
HAL Id: tel-02500012
https://theses.hal.science/tel-02500012

Submitted on 5 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Massively distributed learning in a Big Data
environment
Tugdual Sarazin

To cite this version:
Tugdual Sarazin. Massively distributed learning in a Big Data environment. Databases [cs.DB].
Université Sorbonne Paris Cité, 2018. English. �NNT : 2018USPCD050�. �tel-02500012�

https://theses.hal.science/tel-02500012
https://hal.archives-ouvertes.fr

Université de Paris 13

Laboratoire d’Informatique de Paris-Nord (LIPN)

Apprentissage Artificiel et Applications (A3)

Thèse

présentée par

Tugdual ❙❛r❛③✐♥

pour obtenir le grade de

Docteur d’université

Spécialité : Informatique

Apprentissage massivement distribué
dans un environnement Big Data.

soutenue publiquement le 26 juin 2018

devant le jury composé de

Directeur
M. Mustapha Lebbah (MCF-HDR) - LIPN, Université Paris 13

Co-encadrement
Mme Hanane Azzag (MCF-HDR) - LIPN, Université Paris 13

Rapporteurs
M. Gilles Venturini (PR) - Université de Tours
M. Cyril de Runz (MCF-HDR) - Université de Reims

Examinateurs
Mme Salima Benbernou (PR) - Université Paris Descartes
M. Christophe Cerin (PR) - LIPN, Université Paris 13

ii

Abstract

In recent years, the amount of data analysed by companies and research laborato-

ries increased strongly, opening the era of BigData. However, these raw data are

frequently non-categorized and uneasy to use. This thesis aims to improve and

ease the pre-treatment and comprehension of these big amount of data by using

unsupervised machine learning algorithms.

The first part of this thesis is dedicated to a state-of-the-art of clustering and bi-

clustering algorithms and to an introduction to bigdata technologies. The first part

introduces the conception of clustering Self-Organizing Map algorithm [Kohonen,

2001] in big data environment. Our algorithm (SOM-MR) provides the same

advantages as the original algorithm, namely the creation of data visualisation

map based on data clusters. Moreover, it uses the Spark platform that makes it

able to treat a big amount of data in a short time. Thanks to the popularity of

this platform, it easily fits in many data mining environments. This is what we

demonstrated it in our project “Square Predict” carried out in partnership with

Axa insurance. The aim of this project was to provide a real-time data analysing

platform in order to estimate the severity of natural disasters or improve residential

risks knowledge. Throughout this project, we proved the efficiency of our algorithm

through its capacity to analyse and create visualisation out of a big volume of data

coming from social networks and open data.

The second part of this work is dedicated to a new bi-clustering algorithm.

BiClustering consists in making a cluster of observations and variables at the

same time. In this contribution we put forward a new approach of bi-clustering

based on the self-organizing maps algorithm that can scale on big amounts of

data (BiTM-MR). To reach this goal, this algorithm is also based on a the Spark

platform. It brings out more information than the SOM-MR algorithm because

besides producing observation groups, it also associates variables to these groups,

thus creating bi-clusters of variables and observations.

Keywords: unsupervised machine learning, clustering, bi-clustering, self-organizing-

map, big data, map reduce, Spark, distributed machine learning.

iii

Résumé

Lors de ces dernières années les volumes de données analysées par les entreprises

et les laboratoires de recherches ont fortement augmentés ouvrant ainsi l’ère du

BigData. Cependant ces données brutes sont fréquemment non catégorisées et

difficilement exploitables. Cette thèse vise à améliorer et faciliter le pré-traitement

et la compréhension de grands volumes de données en fournissant des algorithmes

d’apprentissage non supervisés.

La première partie de cette thèse est consacré à un état de l’art des algorithmes

de partitionnement et bi-partitionnement ainsi qu’une présentation des technolo-

gies du BigData. La première contribution de cette thèse est dédiée à la conception

de l’algorithme de clustering Self-Organizing Map ou carte auto-organisatrice [Ko-

honen, 2001] dans un environnement Big data. Notre algorithme (SOM-MR) four-

nit les mêmes avantages que l’algorithme de base, à savoir la création de partition

de données et leur visualisation sous la forme de carte. De plus il utilise la plate-

forme Spark, ce qui lui permet à la fois de traiter de grands volumes de données

en peu de temps. De part la popularité de cette plateforme il s’intègre facilement

dans dans de nombreux environnements de traitement de données. C’est ce que

nous avons démontré dans notre projet “Square Predict” réalisé en partenariat

avec l’assurance Axa. Ce projet avait pour objectif de fournir une plateforme

d’analyse de données en temps réel afin d’évaluer la sévérité d’une catastrophe

naturelle ou d’améliorer la connaissance des risques résidentiels. Durant ce projet

nous avons démontré l’efficacité de notre algorithme pour analyser et fournir des

visualisation à partir de grands volumes de données provenant des réseaux sociaux

et d’Open data.

La deuxième contribution de cette thèse est consacrée à un nouvel algorithme

de BiClustering. Le BiClustering consiste à réaliser un clustering simultanément

sur les observations et les variables. Dans cette contribution nous proposons une

nouvelle approche de biclustering basé sur l’algorithme self-organizing maps ca-

pable de passer à l’échelle sur de grands volumes de données (BiTM-MR). Pour

ce faire il est également basé sur la plateforme des technologies Big data. Mais il

apporte davantage d’informations que notre algorithme SOM-MR car en plus de

produire des groupes d’observations il associe des variables à ces groupes, formant

ainsi des bi-groupes d’observations et variables.

iv

Mots clés: apprentissage non supervisé, clustering, bi-clustering, Self-organizing

map, big data, map reduce, Spark, apprentissage distribué.

Acknowledgements

The golem appeared in Jewish mythology where it is an magicaly animated

humanoid made of clay. It is a very old myth but still present in our culture, par-

ticularly in literature (the monster of Frankestein), on television (X-Files season

4) and in many video games (Minecraft, Diablo, ...). Machine learning is probably

the science that best represents the Golem symbol, it arouses both fear and fasci-

nation that man can create a machine without conscience but still able to mimic

human intelligence.

I’ve always had a lot of fascination with these intelligent machines, however

it took me a long time to understand the connection between creating artificial

intelligence and what I had learned at school. But I still remember the wonder that

I had during each of the courses where I understood how to make a program able

to ”learn”, particularly the course of Nicolas Kamennoff on genetic algorithms as

well as the course of Mustapha Lebbah on SOM algorithms. That why I wanted to

make this thesis to learn more on this topic. Of course a thesis is not done alone,

I thank very warmly my thesis directors Hanene Azzag and Mustapha Lebbah for

all the motivation they gave me (and I’m not someone easy to motivate;)) but

also for all the exchanges we had, I learned a lot from them and it is the most

important thing of these years of thesis for me. I also thank very much Mohammed

Ghesmoune without whom this thesis would never have been finished. Thank

you very much too to SmokeWatchers for funding this thesis and the LIPN for

supervising it. Many thanks also to all the people who re-read my publications,

although they did not understand much to them : Claire Migné, my grandmother

and Selena Salkoff. Finally, I thank all my family for telling me to do this thesis

”because it’s always good to have diplomas ”.

v

Contents

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Context of the thesis . 1

1.2 Our contributions . 2

2 Fundamentals of Big Data 5

2.1 Big Data . 5

2.2 Distributed data storage systems 7

2.2.1 Google File System (GFS) 7

2.2.2 Hadoop Distributed File System (HDFS) 7

2.3 MapReduce: Basic Concept . 8

2.4 Distributed platforms . 9

2.4.1 Hadoop . 9

2.4.2 Spark . 10

2.5 Conclusion . 11

3 Clustering and Scalable Algorithms 13

3.1 Introduction . 13

3.2 Data clustering algorithms . 14

3.2.1 k -means . 14

3.2.2 Self-Organizing Map (SOM) 16

3.2.3 Neural Gas . 19

3.2.4 Growing Neural Gas . 21

3.2.5 DBSCAN . 22

3.2.6 EM Algorithm . 24

3.2.7 Computational complexity 25

3.3 Scalable clustering . 26

3.3.1 General Framework . 26

vii

Contents viii

3.3.2 Scalable k -means using MapReduce 27

3.3.3 Scalable DBSCAN using MapReduce 30

3.3.4 Scalable EM using MapReduce 30

3.3.5 MapReduce-based Models and Libraries 31

3.4 Conclusion . 32

4 Bi-Clustering Algorithms 33

4.1 Introduction . 33

4.2 Partitioning-based methods . 34

4.3 Probabilistic methods . 36

4.4 Topological methodes . 40

4.5 Divisive methods . 43

4.6 Hierarchical methods . 43

4.7 Constructive methodes . 45

4.8 Matrix decomposition for bi-clustering 46

4.9 Conclusion . 49

5 SOM Clustering using Spark-MapReduce 51

5.1 Introduction . 51

5.2 Self-Organizing Maps (SOM) . 53

5.3 Spark-MapReduce and SOM . 55

5.3.1 Version 1 of SOM MapReduce 55

5.3.2 Version 2 of SOM MapReduce 56

5.4 Experiments . 59

5.4.1 Comparison with SOM not MapReduce algorithm 59

5.4.2 Speedup tests . 59

5.4.3 Variation of the number of observations and variables 61

5.5 Conclusion . 62

6 A new Topological Biclustering at scale 65

6.1 Introduction . 65

6.2 A new Topological biclustering: BiTM Model 68

6.2.1 BiTM Model . 68

6.2.2 BiTM Model vs. Croeuc . 71

6.2.3 BiTM and MapReduce . 73

6.3 Experiments . 74

6.3.1 BiTM versus Croeuc . 76

6.3.1.1 Clustering quality 77

6.3.1.2 Quantization error 77

6.3.1.3 Visualization . 80

6.3.2 Speedup tests . 81

6.4 Conclusion . 83

7 Application to Insurance Dataset 85

7.1 Introduction . 85

Contents ix

7.2 Exploratory data analysis of SOM clusters 86

7.3 Supervised learning of SOM clusters 88

7.4 Validation of SOM clusters . 95

7.5 Analysis of the insurance big data using SOM-MR 97

7.6 Conclusion . 100

8 Conclusion and perspectives 101

8.1 Summary . 101

8.2 Perspectives . 102

8.2.1 Biclustering and feature group weighting 102

8.2.2 Conclusion . 105

Bibliography 107

List of Figures

2.1 5 Vs of Big Data [Demchenko et al., 2013] 6

2.2 HDFS Data Distribution . 8

2.3 MapReduce processes for counting the number of occurrences for
each word in a document . 9

2.4 HDFS reads and writes in iterative machine learning algorithms . . 10

2.5 Iterative machine learning algorithms in Spark 11

2.6 Running time of k-means and logistic regression in Hadoop and
Spark [Zaharia et al., 2012] . 11

3.1 Clustering with k-means . 15

3.2 SOM principles: mapping and quantization 17

3.3 DBSCAN: core, border, and noise points [Ester et al., 1996]. 24

3.4 The general framework of most parallel and distributed clustering
algorithms [Aggarwal and Reddy, 2014]. 27

5.1 Speedup for SOM-MR algorithms implemented in Spark. Speedup
is relative to execution time by computers. 61

5.2 Ratio between execution time and the number of observations . . . 62

5.3 Ratio between execution time and the number of variables 62

6.1 Quantization error . 79

6.2 SonarMines visualization . 81

6.3 Waveform visualization . 82

6.4 BiTM Spark execution times . 83

7.1 Decision trees for the enriched AXA data for charge inc (fire dam-
ages) payouts, sorted by SOM cluster payouts: NumCluster = all,
9, 30, 98, 99, 97, 94, 5, 1, 19, 91, 6, 72. 87

7.2 Decision trees for the enriched AXA data for charge inc (fire dam-
ages) payouts, sorted by SOM cluster payouts: NumCluster = 94,
17, 37, 69, 96, 80, 8, 79, 68. 88

7.3 Decision trees for the enriched AXA data for charge dde (water
damages) payouts, sorted by SOM cluster payouts: NumCluster =
all, 30, 9, 6, 91, 99, 97, 5, 1, 19, 98, 1, 80. 89

7.4 Decision trees for the enriched AXA data for charge dde (water
damages) payouts, sorted by SOM cluster payouts: NumCluster =
94, 72, 17, 69, 37, 96, 8, 79, 68. 90

xi

List of Figures xii

7.5 Decision tree for predicting the SOM cluster labels of the enriched
AXA data: INSEE and ONDRP variables. 91

7.6 Decision tree for predicting the SOM cluster labels of the enriched
AXA data: INSEE variables only. 92

7.7 Decision tree for predicting the SOM cluster labels of the enriched
AXA data: departemental mean of INSEE variables. 94

7.8 Validation of SOM cluster labels from decision tree for enriched
AXA 2012 data with departmental mean of INSEE variables. Val-
idation data are contracts from 2010 (orange), 2011 (green) and
2012 (turquoise). The 2012 data with true SOM clusters are violet.
INC is fire damages claims (euros), DDE is water damages claims
(euros). Summary statistics are the number of contracts n, total
fire damages and total water damages claims. 98

7.9 Visualtisation of contracts assigned to cluster #21 99

7.10 Visualtization of contracts assigned to cluster #55 100

List of Tables

3.1 Computational complexity of clustering algorithms 26

4.1 Example of a table containing qualitative variables. 40

4.2 Example of a complete disjunctive table. 41

5.1 Clustering Accuracy performance (Acc) 60

5.2 Clustering performance comparison using Rand. 60

6.1 Table of symbols. 70

6.2 Public datasets description (# obs: number of observation, # feat:
number of features) . 77

6.3 Clustering Accuracy performance (Acc). 78

6.4 Clustering performance comparison using NMI. 78

7.1 Cross classification table for true and estimated SOM cluster labels
from decision tree for enriched AXA data: INSEE and ONDRP
variables. Overall misclassification rate is 0.022. 95

7.2 Cross classification table for true and estimated SOM cluster labels
from decision tree for enriched AXA data: INSEE variables only.
Overall misclassification rate is 0.137. 96

7.3 Cross classification table for true and estimated SOM cluster labels
from decision tree for enriched AXA data: departmental mean of
INSEE variables. Overall misclassification rate is 0.042. 96

7.4 Validation of SOM cluster labels from decision tree for enriched
AXA 2012 data with departmental mean of INSEE variables. Vali-
dation data are contracts from 2010, 2011 and 2012. INC is fire
damages claims (euros), DDE is water damages claims (euros).
Summary statistics are the number of contracts n, total fire dam-
ages and total water damages claims. 97

7.5 Rate of claims, Payout per claim, and Loss per contract for batch-
Stream clusters for insurance data 99

xiii

List of publications

International conferences with reading committee

• Tugdual Sarazin, Mustapha Lebbah, and Hanane Azzag. Biclustering using

spark- mapreduce. In 2014 IEEE International Conference on Big Data, Big

Data 2014, Washington, DC, USA, October 27-30, 2014, pages 58?60, 2014.

• Tugdual Sarazin, Amine Chaibi, Mustapha Lebbah and Hanane Azzag. Fea-

ture group weighting and topological biclustering. International Conference

on Neural Information Processing (ICONIP) 2014. Kuching, Malaisie, 4

novembre 2014.

• Tugdual Sarazin, Hanane Azzag, and Mustapha Lebbah. 2014. SOM Clus-

tering Using Spark-MapReduce. In Proceedings of the 2014 IEEE Interna-

tional Parallel & Distributed Processing Symposium Workshops (IPDPSW

’14). IEEE Computer Society, Washington, DC, USA, 1727-1734. DOI=10.1109/IPDPSW.2

French speaking conferences with reading com-

mittee

• Tugdual Sarazin, Hanane Azzag, Mustapha Lebbah. Modèle de Biclustering

dans un paradigme ”Mapreduce”. In EGC 2015, vol. RNTI-E-28, pp.467-

468

xv

To . . . TODO

xvi

Chapter 1

Introduction

1.1 Context of the thesis

The present work proposes to develop data mining tools based on learning tech-

niques for mining Big Data. In a nutshell, this thesis pertains to the fields of Ma-

chine Learning (ML) and Big Data. Machine Learning methods traditionally fall

into three categories: supervised, semi-supervised, and unsupervised methods [Han

et al., 2011]. Clustering is considered as the most important unsupervised learn-

ing problem. It is a main task of data mining and the common technique that

has been used in many fields, including machine learning, data mining, pattern

recognition, web mining, textual document collection, image segmentation, biol-

ogy, etc. [Everitt et al., 2009].

However, applying data mining techniques, and specifically clustering algo-

rithms, to large datasets (Big Data) raise more challenges and difficulties. Big

Data has become recently a new ubiquitous term. Big Data is transforming sci-

ence, engineering, medicine, healthcare, finance, business, and ultimately our so-

ciety itself. Currently, the Big Data domain can be characterized by the 5 V’s:

Volume, Velocity, Variety, Value and Veracity (see chapter 4 for more details).

Given the interest of mining Big Data, organisations are increasingly relying

on Big Data to provide the opportunities to discover correlations and patterns in

data that would have previously remained hidden, and to subsequently use this

new information to increase the quality of their business activities. Learning from

Big Data has become a significant challenge and requires development of new types

of algorithms. Most machine learning algorithms can not easily scale up to Big

1

Chapter 1. Introduction 2

Data. MapReduce is a simplified programming model for processing large datasets

in a distributed and parallel manner.

1.2 Our contributions

As already mentioned, the present work is concerned with the modelling of large-

scale data within a Big Data framework, using Machine Learning methods, specifi-

cally the Self-Organizing Maps approach, and Big Data concepts and technologies.

Chapter 3 surveys clustering and scalable clustering methods implemented with

MapReduce. Chapter 4 presents a thorough survey of the state-of-the-art for a

range of bi-clustering algorithms. Chapter 2 is devoted to introducing the Big

Data ecosystem and the fundamentals for data science.

In the subsequent chapters are our main contributions, summarized as follows:

1. In chapter 5 we present a scalable Self-Organizing Maps method, called

SOM-MR which consists of a novel re-formalization of the dynamic clusters

”nuées dynamiques”. The proposed SOM-MR algorithm is implemented

with the Spark framework which represents a new way of writing using the

MapReduce paradigm. The major research challenge addressed is how to

minimize the input and output of primitives (map and reduce) for topological

clustering algorithm. So, we show that we can save computation time by

changing the (key, value) parameters.

2. After that, in chapter 6, we presented our second contribution consisting

of proposing a model for bi-clustering using MapReduce. The proposed

model, called BiTM, is a distributed algorithm for scalable bi-clustering

based on topological maps. We defined a new cost function and so a new

formalization of topological bi-clustering. After that, we proposed a model

for scalability. This model consists of decomposing the db-clustering problem

into the elementary functions, Map and Reduce. The SOM-MR and the

BiTM implementations are assured in the Spark platform.

3. In chapter 7, we present an application of our SOM-MR algorithm on the

insurance Big Data provided by AXA. The utility of the SOM-MR scalable

approach is demonstrated and validated on the insurance Big Data as an

Chapter 1. Introduction 3

example of unsupervised learning. Afterwards, a predictive and analysis

system is proposed by combining the clustering result with decision trees.

The different assessments carried out in this thesis (performance measurements

and visualizations) obtained promising results.

The thesis manuscript is organized as follows. Chapter 3 reviews and dis-

cusses the state-of-the-art related to both clustering and scalable clustering meth-

ods implemented with MapReduce. Chapter 4 presents a thorough survey of the

state-of-the-art for a range of bi-clustering algorithms. Chapter 2 gives an intro-

duction to the Big Data ecosystem and discusses the fundamentals that a data

scientist needs in order to extract knowledge or insights from large data in various

forms. Chapter 5 presents our SOM-MR algorithm concerned with scaling-up the

SOM approach to deal with large datasets; experimental validation on benchmark

datasets from the clustering literature is reported and discussed. Chapter 6 intro-

duces the BiTM algorithm designed for large-scale bi-clustering. Chapter 7 finally

describes the validation results of SOM-MR on the insurance Big Data. Some

conclusions and perspectives for further research are presented in chapter 8.

Chapter 2

Fundamentals of Big Data

This chapter gives an introduction to the Big Data ecosystem. Indeed, we will

review and discuss the fundamentals that a data scientist needs in order to extract

knowledge or insights from large data in various forms, with a focus on the data

stream use case.

2.1 Big Data

To our knowledge, the term ”Big Data” appeared for first time in 1998 in a Silicon

Graphics (SGI) slide deck by John Mashey with the title of ”Big Data and the Next

Wave of InfraStress” [Mashey, 1998]. It is a term used to identify the datasets that

due to their large size and complexity, we can not manage them with our current

methodologies or data mining software tools [Fan and Bifet, 2013]. Despite that

the ”Big Data” has become a new buzz-word, there is no consistent definition for

Big Data, or any detailed analysis of this new emerging technology. Most dis-

cussions until now have been going in the blogosphere where active contributors

have generally converged on the most important features and incentives of the Big

Data [Demchenko et al., 2013].

The work presented in [Laney, 2001] was the first one to talk about 3 Vs in

Big Data management, i.e., Volume (great volume), Velocity (rapid generation),

Variety (various modalities), to which were added Value (huge value but very

low density) [Gantz and Reinsel, 2011] and Veracity (consistency and trustworthi-

ness) [Demchenko et al., 2013] more recently proposed. Figure 2.1 resumes the 5

Vs of Big Data [Demchenko et al., 2013]:

5

Chapter 4. Fundamentals of Big Data 7

2.2 Distributed data storage systems

2.2.1 Google File System (GFS)

GFS [Ghemawat et al., 2003] uses a simple design with a single master server

for hosting the entire metadata (the namespace, access control information, the

mapping from files to chunks, and the current locations of chunks) and where the

data is split into chunks and stored in chunk-servers. Files are divided into fixed-

size chunks. Chunkservers store chunks on local disks and read or write chunk

data specified by a chunk handle and byte range. For reliability, each chunk is

replicated on multiple chunkservers. However the GFS master is now made fault

tolerant using the Chubby [Burrows, 2006] abstraction.

2.2.2 Hadoop Distributed File System (HDFS)

HDFS [Borthakur, 2007] is a distributed file system designed to run on top of the

local file systems of the cluster nodes and store extremely large files. HDFS consists

of two types of nodes, namely, a namenode called ”master” and several datanodes

called ”slaves”. HDFS can also include secondary namenodes. The namenode

manages the hierarchy of file systems and director namespace (i.e., metadata).

File systems are presented in a form of a namenode that registers attributes, such

as access time, modification, permission, and disk space quotas. The file content is

split into large blocks, and each block of the file is independently replicated across

datanodes for redundancy and to periodically send a report of all existing blocks

to the namenode.

HDFS is highly fault tolerant and can scale up from a single server to thousands

of machines, each offering local computation and storage. For example, according

to Figure 2.2, the record #2 is replicated on nodes A, B, and D. When a process

needs this record, it can retrieve it from the node which optimises the response

time.

Chapter 4. Fundamentals of Big Data 12

scientific prototyping.

In the next chapter, we will detail our first contribution, concerning the SOM-

MR algorithm which is a scalable clustering method based on the SOM approach

and implemented with MapReduce.

Chapter 3

Clustering and Scalable

Algorithms

The first part of this chapter reviews and discusses the state of the art related to

clustering methods. In the second part, we detail some scalable clustering methods

implemented with MapReduce, allowing the reader to have a clear idea on how to

scale any data clustering algorithm using the MapReduce paradigm.

There are too many clustering algorithms to cover comprehensively here so

we will focus on the algorithms which we have utilised ourselves or those which

appear to be most relevant to our work.

3.1 Introduction

Clustering is a key data mining task. This is the problem of partitioning a set

of observations into clusters such that observations assigned in the same cluster

are similar (or close) and the inter-cluster observations are dissimilar (or distant).

The other objective of clustering is to quantify the data by replacing a group of

observations (cluster) with one representative observation (prototype).

