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Titre : Aide à la décision pour la résolution de problèmes de conception dans la phase de développement des véhicules 

automobiles 

Mots clés : analyse de la décision, modélisation et simulation, résolution de problème, industrie automobile 

Résumé : L’objectif de nos travaux est d’aider la prise de 
décision liée à la résolution de problèmes de conception dans la 

phase de développement de systèmes complexes dans un 
contexte de simulation numérique. Nous avons conduit nos 

travaux au sein d’une entreprise automobile multinationale. 
La première partie de notre recherche s'est concentrée sur 

l'identification des difficultés rencontrées dans le processus de 
résolution de problème, en s’intéressant particulièrement à la 

prise de décision, et aux méthodes et outils. Une étude qualitative 
menée auprès de 11 experts et portant sur 40 problèmes de 

décision a mis en lumière le fait que les décideurs choisissent 
parmi un ensemble d'alternatives relatives au processus plutôt 

que des alternatives liées à l’artefact (i.e. uniquement liées au 
produit). Les conséquences de ces alternatives relatives au 

processus telles que le recalcul, l'intégration de nouvelles 

informations, l'attente de l'évolution de la définition technique 
du véhicule, etc. ne sont pas explicites. Nous avons constaté que 

l’absence d'un cadre rigoureux était une perspective 
d'amélioration.  

La deuxième partie consista donc à proposer un cadre pour aider 
la prise de décision en matière de conception. Les questions 

relatives à l’ingénierie concourante et aux contraintes de 
ressources liées à la gestion de projet en analyse de la décision 

n’ont été que rarement approfondies dans la littérature Decision 
Based Design.  

 

Pour tenter de combler cette lacune, nous avons conçu le 
framework IRDS. Par le biais de IRDS, nous proposons de 

rendre explicites les alternatives liées au processus, et de 
rassembler des données économiques et des prévisions d'experts 

dans un modèle décisionnel fondé sur la théorie prescriptive de 
la décision, incluant la maximisation de l'utilité espérée et la 

valeur économique de l’information imparfaite.  
La troisième partie de nos travaux s’est intéressée à l'impact de 

l'incertitude sur le processus de collecte des données et sur la 
décision. Pour ce faire, nous avons proposé de réaliser des 

analyses de sensibilité à partir des données brutes disponibles, 
en amont de l’approfondissement par élicitation d’expert. Les 

impacts sur le processus décisionnel et les échanges 
d'informations entre les parties prenantes, ainsi que les 

ressources consommées par les nouvelles pratiques que nous 

proposons ont également été étudiés à un niveau plus superficiel. 
Nous présentons le déploiement et le test de ces méthodes sur 5 

études de cas. La validation de cette approche exige de recueillir 
davantage de données empiriques pour soutenir l'hypothèse 

selon laquelle de meilleures décisions sont prises à long terme. 
Nous sommes convaincus que nos recherches serviront de base 

à de futures études sur la conception et la mise en œuvre de 
frameworks visant à relever des défis industriels. 
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Abstract : The purpose of this research is to support decision-

making for solving design issues in the development phase of 
complex systems supported by numerical simulation. We 

conducted our studies in a multinational car manufacturer. 

The first part of the research was devoted to identifying the 
difficulties encountered in the issue resolution process, with a 

particular focus on decision-making issues, methods and tools. 
A qualitative study done with 11 experts and on 40 decision 

problems highlighted that the decision-makers choose from a set 
of process alternatives rather than artifact alternatives. The 

consequences of these process alternatives such as recalculating, 
integrating information, waiting for the technical definition of 

the vehicle to evolve, etc. are not explicit. We identified the lack 
of a rigorous framework as an opportunity for improvement.  

The second part was therefore to propose a framework to support 
design decisions. Concurrent engineering, resources constraints 

and project management issues have been often overlooked in 
the Decision Based Design literature. Attempting to bridge this 

gap, we designed IRDS framework. 

Through IRDS, we propose to make explicit the process 

alternatives, to gather economic data and expert forecasts in 
adecision model based on the prescriptive decision theory, 

including  the maximization of the expected utility and the 

economic value of imperfect information.  
The third part of the research is related to the impact of 

uncertainty on the data collection process and on the overall 
decision outcomes. This has been done through proposing a 

sensitivity analysis that is performed with available data, before 
data gathering through elicitation process. The impacts on the 

decision-making process and information exchanges between 
stakeholders, as well as the resources consumed by the new 

practices we proposed have also been studied on a more 
superficial level. This work was in particular deployed and tested 

on 5 cases studies. The validation of this approach requires to 
collect further empirical evidence to support the hypothesis that 

better decisions are made on the long run. We are confident that 
our research will serve as a base for future studies on the design 

and the implementation of frameworks addressing industrial 
challenges. 
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Abstract 

In the development phase of a vehicle, when a technical problem occurs, an issue 

resolution process is initiated. The technical solutions are designed and evaluated on the 

basis of performance extracted from simulation results interpreted by experts and specialists. 

These practitioners benefit from knowledge specific to simulation and engineering. The 

resolution of issues requires the formulation of decision problems and decision making. 

Ideally, experienced engineers, comprehensive simulation processes, and well-informed 

decision makers would lead to efficient decision making. However, the top management of a 

multinational automobile manufacturing company observed a tendency for decision makers 

to postpone decisions, exposing projects to penalties, and sometimes poorly justified choices 

that led to the implementation of sub-optimal solutions. Making well informed decisions is 

widely considered to be the most important challenge in industries designing increasingly 

complex products in increasingly complex environments. The purpose of this research is to 

support decision making in this context.  

The first part of the research was devoted to identifying the difficulties encountered in 

the issue resolution process, with a particular focus on decision-making issues, methods and 

tools.  A qualitative study done with 11 experts and on 40 decision problems highlighted that 

the decision makers choose from a set of process alternatives rather than artifact alternatives. 

The consequences of these process alternatives such as recalculating, integrating 

information, waiting for the technical definition of the vehicle to evolve, etc. are not explicit.  

The uncertainty regarding the product and process leads to postponing the selection and 

implementation of countermeasures, and postponing without fully understanding the 

impacts can lead to delay and cost overruns. We observed that decisions are trans-

hierarchical and transdisciplinary, and that sub-optimal communication can lead to ignoring 

certain parameters or questioning sources of information (e.g. certain types of simulation). 

This can lead to design issues being corrected late and urgently, involving additional costs. 

We identified the lack of a rigorous framework as an opportunity for improvement. 

The second objective of this research was therefore to develop and propose a framework 

to support design decisions. Decision Based Design researchers have been investigating 

decision analytic issues in engineering design. However, most of the literature focuses on the 

decision analysis of the design artifact rather than the design process. Moreover, authors 

seldom tested decision analytic models on real industrial problems. Concurrent engineering, 

resources constraints and project management issues have been therefore often overlooked. 

Attempting to bridge this gap, we extended a model based on the work started by Thompson 

and Paredis. We designed IRDS, a framework including a decision model, a computing tool, 

and a definition of the roles and information flows. Through IRDS, we propose to make 

explicit the process alternatives, to gather economic data and expert forecasts in a decision 

model based on the prescriptive decision theory, including the maximization of the expected 

utility and the economic value of imperfect information. Acknowledging the effort involved in 

modeling decision problems, we have designed a generic and flexible model that aims to cover 

the majority of the problems encountered during the development phase of vehicles and 

platforms. To operate this model and in order to facilitate its integration into the company, 

we have tailored a commercial tool integrating in spreadsheets. The ambition is to make it an 
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interactive tool that allows one not only to analyze decision problems as formulated by 

specialists, but also to explore other configurations of the decision problem (technical 

alternatives still non-existent, other types of complementary analyses by simulation, etc.). 

The third part of the research is related to the impact of uncertainty on the data collection 

process and on the overall decision outcomes. This has been done through proposing a 

sensitivity analysis that is performed with available data, before data gathering through 

elicitation process. The impacts on the decision-making process and information exchanges 

between stakeholders, as well as the resources consumed by the new practices we proposed 

have also been studied on a more superficial level. This work was in particular deployed and 

tested on 5 cases studies. The validation of this approach requires to collect further empirical 

evidence to support the hypothesis that better decisions are made on the long run. We are 

confident that our research will serve as a base for future studies on the design and the 

implementation of frameworks addressing industrial challenges. 
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Résumé en Français 

Dans la phase de développement d'un véhicule, lorsqu'un problème technique survient, 

un processus de résolution du problème est déclenché. Les solutions techniques sont conçues 

et évaluées sur la base de performances extraites de résultats de simulation interprétés par 

des experts et des spécialistes. Ces praticiens bénéficient de connaissances spécifiques à la 

simulation et à l'ingénierie. La résolution des problèmes nécessite la formulation de 

problèmes de décision et la prise de décision. Idéalement, des ingénieurs expérimentés, des 

processus de simulation complets et des décideurs bien informés devraient permettre une 

prise de décision efficace. Cependant, la direction générale d'une multinationale de 

l'automobile a observé une tendance des décideurs à reporter les décisions, exposant les 

projets à des pénalités, et parfois à des choix mal justifiés qui conduisent à la mise en œuvre 

de solutions non optimales. La prise de décisions bien informées est largement considérée 

comme le défi le plus important dans les industries qui conçoivent des produits de plus en 

plus complexes dans des environnements de plus en plus complexes. L'objectif de cette 

recherche est de soutenir la prise de décision dans ce contexte.  

La première partie de la recherche a été consacrée à l'identification des difficultés 

rencontrées dans le processus de résolution des problèmes, avec un accent particulier sur les 

questions, méthodes et outils de prise de décision.  Une étude qualitative réalisée avec 11 

experts et portant sur 40 problèmes de décision a mis en évidence que les décideurs 

choisissent parmi un ensemble d'alternatives liées processus plutôt qu’aux artefacts. Les 

conséquences de ces alternatives liées au processus telles que le recalcul, l'intégration 

d’informations, l'attente de l'évolution de la définition technique du véhicule, etc. ne sont pas 

explicites.  L'incertitude concernant le produit et le processus conduit à différer la sélection 

et la mise en œuvre des contre-mesures, et le fait de différer sans en comprendre pleinement 

les impacts peut entraîner des retards et des dépassements de coûts. Nous avons observé que 

les décisions sont trans-hiérarchiques et transdisciplinaires, et qu'une communication sous-

optimale peut conduire à ignorer certains paramètres ou à remettre en cause des sources 

d'information (par exemple certains types de simulation). Cela peut conduire à corriger 

tardivement et de manière urgente des problèmes de conception, ce qui entraîne des coûts 

supplémentaires. Nous avons identifié l'absence d'un cadre rigoureux comme une 

opportunité d'amélioration. 

Le deuxième objectif de cette recherche était donc de développer et de proposer un cadre 

pour aider les décisions de conception. Les chercheurs en conception basée sur la décision 

(DBD) ont étudié les questions d'analyse de la décision dans la conception technique. 

Cependant, la plupart des publications se concentrent sur l'analyse décisionnelle de l'artefact 

de conception plutôt que sur le processus de conception. De plus, les auteurs ont rarement 

testé des modèles d'analyse décisionnelle sur des problèmes industriels réels. Les questions 

d'ingénierie simultanée, de contraintes de ressources et de gestion de projet ont donc souvent 

été occultées. Pour tenter de combler cette lacune, nous avons étendu un modèle basé sur les 

travaux de Thompson et Paredis. Nous avons conçu IRDS, un cadre comprenant un modèle de 

décision, un outil de calcul et une définition des rôles et des flux d'information. Grâce à IRDS, 

nous proposons d'expliciter les alternatives liées au processus, de rassembler des données 

économiques et des prévisions d'experts dans un modèle de décision basé sur la théorie 
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prescriptive de la décision, comprenant la maximisation de l'utilité espérée et la valeur 

économique de l’information imparfaite. Conscients de l'effort que représente la modélisation 

des problèmes de décision, nous avons conçu un modèle générique et flexible qui vise à 

couvrir la majorité des problèmes rencontrés pendant la phase de développement des 

véhicules et des plateformes. Pour exploiter ce modèle et pour faciliter son intégration dans 

l'entreprise, nous avons customisé un outil commercial s'intégrant dans les feuilles de calcul 

type Excel. L'ambition est d'en faire un outil interactif qui permet non seulement d'analyser 

les problèmes de décision tels que formulés par les spécialistes, mais aussi d'explorer d'autres 

configurations du problème de décision (alternatives techniques encore inexistantes, autres 

types d'analyses complémentaires par simulation, etc.) 

La troisième partie de la recherche est liée à l'impact de l'incertitude sur le processus de 

collecte des données et sur les résultats de la décision. Cela a été fait en proposant une analyse 

de sensibilité qui est effectuée avec les données disponibles, avant la collecte des données par 

un processus d'élicitation. Les impacts sur le processus de décision et les échanges 

d'informations entre les parties prenantes, ainsi que les ressources consommées par les 

nouvelles pratiques que nous avons proposées ont également été étudiés à un niveau plus 

superficiel. Ce travail a notamment été déployé et testé sur cinq études de cas. La validation 

de cette approche nécessite de recueillir des preuves empiriques supplémentaires pour 

étayer l'hypothèse selon laquelle de meilleures décisions sont prises sur le long terme. Nous 

sommes convaincus que nos recherches serviront de base à de futures études sur la 

conception et la mise en œuvre de cadres répondant aux défis industriels. 
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Nomenclature 

The nomenclature of the opposites of the following variables and functions can be easily 

derived and is not expanded in this section. 

𝑝𝐼𝑇𝐷𝐶(𝑡) Probability that later or current but not represented changes in the 

technical definition of the vehicle will impact the outcomes of the current 

decision.  

ITDC: Impacting Technical Definition Change. 

𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) Probability that the vehicle passes the physical test given that changes 

affected the attributes of the decision. 

𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) Probability that the vehicle passes the physical test given that changes did 

not affect the attributes of the decision. 

𝑃(𝐹𝑎𝑣|𝑂𝐾) True positive rate: the results of the analyses were favorable, and the 

vehicle passed the physical test. 

𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦(𝑡) Cost incurred by the delay in the project: delay propagation on other 

activities, speeding up, increasing resources to respect the project 

deadline, likelihood to pay penalties. 

𝐷𝑐1 Cost incurred by the design necessary to implement in the vehicle a 

technical solution developed to solve a design issue in the development 

phase. 

𝐷𝑐2 Cost incurred by testing a technical solution being implemented in the 

vehicle during the development phase. 

𝐼𝑐1 Vendor tooling cost committed for the industrialization phase. 

𝐼𝑐2 Manufacturing cost incurred by manufacturing a unit (material, labor, 

charges) times the number of units in the industrialization phase. 

𝐼𝑐3 Supplier engineering cost committed for the industrialization phase. 
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𝐼𝑐4 Corrective design cost. Cost incurred by designing and implementing in the 

vehicle a technical solution developed to solve a design issue in the 

industrialization phase. 

𝐼𝑐5 Corrective testing cost. Cost incurred by testing a technical solution 

developed to solve a design issue in the industrialization phase. 

𝑉𝑃𝑖 Cost or gain incurred by any situation that causes penalty or adds value 

(weight addition or reduction of the technical solution on the vehicle, 

carry-over of a technical solution for other projects, production launch 

delay, etc.). 

𝐴𝑐 Cost incurred by additional analyses of a technical solution as a process 

alternative. 

𝐴𝑡 Time between two decision meetings when additional analyses are 

performed. 

Process 

alternative 

In a process-focused approach of the decision, course of actions that 

include technical modifications, data gathering or delaying other actions. 

It directly impacts the planning and resources of the design process. 

Artifact 

alternative 

In an artifact-focused approach of the decision, course of actions that 

include technical modifications of the product (the artifact). In a process-

focused approach of the decision, artifact alternatives are process 

alternatives, since modifications impact the planning and resources of the 

design process. 

DM Decision maker 

DA Decision analyst 

DaP Data provider 
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1. Introduction 

1.1. Dissertation motivation 

1.1.1. Design decisions and use of Modeling and Simulation in the 

development phase of vehicles 

In the automotive industry, as in many complex systems design industries, the 

development process can be seen as a series of decisions largely supported by modeling and 

simulation (M&S). A product development process can take different forms, such as V-models 

[1], spiral [2], or stage-gate [3], and vary across industries and companies. It is generally an 

iterative process [4,5] that is composed of design and testing cycles repeated several times 

[6]. In the context of vehicle development projects, the vehicle development process (VDP) is 

a well-planned process that transforms the strategic vision of a vehicle into a tangible product 

for the customer [7]. In the early decades of the automotive industry, the VDP was sequential 

and primarily relied on physical M&S capabilities (physical prototypes) [8]. However, this 

process has progressively become concurrent while increasingly leveraging information 

technology [9]. Specifically, the introduction of computer aided engineering (CAE) has 

reduced development costs and lead times [10] by accelerating the execution of tasks, the 

incorporation of design changes, and the information exchanges [11,12]. CAE enables 

numerical M&S, and therefore facilitates rework on numerical models instead of physical 

prototypes. In this respect, numerical M&S has triggered profound changes [9] in an activity 

that is inherent to product development: problem-solving [10,13–15]. Solving problems, in 

this context, supposes the design and selection of “solutions” or course of actions, and 

necessarily involves decision making [16,17].  

In the development phase of a vehicle development project, a vehicle needs to be 

delivered at the right time, the right level of performance and the right cost [7]. In this phase, 

the vehicle is designed and tested through numerical M&S [18,19]. Models enable the 

investigation and prediction of architectural consistency and overall vehicle performances 

[20]. The corresponding design decisions are often based on these M&S results [21]. Through 

an iterative process a vehicle synthesis model is refined by adding detail to the specifications 

until a physical prototype can be manufactured.  

The increasing use of numerical M&S – lately simply referred as M&S, given the current 

context – has impacted, amongst others, problem-solving and ultimately the decision-making 

processes in industry. Although significant research has been performed in decision support 

systems [22–24] and the decision-based design researchers have investigated decision 

theory applied to engineering design (as further developed in Chapter 2), the interaction 

between M&S and decision-making processes and the industrial applications of decision 

supports in the automotive industry are poorly explored. The motivation for our research was 

identified in this context. 

Our research has been conducted at Renault, a carmaker founded in 1898 which sold 

more than 2.8 million vehicles in 125 countries in 2015 – the year before we started our 

investigations. At this time, Renault made 45 327 M€ revenues – 2 960 M€ net income – and 
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was employing over 120 000 people. Renault designs innovative goods and services in the 

perspective to be accessible to the greatest number. It fosters sustainable mobility, through 

its range of all-electric vehicles among others, and develops profitable international growth, 

notably through its alliance with Nissan in 1999, Mitsubishi in 2017, and many other 

partnerships. The company has been manufacturing vehicles and powertrain components at 

its 36 production sites, in 2015 [25]. 

At Renault, the overall logic of vehicle projects can be resumed in 3 phases (Figure 1): 

upstream, development, industrialization. The construction of this logic was carried out on 

the hypothesis of a " mother “ pattern (i.e. a reference vehicle model in a specific segment), 

then declined for the other patterns (brother vehicle, child vehicle). For convenience purpose, 

let us focus on the simple case of a mother vehicle (from which other vehicles are derived). A 

vehicle is composed of a platform, a powertrain, and an upper body. Of course, several 

powertrains are available for one vehicle, for diversity purposes. Each of these elements are 

developed in parallel projects that are resynchronized at different times so that the complete 

vehicle can be commercialized.  

 

 

  

 

The upstream phase consists in establishing vehicle concepts, requirements that 

differentiate the company from the competition (the Unique Selling Propositions), style, and 

lead to demonstrators that are clear enough to ensure cost-value trade-offs and robust 

choices. The development phase starts with a milestone called Vehicle Pre-Contract (VPC) 

and ends with the Tooling Go Ahead (TGA) milestone. During this phase, the design 

specifications of the vehicle are gradually refined through several digital loops punctuated by 

milestones. These loops involve design and testing activities, and are called “digital” on 

purpose. Indeed, during the development phase, the vehicle only exist in the form of 

numerical models that are assembled in a synthesis model. Arrived at TGA milestone, the 

digital vehicle is ready to be manufactured and enters the industrialization phase. In the 

latter, parts are manufactured and physical prototypes are assembled and tested. The 

manufacturing facilities are transferred to the final production site and the vehicle is mass-

produced.  

After this overview of the company and the overall design process, let us now take a closer 

look at what was observed in the development phase and what motivated our research. 

UPSTREAM INDUSTRIALIZATION COMMERCIALIZATION 
DEVELOPMENT 

Figure 1 – Renault’s logic of vehicle project 
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1.1.2. Preliminary observations : decision-making issues 

The numerical M&S tests performed all along the development phase allow the 

simulations analysts to detect the performance discrepancies and architectural interferences. 

When a technical problem is detected, an issue resolution process is initiated. The technical 

solutions are designed and evaluated on the basis of performance extracted from simulation 

results interpreted by experts and specialists. These practitioners benefit from knowledge 

specific to simulation and engineering. The resolution of issues requires the formulation of 

decision problems and decision making. 

Ideally, experienced engineers, comprehensive simulation processes, and well-informed 

decision makers would lead to efficient decision making. However, the top management of 

the company observed a tendency for decision makers to postpone the technical solution 

selection and implementation, exposing projects to penalties, and sometimes poorly justified 

choices that lead to the implementation of sub-optimal solutions. The postponement of 

decisions – more precisely, artifact decisions, i.e. technical solution selection – consumes 

resources such as full time equivalent employees, computing costs, and project time. Also, it 

happens that new, but also predicted, issues appear in the industrialization phase, whereas it 

is supposed to be prevented by M&S and issue resolution decisions. Once rework is 

performed in the industrialization phase, the costs are generally important since they can 

involve changing tooling, manufacturing new physical prototypes, and creating task forces. 

These situations are undesirable, and the company asked our research team to investigate 

the decision-making process in this context and propose improvements. 

 

1.2. Research objective and questions 

Based upon the preliminary observations made in the company and the research background, 

our research objective is to support decision making for solving design issues in the 

development phase of a complex system. To fulfill this research objective, we first need to 

understand the current decision-making processes in a context of design supported by M&S. 

In order better support decision making, it is important to examine how M&S contributes to 

problem-solving, which information is considered, how results are used and interpreted. In 

this respect, we are able to assess the current difficulties and needs. Since implementing new 

frameworks requires tradeoffs between resources available, capacities, and effectiveness, it 

is important to explore the opportunities and difficulties in deploying a decision support 

framework. 

Hence, in order to achieve the aforementioned objective, we identified and addressed two 

research questions in the corresponding chapters of this dissertation. The research questions 

are formulated as follows. 

1) In practice, how does decision making unfold in a M&S environment? 

 

2) To which extent can a method based on normative decision theory enhance 

the decision-making process supported by simulation? 
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To address these questions, we applied a methodology inspired form the well-established 

Design Research Methodology and divided our research into three main studies including 

their own literature reviews. These literature reviews are reported and synthetized in the 

next chapter. 

 

1.3. Dissertation architecture 

 

We used a methodological framework strongly inspired by the Design Research 

Methodology (DRM) introduced by Blessing and Chakrabarti [26]. DRM consists of four 

stages: Research Clarification, Descriptive Study I, Prescriptive Study, Descriptive Study II. 

We chose DRM as the supporting framework of our research since its approach is coherent 

with the objective we defined: understanding the current situation, proposing a decision 

support framework, and examining the changes brought by our action on the situation. The 

particularity of our methodology is that the stage Descriptive Study II proposed by DRM has 

 

Figure 2 - Overall research methodology 
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been changed into a hybrid one: a study where descriptive and prescriptive approaches are 

interrelated. Figure 2 depicts the stages of the framework we used.  

The dissertation presents three studies conducted to address the research objective in 

three chapters. These chapters are derived from articles which contain their own literature 

reviews that sometimes overlap between each other. To avoid redundancies and improve the 

reader experience, we extracted the literature review from the articles and rearranged it in a 

unique literature review chapter.  

Chapter 2, the literature review, aims to: (1) provide the reader with an overview of the 

knowledge that has fueled our work, (2) highlight the research gaps that we identified, and 

(3) guide the reader by establishing connections with other chapters. 

The next chapters of the dissertation correspond to the contributions addressing the 

research questions. It can be noted that the contributions as a whole are both prescriptive 

and descriptive in nature, in accordance with the research methodology we have articulated. 

