Monsieur Olivier Coulaud 
  

Il me sera très difficile de remercier tout le monde car c'est grâce à l'aide de nombreuses personnes que j'ai pu mener cette thèse à son terme.

Les travaux de thèse présentés dans ce mémoire ont été effectués au LAboratoire PLAsma et Conversion d'Energie (LAPLACE) dans le Groupe de Recherche en Electromagnétisme (GRE), en collaboration avec le Groupe de Convertisseurs Statiques (CS) du même laboratoire, et avec le laboratoire de Génie Électrique de Grenoble (G2Elab).

Je remercie Monsieur Stéphane CLENET, professeur à ParisTech-

problème.

Je tiens à remercier Monsieur Olivier Chadebec, directeur de recherche à G2Elab de Grenoble, de m'avoir aidé à réaliser la partie numérique de ma thèse. Je remercie également Monsieur Gérard Meunier, merci de m'avoir accordé du temps. Votre compétence et complémentarité m'ont aussi beaucoup apporté. Merci également à tous les membres de l'équipe "MAGE" de G2Elab de m'avoir accueilli durant de nombreux séjours là-bas, plus particulièrement merci à Bertrand Bannwarth.

Je tiens à remercier Monsieur Victor Péron, maître de conference à l'université de Pau et des Pays de l'Adour pour son aide, et sa coopération lors d'une partie théorique de ma thèse. Je remercie également Monsieur Clair Poignard, directeur de recherche à l'inria Bordeaux de m'avoir aidé à réaliser la dernière partie de ma thèse. La collaboration avec lui a été productive et réussie.

Durant ces années de thèse, j'ai eu l'occasion de faire la connaissance de nombreuses personnes au contact desquelles j'ai beaucoup appris. Les échanges avec les membres de l'équipe au labo ont toujours été enrichissant et sympa : merci à Nathalie Raveu (merci pour ton soutien et tes remarques), Anne-Laure Franc, Hamza Kaouach, et Olivier Pigaglio. Je salue notre collègues du labo Frédéric Messine, il m'a soutenu pendant toute cette période et il m'a beaucoup aidé dans le cadre d'enseignement et a partagé avec moi son expérience pédagogique, Alors Merci ! Je salue bien sûr mes collègues avec qui on a passé que des bons moments : Priscillia, Jing-yi, Wencong et plus particulièrement à ma meilleure amie Lucille avec qui j'ai passé la plus longue durée au Labo. Merci de m'avoir tenu compagnie pendant ces dernier trois ans, de m'avoir encouragé, et pour toutes les discussions. Un grand Merci pour tout ! Je tiens à exprimer ma gratitude à Monsieur Paul ARMAND et à Monsieur Olivier Ruatta pour leur extrême disponibilité, et les discussions qui m'ont orienté vers ce sujet de thèse.

Je salue tous mes amis qui m'ont encouragé pendant ces années : Abdalah, Hamza, Ali, Hicham, Nouh, Farah, Iman, Fatima, André, Andrea, ... Mes remerciements vont naturellement à mes amies les plus proches, Abbas Hamadi, Bilal Fakih et Mohanad Alchaar. Ils m'ont supporté jusqu'au dernier moment, ils étaient ma source d'optimisme, de sécurité, et de pouvoir. Merci pour votre gentillesse, votre bienveillance.

Enfin, je souhaite remercier tous mes proches et toute ma famille qui m'on supporté dès le premier battement de coeur et surtout pour avoir accepté la distance géographique qui nous sépare, en particulier mes parents, Ibrahim et Hala, tous mes frères et soeurs, Saiid, Mahmoud, Manal, Zeinab, et Kawthar, ma fiancée Farah, mes beaux frères et belles soeurs, Ahmad, A. Badran, A. kamal, Amani, et Reef, ainsi que mes petites nièces et petits neveux.

Bien entendu merci à tous les autres que j'ai probablement oublié involontairement, et pour cela je m'en excuse.

Abstract

Modeling of integrated magnetic components in electrical engineering (such as high frequency transformers) leads to several issues related to frequency increase. This frequency increase induces eddy currents in conducting material which require very fine meshes and consequently, it leads to large systems of equations and prohibit computational cost, especially for 3D structures. The commercial scientific software only partially tackle these issues due notably to the presence of airgaps (modeling "infinite" medium by radiating conditions), the presence of thin layers (very heterogeneous meshes), and the inclusion of winding multi-layers.

To deal with these difficulties, dedicated tools have been implemented. The primary issue that is the presence of airgaps is treated by solving a coupled "Finite Element Method (FEM)/ Boundary Element Method (BEM)" system in 3D. The BEM is adapted to general field problems with unbounded structures because no artificial boundaries are needed, this is not the case for the FEM. Moreover, the BEM requires only a surface discretisation which reduces the number of unknowns and then the computational time.

The secondary issue is to deal with thin conductive layers used in a wide range of applications for shielding purpose. Modeling such conductive regions require very fine volume discretisation due to the rapid decay of fields through the surface for high frequencies. To avoid this difficulty, we derive an equivalent model for 3D Eddy Current problem with a conductive thin layer of slight thickness, where the conductive sheet is replaced by its mid-surface, and its shielding behaviour is satisfied by an equivalent transmission condition which connects the electric and magnetic fields around the surface. In addition, an efficient discretisation using the BEM is provided to solve numerically the problem with the transmission condition.

The last issue is to tackle the foil winding problems. We proceed by considering the simple case of a problem of laminar stacks. We provide an effective modeling of the laminar stacks in 1D and 2D by deriving the classical homogenisation in the domain of the laminar stacks. Then, we study the influence of the interface (with air) on the vector potential to treat the problem in the whole domain. We also consider the case where the skin depth is kept less than or equal to the thickness of the metal sheet.

Résumé

La modélisation de composants magnétiques intégrés en génie électrique (ex. les transformateurs hautes fréquences) conduit à un certain nombre de problèmes liés à l'augmentation de la fréquence. Cette augmentation de fréquence induit notamment des courants de Foucault dans les pièces conductrices qui nécessitent des maillages très fins et conduit de grands systèmes d'équations et donc souvent à des temps de calcul prohibitifs, notamment pour les structures 3D. Les outils de calcul numérique commerciaux ne répondent que partiellement à ces difficultés, induites notamment par la présence d'entrefers (modélisation du milieu «infini» par une condition de radiation), la présence des couches minces (maillages très hétérogènes) et la prise en compte d'enroulements multi-couches.

Pour répondre à ces difficultés, on se propose de développer des outils dédiés. Une première action a été menée pour répondre au problème de grands entrefers en résolvant un système avec deux techniques couplées : la méthode des éléments finis volumiques (FEM) et la méthode des éléments finis de frontière (BEM) en 3D. La BEM est bien adaptée aux problèmes avec des structures non bornées, car aucune condition aux limites artificielle n'est nécessaire, ce qui n'est pas le cas pour la FEM. De plus, la BEM ne nécessite qu'une discrétisation de surface, ce qui réduit le nombre d'inconnues et généralement le temps de calcul.

Une autre problématique sera de traiter les couches conductrices minces utilisées dans un large éventail d'applications à des fins de blindage. La modélisation de telles régions conductrices requiert une discrétisation volumique très fine en raison de la décroissance rapide des champs vers la surface pour les hautes fréquences. Pour éviter cette difficulté, nous dérivons un modèle équivalent pour le problème des courants de Foucault en 3D avec une couche mince conductrice de faible épaisseur, dans laquelle la feuille conductrice est remplacée par sa surface médiane, et son comportement de blindage est satisfait par une condition de transmission équivalente qui relie les champs électrique et magnétique autour de la surface. De plus, une discrétisation efficace utilisant la BEM est proposée pour résoudre numériquement le problème avec la condition de transmissions.

La dernière problématique est de traiter les problèmes d'enroulements. Nous procédons en considérant le cas plus simple d'un problème d'empilement de tôles. Nous fournissons une modélisation efficace des empilements des tôles en 1D et 2D en utilisant l'homogénéisation classique dans le domaine des empilements. Ensuite, nous étudions l'influence de l'interface (avec l'air) pour traiter le problème dans le domaine entier. Nous considérons le cas où la profondeur de pénétration est maintenue inférieure ou égale à l'épaisseur de la tôle. 
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Introduction

Eddy currents appear in various electrical systems, for example in motors, or in power electronics devices. Thin conductive layers also appear in many of these devices: for instance, shielding of transformers, casing of devices, foil windings, or constructing a chamber to measure antenna features (see Figures 1 and2).

The phenomenon of eddy currents was discovered by the French physicist Léon Foucault in 1851. Supplying an electric current creates a time-varying magnetic field, that will induce eddy currents in the conductive domain (according to Faraday's law). An induced magnetic field is then produced which is opposite to the excitation field, and then reduces the total magnetic field (according to Ampère's law). The subject of this thesis is about asymptotic modeling and discretisation of magnetic components in eddy-current problems, especially in the presence of thin layers. An accurate calculation of the magnetic field distribution is necessary to optimise the design of the electrical devices. At a high frequency, the incoming electromagnetic fields do not penetrate completely into the interior of the material. In this case, the current will circulate exclusively on the surface of the conductors. This is often called "the skin effect". In this case, very fine meshes are required in the conducting material which lead to a large system of equations and prohibitive computational times, especially for 3D structures. Moreover, in the presence of large homogeneous volumes like the exterior Introduction air, it will be more expensive if we consider numerical methods which require a volume discretisation (like the finite element method, or the finite difference method).

The phenomenon of skin effect restricts the current to the skin depth calculated as follows:

δ = 2 µσω ,
where µ is the magnetic permeability (H/m), σ is the electric conductivity (S/m), and ω is the angular frequency (rad/s). Thus, δ is equal to the distance where the majority of the current density circulates in a conductor (around 63% of the current density). The current density in the conducting medium is described by the following formula:

J(r) = J 0 e -r/δ ,
where r is the depth from the surface. Consequently, the current density decreases exponentially from its initial value at the surface J 0 .

In Figure 3, we show the flow of current in a thin layer with respect to its thickness and skin depth (according to the possible cases δ ε, δ ≈ ε, and δ ε). For δ ε, this is the case for high frequencies, the density current circulates only near the interface which makes the simulation more problematic because the field decays rapidly near the interface. Mesh of δ/2 maximum element size is then needed to reach a minimal accuracy. 
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• Heterogeneous meshes can lead to ill-conditioned matrices, and regular meshes will lead to a high number of degrees of freedom.

In fact, a lot of commercial softwares exist for simulating 3D structures in eddy-current problems, but there are still also many issues which are only partially tackled. In this thesis, we handle partially the issues related to the presence of large homogeneous mediums, the presence of thin layers, and the inclusion of winding multi-layers.

Objective

In the context of this thesis, we will focus on the modeling of thin layers by asymptotic expansion and an appropriate discretisation in eddy-current problems. The objectives of this thesis are:

1. To treat the presence of infinite domain considering the appropriate numerical methods in order to reduce the computational time. The coupling of the Finite Element Method (FEM) and the Boundary Element Method (BEM) will be proposed for this reason.

2. To model and discretise the conductive thin layers in eddy-current problems in order to avoid the difficulties of meshing and dealing with strongly refined meshes (see Figure 4). These difficulties can be treated by deriving an equivalent model with transmission conditions that replace the thin layer by its mid-surface, and using a well-adapted method of discretisation as the boundary element method. Throughout this thesis, we consider the case where the skin depth is kept less than or equal to the thickness of the metal sheet.

Plan of the thesis

The thesis manuscript is organized as follows:

1. In the first chapter, we recall briefly the Maxwell equations, as well as its eddycurrent approximation. We give some mathematical formulations of the eddycurrent problems. We recall the principles of the finite element method and the boundary element method. Finally, we give some shape functions used to approximate the vector fields in the second chapter.

2. In the second chapter, we present the mathematical formulation of the magnetostatic and the eddy-current problems using the magnetic potentials. Both formulations have been discretised using the FEM/BEM coupling. Results are validated in comparison to the analytical solutions.

3. In the third chapter, we present the hybrid formulation of 3D eddy current problems with a thin layer. We provide a formal calculus using the asymptotic expansion in a power series of a small parameter ε (the layer thickness) in order to obtain the equivalent models of the first and second order. We apply the BEM to calculate the first term of the expansion (model of the first order), the second term, and the model of the second order. Some examples are provided to check the accuracy of the models, as well as the efficiency of the discretisation method.

4. In the last chapter, a formulation of the eddy-current problem in laminar stacks using the magnetic vector potential is presented. We demonstrate our procedure concerning the homogenisation in the domain composed of sheets, and the correction at the interface. Some examples are also provided to validate our approach.

Complementary elements including the calculation of analytical solutions and post-processing calculations of the exterior field are given in the appendices.

Contributions

Various parts of this work make an original contribution to the modelisation and numerical simulations in electromagnetism. In particular, we contribute to the following aspects:

• The modeling of a conductive thin layer for 3D eddy-current problems using a hybrid formulation. The equivalent models with the transmission conditions which replace the layer offer less complexity in discretising the problem [START_REF] Issa | Asymptotic Modelling for 3D Eddy Current Problems with a Conductive Thin Layer[END_REF].

• An efficient discretisation using the BEM in the interior and the exterior domain of the layer is provided for the equivalent models of a conductive thin layer. It validates the accuracy of these models, as well as saving computational time requiring only a surface discretisation. [82 ; 84 ; 85].
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• An effective modeling of a lamination stack in 1D using two-scale homogenisation and a correction for the interface between the air and the lamination stack is proposed. This procedure is validated in 1D and shows a agreement comparing with an analytical solution. [START_REF] Issa | Homogenization of lamination stacks based on the vector potential formulation[END_REF]. Using the same procedure, we proceed to treat the case in 2D that is actually in progress.

CHAPTER 1 Discretisation methods play an important role in the solution of eddy current problems.

Among these methods, the finite element method is the most widespread. However, the boundary element method can also be considered to approximate the eddy current problems using less unknowns.

In this chapter, we recall the system of Maxwell's equations, and the eddy-current problem in sections 1.1 and 1.2, respectively. In section 1.3, we compare several formulations of the eddy-current problems. Then, we provide the main elements for the numerical simulation of these formulations in sections 1.4, 1.5, and 1.6.

Maxwell's equations

Maxwell's equations describe the interactions of components of the electromagnetic field.

The system of equations can be written in differential form as follows [START_REF] Bondeson | Computational Electromagnetics[END_REF]:

• Maxwell-Ampère's law:

∂D ∂t + J = curlH , ( 1.1) 
which describes the magnetic field H resulting from the displacement current ∂D ∂t and the total current J .

• Faraday's law:

∂B ∂t + curlE = 0, (1.2) 
which describes the electric field E induced by the time variations of the magnetic induction field B.

• Gauss' electrical law: • Gauss' magnetic law: divB = 0, (1.4) which indicates that the magnetic induction is solenoidal.

divD = ρ, ( 1.3) 
In the previous equations, all the quantities are functions of the space coordinates x ∈ R 3 , and of the time t ∈ R + .

Material laws

To complete the system (1.1)- (1.4), relations between (D,B) and (E,H ) are introduced for isotropic, homogeneous and linear materials in the form:

D = εE, (1.5) 
B = µH . (1.6)
In addition, the Ohm law expresses the current density in terms of the electric field:

J = σE, (1.7)
where σ denotes the electric conductivity, ε is the electric permittivity, and µ is the magnetic permeability.

Note that when a given current density J s is applied, we need to consider the general Ohm law [START_REF] Bondeson | Computational Electromagnetics[END_REF]:

J = σE + J s , ( 1.8) 
assuming that divJ s = 0 in any non-conducting region, by reason of the Maxwell-Ampère and Gauss electrical equations.

Eventually, the full Maxwell system of equations can be written in the following form:

                     ∂εE ∂t + σE + J s = curlH , ∂µH ∂t + curlE = 0, divεE = ρ, divµH = 0.
(1.9)

Integral form of Maxwell's Equations

Here, we present the integral form of Maxwell's equations [START_REF] Van Dantzig | The fundamental equations of electromagnetism, independent of metrical geometry[END_REF]. This form can be shown to be equivalent to the differential forms through the use of the general Stokes' Theorem. 

C H • dl = S J • ds + S ∂D ∂t • ds, C E • dl = -S ∂B ∂t • ds, S D • ds = V ρdv,

The time-harmonic Maxwell's equations

In this thesis, we deal with the time-harmonic fields. Ordinarily, this happens when the excitation fields are time-harmonic. Using this assumption, the applied current density J s is an alternating current that has the form

J s (x, t) = Re[J s (x)e iωt ], (1.10) 
where J s is a complex-valued vector function called phasor and ω = 0 is the angular frequency.

Consequently, we look for a time-harmonic solution through the usual relationship: where E, and H are phasors representing the electric and magnetic fields.

E(x, t) = Re[E(x)e iωt ], (1.11) 
H (x, t) = Re[H(x)e iωt ], (1.12) 
By inserting this representation (1.10)-(1.12) into the time-dependent Maxwell equations (1.9) we obtain the following set of the time-harmonic Maxwell's equations:

               curlH -iωεE = J, curlE + iωµH = 0, divD = ρ, divB = 0.
(1.13)

Transmission conditions

We consider the transmission conditions on the interface between two subdomains (see Figure 1.2). The tangential components of the electric and magnetic fields are continuous:

H + × n | Γ = H -× n | Γ , (1.14) E + × n | Γ = E -× n | Γ . (1.15)
The normal components of the electric displacement field and the magnetic induction are continuous:

D + • n | Γ = D -• n | Γ , (1.16 
)

B + • n | Γ = B -• n | Γ , (1.17)
where the signs indicate the different sides of the interface Γ and n is the normal vector of Γ (see Figure 1.2).

Figure 1.2: The different sides of the interface Γ.

1.2 Eddy-current approximation of Maxwell's equations

Eddy-current approximation of Maxwell's equations

The system of equations obtained when the displacement current term ∂D ∂t (or iωεE in the time-harmonic regime) can be neglected is called the eddy current approximation or magnetoquasistatic approximation of Maxwell's equations [START_REF] Rodríguez | Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications[END_REF] curlH = J in R 3 , (1.18)

iωB + curlE = 0 in R 3 , (1.19) B = µH in R 3 , (1.20) J = σE + J s in R 3 , (1.21) divB = 0 in R 3 , (1.22) divεE = 0 in R 3 . (1.23)
To complement this system, we consider the continuity of the tangential traces of the magnetic and electric fields across any interface Γ, as well as the limit condition at infinity

         [E × n] Γ = 0 on Γ, [H × n] Γ = 0 on Γ, |H(x)| + |E(x)| = O(|x| -2 ) |x| -→ ∞.
(1.24)

Formulations of eddy current problems

In this section, we denote by Ω ⊂ R 3 the domain of study, which is composed of two domains

Ω = Ω I ∪ Ω E ,
where Ω I is the conductive region and Ω E the exterior region (air). Let also Γ be the boundary of the domain Ω I (see Figure 1.3).