This chapter reviews and discusses the state of the art related to clustering

methods. Even if we do not propose an exhaustive survey, we argue that we present

in detail the most well-known data clustering algorithms. Furthermore, we present

an understandable section on how to scale traditional clustering algorithms using

the MapReduce paradigm.

We assume that a set of n data-points X = {x1,x2, ...,xn} are given, where

13

Chapter 2. Clustering and Scalable Algorithms 14

xi = (x1
i , x

2
i , ..., x

d
i) is a vector in the Rd space. We denote by C the set of clusters

produced by the clustering task. Each cluster has a prototype variable, denoted

by wc = (w1
c , w

2
c , ..., w

d
c), which represents the position of the cluster in R

d.

3.2 Data clustering algorithms

3.2.1 k-means

The most common example of clustering algorithms is k-means [Jain and Dubes,

1988]. Clusters are represented by a mean vector called the weighted vector or

prototype wj, where j = 1, ..., k, which may not necessarily be a physical point in

the data space. Thus we can re-define the clustering problem as an optimization

problem: find the cluster centers such that the intra-class variance is minimized,

i.e., the sum of squared distances from each object within a cluster to its cor-

responding prototype. k-means finds k classes from a set of n observations, by

minimizing the following cost function:

Rk−means(φ,W) =
n
∑

i=1

k
∑

j=1

‖xi −wj‖
2 (3.1)

The method used for the minimization of the function Rk−means(φ,W) is an

iterative method whose basic iteration has two phases:

• Assignment step: it is, in this phase, to minimize the functionRk−means(φ,W)

with respect to the assignment function φ assuming that the prototype vec-

tors W are constant; The minimization is achieved by assigning each obser-

vation xi to the referent wc using the assignment function φ:

φ(xi) = arg min
j=1,...,k

‖xi −wj‖
2 (3.2)

assign data points to the nearest prototype (best match unit). This assures

that the cost function R(φ,W) is minimized with respect to the assignment

function φ assuming that the prototype vectors are constant. Additionally,

this step maps data to the network nodes.

Chapter 2. Clustering and Scalable Algorithms 16

Algorithm 1 K-means algorithm

1: initialize randomly K prototypes
2: repeat
3: for i = 1 to N do
4: k = argmink=1,..,K ‖xi −wk‖

2

5: Ck = Ck ∪ xi {assign xi to cluster Ck}
6: end for
7: for k = 1 to K do
8: wk = 1

nCk

∑nCk

j=1 xj {update prototype k, where nCk
is the cardinality of

cluster Ck}
9: end for
10: until stopping criterion has been fulfilled

3.2.2 Self-Organizing Map (SOM)

The SOM algorithm, proposed by Kohonen [Kaski et al., 1998], is a type of arti-

ficial neural network for unsupervised learning. SOM has the ability of creating

spatially organized internal representations of input objects and their abstractions.

As in Figure 3.2, SOM produces a low-dimensional (1D or 2D) discretized repre-

sentation (called a map or network) from the high-dimensional space of the input

data. SOM uses a neighborhood function to preserve the topological properties

of the input space, and forms a discretely topological map where similar objects

are grouped close together and dissimilar ones apart. Like most artificial neural

networks [Haykin, 1998], SOM has a two-fold objective:

1. Training map: build the topological map using the input data. A map

consists of a number of network nodes arranged according to a structure

defined a priori. The usual arrangement of the network nodes is a 1D or

2D, hexagonal or rectangular grid. Associated with each network node is a

prototype, wc, of the same dimension as the input data points.

2. Mapping (quantization): put the input data into a non-linear, discrete

map. Vector quantization techniques assign a data point to a prototype

such that the distance from this point to the best match prototype is the

smallest. This process will respect the neighborhood function to preserve

data topology. Data points which are similar into the input space will be

put onto neighbor network nodes.

At the start of the learning, a discrete topological map of size p × q = k is

initialized. We denote C = {c1, ..., ck} where ci (i = 1, ..., k) is a network node.

Chapter 2. Clustering and Scalable Algorithms 18

There are mainly two versions of SOM algorithm: stochastic and batch, both

aim to minimize the cost function presented in equation 3.6.

RSOM(φ,W) =
n
∑

i=1

k
∑

j=1

KT
(

δ(φ(xi), cj)
)

‖xi −wj‖
2 (3.6)

where φ(xi) is the assignment function which returns the network node to which

xi is assigned:

φ(xi) = arg min
j=1,...,k

‖xi −wj‖
2 (3.7)

The learning steps are similar to the steps of k-means:

1. Initialization step: initialize the map structure, i.e., the number of network

nodes (or k clusters), the arrangement shape: hexagonal or rectangular and

the initial prototypes.

2. Assignment step: assign data points to the nearest prototype (best match

unit). This assures that the cost function R(φ,W) is minimized with re-

spect to the assignment function φ assuming that the prototype vectors are

constant. Additionally, this step maps data to the network nodes.

3. Update step: re-compute the prototype vectors. The prototypes and their

neighbors move along together towards the assigned data such that the map

tends to approximate the data distribution. It includes minimizing the cost

function R(φ,W) with respect to the prototypes vectors assuming that data

are all assigned to the best match unit.

Batch SOM

In batch version, the prototypes are updated according to the following equation:

wc =

∑

r=1K
T (δ(c, r))

∑nr

i=1 xi
∑

r=1K
T (δ(c, r))nr

(3.8)

where nr is the number of data assigned to cluster r. This formula is obtained by

fixing φ and minimizing R with respect to W . The assignment function in the

batch version is calculated according to the following equation:

φ(xi) = arg min
j=1,...,k

KT (δ(xi,wj))‖xi −wj‖
2 (3.9)

Chapter 2. Clustering and Scalable Algorithms 19

Algorithm 2 Batch SOM version

1: initialize K prototypes and W
2: while stopping criteria have not been fulfilled do
3: for i = 1→ N do
4: φ(xi) = argmink=1,..,K K

T (d(xi,wk))‖xi−wk‖
2 {Find the best match unit

to the current selected vector.}
5: Cφ(xi) = Cφ(xi) ∪ {xi} {Put xi into cluster φ(xi)}
6: end for
7: for k = 1→ K do

8: wk =
∑K

r=1 K
T (δ(Cc,Cr))

∑nCr
j=1 xj

∑K
r=1 K

T (δ(Cc,Cr))nr
{Update prototype vectors where nr is the

number of data found in cluster r }
9: end for
10: end while

Stochastic SOM

In the stochastic version, each iteration consists of presenting the SOM map a

data point randomly selected. The best match unit (the neatest node) as well as

its neighbors move to the input point (see Figure 3.2).

Unlike the batch version, the stochastic version uses the gradient descent

method in order to update prototypes:

wt
c = wt−1

c − µtKT (δ(c, cφ(xi)))(w
t−1
c − xi) (3.10)

where µt is an adaptation parameter, called ”the learning rate” which decreases

with time t.

Stochastic SOM

3.2.3 Neural Gas

Neural Gas (NG) [Martinetz and Schulten, 1991] is inspired by the SOM. While

the SOM map dimensionality must be chosen a priori; depending on the data dis-

tribution, the topological network of neural gas may have a different arrangement.

Neural Gas is a more flexible network capable of quantizing topological data and

learning the similarity among the input data without defining a network topology.

Unlike SOM, the adaptation strength in Neural Gas is constant over time and only

Chapter 2. Clustering and Scalable Algorithms 20

Algorithm 3 Stochastic SOM version

1: initialize K prototypes and W
2: while stopping criteria have not been fulfilled do
3: for i = 1→ N do
4: φ(xi) = argmink=1,..,K ‖xi−wk‖

2 {Find the best match unit to the current
selected vector.}

5: for all Cr is a neighbor of φ(xi) (including φ(xi) itself) do
6: wr = wr +K

T (δ(Cφ(xi), Cr))(xi −wr) {Update the nodes in the neigh-
borhood of φ(xi) (including the node φ(xi) itself) by pulling them closer
to the input vector.}

7: end for
8: end for
9: end while

the best match prototype and its direct topological neighbors are adapted.

Given a network of k clusters C = {c1, ..., ck} associated with k prototypes

W = {w1, ...,wk}, they are adapted independently of any topological arrangement

of the network nodes within the network. Instead, the adaptation step is affected

by the topological arrangement within the input space. For each data point xi is se-

lected, prototypes will be ajusted by distortionsD(xi, cj) = ‖xi−wj‖, ∀j = 1, ..., k.

The resulting adaptation rule can be described as a ”winner takes most” instead

of a ”winner takes all” rule [Fritzke, 1991]. The winner network node denoted by

j0 is determined by the assignment function

j0 = φ(xi) = arg min
j=1,...,k

‖xi −wj‖
2. (3.11)

An edge that connects the network node adjacent, denoted by j1, to the win-

ner node j0 which is then stored in a matrix S representing the neighborhood

relationships among the input data:

Sij =

{

1 if a connection exists between ci and cj (∀i, j = 1, ..., k, i 6= j)

0 otherwise

When an observation is selected, the prototypes move toward it by adjusting

the distortion D(xi, cj0), controlled by a neighborhood function KT . In [Fritzke,

1991], this function is fixed, e.g. KT = expknnj/T where knnj is the number of

neighborhood network nodes of cj. This affects directly to the adaptation step for

wj which is determined by:

wt
j = wt−1

j − εKT (δ(cj, cφ(xi)))(xi −wj) (3.12)

Chapter 2. Clustering and Scalable Algorithms 21

To capture the topological relations between the prototypes, each time an obser-

vation is presented, the connection between j0 and j1 is incremented by one. Each

connection is associated with an ”age” variable. Only the connection between j0

and j1 is reset, the other connections of j0 age, i.e. their age increment. When the

age of a connection exceeds a specific lifetime Maxage, it is removed. The way to

update the age of the connections is to increase with each incoming input object

is learnt. Finally, Neural Gas can be summarized by the Algorithm ??.

Algorithm 4 Neural Gas algorithm

1: Initialize K prototypes and set all Sij to zero
2: for all xi ∈ X do
3: determine the sequence (Ck0 , Ck1 , ..., CkN−1

) such that

‖xi −wk0‖ < ‖xi −wk1‖ < .. < ‖xi −wkK−1
‖

{wk0 is the best match prototype, i.e the nearest prototype; wk1 is the
second nearest prototype to xi}

4: for all Cj with Sk0,j == 1 do
5: wj = wj + ǫKT (xi−wj) {perform an adaptation step for the prototypes}
6: end for
7: if Sk0,k1 == 0 then
8: Sk0,k1 = 1 {create a topological connection between Ck0 and Ck1}
9: agek0,k1 = 0 {set age for this connection}
10: end if
11: for all Cj with Sk0,j == 1 do
12: agek0,j = agek0,j + 1 {increase the age of all connections of k0 by one}
13: if agek0,j > Maxage then
14: Sk0,j = 0 {remove all connections of k0 which exceeded their age }
15: end if
16: end for
17: end for

In this algorithm, stopping criteria can be either:

• a number of iterations

• a threshold for the quantization error.

3.2.4 Growing Neural Gas

Growing Neural Gas (GNG) [Fritzke, 1994] is an incremental self-organizing ap-

proach which belongs to the family of topological maps such as Self-Organizing

Chapter 2. Clustering and Scalable Algorithms 22

Maps (SOM) [Kohonen et al., 2001a] or Neural Gas (NG) [Martinetz and Schul-

ten, 1991]. It is an unsupervised clustering algorithm capable of representing a

high dimensional input space in a low dimensional feature map. Typically, it

is used for finding topological structures that closely reflect the structure of the

input distribution. Therefore, it is used for visualization tasks in a number of

domains [Martinetz and Schulten, 1991, Beyer and Cimiano, 2012] as neurons

(nodes), which represent prototypes, are easy to understand and interpret.

The GNG method has no input parameters which change over time and is able

to continue learning, adding network units and connections. As an incremental

variant of Neural Gas, GNG inherits its principle; however it does not impose the

strict network-topology preservation rule. The network incrementally learns the

topological relationships inherent in the dataset, and continues until a stopping

criterion is fulfilled. Before learning, only k = 2 prototypes are initialized. Step

by step, after a certain number of iterations (called epoch), a new network node

is successively added into the topological network. But how to add a new network

node? Now, this relates to quantization error.

In the clustering problem, the goal is always to minimize the quantization error

of datasets or data within the clusters. Therefore, the cluster that provides a high

value of quantization error is not a good one. We should divide this cluster into

smaller clusters. GNG finds the two clusters c1 and c2 which have the highest

quantization error. Then a new node is inserted halfway between these two nodes

by the following expression:

wnew =
1

2
(w1 +w2) (3.13)

The node insertion will be repeated until a stoping criterion is fulfilled.

3.2.5 DBSCAN

Density-based clustering has the ability to discover arbitrary-shape clusters and

to handle noise [Amini et al., 2014]. In density-based clustering methods, clusters

are formed based on the dense areas that are separated by sparse areas. DBSCAN

(Density-Based Spatial Clustering of Applications with Noise) [Ester et al., 1996]

is one of the most well-known density-based clustering algorithms.

DBSCAN is developed for clustering large spatial databases with noise, based

on connected regions with high density. The density of each point is defined

Chapter 2. Clustering and Scalable Algorithms 23

based on the number of points close to that particular point called the point’s

neighborhood. The dense neighborhood is defined based on two user-specified

parameters: the radius (ε) of the neighborhood (ε-neighborhood), and the number

of the objects in the neighborhood (MinPts).

The basic definitions in DBSCAN are introduced in the following, where X is

a current set of data points:

• ε-neighborhood of a point: the neighborhood within a radius of ε of a point

xp is denoted by Nε(xp):

Nε(xp) = {xq ∈ X |dist(xp,xq) 6 ε},

where dist(xp,xq) denotes the Euclidean distance between points xp and xq;

• MinPts: the minimum number of points around a data point in the ε-

neighborhood;

• core point: a point where the cardinality of its ε-neighborhood is at least

MinPts (see Figure 3.3);

• border point: a point is a border point if the cardinality of its ε-neighborhood

is less than MinPts and at least one of its ε-neighbors is a core point (see

Figure 3.3);

• noise point: a point is a noise point if the cardinality of its ε-neighborhood is

less than MinPts and none of its neighbors is a core point (see Figure 3.3);

• directly density reachable: a point xp is directly density reachable from point

xq, if xp is in the ε-neighborhood of xq and xq is a core point;

• density reachable: a point xp is density reachable from point xq, if xp is in

the ε-neighborhood of xq and xq is not a core point but they are reachable

through chains of directly density reachable points;

• density-connected: if two points xp and xq are density reachable from a core

point xo, xp and xq are density-connected;

• cluster: a maximal set of density-connected points.

DBSCAN starts by randomly selecting a point and checking whether the ε-

neighborhood of the point contains at least MinPts points. If not, it is considered

Chapter 2. Clustering and Scalable Algorithms 25

∀j = 1, ..., k, πj ∈ [0, 1] and
∑k

j=1 πj = 1

where:

• ϕj(xi;αj) represents the probability density.

• πj denotes the probability that an element of the sample follows the law ϕ.

• θ = (π1, ..., πk;α1, ..., αk) represents the unknown parameter of the mixture

model.

By introducing the log-likelihood, the Equation (3.14) can be rewritten as

follows:

L(x1, ...,xn; θ) =
n
∑

i=1

log
(

k
∑

j=1

πjϕj(xi;αj)
)

(3.15)

Log-likelihood serves as an objective function, which gives rise to the EM

method. EM is a two-step iterative optimization:

• The Step E estimates probabilities ϕj(xi;αj), which is equivalent to a soft

reassignment.

• The Step M finds an approximation to a mixture model, given current soft

assignments.

This boils down to finding mixture model parameters that maximize log-likelihood.

The process continues until log-likelihood convergence is achieved.

In [Attar et al., 2013, El Attar, 2012], the authors have proposed an estimation

of probability distribution over a data set which is distributed into subsets located

on the nodes of a distributed system. More precisely, the global distribution is

estimated by aggregating local distributions which are modelled as a Gaussian

mixture.

3.2.7 Computational complexity

In Table 3.1, we report the computational complexity of the data clustering algo-

rithms presented above, where n is the number of data points and k is the number

of network nodes (or clusters).

Chapter 2. Clustering and Scalable Algorithms 26

Algorithm Complexity
k -means O(kn)
SOM O(kn log n)
NG O(kn log n)
GNG O(kn2)
DBSCAN O(n2); by using spatial indices, it decreases to O(n log n)
EM O(kn)

Table 3.1: Computational complexity of clustering algorithms

3.3 Scalable clustering

In this section, we will describe in details the implementation of some of the

most well-known and commonly used clustering methods, using the MapReduce

paradigm. This will give the reader a clear idea on how to scale any data clustering

algorithm in MapReduce.

As described in chapter 2, MapReduce [Dean and Ghemawat, 2008a, Lämmel,

2008] is a programming model and an associated implementation for processing

and generating large datasets that is amenable to a broad variety of real-world

tasks. Users specify the computation in terms of a map and a reduce function,

and the underlying runtime system automatically parallelizes the computation

across large-scale clusters of machines, handles machine failures, and schedules

inter-machine communication to make efficient use of the network and disks.

3.3.1 General Framework

In contrast to the typical single machine clustering, parallel and distributed (scal-

able) algorithms use multiple machine to speed up the computation and increase

the scalability.

Most parallel and distributed clustering algorithms follow the general frame-

work depicted in Figure 3.4 [Januzaj et al., 2004, Sarazin et al., 2014, Zhao et al.,

2009]

1. Partition. Data are partitioned and distributed over machines.

2. Local Clustering. Each machine performs local clustering on its partion

of the data.

Chapter 2. Clustering and Scalable Algorithms 28

file of < key, value > pairs, each of which represents a record in the dataset. The

key is the offset in bytes of this record to the start point of the data file, and the

value is a string of the content of this record. The dataset is split and globally

broadcast to all mappers. Consequently, the distance computations are executed

in parallel. For each map task, PKMeans construct a global variable clusters

which is an array containing the information about centers of the clusters. Given

the information, a mapper can compute the closest cluster for each data-point.

The intermediate values are then composed of two parts: the index of the closest

cluster and the data-point information [Zhao et al., 2009]. The pseudocode of the

map function is shown in Algorithm 5.

Algorithm 5 map(key, value)

Require: Global variable clusters, the offset key, the data-point value
Ensure: < key′, value′ > pair, where the key′ is the index of the closest cluster

and value′ is a string comprise of data-point information
1: Construct the data-point instance from value
2: minDist = Double.MAX VALUE

3: index = −1
4: for each cluster ci ∈ C do
5: dist = ComputeDistance(instance, ci)
6: if dist < minDist then
7: minDist = dist
8: index = i
9: end if
10: end for
11: Take index as key′

12: Construct value′ as a string comprise of the values of different dimensions
13: output < key′, value′ > pair

In the combine function, we partially sum the values of the points assigned

to the same cluster. In order to calculate the mean value of the objects for each

cluster, we should record the number of data-points in the same cluster in the same

map task. This procedure does not consume the communication cost because the

intermediate data is stored in local disk of the host. The pseudocode for the

combine function is shown in Algorithm 6.

In the reduce function, we sum all the data-points and compute the total

number of data-points assigned to the same cluster. Therefore, we can obtain the

new cluster centers which are used for next iteration. The pseudocode for the

reduce function is shown in Algorithm 7.

Chapter 2. Clustering and Scalable Algorithms 29

Algorithm 6 combine(key, V)

Require: key is the index of the cluster, V is the list of the data-points assigned
to the same cluster

Ensure: < key′, value′ > pair, where the key′ is the index of the cluster and
value′ is a string comprised of sum of the data-points in the same cluster and
the data-point number
Initialize one array to record the sum of value of each dimensions of the data-
points contained in the same cluster, i.e. the data-points in the list V Initialize
a counter num as 0 to record the number of data-points in the same cluster

1: for each value v ∈ V do
2: Construct the data-point instance from v
3: Add the values of different dimensions of instance to the array
4: num = num+ 1
5: end for
6: Take key as key′

7: Construct value′ as a string comprised of the sum values of different dimensions
and num

8: output < key′, value′ > pair

Algorithm 7 reduce(key, V)

Require: key is the index of the cluster, V is the list of the partial sums from
different host

Ensure: < key′, value′ > pair, where the key′ is the index of the cluster and
value′ is a string representing a new cluster center
Initialize one array record the sum of value of each dimensions of the data-
points contained in the same cluster, e.g. the data-points in the list V Initialize
a counter NUM as 0 to record the number of data-points in the same cluster

1: for each value v ∈ V do
2: Construct the data-point instance from v
3: Add the values of different dimensions of instance to the array
4: NUM = NUM + num
5: end for
6: Divide the entries of the array by NUM to get the new cluster’s coordinates
7: Take key as key′

8: Construct value′ as a string comprise the cluster’s coordinates
9: output < key′, value′ > pair

Chapter 2. Clustering and Scalable Algorithms 30

3.3.3 Scalable DBSCAN using MapReduce

A recent proposed algorithm is MR-DBSCAN [He et al., 2014] which is a scalable

MapReduce-based DBSCAN algorithm. Three major drawbacks are existed in

parallel DBSCAN algorithms which MR-DBSCAN is fulfilling [Shirkhorshidi et al.,

2014]:

1. They are not successful to balance the load between the parallel nodes

2. These algorithms are limited in scalability because all critical sub procedures

are not parallelized

3. Their architecture and design limit them to less portability to emerging

parallel processing paradigms.

MR-DBSCAN proposes a novel data partitioning method based on computa-

tion cost emission as well as a scalable DBSCAN algorithm in which all critical

sub-procedures are fully parallelized. The MR-DBSCAN algorithm consists of

three stages: data partitioning, local clustering, and global merging.

The first stage divides the whole dataset into smaller partitions according to

spatial proximity. In the second stage, each partition is clustered independently.

Then the partial clustering results are aggregated in the last stage to generate

the global clusters. Experiments on large datasets confirm the scalability and

efficiency of MR-DBSCAN.

3.3.4 Scalable EM using MapReduce

Expectation Maximization (EM) is used to learn the maximum likelihood param-

eters in the presence of incomplete data.

Many works have been proposed to scale-up the EM algorithm [Das et al.,

2007, Cui et al., Basak et al., 2012]. The parallel implementation of EM proposed

in [Cui et al.] is coded in Spark.

• Each E-step is a Spark map transformation which runs in parallel mapping

each xi to a vector of conditional probability densities.

Chapter 2. Clustering and Scalable Algorithms 31

• Each M-step is a reduce action which goes through all the observations in

the RDD, aggregating results from E-step.

In their implementation, each iteration consists of two map operations and two

reduce operations. In the first map operation, we calculate the responsibility (the

log-likelihood, L) of each cluster for each data point, along with the product of

the data point and L and the sum of the products for all clusters. Then we do a

reduce operation to calculate the new centers for each cluster. In the las step, we

do another map and reduce to calculate the covariance of each cluster.

3.3.5 MapReduce-based Models and Libraries

Due to the interest of the MapReduce framework, some studies have used it for

scaling clustering algorithms. As examples, we can cite the implementation of

the EM algorithm in MapReduce [Das et al., 2007], the parallel version of the k -

means++ initialization algorithm [Bahmani et al., 2012], and the work considered

in [Ene et al., 2011a] which is a MapReduce implementation of the k -medean

problem.

Currently, more and more libraries have emerged offering MapReduce-based

implementations of machine learning algorithms:

• MLlib.2 This is Spark’s machine learning library. It consists of common

learning algorithms and utilities, including classification, regression, cluster-

ing, collaborative filtering, dimensionality reduction, as well as lower-level

optimization primitives and higher-level pipeline APIs.