In practice, how does decision making unfold in a M&S environment? 

This question is addressed in the Chapter 3. It corresponds to an empirical study that we 

conducted in the company. Through this descriptive approach involving qualitative data 

analysis, we: 

• Mapped out the decision-making process as-is and its interactions with the modeling 

and simulation process  

• Identify the challenges faced by the organization and the reasons that contribute to 

lengthening problem solving and leading to costly and urgent late resolutions 

 

To which extent can a method based on normative decision theory enhance the 

decision-making process supported by simulation? 

Through the prescriptive study reported in Chapter 4 we: 

• Designed a model based on normative decision theory that incorporate process 

alternatives based upon industrial cases and experts contributions 

• Proposed a definition of roles and information flows, and a method to support 

decisions through the decision model  

The descriptive-prescriptive study presented in  Chapter 5 allowed us to: 

• Test the proposed framework on 5 real cases to identify the difficulties associated 

with data gathering and experts’ beliefs modeling 

• Estimate the resources consumed by using the proposed framework and the 

differences in terms of decision on a more superficial level 

In the conclusion (Chapter 6), Section 6.1 provides a more detailed summary of the 

contributions and explains more into detail how they contribute to fulfilling the research 

objective. The limitations of the overall research are highlighted in Section 6.2. Finally, Section 

6.3 provides recommendations for future works in the light of the contributions brought by 

this dissertation. 
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2. Literature Review 

The following literature review introduces to the reader the overarching concept of 

decision theory and briefly discusses its applications in engineering design in Section 2.1. 

More details are provided about one practical application of decision theory, named decision 

analysis, in Section 2.2. In Section 2.3, we further narrow the scope of the literature to our 

research context by discussing the use of decision analysis for engineering design through 

Decision Based Design (DBD). We then examine, in Section 2.4, the research that extends 

classical approaches of DBD by studying the consequences of incorporating additional 

information to the decision analysis (the Value of Information). In Section 2.5, we consider 

analysis and design decisions from a process-focused perspective and review the work on the 

integration of process-related data. Since producing and manipulating information addresses 

some extent the need to tackle uncertainty, we review in Section 2.6. the literature on 

uncertainty and uncertainty management in engineering. Closely related to this subject, the 

elicitation of experts’ beliefs when considering the use of models is discussed in Section 2.7. 

We consider that the acquisition of information – whether through expert elicitation or by 

performing numerical simulation – and how the search for precision involves the 

consumption of resources. Analyzing how a decision problem is sensitive to input parameters 

can help determine whether it is valuable or not to increase the precision of inputs. Hence, 

the last section of this literature review, Section 2.8, aims to provide the reader the knowledge 

about sensitivity analysis and its use in the analysis of design decisions.  

What is a decision? 

Before diving into the theory, let us first define what a decision is, from its etymological 

roots and common sense to the most common definition used in decision theory. The 

noun “decision” comes from the Latin “decisio” which mean "a settlement, agreement," 

action noun of the verb “decidere” literally meaning "to cut off". In modern English, the 

Merriam-Webster dictionary [27] defines a decision as (1.a) the act or process of deciding, 

(1.b) a determination arrived at after consideration, (2) a report of a conclusion (in the 

sense of “conclusion”), (3) promptness and firmness in deciding (in the sense of 

“determination”), and one can find other sports-related meanings. To decide, in common 

language means (1.a) to make a final choice or judgment, (1.b) to select as a course of 

action, (1.c) to infer on the basis of evidence, (2) to bring to a definitive, and (3) to induce 

to come to a choice. These definitions used in common language may be appropriate to 

our approach, but they overlook a notion that is important in design: the notion of 

resources. In the decision theory literature, a more comprehensive definition has been 

proposed, and this is the one we will refer to in our research: a choice between several 

alternatives that involves an irrevocable allocation of resources [28]. 

 

2.1. Decision theory and its applications to Engineering Design 

Decision theory can be split into three approaches: descriptive, normative and 

prescriptive. The descriptive approach focuses on how people actually make decisions in real-

world settings. The research fields of human factors and cognition are generally based on the 
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study of decision making from a descriptive perspective. The Naturalistic Decision Making 

(NDM) community emphasized the role of experience in enabling people to rapidly match 

situations with patterns they have learned and make effective decisions [29]. Researchers 

observed that people rely on heuristics as opposed to algorithmic strategies and deviate from 

the principles of optimal performance as defined in the normative approach. On the other 

hand, the normative approach prescribes how people should make decisions, assuming that 

the decision maker is fully informed, fully rational and able to compute with perfect accuracy. 

These assumptions are idealistic and seldom encountered in real-world situations. Indeed, 

even assuming that decision makers have bounded rationality [30], they have to deal with 

uncertainty. This is the purpose of the prescriptive approach [31]. It consists of guiding 

decision makers by following principles of rationality and supporting them in their decision 

making in practice while dealing with uncertainty and biases. A formal method and practical 

application of decision theory is Decision Analysis. We discuss its development and 

contributions to engineering design through Decision Based Design in the next subsections.  

Several methods other methods, related to the prescriptive approach of decision theory 

have been devised and applied in the literature across many fields (Multi-Criteria Decision-

Making methods, Problem Structuring Methods [32], Theory of Inventive Problem-Solving 

method [33], Analytic Hierarchy Process [34,35], Multi-Attribute Utility Theory [36], etc.). In 

the field of engineering design for the automotive industry, Renzi et al. [16] recently 

investigated how decision-making methods can be used by automotive designers to solve the 

most common engineering problems associated with the design process. To do so, they 

analyzed studies in the literature and matched methods of decision making with design 

phases in automotive industry.  Their research emphasizes that for the vast majority of the 

methods tested in the literature the conclusions of the authors are not objectively evaluated 

through a comparison with other methods, and that the proposed methods are applied with 

illustrative examples with simple models far removed from the complex design cases for 

which they are intended. Moreover, investigations demonstrated that very often designers 

prefer tested procedures and experience-based approaches [37]. However, to our knowledge, 

few studies investigate how, in complex systems industries, these heuristic approaches 

practically influence the decision-making processes deployed to solve design issues. 

Moreover, while the product development process is increasingly supported by modeling and 

simulation, the interaction between the decision-making processes and modeling and 

simulation have seldom been addressed. This led us to identify the first research gap. 

Research gap 1: We currently lack a deep understanding of the actual practices and 

challenges associated with decision-making processes in a vehicle development process 

supported by simulation.  

This research gap is addressed in Chapter 3. In the latter, we explain how we have 

conducted an empirical study in the company to understand the relationships between 

as-is decision-making and simulation processes and present our observations. We map 

out the as-is decision-making process and identify the challenges encountered by the 

company when formulating and making decisions to solve design issues. 
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2.2. Decision Analysis 

The literature on decision making under uncertainty and risk has been growing at least 

since Bernoulli [38] presented a theory on risk measurement 280 years ago. Decision Analysis 

has emerged from this literature.  It has been widely explored, and is the subject of several 

text books. This prescriptive method is based on utility theory [39] and aims to support 

decision makers by systematically exploring possible decision alternatives. The methodology 

have been extensively discussed into detail in the literature [28,40–42], notably in books by 

Raiffa [42], Schlaifer [43], Tribus [44], Winkler [45], Brown et al. [46], Keeney and Raiffa [47], 

Moore and Thomas [48], Kaufman and Thomas [49], LaValle [50], Holloway [51], Edwards et 

al. [41] and very recently, Howard and Abbas [52]. The overall procedure consists of 

identifying the decision alternatives, predicting their associated outcomes, eliciting decision 

maker preferences with respect to outcomes, and computing the expected utility of each 

alternative. 

 

2.3. Decision Based Design 

A specific domain called Decision Based Design (DBD) has been investigating  the 

development of prescriptive approaches, such as decision analysis, in engineering design 

[17]. In the late 80’s, Shupe et al. [53] have been defining DBD as a heterarchical set of 

constructs that embodies  developer’s perceptions of the design environment and the real 

world. They asserted that the principal role of an engineer is to make decisions associated 

with the design of an artifact. The decade later, while proposing a framework for Decision-

Based Engineering Design, Hazelrigg [54] defined DBD as a normative approach that 

prescribes a methodology to make unambiguous design alternative selection under 

uncertainty and risk wherein the design is optimized in terms of the expected utility. He 

underlined that DBD seeks to base engineering design decisions on information obtained 

from a variety of sources going well beyond the engineering disciplines. Indeed, in a decision 

analysis perspective, predicting outcomes associated with decision alternatives requires 

incorporating information and expressing beliefs about attributes that impact the outcomes. 

Such actions ultimately involve resources consumptions. However, until recently, the vast 

majority of research in DBD focused decision problems formulation on the design artifact and 

overlooked the tradeoffs involved when gaining additional information in a process-focused 

perspective. The study of these tradeoffs is, among others, the purpose of Value of 

Information. 

 

2.4. Value of Information and Decision Analysis  

Value of Information (VOI) was first introduced in 60’s by Howard [55]. He emphasized 

that attempts of applications of Shannon’s information theory [45] only considering the 

probability of outcomes but overlooking consequences were unsuccessful for problems 

beyond communication processes. He discussed the value of information that arises from 

considering jointly the probabilistic and economic factors that affect decisions.  
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The principle of VOI is that one can value the improvement in decision-making ability 

enabled by additional information by comparing the decision outcomes with and without the 

additional information. VOI helps to determine whether the decision maker should access an 

information source or not. In this respect, Matheson [56] used VOI to determine which 

computational and analytical procedure is the most economic for analyzing a decision 

problem in greater detail and yielding to a “better” decision. Various strategies based on the 

value of information used with normative decision theory have been discussed [57–59]. 

Bradley and Agogino [57] proposed a method incorporating the VOI along with a decision 

analytic approach to guide the information collection in the component selection process. 

Their method allows for reducing the uncertainty to select the best component. In the 

decision analysis and engineering design literature, design can be considered as series of 

decisions made by the designer. The latter creates and uses models to depict and predict the 

nature and behavior of an artifact, and some researchers studied the VOI for selecting and 

refining models. For instance, Radhakrishnan and McAdams [60] considered model selection 

as a design decision and applied utility theory to model selection for guiding decisions in 

engineering design. They proposed a method to select the best (or most useful) model 

according to different model selection criteria and ultimately model utilities. The author did 

not analyze the VOI associated with a specific model and did not consider the impact of model 

selection on design decisions. Panchal et al. [61] proposed a VOI-based approach for 

determining the appropriate extent of refinement of simulation models. They introduced a 

method utilizing a metric called “improvement potential” for supporting model refinement 

decisions. The metric measures the VOI by considering both models’ imprecision and 

variability. The method they proposed supports defining a simple simulation model and 

gradually refining it until the value of further refinement on design decisions is small. 

Although it is reasonable to assume that highly refined simulation models are costlier to 

develop and execute, authors did not explicitly include the cost of the development of the new 

simulation models, nor the cost of analysis associated with running the simulations and 

interpreting the results. In these research studies, Bayes’ theorem [62,63] is generally used 

to model how the beliefs are updated when new information is incorporated. 

 

2.5. Integration of process-related data into design 

decisions 

Although in the engineering context normative decision theory applications generally 

focus on artifact decisions about product features, some researchers stressed that all design 

decisions are actually process decisions. They argue that resources spent in the refinement of 

information should be also taken into consideration [57–59]. For instance, Bradley and 

Agogino [57] proposed the Intelligent Real Time Design Methodology (IRTD) to guide the 

information collection when selecting components from a catalog while reducing uncertainty. 

In their decision analytic approach to assisting catalog selection, they consider explicitly 

process related data such as the cost of resources consumed during design, and in particular 

the time of the designer. To have a comprehensive approach of design decisions, actions such 

as “modify a design specification” or “collect more information about a potential design 

modification” must coexist in the decision alternatives set and must be considered when 

analyzing the decision problem. However, many of the previous studies considered the 
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information gathering decision as a separate sub-decision that is formulated separately from 

the artifact decision. To bridge this gap, when investigating the decision analysis of design 

process decisions, Thompson and Paredis [59] proposed to formulate the decision problem 

in terms of the design process and included the alternative of gathering additional 

information along with the artifact parameter decision. The aim of their research is to provide 

a more comprehensive model of the problem when multiple sources of information can 

sequentially be used. However, the authors did not test their methods on a real industrial case 

and did not consider a tradeoff – which is often encountered in industrial settings – between 

waiting that new information is available to make the most profitable artifact decision and 

potentially exposing the project to penalty. Hence, we identified a second research gap. 

Research gap 2: We do not yet have a thorough grasp of the integration of process-related 

data into decision analysis of design decisions in an industrial context. 

This research gap is addressed in both Chapters 4 and 5. Indeed, in Chapter 4 we 

propose to integrate process alternatives within the decision alternatives set of decision 

problems. In our approach, defining process alternatives include integrating beliefs and 

uncertainties related to product definition evolutions, industrial project time constraints, 

and model characteristics addressing industrial complexity. In real-world settings, 

gathering these process-related data demands effort and sometimes further resources 

consuming investigations. Hence, in Chapter 5 we review what process-related data are 

already available in the company and those that should be obtained.  

 

Thompson and Paredis studied the gain of additional information from sequential 

analyses but did not address the case where analyses can be performed concurrently. Indeed, 

current complex system design is often based on concurrent engineering. Concurrent 

engineering is known to be a source of interactions between a decision situation and the 

outcomes of other decisions. Hence, in complex system design, decisions are interdependent 

and can have propagating impacts. Indeed, a decision situation about a sub-system can evolve 

because of the impacts of other design teams’ decisions working on other subsystems. 

Research gap 3: The integration of concurrent engineering considerations into the 

decision alternatives is still poorly explored. 

As discussed in Chapter 5, we aimed to bridge this gap by enabling the decision 

analyst to study the consequences of performing analyses concurrently. Furthermore, we 

proposed that a decision analysis of a design problem should account for current or later 

changes in the product technical definitions that are one of the results of concurrent 

design and testing activities.    

 

In real-world settings, integrating process-related data – as for any data produced by 

systems or information communicated by humans – does not come without tackling the issue 

of uncertainty. Although uncertainty can deliberately be ignored when computing problems 

deterministically, those who manipulate models and interprets results ultimately have to deal 

with it. Uncertainty and its management in engineering is the purpose of the next section. 
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2.6. Uncertainty management in engineering 

Uncertainty has been highlighted in the literature as an important challenge of decision 

making [52,64,65]. It can be defined as a lack of information [66], a state of mind 

characterized by a conscious lack of knowledge [67], or a lack of numerical probabilities of 

various outcomes [68]. Closer to our research interest, in the field of model-based decision 

supports, Walker et al. adopted a general definition of uncertainty as being “any deviation 

from the unachievable ideal of completely deterministic knowledge of the relevant system” [58].  

Uncertainty has been the subject of many classifications and theories and methods have been 

developed to address its issues. 

2.6.1. Classifications of uncertainty 

Several classifications have been proposed and discussed by researchers across many 

fields: 

• Objective (ambiguity) or subjective (vagueness) according to Ayyub and Chao 

[69] and Klir and Yuan[70] among others. 

• Aleatory (irreducible, variability) or epistemic (reducible), or error according to 

Oberkampf et al. [71], Haukaas [72], Isukapalli et al. [73], Der Kiureghian [74]. 

Recently, Hassanzadeh proposed two approaches to define uncertainty [75]in the context 

of R&D projects: 

• Object-based approach: related to the lack of information about the project. 

This approach is used in mathematics and economics and refers to Thiry [66], 

Galbraith [76], Klir [77], Zadeh [78], and Knight [68].  

• Subject-based approach: related to individuals’ sense of doubt and perception 

of the inability to predict something. This approach, used in psychology, refers 

to Head [67], Lipshitz et al. [79], Milliken [80], and Thompson [81]. De Finetti 

[82], Ramsey [83], and Savage [84], among others, proposed a representation of 

uncertainty through subjective probabilities. 

In the field of complex and multidisciplinary systems design and development, Thunnissen 

[85] proposed a four categories classification of uncertainty that recalls taxonomies 

mentioned above: 

Ambiguity: also called imprecision, design imprecision, linguistic imprecision and 

vagueness, it causes misunderstanding between individuals sharing verbal information. 

Epistemic: also called reducible uncertainty, subjective uncertainty, model form 

uncertainty, state of knowledge, type B uncertainty. It is characterized by incomplete 

knowledge or information of some characteristic of the system of the environment. It can be 

further classified into model, phenomenological, behavioral, volitional uncertainty and 

human errors. 

Aleatory: also called variability, irreducible uncertainty, inherent uncertainty, stochastic 

uncertainty, intrinsic uncertainty, underlying uncertainty, physical uncertainty, probabilistic 

uncertainty, noise, risk, type A uncertainty, and de re. It is characterized by the inherent 

variation associated with a physical system or environment. A common example includes the 
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exact dimension of a component where the manufacturing processes are understood but 

variable. 

 

Should we talk about an “aleatory” uncertainty? 

We disagree with the above-mentioned distinction between aleatory and 

epistemic uncertainty brought by several authors. “Aleatory uncertainty” is a 

misnomer because it does not apply to a single empirical quantity, but only to a 

population of empirical quantities. The “aleatory uncertainty” is not uncertainty at all 

but variation across the population. We believe that uncertainty is ultimately 

subjective and epistemic, i.e., a lack of knowledge. At the macroscopic and microscopic 

scales, phenomena are considered aleatory due to a lack knowledge about the 

interactions and initial conditions of the systems under consideration. For instance, a 

chaotic system, highly sensitive to initial conditions (e.g. double pendulum), can be 

the subject of “aleatory uncertainty” but is actually predictable. The most common 

mathematical representation for the “aleatory uncertainty” is a probability 

distribution. Treating “aleatory uncertainty” as epistemic uncertainty supposes 

deploying resources that can be substantial to refine the knowledge about a system. 

Considering the uncertainty as “aleatory” can therefore be convenient and cost-

saving, depending on the model used and its sensitivity to the variable under 

consideration. 

 

Interaction: this type of uncertainty, that we relate to the epistemic uncertainty, is 

assumed to arise from unanticipated interaction of many events and/or disciplines, each of 

which might be or should have been – in principle - predictable. According to Thunnissen, this 

uncertainty is significant in complex multidisciplinary systems, when many experts, variables 

and subsystems are involved, and when mostly when only subjective estimates are possible 

and lead to disagreement between experts.  

In the perspective of uncertainty management in model-based decision support, Walker et 

al. [86] proposed to distinguish three dimensions of the uncertainty:  

• Location– where the uncertainty manifests itself within the model complex. 

• Level – where the uncertainty manifests itself along the spectrum between 

deterministic knowledge and total ignorance. 

• Nature – whether the uncertainty is due to the imperfection of our knowledge or 

is due to the inherent variability of the phenomena being described (therefore 

agreeing to an “aleatory” uncertainty, as discussed above).  

Literature is extensive when it comes to classify uncertainty, but the actual difficulties 

associated with uncertainty when implementing a decision support framework based on a 

computational model have been seldom discussed. Introducing a new framework in a 

company can impact practices and even the company organizational structure [87–89]. In this 

respect, identifying the difficulties related to uncertainty when providing model inputs and 

interpreting results can help to establish better practices. This lack reveals another gap.  
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Research gap 4: The difficulties related to uncertainty when implementing a decision 

support framework in a company have been little investigated. 

We explore this gap in Chapter 5. After proposing a framework in Chapter 4, we study 

its implementation in the company. Our study highlights some of the difficulties related 

to the data gathering and the management of uncertainty that is associated with this 

activity. 

 

2.6.2. Theories and methods used for managing uncertainty 

According to researchers who proposed comprehensive taxonomies of uncertainty, these 

classifications are relevant since they allow guidance for uncertainty management. In that 

respect, several theories have been devised to tackle these different aspects of uncertainty: 

for example, probabilistic methods, Fuzzy sets, interval analysis, and other methods have 

been applied to determine uncertainty in engineering design [59,90–92].  

Probability theory: the most used and well-established theory for representing 

uncertainty. However criticisms have been made regarding its capacity to represent 

epistemic uncertainty for two reasons [93–95]: defining a probability distribution require 

more information that an expert is able to provide, and experts prefer supplying intervals 

rather than point-values because their knowledge both of limited reliability and imprecise. 

Authors have demonstrated that the classical probability framework needs additional 

information to quantify epistemic uncertainty that lead to unjustified results. These authors 

often support other theories such as Evidence theory and Fuzzy set theory. 

Evidence theory: also referred to as Dempster–Shafer theory [96], this theory introduces 

belief and plausibility measures for reasoning with uncertainty. It is assumed to deal with 

both aleatory and epistemic uncertainties, but considered as misleading by some researchers 

[97,98]. Evidence theory notably increased the popularity of the use of imprecise 

probabilities [58]. 

Possibility theory: subclass of Evidence theory, it provides an alternative to probability 

theory for characterizing epistemic uncertainty when incomplete data is available. Possibility 

theory involves two specifications of likelihood, a necessity and a possibility. Possibility is 

closely tied to Fuzzy set theory [99,100]. 

Fuzzy set theory: appears to be most suited for qualitative reasoning. It aims at dealing 

with ambiguity due to linguistic imprecisions [101], handling the concept of partial truth 

[102]. This theory defined a function describing the degree to which a statement is true [99]. 

Interval analysis: in this collection of methods [103–106], uncertainty on a variable is 

represented by intervals of possible values. Interval analysis proposes to represent the 

uncertainty in a different perspective that the theories mentioned above. It does not attempt 

to infer an uncertainty structure on the model outcome based on an uncertainty structure 

assumed for the input. 

Probability theory is the only theory that is mathematically self-consistent and supports 

rational decision making. It remains the most used theory in methodological frameworks that 
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address uncertainty in industry. A leading European network of experts representing a cross 

section of industries present a common framework in [79]. 

We assume that in the vehicle development phase, where requirements or performance 

targets are rigorously defined enough to pass the clarity test [52], probability theory suitable 

and mathematically solid to represent the uncertainty about input values – that we consider 

ultimately epistemic. Furthermore, estimates provided by experts can be imprecise 

(considering that the precision sought is relative to its influence on the decision). In this 

respect, the elicitation of experts’ belief can be critical. The next section reviews the literature 

that tackles this issue.  

 

2.7. Expert elicitation for decision analysis 

As discussed in the previous section, the most common way to represent uncertainty is in 

the form of probabilities. These probabilities are generated by modeling and simulation or 

expressed by experts as a part of decision analysis [40,42,52]. In the development of complex 

systems, numerical models are often not sufficient and comprehensive enough to gather all 

the information about the system under consideration [107] – about its current and potential 

future definition and behavior. Even synthesis models that aim at considering the interactions 

of multiple subsystems through different disciplines need data that are provided by both 

numerical and non-numerical sources, i.e. experts. In that respect, when conducting an 

analysis on a decision problem regarding a complex system, the data required to execute the 

computation can sometimes only be supplied – at a reasonable cost – by subjective estimates 

[85,107,108].  

Eliciting and quantifying experts beliefs have been examined, in particular by 

meteorologists, for more than a century, following Cooke [109] groundbreaking contribution. 

Expert elicitation refers to obtaining and combining expert beliefs through formal procedures. 

When several individuals contribute their knowledge to a problem, combining their 

judgments or obtaining a consensus can be challenging. To address this issue, a method has 

been developed in the early 1950’s by a group of investigators at the RAND Corporation: the 

Delphi method [110]. First used in classified studies carried for the US Air Force, the method 

started to become popular the decade later (after the work has been declassified). It aims at 

developing group consensus about parameter values or more qualitative questions through 

a structured communication process. This method has however been criticized [111,112] 

since researchers did not find compelling evidence supporting that Delphi outperforms other 

methods. suggest that the consensus is achieved mainly by group pressure to conformity. 

Approaches based on Bayesian inference have been proposed and tested [113–115], but 

they focus more combination of probabilities already provided by individuals on rather than 

how to obtain the probabilities from the individuals. Researchers from different fields – 

economics [116], medicine [117,118], environmental issues [119,120], etc. – proposed and 

discussed models and techniques to elicit beliefs in different forms. 

Elicitation rules have been proposed and increasingly used in economics.  These rules, in 

their most simple version, suit for predictions of binary events (success or failure). We later 
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highlight their relevance in engineering design when formulating possibilities in a decision 

analysis perspective (Chapter 5). 

