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Spécialité de doctorat : Informatique et Réseau
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Titre : Protection de la Confidentialité des Services de Recommandation pour les Villes Intelligentes
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Résumé : Au cours de la dernière décennie, la
technologie Internet des objets (IoT) a révolutionné
presque tous les domaines de la vie quotidienne et
a dynamisé les villes intelligentes. Les villes intelli-
gentes utilisent la technologie IoT pour collecter di-
vers types de données de capteurs (trafic, stationne-
ment, météo et environnement), puis les utilisent pour
offrir diverses applications, telles que les systèmes
de transport intelligent, le stationnement intelligent,
le réseau intelligent et le ski intelligent, pour n’en
nommer que quelques-uns. Les villes intelligentes ont
pour objectif d’améliorer la qualité des services gou-
vernementaux et le bien-être des citoyens. Comme
les applications des villes intelligentes sont utilisées
par les citoyens, donc leur fournir des services de
recommandation personnalisés en fonction de leurs
préférences, de leurs localisations et de leurs profils
ainsi que l’exploitation des données IoT (par exemple,
la congestion du trafic et l’occupation du parking)
est d’une grande importance qui pourrait être four-
nie par un recommandateur IoT. Cependant, comme
le recommandateur IoT utilise les données privées
des citoyens (profils, préférences et habitudes, par
exemple), il viole la vie privée des utilisateurs car
il pourrait suivre les routines et les habitudes des
utilisateurs en analysant la base de données histo-
rique ou en analysant les services de recommanda-
tion réguliers qu’il offre. Par conséquent, il est impor-
tant de préserver la confidentialité des utilisateurs du
programme de recommandation IoT.
Dans cette thèse, nous proposons un nouveau
système de recommandation IoT préservant la confi-
dentialité pour les villes intelligentes, qui fournit des
recommandations en exploitant les données IoT des
capteurs et en tenant compte de diverses métriques.
Notre approche est organisée en trois parties. Tout
d’abord, nous développons un système de recom-
mandation IoT conforme au règlement européen
sur la protection des données (GDPR) pour les
systèmes de stationnement intelligent. Ces systèmes
fournissent des recommandations sur les emplace-
ments et les itinéraires de stationnement en exploi-
tant les données des capteurs de stationnement et
de circulation. Par conséquence, nous proposons
d’abord une approche pour la cartographie des cap-
teurs de trafic avec les coordonnées d’itinéraires
afin d’analyser les conditions de trafic (par exemple
le niveau de congestion) sur les routes Ensuite,
nous avons mis en place un dispositif de recom-
mandation IoT. Ce dispositif offre quatre fonctions.
Premièrement, il aide l’utilisateur à trouver une place
de parking gratuite en fonction de différentes me-
sures (par exemple, la place de stationnement fiable
ou la plus proche). Deuxièmement, il recommande un
itinéraire (l’itinéraire le moins fréquenté ou l’itinéraire
le plus court) menant à l’emplacement de stationne-
ment recommandé à partir de l’emplacement actuel

de l’utilisateur. Troisièmement, il fournit la disponibilité
en temps réel des zones de stationnement prévues
(comprenant des places de stationnement organisées
en groupes) de manière conviviale. Enfin, il fournit
une implémentation conforme au GDPR pour fonc-
tionner dans un environnement sensible à la confi-
dentialité. Le recommandateur IoT a été intégré au
scénario d’utilisation du stationnement intelligent d’un
projet H2020 EU-KR WISE-IoT et a été évalué par
les citoyens de Santander, en Espagne, à l’aide d’un
prototype. Il a également été démontré à trois re-
prises. De plus, nous développons un recommenda-
teur IoT pour le ski intelligent qui fournit des itinéraires
de ski comprenant des types de pistes spécifiques,
ainsi que la piste la plus proche. Pour les itinéraires
de ski, il n’existe aucun moteur de calcul stable.
Par conséquent, un nouveau moteur de routage pour
les itinéraires de ski a été développé. Ce travail a
également été intégré dans le cas d’utilisation du ski
intelligent du projet WISE-IoT.
Deuxièmement, bien que le recommandateur IoT
développé pour le stationnement intelligent soit
conforme au GDPR, il ne protège toutefois pas tota-
lement la vie privée des utilisateurs. En effet, le par-
tage sans discernement des données des utilisateurs
avec un système tiers de recommandation de station-
nement IoT non approuvé ou semi-fiable provoque
une violation de la vie privée. En effet, le comporte-
ment et les schémas de mobilité des utilisateurs pou-
vant être déduits en analysant l’historique de leurs
déplacements. Par conséquent, nous préservons la
confidentialité des utilisateurs contre le système de
recommandation de stationnement tout en analysant
leur historique de stationnement en utilisant des tech-
niques de k-anonymat (anonymisation) et de confi-
dentialité différentielle (perturbation).
Enfin, étant donné que les applications de villes in-
telligentes sont développées de manière verticale et
ne se parlent pas, c’est-à-dire que chaque applica-
tion est développée pour un certain scénario qui ne
partage généralement pas les données avec d’autres
applications de villes intelligentes. Par conséquent,
nous avons proposé deux cadres pour les services
de recommandation parmi les applications de villes
intelligentes utilisant l’IdO social. Tout d’abord, sur la
manière dont l’IdO social peut être utilisé pour les
services de recommandation entre applications de
villes intelligentes. Deuxièmement, nous proposons
un autre type de communication de l’IdO social au
niveau mondial, à savoir les communications inter-
domaines sociales qui permettent aux applications
de villes intelligentes de communiquer entre elles et
établir des relations sociales entre elles. Ces frame-
works sont les blocs de construction des recomman-
dations inter-domaines dans les applications de villes
intelligentes.
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Abstract : During the past decade, the Internet of
Things (IoT) technology has revolutionized almost all
the fields of daily life and has boosted smart cities.
Smart cities use IoT technology to collect various
types of sensors’ data (e.g., traffic, parking, weather
and environmental) and then use such data to offer
a variety of applications, such as intelligent transpor-
tation system, smart parking, smart grid and smart
skiing, to name a few. The objective of smart cities
is to improve the quality of governmental services and
citizens welfare. Since the smart cities’ applications
are used by the citizens, therefore providing the custo-
mized recommendation services to the citizens based
on their preferences, locations and profiles, as well
as by exploiting the IoT data (e.g., traffic congestion
and parking occupancy) is of great importance which
could be provided by an IoT recommender. However,
since the IoT recommender utilizes the private data
of citizens (e.g., profiles, preferences and habits), it
breaches the privacy of the users because the IoT re-
commender could track the routines and habits of the
users by analyzing the historical database or by ana-
lyzing the regular recommendation services it offers.
Therefore, it is important to preserve the privacy of the
users from the IoT recommender.
In this thesis, we propose a novel privacy preserving
IoT recommender system for smart cities that pro-
vides recommendations by exploiting the IoT data of
sensors and by considering various metrics. Our ap-
proach is organized in three parts. Firstly, we develop
an EU General Data Protection Regulation (GDPR)-
compliant IoT recommender system for smart par-
king system that provides recommendations of par-
king spots and routes by exploiting the data of par-
king and traffic sensors. For this, we first propose an
approach for the mapping of traffic sensors with route
coordinates in order to analyze the traffic conditions
(e.g., the level of congestion) on the roadways and
then developed an IoT recommender. The IoT recom-
mender provides four-fold functions. Firstly, it helps a
user to find a free parking spot based on different me-
trics (e.g., nearest or nearest trusted parking spot).
Secondly, it recommends a route (the least crowded
or the shortest route) leading to the recommended
parking spot from the user’s current location. Thirdly,
it provides the real-time provisioning of expected avai-

lability of parking areas (comprised of parking spots
organized into groups) in a user-friendly manner. Fi-
nally, it provides a GDPR-compliant implementation
for operating in a privacy-aware environment. The IoT
recommender has been integrated into the smart par-
king use case of an H2020 EU-KR WISE-IoT project
and has been evaluated by the citizens of Santander,
Spain through a prototype. It has also been demons-
trated at three occasions. Additionally, we develop an
IoT recommender for smart skiing that provides skiing
routes comprised of specific types of slopes, as well
as the nearest slope. For skiing routes, there does
not exist any stable routing engine. Therefore, a novel
routing engine for skiing routes was developed. This
work has also been integrated into the smart skiing
use case of WISE-IoT project.
The developed IoT recommender for smart parking is
GDPR-compliant. However, it does not fully protect
the privacy of the users. Because, an indiscrimina-
tely sharing of users’ data with an untrusted or semi-
trusted third-party IoT parking recommender system
causes a breach of privacy, as user’s behavior and
mobility patterns can be inferred by analyzing the
past travelling history of the users. Therefore, we pre-
serve the privacy of users against parking recom-
mender system while analyzing their past parking his-
tory using k-anonymity (anonymization) and differen-
tial privacy (perturbation) techniques.
Lastly, since the smart cities applications are develo-
ped in a vertical manner and do not talk/communicate
with each other, i.e., each application is developed
for a certain scenario which generally does not share
data with other smart cities applications. Therefore,
we proposed two frameworks for the recommendation
services across smart cities applications using social
IoT. Firstly, on how social IoT can be used for the re-
commendation services across smart cities applica-
tions, and secondly, we propose another type of com-
munication of social IoT at a global level, i.e., social
cross-domain application-to-application communica-
tions, that enables smart cities applications to com-
municate with each other and establish social rela-
tionships between them. These frameworks are the
building blocks for cross-domain recommendations in
smart cities applications.
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Abstract
During the past decade, the Internet of Things (IoT) has revolutionized almost all the fields
of daily life and has boosted the development of smart city applications. Smart cities use
IoT technologies to collect various types of sensors’ data (e.g., traffic, parking, weather and
environmental) and then use such data to offer a variety of applications, such as intelligent
transportation systems, smart parking and smart grid, to name a few. The objective of
smart cities is to improve the quality of governmental services and citizens’ welfare. Since
the smart cities’ applications are used by the citizens, therefore providing the customized
recommendation services to the citizens based on their preferences, locations and profiles,
as well as by exploiting IoT data (e.g., traffic congestion and parking occupancy) is of
great importance which could be provided by an IoT recommender. However, since an IoT
recommender utilizes the private data of citizens (e.g., profiles, preferences and habits),
it breaches the privacy of the users because IoT recommenders could track the routines
and habits of the users by analyzing the historical database or by analyzing the regular
recommendation services it offers. Therefore, it is important to preserve the privacy of the
users while using IoT recommender systems.

In this thesis, we propose a novel privacy preserving IoT recommender system for
smart cities that provides recommendations by exploiting the IoT data of sensors and
by considering various metrics. Our approach is organized in three parts. Firstly, we
develop an EU General Data Protection Regulation (GDPR)-compliant IoT recommender
system for smart parking system that provides recommendations of parking spots and
routes by exploiting the data of parking and traffic sensors. For this, we first propose an
approach for the mapping of traffic sensors with route coordinates in order to analyze the
traffic conditions (e.g., the level of congestion) on the roadways and then developed an
IoT recommender. The mapping algorithm of traffic sensors coordinates on the routes has
been evaluated using simulations in terms of correct detection, missed detection and false
detection. The IoT recommender provides four-fold functions. Firstly, it helps a user to
find a free parking spot based on different metrics (e.g., nearest or nearest trusted parking
spot). Secondly, it recommends a route (the least crowded or the shortest route) leading
to the recommended parking spot from the user’s current location. Thirdly, it provides the
real-time provisioning of expected availability of parking areas (comprised of parking spots
organized into groups) in a user-friendly manner. Finally, it provides a GDPR-compliant
implementation for operating in a privacy-aware environment. The IoT recommender has
been integrated into the smart parking use case of the H2020 EU-KR WISE-IoT project
and has been evaluated by the citizens of Santander in Spain through a prototype. We
have developed an IoT recommender for smart skiing that provides skiing routes comprised
of specific types of slopes. For skiing routes, there are not any stable routing engines.
Therefore, a novel routing engine for skiing routes was developed. This work has also been
integrated into the smart skiing use case in the WISE-IoT project and has been evaluated
by comparing it with OpenSnowMap for different types of slopes with different expertise
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levels.
The developed IoT recommender for smart parking is GDPR-compliant. However, it

does not fully protect the privacy of the users. Because, an indiscriminately sharing of users’
data with an untrusted or semi-trusted third-party IoT parking recommender system causes
a breach of privacy, as user’s behavior and mobility patterns can be inferred by analyzing
the past travelling history of the users. Therefore, we preserve the privacy of users against
parking recommender system while analyzing their past parking history using k-anonymity
(anonymization) and differential privacy (perturbation) techniques. The main novelty in
this contribution is that k-anonymity and differential privacy have not previously been
applied in smart parking, specifically for preserving the users privacy in parking database.
k-anonymity has been evaluated for various values of k and for different combinations of
attributes in terms of average group size, total number of groups, generalization height,
number of suppressed records, discernibility cost and execution time. Differential privacy
has been evaluated for various values of privacy budget and sensitivity values in terms of
mean absolute error and root mean square error.

Lastly, since the smart cities applications are developed in a vertical manner and do not
talk/communicate with each other, i.e., each application is developed for a certain scenario
which generally does not share data with other smart cities applications. Therefore, we
proposed two frameworks for the recommendation services across smart cities applications
using social IoT. Firstly, on how social IoT can be used for the recommendation services
across smart cities applications, and secondly, we propose another type of communication
of social IoT at a global level, i.e., social cross-domain application-to-application com-
munications, that enables smart cities applications to communicate with each other and
establish social relationships between them. These frameworks are the building blocks for
cross-domain recommendations in smart cities applications.

Keywords

Internet of Things, IoT Recommender, Smart Cities, Smart Parking, Smart Skiing, Privacy
Preservation, k-anonymity, Differential Privacy, Cross-Domain.



Résumé
Au cours de la dernière décennie, la technologie Internet des objets (IoT) a révolutionné
presque tous les domaines de la vie quotidienne et a dynamisé les villes intelligentes. Les
villes intelligentes utilisent la technologie IoT pour collecter divers types de données de cap-
teurs (trafic, stationnement, météo et environnement), puis les utilisent pour offrir diverses
applications, telles que les systèmes de transport intelligent, le stationnement intelligent,
le réseau intelligent et le ski intelligent, pour n’en nommer que quelques-uns. Les villes
intelligentes ont pour objectif d’améliorer la qualité des services gouvernementaux et le
bien-être des citoyens. Comme les applications des villes intelligentes sont utilisées par
les citoyens, donc leur fournir des services de recommandation personnalisés en fonction de
leurs préférences, de leurs localisations et de leurs profils ainsi que l’exploitation des données
IoT (par exemple, la congestion du trafic et l’occupation du parking) est d’une grande im-
portance qui pourrait être fournie par un recommandateur IoT. Cependant, comme le
recommandateur IoT utilise les données privées des citoyens (profils, préférences et habi-
tudes, par exemple), il viole la vie privée des utilisateurs car il pourrait suivre les routines
et les habitudes des utilisateurs en analysant la base de données historique ou en analysant
les services de recommandation réguliers qu’il offre. Par conséquent, il est important de
préserver la confidentialité des utilisateurs du programme de recommandation IoT.

Dans cette thèse, nous proposons un nouveau système de recommandation IoT préservant
la confidentialité pour les villes intelligentes, qui fournit des recommandations en exploitant
les données IoT des capteurs et en tenant compte de diverses métriques. Notre approche
est organisée en trois parties. Tout d’abord, nous développons un système de recommanda-
tion IoT conforme au européen règlement sur la protection des données (RGPD) pour les
systèmes de stationnement intelligent. Ces systèmes fournissent des recommandations sur
les emplacements et les itinéraires de stationnement en exploitant les données des capteurs
de stationnement et de circulation. Par conséquence, nous proposons d’abord une approche
pour la cartographie des capteurs de trafic avec les coordonnées d’itinéraires afin d’analyser
les conditions de trafic (par exemple le niveau de congestion) sur les routes Ensuite, nous
avons mis en place un dispositif de recommandation IoT. L’algorithme de cartographie des
coordonnées des capteurs de trafic sur les itinéraires a été évalué à l’aide de simulations
en termes de détection correcte, de détection manquée et de fausse détection. Ce dispositif
offre quatre fonctions. Premièrement, il aide l’utilisateur à trouver une place de parking
gratuite en fonction de différentes mesures (par exemple, la place de stationnement fiable ou
la plus proche). Deuxièmement, il recommande un itinéraire (l’itinéraire le moins fréquenté
ou l’itinéraire le plus court) menant à l’emplacement de stationnement recommandé à partir
de l’emplacement actuel de l’utilisateur. Troisièmement, il fournit la disponibilité en temps
réel des zones de stationnement prévues (comprenant des places de stationnement orga-
nisées en groupes) de manière conviviale. Enfin, il fournit une implémentation conforme au
RGPD pour fonctionner dans un environnement sensible à la confidentialité. Le recomman-
dateur IoT a été intégré au scénario d’utilisation du stationnement intelligent d’un projet
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H2020 EU-KR WISE-IoT et a été évalué par les citoyens de Santander, en Espagne, à l’aide
d’un prototype. Il a également été démontré à trois reprises. De plus, nous développons un
recommendateur IoT pour le ski intelligent qui fournit des itinéraires de ski comprenant
des types de pistes spécifiques. Pour les itinéraires de ski, il n’existe aucun moteur de calcul
stable. Par conséquent, un nouveau moteur de routage pour les itinéraires de ski a été
développé. Ce travail a également été intégré dans le cas d’utilisation du ski intelligent du
projet WISE-IoT et a été évalué en le comparant avec OpenSnowMap pour différents types
de pistes avec différents niveaux d’expertise.

Deuxièmement, bien que le recommandateur IoT développé pour le stationnement in-
telligent soit conforme au RGPD, il ne protège toutefois pas totalement la vie privée des
utilisateurs. En effet, le partage sans discernement des données des utilisateurs avec un
système tiers de recommandation de stationnement IoT non approuvé ou semi-fiable pro-
voque une violation de la vie privée. En effet, le comportement et les schémas de mobilité
des utilisateurs pouvant être déduits en analysant l’historique de leurs déplacements. Par
conséquent, nous préservons la confidentialité des utilisateurs contre le système de recom-
mandation de stationnement tout en analysant leur historique de stationnement en utilisant
des techniques de k-anonymity (anonymisation) et de confidentialité différentielle (pertur-
bation). La principale nouveauté de cette contribution est que k-anonymity et la confiden-
tialité différentielle n’ont pas été appliqués auparavant dans le stationnement intelligent,
en particulier pour préserver la confidentialité des utilisateurs dans la base de données de
stationnement. k-anonymity a été évalué pour différentes valeurs de k et pour différentes
combinaisons d’attributs en termes de taille moyenne de groupe, nombre total de groupes,
hauteur de généralisation, nombre d’enregistrements supprimés, coût de discernibilité et
temps d’exécution. La confidentialité différentielle a été évaluée pour diverses valeurs du
budget de confidentialité et des valeurs de sensibilité en termes d’erreur absolue moyenne
et d’erreur quadratique moyenne.

Enfin, étant donné que les applications de villes intelligentes sont développées de manière
verticale et ne se parlent pas, c’est-à-dire que chaque application est développée pour un
certain scénario qui ne partage généralement pas les données avec d’autres applications de
villes intelligentes. Par conséquent, nous avons proposé deux cadres pour les services de
recommandation parmi les applications de villes intelligentes utilisant l’IoT social. Tout
d’abord, sur la manière dont l’IoT social peut être utilisé pour les services de recomman-
dation entre applications de villes intelligentes. Deuxièmement, nous proposons un autre
type de communication de l’IoT social au niveau mondial, à savoir les communications
inter-domaines sociales qui permettent aux applications de villes intelligentes de commu-
niquer entre elles et établir des relations sociales entre elles. Ces frameworks sont les blocs
de construction des recommandations inter-domaines dans les applications de villes intelli-
gentes.

Mots-clés

Internet des objets, recommandation IoT, villes intelligentes, stationnement intelligent, ski
intelligent, préservation de la vie privée, k-anonymat, confidentialité différentielle, inter-
domaines.
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18 1.1. MOTIVATION

1.1 Motivation

During the past decade, Internet of Things (IoT) has revolutionized almost all the fields

of daily life and has boosted smart cities. Smart cities use IoT technologies to collect

various types of sensors’ data (e.g., traffic, parking, weather and environmental) and then

use such data to offer a variety of applications, such as intelligent transportation systems,

smart parking, smart grid and smart skiing, to name a few. The objective of smart cities

is to improve the quality of governmental services and citizens welfare. Since the smart

cities’ applications are used by the citizens, city authorities and urban planners, therefore

providing the customized recommendation services to them based on their preferences,

locations and profiles, as well as by exploiting the IoT data (e.g., traffic congestion, parking

occupancy) is of great importance.

Smart parking and smart skiing are two major examples of smart cities. A smart

parking system provides the recommendation of available parking spots to the drivers

looking for them, thereby minimizing the time spent on finding available parking spots, as

well as minimizing the cost associated with hiring humans for manual parking management.

In addition, in the recommendation of parking spots, it is equally important to consider

the traffic on the route leading to the recommended parking spots and to recommend the

least congested route. With the enforcement of the EU General Data Protection Regulation

(GDPR), protecting the privacy of EU citizens throughout the data collection, data storage

and data processing of a user’s personal data is now a basic requirement. Parking systems

gather a lot of contextual data and it is quite possible that the users’ personal data can be

collected indirectly. GDPR affects also smart parking applications and hence, the smart

parking systems should therefore be designed in a way that protects user’s privacy and

thus be GDPR-compliant. Additionally, such smart parking systems could also be applied

to other parts of the world having similar privacy preservation concerns. A smart skiing

system recommends slopes to the skiers based on the level of their expertise (e.g., novice,

beginner, intermediate or advance) as well as recommends routes between two points on ski

resort passing through ski slopes and ski lifts. The route recommendation in skiing is quite

different from the route recommendation on roads because of different nature of medium.

Hence, a mechanism is needed that can recommend the specific types of slopes and routes

between two points for skiing.

For recommendations in smart parking, the parking database comprised of users’ past

history is shared with a recommender system for efficient and personalized recommenda-

tions. However, since the parking database contains the private data of users (e.g., parking

history, profiles, preferences and habits), it breaches the privacy of the users because a

recommender system could track the routines and habits of the users by analyzing the his-
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torical database or by analyzing the regular offered recommendation services. Therefore,

privacy of the users must be protected.

Additionally, many of the smart cities applications available today have been developed

in a vertical manner by focusing on a specific scenario or use case without considering

data exchange and reuse with other smart cities applications [1]. This very specific focus

results in poor service because of the lack of integration of different data and hence the

interoperability in the smart cities data and systems. However, if smart cities applications

could collaborate by exchanging and reusing each other’s data, opportunities for new value-

added and more efficient recommendation services could be generated.

The main goal of this thesis is to provide privacy preserving recommendation services in

smart cities and frameworks for recommendation services across smart cities applications.

To this end, we consider two applications of smart cities: smart parking and smart skiing

for recommendation services.

1.2 Objectives of the Thesis

In this section, we present the main objectives of this thesis. We address each objective

with one contribution. This thesis aims to design a privacy preserving recommendation

services for smart cities. The main objectives to achieve this aim are as follows:

• To design an IoT recommender for smart cities. The aim is to provide the IoT

recommenders for smart cities, as well as to study the required component in order

to achieve this aim.

• To preserve the privacy of IoT recommender that is designed in the first objective.

• To provide frameworks for cross-domain recommendation services in smart cities.

1.3 Contributions of the Thesis

Our approach to achieve the above research objectives is organized into three parts as three

contributions, each corresponding to each research objective. We discuss each contribution

as follows:

C.1 The first contribution is on developing IoT recommender systems for smart cities that

offer recommendations based on IoT data. Firstly, it proposes an algorithm for the

mapping of sensor and route coordinates that is used for analyzing the sensors data

(e.g., traffic sensors data) on the routes to infer and analyze traffic conditions on the

roads. Secondly, it provides two IoT recommender systems for smart parking and
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smart skiing. From a recommendation perspective, the IoT recommender is different

from a general recommender system in that IoT recommender mainly considers the

actual IoT data from parking and traffic sensors, rather than the data shared or ac-

quired by users’ terminals. Secondly, the IoT recommender also considers the trust

by interacting with the Trust Monitoring of WISE-IoT project to offer trusted rec-

ommendations. Thirdly, it provides GDPR-compliant implementation that works in

a privacy-aware environemnt. Fourthly, it offers the expected availability (occupancy

statistics) of parking areas to users and enables them to analyze the weekly, monthly

and yearly statistics statistics by themselves. More specifically, the first contribution

provides three sub-contributions, as follows:

C.1.1 Firstly, it proposes an algorithm for the mapping of sensors and route coordinates

by introducing a deviation margin. It presents an algorithm and two illustrative

examples that cover all the possible scenarios. It evaluates the performance of

mapping algorithm by considering four different routes and measures the correct

detection, missed detection and false detection of traffic sensors on the routes.

C.1.2 Secondly, it presents an IoT recommender for smart parking that uses the map-

ping algorithm proposed in the first part and provides four-fold functions: rec-

ommendation of parking spots based on different metrics (e.g., nearest or nearest

trusted), recommendation of routes leading to the recommended parking spots

(the least crowded or the shortest route), real-time provisioning of expected

availability of parking spots, and a GDPR-compliant implementation for oper-

ating in a privacy-aware environment. It offers its services using REST APIs

and has been integrated into and evaluated in an H2020 EU-KR project, as well

as been demonstrated in three occasions.

C.1.3 Thirdly, it presents an IoT recommender for smart skiing that provides the rec-

ommendations of ski routes between two points on a ski resort, passing through

ski slopes and ski lifts by allowing to specify specific types of slopes based on

the level of expertise (e.g., novice, easy, intermediate or advance). It offers its

service through REST APIs and has also been integrated in an H2020 EU-KR

project.

C.2 The second contribution is about the privacy preservation of IoT recommender for

smart parking, that is presented in the first contribution. Although the IoT rec-

ommender for smart parking is GDPR-compliant, however, it does not fully protect

the privacy of the users. Because, an indiscriminately sharing of users’ data with an

IoT parking recommender system causes a breach of privacy as user’s behavior and
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mobility patterns can be inferred by analyzing the past travelling history of users.

Therefore, we preserve the privacy of users against parking recommender system while

analyzing their past parking history using k-anonymity (anonymization) and differen-

tial privacy (perturbation) techniques. It also extensively evaluates the performance

of both privacy preservation techniques in terms of privacy and utility.

C.3 The third contribution is in the application domain in which we proposed two frame-

works for recommendations across smart cities applications: one on how social IoT

can be used for recommendation services, and second on the social cross-domain

application-to-application communications. Since smart cities applications are devel-

oped in a vertical manner and do not talk / communicate with each, i.e., each appli-

cation is developed for a certain scenario which generally does not share data with

other smart cities applications, therefore, these frameworks are the building blocks

for cross-domain recommendations in smart cities application. More specifically, the

third contribution provides two sub-contributions, as follows:

C.3.1 Firstly, it proposes a framework on the exploitation of social IoT for recommen-

dation services across smart cities applications. It presents a sample application

scenario as well as implementation challenges for the realization of this concep-

tual framework.

C.3.2 Secondly, it proposes a framework on a new type of communication of social IoT

at global level, i.e., social cross-domain IoT application-to-application commu-

nications. It presents the conceptual framework, some use case scenarios and

challenges to realize this concept.

1.4 Project Contribution

The work of Chapter 3 in this thesis has been performed as part of an European Union’s

Horizon 2020 research and innovation collaborative programme between Europe and South

Korea (H2020 EU-KR), titled as “Worldwide Interoperability for Semantic IoT (WISE-

IoT)”. The work is performed under the grant agreement No. 723156, the Swiss State

Secretariat for Education, Research and Innovation (SERI) and the South-Korean Institute

for Information & Communications Technology Promotion (IITP) grant funded by the

Korea government (MISP) (No. R7115-16-0002) with a consortium of 19 partners (9 from

EU and 10 from South Korea) and includes 3 industries, 6 SMEs, 6 universities, 3 leading

research institutes and 1 city municipality. The partners include EGM, NEC, SJU, KAIST,

IMT-TSP, CEA, UC, LJMU, SAN, FHNW, PIQ, KNU, KETI, SKT, SAMSUNG SDS,

GBC, SOLUM, IReIS and GSPA.
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WISE-IoT addressed the fragmentation between different IoT standards and their ecosys-

tems. It offered gateways and morphing procedures that bridged heterogeneous IoT deploy-

ments and translated data expressed by using one ontology into another. These innovations

facilitated the global interoperability and mobility of IoT applications and devices. The

main objective of WISE-IoT project it to deepen the interoperability and interworking

of IoT existing systems. It was a use-case-driven project which exploited the experience

and expertise available in the consortium to build a comprehensive mediation framework

that can be used across various IoT systems. Another objective was to build up federated

and interoperable platforms by ensuring end-to-end security and trust for reliable business

environments with a multiplicity of IoT applications. Building synergies with national

and international initiatives in both EU and KR, the project addressed standardization

requirements, fostering IoT development and interoperability.

The IoT recommender of this thesis in Chapter 3 was developed in the WISE-IoT

project and has been integrated and deployed into two use cases of WISE-IoT of smart

parking and smart skiing.
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1.6 Relationship of Publications with Contributions

In this section, we provide the relationships of publications with contributions.

• The publication ‘Mapping of Sensor and Route Coordinates for Smart Cities’ corre-

sponds to Contribution C.1.1 in Section 3.2.

• The publication ‘IoTRec: The IoT Recommender for Smart Parking System’ corre-

sponds to Contribution C.1.2 in Section 3.3.

• The publication ‘Privacy Preservation of Parking Recommender System through Anonymiza-

tion and Differential Privacy ’ corresponds to Contribution C.2 in Chapter 4.

• The publication ‘Exploitation of Social IoT for Recommendation Services’ corre-

sponds to Contribution C.3.1 in Section 5.3.

• The publication ‘SCDIoT: Social Cross-Domain IoT enabling Application-to-Application

Communications’ corresponds to Contribution C.3.2 in Section 5.4.
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1.7 Outline of the Thesis

The thesis is structured into six chapters.

• Chapter 1 describes the background of the research topics, motivation, contributions

of this thesis, project contribution, summary of each chapter and the outline of the

thesis.

• Chapter 2 presents the background and related technologies relevant to the main

topics of this thesis, i.e., IoT, smart cities, smart parking, smart skiing, recommenda-

tion services in smart cities, privacy preservation, anonymization, differential privacy,

social IoT, cross-domain recommendation services and semantic web.

• Chapter 3 presents the IoT recommender which is divided into three parts: i) the

mapping of sensors and route coordinates, ii) the IoT recommender for smart parking

and iii) the IoT recommender for smart skiing.

• Chapter 4 presents the privacy preservation of parking recommender system through

k-anonymity and differential privacy and extensively studies the performance of both

techniques.

• Chapter 5 presents two frameworks for the recommendations across smart cities

applications.

• Chapter 6 summarizes the thesis and discusses possible future directions for the

advancements of this thesis.
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2.1 Overview

The background and related technologies presented in this chapter give a general overview

relevant to the main topics of the thesis. Later on, a separate and detailed overview of the

related work will be discussed for each study in this thesis.

2.2 IoT Recommender for Smart Cities

In this section, we provide the background and related technologies that are required for

the IoT recommender system for smart cities.

2.2.1 Internet of Things

Initially, the Internet provided connectivity for people-to-people and people-to-things. By

2008, the number of things connected to the Internet exceeded the number of people in

the world, which has increased the impact of the Internet of Things (IoT) because more

and more devices are connected to the Internet. IoT is a network of physical objects

or things that contains embedded technology to interact with their internal and external

environments. These objects are often connected to the Internet and can sense, control,

analyze and decide in an autonomous, distributed and collaborated manner with other

objects. Some of the objectives of the IoT applications are tracking, location identification,

monitoring and management. The application design in the IoT is based on three main

concepts: things-oriented, Internet-oriented and semantic-oriented. The things-oriented

concept deals with smart objects such as sensors and actuators, and RFIDs [2]. The

Internet-oriented concept enables smart objects to communicate with other objects using a

number of telecommunication technologies, such as cellular communications and ZigBee [3],

and connects them to the Internet. The semantic-oriented concept deals with applications

that are built using smart objects or devices.

The IoT has attained considerable attention over the past few years in a number of

applications. It has enabled the interconnection of network-embedded objects used in our

daily life to the Internet, as well as enabled the automation of many systems in parking

management, leisure, power grids, agriculture and health care [4].