• Apache Mahout.3 Is a project of the Apache Software Foundation to

produce free implementations of distributed or otherwise scalable machine

learning algorithms focused primarily in the areas of collaborative filtering,

clustering and classification. Currently, the supported algebraic platforms

are Apache Spark4 and H205, and Apache Flink6. Since April 2014, support

for Hadoop MapReduce7 algorithms is being gradually phased out.
2http://spark.apache.org/docs/latest/mllib-guide.html
3http://mahout.apache.org/
4http://spark.apache.org/docs/latest/index.html
5http://www.h2o.ai/
6http://hadoop.apache.org/
7http://hadoop.apache.org/

Chapter 2. Clustering and Scalable Algorithms 32

3.4 Conclusion

As data clustering has attracted a significant amount of research attention, many

clustering algorithms have been proposed in the past decades. However, the en-

growing volumes of information made possible by technological advances, makes

clustering of very large data a challenging task.

Currently, the MapReduce paradigm has met with a resounding success in this

era of Data Science due to, amongst others, its simplicity. The challenge in scaling

a data clustering method is not only to use the MapReduce paradigm but also to

decompose the problem in small functions, the map and reduce functions. Usually,

scaling an algorithm using MapReduce needs a redefintion of the initial problem.

In the next chapter, we will review and discusse ...

Chapter 4

Bi-Clustering Algorithms

This chapter represents a comprehensive survey on bi-clustering methods. These

are algorithms that perform simultaneous clustering on the row and column di-

mensions of the data matrix. We analyze a large number of existing approaches to

biclustering, and classify them in accordance with the type of biclusters they can

find, the patterns of biclusters that are discovered, the methods used to perform

the search.

4.1 Introduction

In the field of clustering, although most of methods used aim to construct par-

titions either on the set of observations or on the variables separately, there are

other methods of bi-clustering that simultaneously consider the two sets [Govaert,

1983, Abdullah and Hussain, 2006, Govaert and Nadif, 2009, Kwon and Cho, 2010,

Ayadi et al., 2012, de França et al., 2013]. Compared to the classical clustering, by

not privileging one set over another, bi-clustering is more efficient for discovering

homogeneous blocks in a data matrix. In recent years, this family of approaches

has attracted great interest in different scientific communities and in various fields

such as data mining.

Bi-clustering approaches have become a topic of major interest because of its

many applications in the field of data mining. A bi-partitioning method, also

called ”bi-clustering”, co-clustering or cross-classification, is a method of analysis

that aims to group data according to their similarity. The traditional strategy of

33

Chapter 3. Bi-Clustering Algorithms 34

bi-partitioning methods seeks to find sub-matrices, or blocks that represent sub-

groups of rows and subgroups of columns in a data matrix.

One of the objectives of a bi-classification method is the search for a pair of

partitions, one on the observations (the lines of a data matrix), the other on the

columns (columns of a data matrix), such as the ”loss of information” due to

grouping is minimal; That is to say, so that the difference between the informa-

tion provided by the initial table and that provided by the table obtained after

grouping is minimal.

Since the first bi-partitioning algorithm, called ”Block Clustering”, proposed

by [Hartigan], many techniques have been proposed, such as ([Tanay et al., 2002]),

spectral analysis ([Greene and Cunningham, 2010]), ([Shan et al., 2010]) and oth-

ers ([Angiulli et al., 2006]). The authors of [Charrad et al., 2008] classify the

bi-partitioning methods into four major categories: divisive, constructive, proba-

bilistic and partitioning-based methods.

4.2 Partitioning-based methods

K-means algorithms have long been used in bi-partitioning. Indeed, [Govaert,

1983] defined a bi-partitioning algorithm called ”Croeuc” which consists in deter-

mining a series of pairs of partitions minimizing a cost function on the matrix of

the data by applying the K-means alternatively on rows and columns. The Croeuc

algorithm is proposed for continuous data.

Let A a data matrix with N observations and d variables, xj
i such that 1 <

i < N, 1 < j < d are the elements of the matrix A. The observations are parti-

tioned into K classes. Similarly, variables are partitioned into L classes. Pk and Ql

represent the row and column partitions, respectively. The optimal partitions P

and Q are obtained by means of an iterative algorithm which uses the sum of the

Euclidean distances as a measurement of the deviation between the data matrix

A.

The goal of the Croeuc algorithm is to find a pair of partitions (P,Q) and g,

such that the following criterion is minimized [Jollois, 2003]: 1

W (P,Q, g) =
K
∑

k=1

L
∑

l=1

∑

i∈Pk

∑

j∈Ql

(xj
i − glk)

2 (4.1)

1We have included in this part of work the same notation as that used in the thesis of Xavier
Jollois [Jollois, 2003].

Chapter 3. Bi-Clustering Algorithms 35

where

• P = (P1, . . . , PK) is the partition of observations into K classes,

• Q = (Q1 . . . , QL) is the partition of variables into L classes,

• glk the center of the block xl
k (prototype).

It is easy to see that for (P,Q) the optimal values of glk are the averages of each

xj
i belonging to block xl

k. The main steps of the Croeuc algorithm are:

Algorithm 8 : Croeuc Algorithm

Start from an initial position (P 0, Q0, g0)
Calculate (P (c+1), Q(c+1), g(c+1)) from (P (c), Q(c), g(c)):

• 2(a) Calculate (P (c), Q(c), g
′

) from (P (c), Q(c), g(c)),

• 2(b) Calculate (P (c+1), Q(c+1), g(c+1)) from (P (c), Q(c), g
′

).

Repeat step 2 until the convergence of the algorithm.

It should be noted that in step 2, the algorithm 8 uses a double K-means

(first phase K-means on the lines, second phase K-means on the columns). It

is therefore necessary to optimize alternately the following criteria (deduced from

4.1):

W (P, g/Q) =
K
∑

k=1

∑

i∈Pk

L
∑

l

|Ql|(u
l
i − glk)

2 (4.2)

where ul
i =

∑

j∈Ql

xj
i

|Ql|
, and

W (Q, g/P) =
L
∑

l=1

∑

j∈Ql

K
∑

k=1

|Pk|(v
j
k − glk)

2 (4.3)

where vjk =

∑

i∈Pk

xj
i

|Pl|

Step 2 (a) of algorithm 8 is performed by the K-means algorithm using the

matrix ul
i. Alternatively, step 2 (b) is obtained by theK-means algorithm using the

matrix vjk. Thus, at convergence, homogeneous blocks are obtained by reorganizing

the rows and the columns according to the partitions P and Q. Each block (k, l),

defined by the elements xj
i for i inPk and j inQl is characterized by gkL.

Chapter 3. Bi-Clustering Algorithms 36

The advantage of this algorithm was highlighted in comparison with K-means

applied separately on the observations and variables of a data matrix [?]. Because

of its simplicity and speed, the Croeuc algorithm can be applied to large data sets.

However, it requires prior knowledge of the number of classes in rows and columns.

4.3 Probabilistic methods

In most cases, probabilistic methods are methods based on mixing models. The

models of finite mixtures of probability laws are particularly used in bi-partitioning.

Their use, as in clustering, amounts to assuming that the observations to be clas-

sified are derived from a model of mixture of which each component represents a

class.

The authors assert that the data of a finite mixture of laws of probability

A = (x1, . . . ,xn) constitute a sample of n independent realizations of a random

variable whose density function can be written as the following 4.4 equation:

∀xi f(xi; θ) =
K
∑

k=1

πkϕk(xi;αk) (4.4)

With:

∀k = 1, . . . , K, πk ∈ [0, 1] et
K
∑

k=1

πk = 1

Where:

• ϕk(xi;αk) represents the probability density.

• πk refers to the probability that an element of the sample follows the law ϕ.

• θ = (π1, . . . , πK ;α1, . . . , αK) represents the unknown parameter of the mix-

ing model.

Mixing model for bi-clustering

As mentioned in the article [Govaert and Nadif, 2009], the formulation of the bi-

partitioning problem uses the classical mixing model (equation 4.4), in which the

Chapter 3. Bi-Clustering Algorithms 37

partition of the variables w is considered as a parameter of the model. The density

of the mixture can be written as follows:

f(xi; θ) =
∑

k

πkϕk(xi;w, α) (4.5)

ϕk(xi;w, α) =
∏

j,l

(

1
√

2πσ2
kl

exp
− 1

2σ2
kl

(xij−µkl)
2

)wjl

(4.6)

• θ = (π, w, α) represents the parameter of the mixture model which is formed

by the proportions π = (π1, . . . , πg),

• the partition of variables w and the parameters of each component α =

(µ11, . . . , µgm, σ
2
11, . . . , σ

2
gm), where the µk and the σk represent the mean

and the variances of each block.

The log-likelihood is written as follows:

L(θ) = log f(x; θ) =
∑

i

log
∑

k

πkϕk(xi;w, α) (4.7)

Let: zk =
∑

i

zik and wl =
∑

j

wjl the cardinals of each class, the classifying

log-likelihood checks:

Lc(z;w, θ) =
∑

i,k

zik log (πkϕk(xi;w, α)) (4.8)

In the case where the additive constant is equal to nd
2

log 2 π, the equation 4.8

takes the following form:

Lc(z;w, θ) =
∑

k

zk log πk −
1

2

∑

i,j,k,l

zikwjl

(

log σ2
kl +

1

σ2
kl

(xij − µkl)
2

)

(4.9)

The writing of the classifying log-likelihood Lc, defined for a partition z, can then

be extended to the fuzzy partition s = (ski ; i = 1, . . . , n; k = 1, . . . ,g) associated

to the classification matrix defined by the conditional probabilities [Govaert and

Nadif, 2009].

Lc(s;w, θ) =
∑

i,k

sik log (πkϕk(xi;w, α)) (4.10)

Chapter 3. Bi-Clustering Algorithms 38

Which can be written:

Lc(s;w, θ) =
∑

k

sk log πk −
1

2

∑

i,j,k,l

sikwjl

(

log σ2
kl +

1

σ2
kl

(xij − µkl)
2

)

(4.11)

Where sk =
∑

i

sik.

In [Govaert and Nadif, 2009], the authors used the generalized EM (GEM) algo-

rithm to maximize the likelihood of the observed data in order to estimate the

parameters of the model. From an initial position (w(0), θ(0)), the different steps

of this EM algorithm are described as follows:

- Step E

This step is reduced to the calculation of conditional a posteriori probabilities, scik

s
(c)
ik =

πc
kϕk(xi;w

(c), α(c))
∑

k
′

π
(c)

k′
ϕk

′ (xi;w(c), α(c))
(4.12)

These conditional probabilities can be written sik =
esik

∑

k
′

e
s
ik

′ where

Sik = log(πkϕk(xi;w, α)) (4.13)

After some algebraic calculations, the term Sik takes the following form:

logπk −
1

2

∑

l

(

wl log σ2
kl +

1

σ2
kl

(eil + wl(uil − µkl)
2

)

(4.14)

With:

uil =

∑

j

wjl xij

wl
et eil =

∑

j

wjl(xij − uil)
2, easier to calculate than initial probability

sik

- Step M

In this algorithm, we use a Generalized EM algorithm, GEM [Dempster et al.,

1977b] to increase the quantity Q(θ, θ(c)). Knowing that conditional expectation

Q(θ, θ(c)) can also be expressed as the fuzzy classifying log-likelihood Lc(s
(c), w, θ),

this function Q can also be written as:

∑

k

s
(c)
k log πk −

1

2

∑

i,j,k,l

s
(c)
ik wjl

(

log σ2
kl +

1

σ2
kl

(xij − µkl)
2

)

(4.15)

To increase Q, the authors propose iterating until the convergence of the two

following steps: maximization of Q(θ, θ(c)) with regards to w while s and θ(c) are

Chapter 3. Bi-Clustering Algorithms 39

fixed then maximization of Q(θ, θ(c)) with regards to θ while w and s are fixed.

Calculation of w:

This step is to maximize Q(θ, θ(c)) with regards to w. The expression 4.15 of

Lc(s
(c),w, θ) can be written as:

∑

k

s
(c)
k log πk +

∑

j,l

wjl T
(c)
jl (4.16)

Where: T
(c)
jl = −1

2

∑

i,k

s
(c)
ik

(

log σ2
kl +

1
σ2
kl

(xij − µ2
kl)
)

. The variable j belongs to the

maximizing class T
(c)
jl :

w
(c)
jl =

{

1 si l = argmaxl′=1,...,m T
(c)
jl′ ;

0 sinon.

As for the calculation of Sik, The authors have shown that the term Tjl takes

the following form:

−
1

2

∑

k

(

s
(c)
k log σ2

kl +
1

σ2
kl

(fjk + sk(vkj − µkl)
2

)

. (4.17)

Where:

vkj =

∑

i

sik xij

sk
et fjk =

∑

i

sik(xij − vjk)
2

Calculation of α from w and s

This step is to maximizeQ(θ|θ(c)) with regards to π and α = (µ11, . . . , µgm, σ
2
11, . . . , σ

2
gm).

By writing the classifying log-likelihood in the form:

Lc(s,w, θ) =
∑

k

sklog πk −
1

2

∑

k,l

(

skwjlog σ2
kl +

1

σ2
kl

∑

i,j

sikwjl(xij − µkl)
2

)

(4.18)

Then: π
(c+1)
k =

s
(c)
k

n
, µ

(c+1)
kl =

∑

ij

s
(c)
ik

w
(c)
jl

xij

s
(c)
k

w
(c)
l

and (σ2
kl)

(c+1) =

∑

ij

s
(c)
ik

w
(c)
jl

(xij−µkl)
2

s
(c)
k

w
(c)
l

These calculations can be optimized by using the previously defined vjk and fjk

values, which accelerates this step. The center and the variance of each block are:

µ
(c+1)
kl =

∑

j

w
(c)
jl

vjk

s
(c)
k

w
(c)
l

et (σ2
kl)

(c+1) =

∑

j

w
(c)
jl

(

fjk+s
(c)
k

(vjk−µkl)
2
)

s
(c)
k

w
(c)
l

Chapter 3. Bi-Clustering Algorithms 40

Experimentation Experimenter
Test 1 Experimenter 1
Test 2 Experimenter 2
Test 3 Experimenter 3
Test 4 Experimenter 1

Table 4.1: Example of a table containing qualitative variables.

4.4 Topological methodes

The bi-partitioning methods using the self-organizing maps (SOM) ([Kohonen

et al., 2001b]) have been defined by several authors (DCC [Busygin et al., 2002],

KDISJ [Cottrell et al., 2004], BCDSM [Benabdeslem and Allab, 2012], etc.). This

type of methods falls within the category of partitioning-based approaches be-

cause they often use simple clustering algorithms applied separately on the rows

and columns of a data matrix.

Stanislav et al. [Busygin et al., 2002] proposed the Double Conjugated Clus-

tering (DCC) approach, which allows all rows and all columns to be partitioned

using self-organizing maps. The basic principle of this approach and that of link-

ing the two partitions through a bijection associating to each referent of one of

the two spaces a referent of the other space called ”conjugate”. This method has

the advantage of relatively rapid convergence and leads to the construction of two

partitions, one in the space of the lines and the other in the space of the columns.

Each of these partitions is the conjugate of the other.

One of the algorithms that we find frequently in the literature is that intro-

duced by Corttell, called KDISJ [Cottrell et al., 2004]. KDISJ is a variant of

topological maps for the processing of qualitative variables in a data table.

KDISJ Algorithm

We recall that a complete disjunctive table consists of coding qualitative variables

with the code 1 for the observed modality and 0 for all the other modalities.

The complete disjunctive coding thus makes it possible to transform qualitative

variables into variables of quantitative type between which it is permissible to

calculate correlations.

Chapter 3. Bi-Clustering Algorithms 41

Experimentation Experimenter 1 Experimenter 2 Experimenter 3
Test 1 1 0 0
Test 2 0 1 0
Test 3 0 0 1
Test 4 1 0 0

Table 4.2: Example of a complete disjunctive table.

KDISJ (Kohonen for Disjonctive Table) [Cottrell et al., 2004] makes it possi-

ble to classify simultaneously the observations and the qualitative variables that

describe them. Let A be a data matrix and dij be the general term of this matrix

which can be considered as a contingency table crossing the variable ”observa-

tion” to N modalities, and the variable ’modalities’ to M modalities. The term

dij takes its values in {0, 1}. The distance χ
2 is used on rows and columns. Then,

the modalities are weighted to correct the complete disjunctive table in the fol-

lowing way:

dcij =
dij

√

di.dj
(4.19)

Where: di =
M
∑

j=1

dij et dj =
N
∑

i=1

dij

In the case of a complete disjunctive array, di is k, whatever i. The term dj

is the number of the modality j. The corrected table is denoted by Dc (corrected

disjunctive table). After this transformation, it is possible to use the Euclidean

distance on Dc which is equivalent to χ2 weighted on D. These corrections are

equivalent to those used traditionally in the correspondence analysis, which in fact

amounts to a weighted principal components, using the simultaneous χ2 distance

on rows and columns. The transition to topological maps is done by using the

classical architecture of the SOM model by associating with each referent w a

reference vector Cw formed of (M + N) components, the first M evolve in The

space of observations (represented by the lines of Dc), the last N in modal space

(represented by the Dc columns).

The notation:

Cw = (CM + CN)w = (CM,w + CN,x) (4.20)

makes it possible to highlight the structure of the reference vector Cw. The learning

steps of the topological map are double. A line of Dc (ie an observation i), then

a column (that is, a modality j) are drawn alternately. When an observation i is

Chapter 3. Bi-Clustering Algorithms 42

pulled, the modality j (i) associated with it. It is defined by:

j(i) = argmax
j

dcij (4.21)

which maximizes the coefficient dcij, that is to say the rarest modality in the total

population among the modalities corresponding to it. Then, an extended obser-

vation vector

X = (i, j(i)) = (XM,XN)

of dimension (M +N) is created. Then, the procedure searches among the code-

vectors which is closest, in the sense of the Euclidean distance restricted to the

first M components.

Let w0 be the winning referent. The minimization step is formulated as follows:

w0 = argmin
w
‖XM − CM,w‖

C
(t)
w = C

(t−1)
w + ε K(w,w0)(X − C

(t−1)
w) .

Where ε is the learning step and K is the neighborhood radius of the map.

When a modality j of dimension N (a column of Dc) is picked, the algorithm

of [Cottrell et al., 2004] searches among the codevectors which is closest in the

sense of Euclidean distance restricted to the last N components. Let z0 be the

winning unit. The procedure approximates the previous N components of the

winning vector-code associated with z0 and its neighbors with those of the mode

vector j, without modifying the first M components. Let Y The column vector of

dimension N corresponding to the modality j. This step can be written:

z0 = argmin
w
‖Y − CN,w‖

C
(t)
N,u = C

(t−1)
N,u + ε K(w,w0)(Y − C

(t−1)
N,u) .

After convergence, the observations and the modalities are classified in the

classes of the obtained map. observations or ”close” modalities are classified in

the same class or in neighboring classes. The algorithm thus defined is called

KDISJ.

Chapter 3. Bi-Clustering Algorithms 43

4.5 Divisive methods

The basic strategy of this type of method is the iterative division of the database,

which makes it possible to find the data blocks which optimize certain criteria.

Instead of proposing only a partition in rows and a partition in columns, this type

of method proposes a division into homogeneous blocks of the data. One of the

oldest and most used algorithms is One-way Splitting [Hartigan]. It is part of

the ”divisive” algorithms and allows to divide a matrix of data into several sub-

matrices corresponding to blocks. The basic principle of this method is to perform

permutations of rows and columns in order to define the block structure.

The basic idea of the algorithm is to use only variables with a variance greater

than the threshold in a given class to split this class. Let A(I, J) be a data matrix

with 1 ≤ I ≤ N, 1 ≤ J ≤ d. The classes in rows 1, 2, . . . , K are constructed so

that the I class is determined by the classes that divide it Min(I) and Max(I).

For a minimal class (which can no longer be divided), these values represent the

first and last rows of the I class. At the end of the algorithm, V (I) is defined as

the set of variables that have a variance lower than the threshold in I, and in no

other larger class.

The algorithm proceeds by division of successive classes. In the p step, there are

p classes I(1), I(2), . . . , I(p) separating the rows, which are the minimum classes

in the set 1, 2, 3, . . . , 2p−1. V [I(J)] represents the set of variables with a variance

greater than the threshold T for any larger class [Jollois, 2003]. Splitting in half

is done on the I(J) classes, using only the variables in V [I(J)] which have a

variance greater than the threshold. The two new classes 2p and 2p+ 1 will have

V (2p) = V (2p + 1) defined as the set of variables of I(J) which have a variance

greater than T in I(J). Therefore, V [I(J)] will be changed to the set of variables

of V [I(J)] which will therefore have a variance less than T in I(J). Cutting stops

when all V [I(J)] sets contain variables with a variance lower than the threshold

in I(J).

4.6 Hierarchical methods

We find in the literature several bi-partitioning approaches that use hierarchical

algorithms. We cite the work of [Caldas and Kaski, 2011] [Mao et al., 2005] and

[Getz et al., 2000a]. One of the most widely used approaches in this family of

Chapter 3. Bi-Clustering Algorithms 44

models is CTWC (Coupled Two-Way Clustering) [Getz et al., 2000a]. CTWC is

to apply an algorithm of hierarchical classification, the SPC ”Super Paramagnetic

Clustering” [Getz et al., 2000b], on the columns using all the rows and then on

the rows using all the columns. All sub-matrices (I, J), knowing that I is a class

on the rows and J a class on the columns are computed. Only sub-matrices that

satisfy a certain criterion such as stability or a minimum size are retained [Charrad

et al., 2008]. Then, the process is reiterated: row and column classes are extracted

from these submatrices. CTWC operates on the set of subsets of the v and on the

subsets of the {u} variables. Initially, {v} = {V } and {v} = {U}, the algorithm

iteratively selects a subset of {V }
′

∈ v, and a subset of variables {U}
′

∈ u; Then

the SPC algorithm is applied to {V }
′

and {U}
′

. The corresponding algorithm is

described as follows:

Algorithm 9 : CTWC Algorithm

Inputs: A: data matrix.
Outputs: the partitions of the observations v and the partitions of the variables
u.
Initialization phase:

• v1 = {V }, u1 = {U}, v = ⊘, u = ⊘.

• Initialize the hierarchical array Hv to save the clusters of observations.

• Initialize the Hu hierarchical array for saving variable clusters.

While (u1 6= ⊘ or v1 6= ⊘) do For (U
′

, V
′

) ∈ (u1 × v1) ∪ (u1 × v) ∪ (u×1) do
Apply the SPC algorithm (EU

′
V

′) for the clustering of observations V
′

• Add to all stable observations v2

• HV [V
′′

] = U
′

for all new clusters V
′′

Apply the SPC algorithm (EU ′V ′) for the clustering of observations U
′

• Add to all stable observations u2

• HU [V
′′

] = V
′

for all new clusters U
′′

u = u ∪ u1, v = v ∪ v1
u1 = u1, v2 = v2
Return u, v and their hierarchy HU , HV .

Chapter 3. Bi-Clustering Algorithms 45

4.7 Constructive methodes

In this type of approaches, the data blocks are constructed in different ways [Char-

rad et al., 2008]. For example: by adding and removing rows and columns (δ-

biclusters [Cheng and Church, 2000]), by row and column permutation (OPSM

[Ben-Dor et al., 2003]), by estimating the parameters of the models (Plaid models

[Lazzeroni and Owen, 2000]) or from a bipartite graph (SAMBA [Tanay et al.,

2002]), and so on.

The SAMBA algorithm proposed by Tanay et al. [Tanay et al., 2002] represents

a matrix of data by a weighted biparti G graph where each node ni corresponds

to a row and each node nj corresponds to a column. The edge between the node

ni and the node nj has a weight aji corresponding to the element of the matrix

located at the intersection of the line i and The column j. A biclass corresponds to

the subgraph (H, J,E) of G and represents a subset I of observations whose value

changes significantly under a set of variables J . The objective of the SAMBA

algorithm is to look for maximum biclasses in the data. The application of the

SAMBA algorithm is carried out in two steps:

1. The data are normalized and represented by a bipartite graph,

2. The algorithm identifies the maximal k bi-cliques.

In a later phase, SAMBA brings local improvements to the biclasses by adding or

removing the vertices, and selects the similar biclasses having a large number of

vertices in common.