• Lottery Rule: this procedure has been known for long [121] but seldom put in 

practice. Let us consider an event that can either be characterized by a success or 

a failure. The subjects (also called assessors) are asked to report their beliefs about 

the probability of success and a mechanism based on rewards is used as incentive 

for the subject to truthfully report their best estimates. An advantage of the 

Lottery Rule is that incentives are provided regardless of assessors’ risk attitude 

[122]. However, the main drawback of this rule that it is quite complicated and 

cognitively demanding. Further details are provided about its principle and 

applications are given in [42,45,50,122]. 

• Quadratic Scoring Rule (QSR): this rule has been imported from meteorology 

[123] – where it has been for long the most popular rule – to economics [124–

126] . Also using an incentivization mechanism, this rule rests on a reward of 1 – 

P²failure if “success” is the true state of nature, and on a reward of 1 – P²success if 

“failure” is. Kadan et al. [127] highlighted that QSR is an incentive-compatible 

method only under risk neutrality and the no-stake condition. More recent 

research attempted to correct deviations due to risk aversion [128,129].  

• Free Rule: widely used in neurosciences and psychology, the Free Rule is 

particularly simple and time-efficient compared to those mentioned above. The 

assessors are simply asked to report their beliefs and are not confronted with an 

incentive mechanism. 

Hollard et al. [130] assessed the performances of these elicitation rules – in a binary 

outcome event model – and found consistent evidence in favor of the Lottery Rule. It provides 

more accurate beliefs and is not risk attitude sensitive. They also reported that the Free Rule 

outperforms the QSR. 

When designing a product, engineers often have to consider or predict quantities that 

they assume to be continuous. Merkhofer [131] proposed a protocol for judgmentally 

determining a cumulative distribution function for a continuous uncertain quantity. It 

includes 5 elicitation stages followed by 2 analysis stages. The five elicitation stages are (1) 

motivating, (2) structuring, (3) conditioning, (4) encoding, and (5) verifying. Further details 

are given in the reference [132] about its application to a senior executive of a large aerospace 

company. Of course, applying this protocol requires time and managing interpersonal 

interactions. 

Glenn and Kirkwood [132] emphasized the fact that although the theoretical basis for 

judgmental probabilities is well established, in practice, the analyst must balance the need for 

a rigorous elicitation process and the resource constraints. Also, the analyst must take into 

account both verbal and non-verbal information and retain the interest of the expert. Indeed, 

completing a time and cost-efficient decision analysis requires to make tradeoffs among a 

variety of objectives when conducting an elicitation process. Seeking for precision can be 

costly and sometimes unnecessary, mostly if the decision is hardly sensitive to certain input 

variables. Sensitivity analysis can be used to guide beliefs elicitation [133], as well as 

information gathering involving multiple sources [134]. Section 2.8 explores this concept. 
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2.8. Sensitivity analysis in decision analysis 

Sensitivity Analysis (SA) is strongly tied to decision analysis literature. Indeed, the vast 

majority of textbooks dedicate a chapter on this subject ([52] and other references in Section 

2.2). SA consists in studying the effects of the variation of input parameters of a mathematical 

model on its outcomes. Hence, when small changes in the value of some input parameter lead 

to large fluctuations in output, one can consider that the model is sensitive to the input 

parameter into consideration. Respectively, the model will be considered insensitive to some 

input parameter if the large variation of the latter only shows slight output variation. One can 

distinguish two approaches to SA:  

The local approach was the first to appear in the literature. In the spirit of what is 

mentioned above, it consists in studying the impact small perturbations around nominal 

values on the model outcomes. It is a deterministic approach in which the partial derivatives 

of the model are calculated or estimated at a specific point. The most simple and common 

method is referred as the self-explanatory name one-factor-at-a-time (OFAT/OAT) [135]. 

Local methods lie on the assumptions of linearity and normality of the model and concern 

local variations. To process models with a large number of input parameters, adjoint-based 

methods are generally used [136]. 

The global approach has been developed to overcome the limitations of local methods. 

It considers the whole variation range of the inputs [135]. The global sensitivity analysis 

methods generally require statistical and probabilistic tools (regression, Monte Carlo, Latin 

Hypercube, graphical and smoothing techniques, etc.). Rocquigny et al. [137] prescribed what 

global SA method to use when treating uncertainty in industrial practice – with regard to the 

linearity of the model, the number of inputs, the computational cost, etc.. Further details on 

global sensitivity analysis methods are given in [135,138] 

The models used in Decision Analysis aim to predict what is the expected value (or utility) 

of a decision. Accordingly, the decision corresponds to the selection of the alternative that has 

the maximum expected value. In this respect, a distinction worth being established between 

value sensitivity and decision sensitivity [139]. It is possible for the expected value of decision 

alternatives to vary significantly without affecting the decision: i.e. the preferred alternative 

does not change. In this case, one considers that the value sensitivity is high whereas the 

decision sensitivity is inexistent. In some other case, the output variation for the decision 

alternatives can be slight, but the alternative that has the maximum expected value can 

change: a decision sensitivity is observed.  

When conducting a decision analysis, SA can help to determine on which input parameter 

the elicitation or computational effort should be concentrated. To our knowledge few studies 

tackle the question of the impacts of sensitivity analysis on data gathering efforts practically 

in a company. That lead us to consider a last research gap.  

Research gap 5: Few studies have considered the influence of sensitivity analysis on data 

collection for computing decision problems in a company. 

We address this research gap in Chapter 5. In the latter, we investigate how sensitivity 

analysis performed on a model informed with rough estimates rather than precise input 



 

18 

 

parameter can affect the data collection and the exchanges between entities in the 

company. 
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3. An Empirical Study of a 
Decision-Making Process 
Supported by Simulation 
 

 

 

The design process can be considered as series of decisions supported by 

modeling and simulation (M&S). Current developments aim at supporting this 

decision making with regard to increasing resources committed in the M&S process.  

To understand possible decision support, we conducted an empirical study in a car 

manufacturing company to map out the decision-making process during the 

development phase. A qualitative data analysis was performed to understand the 

difficulties and the needs expressed by decision makers. Industrial preliminary 

observations have shown that decisions regarding design issues are often 

postponed, causing iterations, and time and cost overruns in the development 

process. The study revealed that decisions are escalated to upper hierarchical levels 

as complexity and uncertainty increase and as the tradeoffs become impactful. A 

lack of knowledge about the M&S performance and limits, a lack of clarity due to 

design ambiguity, and uncertainty are more likely to cause iterations and delay. In 

addition, decision makers and stakeholders are sometimes unadvised of the 

influence of the decision under consideration on subsequent decisions and on the 

profit. These findings are interesting as they shed light in terms of decision supports 

needed in the future.  
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3.1. Introduction 

The principal role of an engineer is to make decisions associated with the design of an 

artifact [53]. Designing is changing existing situations into preferred ones [140]. Decision-

based design [53] has been extensively studied and established the strong foundation of the 

decision theory to design methodology research [17,54,141]. Modeling and Simulation is used 

to facilitate decision making, and aeronautical and automotive industries are the major users 

of multidisciplinary design optimization (MDO) to solve design issues incorporating multiple 

disciplines [18,19]. Recent research has underlined that resources engaged in modeling and 

simulation activity can reach up to 50 % of overall development costs [142]. However, very 

few methods exist in the literature that support decision in design evaluating resources 

engaged in simulation process. A better understanding of the decision-making processes 

supported by simulation could help to improve practices by enhancing the use of simulation; 

allowing strategical choice of model granularity and precision regarding the decision 

situation needs; and, from a management perspective, better assigning workload of 

simulation activity and solution research with an issue resolution planning. 

Performed in a multinational car manufacturing company, our research aims to support 

decision-making processes for vehicle development based on modeling and simulation. A first 

step, covered in this chapter, consists in understanding the current decision-making 

processes and their challenges. This research aims to analyze the decision-making process 

and related issues. We conducted a qualitative study to map out the decision-making process 

in the development phase and to identify the difficulties and the needs of the actors of the 

decision in a multinational car company. Our empirical research methodology is presented in 

Section 3.2, and the results are reported in Section 3.3. Relationships between the results and 

the literature, as well as propositions about requirements for a decision support framework 

are discussed in Section 3.4. This section discusses possible future work: after the present 

descriptive approach, we will analyze decision through a prescriptive approach. Finally, 

Section 3.5 draws together the most important difficulties observed, and the room for 

improvement in the current decision-making process. 

 

3.2. Research methodology 

In order to better understand the decision-making process in design supported by 

simulation, we conducted an empirical study consisting of observing decision meetings, 

interviewing stakeholders of the decision (project managers, architects, experts, M&S 

practitioners, etc.) and analyzing internal reference documents (Figure 3). This data was used 

to propose an “as is” process that was observed. This process was afterwards presented to 

several engineers in order to identify possible discrepancies and validate our understanding 

of the process. Various qualitative data analysis techniques such as coding, jotting and 

analytic memo-writing were used on the transcripts of the qualitative interviews, on the field 

notes, and on the reference documents [143]. Sections 3.2.1 to 3.2.3 provide details about 

methodology for each source of information. A final report was sent for reviewing to all the 

interviewees and people involved in the study, and final validation was made in a meeting 

gathering 10 major experts of the company. 
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3.2.1. Decision meeting observation 

We observed decision meetings and collected related information in mail conversations 

during the development phase of a vehicle platform (i.e. a chassis and a set of non-visible parts 

shared over distinct models of cars) for two vehicles. 40 decision situations were observed in 

5 decision meetings led by a vehicle platform project manager. The decisions observed 

concerned design issue resolution, e.g. decide design modifications for solving dash intrusions 

discrepancies for a frontal crash test. We built a template for data collection and analysis with 

several categories of data: context, decision under consideration, design scope of the decision, 

alternatives proposed, new coming information, decision meeting conclusion, type of 

information presented, credibility indicators for the information presented, actors involved 

in the decision process, duration of the session, and comments with regards to the course of 

the meeting (people attitudes, quotes, etc.). To some extent, we also captured “corridor” 

discussions: unofficial discussions held by people presenting a topic (issue and decision 

request) that usually happen before and after topic is treated in a meeting. Audio-recording 

was discouraged by internal experts; decision meetings are sometimes tense, and 

participants sometimes complain about the work of their colleagues. Moreover, sensitive 

material is discussed. The recording method was therefore note taking. For each decision, 

Figure 3 - Empirical research methodology 
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minutes have been prepared that were further sent to the participants and System Architect 

for the validation.  

Therefore, in order to better understand the issues and challenges a coding was proposed 

with the aim to identify different types of problems. The taxonomy used has been built 

progressively, through several iterations between authors but also 3 company members 

participating in the project.  

Once the coding was done with initial analysis of frequency of the problems identified 

with several details and quotes, the overall synthesis was presented and discussed during a 

group meeting with all strategic members of the process (for instance General manager of the 

M&S process of the company), where all elements have been looked at as well as the details 

of the challenges identified. 

 

3.2.2. Qualitative interviewing 

Main actors of the decision process were also interviewed. The interviewees were 

selected with regard to their role in the decision-making process and their expertise of the 

simulation process. The 2 vehicle program managers (and former project managers) and the 

2 vehicle project managers interviewed were involved in 10% of the vehicle projects of the 

company. The other interviewees included: 1 synthesis architect (or technical synthesis 

engineer, i.e. an engineer responsible of the technical and economic convergence of the whole 

vehicle), 1 technical director (former program and project manager), 1 expert director of 

M&S, 1 expert director of durability (former director of customer performance, former 

program manager), 1 head of Computer Assisted Engineering, 1 expert in M&S, and 1 project 

manager of a model creation team. As the experience of the interviewees in the company 

ranged from 5 years to more than 40 years, some of them could speak of the different 

positions they previously held.  

Qualitative interviews are potentially powerful to explore complex experiences [144] and 

subjective and complex decision-making processes [145]. We chose an in-depth interview 

style with descriptive questions. Although this method is time consuming, it reduces the 

possibility of influencing the interviewees (like in multiple-choice questions in quantitative 

interviews). We conducted semi-structured interviews with a set of 14 initial open and 

specific targeted questions used as the skeleton of the interview [146]. The overall structure 

of the interview guide used in the study followed a commonly used sequence [147]: 

introduction, warm up, main body of interview, cool off, closure. The average length of each 

interview was about 60 minutes. Since the subjects were likely to disclose confidential and 

sensitive material and remarks about colleagues, note taking was preferred compared to 

audio-recording so that the interviewees felt more comfortable. Declarations of the 

interviewees were clustered into 11 categories, covering both decision and M&S themes, and 

also a short biography and additional remarks (Table 1).  

The two first interviews showed that interviewees sometimes anticipate the next 

questions while answering one question. For the transcription of the data, coding was used 

to analyze and identify different types of the problems. This was done iteratively with 3 

company members participating in the project. Once the coding was validated this taxonomy 
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was used to analyze interview data. The analysis was also cross-checked by other two 

members of the research team. This was used to sort the data and evaluate the weight of the 

concepts raised in the answers. Spreadsheets documents were used for the analysis and 

storage of data. 

 

 

 Categories Example of question (translated) 

1 Short biography What is your background? 

2 Role What is your role within the development stage? 

3 Decision process How would you describe the decision-making process 

during the development of a vehicle/platform? 

4 Favorable conditions What are the favorable conditions to a good decision 

making? 

5 Barriers and difficulties What difficulties do you face in the decision-making 

process? 

6 Type of information What type of information do you deal with? 

7 Uncertainty What are the uncertainties related to decision making and 

what are their influence? 

8 M&S support and 

decision support tools 

Do you use decision support tools (which ones, 

advantages, drawbacks)? 

9 Credibility and difficulties 

related to M&S 

How do you assess the reliability of M&S results? 

10 Knowledge about M&S 

processes 

What do you know about M&S processes? 

11 Additional remarks *** 

 

Table 1 - Examples of questions related to the categories of answers 

 

3.2.3. Analyzing company documentation 

Internal reference process documents, best practices, the development guidelines, the 

organization charts, were analyzed as well as minutes of various decision and project review 

meetings that we did not attend. This was done in order to better understand the process as 

imagined and the process “as is”, i.e. implemented concretely in the design process. A coding 

technique very similar to the one described above was used on documents when it was 

possible. 

  



 

24 

 

3.3. Case study and results 

3.3.1. Context 

We performed the empirical study in the context of the development phase of a vehicle 

and vehicle platform project. A vehicle embodies an upper-body (i.e. cabin, body-shell and 

visible parts), a platform (rolling chassis and non-visible parts) and a powertrain. Platform 

and powertrain are common to different upper-bodies, and are developed in different 

projects, starting generally before the development of a new upper-body. In our context, we 

refer to vehicle project as the development of an upper-body, which is the element used by the 

company to distinguish vehicles, and we refer to vehicle platform project as the development 

of a platform. We generically refer to a project manager as a manager of a vehicle project or a 

vehicle platform project. 

In the development phase, a vehicle needs to be delivered at a specific downstream 

milestone at the right time, the right level of performance and the right cost. This milestone 

is a stage-gate that separate the development phase from the manufacturing phase. The 

development phase consists of iteratively refining design specifications, testing the 

performance of vehicles with regards to predefined requirements, and fixing the issues while 

increasing the profit of the company. At this stage, the vehicle under development exists in 

the form of a digital model, and testing activities are therefore mostly digital, until a physical 

model can be manufactured. Digital models enable investigation and prediction of 

architectural consistency and overall vehicle performances. The model of the vehicle is based 

upon a design reference. The design reference corresponds to the state of knowledge about 

the vehicle under development, it contains all the product specifications. With different 

markets in mind, several versions of the vehicle usually exist at the same time. Design activity 

consists in refining the design reference. When design flaws are revealed by simulation, an 

issue resolution process, consisting in analyzing the causes and searching for solutions that 

will fix the issue, is put in place. This process involves decisions: choices between different 

paths of investigation (for the analyses) or design solutions. For example, a design flaw, or 

design issue, can be a yoke intrusion of 143mm instead of the 130mm required for a frontal 

crash test. The corresponding design decision can be about designing modifications for 

solving dash intrusions discrepancies. A resolution of the issue can be designing an add-on 

item tied to the existing structure that leads to a yoke intrusion of 128mm. 

Our preliminary industrial observations have shown that although a considerable amount 

of resources is spent in M&S, decision makers often do not trust M&S results. Consequently, 

among other factors determined later in this section, difficult decisions to solve issues are 

often postponed and iterated many times, sometimes until the physical test phase. Moreover, 

new design issues are sometimes discovered on physical prototypes, when the cost of solving 

these issues is considerable. These observations reveal that there are issues related to the 

decision-making process itself.  

The following paragraphs present the results of our empirical study. The decision-making 

process described, and the challenges identified are based upon our analysis of the data 

collected through the three sources of information mentioned in Section 3.2. 
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3.3.2. Decision-making process 

3.3.2.1. Escalation of decisions 

Decisions can be made at a different level in the hierarchical organization of the project. 

The issues identified by simulation concern both architectural and performance discrepancy. 

At first sight, most of the issues involve artifact-focused decisions with cost, technical, and 

customer performance considerations. Hence, a simple decision can be made locally by 

designers and analysts from an artifact perspective. However, when the potential outcomes 

of a decision have significant consequences in terms of process, the decision must be 

escalated to upper management (e.g. designing an add-on item would affect the 

manufacturing and assembly strategy, or additional analyses would push the delay up to 3 

months for the whole project). Similarly, as the development of a vehicle is a complex system, 

a decision concerning a subsystem can have an impact on other subsystems. Therefore, the 

designers and analysts (solution providers) must refer to synthesis architects, who have a 

systemic and functional view, when making a decision. When a decision involves significant 

tradeoffs in terms of cost, quality, time, and affects the coherence between parallel projects, 

the project manager is asked to decide. More generally, if solving an issue may lead to 

collateral effects, extra cost, or require out of scope information, the related decision must be 

escalated to an upper level of hierarchy. The more the issues are complex and people are 

uncertain, the more they will collect information, reframe, and escalate the decisions (Figure 

4). When a decision is made, actions are taken to update the design reference of the vehicle, 

until the next testing phase (validation). Such iterations (called digital loops in Figure 4) lead 

to a gradual refinement of the specification of the vehicle until is it ready to be manufactured 

as a prototype for physical tests. 

 

Fig 2.  Escalation of decisions in a digital loop Figure 4 - Escalation of decisions in a digital loop 
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3.3.2.2. An issue resolution process supported by simulation 

Models of different subsystems are created from the design reference (Figure 5). They are 

prepared (e.g., meshing for finite element analysis), and assembled in a synthesis model of 

the vehicle. According to a validation plan specifying the testing conditions, numerical 

simulations are made to evaluate the performance of the vehicle according to the specified 

requirements.  

When a performance does not reach the target, an issue is created. Simulation analysts, 

customer performance specialists, and designers responsible of the affected subsystem or 

domain (métier), establish a plan to solve the issue. This plan consists of identifying paths of 

investigations for corrective actions (countermeasures) that will solve the issue. Once the 

plan is executed, potential countermeasures (alternatives) are tested. For each “métier” (e.g., 

passive safety), project review meetings are organized weekly. Designers, simulation analysts 

and architects exchange information about the progress of issue resolutions, and decisions 

are made at their level, in their scope, to refine design alternatives, to deepen the analyses or 

to escalate decisions. 

If an alternative is expected to solve the issue at an acceptable cost, that particular 

countermeasure is chosen, and the design reference is updated with the modifications 

prescribed by the countermeasure.  

Solving an issue might require several iterations in design and test to achieve the desired 

performance. If the alternatives are unsatisfactory and analyses prove that the issue presents 

the characteristics set out in the paragraph Escalation of decisions (costly solution, out of 

scope information, negative impacts on other subsystems, etc.), then a decision dossier is 

created and escalated to upper levels of hierarchy (such as synthesis architect level or project 

manager level). 

To create a decision dossier, information is collected and abstracted according to the 

requirements of the decision maker. The decision maker might not be specific on the 

information he or she needs to decide in the best conditions; although he or she does not 

know in advance what information would be the most valuable, basic key data like cost, mass 

and effects are required. To select the information to communicate, engineers (designers, 

simulation practitioners, customer performance specialists) proceed according to standard 

practices and common sense. The information is presented in a decision meeting to the 

decision maker by representatives of the domains concerned by the design issue. 

Miscommunication between the decision maker and the engineers about their respective 

expectations often lead to incomplete decision dossiers. This often causes the decision to be 

postponed. 
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Figure 5 - Design issue detection and resolution process supported by modeling 
and simulation 
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3.3.2.3. Focus on project manager level decisions 

The role of the project manager 
The project manager is appointed at an upstream milestone when the concept of the 

vehicle and its unique selling propositions are defined, and match with the customer 

requirements. At this upstream milestone, the technical solutions are consistent with the 

economic target. The project manager is responsible in the company for the compliance to 

engineering entry ticket commitments for his project. The engineering entry ticket is the 

valuation of the engineering resources that are required to design the product end the process 

of a new vehicle or component. He or she makes decisions all along the development phase of 

the vehicle when the prototype is digital, and during the physical testing phase, when the 

prototype is manufactured. The more the design issues are solved during the digital phase, 

the less resources and effort are consumed. As several vehicle projects with different status 

are running in parallel for a same range, the project manager exchanges information with 

other project managers and is accountable to the program manager (Figure 4). 

 

The course of a decision meeting 

Once a decision is escalated to the level of a project manager, the decision dossier is 

presented in a decision meeting. A decision meeting is a meeting where several decision 

dossiers are presented. A specific time frame is allocated to review each dossier with the 

representatives concerned. Like the project manager has to make tradeoffs between cost, 

quality, delay and customer performance, he or she debates with two principal actors: the 

technical synthesis engineer, a synthesis architect, who is focused on objectives in the 

technical engineering (such as lowering the mass, the cost, etc.), and the synthesis customer 

performance engineer, who is focused on the customer performance requirements (i.e. what 

the customer perceives and values, such as the thermal comfort, the acoustics, the 

ergonomics, etc.). Of course, these objectives can be divergent. 

The project manager actions usually follow the pattern illustrated in Figure 6. For a 

decision dossier examined, the possible outcomes fall into two categories: either the decision 

is finalized, and a countermeasure is selected, either the decision is postponed. Whether the 

project manager decides to choose a design alternative as a countermeasure or to collect 

more information about one or several alternatives (or about the frame of the decision 

problem itself), his or her decision is later cascaded (i.e. reframed into specific decisions at 

lower hierarchical levels to take a set of actions) as shown in Figure 4. 

 

The use of decision-making methods 

In the company, at the development phase, there is no standard practice including 

rigorous methods or analyses to support decision making when solving design issues. 

Weighted-sum methods are sometimes used by project managers, but the additive utility 

assumption is often violated, and the results are equivalent to “adding apples and oranges”. 

People are generally not trained to multiple-criteria decision methods and decision analysis. 
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Figure 6 - Possibilities for a project manager in a decision meeting 
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3.3.3. Challenges 

3.3.3.1. Difficulties with design decision-making 

Consistency of the data 

Whereas management prescribes that design and testing activities should be sequential, 

in practice, when issues are identified, they are solved while designers continue to refine the 

product specification (or technical definition). The results of the testing phase which revealed 

the issue under consideration can become outdated. Decision makers can become uncertain 

about the consistency of the data: they wonder whether the results are based on the latest 

technical definition and whether the last countermeasures (the previous decisions) are taken 

into consideration.  

 

Feasibility of alternatives 

Some alternatives presented are not analyzed enough in a product-process perspective. 

The project manager needs to rely on experts that, despite the rules of core competencies and 

experience, might not have certain answers, or do not communicate their uncertainty about 

the information they provide. 

 

Validity of simulation assumptions 

The results of simulation are based on assumptions that are supposed to reflect the 

reality; despite the history, knowledge, and rules about tests. Numerical calculations are 

made with nominal values whereas there is variability within the physical prototypes. The 

project managers are aware of these types of deviations but are usually not informed about a 

confidence interval which could be provided by probabilistic calculations. 