There are various ways to reformulate the initial eddy-current problem. By eliminating the electric field [START_REF] Albanese | Formulation of the eddy-current problem[END_REF] (H-Based Formulation), eliminating the magnetic field [START_REF] Ren | Comparison of some 3D eddy current formulations in dual systems[END_REF] (E-Based Formulation), or by considering hybrid formulations [20 ; 31]. Hybrid formulations are the case where the eliminated field in the conducting region is different from the one eliminated in the exterior domain. Thus there are two possibilities if we consider only the electrical and the magnetic field, the first one is to use a "E-Based formulation" inside Ω I and a "H-Based formulation" in Ω E , the second one is to use a "H-Based formulation" inside Ω I and a "E-Based formulation" in Ω E .

In addition, we may consider the formulations in terms of the potentials that describe the E and H fields [19 ; 22], i.e. the magnetic vector potential or the scalar magnetic potential for instance.

Boundary conditions

When electromagnetic problems are defined in an unbounded domain, a boundary far away from the electromagnetic device should be considered with either Dirichet or Neumann boundary conditions [START_REF] Givoli | A finite element method for large domains[END_REF], asymptotic boundary conditions [START_REF] Hagstrom | Asymptotic Boundary Conditions and Numerical Methods for Nonlinear Elliptic Problems on Unbounded Domains[END_REF], Robin boundary conditions [START_REF] Alfonzetti | Iteratively-improved Robin boundary conditions for the finite element solution of scattering problems in unbounded domains[END_REF], Kelvin transformation [START_REF] Lowther | Further aspects of the Kelvin transformation method for dealing with open boundaries[END_REF], or shell transformation [START_REF] Brunotte | Finite element modeling of unbounded problems using transformations: a rigorous, powerful and easy solution[END_REF].

In the case of solving the unbounded problem using some numerical methods (like the finite element method), a fictitious boundary has to be introduced. A suitable boundary condition must be written also as a compromise between the accuracy, the implementation, and the computational efficiency.

On the other hand, using the boundary element method does not require a boundary surface. It is sufficient to consider that the fields vanish as |x| → ∞ (1.26)

|E(x)| = O 1 |x| 2 as |x| → ∞, (1.25) 

An Electric Field Formulation

Multiplying equation (1.18) by iω and substituting (1.21) and the curl of (1.19), we obtain:

curl(µ -1 curlE) + iωσE = -iωJ s in Ω. (1.27)
As the whole domain Ω is subdivided into a conductive region Ω I free of any source current and the air region Ω E possibly containing source currents. Hence, the final system can be written as:

                     curl(µ -1 curlE) + iωσE = 0 in Ω I , curl(curlE) = -iωJ s in Ω A , divE = 0 on R 3 , [E × n] Γ = 0 on Γ, |E(x)| = O(|x| -2 ) as |x| → ∞.
(1.28)

A Magnetic Field Formulation

Applying curl to the equation (1.18) and substituting (1.21), we obtain:

curl( 1 σ curlH) = curlE + curl 1 σ J s in Ω I , (1.29)
replacing (1.19) and (1.20) in (1.29), we get:

curl( 1 σ curlH) = -iωµH + curl 1 σ J s in Ω I . (1.30)
Similarly, substituting the electromagnetic properties in both regions of Ω, we end with the following system: 

                             curl(σ -1 curlH) + iωµH = 0 in Ω I , curl(curlH) = curl(J s ) in Ω A , divH = 0 on R 3 , [H × n] Γ = 0 on Γ, [∂ n H] Γ = 0 on Γ, |H(x)| = O(|x| -2 ) as |x| → ∞.
(1.31)

E -H Formulation

In what follows, we consider the "E-Based Formulation" inside Ω I and the "H-Based Formulation" inside Ω E . In this case, the problem is formulated as follows:

                             curl(µ -1 curlE) + iωσE = 0 in Ω I , curl(curlH) = curl(J s ) in Ω A , divH = 0 on R 3 , [E × n] Γ = 0 on Γ, [H × n] Γ = 0 on Γ, |E(x)| + |H(x)| = O(|x| -2 ) as |x| → ∞.
(1.32)

E -Φ Formulation

In this section, we present another formulation which depends on a combination of the electric field considered in the conductive domain Ω I , and the magnetic scalar potential considered in Ω E .

In Ω E , the magnetic field can be written as H = H r + H 0 , where H 0 represents the source terms and satisfies curlH 0 = J s , and H r is the reaction magnetic field that satisfies curlH r = 0. Considering a simple geometry and using the fact that curlH r = 0 in Ω E , we can write H r = -∇Φ where Φ is a magnetic scalar potential.

As divH r = 0 in Ω E , then div(∇Φ) = 0, which gives that ∆Φ = 0.

The overall formulation is then represented by the following model:

1.4 Finite Element Method                      curl(µ -1 curlE) + iωσE = 0 in Ω I , ∆Φ = 0 in Ω A , [E × n] Γ = 0 on Γ, [Φ] Γ = 0 on Γ, |Φ(x)| = O(|x| -1 ) as |x| → ∞.
(1.33)

A Magnetic Vector Potential Formulation

A Starting from (1.22) divB = 0 in Ω, (1.34) 
we can express magnetic induction B in terms of the magnetic vector potential

A B = curlA in Ω. (1.35) Replacing (1.35) in (1.19), we obtain that A = (iω) -1 E.
Here A is subjected to the so-called temporal gauge that makes the scalar potential vanish.

Replacing (1.20), (1.21), (1.35) and E = iωA in (1.18), we obtain the A-based formulation curl(µ -1 curlA) + iωσA = J s in Ω.

(1.36)

In order to assure the uniqueness of the solution of A, it is sufficient to add the following

conditions divA = 0 in Ω, (1.37) 
Γ A • ndΓ = 0 on Γ. (1.38)
Adding the continuity condition, the complete system can be written as follows:

                     curl(µ -1 curlA) + iωσA = J s in Ω I , [A × n] Γ = 0 on Γ, divA = 0 on R 3 , Γ A • ndΓ = 0 on Γ. |A(x)| = O(|x| -2 ) as |x| → ∞.
(1.39)

Finite Element Method

The Finite Element Method (FEM) is a standard numerical technique for solving partial differential equations. It became one of the most effective and widely used methods for numerical computation in electromagnetics [START_REF]The Finite Element Method in Electromagnetics[END_REF][START_REF]The Finite Element Method in Electromagnetics[END_REF][START_REF] A F Peterson | Computational Methods for Electromagnetics[END_REF]. The starting idea of the FEM is to write a weak variational formulation of the problem. Then, we divide the domain of study into elements (called finite elements) to generate a finite element mesh. There are several types of element shapes, for example meshes may consist of triangles in two dimensions and tetrahedra in three dimensions. Then, the unknown scalar or vector functions are approximated by shape functions defined over each element to represent the behaviour of the unknown variables (see section 1.6). The shape function is a continuous function defined over a single finite element (such as nodes and edges). According to Galerkin's method, we then replace test functions by the same basis functions. Finally, we solve the linear system to find the approximate solution.

Example

Consider the Poisson equation on a domain Ω with homogeneous Dirichlet boundary condition Using Green's theorem, we can rewrite (1.41) as follows

   -∆u = f in Ω, u = 0 on ∂Ω. ( 1 
Ω ∇u • ∇vdΩ - ∂Ω (n • ∇u)vd∂Ω = Ω I f vdΩ. (1.42) Choosing v such that v | ∂ Ω = 0, we get Ω ∇u • ∇vdΩ = Ω f vdΩ. (1.43)
Thus, if we choose the functional space

V = {v ∈ H 1 (Ω), v | ∂ Ω = 0} = H 1 0 (Ω),
where [START_REF] Radulescu | Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis[END_REF]]

H 1 (Ω) = {v ∈ L 2 (Ω), ∂ x i v ∈ L 2 (Ω), 1 ≤ i ≤ 3}, 1.4 Finite Element Method
we can write the weak formulation in the following form

   Find u ∈ V, such that a(u, v) = l(v), ∀v ∈ V, (1.44)
where a(u, v) = Ω ∇u∇vdΩ is a bilinear form, and l(v) = Ω f vdΩ is a bounded linear functional on V .

The weak formulation reduces the requirement to only first order partial derivatives.

The choice of the functional space V can be justified by the form of the weak formulation that requires functions in H 1 (Ω), and the boundary conditions of the strong formulation (1.40).

Galerkin's method:

The variational problems are usually solved by the Galerkin method. To approximate the unknowns, we should define a vector subspace V h of V generated by the basis functions φ 1 , φ 2 , .., φ n . Then, we approximate the solution u as a linear combination of these basis functions

u h (x) = n i=1 u i φ i (x), (1.45) 
and the test functions came from the same space. Then, the Galerkin formulation is written as

   Find u h ∈ V h , such that a(u h , v h ) = l(v h ), ∀v h ∈ V h . (1.46)
Using the basis (φ j ) of V h , it is also equivalent to

   Find u h ∈ V h , such that a(u h , φ j ) = l(φ j ), ∀j ∈ [1, n].
(1.47) Replacing (1.45) in (1.47), we obtain the following linear system

Linear system:

         A 11 A 12 • • • A 1n A 21 A 22 • • • A 2n . . . . . . . . . . . . A n1 A n2 • • • A nn                   u 1 u 2 . . . u n          =          L 1 L 2 . . . L n         
,

where A ji = a(φ i , φ j ) and L j = l(φ j ).

Advantages and disadvantages of the Finite Element Method

As is the case for other numerical methods, the FEM has some advantages and drawbacks.

Advantages of the Finite Element Method

1. The FEM is simple, for that it is widely popular among the engineering community.

2. Modeling of complex geometries as a wide range of element shapes exist for discretising the domain (unstructured mesh) [START_REF] Bossavit | Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism[END_REF].

3. Non-Linear Analysis : non-homogeneous materials can be easily considered.

4. The sparsity of the generated matrix system.

Drawbacks and limitations of the Finite Element Method

1. Volume discretisation : FEM requires a volume disretization, and so it may lead to a large number of unknowns (see Fig. 1.4).

2. It can require large memory because of the volume discretisation.

3. Finite domains: additional boundaries must be added in free-space problems with appropriate boundary conditions to limit the studied domain.

Boundary Element Method

The Boundary Element Method (BEM) is also a numerical method for solving the eddycurrent problems, that play an important role in the modern numerical computation in the engineering science. It is more convenient than many numerical methods such as the The Boundary Element Method is just FEM applied to an integral equation. For this reason, it is convenient to introduce the Boundary Integral Equations (BIE).

Boundary Integral Equation by Scalar Form of Green's

Identity

The BIE's are reformulations of the partial differential equations on a simple smooth boundary. Obtaining these equations consists of defining the mathematical model, the representational formula of the unknowns, then passing through limits toward the boundary. Here, we introduce the most popular BIE formulation for the Laplace equation, as it will be considered in section 2.2.2.

• Mathematical model:

The magnetic scalar potential Φ which derives from the field H in absence of current satisfies div(µgradΦ) = 0.

(1.48)

As we are interested to apply BEM in an air region or any linear-isotropic medium, then Φ verifies in this case the Laplace equation ∆Φ = 0.

(1.49)
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Let u = Φ, the mathematical model is formulated as follows:

∆u = 0 in Ω E , (1.50) |u(x)| = O 1 |x| 2 as |x| → ∞.
(1.51)

• Representation formula:

Firstly, let us recall the fundamental solution of the PDE (1.50),

G(x, y) = - 1 2π log|x -y| for x, y ∈ R 2 , (1.52) G(x, y) = 1 4π|x -y| for x, y ∈ R 3 . (1.53)
The solution of the partial differential equation (1.50) can be represented in terms of boundary potentials. In potential theory we have [START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF]:

u(x) = - Γ ∂ n(y) G(x, y)[u(y)] Γ dΓ y + Γ G(x, y)[∂ n(y) u(y)] Γ dΓ y , (1.54) 
for x ∈ R n \ Γ. Here ∂ n denotes the normal derivative, where n is the unit normal vector on Γ oriented from the interior domain enclosed by Γ towards the outer domain.

The representation formula in Ω E can be obtained depending on the assumption of

u in Ω I , u = 0 in R n \ Ω E , we obtain u(x) = - Γ ∂ n(y) G(x, y)u(y)dΓ y + Γ G(x, y)∂ n(y) u(y)dΓ y (1.55) for x ∈ Ω E .
We can rewrite the equation (1.55) in the following form:

u(x) = S(∂ n u)(x) -D(u)(x), (1.56)
where,

(Sφ)(x) = Γ G(x, y)φ(y)dΓ, (1.57)
is the scalar single layer potential, and

(Dφ)(x) = Γ ∂ n(y) G(x, y)φ(y)dΓ, (1.58)

Boundary Element Method

is the scalar double layer potential, for all x ∈ Ω E and y ∈ Γ.

• Integral Equations:

The solution u in the domain Ω E is given by the representational formula (1.56).

Using this representational formula, we must pass through limits toward the surface Γ in order to obtain the boundary integral equations. Taking the limits of the single layer potential S from both sides, we obtain [START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF]:

lim

Ω + x→x∈Γ (Sφ)(x) = Γ G(x, y)φ(y)dΓ, ( 1.59) 
and lim

Ω -x→x∈Γ (Sφ)(x) = Γ G(x, y)φ(y)dΓ, ( 1.60) 
for all x ∈ Γ and y ∈ Γ.

Similarly for the double layer potential D, we get:

lim

Ω + x→x∈Γ (Dφ)(x) = - 1 2 φ(x) + Γ ∂ n(y) G(x, y)φ(y)dΓ, (1.61) 
and lim

Ω -x→x∈Γ (Dφ)(x) = + 1 2 φ(x) + Γ ∂ n(y) G(x, y)φ(y)dΓ, (1.62)
for all x ∈ Γ and y ∈ Γ.

Applying the limits (1.59-1.61) on (1.56), we obtain the following boundary integral

equation 1 2 u(x) = - Γ u(y) ∂G(x, y) ∂n -G(x, y) ∂u(y) ∂n dΓ. (1.63)
We can rewrite the integral equation as follows

1 2 u(x) = S(∂ n u)(x) -(Du)(x). (1.64) for all x ∈ Γ.
The solution of the problem as well as its gradients or even high order derivatives are then given by the application of the representation formula, this method based on Green's formula is called the direct BEM approach. Another possibility is to use the property that single or double layer potentials solve the partial differential equation exactly for any given density function. In any case, passing through limits of the representational formula give the boundary integral equations. Then, as for the FEM, a numerical procedure applied to the boundary integral equation leads to a linear system of algebraic equations.

Example

Consider the Poisson equation on the domain Ω I with Dirichlet boundary condition

   -∆u = f in Ω I , u = f on Γ. (1.65)
1. Representational formula:

By considering the single layer potential, the solution u is given by

u(x) = S(∂ n u)(x) = Γ G(x, y)∂ n(y) u(y)dΓ y for all x ∈ Ω I , and y ∈ Γ, (1.66)
where u and ∂ n u are the unknowns.

Integral Equation:

Passing through limits, we obtain:

f (x) = V (∂ n u)(x) = Γ G(x, y)∂ n(y) u(y)dΓ y for all x and y ∈ Γ, (1.67) 
where p = ∂ n u is the only unknown to find.

3. Galerkin's method: 

Considering V f = {v ∈ H 1 (Γ), v | Γ = f }
Γ Γ G(x, y)p(y)q(x)dΓ y dΓ x = Γ f (x)q(x)dΓ x , (1.68) 
for all q ∈ V f . Similarly, as for the FEM (section 1.4.1). To approximate the unkown p(y) using Galerkin's method, we should define a vector subspace V f h of V f generated by the basis functions ψ 1 , ψ 2 , .., ψ n . Then, we approximate the solution p as a linear combination of these basis functions

p h (y) = n i=1 p i ψ i (y), (1.69) 
and the test functions are considered from the same functional space. Then, the Galerkin formulation is written as where

Find p h ∈ V f h , such that 1.5 Boundary Element Method Γ Γ G(x, y)p h (y)ψ j (x)dΓ y dΓ x = Γ f (x)ψ j (x)Γ x , ∀j ∈ [1, n]. ( 1 
A ji = Γ j Γ i G(x, y)ψ i ψ j dΓ y dΓ x , p =          p 1 p 2 . . . p n         
, and

b j = Γ j f (x)ψ j Γ x .

Advantages and disadvantages of the Boundary Element

Method

The BEM has also some advantages and drawbacks.

Advantages of Boundary Element Method

1. Only boundary discretisation is required (see Figure 1.5).

2. Less data and less memory storage: it is a direct result from the first point. Only the surface is discretised, so less number of elements are used.

3. Unbounded domains are treated in the same way as the bounded domains.

Disadvantages of Boundary Element Method

1. Non linearity: In general, the non-linear problems cannot be treated simply by pure BEM, as it normally requires the discretisation of the interior domain to take into account the non-homogeneous parameters. Then, a coupling of BEM with another numerical method can be an appropriate solution [START_REF] Hiptmair | Symmetric coupling for eddy current problems[END_REF], or obtaining the solution as a sum of homogeneous solution and one particular non-homogeneous one [28 ; 29]. To handle these difficulties, a compression and preconditioning techniques can be used [START_REF] Alotto | Sparsification of BEM Matrices for Large-Scale Eddy Current Problems[END_REF][START_REF] Smajic | Fast BEM for Eddy-Current Problems Using H-Matrices and Adaptive Cross Approximation[END_REF][START_REF] Ostrowski | Fast BEM-solution of Laplace problems with H-matrices and ACA[END_REF], or using an iterative solution method without the dense matrix but with approximately the same accuracy [START_REF] Buchau | Fast BEM computations with the adaptive multilevel fast multipole method[END_REF].

3. Singular kernels: the numerical solution requires the evaluation of integrals having singular kernels which must have a patricular treatment [START_REF] Graglia | On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle[END_REF].