The δ-biclusters approach [Cheng and Church, 2000] is a constructive bi-

clustering method. The principle of the δ-biclusters algorithm consists of iter-

atively deleting rows and columns from the initial matrix until the distance mea-

surement is less than a certain threshold, then adding rows and columns Iteratively

without causing an increase in this distance measurement [Charrad et al., 2008].

At each iteration, a biclass is generated and replaced in the initial matrix by ran-

dom values. One limitation of this approach is that the number of biclasses to

be searched must be set by the user just as the δ threshold used for quality mea-

surement. In addition, the quality of the biclasses decreases with each iteration

because of the random values added to each iteration.

The authors of [Ben-Dor et al., 2003] defined a block as a submatrix preserving

the order of the data. Unlike the [Lazzeroni and Owen, 2000] parameter estimation

Chapter 3. Bi-Clustering Algorithms 46

methods where the uniformity of the data in the data matrix is considered, they

focus instead on the relative order of the columns in the blocks. The objective

of OPSM is the identification of large blocks. A submatrix is preservative of the

order if there is a permutation of the columns making it possible to have strictly

increasing values on each line.

4.8 Matrix decomposition for bi-clustering

Recently, new bi-partitioning approaches based on matrix factorization are pro-

posed ([Long et al., 2005], [Yoo and Choi, 2010], [Labiod and Nadif, 2011], [Shang

et al., 2012]). In this type of approach, the bi-partitioning problem can be seen as a

matrix approximation problem where the objective is to minimize the approxima-

tion error between the data of the original matrix A And the reconstructed matrix

on the basis of the class structures. Given a non-negative matrix A, the general

strategy of a bi-partitioning approach in this context is to find a decomposition of

A in the form of three matrices ZGWT . The matrix Z represents the partitioning

of the A rows, the W matrix represents the partitioning of the A columns and

the G is an intermediate matrix. Most of the algorithms proposed in this sense

are iterative. Only the rules for updating the three matrices (chosen optimization

method or constraints imposed on the three matrices) may be different.

CUNMTF Algorithm

The Co-clustering Under Nonnegative Matrix Tri-Factorization (CUNMTF) ap-

proach by Labiod and Nadif [Labiod and Nadif, 2011] proposes a new formulation

of the NMF [Lee and Seung, 1999] To bi-partitioning. The authors propose two

approaches that optimize a relaxed formulation of the double K-means criterion

in an NMF style. The first is called DNMF and the second ODNMF when the

orthogonality constraints on Z and Z are considered.

The main idea of this approach is that the latent block structure in a non-

negative rectangular data matrix is factored into two factors rather than three:

the matrix of the coefficients of the lines R and the matrix of the coefficients of

columns C, which indicate respectively the degree of membership of a row and

a column to a cluster. The authors first propose a formulation of the double K-

means model, which is called DNMF (Double Nonnegative Matrix Factorization).

Chapter 3. Bi-Clustering Algorithms 47

Given a matrix A = (aji) ∈ R
N×d, the goal of the double K-means is to

find simultaneously A partition in K classes P = {P1, . . . , PK} of the set of

I = {1, . . . , N} rows and a partition Q = {Q1, . . . , QL} into L classes of the set

of columns J = {1, . . . , d}. The two partitions P and Q naturally induce respec-

tively the classification matrices Z = (zki) ∈ {0, 1}
N×K and W = (wl

j) ∈ {0, 1}
d×L

; zki = 1 (resp. wl
j = 1), if the line ai ∈ Pk (resp. the column aj ∈ Ql), and 0

otherwise.

The reorganization of the rows and columns following P and Q reveals a homo-

geneous block structure. Each block Al
k is therefore defined by {(aji)|z

k
i w

l
ja

j
i = 1}.

On the other hand, G = (glk) ∈ R
K×L is the small representative of A (glk is the

centroid of Al
k).

The detection of the homogeneous blocks in A can be obtained by searching

for the three matrices Z, W and G by minimizing

J (A, ZGW T) = ||A − ZGW T ||
2

The term ZGW T characterizes the information of A which can be described by a

class structure.

This matrix formulation can take the following form:

J (A, ZGW T) =
∑

i,j,kl

zki w
l
j(a

j
i − glk)

2

with Pk , Ql fixed, the general term of G is obtained by:

glk =

∑

i,j,k,l

zki w
l
ja

j
i

zkwl

Où zk = |Pk| ; wl = |Ql|.

In the context of the double K-means, the objective function to minimize

is the distance to the square between each row (each column) of the center.

Let D−1
z ∈ RK×K and D−1

w ∈ RL×L two diagonal matrices defined by D−1
z =

Diag(z−1
1 , . . . , z−1

K) and D−1
w = Diag(w−1

1 , . . . , w−1
L). Using the matrices Dz, Dw,

A, Z and W , the representation matrix G is written: G = D−1
z ZTAWD−1

w . If

G is integrated in the objective function J (A, ZGW T), then the expression to

optimize becomes ||A − ZZTAWWT ||
2
, where Z = ZD−0.5

z and W = WD−0.5
w .

The authors assert that this formulation is valid even if A is not nonnegative, and

the approximation ZZTAWWT of A is formed by the same value in each block

Chapter 3. Bi-Clustering Algorithms 48

Al
k. More precisely, the matrix ZTAW acts as a summary of A, and absorbs

scale differences A, Z and W. The matrices ZZTA,AWWT give respectively the

vectors of the averages of the row and column classes.

Then, the authors define the CUNMTF model by introducing the objective

function:

arg min
Z,W≥0

||A − ZZTAWWT ||
2

and taking into account the constraint of non-negativity. In order to optimize this

objective function, the authors use the Karush-Kuhn-Tucker [Boyd and Vanden-

berghe, 2004] conditions by introducing the Lagrange function:

L = ||A − ZZTAWWT ||
2
− Trace(ΛZT)− Trace(ΓWT)

where the matrices Λ and Γ are the Lagrange multipliers introduced to impose the

constraint of non-negativity respectively on Z and W. Let, XW = AWWT and

XZ = ZZTA. This leads to the following update rules:

Z← Z⊙
2AXT

W
Z

ZZTXWXT
W
Z+XWXT

W
ZZTZ

(4.22)

W←W ⊙
2AXT

Z
AW

WWTXZXT
Z
W +XZXT

Z
WWTW

(4.23)

The authors then propose an algorithm for calculating non-negative relaxation.

The algorithm contains the classical steps of the NMF approach. The estimation

obtained by this algorithm is improved iteratively by updating the factors with

the rules 4.22 and 4.23. To derive the update multiplicative rules under the or-

thogonality constraints on Z and W, authors calculate the ”natural gradient” on

the varieties of Stiefel [Freitas, 1985]. The update rules are therefore:

Z← Z⊙
AWWTATZ

ZZTAWWTATZ

W←W ⊙
AZZTAW

WWTATZZTAW

Long et al. [Long et al., 2005] proposed the non-negative Block Value De-

composition (NBVD) approach of A based on an iterative alternate least squares

optimization procedure. At the convergence, ZA is normalized to ZAX (X is a

diagonal matrix) The labels of the column classes are deduced from XX−1WT .

Chapter 3. Bi-Clustering Algorithms 49

The labels of the line classes are deduced by working on AT .

4.9 Conclusion

We have presented in this chapter some bi-partitioning approaches that are unsu-

pervised classification techniques. The bi-clustering problem consists of partition-

ing the rows and columns of a database at the same time. These algorithms are

categorized according to the nature of their underlying clustering approach, includ-

ing partitioning, probabilistic, topological, hierarchical, divisive, and constructive

bi-clustering methods. However, all the presented methods do not scale-up since

they are based on non-scalable traditional clustering algorithms.

Chapter 5

SOM Clustering using

Spark-MapReduce

This chapter presents our first novel contribution, concerned with scaling-up the

SOM approach using the MapReduce paradigm. For self-containedness, this chap-

ter begins with a description of the SOM algorithm. Afterwards, the two versions

of the SOM MapReduce clustering algorithm are presented. After that, the qual-

ity of the proposed method is evaluated in terms of various performance criteria

on real-world datasets.

5.1 Introduction

Data clustering is a principal task in a variety of areas: machine learning, data min-

ing, pattern recognition, social network. Consequently, there is a vast amount of

research focused on the topic [Jain et al., 1999, Charikar et al., 1997, Matthew Mc-

cutchen and Khuller, 2008]. It is difficult to store and analyse a large volume of

datas on a single machine with a sequential algorithm. Thus numerous successful,

subspace clustering algorithms or clustering ensemble are proposed to deal with

high and large dataset [Parsons et al., 2004, Kriegel et al., 2009].

However, the existing algorithms have difficult to deal with Terabytes and

Petabytes of data. Clustering problems have numerous applications and are be-

coming more challenging as the size of the data increases. Nevertheless, good

clustering algorithms are still extremely valuable, because we can (and should)

rewrite them for parallel clustering using a new Mapr-Reduce paradigm [Lv et al.,

51

Chapter 5. SOM Clustering using Spark-MapReduce 52

2010, Lin et al., 2011].

In situations where the amount of data is prohibitively large, the MapReduce

(MR) programming paradigm is used to overcome this problem [Dean and Ghe-

mawat, 2008b]. Thus, an increasing number of programmers have migrated to the

MapReduce programming model [Ene et al., 2011b, Sul and Tovchigrechko, 2011,

Ferreira Cordeiro et al., 2011, Ghoting et al., 2011]. The MR programming model

was designed to simplify the processing of large files on a parallel system through

user-defined Map and Reduce functions [Karloff et al., 2010]. A MR function con-

sists of two phases: a Map phase and a Reduce phase. During the Map phase, the

user-defined

Map primitive transforms the input data into (key, value) pairs in parallel.

These pairs are stored and then sorted by the system so as to accumulate all val-

ues for each key. During the Reduce phase, the user-defined Reduce primitive is

invoked on each unique key with a list of all the values for that key; usually, this

phase is used to perform aggregations. Finally, the results are output in the form

of (key, value) pairs. Each key can be processed in parallel during the Reduce

phase. Hadoop1, an open-source implementation of the MR programming model,

has emerged as a popular platform for parallelization.

A user can perform parallel computations by submitting MR jobs to Hadoop.

While the Hadoop are very popular in their particular domains, we believe that

they have a set of limitations that make them ill-suited to the implementation

of parallel clustering algorithms. Many common clustering algorithms apply a

primitives repeatedly to the same dataset to optimize a parameter. Thus the

Map/Reduce primitives need to reload the data, incurring a significant perfor-

mance penalty.

In this chapter, we are concerned with designing clustering algorithm named

Self-organizing Map (SOM, [Kohonen, 2001]) using MapReduce. We use another

emerged open-source implementation named Spark2 [Zaharia et al., 2010b], which

is adapted to machine learning algorithms and supports applications with working

sets while providing similar scalability and fault tolerance properties to MapRe-

duce. The purpose in this work is not to present a new SOM algorithm, but a

new way of writing using the MapReduce paradigm. The major research challenge

addressed is how to minimize the input and output of primitives (map and reduce)

for topological clustering algorithm. So, we show that we can save computation

1www.hadoop.com
2http://spark-project.org/

Chapter 5. SOM Clustering using Spark-MapReduce 53

time by changing the (key, value) parameters. We design a complete distributed

SOM clustering solution using Spark and Map-Reduce paradigm.

The rest of the chapter is organized as follows: Section 5.2 we provide the self-

organizing maps batch algorithm. In Section 5.3, we propose our SOMMapReduce

using Spark open source platform. Section 5.4 provides the experimental results

and shows the comparisons between two manners to design MapReduce function.

Finally, Section 5.5 concludes and provides some future research.

5.2 Self-Organizing Maps (SOM)

Self-organizing maps are increasingly used as tools for visualization, as they allow

projection in small spaces that are generally two dimensional. The basic model

proposed by Kohonen consists on a discrete set C of cells called map. The size

of the grid C is denoted by k and must be provided a priori. A variety of self-

organizing models is derived from the first original model proposed by Kohonen

[Kohonen, 2001, Varsta et al., 2001]. All models are different from each other

but share the same idea: depict large data-sets on a simple geometric relationship

projected on a reduced topology (1D or 2D). This grid has topological order of k

cells. Each cell c has its own cluster denoted Clc.

Self-organizing process requires neighbourhood functions to preserve topologi-

cal relationships between cells. Hence the neighbourhood functions are needed to

update prototypes. For each pair of cell c and r on the map, their mutual influence

is defined by the function

KT (δ(c, r)) = exp(
−δ(c, r)

T
)

where T represents the temperature which decreases the value of T between two

values Tmax and Tmin, to control the size of the neighborhood influencing a given

cell on the map :

T = Tmax

(

Tmin

Tmax

)
t

tf−1

(5.1)

tf is the number of iteration, and δ(c, r) is defined as the shortest distance between

r and c on the grid W . We associate to cluster Clc a prototype denoted wc =

(w1
c , w

2
c , ..., w

d
c). The cost function of self-organizing tree is expressed as:

Chapter 5. SOM Clustering using Spark-MapReduce 54

R(φ,W) =
∑

xi∈A

k
∑

r=1

KT (δ(φ(xi), r))||xi −wr||
2 (5.2)

where W = ∪k
r=1wr, φ is the assignment function.

Minimizing cost function R(φ,W) is a combinatorial optimization problem. In

this work we propose to minimize the cost function in the same way as ”batch”

version performing two steps until stabilization.

1. Minimize R(φ,W) with respect to φ by fixing W . The expression is defined

as follows:

φ(xi) = argmin
r
‖xi −wr‖

2 (5.3)

2. Minimize R(φ,W) with respect to W by fixing φ.

wc =

∑

r∈C K
T (δ(c, r))

∑

xi∈Clr
xi

∑

r∈C K
T (δ(c, r))|Clr|

(5.4)

where |Clr| the data size assigned to each cell r.

The learning algorithm described above allows us to estimate the parameters

maximizing the cost function for a fixed neighborhood T . The outline of the

algorithm is presented in algorithm 10. This batch approach offers advantage that

separates the update expression of prototype (eq. 5.4) into sums (numerator and

denominator) that allow parallelization using MapReduce.

Algorithm 10 Outline of SOM batch algorithm

Ensure:
1: weight vectors initialized
2: while t ≤ tf do
3: t+ = 1
4: for all xi ∈ A do
5: compute winning vector according to eq. 5.3
6: end for
7: for c = 1 :k do
8: update weight vector wc according to eq. 5.4
9: end for
10: Update the temperature according to eq. 5.1
11: end while

Chapter 5. SOM Clustering using Spark-MapReduce 55

5.3 Spark-MapReduce and SOM

The increase of data mining on BigData has resulted in the creation of a lot of new

parallel programming models like MapReduce, Pregel, and PowerGraph [Malewicz

et al., 2010, Low et al., 2012]. To handle this huge amount of data, it is necessary

to use distributed architecture. This is not a simple task and several difficulties

have to be dealt with, including loading data, failure safety, and algorithm design.

The MapReduce implementation on Spark takes care of failure-correction, data

management and distribution.

It has become very important in MapReduce to decompose our problem in

elementary function. The complexity of writing a MapReduce algorithm is to

split the algorithm into atomic parts. Those parts are assigned to Map and Reduce

phase. Knowing that Clr = {xi, φ(xi) = r}, we can rewrite the quantization phase

(eq. 5.4) of SOM algorithm as :

wc =

∑

xi∈A
KT (δ(c, φ(xi))xi

∑

xi∈A
KT (δ(c, φ(xi)))

(5.5)

In the case of SOM algorithm we identified theses atomic parts:

• Assign each observation xi to the best match unit using expression 5.3.

• Accumulate denominator and numerator for each cell c ∈ C

• Update weight vectors wc (eq. 5.5)

Hence we can propose two versions of the MapReduce steps. The first one is

adopted in literature and the second is our proposition. The details are provided

below.

5.3.1 Version 1 of SOM MapReduce

The first version of SOM MapReduce is inspired by K-means MapReduce algo-

rithm [Lv et al., 2010]. It’s easy to decompose SOM into MapReduce functions:

• The Map function has an input data vector and computes the best match

units and the neighborhood factor for each prototypes KT (δ(c, φ(xi))). The

Chapter 5. SOM Clustering using Spark-MapReduce 56

size of the outputs is equal to the size of the prototypes of the model. The key

of the output of the function is the id of the winning prototype. The values

are the data vector xi multiplied by the neighborhood factor KT (δ(c, φ(xi))).

• The Reduce function accumulates each data vector assigned to each proto-

type and counts them. The new prototype vector is equal to the accumu-

lation divided by the denominator. The different functions are defined as

follows :

MapNumerator(xi, c) = KT (δ(c, φ(xi)))xi

MapDenom(xi, c) = KT (δ(c, φ(xi)))

Reduce(c) =

∑

xi∈A
MapNumerator(xi, c)

∑

xi∈A
MapDenom(xi, c)

The batch SOM MapReduce algorithm is shown in algorithm 11.

5.3.2 Version 2 of SOM MapReduce

The main drawback of the first version is the number of outputs. Indeed the num-

ber of map outputs is the number of observations multiplied by the number of

prototypes n× k. In the second version, map outputs are merged in one value, so

the key of the output is not used.

The Map value of the output is a matrix and a neighborhood vector. The

matrix is constituted by rows of data vectors xi who are themselves multiplied

by the neighborhood factors KT (δ(c, φ(xi))). All those neighborhood factors are

stored in the neighborhood vector. So the size of the output matrix is the number

of prototypes multiplied by the size of the data vectors (k × n). The size of the

neighborhood vector is the number of prototypes.

The reduce function just sums all matrices and all neighborhood vectors to-

gether. The new model matrix is computed by dividing the sum of matrices and

the sum of the neighborhood vectors.

We denote H(k × n) as neighborhood matrix, which elements are defined as

follows:

Hi,j = K
T (δ(i, j)) (5.6)

Chapter 5. SOM Clustering using Spark-MapReduce 57

Algorithm 11 SOM MapReduce : version 1

Ensure:
1: {Random initialization of prototypes}
2: while t ≤ tf do
3: t+ = 1
4: {MAP : distributed loop over all input vectors}

{Compute φ(xi) : the best match cell which minimize the distance between
its prototype wc and the input vector xi}

5: for all xi ∈ A do
6: for c = 1 : k do
7: D[c] = ‖xi −wc‖

2

8: end for
{the minimum function provides the index of the minimum value}

9: φ(xi) = min(D)
{Compute the numerator and the denominator for each cell c}

10: for c = 1 : k do
11: MapNumeratorc = K

T (δ(c, φ(xi)))xi

12: MapDenomc = K
T (δ(c, φ(xi)))

13: end for
14: end for
15: {REDUCE : distributed sum of all the map outputs (numerator and de-

nominator) for each prototype.}
16: for c = 1 : k do
17: for all MapOutputc do
18: SumNumeratorc+ = MapNumeratorc
19: SumDenomc+ = MapDenomc

20: end for
21: end for

{UPDATE PROTOTYPES : Compute new prototypes.}
22: for c = 1 : k do
23: wc =

SumNumeratorc
SumDenomc

24: end for
25: Update the temperature according to eq. 5.1
26: end while

We also consider that H:,j denotes the column j of the matrix H and Hi,:

denotes the row i of the matrix H.

As the first version, the Reduce function accumulates each data vector assigned

to each prototype and counts them. The prototype matrixW is the accumulation

divided by the denominator. Thus Map and Reduce functions are defined as

Chapter 5. SOM Clustering using Spark-MapReduce 58

follows:

MapNumerator(xi) = H:,φ(xi) × xi

MapDenom(xi) = H:,φ(xi)

Reduce() =

∑

xi∈A
MapNumerator(xi)

∑

xi∈A
MapDenom(xi)

The batch SOM MapReduce algorithm is shown in algorithm 12.

Algorithm 12 SOM MapReduce : Version 2

Ensure:
1: {Random initialization of prototypes}
2: while t ≤ tf do
3: t+ = 1
4: {MAP : distributed loop over all input vectors} {Compute φ(xi) : the best

match cell which minimize the distance between its prototype wc and the
input vector xi}

5: for all xi ∈ A do
6: for c = 1 : k do
7: D[c] = ‖xi −wc‖

2

8: end for
{the minimum function provides the index of the minimum value}

9: φ(xi) = min(D)
{Compute the local matrix model numerator}

10: MapNumerator = H:,φ(xi)xi

{Compute the local neighborhood factor vector denominator}
11: MapDenom = H:,φ(xi)

12: end for
13: REDUCE : distributed sum of all local matrix models and local neighbor-

hood factor vectors.
14: for c = 1 : k do
15: for all MapOutput do
16: SumNumerator+ = MapNumerator
17: SumDenom+ = MapDenom
18: end for
19: end for

{UPDATE PROTOTYPES : Compute new prototypes.}
20: W = SumNumerator

SumDenom

21: Update the temperature according to eq. 5.1
22: end while

Chapter 5. SOM Clustering using Spark-MapReduce 59

5.4 Experiments

We implemented our algorithms SOM MapReduce in Spark 7.3 and we com-

pared them on a amazon EC2 cluster of 24 xlarge computers. Each computer

has 4 cores and 15GB of RAM, so the total capacity of the cluster is of 96

cores and 360 GB of RAM. The code of the version 2 is available in https:

//github.com/TugdualSarazin/spark-clustering.

Firstly, we will provide the performances of SOM-MapReduce clustering al-

gorithm comparing with SOM serial algorithm based on Matlab toolbox. For

most of large datasets, to run a serial algorithm is an impractical task because it

would require very long time. Thus secondly we have evaluated its execution time

performances and its capacities to scale.

5.4.1 Comparison with SOM not MapReduce algorithm

To evaluate how much MapReduce affects the serial SOM clustering quality [Ko-

honen, 2001], we used datasets from UCI with known labels [Frank and Asuncion,

2010]. Tables below represents qualities measures of both algorithms (serial SOM

and SOM MapReduce). To evaluate the clustering performance, two criterion are

used, each of them should be maximized: Accuracy (ACC), Rand measure.

Table 5.1 and table 5.2 depict respectively the ACC and Rand results. We

observe that SOM-MapReduce provides equivalent ACC and Rand measure. The

objective here is not get better performance than classical SOM clustering ap-

proaches, but to show that SOM-MapReduce does not interfere SOM and provides

an equivalent performances as a clustering approaches.

5.4.2 Speedup tests

For benchmarking the performance of our MapReduce SOM implementation, we

generated 100 millions observations using two gaussian distributions with only two

dimensions, only to test the performance. Then, we trained a 10 × 10 SOM with

different core counts.

The figure 5.1 shows the algorithms capacities to scale with respect to the

number of computers. We can observe that algorithm 2 is better than the version 1

Chapter 5. SOM Clustering using Spark-MapReduce 60

dataset SOM-
MapReduce

SOM

isolet5 0.435 0.433
Movement Libras 0.453 0.711
Breast 0.970 0.974
Sonar Mines 0.649 0.744
Lung Cancer 0.75 0.906
Spectf 1 0.775 0.716
HorseColic 0.697 0.78
Heart 0.707 0.851
glass 0.664 0.623

Table 5.1: Clustering Accuracy performance (Acc)

dataset SOM-
MapReduce

SOM

isolet5 0.920 0.905
Movement Libras 0.907 0.943
Breast 0.551 0.476
Sonar Mines 0.503 0.507
Lung Cancer 0.673 0.425
Spectf 1 0.521 0.403
HorseColic 0.460 0.448
Heart 0.504 0.529
glass 0.740 0.752

Table 5.2: Clustering performance comparison using Rand.

whatever the number of computers used. For example the gap between algorithms

(version 1 and version 2) is of 7200 seconds using 8 cores and of 400 seconds with

96 cores. For a fixed dataset, speedup captures the decrease in runtime when we

increase the number of available cores. The SOM algorithm is linear this means

that in a perfect case, the scaling factor is 2 when the number of cores and memory

are doubled. In practice with second algorithm (version 2) the scaling factor is 1.7

using 8 to 16 cores and it decrease to 1.14 using 48 to 96 cores. This decrease is

explained by the small size of the dataset compared to the high number of cores.