 

Framing of the decision problem 

Some presenters attend decision meetings without a well framed decision problem. The 

project manager is uncertain about what he is expected to decide. Either the question, the 

alternatives, or the criteria can be missing. Although any choice can be made between 

inexistent design alternatives or investigations, the decision maker usually postpones a 

decision and demands the presenters to work on their request until the decision is framed 

and informed. These iterations are inconvenient for the decision makers since they consume 

time that could have been used to treat another issue. This also reflects a lack of preparation 

or an error of decision escalation. “If you come up with a problem without any solution, you 

are the problem” (said an interviewee). Decision makers and stakeholders are often 

unadvised of the influence of the decision under consideration on subsequent decisions and 

on the profit. This information comes with a good framing that shows the problem, the 

alternatives, the preferences and the potential outcomes on the design process and ultimately 

on the profit.  
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Quality Cost Delay impacts 

For a specific alternative, one or multiple dimensions of the QCD impacts can be unknown. 

Modeling and Simulation results alone do not cover cost and time aspects. Rules exist to 

determine the cost impacts at the designer levels, but the cost modeling is ideally made by the 

purchasing teams. Sometimes the cost information has not been gathered before the meeting 

due to the lack of time. Delays encompass both analyses, and design and manufacturing lead 

times. Iterating on an issue resolution or postponing the decision until the time is critical can 

have severe consequences on the overall timeline. Subsequent decisions on the project and 

sometimes parallel projects can be affected since they share some specifications. QCD data 

are sometimes estimated or collected during the decision meeting. In these cases, the decision 

maker prefers to be sure and usually postpones the decision until he or she has a clear view 

of the QCD estimations. The cost of inaction is seldom explicit.   

 

Risk management 

QCD impacts, or outcomes of a decision more generally, can be quantified with 

probabilities. If the risk is sometimes communicated, it is either informal or expressed as a 

guess work, since probabilistic approach are not used as routine methods. For some issues, a 

risk management is considered by developing solutions that can be modular (kits): if the issue 

identified by digital simulation appears during the physical tests, the kit designed beforehand 

is ready to be manufactured to solve the issue. The decision to create a kit or not requires risk 

information.  

 

The “right time” to decide  

In the same vein of the delay impact, to remain cost-effective, a decision must be made at 

an optimal moment, or before a given moment. That moment is not certain and depends on 

several factors (milestones, other design specifications, availability of information, etc.). The 

project manager often asks, “until when do we have to decide?”, meaning “when will the value 

of the payoff drop if we do nothing?”. Assuming that there is a “right time to decide”, some 

decision problems are discussed too early, while others are discussed late, when the cost of 

solving is higher. 

 

3.3.3.2. Modeling and simulation use 

Knowledge and trust about M&S 

M&S results are considered as not predictive enough for some domains such as acoustics 

and ground links. In such domains, to be relevant, simulations need to consider the entire 

vehicle synthesis model since only a holistic approach can best address these issues. Even if 

late in the digital phase, the vehicle is detailed enough to perform representative synthesis 

tests; interviewees agree that, in the company culture, physical testing is considered as more 

credible than digital testing for decision makers. This was also observed in decision meetings, 

mostly for acoustics, for example when the decision maker preferred to wait for the physical 

test instead of taking actions to solve a customer performance issue highlighted by acoustics 

simulation. People often do not question the protocol, the technical definition, and the 
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relevance of physical tests. Whereas in M&S, the update of the technical definition, the 

accuracy, the simulation assumptions are questioned. Sometimes data are presented without 

a clear definition of pedigree and accuracy; and lack of explanation. M&S results 

characteristics are also more likely to be discussed when they are unsatisfactory: when they 

do not confirm the alternative that would has been considered as the most cost and effort 

saving. The room for the doubt and the lack of knowledge about M&S quality and limits allow 

the actors of the decision the possibility to steer decision making to their own interests. 

Indeed, although M&S is intended to support design decisions, it is sometimes used in the 

company as a means to off-load responsibilities and workload. 

 

3.4. Discussion and future work 

The internal validity of this study was carefully treated by methodology and data 

triangulation as well as an internal reviewing.  The external validity must be relativized with 

cultural differences that might exist in other companies in a global context [148,149]. Indeed, 

it is important to take into consideration that our study was conducted in a specific 

automotive company where people are imbued with French culture. This company has a 

strong partnership with a Japanese car manufacturing company. Among other things, they 

share knowledge, designs and exchange about processes. During the interviews and the 

meeting observations, people emphasized multiple times that cultural differences exist in 

terms of management and about the issue resolution process between the two companies.  

In the scope considered (vehicle development projects) people of the company refer to 

artifact decisions when they speak about decisions. An artifact decision must be understood 

as “the choice between the design alternatives that solves the issue”. Note that choosing to 

postpone an artifact decision implies choosing between finalizing the issue resolution at that 

time or finalizing later; it is a process decision. It is important to recognize that a decision about 

an artifact – here, the car – influences and is influenced by decisions made about the process, 

and decisions made about the process influence and are influenced by decisions made about 

the organization [150].  

Postponing an artifact decision causes a delay in the issue resolution process. The delay 

related to one artifact decision can be propagated to other subsequent decisions and cause a 

delay in the overall process or involve cost overrun to respect the timeline. 

The causes of delay in collaborative decision making under uncertainty have been studied 

by Hassanzadeh [75] in the context of pharmaceutical R&D projects. The author has stressed 

the 3 most mentioned causes of delay over 252 key factors that affect decision making: the 

fear of uncertainty [68,77], the fear of hierarchy and the difficulty of Go/ No Go decisions. Her 

research is focused on pharmaceutical R&D, where projects last more than ten years. As the 

consequences of Go/ No Go decisions are not immediate, delays of several months may be 

ignored or tolerated. However, in the automotive industry, the time allocated to make 

decision is significantly shorter since the projects of new vehicle development last about 3 

years.  

In the development process, when an issue is being solved, the product specification 

keeps evolving since designing of several subsystems is performed concurrently. This 
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overlapping of testing and design activities can create uncertainties about the consistency of 

the data and can block out the opportunity to respond to emerging issues. For generic 

overlapping, research has been done on understanding the format and timing [151] and on 

effective communication and close coordination among different specialists [152,153]. 

Tahera et al. [20] developed a method validated in a case study in the automotive sector. The 

objective is to avoid unnecessary rework and iteration. Their method consists in integrating 

digital and physical testing to support overlapping between upstream testing and 

downstream redesign. In our case, testing and design activity are mainly both digital for the 

upper body. The digital prototype is supposed to meet the requirements before starting the 

physical testing. Some early physical tests are performed upstream for platforms (i.e. a 

chassis and a set of non-visible parts shared over distinct models and even type of cars). For 

a specific model of vehicle, a hybrid prototype (platform under development and tinkered 

upper body) is created and physically tested. The relevance of that type of test remains 

questionable in terms predictability and representativeness. Indeed, how representative are 

the results of a real vehicle obtained from a single or very few crash tests of an early hybrid 

prototype? Would those results be more predictive than a probabilistic simulation where 

tremendous digital prototypes are crashed multiple times to incorporate design ambiguities 

and manufacturing deviations? However, early physical tests allow the analysts to observe 

phenomena that are not covered by numerical simulation, such as rupture. 

The projects managers usually rely on the analysts to interpret the results and to 

communicate them with their inferences. The value of the M&S results partly depends on the 

credibility granted to them by the decision makers. The NASA [154] developed a standard 

method to assess the credibility of the M&S results presented to the decision maker; and 

established a common set of terms and a uniform way for M&S practitioners to communicate 

the credibility of M&S. A challenge is to adapt and implement such a method in a company 

with its own M&S process history.  

 

Towards a prescriptive approach 

Our results show that decision makers struggle with poorly informed decision problems, 

whether it is in terms of cost, quality, times attributes or in terms of the expression of the 

uncertainty about the information provided. We consider testing a method based on 

normative decision theory (NDT) on real decision problems encountered in the company. 

This will consist of identifying influential decision attributes and expressing explicitly and 

numerically how of these attributes affect the payoff of the decision. The Value of information 

approach will be used to consider whether additional information should be collected or not. 

That could provide clarity on when finalizing the artifact decision and avoid endless loops of 

simulations. A challenge lies in gathering input data for our method. Indeed, as the practice is 

mainly based on guesswork and heuristics, specific data could lack or be difficult to access. 

Cost and effort of using a NDT-based method should be evaluated, recorded and compared 

with the current practice, as well as the difference in terms of benefits. This comparative 

analysis is considered as one of the steps in the future work. 
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3.5. Conclusion 

In this chapter, we have investigated the decision-making process and its challenges in 

the development phase of vehicle projects in an automotive company. We focused on the 

decisions made to solve design issues (technical, related to the customer performance). 

Irrevocably, solving design issues involve resources for collecting information to frame the 

decision problem, to develop solutions and analyze their consequences. 

The level at which decisions are made depends upon the control that the decision maker 

has with regard to the technical and economic constraints and depends upon his or her access 

to information. Decisions to solve design issues are often escalated to upper hierarchical 

levels when the alternatives considered involve a risk of cost and time overruns (including 

impacts on the design activity of other subsystems).  

We described the process of design issue resolution supported by simulation, and the way 

a decision dossier is treated in a project manager level decision meeting. The lack of 

conclusive information is the main reason for postponing an artifact decision. Project 

managers make process decisions; they choose between finalizing the issue resolution by 

selecting a design solution and waiting and collecting information to finalize the issue 

resolution later. Considering the continuous evolution of the product specification the 

multiple interactions between decisions made at different levels and in different interrelated 

projects, defining the optimal moment and the valuable information to make a decision is 

challenging. 

Our descriptive approach enabled us to identify the difficulties encountered by the 

decision makers and the type of information they need. The decision makers lack of clarity 

about: the consistency of the data; the feasibility of the alternatives; the cost, quality and delay 

impacts; risk information; the optimal time to treat an issue in the development process; and 

knowledge about modeling and simulation process, validity and limits. Some decisions are 

risk informed, but this is often not explicit; and engineers are generally not well trained to 

deal with uncertainty involving mathematical methods. We also observed that the lack of 

knowledge about modeling and simulation, and the lack of trust about the results, are likely 

to facilitate irrational behavior such as off-loading responsibilities and workload. 

The objective of this work is to propose a decision support in design with regard to M&S 

process utilization. Therefore, next steps will include a prescriptive approach to devise a 

decision support framework based on normative decision theory. 
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4. A Proposal for a Decision 
Support Framework to Solve 
Design Problems 
 

 

 

 

Decision makers in the industrial context often rely on heuristics and experience 

to make complex decisions. Often, integrating implicit or expert knowledge as well 

as uncertainties can lead to decisions that are not necessarily the best ones. 

Moreover, in engineering design, the decision-making approaches focus on the 

product itself and do not investigate necessary effort that is needed to gather 

additional data in order to devise more precise decision-making models. In our 

research, we propose to integrate this estimation of additional effort needed for 

data gathering and decision making refinement in order to support design teams. 

This research has been conducted in collaboration with a major car manufacturing 

company, and in particular in the development process through Modeling and 

Simulation. The objective is to propose a decision-making model that integrates 

data-gathering estimation, integrating also the estimation of postponing one 

decision. A decision problem model based upon expected utility combined with the 

value of information theory is proposed to address this issue. The model has been 

developed and tested on 4 case studies. We define a decision support framework by 

integrating the model into a tool and by proposing roles in the decision-making 

process. We finally present its application on a concrete example. 
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4.1. Introduction 

Normative decision theory has been devised in order to support the decision making. The 

underlying hypothesis of this theory is that the decision maker is considered fully rational 

and that all data necessary for the decision making is available. However, in industry, these 

approaches have been used on a smaller scale. Several reasons have been identified as 

possible causes such as that these approaches are computationally challenging, there is a lack 

of data, conflicting objectives of the decision makers, high cost of implementation 

[37,155,156], etc.. In Engineering Design, proposed approaches in decision making have been 

mostly focused on the product itself; not necessarily taking into account the time needed for 

additional data gathering or modelling one decision. 

Previous empirical studies [107] aimed at understanding the causes that hinder the use 

of decision making approaches in automotive industry. Some of the major reasons that have 

been identified are: 1) a lack of clarity due to the uncertainty about potential changes 

(because of concurrent design and testing activities) as well as cost, quality and delay; 2) lack 

of knowledge and trust in M&S performance and limits; 3) miscommunication between 

decision actors partly due to the fact that complex decisions are trans-hierarchical (i.e. 

decisions are escalated at higher hierarchical levels). This decision escalation may result 

from: (a) a need for additional information that is out of the scope for a given subsystem or a 

component; (b) the fact that the decision problem involves adding extra cost to the 

development process; or (c) the possibility of impacting heavily another subsystem or 

process. The study also underlined that decision makers and stakeholders are sometimes 

unaware about how their decision influence subsequent decisions and ultimately the profit 

of the company. 

Interestingly and contrary to what has been usually proposed in decision making in 

engineering design, observations from industry underline the fact that decision makers 

(project manager, synthesis architect, etc.) tend to have a process-focused approach. For 

instance, they consider the fact that the technical definition for a given subsystem or 

component will in time be more refined and less likely to change over time.  When deciding, 

they tend to make an intuitive trade-off between the probability that changes in the technical 

definition will affect their decision about technical solutions and the costs incurred by the 

delay. However, outcomes related to actions such as data gathering and postponing the issue 

resolution are not explicitly integrated in the decision-making process. 

In this chapter, we propose to bridge this gap by proposing to integrate process related 

data, hence proposing a decision-making framework entitled IRDS (Issue Resolution Decision 

Support). This research is done in collaboration with a major multinational car manufacturing 

company and concerns Modeling and Simulation (M&S) process. The decision problems 

considered in this research refer to decisions made to solve the “design issues” in the vehicle 

Development phase. This phase is characterized by design and numerical testing iterations 

refining the vehicle technical definitions in order to comply with vehicle requirements. Issue 

resolution in this chapter is the process of defining solutions and gathering information to 

ultimately incorporate a technical solution (i.e. modifying the vehicle technical definition).  

For instance, a design issue can be that a noise, vibration or harshness performance does not 

meet the requirements. The corresponding decision can be to make a choice between two or 

more alternatives that will ultimately lead to solving the design issue. The alternatives are 
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courses of actions like “changing the current material X to material Y on the same design” or 

“analyzing the consequences of incorporating an add-on”. Ultimately, the choice of an 

alternative leads to an irrevocable allocation of resources. 

IRDS includes a generic model of common decision problems addressing design issues, a 

customized tool that enables to compute decision problems, a definition of the roles in the 

decision-making process, and specification of the information flow between these roles. Its 

decision problem. The model relies is based upon the expected utility maximization and value 

of information theory. In this chapter, we focus on the decision problem model, its structure, 

variables, and conceptual features. 

Related scientific background for this research are given in Sections 2.1 to 2.5: they focus 

on decision making in engineering design, value of information theory as well as approaches 

that have been integrating design process information in the decision-making models. We 

propose the following structure of the chapter. Section 4.2 details the proposed decision-

making model. Industrial cases are given in Section 4.3. In Sections 4.4 and 4.5 we discuss 

limitations of the proposed approach and discuss future research. 

 

4.2. IRDS’ generic decision problem model 

Decision makers struggle with poorly informed decision problems in terms of cost, 

quality, and time attributes about process alternatives such as: modify design now, analyze a 

design modification considering the current beliefs about the decision situation, postpone to 

analyze and modify design at a later time (in a different the decision situation). In order to 

support Issue resolution process we propose a  an issue resolution decision support (IRDS) 

that aims at answering the following general questions: What are the artifact alternatives 

(technical solutions)?, What if the decision maker chooses to incorporate a technical solution 

now?, What if he/she decides to collect information about a technical solution?, and What if 

he/she postpones the issue resolution finalization?. The IRDS model is based upon the expected 

utility defined for each decision alternative and the Bayes inference to update the beliefs in 

case of information gathering (for the alternatives consisting in performing an analysis). IRDS 

aims at integrating information pertaining to the development process; the model itself 

includes an industrial cost breakdown and takes into consideration the evolution of the 

design refinement. Depending on the accuracy expected, the data required can be extracted 

from expert or non-expert estimates; and simulation analyses results. The model was defined 

and tested progressively. Several feedback loops have been done in order to refine the model 

and ensure its genericity. 

 

4.2.1. Case studies used for model building 

In order to propose a generic decision-making model, four case studies have been 

identified and discussed with industry experts: 

• RC1: Tunnel 

• RC2: Fairing thermal protection 
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• TC1: Reinforcer 

• TC2: Analyses for reinforcer 

Two of them are real design issues that have been extracted from history and discussions 

with two experts and two analysts (“real cases”, RC1 and RC2), and the two others are 

synthetic design issues (“toy cases”, TC1 and TC2), that we designed in accordance with 

experts with the aim to represent common situations.  

Two of them are real design issues that have been extracted from previous projects and 

in discussions with two experts and two analysts (“real cases”, RC1 and RC2); and the two 

others are synthetic design issues (“toy cases”, TC1 and TC2), that we designed in accordance 

with experts with the aim to represent common situations encountered in projects.  

The two real cases consider two different stages in the development process. At the 

upstream edge of the process (RC1), the design maturity is very low, and the decision problem 

information is scarce. In other terms, the technical definition of the vehicle is imprecise and 

the probability that changes can occur and affect the problem settings is high. Moreover, no 

numerical simulation results on technical performance are yet available, and the cost estimate 

is very imprecise. Conversely, downstream (RC2), closer to the manufacturing milestone, the 

design maturity is high, and the information is prolific. In other terms, simulation results for 

technical performance already exist and simulations can be performed with reasonable 

accuracy. There is also more clarity about the economic and time constraints related to the 

potential actions. As for the two toy cases, they were designed to represent the decision 

problems encountered between these two different ends of the process. One of these toy cases 

helped us to determine the cost breakdown and the influence of the design maturity on the 

decision (TC1). The other case (TC2) helped us to model the influence of the analyses about 

the beliefs about the chances of success of one or several technical solutions. 

 

4.2.2. Structure and principles 

The Issue Resolution Decision Support model proposed is represented as a pseudo-

recursive tree. Decision Alternatives in this context that have been identified (see Figure 7) 

are the following ones:  

1. Incorporating a technical solution at the current moment: This alternative corresponds 

to modifying the design of a part, changing the material, or adding a new part (eg. a 

reinforcer). In its broad sense, this alternative also includes sticking to the current 

technical definition. 

2. Analyzing one or several technical solutions concurrently and wait for the results before 

selecting which technical solution should be incorporated (cf 1.): In other terms, this 

alternative consists of gathering additional information about the chances of success 

of incorporating a technical solution. 

3. Postponing the finalization of the issue resolution at a later moment, to then decide 

whether incorporating a technical solution (cf 1.) or perform analyses (cf 2.): This 

alternative reflects the case when the decision maker looks for the most favorable 

moment to choose to integrate a technical solution. He/she targets a time when the 

architecture is less likely to evolve and affect the outcomes of the decision.  
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These alternatives can be linked to the notion of different situations represented in the 

model (see Figure 7). The current situation (S1) includes the three categories of alternatives. 

The situation S2 corresponds to the moment when the analysis results are available and when 

the decision maker will have to choose which technical solution to incorporate. S1’ 

corresponds the moment when the decision maker will have to choose between incorporating 

or performing analyses, after having postponed the finalization of the issue resolution. If in 

the future, in S1’, the decision maker chooses to perform analyses about one or several 

technical solutions, he/she will end up to S2’. S2’ has the same structure as S2 but has a 

different time coordinate (and potentially different decision attributes). At each decision 

node of the tree, the maximum expected value is used to calculate which is the most profitable 

alternative. 

 

 

 

4.2.3. Variables, functions and conceptual features 

To comply with the company risk policy, we assume that decision making is risk neutral. 

Decisions are made to ensure that performance meets the requirement that was defined in a 

perspective of demand maximization and regulatory compliance upstream. Also, we consider 

that in the development phase, a decision addressing a design issue ultimately involves an 

expense. This expense can result from the implementation of a design change, the 

performance of analyses or, indirectly, a delay in planning (due to the cost of accelerating 

Incorporate Solution A 

Analyze Solution A 

Incorporate Solution B 

Incorporate Solution C 

Analyze Solution B 

Analyze Solution C 
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Incorporate Solution A 
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Incorporate Solution C 
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S1’ 
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Analyze Solution C 

S1 
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S2 

S2 

S2’ 

S2’ 

S2’ 
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Decision node 

𝐷0 

𝐷2 

𝐷1 

Figure 7 - Structure of IRDS’ generic decision problem model 
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subsequent activities to meet the deadline). These two reasons (risk profile and expense-

focus) lead us to assimilate the expected utility to an expected cost. The preferred alternative 

is considered to be the one that has the minimum expected cost. Figure 8 provides an overview 

of the relationships between the variables involved in IRDS. More details about the functional 

use of these variables are given in the next subsections. 

 

 

 

4.2.3.1. Incorporate Solution 

The expected cost of an Incorporate Solution alternative is computed with (Figure 9): 

• The probability that current or later changes in the technical definition of the vehicle 

will affect the outcome of the decision, 𝑝𝐼𝑇𝐷𝐶(𝑡); and its opposite, 𝑝𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅(𝑡). This 

probability is time-dependent as the technical definition of the vehicle becomes more 

and more detailed as the development phase progresses. 

• The probabilities that the vehicle passes the physical tests with the solution 

implemented whether changes occurred or not 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) and 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅); and 

their opposites, 𝑃(𝑂𝐾̅̅ ̅̅ |𝐼𝑇𝐷𝐶) and 𝑃(𝑂𝐾̅̅ ̅̅ |𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅). Note that during the development 

phase all the tests are numerical until the vehicle can be manufactured and physically 

tested in the next phase. 

• The cost actually committed in case of the success of the solution, composed by the 

development and analysis costs, the vendor tooling cost, the manufacturing cost 

(influenced by the number of vehicles manufactured), the supplier engineering cost, 

and the eventual added value or penalty (e.g. because of addition or subtraction of 

Figure 8 - Variables relationships in IRDS 
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material weight, or savings for other vehicle projects that would require the same 

tooling). 

• The cost actually committed in case of failure of the solution. The design issue 

discovered on physical prototypes is supposed to be solved before the mass 

production phase. A resolution of this problem may require changes in the 

manufacturing process. In this case, the manufacturing costs in case of failure of the 

initial solution replace the manufacturing costs in case of success. 

 

 

 

 

The cost breakdown structure for a technical solution when its implementation leads to a 

success or a failure can be seen in Table 2.  

 

 

 

 

 

 

 

 

 

Table 2 - Technical solution cost breakdown 

   Costs for a Solution 
Development 

phase 
𝐴1 Design 
𝐴2 Testing/Analysis 

Industrialization 

phase 

(manufacturing) 

𝐵1 Vendor Tooling 
𝐵2 Per-unit manufacturing × 

number of units 
𝐵3 Supplier Engineering 
𝐵4 Corrective Design 
𝐵5 Corrective Testing/Analysis 

Added 

value/Penalty 
𝐶1 Weight increase/reduction 
𝐶2 Carry-over for other projects 
𝐶3 Production launch delay 
𝐶𝑛 … 

OK 

FAIL 

OK 

FAIL 𝑝𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅(𝑡) 

𝑝𝐼𝑇𝐷𝐶(𝑡) 

𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) 

𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) 

Chance 

node 

𝑃(𝑂𝐾̅̅ ̅̅ |𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) 

𝑃(𝑂𝐾̅̅ ̅̅ |𝐼𝑇𝐷𝐶) 

⇒ 𝐶𝑜𝑠𝑡|𝑆𝑢𝑐𝑐𝑒𝑠𝑠 

⇒ 𝐶𝑜𝑠𝑡|𝐹𝑎𝑖𝑙𝑢𝑟𝑒 

⇒ 𝐶𝑜𝑠𝑡|𝑆𝑢𝑐𝑐𝑒𝑠𝑠 

⇒ 𝐶𝑜𝑠𝑡|𝐹𝑎𝑖𝑙𝑢𝑟𝑒 

Non-Impacting 

Changes 

Impacting Changes 

Incorporate 

Solution 

Figure 9 - Structure of “Incorporate Solution” alternative 
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The costs in case of success and failure (also represented in Figure 9) are defined as 

following: 

𝐶𝑜𝑠𝑡|𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = ∑ 𝐴𝑖
2
1 + ∑ 𝐵𝑖

3
1 + ∑ 𝐶𝑖

𝑛
1               Equation 1  

𝐶𝑜𝑠𝑡|𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = ∑ 𝐴𝑖
2
1 + ∑ 𝐵𝑖

′3
1 + ∑ 𝐵𝑖

5
4 + ∑ 𝐶𝑖

′𝑛
1    Equation 2  

 

The 𝐵𝑖
′ represents the new costs that are involved if the solution chosen fails when the 

physical prototype is manufactured. For instance, in case of failure, corrective actions can lead 

to change the per-unit manufacturing cost (it generally increases). Hence, 𝐵2
′  will be involved 

instead of 𝐵2. The corrective actions, involving design and testing, incur their corresponding 

expenses, 𝐵4 and 𝐵5. In both cases of success or failure, the expenses of design and testing, 

∑ 𝐴𝑖
2
1 , have been committed in the development phase. Depending of the decision situation, 

Vendor Tooling and Supplier Engineering costs can be sunk or not. In the case where they are 

sunk, 𝐶𝑜𝑠𝑡|𝐹𝑎𝑖𝑙𝑢𝑟𝑒 becomes (2) +  ∑ 𝐵𝑖
2
1 . 