2.2.2 Smart Cities

Most modern cities have faced the problems of traffic congestion, public safety and shortage

of resources, in addition to other urban problems. Smart cities make an attempt to solve

these problems with the help of IoT technologies by leveraging the infrastructures and

resources of cities to become integrated and automated systems. Smart cities use IoT
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technologies to collect various types of sensors’ data (e.g., traffic, parking, weather and

environmental) and then use such data to offer a variety of applications, such as intelligent

transportation system, smart parking, smart grid and smart skiing, to name a few. The

objective of smart cities is to improve the quality of government services and citizens

welfare with the goal of turning the applications and systems into smart environments

[5]. Many initiatives around the world have been made to the study and development of

smart cities that target various sectors, such as parking management, traffic management,

waste management, energy management, urban mobility and healthcare. Some examples

of such initiatives include SmartSantander [6] (Santander, Spain), Digital Heidelberg [7]

(Heidelberg, Germany), Global Smart City [8] (Busan, South Korea), Amsterdam Smart

City [9] (Amsterdam, Netherlands), ConnectingCopenhagen [10] (Copenhagen, Denmark),

MiNT Madrid Inteligente [11] (Madrid, Spain) and DubaiNow [12] (Dubai, UAE), to name

a few. In this thesis, our main focus of study is on SmartSantander [6].

2.2.3 Smart Parking

Smart parking is one of the major example of smart cities. Traditionally, drivers try to

find available parking spots on the streets by driving around, only locating a parking spot

empirically due to their local knowledge and luck. This practice wastes a significant amount

of both time and fuel, and sometimes it is impossible to find an available parking spot during

high vehicle traffic times. One solution would be to find a parking area with high capacity of

free parking spots, increasing the chances of getting a parking spot. However, this parking

area could be very far from the user’s destination. Another solution is to design a system

that shows free parking spots to the driver and lets the driver chooses a free parking spot

manually. However, this is not an optimal solution because firstly, it is an extra task for the

drivers to select a parking spot by themselves. Secondly, the path leading to the selected

parking spot could be very congested, causing the parking spot to be occupied when the

driver arrives. In additional to finding the available parking spots, it is equally important

to consider the traffic on the route to each available parking spot and to recommend the

least congested route leading to the recommended parking spot to avoid frustrations to the

drivers by stucking in the traffic.

Smart parking has solved this problem of finding the available parking spots to the

drivers looking for them, as well as it provides routes leading to the parking spots, thereby

minimizing the time spent on finding free parking spots and stucking on the crowded roads.

It also minimizes the cost associated with hiring humans for manual parking management

[13–15]. Smart parking has been widely considered by many smart cities initiatives because

of its high importance by the citizens in their daily life.
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2.2.4 Smart Skiing

Leisure activities are important for the physical well-being and mental wellness and for the

health of citizens. Skiing is one of the leisure activity for physical and mental wellness.

Therefore, for the comfort of citizens, the smart city enriches the skiing by turning it into

smart skiing. Smart skiing offers various services, such as slope and route recommendations,

gamification, accident detection and coordination, and injury prediction and avoidance. In

this thesis, our focus of study is on slope and route recommendations for smart skiing.

2.2.5 Recommendation Services in Smart Cities

Since the smart cities’ applications are tailored to improve the lifestyle and welfare of the

citizens, therefore providing the customized recommendation services to the citizens based

on their preferences, locations and profiles, as well as by exploiting the IoT data (e.g.,

traffic congestion, parking occupancy, leisure) is of great importance which demand the

need of IoT recommender systems.

The IoT recommender system should provide the recommendations based on the users

preferences. For instance, for smart parking, the IoT recommender should provide the

recommendations of parking spots with which the users have good experience in the past,

as well as the least crowded routes leading to the recommended parking spots. For smart

skiing, generally, in ski resorts, there are different types of slopes for different expertise

levels (e.g., novice, beginner, intermediate and advance) which are one-way, i.e., the skiers

can go from top to down but not vice versa. To reach the top of the slope, the skiers need to

take ski lifts. Such constraint should be consider by the IoT recommender system for slope

and route recommendations in smart skiing. Firstly, the IoT recommender for smart skiing

should be able to recommend a slope based on the level of expertise of the skier. Secondly,

while recommending a route (either to reach to the recommended slope or between two

points in a ski resort), it should be able to recommend a route that should pass through

ski lifts and the specific type of the slope in accordance with the level of expertise of the

skier.

2.2.5.1 Requirements

Here we list the requirements that the IoT recommender needs to consider in its design.

Requirements for IoT Recommender for Smart Parking

• Consideration of IoT data of parking sensors for the recommendation of parking spots.

• Consideration of IoT data of traffic sensors for the recommendation of least congested

route leading to the recommended parking spot.
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• Consideration of user preference (e.g., trusted or nearest parking spot, least congested

or shortest route.

• Interaction with the trust monitoring component to obtain trust score based on users’

experience and sensors quality.

• Provide user the parking statistics to analyse in a user-friendly interface and allow

him to choose a parking area by himself as well.

• Offer RESTful APIs to enable the reuse of the service offered by the IoT recommender

for smart parking.

Requirements for IoT Recommender for Smart Skiing

• Consideration of expertise level of skier in ski route recommendation.

• Consideration of the slope to be one way.

• Consideration of ski lifts to have fixed starting and ending points (or stations).

• Offer RESTful APIs to enable the reuse of the services offered by the IoT recom-

mender for smart skiing.

2.3 Privacy Preservation

The IoT recommender discussed above accesses the database comprised of users’ past his-

tory in order to provide efficient and personalized recommendations. However, since the

database contains the private data of users (e.g., history, profiles, preferences and habits),

it breaches the privacy of the users because a recommender system could track the routines

and habits of the users by analyzing the historical database or by analyzing the regular

recommendation services it offers. Therefore, the privacy of users must be protected. In

this section, we present the widely adopted privacy preservation models.

2.3.1 Anonymization

In this section, we discuss three anonymization techniques for privacy preservation: k-

anonymity, `-diversity and t-closeness. The anonymization technique preserves privacy by

anonymizing the data and is applied on the microdata. The microdata is raw data that

contains the information of the users, comprised of multiple attributes (or columns) [16].

The attributes in microdata are categorized into three types: i) explicit identifiers that can

identify a user uniquely, e.g., social security number, ii) quasi-identifiers that can identify a
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user when they are combined together, e.g., age, gender, zipcode, iii) sensitive attributes are

the attributes that need to be protected, e.g., salary [17]. The first step in anonymization

is to remove the explicit identifer.

2.3.1.1 k-anonymity

k−anonymity [18] is the earliest work on privacy preservation that anonymizes a dataset

in such as a way that with respect to the set of quasi-identifier attributes, each record (or

row) is indistinguishable from at least k−1 other records. It achieves anonymization using

generalization and suppression. The main purpose of k-anonymity is to counter against

the linking attacks in which an adversary could not be able to uniquely identify a user

by linking the quasi-identifier attributes (such as birthdate, zip code and gender) with

external data. k-anonymity is suitable for non-interactive data publishing when there is no

sensitive attribute or the distribution of sensitive attribute is sparse. In this approach, the

data publisher (i.e., curator) does not want to get involve in answering all the queries and

instead, releases an anonymized dataset that will be queried by the recommender systems.

k-anonymity is discussed in Section 4.4.1 formally and in more details.

2.3.1.2 `-diversity

k-anonymity protects from linking attacks (i.e., privacy against identifying the records),

however it is susceptible to two other types of attacks of homogeneity and background

knowledge attacks. In homogeneity attack, if all the sensitive attributes are same in a

group of k records, the value of sensitive attribute can be identified by an adversary. In

background attack, an adversary uses background knowledge to identify the individuals. To

address the limitation of k-anonymity, Machanavajjhala et al., [19] extended k-anonymity

by proposing `-diversity that requires each record in a group to have at least ‘`’ diverse

values for the sensitive attribute. `-diversity is also suitable for non-interactive data pub-

lishing when the data publisher wants to release an anonymized dataset and does not want

to get involved in answering each query. However, unlike k-anonymity, `-diversity is used

when the anonymized dataset should contain each record in a group to have at least ‘`’

diverse values for the sensitive attribute. It is formally defined as:

“An equivalence group fulfills `-diversity if it has at least ‘`’ well-represented values for

the sensitive attribute. A dataset having equivalence groups, all of which are `-diverse, is

said to be an `-diverse dataset.”

In brief, `-diversity ensures intra-group heterogeneity of sensitive attributes by at least

‘`’ different values. If k=`, `-diversity automatically satisfies k-anonymity.



CHAPTER 2. BACKGROUND AND RELATED TECHNOLOGIES 31

2.3.1.3 t-closeness

Although `-diversity was proposed to solve the limitations of k-anonymity, however, Li

et al., [20] proved that `-diversity does not completely counter against the homogeneity

attack. They used two types of attacks: skewness attack and similarity attack to demon-

strate the limitation of `-diversity. In skewness attack, the anonymized dataset has skewed

distribution of sensitive attribute in equivalence groups and `-diversity failed to prevent

the attack because the distribution of the sensitive attribute is different from the dataset.

In similarity attack, the anonymized dataset has distinct values of sensitive attribute in

equivalence groups but they are semantically similar. `-diversity also failed to prevent the

attack because an adversary can estimate the value of a sensitive attribute by linking it to

another sensitive attribute. These limitations of `-diversity are overcome by Li et al. [20]

by proposing t-closeness. t-closeness is also suitable for non-interactive data publishing and

is used when a dataset that needs to be anonymized has sensitive attributes. It is suitable

when the sensitive attribute has skewed distribution or distinct values in the equivalence

groups of anonymized dataset. t-closeness is fomally defined as:

“An equivalence group fulfills t-closeness if the distance between the distribution of a

sensitive attribute in this group and that in the whole dataset is no more than a threshold

t. A dataset fulfills t-closeness if all the equivalence groups have t-closeness.”

2.3.2 Differential Privacy

Differential privacy was first coined by Dwork [21] with the definition that the output of a

differentially private mechanism is not highly affected by the addition or the removal of a

single record of dataset. It can protect the privacy of users while sharing the database with

the untrusted entity by perturbing the data. It overcomes the limitation of anonymization

techniques, specifically the curse of dimensionality [22]. Differential privacy uses interac-

tive data publishing and is suitable when the curator wants to answer each query of the

recommender systems by adding the noise. Differential privacy is discussed in Section 4.4.2

formally and in more details.

2.4 Cross-Domain Recommendation Services in Smart Cities

2.4.1 Social Internet of Things

Social IoT is the application of social networking concepts to the IoT which is initially

proposed by Atzori et al. [23]. It is attracting much attention these days, as it establishes

social relationships among smart objects (or things) so that they can collaborate with each

other autonomously without human intervention. The motivation behind the Social IoT is
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to enhance the selection, discovery and composition of resources through social relationships

and circles among objects in the same manner as in social relationships among humans in

a social network [23], [24].

In the social IoT, there may be five types of relationships for defining relationship profiles

within social IoT network: social object relationship (SOR), ownership object relationship

(OOR), co-work object relationship (CWOR), co-location object relationship (CLOR) and

parental object relationship (POR) [23], [25]. An SOR is established when objects are in

direct contact with each other. This direct contact can either be continuous or sporadic

and is among the objects’ owners (such as devices associated with friends). An OOR is

established between heterogenous objects having the same owner. A CWOR is established

among objects collaborating with each other to achieve some common goals. A CLOR is

established among objects (can be either homogeneous or heterogeneous) that operate in

the same environment (such as smart cities, smart buildings and smart homes). CWOR

and CLOR are built among objects in a fashion similar to how humans share their public

or personal experiences. A POR is built among heterogeneous objects belonging to the

same owner/manufacturer having the same period in which the production batch acts like

a family.

These relationships are established and updated according to the characteristics of ob-

jects (such as battery life, computational power, type and brand) and activities, and are

used by resource discovery components to find the objects that can offer the required

services (similar to how humans look for friendships and information). Additionally, to

manage the relationships, a relationship management component is required by the Social

IoT architecture to enable cognition and intelligence into the Social IoT which can allow

the objects to establish, maintain and terminate the relationships as needed. These rela-

tionships may be built based on several parameters, such as required services, providing

connectivity to disconnected objects, a publish-subscribe model and the distance between

objects. In this context, Nitti et al., [25] presented a scheme of friendship selection in the

social IoT to improve information diffusion.

2.4.2 Cross-domain Recommendation Services

A smart city is comprised of various applications, such as smart parking, smart skiing,

intelligent transportation system, smart grid, healthcare and vehicle-to-vehicle communi-

cations. Such applications are developed in a vertical manner by focusing on a specific

scenario or use case without considering data exchange and reuse with other smart cities

applications. This very specific focus results in poor service because of the lack of inte-

gration of different data and hence the interoperability across smart cities applications.

However, if these applications could collaborate by exchanging and reusing each other’s
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data, opportunities for new value-added and more efficient cross-domain recommendation

services could be generated. Additionally, the social IoT can enable social relationship

between the applications, thus allowing them to interact in a similar manner as humans

interact with each other using their social networks. For instance, let us consider two smart

cities applications of smart parking and smart skiing discussed above. As smart parking

also considers traffic information to recommend the least congested route, hence if both

smart parking and smart skiing can collaborate with each other, new recommendation ser-

vices could be generated. For example, a user of social IoT is going for skiing. His social

IoT system could interact with his health devices to know about his health conditions in

order to recommend the slopes suitable for him, could recommend him the least congested

route from his home to the ski resort, as well as could plan his other activities (e.g., hangout

with his friends or movie) by considering his expected return time from skiing.

2.4.3 Semantic Technologies in IoT

The role of social IoT in cross-domain recommendation services is to enable social relation-

ships among smart cities applications and to provide context awareness. However, it could

not enable the interoperability between them to allow them to communicate with each

other. Since each application is developed in a vertical manner using different semantics,

therefore there is a need of some mechanism for this purpose. Here, semantic web tech-

nologies help to achieve this objective. Semantic web technologies [26] are getting popular

and have been widely adopted by industries, such as Google for search engine. Semantic

web technologies enable interoperability between smart cities applications [27] and hence

enable cross-domain recommendations services across IoT applications using social IoT.

The semantic web technologies enables interoperability and data exchange by explicitly

defining the description of each application’s data in an structured manner, hence allowing

machines to read and understand the applications data. Subsequently, they enable data

integration by converting heterogeneous applications’ data into the same vocabulary [28].

Once interoperability is achieved among smart cities applications, the social IoT enables

social relationships among applications and provides context-awareness, hence providing

application-to-application communications and recommendations services.

2.4.4 Integration of IoT Recommender into Smart City Architecture

The IoT recommender has been integrated into a smart city architecture of WISE-IoT

project. Figure 2.1 presents the WISE-IoT architecture [29] that is comprised of various

components. The oneM2M platform is used to store the data of IoT sensor devices be-

cause it has strong support for the functionalities of IoT devices, e.g., device registration

and management, data management and repository, etc. oneM2M platform has a con-
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Figure 2.1 – WISE-IoT architecture [29].

tainer resource for semantic annotation containing sensor readings as content instances.

The Adaptive Semantic Module of the Morphing Mediation Gateway [30] discovers the

semantically annotated data in oneM2M platform by subscribing to the sensors readings.

On triggering the availability of a new sensor reading, the Adaptive Semantic Module cre-

ates an NGSI data structure to update FIRWARE Orion Context Broker [31]. One of the

component of WISE-IoT architecture is ‘Self-Adaptive Recommender (SAR)’ system that

is responsible for ‘Wise-IoT Recommendation Service’ in the architecture and the IoT rec-

ommender is a part of SAR system. The SAR and IoT recommender then access FIWARE

Orion Context Broker to access the parking and traffic sensors data. Figure 2.2 presents

the SAR architecture that is comprised of various components. The IoT Recommender is

integrated into it as one of its component. The IoT Recommender interacts with other

SAR components (e.g., Adherence Monitor, QoI Monitor and Trust Monitor) to provide

more efficient recommendation services, as well as with the SAR component to interact

with use case applications.

2.5 Summary and Conclusion

This chapter presented a general overview of the major topics relevant to this thesis. To

summarize, it covered three major areas in three parts. In the first part, it discussed IoT

recommender for smart cities and presented the IoT, smart cities, smart parking, smart
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Figure 2.2 – Self-Adaptive Recommender (SAR) system architecture [32].

skiing and recommendation services in smart cities. In the second part, it discussed the

privacy preservation and presented four privacy preservation techniques of k-anonymity,

�-diversity, t-closeness and differential privacy. In the third part, it discussed the cross-

domain recommendation services in smart cities and presented social IoT, cross-domain

recommendation services and semantic web. In addition to this chapter, for each study in

this thesis, a separate related work will be discussed focusing on the main relevant works

to the specific study.

In the next chapter, we will discuss the IoT recommenders for smart cities that provide

recommendation based on IoT data.
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3.1 Introduction

The main focus of this chapter is to propose IoT recommender for smart cities to pro-

vide recommendations based on IoT data. To this end, an algorithm is proposed for the

mapping of sensors and route coordinates (to be used in IoT recommender) and two IoT

recommenders are proposed for smart parking and skiing use cases.

A high-level diagram of interfaces of IoT recommender is presented in Figure 3.1. More

specifically, this chapter is organized into three parts. The first part in Section 3.2 proposes

an algorithm for the mapping of sensors and route coordinates by introducing a deviation

margin. Because we found that in Santander, some traffic sensors coordinates were deviated

from the coordinates of the main routes, hence making it impractical to analyze the road

traffic from the data of traffic sensors. The performance of the proposed algorithm is

evaluated using correct detection, missed detection and false detection. The second part

in Section 3.3 presents an IoT recommender for smart parking that is developed in and

EU-KR H2020 WISE-IoT project [33]. It recommends parking spots and routes using

the mapping algorithm proposed in the first part. It also provides the real-time expected

availability (occupancy statistics) of parking areas. It offers its services through REST

APIs and has been integrated and deployed in WISE-IoT project. It is evaluated by the

citizens of Santander through a prototype. The third part in Section 3.4 presents an IoT

recommender for smart skiing that is also developed in WISE-IoT project [33]. It provides

the recommendations of ski routes from one point to another on a ski resort (recommending

a route on ski resort is different from recommending a route on roads). It also allows to

specify the specific type of slopes, such as novice, easy, intermediate or advance. It offers

its services through REST APIs and has also been integrated into WISE-IoT project.
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Figure 3.1 – A high-level diagram of interfaces of IoT recommender.

3.2 Mapping of Sensors and Route Coordinates

In the past few years, the Internet of Things (IoT) has attracted increasing interest in its

potential application in a number of domains, including transportation, healthcare, smart

cities and the smart grid. The exponential growth in urban populations has resulted in

a higher number of cars in cities than ever before, causing traffic congestion and higher

pollution levels. A number of IoT solutions to address this problem have been developed

for intelligent transportation systems (ITS) through various smart city projects [34–37].

In smart cities, several types of sensors are installed throughout a city, such as traffic,

parking and weather sensors. Traffic sensors, deployed on the roads/streets, monitor the

traffic conditions, such as the road load, the number of vehicles and their speed. Such
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traffic sensors are useful in recommending the least congested route towards a destination

point, as well as in distributing the traffic to different routes to reduce the traffic congestion.

According to one study, 30% of traffic congestion is the result of drivers looking for parking

spots [38]. Therefore, by managing the traffic crowd, we can also efficiently manage parking

spots, e.g., the parking system can take the traffic congestion into account through traffic

sensors and subsequently can recommend different routes leading to parking spots for those

seeking them, thereby minimizing the scenario of high traffic congestion on some routes and

low traffic congestion on the other routes. In this manner, we can achieve a more balanced

distribution of traffic on all the routes.

However, there is a challenge to achieve the above objective. Generally, most solu-

tions focus on the development of applications assuming that they have readily available

information about the mapping of traffic sensors on the routes. These solutions do not

focus on the mapping of sensor coordinates into the routes. Inspired by this lacunae, this

study presents a new approach for the mapping of sensor coordinates into the routes. We

propose an algorithm for this mapping, utilizing real traffic sensors deployed in the city of

Santander, Spain to demonstrate their mapping abilities with four random routes between

two points. Since traffic sensors are deployed in large numbers, some traffic sensors may

reside outside of the edges of streets (i.e., a small distance from the routes). In order to

best incorporate this constraint, our proposed approach considers a deviation margin that

allows some flexibility; the main novelty and contribution of this study. We evaluate the

performance of our proposed approach in terms of correct detection, missed detection (non-

detection) and false detection of sensors on the routes, showing the effective and significant

advantage of our proposed approach. We believe that our proposed approach will be help-

ful in the development of various smart city applications, such as traffic management and

smart parking. The main contribution of this study is proposing an algorithm that consid-

ers a deviation margin for the mapping of sensor coordinates with the route coordinates.

Our proposed system has been exploited in a smart parking use-case of an H2020 EU-KR

WISE-IoT project [33] as well.

3.2.1 Related Work

While much work is being done in IoT for the development of smart cities, that work

is mainly focused on the applications, such as smart parking, ITS, traffic management

etc. Those studies do not consider the mapping of sensor coordinates into the routes, to

the best of our knowledge. For instance, Lau [36] designed a framework that considers

user-contributed posts about traffic and road conditions and analyzes driving navigation

information from the archived data on online social media. Subsequently, it transmits

the collected data to ITS for its dissemination to other drivers. However, this framework
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considers that raw data collection from sensors and their mapping to the routes are not

really within the objectives of those cities. Another work [35] studied the joint prediction

of road traffic and parking occupancy in a city by using machine learning techniques.

However, it does not work on the mapping of traffic sensors with the routes, instead this

technique is mainly focused on applying machine learning for predicting road traffic and

parking occupancy by using real-time data. Fernandez et al., [34] studied real traffic and

mobility scenarios for a smart city by using real traffic and mobility data gathered in the

city of Granada, Spain. Their main purpose was to analyze the collected data using Big

Data techniques and subsequently derive useful information. However, they also do not

focus on the mapping of sensor coordinates with route coordinates and simply assume the

availability of such mapping.

One important observation is that traffic prediction is a very old problem; but we are not

working on traffic prediction. We have proposed a novel approach for the mapping of sensor

coordinates with route coordinates, which is the basic pre-requisite of traffic prediction.

3.2.2 Mapping of Sensor Coordinates with Route Coordinates

This section presents our proposed algorithm for the mapping of sensor coordinates with

route coordinates. The traffic sensors used in Santander, Spain are magneto-resistive sen-

sors that detect the movement and presence of vehicles. They operate at 2.4 GHz frequency

band and 250Kbps data rate. They are located at the main entrances of the Santander

city and are buried under the asphalt. They measure the main traffic parameters, e.g.,

road occupancy, vehicle speed, traffic volumes and queue length [6]. For simplicity, we

assumed that the incoming and outgoing traffic on two-way roads is similar. Therefore, the

identified traffic sensors on either side of the road represent similar traffic conditions. This

assumption is reasonable for our current system as we deployed it for testing purposes in

Santander, Spain where the traffic sensors are deployed on one-way streets.

Algorithm 1 presents the mapping of traffic sensors’ coordinates with a route’s coordi-

nates. The inputs of this algorithm are route coordinates (longitudes and latitudes) which

are comprised of starting coordinates (route start longitude Rstrt,lon and route start lati-

tude Rstrt,lat) and ending coordinates (route end longitude Rend,lon and route end latitude

Rend,lat), traffic sensor coordinates (traffic sensor longitude TSlon and traffic sensor latitude

TSlat) and finally the deviation margin D. The deviation margin D is a tunable parameter

which can be set based on the scenario (i.e., how much is the deviation of the traffic sensors’

coordinates from the main route, in general). We will explain deviation margin D in detail

in the following discussion.

Part I of the algorithm checks whether the route start longitude Rstrt,lon is less than

or equal to the route end longitude Rend,lon; a necessary step in order to determine the
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Algorithm 1 Mapping of traffic sensor coordinates with route coordinates.

1: Input: Route start longitude (Rstrt,lon), route end longitude (Rend,lon), route start
latitude (Rstrt,lat), route end latitude (Rend,lat), traffic sensor longitude (TSlon), traffic
sensor latitude (TSlat), deviation margin (D)

2: /* Part I */
3: if Rstrt,lon <= Rend,lon then
4: /* Part I(a) */
5: if TSlon >= Rstrt,lon & TSlon <= Rend,lon &

TSlat >= Rstrt,lat & TSlat <= Rend,lat then
6: isMatched = true;
7: else if TSlon >= Rstrt,lon & TSlon <= Rend,lon &

TSlat <= Rstrt,lat & TSlat >= Rend,lat then
8: isMatched = true;
9: end if

10: /* Part I(b) */
11: if (not isMatched) then
12: if (TSlon +D >= Rstrt,lon & TSlon −D <= Rend,lon) &

(TSlat +D >= Rstrt,lat & TSlat −D <= Rend,lat) then
13: isMatched = true;
14: else if (TSlon +D >= Rstrt,lon & TSlon −D <= Rend,lon) &

(TSlat −D <= Rstrt,lat & TSlat +D >= Rend,lat) then
15: isMatched = true;
16: end if
17: end if
18: /* Part II */
19: else if Rstrt,lon > Rend,lon then
20: /* Part II(a) */
21: if TSlon <= Rstrt,lon & TSlon >= Rend,lon &

TSlat <= Rstrt,lat & TSlat >= Rend,lat then
22: isMatched = true;
23: else if TSlon <= Rstrt,lon & TSlon >= Rend,lon &

TSlat >= Rstrt,lat & TSlat <= Rend,lat then
24: isMatched = true;
25: end if
26: /* Part II(b) */
27: if (not isMatched) then
28: if (TSlon −D <= Rstrt,lon & TSlon +D >= Rend,lon) &

(TSlat −D <= Rstrt,lat & TSlat +D >= Rend,lat) then
29: isMatched = true;
30: else if (TSlon −D <= Rstrt,lon & TSlon +D >= Rend,lon) &

(TSlat +D >= Rstrt,lat & TSlat −D <= Rend,lat) then
31: isMatched = true;
32: end if
33: end if
34: end if
35: return isMatched;
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Figure 3.2 – Irregular deployment of traffic sensors at Santander, Spain.

direction of the route. This part consists of two sub-parts: Part I(a) checks the exact

location of traffic sensors on the route, while Part I(b) uses a deviation margin D which

gives some flexibility to traffic sensors that are deviated from the main route.

In Part I(a), there are two possible scenarios for the existence of traffic sensor coordi-

nates on the route. Firstly, the traffic sensor’s longitude TSlon is greater than or equal to

the route’s start longitude Rstrt,lon (i.e., TSlon ≥ Rstrt,lon) and less than or equal to the

route’s end longitude Rend,lon (i.e., TSlon ≤ Rend,lon), and the traffic sensor’s latitude TSlat

is greater than or equal to the route’s start latitude Rstrt,lat (i.e., TSlat ≥ Rstrt,lat) and

less than or equal to the route’s end latitude Rend,lat (i.e., TSlat ≤ Rend,lat). Secondly, the

traffic sensor’s longitude TSlon is greater than or equal to route’s start longitude Rstrt,lon

(i.e., TSlon ≥ Rstrt,lon) and less than or equal to the route’s end longitude Rend,lon (i.e.,

TSlon ≤ Rend,lon), and the traffic sensor’s latitude TSlat is less than or equal to the route’s

start latitude Rstrt,lat (i.e., TSlat ≤ Rstrt,lat) and greater than or equal to the route’s end

latitude Rend,lat (i.e., TSlat ≥ Rend,lat).
However, as presented in Figure 3.2, given the irregular deployment of traffic sensors in

Santander, Spain, it might be possible that a traffic sensor is slightly deviated from the main

route. For this situation, we propose a deviation margin D in order to give some flexibility

in the detection of traffic sensors on the route. Hence, in Part I(b) of the algorithm, we
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have added the deviation margin D to the traffic sensor coordinates when comparing them

with the route start coordinates (i.e., while checking whether a traffic sensor’s coordinates

are greater than the route start coordinates) and subtracted the deviation margin D from

traffic sensor coordinates when comparing with route end coordinates (i.e., while checking

whether a traffic sensor’s coordinates are less than the route’s end coordinates). This helps

to give some flexibility for the traffic sensor coordinates that are deviated from the straight

path of the route. Subsequently, after adding and subtracting the deviation margin D to

and from the traffic sensor coordinates when comparing them with start and end route

coordinates, respectively, they are compared in a similar manner as presented in Part I(a).

If the route start longitude is greater than route end longitude of the route, Part II will

be executed. Part II also consists of two sub-parts: Part II(a) checks the exact existence of

traffic sensor on the route, while Part II(b) uses a deviation margin D, which gives some

flexibility to traffic sensors which are deviated from the main route.

In Part II(a), there are again two possible scenarios for the existence of traffic sensor

coordinates on the route. Firstly, the traffic sensor’s longitude TSlon is less than or equal to

the route’s start longitude Rstrt,lon (i.e., TSlon ≤ Rstrt,lon) and greater than or equal to the

route’s end longitude Rend,lon (i.e., TSlon ≥ Rend,lon), and the traffic sensor’s latitude TSlat

is less than or equal to the route’s start latitude Rstrt,lat (i.e., TSlat ≤ Rstrt,lat) and greater

than or equal to the route’s end latitude Rend,lat (i.e., TSlat ≥ Rend,lat). Secondly, the

traffic sensor’s longitude TSlon is less than or equal to the route’s start longitude Rstrt,lon

(i.e., TSlon ≤ Rstrt,lon) and greater than or equal to the route’s end longitude Rend,lon (i.e.,

TSlon ≥ Rend,lon), and the traffic sensor’s latitude TSlat is greater than or equal to the

route’s start latitude Rstrt,lat (i.e., TSlat ≥ Rstrt,lat) and less than or equal to the route’s

end latitude Rend,lat (i.e., TSlat ≤ Rend,lat).
If the traffic sensor is not identified on the route in Part I, Part II uses a deviation

margin D to check the existence of traffic sensors on the route. The reason for using

a deviation margin is explained before in the description of Part I(b) of the algorithm.

However, in contrast to Part I(b), in Part II(b), the deviation margin D is subtracted from

the traffic sensor’s coordinates when comparing them with the route’s start coordinates

(i.e., while checking whether a traffic sensor’s coordinates are less than the route’s start

coordinates), and added to the traffic sensor’s coordinates when comparing with the route’s

end coordinates (i.e., while checking whether a traffic sensor’s coordinates are greater than

the route’s end coordinates). Subsequently, after subtracting and adding the deviation

margin D from and to the traffic sensor’s coordinates when comparing them with the start

and end route coordinates, respectively, this part is compared in a similar procedure in

Part II(a).

Note that although we can combine the two ‘if ’ conditions into one within each sub-
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part, we have presented them separately for a better understanding, as well as a better

differentiation using the examples (presented in next Section 3.2.3). We have combined

them in our implementation in order to reduce the processing load.

3.2.3 Examples

For better understanding of the algorithm, we present two illustrative examples to demon-

strate the operation of the algorithm for the mapping of traffic sensor coordinates with

route coordinates. The first example demonstrates the scenario in which the traffic sensor

lies exactly within the routes (i.e., there is no deviation), while the second example demon-

strates the scenario in which traffic sensors are slightly deviated from the route, and hence

we will use deviation margin D to detect such traffic sensors on the route.

3.2.3.1 Example 1 (no deviation)

In this section, we demonstrate the first scenario in which traffic sensor lies exactly within

the route without any deviation.

Figure 3.3 presents four different routes covering all the possible scenarios of coordinates

mapping with different colors and line patterns. The traffic sensor which is our main point

of interest to be detected on the route is located at the center (i.e., the red map marker

with black dot in the middle). For all the coordinates of map markers in the figure, the first

part represents the longitude and the second part represents the latitude. For example,

TS (-3.8085, 43.4730) shows the traffic sensor having longitude = -3.8085 and latitude

= 43.4730. Similarly, R1,1(-3.8085, 43.4721) represents point 1 (can be either starting or

ending point) of route 1 having longitude = -3.8085 and latitude = 43.4721.

Let us start with the route in blue color R1,1 → R1,2 by considering R1,1 (-3.8085,

43.4721) as starting point and R1,2 (-3.8085, 43.4741) as ending point. Here, the route

start longitude (-3.8085) is equal to route end longitude (-3.8085), so it matches Part I of

Algorithm 1. Within Part I, it satisfies the first condition of Part I(a), i.e., traffic sensor

longitude (-3.8085) is equal to the route start longitude (-3.8085) and is also equal to the

route end longitude (-3.8085), and traffic sensor latitude (43.4730) is greater than route

start latitude (43.4721) and is less than route end latitude (43.4741). Hence, the traffic

sensor is identified within the route. In a similar manner, the green route R2,1 → R2,2 with

R2,1 (-3.8096, 43.4723) as starting point and R2,2 (-3.8075, 43.4737) as ending point also

fulfills the first condition of Part I(a). For the route in red color R3,1 → R3,2 with R3,1

(-3.8102, 43.4730) as starting point and R3,2 (-3.8071, 43.4730) as ending point, it meets

both conditions defined in Part I(a) of the algorithm. Hence, the traffic sensor is identified

within the route by fulfilling both conditions of Part I(a). The purple route R4,1 → R4,2
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Figure 3.3 – An example of coordinates mapping having no deviation. The lines originating
from and terminating at map markers, represent the routes. The arrowhead lines represent
the direction of the route (i.e., starting and ending points) and the “Part xyz” above the
arrowhead lines corresponds to the matching parts mentioned in Algorithm 1.

with R4,1 (-3.8096, 43.4737) as starting point and R4,2 (-3.8075, 43.4723) as ending point,

as well as blue route R1,2 → R1,1 with R1,2 (-3.8085, 43.4741) as starting point and R1,1

(-3.8085, 43.4721) as ending point, fulfill the second condition of Part I(a).