Chapter 5. SOM Clustering using Spark-MapReduce 63

paper aims also to provide a package for clustering algorithm using Spark. The

obtained preliminary evidence indicates that the design used for the SOM algo-

rithm can be extended to the other algorithm based on self-organizing map.

We plan to investigate the applicability of the recent work on real and more dif-

ficult dataset in order to propose a complete package of clustering and bi-clustering

in Spark.

In the next chapter, we will present in details the second contribution which

is a bi-clustering algorithm. This algorithm is implemented using MapReduce

paradigm under Spark.

Chapter 6

A new Topological Biclustering at

scale

In this chapter, we will introduce our second contribution about the ”BiTM” algo-

rithm for simultaneous clustering of observations and their features. We start by

defining a new cost function and so a new formalization of topological bicluster-

ing. After that, we propose a scalable model for biclustering. This model consists

of decomposing the biclustering problem into the elementary functions, Map and

Reduce. Its implementation is assured in the Spark MapReduce platform.

6.1 Introduction

Biclustering refers to simultaneous clustering of observations and their features.

Biclustering dataset is a principal task in a variety of areas of machine learning,

data mining, such as text mining, gene expression analysis and collaborative fil-

tering. The term biclustering was first used by Cheng and Church [Cheng and

Church, 2000] in gene expression data analysis. Terms such as co-clustering, bidi-

mensional clustering and subspace clustering, among others, are often used in the

literature to refer to the same problem formulation.

Different formulations of the biclustering problem have been proposed, such

as partitioning model [Hartigan, 1972], bayesian biclustering [Shan et al., 2010],

spectral analysis [Greene and Cunningham, 2010], greedy [Angiulli et al., 2006],

exhaustive enumeration [Tanay et al., 2002], self-organizing [Benabdeslem and Al-

lab, 2012]. In the direct clustering approach (Block Clustering) [Hartigan, 1972],

65

Chapter 6. A new Topological Biclustering at scale 66

the data matrix is divided into several sub-matrices corresponding to blocks. The

division of a block depends on the variance of its values.

Indeed, more the variance is low, more the block is constant. Biclustering pro-

vides local patterns representing subsets of similar observations and features. Note

that biclusters can cover just part of rows or columns. Biclustering is significantly

useful and considerably harder problem than traditional clustering. Whereas a

cluster is a set of observations with similar values over the entire set of attributes,

a bicluster can be composed of observations with similarity over only a subset of

attributes.

Recently, biclustering approaches based on matrix decomposition formulation

have been proposed as in [Long et al., 2005, Labiod and Nadif, 2011]. In [Long

et al., 2005], the authors propose a method named NBVD, which factorizes the

data matrix into three components: the row coefficient matrix, the block value

matrix and the column coefficient matrix. In [Labiod and Nadif, 2011], au-

thors propose an approach named ”Co-clustering Under Nonnegative Matrix Tri-

Factorization” (CUNMTF), which generalizes the idea of NMF [Lee and Seung] to

factorize the original matrix into three nonnegative matrices. Govaert et al intro-

duce a k-mean like biclustering algorithm titled ”Croeuc” to discover all biclusters

at the same time. The author of [Govaert, 1983] defines three algorithms for con-

tinuous, binary and contingency tables that proceed by optimizing partitions of

rows and columns using an iterative k-means procedure. In [Labiod and Nadif,

2011], authors prove that the double k-means is equivalent to algebraic problem

of NMF under some suitable constraints. Other probabilistic model-based biclus-

tering have been also proposed in [Govaert and Nadif, 2008, Priam et al., 2008].

Biclustering problems have numerous applications and are becoming more chal-

lenging as the size of the data increases. Nevertheless, good clustering algorithms

are still extremely valuable and we can (and should) rewrite them for parallel

clustering using a new Map-Reduce paradigm [Lv et al., 2010, Lin et al., 2011].

In situations where the amount of data is prohibitively large, the MapRe-

duce (MR) programming paradigm is used to overcome this problem [Dean and

Ghemawat, 2008b]. Thus, in recent years, an increasing number of programmers

have migrated to the MapReduce programming model [Ene et al., 2011b, Sul and

Tovchigrechko, 2011, Ferreira Cordeiro et al., 2011, Ghoting et al., 2011]. The

MR programming model was designed to simplify the processing of large files on

a parallel system through user-defined Map and Reduce functions [Karloff et al.,

2010]. A MR function consists of two phases : a Map phase and a Reduce phase.

Chapter 6. A new Topological Biclustering at scale 67

During the Map phase, the user-defined Map primitive function transforms the

input data into distributed pairs (key, value). These pairs are then sorted by the

system so as to accumulate all values for each key. During the Reduce phase, the

user-defined Reduce primitive is invoked on each unique key with a list of all the

values for that key; usually, this phase is used to perform aggregations. Finally,

the results are output in pairs (key, value). Each key can be processed in parallel

during the Reduce phase.

Hadoop1, an open-source implementation of the MR programming model, has

emerged as a popular platform for parallelization. A user can perform parallel

computations by submitting MR jobs to Hadoop. While the Hadoop are very

popular in their particular domains, we believe that they have a set of limitations

that make them ill-suited to the implementation of parallel clustering algorithms.

Many common clustering algorithms apply primitive functions repeatedly to the

same dataset to optimize a parameter. Thus the Map/Reduce primitive functions

need to reload the data, incurring a significant performance penalty.

In this chapter, we are concerned with designing new serial biclustering algo-

rithm and new formalization using MapReduce. We use another emerged open-

source implementation named Spark2 [Zaharia et al., 2010b], which is optimized

to machine learning algorithms and supports applications with working sets while

providing similar scalability and fault tolerance properties to MapReduce [Sparks

et al., 2013].

This chapter proposes a comprehensive new biclustering algorithm based on

self–organizing model and distributed biclustering solution from the data to the

end clusters using Spark MapReduce. We develop BiTM (Biclustering using Topo-

logical Maps) using Spark, an open source package which includes a freely available

implementation of MapReduce and has been widely embraced by both commercial

and academic worlds. The contributions of this chapter are:

• A new formalization of topological biclustering associated to a new cost

function.

• A complete distributed Biclustering solution using Spark MapReduce (we

demonstrate its scalability).

The major research challenge addressed is how to minimize the new cost function

and the input and output of primitive function (Map and Reduce) for topological

1www.hadoop.com
2http://spark-project.org/

Chapter 6. A new Topological Biclustering at scale 68

biclustering algorithm.

The rest of this chapter is organized as follows: Section 6.2 we propose a new

biclustering approach (BiTM) based on topological map (self-organizing maps). In

Section 6.2.3, we propose our BiTM MapReduce using Spark. Section 6.3 provides

the experimental results and shows the comparisons between BiTM and Croeuc

which is k-mean as for biclustering. Finally, Section 6.4 concludes and provides

some future research.

6.2 A new Topological biclustering: BiTM Model

6.2.1 BiTM Model

Throughout this chapter, we denote a matrix by bold capital letters such as H.

Vectors are denoted by small boldface letters such as g and matrix and vector

elements are represented respectively by small letters such as gji and hj
i . Table 6.1

lists all notations used in BiTM.

As traditional self-organizing maps, which is increasingly used as tools for clus-

tering and visualization, BiTM (Biclustering using Topological Maps) consists of

a discrete set of cells C called map with K cells. This map has a discrete topology

defined as an undirected graph, it is usually a regular grid in 2 dimensions. For

each pair of cells (c,r) on the map, the distance δ(c, r) is defined as the length of

the shortest chain linking cells r and c on the grid. For each cell c this distance

defines a neighbor cell.

Let ℜd be the euclidean data space and D the matrix of data, where each

observation xi = (x1
i , x

2
i , ..., x

j
i , .., x

d
i) is a vector in D ⊂ ℜd. The set of rows (ob-

servations) is denoted by I = {1, ..., N}. Similarly, the set of columns (features) is

denoted by J = {1,, d}. We are interested in simultaneously clustering obser-

vation I into K clusters {P1, P2, ..., Pk, .., PK}, where Pk = {xi, φz(xi) = k} and

features J into L clusters {Q1, Q2, ..., Ql, .., QL} where Ql = {x
j, φw(x

j) = l}. We

denote by φz the assignment function of row (observation) and φw the assignment

function of column (feature).

The main purpose of BiTM is to transform a data matrix D into a block struc-

ture organized in a topological map does. In BiTM, each cell r ∈ C is associated

with a prototype gk = (g1k, g
2
k..., g

l
k, ..., g

L
k), where L < d and glk ∈ ℜ. To facilitate

formulation, we define two binary matrices Z = [zki] and W = [wl
j] to save the

Chapter 6. A new Topological Biclustering at scale 69

assignment associated respectively to observations and features:

zki =

{

1 if xi ∈ Pk,

0 else

wl
j =

{

1 if xj ∈ Ql

0 else

To cluster D into K and L clusters in both observations and features, we pro-

pose the new following objective function to optimize in the biclustering process:

R(W,Z,G) =
K
∑

k=1

L
∑

l=1

N
∑

i=1

d
∑

j=1

K
∑

r=1

KT (δ(r, k))

× zki × wl
j × (xj

i − glr)
2 (6.1)

We can detect the block or bicluster of data denoted by Bl
k = {(xj

i |z
k
i × wl

j = 1}.

G = {g1,,gk} denotes the set of prototype, Typically the neighborhood func-

tionKT (δ) = K(δ/T) is a positive function which decreases as the distance between

two cells in the latent space C increases and where T controls the width of the

neighborhood function.Thus T is decreased between two values Tmax and Tmin. In

practice, we use the neighborhood function defined as KT (δ(c, r)) = exp
(

−δ(c,r)
T

)

and T = Tmax(
Tmin

Tmax
)

t
tf−1 , where t is the current epoch and tf the number of epoch.

The objective function (Eq. 8.1) can be locally minimized by iteratively solving

the following three minimization problems:

• Problem 1: FixG = Ĝ andW = Ŵ, solve the reduced problemR(Ŵ,Z, Ĝ);

• Problem 2: Fix G = Ĝ and Z = Ẑ, solve the reduced problem R(W, Ẑ, Ĝ);

• Problem 3: Fix W and Z, solve the reduced problem R(Ŵ, Ẑ,G).

In order to reduce the computational time, we assign each observation and

feature without using neighborhood cell as the traditional topological map.

Problem 1 is solved by defining zjk as:

zki =

{

1 if xi ∈ Pk, k = φz(xi)

0 else

Chapter 6. A new Topological Biclustering at scale 70

Table 6.1: Table of symbols.

C Topological map
D data matrix N × d
xi observation vector (xi =

(x1
i , x

2
i , ..., x

d
i), i ∈ I = 1, 2,N)

xj feature vector ((xj)T =
(xj

1, x
j
2, ..., x

j
N), j ∈ J = 1, 2,d)

K the size of observation partition
L the size of feature partition
G prototype Matrix K × L
gr prototype vector (gr = (g1r , g

2
i , ..., g

L
r), L <

d
Pk cluster of observation (rows)
Ql cluster of features (column)
Z binary matrix after row assignment φz(xi)
W binary matrix after column assignment

φw(x
j)

Bl
k bicluster Bl

k = {(x
j
i |z

k
i × wl

j = 1}

H neighborhood matrix K × K, hj
i =

KT (δ(i, j))
hj column j of the matrix H
hi row i of the matrix H

Where each observation xi is assigned to the closest prototype gk using the

assignment function, defined as follows:

φz(xi) = argmin
c

d
∑

j=1

L
∑

l=1

wl
j(x

j
i − glc)

2 (6.2)

Problem 2 is solved by defining wj
k as

wl
j =

{

1 if xj ∈ Ql, l = φw(x
j)

0 else

Where each feature xj is assigned to the closest prototype gl using the assignment

function, defined as follows:

φw(x
j) = argmin

l

N
∑

i=1

K
∑

k=1

zki (x
j
i − glr)

2 (6.3)

Problem 3 is resolved for the numerical features by :

Chapter 6. A new Topological Biclustering at scale 71

glr =

∑K
k=1

∑N
i=1

∑d
j=1K

T (δ(k, r)zki × wl
j × xj

i
∑K

k=1

∑N
i=1

∑d
j=1K

T (δ(k, r))zki × wl
j

this value is obtained by resolving the gradients ∂R
∂glr

= 0

glr =

∑K
k=1K

T (δ(k, r))
∑N

i=1

∑d
j=1 z

k
i × wl

j × xj
i

∑K
k=1K

T (δ(k, r))
∑N

i=1

∑d
j=1 z

k
i × wl

j

glr =

∑K
k=1

∑

xj
i∈B

l
k
KT (δ(k, r))xj

i
∑K

k=1

∑

xj
i∈B

l
k
KT (δ(k, r))

We can rewrite the equation as follows:

glr =

∑K
k=1K

T (δ(k, r))
∑

xj
i∈B

l
k
xj
i

∑K
k=1K

T (δ(k, r))
∑

xj
i∈B

l
k

(6.4)

The main phases of BiTM algorithm are presented in Algorithm 13.

6.2.2 BiTM Model vs. Croeuc

The decomposition of the cost function R (Eq. 8.1) that depends on the value of

T , permits to rewrite its expression as follows:

R(W,Z,G) =
K
∑

k=1

L
∑

l=1

∑

xi∈Pk

∑

xj∈Ql

K
∑

r=1

KT (δ(r, k))(xj
i − glr)

2

R(W,Z,G) = R1(W|Q.,Z|P.,G) +R2(W|Q.,Z|P.,G)

Chapter 6. A new Topological Biclustering at scale 72

Algorithm 13 : BiTM Algorithm

1: Inputs:

• The data D, prototypes G (Initialization).

• tf : the maximum number of iterations.

2: Outputs:

• Assignment matrix Z,W. Prototypes G

3: while t ≤ tf do
4: for all xi ∈ D do
5: Observation assignment phase: Each observation xi is assigned to the

closest prototype gk using the assignment function, defined in equation
8.2

6: Features assignment phase: Each feature xj is assigned to the closest
prototype gl using the assignment function, defined in equation 8.3

7: Quantization phase: The prototype vectors are updated using following
expression defined in equation 6.4

8: end for
9: Update T

{ T varies from Tmax until Tmin}
10: t++
11: end while

where

R1(W|Q.,Z|P.,G) =
K
∑

k=1

L
∑

l=1

∑

xi∈Pk

∑

xj∈Ql

K
∑

r=1,r 6=k

KT (δ(r, k))

× (xj
i − glr)

2

and

R2(W|Q.,Z|P.,G) = KT (δ(k, k))
K
∑

r=1

L
∑

l=1

∑

xi∈Pk

∑

xj∈Ql

(xj
i − glr)

2

where δ(k, k) = 0

The cost function R is decomposed in two terms. In order to maintain the

topological order between blocks, minimizing the first term R1(W|Q.,Z|P.,G)

will bring the block corresponding to neighboring cells. Indeed, if c and r are

neighbors on the map C, the value of δ(r, k) is low and in this case the value

of KT (δ(r, k)) is high. Thus, minimizing the first term has for effect to reduce

Chapter 6. A new Topological Biclustering at scale 73

the value of the cost function. Minimizing the second term R2(W|Q.,Z|P.,G)

corresponds to the minimization of the local inertia of component assigned to

block Bl
r as follows

R2(W|Q.,Z|P.,G) =
L
∑

l=1

∑

x
j
i∈B

l
r

(xj
i − glr)

2

WhereR2(W|Q.,Z|P.,G) presents the cost function proposed by Govaert [Go-

vaert, 1983].

Hence, for different values of temperature T , each term of the cost function

has a relative relevance in the minimization process. We can define two steps in

the operating of the algorithm:

• The first step corresponds to high T values where the first termR1(W|Q.,Z|P.,G)

is dominant and in this case, the priority is to preserve the topology.

• The second step corresponds to small T where the second termR2(W|Q.,Z|P.,G)

is considered in the cost function. Therefore, the adaptation is very local

and BiTM algorithm converge to Croeuc algorithm.

The computational cost of our BiTM model is more expensive than Croeuc,

because the neighborhood of the topological map increases the number of output

pairs (k, r) of map function.

6.2.3 BiTM and MapReduce

To handle this huge amount of data, it is necessary to use distributed architecture.

This is not a simple task and several difficulties have to be dealt with, including

loading data, failure safety, and algorithm design. The MapReduce implementa-

tion on Spark takes care of failure-correction, data management and distribution.

It has become very important in MapReduce to decompose our problem in

elementary functions. The idea is to initiate two Map-Reduce functions for row

and column iterations, and a synchronization to update the parameters G,W,Z.

In the case of BiTM algorithm we identified these atomic parts:

Chapter 6. A new Topological Biclustering at scale 74

• Assign each observation xi to the best match unit using expression (Eq. 8.2).

• Assign each feature xj to the best match unit using expression (Eq. 8.3).

• Accumulate denominator and numerator for each prototype gr (Eq. 6.4)

• Update prototype vectors gr, ∀r ∈ C (Eq. 6.4)

Pseudo code below describes the implementation of the BiTM algorithm with

MapReduce Spark. In most of the cases in big dataset the number of observations

is bigger than the number of features (N >> d). Thus, we consider that a column

vector xj (column) of the data matrix D couldn’t be used as an observation vector

xi (row). Hence for the row assignment function we define row map function

(Algorithm 17), which computes for each xi the best match unit. In order to

reduce the time complexity we compute the denominator and the numerator of

the prototype g (Eq. 6.4). This allows the row reduce function to focus only

on the sum of different numerators and denominators provided by each row map

function.

For the column assignment, we define a map function (15) and a reduce function

(Algorithm 18) in order to reduce the memory consumption. Thus the column

assignment function splits the column distance of one column into multiple outputs

(d ×K). The map function computes the distance between each element xj
i and

all prototypes. Hence the column reduce function sums the ”distances” provided

by each column map function. At the end of this MapReduce state the best

match prototype for features is computed in the main function (Algorithm 14).

Therefore, the update of the prototype is computed.

The majority of the algorithm algorithm functions are executed in Map and

Reduce. They are executing in parallel on all the machines of the Spark clusters.

That is why the algorithm could scales easily (Chapter 6.3.2 Speedup tests).

6.3 Experiments

Our performance study is based on the synthetic datasets and on several datasets

extracted from UCI repository [Frank and Asuncion, 2010]. Table 6.2 lists public

dataset, the number of real class and the map size used in the learning phase. We

used 4 synthetic datasets generated with 1 million and 2 million observations with

Chapter 6. A new Topological Biclustering at scale 75

Algorithm 14 BiTM - Main

Initilization
{Random initialization of prototypes}
{Random initialization of columns assignements W}
{Main loop}
while t ≤ tf do

{Assignment of columns }
for all xi ∈ D do
〈(J, L);V 〉 ← ColMapper(xi)

end for
〈(J, L);V 〉 ← ColReducer(〈(J, L);V 〉)
for each column reduce value j ∈ J do
φw(x

j) = argmin(〈(j, L);V 〉)
end for

{Assignment of rows }
for all xi ∈ D do
〈(CM,CN)〉 = RowMapper(xi)

end for
(CMs,CNs) = RowReducer(〈(CM,CN)〉)

{Update prototypes}
G = CMs/CNs
t+ = 1

end while

Algorithm 15 ColMapper(xi)

for each column j = 1..d do
for each feature prototype l = 1..L do
emit

〈

(j, l); (xj
i − glr)

2
〉

end for
end for

Algorithm 16 ColReducer(key(j, l), V)

sv = 0
for each map value v ∈ V do
sv+ = v

end for
emit 〈(j, l); sv〉

Chapter 6. A new Topological Biclustering at scale 76

Algorithm 17 RowMapper(xi)

{MAP rows distance: distributed loop over all input vectors (xi =
(x1

i , x
2
i , ..., x

d
i)) }

for each k = 1..K do
bmu(k) =‖ xi − gk ‖

2

end for
φz(xi) = argmin(bmu)
{Contrsuct a new compressed vector : cm with 1× L dimensions}
cm(l) =

∑

xj
i∈B

l
φz(xi)

xj
i

CM = hφz × cm
{Contrsuct a new compressed vector : cm with 1× L dimensions}
cn(l) =

∑

xj∈Bl
φz(xi)

1

CN = hφz × cn
{So CM and CN are matrices of size K × L}
emit 〈(CM,CN)〉

Algorithm 18 RowReducer(V(CM,CN))

Initialize CMs← 0,CNs← 0
for each (CM,CN) ∈ V do
CMs+ = CM
CNs+ = CN

end for
emit 〈(CMs,CNs)〉

20 and 40 features each.

An open source Spark library that include the BiTM and our implementa-

tion of SOM (self-organizing map) is available on Github (https://github.com/

TugdualSarazin/spark-clustering).

6.3.1 BiTM versus Croeuc

Firstly, we’re interested in comparing our model with algorithms that possess sim-

ilar architecture to ours, such as Croeuc. We report the Acc (accuracy) and NMI,

and plot the quantization error vs.the number of iterations, a common measure

for evaluation clustering and biclusteing methods [Strehl et al., 2002].

For the setup of experiments, we have to consider various parameters. For

both methods (BiTM and Croeuc), we choose a fixed number of clusters (size

of the map), indicated in table 6.2. For both algorithms we randomly select 10

initial cluster centers with 40 epochs. Thus the values indicate the average of 10

measures for each dataset.

Chapter 6. A new Topological Biclustering at scale 77

datasets # obs # feat Map
size

#
classes

Sonar mines 208 60 6×6 2
Lung Cancer 32 56 4×4 2
Spectf 1 349 44 4×4 2
Cancer Wpbc
Ret

198 33 6×6 2

Horse Colic 300 27 5×5 2
Heart 270 13 5×5 2
Isolet5 1559 617 12×12 26
Breast 699 10 7×7 2
Glass 214 9 5×5 7
Waveform 5000 40 10×10 3

Table 6.2: Public datasets description (# obs: number of observation, # feat:
number of features)

6.3.1.1 Clustering quality

To measure the quality of clustering, we use two different metrics: Accuracy (Acc)

and Normalized Mutual Information (NMI); each should be maximized. They

are used to evaluate clustering quality and are only applicable to data sets with

ground-truth classes. NMI is particularly useful when the number of clusters is

different from that of ground-truth classes.

The clustering quality of both algorithms is shown in Table 6.3 and 6.4. In

practice BiTM provides better values of quality measures than Croeuc in most of

selected datasets with small standard deviation. Particularly, for Cancer Wpbc

Ret and Isolet, our method provides less Accuracy and NMI than Croeuc. BiTM is

like a Croeuc with a topological order. These tests demonstrate that the addition

of this topological order doesn’t modify the general process of the algorithm.

6.3.1.2 Quantization error

In this experiment, our purpose is to study how BiTM evolves over time in term

of quantization error. The average of quantization error versus the number of

iterations for 10 runs are summarized in Figure 6.1.

Unlike the previous tests (NMI and Acc), quantization error measures that

Croeuc results are equivalent with BiTM in most of cases. The quantization er-

ror is not a measure of clustering’s performance, it only describes the learning of

Chapter 6. A new Topological Biclustering at scale 78

Databases BiTM CROEUC
Acc Std Acc Std

Sonar mines 0.7365 0.0174 0.6837 0.0124
Lung cancer 0.7906 0.0296 0.7469 0.0231
Spectf 1 0.7817 0.0096 0.7358 0.0069
Cancer Wpbc
Ret

0.7626 0.0000 0.7626 0.0000

Horse colic 0.6770 0.0062 0.6707 0.0021
Heart 0.8130 0.0084 0.8007 0.0072
Isolet5 0.5640 0.0179 0.4184 0.0455
Glass 0.5692 0.0206 0.3799 0.0121
Breast 0.9725 0.0026 0.9700 0.0027
Waveform 0.7313 0.0054 0.7094 0.0081

Table 6.3: Clustering Accuracy performance (Acc).

