM-MR algorithm, which is presented in the chapter 5, is used as an unsupervised method while the regression trees are used to explain the clusters produced by the SOM-MR approach.

Exploratory data analysis of SOM clusters

The ,5,6,12,15,16,17,18,19,21,24,32,43,47,54,55,56,65,70,71,78,79,82,87,88,90 constAvant49Prob>=0.6254 dept=17,43,82 showing that the geographical location (dept) and the age of construction (constAvant49Prob) are used to construct this leaf node: its 8 extracted contracts are nbsin_inc charge_inc NumCluster dept constAvant49Prob ... A similar analysis can be carried out with the nbsin dde decision trees.

Supervised learning of SOM clusters

In the previous section, we examined decision trees for the exploratory analysis of the SOM clusters. In this section, we examine decision trees for the prediction of these SOM cluster labels in a supervised learning context. The response variable is Each leaf node has a colour-coded label which denotes the estimated cluster label obtained by following this decision tree. For each leaf node is annotated with the percentage of these contracts whose original SOM cluster label coincide with the estimated label and the number of contracts contained in the node (n).

The decision tree with the added INSEE variables only is shown in Figure 7.6, but only the AXA variables appear in the rules. of water damages. So we can expect that the heights of the bars for the former to be around 20%, 20% and 40-50% lower than the latter. Taking these into account, the match between the number of contracts is good, especially for the highest bars in clusters 9 and 30. For the fire damages, cluster 30 is proportionally over-represented for 2010, 2011, but nonetheless does not exceed the 2012 level.

For the water damages, clusters 9, 30 for 2011 appears to be under-represented and cluster 9 is over-represented for 2010, in comparison to 2012. Overall the SOM cluster labels from 2012 are validated for clustering the 2010, 2011 data in terms of the number of contracts and fire damages, but less so for the water damages.

Analysis of the insurance big data using SOM-MR

To further analyze clusters, we use the following 3 indicators: rate of claims, payouts per contract, and loss per contract.

Rate of claims = N umber of claims N umber of contracts (7.1)

Summary

The first chapters were devoted to giving a state-of-the-art on both clustering and scalable methods using the MapReduce paradigm and clustering data streams as well as a survey on bi-clustering methods and an introduction to the Big Data ecosystem.

Our first contribution is concerned with extending the SOM method for scalability seeks. The proposed SOM-MR algorithm is implemented with the Spark framework which represents a new way of writing using the MapReduce paradigm.

The major research challenge addressed is how to minimize the input and output of primitives (map and reduce) for topological clustering algorithm. So, we show that we can save computation time by changing the (key, value) parameters.

Afterwards, in the second contribution, we presented the BiTM distributed algorithm for scalable bi-clustering based on topological maps. We defined a new cost function and so a new formalization of topological bi-clustering. After that, we proposed a model for scalability. This model consists of decomposing the dbclustering problem into the elementary functions, Map and Reduce.

Then, we presented our work carried in the context of an insurance Big Data project 1 . We applied the SOM-MR method to cluster the insurance dataset merged with open data. After that, we illustrated the utility of the SOM-MR algorithm as an unsupervised learning by analyzing the cluster results and combining them with a supervised method.

8.2 Perspectives 8.2.1 Biclustering and feature group weighting

In the following, we denote a matrix by bold capital letters such as G. Vectors are denoted by small boldface letters such as g and matrix and vector elements are represented respectively by small letters such as g j i . As traditional self-organizing maps, which is increasingly used as tools for clustering and visualization, wBiTM consists of a discrete set of cells C called map with K cells. This map has a discrete topology defined as an undirected graph, it is usually a regular grid in 2 dimensions. For each pair of cells (c, r) on the map, the distance δ(c, r) is defined as the length of the shortest chain linking cells r and c on the grid. For each cell c, this distance defines a neighbor cell. Let ℜ d be the euclidean data space and D the matrix of data, where each observation x i = (x 1 i , x 2 i , ..., x j i , .., x d i) is a vector in D ⊂ ℜ d . The set of rows (observations) is denoted by I = {1, ..., N }. Similarly, the set of columns (features) is denoted by J = {1,, d}. We are interested in simultaneously clustering observation I into K clusters {P 1 , P 2 , ..., P k , .., P K }, where P k = {x i , φ z (x i) = k} and features J into L clusters {Q 1 , Q 2 , ..., Q l , .., Q L } where Q l = {x j , φ w (x j) = l}. We denote by φ z the assignment function of row (observation) and φ w the assignment function of column (feature).

The main purpose of wBiTM is to transform a data matrix D into a block structure organized in a topological map. In wBiTM, each cell r ∈ C is associated with a prototype g k = (g 1 k , g 2 k ..., g l k , ..., g L k), and weight vector π k = (π 1 k , π 2 k ..., π l k , ..., π L k) where L < d and g l k ∈ ℜ. G = {g 1 ,, g k } and Π = {π 1 ,, π k } denotes respectively the set of prototype and the weight vector. To facilitate formulation, we define two binary matrices Z = [z k i] and W = [w l j] to save the assignment associated respectively to observations and features: In order to reduce the computational time, we assign each observation and feature without using neighborhood cell as the traditional topological map.

z k i = 1 if x i ∈ P k , 0
Problem 1 is solved by defining z k i as:

z k i = 1 if x i ∈ P k , k = φ z (x i) 0 else
Where each observation x i is assigned to the closest prototype g k using the assignment function, defined as follows:

φ z (x i) = arg min c d j=1 L l=1 w l j (π l c x j i -g l c) 2 (8.2)
Problem 2 is solved by defining w l j as w l j = 1 if x j ∈ Q l , l = φ w (x j) 0 else

Where each feature x j is assigned to the closest prototype g l using the assignment function, defined as follows:

φ w (x j) = arg min l N i=1 K k=1 z k i (π l r x j i -g l r) 2 (8.3)
Problem 3 is resolved for the numerical features by :

g l r = K k=1 N i=1

Conclusion

In this perspective work, we have proposed a new feature group weighting using biclustering topological maps approach. The main novelty of our model is the use of topological model to organize the data matrix into homogeneous biclusters by considering simultaneously rows and columns, and learning new parameter of feature group weighting. A series of experiments are conducted to validate the proposed method. Experimental results demonstrate that our algorithm is promising and identify meaningful biclusters. Our algorithm inherits all the classical visualization of topological maps and provides a new visualizations to better data understanding. In future work, we will test and improve our method on further real applications. Further investigation is necessary to understand the relationship between weight feature group and feature group selection.

3. 4

 4 The general framework of most parallel and distributed clustering algorithms [Aggarwal and Reddy, 2014]. 5.1 Speedup for SOM-MR algorithms implemented in Spark. Speedup is relative to execution time by computers. 5.2 Ratio between execution time and the number of observations . . . 5.3 Ratio between execution time and the number of variables 6.1 Quantization error . 6.2 SonarMines visualization . 6.3 Waveform visualization . 6.4 BiTM Spark execution times . 7.1 Decision trees for the enriched AXA data for charge inc (fire damages) payouts, sorted by SOM cluster payouts: NumCluster = all,

 which is a scalable MapReduce-based DBSCAN algorithm. Three major drawbacks are existed in parallel DBSCAN algorithms which MR-DBSCAN is fulfilling [Shirkhorshidi et al., 2014]: 1. They are not successful to balance the load between the parallel nodes 2. These algorithms are limited in scalability because all critical sub procedures are not parallelized 3. Their architecture and design limit them to less portability to emerging parallel processing paradigms. MR-DBSCAN proposes a novel data partitioning method based on computation cost emission as well as a scalable DBSCAN algorithm in which all critical sub-procedures are fully parallelized. The MR-DBSCAN algorithm consists of three stages: data partitioning, local clustering, and global merging. The first stage divides the whole dataset into smaller partitions according to spatial proximity. In the second stage, each partition is clustered independently. Then the partial clustering results are aggregated in the last stage to generate the global clusters. Experiments on large datasets confirm the scalability and efficiency of MR-DBSCAN.

 7) Let: z k = i z ik and w l = j w jl the cardinals of each class, the classifying log-likelihood checks:

 For a minimal class (which can no longer be divided), these values represent the first and last rows of the I class. At the end of the algorithm, V (I) is defined as the set of variables that have a variance lower than the threshold in I, and in no other larger class.

 the matrix of the coefficients of the lines R and the matrix of the coefficients of columns C, which indicate respectively the degree of membership of a row and a column to a cluster. The authors first propose a formulation of the double Kmeans model, which is called DNMF (Double Nonnegative Matrix Factorization).

 integrated in the objective function J (A, ZGW T), then the expression to optimize becomes ||A -ZZ T AWW T || 2 , where Z = ZD -0.5 z and W = W D -0.5 w .

 phase. Hadoop 1 , an open-source implementation of the MR programming model, has emerged as a popular platform for parallelization. A user can perform parallel computations by submitting MR jobs to Hadoop.

 i) = min(D) {Compute the local matrix model numerator} 10:

 tering. The term biclustering was first used byCheng and Church [Cheng and Church, 2000] in gene expression data analysis. Terms such as co-clustering, bidimensional clustering and subspace clustering, among others, are often used in the literature to refer to the same problem formulation.

 denotes the set of prototype, Typically the neighborhood function K T (δ) = K(δ/T) is a positive function which decreases as the distance between two cells in the latent space C increases and where T controls the width of the neighborhood function.Thus T is decreased between two values T max and T min . In practice, we use the neighborhood function defined as K T (δ(c, r)) = exp -δ(c,r) T and T = T max (T min Tmax) t t f -1 , where t is the current epoch and t f the number of epoch.

 and CN are matrices of size K × L} emit (CM, CN) Algorithm 18 RowReducer(V(CM, CN)) Initialize CMs ← 0, CNs ← 0 for each (CM, CN) ∈ V do CMs+ = CM CNs+ = CN end for emit (CMs, CNs) 20 and 40 features each.

Figure

 Figure 6.1: Quantization error

Figure 6

 6 Figure 6.3 shows how the proposed method BiTM provides further information than other clustering approaches. The main advantage is to provide a simultaneous clustering with topological order as seen in Figures 6.2(m), 6.3(c). We used Matlab as the framework to visualize different figures. This simplifies data exploration by offering friendly visualization comparing to global presentation of biclustering presented in 6.2(l), 6.3(b). The same analysis could be done with the rest of the dataset. Our approach tries to improve the standard the visualization by building simultaneous clustering with topological order.

Figures 6

 6 Figures 6.2(l) and 6.3(b) show the topological organization of bicluster on respectively SonarMines dataset 6.2(k), waveform datasets 6.2(k). In BiTM, each cell of the map represents a subset of data, organized according to the cluster of observations and features. This organization is illustrated by different colors. Weak features are indicated with blue and dominant features are indicated with red. Colors are relatively similar when the features are correlated and mapped

 Figure 6.3: Waveform visualization

 2012 AXA insurances payouts data consists of 2130114 contracts enriched with open data from the INSEE and ONDRP. A SOM (self-organising map) clustering was carried out by Arrow on these data, resulting in 20 clusters. The goal of is to construct a decision tree model of these enriched data in determining the payouts made for water damage (DDE) claims charge dde and for the payouts made for fire damage (INC) claims charge inc within each of the SOM clusters.As charge inc and charge dde are continuous variables, a regression tree analysis is appropriate. For each of the SOM clusters, a regression true with the response variable being charge inc or charge dde, and the covariates being the other variables. For the fire damages claims, these regressions trees are displayed in Figures 7.1-7.2, in decreasing order of the total sum of payouts per cluster.In each tree, the node labels contain two values: inside the lozenge is the total payouts, and below it is the number of claims. At each binary split, the left and right branches indicate the rule applied to the splitting variable.All the decision trees begin with the decision nbsin inc < 0.5 which separates all the contracts with/without any damage claims at the root node. All the contracts without any claims becomes a terminal node, as they also do not contribute to the payouts. All the claims are then decomposed with further decision rules based on the covariates. For example, if we focus on the SOM NumCluster=9 in the middle panel in Figure7.1, we observe that the terminal node (labelled internally 55) has a payout total greater than e 180K from only 8 contracts. Its complete decision rules are Rule number: 55 [charge_inc=189513.375 cover=8 (

Figure 7 . 5 :

 75 Figure 7.5: Decision tree for predicting the SOM cluster labels of the enriched AXA data: INSEE and ONDRP variables.

Figure 7 . 7 :

 77 Figure 7.7: Decision tree for predicting the SOM cluster labels of the enriched AXA data: departemental mean of INSEE variables.

Figure 7 . 8 :

 78 Figure 7.8: Validation of SOM cluster labels from decision tree for enriched AXA 2012 data with departmental mean of INSEE variables. Validation data are contracts from 2010 (orange), 2011 (green) and 2012 (turquoise). The 2012 data with true SOM clusters are violet. INC is fire damages claims (euros), DDE is water damages claims (euros). Summary statistics are the number of contracts n, total fire damages and total water damages claims.

 cost function with additional parameter π to control the feature group weights at each iteration of the biclustering process. To cluster D into K and L clusters in both observations and features, we propose the new following objective function to optimize in the biclustering process of wBiTM: R wBiT M (W, Z, G, Π) = We can detect the bicluster of data denoted by B l k = {x j i |z k i w l j = 1}. Typically the neighborhood function K T (δ) = K(δ/T) is a positive function, which decreases as the distance between two cells in the latent space C increases and where T controls the width of the neighborhood function.Thus T is decreased between two values T max and T min . In practice, we use the neighborhood function defined as K T (δ(c, r)) = exp -δ(c,r) T and T = T max (T min Tmax) t t f -1 , where t is the current epoch and t f the number of epoch. The objective function (Eq. 8.1) can be locally minimized by iteratively solving the following three minimization problems: • Problem 1: Fix G = Ĝ, W = Ŵ and Π = Π, solve the reduced problem R wBiT M (Ŵ, Z, Ĝ, Π) ; • Problem 2: Fix G = Ĝ, Z = Ẑ and Π = Π, solve the reduced problem R wBiT M (W, Ẑ, Ĝ, Π); • Problem 3: Fix W, Z and Π = Π, solve the reduced problem R wBiT M (Ŵ, Ẑ, G, Π); • Problem 4: Fix W = Ŵ, Z = Ẑ and G = Ĝ, solve the reduced problem R wBiT M (Ŵ, Ẑ, Ĝ, Π) ;

j

 This value is obtained by resolving the gradients ∂R wBiT M obtained by resolving the gradients ∂R wBiT M

 2.2 HDFS Data Distribution . 2.3 MapReduce processes for counting the number of occurrences for each word in a document . 2.4 HDFS reads and writes in iterative machine learning algorithms . . 2.5 Iterative machine learning algorithms in Spark 2.6 Running time of k-means and logistic regression in Hadoop and Spark [Zaharia et al., 2012] .