Shape functions

Numerical methods, such as the finite element method and the boundary element method, are used to find approximate solutions of partial differential equations. The unknowns of these equations which are scalar or vector functions are approximated by continuous functions defined over each single element of the mesh. These functions defined over a single element called "shape functions" are combined over all the mesh to form the basis functions. In the following, we introduce the usual nodal, edge, and cell shape functions.

In 1980, some families of finite elements in R 3 were introduced by Nédélec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]. For the H(curl)-conforming elements that provide the continuity of the tangential component of a vector function, new complementary families are introduced in [START_REF] Nedelec | A new family of mixed finite elements in R 3[END_REF]. In [START_REF] Mur | Edge elements, their advantages and their disadvantages[END_REF], it exposed the relevance of the linear edge elements for numerical calculations as well as their disadvantages. A comparison was done with the tetrahedral low order edge elements, and the more accurate and efficient solutions are obtained with the linear edge elements and the 

Nodal shape functions -H(grad)

For a nodal element, a scalar or a vector function is approximated by a linear combination of shape functions associated with vertices (see Figure 1.6). Within an element, a scalar function u is approximated as:

u = n i=1 u i N i , (1.71)
where N i is the nodal shape function corresponding to a node i, n is the number of nodes in the element, and u i 's are the coefficients of u at nodes i = 1, .., n.

For a vector function W , it is approximated by considering three scalar components:

W = n i=1 W i N i = n i=1 (W x i x + W y i y + W z i z)N i , (1.72)
where W x i , W y i , and W z i are the components of W i in the cartesian coordinates. When two elements share a node i, the nodal values W i at node i are equal, consequently the vector function W is normally and tangentially continuous across all element interfaces. Considering a tetrahedral element for example, the nodal shape functions in local coor- dinates can be written as [START_REF] Holmberg | Three-Dimensional Finite Element Computation of Eddy Currents in Synchronous Machines[END_REF]: 

N 1 = λ 1 = 1 ± x ± y ± z,
N 2 = λ 2 = x, N 3 = λ 3 = y, N 4 = λ 4 = z,
where λ 1 , λ 2 , λ 3 and λ 4 are the barycentric coordinates of nodes 1, 2, 3 and 4. Within the element, the nodal shape function N i equals unity at node i and zero at all other nodes.

Edge shape functions -H(curl)

As the nodal element has one shape function associated with each of the vertices of the element, the edge element has one shape function for each of the edges of the element.

The edge shape functions in local coordinates for the tetrahedral element can be written as:

E i = λ k ∇λ l ± λ l ∇λ k ,
where the edge i goes from the node k to the node l. Within the element, the line integral of an edge shape function E i along edge i equals unity and is zero along all other edges. The tangential component of a vector function approximated by edge shape functions is continuous across the element boundaries, however the normal component is not necessarily continuous. For the lowest order edge elements in a tetrahedron, the divergence of the edge shape functions is zero [START_REF] Barton | New vector finite elements for three dimensional magnetic field computation[END_REF]. Thus, the vector function approximated by edge shape functions is divergence free in this element. However, that does not imply that the vector field approximated by the edge basis functions is globally divergence free since the normal components of these functions are not continuous.

Cell shape functions

The cell shape functions are zero order shape functions correspond to the scalar cell space function. This function is well suited to approximate densities. Note that there is no continuity properties between elements. CHAPTER In this chapter, we couple the Finite Element Method (FEM) and the Boundary Element Method (BEM) for solving 3D magnetostatic and magnetodynamic problems. This coupling is provided to treat one of the objectives of this thesis concerning the presence of infinite homogeneous domains. We justify the use of this coupling in section (2.1). We provide the Φ-Φ formulation for the magnetostatic case in section (2.2) and the A -Φ formulation to consider magnetodynamic problems in section (2.3), the magnetic vector potential is denoted by A and Φ is the magnetic scalar potential.

Why FEM/BEM ?

The Finite Element Method and the Boundary Element Method are widespread discretisation techniques for computing approximate solutions of the partial differential equations that appear in engineering. However, each method has some drawbacks in terms of computational costs and some complementary advantages. Consequently, the whole domain of the problem can be divided into subdomains, so that we may choose the most appropriate discretisation technique in each subdomain. In this way, we mainly keep the advantages of each method [55 ; 56].

In [START_REF] Zienkiewicz | The Coupling of the Finite Element Method and Boundary Solution Procedures[END_REF], the FEM/BEM coupling has been proposed for the first time using the standard collocation BEM. Before, many papers adopted this coupling method until they became used to habituated the coupling based on the symmetric Galerkin BEM [START_REF] Costabel | Symmetric methods for the coupling of finite elements and boundary elements[END_REF][START_REF] Sirtori | A Galerkin Symmetric Boundary Element Method in Elasticity: Formulation and Implementation[END_REF][START_REF] Langer | Parallel Iterative Solution of Symmetric Coupled FE/BE-Equation via Domain Decomposition[END_REF][START_REF] Bonnet | Regularized Direct and Indirect Symmetric Varaitional BIE Formulations for Three-Dimensional Elasticity[END_REF][START_REF] Ganguly | Symmetric coupling of multi-zone curved Galerkin boundary elements with finite elements in elasticity[END_REF][START_REF] Langer | Coupled Boundary and Finite Element Tearing and Interconnecting Methods[END_REF][START_REF] Haas | Improved Coupling of Finite Shell Elements and 3D Boundary Elements[END_REF][START_REF] Springhetti | Weak Coupling of the Symmetric Galerkin BEM with FEM for Potential and Elastostatic Problems[END_REF]. The symmetric coupling of FEM and BEM has been used to treat many problems [START_REF] Gatica | Boundary-field equation methods for a class of nonlinear problems[END_REF]. It is also used for transient electro-quasistatic field simulations in the time domain, as well as for electrostatic simulations of 3D high voltage technnical devices [START_REF] Steinmetz | Efficient Symmetric FEM-BEM Coupled Simulations of Electro-Quasistatic Fields[END_REF].

An accurate field computation is needed for modeling the design and the optimisation of some devices. Therefore, the FEM/BEM coupling is used in [START_REF] Kurz | The application of the BEM-FEM coupling method for the accurate calculation of fields in superconducting magnets[END_REF] to facilitate the modeling of large hadron collider (LHC) superconducting magnets. It is also used to model the propagation of interacting acoustic-acoustic/acoustic-elastic waves through axisymmetric media [START_REF] Warszawski | A FEM-BEM coupling procedure to model the propagation of interacting acoustic-acoustic/acoustic-elastic waves through axisymmetric media[END_REF].

Considering movement is also one of the situations where using FEM/BEM is attractive.

In [START_REF] Kurz | A novel formulation for 3D eddy current problems with moving bodies using a Lagrangian description and BEM-FEM coupling[END_REF], The FEM/BEM coupling has been applied on 3D eddy-current problems with moving bodies which can arise from the modeling of electromechanical systems. Similar approach applied on the electrodynamic levitation device [START_REF] Sabariego | Fast multipole acceleration of the hybrid finite-element/boundary-element analysis of 3-D eddycurrent problems[END_REF]. It is used as well for the modeling of induction heating processes including moving parts [START_REF] Bergheau | Fem-bem coupling for the modelling of induction heating processes including moving parts[END_REF]. For an eddy current problem, the equations inside the conductor region Ω C can be nonlinear, it is not the case in a homogeneous medium (such as the infinite exterior region that corresponds to the air in our case). In addition, there is no need for an extra artificial boundary conditions if we consider the BEM in the exterior domain and only a surface discretisation is required. This is why the proposed coupling is useful for eddy current problems and becomes more important in 3D [START_REF] Bossavit | The TRIFOU code: Solving the 3-D eddy-currents problem by using H as state variable[END_REF][START_REF] Bossavit | Two dual formulations of the 3-D eddy-currents problem[END_REF][START_REF] Bossavit | The computation of eddy-currents in dimension 3 by using mixed finite elements and boundary elements in association[END_REF][START_REF] Bossavit | Electromagnétisme, en vue de la modélisation[END_REF].

Setting of the problem

We divide the domain Ω into two subdomains: Ω C which is a conductive or magnetic bounded domain, and Ω A which is the exterior domain (Air). It leads to a natural FEM/BEM coupling, where the BEM is applied in the exterior domain and the FEM in the interior domain (see Fig. 2.2 Φ -Φ Formulation for Magnetostatic Field Equations

Φ -Φ Formulation for Magnetostatic Field Equations

The magnetostatic problem can be written as follows:

curlH = J s in Ω, (2.1) divB = 0 in Ω, (2.2) B = µH in Ω, (2.3) [B • n] Γ = 0, in Γ, (2.4) |H(x)| = O 1 |x| 2 as |x| → ∞.
(2.5)

The magnetic field H in Ω A can be expressed as the sum of two fields:

H = H s + H r , (2.6) 
where H s is the field produced by the source current that satisfies:

curlH s = J s , (2.7)
and, H r is the remaining part produced by the magnetised material (reaction magnetic field) given by: curlH r = 0.

(2.8)

The equation (2.8) implies that there exists a magnetic scalar potential Φ such that H r = -gradΦ, and so H can be written as: and using the divergence theorem:

H = H s -gradΦ. ( 2 
-

Ωc (divφ)φ = Ωc φ(gradφ ) - Γ n • φφ , (2.11)
we get:

Ωc (gradα) • BdΩ c - Γ (n • B)αdΓ = 0. (2.12)
Using (2.3) and (2.9) in (2.12), we obtain:

Ωc (gradα) • µ(gradΦ)dΩ c + Γ B n αdΓ = Ωc (gradα) • µH s dΩ c , ( 2.13) 
where B n = B • n is the normal component of the magnetic induction.

Integral equation for Φ in Ω A

The potential Φ derives from the magnetic field H and in absence of the current satisfies

-div(µgradΦ) = 0.
As we consider just an air region or any linear-homogeneous medium, Φ verifies in this case the Laplace equation

∆Φ = 0. (2.14)
Therefore, we can write the boundary integral equation as follows (see section 1.5.1)

cΦ = - Γ Φ ∂G ∂n -G ∂Φ ∂n dΓ, ( 2.15) 
where c = -1 2 .

Coupled variational formulation

Both methods should be linked by considering the same unknowns. For coupling the integral equation (2.15) with the weak form (2.13), we have to evoke the normal component of the magnetic flux density [START_REF] Bruckner | 3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations[END_REF]. Thus, if we substitute the magnetic scalar potential: 

B nr = µ(-gradΦ • n), ( 2 
cΦ = - Γ (Φ ∂G ∂n -G( -B nr µ ))dΓ.
(2.17)

However,

B n = B • n = µ(H s -gradΦ) • n, ( 2.18) 
then: 

B n µ = H s • n -gradΦ • n = H s • n + B nr µ . ( 2 
cΦ = - Γ Φ ∂G ∂n + G B n µ -H s • n dΓ. (2.20)
The final set of equations for both domains Ω C and Ω A , which are connected at a common interface Γ, can be written as:

             Ωc (gradα)µ(gradΦ)dΩ c + Γ B n αdΓ = Ωc (gradα)µH s dΩ c , cΦ + Γ Φ ∂G ∂n dΓ - Γ G B n µ dΓ = - Γ G.H s • ndΓ.
(

The complete variational formulation can be written as:

Find Φ ∈ H(grad, Ω c ) and B n ∈ H(div, Γ), such that:

   µgradΦ, gradα Ωc + B n , α Γ = µH s , gradα Ωc , (cI + D)Φ, β Γ -µ -1 S(B n ), β Γ = -S(β), H s • n Γ , (2.22) for all α ∈ H(grad, Ω c ) and β ∈ H(div, Γ).
where, as defined in subsection 1. And note that f, g Γ = Γ f (x)g(x)dΓ(x) and f, g

Ω C = Ω C f (x) • g(x)dΩ C .

FEM/BEM discretisation

In Ω C , Φ can be approximated by a linear combination of shape functions associated with the nodes:

Φ h = n i=1 Φ i α i ,
where n is the number of nodes, the coefficients Φ i 's are the values of Φ h at node i, and α i is the nodal shape function of degree 1 corresponding to node i. Note that when using the conforming elements in H(grad, Ω c ), the degrees of freedom are associated with the nodes (see section 1.6.1).

B n is approximated using scalar cell shape function (0-order shape function), those functions are equal to a constant on the face of the tetrahedral on the boundary and zero elsewhere. B n is approximated by:

B n h = m i=1 B n j β j ,
where m is the number of faces of tetrahedrals, the coefficients B n j 's are the values of B n h at face j, and β j is the scalar cell shape function of degree 0 corresponding to face j.

Applying Galerkin's Method, we can write the discretised formulation as:

Find Φ j ∈ R n and B n ∈ R n , such that n j=1 Φ i µgradα i , gradα l Ωc + m j=1 B n j β j , α l Γ = µH s , gradα l Ωc , (2.25) n i=1 Φ i (cI + D)α i , β k Γ - m j=1 B n j µ -1 S(β j ), β k Γ = -S(β k ), H s • n Γ , ( 2.26) 
for l = 1, . . . , n, and k = 1, . . . , m.

Matrix assembly:

2.2 Φ -Φ Formulation for Magnetostatic Field Equations

We end up with the following system of linear equations

     F 1 0 F 2 0 B 1 B 2           Φ Ωc Φ Γ B n      =   S 1 S 2   ,
where Φ Ωc represents the values of Φ on the nodes inside the domain Ω c , Φ Γ represents the values of Φ on the nodes on the boundary Γ,

F 1 li = Ωc (gradα i ) • µgradα l dΩ c , F 2 lj = Γ α l β j dΓ, B 1 ki = c Γ β i β k dΓ + Γ β i ∂G ∂n β k dΓ, B 2 kj = Γ 1 µ β i Gβ j dΓ, S 1 l = Ωc gradα l • (µH s )dΩ c , S 2 k = Γ G(H s • n)dΓ.

Numerical results

We consider a sphere with a radius of 1m, and a source current excited by a uniform magnetic field H S = 1 z (see Figure 2.2).

We implement this formulation in the platform «MIPSE» of the G2Elab. A LUpreconditioning method is used to solve the problem using an iterative solver, and the BEM Matrix is approximated by a H-matrix [START_REF] Hackbusch | A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices[END_REF]. With these results, we compute the external magnetic field H M ipse on an arc of circle at radius 1.3m and we compare the results to the analytical solution. In table (2.1), we calculate the relative L 2 -error

||H analytic -H M ipse || 2 ||H analytic || 2
on this arc for a range of values of the relative permeability. These errors show a harmonised agreement as the error is less than 2% and the time of simulation is around 8s. The considered mesh consists of 322 nodes and 458 cell elements on the boundary. 

A -Φ Formulation for Magnetodynamique Field Equations

Recall the eddy-current problem (1.18-1.23).

Starting from the fact that divB = 0, then B can be written as: where A is the magnetic vector potential. Therefore, H can be written in the following two forms:

B = curlA,
H = νcurlA, ( 2.27) 
and

H = H s -gradΦ. (2.28)
where ν = µ -1 . 

Weak formulation for

A in Ω C We consider J s = 0 in Ω C ,
W • curlHdΩ c = Ωc (σE) • W dΩ, ( 2.30) 
and using the property div

(A × B) = B • (curlA) -A • (curlB), we get Ωc H • curlW dΩ c + Ωc div(H × W )dΩ c = Ωc (σE) • W dΩ, (2.31) Ωc H • curlW dΩ c - Ωc div(W × H)dΩ c = Ωc (σE) • W dΩ. (2.32)
Using the fact that

Ωc div(W × H)dΩ c = Γ (W × H) • ndΓ, we obtain, Ωc H • curlW dΩ c - Γ (W × H) • ndΓ = Ωc (σE) • W dΩ. (2.33) Substitute H = νcurlA, implies Ωc curlW • νcurlAdΩ c - Ωc (σE) • W dΩ - Γ (W × H) • ndΓ = 0, (2.34) 
then substitute H = H s -gradΦ, we get

Ωc curlW •νcurlAdΩ c - Ωc (σE)•W dΩ- Γ (gradΦ×W )•ndΓ = Γ (W ×H s )•ndΓ, (2.35) Ωc curlW •νcurlAdΩ c - Ωc (σE)•W dΩ- Γ (gradΦ×W )•ndΓ = Γ W •(H s ×n)dΓ. (2.36) 2.3 A -Φ Formulation for Magnetodynamique Field Equations However Γ (gradΦ × W ) • ndΓ = - Γ (n × W )gradΦdΓ = Γ div Γ (n × W )ΦdΓ = - Γ n • curlW ΦdΓ, implies Ωc curlW • νcurlAdΩ c - Ωc (σE) • W dΩ + Γ n • curlW ΦdΓ = Γ W • (H s × n)dΓ. (2.37)
Using Faraday's equation, we can write E = -iωA, which gives that:

Ω curlW • νcurlAdΩ + iω Ωc (σA) • W dΩ + Γ (n • curlW )ΦdΓ = Γ W • (H s × n)dΓ. (2.38)

Integral equation for Φ in Ω A

Similarly as in section (2.2.2), the integral equation is written as follows

cΦ + Γ Φ ∂G ∂n dΓ - Γ G B n µ dΓ = - Γ G.H s • ndΓ. ( 2.39) 
where B n = B • n is the normal component of the magnetic induction.

Coupled variational formulation

Both methods are linked by the following interface condition:

B n = B • n = curlA • n, to get        Ωc curlW νcurlAdΩ + iω Ωc (σA)W dΩ + Γ n • curlW ΦdΓ = Γ W • (H s × n)dΓ, cΦ + Γ Φ ∂G ∂n dΓ - Γ G curlA • n µ dΓ = - Γ G.H s • ndΓ.
(2.40)

The variational formulation is written as:

Find A ∈ H(curl) and Φ ∈ Cell or H(grad) , such that Where Cell is the function space of zero order shape functions (constants). Note that the aim of choosing Φ either in the functional space Cell or H(grad) is to test two ways of discretisation. The interest is to show that the cell shape functions can be sufficient in simple geometries, moreover it may reduce the computational time.

   νcurlA, curlW Ωc + iω σA, W Ωc + Φ, n • curlW Γ = H s ∧ n, W Γ , µ -1 S(curlA • n), F Γ -(cI + D)Φ, F Γ = -S(F ), H s • n Γ , ( 2 

FEM/BEM discretisation

In Ω C , A is approximated by a linear combination of shape functions associated with edges

A h = n i=1 A i W i ,
where the coefficient A i is the value of A at edge i, and W i is the edge shape function of degree 1 corresponding to edge i (see section 1.6.2).