As mentioned earlier, 𝑝𝐼𝑇𝐷𝐶(𝑡) is used for computing the expected cost of an Incorporate 

Solution alternative. The introduction of this function offers a new feature compared to 

current practice. Indeed, because the evolution of design maturity is not explicit in the 

decision problems, the simulation results that are presented to the decision maker only 

reflect what will happen to the physical prototypes with a certain vehicle technical definition. 

This vehicle technical definition corresponds to a specific stage of evolution in the 

development process. Ignoring this notion would imply that the vehicle technical definition 

would not evolve or that its evolution would not affect the outcomes of the decision. From the 

probability perspective, this would mean that the probability that changes occur in the vehicle 

technical definition due to interrelated design decisions and affect the decision outcomes is 

assumed to be 0. By introducing this function, we aim at making explicit these time related 

process considerations. 𝑝𝐼𝑇𝐷𝐶(𝑡) plays an important role in the Postpone alternative (Section 

4.2.3.3) and will be discussed in the case of Analyze Solution, Analyze in parallel alternatives 

(Section 4.2.3.2). 

 

4.2.3.2. Analyze Solution, Analyze in parallel 

In the case of Analyze Solution and Analyze in parallel alternatives, the analyses results 

can be favorable or not regarding one or several technical solutions. "Favorable" means that, 

considering the accuracy of the analysis, the result ensures that the incorporation of the 

technical solution will allow the vehicle to pass the physical test. The accuracy of an analysis 

is broken down by assigning a sensitivity and a specificity. This corresponds respectively to 

the true positive rate, 𝑃(𝐹𝑎𝑣|𝑂𝐾) and the true negative rate, 𝑃(𝐹𝑎𝑣̅̅ ̅̅ ̅|𝑂𝐾̅̅ ̅̅ ). Whether the 

analyses results are favorable or not, using sensitivity, specificity and the prior probability 

about the chance of success, Bayes’ rule allows to compute the posterior probability that the 

vehicle will pass the test. For example, Equation 3 represents the posterior probability that 

the vehicle passes the physical test given that the analysis was favorable. An analysis is 

performed at a given 𝑡𝑗  to which corresponds a 𝑝𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅(𝑡𝑗). Therefore, the analysis allows to 

update only the belief in the case of 𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅ , i.e. assuming that no changes in the technical 

definition of the vehicle will have an impact on the results of the decision, 𝑃(𝑂𝐾 ∩ 𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅ ∩

𝐹𝑎𝑣𝐵). The analysis is based on an already known technical definition and does not yet take 
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into account all possible changes that may occur during the period before the manufacturing 

phase. 

 

𝑃(𝑂𝐾|𝐹𝑎𝑣) =
𝑃(𝐹𝑎𝑣|𝑂𝐾)𝑃(𝑂𝐾)

𝑃(𝐹𝑎𝑣|𝑂𝐾)𝑃(𝑂𝐾)+𝑃(𝐹𝑎𝑣|𝑂𝐾̅̅ ̅̅ )𝑃(𝑂𝐾̅̅ ̅̅ )
    Equation 3 

 

 

Figure 10 shows how an analysis on the solution B affects the values in the decision tree. 

In this case, only the chances of success of the alternative Incorporate Solution B is impacted 

(in the case of non-impacting changes in the technical definition). 

The analyses can be performed in parallel for several technical solutions, and the 

posterior probability that the vehicle passes the test is computed with the product of 𝑃(𝐹𝑎𝑣) 

(and its opposite) for each technical solution. Figure 11 gives an example of parallel analyses 

for Solution A and Solution B. One can see in the decision tree that the beliefs concerning 

Solution C are not updated by the alternative Analyze A+B.  

Finally, in a value of information perspective, the cost of performing analyses must be 

considered as well as the cost of the delay incurred in the project. The delay created in the 

Analyze Solution alternative not only takes into account the actual time required to obtain 

analysis results but also the time at which it will be possible for the project team to meet to 

address the problem while respecting the company's practices and the project schedule. The 

notion of cost of delay will be discussed along with the Postpone alternative in the coming 

subsection. 
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Figure 10 - Structure of “Analyze Solution” alternative: e.g. Solution B 



45 
 

 

 

 

 

 

 

 

Analyze A+B 

Analysis A 

is Unfavorable 

Analysis A  

is Favorable 

Incorporate A 

Incorporate B 

Incorporate C 

Incorporate A 

Incorporate B 

Incorporate C 

Incorporate A 

Incorporate B 

Incorporate C 

Incorporate A 

Incorporate B 

Incorporate C 

Analysis B 

is Unfavorable 

Analysis B 

is Favorable 

Analysis B 

is Unfavorable 

Analysis B 

is Favorable 

Decision node 

Chance node 

Beliefs on the chances of success of the alternative updated by the analyses 

Beliefs on the chances of success of the alternative not updated by the analyses 

Figure 11 - Structure of “Analyze in parallel” alternative: example with Solutions A and B 
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4.2.3.3. Postpone 

The Postpone alternative corresponds to waiting for the technical definition of the vehicle 

to be more detailed before deciding on the technical solution to be implemented. Three main 

reasons motivate decision makers to postpone the finalization of the issue resolution: 

• The belief at any time that the data could be inconsistent, i.e. the simulation results 

considered at any given time may not correspond to the latest technical definition. 

• At the time the decision is considered, at 𝑡0 , changes may have occurred; project team 

already know what these changes are, even if they do not appear in the simulation 

results, or project team do not know what these changes are, but they know that the 

technical definition has already been affected. 

• Changes may occur later in the development process; project team knows what they 

will be (through heuristics or knowing that process instructions require that the 

design of certain types of parts be specified only at a given milestone), or they do not 

know what they will be, but they know that changes will appear. 

In all mentioned cases, changes of the technical definition of the vehicle may require the 

design issue to be reworked and resolved late and at a higher cost. When postponing, the 

decision maker expect fewer subsequent (or current and unaddressed) changes in the 

technical definition of the vehicle that could affect the outcomes of the decision under 

consideration (cf. 𝑝𝐼𝑇𝐷𝐶(𝑡)). In the light of the reasons mentioned above, Figure 12 

illustrates what influences this function. In general, there are fewer changes over time, hence 

we propose to consider that the likelihood of reworking on the design issue will decrease and 

that the expected costs incurred by this rework will also decrease. 

 It is important to note that we assume that existing technical solutions will be modified 

according to the evolution of the vehicle technical definition. With regard to the alternative 

Postpone, technical solutions should be considered as "types of technical solutions" (which 

lead to their respective expenses). Considering that the decision situation may change over 

time, a new and better technical solution may be designed later; the design issue may even 

disappear because some further changes can help to meet the target performance. But at the 

time the decision is considered, at t0, it is difficult to know. Therefore, we consider that in the 

worst-case scenario, it is the type of existing technical solution that is the most successful that 

will be incorporated later when the outcomes of the decision will be less likely to be affected 

by external changes. 

To illustrate the Postpone alternative concept, let us consider an example with the 

following the probabilities applied to Figure 9: 𝑝𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅(𝑡0) = 0.3, 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) = 0.9, 

𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) = 0.5, 𝑃(𝑂𝐾) = 𝑃(𝑂𝐾 ∩ 𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) + 𝑃(𝑂𝐾 ∩ 𝐼𝑇𝐷𝐶), there is 62% chance that the 

vehicle actually passes the test at the moment the decision is considered, 𝑡0 . If the decision 

maker chooses to postpone at 𝑡2 , 𝑝𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅(𝑡2) = 0.9, 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) = 0.9, 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) = 0.5, 

𝑃(𝑂𝐾) = 𝑃(𝑂𝐾 ∩ 𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) + 𝑃(𝑂𝐾 ∩ 𝐼𝑇𝐷𝐶). At 𝑡2 there will be 86% chance that the vehicle 

actually passes the test. Without any consideration of the cost related to the delay in the 

project caused by a postponement, it is preferable to wait before finalizing the resolution of 

the problem.  
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However, the cost of delay needs to be taken into account when considering postponing 

the finalization of an issue resolution. If the project team postpones the finalization of the 

issue resolution, the technical solution will need to be implemented in the shorter period, 

demanding more resources to respect the deadline of the project. This will also require 

solving subsequent and depending design issues faster, prioritize these issue resolutions over 

other activities (designing, testing, optimizing for manufacturing, etc.), and in both cases 

mobilize engineers. Moreover, the engineers are paid whereas they do not provide value to 

the project while they wait for the decision to be finalized. Finally, the chance to have to pay 
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Figure 12 - Influence diagram related to 𝑝𝐼𝑇𝐷𝐶(𝑡) 
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directly or indirectly delay penalties increases. After discussing with experts and collecting 

the historical data, we propose to model the postponing trade-off with two functions: 1) 

𝑝𝐼𝑇𝐷𝐶(𝑡) that ultimately reflect the evolution of the expected cost committed in case of 

failure, and 2) 𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦(𝑡).  

To illustrate this notion, consider Figure 9 with the example applied with Figure 13: 

“Now”, at 𝑡0 , the decision outcomes have 70% chance to be impacted by changes. After 

Impacting Change 2 is made, at 𝑡2 , there will be 10% chance of impacts. At that moment, a 

long time will remain available to implement the decision and carry out the activities that 

depend on it. Once Impacting Change 3 will be made, short time will remain available. With 

regard to project development, closer the to deadline, there is more effort needed to perform 

the remaining activities on time. Consequently, although postponing can decrease the 

expected cost of reworking a design issue, it also increases the chance of having to speed up 

activities to meet the deadline or to pay penalties; in short, to incur expenses. In cases where 

the project team does not know in advance which change will occur at which time, we propose 

to define 𝑝𝐼𝑇𝐷𝐶(𝑡) as a linear function or a simple curve. 

 

 

 

Analyzing how the expected cost (or expected value) of the Postpone alternative varies 

when t varies can help to know whether and until when it is profitable to postpone the 

finalization of the issue resolution. This analysis has been used as a Value of Information 

analysis related to postponing one’s decision. An illustration of this trade-off is presented in 

Section 3.3.3. 

In industry, it is not always easy to define nominal probabilities and costs used. In this 

case, we propose to define distributions to represent the uncertainty about the input values 

and to use a sampling method to simulate the risk associated with the decision under 

consideration. In this respect, if being uncertain has a significant impact on the decision or if 
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Figure 13 - Notional example of the relationship between time, pITDC and  𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦  
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risk-taking can create high value, then the decision maker must have the decision analyzed 

more thoroughly. 

The conceptual features we have presented are derived from our observation of industrial 

issues and practices. Section 4.3 aims to explain how IRDS can be integrated into an industrial 

framework. 

 

4.3. IRDS industry application 

4.3.1. Proposition of roles in the decision-making process 

In order to support the decision making, in discussion with the company we proposed 

that the decision analysis is done by a specific person, exchanging information with project 

team members and knows how to manage an IRDS tool. Hence, in the IRDS framework one 

can identify 3 different roles: the decision maker (DM), the decision analyst (DA) and the 

decision-problem data provider (DaP). DaP are generally numerous (experts, analysts and 

designers from different disciplines, working on different subsystems). They provide data for 

decision analysis while responding to DA requests, and provide complementary situational 

information to the DM. DA gathers decision problem data and context information by issuing 

data queries. These data can be numeric values obtained through numerical simulations or 

quotes from experts expressing their beliefs. DA analyses the decision while integrating DM’s 

queries, and provides him/her decision analysis results and suggestions. DM receives and 

requests information from DA and DaP, and takes the decision to solve the issue. Figure 14 

shows what data is conveyed between the 3 roles and the associated data flow in the decision-

making process and supported by the IRDS tool. 

 

 

Figure 14 - Data flow diagram of the decision-making process supported with IRDS 
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4.3.2. Customized toolbox 

In order to support design teams, we tailored Palisade Decision Tools Suite [157] to deploy 

IRDS. With PrecisionTree 7.5, a generic decision tree has been developed based upon the 

model previously discussed. 22 IRDS inputs have been defined with regard to the variables 

and functions mentioned in Section 4.2.3.. Design team can use automatically defined 

functions with regard to the type of alternatives selected. For a decision problem considering 

3 technical solutions, the decision problem model is constituted of 644 end nodes. We also 

created tables to define 𝑝𝐼𝑇𝐷𝐶(𝑡) and 𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦(𝑡). We propose to use Palisade’s @Risk [157] 

to perform sampling distribution simulations. The decision analyst has to define the 

simulation settings according to the specificities of the decision problems. Our motivation 

was to simplify the use of the decision support tool so that the effort is concentrated on the 

data gathering and analysis rather than on modeling. 

 

4.3.3. Noise Vibration and Harshness example 

As it discussed in previous sections, several use cases were the basis for the IRDS 

development and validation. In order to illustrate, in this section we focus only on one 

industrial case where a vibration performance does not meet the requirement. Simulation 

results initially show that two measurement points do not reach the target. Simulation 

analysts identified the vehicle part involved in this defect and proposed, with designers, two 

technical solutions (design and material changes). They performed analyses on the efficacity 

of the technical solutions with regard to the vibration performances. As any design change 

can impact many performances, and passive safety success is a sine qua non condition to 

accept a design change, simulation analysts also tested passive safety performances.  

In order to support the decision making, we deployed IRDS and fulfilled the role of DA. A 

DaP initially provided a 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) estimate for each technical solution (10% for Solution 

A, which is the current technical definition of the vehicle part, 70% for the Solution B, and 

90% for the Solution C). To do so he relied on his own experience supported by numerical 

simulations. The simulations for performance assessment were performed with nominal 

values for two potential technical solutions. The differences between the 2 proposed technical 

solutions and the current technical definition in terms of Manufacturing cost | Success, and 

Weight | Success were provided in the decision dossier that was already prepared. To use 

IRDS, DA investigated with DaP to collect missing data. 

It is important to note that not all missing data were worth gathering; for instance, 

development cost difference was supposed to be equal for the two solutions and was not 

necessary to estimate (more precisely: one estimation was sufficient for both solutions). DA 

assumed that costs estimates were accurate in the case of success; and the costs estimates in 

the case of failure were rough but plausible according to the experience of DaP. In this case, 

an order of magnitude was sufficient as an input data. Depending on the accuracy expected, 

this data can be easily available for low cost, but it is time consuming since DaPs are spread 

in different services. Sometimes it may require additional effort to estimate costs in the case 

of failure, since it requires history and/or cost estimates of backup solutions. In this case, DA 

and DaP assumed that in the case of failure, the technical solution that has the best chance to 



51 
 

succeed but that is the most expensive will be used as to develop a late solution. An additional 

weight is considered and corresponds to a penalty that is computed with the company cost 

per kg model. The scenario of failure involves extra-costs due to the late work and late 

negotiations with suppliers. In other words, the three technical solutions have the same 

manufacturing (MFG) cost in case of failure, as stated in Equation 4:  

 

 𝑃𝑒𝑟-𝑢𝑛𝑖𝑡 𝑀𝐹𝐺 𝑐𝑜𝑠𝑡 𝐴, 𝐵, 𝐶 | 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑒𝑟-𝑢𝑛𝑖𝑡 𝑀𝐹𝐺 𝑐𝑜𝑠𝑡 𝐶 |𝑆𝑢𝑐𝑐𝑒𝑠𝑠 +
 𝑃𝑒𝑟-𝑢𝑛𝑖𝑡 𝑀𝐹𝐺 𝑒𝑥𝑡𝑟𝑎-𝑐𝑜𝑠𝑡 𝐴, 𝐵, 𝐶 | 𝐹𝑎𝑖𝑙𝑢𝑟𝑒                                         Equation 4  

  

DA performed analyses with rough approximates of 𝑝𝐼𝑇𝐷𝐶(𝑡) and 𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦(𝑡), as in 

Figure 15 and Figure 16, to assess how sensitive the decision was about these functions, in 

order to eventually model them more accurately with the help of DaP.  

Figure 15 shows 3 𝑝𝐼𝑇𝐷𝐶(𝑡) profiles. The Linear profile represents the simplest 𝑝𝐼𝑇𝐷𝐶(𝑡) 

model that can be made. This profile is based on the obvious assumption that the more the 

project progresses, the more design parameters are fixed, and the less changes can occur. This 

Linear profile is the one that is used by the DA in the current example. To illustrate other 

possibilities, notably in the case where information about specific technical definition 

changes would be available, we defined two other profiles: Step Early and Step Late. They 

respectively represent scenarios where short and long remaining times available after main 

impacting changes have occurred. In the Step Early scenario, the second 𝑝𝐼𝑇𝐷𝐶 drop happens 

6 weeks earlier than in Step Late scenario. Figure 17 shows how these 2 beliefs models would 

have affected the expected value. 
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Once the IRDS process led to conclusive results, DA presented a report to DM. As shown 

in Table 3, excluding the Postpone alternative (that is time dependent), the alternative that 

has the maximum expected value (EV) is Analyze A+B+C. Although Solution A (current 

technical definition of the vehicle part) has only 10% chance of success (prior belief), it costs 

1 220 000 € less than Solution B in case of success. Solution B (70% chance of success) costs 

780 000 € less than Solution C in case of success. These two solutions worth investigating 

since they would lead to significant savings compared to Solution C if they ever succeed.  

 

Alternative Expected Value 

Incorporate A -2 880 000 € 

Incorporate B -2 091 200 € 

Incorporate C -2 456 000 € 

Analyze A -2 093 890 € 

Analyze B -2 086 498 € 

Analyze C -2 093 890 € 

Analyze A+B -2 077 100 € 

Analyze A+C -2 094 890 € 

Analyze B+C -2 078 775 € 

Analyze A+B+C -2 070 389 € 
 

Table 3 - Expected values of decision alternatives 

 

Involving 𝑝𝐼𝑇𝐷𝐶(𝑡) and 𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦(𝑡), the EV of Postpone alternative varies over time, as 

shown in Figure 17 and Figure 18. It is important to remember that the Postpone alternative 

includes a later decision among the other decision alternatives. This later decision will involve 

a different probability of impacting changes. Figure 18 underlines the expected value of 

Postpone increases until week 15. At week 21, its EV is equal to the expected value of choosing 
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Analyze A+B+C at week 0. Between week 0 and week 21, an update of the situation will allow 

to make a better decision and avoid rework. Week 15 is the optimum date for postponing the 

decision, with a difference of EV of 221 058 €. Postponing until after week 21 will not be 

profitable, since the EV after week 21 is smaller than choosing Analyze A+B+C at week 0. 

Indeed, any choice after week 21 will be potentially more expensive since costs will be 

incurred by the delay. The DM should best postpone the decision. 
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In this example, the DA gathered data from DaPs for entering IRDS inputs. For 

convenience purposes, we performed the computation on a deterministic model, implicitly 

assuming that DaPs are certain about the data they provide. However, DaPs are uncertain 

about every input to some extent. For example, the person providing the costs can say “the 

per-unit cost difference for this solution is between 7 € and 11 €, but this is most likely 9 €”. 

We have deepened the analysis of the decision problem by modeling uncertainties about 

costs. These inputs are worth investigating because they can change according to the moment 

they are estimated, the multiple information sources, and the assumptions made. DaP’s are 

aware of this variability and generally are able to estimate the range and the modal value. In 

such situations, triangular distributions are convenient to represent beliefs since they are 

based upon scarce data. We therefore defined triangular distributions to describe DaP’s 

beliefs and uncertainty about inputs and reported it in Table 4. According to the assumption 

made about the scenario of failure (Equation 4) we defined a triangular distribution only for 

𝑃𝑒𝑟-𝑢𝑛𝑖𝑡 𝑀𝐹𝐺 𝑒𝑥𝑡𝑟𝑎-𝑐𝑜𝑠𝑡 𝐴, 𝐵, 𝐶 | 𝐹𝑎𝑖𝑙𝑢𝑟𝑒. A distribution is also defined for the additional 

weight in case of failure.  

 

 

 

Figure 18 - Evolution of the Expected Value over time when postponing the issue resolution 
compared with Expected Values of other decision alternatives 

-3,4E+06

-3,2E+06

-3,0E+06

-2,8E+06

-2,6E+06

-2,4E+06

-2,2E+06

-2,0E+06

-1,8E+06

-1,6E+06

0 5 10 15 20 25 30

Ex
p

ec
te

d
 V

al
u

e 
(€

)

Time (week)

Incorporate A

Incorporate B

Incorporate C

Analyze A

Analyze B

Analyze C

Analyze A+B

Analyze A+C

Analyze B+C

Analyze A+B+C

Postpone



55 
 

Input Lower limit Mode Upper limit 

Vendor tooling cost C | Success (k€) 72 80 88 

Per-unit MFG cost B |Success (€) 2 2,5 3 

Per-unit MFG cost C | Success (€) 7,2 9 10,8 

Per-unit MFG extra-cost A, B, C | Failure (€) 1,6 2 2,4 

Additional weight (kg) 0,2 0,3 0,4 

 

Table 4 - Input triangular distributions 

 

Figure 19 shows the distributions of values for the Postpone (until week 15) alternative 

and the 3 artifact alternatives. We purposely plotted these distributions in order to compare 

the gain of the Postpone alternative against the alternatives that would only have been 

explicitly considered in current practice. These types of results allow us to observe how the 

uncertainty about IRDS inputs can affect the results of decision analysis. Given this additional 

analysis, depending on how the distribution intersects, project team members should be 

cautious about their beliefs. 

 

 

 

In the current practice of the company, the decision maker would not have been provided 

with such explicit information about the consequences of analyzing technical solutions or 

postponing the decision. This lack of clarity could have led the decision maker to iterate more 

often and mobilize engineers (slowing down other activities), or to choose to incorporate a 

technical solution right away and rework it later at a higher cost. The IRDS framework allows 

for structuring the process-focused approach for decision making and for informing the 

decision maker accordingly. 

Figure 19 - Distributions of values for postpone alternative compared to 
incorporate alternatives 
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4.4. Discussion 

Discussions with different actors in this process and in the company can highlight several 

benefits of the IRDS framework: IRDS framework allows to explicitly and systematically 

identify what the alternatives are, including the action of performing further analyses. It is 

also considered as an incentive to bring the team together to discuss the beliefs people have 

about the inputs of the decision problem. The decision is analyzed with a rigorous 

mathematical framework. The decision problem model is designed to address most of the 

decision problems that can be encountered in the development phase. Hence, it allows the 

project team not to spend resources to build new models for similar problems.  

However, several limitations can be discussed as well. Using the IRDS requires time and 

efforts in terms of data gathering and beliefs modeling. In the case where IRDS would lead to 

the same decision as to the current practice, the use of IRDS would involve unnecessary 

expenses. In such case, by investigating decision alternatives, the organization can gain 

insights that can be useful for other purposes (such as improvement of processes and 

practices). However, this gain is difficult to quantify and out of our current research scope. 

We acknowledge that IRDS framework does not prevent the users from experiencing biases 

that can lead to poor decisions. Framing the problem and the actions explicitly can discourage 

the decision maker to think broader and reconsider the problem. Moreover, IRDS may not 

include all the alternatives that are actually available. Another bias is related to data gathering 

by beliefs elicitation and modeling: if the beliefs deviate too much from the truth, the 

computation can provide results that are mathematically correct but do not conform to the 

actual state of reality. Finally, IRDS decision problem model is the results of assumptions and 

modeling choices we have made. Consequently, the functional relationships that we impose 

through our model can also introduce biases as these assumptions may not reflect the beliefs 

of the people using IRDS. 