The above described routes match Part I of the algorithm, while the remaining routes

match Part II of the algorithm which we are going to present next. The green route R2,2

→ R2,1 with R2,2 (-3.8075, 43.4737) as starting point and R2,1 (-3.8096, 43.4723) as ending

point matches Part II of the algorithm because start route longitude (-3.8075) is greater

than end route longitude (-3.8096). Within Part II, it matches the first condition of Part

II(a), i.e., traffic sensor longitude (-3.8085) is less than route start longitude (-3.8075) and

greater than route end longitude (-3.8096), and traffic sensor latitude (43.4730) is less than

route start latitude (43.4737) and greater than route end latitude (43.4723). Similar to the

red route in Part I(a), the red route R3,2 → R3,1 with R3,2 (-3.8071, 43.4730) as starting

point and R3,1 (-3.8102, 43.4730) as ending point fulfills both conditions defined in Part

II(a) of the algorithm. Finally, the purple route R4,2 → R4,1 with R4,2 (-3.8075, 43.4723)

as starting point and R4,1 (-3.8096, 43.4737) as ending point matches the second condition

in Part II(a).
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Figure 3.4 – An example of coordinates mapping with deviation. The lines originating
from and terminating at map markers, represent the routes. The arrowhead lines represent
the direction of the route (i.e., starting and ending points) and the “Part xyz” above the
arrowhead lines corresponds to the matching parts mentioned in Algorithm 1.

Hence, the traffic sensor is successfully identified within all the routes R1,1 → R1,2, R2,1

→ R2,2, R3,1 → R3,2, R4,1 → R4,2, R1,2 → R1,1, R2,2 → R2,1, R3,2 → R3,1 and R4,2 → R4,1.

This example also verifies the correct operation of Algorithm 1 without deviation margin

D.

3.2.3.2 Example 2 (with deviation)

In this section, we demonstrate the second scenario in which traffic sensors do not lie within

the exact routes, rather they are deviated from the routes.

Similar to previous figure, Figure 3.4 presents four different routes covering all the pos-

sible scenarios with different colors and line patterns. Unlike Figure 3.3, due to deviation,

we cannot have a single traffic sensor which can cover all the possible scenarios, therefore,

we have presented four traffic sensors (i.e., TS1, TS2, TS3 and TS4) to be detected. Each

traffic sensor, located between the two routes, is used for both routes separately to check

its existence on the route by using deviation margin D. For instance, traffic sensor TS1 is

used for routes R1,1 → R1,2 and R2,1 → R2,2, TS2 is used for routes R3,1 → R3,2 and R4,1
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→ R4,2, TS3 is used for routes R1,2 → R1,1 and R2,2 → R2,1, and TS4 is used for routes R3,1

→ R3,2 and R4,1 → R4,2. For all the coordinates of map markers in the figure, the first part

represents the longitude and the second part represents the latitude. For example, TS1

(-3.80905, 43.4722) shows the traffic sensor 1, having longitude = -3.80905 and latitude =

43.4722. Similarly, R1,1(-3.8085, 43.4721) shows point 1 (can be either starting or ending

point) of route 1 (R1,1 → R1,2) having longitude = -3.8085 and latitude = 43.4721. Note

that in this example, we have set deviation margin D = 0.0006.

Let us start with the route in blue color R1,1 → R1,2 by considering R1,1 (-3.8085,

43.4721) as starting point and R1,2 (-3.8085, 43.4741) as ending point. The traffic sensor

TS1 (-3.80905, 43.4722) will be checked using deviation margin D whether it exists or not

in the route R1,1 → R1,2. Here, the route start longitude (-3.8085) is equal to route end

longitude (-3.8085), so it matches the Part I of Algorithm 1. Within Part I, it does not

satisfy any of the condition in Part I(a). For instance, the traffic sensor longitude (-3.80905)

is less than route start longitude (-3.8085) and is also less than route end longitude (-3.8085).

This condition is not fulfilled which is the preliminary part of both conditions within Part

I(a), therefore the status ‘isMatched’ is still ‘false’ and so, it goes to Part I(b). Here, the

traffic sensor TS1 longitude (-3.80905) plus deviation margin D = 0.0006 (-3.80905 + 0.0006

= -3.80845) is greater than route start longitude (-3.8085), and traffic sensor longitude (-

3.80905) minus deviation margin D = 0.0006 (-3.80905 − 0.0006 = -3.80965) is less than

route end longitude (-3.8085). The traffic sensor TS1 latitude (43.4722) plus deviation

margin D = 0.0006 (43.4722 + 0.0006 = 43.4728) is greater than route start latitude

(43.4721), and traffic sensor TS1 latitude (43.4722) minus deviation margin D = 0.0006

(43.4722 − 0.0006 = 43.4716) is less than route end latitude (43.4741), therefore it matches

the first condition in Part I(b) of Algorithm 1. Hence, the traffic sensor TS1 is identified

within the route R1,1 → R1,2 by using deviation margin D.

In a similar manner, for traffic sensor TS1 (-3.80905, 43.4722), the green route R2,1 →
R2,2 with R2,1 (-3.8096, 43.4723) as starting point and R2,2 (-3.8075, 43.4737) as ending

point, as well as for traffic sensor TS2 (-3.8099, 43.47335), the red route R3,1 → R3,2 with

R3,1 (-3.8102, 43.4730) as starting point and R3,2 (-3.8071, 43.4730) as ending point, both

also fulfill the first condition of Part I(b). For traffic sensor TS2 (-3.8099, 43.47335), the

purple route R4,1 → R4,2 with R4,1 (-3.8096, 43.4737) as starting point and R4,2 (-3.8075,

43.4723) as ending point, as well as for traffic sensor TS3 (-3.8080, 43.4739), the blue route

R1,2 → R1,1 with R1,2 (-3.8085, 43.4741) as starting point and R1,1 (-3.8085, 43.4721) as

ending point, both fulfill the second condition of Part I(b). Hence, the traffic sensor TS1,

TS2, TS2 and TS3 are identified within the routes R2,1 → R2,2, R3,1 → R3,2, R4,1 → R4,2

and R1,2 → R1,1, respectively, using deviation margin D.

The above routes match Part I of the algorithm, while the remaining routes fulfill Part
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II of the algorithm which we are going to present next. For traffic sensor TS3 (-3.8080,

43.4739), the green route R2,2 → R2,1 with R2,2 (-3.8075, 43.4737) as starting point and

R2,1 (-3.8096, 43.4723) as ending point matches Part II of the algorithm because route

start longitude (-3.8075) is greater than route end longitude (-3.8096). Within Part II, it

does not match any condition within Part II(a), rather it matches the first condition of

Part II(b), i.e., traffic sensor TS3 longitude (-3.8080) minus deviation margin D = 0.0006

(-3.8085 − 0.0006 = -3.8086) is less than route start longitude (-3.8075), and traffic sensor

TS3 longitude (-3.8080) plus deviation margin D = 0.0006 (-3.8085 + 0.0006 = -3.8074) is

greater than route end longitude (-3.8096). The traffic sensor TS3 latitude (43.4739) minus

deviation margin D = 0.0006 (43.4739 − 0.0006 = 43.4733) is less than route start latitude

(43.4737) and traffic sensor TS3 latitude (43.4739) plus deviation margin D = 0.0006

(43.4739 + 0.0006 = 43.4745) is greater than route end latitude (43.4723). Hence, the

traffic sensor TS3 is identified within the route using the deviation margin D. Finally, for

traffic sensor TS4 (-3.8073, 43.47265), the red route R3,2→ R3,1 with R3,2 (-3.8071, 43.4730)

as starting point and R3,1 (-3.8102, 43.4730) as ending point fulfills the first condition of

Part II(b), while for the same traffic sensor TS4 (-3.8073, 43.47265), the purple route R4,2

→ R4,1 with R4,2 (-3.8075, 43.4723) as starting point and R4,1 (-3.8096, 43.4737) as ending

point fulfills the second condition of Part II(b).

In summary, traffic sensors: TS1 in routes R1,1 → R1,2 and R2,1 → R2,2, TS2 in routes

R3,1 → R3,2 and R4,1 → R4,2, TS3 in routes R1,2 → R1,1 and R2,2 → R2,1, and TS4 in

routes R3,2 → R3,1 and R4,2 → R4,1 have been successfully detected which complies and

verifies the successful operation of Algorithm 1 for identifying deviated traffic sensors on

the routes using deviation margin D.

3.2.4 Performance Evaluation

In this section, we evaluate the performance of our proposed approach for the mapping of

sensors coordinates into route coordinates.

3.2.4.1 Evaluation Setup

Figure 3.5 shows the deployment of traffic sensors at Santander, Spain. For performance

evaluation, we randomly selected two locations which serve as starting and destination

points. Subsequently, we plotted four possible routes using different colors between these

two points by using Brouter offline routing engine [39] (a third-party application) and

applied our proposed algorithm to map traffic sensors into these routes which is presented

in Figure 3.6. This figure provides an overview of mapping of traffic sensor coordinates into

the route coordinates. We will provide the detailed analysis of mapping using and without

using deviation margin D in this section.
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Figure 3.5 – Deployment of traffic sensors at Santander, Spain.

Figure 3.6 – Mapping of traffic sensors coordinates into routing coordinates.

In our performance evaluation, we use the value of deviation margin D = 0.00006

which is selected after doing some experiments, however it can similarly be set to differ-

ent value in a different place based on how much is the deviation of sensors coordinates



52 3.2. MAPPING OF SENSORS AND ROUTE COORDINATES

from the route coordinates. We used Brouter offline routing engine [39]. Brouter is an

offline and online routing engine which is built upon Open Street Maps (OSM) [40]. It

calculates routes using OSM and elevation data. It is available as offline engine, An-

droid application as well as a web service. Its unique features include freely config-

urable routing profiles, completely offline operation, advanced routing algorithm with el-

evation consideration, alternative route calculations, support of nogo and via points, and

consideration of long distance cycle routes. We created a script that takes traffic sen-

sors data (including coordinates) deployed at Santander, Spain from NGSI context bro-

ker [41] using REST API. These traffic sensors are part of an EU-KR H2020 WISE-

IoT project [33]. NGSI is a protocol developed by the Open Mobile Alliance (OMA)

for managing the contextual information. In WISE-IoT project, the FIWARE version of

the OMA NGSI interface is used to exchange the contextual information of traffic sen-

sors via RESTful APIs. The traffic sensors were queried through a GET REST call to

https://mu.tlmat.unican.es:8443/v2/entities?limit=1000&type=TrafficFlowObserved.

The script takes the list of route coordinates in JSON format as input which are

generated using Brouter routing engine. Finally, the script uses our mapping algorithm

(presented in Algorithm 1) to map traffic sensors’ coordinates into the list of route coor-

dinates and provides the output in GeoJSON format that can be directly imported into

http://geojson.io to see the mapping into a user-friendly visual interface (as can be seen in

Figure 3.6) and then we analyze the mapping of sensors on the routes manually.

3.2.4.2 Performance Metrics

We manually proposed and used three performance metrics for the evaluation.

• Correct detection is the percentage of correctly detected traffic sensors on the routes.

• Missed detection (non-detection) is the percentage of missed detections (or non-

detection) of traffic sensors on the routes, i.e., traffic sensors that exist on the route

but are not detected by the algorithm.

• False detection is the percentage of false detection of traffic sensors on the route, i.e.,

the traffic sensors, that lie outside the route.

3.2.4.3 Performance Evaluation

Figure 3.7 presents the percentage of correct detection of traffic sensors into the four routes

(which are shown in Figure 3.6) by using and without using the deviation margin D. This

figure shows that by using deviation margin D, we achieve almost 100% detection of traffic

sensors on all the four routes. However, on the other hand, without using deviation margin
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Figure 3.7 – Percentage of correct detection of sensors on the routes.

D, the detection of traffic sensors on the four routes is very low, i.e., even lower than 50%.

This proves the effectiveness and significant advantage of using deviation margin D for the

mapping of sensors coordinates into the routes.

Figure 3.8 presents the percentage of missed detection (non-detection) of traffic sensors

into the four routes by using and without using the deviation margin D. Similar to previous

figure, this figure also shows the effectiveness of using deviation margin D which causes very

low missed detection (or non-detection) as compared to the case without using deviation

margin D. By using deviation margin D, the percentage of missed detection is very low,

i.e., lower than 10%, while without using deviation margin D, the percentage of missed

detection is very high, i.e., between 50% to 70%.

Finally, Figure 3.9 presents the percentage of false detection of traffic sensors into the

four routes by using and without using the deviation margin D. An interesting point to

note here is that we have exactly the same results by using and without using deviation

margin D. This is because some streets in Santander, Spain are very closed to each other

and hence the algorithm considers some sensors to be in the same street due to closeness.

It also proves that deviation margin D does not cause more false detection.

In summary, the results related to correct detection, missed detection and false detection

of traffic sensors into route coordinates proves the effectiveness of our proposed algorithm

which takes into account the deviation margin D. Our proposed algorithm will be beneficial

for new developments in smart cities in order to map the deployed sensors with the routes.
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Figure 3.8 – Percentage of missed detection (non-detection) of sensors on the routes.

Figure 3.9 – Percentage of false detection of sensors on the routes.

3.2.5 Summary and Discussion

In this study, we proposed an approach for the mapping of sensor coordinates into route

coordinates by introducing a deviation margin to provide sensors with the flexibility to de-

viate from the main route. We presented an algorithm along with two illustrative examples

that cover all of the scenarios of mapping coordinates. We evaluated the performance of

our proposed approach in terms of correct detection, missed detection and false detection.

The results prove the efficiency and efficacy of our deviation margin feature. Our proposed

approach will certainly be advantageous for new developments in smart cities as they map

the deployed sensors along their routes.
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The study in the next section presents the second part on designing an IoT Recom-

mender for Smart Parking.
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3.3 GDPR-compliant IoT Recommender for Smart Parking
Supporting Semantics

During the past decade, there is a significant number of cars circulating in the cities which

makes the parking and the traffic, two serious issues. Customarily, drivers try to find

available parking spots on the streets by driving around, only locating a parking spot

empirically due to their local knowledge and luck. This practice wastes a significant amount

of both time and fuel, and sometimes it is impossible to find a free parking spot during high

vehicle traffic times. One solution would be to find a parking area with high capacity of

free parking spots, increasing the chances of getting a parking spot. However, this parking

area could be very far from the user’s destination. Another solution is to design a system

that shows free parking spots to the driver and lets the driver chooses a free parking spot

manually. However, this is not an optimal solution because firstly, it is an extra task for the

drivers to select a parking spot by themselves. Secondly, the path leading to the selected

parking spot could be very congested, causing the parking spot to be occupied when the

driver arrives.

IoT technology has revolutionized almost all fields of daily life, including parking sys-

tems, by exploiting the immense developments in technology. Inspired by these new possi-

bilities, a smart parking system has been designed to automate the recommendation of free

parking spots to the drivers looking for them, thereby minimizing the time spent on finding

free parking spots, as well as minimizing the cost associated with hiring humans for manual

parking management [13–15]. Such a solution is based on a parking spot reservation system

that utilizes various wireless networking technologies, such as ZigBee [3], Radio Frequency

Identification (RFID) [2] and the Internet. The system provides information about nearby

free parking spots and allows drivers to reserve the parking spots through their devices

by using the ID that univocally identifies each vehicle in a parking spots reservation sys-

tem [13]. However, it is not always possible to reserve parking spots in advance because of

the regulations in some cities (e.g, Santander, Spain). Therefore, there is still a need for a

system that can recommend the best possible parking spots based on certain metrics.

In additional, in the recommendation of parking spots, it is very important to consider

the traffic on the route to each available parking spot and to recommend the least congested

route leading to the recommended parking spot. To better understand the importance of

traffic congestion, let us consider a rush hour scenario when the traffic in the city center

is at its peak. In this scenario, the streets will be very congested, and many people will

be looking for parking spots. When a driver finds an available parking spot and heads

towards it, there is a high likelihood that when the driver reaches the parking spot, it

will already be taken because multiple drivers are looking for similar parking spots, and
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the traffic congestion caused a delay in reaching the parking spot. We solve this problem

by selecting a parking spot that is the nearest to the user and by providing the expected

availability (occupancy statistics) of parking areas to the users.

Many of the IoT applications available today have been developed in a vertical manner

by focusing on a specific scenario or use case without considering data exchange and reuse

with other IoT applications. This very specific focus results in poor service because of

the lack of integration of different data and hence the interoperability in the IoT data

and systems. However, if IoT applications could collaborate by exchanging and reusing

each other’s data, opportunities for new value-added and more efficient services could be

generated. The semantic web is a promising technology with which to achieve the needed

interoperability [42]. Hence, newer IoT applications, including smart parking system should

be semantics-enabled adopting semantic data modeling and semantic web technologies for

supporting the interoperability in IoT.

With the enforcement of the EU General Data Protection Regulation (GDPR), pro-

tecting the privacy of EU citizens throughout the data collection, data storage and data

processing of a user’s personal data is now a basic requirement [43, 44]. Parking systems

gather a lot of contextual data and it is quite possible that the users’ personal data can be

collected indirectly. GDPR affects also smart parking applications and hence, the smart

parking systems should therefore be designed in a way that protects user’s privacy and thus

be GDPR-compliant.

Figure 3.10 – Deployment of traffic and parking sensors in Santander, Spain (a) traffic
sensor deployment, (b) parking sensor deployment.

A smart city infrastructure was deployed in Santander, Spain in 2010−2013 as part of an

EU project, SmartSantander [6,45–47]. Quite a number of sensors were deployed, including

traffic, parking, bus stop, bus line, irrigation, environmental and mobile sensors [48]. Figure

3.10 presents the deployment of traffic and parking sensors in the city of Santander.
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In this study, we propose and develop the IoT Recommender (IoTRec), a smart parking

system that is GDPR-compliant and considers the road traffic conditions by following the

requirements listed in Section 2.2.5.1. We utilized the semantic IoT data of the deployed

parking and traffic sensors as presented in Figure 3.10 for the recommendation of available

parking spots and the best routes based on some metrics. The envisaged metrics for parking

spots are the nearest, or nearest trusted parking spot, while the metrics for a route are

the least congested or the shortest route. A trusted parking spot is defined as a parking

spot that is trusted by the user based on his past experience, and that is also trusted

based on the quality assessment of the parking sensor. For the nearest trusted parking

spot, the IoTRec collaborates with a Trust Monitoring component [49], a component of

WISE-IoT project [33], that calculates the trust scores of parking spots by analyzing the

user’s experience through a feedback mechanism [50] (another component of WISE-IoT

project [33]) and sensor quality assessment. Such trust scores are utilized by the IoTRec

in the calculation of the nearest trusted parking spot. The Trust Monitoring component

is not the main scope of this study; the readers are referred to [49] for details. In this

study, we first present the semantic data modeling of parking and traffic sensors data

utilized by the IoTRec in the recommendations of parking spots and routes and we then

present an overview of our proposed IoTRec. To allow the drivers to analyze the expected

availability (occupancy statistics) of parking areas (parking spots organized into groups) in

a user-friendly interface and to select a parking area, we develop and present the statistics

of Santander’s parking areas. Our proposed IoTRec is integrated into the real world in

Santander in a prototype of the H2020 EU-KR WISE-IoT project [33, 51] called the Rich

Parking application, making use of REST APIs. REST APIs make the integration with the

smart parking application easy and simple, and also ease the interoperability and reusability

by allowing other IoT applications to integrate these APIs and offer new efficient services.

It is important to note that although the IoTRec is developed for Santander, it can be

applied to other cities that have similar infrastructure.

The main contributions of this study are summarized as follows:

• Development of a parking spot (nearest or nearest trusted) and route (least congested

or shortest) recommendation system by exploiting the semantic IoT data of traffic

and parking sensors;

• The real-time provision of expected availability (occupancy statistics) of parking areas

based on historical IoT data; and

• The development of a GDPR-compliant implementation that can work on a privacy-

aware environment.
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3.3.1 Related Work

Much work has been done on smart parking systems since the emergence of smart cities.

However, our proposed system is significantly different in terms of recommendations of

nearest parking spots, as well as routes by considering the traffic congestion on the streets

and the trust scores of parking spots, expected availability (occupancy statistics) of parking

areas, a prototype and evaluation. We present the state-of-the-art and explore the need for

the features we offer in IoTRec.

Pham et al. [13] developed a cloud-based smart parking system using the Global Po-

sitioning System (GPS) coordinate data of vehicles, the number of free parking spots in

parking areas, and the distance between parking areas to calculate the costs of a parking

request made by a driver. They also developed a prototype using an open-source plat-

form based on Arduino, RFIDs [2] and smartphones. Mainetti et al. [14] designed a smart

parking system by integrating RFID, Ultra-High Frequency (UHF) and Wireless Sensor

Network (WSN) technologies. This system comprises software features to collect parking

spot occupancy and was developed into an application to navigate drivers to the nearest

free parking spot. The application also enables users to pay their parking fee through an

Near-Field Communication (NFC)-based e-wallet system. It uses Java REST APIs and

Google cloud messaging, installed on a central server for managing alerts (such as the ex-

piration of purchased time and the abuse of the reserved space) which promptly alerts the

traffic police. This system was demonstrated with a proof-of-concept prototype. However,

the authors mainly implemented the prototype and did not evaluate the performance of

the parking system.

Hsu et al. [15] proposed SmartValet, a parking guidance system in which drivers can

make parking spot reservation by smartphone thirty minutes in advance. SmartValet was

developed for outdoor as well as indoor parking. It reserves a parking spot using a ve-

hicle ID. The location of the reserved parking spot is passed to the driver on the map

using Dedicated Short-Range Communication (DSRC) technology at the entrance to the

parking area. SmartValet implements a navigation system, called the inertial navigation

system, to guide the vehicle to the reserved parking spot. The status of the parking spot

is updated periodically, ensuring system’s accuracy. The authors used the accuracy of

the inertial navigation system as a parameter for evaluating the system performance, and

GPS accuracy as a parameter for evaluating the system implementation. Similarly, Barone

et al. [52] designed an architecture called Intelligent Parking Assistant (IPA) for parking

management in Smart Cities. IPA provides information about parking spot availability to

drivers and allows them to reserve the most suitable parking spot before their arrival for

their destination by using RFIDs and magnetic loops. When a vehicle parks or leaves the

parking spot, the magnetic loop and RFID reader identifies such an action and informs
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the unit controller. The unit controller subsequently updates the status of the parking

spot. However, it is not always possible to reserve parking spots in advance because of the

regulations in some cities. Therefore, there is a need for a system that can recommend the

best possible parking spot instead of reserving parking spots.

Shiyao et al. [53] also proposed and implemented a smart parking system. Their pro-

posed system is based on ZigBee technology [3] which forwards the information at the

server through a gateway, and the server subsequently updates the database. For people

looking for free parking spots, the application layer of this system obtains the parking spot

availability information through the Internet, gathers all the scattered parking spots’ in-

formation using web services and passes the information to drivers. However, it is a simple

application that does not consider complex problems, such as traffic congestion, navigation

and expected availability of parking spots. Furthermore, Shiyao et al. did not evaluate the

performance of their system.

Lambrinos et al. [54] designed a parking management system for disabled people called

DisAssist. This system is built upon the IoT and smart cities’ capabilities by integrating

smartphones, sensors and mobile/wireless communications. DisAssist offers real-time avail-

ability information about disabled parking spots in the area of interest to disabled drivers

(or clients) and allows them to reserve parking spots. However, similar to other existing

work, DisAssist considers the reservation of parking spots, which is not always possible.

The works mentioned above either consider the reservation of parking spots or their

proposed architecture has been implemented without real-time planned routes, or are de-

signed specifically for disabled persons. To the best of our knowledge, none of the systems

recommends the nearest parking spots and routes by considering the traffic congestion on

the streets and the trust scores of parking spots, offers the expected availability (occupancy

statistics) of parking areas and evaluates the system. Additionally, none of the systems

uses semantic data models for their parking systems which is nowadays a very important

requirement to an IoT system for the interoperability with other IoT applications and

systems.

3.3.2 Semantic Data Modeling

The purpose of semantic data modeling in the IoT is to facilitate data interoperability,

data sharing and data reuse across cross-domain IoT applications. The IoTRec is designed

for the smart parking system of a WISE-IoT project [33] that is mainly focused on the: i)

interoperability between two IoT platforms: FIWARE [55] and oneM2M [56]; ii) interop-

erability between two continents: Europe and Asia (South Korea); and iii) interoperability

between cross-domain IoT applications. Therefore, the parking and traffic sensors’ data are

semantically modeled for interoperability and easy integration with other IoT applications
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and platforms.

One of the best practices of the semantic web is to reuse existing ontologies and data

models instead of creating new ones from the scratch. Therefore, we have reused the data

models provided by FIWARE. FIWARE [55] is an open-source IoT platform that offers

various data models [57] for the IoT. For our IoTRec, we use FIWARE Data Models that

provide a semantic representation of our required entities (e.g., parking spot, parking area

and traffic information).

Table 3.1 presents a consolidated data model of the parking sensors (parking spot and

parking area) and traffic sensors, and Figure 3.11 illustrates the ontology of the parking

spot, OnStreetParking (parking area) and TrafficFlowObserved (traffic information) enti-

ties. The rest of this section provides the details about their semantic data modeling.

3.3.2.1 Semantic Data Modeling of Parking Sensors (Parking Spots and Park-
ing Areas)

There are hundreds of parking sensors deployed in the city of Santander to identify the

status of parking spots (i.e., free or occupied). The parking sensor data is structured

using an NGSI [58] model in JSON format. A parking sensor represents a parking spot,

and parking spots are grouped into various parking areas to provide additional valuable

information. The IoTRec offers the expected availability (occupancy statistics) of parking

areas using the parking sensor data.

The FIWARE Data Model offers a list of attributes for defining the characteristics of a

parking spot entity [59]. We have selected some parking sensor attributes that are mainly

required for our case. Similarly, for defining the characteristics of a parking area entity,

FIWARE offers a data model, called OnStreetParking [59] that provides the attributes

required to describe parking areas. Both of these groups of attributes (as entities and their

properties) are presented in Table 3.1 and in the ontology in Figure 3.11.

3.3.2.2 Semantic Data Modeling of Traffic Sensors

Traffic sensors provide traffic information, such as occupancy, intensity and load. The

IoTRec utilizes traffic information to calculate the least congested route leading to the

recommended parking spot. FIWARE provides a data model of TrafficFlowObserved [60]

entity for them that offers the required attributes to describe the traffic flow information in

a city. We have selected some of the attributes from the TrafficFlowObserved data model to

define the characteristics of our traffic information entity, and add a new attribute roadLoad

that is not offered by the TrafficFlowObserved FIWARE data model. roadLoad estimates

the level of traffic congestion calculated by intensity and occupancy parameters. These
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Table 3.1 – Properties of parking spot, parking area (OnStreetParking) and traffic infor-
mation (TrafficFlowObserved) entities.
Entity Property Type Description

Parking spot,
parking area &
traffic information

id String Unique identifier of a parking spot, parking area and
traffic flow

type String Type of entity. Must be either a ParkingSpot, On-
StreetParking or TrafficFlowObserved

dateModified DateTime
(ISO8601)

The last modified time of the entity in ISO8601 format
(e.g., 1900-12-31T23:59:59.000Z))

location geo:json The location coordinates of the entity in geo:json for-
mat

Parking spot &
parking area

name String The name of the entity for identification and distin-
guishing

category String The category of the entity (e.g., onStreet or off-
Street for parking spot. free, forElectricCharging,
feeCharged or forDisabled for parking area)

Parking spot
status String The occupancy status of the parking spot, e.g., free or

occupied
refParkingSite String A reference to OnStreetParking or OffStreetParking

based on the value of the category property

Parking area

chargeType List<Text> The type of charges for the parking site, such as free,
monthlyPayment, annualPayment and flat rate

requiredPermit List<Text> The permit required to park in that area, such as
residentPermit, governmentPermit, emergencyVehi-
clePermit and noPermitNeeded

permitActiveHours List<Text> Hours/days during which the permit is required
allowedVehicleType String The type of vehicle that is allowed, such as a car, bi-

cycle, motorcycle, bus, small truck, minivan
areBordersMarked Boolean Indicates whether parking spots are separated with

borders (painted lines) or not
totalSpotNumber Integer Number of spots in the parking area
occupancyDetectionType List<String> Technique of identifying the occupancy of a parking

spot, such as modelBased, singleSpaceDetection, bal-
ancing and none

Traffic information

dateObserved DateTime
(ISO8601)

The observed date and time of the traffic sensor in
ISO8601 format (e.g., 1900-12-31T23:59:59.000Z))

intensity Integer The number of vehicles detected during the observa-
tion period (e.g., twenty vehicles in one minute)

occupancy Integer The fraction of observation time in which vehicles oc-
cupy the road

roadLoad Integer Estimation of the traffic congestion calculated by the
intensity and occupancy

attributes (as entities and their properties) are presented in Table 3.1 and in the ontology

presented in Figure 3.11.

3.3.3 Overview of the IoT Recommender (IoTRec)

This section presents an overview of the IoTRec for a smart parking system. The IoTRec

exploits the semantic IoT data of parking and traffic sensors (see Section 3.3.2) to offer

recommendations of available parking spots and optimal routes leading to the recommended

parking spots based on different metrics. The metrics include the nearest or nearest trusted

parking spot and the least crowded or shortest route. By default (i.e., when no preference
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Figure 3.11 – Ontology of the parking spot, OnStreetParking (parking area) and Traf-
ficFlowObserved (traffic information) entities.

is provided), the IoTRec selects the nearest trusted parking spot and the least crowded

route. From a recommendation perspective, the IoTRec is different from non-IoT based

recommendation systems in that IoTRec mainly considers the actual IoT data from parking

and traffic sensors, rather than the data shared or acquired by users’ terminals. Google

Maps1, for example, provides a routing path from one point to another by showing the

real-time Google Traffic and recommends a least congested route. However, Google Traffic

is based on crowdsourced GPS-based locations collected from a large number of users

through their smartphones [61]. Google analyzes Google Traffic by calculating the speed of

users along the road to calculate the congestion on the streets. The IoTRec considers and

analyses traffic sensor data to estimate the level of congestion on the streets to recommend

the least crowded route. Hence, if there is a lot of traffic on the streets but very few (or

none) of the users has GPS location enabled on their smartphones, Google Traffic will not

be able to estimate the congestion, while this is not the case for the IoTRec because it

considers IoT data from real traffic sensors. Secondly, the IoTRec is integrated with Trust

Monitoring [49], a component of the WISE-IoT project. The Trust Monitoring component

calculates trust scores by analyzing users’ experience through a feedback mechanism [50]

1https://www.google.com/maps
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and sensor quality assessment, forwarding the trust scores to the IoTRec which are then

utilized by the IoTRec in the calculation of its recommendations. To the best of our

knowledge, this feature does not exist elsewhere in the literature. Thirdly, the IoTRec

provides GDPR-compliant implementation that works in a privacy-aware environment.

Fourthly, the IoTRec offers the expected availability (occupancy statistics) of parking areas

to users and enables the users to analyze the weekly, monthly and yearly statistics of their

preferred parking areas in a user-friendly interface. Hence, in addition to the automatic

recommendation of parking spots, the IoTRec also allows users to select a parking area

themselves by analyzing the occupancy statistics.

To better understand how this system functions, we summarize the main mechanisms

in the operation of the IoTRec below. The IoTRec:

• exploits the semantic IoT data of parking sensors and the user’s current location to

identify the nearest parking spot to the user;

• uses trust scores from the Trust Monitoring component in the recommendation of the

parking spot to determine the nearest trusted parking spot;

• utilizes the semantic IoT data of traffic sensors for analyzing the road congestion;

• provides GDPR-compliant implementation for privacy-aware environments;

• exploits the historical semantic IoT data of parking sensors to generate the real-time

expected availability (occupancy statistics) of parking areas and shows the statistics

in a user-friendly manner to allow a user to analyze parking areas; and

• uses the extracted congestion data and selected parking spot/area to recommend the

least congested route to the user.