When using the conforming elements in H(curl), the degree of freedom are associated with the edges.

Φ is approximated using nodal shape functions (first order shape function) or using cell shape functions (zero order shape functions).

Applying Galerkin Method, we state the discretised formulation knowing that Φ is approximated by:

Φ h = m j=1 Φ j N j ,
where N j represents either the nodal shape function, or the cell shape function. Applying Galerkin's Method, we can write the discretised formulation as:

Find A i and Φ j ∈ R n , such that n i=1 A i < νcurlW i , curlW l > Ωc -n i=1 A i < iωσW i , W l > Ωc + m j=1 Φ j < N j , n • curlW l > Γ =< H s ∧ n, W l > Γ , (2.42) n i=1 A i < µ -1 S(curlW i • n), N k > Γ - m j=1 Φ j < (cI + D)N j , N k > Γ =< H s • n, S(N k ) > Γ (2.43)
for l=1..n, and k=1..m.

A -Φ Formulation for Magnetodynamique Field Equations

Matrix assembly:

We end up with the following system of linear equations:

     F 1 0 F 2 0 B 1 B 2        A Φ   =   S 1 S 2   ,
where

F 1 il = Ωc (curlW i )νcurlW l dΩ + iω Ω W i σW l dΩ F 2 jl = Γ curl(W l • n)N j dΓ B 1 ik = Γ 1 µ (curlW i • n)GN k dΓ B 2 jk = c Γ N j N k dΓ + Γ N j ∂G ∂n N k dΓ S 1 l = Ωc (W l ) • (H s ∧ n)dΩ R 2 k = Γ G(H s • n)dΓ

Numerical results

We consider a sphere with a radius of 1 m, µ r = 10 H/m, σ = 5.5 × 10 6 S, f = 10 3 Hz.

The source current is excited by a uniform magnetic field

H s = 1 z.
The simulation is performed by both ways of discretisation concerning Φ (Nodal and Cell), and using the same mesh. We calculate the external magnetic field H M ipse on an arc of circle at radius 1.3m and we compare the results to the analytical solution. In Table (2.2), we provide the error obtained considering the discretisation of Φ by the nodal and cell shape functions, as well as their computational time. 

||H analytic -H M ipse

Conclusion and Perspectives

Magnetostatic Maxwell equations are solved in 3D using the Φ -Φ FEM/BEM coupling formulation and 3D magnetodynamic problem is solved using the A -Φ FEM/BEM coupling method. Note that, we consider here only linear and homogeneous materials.

One of the interests in choosing a FEM/BEM coupling is to treat the nonlinearity in the bounded domain using the FEM (see section 2.1). In addition, the initial project is represented by the discretisation of the magnetic circuit in the coupler (see Figure 1, section 0.1), thus one of our perspectives is to apply these formulations on non-linear problems. 

Conclusion and

Multiscale Expansion and Equivalent

Introduction

Many components are surrounded by conductive thin layers for shielding purposes such as the anechoic chamber used to measure antenna characterization, and the Helmholtz coils used to cancel the earth magnetic field and generate the required magnetic fields for experiments. Modeling these conducting regions requires a very fine volume discretisation because the fields decay rapidly through the surface due to the skin depth. Therefore, it may lead to a large system of equations (using the FEM) and then to prohibitive computational time especially for 3D structures. To prevent this difficulty, the conductive sheet can be replaced by a mid-surface with equivalent transmission conditions. The transmission conditions are derived asymptotically for vanishing sheet thickness ε where the skin depth is kept proportional to ε, in this way we will maintain the skin depth less than or equal to the sheet thickness.

In [START_REF] Nguyen | 3-D Integral Formulation Using Facet Elements for Thin Conductive Shells Coupled With an External Circuit[END_REF], an integral formulation using facet elements is presented for modeling a nonmagnetic conductive thin sheet in the general case (the skin depth is smaller, larger, or equal to the thickness of the sheet).

In [START_REF] Geuzaine | Dual formulations for the modeling of thin electromagnetic shells using edge elements[END_REF], a thin shell approximation that reduces the thin shell volume to an average surface situated halfway between the inner and outer surface of the shell is proposed. It is based on the treatment of the surface terms that appear in the finite element formulation. This treatment is done by establishing an appropriate impedance boundary conditions and a discretisation using Whitney edge elements. They assumed that the electromagnetic fields H and E have no components perpendicular to the surface of the shell. This approach is applied on the perforated magnetic shield for electric power applications in [START_REF] Sergeant | Analysis of perforated magnetic shields for electric power applications[END_REF].

In [START_REF] Gyselinck | Time-domain finiteelement modeling of thin electromagnetic shells[END_REF], a time-domain approach with a magnetic field vector formulation is proposed to consider the presence of thin layers. It is based on the treatment of the surface term in the weak formulation of finite element method and the use of orthogonal polynomial basis functions to account for the variation of the magnetic flux and the current density through the shell thickness. A tangential vector fields are introduced on the average surface to take into account the time domain behavior of the thin shell. This work has been extended to the magnetic field formulation in [START_REF] Sabariego | h-and a-time-domain formulations for the modelling of thin electromagnetic shells[END_REF], and an application on a shielded induction heater with a pulsed current is presented in [START_REF] Gyselinck | Finite-element homogenization of laminated iron cores with inclusion of net circulating currents due to imperfect insulation[END_REF].

In [START_REF] Schmidt | Robust transmission conditions of high order for thing conducting sheets in two dimensions[END_REF] two families of Impedance Transmission Conditions (ITC) for Eddy Current

Introduction

Model in 2D have been derived using asymptotic expansions, ITC-1-N based on scaling the conductivity with the sheet thickness ε like 1/ε and ITC-2-N based on scaling the conductivity with the sheet thickness ε like 1/ε 2 , where N + 1 is the order of convergence for these families. The robustness of the ITC-2-N family of transmission conditions is validated in [START_REF] Schmidt | A unified analysis of transmission conditions for thin conducting sheets in the time-harmonic eddy current model[END_REF] and it shows a higher accuracy in comparison with ITC-1-N. The ITC-2-N family thus adopted in [START_REF] Victor Péron | Equivalent transmission conditions for the time-harmonic Maxwell equations in 3D for a medium with a highly conductive thin sheet[END_REF] to derive an equivalent transmission conditions for the full time-harmonic Maxwell equations in 3D, where curved thin sheets are considered, and the material constants can take different values inside and outside the sheet.

In this work, the family ITC-2-N is considered, we present impedance transmission conditions derived asymptotically for eddy-current problems in 3D, for curved thin sheets, where the materials inside and outside the sheet are non-conductive. The difference between this work and the work in [START_REF] Victor Péron | Impedance transmission conditions for eddy current problems[END_REF] is that we proceed with an hybrid (electric and magnetic fields) formulation, where in [START_REF] Victor Péron | Impedance transmission conditions for eddy current problems[END_REF] the derivation of asymptotic models is based on a magnetic field formulation and a multi-scale expansion for the magnetic field and then impedance conditions are identified for the electric field.

We also study a discretization that can be the numerical relevant for ITCs. We avoid the volume mesh required in the Finite Element Method (FEM) by discretising the problem using the Boundary Element Method (BEM) that uses only a mesh on the surface. In addition, the BEM is well adapted to general field problems with unbounded structures because no artificial boundary is needed [START_REF] Rjasanow | The fast solution of boundary integral equations, Mathematical and Analytical Techniques with Applications to Engineering[END_REF]. This is not the case for the FEM.

We validate the results by comparing them to an analytical solution, and to the same problem simulated in COMSOL and solved numerically using the Finite Element Method with very fine meshes. This chapter is organized as follows: Sections 3.2.3 and 3.3 presents the hybrid formulation of the eddy current problem, and the mathematical demonstration of the equivalent models up to order 2. In Section 3.5 we provide the Boundary Element Method with specific basis functions to solve the problem. Numerical results are provided in Section 3.6, we validate our models and assumptions, and we study the computational time using the BEM. 

Mathematical Model

Notations

Let Γ be any orientable and closed surface of R 3 , and let v be a vector field on Γ, then we denote by

v T = n × (v × n) the tangential component of v.
Here n is the unit normal vector on Γ which is oriented from the interior domain enclosed by Γ towards the outer domain (see Figure 3.1).

We also denote by γ D •, γ N • and γ n • the Dirichlet, Neumann, and normal traces, respectively. They are defined as

γ D v = v T = n × (v × n) | Γ , γ N v = (curlv × n) | Γ , γ n v = (v • n) | Γ .
We denote by curl Γ the tangential rotational operator and by curl Γ the surface rotational 

∀f ∈ C ∞ (Γ), curl Γ f = (∇ Γ f ) × n ∀v ∈ (C ∞ (Γ)) 3 , curl Γ v = div Γ (v × n)
where ∇ Γ and div Γ are respectively the tangential gradient and the surface divergence on Γ.

Mathematical Model

Denote also the space of L 2 -integrable tangent vector fields by

L 2 t (Γ) = {v ∈ (L 2 (Γ)) 3 , v • n = 0 on Γ}.
Let Ω -and Ω + be two Lipschitz domains, and let Γ := ∂Ω -∪ ∂Ω + be the common interface which is a closed set (see Figure 3.1).

Let Σ be any smooth surface, we denote by [f ] Σ the jump of f across Σ

[f ] Σ = f | Σ + -f | Σ - for f ∈ C ∞ (Ω ± )
where for all x ∈ Σ, the one sided traces are defined by:

f | Σ ± = lim s→0± f (x + sn).
Also we denote by {f } Σ the mean value of f across Σ

{f } Σ = 1 2 (f | Σ + + f | Σ -) for f ∈ C ∞ (Ω ± ).
The same definitions can be extended to vector fields v ∈ (C(Ω ± )) 3 .

For the tangential traces, we have the following relations:

{v × n} Σ = {v} Σ × n, [v × n] Σ = [v] Σ × n, {v T } Σ = ({v} Σ ) T , [v T ] Σ = ([v] Σ ) T .

Eddy Current Problem for a Thin Layer

Throughout this chapter, we denote by Ω ⊂ R 3 the domain of study, which is itself composed of three sub-domains

Ω = Ω ε -∪ Ω ε 0 ∪ Ω ε +
where Ω ε -is the interior domain that corresponds to any non-conductive linear material, Ω ε + is the exterior of the structure domain, and the subdomain Ω ε 0 is a conductive thin 

µ ε =          µ -in Ω ε -, µ c 0 in Ω ε 0 , µ + in Ω ε + ,
and

σ ε =          0 in Ω ε -, σ 0 in Ω ε 0 , 0 in Ω ε + .
At high frequency, the skin depth δ = 2 ωµ c 0 σ 0 becomes smaller than the thickness ε. In this case, very fast changing field near the interface will be observed, and the magnetic field does not penetrate completely in the interior of the layer. This skin effect makes the studying of the behavior of the magnetic field near the interface more problematic, as a very fine mesh is required. That is why we are interested in the case where the skin depth is smaller than ε or of the same order.

For studying the asymptotic behaviour, we assume an explicit dependence of the layer conductivity σ 0 on ε σ 0 = ε -2 σ, which comes from the fact that as the layer is thinner, the conductivity is larger and δ remains less than or equal to .

The general model of the eddy current problem is already presented in chapter 1, but we 

curlE ε -iωµ ε H ε = 0 in Ω, (3.2) 
B ε = µ ε H ε in Ω, (3.3 
)

J = σ ε E ε + J s in Ω, (3.4 
)

divE ε = 0 in Ω ε ± , (3.5) Γ ε ± E ε ± • ndS = 0 on Γ ε ± , ( 3.6 
)

E ε = O 1 |x| as |x| → ∞, (3.7) 
where ω is the angular frequency.

E ε ± /H ε 0 Hybrid Formulation

In [START_REF] Victor Péron | Impedance transmission conditions for eddy current problems[END_REF] the formulations in H and E are adopted but it is also possible to do all the calculations in a hybrid formulation E/H. Using Faraday's law (3.2), the magnetic field can be written in Ω ε ± in function of the electric field as

H ε ± = (iω) -1 (µ ε ± ) -1 curlE ε ± ,
and substituting it in Ampère's law (3.1), we obtain an equation for the electric field in the insulator or air region Ω ε

± curlcurlE ε ± = iωµ ε ± J s .
Similarly, using Ampère's law (3.1) the electric field can be written in Ω ε 0 as

E ε 0 = (σ 0 ) -1 (curlH ε 0 -J s ),
and substituting it in Faraday's law (3.2), we obtain an equation for the magnetic field in the conductor Ω ε Transmission conditions across the two conductor surfaces Γ ε + and Γ ε -are considered [START_REF] Alonso | Eddy Current Approximation of Maxwell Equations: Theory[END_REF] [

0 curlcurlH ε 0 -iωµ ε 0 σ 0 H ε 0 = curlJ s .
H ε × n] Γ ε ± = 0 on Γ ε ± , (3.8) [µH ε • n] Γ ε ± = 0 on Γ ε ± . (3.9)
Using Faraday's law and the tangential continuity of the magnetic field across the boundary, we obtain

iω(H ε 0 × n) = iω(H ε ± × n) = 1 µ ε ± curlE ε ± × n.
Using the continuity of the normal component of the magnetic induction (3.9) and the Faraday law, we get

µ ε 0 H ε 0 • n = µ ε ± H ε ± • n = 1 iω curlE ε ± • n.
For simplicity, we assume that the source current term J s is smooth enough and its support does not meet the layer Ω ε 0 (J s = 0 in Ω ε 0 ). Therefore the hybrid eddy current model can be written

                             curlcurlE ε ± = iωµ ε ± J s in Ω ε ± , curlcurlH ε 0 -k ε 0 H ε 0 = 0 in Ω ε 0 , iω(H ε 0 × n) = 1 µ ε ± curlE ε ± × n on Γ ε ± , µ 0 H ε 0 • n = 1 iω curlE ε ± • n on Γ ε ± , divE ε ± = 0 in Ω ε ± , Γ ε ± E ε ± • ndS = 0 on Γ ε ± , (3.10)
where k ε is the complex wave number given by

(k ε ) 2 (x) = iωσ ε (x)µ ε (x).
It is defined as a piecewise constant function inside the three subdomains

k ε =          0 in Ω ε -, k 0 in Ω ε 0 , 0 in Ω ε + ,
where E ε + , E ε -and H ε 0 denote the restrictions of E ε and H ε to the respective domains Ω ε + , Ω ε -and Ω ε 0 .

Mathematical Model

Objective

The discretisation of the conducting sheet by the FEM is time-consuming as it requires meshing by very small cells due to the rapid decay of the field under high conductivity.

To avoid meshing the thin layer Ω ε 0 , we suggest replacing it by an interface, usually its mid-surface Γ, on which appropriate conditions are set. This is to say that we have to approximate new models defined on ε-independent domains and

Ω + = lim ε→0 Ω ε + .
In the approximate model, we redefine the magnetic properties in the new subdomains by a simple extension of µ ε and σ ε outside the sheet. We obtain the new values:

µ =    µ -in Ω -, µ + in Ω + ,
and

σ =    σ -= 0 in Ω -, σ + = 0 in Ω + .
Similarly, we define k the extension of k ε as 

Multiscale Expansion and Equivalent Models with Transmission Conditions

In problem (3.10), Ω ε 0 is a thin layer, and Γ its mediant-surface (Ω ε 0 is then a tubular neighborhood of Γ in Ω -∪ Ω + ) Assuming that Γ is a smooth curve, then it is possible to derive a multiscale expansion for the solution of the problem: It possesses an asymptotic expansion in power series of the small parameter ε [64]

E ε ± (x) ≈ E ± 0 (x) + εE ± 1 (x) + ε 2 E ± 2 (x) + ... + O(ε k ), (3.11 
)

H ε 0 (x) ≈ H 0 y α , h ε + εH 1 y α , h ε + ... + O(ε k ), (3.12) 
where O(ε k ) means that the remainder is uniformly bounded by ε k .

Here, x ∈ R 3 are the cartesian coordinates, and (y α , h) is the local coordinate system where h ∈ (-ε 2 , ε 2 ) is the normal coordinate to Γ and y α for α = 1, 2 (i.e. (y 1 , y 2 )) are the tangential coordinates to Γ (see Figure 3.4). Note that, y α is called the "slow" variable and h/ε is called the "fast" variable according to the normal coordinates.

The term H j are profiles defined on Γ × (- 1 2 , 1 2 ) and are smooth for all variables. These profiles describe the magnetic field in the thin layer Ω ε 0 according to the normal coordinate system.

The derivation is based on:

• the expansion of the differential operators inside the thin layer Ω ε 0 , (see Appendix A.1)

• the Taylor expansion of E j | Γ ε ± around the mid-surface Γ, (see Figure (3.5))

• the collection of the terms with the same power in ε in the PDE inside and outside the sheet, and the conditions for the Dirichlet and normal traces on Γ ε ± .

Then, we can introduce a problem satisfied by an approximation E k ε of the expression E 0 (x) + εE 1 (x) + ε 2 E 2 (x) + ... + ε k E k (x) up to a residual term O(ε k+1 ). Approximating this model by considering just the mid-surface of the thin layer subdomain Ω ε 0 requires us to write the second partial differential equation (3.14) in the thin conductor in the scaled local coordinate system (y α ,Y 3 ).

Multiscale Expansion and Equivalent Models with Transmission Conditions

Equations of the coefficients of E

ε ± /H ε 0 Keep in mind that the hybrid formulation E ε ± /H ε 0 satisfies the following curlcurlE ε ± = iωµ ε ± J s in Ω ε ± (3.13) curlcurlH ε 0 -k ε 0 H ε 0 = 0 in Ω ε 0 (3.14) iω(H ε 0 × n) = 1 µ ε ± curlE ε ± × n on Γ ε ± (3.15) µ c 0 H ε 0 • n = 1 iω curlE ε ± • n on Γ ε ± (3.16) divE ε ± = 0 in Ω ε ± (3.17) Γ ε ± E ε ± • ndS = 0 on Γ ε ± (3.
We find that the profiles H j satisfy the following

L[ε] ∞ j=0 ε j H j (y α , Y 3 ) = 0 in Γ × I, (3.19)
where L is the second order Maxwell operator defind in Appendix A.1, and I = ( -1 2 , 1 2 ). We can easily see that the terms E ± j of the expansion (3.11) depends on ε, because they are evaluated on Γ ε ± when replacing the expansion of E ε in the transmission conditions across Γ ε ± . This is not convenient, and we propose to consider the Taylor expansion of this term towards the surface Γ. This should give a more accurate approximation.