3.1 Clustering with k-means . 3.2 SOM principles: mapping and quantization 3.3 DBSCAN: core, border, and noise points

 Decision tree for predicting the SOM cluster labels of the enriched AXA data: INSEE and ONDRP variables. 7.6 Decision tree for predicting the SOM cluster labels of the enriched AXA data: INSEE variables only. 7.7 Decision tree for predicting the SOM cluster labels of the enriched AXA data: departemental mean of INSEE variables. 7.8 Validation of SOM cluster labels from decision tree for enriched AXA 2012 data with departmental mean of INSEE variables. Validation data are contracts from 2010 (orange), 2011 (green) and 2012 (turquoise). The 2012 data with true SOM clusters are violet. INC is fire damages claims (euros), DDE is water damages claims (euros). Summary statistics are the number of contracts n, total fire damages and total water damages claims. 7.9 Visualtisation of contracts assigned to cluster #21 7.10 Visualtization of contracts assigned to cluster #55 Computational complexity of clustering algorithms 4.1 Example of a table containing qualitative variables. 4.2 Example of a complete disjunctive table. 5.1 Clustering Accuracy performance (Acc) 5.2 Clustering performance comparison using Rand. 6.1 Table of symbols. 6.2 Public datasets description (# obs: number of observation, # feat: number of features) . 6.3 Clustering Accuracy performance (Acc). 6.4 Clustering performance comparison using NMI. 7.1 Cross classification table for true and estimated SOM cluster labels from decision tree for enriched AXA data: INSEE and ONDRP variables. Overall misclassification rate is 0.022. 7.2 Cross classification table for true and estimated SOM cluster labels from decision tree for enriched AXA data: INSEE variables only. Overall misclassification rate is 0.137. 7.3 Cross classification table for true and estimated SOM cluster labels from decision tree for enriched AXA data: departmental mean of INSEE variables. Overall misclassification rate is 0.042. 7.4 Validation of SOM cluster labels from decision tree for enriched AXA 2012 data with departmental mean of INSEE variables. Validation data are contracts from 2010, 2011 and 2012. INC is fire damages claims (euros), DDE is water damages claims (euros). Summary statistics are the number of contracts n, total fire damages and total water damages claims. 7.5 Rate of claims, Payout per claim, and Loss per contract for batch-Stream clusters for insurance data

	List of Figures	xii
	7.5 List of Tables	
	3.1	
	xi	

. .

 cusses the state-of-the-art related to both clustering and scalable clustering methods implemented with MapReduce. Chapter 4 presents a thorough survey of the state-of-the-art for a range of bi-clustering algorithms. Chapter 2 gives an introduction to the Big Data ecosystem and discusses the fundamentals that a data

scientist needs in order to extract knowledge or insights from large data in various forms. Chapter 5 presents our SOM-MR algorithm concerned with scaling-up the SOM approach to deal with large datasets; experimental validation on benchmark datasets from the clustering literature is reported and discussed. Chapter 6 introduces the BiTM algorithm designed for large-scale bi-clustering. Chapter 7 finally describes the validation results of SOM-MR on the insurance Big Data. Some conclusions and perspectives for further research are presented in chapter 8.

 1 {create a topological connection between C k 0 and C k 1 }

	9:	age k 0 ,k 1 = 0 {set age for this connection}
	10:	end if
	11:	for all C j with S k 0 ,j == 1 do
	12:	age k 0 ,j = age k 0 ,j + 1 {increase the age of all connections of k 0 by one}
	13:	if age k 0 ,j > M ax age then
	14:	S k 0 ,j = 0 {remove all connections of k 0 which exceeded their age }
	15:	end if
	16:	

) l Table 4.1: Example of a table containing qualitative variables.

	Experimentation Experimenter
	Test 1	Experimenter 1
	Test 2	Experimenter 2
	Test 3	Experimenter 3
	Test 4	Experimenter 1

 Table 4.2: Example of a complete disjunctive table.KDISJ (Kohonen for Disjonctive Table)[START_REF] Cottrell | Som-based algorithms for qualitative variables[END_REF] makes it possible to classify simultaneously the observations and the qualitative variables that describe them. Let A be a data matrix and d ij be the general term of this matrix which can be considered as a contingency table crossing the variable "observa-

	Experimentation Experimenter 1 Experimenter 2 Experimenter 3
	Test 1	1	0	0
	Test 2	0	1	0
	Test 3	0	0	1
	Test 4	1	0	0

tion" to N modalities, and the variable 'modalities' to M modalities. The term d ij takes its values in {0, 1}. The distance χ 2 is used on rows and columns. Then, the modalities are weighted to correct the complete disjunctive table in the following way:

Table 5

 5

.1 and table 5.2 depict respectively the ACC and Rand results. We observe that SOM-MapReduce provides equivalent ACC and Rand measure. The objective here is not get better performance than classical SOM clustering approaches, but to show that SOM-MapReduce does not interfere SOM and provides an equivalent performances as a clustering approaches.

Table 5

 5

	.1: Clustering Accuracy performance (Acc)
	dataset	SOM-	SOM
		MapReduce	
	isolet5	0.920	0.905
	Movement Libras	0.907	0.943
	Breast	0.551	0.476
	Sonar Mines	0.503	0.507
	Lung Cancer	0.673	0.425
	Spectf 1	0.521	0.403
	HorseColic	0.460	0.448
	Heart	0.504	0.529
	glass	0.740	0.752

Table 5.2: Clustering performance comparison using Rand.

 Thus the values indicate the average of 10Table 6.3: Clustering Accuracy performance (Acc).

	datasets Databases	# obs # feat Map BiTM CROEUC #
			Acc	Std		size Acc	classes Std
	Sonar mines 208 Sonar mines 0.7365 0.0174	60	6×6 0.6837	2 0.0124
	Lung Cancer 32 Lung cancer 0.7906 0.0296	56	4×4 0.7469	2 0.0231
	Spectf 1	Spectf 1 0.7817 0.0096 349	44	4×4 0.7358	2 0.0069
	Cancer Wpbc Cancer Wpbc 0.7626 0.0000 198	33	6×6 0.7626 0.0000 2
	Ret	Ret			
	Horse colic	Horse Colic 0.6770 0.0062 300	27	5×5 0.6707	2 0.0021
	Heart	Heart 0.8130 0.0084 270	13	5×5 0.8007	2 0.0072
	Isolet5	Isolet5 0.5640 0.0179 1559 617	12×12 26 0.4184 0.0455
	Glass	Breast 0.5692 0.0206 699	10	7×7 0.3799	2 0.0121
	Breast	Glass 0.9725 0.0026 214	9	5×5 0.9700	7 0.0027
	Waveform	Waveform 0.7313 0.0054 5000 40	10×10 3 0.7094 0.0081
	Table 6.2: Public datasets description (# obs: number of observation, # feat:
				number of features)
	Databases		BiTM		CROEUC
	NMI 6.3.1.1 Clustering quality Sonar mines 0.1316 0.0211 Std		NMI 0.0923	Std 0.0140
	Lung cancer	0.1673 0.0363		0.1045	0.0402
	To measure the quality of clustering, we use two different metrics: Accuracy (Acc) Spectf 1 0.1464 0.0088 0.1336 0.0060
	Cancer Wpbc and Normalized Mutual Information (NMI); each should be maximized. They 0.0205 0.0002 0.0238 0.0050 Ret are used to evaluate clustering quality and are only applicable to data sets with Horse colic 0.0237 0.0023 0.0103 0.0040
	ground-truth classes. NMI is particularly useful when the number of clusters is Heart 0.2143 0.0057 0.2129 0.0089
	different from that of ground-truth classes. Isolet5 0.5811 0.0090	0.5887 0.0170
	Glass The clustering quality of both algorithms is shown in Table 6.3 and 6.4. In 0.2743 0.0071 0.1089 0.0163 Breast 0.4128 0.0057 0.4627 0.0101 practice BiTM provides better values of quality measures than Croeuc in most of Waveform 0.2458 0.0022 0.27934 0.0042
	selected datasets with small standard deviation. Particularly, for Cancer Wpbc Ret and Isolet, our method provides less Accuracy and NMI than Croeuc. BiTM is Table 6.4: Clustering performance comparison using NMI.
	like a Croeuc with a topological order. These tests demonstrate that the addition
	of this topological order doesn't modify the general process of the algorithm.
	6.3.1.2 Quantization error	
	In this experiment, our purpose is to study how BiTM evolves over time in term
	of quantization error. The average of quantization error versus the number of
	iterations for 10 runs are summarized in Figure 6.1.
	Unlike the previous tests (NMI and Acc), quantization error measures that
	Croeuc results are equivalent with BiTM in most of cases. The quantization er-
	measures for each dataset. ror is not a measure of clustering's performance, it only describes the learning of

 For the decision tree with both added INSEE and ONDRP variables in Figure 7.5, the geographical variables longitude and latitude are important as dept previously, though the ONDRP crime variables are more important here than the INSEE housing variables.

			NumCluster=all NumCluster=94				NumCluster=30 NumCluster=72	NumCluster=9 NumCluster=17
		yes	yes nbsin_dde < 0.5	nbsin_dde < 0.5 no	no	yes	nbsin_dde < 0.5 NBPIECS < 10 38 44...92 94 const7589Prob 95 dept = 31 33 CDHABIT = 1 no nbsin_dde < yes 0.5 no	yes	CDHABIT = 0 NBPIECS < 6.5 CDQUALP = 0 nbsin_dde < 0.5 yes no nbsin_dde < 0.5 no
			CDHABIT = 1 constAvant49Prob < 0.55			CDQUALP = 0 ANEM_MOY < 46	>= 0.25 const7589Prob < 0.22	const8903Prob const8903Prob >= 0.18 NBPIECS < 3.5 91 dept = 5 7 8 10 11...89 90
	0 n=43,179	0 n=2,114,840 319,870 n=306	6,651,743 n=7,059 n=11 35,591	12,619,089 n=8,215 0 n=48,937		0 n=449,745 3,297,019 n=3,378 38,508 n=63 183,630 n=177	2,105,000 n=1,293 25,524 n=11 yes	148,278 n=97 CambriolHabProp 231,788 n=99 193,575 n=18 29,382 n=39,928 n=36 n=9 0 20,966 < 0.0011	0 n=756,397 n=84 116,606 no	< 0.12 3,744,919 n=3,194 n=9 n=17 7,659 50,753	1,081,864 n=779 n=13 n=8 9,935 47,538	n=307 862,668
	NumCluster=6 nbsin_dde < 0.5 CDHABIT = 1 const4974Prob >= 0.12 no NumCluster=69 yes nbsin_dde < no DgrBPub < 26 nbsin_dde < nbsin_dde < NumCluster=91 0.5 NBPIECS < 5.5 yes no NumCluster=37 0.5 NBPIECS < 5.5 0.5 yes no DgrBPub >= 68 constAvant49Prob < 0.29 const7589Prob < 0.27 const7589Prob >= 0.29 constAvant49Prob yes ANEM_MOY < 16 yes NBPIECS >= 6.5 CDHABIT = 1 CambriolHabProp < 655e-6 DgrBPrvProp >= CambriolHabProp >= 0.35 < 0.43 const4974Prob >= 0.3 const4974Prob 125e-6 < 450e-6	NumCluster=99 DgrBPub >= 35 NumCluster=96 nbsin_dde < 0.5 constAvant49Prob < 0.82 yes no nbsin_dde < 0.5 no longitude >= 6.8 NBPIECS < 9.5 const7589Prob DgrBPrvProp >= < 0.37 320e-6 CambriolHabProp constAvant49Prob >= 0.1 >= 0.22 const4974Prob < 0.0012
	0 n=33,768	0 n=64,591 ANEM_MOY < 5 388,456 n=415 NumCluster=97 289,062 n=223 nbsin_dde < 0.5 CDQUALP = 0 dept = 51 83 const7589Prob 156,195 n=75 < 0.29 const4974Prob < 0.43 0 n=84,900 195,145 n=242 297,226 n=274 149,874 n=118 48,399 n=25 34,189 n=8 yes no nbsin_dde < 0.5 const4974Prob >= 0.34 no 175e-6 IncBPrvProp < 0.72 yes 25e-6 longitude < InfUrbProp < 98,827 yes n=91 26,516 n=12 11,817 n=16 25,796 n=15 27,828 n=9 51,463 n=17 0 n=19,943 CambriolHabProp DgrBPrvProp >= 0 n=60,033 494,722 n=472 46,121 n=43 DgrBPrvProp >= 102,412 n=55 39,026 n=10 41,540 n=24 665e-6 NumCluster=5 nbsin_dde < 0.5 NBPIECS < 6.5 ANEM_MOY < 12 ANEM_MOY >= 20 56,643 n=7 0 n=89,354 522,094 n=509 110,307 n=84 27,944 n=19 38,352 n=12 yes nbsin_dde < 0.5 < 0.75 >= 0.33 const4974Prob < 0.44 >= 635e-6 constAvant49Prob CambriolHabProp < 0.28 CambriolHabProp 0 n=105,416 533,243 n=441 NBPIECS < 6.5 47,634 n=22 nbPer0a3_MOY < 83,771 n=12 0.75 const8903Prob < 0.28 const8903Prob >= 0.3 const7589Prob < 0.29 const8903Prob 63,589 n=7 >= 0.17 0 n=91,115 318,357 n=344 27,415 n=21 23,883 n=7 81,194 n=63 37,920 n=22 33,496 n=7 n=11 50e-6 37,162 >= 0.33 MalEnfProp >= constAvant49Prob nbPer25a59_MOY < 615e-6 < 1.5 const4974Prob NBPIECS < 6.5 15e-6 cmbGazVilleProp no 0.5 yes no ViolDomProp < nbsin_dde < DgrBPrvProp >= latitude >= 48 345e-6 no NumCluster=19 nbsin_dde < 0.5 yes no 75,611 n=82 75,408 n=53 63,416 n=7 0 n=25,448 133,541 n=155 24,289 n=11 40,627 n=15 NumCluster=8 NumCluster=79 NumCluster=68 >= 700e-6 815e-6 ViolDomProp >= 45e-6 latitude < 45
	0 n=3,623	16,120 n=14	NumCluster=98 115,162 n=11	0 n=12,739	15,765 n=22	16,401 n=16	NumCluster=1 15,169 20,180 21,273 n=7 n=8 n=7	0 n=13,465	196 n=7	32,387 n=40	NumCluster=80 18,729 23,121 n=13 n=11
	nbsin_dde < 0.5 Figure 7.4: Decision trees for the enriched AXA data for charge dde (water yes no nbsin_dde < nbsin_dde < yes no yes no 0.5 0.5 CambriolHabProp
	NBPIECS < 9.5 damages) payouts, sorted by SOM cluster payouts: NumCluster = 94, 72, 17, NBPIECS < 9.5 NBPIECS < 7.5 < 0.001
						69, 37, 96, 8, 79, 68.	longitude >=
				CDHABIT = 1						CDHABIT = 1	-1.8	ANEM_MOY < 42	cmbElectProp < 0.5
	variable either, e.g. dept < 75 would include 75 (Paris: (longitude, latitude) = MalEnfProp <
	0 n=59,509 damages) payouts, sorted by SOM cluster payouts: NumCluster = all, 30, 9, 6, 100,187 n=122 362,503 n=229 64,084 n=18 0 n=77,063 178,375 n=218 289,833 n=224 34,977 n=8 0 n=35,687 300,148 n=283 23,517 n=9 51,172 n=36 39,951 n=7 and latitude are better adapted as, say longitude < 2.50, has a geographical Figure 7.3: Decision trees for the enriched AXA data for charge dde (water 75e-6 longitude >= (2.34, 48.86)) with the geographically distant 74 (Haute-Savoie: (6.12, 45.90)) but exclude the geographically close 93 (Seine-Saint-Denis: (2.20, 48.90). Longitude 1.1
	91, 99, 97, 5, 1, 19, 98, 1, 80. meaning. So dept was replaced by the longitude and latitude of the prefecture of
	9 100% each department (longitude, latitude), obtained from SP532_villes_france. 19 100% 69 100% 5 93.2% 9 97.6% 72 100% 99 100% 37 100% 98 100% 96 100% 30 100% 91 100% n=117259 n=21004 n=33928 n=95878 n=108786 n=49197 n=24398 n=20085 n=18468 n=25629 n=454630 n=36141 the SOM cluster label NumCluster, which is a categorical variable, a classification 97 75.1% n=40358 INSEE and ONDRP variables (Figure 7.5), one with the INSEE variables only tree is appropriate. 9 100% 19 100% 97 100% 99 100% 6 96.3% 1 100% 19 100% 17 100% 9 38.3% 94 100% 97 100% 91 100% 80 100% 99 100% 94 100% n=20835 98 100% csv and depts2015.txt. We compute three decision trees: one with both the n=505619 n=16219 n=28638 n=39724 n=65623 n=77513 n=54367 n=40095 n=42715 n=22661 n=26633 n=24503 n=36022 n=41776 n=41410
	The categorical department variable dept (94 levels) causes a combinatorial (Figure 7.6), and one where the commune level INSEE variables are replaced by
	their departmental means in order to be comparable to the ONDRP variables
	(Figure 7.7).								