Figure 3.12 presents an overview of the interfaces of the IoTRec using UML component

diagram. The IoTRec first obtains a request (containing the user’s current location for

GDPR-compliant implementation, or the user’s current location and user ID for normal

implementation) from the parking application to find a parking spot and a route. The

IoTRec then accesses the semantic IoT data of parking sensors from the FIWARE Orion

Context Broker. The occupancy data of parking spots is identified from the underlying

parking sensors and is updated to the FIWARE Context Broker every two minutes. For

each request, the IoTRec fetches the latest data of parking spots from FIWARE Orion

Context Broker and therefore, the status of parking spots (i.e., occupied or free) is most

likely up-to-date. Orion Context Broker is an NGSIv2 server implementation which is

mainly used for the management of context information and its availability. It allows

users to create context elements and to then use updates and queries to manage them.
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The readers interested in Orion Context Broker are referred to [62] for complete details.

Subsequently, the IoTRec interacts with the Trust Monitoring component [49] to obtain the

trust scores which are used to find the nearest trusted parking spot. Once the IoTRec finds

the most suitable parking spot (i.e., the nearest trusted parking spot), it interacts with

a BRouter routing engine [39] to obtain various routes from the user’s current location

to the selected parking spot. BRouter is a routing engine that offers both online and

offline versions and is built on the top of Open Street Maps (OSMs) [40]. It calculates the

routes using elevation data and OSMs. After obtaining the routes, the IoTRec accesses

the semantic IoT data from the appropriate traffic sensors and maps the traffic sensors

into the routes obtained from the BRouter routing engine using the algorithm proposed in

the first study of this chapter [63] on the mapping of sensor and route coordinates. The

IoTRec then selects the least congested route and recommends the parking spot and the

route to the smart parking application using REST API. The details of the functionalities

of recommendations of parking spots and routes are provided in Section 3.3.5.

Additionally, the IoTRec also provides the expected availability (occupancy statistics)

of parking areas using historical IoT data to allow a user to manually select a parking area.

The complete details about the expected availability (occupancy statistics) of parking areas

are provided in Section 3.3.6.

3.3.4 Operation

Figure 3.13 presents the operation of the IoTRec through sequence diagram. Initially, the

parking application initiates a request (containing user’s current location in case of non-

GDPR compliant implementation, or user’s current location and trust scores of all parking

spots in case of GDPR-compliant implementation) to the IoTRec through REST API,

asking for recommendation. Subsequently, the IoTRec obtains the list of free parking spots

from FIWARE Orion Context Broker. Subsequently, in order to find the nearest parking

spots, the IoTRec interacts with BRouter routing engine [39] and obtains the shortest

paths from user current location to each parking spot. Then it finds and selects the nearest

parking spot and obtains its trust score from Trust Monitoring component in case of non-

GDPR-compliant implementation or obtains its trust score from its request body (in which

it received trust scores from the parking application) for the selected parking spot by

following the process presented in Sections 3.3.5.1 and 3.3.5.2, respectively, and finds the

nearest trusted parking spot. After deciding the parking spot, the IoTRec fetches the

semantic IoT data of traffic sensors from FIWARE Orion Context Broker and obtains all

the available routes from user’s current location to the selected parking spot using BRouter

routing engine. It then maps the traffic sensor coordinates into route coordinates provided

by BRouter routing engine using our proposed algorithm in [63] and identifies the least
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Figure 3.12 – UML component diagram of the IoTRec interfaces.

congested route (see Section 3.3.5.3) leading to the selected parking spot. Finally, it sends

the recommendation of nearest trusted parking spot and the least crowded route back to

the parking application.

3.3.5 Recommendation of Parking Spots and Routes

This section presents the mechanisms for parking spot and route recommendation. We

provide two parking spot recommendation systems, a normal implementation for scenar-

ios that do not operate in a privacy-aware envirornment and one for GDPR-compliant

implementation in a privacy-aware environments.

3.3.5.1 Normal Implementation of Nearest and Nearest Trusted Parking Spot
Recommendation

In a normal implementation that does not operate in a privacy-aware environment, when

asking for a recommendation, the application provides the user’s current location and user

ID to the IoTRec. Next, the IoTRec obtains the list of available parking spots and cal-

culates the distance from the user’s current location to the available parking spots using
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Figure 3.13 – Operation of the IoTRec.
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the BRouter routing engine [39]. It then sorts the available parking spots based on their

distance from the user and selects the nearest parking spot for the nearest parking spot rec-

ommendation. For the nearest trusted parking spot recommendation, the IoTRec obtains

the trust score of the selected nearest parking spot from the Trust Monitoring component

associated to the user’s id. This trust score is dependent upon the user and on sensor

quality. For example, the trust score for the same parking spot for two different users may

vary. Similarly, the trust scores for two different parking spots for the same user will also

vary. If the obtained trust score is below the defined threshold (the threshold value lies

between 0 and 1, and was here set to 0.5 based on experimentations and to find a balance),

it indicates that the selected parking spot is not appropriate for the user due to some spe-

cific reasons. For example, the user had a bad experience with the selected parking spot in

the past, or the selected parking spot has some technical problems (e.g., the sensor is not

working properly). After finding an available parking spot that does not have a trust score

above the threshold value, the IoTRec selects the second nearest parking spot and obtains

its trust score from the Trust Monitoring component. If the trust score is again below the

threshold value, the IoTRec will keep checking the parking spots one by one until it finds

a parking spot with a trust score that meets the threshold value. When the trust score for

the selected parking spot meets the threshold value, the IoTRec selects the parking spot as

the recommended parking spot. Subsequently, it finds a route (the least congested or the

shortest) from the user’s current location to the recommended parking spot (see Section

3.3.5.3) and sends the recommended parking spot and route back to the smart parking

application.

3.3.5.2 GDPR-compliant Implementation of Nearest Trusted Parking Spot
Recommendation

We also provide GDPR-compliant implementation for the recommendation of parking spot

and route for scenarios that require users’ privacy protection and that are operated in a

privacy-aware environments. GDPR is an EU regulation on data protection and privacy

of all the EU citizens [64]. Its goal is to help align the existing data protection protocols

while increasing the data protection levels of the EU citizens. The main requirements to

be GDPR-compliant include: obtaining explicit consent from users for data collection and

freely withdrawn anytime the user wants, notification of timely breach, right to access data,

right to be forgotten, data portability, privacy by design, and potential data protection offi-

cers [65]. In our GDPR-compliant implementation of IoT recommender for smart parking,

we ask explicit consent of the users to store the data, store data in the user terminals

instead of our own servers, and we design our IoT recommender software ensuring privacy

by design, as discussed next in this section.
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In a normal implementation of IoT recommender, the application provides the user’s

current location and user ID to the IoTRec and the IoTRec then passes the user ID to the

Trust Monitoring component to obtain the trust scores of the parking spots based on the

user’s past experience and on the sensor quality. However, since the IoTRec receives user

IDs from the application, it breaches the user’s privacy because, through the user ID, the

IoTRec could acquire much information about users, including tracking their movements,

and perhaps deducing their routines. This knowledge is a breach of user privacy if the user is

not willing to share his information. To cope with this problem, we offer privacy-protected

and GDPR-compliant implementation in which the IoTRec does not receive user IDs

from the application and does not directly interact with the Trust Monitoring component.

Instead, the application first obtains the trust scores of all the parking spots for a specific

user from the Trust Monitoring component, then passes the trust scores (comprised of

trusteeId, score and timestamp) to the IoTRec. Subsequently, the IoTRec utilizes

these trust scores in a similar way as discussed above to select the nearest trusted parking

spot. In this manner, the IoTRec does not have any direct knowledge of the users.

The selection of the normal or the GDPR-compliant implementation depends upon

the scenario. For instance, if the application/service needs to operate in privacy-aware

environment, it should use the GDPR-compliant implementation. Otherwise the applica-

tion/service that do not have privacy issues can choose the normal implementation, which

reduces the overhead on the application. For example, since the IoTRec is reusable by

other applications/services through REST APIs, applications that do not have privacy is-

sues would generally not be willing to undertake the complications of first obtaining the

trust scores for the specific user from the Trust Monitoring component at each request and

then passing the user’s current location and trust scores to the IoTRec. Such application-

s/services would most likely prefer making the IoTRec responsible for interacting with the

Trust Monitoring component and thus should utilize the normal implementation.

3.3.5.3 Least Congested and Shortest Route Recommendation

After identifying the recommended parking spot, the IoTRec selects the route (the least

congested or the shortest route based on the user’s preference). The least congested route

is identified by exploiting the semantic IoT data of traffic sensors that provide the mea-

surements of road load, occupancy and traffic intensity. To identify the route possibilities,

the IoTRec uses a third-party BRouter routing engine [39] to obtain the coordinates of

various available routes from the user’s current location to the recommended parking spot.

Next, the IoTRec applies our previously proposed algorithm [63] to map the traffic sensor

coordinates into the route coordinates. After mapping the coordinates, in the case of the

shortest route, it selects the shortest available route from user’s current location to the
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Figure 3.14 – Aggregation of parking spots into parking areas.

recommended parking spot. For the case of the least congested route, it utilizes the road

load measurements provided by traffic sensors to find the least congested route. Road

load measurements provide the estimated level of congestion on the streets by interpreting

the traffic intensity (i.e., the number of vehicles per hour). Since a route is comprised

of multiple traffic sensors and hence multiple measurements of the road load, the IoTRec

calculates the average of the road load measurements provided by the traffic sensors on

each route. Subsequently, it selects the route with the the least average road load (i.e., the

least bottlenecked road load) as the least congested route. In the future, we plan to study

the bottleneck road loads of routes and develop a route selection mechanism by applying

machine learning techniques.

3.3.6 Expected Availability (Occupancy Statistics) of Parking Areas

The IoTRec also offers the real-time expected availability of parking areas by calculating

the occupancy statistics to allow users to select a parking area themselves by analyzing the

statistics presented in a user-friendly manner. In this section, we explain the mechanisms

and the calculation of parking area occupancy statistics. First, we provide an overview of

parking area occupancy statistics, then we discuss their calculation and finally present the

algorithms utilized to store the information used to calculate the statistics.
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Table 3.2 – Example of Status-wise Storage of Parking Sensor Data.
ID Status Start Time End Time Duration

(sec)

3601 occupied 2018-07-26 08:00:00 2018-07-26 09:30:00 5400

3602 occupied 2018-07-26 08:00:00 2018-07-26 10:00:00 7200

3601 free 2018-07-26 09:30:00 2018-07-26 10:00:00 1800

3602 free 2018-07-26 10:00:00 2018-07-26 10:30:00 1800

3601 occupied 2018-07-26 10:00:00 2018-07-26 10:15:00 900

3601 free 2018-07-26 10:15:00 2018-07-26 10:30:00 900

3.3.6.1 Overview

To better organize the expected availability (occupancy statistics) of parking areas, parking

spots are aggregated into parking areas as presented in Figure 3.14. Each line in a different

color represents a parking area that comprises multiple nearby parking spots. For parking

area occupancy statistics, storing the occupancy data of parking sensors is the first step.

The parking sensors’ data is updated at a FIWARE Orion Context Broker [59] every

Tupd = 120 seconds. For expected availability (occupancy statistics) of parking areas, the

parking sensors’ data is collected for the duration of nine months, i.e., from October 2017

to June 2018. For the storage of parking sensors’ occupancy data to be used in calculating

parking areas occupancy statistics, instead of storing a new record of parking sensor data

every Tupd duration, we store the status-wise data. For example, if a record Ri for a parking

sensor PSi data having status PSi,status = free is stored at time instant Tn, then at the

next time instant Tn+1, if the status remains the same (i.e., PSi,status = free at Tn+1), we

update the duration of the record Ri rather than adding a new record Ri+1. Otherwise, if

the status of parking spot PSi is changed (i.e., PSi,status = occupied at Tn+1), we add a

new record Ri+1. This approach helps to avoid one step of the processing to aggregate all

the consecutive records having the same status while calculating the duration of the free

and occupied status. Table 3.2 presents an example of status-wise storage of two parking

sensors’ data which shows the ID of the parking sensor (i.e., 3601 and 3602), the status

(free or occupied), start time, end time and the duration.

3.3.6.2 Calculation of Parking Areas’ Occupancy Statistics

The status-wise storage of parking sensor data is used in calculating the occupancy statistics

of parking areas. At the beginning of each day, we calculate and store the statistics for

the previous day in the database. We calculate the parking areas’ occupancy statistics

for a timing window of every hour to provide more accurate statistical information. We

offer three levels of statistic granularity: weekly (past 1 week), monthly (past 4 weeks)

and yearly (the last 52 weeks) through a REST API and present them in a user-friendly
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Table 3.3 – Example of Storage of Parking Spot Occupancy Statistics for 52 weeks.
Parking Area Parking

Spot
ID

Day Start
Time

End
Time

Week
1

Week
2

Week
3

... Week
52

HernanCortesCentre 3601 Monday 09:00:00 10:00:00 1500 1800 1500 ... 1200

HernanCortesCentre 3601 Monday 10:00:00 11:00:00 1800 1200 1500 ... 1800

HernanCortesCentre 3602 Monday 09:00:00 10:00:00 1200 2400 1800 ... 1200

HernanCortesCentre 3602 Monday 10:00:00 11:00:00 1800 2700 1800 ... 1500

DaoizVelardeEast 3620 Monday 09:00:00 10:00:00 2700 2100 3000 ... 2700

DaoizVelardeEast 3620 Monday 10:00:00 11:00:00 3000 2700 2400 ... 2700

DaoizVelardeEast 3623 Monday 09:00:00 10:00:00 2100 2700 1800 ... 3000

DaoizVelardeEast 3623 Monday 10:00:00 11:00:00 2400 2100 2400 ... 2400

interface to be analyzed by the end user.

For better understanding of this process, we present a scenario in which a user looking

for a parking spot wants to analyze the parking area occupancy statistics by himself. The

smartphone parking application shows the parking area statistics to the user. These are

shown to the user in terms of occupancy percentage, i.e., parking area A was occupied 65%

on Monday from 13:00 to 14:00. The user clicks on a parking area on Monday at 13:10

to see the statistics. The user will receive three types of statistics: the statistics of last

Monday from 13:00 to 14:00 (i.e., weekly statistics); the statistics of the average value of

the last four Mondays from 13:00 to 14:00 (i.e., monthly statistics); the statistics of the

average value of last fifty-two Mondays from 13:00 to 14:00 (i.e., yearly statistics). All

three levels of statistics are shown to the user in terms of occupancy percentage.

Table 3.4 – Example of Storage of Parking Area Occupancy Statistics.
Parking Area Day Start

Time
End
Time

Weekly
Stats

Monthly
Stats

Yearly
Stats

HernanCortesCentre Monday 09:00:00 10:00:00 1500 1650 1560

HernanCortesCentre Monday 10:00:00 11:00:00 1650 1762 1740

DaoizVelardeEast Monday 09:00:00 10:00:00 2850 2512 2580

DaoizVelardeEast Monday 10:00:00 11:00:00 3600 2775 2730

The calculation of parking areas occupancy statistics is divided into two parts. In the

first part, we calculate the hourly occupancy duration of each parking spot for each day

for fifty-two weeks (one year) and store them in our database. In the second part, we

calculate the weekly, monthly and yearly occupancy statistics of parking areas for each

hour of the day by aggregating and averaging the hourly occupancy duration of parking

spots belonging to parking areas, and store them in another database.

For the first part, to store the parking spot occupancy statistics of 52 weeks for each

hour of a day, we present the structure of the database in Table 3.3. In this table, the
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parking area is the area where the parking spot is situated. There are two parking ar-

eas in this table, i.e., HernanCortesCentre and DaoizVelardeEast. Parking spot ids are

the identifiers of the parking spots, which are grouped into parking areas. There are four

parking spots in this table, i.e., parking spots 3601 and 3602 belonging to parking area

HernanCortesCentre, and parking spots 3620 and 3623 belonging to parking area DaoizVe-

lardeEast. The day indicated in the Day column is the day for which the statistics are being

calculated, which is Monday in our example. The start time and the end time delineate

the one-hour timing window. In our example table, we considered two timing windows of

one hour each: 09:00:00−10:00:00 and 10:00:00−11:00:00. Week 1, Week 2, ... Week 52

show the occupancy duration in seconds of the parking spot during the considered hourly

timing window for the specific day. For example, in the first row of Table 3.3, 1500 in the

column of Week1 represents the occupancy duration in seconds of parking spot 3601 which

is in the HernanCortesCentre parking area from 09:00:00 to 10:00:00 on Monday for the

first week of the year.

The second part generates the occupancy statistics of parking areas by aggregating

and averaging the hourly occupancy statistics of parking spots within each area. Table

3.4 presents the structure of the database table that stores the final occupancy statistics of

parking spots. Let us assume we are currently in week 5. Then in the first row of Table 3.4,

1500 in the Weekly Stats column shows the average occupancy duration of all the parking

spots in the HernanCortesCentre parking area (e.g., 3601 and 3602 in Table 3.3) for Week

4. The value of 1650 in Monthly Stats shows the average occupancy duration of all the

parking spots in parking area HernanCortesCentre for Week 4, Week 3, Week 2 and Week

1. Similarly, 1560 in the Yearly Stats column shows the average occupancy duration of all

the parking spots in the HernanCortesCentre parking area for the last fifty-two weeks.

For a detailed discussion and complete understanding, we present the algorithms in the

next subsection.

3.3.6.3 Algorithms

We present the algorithms for the status-wise storage of parking spots, hourly parking spot

occupancy statistics and for the calculation of parking area occupancy statistics.

Status-wise Storage of Parking Sensor Data Algorithm 2 presents the mechanism

for status-wise storage of parking spot data. This algorithm runs periodically every Tupd =

120 seconds and collects parking spot data from an Orion Context Broker and stores the

data in the database based on their status (i.e., free or occupied). In each cycle, this

algorithm starts by fetching the parking sensors’ data PS∗ from an Orion Context Broker.

Next, it processes each parking sensor’s data PSi by first fetching the latest record Ri
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Algorithm 2 Status-wise storage of parking sensor data.

1: Fetch parking sensor data PS∗ from Orion Context Broker every Tupd duration;
2: for PSi in PS∗ do
3: Ri ← latest record corresponding to PSi in DB;
4: /* Part I: The first entry. Add a new record. */
5: if Ri = ∅ then
6: /* It is the first entry */
7: Add a new record Ri for PSi;
8: Ri,parkingSpotId ← PSi,id;
9: Ri,status ← PSi,status;

10: Ri,startT ime ← currentTime;
11: Ri,endTime ← currentTime;
12: Ri,duration ← 0;
13: /* Part II: The status stays the same. Update the existing record. */
14: else if Ri,status = PSi,status then
15: Update record Ri;
16: Ri,duration ← (currentTime−Ri,startT ime);
17: Ri,endTime ← currentTime;
18: /* Part III: The status changes. Update the existing record and add a new record. */
19: else if Ri,status 6= PSi,status then
20: Update record Ri;
21: Ri,duration ← (currentTime−Ri,startT ime);
22: Ri,endTime ← currentTime;
23: Add a new record Ri+1;
24: Ri+1,parkingSpotId ← PSi,id;
25: Ri+1,startT ime ← currentTime;
26: Ri+1,endTime ← currentTime;
27: Ri+1,status ← PSi,status;
28: Ri+1,duration ← 0;
29: end if
30: end for

from the status-wise parking spot database corresponding to the parking spot PSi. As

presented in Part I of Algorithm 2, if there is no record in the database corresponding to

PSi (i.e., Ri = ∅), it shows that this is the first entry of the PSi. Therefore, it adds a

new record Ri for PSi in the database by setting the parking spot Id Ri,parkingSpotId and

status Ri,status to be same as those of the parking spot PSi (i.e., PSi,id and PSi,status).

Since it is the first entry, it sets the start time Ri,startT ime and end time Ri,endT ime as the

current time (currentTime), and sets the duration Ri,duration as zero, a value which will

be updated in the next round. Otherwise, as presented in Part II, if the current status of

the parking spot did not change from its previous status and there is a matching record

Ri in the database for PSi with the same status (i.e., Ri,status = PSi,status), it updates the

record Ri by calculating the new duration (i.e., currentTime−Ri,startT ime) and updating

the end time Ri,endT ime to the currentTime. Finally, as presented in Part III, if the status
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Algorithm 3 Calculation of hourly parking spot statistics.

1: Input: dateToCalculate, database of status-wise statistics of parking spots;
2: /* Part II: Add hourly parking spot statistics from status-wise statistics */
3: PS∗ ← parking spots data from status-wise DB having status = occupied;
4: dayOfWeek ← GetDayOfWeek(dateToCalculate);
5: weekOfYear ← GetWeekOfYear(dateToCalculate);
6: numHoursOfDay ← 24;
7: for PSi in PS∗ do
8: parkingArea ← Mapping(PSi,id, parkingAreas);
9: /* Part I: Loop on 24 hours of the day for hourly statistics */

10: for h in numHoursOfDay do
11: startHourWindow = h;
12: endHourWindow = h+ 1;
13: excessDuration ← 0;
14: currentDuration ← 0;
15: actualDuration ← 0;
16: /* Part II: Add an hourly entry Ri of parking spot in hourly stats DB */
17: if no Ri for PSi in hourly stats DB then
18: Ri,parkingArea ← parkingArea;
19: Ri,parkingSpotId ← PSi,id;
20: Ri,day ← dayOfWeek;
21: Ri,startT ime ← startHourWindow;
22: Ri,endTime ← endHourWindow;
23: end if
24: /* Part III: Calculate the occupancy duration */
25: if startTimeWindow > PSi,startT ime then
26: excessDuration← startTimeWindow−PSi,startT ime;
27: end if
28: if PSi,endTime > endTimeWindow then
29: excessDuration.append(PSi,endTime− endTimeWindow);
30: end if
31: currentDuration = PSi,duration− excessDuration;
32: Fetch Ri corresponding to PSi;
33: occupancyValue ← Ri,weekOfY ear;
34: actualDuration ← occupancyValue + currentDuration;
35: Update Ri|Ri,weekOfY ear ← actualDuration;
36: end for
37: end for

of the latest record Ri,status is different from the current status PSi,status, it first updates

the duration Ri,duration and end time Ri,endT ime as explained in Part II, and then it adds

a new record Ri+1 as explained in Part I.

The same process continues for all the parking spots. At the end of each cycle, the

status-wise database is maintained as presented in Table 3.2.
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Calculation of Hourly Parking Spot Occupancy Statistics Algorithm 3 presents

the mechanism for calculating hourly parking spot occupancy statistics. This algorithm

takes as input the dateToCalculate (date of the previous day because this algorithm starts

at the beginning of each day) and the status-wise data of parking spots. The algorithm

starts by fetching the status-wise occupied parking sensors’ data PS∗ and initializing the

dayOfWeek, weekOfYear and numHoursOfDay. Next, it processes each record of parking

spot PSi in PS∗. It first extracts the parkingArea from the mapping of the parking

spot id and parking areas (i.e., Mapping(PSi,id, parkingAreas)) and runs a loop h for each

hour of the day in numHoursOfDay, as presented in Part I of Algorithm 3. To store the

hourly occupancy statistics and calculate the occupancy duration in each hour, it then

sets the startHourWindow as h, endHourWindow as h+ 1, and initializes excessDuration,

currentDuration and actualDuration to zero. excessDuration is the duration outside

of the pre-set window time. For example, let us consider the first row of Table 3.2 with

totalDuration = 5400. If we want to calculate hourly statistics from 08:00:00−09:00:00,

the excessDuration is 1800 seconds (i.e., 09:00:00−09:30:00) which we need to exclude in

our calculation, and hence, the currentDuration is totalDuration - excessDuration

(i.e., 5400−1800=3600 seconds). Finally, the actualDuration is the sum of the previous

occupancy duration occupancyValue and the currentDuration.

Part II of Algorithm 3 adds an hourly entry Ri of parking spots in the hourly statistics

database without a duration. The duration will be calculated in Part III of the algorithm.

Part III first checks whether the startTimeWindow is higher than the parking sensor’s start

time PSi,startT ime, and if so, it calculates the excessDuration by taking the difference of

the startTimeWindow from the parking sensor start time PSi,startT ime. Part III also checks

whether the parking sensor end time PSi,endT ime is higher than the endTimeWindow, which

is the case in our considered example, e.g., endTimeWindow=9:00:00, while the parking sen-

sor end time PSi,endT ime =9:30:00. Hence, it updates the excessDuration by appending

the difference of the parking sensor end time PSi,endT ime to the endTimeWindow and cal-

culates the currentDuration by subtracting the excessDuration from the total duration

PSi,duration. Finally, to calculate the actual duration for the current week of the year for the

current day, it first fetches the record Ri corresponding to PSi, obtains the occupancyValue

(i.e., the sum of previous occupancy duration) and calculates the actualDuration by tak-

ing the sum of the currentDuration and the occupancyValue. Subsequently, it updates

the occupancy statistics of the current week of the year of the current day Ri,weekOfY ear

with the actualDuration. The same process follows for all the parking spots. In the end,

this algorithm creates a database as shown in Table 3.3.
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Algorithm 4 Calculation of parking areas occupancy statistics.

1: /* Part I: Create arrays of weekly, monthly and yearly occupancy statistics for each hour of the
parking spots associated to parking areas.*/

2: parkingAreasJson ← new JSON;
3: currentWeek ← GetWeekOfYear();
4: RS ← Occupancy stats of parking spots from hourly stats DB;
5: for PSi in RS do
6: parkingAreaId ← PSi,parkingAreaId;
7: day ← PSi,day;
8: startTime ← PSi,startT ime;
9: endTime ← PSi,endTime;

10: /* Part I(a): Define nested JSON objects/arrays for parking area, daily, hourly, weekly,
monthly and yearly stats for those not already defined*/

11: parkingAreasJson.parkingArea ← new JSON;
12: parkingAreasJson.parkingArea.day ← new JSON;
13: parkingAreasJson.parkingArea.day.hour ← new JSON;
14: parkingAreasJson.parkingArea.day.hour. weeklyStatArray ← new JSON;
15: parkingAreasJson.parkingArea.day.hour. monthlyStatArray ← new JSON;
16: parkingAreasJson.parkingArea.day.hour. yearlyStatArray ← new JSON;
17: /* Part I(b): Calculate weekly, monthly and yearly average stats*/
18: j ← currentWeek−1;
19: weeklyStatArray.append(PSi,weekj

);

20: monthlyStatArray.append(AVG(
∑j

k=j−4 PSi,weekk
));

21: yearlyStatArray.append(AVG(
∑j

k=j−52 PSi,weekk
));

22: end for
23: /* Part II: Calculate the accumulated weekly, monthly and yearly occupancy statistics of parking

areas for each hour of the day and each day of the week and store the statistics in the database*/
24: for parkingAreaJson in parkingAreasJson → dayJson in parkingAreaJson →

hourJson in dayJson do
25: /* Part II(a): Calculate the accumulated weekly, monthly and yearly occupancy statistics of

parking areas*/
26: parkingArea ← key(parkingAreaJson);
27: day ← key(dayJson);
28: hour ← key(hourJson);
29: weeklyStatArray ← hourJsonweeklyStatsArray;
30: monthlyStatArray ← hourJsonmonthlyStatsArray;
31: yearlyStatArray ← hourJsonyearlyStatsArray;
32: lengthw ← length(weeklyStatArray);
33: lengthm ← length(monthlyStatArray);
34: lengthy ← length(yearlyStatArray);

35: avgWeeklyStat ← AVG(
∑lengthw

k=1 weeklyStatArray);

36: avgMonthlyStat ← AVG(
∑lengthm

k=1 monthlyStatArray);

37: avgYearlyStat ← AVG(
∑lengthy

k=1 yearlyStatArray);
38: /* Part II(b): Store the statistics in the database*/
39: Add a new record Rl in parking areas stats DB;
40: Rl,parkingArea ← parkingArea;
41: Rl,day ← day;
42: Rl,startT ime ← startTime (fetched from hour);
43: Rl,endTime ← endTime (fetched from hour);
44: Rl,weeklyStats ← avgWeeklyStat;
45: Rl,monthlyStats ← avgMonthlyStat;
46: Rl,yearlyStats ← avgYearlyStat;
47: end for
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Calculation of Parking Areas’ Occupancy Statistics Algorithm 4 presents the

mechanism of calculation of parking areas’ occupancy statistics. This algorithm is com-

prised of two main parts. In the first part, it creates arrays of weekly, monthly and yearly

occupancy statistics for each hour of the parking spots associated with the parking areas.

Each element within an array corresponds to the occupancy duration of all the parking

spots within a parking area. For example, if parking area A has five parking spots, then

in this part, the weekly, monthly and yearly arrays will have five elements each. In the

second part, this algorithm calculates the average weekly, monthly, and yearly occupancy

statistics of parking areas for each hour of the day and each day of the week and stores the

occupancy statistics in the database.

The algorithm starts by initializing the variables parkingAreaJson, currentWeek and

the result setRS of occupancy statistics of parking spots from the hourly statistics database.

As presented in Part I(a) of Algorithm 4, the algorithm processes each parking spot PSi in

the result set RS and defines nested JSON objects/arrays (for those not already defined) of

parkingArea, day, hour, weeklyStatArray, monthlyStatArray and yearlyStatArray

statistics. Part I(b) calculates the average weekly, monthly and yearly statistics. For weekly

statistics, since that is comprised of just one past week which does not require an average,

it appends the occupancy statistics of the past week. For monthly statistics, it first takes

the sum of the occupancy statistics of last four weeks, then takes their average and appends

that value into a monthly statistics array. The yearly statistics are calculated similar to

the monthly statistics, but for fifty-two weeks instead of four weeks. Similarly, the weekly,

monthly and yearly occupancy statistics for other parking spots belonging to the same

parking area are also appended into the same weekly, monthly, and yearly arrays.

Part II(a) of Algorithm 4 calculates the accumulated weekly, monthly and yearly occu-

pancy statistics of parking areas. It iterates on each JSON object in parkingAreasJson

(i.e., parkingAreaJson, dayJson and hourJson), and obtains the ids of parkingAreas,

days and hours, respectively, from their keys. Next, it obtains the weeklyStatArray,

monthlyStatArray and yearlyStatArray from hourJson and calculates their lengths.

Then for weekly statistics, it first takes the sum of all the weekly statistics in the array and

takes their average, which is the accumulated weekly occupancy statistics of a parkingArea

for the particular hour of the specific day. The monthly and yearly accumulated statistics

are calculated in a similar fashion. Finally, as presented in Part II(b) of the algorithm,

the accumulated weekly, monthly and yearly statistics are stored in the database of park-

ing area occupancy statistics, which is used to generate the REST API for parking area

occupancy statistics. Table 3.4 presents a snapshot of the final parking area occupancy

statistics database where the weekly, monthly and yearly statistics are presented for each

hour of the day and each day of the month.
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3.3.7 Scalability Analysis

The IoT recommender for smart parking is currently developed as a proof-of-concept pro-

totype for the smart city of Santander. Two types of scalabilities are envisioned. Firstly,

the area covering the deployment of parking and traffic sensors is varied. In this case, the

IoT recommender currently serves well in Santander (as can be seen next in Section 3.3.9

of evaluation). Hence, if there is another city similar to Santander, we believe that the IoT

recommender would not have any issue. However, if the IoT recommender has to operate

in a much larger city (e.g., New York or Tokyo), then the IoT recommender (that is cur-

rently developed as a proof-of-concept prototype) needs to be extended to be a fully-fledge

system in a way that it only loads the parking and traffic sensors of the concerned areas

(e.g., areas pertaining to user’s current and destination locations) instead of the parking

and traffic sensor deployed all over the city.

The second case of scalability concerns the involvement of higher number of concurrent

users making requests for recommendations in parallel, e.g., a million users. In this case,

the IoT recommender would be needing to have multiple instances and a data center to

fulfill such load of user requests. Furthermore, it is also an interesting direction to analyse

the complexity and the overhead of the IoT recommender. We envisage to analyse them

in a similar way as analysed by Betterstetter & Stefan [66] and Er & Seah [67] for wireless

networks.

3.3.8 REST APIs

The IoTRec offers REST APIs for the recommendation of a parking spot and route coor-

dinates (discussed in Section 3.3.5), and parking areas occupancy statistics (discussed in

Section 3.3.6). The purpose of these REST APIs is to make the IoTRec reusable by other

IoT applications and platforms through these REST APIs.

3.3.8.1 Normal Implementation-based REST APIs for Parking Spot and Route
Recommendation

The IoTRec offers various REST APIs for the recommendation of a parking spot and a

route. These APIs are the combination of the nearest parking spot, trusted nearest parking

spot, shortest route and the least crowded route.

The APIs for the parking spot and route recommendation take as input the GPS coor-

dinates of the current location of the user (double lon & double lat) as a query string.

The APIs which provide trusted parking spot take an additional input of user ID (String

userId) as a query string. The current location of the user is used to find the parking

spot nearest to the user, as well as to select a route from the user’s current location to the
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selected parking spot. The userId (used by the APIs for the trusted parking spot) is used

to obtain the trust scores of parking spots by passing it in the REST API of the Trust

Monitoring component [49].