As the expansion of E ε is assumed to be valid for any small ε > 0 the terms E ± j are defined in Ω ε ± for all ε > 0 and hence in Ω ± . According to the assumption that the thin conductors, and its mid-surface Γ are smooth, that µ ± , σ ± are constants, and that the current J s is zero close to Γ it makes sense to accept that the vector fields E ± j are regular in the neighbourhood of Γ. This can be justified using the regularity theory in [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF].

Hence we can use the Taylor expansion and infer for

n ∈ N, that curlE ± n × n| h=± ε 2 = curlE n × n| 0± ± ε 2 ∂ h curlE n × n| 0± + ..., (3.20) curlE ± n • n| h=± ε 2 = curlE n • n| 0± ± ε 2 ∂ h curlE n • n| 0± + ..., (3.21) 
where •| 0± means the limit for positive or negative h → 0, respectively.

Proposition 3.3.1 The components of L[ε] ∞ j=0 ε j H j (y α , Y 3
) in Γ × I after performing the identification of terms with the same power of ε are:

L 0 (H 0 ) = 0, L 0 (H 1 ) + L 1 (H 0 ) = 0,
and k l=0 L l (H k-l ) = 0 for n ≥ 2,

Multiscale Expansion and Equivalent Models with Transmission Conditions

where L l , l = 0..k are the terms of expansion of L in power series of ε (see Appendix A.1). 

Proof. see the

n ≥ 0 L 0 3 (H n ) = γ 2 (h n ) = - n j=1 L j 3 (H n-j ) in Γ × I, (3.22) L 0 α (H n ) = -∂ 2 3 H n,α + γ 2 H n,α = - n j=1 L j α (H n-j ) in Γ × I, (3.23) curlcurlE ± n = δ 0 n iωµ ± J s in Ω ± , (3.24) curlE ± n • n| 0± = iωµ c 0 H n • n| ± 1 2 - n j=1 1 (±2) j ∂ j h curlE ± n-j • n| 0± on Γ, (3.25) curlE ± n × n| 0± = iωµ ε ± H n × n| ± 1 2 - n j=1 1 (±2) j ∂ j h curlE ± n-j × n| 0± on Γ, (3.26) divE ± n = 0 in Ω ε ± , (3.27) Γ ε ± E ± n • ndS = 0 on Γ ε ± , ( 3 
L 0 3 (H n ) = γ 2 (h n ) = - n j=1 L j 3 (H n-j ) in Γ × I, (3.29) L 0 α (H n ) = -∂ 2 3 H n,α + γ 2 H n,α = - n j=1 L j α (H n-j ) in Γ × I, (3.30) curlcurlE ± n = δ 0 n iωµ ± J s in Ω ± , (3.31) curlE ± n • n| 0± = iωµ c 0 h n | ± 1 2 - n j=1 1 (±2) j ∂ j h curlE ± n-j • n| 0± on Γ, (3.32) iωµ ε ± H n | ± 1 2 = n × curlE ± n × n| 0± + n j=1 1 (±2) j ∂ j h n × curlE ± n-j × n| 0± on Γ, (3.33) divE ± n = 0 in Ω ± , (3.34) Γ ± E ± n • ndS = 0 on Γ ± , ( 3 

Equivalent Models up to order 2

In the previous section we derived the coupled systems for the terms of the asymptotic expansions to any order n. Hence we can determine now the first terms

H n = (H n , h n )
and E n by induction.

Equivalent Model of Order 1

For n = 0 in the previous system (see corollary 3.3.1), it is straightforward that H 0 = (H 0 , h 0 ) and the terms E 0 satisfy

γ 2 (h 0 ) = 0 in Γ × I, (3.36) -∂ 2 3 H 0,α + γ 2 H 0,α = 0 in Γ × I, (3.37) curlcurlE ± 0 = iωµ ± J s in Ω ± , (3.38) curlE ± 0 • n| 0± = iωµ c 0 h 0 | ± 1 2 on Γ, (3.39) iωµ ± H 0 | ± 1 2 = n × curlE ± 0 × n| 0± on Γ, (3.40) divE ± 0 = 0 in Ω ± , (3.41) Γ ± E ± 0 • ndS = 0 on Γ ± . (3.42)
Obviously 3.36 implies that h 0 = 0 by the fact that γ = 0 and in view of (3.38), (3.39), (3.41), and (3.42) we can obtain the following limit system for

E ± 0                              curlcurlE - 0 = iωµ -J s in Ω -, curlE - 0 • n = 0 on Γ, curlcurlE + 0 = iωµ + J s in Ω + , curlE + 0 • n = 0 on Γ, divE ± 0 = 0 in Ω ± , Γ ± E ± 0 • ndS = 0 on Γ ± .
(3.43)

3.4 Equivalent Models up to order 2

Equivalent Model of Order 2

In the same way we find that H 1 = (H 1 , h 1 ) and the terms E 1 satisfy

γ 2 (h 1 ) = -L 1 3 (H 0 ) in Γ × I, (3.44) -∂ 2 3 H 1,α + γ 2 H 1,α = -L 1 α (H 0 ) in Γ × I, (3.45) curlcurlE ± 1 = 0 in Ω ± , (3.46) curlE ± 1 • n| 0± = iωµ c 0 H 1 • n| ± 1 2 ∓ 1 2 ∂ h curlE ± 0 • n| 0± on Γ, (3.47) iωµ ± H 1 | ± 1 2 = n × curlE ± 1 × n| 0± ± 1 2 ∂ h n × curlE ± 0 × n| 0± on Γ, (3.48) divE ± 1 = 0 in Ω ± , (3.49) Γ ± E ± 1 • ndS = 0 on Γ ε ± . (3.50)
According to (3.44), and proposition (A.4.1) we obtain

h 1 (y β , Y 3 ) = -γ -1 D α 1 iωµ curlE α 0 Γ (y β ) sinh γY 3 cosh( γ 2 ) + D α 1 iωµ curlE α 0 Γ (y β ) cosh γY 3 2 sinh( γ 2 )
, where E α 0 is the tangential components of E 0 , and D α is the covariant derivative. Now, inserting this explicit representation into the condition (3.47), we find that the term E ± 1 satisfies the following problem:

                             curlcurlE - 1 = 0 in Ω -, curlE - 1 • n = e - 1 on Γ, curlcurlE + 1 = 0 in Ω + , curlE + 1 • n = e + 1 on Γ, divE ± 1 = 0 in Ω ± , Γ ± E ± 1 • ndS = 0 on Γ ± , (3.51)
where

e ± 1 := -γ 2 iωµ c 0 ± D α 1 iωµ curlE α 0 Γ (y β ) tanh( γ 2 ) + D α 1 iωµ curlE α 0 Γ (y β ) 1 2 tanh( γ 2 ) ∓ 1 2 ∂ h curlE ± 0 • n| 0± .
(3.52)

Equivalent Models up to order 2

Which is equivalent to

               curlcurlE 1 ε = iωµJ s in Ω ± , E 1 ε = O( 1 |x| ) as |x| → ∞, [curlE 1 ε • n] Γ {curlE 1 ε • n} Γ = ε D 1 D 3 D 3 D 2   { 1 µ (curlE 1 ε ) T } Γ [ 1 µ (curlE 1 ε ) T ] Γ   on Γ,
where

D i = C i div Id for i = 1, .., 3,
and

C 1 = {µ} -2 µ c 0 γ tanh( γ 2 ), , C 2 = {µ} 4 - µ c 0 2γ coth( γ 2 ), C 3 = 1 4 [µ].
Note that Id is an identity operator.

Impedance Transmission Conditions in function of Dirichlet and Neumann Traces of Electric Field

Using Faraday's law (H 1 ε ) T = 1 iωµ (curlE 1 ε ) T and using the Stokes formula µH

1 ε • n = 1 iw div Γ (E 1 ε × n), we get curlE 1 ε • n = div Γ (E 1 ε × n).
Using this relation, and applying "the inverse" of the operator div Γ , we obtain

               curlcurlE 1 ε = iωµJ s in Ω ± , E 1 ε = O( 1 |x| ) as |x| → ∞, [E 1 ε × n] Γ {E 1 ε × n} Γ = ε C 1 C 3 C 3 C 2   { 1 µ (curlE 1 ε ) T } Γ [ 1 µ (curlE 1 ε ) T ] Γ   on Γ.
Applying n × I operator, we obtain the following transmission conditions in function of the Neumann and Dirichlet trace of the electric field, we can say that it is in function of the transverse magnetic field and the transverse electric field. we get

               curlcurlE 1 ε = iωµJ s in Ω ± , E 1 ε = O( 1 |x| ) as |x| → ∞, [γ D E 1 ε ] Γ {γ D E 1 ε } Γ = -ε C 1 C 3 C 3 C 2   { 1 µ (γ N E 1 ε )} Γ [ 1 µ (γ N E 1 ε )] Γ   on Γ.

Symmetric case with permeability µ 0

For

µ -= µ + = µ 0 , E 1 satisfies                      curlcurlE 1 = 0 in Ω ± , divE 1 = 0 in Ω ± , E 1 = O( 1 |x| ) as |x| → ∞, [γ D E 1 ] Γ {γ D E 1 } Γ = K 1 0 0 K 2   {(γ N E 0 )} Γ [(γ N E 0 )] Γ   on Γ, (3.59) 
and

E 1 ε satisfies                curlcurlE 1 ε = iωµJ s in Ω ± , E 1 ε = O( 1 |x| ) as |x| → ∞, [γ D E 1 ε ] Γ {γ D E 1 ε } Γ = ε K 1 0 0 K 2   {(γ N E 1 ε )} Γ [(γ N E 1 ε )] Γ   on Γ, (3.60) 
where

K 1 = -1 + 2 1 γ tanh( γ 2 ) , K 2 = -1 4 + 1 2γ coth( γ 2 ).

Discretisation by the Boundary Element Method

As out of the layer we mainly consider a non-conductive linear homogeneous domain and an open boundary problem, we can avoid the volume mesh required in the FEM by using the BEM that uses only 2D elements on the surfaces. Moreover, the BEM is adapted to general field problems with unbounded structures because no artificial boundaries are needed. After introducing the functional spaces, the potentials, and the general representation formula in sections 3.5.1, 3.5.2 and 3.5.3 respectively. We formulate the integral equations, the variational formulations, and the Galerkin discretisation using special basis functions of the terms of expansion E 0 in section 3.5.4, E 1 in section 3.5.5, and the equivalent model of order 2 E 1 ε in section 3.5.6. Note that we consider µ -= µ + = µ 0 all 3.5 Discretisation by the Boundary Element Method over this section.

Functional Spaces

The spaces that are related to the traces of vector fields in H(curl, Ω ± ) onto Γ must be considered using Boundary Integral Equations. We will use the following spaces of tangential vector fields on Γ, which are defined in [START_REF] Buffa | On traces for functional spaces related to Maxwell's equations.Part I: An integration by parts formula in Lipschitz polyhedra[END_REF],

• H 1 2 (Γ) which represents the tangential surface vector fields that are in H 1 2 (Γ i ) for each smooth component Γ i of Γ, and provides the weak tangential continuity across the edges of Γ i ,

• H 1 2
⊥ (Γ) which provides the weak normal continuity.

Note that for a smooth boundary Γ, these spaces coincide with that of tangential surface vector fields in H ⊥ (Γ), respectively. These dual spaces can be considered as the images of tangential traces of vector fields.

These surface differential operators are used to define the spaces H -1 2 ⊥ (curl Γ , Γ), and

H -1 2 (div Γ , Γ) introduced in [61] by H -1 2 ⊥ (curl Γ , Γ) = {v ∈ H -1 2 ⊥ (Γ), curl Γ v ∈ H -1 2 (Γ)}, H -1 2 (div Γ , Γ) = {w ∈ H -1 2 (Γ), div Γ w ∈ H -1 2 (Γ)}.
Another property in [62, sec. 4] is that H

-1 2 ⊥ (curl Γ , Γ) and H - 1 
2 (div Γ , Γ) are dual of each others, when the space of L 2 -integrable vector fields L 2 (Γ) is used as pivot space [START_REF] Brezis | Analyse Fonctionelle[END_REF].

According to [60, sec. 3], H

-1 2 ⊥ (curl Γ , Γ), H - 1 
2 (div Γ 0, Γ) and H 

-1 2 (div Γ 0, Γ) = Ker(div Γ , H -1 2 (div Γ , Γ)).

Potentials

For any tangential vector field λ on Γ we define the vectorial single-layer potential Ψ A by Recall that G(x, y) is defined in (1.53), and denote by Ψ V the scalar single layer potential defined in (1.57).

Ψ A (λ)(x) = Γ λ(y)G(x, y)dΓ y , x ∈ Γ, ( 3 

Boundary Integral Equations

Let E ∈ L 2 (R 3 ) with curlE ∈ L 2 (Ω ± ). Theorem 3.5.1 If a vector field E : Ω ± -→ C 3 satisfies          curlcurlE = 0 in Ω ± , divE = 0 in Ω ± , E(x) = O( 1 |x| ) as |x| → ∞,
then it satisfies the following transmission formula [START_REF] Hiptmair | Symmetric coupling for eddy current problems[END_REF] 

E = Ψ M ([γ D E] Γ ) + Ψ A ([γ N E] Γ ) -gradΨ V ([γ n E] Γ ).
Applying the trace operators γ D • to the representation formula leads to the boundaryintegral equations. For this reason we define the following operators

K = {γ D Ψ M } Γ , V = {γ D Ψ A } Γ , Q = {γ D Ψ V } Γ .
As the potentials Ψ A , Ψ M , and Ψ V are not necessarily continuous across Γ, it is useful to provide the jump relations (see Appendix A.5). In order to write the integral equation in the case where we have an excitation by J s , we introduce the Newton potential representing the source term

E s (x) = iωµ R 3 J s (y)G(x, y)dy.
It is sufficient to consider the representation formula of E 0 in Ω + , using Theorem 3.5.1

we state the representation formula as

E 0 = -Ψ M (γ + D E 0 ) -Ψ A (γ + N E 0 ) -gradΨ v (γ + n E 0 ) + E s .
Applying γ + D to the representation formula, we find for

E 0 γ + D E 0 = 1 2 I -K (γ + D E 0 ) -V (γ + N E 0 ) -gradQ(γ n E 0 ) + γ + D E s , this equation is set in H -1 2 ⊥ (curl Γ , Γ
) which is the appropriate space for Dirichlet data.

Variational Formulation for E 0

We obtain an equivalent variational formulation by testing against function from the dual space of H

-1 2 ⊥ (curl Γ , Γ). The dual space of H -1 2 ⊥ (curl Γ , Γ) is the space H -1 2 (div Γ , Γ). Find γ + N E 0 ∈ H -1 2 (div Γ 0, Γ), such that V (γ + N E 0 ), B 1 Γ = γ + D E s , B 1 Γ , (3.63) 
for every

B 1 ∈ H -1 2 (div Γ 0, Γ). Since gradQ(Φ), v Γ = 0 for every v ∈ H -1 2
|| (div Γ 0, Γ), [60, eq 7.4] 

γ + D E 0 = 0.

Galerkin Discretisation

Let λ = γ + N E 0 be the rotated tangential field of the electric field E 0 . Conforming boundary element discretisation of (3.63) has to be selected in a finite dimensional subspace H h of H -1 2 (div Γ 0, Γ). In fact, the suitable functional space for E 0 is H(curl, Ω) which is usually discretised by the edge basis functions. So one may think that rotating these functions by 90 o is enough. But because of the divergence constraint, we have to search for a basis function that satisfies

{φ h ∈ E h × n, div Γ φ h = 0} where E h is a subspace of H(curl, Ω).
Then the Neumann data λ can be approximated by the space of divergence-free lowest order Raviart-Thomas elements RT(Γ) on Γ [63 ; 76]. If Γ is simply connected, then RT(Γ)=curl Γ N 1 (Γ), where N 1 (Γ) is the space of nodal functions of degree 1 [START_REF] Hiptmair | Coupled boundary-element scheme for eddycurrent computation[END_REF](see λ is approximated as : 

λ h = N i=1 λ i W i curlN ,
where N is the number of nodes, the coefficients λ i 's are the values of λ h at node i, and W i curlN is the surface rotational operator of the nodal shape function of degree 1 corresponding to the node i.

Applying the Galerkin method, the test functions B 1 should be replaced by the basis functions W j curlN . We can now state the discretised formulation as:

Find λ i ∈ R n , such that N i=1 λ i V (W i curlN ), W j curlN Γ = γ + D E s , W j curlN Γ , (3.64) 
for j = 1, .., N .

The assembly of the linear system of equations is the following: where

M 1 ji = - Γ j V (W i curlN )W j curlN dΓ j ,
and

S1 j = Γ j (γ + D E s ) • W j curlN dΓ j .

Strong Formulation for E 1

Recall that E 1 satisfies (3.59).

Variational Formulation for E 1

Using Theorem 3.5.1, we write the representation formula of E 1 in Ω + as

E 1 = -Ψ M (γ + D E 1 ) -Ψ A (γ + N E 1 ) -gradΨ v (γ + n E 1 ).
Applying the Dirichlet trace, we arrive at

γ + D E 1 = 1 2 I -K (γ + D E 1 ) -V (γ + N E 1 ) -gradQ(γ n E 1 ). (3.65) 
By the transmission conditions of the E 1 model (3.59), we can write:

γ + D E 1 = K 1 4 γ + N E 0 + K 2 γ + N E 0 . ( 3.66) 
Replacing γ + D E 1 in (3.65) by the formula (3.66) and testing against a function B 1 in H -1 2 (div Γ 0, Γ), we obtain the variational formulation:

Find γ + N E 1 ∈ H -1 2 (div Γ 0, Γ), such that V (γ + N E 1 ), B 1 Γ = (- 1 2 I -K)( K 1 4 γ + N E 0 + K 2 γ + N E 0 ), B 1 Γ , ( 3.67) 
for every

B 1 ∈ H - 1 
2 (div Γ 0, Γ).