explosion when used in conjunction with the categorical response NumCluster (20 levels) in a decision tree. The dept variable is not well-suited as an ordinal

 Removing the ONDRP variables is too drastic in order to assess the influence of the INSEE variables. The ONDRP variables are available at the departmental level whereas the INSEE variables at the commune (INSEE code) level. In terms of finding groups of similar values, it is more likely to occur for the more aggregated ONDRP variables than the lower level INSEE ones. To remedy this, we replace the commune level INSEE variables with their mean aggregated at the department level with the suffix MOYD indicating the moyenne départementale. The resulting decision tree is displayed in Figure7.7, which shows that the INSEE (cmbGazVilleProp MOY, constAvant49 Prob MOY etc.), ONDRP (cambiolHabProp, DgrBPub etc.) and AXA (longitude, latitude) variables all play a role in the decision rules to predict the SOM cluster labels.

																	CambriolHabProp
															yes			< 0.0011	no
								yes	CDRESID >= 0.5	no	
																			DgrBPub >= 35
				DgrBPub < 26								
	CambriolHabProp			cmbGazVilleProp_MO... >= 0.16			longitude >= 0.46	longitude >= DgrBPrvProp >= 6.8
	< 655e-6															320e-6
	constAvant49Prob_M...	CambriolHabProp		CambriolHabProp
			>= 0.34								< 450e-6				latitude < 48 < 0.0012
			longitude < 1.1 665e-6 DgrBPrvProp >= DgrBPrvProp >= 125e-6 DgrBPrvProp >= 665e-6	latitude >= 44	latitude >= 48 latitude >= 48
			MalEnfProp <								ViolDomProp >= 45e-6	latitude < 45 DgrBPrvProp >= latitude < 45
			longitude < 3.7 latitude >= 49 45e-6			latitude < 49 constAvant49Prob_M... >= 0.27 < 615e-6 MalEnfProp >= 50e-6 3.4 longitude >= 5.7 longitude < latitude >= 43 -0.53 CambriolHabProp latitude < 48 longitude < 4.6 longitude >= -2.2 longitude >= -0.72 15e-6 ViolDomProp < longitude >= 345e-6
											longitude >= 4.4				latitude < 50	longitude >= 6.6
			longitude >=								longitude <
				3.1													2.4	const7589Prob_MOYD
					longitude >=								longitude <	longitude < < 0.25
							1.4											3.4	2.9
		longitude < 3.2					longitude >= 6.1 longitude >= 2.3	longitude >= -1.8
		latitude >= 46 longitude < 1.3					longitude >= latitude < 48 MalEnfProp < 2.2 75e-6
									CDHABIT < 0.5					longitude >=
																			1.1
																			longitude <
																			5.2
					longitude <								
								1.3										
		9 100%	69 100%	99 100%	6 83.6%	1 100%	19 100%	17 100%	9 38.3%	94 100%	97 100%	91 100%	80 100%	99 100%	98 100%
	n=104473	n=33928	n=39724	n=78125	n=77513	n=54367	n=40095	n=42715	n=22661	n=26633	n=24503	n=36022	n=41776	n=41410
	9 100%	19 100%	97 69.1%	5 100%	9 100%	72 100%	99 100%	37 100%	98 100%	96 100%	30 100%	91 100%	97 75.1%	94 100%
	n=505619	n=37223	n=41424	n=84113	n=108049	n=49197	n=24398	n=20085	n=18468	n=25629	n=454630	n=36141	n=40358	n=20835
	30 93.9%	9 100%	9 84.1%	37 100%	9 73.5%		9 72.6%	1 97.8%	99 78.5%	30 100%	99 66.9%	19 100%	17 100%	6 100%	94 100%	19 100%	9 62.4%	69 100%	72 100%
	n=117164	n=17837	n=130820	n=20085	n=53204	n=192288	n=79296	n=33182	n=36562	n=55602	n=30792	n=40095	n=58737	n=20835	n=21004	n=159386	n=33928	n=49197
	9 90.1%	5 95.7%	19 93.4%		9 100%	97 100%	30 80.9%	30 99.1%	30 100%	30 99.3%	9 100%	9 62.9%	91 100%	9 72.1%	91 100%	9 100%	80 100%	94 72.4%	97 57.2%
	n=177897	n=86190	n=25239	n=14796	n=28638	n=83630	n=71854	n=33032	n=122904	n=19530	n=90398	n=24503	n=48463	n=36141	n=19660	n=36022	n=31303	n=29900
	Figure 7.6: Decision tree for predicting the SOM cluster labels of the enriched
										AXA data: INSEE variables only.

 Table 7.4: Validation of SOM cluster labels from decision tree for enriched AXA 2012 data with departmental mean of INSEE variables. Validation data are contracts from 2010, 2011 and 2012. INC is fire damages claims (euros), DDE is water damages claims (euros). Summary statistics are the number of contracts n, total fire damages and total water damages claims. From Table 7.4, for 2010, 2011 there are 1.60 and 1.68 million contracts, e 64.1M and e 66.7M of fire damages, and e 12.2M and e 9.11M of water damages. In comparison for 2012, there are 2.1 million contracts, e 89.4M of fire and e 19.3M

http://spark.apache.org/docs/latest/mllib-guide.html

http://mahout.apache.org/

http://spark.apache.org/docs/latest/index.html

http://www.h2o.ai/

http://hadoop.apache.org/

http://hadoop.apache.org/

We have included in this part of work the same notation as that used in the thesis of Xavier Jollois[Jollois,

2003].

www.hadoop.com

http://spark-project.org/

http://ns209168.ovh.net/squarepredict/

Acknowledgements

• Assign each observation x i to the best match unit using expression (Eq. 8.2).

• Assign each feature x j to the best match unit using expression (Eq. 8.3).

• Accumulate denominator and numerator for each prototype g r (Eq. 6.4)

• Update prototype vectors g r , ∀r ∈ C (Eq. 6.4) Pseudo code below describes the implementation of the BiTM algorithm with MapReduce Spark. In most of the cases in big dataset the number of observations is bigger than the number of features (N >> d). Thus, we consider that a column vector x j (column) of the data matrix D couldn't be used as an observation vector

x i (row). Hence for the row assignment function we define row map function (Algorithm 17), which computes for each x i the best match unit. In order to reduce the time complexity we compute the denominator and the numerator of the prototype g (Eq. 6.4). This allows the row reduce function to focus only on the sum of different numerators and denominators provided by each row map function.

For the column assignment, we define a map function (15) and a reduce function (Algorithm 18) in order to reduce the memory consumption. Thus the column assignment function splits the column distance of one column into multiple outputs (d × K). The map function computes the distance between each element x j i and all prototypes. Hence the column reduce function sums the "distances" provided by each column map function. At the end of this MapReduce state the best match prototype for features is computed in the main function (Algorithm 14).

Therefore, the update of the prototype is computed.

The majority of the algorithm algorithm functions are executed in Map and Reduce. They are executing in parallel on all the machines of the Spark clusters.

That is why the algorithm could scales easily (Chapter 6.3.2 Speedup tests).

Experiments

Our performance study is based on the synthetic datasets and on several datasets extracted from UCI repository [START_REF] Frank | Uci machine learning repository[END_REF]. Table 6.2 lists public dataset, the number of real class and the map size used in the learning phase. We used 4 synthetic datasets generated with 1 million and 2 million observations with

Validation of SOM clusters

The accuracy of these decision trees are quantified in the cross classification tables in Tables 7.1-7.3. Each row corresponds to the true SOM cluster label, and the columns to the estimated cluster label induced by the classification tree. The overall misclassification rates are the decision tree with the INSEE and ONDRP variables is 0.022 (Table 7.1), with the INSEE variables only (Table 7.2) 0.137, and with the INSEE departmental mean 0.042 (Table 7.3). Most of the non-zero entries are on the main diagonal, indicating that in the vast majority of cases the estimated labels from the decision tree coincide with the true SOM cluster labels.

Notable departures are for classes 8, 68 and 79 which are never estimated by any of the rules for any of the decision trees. These three classes are the smallest by number of contracts (3 648, 13 536 and 12 799) but contain some of the largest individual payouts. So they are difficult to estimate when combined with the larger clusters e.g. clusters 9 and 19 with 760 677 and 454 630 contracts respectively. Since we do not have the true cluster labels for 2010, 2011, to validate the decision tree on these data, we compare the summary statistics for the number of contracts (n) and the total of the claims for fire (INC) and water (DDE) damages per SOM cluster. In Table 7.4 are four groups of three columns: the rightmost are the 2012 data with the true SOM clusters which serves as our baseline, the third are the same 2012 data but re-classified using the decision tree, the second and first are for the 2011 and 2010 data.

A comparison of the distributions of the summary statistics is easier with the graphical bar charts in Figure 7.8. Within each cluster, there are four bars: the violet are the data with the true SOM clusters, the turquoise is the 2012 data re-classified using the decision tree, the green is for 2011, and the orange is for 2010.