These APIs provide two-fold functions: i) the recommendation of a parking spot (trusted

or nearest), and ii) the recommendation of a route (least crowded or nearest). The recom-

mendation of parking spot could be either the nearest trusted or only the nearest parking

spot which depends upon the choice of the user. The nearest parking spot is selected by

finding the nearest available parking spot from the user’s current location. The trusted

parking spot is selected by following the procedure described in Section 3.3.5.1. After find-

ing the parking spot (nearest or nearest trusted), the next function and the step is route

recommendation. The route recommendation could be either the shortest route (regardless

of consideration of traffic congestion) or the least congested route which also depends upon

the choice of user. The shortest route is directly obtained from BRouter routing engine [39]

from the user’s current location to the selected parking spot. The least crowded route is

calculated by following the procedure described in Section 3.3.5.3.

The REST APIs generate the response in JSON format containing JSON objects of

parking-lot and routing-path. Listing 3.1 describes the APIs for the recommendation

of a parking spot and the route. Listing 3.2 presents an example response of JSON objects

of parking-lot and routing-path.

3.3.8.2 GDPR-compliant REST APIs for the Parking Spot and Route Rec-
ommendation

In GDPR-compliant REST APIs, the IoTRec does not receive user IDs from the parking

application and does not directly interact with the Trust Monitoring component. Instead,

the parking application first obtains the trust scores of parking spots for specific user

from Trust Monitoring component, then passes the trust scores (comprised of trusteeId,

score and timestamp) into the body of REST APIs of the IoTRec with the POST method.

Subsequently, the IoTRec utilizes these trust scores in a similar way (as discussed before)

for recommending the nearest trusted parking spot. In this manner, the IoTRec does not

have any knowledge of the users.

Listing 3.3 presents the REST APIs related to the nearest trusted parking spot with

the HTTP POST method and sample trust scores in the body of the method. The response

is the same as presented in Listing 3.2.

3.3.8.3 Parking Areas Occupancy Statistics

The mechanism of parking areas occupancy statistics is discussed in detail in Section 3.3.6.

In this section, we describe the REST API for the parking areas occupancy statistics of-
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GET

Nearest Trusted Parking Spot with Least Crowded Route

http :// serverIP:port/IoTRecommender/v1/

nearestTrustedParkingSpotWithLeastCrowdedRoute?

lon={ longitudeCoordinates }&

lat={ latitudeCoordinates }&

userId ={ userId}

Nearest Trusted Parking Spot with Shortest Route

http :// serverIP:port/IoTRecommender/v1/

nearestTrustedParkingSpotWithShortestRoute?

lon={ longitudeCoordinates }&

lat={ latitudeCoordinates }&

userId ={ userId}

Nearest Parking Spot with Least Crowded Route

http :// serverIP:port/IoTRecommender/v1/

nearestParkingSpotWithLeastCrowdedRoute?

lon={ longitudeCoordinates }&

lat={ latitudeCoordinates}

Nearest Parking Spot with Shortest Route

http :// serverIP:port/IoTRecommender/v1/nearestParkingSpotWithShortestRoute?

lon={ longitudeCoordinates }&

lat={ latitudeCoordinates}

Query Parameters:

double lon: the longitude coordinates of user ’s current location

double lat: the latitude coordinates of user ’s current location

String userId: the id of the current user. It is used to get the trust

scores for respective user from Trust Monitoring component.

Headers:

Content -Type: application/json

Accept: application/json

Response: application/json (See Listing 3.2 for an example)

Listing 3.1 – APIs for the recommendation of a parking spot and route

fered by the IoTRec. This REST API is mainly called by the application which shows the

statistics to the user in a user-friendly manner on his smartphone application. Listing 3.4

describes the API of parking areas occupancy statistics with an example response and the

statistics are updated at the beginning of each day for the last day. The example response

presents weekly, monthly and yearly parking areas occupancy statistics for each day of the

week. In the example response, id presents the ID of the parking area, refParkingSite

presents the reference parking site, e.g., Sta. Lucia East StaLuciaEast. Then it pro-

vides weekly, monthly and yearly statistics for each day. For instance, let us consider

mondayParkingStatistics that provides weekly, monthly and yearly parking areas occu-

pancy statistics for each hour of the day. [w1,m1,y1] represents the weekly, monthly and
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Example Response:

"parking-lot": {

"id": "urn:entity:santander:parking:parkingSpot :3601" ,

"type": "ParkingSpot",

"status ": {

"type": "Text",

"value": "free",

"metadata ": { }

},

"name": {

"type": "Text",

"value": "parkingSpot3601",

"metadata ": { }

},

"dateModified ": {

"type": "ISO8601",

"value": "2018 -07 -26 08:00:00" ,

"metadata ": { }

},

"location ": {

"type": "geo:json",

"value": {

"coordinates ": [ -3.80076 ,43.4627] ,

"type": "Point",

"metadata ": {}

}

},

"refParkingSite ": {

"type": "Text",

"value": "HernanCortesCentre",

"metadata ": { }

},

"category ": {

"metadata ": {},

"type": "StructuredValue",

"value": [" onstreet "]

}

},

"routing-path": {

"type": "FeatureCollection",

"features ": [

{

"type": "Feature",

"geometry ": {

"type": "LineString",

"coordinates ": [

[ -3.821461 , 43.463945 , 65],

[ -3.821067 , 43.464059 , 65.75] ,

.....

]

},

"properties ": {

"track -length ": "2399"

}

}

]

}

Listing 3.2 – An example response of parking-lot and routing-path JSON objects
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POST

Nearest Trusted Parking Spot with Least Crowded Route

http :// serverIP:port/IoTRecommender/v1/

nearestTrustedParkingSpotWithLeastCrowdedRoute?

lon={ longitudeCoordinates }&

lat={ latitudeCoordinates}

Nearest Trusted Parking Spot with Shortest Route

http :// serverIP:port/IoTRecommender/v1/

nearestTrustedParkingSpotWithShortestRoute?

lon={ longitudeCoordinates }&

lat={ latitudeCoordinates}

Query Parameters:

double lon: the longitude coordinates of user ’s current location

double lat: the latitude coordinates of user ’s current location

Headers:

Content -Type: application/json

Accept: application/json

Body:

[

{

"trusteeId ":"urn:entity:santander:parking:parkingSpot :3637" ,

"score ":0.1 ,

"timestamp ":1499003993933

},

{

"trusteeId ":"urn:entity:santander:parking:parkingSpot :3641" ,

"score ":3.0 ,

"timestamp ":1499003993938

},

...

]

Response: application/json

Listing 3.3 – APIs of privacy protected recommendation of parking spot and route

yearly parking areas occupancy statistics, respectively from 00:00:00−01:00:00. Similarly

[w2,m2,y3],[w3,m3,y3],...,[w24,m24,y24] represent statistics for rest of the hours of

the day.

3.3.8.4 Walking Route to the Parked Vehicle

After the user parks his car at the parking spot recommended by the IoTRec, he can allow

the application to save the location where he has parked the car so, when he wants to

reach back to his parked car, the IoTRec offers a REST API to recommend a walking

route from user’s current location to his parked car. This REST API takes as input

the GPS coordinates of the current location of the user (double start lon & double
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GET

http :// serverIP:port/IoTRecommender/v1/getParkingAreasStatistics

Response: application/json

Example

{

"id": "urn:entity:santander:parking:parkingAreaStatistics:StaLuciaEast

",

"type": "parkingStatistics",

"dateModified ": {

"type": "ISO8601",

"value": "2017 -07 -20 T11 :56:00.00Z",

"metadata ": {}

}

"refParkingSite ": {

"type": "Text",

"value": "urn:entity:santander:parking:onStreet:StaLuciaEast",

"metadata ": {}

},

"mondayParkingStatistics ": {

"type": "StructuredValue",

"value ":[[w1 ,m1 ,y1],[w2 ,m2 ,y2],[w3 ,m3 ,y3],..., [w24 ,m24 ,y24]],

"metadata ": {}

},

"tuesdayParkingStatistics ": {

"type": "StructuredValue",

"value ":[[w1 ,m1 ,y1],[w2 ,m2 ,y2],[w3 ,m3 ,y3],..., [w24 ,m24 ,y24]],

"metadata ": {}

},

"wednesdayParkingStatistics ": {

"type": "StructuredValue",

"value ":[[w1 ,m1 ,y1],[w2 ,m2 ,y2],[w3 ,m3 ,y3],..., [w24 ,m24 ,y24]],

"metadata ": {}

},

"thursdayParkingStatistics ": {

"type": "StructuredValue",

"value ":[[w1 ,m1 ,y1],[w2 ,m2 ,y2],[w3 ,m3 ,y3],..., [w24 ,m24 ,y24]],

"metadata ": {}

},

"fridayParkingStatistics ": {

"type": "StructuredValue",

"value ":[[w1 ,m1 ,y1],[w2 ,m2 ,y2],[w3 ,m3 ,y3],..., [w24 ,m24 ,y24]],

"metadata ": {}

},

"saturdayParkingStatistics ": {

"type": "StructuredValue",

"value ":[[w1 ,m1 ,y1],[w2 ,m2 ,y2],[w3 ,m3 ,y3],..., [w24 ,m24 ,y24]],

"metadata ": {}

},

"sundayParkingStatistics ": {

"type": "StructuredValue",

"value ":[[w1 ,m1 ,y1],[w2 ,m2 ,y2],[w3 ,m3 ,y3],..., [w24 ,m24 ,y24]],

"metadata ": {}

}

}

Listing 3.4 – API of Parking Areas Occupancy Statistics



CHAPTER 3. IOT RECOMMENDER 85

GET

http :// serverIP:port/IoTRecommender/v1/walkingRouteToParkedCar?

start_lon ={ startLongitudeCoordinates }&

start_lat ={ startLatitudeCoordinates }&

end_lon ={ endLongitudeCoordinates }&

end_lat ={ endLatitudeCoordinates}

Query Parameters:

double start_lon: the start longitude coordinates of user ’s current

location

double start_lat: the end latitude coordinates of user ’s current

location

double end_lon: the start longitude coordinates of parked car (parking

spot)

double end_lat: the end latitude coordinates of parked car (parking spot

)

Headers:

Content -Type: application/json

Accept: application/json

Response: application/json (See "routing -path" in Listing 3.1)

Listing 3.5 – API of walking route to the parked vehicle

start lon) and GPS coordinates of the parked car (double end lon & double end lat).

Subsequently, it recommends a walking route from the user’s current location to his parked

car. Listing 3.5 describes the API for the recommendation of a walking route to the parked

car. The response generated by this REST API is the same as "routing-path" JSON

presented in Listing 3.2.

3.3.8.5 Parking Spots

The IoTRec offers REST APIs to obtain a list of all, free or occupied parking spots in

JSON format. The REST API for the free parking spots could be used by the IoTRec

itself while finding the available parking spots. Additionally, the REST APIs for all, free

and occupied parking spots could be used by the application to show graphically all, free

or occupied parking spots to the user. Listing 3.6 presents the REST APIs.

3.3.9 The Prototype and Evaluation

3.3.9.1 The Prototype

In order to evaluate IoTRec, an Android application, called Rich Parking [46] was developed

by the smart parking use case owner [68] in WISE-IoT project and IoTRec was integrated

into it. It was tested and evaluated as a prototype by the citizens of Santander, Spain. The

prototype serves as the first step towards developing a fully-fledged application to improve
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GET

All Parking Spots

http :// serverIP:port/IoTRecommender/v1/allParkingLots

Free Parking Spots

http :// serverIP:port/IoTRecommender/v1/freeParkingLots

Occupied Parking Spots

http :// serverIP:port/IoTRecommender/v1/occupiedParkingLots

Headers:

Content -Type: application/json

Accept: application/json

Response: application/json

Listing 3.6 – APIs of parking spots (all, free and occupied)

the parking experience of users in the city. The prototype provides various functionalities

to the users using the services offered by the IoTRec through REST APIs. The screenshots

of these functionalities are depicted in Figure 3.15. We present the features of the prototype

in this section.

Show Parking Spots The prototype allows users to see the status of parking spots. To

request the status of parking spots, a user clicks the corresponding button. The parking

application calls the REST APIs of the IoTRec for free and occupied parking spots and

obtains the list of free and occupied parking spots. It subsequently shows the free parking

spots as green markers and occupied parking spots as grey markers, as presented in Figure

3.15(a).

Recommendation of Parking Spot and Route A user can request a parking spot

recommendation and that of a route from their current location by specifying their pref-

erences (e.g., for a parking spot: nearest or nearest trusted parking spot, and for a route:

least crowded or shortest) in the application. The application then calls the required REST

API of the IoTRec of the parking spot and route recommendation and presents the recom-

mended parking spot and route to the user, as presented in Figure 3.15(b).

Walking Route to the Parked Car After a user has parked his car in the recommended

parking spot and saved the location of the car in the application, he can later request a

walking route from his current location to his parked car. The application then calls the

REST API of the IoTRec for the walking route to the parked car and shows the walking

route to the parked car on the application screen, as presented in Figure 3.15(c).
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Figure 3.15 – Screenshots of the prototype Rich Parking application [68]: (a) view of free
and occupied parking spots; (b) recommendation of a parking spot and a route; (c) walking
route to the parked car; and (d) an example of parking areas occupancy statistics.

Parking Area Occupancy Statistics The prototype shows the parking areas to the

user if the user wants to analyze the statistics manually, as presented in Figure 3.15(d).

When the user clicks on any parking area, the application calls the REST API of the IoTRec

for parking area occupancy statistics, obtains the parking area statistics for the current
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Table 3.5 – Questionnaire for the evaluation of the IoTRec functionalities through the
prototype.
No. Question Possible Answers

1 Quality of the routes and parking information? 1-star (very bad) to 5-stars (very good)

2 Functionality of show parking spots? 1-star (little useful) to 5-stars (very useful)

3 Functionality of route calculation? 1-star (little useful) to 5-stars (very useful)

4 Functionality of walking route to the parked car? 1-star (little useful) to 5-stars (very useful)

5 Functionality of parking statistics? 1-star (little useful) to 5-stars (very useful)

6 Easy to navigate? 1-star (very difficult) to 5-stars (very easy)

7 Easy to calculate a route? 1-star (very difficult) to 5-stars (very easy)

8 Easy to analyze a route? 1-star (very difficult) to 5-stars (very easy)

9 Provided data of parking spots and statistics are
reliable?

No, Probably No, I do not know, Probably Yes, Yes

day and current hour for the selected parking area, calculates the occupancy statistics in

percentage, and presents the results to the user. For example, in Figure 3.15(d), when the

user clicks on the area Sta. Lucia east, the application shows a popup to the user that

indicates there is a 54% chance of finding a free parking spot in this parking area.

3.3.9.2 Evaluation Overview

To evaluate our IoTRec system, the developed prototype was shared and tested with the

citizens of Santander. For expected availability (occupancy statistics) of parking areas, the

parking sensors’ data is collected for the duration of nine months, i.e., from October 2017

to June 2018. A higher number of Santander’s citizens were approached through various

meetups requesting volunteers for the evaluation of the prototype application. A meeting

was then conducted with the volunteered citizens willing to participate in the evaluation and

were explained how to use and evaluate the application. A total of 41 citizens of Santander

committed to being engaged in the evaluation, and 30 of them installed the application

from the Google Play store. To conduct the evaluation, a questionnaire related to the

functionalities offered by the IoTRec was designed that participants completed at the end

of evaluating the application. Out of the 30 participants, 27 evaluated the application by

answering to questionnaire. Table 3.5 presents the questionnaire with its possible answers

to these questions for the evaluation of the IoTRec functionalities in the prototype.

3.3.9.3 Evaluation Results

The evaluations results are based on the questionnaires completed by the 27 citizen partic-

ipants. We present the evaluation results for each question in the questionnaire.
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Figure 3.16 – Evaluation results of the quality of recommended routes and parking spots.

Figure 3.17 – Evaluation results of the functionalities of the recommendations for parking
spot availability, route calculation, walking route to a parked car and parking area statistics.

Quality Figure 3.16 presents the evaluation results of the quality of the recommended

routes and parking spots. It shows a good response as 89% and 81% of the involved citizens

were satisfied (identified by their positive ratings of 3, 4 and 5-stars) with the quality of

the recommended routes and parking spots, respectively. 78% and 63% of the participants

found the quality of recommended routes and parking spots, respectively to be good/very

good (4 and 5-stars). Overall, these evaluation results give us a good indication of the high

quality of the recommended routes and parking spots and the satisfaction of the users.



90
3.3. GDPR-COMPLIANT IOT RECOMMENDER FOR SMART PARKING

SUPPORTING SEMANTICS

Figure 3.18 – Evaluation results of the ease of use of the navigation, route calculation and
route analysis.

Figure 3.19 – Evaluation results of the reliability of the provided parking spot data and
parking area occupancy statistics.

Functionality Figure 3.17 shows the evaluation results of the recommendation of park-

ing spots, routes calculation, walking route and parking area occupancy statistics in terms

of usefulness, with a scale of 1-star (very useless) to 5-stars (very useful). For the func-

tionalities of the recommendations of parking spots, route calculation, walking routes and

parking area occupancy statistics, around 93%, 96%, 93% and 85%, respectively, of the

participants found these functionalities to be useful (identified by positive ratings of 3, 4
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and 5-stars), and 85%, 81%, 70% and 78% of them found these respective functionalities

to be useful/very useful (ratings of 4 and 5-stars).

Ease of Use Figure 3.18 presents the evaluation results of the ease of use of the navi-

gation, route calculation and route analysis in the application. For the ease of use of the

navigation, route calculation and route analysis, around 81%, 67% and 74% of the partici-

pants gave positive ratings. More specifically, 67%, 52% and 48% of the participants found

it easy or very easy to use the navigation, route calculation and route analysis, respectively.

This result indicates that we need to focus more on improving the application interface for

route calculation and route analysis.

Reliability The results for the reliability question about whether the participants believe

that the provided data of parking spot and parking area occupancy statistics are reliable are

shown in Figure 3.19. Based on the interaction of the involved citizens with the application,

close to 85% of them believe that the data provided about parking spot and parking area

occupancy statistics are reliable, which is a good indication.

3.3.10 Demonstrations

The IoT recommender for smart parking system that is developed in WISE-IoT has been

demonstrated in three occasions. In this section, we provide the details of these demon-

strations.

3.3.10.1 Setup and Configuration

The IoT recommender for smart parking system is developed in WISE-IoT project and is

one of the four components of Self-Adaptive Recommender (SAR) system [32]. For the

demonstrations setup of the WISE-IoT project, the WISE-IoT components were deployed

as Docker containers. The data of Santander parking sensors was stored in a oneM2M

platform. The Morphing Mediation Gateway (MMG) [30] translates the data and create

NGSI data structure based on the semantic information. Subsequently, it updates the

information to the FIWARE Orion Context Broker. Then the IoT recommender accessed

the sensors data from FIWARE Orion Context Broker, and interacted with other SAR

components to receive the trust score from Trust Monitoring component [49]. Subsequently,

the IoT recommender identified the parking spot and the route, and finally sent the output

result of recommended parking spot and route to the smart parking application [46] and

Adherence Monitoring [50] component.
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3.3.10.2 IoT Week 2017 Geneva Demonstration

The first demonstration of IoT recommender was in the IoT Week 2017 Geneva from 6-

9 June 2017 which was collocated with the Global IoT Summit 2017. The event was

comprised of around 800 participants, 200 sessions and activities, and over 300 speakers.

This first demonstration helped us to get the opinions and suggestions of the participants

and experts, as well as helped us to identify some issues of IoT recommender, such as high

processing time for some recommendation requests and some sensors not behaving well

due to some physical problem with them. Overall, it was a good chance to identify the

limitations of IoT recommender and improve its performance and functionality.

3.3.10.3 WISE-IoT First Review Meeting Demonstration

The second demonstration of IoT recommender was in the first review meeting of WISE-

IoT in Brussels on 6 July 2017 and was comprised of all the WISE-IoT partners. This

was the fully functioned demonstration of IoT recommender, however, it was not GDPR-

compliant, rather was a normal implementation (as discussed in Section 3.3.5.1) because

it was the first fully functioning version of IoT recommender. Hence, the outcome of this

demonstration was to enhance IoT recommender to be GDPR-compliant (as discussed in

Section 3.3.5.2).

3.3.10.4 IoT Week 2017 Korea Demonstration

The third and the last demonstration of IoT recommender was in the IoT Week 2017 South

Korea from 10-11 October 2017 at COEX mall, Seoul, South Korea. The IoT recommender

together with all SAR components was demonstrated with compliance to GDPR and it was

the fully functioning GDPR-compliant demonstration of IoT recommender. However, later

on, some enhancements were still made, such as walking route to the car and some sensors

not working due to constructions in Santander, that were identified later at the time of

field trials, hence IoT recommender was updated accordingly to address these changes.

3.3.11 Summary and Discussion

This study has presented the development, implementation and evaluation of a IoT Rec-

ommender (IoTRec) for a smart parking system. The main purpose of this system is to

provide a better experience to both users and managers in terms of vehicular mobility in

a city by relying on IoT technologies. The IoTRec mainly provided the GDPR-compliant

recommendations of a parking spot (nearest or nearest trusted parking spot) and a route

(least congested or shortest route) leading to the recommended parking spot, as well as the

real-time provision of the expected occupancy of parking areas based on the historical IoT
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data. Finally, the proposed system was evaluated through a prototype by the citizens of

Santander.

The study in the next section presents the third part on designing an IoT Recommender

for Smart Skiing.
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3.4 IoT Recommender for Smart Skiing

The IoT recommender for smart skiing is developed for the smart skiing use case [69] of

WISE-IoT project [33]. The main objective of smart skiing use case is to set up a testbed

in Chamrousse, a ski resort in France that gathers skiing performance data of skiers us-

ing the deployed sensors and utilizes such data to provide recommendations to skiers for

improving their skiing performance, compare their performance with other skiers, provide

location coordinates and routes passing through ski slopes2 and ski lifts to friends/family

or ski devices. The IoT recommender for smart skiing is designed to provide route rec-

ommendations from user’s current location to a point of Interest (POI) that can be either

location of friends/family or ski devices for gamification.

To the best of our knowledge, for skiing routes, there does not exist any stable routing

engine. Although a routing engine for skiing route is provided by OpenSnowMap [70],

however, it is not accurate and has a number of limitations. For instance, firstly, it does

not consider slopes to be one-way, rather it considers them to be two-way which is not

realistic, secondly, it does not consider ski lifts to have fixed start and end stations, and

therefore, it recommends to take a ski lift in the middle which is again not realistic, and

thirdly, it considers all types of slopes in skiing route recommendations and does not provide

any means to specify the type of slope a user is interested in. For example, it can only

work for advanced users who can do ski on all types of slopes, but for novice, beginner and

intermediate users, it is not possible to take such advance slopes. Therefore, there is a need

of a novel routing engine for skiing routes that overcomes such limitations.

Inspired from this lacunae, in this study, we designed IoT recommender by following

the requirements listed in Section 2.2.5.1 that offers a novel routing engine for skiing routes

which is implemented in an open-source and widely-adopted routing engine, GraphHopper

[71]. Our solution overcomes the limitations of OpenSnowMap [70] and considers slopes

to be one-way, ski lifts can only be taken from the ski station instead of anywhere in the

middle, provides skiing routes by considering different types of slopes (e.g., novice, easy,

intermediate and advance), and provides multiple routes which gives more options to users

to choose from.

3.4.1 Functionality

The IoT recommender has been deployed and integrated into smart skiing use case of WISE-

IoT project. It offers the recommendations of ski routes for different level of expertise of

skiers. In this section, we discuss the operation of IoT recommender and compare visually

the routes offered by the IoT recommender and OpenSnowMap [70]. The routes by IoT

2We use slope and piste interchangeably
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Figure 3.20 – An overview of Chamrousse ski resort [70].

recommender and OpenSnowMap are obtained in GeoJSON format that are imported into

http://geojson.io to see the routes on the map in a user-friendly visual interface (presented

in Figures 3.21-3.24).

Figure 3.20 presents an overview of Chamrousse ski resort in France taken from Open-

SnowMap [70]. There are various types of slopes/pistes in different colors. The green,

blue, red and black colored slopes represents novice, easy, intermediate and advance slopes,

respectively. The slopes are one-way, i.e., skiers can take slopes from top to bottom. There

are also ski lifts that are two-way. The ski resort is situated at the bottom left of Figure

3.20. The skiers take ski lifts from there to reach the top of the resort and then take slopes.

We have tested IoT recommender for smart skiing in Chamrousse, however, it can similarly

be applied to anywhere.

There are four levels of expertise of skiers: advance, intermediate, beginner and novice

skiers. Advance skiers are the most expert skiers and they can take any type of slope,
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(a) Route offered by IoT recommender. (b) Route offered by Open Snow Map

Figure 3.21 – Skiing route for advanced users by IoT recommender and Open Snow Map.

(a) Route offered by IoT recommender. (b) Route offered by Open Snow Map

Figure 3.22 – Skiing route for intermediate users by IoT recommender and Open Snow
Map.
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(a) Route offered by IoT recommender. (b) Route offered by Open Snow Map

Figure 3.23 – Skiing route for beginner users by IoT recommender and Open Snow Map.

(a) Route offered by IoT recommender. (b) Route offered by Open Snow Map

Figure 3.24 – Skiing route for novice users by IoT recommender and Open Snow Map.

e.g., advance (black), intermediate (red), easy (blue) and novice (green). The intermediate

skiers can take intermediate (red), easy (blue) and novice (green) slopes. The beginner

skiers can take easy (blue) and novice (green) slopes. Finally, the novice skiers can only

take novice (green) slopes.

Figures 3.21, 3.22, 3.23, 3.24 compare the ski routes offered by IoT recommender and

OpenSnowMap for advance, intermediate, beginner and novice users, respectively. The blue

marker shows the starting location and the red marker shows the destination location. The

pink colored line shows the ski lift. The figures show the limitation of OpenSnowMap and
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the usefulness of IoT recommender. For instance, a skier can only take slopes from top to

down, rather than from down to top which is not realistic. The OpenSnowMap recommends

ski routes that require climbing the slopes instead of taking ski lifts to reach on top and then

take the slope. This is achieved by the ski routes offered by IoT recommender. Additionally,

the start and destination locations of ski routes for intermediate skier (in Figure 3.22) and

beginner skier (in Figure 3.23) are same, yet the ski routes offered by the IoT recommender

are different while they are same in the case of OpenSnowMap. This is because of although

the ski route for intermediate skier (in Figure 3.22) in shorter but it passes through a slope

of intermediate (red color) type. Therefore, it could not be recommended for beginner skier

and hence, the IoT recommender recommends a slightly longer route passing through easy

(blue colored) slopes for beginner skier in Figure 3.23. Finally, for novice skier in Figure

3.24, the ski route offered by the IoT recommender is comprised on only the novice (green

colored) slopes and ski lift (pink colored) because they are in accordance with the expertise

of novice skier while is not the case for OpenSnowMap because of not considering different

types of slopes.

Note that in the ski route examples above, there is not any case in which OpenSnowMap

takes the ski lift, but we found several cases when OpenSnowMap recommends to take a

ski lift in the middle or leave the ski lift in the middle.

In summary, we exhibit the usefulness of IoT recommender and the limitations of Open-

SnowMap. The IoT recommender has been integrated in real world into the smart skiing

use case of WISE-IoT project [33].

3.4.2 Interfaces and Operation

Figure 3.25 presents the interfaces of the IoT recommender for smart skiing use case using

UML component diagram. The IoT recommender first obtains a request of ski routes from

smart skiing application. The request contains as query param: slope type, number of

alternate routes, session id, and either user’s current and destination locations, or start

and end ski devices IDs equipped on skier body or buried under snow for gamification.

There are two cases. Firstly, the IoT recommender receives location coordinates. In this

case, it uses its novel skiing routing engine, developed in GraphHopper [71], to generate

the ski routes (equal to the number of alternate routes specified in the request) for the

specific type of slope and sends them to the smart skiing application. Secondly, the IoT

recommender receives start and end ski devices. In this case, it first interacts with the

SAR facade [32], a component of WISE-IoT project, to obtain the URL of the relevant

Orion Context Broker containing the coordinates of ski devices. Then it interacts with the

Orion Context Broker to obtain the location coordinates of the start and end ski devices

and finally, it generates the ski routes for the specific type of ski slopes and sends them to
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Figure 3.25 – UML component diagram of the interfaces of IoT recommender for smart
skiing.

the smart skiing application.

3.4.3 REST APIs

In this section, we present the REST APIs offered by the IoT recommender for ski routes.

The REST API of IoT recommender for skiing routes, presented in Listing 3.7, takes

an input the the session id (long sessionId), the slope type (String type), number

of alternate routes (int max routes), current location coordinates (double start lon

& double start lat), and destination location coordinates (double end lon & double

end lat). Alternative to the location and destination coordinates, this REST API can

take as input a start device id (String start device id) and a destination device id

(String end device id). The session id (sessionId) is used to retrieve the URL of the

Orion Context Broker for skiing IoT devices to retrieve their GPS coordinates. The IoT

recommender calculates and returns the number of alternate routes (‘max routes’ passed as

query param) for a specific type of slope (‘type’ passed as query param) in JSON format.

If the start and destination coordinates are provided, the IoT Recommender considers

them. Otherwise, if start and end device ids are provided instead of start and destination

coordinates, the IoT Recommender fetches the respective GPS coordinates from the skiing

Orion Context Broker via the SAR facade. The allowed slopes types are piste novice,

piste easy, piste intermediate and piste advance.

Listing 3.7 presents the API and Listing 3.8 presents an example response.



100 3.5. SUMMARY AND DISCUSSION

GET

http :// serverIP:port/IoTRecommender/v1/skiingRoute?

sessionId ={ sessionId }&

type={ slopeType }&

max_routes ={ maxAlternateRoutes }&

start_lon ={ startLongitudeCoordinates }&

start_lat ={ startLatitudeCoordinates }&

end_lon ={ endLongitudeCoordinates }&

end_lat ={ endLatitudeCoordinates }&

start_device_id ={ startDeviceId }&

end_device_id ={ endDeviceId}

Query Parameters:

long sessionId: the session id of SAR facade to retrieve URL of skiing

Orion Context Broker

String type: type of slope (e.g., piste_novice , piste_easy ,

piste_intermediate , piste_advance)

int max_routes:maximum number of alternate routes

double start_lon: the start longitude coordinates of user ’s current

location

double start_lat: the start latitude coordinates of user ’s current

location

double end_lon: the end longitude coordinates of destination location

double end_lat: the end latitude coordinates of destination location

String start_device_id: the start skiing device id (equipped on the

skier)

String end_device_id: the end skiing device id (could be a ski

gamification device or friends/family ski device)

Headers:

Content -Type: application/json

Accept: application/json

Response: application/json (See Listing 3.8 for an example)

Listing 3.7 – API for the recommendation of a skiing route for start and destination location
coordinates

3.5 Summary and Discussion

To summarize and conclude, this chapter presented the first contribution of this thesis of

IoT recommender for smart cities into three parts.

In the first part, it proposed the mapping of sensors and route coordinates by intro-

ducing a deviation margin. It presented an algorithm and two illustrative examples that

cover all the possible scenarios. It evaluated the performance of mapping algorithm by

considering four different routes and measured the correct detection, missed detection and

false detection of traffic sensors on the routes.

In the second part, this chapter presented an IoT recommender for smart parking that

utilized the mapping algorithm proposed in the first part and provided four-fold func-



CHAPTER 3. IOT RECOMMENDER 101

Example Response:

"skiing-route": {

"features ": [

{

"geometry ": {

"coordinates ": [

[5.896236879294445 , 45.11720601731254 , 0]

.........

],

"type": "LineString"

},

"type": "Feature",

"properties ": {

"instructions ": [

{

"distance ": 491.889 ,

"sign": 7,

"interval ": [27, 35],

"text": "Keep right onto Olympique Hommes",

"time": 118053 ,

"street_name ": "Olympique Hommes"

},

{

"distance ": 329.068 ,

"sign": 1,

"interval ": [46, 52],

"text": "Turn slight right onto Balmette",

"time": 78975 ,

"street_name ": "Balmette"

},

{

"distance ": 0,

"sign": 4,

"interval ": [53, 53],

"text": "Arrive at destination",

"time": 0,

"street_name ": ""

},

"pistes -names": [" Olympique Hommes", "Balmette"],

"track -length ": 6252.60

}

}

],

"type": "FeatureCollection",

"errors ": ""

}

Listing 3.8 – An example response of skiing-route JSON object
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tions: recommendation of parking spots based on different metrics (e.g., nearest or nearest

trusted), recommendation of routes leading to the recommended parking spots (the least

crowded or the shortest route), real-time provisioning of expected availability of parking

spots, and a GDPR-compliant implementation for operating in a privacy-aware environ-

ment. It offered its services using REST APIs and has been integrated and deployed into

smart parking use case of WISE-IoT project. It was evaluated with the citizens of San-

tander and has been demonstrated at various occasions.