Galerkin Discretisation

Let α = γ + N E 1 , α is approximated as α h = N i=1 α i W i curlN
where N is the number of nodes, the coefficients α i 's are the values of α h at node i. Applying Galerkin Method, we can 

Find α i ∈ R n , such that N i=1 α i V (W i curlN ), W j curlN Γ = (- 1 2 I -K)( K 1 4 γ + N E 0 + K 2 γ + N E 0 ), W j curlN Γ , (3.68) 
for j = 1, ..., N .

The assembly of the linear system of equations is the following:

M 2 α = S2 ,
where

M 2 ji = - Γ j V (W i curlN )W j curlN dΓ j ,
and

S2 j = Γ j (- 1 2 I -K) K 1 4 γ + N E 0 + K 2 γ + N E 0 W j curlN dΓ j .

Equivalent Model of Order 2

Recall that E 1 ε satisfies (3.60).

Variational Formulation for

E 1 ε For E 1 ε ∈ L 2 (R 3
), the representation formulas can be given by

E 1 ε = -Ψ M (γ + D E 1 ε ) -Ψ A (γ + N E 1 ε ) -gradΨ V (γ + n E 1 ε ) + E s in Ω + , (3.69) 
E 1 ε = Ψ M (γ - D E 1 ε ) + Ψ A (γ - N E 1 ε ) + gradΨ V (γ - n E 1 ε ) in Ω -. ( 3.70) 
Applying the Dirichlet trace on (3.69) and (3.70), we get the following integral equations

V (γ + N E 1 ε ) + ( 1 2 I + K)(γ + D E 1 ε ) = γ + D E s -grad Γ Q(γ + n E 1 ε ), (3.71) 
-V (γ - N E 1 ε ) + ( 1 2 I -K)(γ - D E 1 ε ) = grad Γ Q(γ + n E 1 ε ). (3.72)
Using the transmission conditions, we obtain the following equalities

γ + D E 1 ε = D 0 γ + N E 1 ε + D 1 γ - N E 1 ε , (3.73) γ - D E 1 ε = -D 1 γ + N E 1 ε -D 0 γ - N E 1 ε , (3.74) 
where

D 0 = ε( K 1 4 + K 2 ), and D 1 = ε( K 1 4 -K 2 ).
Substitute the transmission conditions (3.73) and (3.74) in the integral equations (3.71) and (3.72), we find the variational formulation

Find γ + N E 1 ε , γ - N E 1 ε ∈ H -1 2 (div Γ 0, Γ), such that (V + 1 2 D 0 I + D 0 K)(γ + N E 1 ε ), B 1 Γ + ( 1 2 D 1 I + D 1 K)(γ - N E 1 ε ), B 1 Γ = γ + D E s , B 1 Γ , (3.75) (- 1 2 D 1 I + D 1 K)(γ + N E 1 ε ), B 2 Γ + (-V - 1 2 D 0 I + D 0 K)(γ - N E 1 ε ), B 2 Γ = 0, (3.76) 
for every

B 1 , B 2 ∈ H - 1 
2 (div Γ 0, Γ).

Galerkin Discretisation

Let

β = γ + N E 1 ε and β = γ - N E 1 ε . β and β are approximated as β h = N i=1 β i W i curlN and β h = N i=1 β i W i curlN respectively,
where N is the number of nodes, the coefficients β i 's and β i 's are the values of β h and β h respectively at node i. Applying the Galerkin method, we can state the discretised formulation as:

Find β i , β i ∈ R n , such that N i=1 β i (V + 1 2 D 0 I + D 0 K)(W i curlN ), W j curlN Γ + N i=1 β i ( 1 2 D 1 I + D 1 K)(W i curlN ), W j curlN Γ = γ + D E s , W j curlN Γ , (3.77) 
N i=1 β i (- 1 2 D 1 I+D 1 K)(W i curlN ), W j curlN Γ + N i=1 β i (-V - 1 2 D 0 I+D 0 K)(W i curlN ), W j curlN Γ = 0. (3.78) 
The assembly of the linear system of equations:

  M 11 M 12 M 21 M 22     β β   =   S1 S2   ,
where 

M 11 ji = Γ j (V + 1 2 D 0 I + D 0 K)(W i curlN )W j curlN dΓ j , M 12 ji = Γ j ( 1 2 D 1 I + D 1 K)(W i curlN )W j curlN dΓ j ,
M 21 ji = Γ j (- 1 2 D 1 I + D 1 K)(W i curlN )W j curlN dΓ j , M 22 ji = Γ j (-V - 1 2 D 0 I + D 0 K)(W i curlN )W j curlN dΓ j , S1 j = Γ j (γ + D E s ) • W j curlN dΓ j ,
and

S2 j = Γ j (γ + N E s ) • W j curlN dΓ j = 0.

Implementation

We implement our model in the platform "MIPSE" of the G2Elab. For actual implementation, we need integral representations for the boundary integral operators.

Proposition 3.5.1 [START_REF] Hiptmair | Coupled boundary-element scheme for eddycurrent computation[END_REF] For λ ∈ L ∞ (Γ)

• V (λ) = {γ D } • Ψ A (λ) = Γ λ(y)G(x, y)dS(y), • K(λ) = {γ N } • Ψ A (λ) = Γ ( ∂G(x,y) ∂n(x) λ(y) -grad x G(x, y)(λ(y) • n(x)))dS(y).
Theorem 3.5.2 [START_REF] Hiptmair | Symmetric coupling for eddy current problems[END_REF] If Re(k 2 ) ≥ 0, the boundary operators K and K satisfy

< Kµ, v > Γ = -< µ, Kv > Γ for every µ ∈ H -1 2 (div Γ 0, Γ) and v ∈ H -1 2 ⊥ (curl Γ , Γ).

Numerical Results

In this section, we study the accuracy of the integral equations by considering the problem with PEC (Perfect Electric Conductor) conditions, as well as the validity of the asymptotic expansion. Then we provide many examples to validate our model, examples 1, 2, and 3 satisfy the theoretical condition where closed curved thin layer is considered. Particularly,
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example 2 is done to show the robustness of the equivalent models versus the parameter σ. However, example 4 is provided to show the effectiveness of our model even in open domains that do not satisfy the theoretical condition.

Validation of Integral Equations

To verify the efficiency of the integral equations, we consider the eddy-current problem in a sphere of radius r 1 = 1m with PEC boundary conditions. As it is the conditions satisfied by the model of order 1. We compare the numerical solution of the magnetic field to an analytical solution calculated on the arc of radius r 2 1.3m (see Figure 3.7). The curves (where

||U -V || 2 = i (U i -V i ) 2
) which shows a great success of the integral equations. 

Verification of the consistency of H 1

ε with H 0 and H 0 + εH 1

In order to validate the robustness of the asymptotic expansion and thus the equivalent models, we consider a spherical thin layer with a frequency f = 10kHz, and a conductivity σ = 10 3 S/m. In Figure 3.9 we show the relative L 2 -error of the solution 

H 1 ε = H 0 + εH 1 + ǫ 10 -3 10 -2 10 -1
H 0 + εH 1 .
Comparing H 1 ε and H 0 we can see that the error behaves like ε. Moreover, the error between H 1 ε and H 0 + εH 1 behaves like ε 2 . These error orders validate the consistency of H 1 ε with H 0 and H 0 + εH 1 .

Example 1

We consider a sphere with a radius 0.99m, surrounded by a conductive sheet of thickness ε = 2cm with σ = 1000S/m and f = 1kHz. The skin depth is δ = 0.001cm and the source is excited by a uniform magnetic field in z direction H s 0 = 1 z (A/m).

In figure 3.10, we visualize the real and imaginary parts of γ + E 1 ε and γ -E 1 ε . We calculate the external magnetic field on an arc of circle at radius 1.3m using a mesh of 384 elements, and we compare the results to the analytical solution. The results are represented in Figure 3.11 that shows a good agreement with L 2 -relative error

||H analytic -H 0 || 2 /||H analytic || 2 = 0.0047, ||H analytic -H 1 ε || 2 /||H analytic || 2 = 5 × 10 -4 .

Numerical Results
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Figure 3.10: The real and imaginary part γ + E 1 ε and γ -E 1 ε for a spherical thin layer of radius 0.99m and thickness 0.02m.
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1.17 We calculate the internal magnetic field on an arc of circle at radius 0.7m in order to study the influence of the thin layer on the interior domain i.e. to validate the effect of the thin conductive layer on the interior domain. We compare the results to the analytical solution. These results are represented in Figure 3.12 which affirm the shielding function required by the thin layer with error

||H analytic -H 1 ε || 2 /||H analytic || 2 = 6 × 10 -2 .

Example 2

The aim of this example is to show the robustness of the equivalent models versus the parameter σ. Fixing the frequency f = 10kHz and the radius of the sphere r = 0.98m surrounded by a conductive sheet of thickness ε = 4cm, the skin depth is a function of σ, and the source is a uniform magnetic field H s 0 = 1 z(A/m). Similarly the error is calculated on an arc of circle at a radius 1.3m. In Figure 3.13 we show the relative L 2 errors of the solutions H 0 and H 1 ε of the equivalent models of order 1 and 2 versus the parameter σ. The equivalent model of order 1 shows a good Figure 3.13: Relative L 2 errors of the solutions H 0 and H 1 ε of the equivalent models of order 1 and 2 versus the parameter σ for ε = 4cm agreement, we observe a small error in a wide range of skin depths, the interval where the skin depths is small compared to ε or of the same order, this result corresponds to the theoretical assumption. The same interpretation is observed after the correction by H 1 , smaller errors are obtained in the region of small skin depth. This result can be explained by the direct dependence of H 1 on H 0 , and the theoretical assumptions. The equivalent model of order 2 gives few errors for all ranges of the skin depth, from very small to very large. Comparing the L 2 -relative errors calculated on the same segment in Table 3.1, we validate the efficiency of the two models, in addition to the better accuracy obtained using the model of second order. 
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Z

Example 4

In this example we provide an open boundary problem which does not satisfy the theoretical assumption, i.e. the surface of the thin layer is not simply connected. We consider a cylinder of r = 1m, h = 3m and thickness 2cm. The source is excited by a spire of radius R = 1.1m and a current of 10A. We compute the norm of the magnetic field on a segment that connect the two points (1.3, 0, -2) and (1.3, 0, +2) (see Fig. 3.2 and we observe that the model of order 2 still works well, that improves the effectiveness of the second order model even in open domains. In Table 3.3 we compare the computational time and the number of elements of the mesh used by each method, we deduce that the boundary element method may reduce the computational time as it needs a reduced number of elements for the discretisation, note that the error is less than 5% with a mesh of 816 elements. The obtained results will be more important if we compare with the same problem using a 3D discretisation.

The errors obtained are strongly lower than the amplitude of the components of the reaction magnetic fields, see Figure 3.24 for the x-component and see Figure 3.25 for the 

||H ref -H 0 || 2 ||H ref || 2 ||H ref -H 1 ε || 2 ||H ref || 2 0.045 0.008

Conclusion

A second order equivalent model for eddy current problems with a thin layer in 3D is proposed and discretised using the Boundary Element Method. The model is validated Many electrical equipments such as motors or transformers use lamination stacks to form the core of coils. These laminated cores are commonly used in order to reduce the eddy current losses, as it increase resistivity in the direction the current would flow. The simulation of these lamination stacks requires many elements and leads to a large system of equations, mostly when the skin depth is smaller or equal to the thickness of one sheet.

A homogenisation method is proposed here for an efficient numerical modeling of the laminated sheets in eddy-current problems.

In the last few decades, these laminated cores have been modeled by one solid medium to save computational costs [START_REF] Krähenbühl | Homogenization of Lamination Stacks in Linear Magnetodynamics[END_REF]. In this case, the laminated cores have been modeled as a homogeneous medium, indeed, but not always neglecting the eddy currents. This is only the case if this homogeneous block is considered as non-conducting without equivalent complex permeability and conductivity. In order to consider the eddy current losses inside the laminated cores, this lamination is modeled by a homogeneous medium with conductivity and permeability calculated by the analytical solution of the magnetic field inside the sheet [START_REF] Krähenbühl | Thin layers in electrical engineering-example of shell models in analysing eddy-currents by boundary and finite element methods[END_REF][START_REF] Igarashi | A three dimensional analysis of magnetic fields around a thin magnetic conductive layer using vector potential[END_REF][START_REF] Dular | A 3-D magnetic vector potential formulation taking eddy currents in lamination stacks into account[END_REF]. The resulting complex permeability are then embedded in either an integral formulation [START_REF] Igarashi | A three dimensional analysis of magnetic fields around a thin magnetic conductive layer using vector potential[END_REF] or a differential formulation [98 ; 100].

Many papers have provided approximate formulas for eddy-current losses by means of a posteriori computations. These formulas are given for either low frequencies [94 ; 97] where the thickness of a sheet is greater than the skin depth or high frequencies [95 ; 96].

Starting from these formulas, an equivalent electric conductivity has been provided in [START_REF] Bermudez | Eddy-Current Losses in Laminated Cores and the Computation of an Equivalent Conductivity[END_REF] permitting to replace the laminated cores with a homogeneous isotropic or anisotropic medium.

A two-scale finite element method based on the magnetic vector potential A has been developed to describe eddy currents in laminar stacks with linear materials [START_REF] Hollaus | A linear FEM benchmark for the homogenization of the eddy currents in laminated media in 3D[END_REF]- [START_REF] Hollaus | Homogenization of the eddy current problem in 2D[END_REF], and non-linear materials [START_REF] Hollaus | Two-Scale Homogenization of the Nonlinear Eddy Current Problem With FEM[END_REF]. In [START_REF] Hollaus | Some 2-D Multiscale Finite-Element Formulations for the Eddy Current Problem in Iron Laminates[END_REF], some multiscale finite-element formulations for the eddy current problem in laminated iron in 2D are introduced. They provide multiscale formulations based on the magnetic vector potential, the single component current vector potential and on a mixed formulation of the magnetic vector potential and the current density. They considered the case where the main magnetic flux is parallel to the laminates and assumed to be perpendicular to the plane of projection to study the performance of multiscale finite element formulations.

In [START_REF] Gyselinck | A nonlinear time-domain homogenization technique for laminated iron cores in three-dimensional finite-element models[END_REF], a time-domain homogenisation technique for laminated iron cores in 3D finite element models in terms of the magnetic vector potential was proposed. This approach based on an approximate 1D solution in the time domain is applicable to linear and nonlinear materials. The time-domain homogenisation is also adopted in [START_REF] Gyselinck | Finite-element homogenization of laminated iron cores with inclusion of net circulating currents due to imperfect insulation[END_REF] where the net current feature is added. The homogenisation approach presented is based on a finite element model in terms of the magnetic vector potential and the expansion of the induction throughout the lamination thickness using a set of basis functions.

Another finite element computational homogenisation for modeling non-linear multiscale materials in 2D magnetostatics and magnetodynamics problems are presented in [105] and [104] respectively. In these papers, the modeling of the laminated cores is based on heterogeneous multiscale method (HMM) which is based on the transformation of information between macroscale problem, microscale problem, and mesoscale problems.

In the presence of conductive laminar sheets, the fields oscillate strongly. The classical homogenisation [START_REF] Sanchez-Palencia | [END_REF] is an efficient method to simplify the numerical simulation of such periodic heterogeneous materials, as it leads to an equivalent equation that is generally simpler and describes the behavior of the solution. In fact, the classical homogenisation is an asymptotic homogenisation proceeds by introducing the fast variable and posing a formal expansion. Thus, the formal two-scale expansion considered in chapter 3 to study the behavior of the field in a conductive thin layer will be also adopted to model the lamination stacks.

In this chapter, we present an effective model of a lamination stack using a classical homogenisation approach (section 4.3.2) and a correction for the interface between the air and the lamination stack (section 4.3.4). We consider the case where the skin depth is kept less than or equal to the thickness of one metal sheet. magnetic potential in Ω L can be written as

∆A ε -iωσ 1 µ 1 (A ε -M ε (A ε )) = 0, in Ω L , (4.2)
where M ε is an average operator in each sheet defined by

M ε (f ) : (x 1 , x 2 ) → 1 ε 1 0 ε x 1 /ε +ε ε x 1 /ε f (s, y)dsdx 2 , ∀f ∈ C(Ω). (4.3)
Note that • is the floor function.

This constant (4.3) in each sheet is chosen to ensure the continuity of A ε between all the interfaces of the sheets, i.e. on both sides of the sheet. As well as the continuity of its Neumann trace related to the tangential magnetic field between two layers.

A global magnetic flux is enforced on the whole domain in a manner that the total flux in the domain is zero, that is to say what enters from the bottom get out of the top. It will be expressed by the following boundary conditions:

A ε | x 1 =-1 = g(x 2 ), A ε | x 1 =1 = h(x 2 ), (4.4) 
∂ x 2 A ε | x 2 =0 = ∂ x 2 A ε | x 2 =1 = 0. ( 4.5) 
In addition, we have also to take into account the continuity condition at the interface between the lamination stack and the air Γ

1 µ 0 ∂A ε ∂n | Γ -= 1 µ 1 ∂A ε ∂n | Γ + , (4.6) A ε | Γ -= A ε | Γ + . (4.7)
We are interested in the case where the skin depth is smaller or equal to the thickness ε.

Because we will study the limit case (ε → 0), we should assume an explicit dependence of the layer conductivity σ 1 on ε

σ 1 µ 1 = ε -2 ᾱ, (4.8) 
where ᾱ is a constant, that enables δ/ε to remain constant when ε goes to zero (the same assumption as in Chapter 3).

Procedure

Procedure

Our methodology is based on two points:

• Applying the classical 2-scale homogenisation method in the domain of lamination stacks Ω L .

• Studying the influence of the interface Γ on the vector potential to treat the problem in the whole domain Ω.

The derivation of the asymptotic terms in Ω L is based on:

1. The expansion of M ε for any function a of Ω × R/Z.

2.

A standard formal 2-scale expansion for A ε .

3. Identifying the terms of same powers of ε in the governing PDE.

In order to validate the possibility of adopting this methodology to model the lamination stacks, we will start by a 1D problem then we proceed in 2D.