Databases BiTM CROEUC
NMI Std NMI Std

Sonar mines 0.1316 0.0211 0.0923 0.0140
Lung cancer 0.1673 0.0363 0.1045 0.0402
Spectf 1 0.1464 0.0088 0.1336 0.0060
Cancer Wpbc
Ret

0.0205 0.0002 0.0238 0.0050

Horse colic 0.0237 0.0023 0.0103 0.0040
Heart 0.2143 0.0057 0.2129 0.0089
Isolet5 0.5811 0.0090 0.5887 0.0170
Glass 0.2743 0.0071 0.1089 0.0163
Breast 0.4128 0.0057 0.4627 0.0101
Waveform 0.2458 0.0022 0.27934 0.0042

Table 6.4: Clustering performance comparison using NMI.

algorithms. They have the same process, they decrease quickly during the first

iterations and stabilized after.

The main difference between them is the weak decrease of BiTM during the

stabilization phase. We can see this phenomenon on the figure 6.1. This dif-

ference could be explained by the topological order added in BITM. BitM as

Self-Organinzing Map has two phase: self-organizing step and quantization phase.

Chapter 6. A new Topological Biclustering at scale 79

Figure 6.1: Quantization error

(a) Sonar (b) Lung cancer

(c) Specif (d) CancerWpbcRet

(e) HorseColic (f) Heart

Chapter 6. A new Topological Biclustering at scale 80

(g) Isolet (h) Breast

(i) Glass (j) Waveform

6.3.1.3 Visualization

Figure 6.3 shows how the proposed method BiTM provides further information

than other clustering approaches. The main advantage is to provide a simultaneous

clustering with topological order as seen in Figures 6.2(m), 6.3(c). We used Matlab

as the framework to visualize different figures. This simplifies data exploration

by offering friendly visualization comparing to global presentation of biclustering

presented in 6.2(l), 6.3(b). The same analysis could be done with the rest of the

dataset. Our approach tries to improve the standard the visualization by building

simultaneous clustering with topological order.

Figures 6.2(l) and 6.3(b) show the topological organization of bicluster on

respectively SonarMines dataset 6.2(k), waveform datasets 6.2(k). In BiTM, each

cell of the map represents a subset of data, organized according to the cluster

of observations and features. This organization is illustrated by different colors.

Weak features are indicated with blue and dominant features are indicated with

red. Colors are relatively similar when the features are correlated and mapped

Chapter 6. A new Topological Biclustering at scale 81

in neighborhood cells. This is due to the use of the neighborhood relationship in

BiTM learning.

(k) Data set (l) Dataset organized according the cluster of the ob-
servations and the features

(m) BiTM Map. bicluster organized in a map ac-
cording the features and observation cluster

Figure 6.2: SonarMines visualization

6.3.2 Speedup tests

We made scaling experiments on the Magi cluster (http://www.univ-paris13.

fr/calcul/wiki/) with 1 to 10 machines of the cluster. Each machine on this

cluster has 12 cores (two Xeon X5670 at 2.93GHz), 24GB of RAM and they

are connected by an InfiniBand network. All the experiments are done in Spark

Platform. We generate different dataset using the Scala random normal function.

We apply a different factor for each class. x = a+N ∗ b.

In each of the two classes, a and b are different. But neither the number of

class nor the data generation function influctes significantly the execution time of

the algorithm.

For benchmarking the performance of our BiTM MapReduce implementation,

Chapter 6. A new Topological Biclustering at scale 82

(a) Data set (b) Dataset organized according the cluster of the
observations and the features

(c) BiTM Map. bicluster organized in a map ac-
cording the features and observation cluster

Figure 6.3: Waveform visualization

we generated 1 and 2 million observations of 10 to 40 dimensions each. Then, we

trained a 5 × 5 BiTM map with different core counts in each run. The run time

is indicated in milliseconds. In all figures below we added an ideal curve. It had

been determined by the execution time for one machine divided by the number of

machines. This curve represents a perfect scaling architecture.

In the figure (6.4(a)) the ideal time is much lower than in the following figures.

That could be explained by the low size of the data matrix (1 million elements).

When the size of the data matrix is low the performances of the initialization of

the system decrease. But with a huge data matrix the initialization tends to be

insignificant proportionally to the global run time. As we can see in the following

figures 6.4(b), 6.4(c), 6.4(d), 6.4(e). The implementation exhibited excellent linear

scaling, and is close to ideal times.

Chapter 6. A new Topological Biclustering at scale 84

This chapter aims also to provide a library for clustering and biclustering algo-

rithms using Spark. The obtained preliminary results indicate that the design used

for the BiTM algorithm can be extended to the other biclustering algorithms. In

the future, we plan also to develop a method that can automatically divide features

into cluster using the weighted biclustering process.

Chapter 7

Application to Insurance Dataset

This chapter is devoted to explain our work carried in the context of the Big

Data project, named Square Predict 1. We illustrate the utility of the SOM-MR

algorithm, presented in the chapter 5, as an unsupervised learning for an insurance

Big Data.

7.1 Introduction

Organisations are increasingly relying on Big Data to provide the opportunities

to discover correlations and patterns in data that would have previously remained

hidden, and to subsequently use this new information to increase the quality of

their business activities.

Classification and regression trees (CART) are a useful technique for creating

easily interpretable decision rules, see [Hastie et al., 2009]. The R package rpart

provides a convenient interface to classification and regression trees and whose

plotting is extended by the rpart.plot package.

In this chapter we prensent an analysis combining an unsupervised learning

with a supervised method. The SOM-MR algorithm, which is presented in the

chapter 5, is used as an unsupervised method while the regression trees are used

to explain the clusters produced by the SOM-MR approach.

1http://ns209168.ovh.net/squarepredict/

85

Chapter 7. Application to Insurance Dataset 86

7.2 Exploratory data analysis of SOM clusters

The 2012 AXA insurances payouts data consists of 2130114 contracts enriched with

open data from the INSEE and ONDRP. A SOM (self-organising map) clustering

was carried out by Arrow on these data, resulting in 20 clusters. The goal of is to

construct a decision tree model of these enriched data in determining the payouts

made for water damage (DDE) claims charge dde and for the payouts made for

fire damage (INC) claims charge inc within each of the SOM clusters.

As charge inc and charge dde are continuous variables, a regression tree

analysis is appropriate. For each of the SOM clusters, a regression true with the

response variable being charge inc or charge dde, and the covariates being the

other variables. For the fire damages claims, these regressions trees are displayed

in Figures 7.1–7.2, in decreasing order of the total sum of payouts per cluster.

In each tree, the node labels contain two values: inside the lozenge is the total

payouts, and below it is the number of claims. At each binary split, the left and

right branches indicate the rule applied to the splitting variable.

All the decision trees begin with the decision nbsin inc < 0.5 which separates

all the contracts with/without any damage claims at the root node. All the con-

tracts without any claims becomes a terminal node, as they also do not contribute

to the payouts. All the claims are then decomposed with further decision rules

based on the covariates. For example, if we focus on the SOM NumCluster=9

in the middle panel in Figure 7.1, we observe that the terminal node (labelled

internally 55) has a payout total greater than e 180K from only 8 contracts. Its

complete decision rules are

Rule number: 55 [charge_inc=189513.375 cover=8 (0%)]

nbsin_inc>=0.5

constAvant49Prob< 0.8953

dept=3,5,6,12,15,16,17,18,19,21,24,32,43,47,54,55,56,65,70,71,78,79,82,87,88,90

constAvant49Prob>=0.6254

dept=17,43,82

showing that the geographical location (dept) and the age of construction (constAvant49Prob)

are used to construct this leaf node: its 8 extracted contracts are

nbsin_inc charge_inc NumCluster dept constAvant49Prob ...

Chapter 7. Application to Insurance Dataset 87

NumCluster=all

nbsin_inc <

0.5

constAvant49Prob

< 0.9

dept = 1 2 3 4

6 7...91 93 94

NBPIECS < 9.5

dept = 15 21

28 32...78 80

88

0

n=2,123,554

58,263,225

n=5,309

26,246,985

n=1,202

304,166

n=28

3,209,513

n=14

1,384,134

n=7

yes no

NumCluster=9

nbsin_inc <
0.5

constAvant49Prob
< 0.9

dept = 1 2 4 7
8 9...85 86 89

constAvant49Prob
< 0.63

const8903Prob
< 0.28

dept = 12 17
32 43...71 82

87

dept = 3 12 15
16 ...79 87 88

0
n=757,922

12,911,049
n=1,575

13,042,793
n=985

864,338
n=40

2,317,889
n=14

4,743,054
n=124

1,516,107
n=8

1,286,409
n=9

yes no

NumCluster=30

nbsin_inc <
0.5

nbPer25a59_MOY
< 1.5

dept = 31 33
38 44...91 93

94

0
n=453,613

10,136,584
n=845

2,886,588
n=159

1,009,424
n=13

yes no

NumCluster=98

nbsin_inc <
0.5

const8903Prob
< 0.19

nbPer0a3_MOY <
0.75

const8903Prob
>= 0.036

nbPer25a59_MOY
< 0.5

const7589Prob
>= 0.3

0
n=59,674

1,547,643
n=149

382,693
n=7

763,082
n=11

37,580
n=15

713,534
n=12

1,350,771
n=10

yes no

NumCluster=99

nbsin_inc <
0.5

NBPIECS < 9.5

const8903Prob
< 0.32

const8903Prob
>= 0.073

IncBPrvProp <
110e−6

NBPIECS >= 5.5

CDQUALP = 0

0
n=105,571

651,918
n=149

1,515,664
n=114

77,102
n=16

22,025
n=7

1,144,281
n=19

795,995
n=15

585,406
n=7

yes no

NumCluster=97

nbsin_inc <
0.5

constAvant49Prob
< 0.53

NBPIECS < 6.5

constAvant49Prob
< 0.18

0
n=85,331

1,693,938
n=183

162,570
n=27

1,501,006
n=19

980,040
n=7

yes no

NumCluster=5

nbsin_inc <
0.5

NBPIECS < 8.5

const7589Prob
< 0.2

const7589Prob
>= 0.21

const7589Prob
>= 0.16

0
n=89,744

1,014,391
n=139

1,081,493
n=67

563,134
n=7

23,356
n=11

1,149,696
n=10

yes no

NumCluster=1

nbsin_inc <
0.5

const8903Prob
>= 0.053

constAvant49Prob
>= 0.43

constAvant49Prob
< 0.42

const8903Prob
< 0.23

const4974Prob
< 0.17

const4974Prob
>= 0.2

const7589Prob
>= 0.2

constAvant49Prob
>= 0.38
ANEM_MOY >=

0.5

0
n=77,332

116,995
n=33

59,530
n=21

360,514
n=43

205,820
n=19

149,155
n=11

642,569
n=13

404,539
n=7

572,184
n=14

455,229
n=9

587,517
n=11

yes no

NumCluster=19

nbsin_inc <
0.5

const7589Prob
< 0.25

const7589Prob
>= 0.26

constAvant49Prob
< 0.46

NBPIECS >= 3.5

0
n=91,312

1,174,538
n=158

704,351
n=88

576,586
n=17

351,578
n=8

541,909
n=7

yes no

NumCluster=91

nbsin_inc <
0.5

constAvant49Prob
< 0.54

const8903Prob
>= 0.12

const8903Prob
< 0.1

ViolDomProp >=
55e−6

0
n=60,475

445,164
n=87

82,001
n=36

492,654
n=26

643,819
n=10

642,624
n=10

yes no

NumCluster=6

nbsin_inc <
0.5

const7589Prob
< 0.42

const8903Prob
>= 0.11

NBPIECS >= 4.5

CDHABIT = 1

CDQUALP = 0

0
n=65,147

434,930
n=73

192,493
n=25

254,218
n=32

319,669
n=9

285,495
n=9

292,943
n=9

yes no

NumCluster=72

nbsin_inc <
0.5

CDHABIT = 0

const8903Prob
< 0.22

0
n=49,041

846,676
n=135

320,072
n=13

466,415
n=8

yes no

Figure 7.1: Decision trees for the enriched AXA data for charge inc (fire
damages) payouts, sorted by SOM cluster payouts: NumCluster = all, 9, 30,

98, 99, 97, 94, 5, 1, 19, 91, 6, 72.

1 550000 9 17 0.62667

1 363 9 17 0.70476

1 21816 9 17 0.68493

1 859 9 17 0.71795

1 600000 9 43 0.64327

Chapter 7. Application to Insurance Dataset 88

NumCluster=94

nbsin_inc <
0.5

cmbGazVilleProp
< 0.25

const8903Prob
< 0.26

const4974Prob
< 0.33

const4974Prob
>= 0.35

NBPIECS >= 6.5

0
n=43,309

156,552
n=76

411,238
n=67

234,232
n=7

336,837
n=15

12,131
n=9

421,854
n=13

yes no

NumCluster=17

nbsin_inc <
0.5

const7589Prob
< 0.34

CDQUALP = 1

constAvant49Prob
< 0.39

0

n=39,931

278,314

n=115

152,176

n=24

510,103

n=7

479,733

n=18

yes no

NumCluster=37

nbsin_inc <
0.5

NBPIECS >= 3.5

ANEM_MOY >=
0.5

const7589Prob
>= 0.28

const7589Prob
< 0.23

0

n=20,006

50,766

n=32

11,934

n=13

130,399

n=13

507,386

n=8

689,298

n=13

yes no

NumCluster=69

nbsin_inc <
0.5

NBPIECS >= 3.5

const8903Prob
< 0.31

0

n=33,843

455,024

n=65

216,108

n=9

462,950

n=11

yes no

NumCluster=96

nbsin_inc <
0.5

constAvant49Prob
>= 0.15

CDQUALP = 1

constAvant49Prob
>= 0.26

0

n=25,530

209,082

n=66

83,248

n=15

236,015

n=11

399,667

n=7

yes no

NumCluster=80

nbsin_inc <
0.5

const7589Prob
< 0.3

const8903Prob
>= 0.3

const8903Prob
< 0.23

0

n=35,885

368,352

n=98

47,729

n=15

42,152

n=8

443,806

n=16

yes no

NumCluster=8

const7589Prob
>= 0.07

const4974Prob
< 0.27

2,353

n=3,557

0

n=84

537,667

n=7

yes no

NumCluster=79

nbsin_inc <
0.5

constAvant49Prob
>= 0.22

0

n=12,761

43,309

n=31

241,135

n=7

yes no

NumCluster=68

nbsin_inc <
0.5

const8903Prob
< 0.31

const8903Prob
< 0.26

0

n=13,483

58,392

n=38

28,754

n=8

55,587

n=7

yes no

Figure 7.2: Decision trees for the enriched AXA data for charge inc (fire
damages) payouts, sorted by SOM cluster payouts: NumCluster = 94, 17, 37,

69, 96, 80, 8, 79, 68.

1 1459 9 43 0.84706

1 1841 9 43 0.77477

1 339769 9 82 0.68750

A similar analysis can be carried out with the nbsin dde decision trees.

7.3 Supervised learning of SOM clusters

In the previous section, we examined decision trees for the exploratory analysis of

the SOM clusters. In this section, we examine decision trees for the prediction of

these SOM cluster labels in a supervised learning context. The response variable is

Chapter 7. Application to Insurance Dataset 89

NumCluster=all

nbsin_dde <
0.5

CDHABIT = 1

0

n=2,114,840

6,651,743

n=7,059

12,619,089

n=8,215

yes no

NumCluster=30

nbsin_dde <
0.5

CDHABIT = 1

dept = 31 33
38 44...92 94

95
const7589Prob

>= 0.25

const7589Prob
< 0.22

0

n=449,745

3,297,019

n=3,378

2,105,000

n=1,293

148,278

n=97

231,788

n=99

193,575

n=18

yes no

NumCluster=9

nbsin_dde <
0.5

NBPIECS < 6.5

dept = 5 7 8
10 11...89 90

91

0

n=756,397

3,744,919

n=3,194

1,081,864

n=779

862,668

n=307

yes no

NumCluster=6

nbsin_dde <
0.5

CDHABIT = 1

const4974Prob
>= 0.12

0

n=64,591

388,456

n=415

289,062

n=223

156,195

n=75

yes no

NumCluster=91

nbsin_dde <
0.5

NBPIECS < 5.5

constAvant49Prob
< 0.29

const7589Prob
< 0.27

const7589Prob
>= 0.29

constAvant49Prob
>= 0.35

0

n=60,033

494,722

n=472

46,121

n=43

102,412

n=55

39,026

n=10

41,540

n=24

56,643

n=7

yes no

NumCluster=99

nbsin_dde <
0.5

constAvant49Prob
< 0.82

NBPIECS < 9.5

constAvant49Prob
>= 0.22

0

n=105,416

533,243

n=441

47,634

n=22

83,771

n=12

63,589

n=7

yes no

NumCluster=97

nbsin_dde <
0.5

CDQUALP = 0

dept = 51 83

const7589Prob
< 0.29

const4974Prob
< 0.43

0

n=84,900

195,145

n=242

297,226

n=274

149,874

n=118

48,399

n=25

34,189

n=8

yes no

NumCluster=5

nbsin_dde <
0.5

NBPIECS < 6.5

ANEM_MOY < 12

ANEM_MOY >= 20

0

n=89,354

522,094

n=509

110,307

n=84

27,944

n=19

38,352

n=12

yes no

NumCluster=19

nbsin_dde <
0.5

nbPer0a3_MOY <
0.75

NBPIECS < 6.5

const8903Prob
< 0.28

const8903Prob
>= 0.3

const7589Prob
< 0.29

const8903Prob
>= 0.17

0
n=91,115

318,357
n=344

27,415
n=21

23,883
n=7

81,194
n=63

37,920
n=22

33,496
n=7

37,162
n=11

yes no

NumCluster=98

nbsin_dde <
0.5

NBPIECS < 9.5

CDHABIT = 1

0

n=59,509

100,187

n=122

362,503

n=229

64,084

n=18

yes no

NumCluster=1

nbsin_dde <
0.5

NBPIECS < 9.5

CDHABIT = 1

0

n=77,063

178,375

n=218

289,833

n=224

34,977

n=8

yes no

NumCluster=80

nbsin_dde <
0.5

NBPIECS < 7.5

ANEM_MOY < 42
cmbElectProp <

0.5

0

n=35,687

300,148

n=283

23,517

n=9

51,172

n=36

39,951

n=7

yes no

Figure 7.3: Decision trees for the enriched AXA data for charge dde (water
damages) payouts, sorted by SOM cluster payouts: NumCluster = all, 30, 9, 6,

91, 99, 97, 5, 1, 19, 98, 1, 80.

the SOM cluster label NumCluster, which is a categorical variable, a classification

tree is appropriate.

The categorical department variable dept (94 levels) causes a combinatorial

explosion when used in conjunction with the categorical response NumCluster

(20 levels) in a decision tree. The dept variable is not well-suited as an ordinal

Chapter 7. Application to Insurance Dataset 90

NumCluster=94

nbsin_dde <
0.5

constAvant49Prob
< 0.55

0

n=43,179

319,870

n=306

35,591

n=11

yes no

NumCluster=72

nbsin_dde <
0.5

NBPIECS < 10

ANEM_MOY < 46

CDQUALP = 0

0

n=48,937

38,508

n=63

183,630

n=177

25,524

n=11

29,382

n=9

yes no

NumCluster=17

nbsin_dde <
0.5

CDQUALP = 0

CDHABIT = 0

const8903Prob
>= 0.18

const8903Prob
< 0.12

NBPIECS < 3.5

0

n=39,928

20,966

n=36

116,606

n=84

7,659

n=9

50,753

n=17

9,935

n=13

47,538

n=8

yes no

NumCluster=69

nbsin_dde <
0.5

NBPIECS < 5.5

ANEM_MOY < 16 NBPIECS >= 6.5

const4974Prob
>= 0.3

ANEM_MOY < 5

0

n=33,768

98,827

n=91

26,516

n=12

11,817

n=16

25,796

n=15

27,828

n=9

51,463

n=17

yes no

NumCluster=37

nbsin_dde <
0.5

CDHABIT = 1

const4974Prob
< 0.43

0

n=19,943

75,611

n=82

75,408

n=53

63,416

n=7

yes no

NumCluster=96

nbsin_dde <
0.5

const7589Prob
< 0.37

const4974Prob
>= 0.1

0

n=25,448

133,541

n=155

24,289

n=11

40,627

n=15

yes no

NumCluster=8

nbsin_dde <
0.5

const4974Prob
>= 0.34

0

n=3,623

16,120

n=14

115,162

n=11

yes no

NumCluster=79

nbsin_dde <
0.5

cmbGazVilleProp
< 0.75

const4974Prob
>= 0.33

const4974Prob
< 0.28

constAvant49Prob
< 0.44

0

n=12,739

15,765

n=22

16,401

n=16

15,169

n=7

20,180

n=8

21,273

n=7

yes no

NumCluster=68

nbsin_dde <
0.5

NBPIECS < 6.5

nbPer25a59_MOY
< 1.5

constAvant49Prob
>= 0.33

0

n=13,465

196

n=7

32,387

n=40

18,729

n=13

23,121

n=11

yes no

Figure 7.4: Decision trees for the enriched AXA data for charge dde (water
damages) payouts, sorted by SOM cluster payouts: NumCluster = 94, 72, 17,

69, 37, 96, 8, 79, 68.

variable either, e.g. dept < 75 would include 75 (Paris: (longitude, latitude) =

(2.34, 48.86)) with the geographically distant 74 (Haute-Savoie: (6.12, 45.90)) but

exclude the geographically close 93 (Seine-Saint-Denis: (2.20, 48.90). Longitude

and latitude are better adapted as, say longitude < 2.50, has a geographical

meaning. So dept was replaced by the longitude and latitude of the prefecture of

each department (longitude, latitude), obtained from SP532_villes_france.

csv and depts2015.txt. We compute three decision trees: one with both the

INSEE and ONDRP variables (Figure 7.5), one with the INSEE variables only

(Figure 7.6), and one where the commune level INSEE variables are replaced by

their departmental means in order to be comparable to the ONDRP variables

(Figure 7.7).

Chapter 7. Application to Insurance Dataset 91

For the decision tree with both added INSEE and ONDRP variables in Fig-

ure 7.5, the geographical variables longitude and latitude are important as dept

previously, though the ONDRP crime variables are more important here than the

INSEE housing variables.

CambriolHabProp

< 0.0011

DgrBPub < 26

CambriolHabProp

< 655e−6DgrBPrvProp >=

125e−6

CambriolHabProp

>= 700e−6

InfUrbProp <

25e−6

IncBPrvProp <

175e−6

longitude <

0.72

DgrBPub >= 68

CambriolHabProp

< 450e−6

DgrBPrvProp >=

815e−6

DgrBPrvProp >=

665e−6

ViolDomProp >=

45e−6

ViolDomProp <

15e−6

CambriolHabProp

>= 635e−6

CambriolHabProp

< 615e−6

MalEnfProp >=

50e−6

CambriolHabProp

< 0.001

longitude >=

−1.8

MalEnfProp <

75e−6longitude >=

1.1

DgrBPub >= 35

DgrBPrvProp >=

320e−6

longitude >=

6.8

CambriolHabProp

< 0.0012

latitude >= 48

DgrBPrvProp >=

345e−6

latitude < 45

9 100%
n=505619

9 100%
n=117259

19 100%
n=16219

19 100%
n=21004

97 100%
n=28638

69 100%
n=33928

99 100%
n=39724

5 93.2%
n=95878

6 96.3%
n=65623

9 97.6%
n=108786

1 100%
n=77513

72 100%
n=49197

19 100%
n=54367

99 100%
n=24398

17 100%
n=40095

37 100%
n=20085

9 38.3%
n=42715

98 100%
n=18468

94 100%
n=22661

96 100%
n=25629

97 100%
n=26633

30 100%
n=454630

91 100%
n=24503

91 100%
n=36141

80 100%
n=36022

97 75.1%
n=40358

99 100%
n=41776

94 100%
n=20835

98 100%
n=41410

yes no

Figure 7.5: Decision tree for predicting the SOM cluster labels of the enriched
AXA data: INSEE and ONDRP variables.