In the third part, this chapter presented an IoT recommender for smart skiing that

offered the recommendations of ski routes between two points on a ski resort, passing

through ski slopes and ski lifts by allowing to specify specific types of slopes (e.g., novice,

easy, intermediate or advance). It offered its service through REST APIs and has also been

integrated into smart skiing use case of WISE-IoT project.

In the next chapter, we will discuss the privacy preservation of users in the smart

parking system, specifically in the users parking database by applying two well-known

privacy preservation techniques of k-anonymity and differential privacy.
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The main focus of this chapter is to preserve the privacy of IoT recommender system

in smart parking system. More specifically, the historic parking dataset is shared with the

parking recommender system for efficient and personalized recommendations based on the

users past parking experience. However, since the parking dataset contains the past history

of parking information of users, it breaches the privacy of users because the parking recom-

mender (that is an adversary in our system) can track the routine and mobility patterns of

users by analyzing such parking dataset. This chapter preserves the privacy of users against

the parking recommender (an adversary). It preserves privacy using two well-known privacy

preservation techniques of anonymization and perturbation: k-anonymity and differential

privacy and evaluates the privacy and utility through extensive experimentations.

4.1 Introduction

Recent advancements in the Internet of Things (IoT) have revolutionized our daily lives

and have transformed traditional applications into smart applications. Smart parking is

one example of this transition. Generally, two types of implementations are considered in

smart parking systems. In the first type, the smart parking application is responsible for

receiving user requests and finding the available parking spots for the user by itself. This

is a widely-adopted implementation. In the second type, the smart parking application re-

ceives user requests and forwards them to the third-party recommender systems which are

responsible for recommending the parking spots based on various metrics, such as traffic

conditions on the roads, distance, quality of parking spots, and users’ past experience. The

consideration of such diverse metrics into recommendations of parking spots is difficult for

a smart parking application because of lack of access to diverse services and hence it is bet-

ter to exploit the services of third-party recommender systems dedicated for this purpose.

This implementation is currently less widely-adopted, however, is gaining attention with the

horizontal and vertical emergence of IoT and smart cities applications, as well as with the

interoperability in IoT that interconnects various applications/deployments, hence also in-

terconnects third-party recommender systems with the smart parking system. For instance,

there is a recent EU-KR H2020 WISE-IoT project [33], that enabled the interoperability

between two IoT platforms: FIWARE and oneM2M which are widely used in Europe and

South Korea, respectively. It demonstrated such interoperability through a smart parking

use case by adopting the second type of implementation. In this demonstration, a smart

parking application operates both in Europe and South Korea. When in Europe, it con-

nects to the FIWARE platform and recommender system to obtain the recommendations

of parking spots. While when in South Korea, it connects to oneM2M infrastructure and

recommender system to obtain the recommendation of parking spots [68].
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In this study, our focus is on the second type of implementation. Both types of imple-

mentation considers the smart parking application to be trustworthy that is responsible for

receiving user requests and maintaining a parking database. However, the second type of

implementation has an additional third-party parking recommender system. Since we do

not know much about the third-party parking recommender system, therefore one cannot

identify its trustworthiness and it could be either trusted or semi-trusted or untrusted.

In our considered scenario, a user, registered on a smart parking application, makes a

request, comprised of user ID (e.g., registration id) and user’s current location. On each

user’s request, the smart parking application (trusted entity) performs two fold functions.

Firstly, it forwards the request to the third-party parking recommender system (semi-

trusted or untrusted entity), obtains the recommended parking spot, sends it back to the

user and collects the rating from user after completing the parking. Secondly, it maintains

a parking database that contains user ID and user’s current location (obtained from user’s

request), parking spot (obtained from recommender system), user rating (obtained from

user after completing the parking) and current timestamp (the time of the user’s request).

The sample database is presented in Table 4.1. This database needs to be shared with the

parking recommender system for personalized recommendations of parking spots based on

user’s past experience. For instance, by tracking the user’s parking behavior and rating,

it is possible to recommend those parking spots, the users have good experience with

(e.g., frequently used and highly rated). However, the parking recommender system could

identify an individual and infer user’s routine and mobility patterns by analyzing the user’s

location and parking behavior, therefore the indiscriminate sharing of user’s data with

parking recommender system violates the privacy of the users. The parking recommender

system can easily identify a user uniquely and trace his habits, behaviours and mobility

patterns by analyzing the parking database. For example, as presented in Table 4.1, even

if we remove the user ID (the unique identifier), the recommender system could easily

guess the routine of user 1, as he leaves daily in the morning from the same place (his

home) between 8:30am to 9:00am only on weekdays (for the work) and parks in the similar

area (his work place), as parking spots 3601, 3602 and 3603 are very close to each other.

Hence, the parking recommender system could exploit this routine to do malicous activity,

e.g., plan stealing at user’s home in his absence. Therefore, the user’s request and the

database contain user private information, and sharing them in their current form with

the recommender system seriously violates the privacy of users. Hence, there is a need

of preserving the privacy of users. One solution is that the parking application does not

share such historical database and the recommender system recommends the parkings spots

only based on the real-time information. However, this will cause lack of personalized and

efficient recommendations of parking spots. Another solution is that application shares the
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Table 4.1 – An example snapshot of data table for parking recommendation.
User
ID

User Location
(lon, lat)

Parking
ID

User
Rating

Timestamp

1 -3.80944, 43.4659 3601 5 2019-07-26 08:30:00

1 -3.80944, 43.4659 3601 5 2019-07-29 08:35:00

1 -3.80944, 43.4659 3602 5 2019-07-30 08:25:00

1 -3.80944, 43.4659 3603 4 2019-07-31 08:55:00

2 -3.80431, 43.4643 3605 1 2019-08-01 09:00:00

2 -3.79092, 43.4635 3872 5 2019-08-01 12:00:00

2 -3.80659, 43.4627 3610 3 2019-08-01 15:30:00

2 -3.79888, 43.4622 3625 4 2019-08-01 18:00:00

2 -3.79927, 43.4661 3901 4 2019-08-01 19:00:00

historical database by removing the user ID, however, the parking recommender system can

still easily identify an individual by analyzing the other quasi-identifer attributes (e.g., user

current location, parking spot and timestamp) as we discussed above. Hence, the preferred

solution is to apply the privacy preservation techniques so that the parking recommender

system could not be able to identify the private information of the individuals.

We focus on preserving privacy within the parking database containing users’ parking

history that could lead to infer users’ behavior and mobility patterns. We assume that

when the application sends user’s current location to the parking recommender to obtain

parking spot, it sends the perturbed user location by applying differential privacy (e.g.,

Geo-indistinguishabilty [72]), hence the parking recommender does not get the actual lo-

cation of the user and the privacy is already preserved in the case of user’s request. To

preserve the privacy of statistical databases, there is an emerging interest in k−anonymity

and differential privacy techniques that preserve privacy through anonymization and pertur-

bation, respectively [18,21]. k−anonymity [18] is the earliest work on privacy preservation

that anonymizes a dataset in such as a way that with respect to the set of quasi-identifier

attributes (i.e., attributes that can identify the individuals when combined together), each

record (or row) is indistinguishable from at least k − 1 other records. Differential privacy,

instead, operates on the principle of data perturbation by adding noise to the query re-

sult [21]. Therefore, the parking recommender system would not be able to differentiate

among multiple records (in k−anonymity), as well as would not be able to find the actual

query result (in differential privacy), hence making the users unidentifiable and indistin-

guishable in both cases. Both k−anonymity and differential privacy are formally defined

and discussed in detail in Section 4.4.1 and 4.4.2, respectively.
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4.2 Related Work

For privacy preservation in current smart parking systems, the major focus of existing

works is on protecting real-time user’s location and navigation information, cryptography,

pseudonymity, encryption and consortium blockchain. The protection of historic parking

database, which is the focus of our study, is not investigated much.

For instance, Ni et al., [73, 74] preserve the privacy of parking navigation using Bloom

filters by enabling a user (or vehicle) to receive the navigation results, even the user is moved

out of range of the queried roadside unit. They preserve the privacy using pseudonymity

in which the users make queries to the cloud server which handles the parking information

for available parking spots in an anonymous manner. The cloud server enables the vehicle

to receive the navigation query results even if the vehicle has moved out of the range of the

queried roadside unit.

Chatzigiannakis et al., [75] preserves the privacy of a smart parking system by using

public key cryptography scheme, known as elliptic curve cryptography that is suitable for

resource constraint devices and is platform independent. The authors used zero knowledge

proofs that avoids the exchange of confidential information, hence achieving the privacy.

The authors evaluate the performance by studying the execution time and system overhead.

However, the authors did not evaluate the privacy and utility of their proposed system.

Huang et al., [76] worked on automated valet parking system for which the parking

reservation is a prerequisite in order to achieve automated parking. The authors worked

on preserving the private information of drivers (e.g., identity and locations) that are re-

vealed by the reservation requests by removing the user identity and making it anonymous.

However, making the users anonymous cause security problem, e.g., double-reservation at-

tack. The authors address this security issue by allowing each anonymous user to posses

only one reservation token that can be used to reserve one available parking spot. In this

way, the authors claimed to preserve the privacy of user’s identity and location, as well as

avoid double-reservation attack using zero knowledge proofs and proxy re-signature. How-

ever, the authors mainly preserve the privacy by using pseudonymity (making the user

anonymous) and did not evaluate the privacy and utility of their system.

Lu et al., [77, 78] designed a smart parking system for large parking spots using ve-

hicular communications that offers real-time navigation and anti-theft protection. The

authors preserve the privacy of users by keeping the identity of users secret, i.e., by using

pseudonymity. However, only protecting the explicit identifier is not sufficient because an

adversary could still identify the users uniquely by linking and disclosure attacks.

Yan et al., [79] designed a privacy preserving parking system that relys on wireless

network and sensor communications and allows users to reserve parking spots. The authors
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protects the privacy by using encryption technique.

Alqazzaz et al., [80] proposed a privacy preserving and secure smart parking framework

based on publish/subscribe mechanism. It provides two fold functions. Firstly, it offers the

parking services, e.g., parking availability, navigation and parking reservation. Secondly, it

offers security on application and network layers, as well as preserves privacy. The authors

protect the privacy using encryption technique which is basically a security mechanism.

Garra et al., [81] implemented an anonymous e-coin system that protects the privacy

of a parking system and offers payment by phone without disclosing start and end time.

Hu et al., [82] proposed a blockchain-based parking system using smart contracts that

preserves privacy through a consortium blockchain in which the transactions are controlled

by the legitimate nodes and are not disclosed to external entities.

The above mentioned works on privacy preservation for smart parking are firstly focused

on the real-time user’s location and navigation information. Secondly, they preserve privacy

using pseudonimity, cryptography and encyption techniques which are prone to privacy

leakage using linking and disclosing attacks, as proved in the literature. We, on the other

hand, focus on privacy preservation using two well-known privacy preservation techniques

of k-anonymity and differential privacy and we focus on preserving privacy within the

historic parking database.

4.3 System and Adversary Models

4.3.1 System Model

Our system model is organized into two systems: smart parking and parking recommender

systems. The smart parking system is comprised of users, smart parking application front-

end, a service logic, a users parking database, an anonymized database (for privacy through

k-anonymity), and a perturbation mechanism (for privacy through differential privacy).

The parking recommender system is a third-party recommender system that uses various

metrics (such as parking and traffic information, and sensors quality) to provide recom-

mendations. The system architecture is presented in Fig. 4.1. A user, registered on a

smart parking application, makes a request for a nearby parking spot comprised of his

user id (e.g., registration number) and current location. The smart parking application is

a trusted entity that receives requests from users, forwards user’s request to service logic

entity, obtains recommended parking spots from the parking recommender and provides

them to the user, as well as collects ratings from users after they have completed their

parking and forward them to the service logic entity. The service logic entity is also a

trusted entity and it maintains a users parking database comprised of user ids and current

locations, parking spots, ratings, and timestamp attributes. The parking recommender is
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Figure 4.1 – System architecture of privacy preserving parking system.

either an untrusted or a semi-trusted entity that receives users’ current locations, analyzes

their past parking history and provides parking spots recommendations. To protect the

privacy of users, the parking recommender should not be able to uniquely identify the users

from the users parking database. We achieve this by using two well-known privacy preser-

vation techniques: k-anonymity and differential privacy. In k-anonymity, the service logic

entity generates an anonymized version of the users parking database and releases it to the

parking recommender for analysis. In differential privacy, the parking recommender makes

numeric queries to the service logic entity, but instead of receiving the actual responses,

the service logic entity sends the perturbed responses to the parking recommender with

noise added by the Laplace mechanism.

4.3.2 Adversary Model

The primary adversary1 in our system is an untrusted (or semi-trusted) parking recom-

mender system that needs access to the historical parking database for its recommenda-

tions of personalized and efficient parking spots. This system is susceptible to a disclosure

attack, in which an adversary (i.e., the parking recommender) can recognize the behavior

and mobility patterns of the users by observing the historical parking database. The adver-

sary can track the behavior and mobility patterns of the users and uniquely identify them

by analyzing the past history of users in the parking database. Such tracking could lead

to the discovery of the users’ private information and unique identification. For example,

1We use parking recommender system and adversary interchangeably
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from past parking history, a user can be identified when he is at work, when he returns

home, as well as other personal information, e.g., when and which hospitals or clinics he

visits etc. Therefore, the parking database must preserve the privacy of the users such that

an adversary could not be able to uniquely identify a user. We assume that the adversary

is curious but not malicious.

4.4 Privacy Preservation

We preserve privacy using two techniques; one uses non-interactive data publishing through

k-anonymity [18] and the other uses interactive data publishing through differential pri-

vacy [21]. Out of the four privacy preservation techniques discussed in Section 2.3, we

adopted these two techniques of k-anonymity and differential privacy. We do not use `-

diversity and t-closeness because they are used when the distribution of sensitive attribute

is homogeneous or skewed, respectively, however, we do not have sensitive attribute in our

parking dataset.

4.4.1 Privacy Preservation through k-anonymity

k−anonymity [18] is the earliest work on privacy preservation that anonymizes a dataset in

such as a way that with respect to the set of quasi-identifier attributes, each record (or row)

is indistinguishable from at least k− 1 other records. The main purpose of k-anonymity is

to counter linking attacks, so that an adversary cannot uniquely identify a user by linking

the quasi-identifier attributes (such as birthdate, zip code and gender) with external data.

However, the quasi-identifier attributes in our scenario (e.g., user current location, parking

spot and timestamp), while they cannot by their nature be used to uniquely identify users

by linking to the external data, they can be combined together to track a user’s behavior

and mobility pattern (e.g., a disclosure attack). Therefore, we apply k-anonymity for

indistinguishability among multiple users, thus preventing an adversary from identifying a

user uniquely. k-anonymity is formally defined as:

Definition 1 (k-anonymity). A dataset D(A1, A2, ..., An) having attributes (A1, A2, ..., An),

where n is the number of attributes, QID be the quasi-identifier attributes associated with

this dataset and D[A1] is the value of A1 attribute in dataset D. Then the dataset D satis-

fies k-anonymity if each sequence of values of quasi-identifier attributes in dataset D (i.e.,

D[QID]) appears atleast k times [18].

The higher is the value of k, the stronger is the privacy. However, a trade-off exists

between privacy and utility, the stronger is the privacy (e.g., higher value of k), the lesser

will be the utility. Hence, a balance between privacy and utility is required.

k-anonymity achieves anonymization using generalization and suppression [18]. In this
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study, we consider single dimensional global recoding (i.e., mapping a value to the same

level of generalization in all the records for each attribute individually). In anonymization

process, removing the explicit identifiers is the first step, hence we first remove user ID

and apply anonymization on quasi-identifier attributes of user location (e.g., latitude and

longitude), parking spot and timestamp, while constructing the anonymized dataset. The

implementation and experimentation details are provided in Section 4.5.2

4.4.2 Privacy Preservation through Differential Privacy

Dwork [21] coined the term differential privacy, with the definition that the outcome of

a differentially private mechanism does not get highly affected by adding or removing a

single record in the dataset. This mechanism can protect the privacy of users while sharing

a database with an untrusted recommender system by perturbing the data. Differential

privacy thus overcomes the limitations of k-anonymity, specifically the curse of dimen-

sionality [22]. We adopt the interactive differentially private data publishing approach for

numeric queries by adding noise created by the Laplace mechanism, thereby answering

each numeric query f as it reaches the smart parking system (e.g., the curator) without

revealing any individual record [83].

We next define differential privacy and some important notations.

Definition 2 (ε-Differential Privacy).

A randomized process X adheres to ε-differential privacy if it fulfills the following two

conditions: i) two adjacent datasets D1 and D2 differ only in one element, and ii) all outputs

S ∈ range(X) where range(X) is the range of outputs of the process X [84]. Formally,

Pr[X(D1) ∈ S] ≤ eεPr[X(D2)] ∈ S (4.1)

where X(D1) and X(D2) are the randomized processes applied to datasets D1 and D2,

and ε is a parameter of privacy, known as the privacy budget. The smaller the value of ε,

the stronger the privacy.

Definition 3 (Sensitivity). The sensitivity defines the amount of the required per-

turbation. Assuming a query function f(.) in a given dataset, the sensitivity 4f is defined

as:

4 f = max
D1,D2

||f(D1)− f(D2)||1 (4.2)

Definition 4 (Laplace Mechanism). Differential privacy uses the Laplace mecha-

nism to perturb the results for numeric queries. It adds Laplace noise to the query result

sampled from the Laplace distribution that is centered at 0 with scaling b. The Laplace
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noise is represented by Lap(b). The higher the value of b, the higher the noise. The prob-

ability density function (pdf) of the Laplace distribution is given as Lap(x) = 1
2bε
−(|x|/b).

The Laplace mechanism for differential privacy is formally defined as: Given a function

f : D → R, the randomize process X adheres to ε-differential privacy if:

X(D) = f(D) + Lap(
4f
ε

) (4.3)

Equation 4.3 shows that the amount of noise is dependent upon the privacy budget ε

and sensitivity 4f . A lower privacy budget ε and higher sensitivity 4f generate higher

amount of noise.

The parking recommender makes the numeric query f to analyze the parking history,

e.g., the rating of a selected parking spot belonging to the user’s current location because

it may be possible that users of a certain location did not like certain parking spots due

to various reasons, e.g., too far away, crowded or a narrow or poorly-maintained road. A

sample query is:

f : How many users from a specific location (user current location, e.g., 43.3905, -

3.8896) gave a rating (e.g., 5-stars) for a specific parking spot (e.g., 3601) between a specific

timestamp (e.g., 2019-08-01 08:00−2019-08-02 08:00)?

This type of query is used with different parameters to evaluate differential privacy in

the next section.

4.5 Experiments

4.5.1 Experimental Setup

We used a real parking dataset of Santander, Spain that is comprised of the occupancy

time of parking spots for the month of December 2017. Real locations within Santander

were then used to generate a synthetic parking dataset by assigning the user locations

and ratings randomly for each record of the real parking occupancy dataset in order to

evaluate the privacy preservation of k-anonymity and of differential privacy techniques.

Hence, although our dataset is synthetic, it is generated from a real parking occupancy

dataset and real locations, and therefore it reflects a real dataset. The size of the dataset is

15306 records composed of 500 distinct real locations as users’ current locations (latitude

and longitude), 265 parking spots, 6242 timestamps and ratings of between 1 to 5 for the

duration of December 2017. The experiments were performed using Python 3.7.3 with

NumPy v1.16.4 and Pandas v0.24.2 libraries on a macOS Catalina v.10.15 with an Intel

Core i7 2.7 GHz processor with a 16 GB LPDDR3 RAM.
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Table 4.2 – Description of the experimentation database for anonymization.
Attribute Distinct

Values
Generalization type Height

User latitude 500 25 intervals between 0.0001 and 0.05 26

User longitude 500 25 intervals between 0.0001 and 0.05 26

Timestamp 6242 Intervals of 1, 2, 3, 4, 5 and 6 hours 7

Parking spot 265 13 intervals between 10 and 300 14

4.5.2 Evaluation of k-anonymity

We used the four attributes (user latitude, user longitude, timestamp and parking id)

presented in Table 4.2 of the parking dataset as Quasi-Identifier Attributes (QIA) and

evaluated k-anonymity using different values of k from 2 to 750. We analyzed the perfor-

mance of k-anonymity by individually studying different QIA sizes to have a complete and

detailed analysis. In Section 4.5.2.2, we analyze QIA size = 1 by selecting user latitude as

QIA. In Section 4.5.2.3, we analyze QIA size = 2 by selecting user latitude and user lon-

gitude as QIA. In Section 4.5.2.4, we analyze QIA size = 3 by selecting user latitude, user

longitude and parking id as QIA. In Section 4.5.2.5, we analyze another case of QIA size =

3 by selecting user latitude, user longitude and timestamp as QIA. In Section 4.5.2.6, we

analyze QIA size = 4 by selecting all the attributes: user latitude, user longitude, parking

id and timestamp as QIA. Finally in Section 4.5.2.7, we present all the QIA sizes together

that are discussed above to see the consolidated effect.

4.5.2.1 Performance Metrics

We evaluate the performance of k-anonymity in terms of privacy and utility using six

widely-adopted metrics:

1. Average groups size is the average size of the anonymized blocks/groups generated

by the anonymization technique. It is used to measure the privacy and utility of the

anonymized algorithm and has been widely used in the literature [19,20]. If the groups

sizes are smaller, an adversary/analyst would be able to infer more information that

enhances the utility but it weakens the privacy because due to smaller groups size,

it is relatively easier to uniquely identify the users. On the other hand, when the

groups sizes are larger, the privacy is stronger because it is difficult to identify the

users but it reduces the utility. So, the smaller average groups size is favourable for

utility while higher average groups size is favourable for privacy.

2. Total number of groups is the number of groups generated by the anonymization

algorithm. A higher number of groups causes smaller groups size which enhances
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the utility but weakens the privacy. On the other hand, a lower number of groups

makes the privacy stronger but it reduces the utility. So, the higher number of

groups is favourable for utility while lower number of groups (or higher groups size)

is favourable for privacy.

3. Generalization height is the height of an anonymized database, i.e., the number of

generalization levels applied. It has been widely used in the literature for measuring

the privacy and utility of anonymization technique [16,19,85]. With lower generaliza-

tion height, the values of records are closer to their actual values, hence it enhances

the utility but it weakens the privacy because an adversary/analyst could identify

the users uniquely. On the other hand, when the generalization height is higher, the

values of records are in the much generalized form, making it difficult for an adver-

sary/analyst to infer useful information from the anonymized dataset which results

in stronger privacy but lower utility. So, a lower generalization height is favourable

for utility while higher generalization height is favourable for privacy.

4. Number of suppressed records is the number of records that are suppressed because

they could not fit into any anonymized block/group (because of not fulfilling the

requirement of k) while privacy preservation. Suppressed records enhance privacy

because if they do not get suppressed, an adversary could identify the users because

of not fulfilling the requirement of k (i.e., not fulfilling the indistinguishability of

records). However, they reduce the utility because the suppressed records reduce the

size of the dataset, making the inference of useful information lower. So, a lower

number of suppressed records is favourable for utility.

5. Discernibility cost is the metric to measure the indistinguishability of records with

each other. The discernibility metric penalizes each record based on their indistin-

guishability from each other. Each unsuppressed record in a group of size j incurs

a cost j, while each suppressed record incurs a cost |D|, i.e., the size of the original

dataset D. This metric is used to measure the utility and privacy of anonymization

algorithm and it has also been widely-adopted in the literature [19, 20, 86]. A lower

discernibility cost if favourable for utility while higher discernibility cost if favourable

for privacy.

6. Execution time is the time required to generate an anonymized database of the original

database [85]. A lower execution time is favourable.
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4.5.2.2 Analysis of One Quasi-Identifier Attribute

In this section, we analyze the performance of k-anonymity when one attribute is selected

as QIA, i.e., QIA = 1 (user latitude).

Figure 4.2a presents the average groups size generated by the anonymization algorithm

from k=2 to k=750. For k=2 and k=10, the average groups size is around 30. This is

because no anymization is required as there is a total of 500 locations (i.e., num loc=500)

that are randomly assigned to the parking dataset D of size |D|=15306. Therefore, each

user latitude appears around 30 times on average (i.e., avg appearance = |D|
num loc ≈ 30),

hence it already fulfils the requirement of k=2 and k=10, by default. When k=25, the

average groups size is around 200. Although, apparently it seems that there should also be

no need of anonymization of user latitude at k=25 because the expected repetition of each

user latitude is 30 times (as discussed above, i.e., k=25 < avg appearance=30), however,

firstly that is an average repetition appearance, and secondly, since the user locations are

assigned randomly to the parking dataset, therefore the user latitude repetitions vary (i.e.,

from 17 to 71 times). Hence, the anonymization needs to be performed at k=25 and it

generates the average groups size of around 200 records. From k=50 to k=150, the average

groups size is around 500, and finally from k=200 to k=750, the average groups size is

around 1000. This result shows that the average groups size increases with the increasing

values of k. Higher is the value of k, higher is the group size, and hence lower is the utility.

Figure 4.2b presents the total number of groups generated by the anonymization algo-

rithm from k=2 to k=750. For k=2 and k=10, the total number of groups is very high

and around 500. This is because no anonymization is required (as shown in Figure 4.2a).

The total number of groups keeps decreasing from k=25 to k=750. This is because for

each increasing value of k, the anonymization algorithm has to maintain indistinguishable

groups of records that fulfills the requirements of k, hence causes larger groups and hence

smaller number of total groups. This result shows that the total number of groups reduces

with the increasing values of k. Higher is the value of k, lower is the total number of groups,

and hence lower is the utility.

Figure 4.2c presents the generalization height applied by the anonymization algorithm

from k=2 to k=750. For k=2 and k=10, the generalization height is zero because no

anonymization is required (as discussed above). The generalization height for k=25 is 5

because the anonymization algorithm is able to generate anonymized parking database at

this height. The generalization height for k=50 to k=150 is same and is 6 because as

we analyzed in Figure 4.2a, since the average groups size are same from k=50 to k=150,

therefore they are achieved by applying the same height of generalization. Similarly, the

generalization height from k=200 to k=750 is also same and is 7. This result shows that

the generalization height increases with the increasing values of k. Higher is the value of
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k, higher is the generalization height, and hence lower is the utility.

Figure 4.2d presents the number of suppressed records by the anonymization algo-

rithm to generate an anonymized parking database from k=2 to k=750. The records are

suppressed only when k=100,150 and when k=650,700,750. This is because in order to

maximize the utility, the anonymization algorithm tries to apply as minimal generalization

height as possible. Therefore, while applying a new generalization level, it first checks

the number of records that are not k-anonymous (i.e., Nnon anon). If Nnon anon > k, it

goes for another level of generalization, otherwise if Nnon anon < k, it suppresses these

Nnon anon records for maximizing the utility. This is why, the number of records that are

not k-anonymous (Nnon anon) at k=100,150 and k=650,700,750 are suppressed. This result

shows that on the one hand, the number of suppressed records reduces the utility by reduc-

ing size of the dataset, but on the other hand, it actually enhances the utility by avoiding

another level of generalization. Because the generalization affects the whole dataset and

may reduce the utility drastically by making the records more generalized and hence more

difficulty in analysis, as compared to the suppression of a small number of records (i.e., less

than k).

Figure 4.2e presents the discernibility cost from k=2 to k=750. For k=2 and k=10, the

discernibility costs are very low because no anonymization is required (as discussed in the

description of Figure 4.2a). At k=25, the discernibility cost is around 5×106. An important

point to note here is that from k=50 to k=150, the discernibility cost for k=100,150 is

higher than that of k=50,75, while they all apply the same generalization height, have the

same average group size and total number of groups, however, they differ in the number

of suppressed tuples (as shown in previous Figure 4.2d) and this is the reason of higher

discernibility cost at k=100,150 as compared to k=50,75. The similar explanation applies

to the higher discernibility cost at k=650,700,750 as compared to k=200-600. This result

is a very significant metric of utility and it shows that the discernibility cost increases with

the increasing values of k because of higher groups size and number of suppressed records.

Higher is the value of k, higher is the discernibility cost, and hence lower is the utility.

Finally, Figure 4.2f presents the execution time from k=2 to k=750. The execution time

for k=2 and k=10 is very negligible because no anonymization is required (as discussed

above). While for k=25 to k=750, the execution time is almost similar because the main

execution time is consumed in making the generalizations of the records. Since, there is

no much difference in the generalization heights of k=25 to k=750 (as presented in Figure

4.2c), therefore the execution time is similar.
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Figure 4.3 – Performance evaluation of k-anonymity when QIA = 2 (user latitude, user
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4.5.2.3 Analysis of Two Quasi-Identifier Attributes

In this section, we analyze the performance of k-anonymity when two attribute are selected

as QIA, i.e., QIA = 2 (user latitude, user longitude).

Figure 4.3a presents the average groups size generated by the anonymization algorithm

from k=2 to k=750 when QIA size = 2 (user latitude, user longitude). For k=2 and k=10,

the average groups size are around 30. Since a location is a combination of latitude and

longitude, therefore the same reason discussed in the description of Figure 4.2a in Section

4.5.2.2 applies here as well, i.e., no anonymization is required because the original parking

dataset already fulfills the requirement of k=2 and k=10 by default. In other words, the

average appearance of each location (avg appearance=30) is greater than k=2 and k=10.

When k increases from 25 to 150, the average groups size also keeps increasing to fulfill the

indistinguishability requirement of k. However, from k=200 to k=600, the average groups

size is similar and is around 1000. This is because at k=200, the minimim group size at

k=200 is 600, therefore the higher level of anonymization (or generalization) is required

above k=600. Finally, the average groups size from k=650 to k=750 are much higher

and around 1700-1800. This result shows that the average groups size increases with the

increasing values of k. Higher is the value of k, higher is the group size, and hence lower is

the utility.

Figure 4.3b presents the total number of groups generated by the anonymization al-

gorithm from k=2 to k=750 when QIA size = 2 (user latitude, user longitude). For k=2

and k=10, the total number of groups are very high and around 500. This is because no

anonymization is required (as discussed before). The total number of groups keeps reducing

from k=25 to k=750. This is because for each increasing value of k, the anonymization

algorithm has to maintain indistinguishable groups of records that fulfills the requirements

of k, hence causes larger groups and hence smaller number of total groups. This result

is very similar to the result of total number of groups when QIA size = 1 (user latitude)

in Figure 4.2b because a location is comprised of a pair of latitude and longitude. Hence,

when we apply either one part of location (e.g., latitude) or both parts (e.g., latitude and

longitude), we exhibit the similar trend. It shows that the total number of groups reduces

with the increasing values of k. Higher is the value of k, lower is the total number of groups,

and hence lower is the utility.

Figure 4.3c presents the generalization height applied by the anonymization algorithm

from k=2 to k=750 when QIA size = 2 (user latitude, user longitude). For k=2 and k=10,

the generalization height is zero because no anonymization is required (as discussed above).

The generalization height for k=25 is around 17 because the anonymization algorithm is

able to generate anonymized parking database at this height when anonymizing two QIA

of user latitude and user longitude. The generalization height for k=50 to k=150 keeps
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increasing, but remains same from k=200 to k=600. The reason is similar as explain in

the result of average groups size, i.e., the minimum groups size at k=200 is 600, hence no

more generalization (or anonymization) is required until k=600. Finally, the generalization

height from k=650 to k=750 is around 28 and is the highest. This result shows that the

generalization height increases with the increasing values of k. Higher is the value of k,

higher is the generalization height, and hence lower is the utility.

Figure 4.3d presents the number of suppressed records by the anonymization algorithm

to generate an anonymized parking database from k=2 to k=750 when QIA size = 2 (user

latitude, user longitude). The records are suppressed when k=25,50,100,150,600,700,750.

This is because in order to maximize the utility, the anonymization algorithm tries to apply

as minimal generalization height as possible. Therefore, while applying a new generaliza-

tion level, it first checks the number of records that are not k-anonymous (i.e., Nnon anon).

If Nnon anon > k, it goes for another level of generalization, otherwise if Nnon anon < k,

it suppresses these Nnon anon records for maximizing the utility. This is why, the number

of records that are not k-anonymous (Nnon anon) at k=25,50,100,150,600,700,750 are sup-

pressed. This result shows that on the one hand, the number of suppressed records reduces

the utility by reducing the size of the dataset, but on the other hand, it actually enhances

the utility by avoiding another level of generalization. Because the generalization affects

the whole dataset and may reduce the utility drastically by making the records more gen-

eralized and hence more difficulty in analysis, as compared to the suppression of a small

number of records (i.e., less than k).

Figure 4.3e presents the discernibility cost from k=2 to k=750 when QIA size = 2 (user

latitude, user longitude). For k=2 and k=10, the discernibility cost is very low and almost

negligible because no anonymization is required (as discussed before). The discernibility

cost keeps increasing from k=25 to k=150 because of having varying groups sizes. However

from k=200 to k=550, the discernibility cost is same because of having the similar groups

size. Although, the average group size at k=600 is also same (in Figure 4.3a) but it incurs

higher discernibility cost because of suppressing the records. Finally, the discernibility cost

increases at k=650 and stays constant from k=700 to k=750. This result shows that the

discernibility cost increases with the increasing values of k because of higher groups size

and number of suppressed records. When the groups size and number of suppressed records

are similar, the discernibility cost is also similar (e.g., from k=200 to k=550). Higher is

the value of k, higher is the discernibility cost, and hence lower is the utility.

Finally, Figure 4.3f presents the execution time from k=2 to k=750 when QIA size =

2 (user latitude, user longitude). The execution time for k=2 and k=10 is very negligible

because no anonymization is required (as discussed above). While for k=25 to k=750, the

execution time is almost similar because the main execution time is consumed in making
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the generalizations of the records. Since, there is no much difference in the generalization

heights of k=25 to k=750 (as presented in Figure 4.2c), therefore the execution time is

similar.

4.5.2.4 Analysis of Three Quasi-Identifier Attributes (Case 1)

We have two cases when three attributes are selected as QIA. In both case, the first two

QIA are user location and user longitude. In the first case, the parking id is selected as

the third QIA, while in the second case, timestamp is selected as the third QIA. In this

section, we consider the first case and analyze the performance of k-anonymity when three

attributes are selected as QIA, i.e., QIA = 3 (user latitude, user longitude, parking id).

Figure 4.4a presents the average groups size generated by the anonymization algorithm

from k=2 to k=750 when QIA size = 3 (user latitude, user longitude, parking id). The

average groups size from k=2 to k=50 are very small as compared to others because due to

the repeated locations (user latitude and longitude) and parking spots, the anonymization

algorithm was able to make smaller groups causing lower groups sizes. However, from

k=75 to k=750, the average groups size keep increasing because since the anonymization

algorithm has to fulfill the indistinguishability of records equal to k, it ended up making

bigger groups. However, at k=150,250,300,600, the average groups sizes are smaller as

compared to their neighbors. The reason is that at these values of k, the anonymization

algorithm was able to enhance the utility by applying slightly lower generalization height

(discussed next in Figure 4.4c) by the suppression of records (discussed next in Figure

4.4d). Overall, this result shows that the average groups size increases with the increasing

values of k. Higher is the value of k, higher is the group size, and hence lower is the utility.

Figure 4.4b presents the total number of groups generated by the anonymization algo-

rithm from k=2 to k=750 when QIA size = 3 (user latitude, user longitude, parking id). In

this result, the total number of groups are very high for k=2,10,25,50 having total number

of groups around 400, 150, 60 and 60 respectively. However, at k=75, the total number

of groups reduces drastically with having a total of 7 groups. From k=75 to k=750, the

total number of groups are very low and between 3 to 10. The pattern is very obvious

and self-explanatory. For lower values of k, the anonymization algorithm has to ensure

low indistinguishability of records, and hence it can make smaller groups sizes resulting

in a higher number of total groups. But as the value of k gets higher, the anonymization

algorithm has to ensure high indistinguishability of records, resulting in larger groups sizes

and lower number of groups. This result shows that the total number of groups reduces

with the increasing values of k. Higher is the value of k, lower is the total number of groups,

and hence lower is the utility.

Figure 4.4c presents the generalization height applied by the anonymization algorithm
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Figure 4.4 – Performance evaluation of k-anonymity when QIA = 3 (user latitude, user
longitude, parking id)



CHAPTER 4. PRIVACY PRESERVATION FOR SMART PARKING SYSTEM 123

from k=2 to k=750 when QIA size = 3 (user latitude, user longitude, parking id). The

generalization heights from k=2 to k=50 are much lower as compared to others because due

to the repeated locations (user latitude and longitude) and parking spots, the anonymiza-

tion algorithm was able to achieve indistinguishable records satifying the requirement of k

at lower generalization heights. However, from k=75 to k=750, the generalization heights

keep increasing because since the anonymization algorithm has to fulfill the indistinguish-

able of records equal to higher values of k, it achieved it by applying higher generalization

heights. However, at k=150,250,300,600, the generalization heights are slightly lower as

compared to their neighbors. This is because at these values of k, the anonymization al-

gorithm was able to enhance the utility by applying slightly lower generalization height

at the cost of suppressing the non anonymized records (Nnon anon) lower than k (i.e.,

Nnon anon < k)(discussed next in Figure 4.4d). Overall, this result shows that the gen-

eralization height increases with the increasing values of k. Higher is the value of k, higher

is the generalization height, and hence lower is the utility.

Figure 4.4d presents the number of suppressed records by the anonymization algorithm

to generate an anonymized parking database from k=2 to k=750 when QIA size = 3

(user latitude, user longitude, parking id). The records are suppressed to maximize the

utility by applying as minimal generalization height as possible. The number of suppressed

records are highest at k=600, i.e., around 200 more suppressed records than its neighbors,

e.g., k=400-750. This is because the anonymization algorithm was able to apply one less

generalization height than its neighbors, hence enhancing the utility.

Figure 4.4e presents the discernibility cost from k=2 to k=750 when QIA size = 3

(user latitude, user longitude, parking id). The discernibility costs from k=2 to k=50 are

comparably quite low because the anonymization algorithm was able to make clusters of

smaller groups having lower groups sizes due to the repeated locations (user latitude and

longitude) and parking spots. However, from k=75 to k=750, the discernibility cost keeps

increasing because since the anonymization algorithm has to fulfill the indistinguishable of

records equal to k, it ended up making bigger groups and suppressing the more number

of records. However, at k=150,250,300,600, the discernibility costs are comparable lower

in the neighborhood because at these values of k, the anonymization algorithm generated

smaller groups sizes by applying slightly lower generalization height. Hence, smaller groups

sizes results in lower discernibility cost. Overall, this result shows that the discernibility

cost increases with the increasing values of k. Higher is the value of k, higher is the

discernibility cost, and hence lower is the utility.

Finally, Figure 4.4f presents the execution time from k=2 to k=750 when QIA size

= 3 (user latitude, user longitude, parking id). For all values of k, the execution time is

almost similar because the main execution time is consumed in making the generalizations
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of the records. Since, there is no much difference in the generalization heights, therefore

the execution time is similar.

4.5.2.5 Analysis of Three Quasi-Identifier Attributes (Case 2)

In this section, we consider the second case and analyze the performance of k-anonymity

when three attributes are selected as QIA, i.e., QIA = 3 (user latitude, user longitude,

timestamp).

Figure 4.5a presents the average groups size for the second case generated by the

anonymization algorithm from k=2 to k=750 when QIA size = 3 (user latitude, user

longitude, timestamp). When k=2 and k=10, the average groups size is similar and is

around 90 because the anonymization algorithm was able to make smaller groups to fulfill

the indistinguishability of records for lower values of k. The average groups size keeps

increasing with the higher values of k because for the higher values of k, the anonymization

algorithm has to maintain groups having sizes equal to or greater than the higher values

of k. Another point to note here is that from k=450 to k=750, the average groups size is

zero, this is because at this point (i.e., when k >= 450), the anonymization algorithm is

unable to make an anonymized dataset from the original dataset. This result shows that

the average groups size increases with the increasing values of k and the anonymization is

not possible beyond k >=450. Higher is the value of k, higher is the group size, and hence

lower is the utility.

Figure 4.5b presents the total number of groups generated by the anonymization algo-

rithm from k=2 to k=750 when QIA size = 3 (user latitude, user longitude, timestamp). In

this result, the total number of groups are very high for k=2 and k=10 having a total num-

ber of groups around 160. This is because the anonymization algorithm has to maintain

very smaller groups of indistinguished records, i.e., 2 and 10, hence it makes higher number

of groups by creating smaller groups sizes. However, from k=25 to k=400, the total number

of groups reduces drastically low because as the value of k gets higher, the anonymization

algorithm has to ensure high indistinguishability of records, resulting in larger groups sizes

and lower number of groups. Finally, from k=450 to k=750, the total number of groups

is zero because the anonymization algorithm is unable to make an anonymized parking

dataset from the original parking dataset by satisfying the requirement of k=450-700. This

result shows that the total number of groups reduces with the increasing values of k. Higher

is the value of k, lower is the total number of groups, and hence lower is the utility.

Figure 4.5c presents the generalization height applied by the anonymization algorithm

from k=2 to k=750 when QIA size = 3 (user latitude, user longitude, timestamp). The gen-

eralization height for k=2 to k=50 is almost similar, i.e., around 45 because the anonymiza-

tion algorithm is able to make an anonymized parking dataset at this generalization height.
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Figure 4.5 – Performance evaluation of k-anonymity when QIA = 3 (user latitude, user
longitude, timestamp)
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However, from k=75 to k=450, the generalization height is around 60 and is same because

this is the highest generalization height possible. At this point, the anonymization algo-

rithm has to suppress the records (presented in next Figure 4.5d) because there is no more

higher generalization available.

Figure 4.5d presents the number of suppressed records by the anonymization algorithm

to generate an anonymized parking dataset from k=2 to k=750 when QIA size = 3 (user

latitude, user longitude, timestamp). The records are suppressed to maximize the utility by

applying as minimal generalization height as possible. The anonymization algorithm tries

to enhance the utility by applying the minimum possible generalizations and suppressing

the records. The number of suppressed records from k=2 to k=50 are same because the

anonymization algorithm is able to make anonymized parking dataset at the same gener-

alization height. However, the number of suppressed records keep increasing from k=75.

This is because at this point, the anonymization algorithm has applied the maximum pos-

sible generalizations (as discussed in previous figure). Hence, the only possibility is to

suppress the records to achieve the k-anonymity. Here, note that from k=450 to k=750,

the number of suppressed records is 15306 that is equal to the size of our original dataset.

This is because the anonymization algorithm could not find an anonymization that fulfills

the requirement of k=450 to k=750, hence it dropped all the records.

Figure 4.5e presents the discernibility cost from k=2 to k=750 when QIA size = 3 (user

latitude, user longitude, timestamp). The discernibility cost is another measure of utility

that is dependent upon number of groups, size of groups and number of suppressed tables.

For k=2 to k=50, the discernibility cost is very low and is same (results in a higher utility)

because of similar number of suppressed records, and the similar ratio of number of groups

to groups sizes. However, the discernibility cost keeps increasing from 75 to 450 because

of the phenomena described in the results of number of suppressed records, i.e., it already

has applied the maximum generalizations available, hence it suppressed the records (the

only possible solution) and therefore incurs higher discernibility cost (and lower utility).

The discernibility cost from k=450 to k=750 is the highest possible discernibility cost (and

the worst utility) because the anonymization algorithm is unable to make anonymized

dataset and suppressed all the records. Overall, this result shows that the discernibility

cost increases with the increasing values of k. Higher is the value of k, higher is the

discernibility cost, and hence lower is the utility.

Finally, Figure 4.5f presents the execution time from k=2 to k=750 when QIA size

= 3 (user latitude, user longitude, timestamp). For all values of k, the execution time is

almost similar because the main execution time is consumed in making the generalizations

of the records. Since, there is no much difference in the generalization heights, therefore

the execution time is similar.
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Figure 4.6 – Performance evaluation of k-anonymity when QIA = 4 (user latitude, user
longitude, timestamp, parking id)
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4.5.2.6 Analysis of Four Quasi-Identifier Attributes

In this section, we analyze the performance of k-anonymity when all the four attributes are

selected as QIA, i.e., QIA = 4 (user latitude, user longitude, timestamp and parking id).

Figure 4.6a presents the average groups size generated by the anonymization algorithm

from k=2 to k=750 when QIA size = 4 (user latitude, user longitude, timestamp, parking

id). The average groups size in this figure is very similar to the average groups size in

Figure 4.5a (the second case of QIA=3). This is because the most heterogeneous attribute

is timestamp having 6242 distinct values, while the parking id attribute is not much hetero-

geneous as it has 265 distinct values that is much less diverse than the timestamp attribute.

This is why, we learned in this result that if timestamp and parking id attributes are both

selected as QIA, then parking id attribute does not have much significance. In other words,

we can say that when we select timestamp as QIA in anonymization, it also covers parking

id attribute by default. To summarize the result in Figure 4.6a, the average groups size is

very small and same at k=2 and k=10, however, it keeps increasing from k=25 to k=400 be-

cause of fulfilling the requirement of higher indistinguishability of records to satisfy higher

values of k. For k >=400, the average groups size is zero because no anonymization exists

at these points. Overall, it shows that the average groups size increases with the increasing

values of k and the anonymization is not possible beyond k >=450. Higher is the value of

k, higher is the group size, and hence lower is the utility.

Figure 4.6b presents the total number of groups generated by the anonymization algo-

rithm from k=2 to k=750 when QIA size = 4 (user latitude, user longitude, timestamp,

parking id). The total number of groups in this figure is very similar to the total number of

groups in Figure 4.5b (the second case of QIA=3). The reason is same as described above,

i.e., the timestamp attribute is much more diverse than parking id attribute and hence, it

already covers the parking id attribute in anonymization. To summarize the Figure 4.6b,

the total number of groups are very high at k=2 and k=10 because of having lower require-

ment of indistinguishability of records. The total number of groups then keep reducing

from k=25 to k=400 in order to fulfill the requirement of higher indistinguishability of

records. From k=450 to k=750, there is no group because anonymization is not possible.

Overall, the total number of groups reduces with the increasing values of k. Higher is the

value of k, lower is the total number of groups, and hence lower is the utility.

Figure 4.6c presents the generalization height applied by the anonymization algorithm

from k=2 to k=750 when QIA size = 4 (user latitude, user longitude, timestamp, parking

id). The trend in this figure is similar to the trend in Figure 4.5c (the second case of QIA=3)

but the values are different. The reason of similar trend is the same as discussed above,

i.e., the timestamp attribute is much more diverse than parking id attribute and hence, it

already covers the parking id attribute in anonymization. While, the reason of different
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values of generalization height is that parking id attribute still has to be generalized to

make it indistinguishable. Otherwise, it would not be possible to generate an anonymize

dataset without generalizing the parking id attribute. To summarize the Figure 4.6c,

the generalization height for k=2 to k=50 is almost similar because the anonymization

algorithm is able to make an anonymized parking dataset at this generalization height.

However, from k=75 to k=450, the generalization height is higher and same because this

is the highest generalization height possible. At this point, the anonymization algorithm

has to suppress the records (presented in next Figure 4.6d) because there is no more higher

generalization available.

Figure 4.6d presents the number of suppressed records by the anonymization algorithm

to generate an anonymized parking dataset from k=2 to k=750 when QIA size = 4 (user

latitude, user longitude, timestamp, parking id). The total number of suppressed records in

this figure is very similar to the total number of suppressed records in Figure 4.5d (the sec-

ond case of QIA=3). The reason is similar as described above, i.e., the timestamp attribute

is much more diverse than parking id attribute and hence, it already covers the parking id

attribute in anonymization. To summarize, the number of suppressed records from k=2 to

k=50 are same because the anonymization algorithm is able to make anonymized parking

dataset at the same generalization height. However, the number of suppressed records

keep increasing from k=75 because at this point, the anonymization algorithm has applied

the maximum possible generalizations and follow the only possible solution of suppressing

the records to achieve the k-anonymity. From k=450 to k=750, the number of suppressed

records is 15306 that is equal to the size of our original dataset because the anonymization

algorithm could not find an anonymization that fulfills the requirement of k=450 to k=750,

hence it dropped all the records.

Figure 4.6e presents the discernibility cost from k=2 to k=750 when QIA size = 4

(user latitude, user longitude, timestamp, parking id). Similar to previous results, the

discernibility cost in this figure is very similar to the discernibility cost in Figure 4.5e (the

second case of QIA=3). The same explanation applies here as well. To summarize, for k=2

to k=50, the discernibility cost is very low and constant (results in a higher utility) because

of similar number of suppressed records, and the similar ratio of number of groups to groups

sizes. However, the discernibility cost keeps increasing from k=75 to k=450 because of the

phenomena described in the results of number of suppressed records, i.e., it already has

applied the maximum generalizations available, hence it suppressed the records (the only

possible solution) and therefore incurs higher discernibility cost (and lower utility). Also,

the discernibility cost increases with the increasing values of k. Higher is the value of k,

higher is the discernibility cost, and hence lower is the utility.

Finally, Figure 4.6f presents the execution time from k=2 to k=750 when QIA size =
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4 (user latitude, user longitude, timestamp, parking id). For all values of k, the execution

time is almost similar and is around 2000 seconds because the main execution time is

consumed in making the generalizations of the records. Since, there is no much difference

in the generalization heights, therefore the execution time is similar.

4.5.2.7 Consolidated Analysis

In this section, we present the consolidated results of all the previous analysis of k-

anonymity with varying QIA sizes (i.e., QIA =1, 2, 3 (case 1 and case 2) and 4) in order

to have a complete and consolidated view.

Figure 4.7a presents the average groups size generated by the anonymization algorithm

from k=2 to k=750 for all the QIA sizes presented before. The result shows that the

average groups size increases with the higher values of k. However, there is a surprising

behaviour of the first case of QIA = 3 (user latitude, user longitude, parking id). It makes

much average higher groups sizes as compared to other QIA sizes (i.e., QIA = 1, 2, 3 (case

2) and 4). This is because of non suppression of records, i.e., QIA = 3 (case 1) does not

suppress the records and hence, it results in larger groups sizes, while QIA = 3 (case 2) and

QIA = 4 suppress the records, causing smaller groups sizes. The main insight is that the

groups sizes increases with the increasing values of k, as well as with the increasing QIA

sizes at a limit when no suppression is made. Overall, the average groups size increases

with the increasing values of k. Higher is the value of k, higher is the groups size, and

hence lower is the utility.

Figure 4.7b presents the total numbers of groups generated by the anonymization al-

gorithm from k=2 to k=750 for all the QIA sizes presented before. There are two insights

gained from this result. Firstly, the total number of groups reduces with the increasing

values of k. Secondly, the total number of groups also reduces with the increasing QIA

sizes. Higher is the value of k and QIA sizes, lower is the number of groups, and hence

lower is the utility.

Figure 4.7c presents the generalization heights applied by the anonymization algorithm

from k=2 to k=750 for all the QIA sizes presented before. There are three insights gained

from this result. Firstly, the generalization height increases with the higher values of k.

Secondly, the generalization height also increases with the higher QIA sizes. Thirdly, the

generalization heights increases until k=75. After k=75, the generalization height is same

because no more higher generalization is available. Higher is the value of k and QIA sizes,

higher is the generalization height, and hence lower is the utility.

Figure 4.7d presents the number of suppressed records by the anonymization algorithm

from k=2 to k=750 for all the QIA sizes presented before. There are four insights gained

from this result. Firstly, the number of suppressed records increases with the higher values
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of k. Secondly, the number of suppressed records also increases with the higher QIA sizes.

Thirdly, the number of suppressed records for QIA = 3 (case 2) and QIA = 4 increases until

k=400. From k >=450, the number of suppressed records is equal to the size of the original

dataset, i.e., no anonymization is made. Fourthly, the number of suppressed records by

QIA = 3 (case 2) and QIA = 4 is same, it means that they exhibit the same behaviour.

Higher is the value of k and QIA sizes, higher is the number of suppressed records, and

hence lower is the utility.

Figure 4.7e presents the number of discernibility cost incurred by the anonymization

algorithm from k=2 to k=750 for all the QIA sizes presented before. There are four insights

gained from this result. Firstly, the discernibility cost increases with the higher values of

k. Secondly, the discernibility cost also increases with the higher QIA sizes. Thirdly,

the discernibility cost for QIA = 3 (case 2) and QIA = 4 increases until k=400. From

k >=450, the discernibility is equal and is the highest possible discernibility cost because

all the records in the datatset are suppressed. Fourthly, the number of suppressed records

by QIA = 3 (case 2) and QIA = 4 is same and they exhibit the same behaviour. Higher is

the value of k and QIA sizes, higher is the number of discernibility cost, and hence lower

is the utility.

Finally, figure 4.7f presents the execution time by the anonymization algorithm from

k=2 to k=750 for all the QIA sizes presented before. There are two insights gained from

this result. Firstly, the execution time increases with the higher values of k. Secondly, for

each QIA size, the execution time is almost similar. It means that the execution time is

mainly dependent upon the size of QIA, or in other words, it depends upon the level of

generalizations that need to be applied to construct an anonymized parking dataset.

4.5.3 Evaluation of Differential Privacy

We evaluated differential privacy for the numeric query type as discussed in Section 4.4.2

by generating 1000 random queries. For each query, the user’ current location, timestamp,

parking spot and rating are randomly selected from the parking dataset. Subsequently, a

time range is randomly selected between 1 to 30 days and for each location, we consider

nearby locations within 5km radius. We evaluate differential privacy using different values

of privacy budget ε from ε=0.1 to ε=1.0. The sensitivity 4f defines the number of records

that gets affected with the addition or removal of a user. As in our parking dataset, a

user may appear multiple times but we do not know the exact number of appearences,

therefore, we analyze the effects of different values of sensitivity 4f values from 1 to 5, i.e.,

the appearence or removal of a user in the dataset affects 1 to 5 records, respectively.
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4.5.3.1 Performance Metrics

We evaluate the accuracy and privacy of differential privacy by using two widely-adopted

metrics:

• Mean Absolute Error (MAE) measures the average amount of errors. It is an average

over the number of queries of the absolute differences between the actual query result

and noisy result. It measures the privacy and the utility. If the MAE is high, the

difference between the actual and noisy query results is high that makes the privacy

stronger but reduces the utility. While if the MAE is low, the difference between

the actual and noisy query results is low that enhances the utility but weakens the

privacy. MAE has been widely-adopted in the literature for evaluating differential

privacy [87–89]. It is defined as:

MAE =
1

N

N∑
i=1

|ra,i − rn,i| (4.4)

where N is the total number of queries, ra,i is the actual response of query i, rn,i is

the noisy response of query i.

• Root Mean Square Error (RMSE) is a quadratic scoring function and it also measures

the average amount of errors. It is the square root of the average of squared differences

between the actual query result and noisy result. It measures the privacy and the

utility. Similar to MAE, if the RMSE is high, the difference between the actual and

noisy query results is high that makes the privacy stronger but reduces the utility.

While if the RMSE is low, the difference between the actual and noisy query results

is low that enhances the utility but weakens the privacy. It has been widely-adopted

in the literature for evaluating differential privacy [87–90]. It is defined as:

RMSE =

√∑N
i=1(ra,i − rn,i)2

N
(4.5)

where N is the total number of queries, ra,i is the actual response of query i, rn,i is

the noisy response of query i.

4.5.3.2 Analysis of Individual Sensitivities

In this section, we analyze the performance of differential privacy in terms of accuracy

and privacy using MAE and RMSE for privacy budget ε=0.1 to ε=1.0 by analyzing each

sensitivity (4f) individually.
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Figure 4.9 – MAE and RMSE for varying privacy budget ε when sensitivity (4f)=2

Figure 4.8 presents MAE and RMSE for privacy budget ε=0.1 to ε=1.0 when sensitivity

4f=1 (i.e., the addition or removal of a user affects one record in the parking dataset). It

shows that when ε=0.1, the MAE and RMSE are very high, i.e., 10 and 14, respectively

because ε=0.1 guarantees the highest privacy, however at the cost of the worst utility.

However, as ε keeps increasing, the MAE and RMSE keeps reducing drastically and at

ε=1.0, both MAE and RMSE are close to zero. It means that we have the highest utility

at this point, however there is no privacy because the noisy results are very similar to the

actual results. Overall, the MAE and RMSE reduces with the increasing values of privacy

budget ε. Higher is the privacy budget ε, higher is the privacy but lower is the utility.

Inversely, lower is the privacy budget ε, lower is the privacy but higher is the utility.
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Figure 4.10 – MAE and RMSE for varying privacy budget ε when sensitivity (4f)=3
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Figure 4.11 – MAE and RMSE for varying privacy budget ε when sensitivity (4f)=4

Figure 4.9 presents MAE and RMSE for privacy budget ε=0.1 to ε=1.0 when sensitivity

4f=2 (i.e., the addition or removal of a user affects two records in the parking dataset).

The trend is very similar to Figure 4.8 when4f=1, however, at ε=0.1 the MAE and RMSE

are almost double. This is because when 4f=2, since an additional or removal of a user

affects at least two records, therefore we have two times (i.e., 2×) MAE and RMSE than

at 4f=1. However, the MAE and RMSE at 4f=2 keeps reducing with the increasing

values of privacy budget ε and at ε=1.0, the MAE and RMSE are almost similar to those

at 4f=1.

Similarly, figures 4.10, 4.11 and 4.12 present MAE and RMSE for privacy budget ε=0.1

to ε=1.0 when sensitivity 4f=3, 4f=4 and 4f=5 (i.e., the addition or removal of a user
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Figure 4.12 – MAE and RMSE for varying privacy budget ε when sensitivity (4f)=5

affects three, four and five records in the parking dataset), respectively. The trends are

similar as discussed before. Initially, at ε=0.1, the MAE and RMSE are three, four and

five times (3×, 4× and 5×) for 4f=3, 4, 5, respectively, as compared to MAE and RMSE

for 4f=1. However, as ε increases and reaches towards 1.0, the MAE and RMSE get close

to zero. Overall, the MAE and RMSE are very high at privacy budget ε=0.1, which give

very strong privacy, however at the cost of the worst utility. The MAE and RMSE keep

reducing with the increasing values of privacy budget ε and at ε=1.0, the MAE and RMSE

are very similar for all sensitivities 4f=3, 4, 5.

4.5.3.3 Consolidated Results

In this section, we present the consolidated results of all the previous analysis of differential

privacy with all previously discussed sensitivity 4f values (i.e., 4f=1, 2, 3, 4, 5) in order

to have a complete and consolidated view.

Figure 4.13 presents the consolidated results of MAE and RMSE for all sensitivity

values 4f=1, 2, 3, 4, 5 for privacy budget ε=0.1 to ε=1.0. These results provide two

insights. Firstly, initially at ε=0.1, the MAE and RMSE are very high for all sensitivity

4f values (that provides very strong privacy but no utility), however, as privacy budget ε

keeps getting closer to 1.0, the MAE and RMSE are becoming similar and getting close to

zero (that provides very high utility but no privacy). Secondly, as the sensitivity 4f value

increases, the MAE and RMSE also gets higher to many folds but then they get closer to

other sensitivity 4f values when privacy budget ε values gets higher. Overall, the MAE

and RMSE reduces with the increasing values of privacy budget ε. Higher is the privacy

budget ε, higher is the privacy but lower is the utility. Inversely, lower is the privacy budget
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ε, lower is the privacy but higher is the utility.

4.6 Summary and Discussion

To summarize and conclude, this chapter presented the second contribution of this the-

sis of privacy preservation for smart parking system. It protects the privacy of users in

the historic parking dataset against third-party parking recommender that is untrusted or

semi-trusted or one could not identify its trustworthiness. The parking dataset is shared

with the parking recommender system to provide efficient and personalized recommenda-

tions of parking spots based on users’ past experience. However, since it contains the past

history of parking information of users, it breaches the privacy of the user because the

parking recommender (or an adversary) can track the routine and mobility patterns of

users by analyzing such parking dataset. In this study, we preserve the privacy of users

while sharing their parking information (that contains their private behavior and mobility

pattern) with a parking recommender system through two well-known privacy preservation

techniques of anonymization and perturbation: k-anonymity and differential privacy. We

discuss the system and adversary models, discussion and applicability of k-anonymity and

differential privacy on parking dataset and then performed extensive experiments to study

the privacy and utility of k-anonymity and differential privacy on our parking dataset.

The proposed implementation enables users to receive personalized and efficient recom-

mendations of parking spots based on their past parking experience while protecting their

privacy. Experimental results evaluated the utility and privacy of both privacy preservation
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techniques.

From our experiments, we found that k-anonymity is suitable for smaller values of k

and for lower QIA sizes. When k is much higher, the utility is very low. Specifically, when

k >=450 and QIA = 3 (user latitude, user longitude, timestamp) or QIA size = 4 (user

latitude, user longitude, timestamp, parking id), the k-anonymity is unable to generate

an anonymized parking dataset because the requirement of k does not get fulfilled. Also,

the behaviour of QIA = 3 (user latitude, user longitude, timestamp) and QIA = 4 is very

similar because timestamp attribute is much more diverse than parking id attribute and

therefore, it covers parking id in anonymization by default. For differential privacy, we

found that when the privacy budget ε is very low (e.g., ε=0.1), the privacy is very strong,

however the utility is worse. As the privacy budget ε keeps getting higher, the utility starts

improving, however at the cost of weakening the privacy. Additionally, the sensitivity 4f
also affects the privacy and utility. The higher is the sensitivity 4f value, stronger is the

privacy but lower is the utility.

In the next chapter, we presents two frameworks for cross-domain recommendation ser-

vices and application-to-application communications using social IoT across smart cities/IoT

applications.
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5.1 Introduction

The main focus of this chapter is to propose two frameworks for cross-domain recommenda-

tion services and communications across smart cities applications using Social IoT (SIoT).

More specifically, many of the smart cities applications available today have been developed

in a vertical manner by focusing on a specific scenario or use case without considering data

exchange and reuse with other IoT applications. This very specific focus results in poor

service because of the lack of integration of different data and hence the interoperability in

the smart cities data and systems. However, if smart cities applications could collaborate

by communicating, exchanging and reusing each other’s data, opportunities for new value-

added and more efficient recommendation services could be generated. In this chapter,

we provide two frameworks for the recommendation services and application-to-application

communications using SIoT in smart cities. The first framework (in Section 5.3) proposes

to use SIoT for cross-domain recommendation services across smart cities applications,

while the second framework (in Section 5.4) proposes another type of communication for

the SIoT at a global level that enables application-to-application communication, known

as social cross-domain IoT (SCDIoT).

5.2 Related Works

In the last few years, a large number of research studies have been focused on the SIoT,

however, to the best of our knowledge, none of them has focused neither on SIoT-based

recommendation services across IoT/smart cities application nor on social cross-domain

IoT. We present the state-of-the-art in this section.

One of the early proposals for establishing social relationships among objects is pre-

sented in [91]. This work focused on establishing temporary relationships using wireless

devices, specifically wireless sensor nodes, and on how the owners of sensors can control

this relationship establishment. However, this work was performed in 2001 and at that

time, the IoT, smart cities and social networks were still in their infancy.

The authors in [92] distinguished the things connected to the Internet with the things

involved in social networks, which they termed as the neologism Blogject (i.e., objects that

blog). Another concept, Embodied Microblogging (EM), was presented in [93]. EM intro-

duces two new roles that augment daily life objects rather than focusing on people-to-thing

or thing-to-thing paradigms. These two roles are mediating people-to-people communica-

tion and supporting new procedures for considering the noticing and noticeable activities in

daily life. The authors in [94] proposed a concept in which objects are able to participate in

conversations previously reserved for humans. These objects are context-aware, and hence

are able to create a networking infrastructure based on the dissemination of information,
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rather than information on the objects themselves.

Recently, integrating the two worlds of the IoT and social networks is proposed in the

literature [95–97]. The authors in [95] visualize the future of the Internet as ubiquitous IoT

architecture, which is similar to a social organization framework (SOF) model and provides

an overview of future IoT network structure. However, this work does not exploit social

network features into the IoT [23]. The authors in [96] suggest that as things are involved

together with humans in the network, the social network can be more meaningful if it is

built on the IoT by investigating the relationships of IoT objects. The main convergence

of social networks and the IoT is also introduced in [97], in which the social network is a

social network of humans that is used by things as an infrastructure for service discovery,

access and advertisement. In this work, a person can share the services offered by his smart

objects with his friends as well as sharing their things (or devices).

Another work on the SIoT investigates the integration of social networks and the IoT

with some sample applications [98]. However, it neither discusses how social relationships

can be established by objects nor provides any solution for the required protocols and

architectures. In [99], the authors investigate the social attributes or relations among mobile

nodes by considering two parameters, i.e., an interaction factor and a discount factor, as well

as investigating the behavior of mobile nodes by applying social networks. However, their

approach assumes a one-to-one relation between objects and humans, whereas in the IoT,

many objects are associated with a single human, and hence a large number of objects would

not be considered in this work [23]. Some work has been done on recommendation services

in smart homes to allow smart assistance [100,101]. The humans’ current situation, needs,

preferences and habits are stored in repositories which are used by recommendation systems.

The recommendation systems adapt themselves according to these humans’ preferences.

However, [100] does not consider context-awareness (i.e., humans long-term and short terms

goals and preferences, events, localization information) from social networks to identify the

current context of the user and provide intelligent recommendations. The work in [101]

does address this issue, but it is specifically designed for task-oriented recommendations in

smart homes.

Kim et al., [102] propose “Socialite”, an end-user programming tool for the SIoT, by

exploiting semantic technologies. The authors identified eight desired features of the SIoT

through an online survey and clustered them into four rule categories which can be pro-

grammed by end users. These rules were then used to reason about devices and people in

their social circles to support automated decisions at runtime. Socialite uses semantic tech-

nologies for knowledge representation and for encapsulating the heterogeneity of devices

belonging to different manufacturers. Additionally, Socialite’s rules allow for social rela-

tionships and collaboration by sharing information and configurations among social circles
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(e.g., friends).

Girau et al. [103] propose “Lysis”, a cloud-based platform for the IoT using SIoT.

Lysis offers three main features: objects have social relationships and they behave like

autonomous social agents, it exploits PaaS (Platform as a Service) and considers reusability

at various layers, and it allows users to have full control over their data. In Lysis, the SIoT

is mainly exploited for its first feature, which enables objects to build social relationships

in an autonomous manner, offering the advantages of enhancing both network scalability

and information discovery.

Colom et al., [104] propose an IoT framework for the collaborative building of behavioral

models by using the SIoT. The SIoT is used to support collaborative applications and to

build social dimensions by allowing the addition of computing resources by the user without

affecting other ongoing activities offered by IoT devices.

Lee et al., [105] propose a game theory-based vulnerability quantification method by

using an attack tree for SIoT. This is consisted of three steps: game strategy modeling,

cost-impact analysis and payoff calculation. They also present a case study of an SIoT-

based network environment. Their approach can serve as a reference for developing a safer

SIoT system.

Other works on SIoT focus on modeling and optimization of features selection in Big

Data-based SIoT [106], routing protocols based on source location protection [107], ro-

bustness management for customization manufacturing [108], SWARM-based data deliv-

ery [109], general overviews of 5G-enabled devices [110], IoT platforms for SIoT [111] and

recommendation services [1].

Neither of these works considers recommendation services across smart cities/IoT appli-

cations that are developed in a vertical and standalone manner nor on social cross-domain

application-to-application communication.
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5.3 Social IoT for Recommendation Services across IoT Ap-
plications

In this study, we propose a framework on the exploitation of SIoT for recommendation

services across smart cities/IoT applications, as well as present an application scenario and

implementation challenges.

5.3.1 Introduction

The smart cities applications are generally developed in a standalone and vertical man-

ner, i.e., each application is developed for a certain scenario, such as smart parking, traffic

monitoring, smart grid, building automation and e-health [112]. Such smart cities appli-

cations generally do not share and use other system’s data for recommendation services,

leading to an inefficient exploitation of the services offered by other applications. Such

recommendation services could be achieved with the help of the SIoT by using the data

from multiple smart cities applications, thereby enhancing the services and performance of

each IoT application.

The convergence of the IoT with social networks is becoming a reality due to the

increasing awareness that the SIoT can realize many of the future implications of intelligent

devices used in our daily life. The SIoT has witnessed a shift in the IoT from a network of

connected smart objects to a network of social objects. The application of social networking

to the IoT (i.e., SIoT) helps to guarantee network navigability by shaping the structures

as required for the effective discovery of objects and services, helps to establish trust for

interactions among things (as with friends), and reuses the models designed for social

networks for solving IoT issues related to networks of interconnected objects [23].

In the SIoT, objects can have social relationships between people-and-things and be-

tween things-and-things that behave like social circles. It builds profiles on the basis of

various IoT applications’ data. Such profiles are exchanged within a SIoT network that can

be accessible to other IoT applications. In this manner, SIoT networks provide recommen-

dation services for improving the performance of IoT applications by sharing and using

other IoT applications’ data. Additionally, the profiles built by SIoT networks can also

help a single IoT application by looking for similar conditions that have been addressed in

the past for the same IoT application.

The SIoT differs from social networks and from the IoT in three main aspects. Firstly,

the SIoT establishes and exploits social relationships among things, rather than only among

owners or humans. Humans can be involved for mediation, but the key roles are performed

by things. Secondly, things can discover resources and services themselves through social

relationships to the IoT, which provides a distributed solution and reduces human efforts.
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APPLICATIONS

Thirdly, the SIoT is a platform for social networking services (SNSs) which enables social

networking between objects [113].

In this study, we propose a concept for the exploitation of the SIoT for recommendation

services across smart cities and IoT applications. We present a sample application scenario

which highlights how the SIoT can have social relationships between people-and-things and

between things-and-things in order to offer recommendation services. Some implementation

challenges for this concept are also presented.

5.3.2 Proposed Framework

In this section, we present the proposed framework of exploiting SIoT for recommenda-

tion services across smart cities and IoT applications. The architecture of this concept

is presented in Figure 5.1 which is comprised of perception layer, network layer, interop-

erability layer, SIoT recommendation system and IoT applications. The SIoT perception

layer is responsible for sensing and collecting information from IoT devices. It consists

of various heterogeneous devices, such as sensors and actuators, RFIDs, smartphones and

cameras. After collecting the information, the IoT devices establish social relationships

and friendship circles among themselves using SIoT technique. Subsequently, the collected

sensing and friendship circles information are forwarded to network layer in order to utilize

this information by IoT applications. The network layer is composed of various telecom-

munication networks (e.g., private wireless networks, public mobile networks and satellite

networks) and the Internet. It maps IoT devices’ data received from the perception layer

to the telecommunication protocols, and forwards it to the upper layer for processing and

to be converted into useful information for the realization of various IoT applications.

Generally, IoT applications are developed in a vertical manner with different structures

and semantics. The SIoT recommendation system requires data sharing among IoT ap-

plications; providing recommendation services based on this shared data. Interoperability

is required for data sharing among various IoT applications due to the different seman-

tics of each IoT application. Nowadays, there are two widely used IoT interoperability

platforms: oneM2M [56] and FIWARE [55]. IoT applications can thus be developed using

either oneM2M or FIWARE or both, or semantic technologies can be applied to achieve

interoperability and data sharing among IoT applications. In [114], the authors worked on

creating a semantic service for the SIoT. Once interoperability is achieved, IoT applications’

data can easily be shared with an SIoT recommendation system. The SIoT recommenda-

tion system can receive data from the interoperability layer, as well as applications data

from IoT applications. Since IoT applications contain SIoT data (friendship circles) of IoT

devices received from SIoT perception layer, the social IoT recommendation system uses

this SIoT data to build and maintain social relationships and profiles between people-and-
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Figure 5.1 – Proposed concept of exploiting the SIoT for recommendation services across
IoT applications.

things, and between things-and-things that behave like social circles. These profiles are

used for recommendation services among various IoT applications.

A sample application scenario of how the SIoT can provide recommendation services

among various IoT applications based on their shared data is presented next.

5.3.3 A Sample Application Scenario

The availability of social relationships between things-and-things and between people-and-

things interconnected through a SIoT can help several IoT applications to benefit from

other IoT applications’ data. The main benefit of SIoT over traditional IoT is that smart

objects can establish social relationships among themselves in an autonomous and ad hoc

manner. This helps smart objects to learn about other (homogeneous and heterogeneous)

objects in a distributed way, and subsequently take decisions/actions based on this informa-
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Figure 5.2 – A sample application scenario in which different applications benefit from the
SIoT by using other application’s data.

tion. Additionally, SIoT improves the scalability when the network is composed of a large

number of objects. Figure 5.2 presents a sample application scenario in which different

applications benefit from the SIoT by using other applications’ data. In this figure, there

are various IoT applications (i.e., skiing, friendship gathering appointment, traffic monitor-

ing, wearables and vehicle-to-vehicle communication). The interoperability layer (shown

in Figure 5.1) provides interoperability between them so that social IoT recommendation

system can use the data of these heterogeneous IoT applications and subsequently provides

recommendation services to the user.

Let’s consider a girl named Maria, who is a user of a SIoT network and a SIoT recom-

mendation system. Maria is planning to get together with her friends over the weekend
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and she wants to set an appointment which should be feasible for all her friends based on

their availability. For this purpose, she initiates an appointment using her system which is

based on a SIoT network that contains the profiles of Maria and her friends. It is important

to note that since Maria is using SIoT network, her IoT devices already have maintained

social relationships with other IoT devices using SIoT perception layer as shown in Figure

5.1. Her system coordinates with her friends’ scheduling systems and proposes an appoint-

ment time to her and the other friends based on their availability. When Maria and her

friends confirm this appointment, the system sets this appointment and sends invitation to

all the friends. Suppose the appointment is set on Sunday at 6:00pm. On the same day,

Maria also wants to go for skiing in the morning but she needs to return before 6:00pm

to hang out with her friends. Accordingly, her system interacts with a traffic monitoring

system to predict the traffic load during her return in the afternoon, and based on this

prediction, interacts with the smart skiing system by means of a SIoT network to suggest

recommended slopes, so that Maria can enjoy skiing and still return on time. Moreover,

Maria has some health problems and her health profile already exists on her SIoT network

through wearable devices attached to her body. In this manner, a SIoT network can recom-

mend ski slopes to Maria based on her health condition. Based on these recommendations

by SIoT networks, Maria is able to do ski according to her health conditions and hang out

with her friends at the scheduled time.

On her return from skiing, Maria’s car got a problem which appears to be difficult for

her to fix on her own. Thanks to the SIoT, the junction box in her car has embedded

sensors which collect information and build a profile of her car and of this problem. This

profile is then shared with SIoT networks that look for similar problems which have been

addressed before by other similar cars in the network. Subsequently, the SIoT network ei-

ther recommends the suggested corrective actions to Maria so that she can fix the problem

by herself, or it fixes the problem itself by coordinating with sensors and actuators embed-

ded in the network. Vehicle-to-vehicle (V2V) communications also enables coordination

among vehicles, and so the SIoT network could search for a similar problem that has been

fixed by other cars. If the SIoT network finds such a car in a close proxity of Maria, it

could request such car’s driver to visit Maria and help her to fix her problem. This option

also promotes social relationships and community help.

5.3.4 Implementation Challenges

The framework we proposed is a conceptual framework and there are some implementation

challenges for the realization of SIoT-based recommendation services across IoT applica-

tions. In this section, we discuss such challenges.
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5.3.4.1 Interoperability

The lack of interoperability among IoT applications is one of the major challenge for the

realization of a SIoT-based recommendation system, as it restricts data sharing among

various IoT applications. IoT applications are generally developed in a vertical and stan-

dalone manner. Each IoT application has different data structures and semantics, making

it difficult for one IoT application’s data to be used and understood by another IoT appli-

cation. There is some ongoing work on interoperability in the IoT; the two main reference

models for IoT interoperability are oneM2M [56] and FIWARE [55]. There is a pressing

need to consider interoperability in the IoT so that SIoT recommendation systems can

utilize IoT applications’ data to provide recommendation services. Furthermore, there are

two EU projects, WISE-IoT [33] and FIESTA-IoT [115], that work on IoT interoperability

and they can be good references for achieving this interoperability challenge.

5.3.4.2 Social Network Management

A SIoT recommendation system uses social information residing on smart devices, each of

which has their own view of this information. It is important to consider where this social

information should be stored in the social network, and to ensure that other smart devices

and actors are able to access this social information in an efficient manner in order to fully

exploit a SIoT recommendation system. Moreover, it would be advantageous to perform

social network management based on current contextual IoT application information so that

SIoT recommendation systems could have all the required information readily available,

minimizing any delay and improving user experience.

5.3.4.3 Trust, Privacy and Security

Since SIoT-based recommendation system requires access to data from various IoT appli-

cations, trust, privacy and security are very important issues to consider. The access to

and exploitation of various IoT applications’ data can lead to misuse and fraudulent ac-

tivities without a secure technology. Hence, the success of a SIoT recommendation system

requires secure technology that can ensure safe communication, user privacy and trustwor-

thy interactions. Existing approaches for achieving user privacy, trustworthiness and data

confidentiality developed for other platforms can be taken into account as guidelines while

developing approaches for SIoT-based recommendation system.

5.3.4.4 Self-Management, Self-Organization and Self-Healing

In the SIoT, the establishment and management of social relationships is performed with-

out human intervention, and the SIoT is expected to be composed of billions of devices.
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Therefore, it is imperative to have automatic operations, including self-management, self-

organization and self-healing. Autonomic service discovery, composition and data analysis

will also help to improve user experience. Moreover, a SIoT recommendation system should

have self-learning capabilities and be self-adaptive based on the feedback from IoT appli-

cations in order to enhance its recommendation services.

5.3.4.5 Network Navigability

In the SIoT, objects look for their required services using their friendship circles in a

distributed way. However, since SIoT is composed of large number of objects having social

relationships with each other, each object has to maintain a large number of friends which

will slow down the search operation for finding the desired services. Hence, the network

navigability is an important issue in SIoT which should be taken into account. Some work

has been performed in [116] for network navigability in SIoT by analyzing possible solutions

to enable smart objects to select the appropriate links which can benefit the overall network

navigability. This can serve as a base reference for investigating network navigability in

SIoT.

5.3.4.6 Proof of Concept

The idea of SIoT-based recommendation services across IoT applications is a novel paradigm

which has not been explored before. Some of the challenges are discussed above; however,

a number of new challenges may be faced while implementing this concept. Therefore, de-

veloping a proof of concept to accommodate new challenges that will need to be addressed

during the actual implementation of this system is a vital first step and can be considered

as step 0.

In this study, we have proposed a concept of exploiting the SIoT for recommendation

services across IoT applications. This framework helps to provide recommendation services

across IoT application by taking the advantages of social IoT which offers things-to-things

and things-to-human communications. In order to better understand this concept, we have

also presented a sample application scenario for a more complete understanding this con-

cept. Finally, we have discussed some implementation challenges that should be considered

for the realization of this concept.

In the next study, we present a third type of SIoT communication at a global level, i.e.,

social cross-domain IoT enabling application-to-application communications.
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5.4 SCDIoT: Social Cross-domain IoT enabling Application-
to-Application Communication

5.4.1 Introduction

Traditionally, in the SIoT, there are two types of communications: things-to-things com-

munication and things-to-human communication. In this study, we propose a third type

of communication for the SIoT at a global level which enables application-to-application

communication called social cross-domain IoT (SCDIoT). SCDIoT allows collaboration

among IoT applications by enabling them to talk to each other, build social circles and

relationships among each other, and to benefit from various useful services in order to

completely exploit the advantage of interoperability. We have seen the significant benefit

of things-to-things and things-to-human communication in traditional SIoT. With social

application-to-application communication, enabled by the SCDIoT, the benefits can in-

crease to many-fold by bridging the gap of IoT applications’ isolation. We present the

framework and some potential use case scenarios, together with some challenges and future

research directions for SCDIoT.

5.4.2 Proposed Framework

In this section, we propose the framework of SCDIoT for social application-to-application

communication, illustrated in Figure 5.3.

The three different applications at the bottom of the figure deploy IoT devices (e.g.,

sensors, actuators, RFIDs, cameras, microphones and smartphones); however, in contrast

to the deployment of IoT devices in traditional IoT applications where IoT devices do

not talk to each other, these applications (i.e., Applications 1, 2 and 3) support things-

to-things communication in which the devices also talk to each other by having social

relationships and circles among themselves enabled by the SIoT. This could be useful

in various scenarios, such as in calculating room temperature where various temperature

sensors are deployed in a room. Sensors can coordinate and collaborate with each other

to correct their measurements. For example, if four temperature sensors are deployed in a

room and three of them measures 20 degrees Celsius while one of them measured 4 degrees

Celsius; it means that there is a problem with the fourth sensor. Thanks to the collaboration

enabled by the SIoT, the fourth sensor will identify this problem and will either not forward

its measurement to the gateway or will retake the measurement, rectifying the problem.

Things-to-things communication supported by the SIoT brings the computing one level

lower to edge computing (i.e., from cloud to edge to things-to-things); however, it mainly

depends upon the application requirements because if the devices are resource-constrained

with limited battery and/or processing power, things-to-things communication would not
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Figure 5.3 – Proposed Framework of SCDIoT.

be desirable. On the contrary, it could be desirable if devices have direct power and good

processing capabilities, e.g., in smart home devices.

Each application collects data from its underlying deployment, and these collected data

need to be forwarded to the SCDIoT layer to enable social application-to-application com-

munication. Data forwarding could be achieved through various heterogeneous protocols.

In Figure 5.3, each application uses a different communication protocol to forward its data.
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Applications 1 and 2 first transfer their data to the IoT gateway using low power radio

communication interfaces such as ZigBee, Bluetooth Low Energy (BLE), Z-wave, GPRS

(General Packet Radio Service) or WiFi. The IoT gateway then forwards the data to the

SCDIoT layer using any IoT communication protocol such as CoAP (Constrained Applica-

tion Protocol) or MQTT (Message Queuing Telemetry Transport). Application 3 instead

transfers its data directly to the SCDIoT layer through REST APIs, bypassing the IoT

gateway. When the data reaches the SCDIoT layer, it needs to be enriched with semantics

in order to achieve interoperability and enable social cross-domain IoT. The first step is

to apply semantic annotations to the raw data of heterogeneous applications and domains.

Semantic annotation is a very important step in the process of understanding and being

able to apply logic (i.e., reasoning) to the applications’ data because same data from various

applications may have different meaning or different data from various applications may

have the same meaning. For example, let’s assume that all three applications data are re-

lated to temperature measurements. However, if they used their own notations to represent

temperature, e.g., ‘t’, ‘temp’ or ‘temperature’, it can be understandable by humans but not

by machines [27,117]. Therefore, SCDIoT first applies semantic annotations to describe the

data in order to make it understandable by the machines. The second step is to find the

appropriate domain ontology of the applications’ data. For example, temperature could be

either environmental temperature or body temperature which corresponds to completely

different domains, e.g., environmental temperature belongs to weather ontology while body

temperature belongs to health ontology. After obtaining the relevant ontologies, the next

step is to retrieve the most relevant datasets in order to acquire additional knowledge.

Once the relevant ontologies and datasets have been identified, SCDIoT links the common

concepts (e.g., ‘t’, or ‘temp’ or ‘temperature’) to the identified ontologies and datasets us-

ing OWL (Web Ontology Language) with equivalent keywords, e.g.,owl:equivalentClass

or owl:sameAs respectively. Finally, SCDIoT Semantic Engine performs reasoning over

the semantic data using semantic queries and resource discoveries, and then it sends the

required and relevant data back to the applications through its output interface.

5.4.3 Potential Use Case Scenarios

Social application-to-application communication can be advantageous in a number of use

case scenarios. We present some potential use case scenarios below.

Traffic lights are generally operated either using fixed time intervals or based on the

road load identified through sensors deployed on the roads. However, with the help of

social application-to-application communication, traffic lights can be operated based to

some extent on the users’ profiles. For instance, a user’s smartphone can provide the

user’s current route (e.g., assuming the user is using a navigation system) and this route
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information can be passed to traffic lights management system which can take into account

the user’s route and operates accordingly. We propose that traffic lights management could

be enhanced and become more efficient compared to current traffic lights management

systems. Assuming an optimal case, let’s consider a road intersection where there are four

vehicles, one vehicle on each road, and the driver of each vehicle wants to make a turn

to the right. In this situation, if all four traffic signals can turn green, there will be no

collision and the drivers will not have to wait. If traffic light management system could

communicate with users’ navigation system and know the users’ routes, it could allow

all four turns by switching the traffic lights to green so that drivers can take right turn

without any collision, which is otherwise not possible in currently operating traffic lights

management systems. This is just a hypothetical case to highlight the usefulness of social

application-to-application communication.

One step ahead, we could extend this scenario from traffic light management to traffic

crowd management. A traffic crowd management system could consider the users route

information and directly communicate with user’s navigation systems to distribute users

onto different routes to avoid traffic jams. Here, we would have two-way application-to-

application communication, i.e., navigation systems provide users’ routes information to

a traffic crowd management system, the traffic crowd management system considers all

the users’ routes and communicates back to the navigation systems suggesting a different

route with low traffic (in a way that the alternative route does not get congested, and so

suggesting different routes to users) to avoid traffic jams.

Another use case scenario could be food recipe suggestions. This application can con-

sider a user’s profile (e.g., his/her food preferences), his/her health constraints (via a health

monitoring application), the ingredients currently in the kitchen (through the smart home

system) and weather conditions (via a weather monitoring application). Taking into ac-

count these three types of applications’ data, a food recipe can recommend a recipe to

a user which is in accordance with his/her health, is suitable for the current weather,

for which the user has all the ingredients available in his/her home, and is according to

his/her food preferences. When food ingredients run out of the stock, the smart kitchen

can take appropriate actions (e.g., informing the user or ordering by itself) to refill those

ingredients [117].

5.4.4 Challenges and Future Research Directions

In this section, we discuss the challenges and future research directions in SCDIoT, more

specifically in social application-to-application communication.
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5.4.4.1 Latency

The biggest challenge in an SCDIoT system is the latency. Since social application-to-

application communication is possible through the SCDIoT framework, more latency can

be incurred because the data must first be sent to the SCDIoT framework, which does

the processing and then sends back the required information to the application. Hence, for

delay-sensitive applications (e.g., health and emergency systems), this is a serious challenge

which needs to be addressed.

5.4.4.2 Privacy and Trust

Privacy, trust and security are major issues in the SCDIoT. Since all the applications data

pass through the SCDIoT framework, this presents privacy issues for applications which

need to comply with strong privacy policies. Therefore privacy solutions for the SCDIoT

must be developed or existing ones adapted to the SCDIoT. Trust is also an important

parameter to be considered in order to ensure that each application involved in social

cross-domain communication can be trustworthy to avoid malicious behaviors. Existing

IoT solutions for privacy and trust could be considered as guidelines while developing

solutions for the SCDIoT.

5.4.4.3 Autonomous Management

The SCDIoT framework receives applications’ data, applies semantic technologies, performs

reasoning and makes it shareable with other IoT applications. Therefore, all the operations

and management need to be autonomous without human intervention [118]. It would also

be desirable if the SCDIoT could learn from its environment and adapt itself according

to new emerging requirements. Reinforcement learning could be a very beneficial tool for

such self-learning from the environment.

5.4.4.4 Network and Storage Management

The SCDIoT processes applications’ raw data, applies semantic technologies and obtains

semantic data, as well as performs reasoning to infer new data. Such data must be securely

stored and managed in order to be used in the future for enhanced services. Additionally,

it is important to consider how the communication and access to the data and resources

will be performed. Therefore, network and storage management is another important issue

to be addressed.
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5.4.4.5 Proof of Concept

The SCDIoT is a novel concept which needs more exploration and investigation. A proof

of concept needs to be developed. We have discussed a few of the challenges that should

be carefully considered while developing the proof of concept. New challenges may arise

during the actual development of the proof of concept, and these will need to be addressed

and incorporated. The relevant works [102], [103], and [111] should be considered as a valid

starting point toward the proof of concept implementation.

The SIoT establishes social relationships among objects in the IoT, supporting two

types of communications: things-to-things and things-to-human communication. In this

study, we have proposed a third type of communication at a global level, i.e., a social cross-

domain IoT (SCDIoT), which enables application-to-application communication thanks to

social relationships and circles through which IoT applications can closely collaborate with

each other. We have presented the basic concept of the SCDIoT, the specific framework

that achieves interoperability and social relationships, and some potential use case scenarios

together with challenges and future research directions.
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5.5 Summary and Discussion

To summarize and conclude, this chapter presented the third contribution of this thesis of

frameworks for SIoT-based recommendation services across smart cities/IoT applications

and social cross-domain application-to-application communication. It is comprised of two

parts, each proposing a framework. The first framework proposed SIoT-based recommen-

dation services across IoT applications in smart cities. It presented the proposed concept

and a sample application scenario where different IoT applications in smart cities collab-

orate with each other using SIoT to provide recommendation services to each other. It

also discussed the implementation challenges to realize this system. The second frame-

work proposed another type of communication for the SIoT at a global level that enables

application-to-application communication, known as social cross-domain IoT (SCDIoT). It

also presented the proposed concept and some potential use case scenarios, as well as the

implementation challenges to realize this system. These two frameworks serve as the build-

ing blocks for social cross-domain recommendation services and application-to-application

communication.

In the next chapter, we move towards the conclusion of this thesis and some future

works for the extension of this thesis.
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6.1 Conclusion

In this thesis, we proposed a novel privacy preserving IoT recommender for smart cities

that provides recommendations by exploiting the IoT data of sensors and by considering

various metrics. In addition, we proposed two frameworks for cross-domain recommen-

dation services and application-to-application communications using social IoT in smart

cities. The novelty and new ideas proposed in this thesis include i) a novel algorithm for

the mapping of sensor and route coordinates; ii) the development of a novel IoT recom-

mender for smart parking that considers IoT data of parking and traffic sensors, interacts

with the Trust Monitoring component to obtain trust score and recommend trusted park-

ing spots, provides GDPR-compliant implementation and occupancy statistics of parking

areas; iii) the development of an IoT recommender for smart skiing that offers a novel

routing engine for ski routes; iv) the application of two privacy preservation approaches:

k-anonymity and differential privacy, for preserving the privacy of parking database that

has not been explored in the past; and two novel frameworks on the use of social IoT for

recommendation services.

6.1.1 Summary and Insights of Contributions

We provide the summary of each contribution, as well as the insights gained from each

contribution in this section.

• IoT Recommender for Smart Cities: The first contribution is organized into

three parts. The first part is the about mapping of sensors and route coordinates,

the second part is about the IoT recommender for smart parking and the third part

is about IoT recommender for smart skiing. We summarize each part separately and

provide our insights.

– In the first part, while working on traffic sensors in Santander to analyze the

traffic on the roads, we obtained the coordinates of some alternative routes

between two random points (considered as starting and ending points) and tried

to map the traffic sensors on each route. However, we identified that there are

some traffic sensors that did not map to the routes even though they existed

within the route coordinates. This was because they were deviated from the

coordinates of the roads. Therefore, we proposed an algorithm for the mapping

of the sensors and route coordinates by introducing a deviation margin. We

presented an algorithm and two illustrative examples that covered all the possible

scenarios. We evaluated the performance of our mapping algorithm by measuring

correct detection, missed detection and false detection by comparing with the
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baseline scheme that does not consider the deviation margin. The experimental

results showed signficant accuracy of our proposed algorithm.

– In the second part, we designed an EU GDPR-compliant IoT recommender sys-

tem for smart parking that provides the recommendations of parking spots and

routes by exploiting the data of parking and traffic sensors. The IoT recom-

mender provide four-fold functions. Firstly, it helps users to find free parking

spots based on different metrics (e.g., nearest or nearest trusted parking spot).

Secondly, it recommends routes (the least crowded or the shortest route) leading

to the recommended parking spots from the users’ current location by using the

mapping algorithm proposed in the first part. Thirdly, it provides the real-time

provisioning of expected availability of parking areas (comprised of parking spots

organized into groups) in a user-friendly manner. Lastly, it provides a GDPR-

compliant implementation for operating in a privacy-aware environment. The

IoT recommender was integrated into the smart parking use case of an H2020

EU-KR WISE-IoT project and was evaluated by the citizens of Santander Spain

through a prototype. The evaluation results showed the high satisfaction of the

citizens with the quality, functionalities, ease of use and reliability of the recom-

mendations provided by the IoT recommender. The IoT recommender was also

demonstrated at various occasions.

– In the third part, we designed an IoT recommender for smart skiing that provides

skiing routes comprised of specific types of slopes. For skiing routes, there did

not exist any stable routing engine, therefore, we developed a novel routing

engine for skiing routes. This work was integrated into the smart skiing use case

of WISE-IoT project.

• Privacy Preservation of Smart Parking System: The second contribution pre-

serves the privacy of users in smart parking system, specifically against IoT parking

recommender system while analyzing historic parking database for providing efficient

and personalized recommendation services based on users past parking experience.

Although the developed IoT recommender for smart parking was GDPR-compliant,

however, it did not fully protect the privacy of the users because an indiscriminately

sharing of users’ data with an untrusted or semi-trusted third-party IoT parking

recommender system violates the privacy, as user’s behavior and mobility patterns

could be inferred by analyzing the past travelling history of the users. Therefore, the

privacy of users was preserved using k-anonymity (anonymization) and differential

privacy (perturbation) techniques. The privacy and utility by both k-anonymity and

differential privacy was thoroughly studied through extensive experiments. From the
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experimental study, we learned that k-anonymity is stuiable for smaller values of k

and for lower QIA sizes in order to have a good balance between privacy and utility.

Otherwise, it achieves privacy but it makes the utility worst, hence unable to infer

any useful information from the anonymized dataset. On the other hand, differential

privacy is suitable for higher privacy budget ε and lower sensitivity values 4f to have

better utility while achieving the privacy.

• Frameworks for Cross-Domain Recommendations in Smart Cities: The

third contribution proposed two frameworks for cross-domain recommendations in

smart cities: one on how social IoT can be used for recommendation services across

smart cities applications , and other on the new type of communication of social IoT

at a global level, i.e., social cross-domain application-to-application communications.

As smart cities applications are developed in a vertical manner and do not talk /

communicate with each, i.e., each application is developed for a certain scenario which

generally does not share data with other application, therefore, these frameworks

could help to bridge this gap and provide cross-domain recommendation services by

enabling application-to-application communications across IoT applications in smart

cities and serve as the building blocks.

6.1.2 Practical Applicability

Some of our work (e.g., Contribution 1 in Chapter 3) has been practically applied in the real-

world, specifically in an EU-KR H2020 WISE-IoT project, as well as been demonstrated

at various occasions.
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6.2 Future Work

This section summarizes some perspectives on the future work to extend the work in this

thesis.

• Consideration of Two-Way Roads in Sensor Mapping: In our current work of

mapping of sensor and route coordinates (see Section 3.2), we considered the roads to

be one-way because our focus of study was Santander city where the traffic sensors are

deployed on one-way streets. However, it is interesting to extend this work from one-

way roads to two-way roads for the mapping the sensor and route coordinates. It could

have its own challenges and implications. For instance, in the case of two-way roads,

the deviation margin needs to be studied well in a way that it should not consider

the sensors deployed on the other (reverse) side of the roads into consideration. It

requires the modifications in our currently proposed mapping algorithm to consider

this constraint.

• Application of Machine Learning for Predicting the Least Congested Routes:

In our current work of mapping of sensor and route coordinates (see Section 3.2), we

considered the bottleneck road load of real-time traffic to identify the level of con-

gestion on the streets. However, it could be possible that although the road is less

congested at the current time, but when the driver gets into the road, it becomes

congested and our system could not identify it because of not considering the past

history. Therefore, it would be interesting to apply Machine Learning that takes into

account the past history and patterns of the traffic load on the roads and subse-

quently, recommends such routes that are expected to remain less congested in the

near future when the driver gets there.

• Application of Machine Learning for Predicting the Status of Parking

Spots: Currently, in the IoT recommender for smart parking (see Section 3.3), the

parking spots are selected based on the real-time information. There are chances that

a parking spot was available at the time of recommendation by the IoT recommender,

however when the driver reaches there, it gets occupied. Therefore, the application

of Machine Learning is very interesting that could predict the status of the parking

spots in the near future that should be considered by the IoT recommender in the

recommendations of parking spots.

• Applying IoT Recommender to Other Cities: The IoT recommenders for smart

parking and smart skiing were currently developed and tested for Santander, Spain

and Chamrousse, France, respectively. We claimed that they could be applied to other
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places having similar infrastructure in a similar manner, however, we have not tested

our claim. Therefore, applying these IoT recommenders to other cities is another

extension to our work. An important factor while applying the IoT recommender

to other cities is analysing the scalability in terms of the size of the city where the

IoT sensors are deployed, and the number of concurrent requests made by the users.

Additionally, the complexity and overhead also need to be analysed.

• Studying the Impact of Privary Preservation on Personalized Recom-

mendations: We preserved the privacy of users against parking recommender by

anonymizing and perturbing the parking database. When we go for privacy, we lose

the data of individual users and correlation between the records, hence making it no

longer possible to provide personalized recommendation with respect to the individual

user’s habits and preferences. This ultimately affects the quality of recommendations.

Hence, there is a need to study the impact of privacy preservation on recommenda-

tions services. Also, there might be a need to either modify the existing recommender

system or design a new one that can work on privacy preserved databases.

• Exploitation of Privary Preserving Smart Parking System in Real-life Rec-

ommendations: The privacy preserving smart parking system was designed after

the completion of WISE-IoT project, and therefore, it was not possible to apply it

in the real-world and check its feasibility. Although we evaluated the privacy and

utility using our two considered privacy preservation techniques of k-anonymity and

differential privacy, it would be interesting to use the anonymized dataset (in-case

of k-anonymity) and perturbed query responses (in case of differential privacy) for

providing the recommendations in real-life and check their feasibility, as well as the

level of satisfaction with the citizens.

• A Working Prototype of Frameworks for Cross-Domain Recommenda-

tions: Finally, the two proposed frameworks on using social IoT for cross-domain

recommendations services and application-to-application communications are mainly

conceptual frameworks. There is a need to have a proof-of-concept prototype at the

initial stage to validate the idea and subsquently, to develop a platform offering such

cross-domain recommendation services in order to widely disseminate them.
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