The 1D model problem

The magnetic vector potential satisfies (in a 1D assumption we simply denote x = x 1 ):

∂ 2 x A ε = 0, in Ω A , (4.9) ∂ 2 x A ε -iωσ 1 µ 1 (A ε -M ε (A ε )) = 0, in Ω L , ( 4.10) 
where M ε is an average operator in each sheet defined by

M ε (f ) : x → 1 ε ε x/ε +ε ε x/ε f (s)ds, ∀f ∈ C(Ω), x ∈ (0, 1). ( 4 

.11)

A global flux is enforced on the whole domain and expressed by the boundary conditions

A ε | x=-1 = 0, A ε | x=1 = 1. (4.12)
Moreover, we have the continuity condition at the interface

1 µ 0 ∂ x A ε | x=0 -= 1 µ 1 ∂ x A ε | x=0 + . ( 4 

.13)
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Expansion of M ε

By changing of variable in (4.11), we observe that

M ε (f )(x) = 1 0 f (ε x/ε + εy)dy, ∀f ∈ C(Ω). (4.14)
Therefore the function f has the following expansion with respect to ε

f (ε x/ε + εy) =f (x) + ε 1 2 - x -ε x/ε ε ∂ x f (x) + ε 2 1 3 - x -ε x/ε ε 1 - x -ε x/ε ε ∂ 2 x f (x) + ... (4.15)
Now we can observe that for any function a defined on Ω × R/Z one has

M ε (a)(x) = 1 0 a(x, s)ds + ε 1 0 1 2 - x -ε x/ε ε ∂ x a(x, s)ds + ... ( 4 

.16)

Therefore one can define the sequence of operators (M i ) i∈N defined on the space of func-

tions of Ω × R/Z such that M 0 (a)(x, y) = 1 0 a(x, s)ds, ( 4.17) 
M 1 (a)(x, y) = ( 1 2 -y) 1 0 ∂ x a(x, s)ds, (4.18) M 2 (a)(x, y) = ( 1 3 -y(1 -y)) 1 0 ∂ 2 x a(x, s)ds. ( 4.19) 
The operators (M i ) i∈N satisfy for any function of

Ω × R/Z M ε (a(•, •/ε))(x) = M 0 (a)(x, x/ε) + εM 1 (a)(x, x/ε) + ε 2 M 2 (a)(x, x/ε) + .., (4.20) 
for all x ∈ Ω.

Classical homogenisation of the laminar stacks in Ω L

The problem (4.10)-(4.12) in Ω L can be reformulated by the following

∂ 2 x A ε - iω ᾱ ε 2 (A ε -M ε (A ε )) = 0, (4.21) A ε | x=0 = 0, A ε | x=1 = 1. (4.22)

The 1D model problem

As standard in classical asymptotic homogenisation assumes that A ε has the following 2-scale expansion:

A ε (x) = A 0 (x, x/ε) + εA 1 (x, x/ε) + ε 2 A 2 (x, x/ε) + ..., (4.23) 
where A i (x, y) are assumed to be 1-periodic with respect to the y variable.

Note that each term of the expansion depends on both the slow variable x = x 1 and the fast variable y = x/ε. 

Replacing

2 x A 0 + ε -2 ∂ 2 y A 0 + 2ε -1 ∂ 2 yx A 0 + ε∂ 2 x A 1 + ε -1 ∂ 2 y A 1 + 2∂ 2 yx A 1 + ε 2 ∂ 2 x A 2 + ∂ 2 y A 2 + 2ε∂ 2 yx A 2 -iω ᾱ ε 2 A 0 + εA 1 + ε 2 A 2 -M 0 (A 0 ) -εM 1 (A 0 ) -ε 2 M 2 (A 0 ) -εM 0 (A 1 ) -ε 2 M 1 (A 1 ) -ε 3 M 2 (A 1 ) -ε 2 M 0 (A 2 ) -ε 3 M 1 (A 2 ) -ε 4 M 2 (A 2 ) = 0. (4.24) 
Identifying the terms of same order in powers of ε, the expansion (4.23) leads to the following • Order ε -2 : we have

∂ 2 y A 0 -iω ᾱ(A 0 -M 0 (A 0 )) = 0, ∀(x, y) ∈ Ω × R/Z (4.25)
Using the assumption that A 0 (x, •) is 1-periodic, the solution A 0 is a constant function with respect to y but it may depend on x (see the appendix B.1.2)

A 0 (x, y) = A 0 (x). ( 4 

.26)

• Order ε -1 : we have

∂ 2 y A 1 + ∂ y ∂ x A 0 -iω ᾱ(A 1 -M 1 (A 0 ) -M 0 (A 1 )) = 0, (4.27) 
using (4.26), we get

∂ 2 y A 1 -iω ᾱ(A 1 -M 0 (A 1 )) = -iω ᾱ(M 1 (A 0 )), (4.28) 
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then,

∂ 2 y A 1 -iω ᾱ(A 1 -M 0 (A 1 )) = iω ᾱ(y - 1 2 )∂ x A 0 . (4.29)
We call W a periodic function (unique up to an additive constant) solution of

∂ 2 y W -iω ᾱ(W -M 0 (W )) = iω ᾱ(y - 1 2 ), (4.30) 
and deduce by linearity that

A 1 (x, y) = W (y)∂ x A 0 (x). (4.31)
The solution of (4.30) in a unit cell is

W (y) = 1 2 -y + 1 2 sinh(κ(y -1/2)) sinh(κ/2) , ( 4.32) 
where κ 2 = iω ᾱ.

• Order ε 0 : we have

∂ 2 y A 2 -iω ᾱ(A 2 -M 0 (A 2 )) = -∂ 2 x A 0 -2∂ x ∂ y A 1 + iω ᾱ(M 2 (A 0 ) + M 1 (A 1 )) (4.33)
Integrating (4.33) on y ∈ (0, 1), we get (see the appendix B.1.3)

-1 + iω ᾱ 6 ∂ 2 x A 0 = 0. (4.34)
The solution of (4.34) considering the boundary condition (4.22) is

A 0 (x) = x. ( 4.35) 
For clarity, we denote by (4.31), and (4.35), the magnetic vector potential in the lamination stack can be written as

A k ε = A 0 + εA 1 + ... + ε k A k . Using (4.23),
A 1 ε (x) = A 0 (x) + εW (y)∂ x A 0 (x), (4.36) 
A 1 ε (x) = x + εW (y). (4.37)

Numerical validation in Ω L

We consider ε = 0.1 (10 toles), ᾱ = 1. We show in Figs. 4.2 and 4.3 the magnetic vector potential expansion A 1 ε (x) = A 0 (x)+εW (y)∂ x A 0 (x), the first term of the expansion A 0 (x), and the magnetic potential A Analytic calculated analytically (see the appendix B.1.4), for 

Accounting of the interface

Recall that the magnetic potential in Ω satisfies (4.9-4.13).

Considering the coupling between the air and the lamination stack, we are seeking for an expansion such as: Knowing that in the presence of infinite thin sheets, the effect of the interface with air will decrease as we go far from Γ. Consequently, K must behave like x → W ( x ε -x ε ) at ∞, as it can be deduced from (4.36).

A ε (x) = A - 0 (x) + εK -(x/ε)∂ x A - 0 (x) + ..., in Ω A (4.38) A ε (x) = A + 0 (x) + εK + (x/ε)∂ x A + 0 (x) + .... in Ω L ( 4 
Note that we do not know the problem satisfied by A - 0 and A + 0 . We just know that they are harmonic, should satisfy the boundary conditions at x = -1, x = 1, and the continuity and Neumann conditions at the interface.

Using the fact that W (0) = 0, we get that

A 1 ε (x) =      A - 0 (x), if x ∈ Ω A A + 0 (x) + εW (x/ε)∂ x A + 0 (x), if x ∈ Ω L (4.40)
is continuous and satisfies

∂ 2 x A 1 ε - iω ᾱ ε 2 (A 1 ε -M ε (A 1 ε )) = o(ε). (4.41)
Thus, we simply have to adjust the Neumann condition at x = 0 to adopt the approximation (4.40)

1 µ 0 ∂ x A - 0 (0) = (1 + ∂ y W (0)) µ 1 ∂ x A + 0 (0). ( 4 
.42)

The 1D model problem

This condition combined to the conditions defines A - 0 and A + 0 (4.9), (4.12), (4.34) and the continuity condition at the interface put up the following system ∂ 2

x A ± 0 = 0, in Ω, (4.43)

A - 0 (-1) = 0, A + 0 (1) = 1, (4.44) 1 µ 0 ∂ x A - 0 (0) = (1 + ∂ y W (0)) µ 1 ∂ x A + 0 (0), (4.45 
)

A - 0 (0) = A + 0 (0), (4.46) 
which gives

A 0 (x) =      µ 0 (1+∂yW (0)) µ 1 +µ 0 (1+∂yW (0)) (x + 1), if x ∈ Ω A , 1 µ 1 +µ 0 (1+∂yW (0)) (µ 1 x + µ 0 (1 + ∂ y W (0))), if x ∈ Ω L , (4.47) 
and Finally, the robustness of the result with respect to ᾱ is studied. In Figure 4.8, we show the relative L 2 -error in dependence of the parameter ᾱ for ω = 10, and µ r = 1. Fixing ε = 0.1 or ε = 0.2 as well as the other parameters, the skin depth depends on ᾱ, varying ᾱ corresponds to a variation of the skin depth and so these experiments study the accuracy for a large range of skin depths, from very small to very large. In Figure 4.8, we observe an error reduction for any small or large value of ᾱ, in other words, for large and small skin depths. The error reduction is higher for large values of ᾱ, or equivalently for δ ε 1 (factor 2 for ᾱ → ∞), than for small values of ᾱ where δ ε 1 (factor 1.6 for ᾱ → 0).

A 1 ε (x) =      A 0 (x), if x ∈ Ω A , A 0 (x) + ε µ 1 µ 1 +µ 0 (1+∂yW (0)) W (x/ε), if x ∈ Ω L . ( 4 

The 2D model problem

The formulation based on the magnetic vector potential in 2D is provided in section 4.1.

Remark:

To avoid singularities, it is important, in a first step, to consider g such that g (0) = g (1) = 0. 

Expansion of M ε

Using the same development of M ε used in 1D in the direction x 1 (see section 4.3.1), and by integrating on x 2 ∈ (0, 1) we get: 

M ε (a(x, y)) = M 0 (a)(x, y) + εM 1 (a)(x, y) + ε 2 M 2 (a)(x, y) + .. ( 4 
M 1 (a)(x, y) = ( 1 2 -y) 1 0 1 0 ∂ x 1 a(x, s)dsdx 2 , (4.51) M 2 (a)(x, y) = ( 1 3 -y(1 -y)) 1 0 1 0 ∂ 2 x 1 a(x, s)dsdx 2 , ( 4.52) 

Classical homogenisation of the laminar stacks in Ω L

Considering the domain of the laminated stacks Ω L , the problem in 2D can be written as the following: A ε admits the following two-scale expansion:

∆A ε - iω ᾱ ε 2 (A ε -M ε (A ε )) = 0, in Ω L , (4.53) A ε (0, x 2 ) = g(x 2 ), A ε (1, x 2 ) = 0, for x 2 ∈ (0, 1), (4.54) ∂ x 2 A ε (x 1 , 0) = 0, ∂ x 2 A ε (x 1 , 1) = 0, for x 1 ∈ (0, 1). ( 4 
A ε (x) = A 0 (x, x 1 /ε) + εA 1 (x, x 1 /ε) + ε 2 A 2 (x, x 1 /ε) + ..., (4.56) 
where A i (x, y) are assumed to be 1-periodic with respect to the y variable.

Note that each term of the expansion depends on both the slow variable x = (x 1 , x 2 ) and the fast variable y = x 1 /ε.

Replacing (4.56) in (4.53) and equating all terms of the same orders in powers of ε, the expansion (4.56) leads to the following:

• Order ε -2 : we have

∂ 2 y A 0 -iω ᾱ(A 0 -M 0 (A 0 )) = 0, ∀(x, y) ∈ Ω × R/Z (4.57) 
The solution A 0 is a constant function with respect to y but it may depend on x A 0 (x, y) = A 0 (x).

• Order ε -1 : we have

∂ 2 y A 1 + ∂ y ∂ x 1 A 0 -iω ᾱ(A 1 -M 1 (A 0 ) -M 0 (A 1 )) = 0, (4.58) 
∂ 2 y A 1 -iω ᾱ(A 1 -M 0 (A 1 )) = -iω ᾱ(M 1 (A 0 )), (4.59) 
then,

∂ 2 y A 1 -iω ᾱ(A 1 -M 0 (A 1 )) = iω ᾱ(y - 1 
2 )

1 0 ∂ x 1 A 0 dx 2 . (4.60)
We call W (y) a periodic vector (unique up to an additive constant) solution to • Order ε 0 : we have 

∂ 2 y A 2 -iω ᾱ(A 2 -M 0 (A 2 )) = -∂ 2 x 1 A 0 -∂ 2 x 2 A 0 -2∂ x 1 ∂ y A 1 + iω ᾱ(M 2 (A 0 ) + M 1 (A 1 )) (4.63)
Integrating (4.63) on y ∈ (0, 1), we get: Then, we try to eliminate the coefficients of the term A 2 . For this reason, we integrate the equation (4.64) on x 2 ∈ (0, 1). we get:

∂ 2 x 1 A 0 + ∂ 2 x 2 A 0 -iω ᾱ
1 - iω ᾱ 6 1 0 ∂ 2 x 1 A 0 dx 2 + ∂ x 2 A 0 | x 2 =1
x 2 =0 = 0. (4.65)

Considering the equation (4.65), the term A 0 cannot be obviously determined. Thus, we propose to decompose the main problem and calculate the terms ∂ x 2 A ε and 1 0 A ε dx 2 separately. Denote now the mean value of A ε along x 2 by Āε : x 1 → 1 0 A ε (x 1 , x 2 )dx 2 . The function Āε satisfies the following 1D problem

Approximation of the derivative of A

∂ 2 x 1 Āε - κ 2 ε 2 Āε - 1 ε ε( x 1 /ε +1) ε x 1 /ε
Āε (s, t) dsdt = 0, in ∪ 

Recombination of the results

The magnetic potential A ε can be written, using simple calculations, in the following way: where ḡ = 1 0 g(x 2 )dx 2 .

A ε (x 1 , x 2 ) =

Numerical results

We consider ε = 0.1 (10 toles), ᾱ = 1, ω = 50, g(x 2 ) = 1 + cos(πx 2 ), and δ = 0.014. In Figure 4.10, we show the approximate magnetic vector potential A 1 ε (x) compared to the magnetic potential A F DM calculated numerically using the finite difference method.

The result shows a good agreement as we have the correct oscillations far from the interface 

Conclusion

A solution is provided by classical homogenization in 1D and a correction at the interface with the air. Another solution is also provided in 2D in the domain of the lamination stacks, while the correction at the interface with air have to be added

Conclusion and Perspectives Conclusion

In this thesis, we presented an asymptotic modelling and discretisation techniques for eddy current problems in electromagnetism. This coupling between the two notions led to an accurate result with less computational time.

In chapter 2, we provided a FEM/BEM coupling for magnetostatic and magnetodynamic problems using different mathematical formulations. The results validate the interest of the coupling by reducing the discretisation elements with a good accuracy.

In chapter 3, an asymptotic modelling of a conductive thin layer in eddy-current problem is accomplished. An equivalent models of high order is derived by replacing the thin layer by its mid-surface with an impedance transmission conditions that connects the electromagnetic fields. Moreover, these models are discretised by the BEM. Both models show a good agreement, and the equivalent model of second order show an accuracy for all range of the skin depth. Thus, the modelisation and discretisation techniques together lead to a high reduction of the number of mesh elements, as well as to a good precision comparing with analytical solutions.

In chapter 4, a homogenisation technique with an interface correction is proposed for modeling a lamination of conductive sheets in eddy-current problems. The 1D case is validated by comparing the results to an analytical solution. However, the 2D case is actually in progress.

Perspectives

Firstly, we aim to implement and test the FEM/BEM coupling for 3D eddy current problems in non-linear medium. Taking into account the nonlinearity of the magnetic materials is necessary for the computation of the electromagnetic fields in many direct applications, like the analysis of large power transformers.

Another aspect to consider concerns the conductive thin layers in open domain (i.e. with holes) and take into account the vicinity of the corners of the conducting layer. For this purpose, there are two steps to be done:

1. Test the equivalent models with transmission conditions on some complex geometries in order to validate or to detect if they do not work in specific cases.

Conclusion

2. Make an appropriate modification on the discretization technique to treat the problem near the corners.

Finally, we aim to consider the direct continuation of the work presented in chapter 4 by proceeding in the following plan:

1. Complete and validate the homogenization technique of laminated stacks in 2D.

2. Proceed with this technique to treat a 3D case.

3. Consider the case of connected sheets to go towards foil windings.

A.7 Analytical Solution of the Eddy-Current Problem for a Sphere with a Thin Layer in 3D

We introduce the vector potential curlA = B, where B is the magnetic induction vector. Using Ampere's and Faraday's laws the eddy current model can be reduced to the following second order equation for the magnetic vector potential where k 2 = -iσωµ.

Proposition A.7.1 The source term can be expressed as an initial excitation of a magnetic vector potential A s , which is written in spherical coordinates as follows

A s = µ 2 r sin(φ)e θ
Proof. For H s = 1e z , We can write the uniform magnetic field in terms of the spherical coordinates using 

∂ 2 A ∂φ 2 - A r 2 sin 2 φ + k 2 A = -µ 0 J e µ 0 in R 2 µ 0 in R 1 µ 0 in R 0 and σ =      0 in R 2 σ in R 1 0 in R 0
Substituting these properties, we obtain the following system of equations: To solve the problem (A.2)-(A.6), we use the following integral transform [START_REF] Kolyshkin | Series solution of an eddy-current problem for a sphere with varying conductivity and permeability profiles[END_REF]:

∂ 2 A
Āi (r, n) = 1 D n -1 -1
A i (r, t)P (1) n (t)dt (A.7)

where t = cosφ, P (1) n (t) is an associated Legendre function of first kind, and By integrating a = A ε -M(A ε ) on each thin layer (ε x 1 /ε , ε x 1 /ε + ε), we obtain that the average value of a in each layer is nul. we have then Let x i and x i+1 be the extremities of the layer i. Integration (B.9) on the sheet i, and using (B.10), we have 

D n :=

1
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  as an admissible vector space. The integral equation (1.67) is equivalent to the variational formulation(1.68) 
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 2 Γ) are the suitable spaces for the Dirichlet data γ D •, the Neumann data γ N •, and the normal data γ n • respectively, where H
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 6133 Chapter Boundary Element Method for 3D Conductive Thin Layers in Eddy-Current Problems the vectorial Newton-potential N (λ)(x) = R (y)G(x, y)dy, and the vectorial double-layer potential Ψ M (u) = curlΨ A (Ru), Ru = n × u.(3.62)

3. 5 3 . 5 . 4 Equivalent Model of Order 1 3. 5 . 4 . 1

 53541541 Discretisation by the Boundary Element Method Integral Equations for E 0

Chapter 3 :

 3 Boundary Element Method for 3D Conductive Thin Layers in Eddy-Current Problems

Figure 3 .