 

4.5. Conclusion and future work 

Decision making in industry context, and in particular in complex system design can be 

difficult. Often data gathering or additional time necessary for developing a more precise 

decision-making model is not considered explicitly. In this research, IRDS framework has 

been proposed in order to integrate process related data in the Modeling and Simulation 

based vehicle development process. IRDS allows for process-focused decision-making, 

incorporating the analysis of the consequences of actions such as information gathering and 

postponing the choice of artifact alternatives. The proposition of a decision-making model has 

been defined based upon 4 industry case studies and an additional case of Noise, Vibration 

and Harshness has been used for testing. This model has been designed in accordance with 

experts to reflect the possibilities and the constraints of the industrial process. 

We observed that it is challenging to gather some of the data used for the computation of 

the decision problem. Engineers struggle to express subjective probabilities when numerical 

data is scarce or when numerical simulation results contradict their beliefs (e.g. when the 

numerical model of the system do not take into consideration attributes that are known by 

the expert). Hence, investigation of methods that allow for data identification that are critical 
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and change the decision (in the light of sensitivity analysis) will be considered as to permit to 

focus data gathering activities. This is considered by the experts as necessary in order to 

support decision making but also future resources consumption. 
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5. Exploring the Difficulties 
Related to Uncertainty when 
Implementing the Decision 
Support Framework in the 
Company 
 

 

 

 

Decision support systems and frameworks are getting increasingly 

computerized and often based on mathematical models. In such cases, the decision 

problem is modeled, and users provide inputs and interpret outputs computed with 

the model to guide their actions. In company settings, when designing complex 

systems, several persons or entities contribute to the information collection. Hence 

deploying a decision support framework based on a model suppose tackling 

uncertainty about inputs and information collection difficulties. We focused this 

research on the Issue Resolution Decision Support (IRDS), a decision support 

framework tailored for solving design issues in the industrial development phase. 

We aimed at identifying difficulties and uncertainties encountered when 

implementing the framework in the industry. In a second time, we explored methods 

for addressing these implementation issues. When deploying IRDS, we identified the 

data that are scarce, mapped out how data are scattered among people, and 

identified the elicitation process as an important challenge for defining the values 

of model inputs. We proposed a sensitivity analysis-based method as a cost-saving 

method for handling data gathering difficulties and uncertainty. We present this 

research through 5 decision problems encountered by an automotive company. 

These results are interesting since they contribute to improving knowledge on 

industrial applications of a decision support framework in terms both of 

uncertainty management and data gathering efforts. 
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5.1. Introduction 

When addressing design decisions for the development of complex systems, decision 

makers often face situations characterized by uncertainty. This uncertainty is both related to 

the design artifact and the design process that can be impacted by interrelated decisions. 

However, until recently, the vast majority of research in decision-based design (DBD) focused 

decision problems formulation on the design artifact and overlooked the tradeoffs involved 

when gaining additional information in a process-focused perspective. To expand this scope, 

Thompson and Paredis [59] established a new DBD perspective that represents the tradeoffs 

under consideration when analyses can be performed to incorporate additional information 

in the design phase. They show that the decision analysis of design process decisions provides 

a more comprehensive model of the problem when multiple information sources can 

sequentially be used. 

In the context of decision making addressing design issues, we extended Thompson and 

Paredis’ process-focused approach in a model that integrates concurrent analyses, impacts of 

potential changes related to the product definition evolution and project time constraints 

[108]. We proposed the IRDS (Issue Resolution Decision Support) framework to operate this 

model in an enterprise context. We highlighted that data gathering can be challenging, costly, 

and that biases can be introduced by beliefs modeling. The implementation of a decision 

support framework in a company implies to tackle difficulties and uncertainties related to the 

prioritization of data providers, the elicitation and modeling of their beliefs, and the 

representation and the interpretation of the results provided by the decision analysis. 

Managing the uncertainty when implementing IRDS in a company setting is necessary to 

perform valuable decision analysis and help the project team to gain insight and take actions. 

Sensitivity analysis has been used along with decision analysis in the literature to help to 

focus data-gathering effort. In the context of IRDS, sensitivity analysis is worth studying from 

a cost-efficient data collection perspective. In this respect, the chapter aims to address the 

following questions: 

What are the difficulties related to the uncertainty encountered when implementing IRDS 

and how to manage them?  

 As we conducted our research, this general question lead to the followings: 

• How to incorporate various experts’ beliefs that are sometimes contradicting each other 

and expressed in different forms in a numerical model?  

• How can sensitivity analysis influence data collection strategy? 

In section 5.2, we briefly recall what is IRDS framework: its principles, the roles and 

information under consideration. Thereafter, in Section 5.3, we discuss the uncertainty and 

the related difficulties encountered when implementing IRDS framework. In Section 5.4, we 

introduce a sensitivity analysis-based method which aim to address these issues. In Section 

5.5, we present case studies and insights we gained by deploying IRDS framework enhanced 

with sensitivity analysis. We end with discussion in Section 5.5, and conclusions and future 

work in Section 5.7. 
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5.2. IRDS framework fundamentals 

In this section, we provide a synthetic recall of the fundamentals of the IRDS framework 

to better transition with the study presented in the next sections. IRDS framework [108] is 

based upon a decision problem model of the most common design issues occurring during 

the development phase of vehicles. The framework includes customized computational tools 

and definitions of roles and information exchange. 

 

5.2.1. Decision problem model 

The decision problem model can be represented as a pseudo-recursive binomial decision 

tree and relies on expected utility maximization and value of information theory. It includes 

3 types of alternatives: 

1. Incorporating a technical solution at the current moment. It is an artifact-focused 

alternative that corresponds to modifying the design or material of a part, adding a 

new part to the vehicle, or sticking to the current technical definition. 

2. Analyzing one or several technical solutions concurrently and wait for the results 

before selecting which technical solution should be incorporated (cf 1.). It is a process-

focused alternative which consists of gathering information about the chances of 

success of incorporating a technical solution. 

3. Postponing the finalization of the issue resolution at a later moment, to then decide 

whether incorporating a technical solution (cf 1.) or perform analyses (cf 2.). It is a 

process-focused alternative that takes into consideration the evolution of the 

technical definition of the vehicle and the uncertainty about the variability of the 

design. Practically, the decision maker targets a time when the architecture is less 

likely to evolve and affect the outcomes of the decision. 

  

5.2.2 Roles 

Three roles are involved in IRDS framework: the decision-problem data provider (DaP), 

the decision analyst (DA) and the decision maker (DM). 

• DaP (experts, analysts and designers from different disciplines, working on different 

subsystems), provides data for decision analysis while responding to DA requests, 

and provides complementary situational information to the DM.  

• DA gathers decision problem data and context information by issuing data queries 

and integrates DM’s queries. He/she analyses the decision and provides the DM with 

decision analysis results and suggestions. 

• DM requests and receives information from DA and DaP, and finally makes a decision 

to solve the issue. 
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These roles exchange information in different forms and DA ultimately translate it into 

IRDS input data. to compute decision problems with IRDS computational tool. 

5.2.3 Information 

IRDS decision problem model involves 22 different inputs: 20 input data per technical 

solution, and 2 generic input data for the decision problem. All of them fall into 4 categories: 

costs, probabilities, times and rates. 

• Costs includes the costs of design, manufacturing and analysis for each technical 

solution in case of success and in case of failure. Costs of delay due to a late 

implementation of the solutions and penalties or value added are also included (e.g. 

cost of additional weight). 

• Probabilities reflect the chances of success or failure of the solutions, but also the 

chances that changes occur and affect the decision under consideration. 

• Times are related to the duration necessary to acquire additional information. 

• Rates correspond to statistical estimates or measures of sensitivity (true positive 

rate) and specificity (true negative rate) in case of performing single or concurrent 

analyses regarding the chances of success of technical solutions.      

Table 5 gathers IRDS inputs. The class weight performance corresponds to the estimate of 

weight addition or loss. It is ultimately converted into a cost of weight that is included into 

the Added value/Penalty input data. For Analysis time, the time is incorporated in the overall 

cost of Additional analysis that incorporate the cost of performing analyses (e.g. numerical 

simulation) at any time plus the cost incurred by the delay that analyses generate in the 

project schedule.  

These inputs ultimately reflect the modeling choices of the modelers. Simplifications from 

more complex versions of the decision problem model have been done to provide valuable 

results with minimal information and to be consistent with the company capacity to produce 

data. 

Despite this simplification effort, gathering some data and modeling beliefs can be 

challenging. The next section focuses on discussing the challenges encountered when 

considering the implementation of IRDS, notably due to the management of uncertainty of 

information sources. 
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CATEGORY N° INPUT NAME 

Cost 

1 Design 𝐷𝑐1 

2 Corrective Design 𝐼𝑐4 

3 Testing/Analysis 𝐷𝑐2 

4 Corrective Testing/Analysis 𝐼𝑐5 

5 Vendor Tooling 𝐼𝑐1 

6 Vendor Tooling | FAIL 𝐼𝑐1′ 

7 Supplier Engineering 𝐼𝑐3 

8 Supplier Engineering | FAIL 𝐼𝑐3′ 

9 
Per-unit manufacturing × 

number of units 
𝐼𝑐2 

10 
Per-unit manufacturing × 

number of units | FAIL 
𝐼𝑐2′ 

11 Added value/Penalty 𝑉𝑃𝑖 

12 Added value/Penalty | FAIL 𝑉𝑃𝑖′ 

13 Additional Analysis 𝐴𝑐 

14 Delay 𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦(𝑡) 

Weight 

performance 

15 Weight 𝑤 

16 Weight FAIL 𝑤′ 

Probability 

17 
Probability of Success | 

Impacting Changes 
𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) 

18 
Probability of Success | 

Non-Impacting Changes 
𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) 

19 

Probability function of 

Impacting changes over 

time 

𝑝𝐼𝑇𝐷𝐶(𝑡) 

Rate 
20 Sensitiviy 𝑃(𝐹𝑎𝑣|𝑂𝐾) 

21 Specificity 𝑃(𝐹𝑎𝑣̅̅ ̅̅ ̅|𝑂𝐾̅̅ ̅̅ ) 

Time 22 Analysis time 𝐴𝑡 

 

Table 5 - IRDS input data 

 

 

5.3. The uncertainty associated with gathering data  

Implementing a decision support framework in a company suppose dealing with the 

actual company processes, practices, and to a bigger extent, its culture. The introduction of 

new methods and tools impact the current practice and organization and vice versa [87–89]. 

The objective was to identify the challenges of implementation from an operational 

perspective, so that the framework can be best integrated in the company without necessary 

transforming abruptly the organization and practices. We focused the research on the 

information collection for supplying model inputs. 
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5.3.1. Available data and access to information in company settings 

To better identify the challenges of decision support framework implementation, we first 

compared the information already available in as-is decision dossiers and the information 

that is required to use IRDS. To do so, we referred to an empirical study that mapped-out the 

as-is decision-making process and extended it by interviewing more participants and 

observing five more decision dossiers. These decision dossiers will be used as case studies for 

the implementation of IRDS. 

Hence, based on the empirical study presented in [107], we extended the observation to 

45 decision dossiers brought to project manager level decision meetings and interviewed 15 

more professionals. Table 6 shows the variety and number of participants considered for this 

extended study.  

 

Interviewee Role Number 

Technical director 1 

Vehicle program manager 2 

Vehicle project manager 2 

Synthesis architects 2 

M&S expert leader 1 

Durability expert leader 1 

M&S expert 1 

Head of CAE service 1 

Head of Numerical Simulation Methods 

and Tools service 
1 

Crash simulation expert 1 

Acoustics expert 1 

CAE Synthesis Engineer 3 

Validation synthesis leader 1 

Simulation Analyst 4 

Cost engineer 1 

Customer Performance Leader 1 

Optimization and Numerical methods 

team leader 
1 

Process-related data management 

referent 
1 

Model building project manager 1 

 

Table 6 - Roles and number of interviewees for the extended empirical study 

 

Interviews were semi-structured, conducted by one researcher, and analyses were cross-

checked with two other members of the research team. Questions were designed to 

understand the as-is decision-making process and data gathering. For the present research, 

as we included new interviewees, we focused questions on data-gathering. For example: 

• What data are communicated in decision dossiers? 

• Where do these data come from? 

• How long does it take and how much does it cost to produce such data? 

 

This study allowed us to identify what type of information and through which means it is 

conveyed in decision meetings. There are three communication means: 
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• Decision dossier presentation documents: These are a PowerPoint documents 

composed of a dozen slides either presented by the Synthesis Architect, the Customer 

Performance Leader, the CAE Synthesis Engineer, or any knowledgeable person on the 

subject. It presents the issues and the artifact alternatives – also called hypotheses at the 

OEM – to solve it. It synthetizes the stakes, performance, cost and time data related to the 

design issue framed as a decision problem. 

• Quotes from decision meeting participants: These exchanges aim to enrich the 

knowledge of the participants and, ultimately, influence the decision maker. Such quotes 

can relate to the simulation results or cost estimates presented, including the expression 

of uncertainty. 

• Water cooler talk: These are discussions held aside from decision meetings where 

implicit knowledge and data that are not included in the presentation can be shared. 

 

Figure 20 presents the roles that supply the information that is available in current 

decision dossiers. The fact that data included in decision dossiers may be supplied by various 

roles will be relevant when we will establish a parallel with the data gathering of IRDS inputs. 

For instance, the costs can be estimated by both designers (through heuristics), cost analysts 

(through cost simulation and further analyses), Engineering Leaders  (who works closely 

together with designers, supplier, and manufacturer) and synthesis architects (through 

heuristics or gathering and interpreting other roles’ estimates). The same applies to 

performance estimates with the corresponding roles. The timing data are seldom provided 

explicitly with regard to design process alternatives (analyzing further a solution, time 

between one decision meeting and another, etc.). However, the project team can agree on an 

estimate of the delay in the manufacturing of prototypes caused by the choice of a technical 

solution.   

 

Decision 

Dossier 

As-is 

Cost 

analyst/engineer 

Engineering Leader  

Designer 

Simulation Analyst 

Synthesis Architect 

Vendor tooling cost 

(Ic1) 

Manufacturing cost 

(Ic2) 

Weight 

Technical 

Performance  

Customer 

Performance Leader 

Expert 

Timing 

CAE Synthesis 

Engineer 

Figure 20 - Information sources in as-is decision dossiers 
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It is important to note that to date, the information contained in decision dossiers, and 

ultimately presented in decision meetings, only consider the scenario of success. It means that 

the costs considered only reflect the costs that will be committed if no rework is needed. The 

costs involved in case of failure are not explicated (e.g. corrective design, changing tooling, 

etc.). A corollary of this framing choice is that risk is not represented. Indeed, the probability 

of success – and its opposite – is not explicitly considered. The information also does not 

contain the evolution of the product and unknow changes considerations. It means that the 

way the decision problem is framed does not include the likelihood that changes may occur 

and affect the decision outcomes.  

IRDS aims to provide a more comprehensive framing of decision problems. It computes 

the expected utility by incorporating costs involved in case of failure, probability of 

success/failure, and changes in the decision situation. Computing requires input data, and this 

is where it can become a challenge in an enterprise context. 

We observed that 5% to 20% of IRDS inputs are already available in the current decision 

dossiers – this proportion varies because some decision dossiers do not contain enough 

information to compare technical solutions with each other. It corresponds to the data 

presented in Table 7. The Probability of Success is seldom communicated directly as a 

numerical probability. It can rather be inferred from a Boolean representation (OK/NOK) or 

a smiley rating scale (sad-red / sad-orange / happy-orange / happy-green). Due to subjective 

and therefore variable definitions and mental models, the inference and translation of 

performance data, qualitative ratings, and personal beliefs into numerical probabilities can 

be ambiguous. Other information that is lacking in current decision dossiers needs also to be 

elicited and translated into IRDS input data. This leads us to the consider the notion of belief 

modeling. 

 

CATEGORY INPUT NAME 

Cost 

Vendor Tooling 𝐼𝑐1 

Per-unit manufacturing × 

number of units 
𝐼𝑐2 

Weight 

performance 
Weight 𝑤 

Probability 
Probability of Success | 

Non-Impacting Changes 
𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) 

 

Table 7 - IRDS input data available in as-is decision dossiers  

 

5.3.2. Modeling data providers’ beliefs 

Data providers traditionally communicate their beliefs in decision dossiers in the form of 

written sentences associated with plots and 3D simulation screenshots, numerical values and 

smiley faces. These representations usually serve as basis for discussion between participants 

of the decision meetings.  
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When considering enhancing the information in a decision analysis perspective, these 

qualitative and quantitative representations of data providers’ beliefs can be leveraged to 

infer quantities such as the probabilities of success and the costs (e.g. from “this solution is 

more expensive” to “likely 2€ more expensive”). In the current practice, statistical data are 

seldom provided for technical performance since it involves performing important numbers 

of simulations, which is time consuming and costly (durability performance and advanced 

driver-assistance systems are some exceptions). Simulations are usually done in relatively 

small numbers and integrate nominal parameters – i.e. seldom take into account variability 

due to changing design specifications and manufacturing process deviations. 

  

Probabilities of success 

Let us examine the input 𝑷(𝑶𝑲|𝑰𝑻𝑫𝑪̅̅ ̅̅ ̅̅ ̅̅ ). This input is a probability that reflects the chance 

that once the technical solution is incorporated in the vehicle, assuming that no changes will 

impact the decision, it will lead to a success when the prototype of the vehicle is tested in the 

manufacturing phase. One considers the state “success” if the performance target is met. In 

the current practice, information of various nature concerning the performance of a technical 

solution is provided to the decision maker. In our empirical study, decision makers indicated 

that they formulate their own beliefs about the chances of success of a technical solution 

based on the numbers, quotes of participants, etc. and by confronting them with their own 

experience and "intuition". Experts proceed the same way when they report their beliefs in 

the form of quotes. 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) takes a single value to capture the prediction about a binary 

event. For such a belief representation, as discussed in Section 2.7, a simple and time-efficient 

rule has been used in the literature of belief elicitation: the free rule. With this rule the 

decision analyst simply ask the experts to report their beliefs – without confronting them with 

an incentive mechanism. This elicitation can include the translation or interpretation of the 

beliefs representations already provided (such as smiley faces) by other data providers. This 

translation is made together with the decision analyst. It is useful from a knowledge 

capitalization perspective (capturing information from historical decision problems and 

performing analyses with ex-post information).  

Figure 21 shows how experts translate the smiley faces already existing in decision 

dossiers into 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅). These assumptions are made in accordance with the data 

providers interviewed; they assumed a variation on the responses depending on the problem 

considered, but also depending on the experts’ subjectivities. For sad-red and happy-green, 

we observed in the case studies that experts tend to assess 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) that are closer to the 

extrema (0% or 100% chances of success). This can be explained by the fact that they are 

more comfortable with translating what they consider as strong statements, such as “sad-red 

means that there is very few chances to pass, therefore I would give a little 5%, even less” or 

“happy-green means that it is ok, I would give 95%, even more”. The drawback of this 

approach is that the elicitation can be biased by the fact that experts assess a probability 

through a model that already is already an interpretation. Moreover, more effort is needed to 

combine the smiley faces across several disciplines to come to an overall estimate. A direct 

approach, consisting in eliciting the belief without the support of smiley faces could avoid this 

bias – we did elicit without smiley faces, but the comparison of the two approaches for the 

same case studies is not included in the ongoing research.         
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Figure 21 - Translation of smiley faces into 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)  

 

Let us now consider 𝑷(𝑶𝑲|𝑰𝑻𝑫𝑪). This probability is similar to the latter, with the 

difference that impacting changes are assumed to occur. This input variable is more 

challenging to elicit since it involves additional assumptions strongly related to the 

experience of the experts. For instance, some changes are known to be likely occur at specific 

milestones. In accordance with experts, we assumed that a default value of 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) is 

50% (reflecting ignorance) for technical solutions that have  𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) ≥ 50% (i.e. the vast 

majority of the technical solutions that are considered to solve a design issue).  

IRDS proposes a simple model for 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) and supposes that changes have negative 

impacts – in accordance with experts interviewed – even if it is not always true. Predicting 

whether the changes will impact positively or negatively the performance of the technical 

solution considered is more challenging. The impacts of changes can also change overtime. 

For instance, the changes that occur before a certain moment can have positive impact, and 

the changes occurring after can have negative impact. In that respect, 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) can be 

time-dependent. However, it is even more difficult to elicit beliefs for such a model since it 

requires additional assumptions not necessarily supported by empirical evidences. IRDS still 

enables the user to compute the problem with time-dependent 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) if enough 

information is available. 

Both 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) and 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶) are conditional to 𝒑𝑰𝑻𝑫𝑪(𝒕). This function 

represents the probability that later or current but not represented changes in the technical 

definition of the vehicle will impact the outcomes of the current decision.  Its values depend 

on the design issue itself: whether the system under consideration is isolated or interacting 

with others, and whether the interactions affect the performances under consideration. 

Defining 𝑝𝐼𝑇𝐷𝐶(𝑡) from empirical evidence is so far very difficult. It would imply to, at least, 

gather data about design modifications on a significant number of similar projects over time, 

and relate these design modifications to each other with regards to the technical performance 

under consideration to formulate assumptions based upon objective observations. Ideally, a 

synthesis model or influence diagram associated with historical data would help one to define 

𝑝𝐼𝑇𝐷𝐶(𝑡). These supports would involve investing in knowledge management systems 

development, which is the tendency in a digital transformation perspective, and the work 

towards this direction was not mature when we performed this research. However, 

experienced simulation practitioners who are among the first persons informed of design 

changes can formulate assumptions and provide 𝑝𝐼𝑇𝐷𝐶(𝑡) profiles. These educated guesses 

are easy to elicit with a free rule. Simply asking them “at this time, what are the chances that 

0% 25% 50% 75% 100% 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) 

Smiley face 
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changes that impact the performance measured occur?” allows the decision analyst to collect 

values – cartesian coordinates used to build the function. A short iterative elicitation process 

where the data provider can readjust the profile of the function is sufficient to obtain an 

estimate of 𝑝𝐼𝑇𝐷𝐶(𝑡) in less than 10 min. In the example shown in Figure 22, the data 

provider (a Simulation Analyst) reported his beliefs about pITDC, for a specific part, in 

function of the development process milestones – and the design specifications that are 

generally set at these moments. 

 

 

Figure 22 - Example of elicited pITDC coordinates in accordance with development process 
milestones 

 

Costs 

As shown in Table 5, IRDS’ cost structure include costs committed during and related to 

the development phase (𝐷𝑐1, 𝐷𝑐2, 𝐴𝑐), costs committed during the development phase and 

related to the industrialization phase (𝐼𝑐1, 𝐼𝑐2 , 𝐼𝑐3), costs committed during and related to the 

industrialization phase (𝐼𝑐1′, 𝐼𝑐2′, 𝐼𝑐3′, 𝐼𝑐4 , 𝐼𝑐5), and a cost of delay function. 

The costs estimates can be supplied by different actors, as shown in Figure 20, with 

different precision and level of confidence. For instance, for industrialization costs, a 

synthesis architect can provide costs estimates based on heuristics and rules that do not 

really reflect the actual suppliers negotiated prices or specific manufacturing processes. Cost 

analysts perform simulations with a large number of inputs of various nature to support 

purchasers who negotiate with suppliers. Both the simulations outputs and negotiated prices 

can be used as estimates in as-is decision dossiers. In the fact, some interviewee reported that 

the persons who enter the costs estimates can deliberately choose to reveal one value over 

another to influence the decision maker for hidden interests.  

Of course, it is difficult to provide costs estimates based on negotiated prices for newly 

designed technical solutions since the issue resolution process has to lead to the selection of 

a technical solution that will be used as an input for negotiations with suppliers. However, 

historical data of negotiated prices for similar technical solutions in similar project can help 
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to infer costs estimates. For costs related to vendor tooling or supplier engineering studies, 

some estimates based historical data are used as references.  

Considering this setting, IRDS proposes to integrate probability distributions to represent 

the uncertainty of data providers regarding costs. We observed that, when interviewed, data 

providers spontaneously provide a variation range associated with a value that they consider 

as the most probable rather than providing a single value – like they do in the decision 

dossiers. This three-point estimation represents the less expensive, most likely, and most 

expensive estimates, and is convenient to build a triangular distribution, as shown in Figure 

23. 

 

Figure 23 - Triangular distribution representing a per-unit  manufacturing cost estimate 
based on a three-point estimation 

As mentioned above in Section 5.3.1, only the costs engaged in case of success are 

provided in the current practice. Although the data providers traditionally do not explicit 

their beliefs about the costs incurred in case of failure, they do not struggle make assumptions 

about these costs when they have a backup plan in mind. For some design issues causing 

appearing in the manufacturing phase, Simulation Analysts and designers know what type of 

solution is more likely to be implemented, and what procedures it involves (e.g. designing a 

reinforcer, changing the tooling, manufacturing a new prototype, etc.). The costs associated 

with these interventions are estimated the same way as in the scenario of success, but involve 

to discuss further the assumptions. We observed that this effort help the data provider to 

anticipate the rework needed and related expenses, and consider risk more explicitly. 

The penalty and added values quantities can be related to the cost of additional weight 

(established by the management control and straightforward to provide), the savings due to 

reusing tooling, etc. and are supplied as the costs mentioned above. It can be challenging to 

quantify these inputs when it comes to taking into consideration other projects that may be 

impacted by the decisions made for the one under consideration. 
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The cost of delay is a function that represent the cost incurred by the delay in the project 

over time. Due to a lack of measurements and tracking of delay, this function is difficult to 

define precisely. However, experts assume it to have an exponential profile. They consider 

the penalty related to postponement of the production launch – the management control 

provides estimates about the daily loss in such situations – and the increase of full-time 

equivalent staff requested in order to meet the deadlines. The latter consideration depends 

on the nature and the quantity of activities that depend on the design issue to be solved. The 

decision analyst can build 𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦(𝑡) by eliciting coordinates with a free rule (see Figure 

24), in the same fashion as 𝑝𝐼𝑇𝐷𝐶(𝑡). As some problems are similar and are detected at 

similar moments in the development process, 𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦(𝑡) reference profiles can be 

established over time and experience.   

 

Figure 24 - Example of 𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑎𝑦  coordinates based on the agreement of two experts 

 

Accuracies of the analyses for technical solutions 

The additional analyses can be either related to numerical simulations, early physical 

tests (when possible), studies conducted by suppliers, or experts judgments. The input 

variables that indicate the accuracy of the additional analyses are the sensitivity (true positive 

rate) 𝑃(𝐹𝑎𝑣|𝑂𝐾) and the specificity (true negative rate) 𝑃(𝐹𝑎𝑣̅̅ ̅̅ ̅|𝑂𝐾̅̅ ̅̅ ). When considering the 

most common information source, i.e. numerical simulation, the simulation practitioners and 

methods specialists do not characterize the accuracy of numerical simulation analyses with 

true positive and true negative rates. Since only design specifications with favorable analyses 

results are normally brought to the manufacturing phase, correlation studies performed 

between numerical models and physical tests measurements and feedback from the 

manufacturing phase can provide insight to assess 𝑃(𝐹𝑎𝑣|𝑂𝐾̅̅ ̅̅ ). The specificity is more 

difficult to assess with this approach. However, data providers are asked to define these input 

variable with respect to the confidence they have into the processes that provide them 

additional information. Hence they provide estimates of these values through an free-rule 

elicitation. 
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Analysis times 

Whether considering numerical simulation or other information source, in the current 

practice, simulation practitioners or other expert provide the time that is necessary to obtain 

informative results, and the project manager defines, on the basis of this estimate, at which 

meeting date the issue will be re-examine with new information. This difference between two 

decision meetings corresponds to 𝐴𝑡. Hence, in some situations, the project manager  – who 

takes on the role of decision maker – can also be a data provider. Knowing the decision 

meetings are held weekly, the decision analyst can easily define together with data providers 

the value of 𝐴𝑡 to make a recommendation before even meeting the project manager. 

 

In conclusion, the decision analyst has to model data providers’ beliefs when gathering 

data to use IRDS. He or she has to identify the data provider that is the most likely to supply 

accurate data, make a tradeoff between the time necessary to complete the elicitation process 

and the accuracy sought, and foster the commitment of data providers to carry out additional 

work. This is particularly the case in the early phase of implementation – the phase we 

focused our research on – in a situation where the new practices are not yet established. 

 

5.4. Sensitivity analysis-based method 

When testing the framework on historical design issues, it was difficult to enhance the 

available information through an elicitation process in a timeframe consistent with our 

project. Indeed, some of the individuals who are the more knowledgeable about certain data 

were unavailable. That led us to assume estimates together with non or less-expert data 

providers for some input data. We performed sensitivity analyses to examine whether 

seeking for more accuracy was actually necessary. Our observations prompted us to 

reconsider the data gathering strategy, as discussed in the next sections. 

5.4.1. Model type: deterministic or probabilistic 

The decision problem model can be either considered as deterministic or probabilistic. We 

investigated two approaches to perform a sensitivity analysis on a decision problem with 

IRDS. 

In the deterministic approach, input variables are nominal values and are varied one at 

a time. This approach is convenient when we gather data gather from existing information 

sources – i.e. as-is decision dossiers. This approach leverages sensitivity analysis to account 

for uncertainty. Sensitivity analysis yet requires determining variation ranges that should be 

consistent with data provider’s uncertainty. Hence, an initial elicitation effort is necessary for 

each type of input, at least to formulate assumptions for common variation ranges. In the 

theoretical case where it would be impossible to elicit variation ranges, or the decision analyst 

wants to explore a problem briefly, we found reasonable to use 20% as a common variation 

ranges for costs, and a standard logistic function for the bounds of the probabilities of success 

ranges – as in the following equations and in Figure 25: 
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𝑝𝑚𝑖𝑛 =  
𝑒𝑛−𝑟

1+𝑒𝑛−𝑟 Equation 5 

𝑝𝑛𝑜𝑚𝑖𝑛𝑎𝑙 =  
𝑒𝑛

1+𝑒𝑛 Equation 6 

𝑝𝑚𝑎𝑥 =  
𝑒𝑛+𝑟

1+𝑒𝑛+𝑟 Equation 7 

𝑛 ∈ [−5; 5] 

𝑟 = 1 (𝑑𝑒𝑓𝑎𝑢𝑙𝑡) 

 

 

Figure 25 - Variation ranges for probabilities of success 

 

As discussed in Section 5.4.2, tackling decision problems with this approach upfront can 

help to determine how a complementary probabilistic approach should be handled. 

In the probabilistic approach, inputs are provided in the form of probability 

distributions, after an elicitation process, as discussed in Section 5.3.2. In this case, the 

distribution parameters are varied, and not only the nominal value of the input. This allows 

the analyst to identify which input variation is likely to change the decision, and to determine 

whether further analyses should be performed on the beliefs modeled.  

In Section 5.3.2 we stated that the simplest distributions used as cost inputs are triangular 

distributions. These distributions account for the most probable value (the mode) and upper 

and lower bounds. In the particular case of symmetric triangular distributions, the mean 

actually corresponds to the mode. . In this case, we think it is reasonable to use a variation 

range of 20% both for the variation of the mode and the variation of the lower and higher 

bounds. The same logistic function is used for the variation of the probabilities of success. 

We observed that when considering a linear model – i.e. static in the case of IRDS, at a 

given t – the EV results tend to be similar whether symmetric triangular distributions are 
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provided with the deterministic approach or nominal values are provided with the 

deterministic approach. The underlying assumption is that the deterministic-nominal values 

entered correspond to the probabilistic-means of triangular distributions. 

 

5.4.2. Impacts on the data gathering process 

Analyzing a decision problem with IRDS requires to gather information related to a set of 

alternatives and to perform a computation that issue an expected value for each alternative. 

The preferred alternative is thus identified and communicated to the decision maker. We first 

considered rigorously collecting accurate input data, in order to accurately calculate the 

expected values and thus be able to correctly distinguish the outcomes of the alternatives 

while ranking them. We observed that an exhaustive and detailed information gathering 

process is both cognitively demanding and time consuming. 

The efficiency of this process can be improved by conducting a sensitivity analysis in the 

early phase of data collection, on a model initially filled with rough estimates. The aim of this 

approach is to tend towards a cost efficient information enhancement – from a value of 

information optimization perspective. Indeed, SA conducted on a model incorporating rough 

estimate allow to roughly identify whether more accuracy is needed, i.e. if the alternatives 

have close expected values. When data is lacking and no elicitation is immediately possible, 

therefore in case of relative ignorance, the decision analyst can expand the variation range of 

the inputs under consideration and examine whether and how the inputs actually impact the 

decision. When conducting the sensitivity analysis with approximates (or rough estimates), 

the decision analysis process, shown in Figure 26 does not change in principle, it is only the 

data gathering effort that is more efficiently allocated.  

While studying the implementation of IRDS in the company, the SA on approximates 

leverage effect has been useful when working on historical cases. Some case studies that 

illustrate both the difficulties associated with handling uncertainty and the benefit of SA are 

presented in the next section. 
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Figure 26 - Decision analysis process with IRDS, simple example with manufacturing cost  
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5.5. Case studies 

The last section discussed the uncertainty associated with the data collection when using 

IRDS. We considered both the uncertainty of the data providers about the quantities they 

manipulate and the uncertainty of the decision analyst about the value of enhancing 

information. 

To provide an illustration of these considerations, this section presents 5 case studies that 

we used to test the implementation of IRDS in the company. Because we were unable to enroll 

in ongoing projects and could not track their progress in a timeframe consistent with our own 

time constraints, we focused on historical cases. As data gathering issues and belief modeling 

have been introduced in Section 5.3.2, the case studies are interesting to show what time was 

necessary to gather data and elicit beliefs, and how sensitivity analysis on approximates can 

help saving resources. The case studies also reveals practical difficulties and biases that can 

affect the decision analysis if IRDS is not used carefully. As the studies have been performed 

on real industrial cases, some data have been concealed. Some numerical results of the 

sensitivity analyses are presented for illustrative purpose in the first case only. Moreover the 

aim of this section is to discuss the process and difficulties rather than the numerical 

outcomes of decisions analyses.  

The 5 cases we considered are the following: 

• B-Pillar case 

• Door Hinge case 

• Bumper Beam case 

• Front Subframe case 

• Booming Noise case 

 

The role of DA (decision analyst) was assumed by the lead author of this research and the 

roles of DaP (data provider) were assumed by engineers, analysts, experts and deputy project 

managers who were formerly involved in the projects. The role of DM (decision maker) 

normally assumed by the project managers was not directly involved in the studies since we 

focused on the decision analysis prior to the recommendation to the DM, however we 

discussed the outcomes of the choices that would have been made by the DM. The cases have 

been provided by CAE Synthesis Engineers concern design issues and decision problems 

escalated to project managers. CAE Synthesis Engineers are the professionals who keep a 

track of the design issues and mostly gather performance data. They interact with Simulation 

Analysts who are specialized in specific customer performances (passive safety, acoustics, 

durability, etc.) and exchange with Customer Performance Leaders and Engineering Leaders. 

They escalate the information to synthesis architects, who complete decision dossiers with 

cost data collected from other sources.  
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5.5.1. B-pillar case 

For illustrative purposes, we will provide numerical values that represent an order of 

magnitude of the quantities under consideration. 

Context 

The case has been communicated to the DA by a former Passive Safety Simulation 

Specialist (DaPSiAn) – also referred to as "Simulation Analyst" in our research – who worked 

on the design issue. For this case, the decision dossier was not available in the usual form (a 

presentation document), therefore the decision problem has been explained by the initial DaP 

by email. The case concerns the choice of the technical definition, and ultimately the 

manufacturing process, of the B-pillar (Figure 27). According to DaPSiAn, the decision problem 

has been examined at the end of the development phase, few weeks before the TGA milestone. 

The B-pillar is traditionally made of two materials that are welded together. One material 

considered brittle and the other ductile. This configuration is designed to withstand 

deformations in the event of a crash. Several parameters are taken into account when 

implementing such a solution into a new vehicle – the vehicle dimensions, weight, structure, 

etc. – and other solutions have been explored in view to reduce costs and optimize the 

performances. For the vehicle project under consideration, a solution proposed was to 

manufacture the B pillar with a single material. This solution would save a considerable 

amount of money by saving the cost of the welding operation per vehicle. As presented by 

DaPSiAn, two decision alternatives were explicitly considered: “Incorporate A” which consists 

in implementing the traditional solution (two welded materials), and “Incorporate B”, which 

consist in manufacturing a B-pillar with a single material – the brittle one.  “Incorporate B” 

was designed to save about 10€ per vehicle (for 200 000 units). this case is interesting insofar 

as the decision made led to unwanted consequences. Indeed, a fracture of the B-pillar has 

been observed through physical tests during the industrialization phase, and the traditional 

solution has been implemented to solve the problem. This required to spend 700 000 € to 

build a new prototype, and reintegrate the costs of welding.    

 

 

Figure 27 – Illustration of a B-pillar 
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Data collection 

In the email sent by DaPSiAn, amongst the costs, only the cost of the welding operation was 

provided, and estimated to be the only cost difference between the two technical solutions. 

Experienced to design decision problems, the DA asked whether other common data were 

estimated but not explicitly reported, such as the cost of material involved in the per-unit 

manufacturing cost, weight difference, the vendor tooling cost. Moreover, for the costs known 

a posteriori, whether other costs were “hidden”, such as a per-unit manufacturing extra-cost 

(due to materials and late negotiations), delay penalties, etc. To use IRDS with the data known 

a priori – i.e. before knowing the outcomes –, the DA asked to DaPSiAn (by email) whether a 

cost of rework was considered at the moment the decision was made. For instance, did the 

DM or other stakeholders communicate about a backup plan in case of a failure? Was the cost 

of building a new prototype estimated? The Simulation Analyst answered that, to his 

knowledge, the 10€ difference was the information that was mainly considered during the 

decision making. The email contained qualitative information, explaining that although the 

simulation results were favorable to “Incorporate B”, the Synthesis Architect requested the 

opinion of DaPSiAn. The latter expressed strong doubts about the validity of the simulation 

results, relying on his knowledge about mechanics. He was skeptical  about the solution with 

a single material and suggested to choose to implement the traditional solution (A). This 

traditional solution allows a rotation movement that has been observed in physical tests and 

that is generally necessary to avoid fracture. DaPSiAn reported 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐴 = 90% (70% in 

case of impacting changes), 40% < 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵 < 60% (50% in case of impacting 

changes), and a constant 𝑝𝐼𝑇𝐷𝐶 = 10%. As shown in Table 8, Table 9, and Table 10, 

deterministic sensitivity analysis showed a decision sensitivity to, amongst other, 

𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵 , the per unit manufacturing cost difference in case of success (𝐼𝑐2), the penalty 

in case of failure – which is actually the estimated cost of building a prototype – (𝑉𝑃1
𝐵).  

Input value Decision 

38% Ana. A+B 

40% Ana. A+B 

43% Ana. A+B 

45% Ana. A+B 

48% Ana. A+B 

50% Ana. A+B 

53% B 

55% B 

58% B 

60% B 

63% B 

 
Table 9 – Decision sensitivity 
for 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵, B-pillar 

case, DaPSiAn 

Input value Decision 

       14,0 €  B 

       13,2 €  B 

       12,4 €  B 

       11,6 €  B 

       10,8 €  B 

       10,0 €  Ana. A+B 

         9,2 €  Ana. A+B 

         8,4 €  Ana. A+B 

         7,6 €  Ana. A+B 

         6,8 €  Ana. A+B 

         6,0 €  Ana. A+B 

 

Table 8 – Decision sensitivity 
for 𝐼𝑐2

𝐴 , B-pillar case, DaPSiAn 

Input value Decision 

910 000 € Ana. A+B 

868 000 € Ana. A+B 

826 000 € Ana. A+B 

784 000 € Ana. A+B 

742 000 € Ana. A+B 

700 000 € Ana. A+B 

658 000 € B 

616 000 € B 

574 000 € B 

532 000 € B 

490 000 € B 

 
 Table 10 – Decision sensitivity 

for 𝑉𝑃1
𝐵 , B-pillar case, DaPSiAn 
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Moreover, the decision is sensitive to the extra per-unit manufacturing cost in case of 

failure (“Incorporate B” if extra-cost inferior or equal to 1,92 €, i.e. 𝐼𝑐2′𝐵 ≤ 11,92 €, “Analyze  

A+B” otherwise), the cost of additional analysis for solution B (“Incorporate B” if 𝐴𝑐𝐵 ≥

24 242€, “Analyze A+B” otherwise), and for most other IRDS input, the decision changes from 

“Analyze A+B” to “Incorporate B” at within the variation range. In conclusion, the decision 

prescribed is to further analyze both technical solutions or, in case of a small error for most 

inputs, incorporate the solution that lead to a bad consequence. A probabilistic approach 

confirmed these results -  Table 11 shows for example the decision sensitivity to variations of 

parameters for a triangular distribution for Ic2
A. 

 

  Mode : c 

  8 9 10 11 12 

Range :  

b - c 

1,6 An. A+B An. A+B An. A+B B B 

1,8 An. A+B An. A+B An. A+B B B 

2 An. A+B An. A+B An. A+B B B 

2,2 An. A+B An. A+B An. A+B B B 

2,4 An. A+B An. A+B An. A+B B B 

 

Table 11 - Summary of decisions prescribed for 𝐼𝑐2
𝐴 , B-pillar case, DaPSiAn 

 

Intrigued by this situation, the DA arranged a 75 min meeting with the former Synthesis 

Architect (DaPSyAr) and former CAE Synthesis Engineer (DaPCASE). DaPSyAr explained that 

solution B was considered to be the reference during the upstream phase, despite the 

company's lack of experience with this type of solution. Therefore there was a bias in favor of 

solution B when the development team handled the project. The dimensions of the vehicle 

were such that the “classical” rotation occurring on the pillar was not necessary in the case of 

a lateral impact. Moreover, the simulation results were favorable to a B-pillar with a single 

material. He still recognized that “the eventuality that a crack may occur at a certain location 

was suspected”. The overall extra-cost per vehicle of solution A over solution B was, according 

to DaPSyAr, closer to 25 € than to 10 €. Both DaPSyAr and DaPCASE agreed that the chances of 

success were similar for the two solutions, reporting 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐴 = 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵 = 90%. 

IRDS prescribes to “Incorporate B”, when used with a combination of beliefs on which DaPSyAr 

and DaPCASE agreed, with a low decision sensitivity input variations and a small expected value 

difference (tilting to “Analyze A+B” if 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵 ≤ 57%). 

To gain more insight about this case, the DA arranged a 45 min meeting with the Crash 

Simulation Expert (DaPCrSE). DaPCrSE did not participate in the decision making for the B-pillar 

case because she was not working for the company. In fact, there were nobody to fulfill this 

role at the time. Although her judgment is solely a posteriori, she provided interesting 

remarks. According to her, the simulation models at the time did not predict the fracture – it 

is a phenomenon that is still difficult to predict. She indicated that people were not aware of 

the limitations of simulation models and were confused about the assumptions and proxies 

used to read the results. In other terms “they did not know what they did not know”. This 

conjunction of conditions, in addition to the strong incentive of money saving, may have led 
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them to not explore other analyses options. One analysis was available and could have 

provided valuable information: the metal supplier studies. Indeed, the supplier conduct 

studies to characterize the material they sell to the manufacturer. DaPCrSE stated that the 

supplier had already done an analysis – that would have discarded solution B – at the time 

the decision was made, but the project team did not ask them. Assuming a priori information, 

she admit that it is difficult to predict the chance of success for both solution A and B, even if 

it was reasonable to assume that solution A had higher probabilities of success, due to 

empirical evidence. Solution B could have been as likely to be successful that unsuccessful 

(𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵 = 50%) without the additional information obtained from the supplier. Using 

IRDS with DaPCrSE leads to similar results as the ones with DaPSiAn if the cost are the one 

believed by the latter. Associating the costs provided by DaPSyAr to the beliefs of DaPCrSE lead 

to “Analyze B” with a decision sensitivity that tilts to “Analyze A+B” with few expected value 

difference (640 €) in case of small error in the inputs. 

Decision prescribed 

As mentioned more into detail above, the decision prescribed by IRDS with the beliefs 

elicited with the former Simulation Analyst was “Analyze Solutions A and B”. A high decision 

sensitivity can be observed for most inputs, and a tilt towards “Incorporate B”. When IRDS is 

used with the beliefs elicited from the former Synthesis Architect and the former CAE 

Synthesis Engineer, the decision prescribed is to “Incorporate B”, with no decision sensitivity 

to small inputs variations. The beliefs of the Crash Simulation Expert leads to “Analyze B” 

whether the costs are the ones provided by the former Simulation Analyst or the ones (more 

reliable) provided by the former Synthesis Architect. 

Decision made at the time 

Following the advice of the Synthesis Architect and the CAE Synthesis Engineer, the DM 

chose “Incorporate B”, i.e. a B-pillar manufactured with a single material. As mentioned above, 

an issue appeared during the industrialization phase due to a fracture of the B-pillar. This led 

to building a new prototype incorporating the traditional solution (A). The monetary 

consequences are the loss of the expected saving, the cost of building a new prototype and the 

mobilization of a task force (not estimated in the scope of the case study). 

Comments 

This case is interesting since it shows that data providers can have divergent beliefs. 

Making them explicit and fostering communication can help stakeholders in their critical 

thinking with regard to a given decision problem. Cognitive biases associated with ad hoc 

judgment can have influenced the beliefs elicitations. Nevertheless, the case illustrates the 

fact that a rational decision based on expected value maximization can eventually lead to 

undesirable outcomes and vice versa. Indeed, considering a risk-neutral profile, the amount 

of money that could have been saved by incorporating the solution with the smaller 

probability of success was so considerable that pursuing this opportunity was the most 

rational decision (according to the Synthesis Architect’s beliefs). The difference in expected 

value – computed with IRDS – between the decision prescribed and the decision made is 19 

k€ in favor of the decision prescribed, with the beliefs elicited from DaPSiAn. This difference is 

83 k€ in favor of the decision prescribed with the combination of beliefs elicited from DaPCrSE 

for the probabilities of success and additional analyses accuracy and DaPSyAr for the costs.  
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5.5.2. Door Hinge case 

Context 

The decision dossier associated with this case study has been presented once to the 

project manager. The design issue, identified thanks to numerical tests, concerns a fold that 

is generated because of the weakness of a reinforcer for a door hinge. Two technical solutions 

were proposed: H1 (“Incorporate A”), consisting in augmenting the stiffness of the reinforcer, 

and H2 (“Incorporate B”), consisting in changing the grade of the steel (and adjusting the 

stiffness accordingly). 

Data collection 

The decision dossier includes, CAE screenshots, results of numerical tests for different 

stiffnesses and grades, and a synthesis of the alternatives proposed. Only the cost 𝐼𝑐2 for each 

technical solutions are presented. Referring only to this cost, H2 is 3 times less expensive than 

H1. Intrigued by the fact that the classical other costs were not expressed in a decision dossier 

presented in a project manager’s decision meeting, and willing to elicit beliefs about the 

success of these technical solutions, the DA interviewed the CAE Synthesis Engineer. He 

explained further the design issue and indicated that the “missing data” were assumed to be 

“equal”, i.e. the cost differences were considered inexistent and the chances of success were 

considered as similar. We also asked why some performance results were missing in the 

simulation reports, he told us that such cases generally happen when the Simulation Analyst 

is confident enough to the performance of the design tested, and that further investigation do 

not add value – and are only used as “confirmation” to increase the confidence when 

necessary. This type of actions correspond to the IRDS alternatives “Analyze Solution”. The 

CAE Synthesis Engineer gave us estimates about the time necessary to perform the 

simulations and post-treatment, and to fill the blanks in the reports. This allowed us to 

estimate the costs associated with additional analyses for this source of information. The 

sensitivity analysis showed a value sensitivity to the probabilities of success of H2, but no 

decision sensitivity for a reasonable variation range. Hence, further accuracy was not 

necessary to issue a robust recommendation. 

Decision prescribed 

The decision prescribed by IRDS was “Incorporate B”, i.e. H2.. 

Decision made the time 

The project manager selected H2 and asked for an optimization of 𝐼𝑐2 . Later on, a small 

change considered as “at no cost” (adding a welding point) has been discussed to ensure that 

the performance of the reinforcer is consistent with other manufacturing process constraints. 

Comments 

The need to add a welding point was predictable but the likelihood hard to quantify. Even 

if it is considered as “at no cost” it still involves engineering costs. However, this question 

could have happen for H1. 
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5.5.3. Bumper Beam case 

Context 

The design issue concerns the performance discrepancies of many targets that have been 

identified as being related to the bumper beam. The decisions alternatives presented to the 

DM are 3 technical solutions: (“Incorporate A”) sticking to the current technical definition of 

the bumper beam, and incorporating different bumper beams, (“Incorporate B”) and 

(“Incorporate C”). We have little information about this case, the DaPs to reach, the decision 

made, and the consequences of the decision. However, the case is interesting since it is an 

example of a dossier that includes a synthesis which consist of both quantitative and 

qualitative data in different forms, as shown in Figure 28. 

Data collection 

Figure 28 reports the data available in the decision dossier that are highlighted to advise 

the DM. The costs and the weights are presented for the European version of the vehicle – the 

version under consideration. The non-European version data are also presented for 

comparison.  On the figure, we made the data correspond to IRDS inputs. We observe that 
𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) can be, at least partly, inferred from a section of the table. However, this 

inference requires extensive knowledge about the contribution of each data to 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅). 

The CAE Synthesis Engineer, who provided this case, was ignorant about the design issue 

under consideration (i.e. he was not involved in this issue at the time) and was unable redirect 

the DA to knowledgeable DaPs. However, relying on the experience of the CAE Synthesis 

Engineer – the only available DaP – on similar issues within other projects, the DA still 

explored the decision problem. 

 

 

𝐼𝑐2  

𝑤 

𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) 

 

A B C 

Figure 28 - Synthesis of the alternatives proposed in the Bumper Beam case 
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Decision prescribed 

The decision prescribed by IRDS was to postpone the issue resolution until week 9. A 

deterministic sensitivity analysis performed with large ranges of variation showed a decision 

sensitivity to the input 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅) for C. A classical approach which does not incorporate 

process alternatives (such as “postpone”) would result in recommending C. 

Decision made at the time  

The decision that was made was unknown at the moment where the decision dossier was 

presented as-is to the DA. However, the only available DaP speculated that the DM asked to 

postpone the final decision while developing further the solution corresponding the 

alternative C. 

Comments 

Postponing an issue resolution lies on the assumptions that impacting changes in the 

vehicle technical definition would decrease over time. Hence, further developing a technical 

solution at a more favorable time would lead to better outcomes. This case illustrates this 

notion by recommending to postpone the issue resolution considering that the technical 

solution C has the highest expected value. 
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5.5.4. Front Subframe case 

Context 

The design issue concerns a noise, vibration and harshness (NVH) performance 

discrepancy and has been discovered 3 month before a decision was made to end the 

resolution process. The case has been presented in decision meetings 2 times because cost 

and collateral impacts were lacking in the decision dossier until the Synthesis Architect 

gathered the information and synthetized it into the table reported in the Figure 29. Three 

families of alternatives were presented. Three versions of the H1 (without a specific part), a 

H2 including a specific part in steel, and an H3 which includes a specific part in aluminum. 

 

Data collection 

The DA first read the 8 slides decision dossier and formulated questions to ask to DaPs. 

One out of the 6 authors of the decision dossier available within the 2 weeks. A 10 min 

discussion was sufficient to grasp the design issue, 20 min to clarify what the IRDS inputs are 

and how they relate to the information already available, 5 min to elicit the probabilities. The 

available alternative H1c was associated to the IRDS alternative “Incorporate” A, H2 to B and 

H3 to C. For NVH performances (rolling noise, floor vibration) Simulation Analysts know that 

the attributes they measure at their level of detail contribute significantly to the achievement 

of the requirements the more global level represented in the synthesis. They rely both on 

numerical simulation and on their experience. In case of failure, the Simulation Analyst 

reported that it is assumed that the solution that is considered as the most « safe » (although 

Figure 29 - Synthesis of the alternatives proposed in the Front Subframe case 
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more expensive) (H3) will be implemented. That also ultimately involves a per-unit 

manufacturing cost increase (𝐼𝑐2′ > 𝐼𝑐2).  

The sensitivity analysis performed with standard variation ranges (cf. Section 5.4.1) 

showed a decision sensitivity to the inputs 𝐼𝑐2
𝐶 , 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵, 𝑃(𝐹𝑎𝑣̅̅ ̅̅ ̅|𝑂𝐾̅̅ ̅̅ )𝐴,𝐵,𝐶 , 𝑤𝐵 , 

𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐶 , 𝑃(𝐹𝑎𝑣|𝑂𝐾)𝐴,𝐵,𝐶 , and 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐴 . The DA verified the accuracy on each 

input with the Simulation Analyst and concluded that the costs estimates are accurate 

(coming from cost analyses) and that it would be impossible to gain more accuracy about 

𝑃(𝐹𝑎𝑣̅̅ ̅̅ ̅|𝑂𝐾̅̅ ̅̅ )𝐴,𝐵,𝐶  and 𝑃(𝐹𝑎𝑣|𝑂𝐾)𝐴,𝐵,𝐶 in the project time frames. The input 𝑤𝐵  was considered 

as accurate but reducible through optimization. The first results suggested to select an 

alternative (Analyze B) that was different from the one chosen in reality by the project 

manager (Incorporate C). To better understand what assumptions or information the DA may 

have overlooked, another meeting has been organized with an expert recommended by the 

Simulation Analyst. The expert reported different beliefs about 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵for the moment 

the decision was considered. This did not change the decision prescribed by IRDS. He 

acknowledged that, after he had gained more knowledge about these types of technical 

solutions and material properties through physical tests within other projects, the prior 

estimate of 𝑃(𝑂𝐾|𝐼𝑇𝐷𝐶̅̅ ̅̅ ̅̅ ̅)𝐵was too optimistic. He said that further analyses would have 

discarded B. In parallel, the DA chose to exchange with the Synthesis Architect who framed 

the decision dossier by email due to a 6h time difference. The latter explained objectives that 

was not expressed explicitly in the decision dossier but that mattered for the decision maker. 

These, once valued, fall into the 𝑉𝑃𝑖 input (added-value/penalty) that was actually not 

considered in the initial sensitivity analysis. This input data was computed with the cost of 

weight provided by the management control but did not include the valuation of the objective 

of making the vehicles of the segment lighter. 

Decision prescribed 

The decision prescribed by IRDS was “Analyze B”, closely followed by “Analyze B+C” in 

the sensitivity analysis. This can be explained by the fact that incorporating B potentially offer 

significant savings despite having a technical definition more heavy than C. If further analyses 

would be favorable to B, incorporating B would be recommended. Otherwise incorporating C 

would be recommended. If ignoring the process alternatives (Analyze, Analyze in parallel, 

Postpone), the decision prescribed would have been to incorporate C right away. 

Decision made at the time 

As mentioned above, the decision made by the project manager was to directly 

incorporate C. The physical tests performed during the manufacturing phase were favorable 

to this solution. 

Comments 

The difference in expected value – computed with IRDS decision model – between the 

decision prescribed and the decision made is 700 k€ in favor of the decision prescribed, with 

beliefs reported in the first place, and 15 k€ in favor of the decision prescribed after having 

updated the penalty due to weight. This case shows that despite decision dossiers contain 

useful information and DaPs can report their beliefs on the data that they are used to 

manipulate, implicit information considered by the DM need to be investigated.  
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5.5.5. Booming Noise case 

Context 

The design issue was presented 4 and 2 weeks prior to the “Tooling Go Ahead” (TGA) 

milestone – the milestone that completes the development phase and leads to the 

industrialization phase. Simulations results about booming noise performance for rear 

passengers did not reach the target. Several vehicle parts contributing to the problem were 

identified. Two technical solutions were presented in the decision dossier. H1, consisting in 

incorporating a grille to the vehicle, and H2, consisting in modifying the backlash between 

two parts. 

Data collection 

We obtained the pdf version of the decision dossier that was presented during the last 

decision meeting. It contains 23 slides with explanations of the design issue and its root 

causes, a history of the tests and foreseen solutions, and a synthesis of the technical solutions 

proposed.  

Figure 30 is a screenshot of this synthesis – confidential data have been concealed. 

The IRDS inputs available are 𝐼𝑐1, 𝐼𝑐2 , w and 𝐼𝑐3 is announced “to be calculated” for H1 

and H2. The impact on the volume of the trunk is estimated, as well as the impact on the 

planning. The latter corresponds to how incorporating the technical solution might delay the 

“Agreement to Build Vehicle Check” (ABVC) milestone. The phase between the TGA and ABVC 

corresponds to the manufacturing of the tool by the supplier, the parts are expected to be 

delivered with an excellent  level of  conformity at ABVC, so that the vehicle can be assembled 

and physically tested. What mostly differentiate H1 and H2 is the cost differences with the 

current technical definition (almost inexistent for H2) and the impact on the planning that are 

higher for H2. 

Figure 30 - Synthesis of the alternatives proposed in the Booming Noise case decision 
dossier 
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Once discovering the available data, the DA requested a 1h interview with both the CAE 

Synthesis Engineer and the Customer Performance Leader who handled the decision dossier 

under consideration. The goal was to further understand the issue and the information 

presented in the decision dossier, and to reconstruct the prior beliefs based upon the data 

available. The sensitivity analysis showed that the expected values of alternatives related to 

H2 were mostly sensitive to the probabilities of success of H2, but no decision sensitivity (i.e. 

the decision prescribed remains the same even if the inputs vary significantly, cf. Section 2.8). 

An exchange of 1 hour with the CAE Synthesis Engineer allowed the DA to use IRDS and issue 

a recommendation. 

Decision prescribed 

The decision prescribed was to incorporate H2, with an expected value significantly 

superior to H1. The alternatives consisting in Analyzing the solutions H2 and H1 were equally 

the second preferred alternatives. As expected, the postpone alternative had a low expected 

value. Indeed, close to the TGA, the cost of delay is high compared to the valuable information 

that can be gained, and the whole vehicle technical definition has low chances to change.  

Decision made at the time 

The decisions made by the DM was H2. The impact on the planning of this solution was 

actually overestimated and no bad consequences happened later in the design process. 

Comments 

On paper, this decision may seem trivial, but the issue was presented to the project 

manager because of its level of criticality – level 1, i.e. show stopper if not solved. Moreover 

H2 was potentially conflicting with interior design, so a check with the project team and an 

agreement of the project manager was necessary. The sensitivity analysis used with IRDS 

showed that available data and one round of interview to ensure the understanding of the DA 

were sufficient to compute the decision problem and obtain a robust recommendation. This 

recommendation was consistent to the decision actually made at the time which did not have 

bad consequences. 

 

5.6. Discussion 

5.6.1. Time necessary for data collection 

It is important to note that due to the nature of the case study – an historical case that is 

not a priority for actors of ongoing project – people were not immediately available to work 

with the decision analyst. We assume that in a situation where IRDS is implemented and 

associated with standard practices, the time between the elicitation meetings would be 

reduced, if not concurrent to the data production. 



 

88 

 

5.6.2. Elicitation and beliefs modeling 

The data providers often spontaneously reported ranges of probabilities rather than 

single values, as illustrated in 5.5.1. This encourages the decision analyst to leverage 

sensitivity analysis in the phase of data collection. 

Breaking down 𝐷𝑐 into 𝐷𝑐1 and 𝐷𝑐2 is not relevant since these two activities are 

interdependent and are neither dissociated by the management control nor the data 

providers. Moreover, even if 𝐷𝑐 can be calculated by tracking the full time equivalent 

employees activities in ongoing projects, it was not possible to obtain these data – with a 

reasonable effort – for our case studies.  

For 𝐼𝑐4 and 𝐼𝑐5 , it was difficult to obtain estimates from data providers. The general 

response was that in the case of failure during the manufacturing phase, a task force was set 

up with the roles concerned by the design issues, and people were working as fast as possible 

to solve the issue before the upcoming milestones. An estimate can be constructed with 

generic values, such as a generic number full time equivalent employees and a generic time.  

5.6.3. Decision analysis results 

In some problems (e.g. Booming Noise, Door Hinge, B Pillar cases) the differences of 

expected values of alternatives are important, whether it is to provide accurate data or rough 

estimates. Sensitivity analysis enables the decision analyst to identify which inputs have a 

decision sensitivity. 

Some decision problems (e.g. B Pillar case) include alternatives with costs inputs 

differences so important that the probabilities of success variations have little influence on 

the decision. However, it should be noted that there is seldom situations where probabilities 

of success differences are very important between new technical solutions. Indeed, the 

technical solution that corresponds to the current technical definition generally is generally 

assigned a low probabilities of success (< 10%) – this is actually why a design issue was 

detected – and the new technical solutions proposed to solve the problem have generally 

purposefully higher probabilities of success (>60%, otherwise they are not considered as 

competitive). 

 

5.7. Conclusion and future work 

This chapter addressed the question of the difficulties associated with the uncertainty 

encountered when implementing IRDS. Based on an empirical study extended for the 

research presented in this chapter, we observed that 5% to 20% of IRDS inputs are already 

available in the current decision dossiers. The qualitative data also provided can support the 

belief modeling for probabilities of success of the technical solutions proposed. We proposed 

to elicit the data providers’ beliefs by the free elicitation rule, considering the tradeoff 

between accuracy and time and effort that people are willing to commit. Some data are 

difficult to elicit, mostly the ones related to the scenario of failure and the time-related 

functions. Estimating these inputs requires to examine assumptions with the data providers 

and to solicit their experience, which may be uneven among individuals. However, this 
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exercise encourages critical thinking and prompts participants to step back from their usual 

frame of reference. In order to better allocate effort when collecting data for using IRDS, we 

proposed to perform sensitivity analyses on rough estimates. In this way, the decision analyst 

can identify the inputs that are decision sensitive and increase the accuracy sought by 

elicitation or further analyses immediately available. As we conducted our research we 

tackled the questions of incorporating various experts’ beliefs that are sometimes 

contradicting each other. IRDS prompts the data providers to communicate their beliefs 

explicitly, and this enables the others to discuss them and contribute their knowledge to 

update prior beliefs.  

Through 5 case studies, we observed how the decision analyst collected data practically 

for historical design issues, dealing with constraints related to the availability of people, their 

relative discomfort with quantifying their beliefs, contradictions, and biases. In most cases, 

the IRDS inputs available in decision dossiers enhanced with a 60 min elicitation meeting led 

to decisions consistent with the ones made by decision makers at the time. In one case, IRDS 

prescribed a different decision that consists in performing additional analyses to explore the 

opportunity of making important savings. In another case, a technical solution already 

implemented in other vehicles and presenting good performances was competing with a 

technical solution that would allow the company to save about 4 million euros (eventually 

more, if implemented on similar future projects). The latter solution was criticized by experts, 

despite favorable simulation results. Depending on the beliefs reported, IRDS prescribed 

either to gather more information or to pursue the opportunity to make important savings. 

This illustrated the fact that the decision analyst must confront information from different 

sources and seek an agreement, and that rational decision making does not prevent bad luck 

or error due to lack of expertise. 

This research could be extended by exploring ways to facilitate the data collection process 

and communication between the three roles involved in the IRDS. Working on ongoing 

projects could benefit from the availability of people, as they would work in coherence with 

the activities for which they have been mandated. Considering an information system and 

practices supported by management would facilitate a more efficient use of IRDS. 
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6. Conclusion 

In this chapter, we review the research questions that have framed the thesis and show 

how they were tackled.  

The research objective we have pursued in this PhD was to support decision making for 

solving design issues in the development phase of a complex system. We conducted our 

research in a multinational automotive company. 

We identified and addressed the two following research questions : 

1) In practice, how does decision making unfold in a M&S environment? 

2) To which extent can a method based on normative decision theory enhance the 

decision-making process supported by simulation? 

To address these questions, we applied a methodology composed of 3 main phases: a 

descriptive phase, a prescriptive phase, and a descriptive-prescriptive phase. These phases 

correspond to 3 studies supported by a literature review on decision theory, decision analysis 

in engineering design, value of information, beliefs elicitation. uncertainty management and 

sensitivity analysis (Chapter 2). Hence, the first research question has been addressed by 

Chapters 3 , and the second one has been addressed by Chapters 4 and 5 from different 

perspectives, both prescriptive and descriptive. 

Through a summary of the studies that we conducted, we show in Section 6.1 how 

addressing these research questions has contributed to the fulfillment of the overall research 

objective. We also discuss the limitations of our research in Section 6.2 and suggest potential 

directions for future work to carry out in Section 6.3. 

 

6.1. Contributions 

6.1.1. In practice, how does decision making unfold in a M&S 

environment? 

The empirical study – presented in Chapter 3 – allowed us to understand the decision-

making process implemented in the company, and its interaction with the modeling and 

simulation process. The study highlighted the cascade-escalation paradigm of design 

decisions. This means that decisions are trans-hierarchical, and that the level at which 

decisions are made depends on the control that the decision makers have on the technical and 

economic constraints and the availability of information in their scope. Hence, decisions to 

solve design issues are often escalated to upper hierarchical levels when the alternatives 

considered lack information and involve a risk of cost and time overruns. The study mapped 

out the issue resolution process and its interaction with simulation activity and decision 

making. We established the basis for understanding how a decision meeting is conducted at 

a project manager level, and what a decision dossier consists of. Also, we identified the 

challenges encountered by the participants of the decision-making process, both in terms of 
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subjective uncertainty and communication. The lack of conclusive information is the main 

reason for postponing an artifact decision. Although decision dossiers only propose artifact 

decisions, product project managers make process decisions; they choose between finalizing 

the issue resolution by selecting a technical solution and waiting and collecting information 

to finalize the issue resolution later. Considering the continuous evolution of the product 

specification the multiple interactions between decisions made at different levels and in 

different interrelated projects, defining the optimal moment and the valuable information to 

make a decision is challenging. We also observed that the lack of knowledge about modeling 

and simulation, and the lack of trust about the results, are likely to facilitate irrational 

behavior such as off-loading responsibilities and workload. 

Through this study, we addressed the question of the interaction between decision-

making process and M&S process in the company. It allowed us to identify room for 

improvement and to hypothesize that a framework grounded in rigorous mathematical 

principles and integrating industrial considerations would help decision makers make more 

rational and informed decisions. 

 

6.1.2. To which extent can a method based on normative decision 

theory enhance the decision-making process supported by 

simulation? 

The results of the empirical study led us to consider the question of the enhancement of 

the decision-making process through a method based on normative decision theory. To do so, 

we proposed a decision support framework to solve design problems in Chapter 4. 

We designed the Issue Resolution Decision Support (IRDS) to integrate process related 

data in the Modeling and Simulation based vehicle development process. Experts contributed 

to the definition of the decision model so that it can reflect the possibilities and the constraints 

of the industrial process. IRDS allows for process-focused decision-making, incorporating the 

analysis of the consequences of actions such as information gathering and postponing the 

choice of artifact alternatives. We proposed a tailored tool to compute the decision problems 

and a definition of the roles involved in the decision-making process supported by IRDS: a 

decision analyst, a decision maker, and data providers. 

While building and testing IRDS, we noted that the information sources were scattered 

among individual and entities, and gathering some data in this context could be challenging. 

That raised the questions of the difficulties encountered when deploying IRDS in the 

company.  We investigated these issues in the Chapter 5, by exploring the difficulties 

related to uncertainty when implementing the decision support framework. We observed 

that 5% to 20% of IRDS inputs are already available in the current decision dossiers, amongst 

quantitative and qualitative data presented in different forms. Considering the tradeoff 

between accuracy and time and effort that data providers are willing to commit, we proposed 

to elicit their beliefs with the free elicitation rule. We observed that the inputs related to the 

scenario of failure as well as the time-related functions are difficult to obtain. For these risk 

and process-related aspects, people are not used to formulate their beliefs, quantify them, and 

back them up with explicit assumptions. Therefore, the data collection phase of IRDS prompts 
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the participants to step back from their usual frame of reference. As the accuracy of the beliefs 

reported could be questioned, the question of the need for accuracy or not was tackled. We 

proposed to perform sensitivity analyses on rough estimates, so that the decision analyst can 

identify the inputs that are decision sensitive and eventually seek more accuracy by 

retargeting elicitation or requesting further analyses that would be immediately available. 

This enables the IRDS user to better allocate effort when collecting data. 

We observed how the decision analyst collected data in the real industrial environment 

through 5 case studies on historical design issues. In most cases, the IRDS inputs available in 

decision dossiers enhanced with a 60 min elicitation meeting led to decisions consistent with 

the ones made by decision makers at the time. In one case, IRDS prescribed to explore the 

opportunity of making important savings, which was a different alternative than the one 

selected by the decision maker at the time, but presenting a higher expected value. In another 

case, depending on the beliefs reported, IRDS prescribed either to gather more information 

or to pursue the opportunity to make important savings – decision consistent with the one 

made by the decision maker, but leading to an unfortunate outcome. This illustrated the fact 

that the decision analyst must confront information from different sources and seek an 

agreement, and that rational decision making does not prevent bad luck or error due to lack 

of expertise. 

 

These three studies covered different aspects of the decision-making process as-is and to 

be in the company – from considering the reasons why some artifact decisions are postponed 

many times, sometimes suboptimal, to how they are framed and informed, to how the 

decision-making process could be supported by a mathematical and organizational 

framework. 

 

6.2. Limitations 

While conducting this research, we identified and faced several limitations. These are 

related to the methodological challenge to demonstrate that IRDS lead to better decisions, the 

biases to working with historical material, the possible biases related to the use and 

interpretation of IRDS results, and the difficulty to value the contributions of the framework 

to the company beyond the decision problems under consideration that can improve the 

overall decision making. 

Collecting empirical evidence that support the assumption that IRDS enables to make 

better decisions is difficult. It is challenging to compare situations with and without IRDS, 

knowing that outcomes on single experiment do not inform about the quality of the decision. 

Ideally, a comparative study should have been performed on a large number of parallel 

identical universes. In this theoretic study, each universe should have been be isolated, so that 

an action in one universe would not affect the course of action of other universes. Such 

conditions are obviously unrealistic. Such an experiment could have been possible in 

numerical simulation, but creating models realistic enough to embrace the variety of 

interactions happening in projects is challenging, and would have consume too much of the 
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time allocated for the PhD. Time constraints also made impossible to track decisions and 

consequences on ongoing projects in the real-world.  

We therefore chose to focus on historical cases. This approach also has its own limitations. 

This choice imposed us to deal uncomplete information and participants memories 

potentially biases. Moreover, the participants had to dedicate time besides the missions for 

which they were evaluated. So they were not immediately available to work with the decision 

analyst, and imposed time restrictions when available. This prevented us to examine more 

into detail some cases. 

We also acknowledged that framing the decision problem and the actions upfront can 

discourage the decision maker to think broader than the frame presented. Moreover, IRDS 

may not include all the alternatives that are actually available – e.g. technical solutions not 

documented or unusual actions. Another bias is related to data gathering by beliefs elicitation 

and modeling: if the beliefs are inaccurate, the computation can provide results that are 

mathematically correct but do not conform to the actual state of reality. IRDS decision 

problem model is the results of assumptions and modeling choices we have made. 

Consequently, the functional relationships that we impose through our model can also 

introduce biases as these assumptions may not reflect the beliefs of the people using IRDS. 

Finally, using the IRDS requires time and efforts in terms of data gathering and beliefs 

modeling. In the case where IRDS would lead to the same decision as to the current practice, 

the use of IRDS would have involved unnecessary expenses – or expenses would have been 

involved to increase the confidence. In such case, by investigating decision alternatives, the 

organization can gain insights that can be useful for other purposes. However, this gain is 

difficult to quantify.  

 

6.3. Perspectives 

Since we have highlighted the limitations of the research presented in this dissertation, 

we suggest further studies to collect empirical evidence that better decisions are made on 

ongoing projects with IRDS. Moreover, studies would provide interesting insights by 

measuring the value of the decision support framework in the company from a broader 

perspective than the decision problems considered individually. The research on the 

implementation of the framework in company settings should be continued by exploring 

ways to facilitate the data collection process and communication between the three roles 

involved in IRDS. Devising practices that integrate IRDS requirements alongside the digital 

transformation of the company would allow for better management of information exchanges 

and accelerate the decision-making process. Concurrently, considering an information 

system that takes advantage of knowledge capitalization would enhance the use of IRDS. 

The prospect of being able to identify the best moment to postpone a resources allocation 

serves as a continuous incentive for future research. Moreover, solving problems and making 

decisions in a dynamic and uncertain environment is not limited to the automotive industry, 

and we believe that this work on a decision support framework could serve as a basis for 

further developments in other sectors. 
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