Each leaf node has a colour-coded label which denotes the estimated cluster

label obtained by following this decision tree. For each leaf node is annotated with

Chapter 7. Application to Insurance Dataset 92

the percentage of these contracts whose original SOM cluster label coincide with

the estimated label and the number of contracts contained in the node (n).

The decision tree with the added INSEE variables only is shown in Figure 7.6,

but only the AXA variables appear in the rules.

CDRESID >= 0.5

longitude >=
0.46

longitude <
1.1

latitude >= 44

latitude < 48

longitude <
3.7

longitude >=
3.1

longitude <
3.2

latitude >= 46

longitude >=
1.4

longitude <
1.3

longitude <
1.3

longitude >=
4.4

longitude >=
6.1

CDHABIT < 0.5

latitude < 49

longitude <
2.4

longitude >=
2.3

longitude >=
2.2

longitude <
3.4

latitude < 48

longitude <
5.2

latitude < 50

longitude <
2.9

longitude <
4.6

longitude >=
3.4

longitude <
5.7

longitude >=
6.6

latitude < 48

latitude < 45

longitude >=
−0.53

latitude >= 43

longitude >=
−2.2

latitude >= 48

longitude >=
−0.72

9 90.1%
n=177897

30 93.9%
n=117164

5 95.7%
n=86190

9 100%
n=17837

19 93.4%
n=25239

9 84.1%
n=130820

9 100%
n=14796

37 100%
n=20085

97 100%
n=28638

9 73.5%
n=53204

30 80.9%
n=83630

9 72.6%
n=192288

30 99.1%
n=71854

1 97.8%
n=79296

30 100%
n=33032

99 78.5%
n=33182

30 99.3%
n=122904

30 100%
n=36562

9 100%
n=19530

99 66.9%
n=55602

9 62.9%
n=90398

19 100%
n=30792

91 100%
n=24503

17 100%
n=40095

9 72.1%
n=48463

6 100%
n=58737

91 100%
n=36141

94 100%
n=20835

9 100%
n=19660

19 100%
n=21004

80 100%
n=36022

9 62.4%
n=159386

94 72.4%
n=31303

69 100%
n=33928

97 57.2%
n=29900

72 100%
n=49197

yes no

Figure 7.6: Decision tree for predicting the SOM cluster labels of the enriched
AXA data: INSEE variables only.

Chapter 7. Application to Insurance Dataset 93

Removing the ONDRP variables is too drastic in order to assess the influ-

ence of the INSEE variables. The ONDRP variables are available at the de-

partmental level whereas the INSEE variables at the commune (INSEE code)

level. In terms of finding groups of similar values, it is more likely to occur for

the more aggregated ONDRP variables than the lower level INSEE ones. To

remedy this, we replace the commune level INSEE variables with their mean ag-

gregated at the department level with the suffix MOYD indicating the moyenne

départementale. The resulting decision tree is displayed in Figure 7.7, which shows

that the INSEE (cmbGazVilleProp MOY, constAvant49 Prob MOY etc.), ONDRP

(cambiolHabProp, DgrBPub etc.) and AXA (longitude, latitude) variables all

play a role in the decision rules to predict the SOM cluster labels.

Chapter 7. Application to Insurance Dataset 94

CambriolHabProp
< 0.0011

DgrBPub < 26

CambriolHabProp
< 655e−6

constAvant49Prob_M...
>= 0.34

DgrBPrvProp >=
125e−6

MalEnfProp <
45e−6

latitude >= 49

cmbGazVilleProp_MO...
>= 0.16

CambriolHabProp
< 450e−6

DgrBPrvProp >=
665e−6

DgrBPrvProp >=
665e−6

ViolDomProp >=
45e−6

ViolDomProp <
15e−6

constAvant49Prob_M...
>= 0.27

CambriolHabProp
< 615e−6

MalEnfProp >=
50e−6

const7589Prob_MOYD
< 0.25

longitude >=
−1.8

MalEnfProp <
75e−6
longitude >=

1.1

DgrBPub >= 35

DgrBPrvProp >=
320e−6

longitude >=
6.8

CambriolHabProp
< 0.0012

latitude >= 48

DgrBPrvProp >=
345e−6

latitude < 45

9 100%
n=505619

9 100%
n=104473

19 100%
n=37223

69 100%
n=33928

97 69.1%
n=41424

99 100%
n=39724

5 100%
n=84113

6 83.6%
n=78125

9 100%
n=108049

1 100%
n=77513

72 100%
n=49197

19 100%
n=54367

99 100%
n=24398

17 100%
n=40095

37 100%
n=20085

9 38.3%
n=42715

98 100%
n=18468

94 100%
n=22661

96 100%
n=25629

97 100%
n=26633

30 100%
n=454630

91 100%
n=24503

91 100%
n=36141

80 100%
n=36022

97 75.1%
n=40358

99 100%
n=41776

94 100%
n=20835

98 100%
n=41410

yes no

Figure 7.7: Decision tree for predicting the SOM cluster labels of the enriched
AXA data: departemental mean of INSEE variables.

Chapter 7. Application to Insurance Dataset 95

7.4 Validation of SOM clusters

The accuracy of these decision trees are quantified in the cross classification tables

in Tables 7.1–7.3. Each row corresponds to the true SOM cluster label, and the

columns to the estimated cluster label induced by the classification tree. The

overall misclassification rates are the decision tree with the INSEE and ONDRP

variables is 0.022 (Table 7.1), with the INSEE variables only (Table 7.2) 0.137,

and with the INSEE departmental mean 0.042 (Table 7.3). Most of the non-zero

entries are on the main diagonal, indicating that in the vast majority of cases the

estimated labels from the decision tree coincide with the true SOM cluster labels.

Notable departures are for classes 8, 68 and 79 which are never estimated by any

of the rules for any of the decision trees. These three classes are the smallest

by number of contracts (3 648, 13 536 and 12 799) but contain some of the largest

individual payouts. So they are difficult to estimate when combined with the larger

clusters e.g. clusters 9 and 19 with 760 677 and 454 630 contracts respectively.

Estimated SOM cluster labels

T
r
u
e

S
O

M
c
l
u
s
t
e
r

l
a
b
e
l
s

1 5 6 8 9 17 19 30 37 68 69 72 79 80 91 94 96 97 98 99 Total

1 77513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77513
5 0 89311 667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89978
6 0 2097 63207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65304
8 0 0 1018 0 2630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3648
9 0 4470 731 0 745414 0 0 0 0 0 0 0 0 0 0 0 0 10062 0 0 760677

17 0 0 0 0 0 40095 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40095
19 0 0 0 0 0 0 91590 0 0 0 0 0 0 0 0 0 0 0 0 0 91590
30 0 0 0 0 0 0 0 454630 0 0 0 0 0 0 0 0 0 0 0 0 454630
37 0 0 0 0 0 0 0 0 20085 0 0 0 0 0 0 0 0 0 0 0 20085
68 0 0 0 0 13536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13536
69 0 0 0 0 0 0 0 0 0 0 33928 0 0 0 0 0 0 0 0 0 33928
72 0 0 0 0 0 0 0 0 0 0 0 49197 0 0 0 0 0 0 0 0 49197
79 0 0 0 0 12799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12799
80 0 0 0 0 0 0 0 0 0 0 0 0 0 36022 0 0 0 0 0 0 36022
91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60644 0 0 0 0 0 60644
94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43496 0 0 0 0 43496
96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25629 0 0 0 25629
97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85567 0 0 85567
98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59878 0 59878
99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 105898 105898

Total 77513 95878 65623 0 774379 40095 91590 454630 20085 0 33928 49197 0 36022 60644 43496 25629 95629 59878 105898 2130114

Table 7.1: Cross classification table for true and estimated SOM cluster la-
bels from decision tree for enriched AXA data: INSEE and ONDRP variables.

Overall misclassification rate is 0.022.

As the decision tree for the 2012 SOM clusters of the enriched AXA data

with the departmental mean of INSEE variables, in Figure 7.7 and Table 7.3, is

preferred as it utilises the AXA, INSEE and ONDRP variables, we validate it on

test data that was not used in the training: the enriched contracts from previous

years 2010, 2011.The same procedure for merging with the departmental mean of

INSEE variables is carried out, and these merged data are classified according to

the decision tree. The estimated SOM cluster labels are merged to these original

data.

Chapter 7. Application to Insurance Dataset 96

Estimated SOM cluster labels

T
r
u
e

S
O

M
c
l
u
s
t
e
r

l
a
b
e
l
s

1 5 6 8 9 17 19 30 37 68 69 72 79 80 91 94 96 97 98 99 Total

1 77513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77513
5 0 82499 0 0 7479 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89978
6 0 0 58737 0 6567 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65304
8 0 0 0 0 3648 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3648
9 0 0 0 0 712044 0 0 23083 0 0 0 0 0 0 0 0 0 12786 0 12764 760677

17 0 0 0 0 0 40095 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40095
19 0 0 0 0 16219 0 75371 0 0 0 0 0 0 0 0 0 0 0 0 0 91590
30 0 0 0 0 14028 0 0 440602 0 0 0 0 0 0 0 0 0 0 0 0 454630
37 0 0 0 0 0 0 0 0 20085 0 0 0 0 0 0 0 0 0 0 0 20085
68 0 0 0 0 13536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13536
69 0 0 0 0 0 0 0 0 0 0 33928 0 0 0 0 0 0 0 0 0 33928
72 0 0 0 0 0 0 0 0 0 0 0 49197 0 0 0 0 0 0 0 0 49197
79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12799 12799
80 0 0 0 0 0 0 0 0 0 0 0 0 0 36022 0 0 0 0 0 0 36022
91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60644 0 0 0 0 0 60644
94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43496 0 0 0 0 43496
96 1783 3691 0 0 17030 0 1664 1461 0 0 0 0 0 0 0 0 0 0 0 0 25629
97 0 0 0 0 39815 0 0 0 0 0 0 0 0 0 0 0 0 45752 0 0 85567
98 0 0 0 0 59878 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59878
99 0 0 0 0 34035 0 0 0 0 0 0 0 0 0 0 8642 0 0 0 63221 105898

Total 79296 86190 58737 0 924279 40095 77035 465146 20085 0 33928 49197 0 36022 60644 52138 0 58538 0 88784 2130114

Table 7.2: Cross classification table for true and estimated SOM cluster la-
bels from decision tree for enriched AXA data: INSEE variables only. Overall

misclassification rate is 0.137.

Estimated SOM cluster labels

T
r
u
e

S
O

M
c
l
u
s
t
e
r

l
a
b
e
l
s

1 5 6 8 9 17 19 30 37 68 69 72 79 80 91 94 96 97 98 99 Total

1 77513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77513
5 0 84113 5865 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89978
6 0 0 65304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65304
8 0 0 3648 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3648
9 0 0 3308 0 720933 0 0 0 0 0 1393 0 0 0 7421 0 2584 23294 0 1744 760677

17 0 0 0 0 0 40095 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40095
19 0 0 0 0 0 0 91590 0 0 0 0 0 0 0 0 0 0 0 0 0 91590
30 0 0 0 0 0 0 0 454630 0 0 0 0 0 0 0 0 0 0 0 0 454630
37 0 0 0 0 0 0 0 0 20085 0 0 0 0 0 0 0 0 0 0 0 20085
68 0 0 0 0 13536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13536
69 0 0 0 0 1393 0 0 0 0 0 32535 0 0 0 0 0 0 0 0 0 33928
72 0 0 0 0 0 0 0 0 0 0 0 49197 0 0 0 0 0 0 0 0 49197
79 0 0 0 0 12799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12799
80 0 0 0 0 0 0 0 0 0 0 0 0 0 36022 0 0 0 0 0 0 36022
91 0 0 0 0 7421 0 0 0 0 0 0 0 0 0 53223 0 0 0 0 0 60644
94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43496 0 0 0 0 43496
96 0 0 0 0 2584 0 0 0 0 0 0 0 0 0 0 0 23045 0 0 0 25629
97 0 0 0 0 446 0 0 0 0 0 0 0 0 0 0 0 0 85121 0 0 85567
98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59878 0 59878
99 0 0 0 0 1744 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104154 105898

Total 77513 84113 78125 0 760856 40095 91590 454630 20085 0 33928 49197 0 36022 60644 43496 25629 108415 59878 105898 2130114

Table 7.3: Cross classification table for true and estimated SOM cluster la-
bels from decision tree for enriched AXA data: departmental mean of INSEE

variables. Overall misclassification rate is 0.042.

Since we do not have the true cluster labels for 2010, 2011, to validate the

decision tree on these data, we compare the summary statistics for the number of

contracts (n) and the total of the claims for fire (INC) and water (DDE) damages

per SOM cluster. In Table 7.4 are four groups of three columns: the rightmost are

the 2012 data with the true SOM clusters which serves as our baseline, the third

are the same 2012 data but re-classified using the decision tree, the second and

first are for the 2011 and 2010 data.

A comparison of the distributions of the summary statistics is easier with the

graphical bar charts in Figure 7.8. Within each cluster, there are four bars: the

violet are the 2012 data with the true SOM clusters, the turquoise is the 2012 data

re-classified using the decision tree, the green is for 2011, and the orange is for 2010.

Chapter 7. Application to Insurance Dataset 97

S
O

M
c
l
u
s
t
e
r

l
a
b
e
l
s

2010 estimated 2011 estimated 2012 estimated 2012 true

n INC DDE n INC DDE n INC DDE n INC DDE
1 71417 2208521 288517 70375 3453512 311125 77513 3554052 503184 77513 3554052 503184
5 0 0 0 0 0 0 84113 3805694 609413 89978 3832070 698697
6 113808 3044936 888294 111498 2733776 616970 78125 2421022 1109152 65304 1779748 833714
8 0 0 0 0 0 0 0 0 0 3648 540020 131282
9 587543 26013920 3685580 584201 28928093 2564389 760856 36991021 5558205 760677 36681639 5689450

17 36636 1517202 148858 36383 405406 193108 40095 1420326 253458 40095 1420326 253458
19 81504 1745568 420214 82415 2937252 393204 91590 3348962 559426 91590 3348962 559426
30 342172 13098008 3278232 334491 10695066 2005539 454630 14032596 5975661 454630 14032596 5975661
37 18157 613664 132921 17941 1187235 63110 20085 1389783 214435 20085 1389783 214435
68 0 0 0 0 0 0 0 0 0 13536 142733 74433
69 30224 556372 129254 30357 523178 119306 33928 1139292 234007 33928 1134082 242247
72 47858 1764099 165154 47206 1065009 168921 49197 1633163 277043 49197 1633163 277043
79 0 0 0 0 0 0 0 0 0 12799 284444 88787
80 32849 986640 308077 32448 854509 274218 36022 902039 414788 36022 902039 414788
91 48696 1674154 625144 47989 1981868 470894 60644 2306262 780464 60644 2306262 780464
94 39945 1911866 393761 39455 1173618 351561 43496 1572844 355461 43496 1572844 355461
96 24081 710802 262052 23473 601661 213970 25629 730088 205032 25629 928012 198457
97 82983 2845194 785122 81852 3987037 740369 108415 5256038 931430 85567 4337554 724834
98 56417 2158410 323377 55273 3027478 256419 59878 4795303 526774 59878 4795303 526774
99 74744 3242670 423559 74276 3178022 369088 105898 4109538 762898 105898 4792391 728237

Total 1689034 64092025 12258117 1669633 66732721 9112191 2130114 89408023 19270831 2130114 89408023 19270831

Table 7.4: Validation of SOM cluster labels from decision tree for enriched
AXA 2012 data with departmental mean of INSEE variables. Validation data
are contracts from 2010, 2011 and 2012. INC is fire damages claims (euros),
DDE is water damages claims (euros). Summary statistics are the number of

contracts n, total fire damages and total water damages claims.

From Table 7.4, for 2010, 2011 there are 1.60 and 1.68 million contracts, e 64.1M

and e 66.7M of fire damages, and e 12.2M and e 9.11M of water damages. In

comparison for 2012, there are 2.1 million contracts, e 89.4M of fire and e 19.3M

of water damages. So we can expect that the heights of the bars for the former

to be around 20%, 20% and 40–50% lower than the latter. Taking these into

account, the match between the number of contracts is good, especially for the

highest bars in clusters 9 and 30. For the fire damages, cluster 30 is proportionally

over-represented for 2010, 2011, but nonetheless does not exceed the 2012 level.

For the water damages, clusters 9, 30 for 2011 appears to be under-represented

and cluster 9 is over-represented for 2010, in comparison to 2012. Overall the SOM

cluster labels from 2012 are validated for clustering the 2010, 2011 data in terms

of the number of contracts and fire damages, but less so for the water damages.

7.5 Analysis of the insurance big data using SOM-

MR

To further analyze clusters, we use the following 3 indicators: rate of claims,

payouts per contract, and loss per contract.

Rate of claims =
Number of claims

Number of contracts
(7.1)

Chapter 7. Application to Insurance Dataset 98

1 5 6 8 9 17 19 30 37 68 69 72 79 80 91 94 96 97 98 99

N
u

m
b

e
r

o
f

c
o

n
tr

a
c
ts

 (
n

)

0
e

+
0

0
3

e
+

0
5

6
e

+
0

5 2010 est.
2011 est.
2012 est.
2012 true

1 5 6 8 9 17 19 30 37 68 69 72 79 80 91 94 96 97 98 99

F
ir
e

 d
a

m
a

g
e

s
 I

N
C

 (
e

u
ro

s
)

0
.0

e
+

0
0

2
.0

e
+

0
7

1 5 6 8 9 17 19 30 37 68 69 72 79 80 91 94 96 97 98 99

SOM cluster

W
a

te
r

d
a

m
a

g
e

s
 D

D
E

 (
e

u
ro

s
)

0
e

+
0

0
3

e
+

0
6

Figure 7.8: Validation of SOM cluster labels from decision tree for enriched
AXA 2012 data with departmental mean of INSEE variables. Validation data
are contracts from 2010 (orange), 2011 (green) and 2012 (turquoise). The 2012
data with true SOM clusters are violet. INC is fire damages claims (euros),
DDE is water damages claims (euros). Summary statistics are the number of

contracts n, total fire damages and total water damages claims.

Payout per claim =
Sum of claim amounts

Number of claims
(7.2)

Loss per contract = Rate of claims ∗ Payout per claim (7.3)

Regarding these indicators, especially the maximum and minimum values, the

insurance company can focuse its analysis on the corresponding clusters. Thus, a

model based on the features of assigned data can be defined. Using this model, the

insurance company can predict the payouts for a new customer within a cluster

and so propose more personalised insurance contracts for its customers.

Table 7.5 summarizes the values of these indicators for clusters: 1, 66, 55, 21,

and 47. We distinguish two types of claims: claim water damage (WAT) and claim

Chapter 8

Conclusion and perspectives

After summarizing the key issues touched upon this work, the next section dis-

cusses the main research avenues open for further work.

8.1 Summary

The first chapters were devoted to giving a state-of-the-art on both clustering and

scalable methods using the MapReduce paradigm and clustering data streams as

well as a survey on bi-clustering methods and an introduction to the Big Data

ecosystem.

Our first contribution is concerned with extending the SOM method for scal-

ability seeks. The proposed SOM-MR algorithm is implemented with the Spark

framework which represents a new way of writing using the MapReduce paradigm.

The major research challenge addressed is how to minimize the input and output

of primitives (map and reduce) for topological clustering algorithm. So, we show

that we can save computation time by changing the (key, value) parameters.

Afterwards, in the second contribution, we presented the BiTM distributed

algorithm for scalable bi-clustering based on topological maps. We defined a new

cost function and so a new formalization of topological bi-clustering. After that,

we proposed a model for scalability. This model consists of decomposing the db-

clustering problem into the elementary functions, Map and Reduce.

Then, we presented our work carried in the context of an insurance Big Data

project 1. We applied the SOM-MR method to cluster the insurance dataset

1http://ns209168.ovh.net/squarepredict/

101

Chapter 8. Conclusion and perspectives 102

merged with open data. After that, we illustrated the utility of the SOM-MR

algorithm as an unsupervised learning by analyzing the cluster results and com-

bining them with a supervised method.

8.2 Perspectives

8.2.1 Biclustering and feature group weighting

In the following, we denote a matrix by bold capital letters such as G. Vectors are

denoted by small boldface letters such as g and matrix and vector elements are

represented respectively by small letters such as gji . As traditional self-organizing

maps, which is increasingly used as tools for clustering and visualization, wBiTM

consists of a discrete set of cells C called map with K cells. This map has a dis-

crete topology defined as an undirected graph, it is usually a regular grid in 2

dimensions. For each pair of cells (c, r) on the map, the distance δ(c, r) is defined

as the length of the shortest chain linking cells r and c on the grid. For each cell

c, this distance defines a neighbor cell.

Let ℜd be the euclidean data space and D the matrix of data, where each

observation xi = (x1
i , x

2
i , ..., x

j
i , .., x

d
i) is a vector in D ⊂ ℜd. The set of rows (ob-

servations) is denoted by I = {1, ..., N}. Similarly, the set of columns (features) is

denoted by J = {1,, d}. We are interested in simultaneously clustering obser-

vation I into K clusters {P1, P2, ..., Pk, .., PK}, where Pk = {xi, φz(xi) = k} and

features J into L clusters {Q1, Q2, ..., Ql, .., QL} where Ql = {x
j, φw(x

j) = l}. We

denote by φz the assignment function of row (observation) and φw the assignment

function of column (feature).

The main purpose of wBiTM is to transform a data matrixD into a block struc-

ture organized in a topological map. In wBiTM, each cell r ∈ C is associated with

a prototype gk = (g1k, g
2
k..., g

l
k, ..., g

L
k), and weight vector πk = (π1

k, π
2
k..., π

l
k, ..., π

L
k)

where L < d and glk ∈ ℜ. G = {g1,,gk} and Π = {π1,, πk} denotes re-

spectively the set of prototype and the weight vector. To facilitate formulation,

we define two binary matrices Z = [zki] and W = [wl
j] to save the assignment

associated respectively to observations and features:

zki =

{

1 if xi ∈ Pk,

0 else

Chapter 8. Conclusion and perspectives 103

wl
j =

{

1 if xj ∈ Ql

0 else

Without using the weight parameter, biclustering topological maps, proposes to

minimize the following cost function:

RBiTM(W,Z,G) =
K
∑

k=1

L
∑

l=1

N
∑

i=1

d
∑

j=1

K
∑

r=1

KT (δ(r, k))zki w
l
j(x

j
i − glr)

2

wBiTM extends the cost function with additional parameter π to control the

feature group weights at each iteration of the biclustering process. To cluster

D into K and L clusters in both observations and features, we propose the new

following objective function to optimize in the biclustering process of wBiTM:

RwBiTM(W,Z,G,Π) =
K
∑

k=1

L
∑

l=1

N
∑

i=1

d
∑

j=1

K
∑

r=1

KT (δ(r, k))zki w
l
j(π

l
rx

j
i − glr)

2 (8.1)

This cost function can be written as follows:

RwBiTM(W,Z,G,Π) =
K
∑

k=1

L
∑

l=1

∑

xj
i∈B

l
k

K
∑

r=1

KT (δ(r, k))(πl
rx

j
i − glr)

2

We can detect the bicluster of data denoted by Bl
k = {x

j
i |z

k
i w

l
j = 1}. Typically the

neighborhood function KT (δ) = K(δ/T) is a positive function, which decreases as

the distance between two cells in the latent space C increases and where T con-

trols the width of the neighborhood function.Thus T is decreased between two

values Tmax and Tmin. In practice, we use the neighborhood function defined as

KT (δ(c, r)) = exp
(

−δ(c,r)
T

)

and T = Tmax(
Tmin

Tmax
)

t
tf−1 , where t is the current epoch

and tf the number of epoch.

The objective function (Eq. 8.1) can be locally minimized by iteratively solving

the following three minimization problems:

• Problem 1: Fix G = Ĝ, W = Ŵ and Π = Π̂, solve the reduced problem

RwBiTM(Ŵ,Z, Ĝ, Π̂) ;

• Problem 2: Fix G = Ĝ, Z = Ẑ and Π = Π̂, solve the reduced problem

RwBiTM(W, Ẑ, Ĝ, Π̂);

Chapter 8. Conclusion and perspectives 104

• Problem 3: Fix W, Z and Π = Π̂, solve the reduced problem

RwBiTM(Ŵ, Ẑ,G, Π̂);

• Problem 4: Fix W = Ŵ, Z = Ẑ and G = Ĝ, solve the reduced problem

RwBiTM(Ŵ, Ẑ, Ĝ,Π) ;

In order to reduce the computational time, we assign each observation and feature

without using neighborhood cell as the traditional topological map.

Problem 1 is solved by defining zki as:

zki =

{

1 if xi ∈ Pk, k = φz(xi)

0 else

Where each observation xi is assigned to the closest prototype gk using the as-

signment function, defined as follows:

φz(xi) = argmin
c

d
∑

j=1

L
∑

l=1

wl
j(π

l
cx

j
i − glc)

2 (8.2)

Problem 2 is solved by defining wl
j as

wl
j =

{

1 if xj ∈ Ql, l = φw(x
j)

0 else

Where each feature xj is assigned to the closest prototype gl using the assignment

function, defined as follows:

φw(x
j) = argmin

l

N
∑

i=1

K
∑

k=1

zki (π
l
rx

j
i − glr)

2 (8.3)

Problem 3 is resolved for the numerical features by :

glr =

∑K
k=1

∑N
i=1

∑d
j=1K

T (δ(k, r)zki w
l
jπ

l
rx

j
i

∑K
k=1

∑N
i=1

∑d
j=1K

T (δ(k, r))zki w
l
j

This value is obtained by resolving the gradients ∂RwBiTM

∂glr
= 0

Chapter 8. Conclusion and perspectives 105

glr =

∑K
k=1K

T (δ(k, r))
∑N

i=1

∑d
j=1 z

k
i w

l
jπ

l
rx

j
i

∑K
k=1K

T (δ(k, r))
∑N

i=1

∑d
j=1 z

k
i w

l
j

(8.4)

For the problem 4, the component πl
r of Π = (π1

r , π
2
r , ..., π

l
r, ..., π

d
r) is computed

as follows:

πl
r =

N
∑

i=1

d
∑

j=1

KT (δ(r, φz(xi)))w
l
jx

j
ig

l
r

N
∑

i=1

d
∑

j=1

KT (δ(r, φz(xi)))wl
j(x

j
i)

2

(8.5)

This value is obtained by resolving the gradients ∂RwBiTM

∂πl
r

= 0.

8.2.2 Conclusion

In this perspective work, we have proposed a new feature group weighting using

biclustering topological maps approach. The main novelty of our model is the

use of topological model to organize the data matrix into homogeneous biclusters

by considering simultaneously rows and columns, and learning new parameter of

feature group weighting. A series of experiments are conducted to validate the pro-

posed method. Experimental results demonstrate that our algorithm is promising

and identify meaningful biclusters. Our algorithm inherits all the classical vi-

sualization of topological maps and provides a new visualizations to better data

understanding. In future work, we will test and improve our method on further

real applications. Further investigation is necessary to understand the relationship

between weight feature group and feature group selection.

Bibliography

T. Kohonen. Self-organizing Maps. Springer Berlin, 2001.

Yuri Demchenko, Paola Grosso, Cees De Laat, and Peter Membrey. Addressing big

data issues in scientific data infrastructure. In Collaboration Technologies and

Systems (CTS), 2013 International Conference on, pages 48–55. IEEE, 2013.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Re-

silient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX Symposium on Networked Sys-

tems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27,

2012, pages 15–28, 2012.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Pro-

ceedings of the Second International Conference on Knowledge Discovery and

Data Mining (KDD-96), Portland, Oregon, USA, pages 226–231, 1996.

Charu C. Aggarwal and Chandan K. Reddy. Data Clustering: Algorithms and

Applications. CRC Press, 2014.

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-

niques. Elsevier, 2011.

Brian S. Everitt, Sabine Landau, and Morven Leese. Cluster Analysis. Wiley

Publishing, 4th edition, 2009. ISBN 0340761199, 9780340761199.

John R. Mashey. Big data and the next wave of infrastress problems, solutions,

opportunities. 1998.

Wei Fan and Albert Bifet. Mining big data: current status, and forecast to the

future. ACM sIGKDD Explorations Newsletter, 14(2):1–5, 2013.

107

Bibliography 108

Douglas Laney. 3D data management: Controlling data volume, velocity, and

variety. Technical report, META Group, February 2001.

John Gantz and David Reinsel. Extracting value from chaos. IDC iview, 1142:

1–12, 2011.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

In ACM SIGOPS operating systems review, volume 37, pages 29–43. ACM, 2003.

Mike Burrows. The chubby lock service for loosely-coupled distributed systems.

In Proceedings of the 7th symposium on Operating systems design and imple-

mentation, pages 335–350. USENIX Association, 2006.

Dhruba Borthakur. The hadoop distributed file system: Architecture and design.

Hadoop Project Website, 11(2007):21, 2007.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008a.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd

USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages

10–10, Berkeley, CA, USA, 2010a. USENIX Association.

Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1988. ISBN 0-13-022278-X.

Samuel Kaski, Jari Kangas, and Teuv Kohonen. Bibliography of self-organizing

map (som) papers: 1981-1997. Neural computing surveys, 1:102–350, 1998.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2nd edition, 1998. ISBN 0132733501.

T. Kohonen, M. R. Schroeder, and T. S. Huang, editors. Self-Organizing Maps.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 2001a. ISBN

3540679219.

T. Martinetz and K. Schulten. A ”Neural-Gas” Network Learns Topologies. Ar-

tificial Neural Networks, I:397–402, 1991.

Bernd Fritzke. Unsupervised clustering with growing cell structures. In In Proceed-

ings of the International Joint Conference on Neural Networks, pages 531–536.

IEEE, 1991.

Bibliography 109

Bernd Fritzke. A growing neural gas network learns topologies. In NIPS, pages

625–632, 1994.

Oliver Beyer and Philipp Cimiano. Online semi-supervised growing neural gas.

Int. J. Neural Syst., 22(5), 2012.

Amineh Amini, Ying Wah Teh, and Hadi Saboohi. On density-based data streams

clustering algorithms: A survey. J. Comput. Sci. Technol., 29(1):116–141, 2014.

Chris Fraley and Adrian E Raftery. How many clusters? which clustering method?

answers via model-based cluster analysis. The computer journal, 41(8):578–588,

1998.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the royal statistical

society. Series B (methodological), pages 1–38, 1977a.

Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and exten-

sions, volume 382. John Wiley & Sons, 2007.

Ali El Attar, Antoine Pigeau, and Marc Gelgon. Robust estimation of a global

gaussian mixture by decentralized aggregations of local models. Web Intelligence

and Agent Systems, 11(3):245–262, 2013. doi: 10.3233/WIA-130273. URL http:

//dx.doi.org/10.3233/WIA-130273.

Ali El Attar. Estimation robuste des modèles de mélange sur des données

distribuées. Theses, Université de Nantes, July 2012. URL https://tel.

archives-ouvertes.fr/tel-00746118.

Ralf Lämmel. Google’s mapreduce programming model—revisited. Science of

computer programming, 70(1):1–30, 2008.

Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Dbdc: Density based

distributed clustering. In Advances in Database Technology-EDBT 2004, pages

88–105. Springer, 2004.

Tugdual Sarazin, Hanane Azzag, and Mustapha Lebbah. SOM clustering using

spark-mapreduce. In 2014 IEEE International Parallel & Distributed Processing

Symposium Workshops, Phoenix, AZ, USA, May 19-23, 2014, pages 1727–1734,

2014.

Bibliography 110

Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based on

mapreduce. In Cloud computing, pages 674–679. Springer, 2009.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan. Mr-

dbscan: a scalable mapreduce-based dbscan algorithm for heavily skewed data.

Frontiers of Computer Science, 8(1):83–99, 2014.

Ali Seyed Shirkhorshidi, Saeed Aghabozorgi, Teh Ying Wah, and Tutut Herawan.

Big data clustering: a review. In Computational Science and Its Applications–

ICCSA 2014, pages 707–720. Springer, 2014.

Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google

news personalization: scalable online collaborative filtering. In Proceedings of

the 16th international conference on World Wide Web, pages 271–280. ACM,

2007.

Henggang Cui, Jinliang Wei, and Wei Dai. Parallel implementation of expectation-

maximization for fast convergence.

Aniruddha Basak, Irina Brinster, and Ole J Mengshoel. Mapreduce for bayesian

network parameter learning using the em algorithm. Proc. of Big Learning:

Algorithms, Systems and Tools, 2012.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei

Vassilvitskii. Scalable k-means++. Proceedings of the VLDB Endowment, 5(7):

622–633, 2012.

Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In

Proceedings of the 17th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 681–689. ACM, 2011a.

G. Govaert. Classification croisée. PhD thesis, Université Paris 6, France, 1983.

Ahsan Abdullah and Amir Hussain. A new biclustering technique based on crossing

minimization. Neurocomputing, 69(16):1882–1896, 2006.

Bibliography 111

Gérard Govaert and Mohamed Nadif. Un modèle de mélange pour la classifica-

tion croisée d’un tableau de données continue. In CAP’09, 11e conférence sur

l’apprentissage artificiel, pages 287–302, 2009.

Bongjune Kwon and Hyuk Cho. Scalable co-clustering algorithms. In International

Conference on Algorithms and Architectures for Parallel Processing, pages 32–

43. Springer, 2010.

Wassim Ayadi, Mourad Elloumi, and Jin-Kao Hao. Pattern-driven neighborhood

search for biclustering of microarray data. BMC bioinformatics, 13(7):1, 2012.

Fabŕıcio Olivetti de França, Guilherme Palermo Coelho, and Fernando J

Von Zuben. Predicting missing values with biclustering: A coherence-based

approach. Pattern Recognition, 46(5):1255–1266, 2013.

J. A. Hartigan. Direct clustering of a data matrix. Journal of the American

Statistical Association, 67(337):123–129.

Amos Tanay, Roded Sharan, and Ron Shamir. Discovering statistically significant

biclusters in gene expression data. In In Proceedings of ISMB 2002, pages 136–

144, 2002.

D. Greene and P. Cunningham. Spectral co-clustering for dynamic bipartite

graphs. In Workshop on dynamic networks and knowledge discovery at ecml’10,

barcelona, spain, 2010.

Hanhuai Shan, , and Arindam Banerjee. Residual bayesian co-clustering for matrix

approximation. In SDM, pages 223–234, 2010.

Fabrizio Angiulli, Eugenio Cesario, and Clara Pizzuti. A greedy search approach to

co-clustering sparse binary matrices. In ICTAI, pages 363–370. IEEE Computer

Society, 2006.

Malika Charrad, Y. Lechevallier, G. Saporta, and M Ben Ahmed. Le bi-

partitionnement: Etat de l’art sur les approches et les algorithmes. 2008.

Xavier Jollois. Contribution de la classification automatique à la Fouille de

Données. Dordrecht, France, 2003.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the royal statistical

society. Series B (methodological), pages 1–38, 1977b.

Bibliography 112

T. Kohonen, M. R. Schroeder, and T. S. Huang, editors. Self-Organizing Maps.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 2001b.

Stanislav Busygin, Gerrit Jacobsen, Ewald Kremer, and Contentsoft Ag. Double

conjugated clustering applied to leukemia microarray data. In In 2nd SIAM

ICDM, Workshop on clustering high dimensional data, 2002.

Marie Cottrell, Smail Ibbou, and Patrick Letrémy. Som-based algorithms for

qualitative variables. Neural Netw., 17(8-9):1149–1167, October 2004. ISSN

0893-6080. doi: 10.1016/j.neunet.2004.07.010. URL http://dx.doi.org/10.

1016/j.neunet.2004.07.010.

K. Benabdeslem and K. Allab. Bi-clustering continuous data with self-organizing

map. Neural Computing and Applications, 2012.

José Caldas and Samuel Kaski. Hierarchical generative biclustering for microrna

expression analysis. Journal of Computational Biology, 18(3):251–261, 2011.

DQ Mao, Yi Luo, JH Zhang, and Jun Zhu. A new strategy of cooperativity

of biclustering and hierarchical clustering: A case of analyzing yeast genomic

microarray datasets. Front. Biosci, 10:1619–1627, 2005.

G Getz, E Levine, and E Domany. Coupled two-way clustering analysis of gene

microarray data. Proceedings of the National Academy of Sciences of the United

States of America, 97(22):12079–12084, 2000a. URL http://arxiv.org/abs/

physics/0004009.

G. Getz, E. Levine, E. Domany, and M. Q. Zhang. Super paramagnetic clustering

of yeast gene expression profiles, 2000b.

Yizong Cheng and George M. Church. Biclustering of expression data, 2000.

Amir Ben-Dor, Benny Chor, Richard Karp, and Zohar Yakhini. Discovering lo-

cal structure in gene expression data: the order-preserving submatrix problem.

Journal of computational biology, 10(3-4):373–384, 2003.

Laura Lazzeroni and Art Owen. Plaid models for gene expression data. Statistica

Sinica, 12:61–86, 2000.

Bo Long, Zhongfei (Mark) Zhang, and Philip S. Yu. Co-clustering by block value

decomposition. In Proceedings of the eleventh ACM SIGKDD international con-

ference on Knowledge discovery in data mining, KDD ’05, pages 635–640, New

Bibliography 113

York, NY, USA, 2005. ACM. ISBN 1-59593-135-X. doi: 10.1145/1081870.

1081949. URL http://doi.acm.org/10.1145/1081870.1081949.

Jiho Yoo and Seungjin Choi. Orthogonal nonnegative matrix tri-factorization for

co-clustering: Multiplicative updates on stiefel manifolds. Inf. Process. Manage.,

46(5):559–570, September 2010. ISSN 0306-4573. doi: 10.1016/j.ipm.2009.12.

007. URL http://dx.doi.org/10.1016/j.ipm.2009.12.007.

Lazhar Labiod and Mohamed Nadif. Co-clustering under nonnegative ma-

trix tri-factorization. In Proceedings of the 18th international conference

on Neural Information Processing - Volume Part II, ICONIP’11, pages

709–717, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-24957-

0. doi: 10.1007/978-3-642-24958-7 82. URL http://dx.doi.org/10.1007/

978-3-642-24958-7_82.

Fanhua Shang, L. C. Jiao, and Fei Wang. Graph dual regularization non-negative

matrix factorization for co-clustering. Pattern Recogn., 45(6):2237–2250, June

2012. ISSN 0031-3203. doi: 10.1016/j.patcog.2011.12.015. URL http://dx.

doi.org/10.1016/j.patcog.2011.12.015.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401:788, 1999.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-

versity press, 2004.

Raphaël K Freitas. K-théorie réelle des variétés de Stiefel sans torsion. PhD

thesis, Lille 1, 1985.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

Comput. Surv., 31(3):264–323, September 1999. doi: 10.1145/331499.331504.

Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incre-

mental clustering and dynamic information retrieval. In Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing, STOC ’97,

pages 626–635, New York, NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi:

10.1145/258533.258657.

Bibliography 114

Richard Matthew Mccutchen and Samir Khuller. Streaming algorithms for k-

center clustering with outliers and with anonymity. In Proceedings of the 11th in-

ternational workshop, APPROX 2008, and 12th international workshop, RAN-

DOM 2008 on Approximation, Randomization and Combinatorial Optimization:

Algorithms and Techniques, APPROX ’08 / RANDOM ’08, pages 165–178,

Berlin, Heidelberg, 2008. Springer-Verlag.

Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high

dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90–105, June 2004.

ISSN 1931-0145.

Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-dimensional

data: A survey on subspace clustering, pattern-based clustering, and correlation

clustering. ACM Trans. Knowl. Discov. Data, 3(1):1:1–1:58, March 2009. ISSN

1556-4681.

Zhenhua Lv, Yingjie Hu, Haidong Zhong, Jianping Wu, Bo Li, and Hui Zhao. Par-

allel k-means clustering of remote sensing images based on mapreduce. In Pro-

ceedings of the 2010 international conference on Web information systems and

mining, WISM’10, pages 162–170, Berlin, Heidelberg, 2010. Springer-Verlag.

ISBN 3-642-16514-1, 978-3-642-16514-6.

Chao Lin, Yan Yang, and Tonny Rutayisire. A parallel cop-kmeans clustering

algorithm based on mapreduce framework. In Yinglin Wang and Tianrui Li,

editors, Knowledge Engineering and Management, volume 123 of Advances in

Intelligent and Soft Computing, pages 93–102. Springer Berlin Heidelberg, 2011.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, January 2008b. ISSN 0001-0782.

doi: 10.1145/1327452.1327492.

Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In

Proceedings of the 17th ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’11, pages 681–689, New York, NY, USA,

2011b. ACM. ISBN 978-1-4503-0813-7.

Seung-Jin Sul and Andrey Tovchigrechko. Parallelizing blast and som algorithms

with mapreduce-mpi library. In IPDPS Workshops’11, pages 481–489, 2011.

Robson Leonardo Ferreira Cordeiro, Caetano Traina, Junior, Agma Juci

Machado Traina, Julio López, U. Kang, and Christos Faloutsos. Clustering

Bibliography 115

very large multi-dimensional datasets with mapreduce. In Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’11, pages 690–698, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0813-7.

Amol Ghoting, Prabhanjan Kambadur, Edwin Pednault, and Ramakrishnan Kan-

nan. Nimble: a toolkit for the implementation of parallel data mining and

machine learning algorithms on mapreduce. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining,

KDD ’11, pages 334–342, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

0813-7. doi: 10.1145/2020408.2020464.

Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computa-

tion for mapreduce. In SODA’10, pages 938–948, 2010.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. Spark: cluster computing with working sets. In Proceedings of the

2nd USENIX conference on Hot topics in cloud computing, HotCloud’10, pages

10–10, Berkeley, CA, USA, 2010b. USENIX Association.

Markus Varsta, Jukka Heikkonen, Jouko Lampinen, and José Del R. Millán. Tem-

poral kohonen map and the recurrent self-organizing map: Analytical and ex-

perimental comparison. Neural Process. Lett., 13:237–251, July 2001. ISSN

1370-4621. doi: 10.1023/A:1011353011837.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale

graph processing. In Proceedings of the 2010 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’10, pages 135–146, New York, NY,

USA, 2010. ACM. ISBN 978-1-4503-0032-2. doi: 10.1145/1807167.1807184.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M. Hellerstein. Distributed graphlab: A framework for machine

learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716–727,

April 2012. ISSN 2150-8097.

A. Frank and A. Asuncion. Uci machine learning repository. Technical

report, School of Information and Computer Sciences, available at :http

://archive.ics.uci.edu/ml, 2010.

Bibliography 116

J. A. Hartigan. Direct Clustering of a Data Matrix. Journal of the American

Statistical Association, 67(337):123–129, 1972. ISSN 01621459. doi: 10.2307/

2284710. URL http://dx.doi.org/10.2307/2284710.

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by nonneg-

ative matrix factorization. Nature, 401:788–791, 1999.

G. Govaert and M. Nadif. Block clustering with Bernoulli mixture models: Com-

parison of different approaches. Computational Statistics and Data Analysis, 52:

3233–3245, 2008.

R. Priam, M. Nadif, and G. Govaert. The block generative topographic map-

ping. In The Third International Workshop on Artificial Neural Networks in

Pattern Recognition, Lecture Notes in Artificial Intelligence (LNCS), number

5064, pages 13–23, Berlin Heidelberg, September 2008. Springer.

Evan R. Sparks, Ameet Talwalkar, Virginia Smith, Jey Kottalam, Xinghao Pan,

Joseph E. Gonzalez, Michael J. Franklin, Michael I. Jordan, and Tim Kraska.

Mli: An api for distributed machine learning. CoRR, abs/1310.5426, 2013.

Alexander Strehl, Joydeep Ghosh, and Claire Cardie. Cluster ensembles - a knowl-

edge reuse framework for combining multiple partitions. Journal of Machine

Learning Research, 3:583–617, 2002.

T.J. Hastie, R.J. Tibshirani, and J.J.H. Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer series in statistics.

Springer-Verlag New York, 2009. ISBN 9780387848587.

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context of the thesis
	1.2 Our contributions

	2 Fundamentals of Big Data
	2.1 Big Data
	2.2 Distributed data storage systems
	2.2.1 Google File System (GFS)
	2.2.2 Hadoop Distributed File System (HDFS)

	2.3 MapReduce: Basic Concept
	2.4 Distributed platforms
	2.4.1 Hadoop
	2.4.2 Spark

	2.5 Conclusion

	3 Clustering and Scalable Algorithms
	3.1 Introduction
	3.2 Data clustering algorithms
	3.2.1 k-means
	3.2.2 Self-Organizing Map (SOM)
	3.2.3 Neural Gas
	3.2.4 Growing Neural Gas
	3.2.5 DBSCAN
	3.2.6 EM Algorithm
	3.2.7 Computational complexity

	3.3 Scalable clustering
	3.3.1 General Framework
	3.3.2 Scalable k-means using MapReduce
	3.3.3 Scalable DBSCAN using MapReduce
	3.3.4 Scalable EM using MapReduce
	3.3.5 MapReduce-based Models and Libraries

	3.4 Conclusion

	4 Bi-Clustering Algorithms
	4.1 Introduction
	4.2 Partitioning-based methods
	4.3 Probabilistic methods
	4.4 Topological methodes
	4.5 Divisive methods
	4.6 Hierarchical methods
	4.7 Constructive methodes
	4.8 Matrix decomposition for bi-clustering
	4.9 Conclusion

	5 SOM Clustering using Spark-MapReduce
	5.1 Introduction
	5.2 Self-Organizing Maps (SOM)
	5.3 Spark-MapReduce and SOM
	5.3.1 Version 1 of SOM MapReduce
	5.3.2 Version 2 of SOM MapReduce

	5.4 Experiments
	5.4.1 Comparison with SOM not MapReduce algorithm
	5.4.2 Speedup tests
	5.4.3 Variation of the number of observations and variables

	5.5 Conclusion

	6 A new Topological Biclustering at scale
	6.1 Introduction
	6.2 A new Topological biclustering: BiTM Model
	6.2.1 BiTM Model
	6.2.2 BiTM Model vs. Croeuc
	6.2.3 BiTM and MapReduce

	6.3 Experiments
	6.3.1 BiTM versus Croeuc
	6.3.1.1 Clustering quality
	6.3.1.2 Quantization error
	6.3.1.3 Visualization

	6.3.2 Speedup tests

	6.4 Conclusion

	7 Application to Insurance Dataset
	7.1 Introduction
	7.2 Exploratory data analysis of SOM clusters
	7.3 Supervised learning of SOM clusters
	7.4 Validation of SOM clusters
	7.5 Analysis of the insurance big data using SOM-MR
	7.6 Conclusion

	8 Conclusion and perspectives
	8.1 Summary
	8.2 Perspectives
	8.2.1 Biclustering and feature group weighting
	8.2.2 Conclusion

	Bibliography