 3 Figure 3.6).

Figure 3 . 6 :

 36 Figure 3.6: Basis function of H h associated with a vertex

3. 5

 5 Discretisation by the Boundary Element MethodM 1 λ = S1 ,

Chapter 3 :

 3 Boundary Element Method for 3D Conductive Thin Layers in Eddy-Current Problems state the discretised formulation as:

Chapter 3 :

 3 Boundary Element Method for 3D Conductive Thin Layers in Eddy-Current Problems

Figure 3 . 7 :Figure 3 . 8 :

 3738 Figure 3.7: A cross section of the domain

Chapter 3 :
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 312 Figure 3.12: The magnetic fields H analytic and H 1 ε in the interior domain of the sphere.
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 3 Boundary Element Method for 3D Conductive Thin Layers in Eddy-Current Problems3.6.5 Example 3Here, we consider a spherical conductive thin sheet of thickness 1cm, radius 1m, conductivity σ = 55S/m, and permeability µ 0 . The source current is excited by a cylindrical coil of radius 1.5m, height 2m, thickness 1cm, and current 1A (seeFigure 3.14).
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  , 3.19, 3.18 and 3.20, we trace
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 31513161 Figure 3.15: The real part of γ + N E 1 ε

  and 3.19, the model of order 1 is compared to the simulation performed by Comsol in 2D axisymmetry H Comsol , where the
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 322 and we compare the results to the 2D axisymmetric formulation in Comsol that is discretised using the Finite Element Method (see Figure3.21). Note that, discretising using the FEM requires a very fine mesh near the surface of the thin layer and the maximum size of the local element must not exceed δ/2 in order to accurately describe well the flow of current near the surface.
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 3324325 Figure 3.24: The x-component of the real part of the total magnetic fields H 1 ε , the reduced magnetic fields H 1 εReduced and the source field H Source .
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∂ 2 yA 1 1 0∂ x 1

 2111 W -iω ᾱ(W -M 0 (W )) = iω ᾱ(y -(x, y) = W (y) A 0 (x)dx 2 . (4.62)
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 4 The 2D model problem

1 0A 2

 12 (x, y)dy -

ε along x 2 Chapter 4 :

 24 by the asymptotic expansion in power series of δ Denote by b = ∂ x 2 A ε the derivative of A ε along x 2 . The problem satisfied by b can be written as follows: ∆b -iω ᾱ ε 2 b = 0, in (0, 1) × (0, 1), (4.66)b(0, x 2 ) = ∂ x 2 g(x 2 ) = g , b(1, x 2 ) = ∂ x 2 h(x 2 ) = h , for x 2 ∈ (0, 1), (4.67) b(x 1 , 0) = 0, b(x 1 , 1) = 0, for x 1 ∈ (0, 1). (4.68)According to the conditions at the boundaries and knowing that the total flux in the domain is zero, we can simply consider infinite sheets in x 2 direction. Moreover, as the width of the domain is much larger than δ, we can take into account only the left interface (see Figure4.9).Then, we can rewrite the problem as follows-∆b δ + i δ 2 b δ = 0, in Γ × (0, 1), (4.69) b δ (0, •) = g , on Γ. (4.70) Homogenisation and boundary correction of laminar stacks in vector potential formulation.
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 49444422 Figure 4.9

Āε | x 1 =0 = 1 0g(x 2 )

 12 dx 2 := ḡ, Āε | x 1 =1 = 0. (4.73b) Using the 1D expansion in section 4.3.2, the solution of the differential equation (4.34) considering the interface conditions (4.73b) is Ā0 = ḡ (1 -x 1 ) , (4.74)which leads toĀ1 ε (x 1 ) = ḡ (1 -x 1 -εW (x 1 /ε)) . (4.75)

  1 , s)dsdx 2 + Āε (x 1 ). (4.76) Hence, using the approximations (B.22)-(4.75), we obtainA 1 ε (x 1 , x 2 ) = (g(x 2 ) -ḡ)e -x 1 κ/ε + ḡ (1 -x 1 -εW (x 1 /ε)) , (4.77)
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 4275410 Figure 4.10: The magnetic vector potential A 1 ε in Ω L compared to the numerical solution A F DM .

curlcurlA + iσωµA = µJ e ,k 2 A

 2 = -µJ e (A.[START_REF] Rodríguez | Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications[END_REF] 

  φ cos θ sin φ sin θ cos φ cos φ cos θ cos φ sin θ -sin φ -H s = cos φe r -sin φe φ Using the formula of curl in spherical coordinates we can prove that curlA s = 1 µ Taking into account the axial symmetry, we obtain that A has only one non-zero component, A = (0, A(r, φ), 0) Writing the equation A.1 in spherical coordinates with considering the θ-component of A, we obtain the following equation for the function A(r, φ)

2 10 )B. 1 AppendixB. 1 . 4

 210114 transform (A.7), and using the fact that A 0 = A r 0 + A s , we obtain∂ ĀrThe general solution of (A.8) is:Ār 0 = C 1 r -1-n + C 1 r n , Analytical solution of A ε in the domain of lamination stack Ω LRecall that the magnetic vector potential in 1d assumption satisfies (4.21)-(4.22). Define the vector a = A ε -M(A ε ) in each sheet. Replacing a in (4.21), we obtain a second order ordinay differential equation∂ 2 x a -iωσ 1 µ 1 a = 0. (B.8)The solution of (B.8) is a = C i 1 e κx + C i 2 e -κx , (B.9)in each sheet i, where κ 2 = iωµ 1 σ 1 .

ε x 1

 1 /ε +ε ε x 1 /ε a(s)ds = 0. (B.10)

1 eB. 1 . 5

 115 κs + C i 2 e -κs )ds = 0,(B.11) which gives that C i 1 (e κx i+1 -e κx i ) + C i 2 (-e -κx i+1 + e -κx i ) = 0, (B.12)in each sheet i = (x i , x i+1 .By considering the continuity conditions of A ε = a + M at the interface of each two consecutive sheets, we obtain the following equalitiesC i 1 e κx i+1 + C i 2 e -κx i+1 + M i -C i+1 1 e κx i+1 -C i+1 2 e -κx i+1 -M i+1 = 0, (B.13) C i 1 e κx i+1 -C i 2 e -κx i+1 -C i+1 1 e κx i+1 + C i+1 2 e -κx i+1 = 0, (B.14)where x i+1 is the boundary point between the two stacks i and i + 1.Adding together the equations (B.12), (B.13), (B.14) and the boundary conditions (4.22) we obtain the coefficients C i 1 ,C i 2 and M i in each sheet by solving a linear system of equations. Approximation of the derivative of A ε along x 2 by the asymptotic expansion in power series of δUsing the multiscale expansion in power series of the small complex parameterδ b δ (x) = b 0 (x, δ) + δb 1 (x, δ) + δ 2 b 2 (x, δ) + ..., ∀x ∈ R 2 (B.15)with b j (x, δ) = χ(ν)w j (t, ν/δ), where t and ν are the tangential and normal variation in a neighborhood χ(ν) of Γ.
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2.2.1 Weak formulation for

Φ in Ω C Starting from (2.

2), multiplying by a test function α ∈H(grad) and integrating over Ω C : Ωc α(divB)dΩ c = 0, (2.10) Chapter 2 : FEM/

FEM/BEM coupling for Magnetostatic and Eddy Current problems

  

	Chapter 2 :		
			|| Time
	Φ cell	0.003	11s
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 3 3: Computational time of our models comparing with Comsol

		Nb of elements	Time
	Comsol	1771542	132s
	Model Order 1	544	25s
	Model Order 2	544	56s

4.3 The 1D model problem different

  frequencies. The results show a good agreement as the curves coincides, and their relative error is given in Table4.1:.

	ω	||A analytic -A 1 ε || 2
	50	0.0398
	10 3	0.0183
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 4 1: Relative L 2 -errors of the solution A 1 ε for several ω.
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  Figure 4.8: Relative L 2 -errors of the solution A 1 ε versus ᾱ.
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  whereA i denotes the θ component of the vector potential in region R i , for i = 0, .., 2.

	0 ∂r 2 +	2 r	∂A 0 ∂r	+	cotφ r 2	∂A 0 ∂φ	+	1 r 2	∂ 2 A 0 ∂φ 2 -	A 0 r 2 sin 2 φ	= -µ 0 J e	(A.2)
	∂ 2 A 1 ∂r 2 +	2 r	∂A 1 ∂r	+	cotφ r 2	∂A 1 ∂φ	+	1 r 2	∂ 2 A 1 ∂φ 2 -	A 1 r 2 sin 2 φ	+ k 2 A 1 = 0	(A.3)
	∂ 2 A 2 ∂r 2 +	2 r	∂A 2 ∂r	+	cotφ r 2	∂A 2 ∂φ	+	1 r 2	∂ 2 A 2 ∂φ 2 -	A 2 r 2 sin 2 φ	= 0	(A.4)
	The boundary conditions are:					
					A 0 |r=r 1	= A 1 |r=r 1	, A 1 |r=r 2	= A 2 |r=r 2	.	(A.5)
		∂A 0 ∂r |r=r 1	=		∂A 1 ∂r |r=r 1	,	∂A 1 ∂r |r=r 2	=	∂A 2 ∂r |r=r 2	.	(A.6)
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According to [START_REF] Péron | Modelisation mathematique de phenomenes electromagnetiques dans des matériaux à fort contraste[END_REF]Prop. 3.36] we can write

Substituting (3.53) and (3.54) in (3.52), we get

After simple calculations, the boundary conditions for E 1 in (3.51) can be written as

and

(3.57)

Adding the obtained equations (3.56-3.57) multiplied by ε to the conditions for E 0 (4.33) and by replacing E 0 + εE 1 on the left side by E 1 ε and by replacing εE 0 on the right hand side by εE ε 1 , we obtain the second order approximate solution E 1 ε that solves the system

(3.58)

Mathematical Formulation

Mathematical Formulation

Consider a lamination stack composed of insulating and metal sheets of permeability µ 0 and µ 1 , and conductivity σ 0 = 0 and σ 1 respectively. The thickness of one metal sheet and an insulating sheet together is ε, which is small compared with the whole domain Ω (see Fig. 4.1). We consider also that the thickness of an insulating sheet is negligible compared with the metal sheet.

For simplicity, we consider Ω = (-1, 1)×[0, 1), the air is the interval Ω A = (-1, 0)×[0, 1), and the laminar stack domain is Ω L = (0, 1) × [0, 1). Let Γ be the interface between the air region and the lamination stacks. In this problem, we consider electrically isolated sheets. They are isolated from any exterior circuit, and each sheet is isolated from the others. We thus express the conservation of the current, and the global net current is zero.

The formulation of the magnetic potential in the air region is:

In each sheet i, the magnetic potential can be written as the sum A ε + A i , where

) is a constant related to the sheet i [START_REF] Krähenbühl | Approche alternative à l'homogénéisation pour la modélisation des empilements de tôles -le cas harmonique linéaire[END_REF]. Using this fact, the formulation of the The derivatives in the normal and tangential directions scale differently in ε, due to the small thickness of the conductor. Thus, it is more convenient to use the local normal coordinate system in Ω ε 0 . For this coordinate system, we denote by D α the covariant derivative which specifies the derivative along the tangent vectors of the mean surface Γ. The covariant derivative at a point p ∈ Γ depends on a small neighborhood of p, and thus it considers the information on the neigbourhood of p and allows us to transport vectors along surfaces that are parallel with respect to Γ. Denote also ∂ h 3 the partial derivative with respect to the normal coordinate y 3 = h. We use the covariant derivative as partial derivative when it acts on a scalar function: D α w = ∂ α w, where α = 1, 2 refers to the tangential coordinates on Γ.

Let Γ h be the surface contained in Ω ε + ∪ Ω ε -at a distance h of Γ. We denote by a αβ (h) and b αβ (h) the metric tensor and the curvature tensor of the manifold Γ h , respectively. The metric tensor generalizes many of the familiar properties of the dot product of vectors, a αβ (h) is the restriction of the metric of Γ on Γ h , in such a coordinate system it writes

and its inverse expands in power series of h

The curvature tensor describes the curvature of a Riemannian manifold, given in terms of Christoffel symbols.

Let

in Ω ε 0 in the normal coordinate system and by

, where H α = (H 1 , H 2 ) and h are the tangential and normal coordinates of H, respectively.

A.2

These two operators L and B expand in power series of h with intrinsic coefficients with respect to Γ.

In order to obtain a coordinate which does not depend on ε we can scale the normal coordinate Y 3 = ε -1 h . We use from now on the same symbol H for three dimensional one-form field in these scaled coordinates i.e. the linear combination of the differentials of theses coordinates, and call L[ε] and B[ε] the respective three dimensional harmonic Maxwell operators in Ω ε 0 . These operators expand in power of ε

and

whose coefficients are intrinsic operators on Γ, which are completely determined by the shape of Γ and the material parameters of the conducting sheet. Let L n α and B n α be the surface components of L n and B n , respectively. Defined as follows

Here, ∂ 3 is the partial derivative with respect to Y 3 . We denote by L n 3 the transverse components of L n , they satisfy

A.2

Applying the Cauchy product of the formal series n≥0 ε n L n associated to the operator L[ε], with the formal series j≥0 ε j H j . we get:

Clearly the coefficient for each

Appendix A : Annex

A.3

Considering the first equation of the system (3.19): L[ε] ∞ j=0 ε j H j (y α , Y 3 ) = 0. And using Proposition (3.3.1), we get that n j=0 L j (H n-j ) = 0 for all n ≥ 0 Taking into account the surface and transverse components of L n , we get

Using the expression of the operators, and substituting the first term of the operator 

A.4

Proposition A.4.1 [START_REF] Caloz | On the influence of the geometry on skin effect in electromagnetism[END_REF] According to equations (3.37), (3.40) when n = 0, the tangential field H 0,α satisfies the following ODE

and has a unique solution

A.5

Theorem A.5.1 The potentials satisfy the jump relations

A.6 Calculation of the External Field

A.6 Calculation of the External Field

The representation formula of any vector field E for all x ∈ Ω ± is

where Ψ M , Ψ A , and Ψ V are defined in section 3.5.2. Moreover

then

which is equivalent to :

Concerning the terms of asymptotic expansion introduced in 4.33, 3.59, and 3.60, we will consider the following formulas.

A.6.1 First term H

and so

dS(y) .

Appendix A : Annex

A.6.3 Second order H

A.7 Analytical Solution of the Eddy-Current Problem for a Sphere with a Thin Layer in 3D

Consider a thin layer made of an inner sphere of radius r 2 and an outer spherical shell of radius r 1 (see figure A.1). The source current is provided by a uniform magnetic field in the z direction. 

A.7.1 Formulation of the problem

We introduce the spherical coordinates system (r, θ, φ) with a center at O, where θ and φ stands for the azimuthal and polar angle respectively.

We consider the three regions R 0 , R 1 , and R 2 defined as follows:

which is a conducting medium where σ ans µ are constants. R 2 : {0 ≤ r < r 2 , 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} which is a non-conducting medium where σ = 0 and µ r = µ 0 .

Appendix A : Annex

A.7.2 Mathematical Analysis

We consider the case where σ and µ are defined as a piecewise constant functions

A.8 Analytical Solution of the Eddy-Current Problem for a Sphere without Thin Layer

But A r 0 should vanish as r → ∞ since the potential goes to zero far away from any charges, so Ār

The general solution of (A.9) is expressed in terms of Bessel functions:

The general solution of (A.10) is:

But the solution must remain bounded as r → 0, thus

Inverting the integral transform (A.7), we obtain the solution to the problem in the form

Āi (r, n)P (1) n (cos φ) (A.14)

Applying (A.14) to (A.20)-(A.22), we obtain the solution of (A.2)-(A.4) in the form

The sin φ dependence of the excitation source requires that only n = 1 be present, with

1 (cos φ) = sin φ.

Therefore, the solution for the vector potential is

Using the boundary conditions (A.5)-(A.6), we can determine the constants C i for i = 1, .., 4.

A.8 Analytical Solution of the Eddy-Current Problem for a Sphere without Thin Layer

Consider a sphere of radius r 1 (see figure A.2). The source current is given by the excitation of a uniform magnetic field in z direction in the domain R 0 .

We consider the two regions R 0 and R 1 defined as follows: The solution of the problem satisfy the following system of equations:

A i (r, φ) denotes the θ component of the vector potential in region R i , for i = 0, 1.

With the boundary conditions

Using the integral transform (A.7), and using the fact that A 0 = A r 0 + A s , we obtain

Ār 0 = 0 (A.18)

The general solution of (A.18) is:

The general solution of (A. [START_REF] Meunier | Computation of coupled problem of 3D eddy current and electrical circuit by using T 0 -T -φ formulation[END_REF]) is expressed in terms of Bessel functions:

But the solution must remain bounded as r → 0, so 

Using the boundary conditions (A.17), we can determine the constants C i for i = 1, 2.

APPENDIX B Annex

B.1.2

Multiplying (4.25) by A 0 -M 0 (A 0 ) and integrating on y ∈ (0, 1), we obtain

B.1.3

Details of calculation of (4.34) are as follows:

-2 Rescaling Υ = ν δ , the operator ∆ expands in power series of δ with coefficients intrinsic operators with respect to Γ [START_REF] Victor Peron | Asymptotic expansion for the magnetic potential in the eddy current problem : the ferromagnetic case[END_REF]:

where

Denote by v δ (t, Υ) = b δ (x). After scaling ν -→ Υ = ν/δ, we get:

δ n A n v n = 0 in Γ × (0, +∞). (B.17

Inserting v δ = n≥0 δ n w n (t, ν/δ) with w n (., Υ) -→ 0 as Υ -→ +∞ in (B.17 The general solution of (B.20) is:

Using the boundary condition on Γ, we get: