
HAL Id: tel-02500736
https://theses.hal.science/tel-02500736v1

Submitted on 6 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to the design and fabrication of a Stirling
cycle thermal micromachine with stirling cycle

Alpha Dassimou Diallo

To cite this version:
Alpha Dassimou Diallo. Contribution to the design and fabrication of a Stirling cycle thermal mi-
cromachine with stirling cycle. Electric power. Université Bourgogne Franche-Comté, 2019. English.
�NNT : 2019UBFCD035�. �tel-02500736�

https://theses.hal.science/tel-02500736v1
https://hal.archives-ouvertes.fr


 

 

 

THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE 

PREPAREE A L’INSTITUT DE RECHERCHE FEMTO-ST 

 

Ecole doctorale n°37 

Ecole Doctorale SPIM 

 

Doctorat de Sciences pour l’ingénieur 

 

Par 

M. Alpha Dassimou DIALLO 

 

CONTRIBUTION A LA CONCEPTION ET A LA REALISATION D'UNE MICROMACHINE THERMIQUE A CYCLE 
DE STIRLING 

 

 

 

Thèse présentée et soutenue à Besançon, le 11 Octobre 2019. 

 

Composition du Jury:  

 

M. Skandar BASROUR  

Mme Lavinia GROSU 

M. Tarik BOUROUINA 

Fabien FORMOSA 

Michel DE LABACHELERIE 

François LANZETTA 

Magali BARTHES  

Sylvie BEGOT   

Professeur, Univ. Grenoble 

MCF HDR, Univ. Paris Nanterre 

Professeur, Univ. Paris-Est 

Professeur, Univ. Savoie Mont Blanc 

DR CNRS, FEMTO-ST 

Professeur, Univ. FC, FEMTO-ST 

MCF, Univ. FC, FEMTO-ST 

MCF HDR, Univ. FC, FEMTO-ST 

Président 

Rapporteur 

Rapporteur 

Examinateur 

Directeur de thèse 

       Codirecteur de thèse 

  Co-encadrante de thèse 

Co-encadrante de thèse 

 

 

 



 

 

 

 

 

 

DOCTORAL THESIS OF THE UNIVERSITY OF BOURGOGNE FRANCHE-COMTE 

PREPARED AT THE FEMTO-ST RESEARCH INSTITUTE 

 

 

Title 

CONTRIBUTION TO THE DESIGN AND CONSTRUCTION OF A THERMAL 

MICROMACHINE WITH STIRLING CYCLE 

 

Author 

M. Alpha Dassimou DIALLO 

Composition of the Jury: 

 

M. Skandar BASROUR  

Mme Lavinia GROSU 

M. Tarik BOUROUINA 

Fabien FORMOSA 

Michel DE LABACHELERIE 

François LANZETTA 

Magali BARTHES  

Sylvie BEGOT   

Professeur, Univ. Grenoble 

MCF HDR, Univ. Paris Nanterre 

Professeur Univ. Paris-Est 

Professeur, Univ. Savoie Mont Blanc 

DR CNRS, FEMTO-ST 

Professeur, Univ. FC, FEMTO-ST 

MCF, Univ. FC, FEMTO-ST 

MCF HDR, Univ. FC, FEMTO-ST 

Président 

Rapporteur 

Rapporteur 

Examinateur 

Directeur de thèse 

       Codirecteur de thèse 

  Co-encadrante de thèse 

Co-encadrante de thèse 



 

Page 3 on 229 

 

 

 

A Dieu, qui a enjoint à l’Homme de la bonté envers ses père et mère : sa mère l’a 

péniblement porté et en a péniblement accouché ; et sa gestation et sevrage durent 

trente mois. 

 

À mes parents, Amadou Kindy et Fatimatou Diallo, comme ils m’ont élevé tout 

petit alors que je n’étais rien, Toute ma fortune restera également le fruit de vos 

efforts, Dieu seul sait combien je vous aime. 

 

A ma tante Diamilatou Bah, la femme courageuse qui a participé à mon 

éducation, puis, malheureusement, s’en est allée au ciel trop tôt, Comme j’aurai 

aimé que tu puisses gouter à ma réussite. 

 

À ma femme Hassatou Diallo, si tendre épouse, plein de courage, d’ambition et de 

patience, Et reconnaissante envers ses parents. Que ton père, qui ma fait 

confiance, trouve ici toute ma gratitude. 

 

À ma fille Mariam, princesse de mon cœur et la joie de mes yeux, cette réussite 

t’appartient, Ta venu au monde pendant la these a rechargé les batteries de ma 

determination. 

 

 



 

Page 4 on 229 

REMERCIEMENTS 

Toutes ma reconnaissance et mes remerciements vont d’abord à Celui qui,  
Gratuitement, m’a créé, m’a mis dans une voie de paix et fait battre mon cœur continuellement. 

 « O Seigneur! Inspire-moi pour que je rende grâce au bienfait dont Tu m’as comblé ainsi qu’à mes père et mère, 
 et pour que je fasse une bonne œuvre que Tu agrées. Et fais que ma postérité soit de moralité saine.  

Je me repens à Toi et je suis du nombre des Soumis ». (Coran : 46 :15) 

Cette thèse a été réalisée au sein du département MN2S (Micro Nano Sciences et Systèmes) de l’Institut 
FEMTO-ST. Je tiens à exprimer toutes ma gratitude à la région Bourgogne Franche Comté et l’EUR EIPHI (Ex Labex 
ACTION) pour le financement de ce travail. Je remercie Mr. Laurent Larger directeur de l'Institut, Mr. Wilfrid Boireau 
directeur du département MN2S ainsi que Mr. Christophe Gorecki directeur de l’équipe MOEMS et également 
Mme Thérèze Leblois directrice de l’école doctorale SPIM pour m’avoir accordé un bon accueil au sein de ce grand 
laboratoire de recherche pour réaliser mes travaux de thèse.  

J’aimerai témoigner toute ma reconnaissance à Mme Lavinia Grosu et Mr. Tarik Bourouina pour l’intérêt 
qu’ils ont manifesté pour ma thèse en acceptant d’en être les rapporteurs. Je remercie également Mr. Skandar 
Basrour et Mr. Fabien Formosa d’avoir accepté d’en être les examinateurs. Merci pour vos questions et remarques 
constructives. 

J’exprime ma profonde reconnaissance à Mr. Michel De Labachelerie d’avoir accepté de me confier cette 
thèse et d’en être le directeur. J’ai eu beaucoup de plaisir à travailler avec lui. Merci pour sa patience, sa grande 
contribution scientifique, son aide et ses conseils qui ont étés d’une grande utilité pour réaliser et finir ce travail en 
temps voulu. Qu’il trouve ici l’expression de ma sincère reconnaissance. 

J’adresse mes sincères remerciements à Mr. François Lanzetta, co-directeur de thèse et Mme Sylvie Bégot 
co-encadrante, pour leurs aides, conseils et leurs bonnes humeurs inébranlables. Cette thèse a pu être mené à bien 
grâce à leurs constantes contributions.  

Eh! ouais! comment pourrais-je oublier Mme Magali Barthès co-encadrante de la thèse, qui m’a aidé dès 
mes premiers jours à m’adapter à la ville de Besançon. Je la remercie pour toutes ses suggestions de manips, la 
rigueur scientifique qu’elle a su m’inculquer avec pédagogie, ses conseils et remarques constructives et sa bonne 
humeur inaltérable qui m’ont permis de surmonter les difficultés rencontrées et faisant renaitre, à chaque fois, 
dans les moments de doute, ma motivation et ma détermination tout au long de cette thèse. Ton humilité et ta 
magnanimité m’ont permis de me remettre en question afin de remodeler mes qualités humaines.  

Je ne remercierai jamais assez Mr. Ravinder Chutani pour son aide notamment les techniques de 
microfabrication méticuleux qu’il a su me transmettre et de m’avoir donné les premières formations en salle 
blanche. Merci également à Olivier Gaiffe et Nicolas Passilly pour leurs contributions scientifiques et leurs conseils.  

Je voudrais aussi souligner les importantes contributions de Mr. Xavier Gabrion et Mr Vincent Placet du 
département de mécanique Appliqué (DMA), ainsi que Mr. Muamer Kadic, Mr. Jean-Marc Cote, Mr. Franck Lardet-
Vieudrin, Mr. Emmanuel Dordor, Mr. Ludovic Gautier du Département MN2S et Mr. Eric Andrey du département 
Temps Fréquence (TF), Mr Franck Cholet, Mr. Sébastien Euphrasie, Mr. Jean-françois Manceau, Mr. Frédéric 
Cherioux pour avoir toujours eu la porte de leurs bureaux ouvertes pour moi et pour tous leurs conseils et idées 
précieuses sans lesquels je ne serais jamais arrivé au bout de ce travail, surtout en ce qui concerne la réalisation 
des bancs de caractérisations et bien d’autres choses. 

Une thèse sur la microfabrication d’une micromachine comme celle-là contient une partie technologique 
MEMS très importante, c’est pourquoi je voudrais particulièrement remercier tout le personnel de la salle blanche 
MIMENTO, et mention spéciale à Laurent Robert, Sylwester Barguiel et Florent Bassignot pour toutes leurs aides, 
formations et conseils, sans lesquels, je n’aurais jamais réussi à accomplir la réalisation de cette micromachine 
complexe.  

Mes pensées vont aussi aux bons moments partagés avec mes collègues de bureau (José Carrión Pérez, 
Stéphane Perrin, Vincent Maurice, Quentin Tanguy) les remercier pour l’ambiance amicale et les discussions 
sympathiques que nous avons pu avoir. Et également, tous les doctorants que j’ai connus au laboratoire pour les 



 

Page 5 on 229 

remercier pour l’ambiance amicale, les discussions sympathiques et l’entraide. Mes pensées vont également à Mr. 
Etienne Coffy et Mr. Souleymane Diallo, vos conseils et vos aides ont étés précieux.  

Je remercie aussi Patricia Gorecki, Sophie Marguier pour leurs aides et les discussions sympathiques que 
nous avons pu avoir. Mention spéciale à Mme Sandrine Chatrenet, Mme Sandrine Pyon, Mme Valérie Fauvez et 
Mme Ayoko Afanou pour leurs aides et soutient dans les tâches administratives pendant cette thèse.  

Je tiens à remercier Mme Aude Bolopion qui a bien voulu me recruter en tant qu’ingénieur après la fin des 
trois années de mon contrat de thèse et qui m’a accordé du temps pour préparer la soutenance de cette thèse. 
Qu’elle trouve ici toute ma reconnaissance pour sa confiance. 

Toute ma reconnaissant à tous ceux qui ont contribué à établir un environnement de travail plaisant et 
encourageant et ont bien voulu partager leur savoir avec humilité. Enfin, toutes mes excuses aux personnes que 
j’aurai oublié dans mes remerciements. 



 

Page 6 on 229 

TABLE OF CONTENTS 

TABLE OF CONTENTS ........................................................................................................................................... 6 

LIST OF SYMBOLS AND ACRONYMS .............................................................................................................. 10 

RÉSUMÉ ................................................................................................................................................................... 11 

ABSTRACT .............................................................................................................................................................. 12 

INTRODUCTION .................................................................................................................................................... 13 

CHAPTER 1 : CONTEXT AND LITERATURE REVIEW .......................................................................... 14 

1.1. Context of the thesis ................................................................................................................................... 15 

1.1.1. Project history and context ................................................................................................................ 15 

1.1.2. Objectives of this thesis ...................................................................................................................... 17 

1.2. Vibrational Energy Harvesting and transducers ......................................................................................... 18 

1.3. Stirling motors ............................................................................................................................................ 19 

1.3.1. Principle and thermodynamic cycle ................................................................................................... 19 

1.3.2. Stirling motor architectures ................................................................................................................ 21 

1.3.3. Modeling the operation of Stirling motors ......................................................................................... 24 

1.4. Small scale devices with internal combustion ............................................................................................ 27 

1.5. Small scale devices (motors and harvesters) without internal combustion .............................................. 34 

1.5.1. Non-Stirling type: micro-devices and heat harvesting ....................................................................... 35 

1.5.2. Stirling motors and their miniaturization approach ........................................................................... 38 

1.6. Conclusion .................................................................................................................................................. 44 

CHAPTER 2 : STIRLING ENGINE DESIGN CHALLENGES ................................................................... 46 

2.1. Mechanical and design challenge ............................................................................................................... 46 

2.1.1. Pistons versus membranes ................................................................................................................. 46 

2.1.2. Mechanical connection challenge ...................................................................................................... 47 

2.1.3. Ratio between mechanical powers output and micromachine Stirling sizes ..................................... 47 

2.1.4. Swept volume: design of the membrane ........................................................................................... 48 

2.1.5. Confinement of the membrane .......................................................................................................... 49 

2.1.6. Membrane: mechanical properties and influence on motor performances ...................................... 53 

2.1.7. Membranes final design and chosen materials. ................................................................................. 57 

2.1.8. Minimizing dead volumes in Expansion and compression chambers ................................................ 60 

2.2. The micro-motor architecture importance ................................................................................................ 61 

2.2.1. 1-D Architecture ................................................................................................................................. 61 

2.2.2. 2D architecture ................................................................................................................................... 61 

2.2.3. 3D architecture ................................................................................................................................... 62 

2.3. Thermal Challenges .................................................................................................................................... 63 

2.3.1. Conduction.......................................................................................................................................... 64 

2.3.2. Convection .......................................................................................................................................... 64 



 

Page 7 on 229 

2.3.3. Radiation ............................................................................................................................................. 65 

2.3.4. The heat transfer coefficient of a stack .............................................................................................. 65 

2.3.5. Thermal study of the 2D and 3D configurations................................................................................. 66 

2.4. Microfluidic Challenge ................................................................................................................................ 72 

2.4.1. Characteristic length: the hydraulic diameter .................................................................................... 73 

2.4.2. The different gas flow regimes ........................................................................................................... 73 

2.4.3. Alternating flows and associated dimensionless number .................................................................. 74 

2.4.4. Friction coefficient and pressure drop ............................................................................................... 80 

2.5. The chosen design of the micro Stirling motor. ......................................................................................... 84 

2.5.1. The MISTIC design............................................................................................................................... 84 

2.5.2. Dead space: the influence of the regenerator design ........................................................................ 86 

2.5.3. Summary ............................................................................................................................................. 88 

2.6. Conclusion .................................................................................................................................................. 89 

CHAPTER 3 : MICRO-ENGINE MANUFACTURING ............................................................................... 90 

3.1. Cleanroom methods introduction .............................................................................................................. 91 

3.1.1. Lithography technique ........................................................................................................................ 91 

3.1.2. Thin film deposition techniques onto silicon and glass ...................................................................... 91 

3.1.3. Physico-chemical etching with inhibitor or DRIE ................................................................................ 92 

3.2. Microfabrication ......................................................................................................................................... 92 

3.2.1. Compression and Expansion Chambers ............................................................................................. 93 

3.2.2. Membranes ......................................................................................................................................... 94 

3.2.3. Microfabrication of the glass thermal insulation part ........................................................................ 97 

3.2.4. Assembly of the different parts of the micro machine .................................................................... 101 

3.2.5. Different versions of fabricated micromachines .............................................................................. 106 

3.3. Study of room temperature thermocompression .................................................................................... 107 

3.4. Conclusion ................................................................................................................................................ 116 

CHAPTER 4 : MEMBRANES CHARACTERIZATIONS AND RESULTS ............................................. 117 

4.1. The RTV-silicone ....................................................................................................................................... 118 

4.2. Characterization of RTV-Silicone layer mechanical properties ................................................................ 119 

4.2.1. Stress and Strain ............................................................................................................................... 119 

4.3. Stress-Strain relationship: Young modulus............................................................................................... 120 

4.4. Hysteresis .................................................................................................................................................. 121 

4.5. Characterization of RTV-silicone material by tensile tests: influence of thickness .................................. 122 

4.5.1. Tensile tests setup ............................................................................................................................ 122 

4.5.2. Tensile test results and discussions .................................................................................................. 124 

4.6. Characterizations of single membranes: static pressure measurement .................................................. 126 

4.6.1. Uniformly loaded circular membrane .............................................................................................. 127 

4.6.2. Center-loaded circular membrane ................................................................................................... 131 

4.7. Characterizations of Membrane: dynamic tests ...................................................................................... 135 

4.7.1. Materials and methods ..................................................................................................................... 135 



 

Page 8 on 229 

4.7.2. Results and discussion ...................................................................................................................... 137 

4.8. Influence of thermal treatment on membranes properties..................................................................... 139 

4.8.1. Thermal bench .................................................................................................................................. 140 

4.8.2. Mass Bench ....................................................................................................................................... 141 

4.8.3. Study methodology........................................................................................................................... 141 

4.8.4. Results: effect of the temperature on the membranes ................................................................... 141 

4.9. Conclusion ................................................................................................................................................ 146 

CHAPTER 5 : CHARACTERIZATIONS OF THE STIRLING MICRO-MACHINE ............................ 147 

5.1. Stirling micro-machine instrumentation difficulties ................................................................................. 147 

5.2. Static displacement of hybrid membranes in corresponding chambers .................................................. 148 

5.3. Schmidt simulation for the MISTIC micro-machine .................................................................................. 150 

5.4. Hybrid Membranes Pistons: liquid and solid connections ....................................................................... 153 

5.5. Temperature measurements: Platinum resistance thermometer calibration ......................................... 156 

5.6. Motor mode.............................................................................................................................................. 157 

5.6.1. Test bench for the motor mode ....................................................................................................... 158 

5.6.2. Experimental results for the motor mode ........................................................................................ 160 

5.7. Cooling Mode............................................................................................................................................ 161 

5.7.1. Test bench for the cooling mode ...................................................................................................... 161 

5.7.2. Experimental results for the cooling mode ...................................................................................... 162 

5.7.3. Possible explanations for the problems encountered with the fabricated 3-phases micro-machine 
and perspectives for a simpler test architecture .............................................................................................. 167 

5.7.4. Conclusion ........................................................................................................................................ 169 

CONCLUSION ....................................................................................................................................................... 170 

1.1. Comparisons of various energy harvesters .............................................................................................. 171 

1.2. Comparison of energy harvester architecture ......................................................................................... 171 

1.3. Piezoelectric transducers: state-of-the-art devices and materials ........................................................... 173 

1.3.1. PZT thin films .................................................................................................................................... 174 

1.3.2. AlN thin films .................................................................................................................................... 174 

1.4. Electromagnetic transducers .................................................................................................................... 175 

APPENDIX B: STIRLING MOTOR.................................................................................................................... 176 

1.1. Carnot efficiency ....................................................................................................................................... 176 

1.2. Advantages and disadvantages of Stirling motors ................................................................................... 177 

1.2.1. - Advantages ..................................................................................................................................... 177 

1.2.2. Disadvantages ................................................................................................................................... 178 

1.3. Schmidt model .......................................................................................................................................... 178 

1.3.1. Zero order analysis ........................................................................................................................... 178 

1.3.2. First order analysis or Ideal Isothermal Analysis .............................................................................. 179 

1.3.3. Second order analysis or Ideal Adiabatic Analysis ............................................................................ 185 

APPENDIX C : MICROFLUIDICS ..................................................................................................................... 188 

1.1. For permanent flows ................................................................................................................................ 188 



 

Page 9 on 229 

1.1.1. Effect of low Reynolds number in Microsystems ............................................................................. 188 

1.1.2. hydrodynamic resistance notion ...................................................................................................... 188 

1.1.3. hydrodynamic capacity notion ......................................................................................................... 189 

1.1.4. The bottleneck effects ...................................................................................................................... 190 

1.1.5. Fluid-structure interaction ................................................................................................................ 192 

1.2. Permanent Vs Alternate flows .................................................................................................................. 194 

1.2.1. Permanent Flow ................................................................................................................................ 194 

1.2.2. Alternate flow at ∆𝑻 = 𝟎°𝑪 ............................................................................................................. 194 

1.2.3. Alternate flow at ∆𝑻 = 40 ° C ............................................................................................................ 195 

1.3. Oscillating flow pressure drop coefficient ................................................................................................ 196 

APPENDIX D: MEMS MANUFACTURING TECHNIQUES .......................................................................... 199 

1.1. Use of MEMS technologies: environment, materials used and limitations ............................................. 199 

1.2. The clean room environment ................................................................................................................... 199 

1.4. MEMS scales ............................................................................................................................................. 199 

1.5. Basic material in clean room .................................................................................................................... 199 

1.5.1. Hard technologies ............................................................................................................................. 200 

1.5.2. Soft technologies .............................................................................................................................. 201 

1.6. Photolithography method ........................................................................................................................ 202 

1.7. Thin film Deposition techniques onto silicon and glass ........................................................................... 203 

1.8. Etching techniques of silicon and glass .................................................................................................... 204 

1.9. Bonding techniques .................................................................................................................................. 206 

BIBLIOGRAPHY ................................................................................................................................................... 209 



 

LIST OF SYMBOLS AND ACRONYMS

Symbol Definitions units 

Cp Specific heat [J.kg-1.K-1] 

Dh Hydraulic diameter [m] 

Ec Eckert number [-] 

kB Boltzmann constant 
(=1.38064852 10-2) 

[J.K-1] 

L Length [m] 

Lc Characteristic length [m] 

M Molecular weight [g.mol-1] 

Ma Mach number [-] 

P Pressure 
or 

Power 

[Pa] 
 

[W] 

Pr Prandtl number [-] 

R Ideal gas constant  
(=8.314462) 

[J.K-1.mol-1] 

r Specific gas constant 
Or 

radius 

[J.K-1.kg-1] 
 

[m] 

Re Reynolds number [-] 

Reω Kinetic Reynolds 
number 

[-] 

rh Hydraulic radius [m] 

T Temperature [K] 

t Time [s] 

U (or u) Velocity [m.s-1] 

V Volume [m3] 

Va Valensi number [-] 

Wo Wormesley number [-] 

x distance [m] 

Ra Rayleigh number [-] 

e Thickness [m] 

S Surface [m2] 

h height [m] 

d diameter [m] 

 

Greek letter Definitions units 

α Thermal 
diffusivity 

[m2.s-1] 

Γ Wet perimeter [m] 

ε Emissivity 
Or 

porosity 

[-] 
 

[-] 

η Dynamic viscosity [Pa.s] 

λ Thermal 
conductivity 

[W.m-1.K-1] 

λM Mean free path [m] 

ν Kinematic 
viscosity 

[m2.s-1] 

ρ Density [kg.m-3] 

ϕ Heat flux [W.m-2] 

ω Angular 
frequency 

[rad.s-1] 

 

 

 



 

Page 11 on 229 
 

RÉSUMÉ 

Titre : Contribution à la conception et à la réalisation d'une micro-machine thermique à cycle de Stirling  

Mots clés : micromachine, stirling, membranes hybrides, salle blanche, MEMS 
 
En France, on estime que plus de 27 TWh de chaleur à une température comprise entre 100 et 200°C sont perdus 
chaque année. La récupération de cette chaleur perdue est donc un enjeu important pour réduire la 
consommation globale d'énergie. La récupération de la chaleur peut se faire à l'aide de machines de Stirling, qui 
sont des machines thermodynamiques réversibles convertissant la chaleur en mouvement mécanique - lequel 
pourrait ensuite être converti en électricité - à partir de deux sources de température suffisamment différentes. 
La récupération de la chaleur produite par les systèmes électroniques pourrait être faite avec une machine de 
Stirling miniaturisée capable de produire de l'électricité à partir de n'importe quelle source de chaleur. Une telle 
micro-machine peut aussi fonctionner en mode "réfrigérateur" (transport de la chaleur d'une source chaude vers 
une source froide grâce à un travail mécanique) et pourrait être utilisée pour refroidir des composants 
électroniques. Le rendement énergétique des machines Stirling peut atteindre 38% (avec une source chaude à 
200°C) et leur entretien est réputé être minimal. Cependant, aucune machine Stirling n'a encore été démontrée 
avec un volume inférieur à un centimètre cube. En 2015, une architecture de micromachine Stirling triphasée 
pouvant être miniaturisée grâce aux technologies MEMS a été proposée et testée avec succès en macro-volume 
(avec une taille d'une vingtaine de centimètres). Le présent travail de thèse a été consacré à la miniaturisation 
de ce nouveau concept de micromachine Stirling pour la récupération de chaleur entre 50 et 200°C, en utilisant 
les technologies MEMS. Cette approche permettrait la production simultanée de grandes quantités de micro-
machines et donc la création éventuelle de réseaux de micromachines à faible coût par watt d'électricité 
produite. 
Les micromachines sont constituées d'un empilement de tranches de silicium et de verre. Leurs défis de 
conception ont été étudiés en détail et leur puissance mécanique de sortie attendue a été estimée. Les procédés 
de fabrication nécessaires ont été développés et la caractérisation de chaque élément a été effectuée avant 
l'assemblage. Elles comportent notamment des membranes hybrides de 5 mm de diamètre et de 200 microns 
d'épaisseur qui jouent le rôle des pistons en micro-volumes et sont des éléments clés de la micro-machine. Ces 
membranes sont constituées de pièces en silicium (spirales et disques) noyées dans une membrane souple en 
élastomère de silicone dont les propriétés mécaniques ont donc été étudiées en détail. Des simulations 
numériques du comportement mécanique et dynamique de ces membranes hybrides ont été présentées. 
L'accord entre les simulations numériques et les caractérisations a été considéré comme très satisfaisant. Ces 
membranes se sont révélées très robustes et le déplacement de leur centre peut atteindre 1 à 2 mm sans 
dommage. Leurs fréquences de résonance vont de 850 Hz à 2800 Hz et il a été montré qu'elles peuvent 
fonctionner à 200°C sans vieillissement. De plus, l'optimisation d'un procédé d'assemblage par 
thermocompression d'or (Au) a permis d’obtenir des contraintes de rupture en traction d'environ 20 à 30 MPa, 
parmi les meilleures rapportées dans la littérature. Des prototypes de micromachines triphasées de 20x20x8mm 
ont été assemblés, mais leur fonctionnement en mode moteur n'a pas pu être observé, même pour une 
différence de température de 100 °C. Cependant, en insérant des aimants pour provoquer le déplacement des 
membranes par excitation électromagnétique, il a été possible d'observer un effet de refroidissement 
encourageant. Grâce aux travaux réalisés, les principaux éléments de base sont maintenant disponibles et 
devraient permettre des optimisations ultérieures dans des conditions beaucoup plus favorables. 

 

Université Bourgogne Franche-Comté 
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25000 Besançon 
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ABSTRACT 

Titre: Contribution to the design and construction of a Stirling cycle thermal micromachine.  

Mots clés: micromachine, stirling, hybrid membranes, clean room, MEMS 
 
In France, it is estimated that more than 27 TWh of heat at a temperature between 100 and 200°C is lost each year. 
The recovery of this lost heat is therefore an important issue in reducing overall energy consumption. Heat recovery 
can be done using Stirling machines, which are reversible thermodynamic machines that convert heat into 
mechanical motion, which could then be converted into electricity from two sufficiently different temperature 
sources. The recovery of the heat produced by electronic systems could be done with a miniaturized Stirling machine 
capable of producing electricity from any heat source. Such a micro-machine can also operate in "refrigerator" mode 
(transporting heat from a hot source to a cold source through mechanical work) and could be used to cool electronic 
components. The energy efficiency of Stirling machines can reach 38% (with a hot source at 200°C) and their 
maintenance is considered minimal. However, no Stirling machine has yet been demonstrated with a volume of less 
than one cubic centimeter. In 2015, a three-phase Stirling micromachine architecture that can be miniaturized using 
MEMS technologies has been proposed and successfully tested in macro-volume (with a size of about twenty 
centimeters). The present thesis work was devoted to the miniaturization of this new Stirling micromachine concept 
for heat recovery between 50 and 200°C, using MEMS technologies. This approach would allow the simultaneous 
fabrication of large quantities of micro-machines and thus the possible creation of micromachine networks at low 
cost per watt of electricity produced. 
The studied micromachines are made up of a stack of silicon and glass wafers. Their design challenges have been 
studied in detail and their expected mechanical output power has been estimated. The necessary manufacturing 
processes were developed and the characterization of each element was carried out prior to assembly. In particular, 
they include hybrid membranes 5 mm in diameter and 200 microns thick that act as micro-volume pistons and are 
key elements of the machine. These membranes are made up of silicon parts (spirals and discs) embedded in a 
flexible silicone elastomer membrane whose mechanical properties have therefore been studied in detail. Numerical 
simulations of the mechanical and dynamic behavior of these hybrid membranes were presented. The agreement 
between the numerical simulations and the characterizations was considered to be very satisfactory. These 
membranes proved to be very robust and the displacement of their center can reach 1 to 2 mm without damage. 
Their resonance frequencies range from 850 Hz to 2800 Hz and it was shown that they can operate at 200°C without 
aging. In addition, the optimization of a gold thermocompression assembly process has resulted in tensile breaking 
stresses of about 20-30 MPa, among the best reported in the literature. Prototype of 20x20x8mm three-phase 
micromachines were assembled, but their operation in motor mode could not be observed, even for a temperature 
difference of 100°C. However, when magnets were inserted to induce the displacement of the membranes by 
electromagnetic excitation, it was possible to observe an encouraging cooling effect. As a result of the work carried 
out, the main basic elements are now available and should allow further optimization under much more favorable 
conditions. 
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INTRODUCTION 

In the context of the development of connected sensors that will be used in the billions to accurately track pollution, 
reduce energy consumption, optimize machines operations or manage the home, it will be necessary to have 
energy recovery systems in the vicinity of the sensors to avoid managing thousands of connections to the electricity 
grid (i. e. microgeneration of energy). These energy recovery systems can of course convert solar energy when 
possible, but also recover energy from mechanical vibrations (when the collectors are installed on transport 
systems for example) or use any other energy source available near the sensor (e. g. glucose batteries to power 
collectors located in the human body). Among these various possibilities, thermal energy recovery is an option that 
may be of interest in a number of cases (waste heat recovery in electrical systems, automotive exhaust pipes, etc.). 
The purpose of this thesis is to study thermal energy recovery solution using Stirling machines capable of con-
verting heat that has been lost until now into electricity. 

Stirling machines are thermodynamic machines with external heat supply, which allows them to operate with a 
wide variety of heat sources (waste heat recovery, solar heat or renewable energy). In addition, their energy 
efficiency can be excellent and their maintenance minimal, which is why they are used in high-end applications such 
as space technologies for example. In "motor" mode, these machines produce a mechanical movement from two 
sources of sufficiently different temperatures. In "refrigerator" mode, they allow heat to be transported, from a 
mechanical work, between a cold source and a hot source and, thus, to cool the cold source. 

The main obstacle to the use of these machines in the micro-energy generation sector is the difficulty of their 
miniaturization. Indeed, most of the attempts to make Stirling micro-machines have ended in failure without being 
able to identify their exact causes. In 2015, the subject was relaunched following a proposal for a Stirling 
micromachine architecture which could be miniaturized using MEMS technologies and which was first successfully 
tested in macro-volume (with a size of around twenty centimeters). The miniaturization of this architecture was 
the subject of the ANR "MISTIC (Micro-STIrling Clus-ters)" project, and in this context the FEMTO-ST institute was 
responsible, on the one hand, for the optimization of micromachine regenerators and, on the other hand, for 
studying the technological aspects of micromachine production using MEMS-type technologies.  

The thesis work presented in this manuscript is oriented towards this last objective, consisting in studying the 
various functional elements of the micromachine as well as their integration, in order to be able to carry out a first 
test of the complete microsystem. 

This document is organized into 5 chapters: 

− the first chapter aims to present the state of the art on thermal micromachines and in particular Stirling type 
ones 

− the second chapter presents the challenges raised by the miniaturization of the machine and the choices 
made for its design 

− the third chapter deals with the microfabrication issues raised by the constraints of micromachine production 
and the solutions that have been provided to them 

− the fourth chapter focuses on a key element of the micromachine: the membranes that compress and 
circulate the gas inside the micromachine 

− the last chapter presents the tests carried out on the assembled micromachines 
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CHAPTER 1 :  CONTEXT AND LITERATURE REVIEW 

Numerous facts, such as the current energy crisis, its impact on the economy, the increase in the price of a barrel 
of oil, the decline in hydrocarbon and nuclear fuel reserves and the need to reduce air pollution put the energy 
issue at the forefront of global emergency. From an economic point of view, a reliable source of energy is essential 
for the industrial progress that underpins the economic development of any country [1]. Concerning environmental 
pollution, existing batteries to date have their own environmental issues, and their production and disposal present 
an environmental hazard. In 2001, Tanaka [2] showed that only 17% of primary and less than 5% of rechargeable 
batteries were respectively correctly recycled. At the same time, the energy needs of the industry (ENI) continue to 
increase and represent more than 1/3 of the total energy consumed (TEC) in the industrialized countries. For 
example, in 2014 the ENI in France was 19.2% (Energy balance), 70% in China [3] and 33% in the USA [4]. The 
problem that must be emphasized is that 20 to 50% of this consumption is dissipated by conduction, convection 
and radiation from hot equipment or in the form of hot smoke, as this is the case in the USA [5]. In France, for 
example, it is estimated that more than 27 TWh of heat whose temperature is between 100 and 200°C is lost each 
year [5]. In the United Kingdom, it is estimated that 14 TWh / year is recoverable, which represents 4% of its annual 
energy consumption [5]. Moreover, in an internal combustion motor, it is estimated that 75% of the thermal energy 
generated during combustion is lost through the motor equipment [6]. Thus, the recovery of heat energy lost in 
different fields (cf. Figure 1-1) such as power plants, industries, electric or thermal motors, electronic components 
an so on, is an invaluable way to reduce the energy crisis. Other energy sources such as vibrations, water flow and 
airflow could be harvested [7]. Nowadays, the harvesting and conversion of these energies present in the 
environment plays a prominent role in the fight for both the reduction of hydrocarbon consumption and the 
autonomous and continuous energy supply of MEMS (Micro-electromechanical systems) devices (such as mobile 
phone devices, remote devices etc.) to achieve a long operating time. Therefore, self-powered systems that harvest 
their operating energy from the environment hold great promise to power future portable and wearable 
electronics. Some conversion techniques of energies available in the environment and soil (like hydrocarbons) are 
summarized in the Table 1-1 and they depend on the type of energy. 

Type of natural energy 
present in the 
environment 

Vibrations Oils Wind Heat 

Conventional means of 
conversion 

Electromechanical 
Systems (EMS) 

Thermal motors 
with internal 
combustion 

Wind 
Turbines 

Thermal Motors with External 
Heat input (TEEH) & 

thermoelectric materials (TEM) 

Essentials components 
involved in harvesting 

Mass, spring Cylinder, pistons Blades 
(helix) 

Cylinder, pistons (for TEEH) 

Essentials components 
involved in electrical 

conversion 

Coil & magnet or 
piezoelectric material 

Coil & magnet Coil & 
magnet 

Coil & magnet or a piezoelectric 
material (for TEEH)  

Table 1-1 : The energies present in the environment and their traditional techniques of exploitation. 

These different machines or techniques used to recover these energies require a material or a combination of 
materials to convert them into electric energy. In fact, usually, energies from the environment are first converted 
into mechanical energy, and then into electrical one. To do so, conventional machines can rely on, for instance, 
electromagnetic systems (a combination of magnet and electric coil). Electric energy is particular, in the sense that 
it is not a primary energy, i.e. it requires another energy to produce it. In addition, it is, in turn, used directly to 
produce light or heat and can be converted into mechanical energy by powering an electric motor or can also be 
used to produce some chemical reactions. 
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Figure 1-1 : Estimation of energy losses for major energy use areas in manufacturing according to the U.S. Department of 
Energy (Industrial Technology Programs estimated by Energetics Incorporated) [8]. 

This lost thermal energy is divided into three categories, defined as follows [4]:  

• low temperatures when below 230 °C. 

• average temperatures when between 230 and 650°C. 

• high temperatures when above 650 °C. 

One way of harvesting this energy (lost otherwise) is the use of Stirling motors.  For instance, cogeneration systems 
are commercialized, consisting of a conventional boiler that provides heat to homes and a Stirling motor coupled 
to it that recovers heat losses to convert it into electricity [9].  A working prototype of a portable micro motor, such 
as a miniature Stirling motor,  capable to generate electric energy from any natural source of heat in the 
environment (or industrial heat losses) could interest various industries such as automotive, aeronautics, 
microelectronics and telecommunications ones.  

The aim of this PhD was to design a prototype of a miniature Stirling motor that could be used for heat energy 
harvesting. First, the general context of this work will be presented. In the case of miniaturized machines, three 
main transduction mechanisms are used to obtain electric energy: piezoelectric, electromagnetic and electrostatic 
ones. Some harvesters based on mechanical vibration will be shortly presented in the section 1.2. a more detailed 
presentation  will be given in appendix A. Then a focus on the Stirling motor will be proposed, followed by a 
literature review of some power generation and energy harvesting device at small scales. 

1.1.  Context of the thesis 

1.1.1. Project history and context 

This PhD thesis, started in 2015, was part of the MISTIC (Micro STIrling Clusters for low temperature heat recovery) 
ANR (National Agency of Research) project, which started in January 2013, (duration: 42 months)1. The project’s 
partners were the SYMME institute (University of Savoie; project promoter), the FEMTO-ST Institute (University of 
Bourgogne Franche-Comté) and the UMI-LN2 institute (Universeurity of Sherbrooke). The project aimed to do a 
proof of concept of a Stirling micro-motor fabricated with MEMS technology’s batch fabrication for the recovery of 
waste heat at low temperatures in industrial thermal processes, with a specific architecture, based on a meso-scale 
(tens of centimeters) motor develop at SYMME institute (cf. Figure 1-2). 

The use of MEMS technologies (collective structuring and assembling) was chosen, since it will allow the 
implementation of clusters of this type of machines (as illustrated on the left in Figure 1-3) to reduce the cost per 
electric Watt generated. 

A preliminary work was to build the meso-scale machine to validate the feasibility. Therefore, in 2013, the first 6 
months of the project were devoted to the modelling and identification of manufacturing strategies. This work led 

 
1 This project is part of the ANR program named Systèmes Energétiques et Décarbonés (SEED) 
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to the production of an instrumented centimeter-scale Stirling motor (C-SE) at the SYMME laboratory, as shown in 
Figure 1-2. This motor architecture was inspired from a symmetric three-phase free-piston Stirling motor system 
developed by Der Minassians and Sanders (cf. Figure 1-4 [10].  

 

 

Figure 1-2 : On the left : the meso-scale Stirling motor design [11] and below the description of one module. On the right:  a) 
Global view of the experimental setup and (b and c) close up of the motor instrumentation [5]. 

 

Figure 1-3 : Concept and general design of the MISTIC project. On the left are clusters schema and on the right the schematic 
view of the Stirling micromotor.[Images From ANR project MISTIC] 

This architecture has many advantages, such as technological simplicity and reliability (such as a multiphase double 
acting membranes avoiding friction losses). In the C-SE, the connection between membranes was ensured by 
mechanical links and experimental measurements were to be used to validate those made with the micro machine 
after its microfabrication. Therefore, at first, a new design for the C-SE instrumentation became mandatory and 
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had to be built. The global initial design of the micro-Stirling motor for the MISTIC project, with its constitutive 
parts, is given in the right part of the Figure 1-3. 

At the beginning of this PhD thesis in november 2015, the main scientific outputs were that, at the University of 
Savoie, a design tool based on an equivalent electrical network analogy has been proposed and validated in relation 
to the experimental results of the meso-scale Stirling motor [11].  

 

Figure 1-4 : Fabricated three-phase Stirling motor system of Der Minassians and Sanders [10]. 

Regarding the Stirling micro-motor, square membranes containing a liquid, with the aim of reducing their natural 
oscillation frequencies, have been designed, manufactured and dynamically characterized at the FEMTO-ST 
Institute [12]. A MEMS-based micro-regenerator to boost the Stirling micro-motor efficiency was also being 
designed and manufactured [13] at FEMTO-ST Institute.  

1.1.2. Objectives of this thesis 

The main objectives of this PhD were the design optimization, the microfabrication in the MIMENTO clean room 
facility and the characterization of the Stirling micromotor (based on the design given in Figure 1-3). Therefore, this 
work implies scientific and technological challenges linked to an motor size reduction. 

Our contribution focused on all parts of the micro machine such as: 

a) The design part:  

- Improvement and optimization of the initial design of the membranes (shape, size, arrangement, resonance 
frequency): 

o Creation of a numerical model under COMSOL for the prediction of the stresses and the natural 
frequency of the membranes. 

o Design of test specimens to characterize the mechanical properties of the elastic material of the 
membranes. 

- Introduction of the location of thermal regenerators (under development in the FEMTO-ST ENERGY 
department) 

- Design of the micro chambers for compression and expansion of the membranes as well as their connecting 
channels. 

- Designing the new ducts for the liquid filling (for the intermembrane connection) and assembly steps of the 
motor to avoid several technological problems related to the contamination of the equipments (availables 
in FEMTO-ST clean room) encountered with a former geometry. 

- Identification of an efficient assembly technique and design of test samples 
b) The manufacturing part: 

- Fabrication of membranes for necessary complementary tests 

- Optimization of the membrane manufacturing process (repeatability, reproducibility) in a clean room. 

- Manufacture of compression and relaxation chambers 

- Integration and assembly, by the appropriate bonding methods, of all the constituent parts of the micro-
machine (membranes, chambers, channels) to obtain the full micro motor. 
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c) The characterization part: 

- Installation of thermal characterization benches (temperature resistance of membranes, etc.), dynamic 
(resonance frequency) and static (flexion or elasticity of membranes). 

- Mechanical tests of membranes’s material properties with dedicated machines. 

The conversion part (mechanical motion into an electrical energy) was not the aim of this work. Thus we’ll only 
shortly begin by presenting the means to harvest and convert mechanical energy. Then we’ll focus on the Stirling 
motor principle followed by a literature review on works on miniature motor and/or harvesters. 

1.2.  Vibrational Energy Harvesting and transducers 
Vibration sources are an attractive option for the development of adequate power sources for low power supplying 

or for the autonomy of remote sensors and portable electronics. The typical vibration frequencies are between 20 

to 100 Hz [14], [15] and acceleration values greater than 9.807 ms-2 are very rare in environment and industrial 

applications. The estimated harvestable power is in the micro to milliWatt range [16]. Energy transducers are 

materials, or combinations of materials, that convert energy into another form of energy (usually electrical). The 

main transducers to obtain electrical energy from vibrations are piezoelectric, electromagnetic and electrostatic.  

Piezoelectric materials are active materials that generate charges when mechanically stressed. Electromagnetic 

systems employ electromagnetic induction resulting from the relative movement between a permanent magnet 

(magnetic flux) and an electrical conductor as a coil. Electrostatic converters use the vibration-induced relative 

movement between charged plates (electrically isolated) against the electrostatic force to generate energy. 

Because of their low-cost manufacturing process, piezoelectric transducers, have often been proposed to 

implement easily exploitable energy harvester systems. But, solutions combining both electromagnetic and 

piezoelectric transducers were also explored to improve the energy density and the conversion efficiency [17]. 

Other solutions such as electrets or magnetostrictive materials have also been proposed for this purpose [18]. More 

details on the state of the art concerning all the converters above are presented in Appendix A.  

Vibration-powered generators are generally constituted with inertial spring and mass systems (cf. Figure 1-5) 

employing the three main transduction mechanisms (piezoelectric, electromagnetic and electrostatic) to obtain 

electric energy from vibrations. A term commonly used to describe the adequacy between the harvester and its 

electric transducer is the coupling coefficient (kc), which connects the total input energy (Uin) with the output energy 

of the transducer (Ust) as follows: 

 𝐾𝑐 = √
𝑈𝑠𝑡

𝑈𝑖𝑛
   Eq.  1-1 

From a practical point of view, the energy harvesters must deliver the minimum output mechanical power required 
by power converters (i.e. transducers) to operate with acceptable efficiency.  

 

Figure 1-5 : Generic principle of vibration energy harvesting [7]. 

Thanks to the improved technology of MEMS, potentially integrable vibratory energy sensors exist with low power 
applications such as Wireless Sensor Network (WSN) nodes [16], [17], [19], [20]. Several energy harvesters in the 
literature used to have low output power and voltages, are large and bulky. But, fortunately, their efficiency is now 
turned to not peak only in a very narrow frequency range, thus making them suitable to scavenge energy from 
actual ambient vibrations. Research activities are currently oriented towards the improvement of the power 
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efficiency and the output power of the vibration energy harvester, to decrease the size of the transducers, the 
operating frequency to match the low frequency ambient vibrations. Moreover, knowing that ambient vibrations 
rarely occur at exact frequencies, their bandwidth widening is necessary to maximize the energy collection [21]. 

The vibrational energy harvesting mechanisms and architectural development in the recent years have been 
discussed. There have been many improvements on the designs (e.g. more compact, flexible, and wearable…). 
However, the main challenges, such as the wide bandwidth of ambient vibrations, make the vibrational energy 
harvesting systems with significant performances complicated to achieve. Development of MEMS system with low 
resonance frequencies are a real challenge. 

 

1.3.  Stirling motors  
Motors that can use heat energy (released from burning an energy-rich fuel like coal, gasoline, etc.) to make a 

gas expand, push a piston, drive a vehicle or factory machines wheel, are examples of heat motors. Heat (or 
thermal) motors can be classified into two types:  

− Internal combustion motors (for example, Otto car motors): these motors burn the fuel and produce the 
mechanical power in exactly the same place inside the motor. In a car Internal combustion motor, it all happens in 
the rigid metal cylinders. 

− External combustion motors (such as steam motors): In these types of motors, the place where the fuel is 
burned is completely separated from the place where the mechanical power is generated. 

The Stirling motor belongs to the category of external combustion motors while remaining unique because it heats, 
cools and recycles the same gas (environmental friendly gas like air) to produce a useful mechanical power [22]. 

1.3.1. Principle and thermodynamic cycle 

In 1824, Carnot developed a theoretical thermodynamic cycle whose effficiency is maximum [23]: a motor cycle, 
which is only valid theoretically and which consists of four successive transformations (reversible isothermal 
compression at a cold temperature (𝑇k), reversible adiabatic compression, reversible isothermal relaxation at a hot 
temperature (𝑇ℎ) and reversible adiabatic relaxation. The output of this cycle is the ratio between the useful output 
work (𝑊) and the input thermal energy (𝑄): 

    

 𝜂𝑐 = −
𝑊

𝑄ℎ
= 1 −

𝑇𝑘

𝑇ℎ
  Eq.  1-2 

 For instance, with 𝑇ℎ = 500 K (230 °C) and 𝑇k = 293 K (20°C), we have a maximum yield of 41.7%. It should 
be noted that with these temperature levels, under no circumstances will it be possible to exceed this yield. 

The yield of Carnot, which constitutes the ideal case, makes it possible to compare the different systems of 
conversion of thermal energy to a theoretical maximum, and this even when the levels of the temperatures 
between these machines are different. It therefore serves as a reference for existing thermal machine technologies. 
Consequently, the efficiency (𝜂𝑟) of any thermal machine is the ratio between the yield of the considered motor (η) 
and the yield of the Carnot cycle calculated at the same temperatures: 

    

 𝜂𝑟 =
𝜂

𝜂𝑐
 Eq.  1-3 

In the early 19th century (1816) during the Britain industrial revolution [24], Reverend Robert Stirling (Scottish 
pastor) invented the Stirling type motor (i.e. external combustion motor (cf. Figure 1-6)) when he was only 26 years 
old. The original patent number of 1816 was 4081 and was entitled "Improvements for Diminishing the Consumption 
of Fuel, and in particular an Motor capable of being Applied to the Moving (of) Machinery on a Principle Entirely 
New" [25].  

This motor was invented well before the diesel motor (1893), the gasoline motor (1860) and the electric motor 
(1869), and it was, at that time, with the steam motor, almost the only possibility to convert heat into mechanical 

energy. Since steam motors are rather reserved for the great powers, the motor (2 Horse Power  1.5 kW) that he 
developed had a very important commercial success until the beginning of the 20th century in the field of low-power 
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motors [26]. Figure 1-6 presents the Stirling motor (a) and its working principle (b). The classical Stirling motor will 
be composed of two chambers (a hot and a cold one) usually separated by a heat regenerator component (to 
improve the motor yield).  

If we consider the theoretical case of a perfect regenerator (i.e. a heat transfer without heat loss), the efficiency of 
the Stirling machine becomes equal to the yield of Carnot. Therefore, the invention of the regenerator by Robert 
Stirling has significantly improved the performance of its motor 

 
Figure 1-6: The first Stirling motor, as specified in the 1817-1840 patents [25]. Coloration and annotation is added.  

 In general, any Stirling motor contains at least two pistons (which do not necessarily have the same geometry) 
called according to their location (or their role) "displacer"-piston and "work-" or “power”-piston: 

▪ The “displacer” piston is a piston (sometime with a little space between the edge of the piston and 
the cylinder wall depending on motor configuration) whose job is to move the gas between the heat 
source and the heat sink. 

▪ The “working” piston or power piston (closely adapted to the cylinder wall), transforms the expansion 
of the gas into useful mechanical work that drives everything the motor feeds. 

In conventional Stirling motors (Figure 1-6), pistons are usually connected to a heavy flywheel that allows the 
machine to operate smoothly. In operation, the two pistons move constantly, but they are out of phase. Generally, 
the displacer piston is in advance of 90° (i.e. a quarter cycle) in front of the working piston and they are powered 
back by the same flywheel. Being linked, the two pistons ensure that heat energy is repeatedly being moved from 
the heat source to the heat sink and converted into useful mechanical work. A Stirling motor converts thus heat 
energy into mechanical energy by repeating a series of operations, known as its thermodynamic cycle (cf. Figure 
1-7 Figure 1-6c). The gas inside is alternately expanded and compressed, and in between, moving from a hot side 
(expansion side) to a cold side (compression side) and so on. The work piston (in red color Figure 1-6 b) is pushed 
by the pressure from the expansion of the gas to drive the flywheel, then it compresses back the gas so the cycle 
can repeat. The (gray) displacer piston displaces the gas from the hot side of the motor to the cold side (on the 
right) and so on. The theoretical thermodynamic cycle of the Stirling motor (cf. Figure 1-7 a), and c) for associated 
cycle) can be divided into four steps: 

• 1-2  Isochoric transfert through the regenerator: the gas (shown by the red circles in Figure 1-6) is heated 
without volume variation at the hot end of the cylinder 

• 2-3 Isothermal expansion : the heated gas has its pressure which increases until it expands. As the gas 
expands, it pushes the working piston, which, in turn, drives the flywheel. It is in this part of the cycle that 
the motor converts thermal energy into mechanical energy. In the ideal cycle, the expansion is assumed 
isothermal. 

• 3-4 Isochoric transfert through the regenerator :  The displacer piston thanks to the inertia of the flywheel 
brings the hot gas towards the cooled part. Before arriving in the cold part, the gas passes through the 
regenerator, it gives up some of its heat on the way at constant volume.  

• 4-1 Isothermal compression : During this phase, the gas (shown by the green circles) is at the cooled 
cylinder. The piston compresses the gas while its heat is removed by the heat sink. Thanks to the flywheel's 
inertia, the displacer piston brings the cold gas back to the hot part of the machine. Before reaching this 



Chapter 1-Context and literature review 

Page 21 on 229 

part, the gas (at constant volume) heats as it passes through the regenerator, the latter gives up part of its 
stored heat from the previous phase of the cycle.  

In theory, it is considered that the expansion and compression phases are isothermal and that the thermal phases 
(i.e. heating and cooling) are isochoric. In fact, the four steps are not physically separated but merge into each 
other. Although the motor goes through a cycle, it is not a symmetrical process: heat energy is constantly removed 
from the hot source and released at the heat sink and the real Clapeyron diagram is modified as shown in Figure 
1-7 b).  

 

Figure 1-7: Clapeyron diagram Pressure-Volume diagram of a) an ideal Stirling motor cycle. b)  a real cycle of a Stirling motor. 
c) Simplified working principle of a Stirling motor, the subscripts “h” and “k” will respectively stand for “hot “ and “cold” and 
the letter “R” on the figure is for the regenerator, “c” and “e” will represent respectively the compression and the expansion. 

That happens because the hot gas when it expands does a certain amount of work on the work piston, but the 

piston does not do the same work when compressing the cooled gas and returning it to the start point [27], [28]. 

Those differences between real and ideal cycles are mainly due to the following facts: 

• The heat exchangers and the regenerator are not perfect. 

• Dead spaces exist (volumes not swept by the pistons) in the actual motor. 

• The synchronization of the pistons is not discontinuous: it is often approached by a continuous sinusoidal 
movement  

• The gas flow dissipations and frictional drag generate pressure drop. 

• The viscous dissipations in the different components of the machine primarily in the regenerator cause 
mechanical power loss. 

• Mechanical losses such as vibrations are present 

• Seal leakage through the rings results in a loss of gas pressure. 

• Gas spring effects generate hysteresis losses. 

• Heat conduction happens through the walls and from the hot side to the cold side of the machine. 

When you apply mechanical energy into a Stirling motor and run it backward, the motor will effectively remove 
heat from the heat sink part of the motor and will expel it towards the part that should be heated. That turns a 
Stirling motor into a very efficient cooling device ("cryocooler") [29]. Due to the high efficiency achieved by Stirling 
macro machines for cooling, Stirling micro chillers are a potentially interesting alternative for small devices cooling. 
This cooling mode will be studied in chapter 5. 

1.3.2. Stirling motor architectures 

1.3.2.a.  Mechanical connection of pistons 

There are several Stirling motor architectures, the most classic being able to be considered as the types Alpha (α), 
Beta (β) and Gamma (γ), and distinguished as follows [30]: 

• Alpha motors (cf. Figure 1-8) have two separate cylinders in each of which is a piston. Variations in hot 
(expansion space) and cold (compression space) volumes are created separately by separate piston 

a) c) b) 
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movements. Their main advantage is the possibility to assemble several Alpha motors to give rise to 
compact configurations (multicylinders motor) that provide more power. 

 
Figure 1-8: Alpha type Stirling machine configuration (left) and it simplified view (right). 

(https://www.ohio.edu/mechanical/stirling) 

• Beta type motors (cf. Figure 1-9) designate a single-cylinder arrangement. The displacer piston, and the 
working piston, move together linked by a crank shaft mechanism. Variable hot and cold volumes are 
created by the combined action of the two pistons. 

 
Figure 1-9: Beta type Stirling machine configuration (left) and it simplified view (right). 

(https://www.ohio.edu/mechanical/stirling) 

• Gamma type motors (cf. Figure 1-10) have two cylinders like the Alpha type but variable hot and cold 
volumes are created as for the Beta type. The Gamma type has more dead space, which reduces its specific 
power. 

 
Figure 1-10: Gamma type Stirling machine configuration (left) and it simplified view (right). 

(https://www.ohio.edu/mechanical/stirling) 

There are several types of drive systems that ensure the appropriate movements of the working gas to achieve the 
Stirling cycle [31], [32], [33]. The Stirling motor can operate from a linked kinematic chain or free pistons type 
version.  
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1.3.2.b.  Linked kinematic chain 

The standard links use conventional mechanical elements such as cranks, connecting rods, flywheels. Standard 
Kinetic drive mechanisms are crank-slider drive, rhombic drive, swach-plate drive, Ross-Yoke drive (diagrams can 
be found in [31].  

 

Figure 1-11: Compact multiple cylinder configuration of Alpha Stirling Motors. (https://www.ohio.edu/mechanical/stirling/) 

There are other categories of Stirling machines. The multiphase architectures (multicylinder) where a piston have 
a double action ; plays the role of power piston and displacer for two Alpha Stirling motors connected. This system 
consists of several Stirling motors assembled in series. Figure 1-11 is a diagram illustrating the concept. One of the 
essential aspects of these motors is to have imposed kinematics, namely that the piston stroke and the phase shift 
are fixed by specific mechanical elements [5].  

1.3.2.c.  Free-piston Stirling motor 

In a free-piston Stirling motor, reciprocating pistons are coupled to springs and move entirely in response to 
spring forces (gas, membrane or mechanical spring) acting upon them. Invented by Beale [34] in 1969, a Free-piston 
Stirling motor is a dynamic resonant system. The operating frequency is determined by the stiffness provided by 
the springs and the mass of the moving elements. Although this system seems mechanically simple, free-piston 
Stirling motor is the most difficult and complicated to put into practice [31]. 

The main characteristics of free-piston Stirling motors are : 

• It is a resonant system operating at a constant frequency. 

• A self-starting capability. When it is heated up, the system changes into an unstable equilibrium state and 
starts to oscillate automatically at a natural frequency without any requirement for external excitation. 

• The displacements of moving pistons change accordingly with the mass. If more loads are added, the 
displacements decrease. 

• Pistons move linearly inside the cylinders. 

• The requirement for lubrication is ensured by the working gas rather than oil. Oil-free operation of the 
motor eliminates the problem of regenerator contamination. 

• Motor cylinders are hermetically sealed thereby eliminating entirely the problems of dynamic seals of 
kinetic Stirling motors. 

• Motor operation is quieter and more stable compared to kinetic Stirling motors. 

If the piston in a free-piston Stirling motor is replaced by a diaphragm, the mechanical friction and wear are 
eliminated. This type of special free-piston Stirling motor is called the diaphragm Stirling motor, invented by Cooke–
Yarborough in the 1960s [35] as a power generator with a substantially higher efficiency than thermoelectric 
systems at the time [35], [36]. To date, the disadvantage of diaphragm Stirling motor is the low power density 
because of the much smaller swept volumes of diaphragms compared to those of pistons.  

To model a Stirling machine, there are numerical models that we will briefly introduce in the next section. However, 
for more information and details (on the calculations for example) we invite the reader to consult the appendice A. 

https://www.ohio.edu/mechanical/stirling/
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1.3.3. Modeling the operation of Stirling motors 

There are generally four theoretical approaches to modeling Stirling motors. These different theoretical analyzes 
are classified according to a concern of increasing accuracy with respect to the actual operation of the machine. 
The first model, which is the simplest because approximate, is the zero-order analysis. The second model is the first 
order one and is based on the isothermal analysis developed by G. Schmidt [37]. The second order, which is a little 
complex, includes the calculation of the various losses assumed to be decoupled (i.e. separately calculable from 
each other). Last, the most complex is the third-order analysis or "coupled analysis". In this work, only the zero, 
first and second order method are detailed below. More informations on the more complex approach can be found 
in [28] and more details on the simple approaches listed above are presented in appendices. 

There are other 1st order modelling methods in the literature that consider Stirling engine losses. These methods 
are based on the theoretical cycle but they allow obtaining results closer to reality than the Schmidt model. One 
example is the TDF (Thermodynamics in Finite Physical Dimensions) method [38] in which thermal and mechanical 
losses are individualized, thus making it possible to quantify them during actual engine operation. There is also the 
so-called direct method [39] allowing, through adjustment coefficients, to take into account the different losses of 
the Stirling engine during operation.  

1.3.3.a.  Zero order analysis 

Based on experimentally obtained results, the zero-order analysis developed by William Beale during the 1970s 
[33], makes it possible to determine corrective coefficients for the theoretical formulas. According to Beale [34], 
when considering a Stirling machine running in the motor cycle, its mechanical power Wm could be expressed by 
the relation (Eq. 1-4). 

 𝑊𝑚 = 𝐶𝑡. 𝑃𝑐𝑦𝑐𝑙𝑒 . 𝑓. 𝑉𝑠𝑤𝑐 . 𝑓(𝑇) Eq.  1-4 

With Ct  a constant depending on the system, Pcycle the pressure over a cycle  , f the frequency, VSWC the swept volume 
in the compression chamber and f(T) a function of the temperature. 

Around 1980, Walker ( [40]) based on several practical tests on Stirling machines, proposed the following 
formulation  of Beale's initial formula: 

 𝑊𝑚 = 0.15 𝑃𝑐𝑦𝑐𝑙𝑒 . 𝑓. 𝑉𝑠𝑤𝑐 Eq.  1-5 

In general, the Beale formula is used in optimizing the choice of the temperature regime. Its formula has been 
widely used by Senft (1982) [41], West (1986) [42] and Organ (1992) [43]. These scientists validated it by including 
the effects of the temperature ratio. According to West [42], Beale's formula should be modified as follow:  

 𝑊𝑚 = 0.25 𝑃𝑐𝑦𝑐𝑙𝑒 . 𝑓. 𝑉𝑠𝑤𝑐
𝑇ℎ−𝑇𝑐

𝑇ℎ+𝑇𝑐
   Eq. 1-6 

For Stirling machines operating in a cooling cycle (cryogenic), Walker in 1983 [32] (based on the Beale formula) 
establishes an expression to approximate the cooling capacity of a Stirling machine based on the analysis of 
experimental results :  

 𝑄𝑐 = 10−6𝑃𝑐𝑦𝑐𝑙𝑒. 𝑓. 𝑉𝑠𝑤𝑐𝑇𝑐 Eq. 1-7 

Results such as thermal efficiency and power, obtained from these formulas, are estimates that can only give an 
order of magnitude in pre-studies for a Stirling machine design. In fact, this Beale analysis is about an ideal Stirling 
machine, the results are not realistic because there are very important differences between the ideal Stirling cycle 
and the actual operation of a Stirling machine.  

1.3.3.b.  First order analysis or Ideal Isothermal Analysis 

The first order analysis (or isothermal), proposed by Gustave Schmidt in 1871 [37], makes it possible to estimate 
the mechanical power of an motor as well as its performance. It is often the basis of pre-studies of the Stirling 
motor. In Schmidt's model there are assumptions:  

• The movement of the pistons is sinusoidal and their oscillation frequency is constant.  

• The evolution of compression and expansion phases are isothermal.  
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• The gas is ideal so the ideal gas state equation is applicable. 

•  The regenerator is perfect (infinite heat capacity).  

• The mass of injected gas is constant and its instantaneous pressure is uniform (no leakage) so that the 
conservation of the mass applies.  

• The thermal equilibrium conditions are then assumed to be established. There is no mass accumulation 
inside a chamber. 

 

Figure 1-12 : Schematic view of the zones and cells of the isothermal model [28] extracted from 
https://www.ohio.edu/mechanical/stirling/ 
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Table 1-2: Parameters and expressions for isothermal analysis 
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Based on the first order analysis, the Table 1-2 presents the main equations describing the performances of a Stirling 
motor (more details concerning the equations determination are given in appendix B). The letters c, k, r, h and e 
respectively designating the compression chamber, the cold exchanger, the regenerator, the hot exchanger and 
the expansion chamber (cf. Figure 1-12 and Figure 1-8).  The known data are the volumes of the cold space Vk, of 
the regenerator Vr, of the hot space Vh and the temperatures of cold space Tk and hot space Th. The swept volume 
in the compression and expansion chambers are respectively denoted Vswc and Vswe. α is the phase shift between 
the piston and the displacer. This angle represents the phase advance of the expansion space volume variations 
with respect to the compression space volume variations. R and M are respectively the ideal gas constant and the 
molecular weight. 

1.3.3.c.  Second order analysis or Ideal Adiabatic Analysis 

This analysis allows to determine the effects of the adiabatic operation of the compression and expansion spaces 
on the motor performance and to examine the detailed behaviour of the relevant variables across the cycle 
(temperature ratio, phase angle, swept volume ratio, ratio of dead space). This model (cf. Figure 1-13 for a 
schematic view of the parameters) is more realistic for estimating the mechanical power of an motor as well as its 
performance from its geometry.  

 

Figure 1-13: Schematic view of the zones and cells of the adiabatic model [28], extracted from 
https://www.ohio.edu/mechanical/stirling/ 

The advantages of this analysis are that the amount of heat transferred to the regenerator is estimated and the 

method may include heat transfer and friction flow analysis of the heat exchangers. The disadvantage is that this 

analysis leads to nonlinear differential equations that can only be solved numerically. A detailed presentation of 

this model, that was not used in this PhD (due to the number of unknown variables), is given in the appendix B.  

To conclude on this part, Stirling motor can be used, for instance, as motorization motor; as cooler or heat pump, 

as heat harvester etc. In this present work, it is this last application we will focus on.  Classical Stirling motors are 

usually macro-size or (more rarely) meso-size. Nowadays, many devices in the millimeter scale range are being 

fabricated using MEMS batch-manufacturing techniques with low unit cost characteristics [44], [45] and rapid 

prototyping, with basic materials such as silicon and glass that are like those used in the integrated circuit/microchip 

industry. Although initially the micro-devices fabricated using MEMS were sensors and actuators, recently more 

complex mechanical devices such as micro-coolers, pumps and motors are being developed. Indeed, a miniaturized 

device, even with a moderate conversion efficiency (of heat or hydrocarbon fuels into electric energy), would 

indeed increase the lifetime and reduce the weight of an electronic or mechanical system often powered by heavy 

batteries [46]. Moreover, the numerous advantages related to the miniaturization of electromechanical systems 

such as their use in isolated locations that are difficult to access (for example in space or in the deep sea) have 

increased the need to produce microgenerators of power (milliwatts to watts) which are not bulky, have low weight 

and long lifetime. Since thin films batteries are still in development and are not sufficient (~ 1 kJ / g) to sustain small 

device’s power requirements during long periods [47], producing miniaturized power-generation devices opens 

exciting new opportunities, especially in the field of everyday-devices size reducing and sophistication. 

Improvements in this area can make possible new applications and/or capabilities.  

On the next sections, we will present a literature review on heat generation and harvesting methods at small scales: 

first for miniature motor with internal combustion/heat source, then for miniature motor with external 

combustion/heat source. Knowing that we are trying to manufacture a micro machine to convert thermal energy 
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into electrical one, even if it has the particularity of being able to exploit any heat source to work as its heat source 

is external, there is a certain similarity with the "micro" motors exploiting heat from micro-scale combustion (i.e. in 

micro chambers) to produce electrical energy. Therefore, we will also talk about this micro combustion field and 

technology advantages and limits in order to avoid some technological issues related to motor’s miniaturization  

1.4.  Small scale devices with internal combustion 
The race towards miniaturization of electromechanical devices or phones, that can lead to smaller, more compact, 

more powerful, more portable, low power consumption, less bulky, high resolution and reliable has led to the need 

for high microscale power generators (milli-watts to watts) [48], [49]. The high efficiencies obtained in macro-scale 

combustion motors encourage the development of their miniaturization with the expectation that competitive 

devices can be developed. This tandem has led to the development of the field of microscale combustion. Progress 

in this field has evolved considerably with more than 15 years of research and development [50]. It could be 

interesting to take stock of achievements in this area.  

The innovative idea behind this field is to utilize the high-specific energy density of liquid hydrocarbon fuels 

(typically 45 MJ/kg of energy per unit mass) in combustion driven micro-devices to generate high power at small 

scale [51], since top batteries (such as Lithium/thionyl chloride, 0.6 MJ/kg for an Alkaline battery) as well as 

rechargeable new ones, had not yet demonstrated a specific energy greater than 1.2 MJ/kg [46].   

Therefore, a MEMS-based combustion microdevice, even with a mere 3-4% system efficiency of hydrocarbon fuels 
energy conversion, would compete with top batteries in term of energy density (cf. Figure 1-14a). 

Furthermore, there are some specific applications for which mechanical power, or simply heat, are desired (such 

as for instance with Stirling motor) and for which a combustion-based microdevice will have the additional 

advantage of providing this power directly. The overall weight of typical portable consumer electronics consists 

largely of their battery weight. These devices also suffer from short operation cycles between charges or battery 

replacement. A typical example of this problem is depicted in Figure 1-14b) on which a hearing aid (a MEMS sensing 

/communication network device) of a 63mm3 is powered by one of the smallest batteries [46]. Therefore, the size 

and the weight of these available batteries limit the miniaturization of mechanical devices such as robots, airplanes 

etc. [52].  

 

Figure 1-14 : a) Specific energy for iso-octane and several primary and secondary battery technologies [46]. b) Autonomous 
bidirectional communication mote with MEMS optics chip containing a corner-cube retroreflector on the large die, a CMOS 

application-specific integrated circuit (ASIC) for control on the 300 x 360 micron die, and a hearing aid battery for power. 

The micro-power generation field is still, in most of the cases, in the feasibility stage because of no proper 

understanding of thermal and chemical management of microcombustion. Even if only a few projects on micro-

power generation have been funded [46], [53], [54], several meso-scale and micro-scale combustors have been 

developed and they appear to operate with acceptable combustion efficiencies [46], [55], [56]. Some of these 

combustors have already been applied to energize thermoelectric systems to produce electrical power although 

with low overall efficiency. Several turbines/motors have been developed, some of them currently producing 

positive power with low efficiency [48], [57], [58]. Some micro-rockets using solid or liquid fuels have also been 

successfully built since they manage to produce a thrust [46].  

a) b) 

Battery 
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In next sections, some of the technological issues related to meso and micro-scale combustion, the operation of 

thermochemical devices for power generation and some of the systems currently being developed will be 

presented and described. However, first let us clarify the definitions of micro, meso and macro in this field.  

1.4.1.a.   Scaling parameters 

Different micro-devices such as motors [59], [60], [61], propellants [62], [63]- [64] and reactors [65], [66] have been 
developed in recent years. However, the definition of “micro-scale combustion” is confusing because of the 
arbitrary choices of reference length scales. Sometimes “mesoscale combustion” is confused with micro scale 
combustion in the literature. 

 The definition of “micro-scale” combustion from previous studies is generally based on three different length scales 
listed in Table 1-3: 

•  The first is the physical size of the combustion chamber, which was the length scale widely used to define 
the combustion scale (micro and meso). Thereby, if the combustor length is below 1 mm, the micro-
combustion is considered. Otherwise, the combustion is called mesoscale combustion if the combustor 
length is greater but in the 1 cm order. This definition of scale of combustion is widely used in the 
development of micro-motors [59].  

• The second definition is based on a reference length scale of the flame with respect to the quenching 
diameter [67]. In this definition, the combustion is micro-scale if the diameter of the quench is larger than 
the size of the combustion chamber. This definition is favored by researchers for fundamental studies of 
micro-combustion. It is difficult with this method to quantitatively define the limits of micro and meso 
combustion since the quenching diameter depends on several factors such as the composition of the 
mixture and properties of the wall (temperature and surface reactivity).  

• The third definition consists of using the relative length scale of the entire device compared to that of 
conventional macro devices. For example, a micro-combustion chamber for a micro-satellite only indicates 
that the combustion chamber is used for a micro-satellite [62]. The latter approximately 10-100 kg is 
considered "micro" compared to a conventional commercial satellite that exceeds 1000 kg. Thus, this 
definition is used by researchers in the field of micro-propulsion for specific applications. 

Table 1-3 : Definition of micro-scale and mesoscale combustion using different length scales [50]. 

The purpose of this state of the art is not so much to give the details of the tests and the concepts of small-scale 
internal combustion energy generation systems, but rather to present an overview of their development, focusing 
on the miniaturization approaches and techniques adopted by these specialists, the equivalences of mechanical 
parts between small and large motors, the physical phenomena that they have been able to observe on a small 
scale, the manufacturing difficulties. Thus, this knowledge gained in small-scale combustion can be applied to our 
work to avoid certain pitfalls or other new systems involving small-scale transport and chemical reactions to 
improve energy conversion efficiency. For the present study, we will use the physical length (such has the height of 
the chambers) to define the scale.  

1.4.1.b.  Current technologies in micro and meso-combustors 

Several micro or meso-combustors are currently being developed, using either piezoelectric or thermoelectric 

materials as electrical transducer material with the main advantage of no moving or rotating parts. However, the 

problem generally lies in the low efficiency of the complete system.  

Definition based 
on 

Combustion 
regime 

Length scale Examples Applications 

Physical length Mesoscale 1-10 mm Rotary motor (UCB) MEMS power 

Microscale 1-1000 µm Micro-reactor (UIUC) Thruster 

Flame quenching 
diameter 

Mesoscale ~Quenching diameter 
(equilibrium) 

Swiss-roll combustor (USC) Power generation 

 Microscale Quenching diameter ~ 
Mean-free path (non-

equilibrium) 

Fuel Cells Nano-particle 
reactors 

Energy conversion 

Device scale Microscale Smaller than conventional 
motor size 

Micro-thrusters (PSU) 
Micro-gas turbine (MIT) 

Micro-satellites 
Micro-air planes 



Chapter 1-Context and literature review 

Page 29 on 229 

i Micro-combustors with thermoelectric transducers 

Some small scale combustion device combined with thermoelectric power-generation ones have been developed 

using the Swiss roll approach [55], [56], [68] (cf. Figure 1-15). The project  goal of  the  University  of  Southern  

California was to batch fabricate a highly miniaturized, integrated static power generator to power down MEMS 

scales devices [55], [68], [69]. The 3-D Swiss roll reactor that was built is shown in Figure 1-15 : it consisted of two 

connected sections, one in which the heat is transferred to the incoming chemical reactants, and another one that 

eliminates unconverted heat to the cold surroundings. According to them, this 3D design highly reduces heat losses 

and appears to be suited for MEMS scale devices. But, complications appeared during the implementation of the 

thermoelectric unit [70] and both the heat lost and the amount of input fuel to feed the combustor were 

considerable [71]. 

 

Figure 1-15 : 3-D “Swiss-roll " type combustor at University of Southern California (USC) [46]. 

In 2001, Zhang et al. [72] (University of Michigan) developed a thermoelectric power generator based on catalytic 

combustion in a micro-machined combustion chamber. The small device (cf. Figure 1-16) had a 2 x 8 x 0.5 mm3 

chamber covered by a dielectric diaphragm that integrates polysilicon Platinum thermopiles. The device produced 

a power of 1 µW/ thermocouple when hydrogen/air mixtures was used. 

Holladay et al. [59] developed a micro-scale power device which combined a combustion driven fuel reformer and 

a fuel cell in 2001. The electric power was generated by the fuel cell which use the hydrogen stripped from a 

hydrocarbon fuel tank to the reformer. A reactor volume of around 0.5 mm3 was assembled and fabricated. 

Methanol or butane were used in preliminary testing of the fuel reformer, which was able to provide up to 100mW 

of hydrogen at an efficiency of 4.8%.  

 

Figure 1-16 : a) Integrated catalytic combustor/ thermoelectric micro-power generator developed at the University of 
Michigan [46]. b) Illustration of the combustion TE power generator [72] . 

In 2002, Vican et al. [56] (at Princeton University) presented a prototype of a MEMS scale device of chemical energy 

conversion and electric power-generation consisting of a recirculating catalytic 2-D Swiss roll reactor of 12.5 x 12.5 

x 5.0 mm in size. The device was made of alumina ceramic and platinum as catalyst and a thermopile unit. The 

reactor operated with hydrogen over a wide range of fuel-air mixtures and chemical energy inputs from 2 to 12 W 

at 300°C of operation temperature. The resulting electric power of this 2D-structure was sufficient to power a 100 

mW light bulb. However, the problem with this microdevice was the high heat lost [73] and the amount of input 

required fuel. 

a) b) 
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Yoshida et al. [74] at Tohoku University fabricated a micro-thermoelectric (TE) generator that relied on catalytic 

combustion. The device consisted of a fuel ejector, a combustor and a thermoelectric component. The platinum-

based catalytic combustor had a size of 10 x 20 x 0.3mm3 with a BiTe thermoelectric element. The device generated 

138 mW at a total efficiency of 3% using a forced hydrogen and air mixture. However, the ejector pumping 

mechanism integration was initially unsuccessful for system operation. 

Kyritsi et al. [75], at Yale University, developed a meso-scale catalytic combustor (about 16.103 mm3) with a 

reported combustion efficienciy of the order of 97% [46]. A liquid fuel was electrosprayed into the combustor 

chamber and the reported catalytic temperature was in the range of 650-1000°C. As this combustor was to be 

coupled with direct energy conversion modules, its coupling to a Stirling motor demonstrated, in 2007, an 

impressive overall efficiency about 20% [76]. 

ii Miniature gas turbines/motors 

Epstein et al. in 1997 [48], and Mehra et al. in 2000 [60] participated on the MIT Gas Turbine Laboratory 
“Micromotor project” (1994-2011). The project goal was to develop silicon radial inflow gas turbine. Their device, 
constructed from six silicon substrates, is a MEMS-based gas turbine motor potentially capable of producing 10–20 
W of electrical power while consuming 10g of jet fuel per hour [48]. Figure 1-17 shows details of the microdevice : 
an optical picture of a section (a) and schematic views (b, c and d) of the micro-gas turbine comprising the main 
non-rotating functional components of the motor, the compressor (12 mm in diameter and 3 mm thick) and the 
turbine (4 mm in diameter; 1,2.106 rev/min at 1100°C) [46]. The whole device (radial compressor/turbine unit, a 
0.195 cm3 combustion chamber and electrical generator incorporated in the compressor) measured 2.1 cm x 2.1 
cm x 0.37 cm3. Despite, the fact that the development of the different components was well advanced (turbine, 
compressor and combustor) in 2000, the device did not produce a positive power yet [46]. The major problems 
keeping the efficiency of the turbine low appeared related to the difficulty in achieving good fabrication tolerances, 
together with good heat transfer from the combustion chamber to the compressor/intake air. 

 
Figure 1-17 : a) A schematic of the silicon radial inflow gas turbine [48]. b) Schematic view of H2 demo gas turbine 
chip [46]. c) H2 demo motor design with conduction-cooled turbine constructed from six silicon wafers. d) Micro-

gas turbine generator cross-section [48]. 

Yang et al. [77] in 2000, at Honeywell, proposed a free piston-based thermal micro-motor called "knock" operating 
with Homogeneous Charge Compression Ignition (HCCI) of hydrocarbon fuels. HCCI was used to minimize the flame 
quenching effect. In micro-combustors, significant amount of heat is transferred through the walls because they 
have a large surface area to volume ratio, which leads sometimes to flame quenching [59]. The device package 
volume was 103 mm3 and the expected output electric power was 10W. The motor must operate at kilohertz 
frequencies, regarding allowable ignition delay times to achieve reliable auto ignition of the fuel and to develop 
these power densities. Although compression ignition could have been achieved in a 3 mm diameter piston / 
cylinder section operating over several cycles, the inefficiency of the motor appeared to be related to sealing 
problems. 

d) 

c) 

a) 

b) 
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Fu et al. [57] (University of Berkeley, Combustion Laboratory) presented in 2001 a silicon-based MEMS rotary 
internal combustion motor potentially capable of delivering milliwatts using liquid hydrocarbon-fuel . “Micro-
rotary” motors (Wankel-type) with rotor diameters of 2.3 mm and 1 mm were fabricated to examine various micro 
fabrication techniques [50], [57].  A larger rotor diameter of 12.5 mm was fabricated from hardened stainless steel 
by electro-discharge machining (illustrated in Figure 1-18 a) to investigate combustion efficiency, motor operation 
behavior and design issues. This larger “mini-rotary” motor was expected to develop up to 50 W power [46]. 
Preliminary testing of the mini-motor with H2-air mixtures combustion produced a net power output of about 3 W 
at 10000 rpm, the goal being the production of 30 W at 40000 rpm [57]. However, the highest performing of this 
motor produced 33 W of power with an efficiency of 3.9% using a methanol/nitromethane mixture [46]. The 
microfabrication and assembling of a 2.4 mm MEMS-based micro-motor with 1mm rotor diameter based on a solid 
SiC rotor and SiC coated Si housing was ongoing (Figure 1-18).The project aimed to produce 10 to 100 mW of 
mechanical power with a motor chamber size of less than 1 mm3 [59], with 0.08 mm3 of rotor swept volume [57]. 
Unfortunately, problems remain on many levels, including the manufacturing process, materials, sealing, fuel 
dispensing valves, friction phenomena, fuel vaporization, ignition, combustion, thermal management, and thermal 
insulation. 

 
Figure 1-18 : a) EDM technologies steel fabricated mini-rotary motor with a 10 mm rotor [46], [59]. b)  micro-rotary motor 

[50]. 

 
Figure 1-19 : a) Meso-scale Internal Combustion Swing Motor (MISCE). b) Assembly concept for all non-fuel components of 

the 20W MICSE chemical-to-electrical energy conversion system indicating major system components [78].  

The palm-scale Micro Internal Combustion Swing Motor (MICSE), shown in Figure 1-19, is a rotationally oscillating 
free-piston motor based on four distinct combustion chambers from a single housing separated by a rotating arm. 
It was developed in 2002 by Dahm et al. [78] at the University of Michigan. The motor operation principle is a four-
stroke Otto cycle, and the arm oscillations make mechanical torque coupling inefficient, but relatively simple for 
direct electrical power generation. The design goals of this motor were the production of 20 W of electrical power 
from liquid hydrocarbon fuel with 54 g of projected system mass and 17cm3 of volume. 

Annen et al. [61] (Aerodyne Research Inc.) in 2003, presented another quasi-free-piston approach. The device is a 
combination of a linearly oscillating piston based two-stroke motor, a double-helix spring and linear electric 
alternator. This device formed an electric power generation system capable of producing 10 W. The basic unit, 
shown in Figure 1-20, had a 15 mm diameter and 45 mm length [46]. They performed two tests, named A and B. By 

a) 
b) 

a) 
 

b) 
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supposing the scavenging efficiency to be 50% for these tests, they estimated that the efficiency of power 
conversion was 4.7% for Test A and 7.5% for Test B [61].  

At the Korea Institute of Science and Technology (KIST), Lee et al. [79] worked on an alternative design for electrical 
extraction from this free-piston design. In this new design, a three-layer sandwich of photosensitive glass (Foturan) 
was used to reduce thermal losses (when compared to silicon).  

 

Figure 1-20 : Linearly Oscillating Miniature Internal Combustion Motor (MICE) [46]. 

 

 
Figure 1-21 : a) Microturbine-driven bearing rig die, consisting of a diced five-wafer bonded stack (15 mm x 15 mm), which 

encloses a free silicon rotor. b) Optical photograph of the 4.2-mm diameter microturbine showing the stator and rotor blades 
(150 µm tall) c)  Schematic view of a cross section of the microturbine-driven bearing rig. d)  Velocity triangles through the 

microturbine (computed with MISES at a design rotation rate of 250000 rad/s). Dashed lines around a stator vane and rotor 
blade outline the boundary layers [80]. 

In 2005, Fréchette et al. [80] at University of Sherbrooke proposed an air turbine supported on gas-lubricated 
bearings operating at 1.106 rev/min with about 5 W of mechanical power levels. The microturbine (micromachined 
in a single-crystal silicon) converts the fluid energy to mechanical energy consequently generating torque on the 
rotor. The rotor consists of a planar disk with radial turbine blades etched on its front side. The combination of this 
torque and the rotor’s angular rotation rate constitute the overall power transferred to the rotor.  

The microturbine is constituted of a rotor of 4.2 mm-diameter encapsulated in a stack of five aligned silicon 
substrates (15 mm x 15 mm), through-etched and fusion-bonded. The device operates as follow, the pressurized 

b) a) 

d) c) 
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air enters near the outer edge of the device, flows radially inward (through the turbine), and then axially exhausts 
near the device center. The microturbine device and its components are presented in Figure 1-21. 

Peirs et al. [81] at Belgium institute for research and education, proposed a turbo-shaft set-up for measuring 
compressor and turbine maps for an ultra-miniature gas turbine (impeller diameter of 20 mm) generator of 1 kW. 
The entire setup, the schema and the assembled components are shown respectively in Figure 1-22 a), b) and c). 
They tested their device for speeds up to 75 000 rpm and it produced a relative pressure up to 35 mbar. The 
installation works well, but imbalance issues have limited the test speed [81]. 

 

 
Figure 1-22 :  a) Turbo-shaft setup. b) Schematic view of the compressor and turbine. c) Compressor (left), turbine (right) and 

air bearing insert (Rotor diameter: 20 mm- Size compared to 1 euro coin) [81] .  

 
Figure 1-23 : a) Architecture of the micro gas turbine motor [82]. b) Prototype on the test bench. 

In 2013, Dessornes et al. [82] at ONERA worked on a research project called DecaWatt. The objective of the project 
was to realize a prototype of a micro gas turbine motor, based on Brayton-Joule cycle, capable of generating about 
50 to 100 Watts of electrical power. A sketch of the device architecture is illustrated in Figure 1-23a) and Figure 
1-23 b) shows a picture of the actual prototype installed in their test lab. According to them, with realistic 
assumptions, an overall efficiency of about 5% to 10% (for a gas temperature of 1600°K) could be achieved which 
is about 200 W / kg while considering the mass of the motor of the micro-gas turbine, its electronics, fuel and 
packaging. The major micro turbine components chamber (combustion, micro compressor, and microgenerator) 
were designed and tested separately after a performance analysis step. Without considering the dimensions of the 
outer packaging, the electronics or the fuel tank, the micro gas turbine, alone, has a diameter of 22 mm and a height 
of 32 mm. The complete setup was under fabrication until 2011. However, the small size (around 12 cm3 of total 
volume) of the complete micro turbine causes many issues such as the rotating parts efficiency, the necessity of 
gas bearings because of the very high rotation speed, the heat management or the combustion in very small 
combustors [82]. The flows at very low Reynolds number in channels have limited the mixing between the air and 
the fuel. The short residence times of the mixture becomes of the order of the chemical reaction times and 
increased heat losses, which was already increased due to larger viscous forces [48].  

a) b) c) 

a) 
b) 
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Fernandez-Pello [59], Chigier et al. [83] and walther et al. [46] produced three reviews on small-scale energy 

production using combustion. In these reviews, the authors presented a detailed summary of the opportunities, 

technological advances, design challenges, and operational issues faced by specialists in the manufacture and 

implementation of internal combustion micro-power generators. In their analysis, challenges such as frictions, 

liquid fuel injection, fluid-wall interaction, air-fuel mixture, thermal quenching, catalytic combustion, and 

microfabrication are commonly encountered in small-scale devices. The main factor causing the low efficiency of 

micro combustors is often due to the thermoelectric component and not to the combustion process itself. In 

turbines/motors developed (or being developed) in the literature, the problem appears to be linked to fabrication 

and thermal management which both limit the tolerances in moving parts (leakage, low compression ratio) 

reducing the efficiency of individual components such as compressor and combustion chamber. Moreover, there 

are some additional issues that must be taken into account, such as environmental and thermophysical ones.  

There is an expectation of non negligible unburned hydrocarbons (such as CO and other products of incomplete 

combustion) due to the smaller combustion efficiencies, which would require post-combustion treatment. 

Regarding the use of hydrogen, many devices concepts claiming only water emissions are in development. 

However, CO2 is emitted since those devices are usually coupled with an on-board reformer (usually from a source 

of methanol) [84]. Moreover, the energy required for the water gas shift reformation process should be considered. 

A major hindrance of the silicon-based MEMS combustors implementation is their oxidation upon exposure to high-

temperature and humidity affecting device performance. 

The small size of the micro devices and of their components induces particular behavior in the physics involved in 

the device operation (fluid mechanics, heat transfer and combustion). The Reynolds2 and Peclet3 dimensionless 

numbers both decrease when the characteristic length of the device is reduced. As a result, the viscous effects and 

diffusive transport of mass and heat become more and more important. The basic requirement for micro-

combustion to occur is that the time available for combustion called physical time (or residence time) must be 

larger than the combustion time (i.e. the time required for the chemical reaction to occur). Regarding combustion, 

the fuel residence time decreases as the length of the combustion chamber decreases, knowing that it must be 

longer than the chemical time for complete combustion to occur. The fluid flow is primarily laminar for MEMS-scale 

micro-devices with very small characteristic lengths (small Reynolds and Peclet numbers consequently). Another 

consequence is that the diffusive and viscous terms can become dominant while the convective and floating effects 

become negligible. This implies that in micro-devices it will be difficult to keep fluid flow velocities, mass 

concentration and temperature differences, at the same magnitude than in classic “meso” or “macro” motors. In 

the next section, we will focus on miniaturized devices with external sources of energy (no internal combustion). 

1.5.  Small scale devices (motors and harvesters) without internal combustion 
The harvesting of energy is a very broad field that encompasses the exploitation of the natural energies of the 
environment, but also the recovery of lost or dissipated energies because of the inefficiency of energy conversion 
systems (motors, metallurgical foundry, Joule effect etc.) as well as the heat lost in the heating systems (heating 
plate and electric oven…) etc. This field provides a route to create complete autonomous and self-powered 
electronic devices like free wireless environmental sensors and actuators.  

This is particularly relevant when one is interested in the labor costs to install complex wired systems and sensors 
deployed in inhospitable or hard to reach areas as well as the time and cost that is necessary to replace and maintain 
their batteries. Therefore, energy harvesting is a subject that continues to receive both industrial and academic 
interest. The energy recovery devices that will come out of this area of research will have the ability to deliver 

 
2 Reynolds number : defined as the ratio of inertial forces to viscous forces within a fluid. 𝑅𝑒 =

𝑈.𝐿

𝜈
 with U the velocity [m/s], Lc 

the characteristic length [m] and ν the kinematic viscosity [m2/s]. 
 
3 Peclet number:  defined as the ratio of the rate of advection (of a physical quantity) by the flow to the rate of diffusion (of 
the same quantity) driven by an appropriate gradient. In heat transfer, it is the product of the Reynolds and the Prandtl number 

(ratio of momentum diffusivity to thermal diffusivity, 𝑃𝑟 =
𝐶𝑝.𝜈

𝜆.𝜌
 with Cp the specific heat [J/(K.kg)], λ the thermal conductivity 

[W/(m.K)] and ρ the density [kg/m3]) 
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sustainable energy to a wireless system network (safety-monitoring devices, structure-embedded micro-sensors 
and medical implants) through energy recovery from their immediate environment.  

However, being small in size, an energy recovery microsystems typically provide very small amounts of electrical 
power (µW to mW). Nevertheless, this power could be enough to run small daily life device (i.e. wireless sensors 
and actuators). In many situations, this lost heat could be captured and converted into useful electric energy. The 
advantages of using MEMS technology is that it would allow the fabrication of small, easily integrable micro device 
to harvest this lost thermal energy. In the next sections, we will thus present some micro-devices among which 
some are, or could be, used to harvest heat energy. 

1.5.1. Non-Stirling type: micro-devices and heat harvesting  

Lost heat is everywhere around us. Whatever the initial form of each energy process (kinetic, chemical or electrical), 

it eventually turns into heat, which eventually degrades at room temperature. Every year, billions of dollars' worth 

of energy is thrown away in the form of waste heat from industries, cars, and household appliance etc. For example, 

only 25% of the energy generated from a car's internal combustion motor produces motion, and through the 

alternator, generates electricity to power electronic accessories. The remaining 75% of the energy from the 

combustion are lost through heat [6].  

The waste heat sources include cooking plates, motor exhaust, cooling, the leading edge of an aircraft wing, 

electronic devices, building air conditioning, solar radiation and even human body.  

In heat harvesting technology, Thermoelectric Generators (TEG) are the state of the art, to directly convert heat 

into electricity. However, TEGs still suffer from low conversion efficiency and high costs, since they are made up 

with rare earth materials (e.g. bismuth telluride) and they also suffer from low thermal insulating properties [6]. To 

date, the typical conversion efficiency of a TEG device is in the range of 10 to 20 microwatts per square centimeter 

(µW/cm2). Therefore, any improvement on the conversion efficiency would result in significant module size 

reduction and cost savings. Recently, BMW company announced the use of 24 TEGs modules on a car exhaust pipe 

that generated 600 watts of electrical power on highway driving conditions, which represents 30% of car's electrical 

energy requirement [6]. In addition, the human body generates an estimated average heat power of 5.3 mW / cm2. 

Generating electricity efficiently by harvesting this heat would enable autonomous wireless health monitoring 

technology. The implementation of this idea has already been attempted by the use of a TE generator attached to 

the human body to power portable wireless detection system. Apparently, two factors made the portable wireless 

detection system unusable, namely the limited conversion efficiency of TE device combined with the low 

temperature gradient between the human body and its immediate environment [6]. 

In 2003, Whalen et al. [47] at Washington State University proposed a dynamic micro heat motor called P3 based 
on expansion and compression by membranes of a two-phase working fluid (cf. Figure 1-24) [85].  The P3 micro heat 
motor, which heat source is external is fabricated with standard micro-fabrication techniques. The P3 denomination 
refers to the three-part strategy that the micromotor use to produces electrical power. The expander membrane 
had a 3 µm PZT layer sandwiched between Pt electrodes. For the first time they demonstrated the electrical power 
production by a dynamic micro heat motor (with a novel thermodynamic cycle) converting heat into mechanical 
power then electrical power using thin-film piezoelectric membrane. The device consists of two thin membranes 
encapsulating a cavity filled with a saturated, two-phase working fluid. The top membrane being a thin-film 
piezoelectric generator as illustrated in Figure 1-24 b). The power produced by the P3 micro heat motor is 
determined by dissipating, across a load resistance (a decade resistance box is used), the electrical output power 
from the piezoelectric membrane. A peak power of 0.8 µW was obtained at a load resistance of 14 kΩ using the 
resistance box for the piezoelectric membrane impedance matching [47].  

In 2009, Cho et al. [86], from Washington State University, proposed the integration of the P3 micro heat motor 
(which heat input is external) with a Swiss roll type combustor for power production (a type of swiss roll was 
previously presented (cf. Figure 1-15). The images of the combustor and the micromotor are shown in Figure 1-25 
a) and c) and the diagram of the assembly is shown in Figure 1-25 b). The combustor burns the hydrocarbon fuels 
to provide the heat transfer required to power the P3 micro motor. 60–80°C of operating temperatures were 
enough to run the micromotor with a reaction temperature of 150–230°C required by the Swiss roll combustor. 
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The maximum mechanical power of the motor is 220 µW at a cycle speed of 8 Hz. The motor generated a peak to 
peak voltage of 400 mV at 2 Hz. 

In 2005, Landis et al. [87] in their patent, proposed a heat motor made from MEMS technologies and comprising 
an electrostatic-interaction based converter in a generator capacitor. An oscillating gas alternately activates and 
deactivates the transfer of thermal energy from a heat source to the motor medium. The operating principle of the 
motor is described in Figure 1-26. The objective was to manufacture a low cost, reliable and maintenance free 
small-scale heat motor based on a gas enclosed in a chamber for electrical production. 

 

 

Figure 1-24 : a) Photograph of a completed P3 piezoelectric membrane generator. b) Cross-section of the prototype micro 
heat motor and composition of the piezoelectric membrane generator. c) Photograph of P 3 micro-motor integrated with the 

thermal switch set-up. d) Schematic of an integrated micro motor and thermal switch set-up. Whalen et al. [47] [88], [85]. 

 
Figure 1-25: a) CNC-milled VespelTM Swiss roll combustor in experimental stand; top plate removed for clarity, b) schematic of 

experimental configuration. c) micro-motor mated with Swiss roll combustor in experimental stand [86].  

In 2010, Huesgen et al. [89] at university of Freiburg proposed a micro heat motor fabricated in silicon micro 
technology (cf. Figure 1-27). The device working principle is based on a cavity filled with a liquid–gas phase-change 
that performs a self-controlled reciprocating motion between a heat source and a heat sink. The respective upward 
and downward driving forces upon expansion and contraction of the working fluid in the cavity are generated by a 
bistable buckling membrane. The motor performance prediction at a temperature difference of 37 K is an operating 
frequency of 0.72 Hz and a mechanical output power of 1.29 μW. As test case to verify this model, they fabricated 
a functional demonstrator. Experimental results showed an operation frequency of 0.71 Hz at a temperature 
difference of 37 K. 

In 2015, Arnaud et al. [90] proposed the use of a thermal motor based on bi-metallic bistable membranes to convert 
heat into mechanical energy as illustrated in Figure 1-28 a) and b). These bimetallic strips (cf. Figure 1-28 c) use 
their thermo-mechanical properties to convert heat into mechanical energy. According to them, these bimetallic 
strips are simple and therefore their miniaturization is possible with MEMS fabrication techniques. In their study, 

a) 
b) 

c) 
d) 

a) b) c) 
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they evaluated the ability of these bimetallic strips to convert heat regardless of their size, as well as the theoretical 
thermomechanical yields that can be obtained with these harvesters. 

In 2018, Zhan et al. [6] in their patent proposed a MEMS-based bi-stable cantilever heat harvester located between 
a hot temperature surface and a cold temperature surface. This kind of harvester (cf. Figure 1-29) is different from 
conventional thermoelectric techniques that use a direct heat-to-electricity conversion mechanism. The harvester 
is made up of three materials of different thermal conductivity coefficients and a mechanical-to electrical energy 
converter like a piezoelectric device or an electret. Heat is first converted into mechanical strain energy by inducing 
vibration in the bi-stable MEMS cantilever, which is then converted to electricity via an integrated electro-
mechanical converter. The temperature difference makes a tension bar enabling the bi-stable MEMS cantilever to 
vibrate between its two stable positions, with significant tip displacement.  

 

Figure 1-26 :  Explanation of the operating principle of the Landis motor (US Patent 1995) [87]. 

   

Figure 1-27 : a) Schematic cross-sectional view of the micro heat motor in ‘down-state’ and in ‘up-state’ [89]. b)  Optical 
micrograph of the micro heat motor.  

The tension bar is in series with a thermally expandable bar, which realizes a self-adjusting mechanism to guarantee 
a thermally induced vibration between the bi-stable MEMS cantilever's two stable positions. Unfortunately, 
performance data is not provided in the patent. 

In 2018, Salamon et al. [8] have proposed an oscillating thermoelectric device made from silicon. This small device 
(diameter of 2 cm, thickness less than 2mm), designed with three silicon layers, converts heat into electricity by 
applying phenomena of liquid-gas phase change and piezoelectricity. The device consists of evaporation chambers 
and condensation, a channel connecting these two chambers and to ensure energy conversion, a layer of PZT is 
mounted on the top of the structure. 

 

b) 

a) 
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Figure 1-28 : a) Scheme representing the bistable harvester operation. b) bistable operating cycle. c) Micro-bimetals in Ti–Au 

fabricated [90].  

 

Figure 1-29 : Schematic view of the Bi-stable MEMS cantilever heat harvester [6]. 

To conclude, there exists numerous type of harvesters, mainly based on conversion of heat or mechanical energy  

into electricity.  Usually, the harvesters based on thermal exchanges required a heat source that is often a 

combustion motor. The devices previously presented excluded the devices bases on miniature Stirling motor. Those 

last ones are focused on in the next section. 

1.5.2. Stirling motors and their miniaturization approach 

Because Stirling motor don't internally involve burning fuel, their biggest advantage is that they can run from all 

kinds of different sources, and thus be much cleaner and environmental friendly. Moreover, they are quieter than 

internal combustion motors, because they do not have the complex system of opening and closing valves. The 

Stirling cycle has also great potential because it has a performance superior to the efficieny obtained from the 

Rankine or Joule cycle, its configuration coming close to the ideal cycle of Carnot. Currently, electrical efficiencies 

of macro and meso Stirling motors are around 35% to 40% when the motor itself is optimized [22]. 

To our knowledge, in the literature, there are no concrete (or operating) achievements concerning a MEMS-based 

Stirling type micromotor, whatever the intended application. Besides the Stirling micromachine, as regards the 

recovery of thermal energy by micro-machines, the number of practical achievements in the literature remains very 

low. We have done a study on the existing achievements of these motor. The word motor refers to a 

thermomechanical or thermo-electro-mechanical system if an electric converter is integrated. Before presenting 

the literature review concerning miniature Stirling motor, we will begin by shortly presenting some literature 

concerning the regenerator in MEMS technologies. 

a) b) 

c) 
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1.5.2.a.  The regenerator in MEMS technologies 

The regenerator plays a crucial role in the Stirling cycle, in particular by absorbing and alternately releasing heat 
from and to the working fluid, making it possible to recycle the heat released during the isochoric cooling. At meso 
and macro scales, the regenerator is often a porous medium through which the working fluid flows between the 
hot source and cold sink. Consequently, the good concept will be one that will not be subject to thermal efficiency 
problems including heat losses by thermal conduction in the axis of the solid matrix and inefficiency of the heat 
transfer between the latter and the working fluid. Two of the recommended solutions are to put thermal barriers 
in the microstructure or to create rapid physical disturbances in the volume of the substrate.  

Nevertheless, when considering microscopic scales, research on regenerators are quite rare. Nevertheless, Moran's 
work suggested a design consisting of a stack of staggered composite patterns as a regenerative element [91] (cf. 
Figure 1-30 a). Ibrahim [92], also, proposed a segmented involute-foil as a regenerative element (cf. Figure 1-30 b). 
Vanapalli [93], meanwhile, suggested micro pillars etched by DRIE in a microchannel. The micropillars with 
microchannel were constituting the regenerator. 

 

 
Figure 1-30: a) Sketch of balanced design of Moran [94]. b) Frontal view of two layers of microfabricated-segmented-involute 

foil. The other layers are repeats of these two types of layers [92]. Microdevice assembly and SEM of the etched 
microstructure with housing walls [13] 

Recently, based on the previous studies, Dellali et al. [13] suggested a particular microregenerator geometry 
consisting of an integrated silicon microchannel with staggered micropillars etched by DRIE and encapsulated 
between two glass slices (cf. Figure 1-30 c). The porosity of the system ranges from 0.8 to 0.9. Among the three 
gases (air, helium and hydrogen) that they have simulated by Computational Fluid Dynamics, the results obtained 
show that helium has the highest pressure drop because it is the most viscous gas. This loss with helium (the fastest 
gas to heat) is more than twice that recorded with hydrogen. They had raise the need to find a compromise between 
heat transfer related to the thermal power and viscosity-related pressure drop when choosing the fluid and the 
regenerator design to obtain a viable microdevice. Their results have also shown that the transfer of heat energy 
from the heated walls to the working gas is mainly through thermal diffusion rather than advection even if forced 
convection is taken into account. Their discovery is interesting because the time that the heat exchanges between 
the gas flow and the heated microstructures occur was supposed to be very short (about 10-3 seconds). However 
concerning the pressure drop, the existing correlations were not appropriate, so they could not, therefore, evaluate 
the coefficient of pressure drop along the microchannel. This silicon-based micro regenerator is planed to to be 
integrated into the micro-Stirling manufactured during this present PhD [95].  

a) 
b) 

c) 
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1.5.2.b.  Micro-Stirling machine for heat harvesting 

In 1989, Nakajima et al. [36]] were among the first to attempt to build a small Stirling motor that can fit on the palm 
of a hand with a size less than cubic centimeters for applications such as a micro-actuator and a micro-heat pump 
(cf. Figure 1-31) . They began by applying dimensional analysis and computer simulation to, first, examine how 
design parameters vary when motor size is reduced. Based on this analysis and simulation, they designed a small 
Stirling motor about 2cm wide and 3cm high (external dimensions) weighing about 10g and swept volume about 
0.05cm3. This small centimetric Stirling motor was able to produce about 10mW of mechanical power at 10Hz with 
100K of temperature difference between hot and cold walls (cf. Figure 1-31). They also showed the problems 
related to the miniaturization of the motor up to a few cubic millimeters.  Figure 1-31 show a photograph of their 
centimetric Stirling motor. 

Concerning the problems linked to miniaturization, Peterson [96]  in his study in 1998 of scaling analysis of 
regenerative heat motors concluded that, in order to maintain a thermal efficiency above 50% of the Carnot 
efficiency, the lowest size of a regenerative heat motor should not exceed 1 mm approximately. 

  

Figure 1-31 : Image of the micro-Stirling motor [36]. 

Reference Notes 
Working 

gas 
Pressure 

(MPa) 
Frequency 

(Hz) 
Temperature 

(°C) 
Output 

power (W) 
Efficiency 

(%) 

Nakajima  et al. 
 [36] 

“Snap-action 
spring-type 

displacer, annual 
gap regenerator, 
swept volume of 

0.11 cm3 

Air 0.1 10 ΔT=100 0.02 N/A 

Magnet-embed 
type displacer, 

annual gap 
regenerator, swept 
volume of 0.05 cm3 

Air 0.1 10 ΔT=100 0.01 N/A 

Table 1-4: Data on Nakajima small Stirling motors. [36] 

 

In 2010, Formosa [97] at university of Savoie proposed a new design of membrane-based Stirling type micromotor. 
To test the potential perfomance of this micro-Stirling, he assumed that a micromotor with 100mm3 membrane 
stroke volume at 680 Hz, could theoretically produces 1.5W of mechanical power corresponding to 0.18 W/cc. This 
is equivalent to an efficiency of 48% of that of Carnot or an overall efficiency of 12%. Figure 1-32 show the 
axisymmetrical architecture of this micro-Stirling design. He showed that many performance losses would result 
from thermal transfert through the structure static parts and through the expansion diaphragm central part. The 
other losses were attribuated to the working-fluid flow viscous friction throughout microchannels ducts and the 
regenerator. His results pointed out that the heat conduction losses through the structure was the most  significant 
source of performance dissipation, which was simulated to reach 1.3 W for his design.  
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Figure 1-32 : MicroStirling generator architecture design [97]. 

Steiner and Archibald [98] on 2014 developed a diaphragm Stirling motor in which the diaphragm was connected 
to the drive shaft through a folded spring tube with a large stiffness as shown in Figure 1-33. In their motor two 
flexure structures with tuned resonant frequency acted as the displacer. The diaphragm displacement was within 
1 mm which was one or two orders smaller than those of pistons in traditional Stirling motors. But, the main feature 
of the motor was the lack of high tolerance sliding seals which enabled it to have a low cost and long life.  There are 
also several studies using silicone as the diaphragm material [10], [11]. According to them, the system can only 
withstand ambient filling pressure, and had very limited power outputs.  The above studies indicate also that high 
frequency and high pressure are critical approaches for improving the power outputs of diaphragm Stirling motors 
for practical uses. 

 

Figure 1-33: Diaphragm Stirling motor built by Steiner and Archibald [98]. 

1.5.2.c.  Micro-Stirling machine for cooling 

In a micro scale Stirling cooler, heat is released from the hot chamber during the compression phase and absorbed 
from the cold chamber during the expansion phase.  

The craze for the miniaturization of Stirling coolers for application in the cooling of electronics for example, have 

been restrained to scale by the use of traditional components (eg pistons, crank-rod and pressurized chamber) [99], 

[100]. Efforts to build a micro-scale Stirling cooler prototype, through a series of cryocooler patents [94], [101], 

have solved the problems of friction losses and gas leaks by replacing conventional pistons and the associated links 

by electrostatic diaphragms. 

In 1995, Bowman et al. [101] in their patent proposed a planar Stirling microcooler constituted by silicon plates 

carrying membranes and a bonded intermediate regenerator. This thermomechanical Stirling cycle transducer, as 

it was called, was manufactured using semiconductor planar processing techniques and was driven by a controlled 

circuit designed to operate at about 1kHz. 
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The regenerator is located between two plates located at the ends and constituting the zones of compression and 

expansion of the micro-cooler. The state of the art at that time for Stirling cycle machines considered an upper limit 

of operating frequency of the order of 50 Hz. Thus, a machine up to 120 Hz was considered the highest frequency 

never built. The goal of the invention was to construct a Stirling type cryocooler whose size and weight are 

sufficiently small with a specific acceptable capacity and which is also compatible with equipment using electronic 

circuits. The cryocooler had to be able to suck the electronic devices heat at a sufficiently high speed to keep them 

at cryogenic temperatures.  

 

Figure 1-34: Micro-Stirling cooler design and assembly step [94]. 

 

Figure 1-35 : a) Side view and b) Blow-apart views of the final design of the diamond-based MEMS Stirling 
cryocooler c) The diaphragm side view shows the internal components and d) the backside view shows the 

external lead attachment [102]. 

a) 

c) 

b) 

d) 
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Moran ( [91], [94]), in his concept of micro Stirling cooler, (cf. Figure 1-34) used silicon membranes of 1 to 2 cm in 
diameter powered by vertical electrostatic comb controls to move the working gas through a double regenerator 
layer (metal / polymer). High heat losses from the hot side to the cold side remain difficult to minimize. 

Patterson et al. [102] in 2007, proposed an alpha miniature Stirling cooler, 1 cm x 1 cm x 3 mm in size, with CVD-
deposited diamond films  as illustrated in Figure 1-35 a) and b). The diamond layers are deposited on the heat 
exchange plates and the compressor and expansion membranes (cf. Figure 1-35 c) and d)) to increase their heat 
capacity (>900 Wm-1 K-1). Internally fixed crystal piezoelectric transducers power these membranes. The device 
also has a reduced dead space and a regenerator with low thermal conductivity. The objective of this micro-
refrigerator made with MEMS technologies was to provide a solution to the growing need for a high-performance 
miniature chiller.  

 

Figure 1-36 : a) Solid-model cross-section view of the Stirling microcooler system. b) The micro cooler in exploded view (5 x 
2.5 x 150 µm): The assembled structure has five parts: the diaphragm layer in the middle, the top and bottom chamber 

substrates, and two sealing PDMS layers [103].  

 

 

Figure 1-37 : Temperature contours for the full Stirling cooler system simulation at: a) One quarter of the cycle at an 
operating frequency of 100 Hz. b) Three quarters of the cycle at an operating frequency of 100 Hz. c) One quarter of the cycle 

at an operating frequency of 800 Hz. d) Three quarters of the cycle at an operating frequency of 800 Hz [104]. 

a) b) 

a) b) 

c) d) 
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Both membranes oscillate at several kilohertz with an approximate phase shift of 90 degrees. The displacement 
amplitude of the chilling membrane is 4 microns and the working gas is charged at a pressure of 500 kPa to improve 
the efficiency of the device. Their experimental results showed that a membrane strokes larger than 5mm and 
higher frequencies larger than 10 kHz lead to rapid failure of the diaphragms. Although the microStirling 
performance modeling showed that it could deliver 68 mW of power with a temperature difference of 20 K between 
the two hot and cold plates of the device, experimental tests on many of their prototypes manufactured showed 
no reproducible cooling effect. The reason for the inefficiency of operation seems to come from the parasitic heat 
losses related to the miniaturization according to a further modeling. 

In 2013, Guo et al. [103] reported the design of a new micro-scale Stirling cooling system, which includes two 
diaphragms and a regenerator that separates the hot and cold chambers. The micro Stirling cooler design in silicon 
have a length of 5 mm, a width of 2.5 mm and a thickness of 0.15 mm. Figure 1-36 a) shown a cross section view of 
the Stirling micro cooler design and Figure 1-36 b) illustrates the different parts of the micro-cooler. The 
compression and expansion chambers are distanced with a low thermal conductivity 0.5 mm-long passage (the 
regenerator) to minimize conduction heat losses across the regenerator. The regenerator is constituted by an array 
of vertical silicon pillars intended for transferring heat to and from the working gas during the cycle. The device is 
designed to operate with a working fluid such as air at 2 bar and the fluid flow is driven by electrostatically-actuated 
PDMS diaphragms.  

Silicon pillars are also put in spaces between the two chambers and the regenerator (i.e., the dead space) for 
improving the convective heat transfer between the gas and the silicon around the chambers. But, these pillars (in 
the dead space) are  part  of  one  continuous  piece  of  silicon, as illustrated in the cross-section view. When 
diaphragms are (manually) sinusoidally actuated, they oscillate with 90° out of phase when the heat is extracted to 
the cold chamber and released from the hot chamber. The concept was modeled and numerically simulated and 
some results are presented in Figure 1-37.  With their numerical simulation results, the authors found a cooling 
capacity of 4.2 W/cm2  (COP4= 2.93)  when the operating frequency of the system was set at 600 Hz and the 
temperatures of the heat source and heat sink were respectively 313.15 K and 288.15 K [104].  

1.6.  Conclusion 
The trend towards energy-generators miniaturization is motivated by the need to reduce current small- devices 
weight (consisting largely of battery weight), increase their operational lifetime, and reduce the cost of daily life 
MEMS devices [49], [105] or compete with the price of high energy density small batteries. Unfortunately, 
challenges in the development of power-generation systems at small scales are still considerable. Many 
demonstrations that have emerged in recent years bear witness to the significant progress that were made in the 
field of power generation at small scale (electrical and mechanical), pushing this new frontier of technological 
development. However, the field is still, basically, in a feasibility phase because of the many technological 
challenges to be solved as mentioned previously [46].  

The preferred approach to date is the miniaturization by downsizing (scaled-down) of large-scale classics 
combustion motors currently in use. However, on a small scale, there are many problems associated with fluid flow 
in micro-channels, heat losses and mass transport, good performance prediction and micro devices fabrication and 
characterization. Potential solutions reside in an effort of basic and applied research and development of 
manufacturing. Research needs to include, on the one hand, the study of fluid flow in low Reynolds number 
channels, fluid-structure interaction and thermodynamic modeling, investigation diagnoses, material selection. On 
the other hand, the manufacture of high precision structures and high aspect ratio (for adequate sealing for high 
compression ratios) and complex geometries, assembly, testing and characterization are required. Materials 
capable of withstanding the high temperature, harsh chemical environment, stress and wear due to combustion 
events and moving parts need to be developed. A repeatable and simple assembly technique must be developed 
for the mass production of devices as well as advanced functional testing and characterization techniques to 
optimize their performance. Note that, some might think that these problems could be avoided if the 
miniaturization approaches were based on new designs of small systems rather than the scale reduction of macro 
systems.  

 
4 COP= coefficient of performance, defined as the ratio of useful heating (or cooling) supplied by the system over the work 
required 
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Since we are going to miniaturize a motor in our work, it naturally seems necessary to study the state of the art in 
the miniaturization of internal combustion motors to understand the difficulties field’s specialist faced during the 
miniaturization of moving parts and the solutions they could use or proposed to circumvent them. Moreover, since 
the Stirling machines have external heat input for their operation, one could well imagine using an external 
miniature combustion chamber as micro-Stirling motor’s heat source, knowing that the hydrocarbons have a very 
high energy density that can lead to an extremely high temperature gradient. Micro-scale combustion seems to be 
possible with an understanding of the appropriate thermal and chemical management.  

Moreover, some micro motors have been developed (albeit with very low yields or not operating) or are under 
development. However, more detailed modeling efforts are needed to design and improve existing designs to avoid 
friction losses, sealing issues, manufacturing and assembling challenges [83]. As to whether these mechanical 
problems can be solved, opinions differ. What is certain is that leaks, friction (caused by mechanical moving parts), 
wear and lack of thermal insulation result in a significant reduction in mechanical, thermal and combustion 
efficiencies. If these efficiency reductions are dominant, the small scale device may be unacceptable. 

The particular interest on Stirling motor is justified by its high theoretical efficiency. For example, in the ideal case, 
the maximum efficiency is 38 % for a heat source at 200 °C and a cold source at 20 °C. Even if a   few   research   
groups   have   explored   some aspects   of   the miniaturization of Stirling motors or combustion motor, many 
questions remain open, such as:  what are the optimal configurations for a miniaturized Stirling motor? What are 
the sizes and materials of optimal components for these configurations? How do the limitations imposed by the 
current state-of-the-art in microfabrication technologies (clean room equipment’s) affect the design of micro-
Stirling motors?  

The goal of this present thesis is to explore some of these questions. “Micro-Stirling motor" in this study means a 
miniature Stirling motor with a size smaller than a cubic centimeter. The type of Stirling motor chosen to be 
miniaturized in this work is a multiphase free piston double acting. It is constituted by three alpha-type motors 
arranged in a double-acting configuration by interconnecting several Alpha units in a series to form a loop and the 
next chapter is devoted to its design and the challenges related to the miniaturization. 

The main results of chapter 1 : 

A complete review of the literature about thermal micromachines and Stirling motors has been done, showing 
many attempts and few working machines. 
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CHAPTER 2 :  STIRLING ENGINE DESIGN CHALLENGES 

As presented in chapter 1, the MISTIC project aimed at the miniaturisation of a macro motor composed of three 
alpha type Stirling motor linked to each other. The CAD scheme for the design of this double action multiphase 
Stirling micro-engine, proposed during the MISTIC project, is presented in Figure 2-1. The spirals (for instance, piezo 
material) were aimed to convert mechanical motion into electric energy or vice versa.  The term "double action 
multiphase" basically means that several units Stirling micro motors are mechanically associated with each other 
by their chambers, knowing that the last module is connected to the first to form a looped system [5]. As a result, 
the energy of the gas expansion stage of a module provides the energy required for the next module compression 
step. The phase shift difference between the membranes is imposed by the number of associated modules [5], 
[106]. In the presence of three micro motor modules, the phase difference between the membranes is 120°C.  

 

Figure 2-1:  Schematic view of the MISTIC free piston multi-cylinder double acting microStirling motor [107].  

The physical equilibrium or the balance of power between some physical phenomena changes when one 
miniaturizes mechanical systems with moving parts, such as for example motors. In practice, before miniaturizing, 
it is necessary to first determine the new physical equilibrium that may appear in microsystems to know if it is not 
disadvantageous to miniaturize. With respect to the reduction of the machine's dimensions, it is especially 
necessary to check:  

• The behaviour of the thermal gradient or pressure to know if it will be maintained at small scale and to 
what extent. 

• The impact of friction losses (fluidic and mechanical type) in small ducts and changes of direction or section 
(major and minor losses). 

• Convective heat transfer between fluid and medium, the ratio of volumes, etc. 

These factors affect the performance or the risk of non-operation of the reduced machine. This first analysis also 
makes it possible to know, during miniaturization, whether the size of an element of the macroscopic motor should 
be simply reduced or whether a complete design of a new element is necessary to accomplish the same final 
function for the micro-motor. 

In this chapter, a mechanical, geometric, fluidic and thermal analysis of the risks related to the size reduction of the 
Stirling motor was carried out to evaluate the influence of various physical phenomena likely to change with the 
reduction of the scale. This chapter ends with the presentation of the final architecture of the machine. This latter 
corresponds to the compromise between thermal, fluidic, mechanical and technological pre-requisites.  

2.1.  Mechanical and design challenge 

2.1.1. Pistons versus membranes 

In our study case, we tried to miniaturize an alpha type motor. At macroscopic scales, the setting in motion of the 
fluid in a Stirling motor is ensured by pistons. In MEMS technology, a miniaturized Stirling motor could basically 
consisted in two pistons in two cylinders connected by a regenerator canal (cf. Figure 2-2).
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However, the problem with miniaturizing pistons is that it will increase the impact of leakage and friction losses 
between the cylinder-piston space at small scale. Moreover, wear is present in this friction zone located at the 
interface between the piston and the walls of the cylinders in classic macro motors. In fact, this zone must provide 
two antagonistic functions, namely keeping both a seal for the gas under pressure and at the same time limiting 
mechanical friction. Knowing that obviously to ensure a sufficient seal, it is necessary to tighten the piston in the 
cylinder while in order to limit the friction it is necessary to limit the contact. When miniaturizing, these friction 
losses can become proportionally predominant and be a critical point for the proper operation of the motor: one 
of the main challenges is thus to replace the piston with another element (to ensure sealing while minimizing 
friction losses). A solution recommended by Der Minassian to remedy this dilemma is the use of flexible membranes 
instead of conventional pistons [10]. These membranes allow both to completely eliminate these mechanical 
friction, and can at the same time provide a good seal when they are made of a suitable material.  

 

Figure 2-2: Basic model of an alpha Stirling machine in MEMS technologies 

2.1.2. Mechanical connection challenge 

Furthermore, the mechanical connection system conventionally used in macroscopic Stirling motors (such as crank-
flywheel mechanism) is inefficient for MEMS motors because the power output of the flywheel is greatly reduced 
(due to friction losses) as the size is reduced too. Nakajima et al. [36], through computer simulations, has reported 
that the flywheel mechanism had a miniaturization limit of 9 mm before it became ineffective. Moreover,  Peterson  
in 1998 [96], presented a detailed scaling analysis of regenerative heat motors and came to the conclusion that the 
lower size limit of a regenerative heat motor was approximately 1 mm. Note that, this size limit was set to keep a 
thermal efficiency above 50 % of the Carnot efficiency. The use of a flying wheel or an alternative energy reservoir 
is inevitable for a motor, because for every thermodynamic cycle a motor requires energy for the compression of 
the working gas. The analysis of the macroscopic Stirling motor shows that the phase angle of the displacer must 
be maintained theoretically at 90° in advance of the power piston. It would then be necessary to find a phase shift 
system in MEMS technology equivalent to the crank and flywheel system in conventional Stirling machines.  

Taking into account the previous recommendations, for our MEMs Stirling motor, we chose a system of membranes 
fixed on the edges of their chambers: only their central part moves which limits the friction against the wall. The 
present section is dedicated to the mechanical challenges related to the replacement of the piston by a membrane. 

2.1.3. Ratio between mechanical powers output and micromachine Stirling 
sizes 

The Schmidt model (cf. details given in Annexe A) allows, for a simplified system and under assumption, to estimate 
the mechanical power that the Stirling motor could provide. At first, in order to fix the ideas on the size of our 
system and to verify the good agreement with the literature, we carried out an isothermal analysis. For this study, 
we set the hot temperature at 473K (maximal aimed temperature in the MISTIC project), and the cold temperature 
at 293K. Air properties were taken at the mean temperature, 383K (cf. Table 2-1). For this example, we used a 
similar geometry as the one given in the Figure 2-2, with a classical phase shift of 90°. The chambers are cylinders 
with a height set here at 600 µm. The canal containing the regenerator was set constant at a volume of 4.6 mm3. 
Moreover, we assumed here the ratio between the swept volume and the chamber volume equal to 0.7. 

T 

K 

ρ 

kg.m-3 

  

Pa.s 

Cp 

J.kg-1.K-1 

λ 

W.m-1.K-1 

M 

g.mol-1 

383 0.922 2.215 10-5 1013 0.0325 28.965338 

Table 2-1 : Air properties at 383K [108]. 
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To emphasize the influence of the motor size on the power, we only changed the chamber diameter, varying from 
10 to 0.02 mm in diameter. NB: Note that any change in the motor length would have a similar influence on the 
power since the volumes would change, we took here one example and choose to vary only one parameter to allow 
comparison.  Table 2-2 shows, for a frequency set at 1kHz and for different chambers radius (i.e. for different 
machine sizes), the chamber volume Vc, the dead space of the chamber Vd, and the resulting mechanical power. 

The estimation of the machine power according to its size by the Schmidt isothermal analysis shows the size limit 
from which the mechanical power supplied by the micromachine would no longer be significant (cf. Figure 2-3 on 
the left), they are consistent with the recommendations found in the literature [36], [96]. Note that, since thermal 
losses in the case of a micromotor (and even in the case of a micro-cooler) were not considered in the present 
calculations, they are underestimated. Moreover, in the alternating flows that take place in the Stirling motor, at 
high frequency (as it could be the case with the use of membranes for the displacement of the gas), the fluid will 
heat up and there will be losses by compression-expansion of the gas. It could even lead to slow the fluid flow until 
it stops (because unable to follow the imposed movement). For all those reasons, in addition to the motor size and 
the dead space, the thermal and fluidic criterions must also be taken into account.  

Chamber radius (mm) 5 4 3 2 1 0.5 0.25 0,1 0.01 

Chamber volume Vc 
(m3) 

4.71 
10-08 

3.02 
10-08 

1.70 
10-08 

7.54 
10-09 

1.88  
10-09 

4.71 
10-10 

1.18 
10-10 

1.88 
10-11 

1.88 
10-13 

Chamber dead space 
Vd (m3) 

1.41 
10-8 

9.05 
10-9 

5.09 
10-9 

2.26 
10-9 

5.65 
10-10 

1.41 
10-10 

3.53 
10-11 

5.65 
10-12 

5.65 
10-14 

Powers (mW) 980 592 297 101 11 
8.35 
10-1 

5.50 
10-2 

1.43 
10-3 

1.43 
.10-7 

Table 2-2:  Schmidt model: examples of Power variation for different size of the Stirling motor 

 

     Figure 2-3: Example of the power output of a Stirling motor (determined with the Schmidt model) versus the chamber 
radius variation (i.e. the motor size variation) on the left, and of, on the right, the dead space evolution versus the chambers 

diameter. 

From the Figure 2-3 (left), it is obvious that the larger the motor is, the better its power. Unfortunately, increasing 
the size of the micromotor could raise another issue: the increase of the dead spaces. For a given geometry (for 
instance, cylindrical chambers with membranes), the dead spaces will increase rapidly when increasing the size of 
the machine (cf. Figure 2-3 on the right). Thus, what the machine is gaining in power with the size increases will be 
lost due to dead spaces. Therefore, dead spaces are a major difficulty in MEMS micromachines and it is very difficult 
to reduce them without drastically reducing the power of the resulting micromachine. Our device should fulfil the 
previous recommendations and so the chosen size was a few mm. We’ll see later on that, the size had also to fulfill 
technological requirements.  The next section concerns the geometry that the membranes (used instead of pistons) 
should have to minimize dead spaces, taking into account the technological stresses related to the clean room 
possibilities and the MISTIC project requirements. 

2.1.4. Swept volume: design of the membrane 

An important parameter that has influence on the efficiency of the motor is the swept volume. The conventional 
pistons are generally cylindrical solid blocks which slide inside a hollow cylinder. In addition, in the case of a piston, 
since it is usually made of a rigid body (hardly deformable) like grey cast iron, cast steel and aluminium alloy, the 
shape and volume swept during a movement are easily predetermined [65]. Moreover, the piston is not fixed at 
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the ends (or surroundings) of the cylinder, which allows it to make large linear displacements. It also has a 
substantial mass to reduce its thermal expansion and operating frequency. 

As previously mentioned, the use of a piston in a micro-motor is not relevant. The solution is to use, instead of 
piston, a flexible membrane. The latter is, in the literature, often made of a resilient polymer of 2D cylindrical shape 
(which means that its thickness is negligible compared to its length or its diameter). As the membrane is sealed by 
its ends, it does not leave much room for a large displacement. Thus, the membrane and its environment must be 
designed so that the swept volume is important, and surpout more than the dead space of his chamber (we consider 
in this section only the volume of the chamber and not the regenerator-related dead space, which will be studied 
later on section 2.4.) 

2.1.5. Confinement of the membrane 

The use of membranes instead of pistons makes it possible not only to avoid friction losses, but also to reach high 
frequencies, to obtain a good sealing  and to reduce thermal losses since their material are generally poor thermal 
conductor polymers (in comparison with metals used for solid pistons). In addition, if a membrane is free (i.e. not 
confined in a small cavity) it can easily be combined with an actuation system with a variety of mechanical actuators, 
such as a piezoelectric layer, an electromagnetic or electrostatic system etc. 

 

Figure 2-4: Simplified diagram of a Stirling micromachine in 2D configuration. 

Unfortunately, this is not the case for a miniature motor because its membranes are confined into chambers of a 
few hundred micrometres high (cf. Figure 2-4). As a result, the integration of an electromagnetic system becomes 
complicated because of the small volume of the chamber and the space reduction generated by the presence of a 
permanent magnet inside. Furthermore, the number of coil turns necessary to obtain sufficient force to drive the 
membrane (or, conversely, to convert the periodic mechanical movements into electricity) and the rigidity of the 
diaphragm are all limiting parameters.  

Taking into account these issues, several solutions were envisaged, among which that of incorporating a 
piezoelectric module on the membrane or incorporating a magnet under the membrane (not in contact with the 
hot or cold chambers). 

2.1.5.a.  Membrane and chamber design importance 

One of the problems inherent in Stirling motors is the presence of dead spaces (unswept internal volumes). For 
macroscopic motors, those dead spaces are almost negligible (cf. Figure 2-5). The small spaces named Vclc and Vcle 
which represent these dead spaces on the pistons side are deliberately left as a safety spaces to prevent the pistons 
from banging on the bottom of the cylinders.  Thus, inside the cylinders containing the pistons, there are almost no 
dead spaces, or, in any case, they are very negligible compared to the volumes swept by the pistons. 

The design objectives we have set ourselves are to create simple heat exchangers (i.e. compression and expansion 
chambers), resistant to a maximum temperature of 200°C, identical for both sides (hot and cold) and achievable in 
a clean room at low cost. The choice made for the MISTIC macro motor [107] was to make it up of 25 stainless steel 
grids tightly mounted in an aluminium ring. Knowing that the main role of the chambers is to contain and heat the 
gas (by transferring heat from the hot source), then cool the gas by removing its heat to the cold source.  

On the one hand, the heat exchange is more important with larger exchange surface and also with an insulating 
material between the hot and cold chambers.  On the other hand, an increase of this surface would cause more 
viscous dissipation related to the flow of the working gas. Proportionally, more dead spaces (when using 
membranes) and limitations due to possible swept volume (thickness of the canals and the chambers) will rise up.  
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The characteristic parameters of the membrane and chamber assembly are therefore their diameter, their 
thickness and the length of the connecting channel between the chambers.  

When using a membrane instead of a piston, one of the drawbacks is the reduction of the ratio of the swept volume 
compared to the dead spaces. These last ones must be minimized to ensure optimal performance. In order for the 
membrane to sweep a large volume in the chamber, its bending shape must therefore correspond best to that of 
the chamber in which it moves (as in the case of pistons). 

To minimize the dead spaces, a specific design taking into account the possible problems of heat exchange and 
microfluidic was considered. Indeed, the dead spaces become significant when the chamber shape does not 
conform to that of the moving membrane. But also, when the volume swept into the chambers becomes 
comparable to that in the micro-pipes of the regenerator and chambers’ connectors (channels). 

There are two chambers geometries that are possible. The first one is to give the chamber a spherical cap shape, 
knowing that a symmetrical circular membrane moved by a gas that expands naturally take such a shape. 
Nevertheless, whereas in MEMS technology a cylindrical chamber shape is easily achieved by DRIE in a silicon 
substrate, etching a spherical shapes (in either silicon or glass substrate) is more complicated and requires the use 
of wet etching. 

The second possibility is then to keep a simple shaped chamber (cylinder type, easily achievable with the current 
technology available in FEMTO-ST clean room) and modify the membrane design to reach a proper displacement 
shape so that it fit as closely as possible the contours of the chamber. Nevertheless, the elaboration of the 
membrane in clean room using non-classical materials is a little more complex since the elastomeric materials are 
often considered as pollutants in clean room environment [108]. 

In our case, since the material needed to create a spherical cap-shaped chamber was not easily available, we choose 
this last solution: a simple cylindrical shaped chamber with both the structure and the design of the membrane 
modified. 

 
Figure 2-5: Dead spaces in a classic Alpha Stirling machine symbolized by Vclc, Vcle, Vh, Vk and Vr (Extracted from 

https://www.ohio.edu/mechanical/stirling/ and [28]). 

Let us consider a classical membrane clamped at its end to a cylindrical chamber. We will determine here the swept 
volume and then compare it with a membrane with a different design. The displacement of the membrane will be 
assumed to be caused by the pressure of a gas. Two cases will be presented: the membrane with in shape of a 
spherical cap and the membrane with a solid central disk in its center. 

i The spherical cap 

In this case, represented on the Figure 2-6, the membrane is modelled as a sphere of a radius Rs that is connected 
to the silicon circular hole of diameter rm and depth hm. The sphere radius is the given by: 

𝑅𝑠 =
ℎ𝑚

2 + 𝑟𝑚
2

2ℎ𝑚
 

Dead spaces at heat 
exchangers (regenerator 

space, heater and 
cooler)  

Dead spaces inside pistons 
chambers  

https://www.ohio.edu/mechanical/stirling/
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Assuming that the height chamber ct equal to the swept height hm, the volume of the cylindrical chamber is given 
by Vc:   

𝑉𝑐 =
𝜋

4
𝑑𝑐

2 ℎ𝑚 

Thus, the maximum swept volume VSW of the membrane would be given by : 

  𝑉𝑠𝑤 =
𝜋

3
ℎ𝑚

2 (3𝑅𝑠 − ℎ𝑚) Eq.  2-1 

And the ratio between swept volume and the volume of the chamber χ is given by : 

  𝜒 =
4

3
 
ℎ𝑚(3𝑅𝑠−ℎ𝑚)

𝑑𝑐
2 

 Eq.  2-2 

NB: with  . 

In the particular case when 𝑅𝑠 = 2𝑐𝑡 = 2ℎ𝑚, the ratio χ is then equal to 𝜒 =
20

3
(

𝑐𝑡

𝑑𝑐
)

2
=

20

3
(

ℎ𝑚

𝑑𝑐
)

2
=

5

9
 and the 

dead space is equal to 𝑉𝑑 =
4

3
 𝜋ℎ𝑚

3 =
4

9
 𝑉𝑐.   

 
Figure 2-6:  Spherical cap shape flexible membrane clamped at its ends and moving  in a cylindrical chamber. With Rs the 
radius of the sphere; dc the diameter of  the cylindrical chamber; Ct the height the chamber; I0 the initial position of the 

membrane, VSW the swept volume, hm the swept height and Vd the dead space.  

 
 Figure 2-7 : Dead space and ratio χ (between swept and chamber volumes) versus membrane diameter for a cylindrical 

chamber (chamber diameter=membrane’s one) with, on the left a chamber height of 600µm and, on the right, a chamber 
height of 300µm.  

In clean room, since the silicon substrates can reach a thickness of one millimeter (classical thickness = 500µm) and 
diameter of more than 100 mm, a cylindrical chamber thickness of 0.6 mm (or 0.3 on a 500µm Silicon wafer) and 5 
mm of diameter is possible. Indeed, at the time this PhD begins with clean room available equipment, the chamber 
had to be etched in Silicon and to have a cylindrical shape. 

VSW 

V
d
 

I
0
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Since clean room classical Silicon wafer have a thickness of 500µm, the maximum height of the chamber with these 
wafers was set at 300µm (to keep at least 200µm of Silicon). With thicker wafer, a height of 600µm was considered.  

As explained in section 2.1.3, dead spaces are a major difficulty in MEMS micro machines. As an example, we will 
consider cylindrical chambers, with a height set either at 600 µm or at 300 µm, and a chamber’s diameter that is 
equal to the membrane’s diameter.  

With a spherical cap membranes, the Figure 2-7 shows that the dead spaces increase rapidly while the ratio χ 
(between the swept volume and the chamber volume) decreases rapidly when increasing the size of the chambers, 
and thus of the motor.  This type of membrane could be suitable for our device since the geometric parameters can 
be tuned easily (for example, it could be suitable for a chamber with a large diameter and a small high). 

ii The membrane with a solid central disk  

In this case we consider a  flexible membrane with a solid disc (silicon type for example) located in its center ( cf. 
Figure 2-8 ) to impose a displacement in the form of a truncated cone that better fits the shape of the cylindrical 
chamber and thus enable the dead space to decrease. Moreover, to keep a solid disk on the membrane will increase 
its weight and thus decrease the resonance frequency, which could be interesting to adjust the resonance 
frequency to the imposed one in some MEMS systems. With the same assumption than before ensuring good 
tightness and minimize dead spaces, i.e. membrane radius rm equal to the chamber radius dc/2 and chamber height 
ct equal to the swept height hm, the maximum swept volume VSW of the membrane would be given by :  

 𝑉𝑠𝑤 =
𝜋

3
ℎ𝑚(𝑅𝑑

2 + 𝑟𝑚
2 + 𝑅𝑑 . 𝑟𝑚) =

𝜋

3
ℎ𝑚𝑟𝑚

2 (
𝑅𝑑

2

𝑟𝑚
2 + 1 +

𝑅𝑑

𝑟𝑚
) =

𝑉𝑐

3
(

𝑅𝑑
2

𝑟𝑚
2 + 1 +

𝑅𝑑

𝑟𝑚
) Eq.  2-3 

With Vc the volume of the cylindrical chamber :  𝑉𝑐 = 𝜋𝑟𝑚
2  ℎ𝑚 

And the ratio χ is given by : 

  𝜒 =
1

3
(

𝑅𝑑
2

𝑟𝑚
2 + 1 +

𝑅𝑑

𝑟𝑚
) Eq.  2-4 

The expression Vsw as a function of Vc shows that theoretically the swept volume depends on the volume of the 
chamber and the ratio of the radius of the central disk of the membrane and that of the chamber. The two extreme 
cases (spherical and truncated cone) are compared, for a chamber diameter of 5 mm and three different central 
disks, in the Table 2-3. Thus, with a chamber of 5mm in diameter, and a central disc radius of 2 mm, the swept 
volume is then given by: 

𝑉𝑠𝑤 ≈  0.8 𝑉𝑐 

dc [mm] Rd [mm] 𝝌 half sphere 𝝌 truncated cone 

5 

0.5 

≈ 0.67 

≈ 0.41 

1 ≈ 0.52 

2 ≈ 0.81 

Table 2-3: Comparison of ratio χ obtained in the half-sphere case and in the truncated cone case for a cylindrical chamber of 
6 mm in diameter. 

The volume swept with a truncated cone becomes really interesting for central disks of radius superior or equals to 
2mm. But, other parameters that will have a major influence on the motor performance and must be taken into 
account in our design are the membrane stiffness and resonance frequency.  

We now consider the same cases as before : a cylindrical chambers, with a height set either at 600 µm or at 300 
µm. Two central disks diameter are tested : 1mm and 2mm. The Figure 2-9 shows that the dead spaces increase 
rapidly while the ratio χ (between the swept volume and the chamber volume) decreases rapidly when increasing 
the diameter of the chambers, and thus the size of the motor.  

For both chambers heights (300 and 600 µm), the most efficient membrane diameter (to obtain low dead spaces) 
would be around 2 mm in diameter. Nevertheless, for larger membrane diameters, the central disk of 2 mm is more 
suitable.  

Taking into account the resonance frequency that should be as low as possible (i.e. with a sufficient membrane’s 
weight) and the harvesting method planed during the MISTIC project [107], the best compromise was to set the 
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membrane’s diameter at 5 mm. With such a membrane diameter, the best central disk diameter has to be 2 mm 
instead of 1 mm: it indeed enables to obtain lower resonance frequency while the ratio χ (between swept and 
chamber volumes) is higher than with a 1 mm disk. 

 

Figure 2-8: A flexible membrane clamped at its ends with a central disc moving in the form of a truncated cone in a cylindrical 
chamber. With dc the diameter of  the cylindrical chamber; Ct the height the chamber; hm the swept height; rm the membrane 

radius and Rd the central disk radius. 

 

 

Figure 2-9: Dead space and ratio χ (between swept and chamber volumes) versus membrane diameter for a cylindrical 
chamber (chamber diameter=membrane’s one; chamber height=600µm for the two figures on the top; chamber 

height=300µm for the two figures on the bottom) with, on the left a central disk of 1mm in diameter and, on the right, a 
central disk of 2mm in diameter.  

2.1.6. Membrane: mechanical properties and influence on motor 
performances 

2.1.6.a.  Operating frequency and mechanical power of a Stirling motor 

As previously mentioned, with macro Stirling motors, the piston has the advantage of sweeping almost all the 
volume of the cylinder that it occupies because it has a shape identical to the chamber (generally cylindrical). On 
the other hand, a membrane leaves important dead spaces unless it is possible to design a chamber shape that will 
follow the shape of the moving membrane, as is the case with pistons. But one main disadvantages with the piston 
is that it cannot operate at high frequency (beyond a hundred Hertz) for mechanical reasons, noise or security. 
Knowing that the mechanical power is strongly related to the frequency, the membranes, because of their high 
vibration frequency, could counterbalance the losses due to the reduction of the size of the machine. These losses 
are related to small swept volumes caused by the choice of membrane instead of a piston in the chambers. For an 
motor with geometric parameters from Table 2-7 and for a hot and a cold temperature of respectively 473K and 
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293K, the mechanical power was calculated using the Schmidt model. Moreover, we used here the membrane with 
a central disk of 2mm in diameter (cf. section 2.1.5.a. ii). 

In this part, the subscripts c, k, r, h and e respectively designate the compression chamber, the cold exchanger, the 
regenerator, the hot exchanger and the expansion chamber. T is the temperature, m the total mass of the gas inside 
the motor (m=mc+mk+mr+mh+me),  r the specific gas constant (equal to the molar gas constant for ideal gas divided 
by the molar mass of the gas) and 𝛼 the phase shift between the piston the displacer (phase advance of the 
expansion space volume variations with respect to the compression space volume variations). With V the volume, 
Vclc and Vcle respectively the dead spaces of compression and expansion chamber; Vswc and Vswe,  respectively the 
swept volumes in the compression and expansion chamber, the mechanical work (W) is then given by :  

 𝑊 =
𝜋 𝑉𝑠𝑤𝑐
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To determine the mechanical power (P), the work (W) is multiplied by the operating frequency (f) of the micro-
motor 

 𝑃 = 𝑊. 𝑓               Eq.  2-6                                                                                                                     

We can see from these results (cf.  Figure 2-10) that when the frequency increases, for instance, from 50 Hz to 1000 
Hz, we have a factor of 20 on the power. These results show the interest of reaching higher frequency, with respect 
to thermal and fluidic possible operating frequencies : the power gained should be higher with a membrane (since 
it can reach higher frequency values) than with as a classical piston. As a consequence, the resonance frequencies, 
and thus the membrane parameters (stiffnes, weight…), must be taken into account in the membrane design. 

 

Figure 2-10: Power of the Stirling micromachine as a function of the frequency 

2.1.6.b.  Stiffness and final design 

Membranes have two main functions. The first role is to guarantee the gas tightness of the chambers and the 
second is to ensure the compression of the gas and recovery of its thermal relaxing energy in the chambers. When 
a periodic excitation force (denoted fe) is applied to the upper surface of a flexible membrane closing a chamber 
(cf. Figure 2-11), the latter periodically deforms, pumping the fluid inside the chamber. Its vibration can be 
described through the variation of its vertical deflection W in space and as a function of time. This deflection is 
reasonably small in comparison with the shortest characteristic length of the membrane regarding micropumps. 
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The thin plate curvature theory is then applicable, and the deflection can be described by the following equation 
[109]:   

 𝑓𝑒 − 𝑃 =
𝐸ℎ3

12(1−𝜇2)
𝛻4𝑊 + ℎ𝜌𝑚

𝜕2𝑊

𝜕𝑡2  Eq.  2-7 

With W the deflection, 𝐸 the membrane’s elastic modulus, 𝜌𝑚 the membrane’s density, ℎ the membrane’s 
thickness, 𝜇 the membrane’s Poisson ration,  𝑡 the time variable, 𝑃 the dynamic pressure exerted by the fluid on 

the membrane’s surface and ∇4 the Laplacian operator in 2D, i.e. (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2)2.  

 

Figure 2-11: Schema of the cross-section of a membrane micropumps with fluid inlet and outlet nozzles [109]. 

The design objectives are to realize a flexible membrane, so that the stiffness of the mechanical part is controlled 
by the gas springs (the gas in expansion and in compression) and not by the membrane. Indeed, the behaviour of 
the gas is better known theoretically than that of the membrane. Its dimensioning should be made so that it can 
withstand large deformations while keeping enough mechanical strength and negligible hysteresis. Indeed, it will 
be necessary to minimize the mechanical damping (difficult to calculate from a theoretical point of view) which is 
intrinsic to the material of the membrane because it is also a source of dissipation of energy. When designing a 
membrane for a Stirling motor, the elastic restoring force that is necessary to ensure their periodic operation is 
thus an important parameter. This force must be taken into account in determining the appropriate actuation 
system. This can be achieved by a numerical simulation. However, the mechanical properties of the polymeric 
materials are not all available and often change depending on their polymerization conditions [110]. Thus, without 
exact determination of the properties of each membrane material, the error made (during the numerical 
simulation) can lead to a bad design. The determination of the mechanical properties of our membrane will be 
presented in chapter 4. 

For the micromachine to be effective, the membranes must provide a large swept volume with a low dead space. 
Indeed, the amount of volume swept depends on the deflection height of the membrane and the shape that it 
adopts during a deformation (cf. Figure 2-11). The membrane being confined in a restricted space constituted by 
its chamber, is constrained in displacement, if it is not well configured such away that its deformation shape 
matches that of the chamber. Another parameter that is relevant is the operating frequency, and thus the 
resonance frequency of the membrane should be adjusted to the closest to the operating frequency : stiffness and 
weight have also their importance. Thus, to meet these requirements, two versions of the membranes were studied 
: a first one with a central disk in its centre, and a second one with a spring to increase the stiffness. They are made 
of two constituents: silicon (for the central disk or the spiral) and a polymer. In both cases, the central portion 
consists of a silicon disk (in order to stiffen the elastomeric layer and thus limit the mechanical deformations): the 
displaced volume of gas can be approximated as being the volume swept by this central part. 

The first type of membrane, presented in section 2.1.5.a. ii, consisted in a single central disk located in the center 
of the membrane (cf. Figure 2-12 a). Its advantage lies in the fact that its flexibility will depend only on the layer of 
material between the disc in the center and the embedding with the support of the membrane. Moreover, it 
enables to obtain a uniform stress distribution [<waters2001>] in the radial direction of the membrane when 
loaded. There is also other advantages such as its simplicity of manufacture and a large deflection potential with 
less internal stress. 

The second design, presented on Figure 2-12 b, is based on a design from F. Formosa from the MISTIC project and 
presented in the work of Chutani et al. [12]. It consisted in a planar spring made of two spirals interwoven with a 
central disk embedded in a polymer. It allows a good deflection with larger stiffness than the first type of 
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membrane. Since the membrane must perform important deflections, to be able to minimize the internal stresses 
is crucial. For uniform stress distribution along the planar spring, its width varies proportionally with spiral angle. 
The Figure 2-12 c) shows the variation in the width of the turns of the spiral which increases from the center towards 
the edges. The space between the turns also varies for better deformability. 

As a conclusion, the role of each part of the membrane is summarized in Table 2-4. Table 2-4 presents also the role 
of the logarithmic spirals geometry defining the planar springs. The spiral springs allow to obtain a flexural shape 
like a piston, a controlled spring restoring force and as its coil (or turns) width increases from the centre towards 
the edges, it allows to control the distribution of stresses during an oscillation. The central disk is used to control 
the inertia and the membrane swept volume (trunked conic-shaped volume) during an oscillation. The polymer 
layer is for elasticity and air tightening the membrane, and to increase the yield strength of the spiral, for a more 
robust and flexible membrane. 

 
Figure 2-12 : the two membranes  design a) with a central disk in the centre of the polymer (in blue) b) with a solid spiral 

spring architecture and polymer (in blue) in between the turns of the spiral. c) Variations in the width of the turns for a spiral 
membrane (variation of spacing between turns) 

Components Controls/goals 

 Spiral spring 
Stiffness, Flexural shape (piston shape), Uniform stress distribution (width vs 

angle, stresses), Spring restoring force  

 Central disc Inertia and Swept volume control for overall efficiency 

Polymer layer  Good sealing, Robustness for the spiral, Elasticity increase 

Table 2-4: The role of each part of the hybrid membranes HM. 

2.1.6.c.  Mechanical connections between membranes 

The main technological difficulty related to the integration of membranes in miniature motors is mainly the 
mechanical link between them. Recall that the mechanical connection (or drive system) ensures the proper 
movements of the working gas to complete the Stirling cycle (especially the compression part). Classic macro-
Stirling motors are often classified, according to the mode of connection between the pistons, as follows: kinetic, 
thermoacoustic, free piston and liquid piston types.  In kinetic Stirling motors, the mechanical pistons, such as those 
shown in Figure 2-13 a), are  driven  by, for example, the simple  crank-shaft with connecting pistons rods ( Figure 
2-13 b). In this simple configuration, the drive system (crankshaft and rods) is designed in such a way that the piston 
at the hot end should always move in advance in comparison of that at the cold end. 

If we use a crankshaft with rods connecting the membrane in a miniature machine (alpha configuration for 
example), friction losses would be huge, since there are at least four places where there will be frictions caused by 
the rotation of the mechanical connection:  between the crankshaft and its point of attachment, with the rods and 
between these rods and the two pistons. We can already see the technological difficulty of making and integrating 
these ball joints using MEMS technologies and the risk that the rods pierce the membranes when the pressure 
increases in the micro-machine if they are not mechanically very resistant. Therefore, it is necessary for our micro-
motor to rethink the mechanical phase shift system by imagining another type of "mechanical" connection between 
the membranes.  

a) b) c) 
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The design parameters to be taken into account are the mass of the rigid part and the stiffness of the membrane 
springs. In order to avoid a risk of piercing the membrane during assembly and to facilitate manufacture, two 
solutions were considered and will be presented more precisely in the following chapters: the first one is to use an 
incompressible liquid which will fill the space between the two membranes (in a glass block). The second one is to 
bond a fine solid “piston” to the center of the two membranes (cf. chapter 5). 

 

Figure 2-13: a) Classic macro-Stirling motor model with crankshaft and connecting rods highlighting the friction zones (1, 2 
and 3).  b) crank-shaft and connecting rods highlighting the harmonically displacements. (extracted from 

https://www.youtube.com/watch?v=qNc03bW18JE) 

2.1.7. Membranes final design and chosen materials. 

As a conclusion of this section 2.1. , when miniaturizing the Stirling motor, the design of the membranes, the 
chamber and the regenerator is a compromise between clean room possibilities, material used, minimizing dead 
space and allowing high operating frequencies.  When manufacturing the membranes of a thermal micro-motor 
containing a working fluid, the choice of materials must consider the temperature resistance, the elasticity, the 
mechanical strength in bending, the porosity and the integration of the latter on a substrate. 

 To fulfil at best those criteria, while being compatible with cleanroom manufacturing, we choose to create our 
membrane as a hybridization of two materials: a polymer and Silicon. Concerning the polymer, it must support 
operating temperature of 473K. Nevertheless, during clean room process, to bond the element, temperatures at a 
minimum of 573K can be reached. The polymer must be either very elastic, to obtain a very flexible membrane (it 
must therefore be an elastomer) but can also withstand temperatures of about 573K. RTV-silicone (Room 
temperature Vulcanizing Silicone) was found to be a suitable material after a survey among potential candidates 
with high thermo-mechanical properties. The properties of this material can be found in chapter 4. 

To obtain membranes with good stiffness while enabling to reach good swept volumes, two kind of structure were 
manufactured (cf. Figure 2-14):  

• The first one, which was discussed in a previous paragraph (2.1.5.a. ii), consisted in a RTV silicone 
membrane with a Silicon central disk. To find the best compromise between membrane elasticity (possible 
value of hm to obtain) and swept volume, we choose to use central disk of 2mm in diameter (central disk 
of 1 mm were also tested). 

•  The second one, which is based on the design of Chutani et al. [12] consisted in a silicon spiral with a 
central disk embedded in RTV silicone.  

 Both those designs will be further explained in the next chapter. Different thickness of silicon/RTV, leading to 
different resonance frequency and stiffness, were used based on numerical simulation results that will be presented 
in the chapter 4. 

To allow a great flexibility and to ensure a good mechanical strength, the chosen thickness for hybrid membranes 
was set at 200μm. Note that membranes of smaller thicknesses had been previously made  and presented problems 

a) b) 
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of mechanical strength. The ratio RTV thickness/silicon thickness can be adjusted to obtain a specific resonance 
frequency (cf. chapter 4 for the complete study).  

 

Figure 2-14 : The two designs of the membrane. On the left, the membrane composed of RTV silicone (red) with a Silicon 
(white) central disk in its centre. On the right, a silicon spiral (white) embedded in the RTV silicone (red), based on the work 

of [109] 

 

 

Figure 2-15: Membrane rigid part design: a)Silicon spiral spring architecture and geometrical parameters (L is the location of 
the RTV-silicone layer deposited by a squeegee, Ws is the width of the turns of the upper part of the spiral). b) back-side of 

the membrane. c) the 3 membranes necessary for the micromachine. d) simulation of deflection shape 

 

Figure 2-16:  Second type of membrane rigid part  

2.1.7.a.  Hermetic and high temperatures resistant membranes  

To correctly seal the different parts of the micromotor, heating at high temperature up to 300°C is required. 
Moreover, the planar spring alone is not hermetic, which is not adequate to the intended application. 

 A polymer layer is then added (cf. Figure 2-17 a) and b) for spiral membranes and Figure 2-18 a) for central disc 
membranes). This layer of polymer must be very elastic to obtain a very flexible membrane (cf. Figure 2-18 a and 
Figure 2-18 b). It must therefore be an elastomer. However, the problem is that in the clean room the annealing 
and bonding steps during microfabrication require the use of temperatures of 120°C and 300°C, respectively. 
Therefore, this layer of elastomer must be chosen so that it can withstand these high temperatures. 

a) 
b) 

c) 
d) 
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Figure 2-17: Second part of membranes. a) A chip of 3 Spiral membranes. b) A zoom of one spiral membrane. c) deformation 
shape of an hybrid membrane with spiral. 

 

Figure 2-18: a) Hybrid membrane with only a disc at the center. b) Deformation shape 

2.1.7.b.  Membranes mechanical links 

Our objective being to obtain a Stirling motor with free piston double action multiphase, it was necessary to design 
the mechanical connection which must connect the membrane of the cold side to that of the hot side of the 
following phase. This connection was to be held in place between the suspended membranes which would provide 
a restoring force.  

 

Figure 2-19: Bloc for hybrid membranes mechanical connection  

This mechanical connection between the membranes must be rigid or non-compressible in order to transmit the 
stresses without loss (cf. Figure 2-19 a). The design parameters to be taken into account are the mass of the rigid 
part and the stiffness of the membrane springs. In order to avoid a risk of piercing the membrane during assembly 
and to facilitate manufacture, an incompressible liquid filling the space between two membranes in a glass block 
has been chosen as a mechanical link for the first version of the prototype (cf. Figure 2-19 b). 

1.1.1.a.  Electromagnetic transducer of membranes oscillations 

As the movement that will be produced by the membranes of the micromotor is linear and not rotating, the initial 
idea was to integrate customized piezoelectric spiral. But this choice proved unrealizable and unsuitable with the 
technology of squeegee deposit because the spiral is not, therefore, firmly embedded in the support. We were 

a) b) c) 

a) b) 
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therefore interested in an electromechanical conversion and kept the spiral in silicon to control the movement of 
the membrane. This linear electromagnetic generator could be on the one hand, a small permanent magnet glued 
to the surface of the central disk located on the lower face of the membrane (the face that is not in contact with 
the chambers) and on the other hand a planar coil deposited on the outer face of the two plates containing the 
compression and expansion chambers. This magnet must have a diameter less than or equal to that of the central 
disk of the membrane to avoid congestion effects. The oscillations of the membrane will make the permanent 
magnet to oscillate which will, in turn, induce a displacement of electrons in the coil, creating, thus, an exploitable 
electric current. In addition, this electromagnetic system would help to control the deflection of the membranes 
acting like actuators. 

2.1.8. Minimizing dead volumes in Expansion and compression chambers  

To minimize the dead volumes, a specific design taking into account the possible problems of heat exchange and 
microfluidic was considered.  

 

Figure 2-20: 3D CAD view of 3 chambers configuration of the Stirling Micromachine 

The important design parameters to consider are the exchange surface, the shape, the dimensions and the type of 
materials. 

To meet these criteria, the choice was to constitute a silicon hollow cylinder 5mm in diameter, 300μm thick with 
an outlet channel 1mm wide. This chamber is connected to this horizontal channel, then a vertical channel to 
connect the upper chambers (cold side) to the lower one (hot side). They are etched in a 4-inch silicon wafer of 
500μm thick polished on both sides. The three-chamber CAD view is shown in Figure 2-20. The chambers are made 
by dry etching of a cylinder shape cavity having the same diameter as the membrane. The outlet channel of the 
chamber is cone-shaped in order to obtain a "soft" transition zone more favorable to the flow of gas. 

The advantages of such a choice are the simplicity of microfabrication and the low pressure loss due to the absence 
of right-angled sections, but rather rounded contours. It also helps to facilitate integration with the rest. The hot 
source and the cooling source are external as the faces of the silicon wafers are polished with a very good flatness 
(TTV <3). Any flat surface, hot or cold can therefore represent a thermal source when the micromachine is placed 
there.   

For the micromachine to work, a difference in temperature must be installed between the two sides (hot and cold) 
of the micromachine. In other words, an element that can prevent heat from moving quickly to the cold side is 
necessary, which involves choosing a thermal insulation material, but which must be machinable in a clean room. 
The best option that we had in the clean room was to use a glass block for the insulation part. 

2.1.8.a.  Adequate bonding techniques for components assembling steps.  

As the micromachine is therefore composed of several components to assemble, the choice of suitable bonding 
techniques achievable in a clean room is required. The goal is to obtain a good hermeticity with a good mechanical 
connection of bonding. However, depending on the material the adequate techniques are not always compatible 
for a multi-wafer assembly exceeding two wafers. In other words, for an assembly of two wafers, they work properly 
and give a good quality of bonding. But from three wafers, the second bond can has a "de-bonding" effect on the 
first. This is the case of anodic bonding. However, this technique give good quality of hermeticity between glass 
and silicon wafers. Therefore, anodic Bonding and Thermocompression bonding were chosen as bonding 
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techniques. The membranes are assembled to the chambers by thermocompressive bonding allowing to fix the 
membranes to the chambers and to make sure of the tightness, and then this is assembled with the rest of the 
micromotor in full with successive anodic bonding steps.  

2.2.  The micro-motor architecture importance 
In order to categorize the different approaches of the Stirling motor miniaturization, they are organized according 
to the spatial arrangement of the created entities (membranes, regenerator, compression and expansion 
chambers) on the substrate. For instance, if these entities are created by thin films deposited technique on the 
surface of the substrate, the system will be here called the 1-D architecture. When the arrangement of components 
is in the substrate plane created by etching, the structure is referred as the 2-D architecture. And when more than 
2 substrates are used and the arrangement of the entities (by etching and assembling) is in the perpendicular plane 
of substrates, the resulting architecture is called the 3D one. Efforts will be made to address the major advantages 
and disadvantages of each configurations, as well as to address the sizes and resolution of features that can be 
generated. Note that here the mechanical link, which enable the phase shift, is not considered: these first studies 
aimed at the determination of the most suitable geometry from a thermal, then later on, from a fluidic point of 
view. 

2.2.1. 1-D Architecture 

1-D features are mostly constituted by thin films with only the thickness as a critical parameter. Their conformity 
relates to how uniform the film thickness is across the wafer. Note that, the majorities of these thin films can be 
deposited from the gas phase by chemical vapour deposition (CVD), the liquid phase by spin-coating and/or spray-
coating techniques or plating, and from the solid phase by evaporation / sputtering processes. Concerning CVD 
technique, precisely temperature-controlled ovens with gases such a silane (SiH4), phosphine (PH3) and ammonia 
(NH3) flowing around the substrate lead to surface deposition of materials such as phosphosilicate glass (PSG) or 
Silicon Nitride (Si3N4) and polySilicon (poly). During the deposition process, the gas-phase and surface kinetics 
control the rate at which the desired film material is deposited on to the substrate. Thin glass films like 
phosphosilicate glass (PSG), low temperature oxide (LTO) and thermal oxide (silicon dioxide) are often used as 
electrical, thermal insulation and structural layers. Note that the maximal thin film layer thickness is typically less 
than 10 µm and the speed of films deposition by CVD vary widely, from tens of Å/min for LPCVD to tens of nm/min 
for APCVD [46]. However, in view of the deposition rate and the complexity of the techniques, it would be difficult, 
slow and not advantageous to use this means to develop cavities such as compression chambers, expansion and 
the regenerator channel. 

Initially, photoresist materials were primarily used in conjunction with lithography step to pattern the substrate, 
but recently they were used also as a structural material. Polymers materials, such as silicones (PDMS for example) 
and epoxies, can also be deposited on substrates in this manner as well to create entities. The problem is that these 
polymers and elastomers are thermal insulators. So they cannot be used to constitute compression and relaxation 
chambers, nevertheless, they can constitute membranes. 

To conclude, since, that would require depositing thick layers (beyond 300 μm to be significant ) of metallic 
materials to realize the chambers of compression and expansion as well as the heat exchangers (regenerator, heater 
and cooler), it would be difficult and very expensive to manufacture any thermomechanical micro-machine using a 
1D architecture. Not to mention that it will also be necessary to deposit and structure flexible membranes and 
ensure a tight closure to keep the working fluid and also ensure their connection (i.e. the required phase shift). 
Thus, this architecture was not further studied. 

 

2.2.2. 2D architecture 

The second architecture is the 2D one. It consists in a planar structure on a substrate that is obtained by structuring 
the substrate to create the desired characteristic.  

A simple 2D architecture of alpha-type Stirling machine could consist of two horizontal chambers (compression and 
detente) connected by a horizontal channel, the whole motor being etched into a substrate (cf. Figure 2-21). The 
channel could be closed by a second substrate (glass or silicon) by a sealed bonding and this substrate could wear 
these membranes to facilitate their prototyping. The regenerator could be etched in this channel during 
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microfabrication. One could also imagine another solution that would be to fabricate a large thin film of membrane 
of the size of the substrate that could be directly used to close the system (chambers and channel) thus avoiding 
the use of the second substrate. This film will represent both the membranes and the closure system. Nevertheless, 
one can already consider the problems of tightness related to the bonding of thin polymer films on a solid substrate. 

 

Figure 2-21: A schematic view of a possible 2D architecture of a MEMS Stirling motor. 

However, while two-dimensional architectures are very important for electronics applications, they are less 
important in thermomechanical systems that require large volumes of working fluids, as is the case with the Stirling 
machine, since the whole system is made on the plane of a single substrate. A Stirling micro machine in 2D operating 
as a frigorific machine could be advantageous since in this case the membranes are moved electrically by means of 
electromagnetic actuation systems, electrostatic or piezoelectric for example, in a controlled manner to ensure the 
proper phase shift (which depends on number of membranes used) [103]. Knowing also that in the Stirling machine 
one needs to isolate the hot part from the cold part, it could be very complicated to achieve an insulation in 2D.  
Thermal losses by conduction, after a certain period of operation of the micro machine, will occur between the hot 
and the cold part. A numerical thermal study of the 2D configuration was carried out and will be presented in the 
section 2.3.5.a. . 

2.2.3. 3D architecture 

An achievable 3D structure Stirling micro-machine (Alpha type) would be to vertically arrange the two opposing 
chambers in the plane perpendicular to the substrate connected by a channel as illustrated in Figure 2-22.  To be 
clean room compatible, and taking into account the substrate possibilities (material and thickness), the use of glass 
instead of silicon enable both the increase of the middle chambers volume and the thermal insulation between the 
hot and cold chambers. The system could be thus etchd in a 6.5 mm thick glass substrate (available borofloat glass 
thickness in cleanroom). Etching of thick glass in a clean room is very slow (compared to silicon) and the structuring 
of thick glass can be performed by ultrasonic machining or by laser techniques. Nevertheless, the use of such a 
thickness of glass is a challenge since compatibility problems related to the high thickness could be encountered 
with the equipment available in clean room (bonding process). As for the 2D configuration, it could be possible to 
close both faces of the motor using  two large thin membrane films directly on the glass wafer and, to ensure a 
good thermal exchange, to deposit a thin metal film in place of both silicon substrates. Alternatively, to simplify the 
etching/structuring of the thick glass (from two steps to an etching step), the chambers could be directly structured 
in the wafers of silicon and both cold and hot chambers could be closed by two gas-tight elastomeric membranes 
fixed on the silicon substrates. Thus, only the channel through the glass wafer, carrying the regenerator, would be 
etched in the thick glass.  

Another advantage to use Silicon to design the hot and cold part is its high thermal conductivity. The thickness of 
the chambers will depend on the elasticity of the membrane material and its dimensions.   Sealing problems related 
to the welding of these polymer films (since they are to put on both sides of the glass) must be taken care of.  

The advantage of this 3D architecture is that we gain in thermal insulation (cf. section 2.3.5.b.  for a thermal study 
of this 3D machine), in rigidity of the device and also, with the two hot and cold chambers being on the opposite 
sides of the wafer, this allows a simpler and more efficient heating and cooling as well as an easier access for 
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measurements and actuating system (for an motor operating as a cooling machine, the phase shift can be easily 
chosen). One of the main difficulty is to integrate a mechanism ensuring the phase shift between the membranes. 

 

Figure 2-22:  A schematic view of a possible 3D architecture of a MEMS Stirling motor. 

 As it will be presented in the section 2.5. , in order to design a machine whose structure in 3D is similar to the 
specifications of the ANR project, the full motor must be composed of 3 machines connected to each other. The 
final machine will therefore be based on the 3D concept presented here but with an additional problem related to 
the leasing of machines between them. Concerning the mechanism ensuring the mechanical link between 
membranes, two configurations will be tested: one with a solid piston, the other one with an incompressible liquid. 

The next section is devoted to the thermal study of the 2D and 3D configuration that was taken into account to 
choose one configuration over the other one. 

2.3.  Thermal Challenges 
The thermal challenges mainly concern the maintenance of the temperature gradient between the hot and cold 
sources of the micro-machine, the heat exchange between the working fluid and chambers and the integration of 
an effective and adequate regenerator. Pfriem [111] has shown for the macroscopic thermal motor, in the case of 
an alternating flow, the existence of a 45 ° phase difference between the heat flux at the wall and the temperature 
difference between the gas and the internal wall. Subsequently, he has shown that, for low operating frequencies, 
the heat flux exchanged at the wall and the temperature gradient between gas and wall remains almost in phase. 
However, in the case of membrane micro machines the frequency is necessary high, so the contact surfaces 
between the working gas and the chamber walls must be maximized. The integration of a regenerator therefore 
greatly influences the performance of Stirling machines ( [43]). Technologically the fabrication of a regenerator in 
MEMS technology (during the micro motor fabrication), is rather complicated because the structure of the 
regenerator should be etched inside the thick glass wafer (for the 3D configuration) in the vertical direction. During 
this PhD, current DRIE etching equipment were not capable of etching this kind of structure in a thick glass wafer. 
Therefore, the regenerator had to be first designed and fabricated, and then integrated later on. The design and 
characterization of the regenerator that will be located in the miniature motor was the subject of another PhD 
thesis ( [95]) and will be therefore only shortly presented later on. In this chapter, the location for the regenerator 
will remain empty (i.e. empty channel). 

When two elements of different temperatures are in contact, a natural heat exchange is established from the hot 
body to the cold one. Three heat exchange mechanism exist: conduction (mainly in solids), convection (in fluids) 
and radiation. 

Convection and radiation will depend on surface properties (emissivity, temperature…) and/or fluid properties 
(viscosity, thermal properties…) whereas conduction will depends on properties of the material, such as its thermal 
conductivity λ,  its density ρ and  its specific heat at constant pressure Cp. These are physical quantities, which 
depend on the temperature T, but since they vary very little in the temperature ranges considered (20-200°C), we 
will suppose them constant. Thermal conductivity λ (𝑊. 𝑚−1. 𝐾−1) is the amount of heat passing through 1m2 of 
material, one meter thick and for a difference of 1 degree of temperature. It characterizes the ability of the material 
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to transfer the heat so, the lower the conductivity of the material, the more insulating the material is. Therefore, 

the choice of a material with an adequate λ is important. Moreover, the thermal diffusivity 𝛼 (defined as 𝛼 =
𝜆

𝜌.𝐶𝑝
) 

and which represents the thermal inertia of the material, must also be taken into account in the material choice.  

One way to represent heat flux contribution is by using equivalent electrical model, with thermal resistance to 
represent the steady state heat transfer, and thermal capacitance to take into account the transient heat flux. 

Let us first introduce some thermodynamic notions necessary for the understanding and the foundation of our 
thermal micro-machine model. Then, we will use an electrical analogy as much as possible to show the challenges 
related to heat transfer on MEMS-based micro-motors under certain conditions.  

2.3.1. Conduction 

Consider a homogeneous material (i.e. having the same composition everywhere), isotropic (i.e. having the same 
properties in all directions) and without internal heat source (i.e. no Joule effect, no chemical reaction in the 
medium…). The heat passing by conduction through a thickness “e” of a given material of thermal conductivity "λ" 
and surface “S” during one second is called heat flux density"𝜑"(𝑊. 𝑚−2). In its one-dimensional form, under 
steady state conditions and for a propagation throughout a constant surface, the conductive heat flux density 
calculated from Fourier’s law is expressed as follows [108], [112], [113]: 

 𝜑 = 𝜆
∆𝑇

𝑒
 Eq.  2-8 

With "∆𝑇", the temperature difference between the hot and the cold faces of the material. For a given ∆𝑇, to 
decrease the heat flux, one can choose a material with a low λ and with a great thickness. 

For the micro-machine, it is rather the latter that is problematic because in clean room the thickness of the 
substrate materials is limited to few millimeters for the glass, and about 1mm for silicon. Moreover, those material 
are quite, to very, conductive (about 1.2 W.m-1.K-1 for the borofloat glass @363K [113]), and 150 W.m-1.K-1 for the 
silicon @300K [114]. 

 In one-dimension, for a heat flux propagation throughout a constant surface and in steady state, the conduction 
resistance “ Rth” (expressed in 𝐾. 𝑊−1) is deduced from the equation of the heat flux (by an electrical analogy) 
[112], [113]: 

 𝑅𝑡ℎ =
𝑒

𝜆.𝑆
 Eq.  2-9 

Since the thickness of the material “e” is directly proportional to the thermal resistance and inversely proportional 
to the thermal conductivity “λ” and the cross-sectional area “S” (perpendicular to the path of heat flux), the 
miniaturization effects and the use of clean room compatible materials are both enhancers of heat transfer. In 
other words, the significance of the phenomena of thermal inertia are radically reduces by miniaturization. 

2.3.2. Convection 

The convection mode concerns fluids (gas or liquid). When a cold fluid meets a hot element, the latter transfers 
some of its heat to the fluid. The difference in temperature induces a difference in density and therefore fluid 
displacements. The heat flux density exchanged by convection,∅𝑐𝑜𝑛𝑣, between a surface (at a temperature T2) and 
a fluid (at a temperature T1) in which the surface is given by Newton's law [112], [113]: 

 ∅𝑐𝑜𝑛𝑣 = ℎ𝑐(𝑇1 − 𝑇2) Eq.  2-10 

 ℎ𝑐 is the convection heat transfer coefficient and S the contact surface between the medium and the animated 
convective fluid. The thermal resistance (K.W-1) associated with the convective heat transfer is [112], [113]:  

 𝑅𝑐𝑜𝑛𝑣 =
1

ℎ𝑐.𝑆
 Eq.  2-11 

For miniaturized systems, the convection phenomenon accelerates the return to thermal equilibrium after a 
heating step of a microdevice. One main problem is that the convection heat transfer are determined using 
correlation based on experimental results. Whereas, at macro scales, those correlations exist and are well 
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documented, at micro-scales, there are still few works. Usually, those correlations are expressed as function of the 
Rayleigh number, defined as:  

 𝑅𝑎 =
𝜌.𝑔.𝐿𝑐3.𝛽.∆𝑇

𝜂.𝛼
 Eq.  2-12 

With ρ the density (kg.m-3); g the acceleration due to gravity; β the  thermal expansion coefficient (K-1) ; ΔT the 
temperature difference between the wall and the fluid; η the viscosity of the fluid (Pa.s) and α the thermal diffusivity 
(m2.s-1). 

2.3.3. Radiation 

Thermal radiation is the mechanism of heat transfer between distant bodies at different temperatures, separated 
by vacuum or (partially of fully) transparent media (i.e. which do not completely absorb radiation).  The heat 
emitted by thermal radiation depends on the emissivity of the material “𝜀”.  Let us consider the model of the black 
body (i.e. absorbing all the radiations it receives), which is the ideal body releasing the maximum energy by thermal 
radiation at a given temperature T. The power emitted by thermal radiation by a black body, when it is at 
equilibrium at temperature T, is given by the Stefan-Boltzmann law [115], [113]: 

𝑃𝒓𝒂𝒅𝒊𝒂𝒕𝒆𝒅 = 𝜎𝑆𝑇4 

Where 𝜎 = 5.67 10−8(𝑊. 𝑚−2. 𝐾−4) is the Boltzmann constant and S the radiating surface area.  

For a surface that is not a black body, the power must take into account the emissivity of the surface 𝜀, and the 
expression of the radiated power becomes: 

𝑃𝒓𝒂𝒅𝒊𝒂𝒕𝒆𝒅 = 𝜀𝜎𝑆𝑇4 

The net radiative heat transfer density, given here in W.m-2, from one surface to another one (i.e.  the difference 
between the radiation leaving the first surface and the radiation from the second surface) is then given by: 

 ∅𝑟𝑎𝑑 = 𝑓(𝜀1, 𝜀2, 𝐹1→2). 𝜎(𝑇1
4 − 𝑇2

4) = ℎ𝑟(𝑇1 − 𝑇2) Eq.  2-13 

With 𝜀1, 𝜀2 the emissivity of respectively surfaces 1 and 2;  𝐹1→2 the view factor (proportion of the radiation which 
leaves surface 1 and strikes surface 2); 𝑓(𝜀1, 𝜀2, 𝐹1→2) a function of ε1, ε2 and  𝐹1→2 (this function depending on 
conditions and geometry) and ℎ𝑟 the radiation coefficient (function of temperatures, view factor and emissivity). 
For temperatures difference below 100K, the above expression of the net radiative heat transfer can be simplified.  

The radiation thermal resistance “ 𝑅𝑟𝑎𝑑” (K.W-1) is defined as: 

 𝑅𝑟𝑎𝑑 =
1

ℎ𝑟𝑆
 Eq.  2-14 

For the specific case of a small object (at T1 exchanging on its surface S1) contained in a big room, with a view factor 
of 1 and making the assumption that the air is a fully transparent medium, the net radiative heat flux density 
between the small object at T1 and the environment at T2 can be simplified as follow: 

 ∅𝑟𝑎𝑑 ≈ 𝜀1. 𝜎. (𝑇1
4 − 𝑇2

4) Eq.  2-15 

In that specific case, the radiative resistance is given by: 

 𝑅𝑟𝑎𝑑 =
1

ℎ𝑟.𝑆
≈

1

𝜀1.𝜎.𝑆1.(𝑇1
2+𝑇2

2).(𝑇1+𝑇2)
 Eq.  2-16 

For miniaturized systems, taking into account the phenomena of thermal radiation depends on the heating 
temperature, and for operating conditions of about 200 °C, this phenomenon cannot be fully neglected. 

2.3.4. The heat transfer coefficient of a stack 

Usually, microfabrication can require the use of several different wafers, bonded together. They then form a global 
medium, composed of different media. A homogeneous medium is a medium whose interfaces are continuous 
without thermal bridges and without a layer of another material within it. The surface resistance characterizes the 
part of the heat exchange that takes place on the surface of the medium by convection and radiation. It depends 
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on the direction of heat propagation and the orientation of the medium. The properties of the thermal resistances 
(expressed in K/W) are the same than the electrical ones: when resistances are in series, the equivalent (global) 
resistance will be the sum of each resistance; and when resistances are in parallel, the equivalent resistance will be 
the inverse of the inverses sum. 

For instance, for exchanges on an internal face of a device (respectively external face), the equivalent surface 
resistance (taking into account both convection and radiation, those two resistances being in parallel) is noted Rs-in 
(respectively Rs-ex). The total thermal resistance “𝑅𝑡ℎ𝑤

” of a homogeneous medium characterizes both its resistance 

to conductive heat transfer “R” and its resistance to surface heat exchanges by convection and radiation “Rs-in” and 
“Rs-ex”. Those three resistances being in series, the total thermal resistance is therefore calculated by adding the 
thermal resistances to the conduction of the various constituents of the medium and the corresponding surface 
resistances [112], [113]. 

𝑅𝑡ℎ𝑤
= ∑ 𝑅 + 𝑅𝑠−𝑖𝑛 + 𝑅𝑠−𝑒𝑥 

The thermal transmission coefficient, noted “𝑈𝑐” (𝑊. 𝑚−2𝐾−1) characterizes the amount of heat escaping through 
a stack of homogeneous materials of 1m2 for one degree of temperature difference. It is calculated by doing the 
inverse of the total resistance of this medium. It is used to characterize heat leakage through a component or device 
composed of one material or several materials [112], [113]. 

 𝑈𝑐 =
1

𝑅𝑡ℎ𝑤.𝑆
 Eq.  2-17 

The higher this coefficient is, the more heat leaks and the less the device is thermally efficient. In the case where 
the stack contains integrated thermal bridges, the heat transfer coefficient is calculated by adding the thermal 
transmittance coefficient of the homogeneous components (𝑈𝑐) with the thermal leakage due to the integrated 
thermal bridges (punctual points Χ𝑗 or linear 𝜓𝑖) relative to the area of the components. For computing 

convenience, a reference surface called "reproducible component surface" noted A is often used [112]. 

𝑈𝑤 =  𝑈𝑐 +
∑ 𝜓𝑖𝐿𝑖 + ∑ 𝛸𝑗𝑗𝑖

𝐴
 

With: 
𝜓𝑖 ∶ Linear coefficient of the structural thermal bridge i, in W. m−1. K−1. 
𝐿𝑖 ∶ Integrated thermal bridge length i, in m. 
Χ𝑗 ∶ Point coefficient of integrated thermal bridge j, in W. K−1. 

𝐴 ∶ Total surface of the medium, in m2. 
 
In microsystems, these thermal points can be constituted by the deposition of thin metal layers, whether for 
electrical connection (necessary to electrically connect the two faces of the micro device) or to achieve a fusion 
weld metal. These thin metal layers that are often based on copper or noble materials are very good thermal 
conductor. For ensuring a good thermal insulation of the device, those thin metal layers must be as few as possible. 

The next section is devoted to the electrical analogy and a numerical thermal study of the two possible 
configurations (2D and 3D) of the Stirling micro-machine (presented in the section 2.2.2 and 2.2.3). 

2.3.5. Thermal study of the 2D and 3D configurations. 

In miniaturized systems, the purpose of thermal insulation is to curb this exchange phenomenon by conduction 
since it is impossible to fully prevent it. Considering the materials classically used in clean room (glass, silicon and 
sometimes PDMS5), from a technological point of view, in the case of a plane micro-machine of the 2D type, a stack 
of two materials that are silicon and polymer can be considered (cf. Figure 2-23). For the 3D micro-machine, a 
combination of the three materials (Silicon, PDMS and glass) is considered (cf. Figure 2-27). In this part, the 
membrane we used are just PDMS ones i.e. spherical cap shapes (no central disk in the middle, nor spiral). We will 
now study the thermal behavior of the two types of micro-machine architectures (i.e. 2D and 3D). 

 
5 PDMS : Polydimethylsiloxane 
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2.3.5.a.  2D configuration 

The 2D configuration, previously presented on section 2.2.2, is here studied.  

All the geometric parameter for the 2D study are given in the Table 2-5. They  were chosen by taking into account 
materials available thickness, clean room process possibilities, and  a  compromise between thermal (conductivity 
of materials compatible with clean room process, good thermal resistances related to the choice of the geometry…) 
and fluidic (hydraulic diameter above 100µm, Ar values around 1… cf. section 2.4. for the fluidic study). For instance, 
concerning the clean room requirements, the height of the chambers were set at 600µm : the initial idea was to 
use 2 silicon wafers (thickness = 500µm) bonded together. When etching, to avoid to obtain very fragile motors, 
we decided to leave, at least, 200µm of Silicon. Therefore, the chambers (as well as the air canal) were 600µm in 
high. The Chambers diameters, corresponding to the membranes diameter, were set at 5mm (cf. section 2.1. ). 

From a thermal point of view, since the micro-machine’s heat source is external, to account for the rapid 
homogenization of the temperature through the 2D structure by thermal conduction, let us consider the thermal 
model of micro motor shown in Figure 2-23a). In this model, let us consider that the right chamber is heated from 
below (TH) while the other chamber is cooled (Tc). Natural convection and radiation will occur on the downward 
and upward facing surfaces, and on the vertical surfaces. Conduction will occur in the silicon, and inside the PDMS. 
In the air canal, depending on its dimensions, convection and/or conduction will be considered (radiation will be 
neglected). 

Concerning the equivalent global resistance, we choose to simplify the study and, since the aim of this part is the 
study of the heat transfer in the canal direction, we decided to focus only on the heat flux from the hot part to the 
cold part, i.e. to focus on the green area on Figure 2-23 a. Moreover, the ambient temperature is assumed to be at 
the same temperature than the cold one, and the air inside the canal is supposed to be motionless. With these 
hypotheses, the equivalent electrical analogy obtained is given on the b) part of the same figure. REXT represents 
the resistance due to both convection and radiation on the external surfaces of the motor; RPDMS stands for the 
resistance of the chosen polymer, i.e. PDMS; RSi is the resistance of the silicon; Rc is the equivalent resistance of the 
horizontal canal (filled with a gas) and CSt is the capacitance (energy storage). For the green area, the global 
equivalent resistance R (in K/W) will be: 

𝑅 =
1

1
𝑅𝐸𝑋𝑇

+
1

𝑅𝑃𝐷𝑀𝑆
+

1
𝑅𝐶

+
1

𝑅𝑆𝑖

 

Ltot [mm] Lc [mm] ltot [mm] lc [mm] DM [mm] etot [mm] ePDMS [µm] eC [µm] 

20 7 10 1 5 1 200 600 

Table 2-5 : Parameters and the chosen values in the 2D model 

 

Materials Monocrystalline silicon Glass (Borofloat 33) PDMS Air 

λ(W.m-1·K-1) 150 1.2 0.2 0.03 

Table 2-6: Materials thermal conductivity used in the model  

For averaged values of thermal conductivities (cf. Table 2-6), we estimated the different resistances and determined 
the equivalent thermal resistance corresponding to the electrical analogy of 2D model (Figure 2-23 b). Based on 
ideal gas assumption for the free convection, the transfer coefficient “h” taking into account both natural 
convection at low Rayleigh numbers [116] and radiation was determined using correlations and solid’s emissivity : 
depending on the surfaces orientation, a transfer coefficient with the surrounding  between 12 and 47 W.m-2.K-1 
was calculated. The smallest resistance is the silicon one which has an order of magnitude of 0 (RSi = 5.07 100 K.W-

1) whereas the other resistances have an order of magnitude of at least 2. The equivalent resistance of PDMS, canal 
and exchanges with the ambient is around 3.41 103 K.W-1 (with the assumption of conduction inside the air canal; 
when assuming natural convection inside the canal, this value will decrease up to 3.11  102 K.W-1). The equivalent 
thermal resistance of the green area is then found to be equal to 5.00 K.W-1 : it is then almost equal to the Silicon 
one. The associated heat transfer coefficient of the green area is thus about 2.00 104 W.m-2.K-1 (0.20 W.K-1). From 
the resistance values, it can be deduced that in the 2D configuration, the heat will be quickly transmitted through 
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the silicon to the cold part (unheated). It will thus be difficult to maintain an important temperature gradient 
between the hot and the cold part when the cold part is only ensured by natural convection.   

 

 

Figure 2-23: a) 2D configuration and b) electrical analogy corresponding to the green area. TH and TC are respectively the hot 
and the cold temperature. Colour code: in grey, the silicon; in orange the PDMS; in white, the gas (air). 

 

 

Figure 2-24: View of the 2D geometry and details of the points used in Figure 2-25. 

To get an idea of the time at which the silicon substrate of the 2D model becomes quasi static in temperature (i.e. 
the steady state is reached and the temperatures are maintained constant), we carried out a time-dependant 
thermal simulation on COMSOL-Multi-physics. The Figure 2-24 gives the COMSOL geometry and on this figure, the 
location of the different points of interest is given. The simulation was a 3D time dependant one using the heat 
transfer module, with an imposed hot wall temperature.  

A temperature of 393K was imposed on the plate located below the so-called “hot chamber”, the rest of the 
substrate being subjected to both radiative and natural convection of air at 273K with a global heat transfer 
coefficient at low Rayleigh [116], [117] of h= 12 W.m-2.K-1  on the bottom surfaces; on the top surface h= 20 W.m-

2.K-1  for Silicon and h = 22 W.m-2.K-1 on PDMS . Finally, h= 47 W.m-2.K-1 on the vertical surfaces. 

The results of the simulation, given on Figure 2-25, show that it took about five seconds to obtain homogenized 
temperatures on the silicon substrate. After about 15 seconds, the steady state was reached for all the materials.  
When considering the temperature difference between the hot and cold ends (cf. Figure 2-26) it was found to 
decrease and stabilize at almost 4.1 K. These results confirm that, with such geometry and materials, the expected 
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thermal gradient between the hot and cold part will be very small. If assuming a hot part temperature of 473 K 
(corresponding to the maximal targeted temperature in the MISTIC project), and keeping the surrounding at 293 K, 
the stabilized temperature difference is then equal to 7.5 K. 

Thus, the 2D configuration could be suitable if an additional insulating material was added between the two 
chambers in order to limit heat transfer by thermal conduction between them. Due to clean room process and 
materials/equipment available at the beginning of this PhD work, such a design was not the most suitable (the 
introduction of an insulation between the hot and cold part being quite difficult) so, as a conclusion, the 2D 
configuration was, at first, dismissed. 

 

 

Figure 2-25: Results of 2D time-dependant thermal simulation with Comsol multiphysics. Surrounding temperature set at 
293K and heating surface set at 393K. 

 

Figure 2-26: Temperature difference between the hot and cold ends for the 2D geometry. Surrounding temperature set at 
293K and heating surface set at 393 K. 

2.3.5.b.  3D configuration 

In this model, the 3D configuration corresponds to the one previously presented on Figure 2-22. It is composed of 
4 materials: Silicon, borofloat 33, PDMS and air.  A schematic 2D side view is given on Figure 2-27a. The Figure 2-28 
shows the 3D view of the geometry with the details of the points used later on in the simulation. The geometric 
parameter for the 3D motor are given in the Table 2-7. They were chosen to obtain the same chambers volumes 
than in the 2D configuration (chambers height = 600 µm, membrane diameter = 5 mm). They were also chosen by 
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taking into account materials available thickness (borofloat, silicon) and the best compromise between thermal 
(thermal resistances) and fluidic requirements (such as Hydraulic diameter above 100 µm, Ar values around 1, cf. 
section 2.4. for the fluidic study).  

For the 3D geometry, the associated equivalent electrical analogy is given on the b) part of the Figure 2-27. As for 
the 2D geometry, we made some assumptions: the ambient temperature (air and surrounding) is assumed to be at 
the same temperature than the cold one, the air inside the vertical canal is supposed to be motionless. The 
exchange with the surrounding is assumed to be with a wall temperature equal to the hot As for the 2D geometry, 
REXT represents the resistance due to both convection and radiation on the external vertical surfaces of the motor; 
RPDMS stands for the resistance of the chosen polymer, i.e. PDMS; RSi is the resistance of the silicon; RG1 and RG2 are  
the glass resistances for the two different glass thicknesses, respectively eG and Lc. RAIR1 and RAIR2 are  the air 
resistances for the chamber and the  vertical canal for the two different air thicknesses, respectively eG-Lc and Lc. 
Last, CSt is the capacitance (energy storage) of the whole device. For the 3D motor, the global equivalent resistance 
R (in K/W) will be: 

𝑅 =
1

1
𝑅𝐸𝑋𝑇

+
1

2. 𝑅𝑆𝑖 + 𝑅𝐺1
+

1

2. 𝑅𝑃𝐷𝑀𝑆 + 2. 𝑅𝐴𝐼𝑅1 +
𝑅𝐴𝐼𝑅2. 𝑅𝐺2

𝑅𝐴𝐼𝑅2 + 𝑅𝐺2

 

 

Figure 2-27: a) 3D configuration: schematic view and b) its electrical analogy. TH and TC are respectively the hot and the cold 
temperature. Colour code: grey for silicon; blue for glass (borofloat 33); orange for PDMS and white for the gas (air). 

 

Figure 2-28 : View of the 3D geometry and details of the points used in Figure 2-29 

Ltot 

[mm] 

Lc 

[mm] 

DM 

[mm] 

Dc 

[mm] 

eSi 

[mm] 

ePDMS  eG 

[mm] 

10 5.9  5 1 0.5 0.2 6.5 

Table 2-7 : Parameters and the chosen values in the 3D model 

With geometric parameters from Table 2-7 and for averaged values of thermal conductivities (cf. Table 2-6), we 
estimated the different resistances and determined the equivalent thermal resistance corresponding to the 
electrical analogy of 3D model (Figure 2-27 b). As for the 2D geometry, based on ideal gas assumption for the free 
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convection, the transfer coefficients taking into account both natural convection at low Rayleigh numbers [116] 
[117] and radiation were determined using correlations and solid’s emissivity. The transfer coefficients with the 
surrounding were found to be between 20 and 25 W.m-2.K-1.  

The smallest resistance is again the Silicon one, with a value for the whole silicon part of 8.3 10-2K/W. On the whole 
configuration, the smallest equivalent resistance is the one in the solid part without air (Silicon/glass/Silicon, 
represented with the yellow dots on the Figure 2-27) which has an order of magnitude of 1 (RSI/G1/Si = 6.75 101 K.W-

1) whereas the other equivalent resistance (corresponding to the part outside the yellow dots, and assuming air 
conduction) have an order of magnitude of 3 (1.42 103 K/W). NB: with the assumption of natural convection inside 
the canal, this value remains larger than RSI/G1/Si  but will slightly decrease up to 1.28 103 K.W-1).   

Taking into account the surrounding, the full 3D geometry has an equivalent thermal resistance equal to 4.5 101 
K.W-1 . The associated heat transfer coefficient is thus 2.22  102 W.m-2.K-1 (0,022 W.K-1). This value is only very little 
modify when considering air convection inside the canal and the chamber (2.23 102 W.m-2.K-1 ). 

When comparing those values to the ones for the 2D configuration, it can be deduced that the 3D geometry will be 
more suitable than the 2D one to maintain a larger temperature gradient between the hot and the cold part (when 
the cold part is only ensured by natural convection), since the difference between the global thermal resistances of 
the 2D and 3D configurations is about a factor 10.  

 

Figure 2-29: Results of 3D time-dependant thermal simulation with Comsol-multiphysic  

 

Figure 2-30: Temperature difference between the hot and cold edges for the 3D geometry. 
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We carried out a time-dependant thermal simulation on COMSOL-Multi-physics. The Figure 2-28 gives the COMSOL 
geometry and the location of the different points of interest that are used for the results in the Figure 2-29 . The 
wall temperature at the bottom of the geometry was set at 393K and the rest of the substrate was subjected to 
both radiation and natural convection with air. All the surrounding was set at 293K with a global heat transfer 
coefficient “h” taking into account both radiation and convection (based on [116] and [118]) for convection, and  
on materials emissivity for radiation) of h= 24 W.m-2.K-1  on the vertical silicon surfaces; h= 25 W.m-2.K-1  for the 
vertical glass surfaces;  and h = 22 W.m-2.K-1 on the PDMS horizontal surface and h= 20 W.m-2.K-1 on the silicon 
horizontal surfaces.  

The results of the simulation, given on Figure 2-29 and Figure 2-30, show that the steady state is obtained after 
more than 200 s, which is much more longer than with the 2D geometry but which was expected due to the 
differences in thickness, surfaces and materials.  

Indeed, the temperature of the expansion chamber which is in direct contact with the hot wall immediately 
increases and reaches of the temperature of the source, since silicon substrate is very thin and is a very good 
thermal conductor. The glass substrate, assembled in series with the rest of the stack, serves here as a “breaking 
element” for thermal conduction (i.e. limiting progression of heat flow from the hot source), which could not have 
been achieved only with silicon substrate since its high thermal conductivity. The PDMF membranes, being 
assembled in parallel, do not really allow slowing the heat transfer. Even with “large” thickness of the material (few 
millimetres here for the glass substrate), the heat flux cannot be effectively curbed. The quite long time required 
to reach the steady state can be explained by the effect of heat exchange with the surrounding plus the glass 
substrate, which is sandwiched between two silicon wafers and acts as an electrical capacitor that charges in a very 
low characteristic time (𝜏). According to Tabeling [108], the characteristic time  "𝜏"  can be estimated by the 
following equation for a solid material: 

 𝜏~
𝜌𝐶𝑝

𝜆
𝐿𝑐2 Eq.  2-18  

With “ρ” the density, “Cp” the specific heat at constant pressure, “λ” the thermal conductivity and “Lc” the thickness 
of the object. Without taking account exchanges with the surrounding, for the borofloat 33 (Cp=0.83 kJ.kg-1.K-1; 
ρ=2.23 103 kg.m-3) with a thickness of 6.5 mm, this time is equal to about τ=65s. The influence of surroundings is 
rather important on the time needed to reach the steady state. 

When considering the temperature difference between the hot and cold ends (Figure 2-30), it was found to 
decrease and stabilize at 25.8K. This result confirm that, with such geometry and materials, the expected thermal 
gradient between the hot and cold part will larger than with the 2D geometry. If assuming a hot part temperature 
of 473K (corresponding to the maximal targeted temperature in the MISTIC project), and keeping the surrounding 
at 293K, the stabilized temperature difference increases up to 46.5 K. To increase further the thermal gradient, 
either the thickness of the glass substrate should be increased, remaining within the allowable limits of the 
dimensions of the machines in clean room; or other material/structured materials should be used, still while 
remaining in the clean room authorized materials.  

To conclude on the thermal part, comparing 2D and 3D possible architecture (in adequacy with the possibilities of 
the clean room) we chose the 3D architecture. This choice was due to two principal reasons. First, both analytical 
and thermal numerical simulations for a 3D architecture seemed to provide more encouraging results than the 2D 
one. Moreover, since this work was part of the MISTIC (Micro Stirling Clusters for low temperature heat recovery) 
ANR project, in which the aim was to miniaturize an existing macro device with its specific architecture composed 
of three motors working with a phase shift, the only corresponding architecture was the 3D one. This whole 
architecture will be more precisely presented in the last section of this chapter. In the next sections, the 2D 
architecture will be a little be studied (to justify the choice of geometric parameters used in the thermal study) but 
later on, only the 3D architecture will be focus on. 

2.4.  Microfluidic Challenge 
The microfluidic challenges mainly concerns the limitation of the pressure loss. One major difficulty when 
considering the Stirling motor is the fact that the flows are alternate ones. If the literature begins to be quite well 
documented at macro-scales, it is not the case anymore when reaching millimetric and micrometric scales. This 
section will be an attempt to address and limit, as well as possible, problems related to miniaturization and the 
resulting shift in balance of forces. 
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2.4.1. Characteristic length: the hydraulic diameter 

In fluid mechanics, the characteristic length is often the so-called hydraulic diameter “Dh”. This last one is mainly 
used to characterize the constituent channels of heat exchangers or regenerators crossed by the flow [119] and is 
defined as: 

 𝐷ℎ =
4𝑆𝑝

𝛤
= 4𝑟ℎ Eq.  2-19 

with “Sp” the free passage section of the fluid, "Γ" the wet perimeter of the channel and 𝑟ℎ the hydraulic radius.  

When considering the flow in the regenerator, which is a porous medium, the hydraulic diameter expression is 
modified and expressed as a function of the diameter of  mesh diameter "D𝑤" (e.g. for metal grids, widely used, 
the diameter of the wire), of the porosity “ε” and of the form factor "𝜓" [120]: 

Dℎ =
4

𝜓

𝜀

1 − 𝜀
𝐷𝑤 

The porosity “ε” is the ratio between the volume occupied by the pores (voids) and the total volume of the porous 
medium (solid and voids included). The work of Shin [121] suggested that the tortuosity should be taken into 

account to “correct” the hydraulic diameter by multiplying it with the ratio √
𝐿

𝐿𝑒
 with L the length and Le the real 

path length. 

2.4.2. The different gas flow regimes  

In a microfluidic system, the size of the fluid particle is not always negligible compared to the size of microchannel 
branches, thus the classical Navier-Stokes equation cannot always been used. The dimensionless number that is 
classically used to determine which physical approach (gas dynamic regime) and equations can be used is the 
Knudsen number [122]. This number is equal to the ratio of the mean free path λ of the gas to the characteristic 
size “Lc” of the system [108]: 

 𝐾𝑛 =
𝜆𝑀

𝐿𝑐
 Eq.  2-20 

In kinetic theory, for an ideal gas and assuming hard-sphere gas having the same viscosity as the gas, the mean free 

path λM of a particle can be determined and expressed using macroscopic parameters: 

 𝜆𝑀 =
𝑘𝐵.𝑇

√2.𝜋.𝑑2.𝑃
≈

𝜂

𝜚
. √

𝜋.𝑀

2.𝑅.𝑇
   Eq.  2-21 

With “kB” the Boltzmann constant, “T” the temperature (K), “d” the particle diameter, P the pressure (Pa), “ρ” the 

gas density (kg.m-3), η the dynamic viscosity (Pa.s), M the molecular mass and R the ideal gas constant. 

When the flow is governed by small numbers of Knudsen, "ordinary" hydrodynamic equations are usable. For higher 

Knudsen numbers, a free molecular flow can be obtained. The different regimes that can be observed on the 

Knudsen number are [108]: 

• When Kn <0.01, the fluid is considered as a continuous medium and described with macroscopic variables: 
the Navier-Stokes equation can be applied to describe the flow. 

• For 0.01 <Kn <0.3, the flow is in the "slip" regime. The Navier-Stokes equations are applicable (the gas is 
treated as a continuum), but the gas "slides" on the surfaces:  there are discontinuities in velocity (and 
temperature) at solid boundaries. Velocities of the molecular layers on the surface are different from those 
of these latter molecular layers. Therefore, in this type of regime, only the boundary conditions are to be 
modified. 

• For 0.3 <Kn <10, we are in the presence of the so-called "intermediate" regime characterized by the effects 
of the rarefaction of the volume starting to appear. In this type of regime, the Navier-Stokes equations 
must be modified: a microscopic approach is usually required and from a statistical study of the trajectories 
of molecules, macroscopic variables can be obtained. 
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• Finally, for Kn> 10, the regime that is set up is called the highly "rarefied gas" (or free molecular) one. In 
this regime, the gas is no longer described by the Navier-Stokes equations but rather by the Boltzmann 
equations. 

Ρ (kg.m-3)  (Pa.s) Cp (J.kg-1.K-1) Λ (W.m-1.K-1) M (g.mol-1) 

1.177 1.85 10-5 1006 0.0262 28.965338 

Table 2-8 : Air properties at 300K 

It is important to note that, depending on the authors, those thresholds may be different. For instance, for Kandlikar 
et al. [123] the continuum flow is for Kn<10-3; The slip flow is for 10-3<Kn<10-1, the transition flow for 10-1<Kn<10 
and the free molecular flow for Kn>10. 

To remain in the classical Navier-Stokes physics (Kn<0.01 [108] or Kn<0.001 (Kandlikar, Garimella, Li, Colin, & King, 
2006), we had to determine the smallest characteristic length we could use. For our motor, the fluid flow (air) will 
take place in canals, meaning that the characteristic length will be the hydraulic diameter Dh (cf. section  2.4.3.a. ). 
We determined that the air mean free path at 300K was equals to 67 nm (air properties at 300K given in Table 2-8). 
Thus, for a Kn<0.01, the canals for air flow that we will design must be with a hydraulic diameter larger than 7µm, 
and for Kn<0.001 the hydraulic diameter must be larger than 67µm. To ensure a continuum flow, we thus decided 
to design canals with hydraulic diameter of at least 100µm. 

2.4.3. Alternating flows and associated dimensionless number 

The gas flow in the Stirling motor is an alternating (or oscillating) one, that is to say a periodic alternating non-
stationary flow with an averaged flow velocity equals to zero [124]. The velocity of an alternating flow will vary 
between a maximum and a null value, this last one being reached at each half-period. This implies that the 
coefficient of friction should vary between a specific value for the highest velocity, and which is function of the flow 
regime (laminar or turbulent) and the properties (geometry, roughness, temperature…), and go through two infinite 
theoretical values (at null velocity). The friction coefficient cannot thus be determined based on steady flow 
conditions [119]. For example, Zhao and Cheng [125], in their studies on transient flows, showed that the pressure 
drop coefficients could be 2 to 6 times those of permanent unidirectional flows. For an established oscillating flow 
of a viscous fluid in a tube, at macroscopic scale, the annular velocity profile can be very different from the one of 
the permanent flow. Whereas for a permanent laminar flow the transverse velocity gradient is maximum at the 
centre, for an oscillating flow, the transverse velocity gradient is maximum near the wall [126], cf. Figure 2-31. This 
velocity profile depends on parameters such as the frequency, the viscosity and the hydraulic diameter [127]. 

 

Figure 2-31 : Velocity profiles inside a round section pipe of circular section (6.2 cm in diameter) with two flats formed at the 
sides, at an operating frequency “n” from 5 to 25 Hz and for a piston length of stroke of 0.95cm. Extracted from [126] 

If there exists works at macroscopic scales, the literature is rather poor regarding alternating gas flows in micro-
channels: the design of small scales alternating fluid exchangers (such as the ones for Stirling motors) remains an 
area not yet very well known. The different researchers who studied the alternating flow, from the point of view of 
microfluidics or thermal transfers, did it generally for liquids and as a function of specific parameters or 
dimensionless numbers. This makes the comparison difficult and therefore not easily transposable to other 
conditions (geometries, clean room materials). To determine the thermofluidic characteristics such as pressure 
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drop and heat transfer coefficients, some authors made some correlations but, for the most part, they were based 
on simplified assumptions such as a flow in only one direction  and supposed to be almost permanent (knowing 
although this one is transitory), while the physics is not transposable [119].  

Therefore, for the design and optimization of the Stirling thermal micro-machines (operating with a gas with 
alternating flow) a better knowledge of these types of flows is necessary. 

2.4.3.a.  Parameters and dimensionless numbers used for the study of oscillating 
flows 

Dimensionless numbers and different parameters are used by researchers to characterize alternate flow in a variety 
of geometries of systems [128]. The choice of these parameters is very important since it allows the interpretation 
and the physical understanding of the flow, but also the comparison of different results between them. 
Characteristic dimensionless numbers for alternate flows are the Reynolds number “Re”, the frequency Reynolds 
number “Reω”, the relative amplitude of the arbitrary displacement of the fluid “Ar” [129]. Other classical 
dimensionless numbers, such as Prandtl or Mach number, are also relevant in the study of alternate flows and will 
be thus presented. 

i Reynolds number 

For unidirectional flows, the Reynolds number Re represents the ratio between the inertial force and the viscosity 
force. It characterize the transition from a laminar flow to a turbulent one. When widths of canals in microsystems 
are on the order of tens of micrometres, typical fluid velocities do not exceed a centimetre per second and; it 
follows that, in general, Reynolds numbers in these microfluidic systems do not exceed 10-1 [108].  

For a flow through a duct, it is obtained by the following expression [119]: 

 𝑅𝑒 =
𝑈.𝐿𝑐

𝜈
=

𝑈.𝐷ℎ

𝜈
 Eq.  2-22 

With “U” the fluid velocity, Lc the characteristic length, here equal to the hydraulic diameter “Dh” (since we 
considered a duct), and “ν” the kinematic viscosity of the fluid. 

To determine the Reynold number for an alternate flow, since the velocity of the fluid “U” is variable and periodic, 
it is possible to use a maximum value of the velocity amplitude [120], [130], [125]:  in this case, the Reynolds 
calculated with previous equation is usually called “Remax”. It is also possible to use an average time value of the 
velocity over a half-period ( [131], [132], [133], [134]). With axial parietal temperature gradient, some authors will 
use a mean average velocity between the hot and cold sides of the regenerator [135].  

Another specific Reynolds number, the kinetic Reynolds number "𝑅𝑒𝜔" is widely used with oscillating flows:  

 𝑅𝑒𝜔 =
𝜔.𝐷ℎ

2

𝜈
 Eq.  2-23 

Where ω is the angular velocity. Note that we can also find the Valensi number “Va”, which is defined either as 𝑅𝑒𝜔 

or as  
𝑅𝑒𝜔

4
 depending on the authors. For this work, we will refer at Valensi number with this formula: 

 𝑉𝑎 =
𝜔.𝐷ℎ

2

4 𝜈
 Eq.  2-24 

ii Womersley number 

Alternate flows, and more precisely the non-stationarity of the flow, can also be characterized by the dimensionless 
number of Womersley [136], [137] defined by:  

 𝑊0 =  √𝜔 𝐿𝑐
2

𝑣
= √𝜔 𝐷ℎ

2

4𝑣
= √

𝑅𝑒𝜔

4
= √𝑉𝑎  

𝐿𝑐 is a characteristic length that can represent a radius r of a channel [138], a hydraulic radius rh [139] or any 
characteristic dimension: 

𝑅𝑒𝜔 = 4. 𝑊𝑜2 
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This parameter can highlight the so-called "annular" phenomenon: a maximum velocity of the fluid near the wall 
rather than at the center of the channel. This phenomenon was experimentally emphasized by Richardson and Tyler 
[126] who showed that, in a circular tube, the velocity profile of the fluid remains parabolic for Womersley numbers 
less than unity, i.e. the behavior in that case is the same than for unidirectional permanent laminar flows. However, 
for higher Womersley numbers, the velocity near the wall is maximum and flattens at the center of the tube [140], 
[141], [142]. Zhao and Cheng, in a numerical study of the alternating flows of a cylindrical channel, have found that 
for relatively high l Reynolds numbers, the annular effect also exists in the temperatures profile near the inlet and 
the outlet [143]. 

iii Displacement Relative amplitude  

The maximum displacement amplitude of the fluid Xmax is given by the formula of Simon and Seume [128] in the 
case of a generated flow, which is alternating, incompressible and sinusoidal:  

 𝑋𝑚𝑎𝑥 =  
𝑢𝑚𝑎𝑥

𝜔
 Eq.  2-25 

The relative amplitude of fluid displacement (dimensionless displacement) is then defined by [128]:  

 𝐴𝑟 =  
2𝑋𝑚𝑎𝑥

𝐿 
=

2𝑢𝑚𝑎𝑥

𝜔𝐿 
=

𝐷ℎ𝑅𝑒𝑚𝑎𝑥

2𝐿 𝑉𝑎
=

2𝐷ℎ𝑅𝑒𝑚𝑎𝑥

𝐿 𝑅𝑒𝜔
 Eq.  2-26 

Where L is the tube length (heat exchanger length).  

𝐴𝑟  is a very useful parameter for the design of heat exchangers since it is characteristic of the passage time of the 
particles of the fluid in the channels: 

• If Ar <<1: the length is too high, some fluid particles remain trapped in the channels, so they do not 
participate to the heat transfer; 

•  If Ar = 1: this is the ideal case since all the fluid run through the whole length of the tube.     

• If Ar>> 1: the tube length is too short. There is a portion of the initial volume of fluid that passes entirely 
through the heat exchanger. 

Note that according to Zhao and Cheng [125], [143] and Leong and Jin [130], the definition of the maximum 
displacement (denoted here 𝑥𝑚𝑎𝑥 to avoid confusion with Xmax) for an incompressible sinusoidal alternating flow is 
different from the previous one and is given by: 

 𝑥𝑚𝑎𝑥 =  
2𝑢𝑚𝑎𝑥

𝜔
= 2𝑋𝑚𝑎𝑥 Eq.  2-27 

Hence, another definition of the dimensionless displacement, this time called ADh, is given [125]: 

 𝐴𝐷ℎ
=  2

𝑅𝑒𝑚𝑎𝑥

𝑅𝑒𝜔
=

𝑥𝑚𝑎𝑥

𝐷ℎ
 Eq.  2-28 

In an alternating fluidic regime, 𝐴𝐷ℎ makes it possible to characterize the relative displacement of the fluid in the 
thermal machines having regenerators. On the one hand, it characterizes the effects of the displacement amplitude 
of the fluid and on the other hand the effects of the frequency of fluid alternations (𝑅𝑒𝜔). 

The link between Ar and ADh is thus: 

𝐴𝑟 =
𝐷ℎ

𝐿
𝐴𝐷ℎ 

iv Mach number 

The Mach number makes it possible to characterize the compressibility of the working fluid. In unidirectional flow, 
the compressibility of the fluid is generally characterized by a Mach number greater than 0.3 [144].  With the 
assumption of an ideal gas, the Mach number can be expressed as follows [119]:  

𝑀𝑎 =  𝑈√
𝑀

𝛾𝑖𝑠𝑅𝑇
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with U the flow velocity, M the molar mass, T the Temperature, γis the isentropic expansion factor (adiabatic index) 
and 𝑅 the ideal gas constant.  

In alternate flows, even for low Mach numbers, experimental work by Kornhauser [145] has shown that the effect 
of compressibility may not be negligible. According to them, the pressure variation of the working fluid during the 
compression and expansion phases causes a variation in temperature and consequently a variation in the density 
of the fluid.  To study the compressibility effect of gas, Kornhauser thus introduced a “heat transfer Mach number” 
defined as the “ratio of the speed of propagation of a temperature wave to that of a pressure wave”( [145], p. 97-
98): 

𝑀𝜔 = √
𝛼𝜔

𝛾𝑖𝑠𝑟𝑇
= √

𝛼𝜔𝑀

𝛾𝑖𝑠𝑅𝑇
 

With α the thermal diffusivity (𝛼 =
𝜆

𝜚 𝐶𝑝
), ω the angular frequency, r the specific gas constant. 

The compressibility of the alternating flow is, in general, related either to the effect of increasing the pressure 
during the change of section of the working fluid from the heat exchanger, or to the acoustic effects caused by the 
pressure waves propagation. 

v Eckert number and Prandtl number 

The number of Eckert is used only for very high fluid velocity, or above the speed of sound. It relates the kinetic 
energy to the enthalpy of a fluid [146], comparing the importance of advective transport and of the heat dissipation 
potential: 

𝐸𝑐 =
𝑈𝑚𝑎𝑥

2

𝐶𝑝(𝑇𝑐ℎ − 𝑇𝑓𝑟)
 

This number accounts for the viscous dissipation during the flow. Viscous dissipation can no longer be neglected 
when the Eckert number is greater than or equal to 1. Therefore, this dissipation can significantly influence the heat 
transfer [147]. 

Another dimensionless number is the Prandtl number that assesses momentum transport and thermal transport 
capacity of a fluid [146]: 

 𝑃𝑟 =
𝐶𝑝 𝜂

𝜆
   

2.4.3.b.   Oscillating laminar flow transition to turbulence 

 In a permanent unidirectional flow, the determination of the pressure drop coefficient (or heat exchange 
coefficient) requires knowledge of the flow regime (laminar or turbulent) to choose the corresponding correlation. 
In this part, we will focus only on internal flows. As for classical permanent flows, there is a transition phase (cf. 
Figure 2-32) between laminar and turbulent regime for internal oscillating flows which depends on various 
parameters, such as the fluid displacement amplitude and the frequency of alternation of direction of flow [148]. 
In a completely laminar flow during the whole cycle, there is no disturbance in the shape of the velocity curve, 
whereas in a disrupted laminar flow, small amplitude perturbations occur at the beginning of the acceleration ( 
[149], [150], [151], [152]). The general shape of the velocity curve remains consistent with the theoretical laminar 
profiles. In an alternating flow, the appearance of turbulence is also different from that of unidirectional quasi-
stationary flow ( [143], [149], [153]). This turbulence appears only at the beginning of deceleration, whereas in 
phase of acceleration the flow regime is quasi-laminar ( [150], [154]).  

If some authors carried out studies to quantify, for alternate flow, the transition between laminar and turbulent 
flow (such as for instance the experimental study of Akhavan et al. [155]], there is still no universally accepted 
model for predicting this transition.  
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Figure 2-32 : Comparison of steady-flow and oscillating-flow transition criteria, from [148]. 

According to a numerical study carried out for an incompressible alternating flow by Zhao and Cheng [143], with 
𝐴𝐷ℎ

 and 𝑥𝑚𝑎𝑥  being respectively the dimensionless displacement and the maximum displacement amplitude of 

the fluid,  for 8.05 < 𝐴𝐷ℎ
< 121.1 and 23 < 𝑅𝑒𝜔 < 540, the critical parameter of the laminar / turbulent transition 

is defined by: 

𝛽𝑐 = (𝐴𝐷ℎ
√𝑅𝑒𝜔) = (𝑥𝑚𝑎𝑥 √

𝜔

𝑣
) = 761 

According to Bouvier [142] and Bouvier et al. [156], some works (based on semi-empirical correlations) enable to 
determine the Reynolds Retrans at which the transition from laminar flow to turbulent one (for an internal flow) 
occurs. Some of them are given in the Table 2-9. 

Reference Equation Domain and condition 

Sergeev (1966) [157] 𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 700(𝑉𝑎)1/2 = 700 (
𝑅𝑒𝜔

4
)

1/2

 
64 ≤ 𝑅𝑒𝜔 ≤  6400 

14.5<L/D<263 

Park and Baird (1970) [158] 

 

 

𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 188(Va)2/3 = 188 (
𝑅𝑒𝜔

4
)

2/3

 140 ≤ 𝑅𝑒𝜔 ≤  4000 

Grassmann and Tuma (1979) [159] 

 

𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 49,7(𝑅𝑒𝜔)3/4 

𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 15300 

 

 

160 ≤ 𝑅𝑒𝜔 ≤  2070 

𝑅𝑒𝜔 > 2070 

 

Ohmi et al. (1982) [153] 

𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 2450 

 

 

𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 882(Va)1/2 = 882 (
𝑅𝑒𝜔

4
)

1/2

 

 

√
𝑅𝑒𝜔

4
< 1  

 

 

18.4 ≤ 𝑅𝑒𝜔 ≤  546 

 

√
𝑅𝑒𝜔

4
> 7  

Table 2-9: Some laminar / turbulent transition equations from the literature. L: length of the tube; D: diameter of the tube; 
Va: Valensi number. 

One of the requirements to obtain an efficient Stirling motor is that the Ar number is around 1(cf. previous section). 
To determine the geometric parameters given in the thermal study, we used the Ar number. For the 2D geometry, 



Chapter 2-Stirling engine design challenges 

Page 79 on 229 

the length and width of the canal was chosen to obtain a Ar value around 1 and also to both enable to put later on 
a regenerator inside the canal, and to obtain as much as possible motors on a same wafer. Thus, we obtained Ar 
values of 0.5 for the spherical cap membrane and 1.9 for the 2 mm central disk membrane with a canal’s width of 
1mm and a length of 7 mm. NB: We didn’t used the required length to obtain a fully developed regime since these 
equations were only related to unidirectional flows.  

Frequency [Hz] 1 10 100 1000 10000 

Reω 0.22 2.25 22 225 2249 

Re  

with a spherical cap membrane 

0.49 4.86 49 486 4864 

Re  

With 2mm in diameter central disk in 
the centre of the membrane 

1.95 19.49 195 1949 19488 

 Value of Retrans 

Sergeev [157]   ---  ---  ---  ---  --- 

Park and Baird [158] --- ---  --- 2759 12805 

Grassmann and Tuma [159] --- --- --- 2886 15300 

Ohmi et al. [153]  2450 2450  --- 6613 20912 

Value of β (Zhao and Cheng [125] [143]) (βc=761)  

spherical cap membrane 2 6 21 65 205 

2mm in diameter central disk in the 
centre of the membrane 

8 26 82 260 822 

Table 2-10 : Kinetic Reynolds and transition Reynolds values for the 2D configuration and for 5 frequencies. --- corresponds to 
a not applicable correlation/condition. 

Frequency [Hz] 1 10 100 1000 10000 

Reω 0.4 4 40 400 3997 

Re  

with a spherical cap membrane 

2 25 248 2477 24774 

Re  

with 2mm in diameter central disk in 
the centre of the membrane 

10 99 992 9925 99250 

 Value of Retrans 

Sergeev [157]  

Condition L/D not verified 

 ---  ---  --- 6998 
 

22129 

Park and Baird [158]  --- ---  --- 4049 18792 

Grassmann and Tuma [159] --- --- --- 4443 15300 

Ohmi et al. [153] 2450 2450 2788 8817 27882 

Value of β (Zhao and Cheng [125] [143]) (βc=761)  

spherical cap membrane 8 25 78 248 784 

2mm in diameter central disk in the 
centre of the membrane 

31 99 314 993 3140 

Table 2-11 : Kinetic Reynolds and transition Reynolds values for the 3D configuration and for 5 frequencies. --- corresponds to 
a not applicable correlation/condition. Italic values do not verify the condition L/D corresponding to the range of Sergeev 

study. 
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For the 3D geometry, only several glass thickness were available. In a first step, we assumed we will use the thicker 
borofloat wafer (6.5 mm) to obtain better thermal resistance, and 500 µm thick silicon wafers. Thus, the canal 
length was equal to 5.9 mm. The canal diameter had to be large enough to enable to place a regenerator inside it ( 
[95]). Thus, the diameter was set at 1mm. With these values, we had Ar values of 2 and 8 for spherical shape 
membrane and membrane with a 2 mm central disk respectively.  

Based on the literature, we calculated, for 5 frequencies, the transition Reynolds. For the 2D geometry, we used 
parameters given in Table 2-5. The classical Reynolds number is calculated with an average velocity on the section 
(using total swept volume displaced on half a period that passes through the section of the canal). Air properties 
were taken from Table 2-8. The results are given in the Table 2-10. From those results, it is quite obvious that, for 
identical conditions, there is a great discrepancy between values of Retrans.  

With a spherical cap membrane, the flow should remain laminar for all the tested frequencies. For the membranes 
with a 2 mm central disk in its centre, for operating conditions up to 1 kHz, the flow should stay laminar. Whereas, 
for frequency of 10 kHz, the flow should be either in the transition or turbulent. Thus, to remain laminar, a 
frequency below 10 kHz should be used. More precisely, according to Park and Bair [158] equation (which is the one 
that gives lower transition Reynolds number) the frequency should not exceed 2.5 kHz. 

Same calculations are carried out with the 3D geometry, using parameters from Table 2-7. Results are given in the 
Table 2-11 . With a spherical cap membrane, the flow should remain laminar for Reynolds numbers up to 1 kHz, 
and be turbulent for a frequency of 10 kHz.  

For the membranes with a 2 mm central disk in its centre, for operating conditions up to 100 Hz, the flow should 
stay laminar. Whereas, for frequency of 1 kHz, the flow should be turbulent. Since there is a great discrepancy 
between theoretical values, to remain laminar, the frequency should remain below 700Hz according to Omni et al. 
[153], below 580Hz according to Zhao and Cheng [143], and below 200 Hz according to Park and Baird [158] and 
Grassmann and Tuma [159].  

With the chosen geometric parameters, and at frequency of, at maximum, hundreds of Hertz, the flow in the 2D 
and 3D motor should remain laminar. Since this PhD was part of the MISTIC project, with a 3D design, and since, 
we found that the 3D design was thermally more suitable, from now, we will only talk about the 3D geometry. The 
next section will shortly present another parameter that is of great importance: friction losses. 

2.4.4. Friction coefficient and pressure drop  

One challenge in miniature structure is the pressure drop due to friction. When miniaturizing a system, the 
predominance of pressure losses can quickly become a real problem. If friction coefficient and pressure drop are 
well documented at large scales and for unidirectional flows, the literature is rather poor when it comes to 
miniature systems with oscillatory flows.  

The similarity criterion associated with the viscosity forces is the coefficient of friction 𝐶𝑓. In the permanent internal 

flows, it is constructed with a reference speed which is the fluid flow speed 𝑈 and the mean parietal stress 𝜏𝑝 [119]: 

𝐶𝑓 =
𝜏𝑝

𝜌𝑈2

2

 

𝐶𝑓 is related to the coefficient of linear pressure loss 𝐶𝑓′ . This other coefficient of pressure loss, called Fanning 

coefficient, represents the ratio between the frictional stress at the wall and the kinetic energy of the fluid by the 
following relation:  

𝐶𝑓 =
𝐶𝑓′

4
 

For a unidirectional and laminar flow in a pipe, the nature or the surface roughness of the internal walls of the 
microchannel have no influence on the coefficient of pressure drop 𝐶𝑓

′ . This coefficient is then determined by the 

following equation: 

𝐶′𝑓 =
64

𝑅𝑒
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In the same conditions (unidirectional flow in a pipe) but in the turbulent regime (i.e. Re>4000), the coefficient of 
pressure drop 𝐶𝑓

′ depends on the surface roughness and is expressed for instance by the classical Colebrook 

formula: 

1

√𝐶′𝑓

= −2 𝑙𝑜𝑔10(
2.51

𝑅𝑒 √𝐶′𝑓

 +
𝑘

3.7  𝐷ℎ
) 

With k the roughness of the internal surface of the pipe. When considering microchannel, the flow regime is usually 
the laminar one. 

The linear pressure drop on a length L for a permanent flow is expressed by: 

∆𝑃

𝐿
= 𝐶𝑓

′  
𝜌𝑈2

2

1

𝐷ℎ
 

This relation is not valid in alternate flow because the quantities such as the pressure, the speed, the flow, the 
temperature of the fluid are subject to phase differences in the temporal evolutions, which is not the case for the 
permanent flows 

Another factor that will have influence on the pressure loss is the fluid compressibility. Due to the compressibility 
of the gases, their volume, density and viscosity vary very significantly as a function of the pressure and the 
operating temperature. Therefore, unlike liquids (considered almost incompressible) the pressure drop due to the 
flow of a gaseous fluid is accompanied by an expansion that results in an increase in flow (i.e. the speed), a decrease 
in the density and an increase in the dynamic viscosity [160]: 

 𝐾𝑒 =
2

1+√1−
2𝛥𝑝𝑙

𝑃𝑒

  

With Δ𝑝𝑙 = linear pressure loss calculated as if the fluid was incompressible (singular losses not included); 𝑃𝑒 = 
Absolute pressure at the point at the inlet of the piping, or at the point of origin of the section considered. 

Nevertheless, when considering alternate flows, the friction coefficient is rather different. No universal law exists 
since the studies are often carried out with porous media (cf. Annexe B section regenerators), which can be found 
in the regenerator parts of the Stirling motors. For alternate flows, since, the flow’s velocity passes through a zero 
value at each half-period. This speed increases, between these two null values, reaches a maximum and decreases 
( [142], [161]). Therefore, the coefficient of friction goes through two theoretical values when the velocities become 
zero (infinite) and a particular value at maximum velocity that depend on the regenerator geometry and the nature 
of the flow (laminar or turbulent). As a result, this coefficient of friction cannot be characterized by previous 
equations established with steady flow conditions. 

Experimental studies on the pressure drop coefficient (or Darcy coefficient) in alternating flows are not numerous. 
The determination of the coefficient of pressure loss requires, in the first place, relying on the resolution of the 
equation of momentum of a one-dimensional unsteady flow. According to Smith [162], under the assumption of an 
ideal gas and for a Newtonian fluid, in an empty, the equation of mass conservation and of momentum can be 
expressed as follows: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) = 0 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
) = −

𝜕𝑃

𝜕𝑥
+

4

3

𝜕

𝜕𝑥
(𝜂

𝜕𝑢

𝜕𝑥
) 

With the fluid density ρ, the pressure P and the velocity u functions of x (distance) and t (time) and η the dynamic 
viscosity. 

In the regenerator, in a channel of circular section with the assumption of a one-dimensional flow of an ideal gas, 
neglecting the gas and matrix heat conduction along the matrix and assuming no temperature difference across 
the regenerator, the momentum equation is as follows [135]  
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𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑟
) ≈ −

𝜕𝑃

𝜕𝑥
− 𝐶𝑓(𝑡)

𝜌𝑢2

2𝐷ℎ
 

With r the radial coordinate. 

The instantaneous oscillatory flow friction factor is then [135]: 

𝐶𝑓𝐼𝑁𝑆𝑇
=

−
𝜕𝑃
𝜕𝑥

− 𝜌
𝜕𝑢
𝜕𝑡

− 𝜌𝑢
𝜕𝑢
𝜕𝑥

− 𝜌𝑢
𝜕𝑢
𝜕𝑟

𝜌𝑢2

2𝐷ℎ

 

By integrating the preceding equation over the entire length of the regenerator L, it then comes: 

𝐶𝑓(𝑡) =
∆𝑃

𝜌
𝐿

2𝐷ℎ
𝑢(𝑡)2

 −  
2𝐷ℎ

𝑢(𝑡)2

𝜕𝑢

𝜕𝑡
 − 

2𝐷ℎ

𝐿
 

Δ𝑢

𝑢(𝑡)
 −

2𝐷ℎ

𝑢(𝑡)
 
𝜕𝑢

𝜕𝑟
≈

∆𝑃

𝜌
𝐿

2𝐷ℎ
𝑢(𝑡)2

 −  
2𝐷ℎ

𝑢(𝑡)2
 
𝜕𝑢

𝜕𝑡
 

where the two right-hand terms of the equation represent respectively the similar pressure loss coefficient of the 
permanent unidirectional flow and the term of inertia [135]. The inertia term of the equation can be negligible at 
low oscillation frequencies. Therefore, the equation would become [135]: 

𝐶𝑓(𝑡) =
∆𝑃

𝜌
𝐿

2𝐷ℎ
𝑢(𝑡)2

 

Some works can be found on pressure drop inside porous media (regenerator). Since the study of the regenerator 
was the subject of another PhD work [95] that was part of the MISTIC project, no further details on the regenerator 
and pressure drop inside it will be given here.  Some complementary correlations and experimental results can be 
found in Appendix C for studies carried out in regenerator, with porous media.  

One of the main objectives of this PhD was also to minimize, as well as possible, the pressure loss in the canals of 
the miniature device. At first, some technological, thermal and fluidic considerations enable to get an idea of the 
geometry of the motors. Here, we will only focus on the 3D geometry. In miniature devices, since the 
piston/membranes have generally a short stroke (below 1mm), the workspaces should be thinner and the height 
are limited by the wafer standard thickness (500 μm for standard silicon wafers). The regenerator empty space is 
located in the canal which links the membranes working spaces. In the first simplified 3D version of the micro motor, 
the regenerator micro channel went through the glass component. In the MISTIC project, the three 3D motors are 
linked altogether, thus the hot chamber of the first motor must be linked to the cold chamber of the second motor, 
and so on (Figure 2-1). The channel of the regenerator being hollowed out in the glass substrate is, therefore, 
arranged vertically with respect to the plane of the substrate, whereas the channel connecting the chambers to the 
regenerator part are horizontal.  Due to clean room limitation at the time of this PhD work, the angle between the 
horizontal and vertical channels was a 90° right angle. When considering pressure loss, this kind of angle is the 
worst-case scenario: a smoother curvature of the channels would decrease the pressure drop.  Given that channels 
configuration, local gas flow phenomena will be problematic in this region and gas transition effects should be 
mitigate. Since the working gas is displaced in and out of the working spaces, the later should be designed to reduce 
pressure losses (also known as pumping losses) at the inlet/outlet of the chamber. This process requires a thorough 
knowledge of the characteristics of the flow, which is not easy to reach through analytical pathways, because of 
the small-scale geometry and non-traditional oscillating gas flow (classical works concerning pressure loss in small 
channels concern permanent flows [163].  

During MISTIC project, in an experimental approach, the characterization of the pressure losses in the spaces 
containing the working gas was investigated in a stable unidirectional flow by Hachey et al.  [106] in order to find 
the best configurations. The critical starting parameters of a membrane Stirling micro-machine are generally 
determined by a numerical model characteristic of free-piston Stirling motors [11]. Since, if the frequency increases, 
the gas displacement distance can be affected (the gas can then only be expanded and compressed without real 
displacement in the length direction of the microchannels), the determination of the frequency of the operation, 
pressure losses, etc. is very important. Based on an equivalent electrical network model of a double acting  free 
piston Stirling motor [11], the operating frequency of such a structure can be determined : Hachey et al. [106] thus 
expected that, with mm3 displacement (given that frequency scales inversely to length) working operation in a 
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miniature motor was expected to reach at least 2000 Hz . In addition, given that most microchannels were a few 
hundred micrometres in diameter, this implied high flow speeds that can reach for some of them, a Mach number 
equals to 0.2 [106]. They found that pressure losses were at a minimum when the diameter of the regenerator 
matches the diameter of the channel in which it is located, and when the ratio between the hydraulic diameter in 
the inlet/outlet region with the diameter of the chamber (=membrane diameter) was almost equal to one.   

 

Figure 2-33: a) Packaging used in experiments with an exposed chip. b) a drawing showing the ability of the packaging to 
accept the original (left) and revised (right) versions of the workspace. From [106]  

Their experimental device (cf. Figure 2-33) was a 15x15 mm glass-Kapton-glass stack in a Plexiglas / aluminum 
package, and the pressure taps of the chips were accessible through conventional fittings and tubes. For an 
incrementing unidirectional flow rate (inlet), in a range of 100 to 1500 cm 3 /min, they measured the static pressure 
at different points along the working gas path (1 to 5 in Figure 2-33) and determine the pressure loss in these 
specific areas. The pressure tap 0 (not shown in the figure) was located in an intake manifold.  

For a flow direction of the gas from the regenerator to the chamber, the results show that the pressure drops 
occurred mainly in the zone 0-1 corresponding to the 90° wedge between the regenerator and the horizontal 
channel leading to the chamber. They found that the change from the original to the revised version (cf. Figure 2-33 
- b) enable to reduce 84% of the pressure drop at Re = 700, but they assumed this result was due from increasing 
the hydraulic diameter at tap 1 from 200 to 260 μm.  The final geometry of the 2nd version of the workspace has 
been preserved for a more favourable and symmetrical pressure loss in a stationary flow [106]. 

Since, in our case, the 90° angle cannot be avoided, to limit the pressure drop, the junction between the horizontal 
canal and the chamber has to be smooth. To avoid too important dead spaces, we did not increase the hydraulic 
diameter or the horizontal canal, which would imply to increase also the vertical canal diameter. On the contrary, 
we decreased the hydraulic diameter due to both clean room consideration and targeted Ar values. One way to 
decrease the Ar value would be to change the chamber height (the other parameters being difficult to change).  
With a new chamber height of 300µm, the Ar value would decrease by a factor two and we would have Ar=1 for 
the spherical cap membrane; Ar=4 for the 2mm central disk membrane.   

Moreover, to fullfill clean room process, this 300µm were the most suitable in our case: with classical silicon 500µm 
high, when etching chambers of 300µm high, the process will leave a thickness of 200µm of Silicon which is 
necessary to ensure the mechanical resistance of the chambers. Thus, since the important design parameters to 
consider are the exchange surface, the shape, the dimensions and the type of materials, to meet these criteria, the 
choice was to constitute a silicon hollow cylinder of 5mm in diameter, 300μm thick with an outlet channel of 1mm 
wide. Chambers are etched in a 4-inch silicon wafer of 500μm thick polished on both sides. A CAD view of the 3 
chambers is shown in Figure 2-38. The outlet channel of the chamber is cone-shaped in order to obtain a "soft" 
transition zone more favourable to the gas flow (to avoid as much as possible the pressure losses). The advantages 
of such a choice on a wafer are the simplicity of microfabrication and the low-pressure loss due to the absence of 
right-angled sections, but rather rounded contours. It also helps to facilitate integration with the rest. The hot 
source and the cooling source are external as the faces of the silicon wafers are polished with a very good flatness 
(TTV <3). Any flat surface, hot or cold can therefore represent a thermal source when the micro-machine is placed 
there.  

 
a) b) 



Chapter 2-Stirling engine design challenges 

Page 84 on 229 

For the 3D motor, the previous conclusions concerning  flow regime (cf. section 2.4.3.b. ) remain the same when 
the chamber is only 300µm in height (instead of 600µm) : for both membranes’ type, for operating frequencies 
under 500 Hz, the flow should remain laminar (lower value obtained from equations in Table 2-9). Concerning the 
surface roughness, it was dependant on the clean room process and on the material. Moreover, for the actuated 
version of the motor, the intented working frequencies are lower than 100Hz, meaning the flow will be laminar: 
knowing that for unidirectional flow, the coefficient of pressure loss is independent of the roughness, one can 
suppose that it will be the case also for an alternate flow. The next section will present the final 3D architecture, 
based on MISTIC requirements, and technological, thermal and fluidic consideration previously presented. 

2.5.  The chosen design of the micro Stirling motor. 

2.5.1. The MISTIC design 

The model of this first Stirling micromachine prototype with free-acting double action hybrid membranes is the 
micrometric version of the first multi-phase Stirling macro-motor prototype (cf. Figure 2-34a)) developed by Fenies 
through its thesis work [5] as part of the MISTIC project in 2016. The macro motor developed by Fenies at the 
University of Savoie, is a free-piston motor based on flexible membranes that are mechanically interconnected by 
rigid metallic bars. These membranes oscillate thanks to the gas springs that constitute the heated and cooled air 
in the compression and expansion chambers. Note also that, in this motor, each module, alone, represents a Stirling 
motor whose gas is sealed inside and that the connection between the three modules is through the mechanical 
connection bars (cf. Figure 2-34 b). From numerical simulations of the yield and losses, performed at the SYMME 
laboratory, it was this motor configuration that seemed to have the most benefit. 

The MISTIC project aimed at the miniaturisation of this macro motor. The CAD schema of the whole initial design is 
recall on the Figure 2-1. This initial design was modified to be adapted to the clean room technology and 
requirement: this design, presented in Figure 2-35 a), is the one that was developed during this PhD work. The 
phase difference between the membranes is imposed by the number of associated modules. Figure 2-35 -b) 
illustrates a three-phase Stirling motor with free-double-acting diaphragms (connected membranes). To ensure the 
mechanical link between the membranes, at first, an incompressible liquid (cf. Figure 2-35 -b) was used. We will 
see later on that this option represented a simple solution, but raised issues due to the liquid filling (pollution of 
surfaces, clean room compatibility). Thus, another mechanical link was also tested (cf. next chapter) and consisted 
in a small cylinder bonded between the top and bottom membranes in a large chamber filled with a gas. 

To summarize, the Stirling micro-machine is composed of two opposite flat faces, consisting of one side of a flexible 
membrane in a cold chamber and the other side of another flexible membrane in a hot chamber, with three micro 
channels for connecting the hot chamber of the first motor to the cold chamber of the second motor, and so on (cf. 
Figure 2-37). These three microchannel necessarily consist of a first horizontal microchannel, followed by a second 
vertical microchannel, then a third horizontal microchannel, the vertical microchannel containing the regenerator. 
The first horizontal microchannel connects the hot chamber to the regenerator, the latter being connected to the 
third horizontal microchannel leading into the cold chamber.  For the motor configuration, the external flat face of 
these chambers will be in contact with a thermal source (hot or cold) and the other face will be occupied by the 
membrane which compresses and / or displaces the working gas.  

The Stirling micro-machine system indeed exploits the inertia of suspended membranes to act on the working gas. 
Thus, the cyclic pressure applied between the membranes causes a phasing of the latter at a well-defined phase 
angle. In motor mode, the membranes produce a work due to the expansion of the working gas but also compresses 
and displaces the latter during the thermodynamic cycle. 

The simplest (and most compact) size and shape of the upper wall of the chamber is obtained when its shape and 
perimeter correspond to the perimeter of the moving membrane, since this upper wall (i.e. the exchanger) and the 
membrane share the same workspace. For energy conversion, the diameter of the membrane can be chosen 
between 5 and 10 mm, with a thickness between 50 to 250 microns, to limit its resonance frequency to kHz. As 
previously presented, taking into account, the previous remarks and calculations in section 2.1. , we fixed the 
chamber (and membranes) diameter at a value of 5 mm. 
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Figure 2-34: ) Picture and b) Diagram of the three-phase Stirling motor with double action free pistons demonstrated at 
SYMME Laboratory [5]. 

 

Figure 2-35:  a) 3D schema of the micro-machine designed at FEMTO-ST institute. b) Depiction of a cross-section plane 
passing through the micro machine’s three modules, from [106]. 

The regenerator. The main function of the regenerator is the storage and return of the heat to the gas as it flows, 
in the first place from the hot exchanger to the cold exchanger, and secondly in the other direction. Recall only that 
the constraints are to obtain a regenerator with a high thermal capacity, a good radial thermal conductivity, a large 
exchange surface, a low dead volume, as well as a high porosity, in order to limit the pressure losses. In the MISTIC 
project, the regenerator has been the object of a thesis [13] that will lead to a prototype to be implemented in our 
micromachine. It is therefore, as far as we are concerned, to correctly predict its location (cf. Figure 2-36 a) knowing 
its dimensions (cf. Figure 2-36 b). This will allow, more generally, to replace it easily to test different materials or 
architectures of regenerators. We have already presented the architecture and materials chosen that will compose 
this micro-generator in the previous chapter. 

In our work, since the location of the regenerator also has a role in thermal insulation between the hot and cold 
side, requiring low thermal conductivity in the longitudinal direction, we chose to use a 6.5mm-thick block of 
borofloat glass. In this block are drilled the locations of the regenerators. These locations are made of rectangular 
cavity 1mm in length for 0.5mm width. The glass has a low thermal conductivity compared to silicon. The 
rectangular cartridges of regenerators can, therefore, be inserted into these cavities. 

To achieve the objectives listed above, we will, in the next sections, begin by describing the constraints that we had 
to face in the choice of each constituent element of the micro-machine.  

In the next section, we will focus on the influence of the MISTIC configuration on dead spaces. Then in the last 
section, the final micro-motor geometry, summarizing all the results and remarks from the previous sections, will 
be presented. 

a) b) 

a) 

b) 
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To achieve the objectives listed above, we will in the next sections begin by describing the constraints that we had 
to face in the choice of each constituent element of the micro-machine.  

 

 

Figure 2-36: a) Three holes for the location of the tree regenerators cartridges. b) 3D sketch of the MISTIC regenerator 
microdevice [95]. 

2.5.2. Dead space: the influence of the regenerator design  

Let us now consider the dead space due to the addition of the regenerator channel. The aim of the regenerator is 
to store and dispose of thermal energy, thus, due to thermal insulation stresses between the two chambers, the 
regenerator cannot be too close from the chambers, increasing the length of the channels and thus the dead space 
volume.  

This configuration is best suited when one needs to associate several chambers to form for example a double acting 
Stirling motor. As previously explained, it would be difficult to make a Stirling micro-machine for the conversion of 
heat (i.e. produce a mechanical work), using only two membranes (or two chambers). The problem lies in the 
creation of the phase shift between the membranes. Recall that, if the objective of the micro-machine is primarily 
oriented towards the production of cold, then in this case, the design is easier because the phase shift is imposed 
by the operating mode of the membranes. However, if the machine operates in motor mode, a good solution is the 
concept of double acting free piston motors with at least three machines. In this case, there will be a need to 
physically connect the membranes to each other, but since the regenerator channel must necessarily be shifted, it 
would be necessary to create two horizontal channels to connect the latter to the two chambers (top and bottom).  

To fullfill the MISTIC architecture, the hot chamber of the first motor must be linked to the cold chamber of the 
second motor and so on. Thus, the simplified 3D geometry presented previously must be changed by adding 
horizontal channels to link cold and hot chambers from different motors. This channel design is restrain by clean 
room process possibilities. Whereas the vertical channel can be etched or drilled as a cylinder (since it crosses right 
through the wafer), in the horizontal plane, the channel cannot be a cylinder and must have a vertical rectangular 
section (cf. chapter 3 for the clean room process). Two different configurations are given on the Figure 2-37: the 
one corresponding to the simplified 3D geometry (a) and the final one corresponding to the MISTIC requirement 
(b). On this figure, rm is the membrane radius; Ct is the chamber height; Rd is the central disk radius; hm is the 
maximum swept height; dc is the chamber diameter, Cr is the vertical channel diameter; Lcan is the length of the 
vertical channel; Lrh is the length of the horizontal channel and Hrh is the height of the horizontal channel. The width 
of the horizontal channel, not visible on the 2D figure, is denoted lrh.  

To simplify this part, we will consider that the regenerator channel (the vertical one) is empty (i.e. no metal layer 
or matrix).  

The total swept volume Vsw, assuming the membrane height able to reach the chamber height (i.e. Ct=hm) for both 
configurations and with a membrane with a central disk in its centre (cf. eq. 2-6), is given by : 

𝑉𝑠𝑤 =
2

3
 𝑉𝑐 (

𝑅𝑑
2

𝑟𝑚
2 + 1 +

𝑅𝑑

𝑟𝑚
) 

a) b) 



Chapter 2-Stirling engine design challenges 

Page 87 on 229 

With Vc the volume of cylindrical chamber (𝑉𝑐 = 𝜋𝑟𝑚
2  ℎ𝑚) 

For the MISTIC configuration, the total motor volume Vt is then: 

𝑉𝑡 = 𝑉𝑐𝑎𝑛 + 2𝑉𝑟ℎ + 2𝑉𝑐 = 𝜋 (
𝐶𝑟

2
)

2

𝐿𝑐𝑎𝑛 + 2𝐿𝑟ℎ𝑙𝑟ℎ𝐻𝑟ℎ + 2. 𝜋𝑟𝑚
2  ℎ𝑚 

With Vcan the volume of the vertical channel; Vrh the volume of one horizontal channel and Vc the volume of one 
chamber.   

The dead space related to one chamber can be determined from Vc and eq. 2-6. The dead space related to the 

channels is the channels volume, i.e.   𝑉𝑐𝑎𝑛 + 2𝑉𝑟ℎ = 𝜋 (
𝐶𝑟

2
)

2
𝐿𝑐𝑎𝑛 + 2𝐿𝑟ℎ𝑙𝑟ℎ𝐻𝑟ℎ . 

The ratio 𝜒 between the swept volume and the total volume can then be calculated: 
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And the ratio 𝜒𝑑 between the total dead space Vd and the total volume Vt is given by: 

𝜒𝑑 =
𝑉𝑑

𝑉𝑡
=
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𝐿𝑐𝑎𝑛 + 2𝐿𝑟ℎ𝑙𝑟ℎ𝐻𝑟ℎ + 2. 𝜋𝑟𝑚
2  ℎ𝑚

 

The adjunction of 2 horizontal canals decrease the ratio 𝜒 from 36 to 33% and in both cases, the dead spaces are 
very significant: they are bigger than the swept volumes when an empty canal for a regenerator is considered. Note 
that with a regenerator inside the canal, the dead space due to the canal would decrease and the ratio would be 
improved. 

Since we know that the 3D architecture is more advantageous, the regenerator channel can then be developed in 
another substrate of different material. This material would then be chosen from among the most thermally 
insulating available in a clean room. Another dilemma arises, knowing that in this channel one would like the heat 
of the working gas to be absorbed during its passage, then to restore on its return, this would require a material 
that has the best possible thermal diffusivity.  

 

Figure 
2-37 

Ct=hm 

[mm] 

Cr 

[mm] 

Lcan 

[mm] 

rm 

[mm] 

Rd 

[mm] 

Lrh 

[mm] 

lrh  

[mm] 

Hrh 

[mm] 
𝛘 𝛘𝒅 

Case a) 
0.3 1 6.5  2.5 1 

0 0 0 36% 46% 

Case b) 3 1 0.3 33% 52% 

Table 2-12 : Parameters and values of the 3D models from Figure 2-37. 

 

Therefore, in other words, the channel must thermally isolate the two chambers, but the regenerator has to recover 
the heat of the gas which is not feasible with a thermal insulating material, hence the dilemma. As thermal 
insulation is more problematic, the channel material should be a thermal insulator. To overcome this difficulty, the 
regenerator is made from a matrix of silicon micro pillars on glass substrate [95]. The difficulty with this method is 
that the insertion is done manually in a channel of less than one millimetre in diameter. If the shape of the 
regenerator does not match the channel shape (i.e.  cylindrical) it may block part of the channel or not be 
symmetrical. Knowing that the regenerator substrate has a certain thickness, when it is then introduced into the 
channel, problems related to the circulation of the working gas may occur.  
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Figure 2-37: A complete 3D MEMS motor (alpha configurations) with two flexible membranes clamped at their ends with a 
central disc moving in the form of a truncated cone in two cylindrical chambers connected  by a)one vertical channel or b) a 

vertical and two horizontal channels (MISTIC). With rm the membrane radius; Ct the chamber height; Rd the central disk 
radius; hm, the maximum swept height; dc the chamber diameter, Cr the vertical channel diameter; Lcan, the length of the 

vertical channel; Lrh the length of the horizontal channel and Hrh the height of the horizontal channel.  

2.5.3. Summary 

During the design of this micro-machine, we recall that the parameters that influenced our choices are the 
following:  

- Compatibility with technology available in clean room 

- Simplicity of implementation for the motor, operating temperature between 20 and 200°C with good 

thermal insulation between the hot and cold zones  

- Hermetic membranes oscillating at the lowest possible frequencies but with a large and controlled swept 

volume  

- A connection between these membranes, allowing a reduction of the potential sources of losses or 

failures 

- Ensure a gas flow from the chamber of a module to the other adjacent module chamber,  

- Use a so-called dual-action multiphase free piston motor architecture for the synchronization between 

the moving elements in order to avoid a new source of energy dissipation by friction. 

- A small number of moving parts, reliable and low-cost microfabrication. 

Each horizontal side of our micromachine has 3 membranes (cf. Figure 2-35). The Figure 2-38 summarize all the 
parts and constitution of the complete motor. On this figure, a 3D CAD view of the chambers and membranes alone 
and assembled with the rest is presented. This motor consisted of five different parts: four silicon plates 
(membranes and chambers) and a thick glass plate (thickness consistent with clean room process, and thick enough 
to ensure a thermal insulation). This last one carries cavities for the mechanical connection of the membranes by 
means of an incompressible liquid or by means of solid cylinder bonded to the membranes central part.  The canals 
for the regenerators (to boost the conversion efficiency) are also located in the thick glass wafer. On two silicon 
wafers, compression and expansion chambers are etched, the other two carrying the membranes. 

The compactness of this arrangement not only saves space on a wafer and simplify microfabrication, but also 
maintain symmetry for proper operation of the micro-motor.  The full clean room process will be presented in the 
chapter 3. 

 

a) b) 
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Figure 2-38: 3D CAD view of the constitutive elements of the micro motor. 

2.6.  Conclusion 
A basic Schmidt model of the Stirling motor was described and applied to estimate the order of magnitude of the 
machine power and efficiency. 

Several challenges with respect to miniaturization of Stirling motors have been described such as: the usage of 
membranes instead of pistons, the thermal design to maintain a temperature difference that is large enough 
between the hot and cold source or the critical influence of dead volumes.

Chambers (top image) and 

 membranes (bottom image) 

Regenerator location and MISTIC   

regenerator design from E. Dellali PhD 

 [95] . 

All components 
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CHAPTER 3 :  MICRO-ENGINE MANUFACTURING 

This chapter concerns the microfabrication of the Microscale-Stirling Motor (MSE) for the recovery of low 
temperature thermal energy ranging from 20 to 200°C. The architecture of the prototype that was built is inspired 
by the work of FENIES [5]  (cf. Figure 2-34 a)) during the MISTIC project. The constitutive geometric elements were 
adapted to the MEMS technology. Each of the machine elements (exchangers, chambers, membranes, mechanical 
connection) are redesigned as part of what is achievable using cleanroom technology constrained by the materials 
and equipment available. In order to limit the cost and ensure reproducibility, a proper and simple configuration 
has been developed. In the same way, air at ambient pressure is chosen as the working gas. This MSE consisted of 
a stack of silicon, glass and hybrid membranes (HMs) based on a silicone elastomer embedding a planar silicon 
spring and a mechanical link. The material chosen for the membrane is RTV-silicone, which withstands the 
envisaged temperature level (200°C). The membranes were made in a clean room by a succession of 
photolithography steps followed by etching and then scraping the RTV-silicone paste. The idea of liquid as 
mechanical link between hybrid membranes is based on the work of Chutani et al. [12]. In the following we will 
detail each step of components fabrication till the final assembly of the micromachine.  

 

Figure 3-1: 3D CAD view of chambers and membranes alone and assembled to complete the micromachine 

To finalize the development of the prototype, the different subsets (four silicon plates and a thick glass plate) of 
the machine are assembled using four successive bondings steps. To assemble the silicon wafers, we used 
thermocompression and to assemble these wafers with the glass wafer we used the technique of anodic bonding. 
To illustrate this description, the assembly is shown in Figure 3-1, where a 3D CAD view of the chambers and 
membranes alone and assembled with the rest is detailed. We will now briefly present the clean room methods 
used during the manufacture of this Stirling micromachine before moving on to the manufacture of each 
component.

Regenerators Mechanical links 

Assembled M-SE 

Chambers Hybrid Membranes (HMs) 
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3.1.  Cleanroom methods introduction 
At FEMTO-ST Institute, we have a clean room called "MIMENTO" dedicated to the manufacture of microsystems 
(https://www.femto-st.fr/fr/plateforme-mimento). The two types of possible MEMS geometries (2D and 3D) for 
the miniaturization of an alpha type Stirling machine have been discussed in chapter 2. The purpose of this these is 
to realize a 3D micro-Stirling motor with a size smaller than a cubic centimeter by the use of standard 
microfabrication tools.  

Before detailing the microfabrication of the micromachine, MEMS manufacturing techniques will be briefly 
summarized in order to give the reader a good idea of this technology. Traditional surface and bulk micromachining, 
material removal (etching) and material addition (deposition) techniques are presented in detail in Appendix D.  

Silicon is the most commonly used structuring material because of its well-known properties and well-developed 
manufacturing tools. The fabrication of a MEMS prototype in a clean room occurs by first patterning a substrate (a 
silicon wafer for example) by lithography and then depositing or removing material from it. Often, many of these 
steps are repeated to create ‘features’ on the substrate. Sometimes it is then necessary to assemble several 
substrates to produce the final product or for encapsulation to protect a device against the aggression of the 
environment (to increase its lifetime). Note that in clean rooms, equipment cannot structure all materials. In 
general, only silicon and glass are used as basic materials to be structured.  Much more comprehensive coverage 
of materials can be found in Madou [44] or Kovacs [164] or in [108]. 

3.1.1. Lithography technique 

Lithography technique is the transfer of a master pattern or design feature to the working substrate. There are 
several types of lithography classified according to the combination of material and energy used to transfer the 
pattern on the substrate. The choice of the type of lithography to use depends on the resolution or the size of the 
smallest desired pattern. There are two major types of lithography, electronic lithography using an electron beam 
as structuring energy and photolithography based on light beam (generally UV between 300 and 400 nm) [108]. In 
our work, we used this last technique, which resolution is between 0.13 µm linewidth to 5µm. In conventional 
photolithography, the working substrate is initially coated with a light sensitive chemical material called 
photoresist. The photoresist layer is then patterned by exposure to UV light through a pattern mask. A mask is a 
master image of the desired pattern made on a quartz plate by chromium deposit forming the patterns with sub-
micron precision. Masks are often made using electron beams lithography technique, which will not be described 
here. 

The photoresist is deposited on the substrate using a spin-coater rotating at a speed between 1000 and 10000 rev 
/ min. Indeed, it is a drop which is deposited in the center of the substrate then the substrate is rotated. The 
thickness of photoresist obtained is uniform to about ten nanometers. After spreading, the resist typically still 
contains 15% of solvent [108], which must be evacuated to avoid cracks once the film has completely polymerized. 
The film is slightly heated (around 100 °C for a few minutes) to evaporate the rest of the solvent before the next 
step, which is insolation. During this insolation step, the light flux initiates physicochemical reactions involving a 
modification (weakening or strengthening of the chemical bonds) of the resist solubility in certain liquid solvents 
called developers. For a so-called positive resist, it will cause a rupture or weakening of the covalent internal bonds 
by causing a rearrangement of the latter in a soluble form in a specific solution. Then a development process allows 
for the removal of UV exposed areas of the substrate generating the desired pattern on the substrate in the case 
of positive resist. Subsequent surface or bulk micromachining (etching or depositing) then will defines a feature 
directly on the surface or in the volume of the substrate. Depending on the complexity of the desired feature, this 
lithography and micromachining process is repeated until the desired structure is fabricated. Feature resolution on 
the substrate depends on the wavelength of light used during the exposure.  

3.1.2. Thin film deposition techniques onto silicon and glass 

There is a variety of deposition techniques that make it possible to deposit metals. But in our case, we have used 
the physical vapor deposition by sputtering. In this technique, the substrate is put into contact with a gas containing 
species, certain species in the gas adsorb on the substrate, forming a layer that constitutes the deposit. Regarding 
sputtering, the materials to be deposited is placed on the cathode and the substrate is placed on the anode. The 
system is then placed in a cold plasma. The cathode is then subjected to a high energy particle flux (of the order of 
0.3 to 2 keV) which produces an ejection of material deposited on the substrate due to the electric polarization. 
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Good adhesion between the layer and the substrate is achieved because the energetic ions collect at the target and 
penetrate one or two of the first molecular layers of the substrate. 

3.1.3. Physico-chemical etching with inhibitor or DRIE 

A simple physicochemical dry etching (RIE), which is the most common in the field of microfabrication, the physical 
and chemical etchings actions are combined. It is carried out by removal of material by bombarding the surface of 
the sample with active ions and by chemical reaction of reactive species in the plasma. The etching rates are of the 
order of 0.1 μm.min-1 [108]. 

For the DRIE the difference with simple physicochemical etching is the use of a protective layer along the sides of 
the etched cavities while the bottom is attacked chemically and physically by the reactive species and plasma ions. 
This type of engraving makes it possible to produce geometries with a high aspect ratio. We then speak of deep 
reactive ion etching DRIE or ionic etching with inhibitor and makes it possible to obtain very deep engravings of 
more than 500 μm with aspect ratios exceeding 100:1. In an RIE process, an inhibitory film is formed with plasmas 
produced from CCl4 and CF2(2Cl2) compounds. This phenomenon, coupled with plasma energy sources called Ion 
Plasma Coupling (ICP), gives rise to very deep etchings that can cross the thickness of the standard 1mm silicon 
wafer with a fast speed of the order of 10 μm / min [108]. It is also called a BOSCH process that alternates a silicon 
etching phase (SF6 Sulfur Hexafluoride) and a deposition phase (or passivation) producing a layer very close to 
Teflon due to the decomposition of C4F8. Passivation of the etched sidewalls enables preserving the etching 
anisotropy. 

In what follows, we will explain the steps of microfabrication by detailing the flowchart and briefly, how are done 
the design of photolithography masks and their manufacture in a clean room.  

3.2.  Microfabrication 
The fabrication process of the micromachines (chambers, hybrid membranes, glass spacer, assemblies) is carried 
out in a batch process which is one of the biggest advantage of MEMS technologies. Nevertheless, before 
proceeding to microfabrication in a clean room, the preliminary work includes the elaboration of the patterns (i.e. 
the geometry of the design) via the k-Layout software which can then be reproduced on a special support. This free 
software for designing and editing files in .DXF format is intended for microfabrication of MEMS devices and 
integrated circuits. After this drawing step, the patterns are printed using chromium on a glass support. This support 
thus comprises areas that are opaque or transparent to UV rays and is therefore, called a mask. In the clean room, 
if we work with a 4" wafer, we use a 5" mask.  

When all masks required for microfabrication of the micromachine are ready, a series of different operations are 
carried out for successful microfabrication, namely: 

• Cleaning of the substrate, a coating of photoresist, and a photolithography step for transferring the 
patterns on the substrate. 

• Deep dry etching by DRIE to structure in depth the silicon substrate. The advantage with DRIE is that it 
allows anisotropic etching with vertical and relatively smooth sidewalls. Indeed, the roughness of the 
surfaces during etching is generated by the scalping effect [165] for a ratio between height and width of 
the trench (R.A <30). 

• Deposit of thin metallic layers (Al and Au) for structuring the surface of the substrate. These layers are also 
used as a DRIE etching stop layer for subsequent protection against chemical or thermocompressive 
bonding intermediate layers. 

• Silicon-silicon and glass-silicon bonding steps. 

• Ultrasonic drilling is used to make the openings in the thick glass block. This technique is not a batch 
processing technique but was used here because we do not already have a fabrication equipment able to 
realize high vertical sidewalls in glass. 

• Anodic bonding to assemble the silicon wafers with this pierced glass spacer. 

The choice of the material for the interconnected spiral planar spring depends on two factors:  
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• Thermal properties allowing resistance to temperature variations induced by hot and cold sources and 
heat exchange with the working fluid. Suitable mechanical properties, especially resistance to alternating 
pressure cycles required for the machine operation without fatigue.  

• Manufacturing processes available in a clean room. 

The material chosen to produce the planar spring and chambers is silicon, a material with high thermal conductivity, 
low density and large stiffness, that can be used over long periods of time without showing signs of fatigue, 
deformation or breakage. It is also the most used material for MEMS technology. 

3.2.1. Compression and Expansion Chambers  

3.2.1.a.  Mask 

The drawing of the chambers realized on k-layout for the elaboration of the photolithography masks is represented 
on the Figure 3-2 a), b) and c). The resulting microfabricated masks, which were used in the microfabrication of the 
compression and expansion chambers, are shown in Figure 3-2 d). 

3.2.1.b.  Flowchart 

The fabrication flowchart for the compression and expansion chambers is given below:  

• Steps 1-3: photolithography of the chamber and regenerator channel cross-section 

• Step 4: fabrication of chambers by DRIE (définition of horizontal channel on the left and beginning of 
etching of the regenerator channel on the right)   

• Step 5: photolithography of the regenerator channel from the backside 

• Step 6: etching of the vertical channel by DRIE from backside 

3.2.1.c.  Microfabrication results 

 After successive steps of photolithography and DRIE etching, the obtained wafer is shown on Figure 3-3 a). A zoom 
on three chambers is presented in Figure 3-3 b) and a zoom on a chamber is given in Figure 3-3 d). 

 

 

Figure 3-2: Zoom on the design of the three chambers necessary for a micromachine. b) The complete design of the mask for 
the chambers. c) The design for drilling the external filling holes of the micromachine. d) The physical mask of chambers 

manufactured in a clean room. 

a) b) 

c) d) 
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Figure 3-3: a) Chambers process flow, b) silicon substrates carrying compression and expansion chambers. c) Zoom on the 
three chamber of the micromachine. d) zoom on one chamber and it horizontal channel. 

3.2.2. Membranes 

3.2.2.a.  Masks 

For the microfabrication of the membranes, we manufactured four physical masks. Figure 3-4  shows the detailed 
design geometry of the micro-machine concerning the organization of the membranes, the arrangement of the 3 
liquid filling holes and the location of the 3 cavities of the regenerators. The membranes have a part (constituted 
by the outer ring of circles 6 mm in diameter in the figure) allowing it to be encased on the silicon support. This 
part, consisting of 1mm in width, allows to maintain it after the step of hanging the membrane by DRIE etching of 
the lower part of the wafer.  

The compactness of this arrangement not only saves space on a wafer and simplify microfabrication, but also 
maintain symmetry for proper operation of the micromachine. The four drawings used for realization of all four 
masks used for microfabrication of hybrid membranes in a clean room are shown in Figure 3-5. The parts colored 
black in the drawing will be transparent parts on the physical masks manufactured. Therefore, on the wafers coated 
with the positive resists, it is these parts, which will be dissolved in the developer and which will be etchd by DRIE.   

The first mask defines the location of the first membrane layer which is 6 mm in diameter. The second mask defines 
the planar springs and the disks corresponding to the second layer of the membranes. The third mask protects the 
virgin surface of the wafer against the polymer layer during its application to keep it clean for the next steps. This 
mask therefore enables, through the photoresist, to deposit the polymer layer only in the membrane cavities 
without contaminating the rest of the wafer surface. The fourth mask defines membrane suspensions at the back 
of the wafers. The diameter of the disks on this mask is 5mm. Therefore, it is this part which constitutes the moving 
part of the membranes after microfabrication. It is thus possible to manufacture 21 membranes on a silicon wafer 
thanks to mass fabrication made possible by cleanroom technology. 

 

a) 

b) 

c) d) 
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Figure 3-5 : The design of the three membranes of the micromachine with the layout of each element. 

After describing the usefulness of each mask, we present below the microfabrication process for the membranes 
(cf. Figure 3-8). 

3.2.2.b.  Flowchart  

The fabrication flowchart (design of the 3 masks for membrane microfabrication) for the compression and expan-

sion chambers is given below (Figure 3-8, Figure 3-7 and Figure 3-8):  

 

 

Figure 3-6 :The photolithographic mask number 1. 

 

Mask n°. Fabricated masks Design 

1st 
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Figure 3-7: The photolithographic mask number 2 

 

 

Figure 3-8 : The photolithographic mask number 3 

 

Figure 3-9 : The photolithographic mask number 4 for suspension. 

2nd 

3rd 

4rd 
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• Step 1 - 2: Photolithography of the membrane ∅6mm cavity by Photoresist spin-coating (Mask 1). DRIE 
etching of the membrane ∅6mm cavity 

• Step 3: Photolithography of the spiral (and disc) structure by Photoresist spray-coating (Mask 2) 

• Step 4: DRIE etching of the spiral (and disc) structure and 100nm Al deposition 

•   Step 5: Photoresist deposition by spray-coating to protect the wafer from silicone (Mask 3). Structuring of 
the silicone rubber: it has been found that the RTV-silicone paste is too viscous to be deposited by spin-
coating. A « squeegee-coating » has thus been used to make the silicone rubber membrane. 

• Step 6 - 7: Photolithography and suspensions by backside DRIE (Mask 4) 

 

 

 

Figure 3-10: HMs Microfabrication micro-fabrication process flow: a) Hybrid membrane with spiral and central disc process, 
b) Hybrid membrane with only central disc. Optical picture of hybrid membranes before RTV-silicone squeegee-coating: 

3.2.3. Microfabrication of the glass thermal insulation part  

The part of the micromachine containing the incompressible liquid and the cartridges of the regenerators is a thick 
block (6.5 mm) made of glass to maintain a temperature gradient between the upper and lower chambers of the 
micromachine. In order to structure the holes for the liquid and for the "regenerative" microchips, a first approach 
that can be adopted is wet chemical etching with BHF-buffered hydrofluoric acid by applying two chromium/gold 
films of thickness equal to 20nm and 200nm to protect the non-etched parts of the wafer. But this type of etching 
being isotropic, the openings we will obtain will exceed the desired diameter φ = 5 mm, because of the under-
etching at the walls [13]. However, we have chosen to explore the ultrasonic etching technique, which has been 
slow because of the thickness of the substrate, but much more precise about the shape of the structure [6]. 
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Ultrasonic machining is a microfabrication technique particularly well suited to fragile materials such as glass. This 
type of machining method differs from other existing methods in that the machining is performed without direct 
contact between the tool and the workpiece. Indeed, ultrasonic machining is a method of reproducing form by 
abrasion, particularly suitable for machining hard, fragile and brittle materials (glasses, ceramics, quartz, precious 
stone, semiconductor ...).  

3.2.3.a.  Principle of Ultrasonic machining  

Ultrasonic machining is based on the mechanical vibration (ultrasonic frequency) etching of the end of a machining 
tool called sonotrode and via a liquid containing abrasive particles projected between the tool and the workpiece 
(cf. Figure 3-11 a). These particles in turn act on the latter to tear out small pieces and gradually peel. The etching 
relies on three physical phenomena to remove the material from an object: shear, erosion and abrasion. Shearing 
and abrasion are achieved by a mechanical action due to the projection and pounding of abrasive grains against the 
surface of the workpiece. Cavitation erosion is due to pressure variations within the liquid, caused by vibrations in 
the sonotrode. A chemical action due to the carrier fluid is possible depending on the materials to be machined but 
this action is not used in our case.  

The machine that does the ultrasonic machining consists of an electrical part (a high-frequency current generator), 
an acoustic assembly (transducer, amplifier and sonotrode), a frame comprising a table that receives the assembly 
workpiece holder; a column supporting the machining head and a device for supplying and circulating an abrasive 
material (cf. Figure 3-11 b). The vibration amplitude of the acoustic assembly tool (amplified generally by the tool 
holder) is between 0.002 and 0.15 mm and the power to be supplied by the transducer is of the order of 1 kW. 

The transducer is cooled by a circulation of compressed air. The nominal power of the generator available on the 
market reaches 10 kW. The machining tool often called "sonotrode" by analogy with an electrode vibrates at a 
frequency of about 20 kHz which corresponds to the field of ultrasound. This frequency is obtained by transforming 
an electric current into a mechanical vibration transmitted to the sonotrode, thus vibrating at the same frequency 
of the electrical signal. The transformation of the electrical signal into mechanical vibration is provided by 
piezoelectric ceramic converters compressed between two metal parts (to obtain a sufficient vibration amplitude: 
a few microns to a few tens of micrometers) operating in reverse piezoelectric mode. As a result, under the action 
of an electric field, a proportional mechanical stress is produced whose sign depends on the direction of the field. 
It follows a mechanical deformation. Thus, under the action of an alternating electric field, a mechanical vibration 
is then created.  

 

Figure 3-11: a) Principle of the ultrasonic machining b) Description of the ultrasonic machine.  

The sonotrode is a solid tool (cylinder shape or more complex) to bring the acoustic energy into the work area (cf. 
Figure 3-11 d). It has the negative shape of the part to be made and is fixed to the amplifier by screwing with studs. 
This attachment is considered as a weak point of the device as they do not allow to position precisely, which then 
requires adjustment operations on the machine. The displacement of the tool head is obtained by a micro-
displacement table. The sonotrodes are made of steel or titanium, and the working surface reaches 400 mm². The 
abrasives used are boron carbide, alumina, diamond or silicon carbide in aqueous suspension. The diameter of the 
grains is chosen between 0.005 and 0.8 mm. The surface condition obtained is finer as the grains are small, but the 
working speed varies inversely [166]. Abrasive particles are the real cutting tools. Their nature and the size of their 

a) b) 

Prestressing screw 
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grains must be adapted to the material to be machined (hardness) and to the quality of the desired surfaces. Thus, 
preferably, a material of greater hardness or at least equal to that of the workpiece is chosen to neglect 
fragmentations and to maintain a constant "gap". Indeed, only the wear of the sonotrode will be responsible for 
dimensional changes during machining. 

ABRASIVE Hardness Cutting power 

Natural Diamond 6500/7000 1 

Synthetic diamond - id - 0.7 

Boron carbide 2800 0.5 - 0.6 

Silicon carbide 2500 0.25 - 0.45 

Alumina 2000 to 2100 0.14 - 0.16 

Table 3-1: Details on the abrasives commonly used for micromachining by ultrasound 

The details on the abrasives commonly used are presented in Table 3-1. These abrasives are diamond, boron carbide 
or silicon carbide, which are very hard materials. The concentration of abrasive is optimal when it is 30% by volume 
in the carrier liquid. The grain size of the abrasive influences the speed of vibration and especially the surface 
condition of the workpiece. The optimal grain diameters (commonly) used to make a good hole are shown in Table 
3-2. 

Thus, ultrasonic drilling method consists on projecting very strong abrasive particles on the workpiece and using a 
sonotrode, vibrating at an ultrasonic frequency, to etch a substrate. These particles are brought into the working 
area by a carrier fluid (eg water). Peeled’s pieces evacuation and abrasive grain renewal are ensured thanks to a 
constant liquid flow. However, the work of removing the material as well as the wear depend on many parameters 
such as the vibration (frequency and amplitude), the static pressure, the grains of abrasive (size, nature, 
concentration within the carrier liquid), the depth of penetration, the carrier fluid (nature, circulation conditions), 
the machining tool (nature of the material, shape and dimensions) and the workpiece (nature of the material, shape 
to be produced).  

For the draft For finishing For refinement 

50 to 120 µm  20 à 40 µm  < 12 µm 

Table 3-2: The optimal grain diameters commonly used to make optimal holes 

All these factors make the performance of this type of machining difficult to analyze. However, we can characterize 
them by three criteria: the quantity of material removed, the relative wear of the sonotrode, the surface state of 
the flanks and the bottom of drilling (if not opening). 

3.2.3.b.  Machining of the glass block 

Before machining the glass block, it is necessary to print the patterns to be etched (cf. Figure 3-12a). To do this, we 
first designed and then realized a mask (cf. Figure 3-12 b)) then we proceeded to a cleaning of the glass block 
respecting the levels described in the Figure 3-13. After drying the wafer with a nitrogen pistolet, we performed on 
both sides, a deposition of thin layer (300nm) of aluminum by sputtering, then a negative resist coating since we 
wanted to protect the part not intended for machining by a layer of metal (preferably aluminum). 

We then made a photolithography step to proceed to the etching of the patterns at the level of the aluminum layer 
through the resist that protects the rest of the wafer against the aluminum etching solution for structuring. The Al 
layer was etched using a chemical etching solution without shaking for 4 minutes. The wafers were then placed in 
an EDI bath. The patterned photoresist layer was then removed by placing the wafers in an acetone bath. The 
wafers were then rinsed in an ethanol bath and finally dried with nitrogen. Leaving alignment crosses in the center 
of each pattern is very important as it facilitates alignment during ultrasound etching. Indeed, to perform the 
machining, the centering of the sonotrode requires crosses of alignment in the center of each structure to be 
etched. Thus, using a micro-displacement table x, y, z (150,150,100μm) precise to +/- 5μm, the center of the 
structures is positioned successively in the center of each sonotrode before the start of the machining of the 
structure concerned [167]. 
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Figure 3-12: Pattern drawing of the mask used to etch thick glass. a) A zoom on the three elements necessary for the 
micromachine and b) all the patterns by wafer. 

For example, the dimensions and the final shape of the holes in our large cylindrical cavities (which are 6mm in 
diameter and 6.5mm in height) depend on how the gap and wear of the sonotrode are controlled during machining. 
Nevertheless, we obtained correct machining to 3 or 4μm thanks to a good understanding of the action of abrasives. 
Since the depth to be etched is high, it was necessary to provide several sonotrodes to maintain such precision over 
the entire height. The last, larger diameter working only for the removal of a very weak thickness of material, 
possibly with a grain of smaller diameter to improve the surface condition (<20μm). In this case, the final surface 
finish obtained will reveal cavities whose depth will be less than one-tenth of the grain diameter, that is to say 2 
μm. The machining of the cavities of the regenerator cartridges is more restrictive because the problem in this case 
lies in the realization of the corresponding rectangular sonotrodes. Indeed, since these sonotrodes are reduced in 
size (1.7mm * 1.2mm), their wear intensifies as the machining progresses thus causing the modification of their 
rectangular shape for a circular shape. Thus, to correct the shape, it is necessary to manufacture several sonotrodes 
to make several passages during the etching. 

 

Figure 3-13: a) Flow chart used to make patterns on thick glass. b) Zoom on the three cavities of a micromachine. c) View of 
the whole thick wafer completely etched by ultrasounds. 

a) b) 

a) 

b) 

c) 

1) 
  

2) 
  

3) 
  

4) 
  

Photolithography 

Aluminium deposition   

Lift-off (for the patterns) 

Ultrasonic etching & Al etching  

Fluid channels 1 x 6.5 mm 

Location of the incompressible 
liquid 5 x 6.5 mm b) 
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3.2.4. Assembly of the different parts of the micro machine  

3.2.4.a.  Overview of the assembly procedure 

After manufacturing the required components (chambers, membranes, regenerator), we started by assembling the 
upper chambers with the upper membranes and the lower chambers with the lower membranes. These Si-Si 
assemblies will be performed by Au-Au thermocompression bonding for the reasons that are presented below. 

Then, one of these two stacks (Si-Si top), is assembled first, with one of the faces of the thick block of glass. Finally, 
the second stack (Si-Si bottom) is assembled with the second face of the glass block. Anodic bonding at the lowest 
possible temperature, to avoid destroying the polymer membrane, will perform these Si-Glass assemblies.  

The Figure 3-14 shows the five wafers to be assembled and the bonding technologies used. 

 

Figure 3-14: Summary of the assembly techniques used to realize the complete micro machine. TC: Thermocompression 
bonding, AB: Anodic Bonding. 

3.2.4.b.  Bonding requirements for the micro machine 

The choice of the bonding techniques was done by reviewing the expected bond characteristics and the process 
stresses. 

REQUIRED BOND STRENGTH. The micromachine power will increase with the working gas pressure, therefore the 
bonding strength should be large enough to sustain an inner pressure well above atmospheric pressure. If we seek 
a possible operation under a pressure difference of Pmax = 10 atm (about 1 MPa) with the geometry of our machine, 
the inner pressure would tend to separate the wafers by exerting a force:  

   Fmax = Pmax x Schamber  

   where Schamber is the area on which the inner pressure is applied. 

The bond prevents the wafers from separating up to the breaking tensile stress. For P = Pmax the bond is subjected 

to a stress 𝜎max that balances the pressure force Fmax:    

   𝜎max = Pmax x (Schamber / Sbond) 

Assuming that the top wafer is bonded on the whole contact surface, we have: 

    Smachine = Schamber + Sbond  

Therefore, the stress experienced by the bond is:   

   𝜎max = Pmax / [(Smachine / Schamber)-1] 

For a 20x20 mm machine and 3 chambers of diameter 5 mm, we find that 𝜎max = 173 kPa, which shows that: to use 
the machine with an inner pressure of 10 atmospheres, the bond breaking stress should be well above 200 kPa. 
It should be noted that the requirement on the Glass-Si bonding strength is lower because the inner gas pressure 
is not applied directly to this bond.   
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HERMETICITY. For a high inner pressure, the inner gas will leak through the bond, therefore the inner pressure will 
gradually decrease thus limiting the machine lifetime. For this reason, it is necessary to make bonds that are as 
hermetic as possible. 

BONDING TEMPERATURE. Since an RTV-silicone membrane is used in the machine, it would be destroyed at a 
temperature exceeding 330°C, even during a short time. In addition, this membrane could also break if it is 
submitted to a too large pressure difference during the fabrication process. 

In the present work, the focus is on hermeticity, large bond breaking stress (> 200 kPa) and low temperature 
bonding (< 330 °C). 

3.2.4.c.  Assembly of the silicon wafers (chambers and membranes) 

The chamber and the membranes are manufactured on silicon wafers. Each bonding pair consisted of a p-type 4-
inch Silicon wafer with an average thickness of 525 µm and a Si-Si bonding technology is required.  

CHOICE OF THE ASSEMBLY TECHNOLOGY. There are several known bonding techniques to assemble wafers, such 
as metal alloy bonding, anodic bonding adhesive bonding, plasma activated bonding fusion bonding, glass frit 
bonding and thermocompression bonding [168], [169]. All these bonding methods are used extensively in the 
microelectronics industry and their advantages and drawbacks are listed in Table 3-3.  Each bonding technique 
listed above has its limitations, therefore a bonding technique that minimizes the number of required layers, cost 
and complexity should be selected. Bonding steps has been challenging because almost all 3D devices require a 
unique fabrication approach.  

The simplest silicon-silicon bonding technique is « Direct Bonding », which means that there is no intermediate 
layer between the wafers and that they bond spontaneously, however this kind of bonding method requires a very 
high bonding temperature. Anodic bonding can only be used for the bonding of silicon and glass. A good Au-Si 
eutectic bonding occurs at temperatures exceeding 380°C [35]. Adhesive bonding requires a resist layer such as SU-
8 [170], [171], [172] and is never completely hermetic. Bonding after plasma activation does not allow achieving 
the bonding at specific locations [173], [174] and glass frit bonding requires - as its name suggests - to melt a glass 
powder at rather high temperature.  

Therefore the most interesting bonding method seems to be the thermocompression bonding technology 
allowing bonding of two silicon wafers through two thin metal layers at the interface with good hermeticity and 
toughness [175]. 

Techniques Advantages Drawbacks 

Bonding without intermediate layer Hermetic Flat surface required 

Anodic Strong bond Hight-voltage, bond time, sodium glass 

Direct Strong bond High-T, Very flat surface required 

Low-T direct Low-T Very flat surface required 

Metallic interlayer  Hermetic, non-flat surface ok Specific metals required 

Eutectic Strong bond Flat surface required 

Thermocompression Non-flat surface ok High forces required 

Solder Sef-aligning Bonding flow possible 

Insulating interlayer No-flat surface ok Varies 

Glass frit Hermetic, common in MEMS Large area, medium to high-T 

Adhesive Versatile Non-hermetic 

Table 3-3: Bonding methods extensively used in microelectronics industry  [176]. 

The development of a thermocompression bonding process is thus needed to obtain (i) a hermetic bond, (ii) made 
at a safe temperature for the membrane and (iii) with a bonding strength that is large enough. This process is thus 
of uttermost importance for the micro machine and therefore, a more detailed study of this process has been 
achieved and is reported in section 3.3.  

ASSEMBLY PROCESS FLOW. The recommended parameters for thermocompression bonding were found thanks to 
the study described in §2.5. that has been developed is described in the following flowchart and consists of 4 main 
steps: 
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1. The process starts by depositing a 20 nm Ti adhesion layer followed by a 180 nm Au layer onto the 
substrates using a Plassys MP500 sputtering machine 

2. Then the wafers are aligned using an EVG620 aligner machine and the chamber of EVG501 is configured in 
thermocompression mode using a specific metal tool 

3. The EVG620 chamber is then pumped out at a pressure equal to 10-3 mbar 
4. The wafers are then bonded at 150°C using a bonding force of 4000 N for 1 hour. 

Details concerning the Au-Au thermocompression bonding experimental procedure are given in the 
« Microfabrication Appendix ». 

RESULTS ON THERMOCOMPRESSION BONDING OF CHAMBERS TO MEMBRANES. A number of assemblies were 
performed using the thermocompression bonding process described above. Views of the assembled parts (upper 
and lower silicon parts composed of two assembled wafers) are shown on the Figure 3-15 below. 

 

Figure 3-15: a) Result of the thermocompression between chambers and membranes: a) At the scale of the wafers, b) At the 
scale of a chip with membranes with central disks only, c) At the scale of a chip with spiral membranes, d) Backside of a chip, 

e) The front side of a chip with portholes for characterization 

3.2.4.d.  Assembly by anodic bonding of the Si stacks and the glass spacer 

Anodic bonding (or electrostatic bonding) is particularly used for the sealing of silicon wafers to borofloat glass 
BF33. Unlike thermocompression, anodic bonding requires, in addition to pressure and temperature, a high 
negative DC voltage that is applied to the top glass wafer by a thin metal electrode (cathode) installed with the 
quartz tool and a thick graphite plate, the silicon being connected to the anode electrode as can be seen on the 
following figure. 

 
Figure 3-16: Principle of anodic bonding in the case of a glass and silicon substrate assembly. 

Electrostatic forces hold the glass to silicon during the formation of an irreversible permanent bond under rather 
high temperature, generally greater than 300°C ( [108], [177]. 

Although anodic bonding is a classical MEMS process, in our case several challenges that require a full process 
validation should be mentioned: 

− the temperature should be limited to 330 °C in any case to avoid membrane destruction 

a) 

b) 

c) e) 

d) 
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− the glass thickness (6.5 mm) is much larger than for any previously reported bonding. Cleanroom bonding 
equipments (EVG501 or AML402P) are not designed for such a thick wafer  

− then, the number of wafers to be assembled (5 wafers in total) is unusually large, causing difficulties of 
alignment and flatness of the structures. 

ASSEMBLY OF THE FIRST SILICON WAFER. This process is illustrated in the Figure 3-17. 

Figure 3-17 shows in (a) the thin wafer glass used to prevent the thick glass wafer (shown in b)) to be in direct 
contact with the electrode (since this surface will be bonded later) and (c) the ‘Si-Si stack' (chamber-membranes) 
already bonded by thermocompression. Finally, the result of the first anodic bonding between an Si wafer and the 
glass spacer is shown in (d). After the first bonding at 300°C non-bonded areas visible at the interface still remained. 
Therefore, we closed the chamber to continue bonding, increased the upper plate temperature to 320°C (since we 
observed that the membranes deteriorate at 330°C), and removed the thin glass wafer protection (the glass block 
was in direct contact with the hot plate of the AML chamber). After this second bonding step no more unbonded 
areas could be seen.  

 

 
Figure 3-17: First anodic bonding [chamber-membrane] and thick wafer glass: a) wafer glass protection, b) fixing the wafer 

thick glass on the upper electrode, c) fixing the stack si-si (chamber-membranes), d) result of the first attempt at anodic 
bonding. 

ASSEMBLY OF THE SECOND SILICON WAFER. After this first anodic bonding, a second anodic bonding is carried out (cf. 
Figure 3-18) to connect this new stack (lower chamber & membrane + glass block: total thickness of 7.5 mm) with 
the upper chamber & membrane (1mm thickness).  

Here, the main difficulties are:  

− that the thick stack containing the glass spacer is difficult to maintain on the upper electrode during the 
closure of the chamber,  

− secondly, that this new anodic bonding may create a « debonding effect » of the first bond.  

a) b) 

c) 
d) 
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Indeed, the applied voltage can cause an inverted migration of the ions in the thick stack because the top silicon 
wafer carrying the chambers is connected to the positive electrode (cf. Figure 3-18). To avoid that, we created a 
short circuit by connecting the surface of the electrode with the glass block using small gold springs. Hence, a good 
bonding quality was obtained. 

Figure 3-18 b) and c) shows the result of the last anodic bonding which completes the final assembly of the wafers 
necessary for the microfabrication of the clusters of Stirling micromachines. 

In order to monitor the membrane movement with a laser sensor, a circular hole was etched through the external 
silicon wafer carrying the chambers and a thin glass window was bonded to close the chamber. This window was 
either made of a full glass wafer or a several smaller 1.5 mm diameter windows. 

 

 

Figure 3-18 : Left: Preparation of the two stack (Si-Si-Glass and Si-Si) for the last anodic bonding (Front side view). Right: 
Result of final anodic bonding: Top chamber-membranes-thick wafer glass and Bottom chamber-membranes. b) Front side 

view, c) Backside view. 

3.2.4.e.  Procedure for liquid filling 

The filling of the incompressible liquid providing the mechanical coupling between upper and lower membranes is 
performed after the final assembly of the micromachine.  

Design of liquid filling system. The liquid filling step is a complex and critical step when carried out during 
microfabrication. Indeed, in a first case we first assembled only the two substrates carrying the membranes with 
the one carrying the cavities for the liquid, which is the thick glass block. Then fill the three cavities. The problem 
that happened is the liquid contaminated both sides of the stack during filling, preventing the possibility of correctly 
assembling this first stack with the rest (the two substrates carrying the chambers). In addition, after filling, as the 
bonding require heating at high temperatures (> 250°C) during the assembly process, the liquid may have boiled or 
exploded and thus may have contaminated the bonding equipment chamber inside the clean room. The best 
technique we have found to avoid this problem is to fill the liquid only after completely assembling the 
micromachine. For this, it was necessary to provide holes (through the substrate carrying the upper chambers) 
leading to channels (etchd in the underside of the substate carrying the upper membranes) giving access to the 
cavities provided for the liquid (in the glass block). The Figure 3-19 shows the external holes, which allow this final 
filling of the liquid after assembly of the micromachine. 

The filling is carried out in batch process (cf. Figure 3-22) using a vacuum bell in which we put a crystallizer filled 
with an appropriate liquid (Vaseline type for instance). Then, after some aspirations to reduce the gas bubbles 
probably trapped in the liquid, the stack of wafers constituting the micromachines are plunged into the liquid. After 
closing the vacuum chamber, we pump out the air, allowing the liquid to enter the cavities from which the air has 
been extracted. The complete filling is completed after a few tens of minutes. Since liquid Vaseline is colorless, as 
transparent as the glass block, it is difficult to appreciate the level of filling. We proceed then to the sealing of the 
holes having served for the filling by using RTV-silicone. 

a) 

b) 
c) 
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Figure 3-19 : External holes for liquid filling 

 
Figure 3-20: vacuum chamber used for filling the liquid in the 

micromachine by sucking air from the chamber. 

 

3.2.4.f.  Dicing of the micromachines  

The dicing is performed after filling the liquid at wafer scale. This operation consists in cutting the Si-Si / Glass / Si-
Si stack of wafers in order to retrieve the micromachines individually and to characterize them one by one to look 
for possible defects. A DISCO DAD 321 precision saw is used to dice the stack (cf. Figure 3-22). The maximum cutting 
depth is 3.2 mm per face. The wafer stack, 8.5 mm thick, is fixed on an adhesive UV film and then is held by vacuum 
for cutting, using an annular blade cooled by water and rotating at 30000 rpm [167]. The blade diameter is 56 mm 
and its thickness is 200 μm.  

Since it is a thick stack of wafers, the cut is made in double or triple passes with a speed of 0.2 m/s. After cutting, 
the adhesive film is peeled off after UV insolation, liberating the micromachine chips. Photos of a Stirling 
micromachine obtained after cutting the stack are shown in the Figure 3-21. The kapton tape allows to temporarily 
close the filling holes after the liquid filling step. After the dicing step, the filling quality of a machine can be checked 
by observing the side of the glass spacer. If the filling is correct, the kapton tape is replaced by RTV-silicone at the 
filling holes of the liquid. Otherwise, the filling process should be continued. 

 

Figure 3-22 : A complete Stirling micromachine obtained after cutting the Stirling micromachine cluster stack: a) Front side 
with observation windows, b) Back side with capton sealing film 

3.2.5. Different versions of fabricated micromachines 

3.2.5.a.  Stirling Micromachines with liquid piston and magnets for operation in 
cooling mode  

To be able to characterize le micromachines also in cooling mode, we have also assembled micromachines 
incorporating small permanent magnets glued on the membranes. These 3 mm diameter 1 mm thick Nd2Fe14B 
magnets were installed to allow membrane actuation through an external magnetic field. The magnet’s additional 
mass in not negligible and to avoid unbalancing two of which are active, and one has been demagnetized. These 
magnets were glued on the lower surfaces of the three membranes inside the cavities containing the liquid piston. 
The remaining spaces were completed by the incompressible liquid. The membranes can thus be actuated with two 
external coils, placed in near the membranes with the active magnets. 

3.2.5.b.  Stirling Micromachines with a solid connection between membranes.  

In addition, to avoid the difficulties related to the filling of the liquid and the risk of contamination of the equipment 
of the clean room, we have also assembled micromachines whose mechanical connection between membranes is 
provided by rigid bars, either in glass or in plastic. These machines were called « micromachines with solid 

a) 

b) c) a) 



Chapter 3-Micromachine manufacturing 

Page 107 on 229 

connections ». Glass connections were made by ultrasonic machining and plastic connections by 3D printing. The 
bars were attached to the central part of the membranes to connect them (cf. Figure 3-23) through the cavity in 
the glass block. At the other end of the bars, a permanent magnet was fixed, which was connected on the opposite 
side to the other membrane. 

 

Figure 3-23: a) Solid piston first design. b) The central studs representing the solid glass piston etched in the thick block by 
ultrasonic machining 

3.3.  Study of room temperature thermocompression 

3.3.1.a.  Introduction and objectives 

Thermocompression bonding is a simple technique that requires the simultaneous application of temperature and 
pressure after bringing in contact the wafers to be bonded. The most successful thermocompression bonding 
procedures use copper or gold as intermediate bonding materials [178]. In our case we used gold as an intermediate 
layer, due to its resistance to corrosion, ductility, thermal conductivity, hermeticity as a bond metal and to the fact 
that it does not attract inorganic substances such as sludge particles. The Au-Au bond is achieved by means of 
interatomic attraction forces (at distances of some angstroms).  

The elements influencing thermocompression bonding are the following: 

Bonding interface quality. At the interface between the wafers, there may be ductile and mobile contaminants. 
They are protective barrier layers against the oxidation of gold: surface layers of oxygen, CO2 or SO2 [179]. Their 
mechanical and thermal characteristics can prevent a good contact at the interface since they resist up to a 
temperature of 350°C [180]. Oxides naturally present on the surface of the gold layer prevent the formation of solid 
bonds. They can be removed from the bond surface by the application of UV radiation. 

There may also be at the interface, asperities and roughness. They have two effects on the bond: a positive effect 
and a negative effect. The positive effect is that it creates stress concentration points when brought into contact 
leading to a local plastic deformation allowing an instant bond to take place. The negative effect is a lack of 
hermeticity, which will require application of a greater force to flatten the interface during bonding. Finally, the 
flatness of the wafers (if they are a little curved) combined with a non-uniformity of their thicknesses (TTV) have a 
very negative effect on the bond and will require applying a very high pressure to flatten the substrates [178], [181], 
which is not possible when wafers contain fragile structures. 

Bonding pressure. The pressure allows, among other things, to bring both surfaces (to be bonded) close enough to 
allow the interatomic attractive forces to take place [178]. It also enables deforming the interface (to overcome the 
asperities and curvatures of the wafers) and flattening because higher pressure induces interfacial shear stresses 
that scatter barrier films (contaminant). It also keeps the gold surfaces in intimate contact throughout the 
interatomic bond formation time, which corresponds to the duration of the bond. If the bonding is done at ambient 

b) 

c) 

a) 
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temperature, larger pressure may be required for the interatomic attraction to overcome surface roughness (Zhang, 
Ang, Chen, Wong, & Wei, 2007). 

Bonding temperature. The effect of temperature is to initiate the rearrangement of atoms to initiate the formation 
of new Au-Au bonds made possible by a surface diffusion process between the Au layers in intimate contact. If 
more thermal energy is added, a lower bonding pressure is sufficient to achieve the same degree of bonding [178]. 
Indeed, the temperature increases the ductility of the gold layer and soften it, which facilitates the initiation of the 
bond [178]. When the deformations of the gold layer exceed 15%, its hardness coefficient decreases rapidly with 
increasing temperature. Indeed, such a deformation of the gold layer considerably weakens its thermal resistance 
[182]. In addition, a higher temperature decreases or breaks the films of organic contaminants, by tearing the 
barrier layer already deformed by the applied pressure, which allows obtaining a good hermeticity and a good 
bonding quality. However, reference [180] suggests that no strong bond can be obtained below a bonding 
temperature of 150 °C. 

Therefore, it is concluded that substrates with low TTV, low roughness and low deformation are required since 
mechanical features of wafers (TTV, bow, warp) are important to achieve good bonding quality. A TTV <5 μm and 
Bow <40μm is advised for anodic bonding and a TTV <3 μm and Bow <20μm is advised for Au-Au bonding 
thermocompression. The thermocompression bonding quality increases with the application of high temperature 
during bonding (about 300°C). Otherwise, considerable pressure may be required to obtain thermocompression 
bonding at room temperature, which would likely damage the bonded parts if they were fragile.  

In the literature, the authors often believe that to obtain a good quality of thermocompressive bonding, it is 
necessary to simultaneously apply a high pressure and a high temperature (> 350°C). Earlier attempts of 
thermocompression bonding required temperatures of about 400 °C, a peak pressure of 2.76 MPa and a bonding 
time of about 3 hours [183]. In the following reported bonding techniques, temperatures in the same range were 
used with changes in static pressure and bonding time. A successful bond was obtained at 300 °C by applying a 
pressure of 7 MPa, (corresponding to the gold-coated area), and a bonding time of 10 min [184]. Other successful 
approaches were described in [185], [186], [187], however, none of them shows a successful bonding at room 
temperature.  

However, the micromachine membranes may be damaged by temperatures exceeding 300°C. Therefore, in order 
to fully and permanently preserve the mechanical properties of our membranes, it is necessary to find another low-
temperature bonding technique that is as efficient and adapted as possible, or to do a thorough study of this 
thermocompression technique. We have chosen to perform a deep study on thermocompression at room 
temperature, since the bond quality also depends on the gold layer surface quality, the gold adhesion layer (Ti or 
Cr) [29], atmosphere prevailing in the bonding chamber (vacuum bonding or under specific atmosphere) and 
duration of the bond. The advantage of room temperature bonding is that we can achieve a reduction in bonding 
time (no loss of time for heating and cooling), an increase in wafer alignment accuracy, absence of thermal 
distortion and a larger flexibility in the selection of parts to be bonded.  

Thermocompression remains one of the best bonding techniques to connect any type of solid material through a 
metal layer. Therefore, our ultimate goal is to find the optimal conditions to achieve an effective bonding at room 
temperature for the assembly of the micromachine without risk of damaging the membranes. 

3.3.1.b.  Study Methodology 

Starting with bonding parameters that have been found in the literature and in previous studies, we have tried to 
perform the thermocompression bonding at room temperature and then some parameters were optimized to 
obtain improved bonding reproducibility and better bond strengths. The previous results showed that: 

• bonding of full wafers using thermocompression succeeded at room temperature 

• bonding of gold patterns obtained by photolithography did not succeed (there was almost no adhesion 
between both patterned gold surfaces) 

• In the case of our machine, we obviously need to pattern the gold adhesion surfaces. Therefore, we tried 
to investigate the following procedures : 

• try to deposit the gold layer through a stencil mask to avoid patterning with a resist, 

• enhance the adhesion by choosing the best gold adhesion layer between Cr and Ti,  
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• study the effect of substrate stripping before adhesion layer deposition and the effect of the morphology 
of the deposited gold layers [173].  

• try again to bond surfaces patterned by lithography with a strong gold surface cleaning, to remove residual 
molecules coming from the photolithography process.  

3.3.1.c.  Bonding procedure 

The study was based on the bonding of two 3-inch wafers, one of which is structured on the surface and the other 
has been gold-coated on the whole surface. The assembly of wafers is then cut into square chips, which will be 
glued on traction test pads designed specifically for a Bose type traction machine. The maximum pull force exerted 
by the machine before the wafers separate is recorded (breaking force) and this force is divided by the total bonded 
surface which gives the breaking stress (in N/mm2 or MPa). 

Masks. In order to avoid contaminating the gold surfaces by a lithography process we decided to structure the 
wafer gold patterns by using metal screen masks (cf. Figure 3-24) in the chamber of the Plassys MP500 sputtering 
machine. The metal layers are deposited through an aluminium screen and their pattern will thus reproduce the 
pattern of the screen holes. On the other wafer the deposition is made on the whole surface. In all cases, the wafers 
will be later divided in four 2 x 2 cm silicon chips. 

 

Figure 3-24: Screen masks used for the thermocompression study at room temperature: mask1 contains five ∅1 mm holes per chip (right) 

and mask2 one ∅3 mm hole per chip (right) 

 

Figure 3-25: Schema showing silicon wafers, covered with screen mask inside the deposition machine. 

Silicon wafers, covered with the screen masks, were introduced inside the deposition machine (cf. Figure 3-25). In 
some cases, a stripping procedure using an argon plasma was performed prior to metal deposition. Then a thin 
adhesion layer (Cr or Ti) was deposited, followed by a thicker layer of gold.   

In the first screen (Mask1), five 1 mm diameter holes per chip were drilled, with 4 repetitions on the wafer (cf. 
Figure 3-24). These five holes are the areas where the gold will be deposited on the patterned wafer, with a total 
area of 3.93 mm2 per chip. In the second screen (Mask2), we grouped these 5 holes in one 3 mm diameter hole 
(7.07 mm2 per chip) centered on the chip. 

Bonding conditions. Two series of tests have been carried out. In the preliminary tests, standard bonding 
parameters were used. In the confirmation tests, the bonding parameters were changed to try improving the 
results. For all cases, the adhesion layer and the gold layer are identical for the « bottom wafers » (with gold 
deposition on the whole surface) and the « top wafers » (containing several gold pads). 

b) a) 

1 Chip = (2x2cm) 

Cutting 
marks 

1st Mask 2nd Mask 
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3.3.1.d.  Preliminary tests.  

The steps and the operating conditions for bonding are described below: 

a) Preparation of the wafers. Piranha + Deionized water + Dry nitrogen 
b) Deposition of metal layers. The alignment with the physical masks is done by aligning the flats of the wafers 

and the mask. Ti or Cr adhesion layers are deposited in the MP500 sputtering machine followed 
immediately by gold sputtering. 

c) Bonding (EVG machine). The alignment also relies on the wafer flats. The bonding parameters are (1) the 
bonding force, (2) temperature, (3) time and (4) vacuum quality. 

d) Chips cutting. Cutting lines are defined by making a local deposition of Al on one of the rear faces of the 
two wafers already bonded. Then at the cutting workshop, the stack is cut into four 2cmx2cm chips using 
a precision saw with a 100 µm thick blade. 

3.3.1.e.  Confirmation tests 

In order to improve the results obtained during preliminary test some parameters have been modified for the 
second series of tests: 

a) Deposited layers: Chrome (15nm) and Gold (180nm) 
b) Bonding conditions (EVG): F = 500N and Vacuum = 10-3 mbar 

The main bonding parameters are summarized in Table 3-4. 

 

Bonding 
force  

(N) 

T 
(°C) 

Bonding 
Time 
(min) 

Vacuum 
(mbar) 

Cr or Ti 

thickness 
(nm) 

Au  
thickness 

(nm) 

Total area bonded 
per Chip (mm2) 

Preliminary tests 100 20 20 10-2 15-25 100-180 Mask1: 
3.93 mm2 

Mask2: 
7.07 mm2 

Confirmation tests 500 20  20  10-3 15-20-25 180 

Table 3-4 : main bonding parameters used during the bonding tests 

3.3.1.f.  Characterization procedure 

Among the variety of bond strength quantification methods available [188], tensile testing is the most relevant for 
this study. Indeed, separation of wafers in the micromachine due to high inner gas pressure will be produced by a 
tensile stress. Tensile testing is the second most reported method for the quantification of the wafer bond strength 
[188]. It is straightforward to use and the test procedure can be made operator independent. 

A tensile strength measurements set-up, depicted in Figure 3-26, with equally sized specimen and stud was used. 
This also makes the glued area greater than the bond area, thus facilitating fracture to occur at the bond and not 
on the glue interface. The entire test set-up is firmly fixed to the tensile test machine, and the whole set-up was 
carefully aligned to avoid any parasitic shear stress. The tensile test machine was set-up to generate an axial force 
at a rate of 0.2 N/s and the bonded wafers were pulled apart. The force for which the bond breaks was recorded: 
this force divided by the total bonded area is reported as the tensile bond strength (in MPa). 

 

Figure 3-27: a) Schematic diagram of the Tensile Test, (b) & (c) pull studs used (c) ElectroForce ® 3200 Instrument with fixed 
test set-up 

b) a) c) c) 
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The tensile test machine used was the commercially available ElectroForce ®3200 Instrument (cf. Figure 3-27).The 
preparation of Pull test metal holders is first carried out in the workshop by progressively polishing (papers grain of 
600 then 1200) followed by rinse in demonized water and then drying. The holders are cleaned with acetone and 
then dried. Then, the tested chips are glued with the two-component Polytec EP653-T glue prepared by mixing a 
part A (very viscous adhesive agent) and a part B (cross-linking agent) in a ratio of 100:35. We used 500 g of A and 
175 g of B well-mixed. Finally, we deposited and spread a drop from the center of each metal support, stopping at 
1mm from the edges, then we put in contact the two supports with a chip placed in the middle. To polymerize the 
glue, we placed the samples in an oven at 70°C for 2 hours, then we let them cool slowly in the cleanroom, before 
bringing them to do the Pull tests.  

When spreading the glue, we stoped at 1mm from the edges of the metal holder, to avoid infiltration of the glue in 
the chip, which may increase the value of the separation force during Pull tests (even if negligible). 

3.3.1.g.  Results and interpretation of the performed tests 

Five bond tests were performed with different bonding conditions. For each test, 4 samples bonded in the same 
conditions were characterized (when possible). 

i General observations on Test#1: Si/CR is the weakest interface 

For the Test #1, all samples underwent surface stripping of the substrate prior deposition of the adhesion layer. 
Chips 1.1 and 1.2 were measured, the two parts of chip1.3 have separated at a very low pull force that could not 
be measured and chip 1.4 has broken during dicing. From the results of the first test, we observed that Au/Au 
adhesion is better than Cr/Si adhesion: on 15 bond points (Chips 1.1 to 1.3), 10 broke at the Cr/Si interface (cf. 
Figure 3-28, Figure 3-29 and Table 3-5). 

 

Figure 3-28: Results of pull test on Chips 1 and 2 

 

Figure 3-29: Failure interface after tensile test with two 3"  wafers  

(1-10 Ω.cm; <100>; 380 ± 25 μm ; NO; DF) 

Chip 1.1 

Face A Face B 

Chip 1.2 

Face A Face B 

Chip 1.3 

Face A Face B 
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Then the bond strength was measured (Test#1) and the results are given for the 4 samples in the last column of the 
following table: 

 

Test # Mask 
nb. 

Cr/Au thickness 
(nm) 

Vacuum 
(mbar) 

Bonding 
pressure 

Si 
Stripping 

Bond strengths of 4 
samples (MPa) 

1 1 Cr15 / Au100 10-2 6.4 N/mm2 Yes 60 - 14 - 0 - NA 
(Avg. 24.7) 

Table 3-5 : bond strength results of Test#1 for the 4 samples 

DISCUSSION OF FIRST TEST. The results are very heterogeneous and infiltrations of glue between the two parts of 
chip1.1 were observed. Therefore, the large breaking stress (61 MPa) observed for chip1.1 may come from the 
adhesion of glue instead of Au/Au bonding (this result is thus not accurate). The breaking force for chip1.3 was 
close to zero and could not be measured. The only accurate measurement was made on chip1.2, which exhibits a 
bond strength of 14 MPa.  

After this first test it was suspected that shadowing effects during Cr and Au depositions might limit the deposited 
metal thickness, especially for holes with small diameters. Therefore, it was decided to make a new mask (Mask2) 
for which the 5 contact points were grouped in a larger 3.9 mm2 disc centered on the chip to minimize shadowing. 
In addition, thicker layers of gold were deposited to compensate for residual shadowing effects. 

SECOND TEST WITH MASK2. The bonding with Mask2 was done with the same conditions as for Test1, except that 
the gold thickness was 180 nm and no silicon stripping was done. 

Observations. For test2, pictures of the bonded surfaces taken after separation of the two parts of the chips are 
shown in Figure 3-30.  

 

Figure 3-31 : For chips 2.1 and 2.2, Silicon has been torn from wafer A the one with a gold disk) and sticks to wafer B (the fully 
gold-coated one). Results obtained after the chip stripping tests made during the second study. Visual observation and EDS 

(Electron Discharge spectroscopy) of the bonded area 

For chip2.1, we observe a 400 µm deep hole larger than the gold disk in wafer A, and a kind of pad (partially made 
of silicon taken from wafer A) on wafer B. Therefore, we conclude that Au/Au adhesion was greater than Cr/Si 
which was greater than the bulk of silicon. Therefore, on A, we have only silicon left and on B, we have several 
layers which are made of Si/Cr/Au/Au/Cr (starting from the top of the chips). 

Chip 2.1 

Chip 2.2 
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SEM images accompanied by some EDS spectra (Electron Discharge spectroscopy) allowed observing more closely 
the interface where the breaks occurred. Since EDS is limited in depth to 2µm, only silicon is observed in this case, 
because the silicon thickness torn from face A is much larger than 2 µm.  

It can be said that for this chip the adhesion Au/Au has been greater than the adhesion Cr/Si which was itself greater 
than the cohesion of the silicon in the bulk.  

For the other chips, it is observed that the breakage occurs at the Cr/Si interface of wafer B (the Cr layer is thus 
transferred to the wafer A) except on a part of the disk area where the Cr/Si interface is stronger and on this areas, 
silicon is torn from wafer B and transferred to wafer A.  Therefore, there is generally a partial removal of silicon 
from wafer A (on 20% of the disc area for chip 2.2, 5% on chip 2.3 and 70% on chip 2.4).  

Observation of shadowing effects. On chip 2.3, SEM observations of the chips after the pull tests show that there 
was a shadowing effect related to the physical hole of the masks used. In fact, the deposition goes well at the center 
but deteriorates towards the edges. The transition region is estimated to be 20 µm wide for the rather large hole 
of Mask2. 

 

Figure 3-32: SEM image of the gold layer highlighting the peripheral part and EDS spectra showing a mixture of gold and 
silicon at the edge of the gold disk 

Pull-test results. The bond strength results for test2 are given in the table below: 

Test # Mask 
nb. 

Cr/Au thickness 
(nm) 

Vacuum 

(mbar) 
Bonding 
pressure 

Si 
Stripping 

Bond strengths of 4 
samples (MPa) 

2 2 Cr 15 / Au180 10-2 9.4 N/mm2 No 21 - 19 - 24 - 28 
(Avg. 23) 

Table 3-6: The bond strength results for test2 

The results were clearly much more reproducible than for test1 and the bonding strength is much better: all chips 
were bonded and bonding strengths ranged between 19 MPa and 28 MPa. 

CONFIRMATION TESTS. Since several parameters have been modified between test1 and test2, it was necessary to 
perform a second series of tests to confirm the behavior of the bonding process. Three additional tests were done 
with results shown below : 

Test # Mask 
nb. 

Cr/Au 
thickness (nm) 

Vacuum 
(mbar) 

Bonding 
pressure 

Si 
Stripping 

Bond strengths of 4 
samples (MPa) 

3 1 Cr25 / Au180 10-2 6.4 N/mm2 No 30 - 11 - 36 - 29 (avg. 26.5) 

4 2 Ti15 / Au180 10-3 9.4 N/mm2 No 19 - 29 - 43 - 19 (avg. 28) 

5 2 Cr25 / Au180 10-3 9.4 N/mm2 Yes 13 - 11 - NA - NA (avg. 12) 

Table 3-7: Three additional tests results 

These results are discussed in the next sections. 
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ii Effect of silicon wafer stripping prior to Cr/Au deposition 

By comparing the pull-tests results of tests1 and 2, it can be inferred that stripping of the silicon wafer before 
bonding may degrade the results instead of improving them (as observed for full-wafer bonding). 

Test3 was done with similar bonding conditions as test1 but without initial wafer stripping and also shows very 
good results. Therefore, it confirms that results are better without initial wafer stripping.  

Another test with initial wafer stripping was done in test5 and again the results were much worse than for test2 
(which confirms again that bad effect wafer stripping).  

INTERPRETATION. This result is opposite to observations done on the bonding of two gold-coated full-wafers. 
However, we noticed that during the wafer stripping, the metal mask might also have been sputtered on the wafer: 
therefore, the silicon wafer may be contaminated by metal deposition before the first Chromium deposition (cf. 
Figure 3-33). 

  

Figure 3-33: schema explaining the silicon wafer potential contamination by metal deposition from the screen mask before 
the first Chromium deposition. 

This contamination of the wafer may explain the bad results obtained when stripping the wafer through a metal 
stencil mask prior to Cr layer deposition, as well as the fact that the weakest interface is the Si/Cr interface.    

 

iii Effect of adhesion layer material 

Titanium is known as a good adhesion layer, therefore test4 was made with a titanium adhesion layer. First, we 
proceeded to stripping the Ti target for 2 min with a current of 1A under 7 × 10-3 mbar vacuum, then the deposition 
was performed during 20s with the same conditions of current and pressure. Chip bonding was carried out at room 
temperature with the same condition as for Cr adhesion layers. The observed bond strength is very high compared 
to the literature [175], [189], [190], [191], and the average bond strength (28 MPa) is the best that has been 
obtained in this study. 

A comparison of test4 to all other tests using chromium as an adhesion layer suggests that Ti may be even better 
than chromium. However, these results have to be confirmed on series of tests, but at least we can recommend 
using Titanium instead of Chromium to increase the probability of obtaining a strong thermocompression bond. 

 

iv Bonding of wafers patterned by photolithography  

Bonding strength of gold disks structured by photolithography followed by Au and Cr etching 

Pre-processing before bonding Resulting bonding 
strength 

Without gold stripping 0 

With 50W Ar plasma stripping of gold 0 

With Piranha cleaning followed by 15 min Oxygen plasma cleaning and 150W Ar plasma 
stripping 

0 

Table 3-8: Results of the two tests done with gold surface structured by photolithography followed by Au wet etching 

We have also tried to bond wafers whose gold layer are structured by photolithography followed by gold chemical 
etching solution and paid particular attention to cleaning of the gold surface before bonding to remove surface 
contamination of the gold layer from photoresist developer's solutions and chemical etching mixtures. After a 
reference test without cleaning, two tests were done with gold surface cleaning and the results are shown in Table 
3-8. 
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For all tests, the bonding failed (the bond strength was almost zero). These results are quite amazing and are not 
fully explained to date.  

However, it is important to notice that the gold surface was totally covered by the resist during the 
photolithography process, which will not be the case if we try to do the photolithography with a lift-off process 
(although the gold surface will see the resist developer in both cases).  

Therefore, it is worth trying to structure the gold surface with a lift-off process to discriminate whether the problem 
comes from the resist or from the resist developer. 

 

3.3.1.h.  Conclusions and perspectives 

• Recommended bonding conditions. 

From the results of this study, we can recommend the following bonding process conditions for room temperature 
Au-Au thermocompression bonding with stencil masks: 

Deposit on both wafers a 15 nm Ti adhesion layer (probably 25 nm may be better in case of small patterns) followed 
by 180 nm of gold sputtered in the same chamber without wafer stripping before Ti deposition 

Do the bonding of freshly deposited gold patterns with an applied force of 10 N per mm2 of gold coated area, under 
10–2 mbar vacuum or less 

 Under these conditions, bond strengths in the range 20 - 30 MPa can be obtained. 

• Comparison with the results obtained from the literature 

For most of the results obtained in recent papers, the bonding strengths are slightly higher than our results (more 
than 30 MPa), but bonding temperature is usually large and would not be applicable to fragile MEMS device such 
as those containing polymers. For instance, in [189] a bonding strength of 35 MPa was obtained using surface 
activated bonding, however the bonding temperature was 150°C, with an applied pressure of more than 100 MPa. 
In [175] an average bond strength of 33 MPa was obtained, at a bonding temperature of 420°C with a bonding 
pressure of 5.7 MPa. In [191], a bond strength in the range of 40-60 MPa was obtained, but for a bonding 
temperature of 380°C. We have thus demonstrated for the first time that Au thermocompression bonding was 
possible at room temperature with quite good bonding strengths.  

In addition, none of the reported studies were performed with structured bonding pads: our results show that 
bonding is possible with bonding pads that were defined by using stencil masks. 

• Impact on the design of the Stirling Micromachine  

For the Stirling micromachine a required bonding strength of 200 kPa has been estimated in section 3.3.1.g. to 
prevent separation of the wafers, even under 10 bar inner gas pressure. Therefore, we conclude that the bonding 
technology that was developed gives a bonding strength that is 100 times larger than the required one.   

• Perspectives for thermocompression bonding 

Applicability to other MEMS materials. We have demonstrated that thermocompression bonding can be 
performed at room temperature with a high bond strength. This bonding has been done for Si-Si assemblies but 
may be also possible for various kind of substrates (glass, LiNbO3, sapphire, etc.). It can thus be used as a kind of 
« universal » assembly technology that does not require a large process temperature. It is expected to replace the 
anodic bonding step for the fabrication of Stirling micromachines.  

Bonding on gold pads structured by lithography. Although bonding was not successful on gold pads obtained by 
photolithography, using a lift-off lithography process may avoid contacts between the gold pad and the 
photolithography resist. If the surface modification of the gold pad does not come from the developer, the bonding 
may be successful. 
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3.4.  Conclusion 

The main results of chapter 3 are the following:   

− A micromachine design allowing batch microfabrication by assembling several wafers has been imagined 
and its fabrication has been fully validated 

− An RTV silicone-based membrane able to sustain large deflections (~1 mm), tolerating temperatures up 
to 300°C and containing silicon springs that could be used later for energy harvesting, was fabricated and 
proved to be very robust 

− Anodic bonding of a multi wafer stack has been achieved successfully  

− The questions of liquid filling and micromachine sealing was solved 

− Gold thermocompression bonding was demonstrated at room temperature on structured gold pads, with 
20-30 MPa bond strengths that complies to the micromachine specifications and may further simplify the 
fabrication process. 
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CHAPTER 4 :  MEMBRANES CHARACTERIZATIONS AND RESULTS  

In this chapter, we present the characterization of two types of membrane to be implemented in the Stirling 
micromachine. These membranes consist of an RTV-silicone layer associated with either a silicon planar spiral, or a 
silicon disk. The RTV-silicone is composed of Poly-dimethylsiloxane (PDMS) with an excess of silicon atoms. These 
membranes are to be used in a Stirling micro-machine continuously operating at 200°C (maximum temperature). 
Knowing that the temperature has an influence on the mechanical properties of PDMS-based membranes [192], an 
important issue is their behavior under high temperature operation.  

Therefore, to properly design and be able to predict the natural oscillation frequency of these membranes, their 
mechanical and thermal properties should be identified. Indeed, the stability of their oscillation frequency is critical 
for the Stirling micro heat motor operation and optimization. Apart from the frequency stability of the membranes 
as a function of temperature, the microfluidic aspect (flow velocity of the working gas through the micro pipes, the 
time required for heat exchange) requires using membranes with low natural frequencies and large displacement 
amplitude.  

Indeed, several membrane-based PowerMEMS devices require large swept volume to start and to be efficient [193], 
[12]. But, when a thin membrane is made with standard cleanroom materials (silicon for example), it cannot deliver 
such performance without breaking. One possibility is to add a complex system for amplitude amplification [194]. 
But this can lead to a high actuating force to deflect the membrane, which may increase the size of the final device. 
Consequently, elastomer materials, such as silicones, because of their unique properties (such as hight elasticity, 
transparency, high temperature application, etc), are now widely preferred in the realization of membranes-based 
microsystems such as micropumps [195], fluidic systems [196], [197], [198], [199], [200], [201]), sensors and 
actuators ( [202], [203], [204]). They are also used in microdevices packaging to protect components from 
environmental factors and mechanical shocks within a large temperature range (-50°C to +200°C) [205]. Their main 
advantages are [110]:  

− Elasticity and soft nature (for low actuation load, reversible deformations),  

− Rapid prototyping by molding/casting with high thickness homogeneity [206] 

− Cost effectiveness [207], [208]  

− Biocompatibility (biological assays),  

− Optical transparency (for observations and characterizations such as biological/chemical analysis).  

Regarding the characteristics of our RTV-silicone product the manufacturer (Permatex) does not provide much 
details on mechanical properties and aging. To our knowledge, there is still no bibliography on this RTV-Silicone in 
particular. Therefore, RTV-silicone material mechanical properties and their evolution with temperature are 
studied. Since the second part of membranes consists of either a planar silicon spring or only a central silicon disc, 
we have also studied the mechanical and thermal behavior of these two structures when embedded inside the RTV 
silicone layer.  

In this chapter we will present tensile tests that have been carried out on RTV silicone specimens to determine their 
elasticity. Then, after the membranes were manufactured, their natural vibration frequencies and mechanical 
properties (Young's modulus, residual stresses) were characterized by bending tests. A numerical simulation (finite 
element model) on the COMSOL software of the mechanical and dynamic behaviour of the membrane will also be 
presented. Finally, the experimental and simulation results are compared. Finally, we will conclude with a study of 
the effect of temperature on the behaviour of the membranes in the short and long term. The short periods are 
those necessary to achieve the anodic and thermocompressive bonds (at a temperature of 300°C) to assemble the 
Stirling micromachine in a clean room (cf. chapter 3). The long periods concern a membrane operating time at 
200°C for more than a month represented by a study of the ageing of these membranes in an oven. 

Before proceeding to the presentation of these studies on RTV-silicone and membranes, we present briefly the 
structure of RTV-silicone and review the mechanical behavior of solid materials in response to stress and  introduce 
the terms often used in this field (stress, strain, yield point, elastic and plastic region, failure point, modulus of 
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elasticity, hysteresis etc.). This may help the reader to better understand the results of the studies that will be 
presented later in this chapter.  

4.1.  The RTV-silicone 
 Structure of the RTV-silicone. The RTV-silicone material that we used is a viscous paste, consisting of organic 
macromolecules containing acetone molecules (-CHOOH, denoted Ac) on which silicon (Si) radicals are grafted. This 
product is formulated from a reactive polymer prepared from hydroxyl-terminated polydimethylsiloxane and a 
large excess of methyltriacetoxysilane [209]: 

HO - (Me2SiO)x - H  +  MeSi(OAc)3  -->  (AcO)2MeSiO(Me2SiO)xOSiMe(OAc) -2 AcOH [210] 

Since silicon is located just below carbon in the classification of the periodic table, similar compounds in which the 
silicon atom would replace the carbon atom have been mythologized. Indeed, most of these similar compounds do 
not exist or behave very differently because the Si - X bonds (in silicones) and the C - X bonds are very different. 
The length of the bond between a given element and silicon Si is shorter than the bond between carbon C and the 
same element. The electronegativity of the silicon Si atom (1.9) is lower than that of the carbon C atom (2.55). The 
Si - O bond is very strongly ionic and highly polarized, with a high bond energy (452 kJ/mol), while the Si - C bond 
has a slightly lower energy (around 318 kJ/mol), which is itself slightly lower than the C - C bond energy (347 kJ/mol), 
while the Si - Si bond is much weaker (193 kJ/mol). These values partly explain the stability of the silicones, the Si - 
O bond being in particular very resistant to homolytic cleavage [211]. 

The bonds between the atoms of a macromolecule are covalent. These covalent bonds (e.g. the C-H bond) are often 
asymmetrical, so they carry an electric dipole. These dipoles are at the origin of weak inter-macromolecular 
electrostatic interactions ensuring the cohesion of the polymer material. When the temperature rises, these weak 
bonds "melt" first. Their melting temperature is called the glass transition temperature (Tg) of the polymer. Since 
the polymer comprises covalent bonds combined with weak bonds between non-metallic atoms, no electrons will 
be available in the conduction band. Therefore, this material is intrinsically an electrical and thermal insulator. The 
following section aims to briefly describe the polymerization of RTV-silicone. 

Polymerization of RTV-silicone. These sealants are called RTV (Room Temperature Vulcanization) sealants, 
however, they require moisture as a second component. In general, common polymers have a behaviour 
characterized by a high apparent diversity. Rigid, brittle, ductile or rubbery (or elastic) polymers can be found under 
the same conditions of use. However, just by varying some of its characteristics, or simply its conditions of use, this 
diversity of physical states can be found for the same polymer. This does not mean that the behaviour of a polymer 
is uncontrollable. Indeed, it is precisely the parameters controlling its behaviour that are numerous. These 
behaviour transitions are indeed strongly linked to the structure of the polymer and vary significantly from one 
polymer to another. 

Concerning the crosslinking method, it does not require any mixing of products. Crosslinking begins when the 
product is removed from the cartridge and is exposed to moisture. A large excess of silane is used, so that the 
probability of two different chains reacting with the same silane molecule is low and all chains are blocked at the 
ends with 2 - OAc functions. The resulting product is still liquid and can thus be easily stored in sealed cartridges. 
Upon opening and contact with the moisture of the air, the acetoxy groups (- O- COOH) are hydrolyzed to give 
silanols, which allow further condensation to occur: 

 
[210], [212]                                

 
                                   [212]                                        [210] 

 

Thus, two chains have been linked and the reaction will continue further from the remaining acetoxy groups. This 
cross-linking requires that the moisture diffuse inside the product and the hardening will be from the outer surface 
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inwards. Acetic acid is released as a by-product of the cross-linking reaction. Instead of acetoxysilane, oxymosilane 
RSi(ON = CR’2)3 or alkoxysilane  RSi(OR’)3 are sometimes used [209]. 

Condensation hardening is also used in two-part systems where cross-linking starts when the two components are 
mixed, for example a hydroxyl end-blocked polymer and an alkoxysilane such as tetra-n-propoxysilane [209]. 

 

In this case, no atmospheric humidity is required for polymerization. In general, an organotin salt is used as a 
catalyst; however, this limits the stability of the resulting elastomer for applications at high temperatures. Alcohol 
is released as a byproduct of the polymerization, resulting in slight shrinkage during polymerization. This prevents 
the manufacture of very precise objects (linear shrinkage of 0.5 to 1%) [211]. 

4.2.  Characterization of RTV-Silicone layer mechanical properties 
There are many techniques to characterize the mechanical properties of polymeric membrane [213]. For instance, 
the most used is the tensile tests [ [110], which require particular sample geometries ranging from the millimeter 
to the centimeter scale and a few microns thick. The Nanoindentation technique  [214], on the other hand, requires 
a thin layer of the material over a rigid substrate. The near field characterization technique using an atomic force 
microscopy (AFM) is another alternative method of characterization [215]. In this last method a controlled force 
can be applied at a specific location on a sample (shaped as a cantilever single or double clamped) and the 
mechanical properties are deducted from the precise measurement of the deformation of the cantilever. However, 
this AFM technique still has limitations since the maximum measurement window is in the order of 20 μm × 20 μm 
and the sample stiffness should not exceed the force range capabilities of the AFM setup which is in the order of 
nN to μN. For internal stress measurements, there is also the technique of substrate curvature and for Young’s 
modulus measurements, the acoustic wave technique [216]. Currently, the silicon MEMS technology has been 
widely used to prepare samples on silicon substrates, such as clamped structures [217], and membrane [218], 
allowing for the local measurement of these mechanical properties. For instance, the membrane load-deflection 
method enables to simultaneously determine the internal stress and Young's modulus, which are generally the 
most important properties for MEMS [219]. The main disadvantage of this technique is the difficulty of measuring 
the Poisson ratio, which is therefore, in most cases, chosen arbitrarily with respect to the nature of the tested 
material.  

When a mechanical load is applied to a material, it develops an internal resistance (the magnitude of which depends 
on its rigidity) to the applied load. The strength of a material can be defined by its ability to resist these loads 
without deforming, tearing or breaking. The type of material, its microstructure, age, fluid content, temperature, 
speed and direction of loading are all factors that can alter the strength of a material.  

4.2.1. Stress and Strain 

Stress can be defined as a type of load (mechanical, thermal, etc.) that can be applied to a material. When the load 
is axial, we talk about axial stress. The axial stress of a material (generally denoted σ) is therefore its internal 
resistance to an applied axial load.  Figure 4-1 shows some loads that are of mechanical type: axial load (1, 2) for 
compression or tension and tangential (3, 4) for torsion or bending.  

The axial stresses “σ” measured in a tensile test is obtained by dividing the tensile load “F” by the section “S” of the 
test area: 

𝜎 =
𝐹

𝑆
 

Under the effect of the applied tensile stress, the initial length “L0” of the test section increases to L(σ) and is 
generally described by the strain “ε”, which is commonly expressed in relative units or as a percentage change in 
material dimensions. The relative elongation ε (percentage) is given by the following relationship: 

𝜀(%) =
𝛥𝐿

𝐿0
. 100  
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where ΔL= L - L0 is the elongation. 

In our studies, we will use on one hand tensile tests (by stretching RTV-silicone specimens like in Figure 4-1 (2) and 
in the other hand flexural tests (by bending specimens like in Figure 4-1 (4)). 

 

Figure 4-1: Different types of mechanical loads on a material: axial (1,2) and tangential (3,4). 

 

4.3.  Stress-Strain relationship: Young modulus 
The relative strength of a solid material can be quantified by plotting its stress-strain relationship. The stiffness of 
the material is defined as the slope of its stress vs. strain curve. The inverse of the slope is the compliance of the 
material. Therefore, a material that deforms easily is said to be compliant. The Figure 4-2 (a) shows an example of 
a stress-strain curve for various materials.  

The maximum amount of deformation that a solid material can withstand under a load and still return to its original 
shape after being unloaded is defined as the yield point; cf. Figure 4-2 (b). Therefore, the region of the stress vs. 
strain curve up to and including the yield point is called the elastic region (cf. Figure 4-2a). Usually, during an axial 
mechanical loading, many materials show a linear stress vs. strain response for low stresses.  The stiffness of a 
material in this elastic region during axial loading is described by the Young’s modulus which is also called the 
modulus of elasticity. When the material is loaded beyond this point, permanent damage occurs, and the material 
can no longer return to its original shape. Therefore, the region of the stress vs. strain curve beyond the yield point 
is called the plastic region or non-elastic region (cf. Figure 4-2a). If the material is loaded beyond plastic region, the 
material may break into two or more pieces (depending of its cristallinity) when the failure point (cf. Figure 4-2 a) 
is reached. Note that for a load just above the yield point, the permanent deformation may be microscopic and 
imperceptible. 

   

a) 

 

b) 
Figure 4-2 : a) Typical mechanical response for loading of a ductile ((b) zoom on this curve), brittle and elastic material [220] 
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The behavior of ductile materials is well represented by Figure 4-2 a. When a brittle material such as glass is 
subjected to loading, it will break with little deformation as the yield point and the failure point merge.  

The stress vs. strain curve of elastic materials indicates that they are initially compliant and become progressively 
stiffer as the load is increased. Cross-linking of elastomer molecules, like silicones, is low enough to obtain an elastic 
behavior, but high enough to prevent the polymer chains from constantly moving relative to one another [221]. 
Being rubbery polymers, they can be stretched up to several times their initial length with a small stress while 
quickly recovering their original dimensions when the applied stress is released.  

The Young modulus is essentially constant in the case of isotropic materials like copper or aluminum, however some 
materials (such as crystalline materials) do not exhibit a constant mechanical response when the loading direction 
is changed and are said to be mechanically anisotropic. 

Some polymers, containing fibers within the material, can produce an anisotropic mechanical response. Therefore, 
the modulus of elasticity can vary versus loading direction: for a tensile test (i.e. load in the direction of the material 
fibers), one speaks of Young modulus in traction and in the case of a bending test, the Young modulus in flexion is 
measured. 

The RTV-silicone elastomer, which constitutes the flexible part of our membrane, is a polymer in the rubbery state 
after cross-linking and is capable of very large viscoelastic deformations. It consists of a wide mesh network and, at 
room temperature, the weak links between polymer chains are melted (bridges between chains are formed under 
the effect of water vapor). When this polymer is stretched, the macromolecules are progressively aligned along the 
axis of the deformation. The modulus of elasticity of the cross-linked material is thus much higher when the load is 
applied along the the macromolecules axis than when it is applied along the short molecular bonds corresponding 
to flexural solicitation (cf. Figure 4-3 a).  

 

a) 

 

b) 

Figure 4-3: a) Schematic evolution of the Young's modulus E of a polymer as a function of temperature, for various levels of 
cross-linking. b) alignment of macromolecules by stretching [222], [220]. 

When the chains are cross-linked by transverse covalent bonds, the cross-links density determines the length of the 
free chain segments that can align: a high degree of cross-linking therefore permanently imposes a frozen 
amorphous structure. In the solid state, the structure of most polymers is amorphous because the entanglement 
of large size macromolecules makes their diffusion and crystalline order difficult. 

4.4.  Hysteresis 
 When a pure spring is loaded (cf. Figure 4-4a), it will deform linearly depending on applied force and spring 
stiffness. When the load is removed, the spring releases all the elastic energy it has stored during the deformation 
process. Figure 4-4 b shows the stress vs. strain curves corresponding to the loading (black line) and unloading (blue 
line) phases of a viscoelastic material (an elastic material containing an amount of absorbed fluid). After 
deformation, the return to its original shape is delayed in time. It is slower to return to its initial position and the 
stress-strain curve of the discharge phase is different from the stress-strain curve of the charge phase: this is called 
a hysteresis effect. The area between the load and unload curves (in light blue) represents the amount of energy 
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absorbed by the material (converted primarily in heat). The area under the unload portion of the stress – strain 
curve (shown by the vertical red lines) represents the energy released by the material.  

 
a) 

 
b) 

Figure 4-4: Stress - strain curves of a) an elastic material and b) a viscoelastic material : black line corresponding to the 
loading and blue line, unloading phases ( [222], [220]). 

Since energy is absorbed by the viscous fluid in the material, this last one is called “viscoelastic”. It exhibits both 
viscous damping and an elastic response during deformation.  Such materials are stiffer when loaded quickly than 
when loaded slowly. 

4.5.  Characterization of RTV-silicone material by tensile tests: influence of 
thickness 

In this section, RTV-silicone mechanical characterizations are presented. The mechanical properties of the thin layer 
of RTV-silicone are first investigated by tensile tests. For PDMS membranes, Liu et al. [110] demonstrated the 
dependence of mechanical strength and Young's modulus with the thickness of PDMS membranes, from 
thicknesses as low as 200 µm. They observed that the chain reorganization during polymerization was dependent 
on the thickness of the molded PDMS: Young's modulus was therefore also dependent on the polymerization 
conditions. Since the resulting mechanical properties were dependent on this reorganization, they differed with 
thickness. Considering elastomeric silicone as a uniform material (like metallic ones [223], [224]) can therefore be 
misleading, since these materials depend on the reorganization of the monomer layers during polymerization [192]. 
For our type of RTV-silicone (RTV #81180, [225]), no size-dependent material properties have yet been reported in 
the literature. For the design of more efficient MEMS devices, through tensile testing, we therefore decided to 
check the dependence of the elastic properties with the thickness of the RTV silicone material. 

4.5.1. Tensile tests setup 

Preparation of the samples. The single component RTV-silicone studied was purchased from PermatexInc. This RTV-
silicone material is a single component in the form of a very viscous paste. It has a good adhesion to metal and 
silicon substrates due to the presence of silane groups in the formulation [225]. When brought into contact with 
the moisture of the air, it polymerizes with very high elastic properties (tough and flexible rubber). Properties (from 
supplier) of uncured material and cured material after 7 days at 25°C and 50% relative humidity are shown in Table 
4-1 and Table 4-2. The complete duration of polymerization (generally 24h [225]) depends on the thickness, 
temperature and humidity content of the surrounding air.  

Properties Typical Value  

Uncured material  

Chemical Type Acetoxy silicone rubber  

Appearance  Red non-sag paste 

Odor Mild acetic 

Extrusion rate @ 25°C, (g/min)  > 220 

Flash Point °C  > 93  

Table 4-1: Properties of uncured RTV-Silicone product from supplier PERMATEX ( [225]). 
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Given the limited amount of published data in the literature and from this supplier, we analyzed the RTV-silicone 
material mechanical properties using tensile tests. For tensile tests, a casting method [226] was used to make 
shouldered bar shaped (or dog-bone shaped) test samples (denoted samples B) and rectangular ones (denoted 
samples A) with corresponding aluminum molds (cf. Figure 4-5). After curing, the bars were cut from moulds and 
the excess RTV silicone on the sides was removed with a scalpel. A total of four parts were produced. Prior to 
testing, the samples were degassed in a vacuum chamber to prevent the formation of microbubbles.  

Mechanical properties Typical Value  

Cured material  

Hardness (Shore A) > 20  

Elongation, (%) > 350 

Tensile Strength (MPa) > 1.5 

Table 4-2: Properties of cured RTV-Silicone product from supplier PERMATEX ( [225]) 

 

Figure 4-5: a) Mould for shouldered test bar, denoted sample B (thickness of 3 mm); b) Mould for rectangular samples, 
denoted B (thickness of 1mm); c) 3D  Shouldered test bar (sample B) according to DIN53504 [110]. 

Test and analysis procedure. The mechanical properties of the RTV-silicone bars were measured by tensile tests at 
room temperature. The widest end sections of the shouldered bars are to be attached to the handles of the tensile 
device and the thinnest bar is the actual test section (cf. Figure 4-5). We focused on the dependence of the elastic 
modulus on thickness for samples of different thicknesses (two samples of 1 mm and two of 3 mm thicknesses). 
These moulded RTV-silicone specimens underwent the same curing conditions.  Thus we tested two thin 
rectangular samples (cf. Figure 4-5 b) - denoted A - of 24 x 12.5 x 1 mm3 and two thick shouldered bar samples - 
denoted B - of 35 x 12.5 x 3 mm3 (cf. Figure 4-5 a). The specimens were mounted onto specially designed grippers, 
aligned and held firmly (cf. Figure 4-6 a) and b)). The test machines ran in position-controlled mode. Their grippers 
pulled the test bar on both ends at a constant strain rate while a force sensor measured the resulting force. This 
method was used to determine the elastic modulus for the characterized material (through the slope of the stress–
strain curve) and also to determine the hysteresis (by load-unload steps).  

The benches we used for tensile tests on A-samples was a Bose Electroforce machine with 350 N of maximum load 
capacity and a resolution of 1 μN. Tensile tests on samples A were carried out with a maximum force of 22 N at 10 
measures per second.  

For samples B we used an MTS Criterion electromechanical machine with a capacity of 100 kN.  

After sample installation, a 3 mm/s displacement speed was applied. The strain was measured either with a 
mechanical extensometer, or with a laser extensometer (EIR05). This last one measured the distance between two 
reflective tapes stuck on the samples. These tapes delimited the test section on the specimens.  

c) 

a) 

b) a) 
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Figure 4-6 : a) Test setup for sample A (0.9mm); b) Test setup for sample B (3mm); c) Hardness test of sample B with a 
durometer. d) Picture of the rectangular sample. 

4.5.2. Tensile test results and discussions 

Stress vs. strain relations for large strains. Since RTV-silicone elastomer are capable of developing large amounts 
of strain (much larger than 10%), according to references [110] and [221], the correct description of material 
elongation is obtained by using the true stress (σ’ = σ (1 + ε)) and the true strain (ε’= ln(1+ε)), with the Young 
modulus E defined by the Hooke’s law: σ’ = E.ε’. For small values of ε, the Hooke’s law reduces to σ = E.ε. 

Corrected strain. With a shouldered bar geometry, the strain in the wider end sections of the sample is much 
smaller than the strain εtest in the test region (thinner part of the specimen). However, the end sections contribute 
significantly to the total strain εtotal that is automatically measured by the machine. Therefore, in order to calculate 
the deformation in the test area, it is necessary to correct the total strain value εtotal measured by the machine by 
using a correction factor m (defined by 𝜀𝑡𝑒𝑠𝑡 = 𝑚𝜀𝑡𝑜𝑡𝑎𝑙)  [221]. This correction factor may not remain constant for 
large strains, indicating a nonlinear behavior of the material.  

Measured stress – strain curves. The test machine gives the value of ε = εtotal versus applied force to the whole 
shouldered bar specimen. The stress σ inside the test section can be determined by dividing the force by the initial 
cross-section area of the test strip. Then σ versus εtotal was first plotted in the “total strain curve”.  

However, εtest was simultaneously measured through a direct laser measurement on the test section. Therefore, it 
was possible to plot directly σ versus εtest in the “test section strain curve” and determine the correction factor m 
for low strains.  

Then, according to the work of Schneider et al. [221], we drawn the “corrected strain curve”, representing σ versus 
mεtotal (determined from the machine measurements), in order to check the validity range of the correction factor 
m by comparison with the “test section strain curve”. 

Finally, according to Liu et al. [110], the true stress σ’, which takes in account the reduction of this cross-section 
area under large elongations, is given by σ’ = σ (1 + ε). It was plotted versus true strain ε’ = ln (1 + ε) in the “true 
strain curve”. This representation should eliminate nonlinearities coming from test cross-section variations and 
should therefore remain linear in a larger range of strains.   

• Results for the 3mm thick samples.  

Stresses and strains of the two 3 mm thick RTV-silicone test samples under tensile test are represented in Figure 
4-7 and Figure 4-8. For clarity, corresponding measurement errors are given only for a few measuring points. Note 
that the extensometer used with sample 1 (Figure 4-7) was mechanical: its measuring range was limited and below 
the elongation-to-break. Sample 2 (Figure 4-8) was tested with a laser extensometer, whose measuring range 
exceeded the elongation-to-break. This difference in extensometer results in the fact that the elongation in the test 
area of sample 1 is limited to approximately 20%, whereas the test was carried out up to breakage. 

c) 

a) b)
a) 

d) 

RTV-Silicone 
Specimen 
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 On the other hand, it was possible to measure the elongation of the test area for sample 2 up to breakage. For the 
measurements corresponding to the test section, only the results of sample 2 will therefore be used. The analysis 
of the corresponding test section curve shows that the 3 mm thick test pieces have a breaking strength of 350 kPa 
and an elongation-to-break (measured in the test section) of 91%. 

In both figures we observe that the model of a constant correction factor 𝑚 becomes inaccurate for large strains.  
A close-up view of the linear part of the "trustrain" curves of samples 1 and 2 is shown in Figure 4-9 for a strain 
range up to 8%. This range corresponds to the measurement range we focus on in our work. It allows us to 
determine the associated Young’s modulus (measured for low strains) which is found to be around 0.96 MPa 
(average value obtained on sample B2). 

              

 
Figure 4-7: Stress-strain diagram for the first 3 mm thick 

RTV-silicone sample, B1, including true and corrected stress-
strain curves. Mechanical extensometer. 

 
Figure 4-8 :  Stress-strain diagram for the second 3 mm 

thick RTV-silicone sample, B2, including true and corrected 
stress-strain curves. Laser extensometer. 

       

 
Figure 4-9 : Close-up view of  Figure 4-7 and Figure 4-8 

showing only the true strain curve for B1 and B2 samples 
(3mm thick) 

 

 
Figure 4-10: Stress-strain diagram for the two samples of 
1mm thick RTV-silicone (samples A1 and A2) including true 

stress-strain plots.  

 

Unlike the behavior of solid materials such as mild steel for example, there is no "necking", which is linked to the 
decreases in cross-section, before rupture. On the contrary, it presents a uniform plastic deformation until rupture. 
It may be related to the fact that the silicone cross-linked fibers get cut as the traction continues beyond the elastic 
zone, leading to complete failure without the passage through a non-uniform plastic reduction of the sample cross-
section. 

• Results for the 1mm thick samples. 

 Figure 4-10 presents the stress-strain diagrams of two 1mm thick specimens, with measurement errors. For clarity, 
corresponding measurement errors are given only for a few measuring points. The true strain curves are linear and 

Sample 1 
Sample 2 
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these samples were found to have an average Young's modulus of about 0.85MPa, which is about 11% lower than 
with the thicker ones samples.   

• Comparison and discussion 

The thickness reduction seems to cause a decrease of the modulus of elasticity, which may indicate a different 
reorganization of the polymer chains during the crosslinking compared to thick samples. Stress and elongation at 
breakage (0.35 MPa, 91%), measured on the thick samples shows a weaker material than described in the 
manufacturer's reference data in (> 1.5 MPa, 350%). 

RTV-thickness (mm) 3 1 

Young modulus* (MPa) 0.96 0.85 

Table4-3: Summary table of the Young's modulus and thicknesses of test samples subjected to tensile tests. 

A comparison to the two most used silicones that are RTV 615 (E = 1.528 MPa) and Sylgard 184 (E = 1.82 MPa) [221], 
shows that this RTV-silicone (#81180) is about 50% more elastic. It is also more elastic compared to PDMS 
(E≈1.5MPa) which, for a thickness of 350μm, presents a maximum deformation of 140% with an ultimate tensile 
strength of 25 MPa.  

In addition, the Young’s modulus of PDMS tends to increase as the thickness decreases. This trend is related to the 
often-used spin-coating technique, which influences the reorganization of the polymer chain during the spreading 
of the PDMS causing shear stress in the radial direction [110]. This phenomenon occurs during polymerisation: 
polymer chain coils reorder depends on the initial thickness deposited before polymerization, leading to a stronger 
cross-linked network. This may be due to the amorphous nature of this material and therefore to the shape of 
crosslinked networks of the polymer chains.  

On Figure 4-10, the deviation of the Young's modulus for the same 1mm thick samples can be related to the 
viscoelastic properties of RTV-silicone, which occurs when the strain rate is slightly different during the tensile test. 
To get an idea of this viscoelasticity, we carried out a test of hysteresis (loading-unloading test with the same strain 
rate) on 3mm thick samples. The resulting stress strain curve is shown in Figure 4-11. Material loading correspond 
to “Rise” and material unloading to “Descent” on the Figure 4-11 legend.  

 

Figure 4-11: Hysteresis curve measured on the 3mm thick A1 sample. Traces of true and corrected stresses and deformations 
are also plotted. 

As explained in section 4.4. , during viscoelastic deformation of the material, the latter absorbs energy, part of 
which is lost mainly in the form of heat which deflects the curve of the unloading phase, the area between both 
curves is related to the amount of energy absorbed by the material. An analysis of this curve shows that, there is a 
small hysteresis that manifests beyond 4% deformation. 

4.6.  Characterizations of single membranes: static pressure measurement  
After the mechanical characterization of the RTV-silicone material through tensile tests, we proceed to the 
mechanical characterization of the membranes through bending tests. Each sample that was tested contains 3 
membrane (denoted M1 to M3 on the figures). Samples are denoted EchI to EchIV, according to the geometry. The 
mechanical behavior of membranes (constituted of either a planar silicon spring or a central silicon disc embedded 
in RTV-silicone, cf. Figure 4-24) are investigated by the load-deflection method [216], [227] to measure their Young’s 
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modulus and residual stress. Two types of tests were carried out to confirm the experimental values of elastic 
properties: the first test consisted in applying uniformly loaded static air pressure and measuring the resulting 
membrane deflection. In the second test, we imposed a displacement at the center of the membrane and measured 
the resulting stiffness. Two cases are thus considered:  

− circular membranes uniformly loaded 

− circular membranes loaded at the center. 

4.6.1. Uniformly loaded circular membrane 

Setup presentation. To study the deflection capacity of membranes and their hermeticity to gases, pressurized air 
was sent under the membrane and, thanks to a laser position sensor, the resulting displacements were measured. 
This method is also called the “swelling test”. The pneumatic air pressure was applied from a side aperture below 
the membrane. Then, by adjusting the input pressure, the membrane center deflection was measured by a laser 
position sensor (characteristics of the sensor in chapter 5, Figure 5-16). The experimental setup scheme for 
characterization is given in Figure 4-12. 

 
Figure 4-12: Experimental setup for Membrane static pressure characterization, with a schematic showing membrane 

geometry and loading conditions. 

 

Figure 4-13 shows pictures of the laser sensor setup with membrane in operation during deflection tests. In a), a 
membrane with a spiral silicon and in b) of membrane without spiral but with only a central disc in silicon in its 
center.  

Since membranes have a large diameter of 5 mm, the load-deflection test was chosen for characterization. 
Supposing the deflection of the membrane has a hemispherical shape, the analytical equation of the small deviation 
of the membrane is given by equation 4-1 (deflection of a membrane loaded by air pressure) ( [218], [228], [229]): 

 𝑃 =
2.67𝑒

𝑟4 (
𝐸

1−𝜈
)𝑤0

3 +
4𝑒

𝑟2 𝜎0𝑤0 Eq.  4-1 

where “P” and “w0” are, respectively, the uniform pressure applied to the membrane and the resulting maximum 
deflection measured at its center. “e”, “r” and “σ0” are respectively its thickness, its radius and its residual (or 
internal) stress. “E” and “υ” are respectively the Young's modulus and the Poisson coefficient.  

Since the above equation has the form P = a w0
3 + b w0, the internal stress and Young's modulus appear respectively 

in the linear term of 𝑤0 and in its cubic term. Therefore, these two quantities are independently determined on the 
deflection versus pressure curve by fitting the data to Eq. 4-1. The size and composition of the membrane used 
during this test are shown in Table 4-4. 
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Figure 4-13: Deflection image of membrane a) with silicon spiral b) without spiral (with only a silicon central disc). 

Samples 
names 

RTV-
silicone  

thickness 
(mm) 

Silicon 
Spiral  

thickness 
(mm) 

Silicon Disc  

thickness 
(mm) 

Silicon Disc  

diameter 
(mm) 

Membranes 
thickness 

(µm) 

Thickness notation 
(RTV overlay 

µm/silicon thickness 
µm) 

III-a 0.094 --- 0.070 2 164 94/70 

III-B 0.094 0.070 0.070 2 164 94/70 

IV-a 0.100 --- 0.100 2 200 100/100 

IV-B 0.100 0.100 0.100 2 200 100/100 

Table 4-4: Samples used for the measurement of membrane  properties 

Results of the uniform loading test. Three different groups of membranes of a 164 and 200 μm thicknesses were 
tested (cf. details in Table 4-4). For each group of RTV-silicone membranes including silicon elements, two different 
geometries (with or without spiral) were tested. Moreover, the experiments were carried out after two different 
thermal treatments. We first performed this experiment on membranes at room temperature after fabrication. 
Then, to evaluate the influence of temperature on their elastic properties, these membranes were heated up to 
300°C for 20 min and tested again at room temperature (details concerning the experimental setup and the method 
are given later on, in section 4.8. ). The experimental results for 94/70 membranes are shown in Figure 4-14. 

Note that these membranes are composite membranes comprising silicon and polymer elements, therefore Eq. 4-
1 will give Young’s modulus and residual stresse values for an homogeneous membrane that is « mechanically 
equivalent » to the real one. 

Silicon spirals have a clear effect on the membrane stiffness as seen on Figure 4-14: spiral-free membranes are 
much more compliant than the others (as expected, the silicon spiral is causing an additional stiffness). For example, 
for a pressure of 0.02 MPa, a membrane deflection of 150 µm is obtained with the silicon spiral whereas, for the 
same pressure and for membranes without spiral, a deflection oup to 600µm can be reached. However, the 
displacement of the membrane with spiral is more linear than without a spiral.  

After being heated at 300°C, the membranes become more elastic: for the same pressure of 0.02MPa, the 
deflection of the membranes with spiral is 2 times larger than without heating. For the same pressure and for the 
membranes without spiral, the deflection is 3.25 times larger with heating than without heating. The curves are 
also less linear after heating. 

a) b) 

Rear side of a spiral 
membrane 

Pressurized 
air 

Panasonic Laser Position 
Sensor 

Hermetic 
holder 

Rear side of a 
non spiral 

membrane 

Close up 
view 

Close up 
view 
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Figure 4-14 : Charge-deflection curves of two 164μm thick samples III-a-Disc and III_B-Spiral before and after heating to 
300°C. Red (resp. blue) lines show the behavior after (resp. before) heating. 

 

Figure 4-15 : On the left, hysteresis measured on the “IV-B-Spiral” sample comprising a 200μm thick membrane with spiral . 
On right side, a zoom on the linear region. Error bars are given in black. 

 
Figure 4-16: On the left, hysteresis measured on the “IV-a-Disc” sample with a 200μm thick membrane with a single disc at its 

center . On right side, a zoom on the linear region. Error bars are given in black. 

Hysteresis was checked again for these thin membranes by performing 3 loading-unloading cycles. Results for 
membranes with spiral are given on the Figure 4-15. Same experiments were carried pout for membranes with only 
a central disk (without spiral) and results are shown in Figure 4-16 . There is a small hysteresis in the membrane 
responses for membranes with spiral. For membranes without spiral, this hysteresis is larger. Nevertheless, for 
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deflection lower than 200µm, the membrane response was elastic, and can be reproducibly loaded and unloaded, 
without significant hysteresis. 

Fitting of the curves. Figure 4-17 shows the pressure-deflection data obtained from a spiral-free membrane (having 
only a 2 mm disc in its center, Sample IV-a Disc) and another membrane having a spiral (and a central disc of 2mm). 
The dashed lines across the data dots represent the polynomial trend curves for calculating the Young's modulus 
and the residual stresses according to Eq. 4-1. It is found that the measured data for the membrane could be well 
characterized by this equation. Therefore, these data from the three loading and unloading cycles of each 
membrane were used to calculate the residual stresses and the Young modulus (assuming a Poisson ratio of 𝜈 =
0.5 [230]). 

 

Figure 4-17 :  On the right, experimental load-deflection characteristics for samples with spirals (sample IV, 100/100, 2mm disc) 
and without spirals (sampl IV-a, 100/100, 2mm central disc) with fitting data curves from Eq. 4-1 represented in dotted lines. 

On the left, results obtained only with a central disc (sampl IV-a, 100/100, 2mm central disc). 

The calculated internal stresses and Young's modulus for samples with and without spiral, before and after the 
heating step are summarized in Table 4-5 (100/100) and Table 4-6 (97/70). Residual stresses and Young modulus 
values of samples after being heated at 300°C are presented in brackets. It can be seen from these tables that, for 
the spiral-free central disk membranes, both the residual stresses (0.06-0.08 MPa) and the Young's modulus (0.46-
0.73 MPa) are much smaller than those obtained for membranes with spiral (0.2-0.77 MPa of residual stresses and 
1.34-1.35 MPa of Young’s modulus). 

The values of Young’s modulus in bracket (0.42 and 1.2MPa for 97/70 membranes) show that temperature makes 
the membrane more flexible and may stabilize their modulus of elasticity after the heating step.   

Samples (t=164µm) Young modulus (MPa) Internal stress (MPa) 

III-a Disc  (97/70) 0.46 [0.42] 0.06 – [0.14] 

III-B Spiral&Disc (97/70) 1.34 [1.2] 0.2 – [0.4] 

Table 4-5: Calculated Young 's modulus and residual stress values for 164 µm RTV - silicone membrane from experiments 
using Eq. 4-1. Values without brackets are without heating, values inside brackets obtained after heating at 300°C . 

Samples (t=200µm) Young modulus (MPa) Internal stress (MPa) 

IV-a Disc  (100/100) 0.73  0.08 

IV-B Spiral&Disc (100/100) 1.35 [1.64] 0.77 [0.78] 

Table 4-6: Calculated Young 's modulus and residual stress values for 200 µm RTV - silicone membrane from experiments 
using Eq. 4-1.Values without brackets are without heating, values inside brackets obtained after heating at 300°C. 

Hermeticity. Most of the data presented here come from experiments in which membrane were inflated with air. 
Although silicone materials are sometimes considered to be among the most gas-permeable [228], no change in 
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the pressure inside the fluidic chamber was observed during the duration of our experiments (1h30), which suggests 
that gas permeation through the membrane may be neglected during such times. This gas permeation should rather 
depend on the thickness of the deposited RTV-silicone layer.  

In addition, Yang [231] proposed to use a vapor barrier layer between the working fluid and the silicone rubber 
membrane to remedy the permeability problem. However, if the material of this barrier is a rigid body, it may 
significantly reduce the flexibility of the composite membrane. He found that Parylene C (thermoplastic polymers) 
proved to be an effective barrier layer with a rather low Young's modulus [231], [232]. Thus, a flexible composite 
membrane could be made by depositing a thin layer of Parylene C. The common physical properties of Parylene C 
are listed in [232]. Besides, because of RTV-silicone low thermal conductivity, the heat loss to the outside of the 
structure is low, which reduces the operating power consumption in the case of a valve for example.  

In the next section, we will present the results of the bending tests by pressing the center of the membrane with a 
pin. 

4.6.2. Center-loaded circular membrane  

Setup presentation. A displacement was imposed on the silicon disc, which is located in the center of the 
membrane. The resulting stiffness was measured thanks to a 22N load sensor (cf. Figure 4-18). This weak force cell 
was chosen considering the Young's modulus found during the above tensile tests performed on the 1mm thick 
RTV-silicone test pieces. These tests have shown that this silicone material is very flexible, it does not require the 
application of great force to obtain a consequent displacement. The test machine used was the ElectroForce ®3200 
Instrument in controlled displacement mode. The flexion test set-up was fixed to the test machine and the whole 
set-up was aligned to avoid possible parasitic shear stress. The flexion test mode was set-up to generate an axial 
displacement of 1µm and a scan time of 50ms. 

 

 

Figure 4-18: a) Block diagram of a computerized measurement system used for concentrically load deflection tests. B) Sample 
being tested with ElectroForce ® 3200 Instrument with test set-up fixed. 

Recall that all membranes have a silicon core disk of 1 or 2 mm in diameter embedded in a silicone layer. The disc 
being made of silicon, it stiffens the center of the membrane. In Table 4-8, the composition, the size and the 
thickness of the membranes used during this test are presented. 

Samples 
names 

RTV-silicone 
thickness(µm) 

Silicon Spiral 
thickness (µm) 

Silicon disc 
diameter (mm) 

Membranes total 
thickness (µm) 

I-a 94 --- 2 164 

I-B 94 70 2 164 

III-a 94 --- 2 164 

II-a 100 --- 2 200 

IV-C 100 100 2 200 

IV-A 100 100 1 200 

Table4-7: Constitution of the membrane used in the experiment. 

It can be assumed that only the annular portion of the membrane, covered by RTV-silicone (and containing turns in 
the case of spiral membrane), is deformed when a pressure is applied to the membrane. The bending of an edge 
clamped circular membrane of thickness “e” and radius “R” containing a central rigid disc of radius r whose load is 
uniformly distributed along the rigid disc was already studied by Timoshenko in 1956 [233], and by Schomburg in 
2015 [234]. The equation giving the central load as a function of membrane deflection (deflection of the center 
disc) is [234]:  

a) b) 
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Where, σload =  Fapplied/Sdisc is the applied stress on the stiff central disc, 𝑤0 the center membrane deflection, ap and 
bp are constants taking into account the presence of the central disc of the membrane : 
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The constants are determined to satisfy the conditions of continuity above at the disc perimeter. It is again an 
equation of the form σload = A w0

3 + B w0 therefore, the Young's modulus and the internal stresses of the membrane 
can be independently deduced from this equation by using the coefficients resulting from the experimental curve 
by third order polynomial fitting. For membranes with R = 2.5mm and r = 1mm (2mm central disk), we obtained 
𝑎𝑝 = 13.74; 𝑏𝑝 = 9.80.  

Results of the tests. The concentrically loaded-deflection test measurements were carried out on four different 
samples, and repeated with three identical membrane for each of them (repetability). The results are shown in 
Figure 4-19, Figure 4-20 and Figure 4-21.  

Results obtained with membranes with and without spiral (samples I-a and I-B) of the same thickness (164µm) and 
with a 2mm central disk are presented in Figure 4-19. It can be noted that, for each sample, the three membrane 
keep the same trend, which shows a good repeatability of microfabrication. The small variations can be explained 
by the flatness of the substrate (silicon wafer) which impacts on the uniformity of the thickness of the membrane 
during microfabrication, and also the inhomogeneity of the etching by DRIE (approximately 5-10μm) that could 
have contributed significantly. An analysis of this figure shows that the spiral-free membrane (samples I-a) have a 
displacement capacity approximately twice as high as that with spiral (sample I-B) for the same thickness, which 
confirms the results of the previous section. Indeed, samples with Silicon spirals move up to about 1mm before 
breaking because of the high rigidity and linearity of the silicon material [235]. By increasing the stress applied to 
the center of the membrane, the spiral is deformed until a maximum elongation, beyond which it would break since 
its embedding points at the membrane edge will be over stressed. For an applied pressure of 0.02 MPa, the 
deflection is almost identical for all membranes of the same kind (about 0.35 mm without spiral and about 0.2 mm 
with spiral). Beyond that, as the pressure increases, the spiral membranes have a greater deformation flexibility up 
to their breaking limit of 1mm. Spiral-free membrane can deform beyond this limit to reach displacements up to 
more than 2 mm. 

 
Figure 4-19: Measurements results on membranes with and without spiral (i.e. with only a central disc) of the same thickness 

(94/70). Central disk diameter : 2mm. 3 samples I-a (without spiral) and 3 samples I-B (with spiral). 
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Figure 4-20 concerns membranes with spirals (samples IV-C, IV-A) with different central disc diameters (1mm and 
2mm). This figure allows a comparison between two samples types: IV-C (spiral and disc of 2 mm) and IV-A (spiral 
and disc of 1 mm) with the same thickness (200 µm) but different central disc diameters (1mm & 2mm). For each 
sample type, three identical membranes are tested. An analysis of this figure shows that there is not a great 
difference in stiffness between these membranes, even if the central disks diameter is doubled. The plots are almost 
equivalent up to a deflection of 0.65mm. The M2 membrane of sample IV-A (1mm central disk) deviates a bit, but 
this may be related to a defective spiral problem. The advantage of using a membrane with a 2mm central disc is 
mainly related to the swept volume and the ease of integration of actuators because it has a larger surface. 

 

 
Figure 4-20: Results obtained on two samples with three membranes of the same thickness,(100/100 so 100µm thickness for 
both RTV and Si with a 100µm of RTV overlayer,  i.e. 200µm of total thickness) having all identical spirals, but with different 

central disc diameters (1mm and 2mm) 

Results for membranes with spirals (or without spiral) of different thickness are presented in Figure 4-21 (samples 
with spiral I-B and IV-C on the left; samples without spiral I-a, III-a and II-a on the right). This figure is a comparison 
of membrane with identical spirals and disc diameters but with different thickness of Silicon and RTV. In sample I-
B, the thickness of membranes is 164 µm (94µm RTV +70µm Si) thick while the total thickness of sample IV-C is 200 
µm (100µm RTV+100µm Si). We can see that all three membranes of a same sample fit perfectly together, which 
shows the very good reproducibility of manufacturing. The membrane stiffness is larger with a larger thickness, but 
up to a deflection of almost 400µm, the membranes have the same behaviour. For application in the micro-
machine, the highest target displacement would be 300µm, so these membranes are perfectly suited for our 
application. 

 

 

Figure 4-21: Result of deflection versus load of different thicknesses (164μm vs 200μm) from identical spiral membranes 
(left) and for identical membranes with only a central disc (right). 
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Effect of heating the membrane to 200 °C. The behaviour of the I-a type sample after being heated at 200°C, and 
then naturally cooled at 23°C, is shown in Figure 4-22. Details concerning the experimental setup and the method 
used for the heating process are given later on, in section 4.8.  Although the membranes behavior is different after 
heating at 200 °C, the difference is kept reasonable: the response fluctuates from its initial behavior for pressures 
between 0.05 and 0.3 MPa with a maximum deviation of about 20%. Therefore, heating the membrane at 200 °C 
has a little influence on its mechanical properties. 

 

 
Figure 4-22: Comparison curves of the membrane M1 of the sample I-a Disc, before and after heating at 200°C. 

Young’s modulus and residual stress. To determine the Young's modulus and the residual stresses, we proceed to 
the fitting of the curve coming from the membrane M1 of the sample without spiral before heating à 200 °C. Thus, 
by identification with Eq. 4.2, we can determine: 

• The Young's modulus E = 0.48 MPa  

• The internal stress σ0 = 8 MPa.  

The Table 4-8 summarizes the results of this section corresponding to the Young's modulus of all the different 
membranes tested above. This table shows an overview of the elasticity of the RTV-silicone alone and when 
combined with spiral and/or silicon disc. 

Samples Thickness (mm) E (MPa) 

A1 3 0.96 

A2 1 0.85 

Without Spiral  
94/70 

0.46 

With spiral 1.34 

Without Spiral  
100/100 

0.73 

With spiral 1.35 

Table 4-8: Summary table of the results of calculations on the Young's module 

 

The stiffness of membranes. The calculation of the stiffnesses was made for the same membranes previously 
presented (without heating).  

− For the membranes without spiral, the corresponding stiffness are given in the Table 4-9. It can be seen that 
for spiral-free membranes with a thickness of 94/70 the stiffness (~ 0.08 N / mm) is lower than that of 100/100 
(~ 0.11 N / mm). Therefore, the membranes become stiffer as the thickness increases. To give an idea of mass, 
it would take about 8 g to obtain a deflection of 1mm with membranes of thickness 94/70 whereas it would 
take 11 g for those of 100/100. 

− For the membranes with a spiral (hybrid spiral membranes), the results are summarized in Table 4-10. It is 
also observed here that the stiffness increases with the thickness of the membrane which is logical. For 
membrane with a thickness of 94/70 the stiffness is ~ 0.20 N / mm while for membrane 100/100 the stiffness 
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is ~ 0.22 N / mm. In other words, to obtain a displacement of the membrane of 1 mm, it takes about 20 g for 
those of 94/70 and 22 g for that of 100/100. 

Types of membranes Membrane reference 
Average of k per membrane 

(N/mm) 
Average k for each  

membrane geometry (N/mm) 

RTV/Disc : 94/70 
(without spiral) 

I-a_M1 0.077 

0.079 I-a_M2 0.064 

I-a_M3 0.093 

RTV/Disc : 100/100 
(without spiral) 

II-a_M1 0.096 

0.11 II-a_M2 0.14 

II-a_M3 0.08 

Table 4-9: Comparison of stifnesses for membranes without spirals 

Types of membranes Membrane reference 
Average of k per membrane 

(N/mm) 
Average of k for each 

membrane geometry (N/mm) 

RTV/Spiral : 100/100 
(with spiral) 

IV-C_M1 0.2164 

0.2159 IV-C_M2 0.2169 

IV-C_M3 0.2144 

RTV/Spiral : 94/70 
(with spiral) 

I-B_M1 0.2075 

0.2046 I-B_M2 0.2058 

I-B_M3 0.2007 

Table 4-10: Comparison of stiffnesses for membrane with spirals 

4.7.  Characterizations of Membrane: dynamic tests  

4.7.1. Materials and methods 

Among the many techniques used in the dynamic characterization of MEMS devices, non-destructive optical 
measurement systems are the most used because they allow to determine different physical quantities such as 
resonant frequency, displacement, speed, etc. Depending on the direction of displacement of the moving parts of 
the microsystem in the measuring plane of the optical measuring equipment, three main technologies have been 
widely used in the literature for the characterization of microsystems: 

• In the vertical (out of plane) direction:  

- The technique of Digital Holographic Microscopy [236] can be used for high-resolution 3D 
microstructure characterization. 

- The Laser Doppler Vibrometry (LDV) is the most used to measure fast movements.  

• In the horizontal (in the plan) direction: Strobe Video Microscopy (SVM) is used to measure motion. 

 

Techniques 
Lateral resolution  

(typical)  
Vertical resolution  

(typical)  

Static 

shape 

Dynamic 

response 

Atomic Force Microscopy (AFM) 0.1 nm   0.1 nm  3D No 

Scanning Electron Microscope 
(SEM) 

1 nm --- 2D No1 

Optical Microscopy (OM) <1 µm  <1 µm  2D No1 

White Light Interferometer (WLI) <1 µm  <1 nm  3D No2 

Confocal Microscopy (CM) <1 µm   <0.01 µm  3D No 

Digital Holographic Microscopy 
(DMEMBRANE) 

<1 µm  <1 nm  3D Yes 

Strobe Video Microscopy (SVM) <0.01 µm  <1 µm  2D Yes 

Laser Doppler Vibrometry (LDV) <1 µm  <10−6 µm3  No Yes 

Table 4-11: MEMS optical measurement equipments for MEMS device characterization [237]. 1Dynamic response possible 
using video capture technique 2Dynamic response possible using strobe technique 3Resolution for dynamic response – not 

static 
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For more precision, optical measurement methods are summarized in the Table 4-11. They allow static and dynamic 
measurements. Static measurements allow the identification of physical parameters such as film dimensions, 
roughness, curvature or plane of a sample, etc. Dynamic measurements provide access to the real-time dynamic 
response of the microstructure with good resolution (less than 1 μm) such as vibration amplitude, resonant 
frequency and phase. 

 

Figure 4-23: a) Membrane mounting setup on MSA-500 Micro Motion Analyzer equipment for frequency measurements. b) 
Picture of the equipment. c) A sample with three membranes on it. d) 3D motion obtained on the equipment control PC 

interface. e) Schematic optics of a modified Mach-Zehnder Interferometer. 

In our case we used the Doppler laser vibrometer from Polytec (MSA-500 microsystem analyser) to study the 
dynamic behavior of membranes when submitted to harmonic excitation by a piezo vibrator setup (cf. Figure 4-23 
a and b). This equipment uses the Doppler effect, in which the light scattered by a moving target contains 
information on the speed of the illuminated target along the laser axis. The optical frequency of the scattered beam 
is shifted by ∆f, which is proportional to the target speed along the laser axis. The received light wave is mixed with 
the laser beam (using interferometric techniques) and recombines on a photodetector, which output current will 
contain the frequency shift ∆f from which the target speed can be calculated. 

The measuring accuracy of this equipment is from centimeters to picometers in displacement, from 0.02 μm/s to 
10 m/s in velocity amplitude and its dynamic measuring range is greater than 170 dB. These features allow 
measurements that are impossible with holographic or other techniques. The Polytec microscope uses three 
technologies:  

− To measure of out-of-plane motion by laser Doppler vibrometry, the deviation shapes can be measured and 
displayed as 3D animations by automatically scanning the measurement beam.  

− To provide a complete 3D motion measurement (cf. Figure 4-23 d), the Strobe video microscopy measures 
in-plane motion and thus extends the analysis to the in-plane direction.  

 To measure surface topography for a static shape, white light interferometry is added.  

The basic principle of this vibrometer is based on a modified Mach-Zehnder interferometer [238] shown in Figure 
4-23 e). This interferometer consists of a laser source, three beam splitters, a Bragg Cell, a mirror and a 
photodetector. A laser beam of frequency f0, emitted by the source, is divided into two beams (using a first beam 
splitter), one serving as a reference and the other being frequency shifted by fb (using the Bragg cell). This latter 
beam, of frequency f = f0 + fb, is directed towards the surface of the moving structure. The scattered beam and the 
reference beam are collected at the photodetector. The target velocity 𝑣(𝑡) causes a frequency shift of the 
backscattered beam ∆𝑓(𝑡): 

a) 

b) 

c)
b) 

d)
b) 

e)
b) 



Chapter 4-Membranes characterizations and results  

Page 137 on 229 

∆𝑓(𝑡) =
2

𝜆
𝑣(𝑡) 

known as the Doppler frequency. The Doppler Frequency shift is used to measure the component of velocity 𝑣(𝑡), 
which lies along the axis of the laser beam. The velocity and displacement of the moving structure are measured 
from the frequency and phase of the detector output. 

After membrane microfabrication, each sample with 3 membrane (denoted m1 to m3) was characterized at room 
temperature. These dynamic characterizations were performed for 15 samples denoted EchI to EchIV (according to 
the geometry-with and without spiral- and the RTV/Si thicknesses). In addition, numerical simulations on the finite 
element software “COMSOL-Multiphysics” giving mechanical and dynamic behavior of the membrane are 
presented. 

4.7.2. Results and discussion 

Resonance frequency at room temperature. There are two configurations of membranes: those with spirals and 
those without spirals having only disks at their centers. Figure 4-24 shows sketches of these two geometries. Since 
the silicon spiral is attached to the ends and embedded in the polymer, it will increase the overall stiffness of the 
membrane. For the spiral-free membrane, only its center is rigid because it consists of the silicon disc, the periphery 
of which is surrounded by the RTV polymer.  

 

  

  
Figure 4-24 : Membrane configurations (spiral and disks shapes). The RTV-silicone layer is colored in blue on the 3D views. 

For the membranes without spiral, for each type of geometry (dimensions), the dynamic characterizations were 
carried out for at least six different membranes, while for those with spiral, for each geometry, the measurements 
were carried out on at least nine membranes, each one being noted mi (with i the number of the membrane i=1, 2 
...). At room temperature, the 164µm-thick (94/70) membranes with spiral and 2mm diameter central disc 
presented an average resonance frequency around 2168.0 ± 95.5 Hz, while those with 1mm central disc presented 
an average frequency of 2083.5 Hz ± 70.9 Hz. Membranes with only a central disc of 2mm (i.e. without spiral) 
presented an average resonance frequency around 856.4 Hz ± 16.3 Hz.  

All frequency measurement results, including those for 200 µm thick membranes, are presented in the with 
standard deviations (in italics). It can be seen that, for the same membrane thickness, the natural frequency is lower 
with the spiral-free membrane.  

To numerically determine the eigen frequency, we carried out numerical simulation using COMSOL Multiphysics. 
The mesh was of normal type and contours of the membrane were fixed (cf. Figure 4-25). The properties of the 
RTV-silicone layer used during the simulations corresponded to those found in the bending tests on the non-spiral 
membranes described above. Since this type of membrane has only one silicon disc in its center, embedded in RTV-
silicone layer, during the test the Young's modulus found corresponds well to that of the RTV-silicone layer, since 
the disc is considered undeformable. Numerical frequencies derived from thses COMSOL simulations are also 
presented in Table 4-12. Comparison of the results (for measurements at ambient temperature) shows deviations 
between experimental and numerical results of 2.8% for a 94/70 membrane with a spiral and a 2 mm thick central 
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disc. This deviation increases significantly in the case of membranes without spiral (13-22%). Thus, in the case of 
spiral membranes, the simulations are therefore consistent with the experimental results.  

 

 Membrane Configurations 

RTV 
thickness/ 

Silicon 
thickness 

Central disc 2mm (without 
spiral) 

Spiral+ Central disc of d= 2mm Spiral+ Central disc of d= 1mm 

Experimental Frequencies 

 
Eigen 

frequency (Hz) 
Uncertainty 

(Hz) 
Eigen 

frequency (Hz) 
Uncertainty 

(Hz) 
Eigen 

frequency (Hz) 
Uncertainty 

(Hz) 

94/70 856.4 ± 16.3 2168.0 ± 95.5 2083.5 ± 70.9 

100/100 850.2 ± 16.3 2794,4 ± 69.9 2778.2 ± 50.2 

Numerical Frequencies 

 
Eigen 

frequency (Hz) 

Deviation 
with 

experiments 

Eigen 
frequency (Hz) 

Deviation 
with 

experiments 

Eigen 
frequency (Hz) 

Deviation 
with 

experiments 

94/70 666.6 22% 2230.8 2.8 % 1951.6 6.3 % 

100/100 735.87 13% 2632.9 5.8 % 2507.2 9.7 % 

Table 4-12: Average of Experimental Resonance Frequencies measured on Membrane. (Deviations mean deviations between 
numerical and experimental results) 

Natural frequencies 

Layers : Properties : 
RTV-Silicone and silicon E = 0.85MPa   = 0.49  m = 1100 kg/m3 

Membrane with spiral (100/100) Membrane without spiral (central disk, 100/100) 

  
     

 
   

 

 

  

2632.9 Hz 735.87 Hz 

Figure 4-25: Result of the eigenfrequency simulation of the hybrid (100/100) membrane with spiral and 2mm disc 

Fixed part 

Free part 

Mesh lines 

Silicon support 

Silicon Disc 

Silicon spiral 
RTV-Silicone 

Fixed part 

Free part 

Mesh lines 

Silicon support 

Silicon Disc 

RTV-Silicone 
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A mechanical-structural model with COMSOL Multiphysics of the membranes stresses was simulated, including the 
planar spring (cf. Figure 4-26 b) and the disc with RTV-silicone layer (cf. Figure 4-26 b) at room temperature. The 
objective of the simulation is to check the mechanical stresses corresponding to the maximum displacement of 300 
µm. The areas of high mechanical stress are highlighted in the Figure 4-26 for maximum displacement of the central 
disc and the spiral. The Von Mises stresses are equal to 2,7 MPa for the structure with a spiral, and to 308 MPa for 
structure without a spiral. Thus, the stresses remain within the yield strength of the silicon materials, which is 7GPa 
[235]. As expected, the areas of strong mechanical stresses were maximal at the salient points of the planar spiral 
spring. But, for the disc membrane, the stresses were localized in the zones of attachment of the RTV-silicone layer. 
We can conclude that the membrane, when used at this level of displacements, will remain within the elastic limit 
of the mechanical properties of the constituent materials. 

While designing the spiral spring to aim at the desired stiffness value or frequency, this 3D FEM model can be used 
to study the effects of membrane thickness, and/or the effect of the RTV-silicone layer. The geometric parameters 
of the structure can be easily adjusted to provide inertial effects by increasing the thickness and / or width of the 
central disc. This last adjustment can allow an increase in the mass of the membrane. According to the simulation, 
we found that the layer trapped between the spiral turns increases drastically the resonant frequency of the 
membrane, which is consistent with experimental results (cf. Table 4-12). 

Von Mises’s stresses (MPa)  

Spiral membrane : 100/100 Disc membrane: 100/100 

  
Figure 4-26: Result of the stress simulation of membrane: a) thickness (100/100) with spiral and 2mm disc, b) thickness 

(100/100) with 2mm disc without spiral 

In conclusion, a comparison of the values of Table 4-8 with Table 4-12 shows that, for the same thickness of 
membrane, the spiral geometry is much more rigid and much more reproducible and repeatable than that with 
central discs only. In addition, the deflection shape is much better controlled with a spiral geometry based on static 
air pressure tests and the results of the simulations above. The stiffness results are consistent with those of air 
pressure tests and those in flexion. 

4.8.  Influence of thermal treatment on membranes properties 
The characterization of the membrane properties evolution with temperature is necessary as the application of the 
membrane implies continuous operation at a high temperature.  Moreover, heating is normally used in the 
fabrication process including curing and bonding at high temperature (often more than 300°C) for wafers 
integration and/or packaging. Some studies in literature have shown that temperature has an impact on PDMS (E 

750 kPa, which is also a stable rubber physically and chemically at room temperature). Indeed, Liu et al. [192] 
showed the influences of heating temperature on mechanical properties of PDMS (Young's modulus and ultimate 
tensile stress). They showed that the mechanical properties are independent of heating time for low temperatures, 
but higher heating (at about 200 °C) causes thermal decomposition of PDMS which reaches a peak at 310 °C, 
resulting in lower mechanical strength. Its shear modulus is independent of the applied frequency but linearly 
dependent on the temperature with a slope of 1.1kPa/°C. In addition, Schneider and Wallrabe [195] analyzed the 
dependence of the elastic modulus on the temperature, thinner concentration and thermal aging of two silicone 
products most commonly used in MEMS namely RTV615 (Bayer Silicones) and Sylgard184 (Dow Corning). The 
authors concluded that the isotropic and constant elastic modulus (E) depends strongly on the hardening 
conditions. For instance, at high temperatures and long hardening time, in a range up to 40% strain, RTV 615 
displays an elastic modulus E of 1.91 MPa and Sylgard 184 an elastic modulus of 2.60 MPa [195]. 
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In the project, the assembly of the micro-machine requires clean room steps, including high temperature wafer 
bonding steps. We therefore had to verify the compatibility of the membranes with the heat treatment steps 
required in the clean room. We subjected them to various high operating temperatures. 

4.8.1. Thermal bench  

To test the compatibility of membrane with high temperature clean room process like thermocompression or 
anodic bonding step up to 300°C, we used the EVG 501 bonding equipment (cf. Figure 4-28). Concerning their 
temperature stability during a short period at temperature up to 200°C, we made a heating system consisting of an 
aluminum block on which are inserted heating resistors (cf. Figure 4-27). Finally, for the temperature aging tests 
we used a furnace (in MIMENTO clean room) which can go up to 200°C and keep a stability over long time periods. 

We will first shortly present the two heating setup, then we will present the procedure used with the aluminum 
test block as well as the one with the EVG equipment. 

− First setup: Aluminum block heating system (for temperatures up to 200°C) 

This bench is composed of a heating element, 2 types K-thermocouples, 4 heating resistors that can be used up to 
700 °C (two of them with thermocouples), a PID thermal regulator and a multimeter. The details of these elements 
are given in the Appendix. At the level of the aluminum block we have reserved a location for the samples carrying 
the membrane and a lid is closed over to prevent convection and maintain a stable temperature for the membrane. 
The heating cartridges are controlled using the PID. The cooling is done through a mini fan next to which is a mini 
vacuum cleaner to avoid possible fumes related to the thermal paste we use to insert the cartridges. 

 

Figure 4-27 : Heating setup (100°C to 200°C for short time) 

− Second setup: EVG 501 bonding equipment (for temperatures up above 330°C) 

 

Figure 4-28: a) Membrane samples placed inside the chamber. b) Complete view of the welding machine type EVG501 

The heating protocol used on the EVG501 welding machine is as follows: after the introduction of the samples and 
closure of the weld chamber, pumping at P = 5.10-3mbar is performed, followed by preheating in nitrogen N2, with 
a ramp of  5 °C/min to 70 °C for 10 minutes. Then the nitrogen is pumped to heating at 100 °C (or 200 °C or 300 °C) 
in a vacuum of 5.10-3mbar with 3 °C/min. At 100 °C (or 200 °C or 300 °C), the samples are left for 40 min. Then a 
cooling of 5 °C/min up to 70 °C is triggered. Finally, nitrogen N2 is purged and cooling continued until 50 °C before 
taking out the samples.  

 

a) 
b) 

a) b) 
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4.8.2. Mass Bench 

The study of the mass variation of the samples was done by measuring their mass after their microfabrication, then 
for several days after their manufacture (to observe their stability), but also systematically before and after a 
heating step. The mass weighings were performed with an AND balance model 202. 

Weighing 
capacity 

Minimum 
weighing 

value 

Repeatability (Standard 
deviation) 

Linearity Sensitivity drift (10 °C to 30 °C) 
Weighing 

pan 

42 g 
210 g 

0.01mg 
0.1 mg 

0.02 mg 
0.1 mg 

±0.03mg 
±0.2 mg 

±2 ppm/˚C Ø 85 mm 

Table 4-13: Characteristic of the scale that was used to test the variations of the membrane mass 

4.8.3. Study methodology 

 A first measurement at room temperature (RT) of the frequencies and masses of the membranes was made before 
any heat treatment. The characterization carried out each time corresponds to the measurement of the resonance 
frequency and the measurement of the mass of the membranes. The samples characterized at room temperature 
were then subjected to given temperatures (100, 200 or 300°C) for given periods of time, consistent with those of 
an anodic bonding process. After removal from the oven, the mass of the samples and the resonance frequency of 
the membrane were measured at room temperature. The resonance frequencies were determined 15 minutes 
after leaving the oven, then after 24 hours of relaxation. All measurements after heat treatment were also 
performed at room temperature. In addition, some samples were also subjected to an ageing test at 200°C. Finally, 
a relaxation study was carried out by directly subjecting a sample of 3 membranes to a temperature of 300°C and 
then, after removal from the oven, to a measurement of the evolution of the resonance frequency of the 
membranes as a function of time. 

We established the following heating process: first, samples I (denoted S-I) were heated at 100°C, samples II 
(denoted S-II) at 200°C and samples III (denoted S-III) at 300°C. Then, after their characterization, samples S-I were 
heated at 200°C. We characterized them and then, heated them at 300°C. Finally, once again, we characterized 
them. After their characterization, samples S-II were heated at 300°C. Finally, after their characterization and to 
test their temperature behavior over a long period, we subjected S-II and S-III to aging at 200°C for more than a 
month inside an oven.  

4.8.4. Results: effect of the temperature on the membranes  

Following the study methodology presented in the previous section, for each membrane, we calculated the 
difference between the resonance frequency found after being submitted to given operating conditions and the 
mean value of the initial frequencies of the studied samples before temperature treatment. The repeatability of 
the measurements we encountered for our samples on the Polytec MSA 500 equipment was between 50 and 
200Hz.  

 Figure 4-29 shows the variation of the resonance frequency (1st mode or piston mode) as a function of the different 
heat treatments. The values on the y axis (Δf) represent the difference between the average of the resonance 
frequencies of the membranes after heating and the average of their resonance frequency before sample heating. 
On the x-axis are noted the heating conditions and the relaxation time experienced by the membranes before the 
recovery of each measurement. The two types of structures of the membrane were tested (the structure with a 
spiral, and the other one with only the central disk, cf. Figure 4-24). 

An analysis of Figure 4-29 shows that the average natural resonance frequency does not appear to be influenced 
by heat treatments up to 200 °C. From 200 °C, there is a small variation in the resonance natural frequency, which 
increases of the order of 60 Hz for the spiral membrane. This variation remains stable even after 24 hours of 
relaxation. Membranes without spiral (central disk) do not appear to be influenced by heating at 200 °C. But, at 300 
°C, the frequency drops for both types of membrane structure. Indeed, for both membrane geometries, the 
frequency drops at 300 ° C with a variation of the order of 100Hz compared to the natural resonance frequency 
before heating. The membranes with spiral stabilize after the fall at 300 °C probably because of the presence of the 
recessed spiral. For membranes without spiral, after 24 hours of relaxation, the frequency does not return to normal 
and seems to decreases to about 140 Hz of variation with respect to the initial frequency. 
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Figure 4-29: Average variation of the frequencies difference (between the average of the resonance frequencies of the 
membranes after heating and the average of their resonance frequency before heating) for different heating temperatures 

(100, 200 and 300°C) and without relaxation time or with more than 24h of relaxation time. Measurments for 94/70 
membranes with spiral (denoted Spiral) or without spiral (denoted Central disk). 2mm central disk. 

Consider, then, Figure 4-30, which represents the average variation of the frequency over a long relaxation period 
for a sample of 3 membranes withoust spiral (central disk). The dash line with error bars corresponds to the mean 
value of the three membranes (denoted III-a-m1, III-a-m2 and III-a-m3). The change of resonance frequency with 
temperature is clear after a 300°C heating. Indeed, this phenomenon is more pronounced on spiral-free membrane 
since they contain more RTV-silicone. 

 

Figure 4-30: Average variation of the frequency over a long relaxation period of more than 10 days for a sample of three 
94/70 membranes without spiral and with a 2mm central disk. 

Figure 4-31 shows the mass variation of the samples (for both types of structure) before and after heat treatment. 
The mass appears to decrease slightly after heating (the lowest mass attained corresponds, at most, to a decrease 
of 0.4 mg, i.e. a "maximum" decrease of less than 1 per thousand). However, taking into account the weighing 
precisions, this trend is not clear and seems to appear from heating to 200 °C. At 300 °C, the mass of membranes 
decreases more markedly for membranes without spirals. This drop in mass is also observed on the membranes 
with spiral after heating at 300 °C. After relaxation, the average mass does not vary: there appears to be no 
significant adsorption (water vapor).  

Figure 4-32 shows the change in membrane mass more clearly. The dotted line on this curve represents the change 
in mass before heating measured over several days.  With this curve, we see the moment when the mass begins to 
vary, that is to say from 200 °C. On the other hand, at 300 °C, the variation is accentuated, the mass falls and this 
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phenomenon is especially observed on the membrane without spiral, which contains more RTV silicone. This mass 
drop may be due to a thermal shock causing degassing or a delusion of water vapor entrapped in the matrix of the 
polymer. After 24 hours of relaxation, for both types of membrane, the mass tends to incease, as if returning to 
normal. 

 

Figure 4-31: Variation of the mass of two samples (spiral & disc) after heating from 100 °C to 300 °C. 

 

Figure 4-32: Controlled mass variation on two samples : with and without spiral. 94/70 membranes, with a 2mm central disk. 

 

Figure 4-33: Variation in mass (right axis) and frequency (left axis) measured on three differerent samples (I-B, III-B and III-C). 
94/70 membranes with spiral and with a 2mm central disk. 
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Figure 4-34: Variation in mass (right axis) and frequency (left axis) measured on a sample (III-a) of three 94/70 membranes 
without spiral and with a 2mm central disk. 

Comparing with the variation of the resonant frequency (cf. Figure 4-33), there does not seem to be any effect / 
direct link between the mass variation and that of the resonance frequency: this can be related to the slight 
variations in mass (at most 1 ‰), insufficient to visibly influence the mechanical behavior of the membrane. There 
is rather a contradiction between the two curves because they go in the same direction, that is to say that the mass 
and the frequency decrease. While, physically, when the mass drops the frequency should increase according to 

the equation: 𝑓 =
1

2𝜋
 √

𝑘

𝑚
. 

Indeed, this is explained by the fact that the stiffness of the RTV-silicone began to change at 300 °C, and that change 
must have been more significant than that of the mass. Consider the membrane without spiral (cf. Figure 4-34), 
since it is found that the frequency decreases under the effect of heat at 300 °C, the stiffness should also decrease. 
On the other hand, at 200 °C, the stiffness does not seem to vary (or varies insignificantly) since on the membrane 
with spiral, the mass decreases while the frequency increases: this is consistent with the formula above. This would 
mean that it is rather a slight decrease in mass than stiffness that is observed at 200 °C on these membranes. It can 
also be seen that after several days of relaxation following heating at 200 °C, the frequencies of the membrane for 
the two types of geometries remain stable (fluctuations after more than 36h of relaxation are largely included in 
the error bars). Therefore, it can be considered that after manufacture, to completely desorb the solvents present 
on the membrane, they could be heated to 200 °C. 

In order to check whether the membranes are significantly impacted by heating to 300°C and whether they can 
partially recover their properties after relaxation, we heated membranes, without prior heat treatment, directly to 
300°C. Then we measured their resonance frequencies from 15 minutes after they left the oven. These 15 min 
correspond to the time it takes to get out of the clean room to make the frequency measurements. To evaluate the 
changes over time, the resonance frequencies were measured over a total duration of about 500 minutes. The 
results are plotted in Figure 4-35 which represents the time variation of the frequency for 6 different membranes 
taken from 2 different samples (94/70 with spiral and 2mm central disk). This graphic delivers several pieces of 
information. 

 First, according to the curves, the resonance frequency is almost constant over time: no frequency 
decrease/increase over time is observed. The curves follow an affine straight equation, with very low and almost 
zero directing coefficients (10-4-10-3

 range). This seems to indicate that on theses structures, the relaxation can be 
reached very quickly, even before our first measurements which were carried out 15 min after the exit of the oven. 
These relaxation values are much than the ones that can be found in the literature (about 4h [239]).  

Secondly, the membranes of the same batch and those of a different batch have -on average- very similar 
behaviours. Without taking into account measurement errors (which result in fluctuations of the order of 30 Hz 
around the central value in the worst case), there is a maximum difference, on average, of the order of 100 Hz 
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between the extreme values of the resonance frequencies. In the worst case, the variation is therefore less than 
5%. This allows us to show the repeatability of our manufacturing process. 

 

Figure 4-35: Variation of the resonance frequencies as a function of the relaxation time, after heating to 300°C, for 6 
membranes (94/70, with spiral, 2 mm central disk) from 2 different samples. 

The variations observed from 300°C could be related to the fact that it is an amorphous polymer of elastomer type. 
The latter have no apparent order (liquid-type structure), no precise melting temperature, but they have a softening 
phase. They are characterized by low shrinkage, impact resistance, dimensional strength and creep resistance. 

Visual observation of the silicone RTV (cf. Figure 4-37) shows that it is red after structuring. This color becomes 
bright red after heating to 300°C. However, from 330°C onwards, there is a real degradation of the RTV-silicone, 
which becomes brittle. These membranes are therefore suitable for clean room processes up to a maximum 
temperature of 300°C.   

 

Figure 4-36: Samples pictures: a) before b) and c) after heating process at 20min/Step 

 
Figure 4-37: Pictures of deteriorated Membrane after being heated at 330 °C  

To conclude, we carried out the characterizations of the membranes before (at room temperature) and after the 
heating process. The variation of the mass with the temperature follows a slight downward trend due to the 
degassing of the RTV silicone layer. The mechanical properties of the membranes seem to remain stable when 
heated to a temperature below 300°C. For heating to 300°C, we observed a decrease in resonance frequency, but 
no "physical" degradation of the membrane. Thus, the clean room process should not damage or significantly 
change the properties of the membranes, if the bonding temperature does not exceed 300°C.  However, according 
to the manufacturer's data sheet, this RTV silicone is sold for use up to 343°C (350 F): our results do not comply 
with this specification. It may be necessary to specify a thickness above which the temperature can be raised to 

b) a) c) 
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343°C because with a thickness less than, or equal to, 200µm (that of our membranes), the maximum safe 
temperature has been found to be less than 330°C. 

Note: We focused in this work on the first mode of resonance. Nevertheless, we have noticed that apart from the 
1st vibration mode which is the piston mode, the 6th mode is the following one which has an interesting amplitude 
because it is higher than the first one (results presented in [240]). But this mode corresponds to a vertical inclination 
of the central disc compared to the 1st mode which has the shape of a mobile cylinder. This means that the volume 
of fluid which can be displaced by this 6th mode is strongly reduced. However, it can be interesting for other 
applications where one is not looking for a swept volume, but rather a large displacement.  

4.9.  Conclusion 
Two types of membrane structures with RTV-silicone were studied: one with a silicon spiral spring and one with a 
cental disc, all with different thicknesses and configurations. A stability study of the properties of the membrane 
subjected to thermal sollications, with aging tests for more than one week and study of relaxation after a stage of 
a short heating period at temperatures up to 300 °C, was carried out. Studies of dynamic stability of frequency and 
initial maximum displacement as well as a study of mass variation after heating were carried out. A significant 
increase in membranes displacement capacity was observed and a slight decrease in frequency related to an 
increase in the elasticity of RTV-silicone resulting from heating. Samples, each carrying three membranes, were 
successively heated from 100 °C to 300 °C with characterizations after each step. Then another sample was directly 
heated to 300 °C for a relaxation study over 8h. This relaxation study consisting of close frequency measurements 
on each sample membrane just after it leaves the oven at 300 °C.  

We modelled, and experimentally demonstrated the stability of membrane resonance frequency (1st and 6th mode 
[240]), which are thus suitable for micromachines, especially thermal micromotors. The numerical simulation made 
it possible to highlight the zones of strong mechanical stresses and the expected piston-mode resonance frequency. 
Numerical results were in agreement with the experimental test results. Experimental results showed that high 
temperature processes, like anodic bonding, should therefore not change the mechanical properties of the 
membrane provided that the bonding temperature does not exceed 300°C. The micro fabricated membranes 
structures aimed at being implemented in the micromachine, so, in the next chapter, we implemented these fluidic 
membranes on the Stirling micromotor being assembled.  

The main results of chapter 4 are the following:  
 

1. The RTV silicone mechanical properties have been evaluated since no precise measurements were found 
in the literature for small structures made of this material: a Young’s modulus of about E = 1 MPa was 
measured (which is less than E = 1.5 MPa for PDMS), with a breaking strain of about 100%. 

2. Two types of 5mm diameter RTV- silicone /silicon hybrid membranes were tested. The membranes with 
an embedded silicon spiral exhibited deflections up to 1mm at center without breaking and this 
deflection reached up to 2 mm for membranes with only a central silicon disc. 

3. The stiffness of the membrane is in the range of 0.2 N/mm for those incorporating Si spirals, and of 0.1 
N/mm for those incorporating discs only.  

4. Resonance frequencies are in the range of ~ 850 Hz for membranes with a central disc and ~2100-2800 
Hz (depending on the membrane thickness) for membranes with spiral springs. 

5. The membrane does not seem to be significantly affected by heating at 200°C (even after aging for 
more than a month at this temperature), however a permanent drop of the resonance frequency is 
observed after heating at 300°C. This shows that the membrane may be deteriorated during the 
assembly process by anodic bonding if the temperature reaches 300 °C on the membrane.  



 

Page 147 on 229 

CHAPTER 5 :  CHARACTERIZATIONS OF THE STIRLING MICRO-
MACHINE   

This chapter concerns the characterization of assembled Stirling micro-machines in motor and cooling mode. The 
miniature machines presented in the previous chapters were assembled with different types of mechanical 
connections between the membranes (incompressible liquid or solid bonding rods).  

First, we will explain the difficulties related to the instrumentation of the micro-machine. Then, we will present 
some results corresponding to static measurments for a membrane assembled with a chamber. After a brief 
reminder of the MISTIC configuration, estimation of its performance using the isothermal Schmidt model under 
Matlab has enable to predict the expected machine output. The different types of assembled micro-machines are 
then presented: two types of mechanical connections were tested (incompressible liquid or solid connection) and 
the machines can operate either in motor mode (temperature controlled) or in cooling mode (mechanically 
controlled). To do so, some magnets were incorporated to allow the membranes displacement while minimizing as 
much as possible the space requirement that could interfere with the flow of the fluid. The characterization results 
associated with the various pistons (solid and liquid) used in micro-machines are presented. Finally, we will present 
the experimental setups for the two modes of the micro-machine, followed by the results and discussion. 

5.1.  Stirling micro-machine instrumentation difficulties 
The prototype was instrumented to measure the main physical quantities involved experimentally: temperatures 
(hot and cold sides) and operation frequency. Before presenting the characterization of the micro-machine, we 
would like to underline the difficulties related to the instrumentation of the micro-machines fabricated in 
cleanroom. 

The instrumentation of micro-machines for the acquisition of data such as temperature and pressure is a challenge. 
Mainly, because the height of the gas compression and expansion chambers and the regeneration channel are less 
than a millimeter (because in clean rooms the standard thicknesses of silicon substrates are 0.5 to 1 mm). To 
introduce a pressure sensor, it would have to be micrometric so that the sensor does not disturb the flow, the 
membrane deflection, or block the regenerator channel. In other words, a custom pressure sensor should be 
manufactured during the micro manufacturing of the micro-machine. The development of such a sensor can already 
be the subject of another thesis.  

What is valid for the pressure sensor is also valid for the other sensors (temperature and fluid velocity). Regarding 
temperature measurement, currently the most commonly used sensors are thermocouples. Commercial ones have 
minimum diameters that are generally above 100µm. In the laboratory, and particularly at the Femto-st institute, 
it is possible to produce miniatures thermocouples whose dimensions can be below one micrometer at the junction 
[241]. Nevertheless, the integration of such a sensor is technologically complicated: the smaller the sensors, the 
more fragile they are and their electrical connectors are usually larger than the available space. The case of the 
velocity sensor is even more complex, even if sensors combining speed and temperature measurements are being 
developed, particularly within our institute [242], [243] [244], [245]. 

Considering all these difficulties, one could think of an optical solution, such as laser sensors (temperature for 
example), but this requires transparent walls in the wavelength range of the light source. This is technologically 
difficult and would be a source of error on the measurements because the work spaces are hundreds of 
micrometers high, without the possibility of checking visually where the measurement is made exactly (since silicon 
is not transparent for visible light). Thus, the introduction of all these sensors, or even just one, is tricky and could 
affect the starting or proper operation of the machine. 

In terms of measurements to be made on the micro-machine, we decided to focus on the external measurements 
of temperatures and membranes displacements. Temperature measurements will be made by an external 
temperature sensor (PT100 probe, thermocouple) and membrane displacement measurements will be made using 
optical sensors (laser or confocal sensors) through through windows designed for. All the instrumentation used and 
the characterization setup will be presented later on in sections 5.5. , 5.6.  and 0
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In the previous chapter, we presented the study of the hybrid membrane (HM) alone (RTV + silicon). In the following 
sections, we will focus on the assembled hybrid membrane including chambers and/or mechanical connection 
between the membranes. 

5.2.  Static displacement of hybrid membranes in corresponding chambers 
Static and dynamic results obtained with a membrane alone were previously presented in the chapter 4. The 
different types of membranes used in this study are recalled (as well as their dimensions) on the Figure 5-1.  In this 
section, we focus on the change of behaviour when a membrane is assembled (bonded) with a chamber. The 
membranes (with a spiral or with only one central disc) are assembled with a 300μm-high silicon chamber. Figure 
5-2 presents the 2D schematic view of these membranes, as well as their dimensions. 

 

 

Figure 5-1 : The different types of membranes used in the present section. Both with a 100µm thick of silicon embedded in 
RTV-silicone and with above a 100µm thick RTV silicone over laye . Pictures are taken from below the membrane. 

 

 

Figure 5-2: 2D schematic view of the assembled membrane with one chamber. On the left, the membrane with a spiral. On 
the right, the membrane with a central disc (no spiral). At the center, picture of the test setup. 

− Setup presentation: 

We carried out displacement tests with the same procedure than the one presented in the section 4.6.2. To 
determine the possible static displacement and the pressure required to achieve it, a force was applied (using a 1.7 
mm diameter pin) on the central disc of the underside of the membrane. We are in the configuration of centrally 
charged circular membrane where a displacement is imposed at the membrane center silicon disc and the resulting 
stiffness is measured thanks to a 22N load sensor (cf. Figure 5-2, center image).The displacement speed of the pin 
is constant (10 µm/s) and the force applied to the pin is recorded. The membrane resistance is the result of the 
membrane stiffness and the pressure difference inside and outside the chamber. This pressure difference may 
depend on the speed of the pin: an excess pressure may appear inside the chamber at high speed since a finite time 
is needed to expel air from the chamber through the exhaust pipe. These tests can be used to determine the 
minimum pressure required to operate the micro-machine when it is fully assembled. The results obtained for both 
types of membranes are shown in Figure 5-3. The curves on the left are for membranes with a spiral containing a 2 
mm central disc. The curves on the right are those of the membranes without spiral but with only a 2mm disc in 
the center. 

− For membranes with spiral (Figure 5-3, on the left): the tests were performed for the 3 membranes (denoted 
membrane N°1, N°2 and N°3 on the figure) of each sample (there are 3 membranes on each chip studied). The 
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three curves represent, for each membrane, their displacement in their associated chamber. It can be seen 
that the three curves are relatively similar, which shows good reproducibility (or homogeneity) when 
microfabricated in clean rooms. The observed deviations may be related to measurement errors. Indeed, the 
deflection measurement is accurate to ± 2µm and the pressure measurement is accurate to ± 0.17 % 
(combination of errors due to force and surface measurements). It can be seen that, to deflect the membrane 
by 300µm, i.e. for the membrane to touch the bottom of the chamber, a pressure of at least 0.2 MPa (2 bars) 
is required. Note that for the membrane N°1, the pin slipped and damaged the membrane so the measurement 
could not be taken above 0.07 MPa. This test validates the pressure resistance of the chamber and also the 
good quality of the wafer bonding. 

− For the membranes without spiral (Figure 5-3, on the right): the tests were also performed for the 3 
membranes (denoted membrane N°1, N°2 and N°3 on the figure) of each sample. A pressure of at least 0.04 
MPa (0.4 bar) is necessary to reach a deflection of 300µm. This pressure is 5 times lower than the one required 
to obtain the same displacement with the membranes with spiral.  Note that, since the range of applied 
pressure is five times smaller than the one for the spirals, there is less measurement points and the uncertainty 
of the measure is more visible. The membrane N°3 was damaged before the test (RTV-silicone damaged during 
manipulation), thus the result is not conclusive for this membrane. Concerning membranes N°1 and 2, they 
therefore seem to be more favourable to be used in a micro-machine because they required a force about 5 
times less important than the one for the spirals : as expected, the necessary energy for the motion of the 
membrane should thus be less important with a central disk than with the spiral.  

 

Figure 5-3 : Required pressure to deflect the membrane assembled with a chamber. On the left: for the membrane with a 
spiral (100µm of Silicon embedded in RTV, with an overlay of RTV of 100µm thick). The central disk of the spiral has a 

diameter of 2mm). On the right, for a membrane with a silicon single central disk (no spiral). The central disk is 2mm in 
diameter and 100µm thick, embedded in RTV and with a RTV overlay of 100µm thick. 

 

Figure 5-4: Comparison between the membranes alone (denoted “spiral alone”) and the membrane+chamber assembly 
(denoted “spiral+chamber”). The membranes are loaded in their center. All the membranes are with a spiral (100µm of 

Silicon embedded in RTV, with an over layer of RTV of 100µm). 
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In order to quantify the influence of the chamber on the force required to move the membrane, we compared the 
case of membranes alone (previously presented in chapter 4) and that of the membrane+chamber assembly. The 
results obtained for spiral membranes (100µm, 2mm central disc) are given in the Figure 5-4. We can see that the 
variation of the force as a function of displacement is different when the membrane is placed on a chamber with 
an outlet channel and when this membrane is alone. This variation is probably due to an overpressure in the 
chamber that occurs when the membrane compresses the gas contained in the chamber. The force F(t) that resists 
the displacement of the membrane consists of two terms: 

𝐹(𝑡) ≈ 𝑘. 𝑧(𝑡) + 𝐹𝑔(𝑡)  ≈  𝑘. 𝑧(𝑡) + Δ𝑃(𝑡).
𝑉𝑐

ℎ
 

where k is the stiffness of the membrane, z(t) its displacement as a function of time, 𝐹𝑔 is the resistance of the gas, 

∆P the overpressure in the chamber as a function of time, Vc the chamber volume (supposed cylindrical here) and 
h its high. 

We define Δ𝐹(𝑡)  ≈ 𝐹(𝑡) − 𝑘. 𝑧(𝑡) as the overpressure load extracted from the membrane-loading test, and thus, 
the overpressure in the chamber can be written as: 

Δ𝑃(𝑡) ≈
ℎ. ∆𝐹(𝑡)

𝑉𝑐
 

The overpressure can thus be estimated in the chamber and is given on the Figure 5-5. This overpressure seems to 
remain at modest values, below 100 mbar (i.e. 10% of atmospheric pressure), which indicates that the outlet 
channel should not Induced an excessive resistance to gas flow. 

After these tests, we assembled the full engine. Different mechanical connections between the membranes were 
tested (cf. section 5.4. ): either with a liquid (incompressible) or with a solid rod connecting the two membranes. In 
the next section, we will present the different engines and look at the evolution of the resonance frequency when 
the membranes are connected.  

 

Figure 5-5: The force ∆F (deduced from measurments presented in chapter 4) due to the overpressure in the chamber for 
two membranes with spirals and disk as a function of their displacement z (µm).  

5.3.  Schmidt simulation for the MISTIC micro-machine  
In what follows, we will first recall the configuration of the MISTIC micro-machine before presenting the numerical 
model based on the isothermal Schmidt’s one. This model enables to predict the expected machine output.  

− The MISTIC micro-machine: 

The micro-machine operating with a liquid (as coupling element between the two membranes) is the prototype 
proposed in the MISTIC project. The structure of this micro-machine is such that, unlike conventional Stirling 
motors, the oscillations should begin without significant input of initial energy (as for the mesoscale motor at the 
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Symme Laboratory). The schema of this micro-machine is presented in Figure 5-6. This micro-machine is composed 
of six hybrid membranes connected two by two by an incompressible Vaseline liquid. 

 

Figure 5-6 : a) Schema (realised on sketchup sofware) of the principle of the Stirling micro-machine proposed in the MISTIC 
project. b)Picture of a full engine. c) geometric dimensions of one module without the second membrane/chamber stack 

closing the module.  

− The Schmidt analysis:  

To theoretically estimate the performance of the MISTIC engine, we carried out a numerical calculation by adapting 
the isothermal model developed by Schmidt and presented in chapter 1. This simplified model (because it does not 
take losses into account) was chosen for several reasons and, in particular, because at these scales, estimating 
thermal and fluid losses requires precise knowledge of the phenomena and databases or correlations based on 
experience, which we do not have. We therefore decided to estimate the performances in an "ideal" case: the 
isothermal one. The input parameters are shown in Table 5-1. They include chamber sizes (compression and 
expansion), connection channels between compression and expansion chambers (six vertical channels and three 
vertical channels intended to contain the 3 regenerators) and diameters of the membranes and their central discs. 
On the other hand, the operating parameters (such as pressure, hot and cold side temperatures and angular phase 
shift) are also included in this table. The working fluid used here is air at ambient pressure, therefore the molar-

weight-specific gas constant 𝑟 =
𝑅

𝑀
=287 Pa.m3.kg-1.K-1. 

Parameters 
Name on 
Figure 5-6 

Values 

Void volumes  

Diameter of the regenerator [mm]  Bt 1 

Height of the regenerator [mm]  hv+2hM+2eM 7.5 

Length of the horizontal channel [mm]  Lt 3 

Width of the horizontal channel [mm] -- 1 

Height of the horizontal channel [mm]  hC 0.3 

Chambers  

Height of the chamber [mm]  hL 0.3 

Radius of the chamber [mm]  DL/2 2.5 

Radius of hybrid membrane central disc [mm]  Dd/2 1 

The other operating parameters 

Average pressure [Pa]  101325 

Temperature of the cooler [K]  293 

Temperature of the heater [K]  473 

Phase shift alpha [°]  120 (2𝜋/3rad) 

Table 5-1: Parameters used in the Schmidt model for air at 300K and atmospheric pressure. 

a) 

b) 

c) 

Chamber 

Membrane 

Glass spacer  

Regenerator 
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With an absolute pressure set at 1.013 bar and a hot temperature set at 200°C, the numerical results are shown in 
Table 5-2 for two operating frequencies: 1000Hz and 10 Hz. In these calculations, we used membranes whose swept 
volume will have the shape of a truncated cone (calculations detailing this have been presented in chapter 2). When 
the temperature difference between the hot and cold sides is sufficient (here set at 180°C), the motor must start 
and the membranes start to move. The output parameters for volumes are the total dead volumes, the swept 
volumes and the ratio between the swept volume and the dead volume of a chamber (for a deformation of the 
membrane in the form of a truncated cone). This result therefore gives an idea of the importance of the presence 
of the central disk. The operating temperature of the three regenerators is also an output parameter. The obtained 
compression and expansion energy, mechanical power and efficiency of the micro-machine are given in the Table 
5-2. The mechanical power produced by the engine is the difference between the expansion power in the hot 
chamber and the compression power in the cold chamber, respectively calculated by integration on the PV diagram 
(cf. Figure 5-7). For an operating frequency of 1000 Hz, a mechanical Power output of 56 mW was found for this 
micro motor, and its efficiency was estimated to reach 38% of Carnot efficiency. It should be noted that the useful 
theoretical power of 56.7 mW is significant: the engine produces this low mechanical energy because it operates 
at no load. When the operating frequency decreases at 10 Hz, the efficiency remains the same whereas the power 
decreases up to 0.57 mW. Note that those results are obtained with an isothermal assumption, therefore they only 
give an estimation of the efficiency and power.  

From the simulation results, the pressure was plot versus the volume (PV diagram, cf. Figure 5-7). The diagram’s 
shape is quite different from the theoretical one (cf. chapter 1), which corresponds to an ideal cycle, with isothermal 
expansion and compression phases, and isochoric heating and cooling. As can be seen in this PV diagram figure, in 
a real cycle, the four steps are not physically separated but merge into each other. Although the engine goes 
through a cycle, it is not a symmetrical process: heat energy is constantly removed from the hot source and released 
at the heat sink and the real Clapeyron diagram looks like an ellipse. It is important to note that experimentally, 
there should be a slight discrepancy between the pressure of the hot and cold chambers, this being due to the 
compressibility and inertia effects of the gas. In addition, a difference in deflection amplitude resulting from viscous 
losses in the exchangers (chambers, regenerators and channels) is expected. Thus, it is important to keep in mind 
that the instantaneous pressures in the chambers should be slightly different.  

Parameters 
With an operating  

frequency of 1000 Hz 
With an operating  
frequency of 10 Hz 

The volumes calculation results 

Volume swept for the 3 expansion chambers [L] 9.2 10-6 

Volume swept for the 3 compression chambers [L] 9.2 10-6 

Total dead volume with a membrane moving with a 
truncated cone shape [L] 

4.0 10-5 

Ratio between the Swept volume in one chamber (Vsw) 
and the volume of one chamber  

0.52 

The regenerator temperature 

Temperature of the regenerator [K] 375.8 

Energy, power and efficiency 

Compression job [J] -92 10-6 

Expansion job [J] 149 10-6 

Power supplied in Watt [mW] 56.7 0.57 

Efficiency (% of Carnot efficiency) 38.05 

Table 5-2:  The results of operating parameters (Calculation of volume swept and dead volume of chambers in the trunk case 
of a cone) 

Since the structure of the micro-machine requires 3 pistons arranged in the shape of an equilateral triangle, and 
since one aim of the motor is energy harvesting (either conversion from vibrational energy into thermal one in 
cooling mode, or the contrary in the motor mode), the determination of the natural vibration frequencies of the 
micro-machines is important (to obtain a maximal swept volume). This will be the subject of the following section, 
in which different mechanical connections were tested (liquid, glass and plastic, with or without magnet...).  
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Figure 5-7 : The pressure versus volume (PV) diagram in the micro-machine 

5.4.  Hybrid Membranes Pistons: liquid and solid connections 
In addition to the MISTIC geometry using an incompressible liquid (Vaseline) for the mechanical coupling of the 
membranes, a geometry for which the membranes are connected with a solid rod (which we will call "solid piston") 
has been tested. The membranes were identical (same geometry, verified with a profilometer after manufacturing), 
their geometry was recalled on the Figure 5-1. In addition, in order to be able to operate the machines in motor or 
cooling mode, for the later, permanent magnets were included in some versions of the machine. Thus, four different 
types of micro-machines were assembled: with an incompressible liquid between the membranes (with or without 
magnets) and a solid connecting piston in air (with or without magnets): 

− With incompressible liquid (cf. Figure 5-8):  

• For the motor mode: the chamber between the two membranes is filled with Vaseline (MISTIC 
configuration) and no magnet was included. 

• For cooling mode: the chamber between the two membranes is filled with Vaseline and one magnet 
under one of the upper membranes, another one on one of the lower membranes are included. 

 

Figure 5-8 : Scheme and photo of the membranes assembled and connected via an incompressible liquid. On the left, the 
version without magnet for operation in motor mode. On the right, the version with magnets for operation in cooling mode. 

In the middle, a picture of the assembly.  

− With a “solid piston” (cf. Figure 5-9): the diameter of the rod (“solid piston”) used in our machines was 
determined to be well outside the fluid boundary layer.  

•  For the engine mode, the piston is a borofloat 33 glass rod, with 2mm diameter, therefore, to avoid 
friction, much smaller than the 5mm diameter chamber in which it moves. The height of the rod 
corresponds to the height (hV) of the intermediate chamber plus the height of the backward DRIE to 
suspend the membranes (2hM). 
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• For cooling mode: the solid piston is a plastic rod made by additive manufacturing (3D printing). 
One or two magnets can be added on either side of this rod so the final height corresponds to that of 
the intermediate chamber (hV) plus the height of the backward DRIE to suspend the membranes (2hM). 

 

Figure 5-9 : Scheme and photo of the membranes assembled and connected via a rod. On the left, the version with a glass 
rod for operation in motor mode. On the right, the version with magnet and a plastic rod for operation in cooling mode. 

The major difficulty encountered in making these solid rod lies in the centering process of the rods, which is complex 
because of the flexibility of the membranes on which they must be fixed. For instance, the fully assembled system 
for the motor mode is on the Figure 5-10. Note that different chambers’ heights were tested (glass thickness of 
either 6.5 or 2.7 mm, i.e. total middle chamber height of either 7.1 mm or 3.3 mm).  

 

Figure 5-10 : Scheme and photo of the full engine (for motor mode) with cold & hot chambers and with membranes 
connected via a rod (on the left) and via an incompressible liquid (on the right).  

The different version of assembly were dynamically characterized with the same procedure than the one presented 
on the section 4.7.1 (using the laser Doppler vibrometer). The obtained results of eigen frequencies for those 
assemblies are grouped in the Table 5-3. As expected, the eigen frequency is lower for assembled membranes than 
for single ones. We can note that the assembly of membranes with solid or liquid pistons enable the decreasing of 
the eigen frequency by a factor from almost two to about ten.  The influence of the type of assembly (materials 
used) is visible, for membranes with spiral, on the Figure 5-11. Even though if plastic is lighter than glass, the 
addition of magnets enables to keep a low eigen frequency. From an initial frequency of about 2.8 kHz for single 
membranes, the assembly of the full motor enable to decrease to 0.25 kHz.  
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Thus, we can conclude that, for the different assembly listed in Table 5-3, all the obtained frequencies are below 
1kHz, which can have interesting applications in the field of harvesting vibrational energy for example. These eigen 
frequencies can be easily tuned by adjusting some geometrical parameters (for instance, adding some weight by 
changing the DRIE process on the central disk): so, it is important to note that these types of membranes and 
assemblies can have a larger range of applications than the one restricted to the Stirling motor.  

Single membrane (cf. Chapter 4 : ) Eigen 
frequency 

Single membrane with a spiral 
(thickness Si/RTV : 100µm/100µm; central disk of 2mm) 

2794 Hz 
±70Hz 

Single membrane with a 2mm central disk in its middle  
(thickness Si/RTV : 100µm/100µm) 

856 Hz  
±16Hz 

Liquid piston (cf. Figure 5-8)  

Incompressible liquid without magnet, membranes with a 2mm central disk in its 
middle (thickness Si/RTV : 100µm/100µm) 

Thickness of the middle chamber : 3.3 mm (2.7 mm in glass+ 600µm DRIE in Silicon) 

480 Hz  
±50Hz 

Solid piston (cf. Figure 5-9)  

Borofloat 33 piston, membranes with a spiral  
(thickness Si/RTV : 100µm/100µm; central disk of 2mm) 

Thickness of the middle chamber and of the piston:7.1 mm (6.5 mm in glass+ 600µm 
DRIE in Silicon) 

670 Hz  
±50Hz 

Plastic with 2 magnets, membranes with a spiral  
(thickness Si/RTV : 100µm/100µm; central disk of 2mm) 

Thickness of the glass chamber and of the piston (piston alone : 5mm) : 7.1 mm (6.5 
mm in glass+ 600µm DRIE in Silicon) 

238 Hz  
±50Hz 

Fully assembled engine (cf. Figure 5-10)  

Liquid piston, membranes with a disc (thickness Si/RTV : 100µm/100µm; central disk 
of 2mm) 

Thickness of the middle chamber : 7.1 mm 

319 Hz 

 ±50Hz 

Liquid piston, membranes with a spiral (Si/RTV : 100µm/100µm and 2mm disc) 
Thickness of the middle chamber : 7.1 mm 

475 Hz 

 ±50Hz 

Borofloat 33 piston, membranes with a spiral  
(thickness Si/RTV : 100µm/100µm; central disk of 2mm) 

Thickness of the middle chamber : 7.1mm 

250 Hz 
 ±50Hz 

Table 5-3 : Vibration Eigen frequencies for different types of assembly. 

 

 

Figure 5-11 : Eigen frequency evolution for different types of assemblies and for spiral membranes (Silicon thickness: 100µm 
embedded in RTV silicone. Over layer of RTV: 100µm. Central disk of the spiral: 2mm). Middle chamber thickness : 7.1 mm.  
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 After having determined eigen frequencies of the assembled micro-machines, we wanted to proceed to their 
characterizations. For this purpose, we have developed and mounted two characterization benches, according to 
the type of micro-machine assembled and to the operating mode that we wanted to test (presented later on). 
Indeed, a Stirling machine can operate in two modes: motor or cooling one (hence the presence of magnets, 
necessary to actuate the membranes). For both modes, temperature measurements are mandatory. To measure 
precisely temperatures, we used platinum resistance thermometer (PT100) which we decided to calibrated to 
obtain a better accuracy. Details of the sensors calibration and connexion are given in the next section. 

5.5.  Temperature measurements: Platinum resistance thermometer calibration 
To measure the temperatures on both sides of the micro-motor, we decided to use platinum resistances (PT100). 
Since the expected temperature difference in the cooling mode should be very low, we had to be certain of the 
precision of the temperature sensors. Thus, we proceed a calibration of the PT100 probes to precisely determine 
the actual temperatures associated with the values of the measured electric resistances. These sensors are small 
(fine) enough to detect fast temperature variations (cf. Table 5-4 ). However, without calibration, the discrepancy 
between values given for a same temperature could vary, including more uncertainties. 

To calibrate the sensors, we used a convective calibration bench, certified by AOIP. Its schematic diagram is shown 
in Figure 5-12. It consists of a Gemini portable oven (550 LRI), a PT100 precision reference temperature sensor 
(0.005°C) and a digital multimeter PHP 601. This bench allows the calibration of multiple probes at a time through 
programmable temperature steps, from ambient temperature up to 550°C. Measurements of digital or analog 
parameters from sensors to be measured are provided by two Keithley 2100 precision multimeters to increase 
measurement accuracy. Everything is driven by a Labview control and acquisition program. 

Model Dimension Class Heating up  
Temperature 

range 
Stability 

Pt100  
(100Ω at 0°C) 

2 x 5.0mm A < 0.5°C/mW -50 to 500 ±0. 05 % 

Table 5-4: characteristics of the Pt100 platinum resistors (manufacturer's data: RS). 

 

Figure 5-12: PT100 probe calibration bench 

In our case, we calibrated four PT100 sensors at the same time. Two sensors were 4-wire connected (cf. Figure 
5-13), whereas the other two were 2-wire connected. Indeed, even if the 4-wire connexion (KELVIN method) is a 
little more difficult to do than the 2-wire one, it is more precise. Indeed, since it is expected that a small difference 
in temperature will be measured during micro-machine cooling operation, the electrical resistance measurement 
accuracy of the PT100 probes must be improved by eliminating the electrical resistance of the connection wires (or 
contact). This will make it possible to know the exact value of the electrical resistance of the probe itself (in contact 
with the micromachine under test) after a variation of temperature after contact. In fact, contact resistors are a 
major source of error when measuring low-voltage thin-film electrical resistance. Indeed, the contact resistance 
may exceed the value of the resistance that we want to measure. The technique used to eliminate this source of 
error is to deliver a constant current of high stability on 2 wires and to associate a voltage measurement on 2 other 

(1) Gemini oven (550 LRI).  (2) PT100 reference 

probe. (3) Reference probe PHP 601 

multimeter. (4) Connexion between probes to 

calibrate. (5) the precision meter Keithley 

2100. (6) PT100 probe picture to be calibrated. 

 (7) Picture of the bench used. 

Pt100 (100Ω at 0°C) 

6 

7 
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wires. This technique is called « 4-wire measurement » and requires that the voltmeter used to measure the 
potential difference across the resistor must have a high input impedance and a good measurement accuracy. The 
diagram below shows the 4-wire measurement principle used on our PT100 probes. 

 

Figure 5-13: 4-wire circuit diagram made on PT100 probes. 

 

Figure 5-14: the four PT100 probe calibration curves and the associated governing equations. 

For the calibration process, the four probes were introduced altogether in the Gemini oven, thus they were 
calibrated at the same time. We decided to carry out resistance measurements for nine given temperatures (25, 
27, 29, 31, 33, 39, 44, 49 and 69°C). Those values were chosen quite low since the expected temperature in the 
cooling mode was around the ambient one. It is important to note that it took almost a full day to obtain those nine 
temperatures since the Gemini oven can only heat (no cooling system).  Thus, before the resistance is measured, 
the stabilization period can be quite long (more than 30 minutes as an average). By plotting the resistance curves 
as a function of temperature, the slopes make it possible to determine the conversion factors between measured 
resistance and temperature for the exact determination of the temperatures during the characterization of the 
micro-machine. The result of the PT100 probes calibration is shown in the Figure 5-14 : we can see that, for an 
identical temperature, there exists a small discrepancy in the measured values of resistance. For platinum probes, 
the evolution of the resistance versus the temperature is known to be a straight line. The associated equation for 
the 4 probes are given on the Figure 5-14 and from them, knowing the resistance, the temperature can be 
accurately determined.  

Now that the temperature probes are calibrated, we will present in the next sections the two experimental benches, 
which were developed during this PhD to test the micro-machine in the motor mode as well as in the cooling mode. 

5.6.  Motor mode  
In this section, we will focus on the micro-machines that were assembled specially for the motor mode, i.e. either 
with incompressible liquid, or with a glass solid piston between the membranes (each time, without magnets, i.e. 
left part of the Figure 5-8 and Figure 5-9). 



Chapter 5-Characterizations of the Stirling micromachine  

Page 158 on 229 

5.6.1. Test bench for the motor mode 

For the motor mode, the aim was to measure the membrane’s displacement when applying a given temperature 
difference between the hot and the cold parts. The test bench developed for the motor mode is represented on 
the Figure 5-15 and consists of the following elements: 

−  Two supports: adjustable in z (height), among which one is also adjustable in the lateral direction. The first 
support will carry the displacement sensor, whereas the second one, with x-y displacements, will carry the 
micro-machine.  

−  Heating and cooling elements on both sides of the micro-machine: the heating system was composed of 
three small Peltier modules (1.2W, dimensions 6 x 6 x 3.8 mm3) to be placed on the upper surface (through 
which we can see the membranes). The cooling system was provided by a larger Peltier module (20.9W, 
dimensions: 25x25x3.8mm3), which is placed on the bottom surface of the machine. Indeed, we made efforts 
to avoid as much as possible heat inputs by natural convection along the vertical faces of the engine (which 
could have occurred by placing the heating elements underneath). Thus, the three small Peltier modules were 
used to heat, whereas the larger Peltier module was used to cool. A multi-channel DC power supply was linked 
to all the Peltier modules. Later on, to increase the temperature gradient between hot and cold plate, we used 
a hot convective blower (measured temperatures up to 120°C on the surface) instead of the small Peltier 
modules. 

− Temperature measurements: on the hot surface (top of the engine), it was ensured with a PT100. But, on 
the cold face of the engine, since we needed a contact on the whole surface of the engine with the cold wall 
(Peltier), it was not possible to use a PT100 (which would induce a space between the cold wall and the bottom 
face of the micro-machine). Thus, we used a K-type thermocouple that was embedded in a highly conductive 
copper block located between the Peltier module and the micro-machine. A layer of thermal grease between 
the micro-machine and the copper block underneath ensures a good thermal conductivity. The larger Peltier 
module (cold wall) was “glued” on the downward face of the copper block by a double-sided cooper coated 
tape. Since in the Peltier module, one face is a heater whereas the other one is a cooler, the heat produced by 
the Peltier module had to be removed: to do so, the Peltier module was placed on top of a heatsink (caloduc 
with a ventilator fan), the thermal contact being ensured again by thermal grease. The three small Peltier 
modules as well as the PT100 probes were also attached to the top of the micromachine with a copper tape. 
The temperature sensors (PT100 and thermocouple) were plugged into the NI hardware racks that was 
connected to the PC. The choice of an “external” instrumentation is justified by our choice to avoid intrusive 
methods: indeed, introducing sensors inside gas chambers would increase the risk of leakage by the wire vias, 
could modified the fluid flow and would also increase dead volumes. 

− Membrane displacement measurements: to access the membranes after complete assembly of the micro-
machine, three orifices of 1.5 mm diameter located above the center of the three membranes were etched in 
the silicon plates carrying the outer chambers (cf. Figure 5-6). To ensure airtightness, these holes were covered 
with glass thin plates to make non-intrusive deflection measurements. Those measurements were done either 
with a laser motion sensor (Panasonic HG-C1030), or with a confocal sensor (STIL CHR 150-L). The laser motion 
sensor has the advantage to work on all types of surfaces, whereas confocal sensor is more efficient on 
reflective surfaces (the signal is noisy on the RTV silicone). On the other hand, the confocal sensor is more 
accurate. 

• The Panasonic laser sensor measures the vertical displacement of the membranes. Both the measurement 
principle and some characteristics given by the manufacturer are provided in Figure 5-16. The sensor 
principle is to measure the distance to the object, by using the triangulation principle. The laser diode 
converts the position of the optical spot on the light-receiving element to a distance. The advantages of 
this contactless sensor are the long sensing distance, a measurement with a small beam spot and at high-
speed. The signal recovery is provided to a LabVIEW program by an analog output connected to the NI 
interface. 

•  The chromatic confocal sensor (STIL: CHR 150-L with CL4 sensor, cf. Figure 5-17) used consists of a 
controller (1), an optical probe shaped like a pen (2) and a fiber optic cable (3). The sensor's optical probe 
is connected to an acquisition interface (with an analog output) through an optical fiber. This sensor 
measures the height (z coordinate) of reflecting points located on the optical axis. The optical principle of 
chromatic confocal imaging (STIL SA patent) is illustrated in the scheme of Figure 5-17. This principle of 
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chromatic imaging consists of providing a "color coding" along the optical axis from an incident white light 
pinhole imaged through a chromatic objective into a continuum of monochromatic images along the z-
Axis. When an object is present in this "colored" field, a unique wavelength is perfectly focused at its 
surface and then reflected into the optical system. This backscattered beam passes through a filtering 
pinhole into a spectrograph, which determines the wavelength that has been perfectly focused on the 
object, and then accurately determine its position in the measuring field. This confocal chromatic imaging 
gives access to reliable, accurate and reproductible dimensional measurements with extremely high 
resolution [246]. 

 

 

Figure 5-15: On the top: a block diagram of the experimental setup built to test the micro-machine in motor mode. On the 
bottom and on the right: a picture of the experimental setup with the constitutive elements. 

 

Reference HG-C1030 

Central distance installation and measuring 
range 

30  ± 5mm 

repeatability 10 µm 

linearity ±0.1% Full scale 

Laser spot size ~ 50 µm 

Response time 
10ms / 5ms / 

1.5ms 

 

Figure 5-16: Panasonic HG-C1030: on the left, some relevant characteristics and on the right, the triangularisation principle 
[247]. 

Displacement sensor 

DC power supply 

Heat sink 

Micro-machine 

Copper block 

Plastic cover 
with a top glass-
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Hot air blower 
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Reference STIL CHR 150-L with 

 CL4 sensor  

Spot diameter 8 µm 

Axial resolution From 0.3µm 

Measuring 
Range 

up to 2.5mm 

Technology Chromatic confocal 
imaging 

Measuring rate Up to 10kHz 

 
 

Figure 5-17: Chromatic confocal sensor STIL CHR 150-L : on the left, some relevant characteristics and on the right, the 
confocal principle [246].   

− Data acquisition: all data from the sensors (displacement and temperature) were acquired thanks to a 
national instrument station (NI cDAQ-9178) linked to a computer. The LabVIEW interface on the computer was 
developed to both control and synchronize the onset of data acquisition of temperature and displacement. 
This program was developed to run either for the engine or for the cooling mode (control of the frequency of 
membrane oscillation using permanent magnets and by controlling the imposed electromagnetic field). For the 
engine mode of the micro-machine, the program allows simultaneous acquisition of the hot (at the top of the 
micro-machine) and cold (bottom) temperatures (and thus the temperature difference) as well as the 
displacement and the oscillation frequency of the membrane of the micro-machine. 

5.6.2. Experimental results for the motor mode 

We carried out experiments with various temperature differences: from 20°C ± 1°C for the lowest, to 110°C ± 1°C 
for the highest. When using Peltier modules as heating system, we did not manage to overcome a temperature’s 
difference of almost 50°C. For such temperature’s differences, no motion in the membranes was detected. Then, 
we decided to increase the temperature gradient. Instead of the heating Peltier, we used a convective air blower. 
The temperature difference we manage to reach was about 70°C ± 1°C. Unfortunatly, this time again, no motion 
was detected as it can be seen on the Figure 5-18 for two differences of temperatures (43°C and 70°C). 

 
Figure 5-18 : Measured temperature difference (called 
“Delta T”, on the left axis) and associated membranes’ 
displacement (called “displacement”, on the right axis) 

versus time. Two Delta T were tested and for each Delta T, 
results from two different tests are represented (1 and 2 for 

Delta T of 43°C; 3 and 4 for Delta T of 70°C). 

 
Figure 5-19: Measured temperature difference (called 
“Delta T”, on the left axis) and associated membranes’ 

displacement (called “displacement”, o the right axis) for 
each membranes (M1, M2 and M3) of the top surface of 
the micro-machine versus time. Experiments carried out 

with the plastic cover with a top glass-window. 
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Combined with the use of a platic cover with a top glass-window, on the top of the machine has enabled us to reach 
temeratures differences up to 110°C ± 1°C. Nevertheless, even at those large temperature gradients, we 
unfortunately did not observe any membrane displacement, as it is visible on the Figure 5-19. 

Since the micro-machine failed to move in the motor mode, we decided to test the cooling mode by using micro-
machines with magnets. Note that an attempt to explain why the machine did not work in motor mode is given in 
the section 5.7.3.  

5.7.  Cooling Mode 
There are two types of micro-machines used to test the cooling operation mode. We assembled a machine with 
liquid coupling and two magnet and a second one with a solid plastic rod and two magnet (cf. the right part of 
Figure 5-8 and Figure 5-9). To test the micro-machine in cooling mode, actuation of two membranes out of phase 
by 120° is required. The movement of the micro motor membranes is linear (not rotating) therefore the initial idea 
was to integrate piezoelectric layers on the silicon spiral. However, this choice proved uncompatible with the 
technology of squeegee deposition used for the RTV-silicone material. Therefore, we decided to use an 
electromagnetic actuator and kept the spiral in silicon to control the movement of the membrane. This linear 
electromagnetic actuator was made by gluing a small permanent magnet on the face of the central disk that is not 
in contact with the chambers and to actuate it from outside the machine using an electromagnetic coil.  

5.7.1. Test bench for the cooling mode 

The experimental bench for the cooling mode is given on the Figure 5-20. It is quite similar to the one for the motor 
mode. Thus, we will only present the new elements (for details and complements, please check the section 5.6.2), 
which consist of: 

− Two supports (for the displacement sensor and for the micro-machine)  

−  Temperature measurements using the four PT100 probes that were calibrated (a 2-wires and a 4-wires 
connected on each face of the machine). 

− Membrane displacement measurements:  with a laser motion sensor (Panasonic HG-C1030), or with a 
confocal sensor (STIL CHR 150-L).  

− Membranes actuation: on this test bench, one of the coils is placed above the micro-machine vertically 
aligned to one of the 3 upper membrane containing a magnet, while the other coil is below, aligned with an 
opposite membrane containing the secong magnet. The micro-machine and the coils are fixed on a mechanical 
support made of polycarbonate specially designed to avoid parasitic effects related to the presence of 
electromagnetic fields. A detail of this support is given on the right part of the Figure 5-20. To avoid interaction 
and to ensure alignement, but also to allow on optical access to measure the membrane displacement, the 
coils we choose had the same diameter than the RTV silicone overlayer on the membranes (6 mm). Other types 
of coils were used later on when the first one proved not powerfull enough for the full motor. Those coils are 
presented in the  Figure 5-21. The whole was maintained by the adjustable plate of the large adjustable support 
in height.  

−  Continuous and alternative power supplies for sensors and coils and current amplifier (coils). 

− Data acquisition: all the data from the sensors (displacements/temperature) were acquired with the national 
instrument station (NI cDAG-9178) linked to a computer with a specific LabVIEW programm. 
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Figure 5-20: On the top : a block diagram of the apparatus used for the for the micro-machine test in cooling mode (left part) 
and a detail of the support designed for the motor and the coils (ight part). Below : a) Stirling microengine with magnet and 

liquid. b) Stirling microengine with magnet and plastic rods. 

Characteristics & picture of the first type of coil Characteristics & picture of the second type of coil 

Inductance: 24 µh  ±10% 
Q-Factor (@ 125 kHz/ 10 mA): 16 

Saturation Current : 1 A 
Operating Temperature: 20 °C up 

to +105 °C 

 

 

Resistance = 100 ohms 
Umax= 12V 

(Extracted from a power relay) 
 

 
 Figure 5-21: The characteristics of the coils used for the operation in cooling mode of the micro-machine. 

 

5.7.2. Experimental results for the cooling mode 

The first engine we decided to test in cooling mode was the one with the liquid. Underneath each membrane, we 
introduced one small permanent magnet. We have used six identical Nd2Fe14B magnets to ensure both 
homogeneity and symmetry. The first magnets we tested had a magnetic influence range of 1.2cm. Since the 
membranes are spaced 1 cm apart, this has led to problems of magnetic interaction between magnets (cf. 
schematic view on Figure 5-22). To avoid interaction in both vertical and horizontal directions, we demagnetized 
four of them in an oven heated above the Curie temperature. On the three magnets on one side of the machine, 
two were thus demagnetized. To set the membranes in motion, we planned to use two external coils placed above 
or underneath the machine and on the membranes’s location where magnets are active. With the coils presented 
on the Figure 5-21, we carried out some tests with single membranes and then with the full engine. The first coils 
could not actuate the membranes with displacements greater than a few microns; therefore, we decided to use 
more powerful coils, used in Power Relays (cf. Figure 5-21, on the right). These coils were very large; therefore, it 
was not possible to keep the micro-engine with 3 magnets on each side: the coil attracted all magnets (active and 
demagnetized) at the same time. We decided to assemble another engine: instead of the liquid one, we assembled 
one with solid plastic rods made by 3D printing, but with a configuration that was not symmetric. Only one magnet 
was located on each side, and on opposite chambers. Thus, we had two rods composed of plastic + one magnet, 
and the last rod was only composed of plastic. 

a) 

b) 

Magnet 
Magnet 

Plastic rod 
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Figure 5-22: Diagram showing the possible locations of the magnets at the level of the membranes (problem of interaction 
between the magnets). 

We performed two experiments: one with only one membrane actuated (to verify the global behavior) and another 
one with two membranes actuated (one on the top, the other one on the bottom of the micro-machine): 

− The first test: by actuating a single membrane (to check the response of the other membranes).  

The corresponding experimental setup is visible in the Figure 5-23. Only one electromagnet is installed under the 
membrane N°1, which has a magnet located on the underside of the machine. Membrane N°2 is the one that 
contains no magnets, and the membrane N°3 is the one with the second magnet, placed on top of the machine. 
Displacement measurements can be made from the top of the machine. The actuating signal was amplified by a 
current amplifier. Before being amplified, the voltage was set at 1 Vpp. The amplifier enables to adjust the current 
at 1.8 A (rms). For four actuating frequencies (1, 2, 5 and 10 Hz), we recorded the displacement of each of the 
membranes using the confocal sensor. Measurements were made under the same operating conditions (same 
position of the electromagnet with respect to the membranes, same voltage values delivered to the 
electromagnet). The results for four frequencies are given on the Figure 5-24.  

 

Figure 5-23 : experimental setup for the actuation of one membrane 

It can be seen that the movement imposed on membrane 1 (M1) is well transmitted to membranes 2 (M2) and 3 
(M3). On the other hand, there is a very strong attenuation of the displacement amplitude on membranes 2 and 3. 
We have several possible explanations for this. Despite relatively low frequencies, there may be damping related 
to mechanical resistance and/or pressure drops in the microchannels and/or compression effects (especially at high 
frequencies). However, with two membranes operated out of three, these problems should be partially reduced. 
Nevertheless, due to the size of the electromagnets, it will not be possible to measure displacement (no optical 
access) with two actuated membranes.           
It is also noted on this figure that the frequency has a direct effect on the amplitude of displacement of the 
membranes. The Figure 5-26 shows the evolution of the average amplitude of displacement of the membranes as 
a function of the frequency imposed on the electromagnet. It can be seen that the displacement amplitude for both 
membranes 2 and 3 increases with frequency, while the amplitude of the displacement of the membrane 1 seems 

Micro-machine 

Displacement sensor 

Plastic support  

Electromagnet (actuation of 
the membranes) 
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to reach a maximum around 5Hz and then decreases. The decrease at low frequencies is probably due to the 
amplifier cutoff for low frequencies.  

 

Figure 5-24 : Membranes displacement for one membrane actuated (membrane 1) at different frequencies (1, 2 5 and 10Hz) 

 

 

Figure 5-25 : Phase shift occurring between the membranes M1, M2 and M3 when only the membrane M1 is activated.Tests 
carried out for four frequencies :1Hz, 2Hz, 5Hz and 10Hz. 

a) 1 Hz b) 2Hz 

c) 5Hz d) 10Hz 

1 Hz 
2 Hz 

5 Hz 
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Figure 5-26: Mean amplitude of displacement for membranes M1, M2 and M3 on the top surface, versus frequency of the 
electromagnet (note that the scale is divided by 10 for displacements on M2 & M3. Only the membrane opposite to M1 is 

actuated. 

When the membrane opposite to M1 is actuated, it is shown on Figure 5-25 that the M2 and M3 membranes are 
moving with a phase shift.The phase shifts that was observed between the movements of the upper membranes 
are difficult to explain: for very low frequencies, we expected no phase shift. The lowest frequency that we were 
able to reach was 0.25 Hz since the amplifier that we use does not amplify DC currents. For this low frequency, 
although the signals are quite low, is still possible to observe that one of the membranes is out of phase (180° phase 
shift with the driving one). Therefore, we imagined that it may be due to the fact that the driving magnet is 
influencing the magnet located on the top side of the machine (weakly attracting it), thus generating a movement 
that is not linked to the gas flow inside the machine. For this reason, these experiments have to be verified in further 
studies. 

This first setup that we just presented allowed us to check the correct movement of the membrane when it was 
actuated by an electromagnet. Then, this setup was completed by adding the second electromagnet above 
membrane 3, i.e. the membrane on the upper side below which the second magnet is placed. 

− The second test: by actuating two membranes (one on the upper side of the machine, the other one on its 
botoom side) 

The actuation signal was generated via a Labview board, by fixing the phase shift between the two channels at 
2π/3. Each signal was then amplified on two signal amplifiers, adjusted to the same parameters (current intensity, 
gain). Each electromagnet was therefore powered by an alternating current of the same characteristics but with a 
2π/3 phase shift. This phase shift was verified on a digital oscilloscope for the different frequencies studied. PT100 
sensors were placed on each side of the machine, allowing the measurement of temperatures. The temperature of 
the room was also recorded in order to know the operating conditions as well as possible and thus try to ensure 
good reproducibility. A close-up of the experimental setup is given on the right part of the Figure 5-27. 

 

Figure 5-27: On the left : Temperatures measured (left axis) on both sides of the machine in cooling mode versus time and 
associated temperature’s difference ΔT (right axis). On the right : a close-up of the exeperiment. 
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With an actuation signal set at a frequency of 5Hz, and current and tension at respectively 1.8 A (rms) and 1 Vpp, 
the Figure 5-27 shows (left part) an exemple of temperatures measurements. The temperature rises on both side 
of the micro-machine, but not in the same way for the top and bottom sides. When calculating the temperature’s 
difference (Δ) between the bottom and the top side, it is found that this ΔT also increases versus time (cf. Figure 
5-27). This may be due to the cooling mode of the Stirling motor, but it could also be due to purely thermal 
conduction/convection phenomena of the heat generated by the electromagnet itself. These first tests did not 
make it possible to determine with certainty whether or not a temperature difference was created on either side 
of the machine. Indeed, to be effective, the electromagnets are placed close (a few millimeters) to the machine 
faces. However, these electromagnets heat up quickly when a current flow through them. This heating then results 
in a rise in the temperature measured on the micromachine. Moreover, since the two amplifiers are not identical 
(not the same models) and the electro magnets come from two different batches, we cannot, at this stage, state 
that the difference we saw would not rather come from a different heating of the two electromagnets.  

An attempt to differentiate between the influence of cooling (Stirling effect) and heating of the coils was made by 
testing different phase shifts between the two actuated membranes. For a phase shift equal to zero, the micro-
machine should not follow the Stirling cycle and no cooling effect should be observed. We therefore carried out 
consecutive tests with a phase shift of 0° and 120°. The temperatures were measured on both sides of the micro-
machine. The evolution of the temperatures as a function of time for the two-phase shifts is given in the left part 
of Figure 5-28. The trends are quite similar, but with a different slope. Moreover, with a phase shift of 0°, the curves 
corresponding to the temperatures measured on the upper and lower sides of the machine intersect, which is not 
the case for the 120° phase shift. We calculated the ∆𝑇 between the top and the bottom faces:  

 ∆𝑇 = 𝑇𝑡𝑜𝑝 − 𝑇𝑏𝑜𝑡𝑡𝑜𝑚. 

Since with a 0° phase shift, no effect related to the Stirling cycle should occur, the corresponding temperature’s 
difference between top and bottom faces was used as a reference. 

Then we calculated the difference “Delta T” whic is the difference between the temperature difference at a given 
phase shift (∆𝑇𝑋°), and that at a phase shift of 0° (∆𝑇0°): 

𝐷𝑒𝑙𝑡𝑎 𝑇 = ∆𝑇𝑋° − ∆𝑇0° 

For an actuation frequency of 5Hz, the corresponding curve is given on the right part of the Figure 5-28. On these 
preliminary results, it seems that a small cooling effect (less than 1°C) occurs with a phase shift of 120°. 

       

Figure 5-28 : For an actuation frequency of 5Hz, on the left : tempertaure measurements on the top side and on the bottom 
side of the mico-machine for two phase shift between membranes : 0° and 120°. On the right : Difference between the 

temperature difference (between top and bottom side of the micromachine at a given phase shift) and the one at a phase 
shift of 0°. 

The result showed above are encouraging since a small cooling effect seems to occur, however, only one frequency 
was tested. Since the cooling effect is rather small and because the electromagnets are also heating the micro-
machine, it is not yet possible to be sure that this effect is really related to the Stirling effect. For this reason, further 
studies are required. Thus, in order to try answering to this interrogation, we plan to repeat the experiments (to 
verify the reproductibility of the tests) and to carry out complementary experiments, for a given input power, by 
modifying: 
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• The tested actuation frequency 

• The phase shift between the membrane 

•  The orientation of the assembly (vertical or horizontal) in order to modify the effect of natural convection 
and therefore on the heating of the machine by the driving electromagnets 

•  The connection of the electrodes: we have swaped the current amplifiers that drive the membranes: we 
will thus have a direct influence on the Stirling effect. 

 

5.7.3. Possible explanations for the problems encountered with the 
fabricated 3-phases micro-machine and perspectives for a simpler test 
architecture 

The micro-machine was tested in motor and cooling mode. Whereas some encouraging results were obtained in 
the cooling mode, no results were obtained in the motor mode. We listed some possible explanations to the fact 
that the micro-machine did not give an operating result in motor mode during the test phases. 

• Some possible explanation of the problem ecountered in motor mode:  

−  Possible degradation of the membranes due to the high temperature anodic bonding. The Stirling liquid 
coupled micro-machine has been entirely manufactured in a clean room, so we are confident about the 
techniques used. The critical steps would be the 330°C applied during anodic bonding. As shown in chapter 4, 
anodic bonding could have damaged our membranes (for the record: test results at 300°C showed that the 
natural frequency of the membranes changes, as well as tests at 330°C that showed a deterioration of RTV-
silicone membranes). Knowing that the anodic bonding was done at 330°C (otherwise welding quality problem 
were observed), one of the hypotheses is that the membranes are no longer waterproof following this step.The 
solution to overcome this problem has already been developed: we have demonstrated in the chapter 3 room 
temperature thermocompression that can replace anodic bonding with comparable performances and without 
heating. Using this technology, we will guarantee correct wafer assemblies without any damage to the polymer 
membranes. 

− Uncontrolled filling technique of the liquid. Presently, there is no way to monitor the filling process of the 
liquid inside the machine. Therefore, filling with an excess of liquid is always possible. Therefore, the 
membranes could already be pre-stressed - with an initial deflection - which would limit the possibility to move 
them. Due to the material used (silicon), it was difficult to ensure that the membranes at rest was actually flat. 
To avoid this problem, the solution that was adopted was to replace the liquid with a solid rod made of plastic 
(for less heat conduction) or glass (for more weight since it decreases in the natural frequency of oscillation of 
the membranes). 

− Themal gradient between the hot and cold part not sufficient to trigger the micromachine. We are limited 
by the geometrical characteristics of our machine and therefore the possible power ranges of the Peltier 
modules. In order to reach higher temperature gradient values, the heating system would have to be modified: 
the use of heating resistors, coupled or not with heat exchangers, could be an interesting alternative. In 
addition, the cooling system would most certainly also have to be modified in order to achieve higher power 
dissipation and therefore a higher temperature difference between the hot and cold sources.  

− No starter on the machine. Another reason for not operating in motor mode is that our micromachine has 
symmetrical geometry: there is no thermal imbalance between the different membranes in the same plane or 
face. Thus, there is no possibility to send a "pulse" to unbalance/dephase the system and thus initiate the 
oscillations of the membranes. 

A solution to avoid all these difficulties is a change in geometry by further simplifying it. Switching to a 2D machine 
would simplify the process, facilitate assembly, free from right angles creating singular pressure losses, limit dead 
volumes, facilitate instrumentation and optical access for measuring membrane oscillations (all in the same plane). 
This will also make it easier to operate the membranes and to reach higher temperature’s differences in motor 
mode respectively because membranes would be in the same plane and because they would be further apart than 
in the 3D version (higher thermal resistance). This new version of the test micromachine is currently being finalized 
and is presented below:   
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• New 2D test-machine under construction 

To study the Stirling cycle with a machine that is easier to control and to monitor, we designed the machine 
represented in Figure 5-29 with its view from above (top scheme) and from the side (bottom scheme). This new 
micromachine consists of two membranes (30 mm in diameter) resting on chambers connected by a square section 
channel (0.2mm thick). The stack is sealed by a machined plastic film embedded between two plates. The first plate 
contains two observation holes (optical access) 5 mm in diameter, located at the level of the membranes. The 
second plate is the one in which the two chambers (compression and expansion) and the square-section channel 
connecting them are located. Permanent magnets can be glued to the diaphragms for electromagnetic actuation. 
This micromachine is currently being manufactured at the FEMTO-ST Institute. Its advantages are: 

− A large separation between hot and cold parts of the machine, with a rather long insulating plastic part 

− The possibility of actuation by two high power electromagnets placed below the machine while enabling 
observation from the top 

− To avoid diffusion of the produced heat, a small metal part that will be heated or cooled  

− Two RTV-silicone membranes to implement an Alpha type machine whose operating conditions are defined 
and controlled by changing the phase shift between membranes movements 

− Integration of temperature and pressure sensors on the metal parts for better monitoring of the Stirling cycle 

− This architecture should allow accurate measurement of motion transfer times between the two membranes 
across the channel and measure its microfluidic characteristics. It will also be possible to detect the limits of 
actuation frequencies (or cut-off frequencies) not to be exceeded with electromagnetic coils to obtain a good 
fluid transfert. 

 

Figure 5-29: New 2D architecture of the micromachine 
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5.7.4. Conclusion  

In this chapter, the assembled Stirling micro-machines in motor and cooling mode were characterized and tested. 
Four differents micromachines were assembled with different types of mechanical connections between the 
membranes (incompressible liquid or solid bonding rods). Some dynamic characterization showed that the eigen 
frequency of the micro-machine could reach values lower than 300Hz, and that they could be decreased again by 
adjusting geometric parameters. These types of membranes and assemblies can thus have a large range of 
applications, such as vibrational harvesting for instance. To test both motor and cooling mode, two specific 
experimental setups were developed. The micro-machines were then tested and, if no results were obtained in the 
motor mode, the cooling mode seemed to be promising. 

To conclude on this chapter, we will recall here the main results we obtained:  
 

1. A test of the membrane/chamber assembly has allowed observing the ability to expel air from one 
chamber to the other one.  

2. Tests of the complete micromachine in the motor mode were carried out with a temperature difference 
between the hot and cold part that reached more than 100 °C but no movement of the membranes was 
observed yet.  

3. Tests of the complete micromachine in cooling mode were carried out. To do so, some machines have 
been assembled with magnets inserted on some of the membranes to be able to actuate them and to 
observe the cooling effect of the Stirling machine. First results are encouraging but further experiments 
are required to be able to discrete with certainty the effect of the electromagnet of the cooling effect 
related to the Stirling cycle. 

4. Possible reasons for the observed failure of motor mode have been listed. 

5. A design of a simpler Alpha-type Stirling micromachine that will enable testing in more details the fluidic 
and thermal behavior of the machine is now under construction.  
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CONCLUSION   

The work on Stirling micromachines presented in this manuscript has made it possible to review the challenges 
involved in miniaturizing these machines and to estimate the performance in terms of mechanical power supplied 
that can be expected. The work focused on the feasibility of a micromachine architecture that was proposed as part 
of the ANR MISTIC project [107] and that was the subject of detailed modeling. 

First, the design of the micromachine was studied and chosen, based on various physical principles (thermal, 
fluidics…) and on clean-room possibilities. Then, the main work consisted in developing a complex microfabrication 
process to produce micromachines using MEMS type technologies in clean rooms. 

The key element of these micromachines is the membrane, which plays the same role as the piston with which 
macroscopic Stirling machines are built. This membrane was developed using a Silicone elastomer "RTV (Room 
Temperature Vulcanizing)" which has not been used extensively in clean room manufacturing processes and whose 
mechanical properties have therefore been studied in details. A Young's modulus of this polymer in the order of 1 
MPa was measured and its stiffness was calculated and found to be in the range of 0.1 to 0.2 N/mm. The 5 mm 
diameter membranes that were designed and fabricated have proved to be very robust and to allow deflections of 
about 1 (spiral) to 2 mm (central disk) at the centre without breaking. Their resonance frequencies range from 850 
Hz to 2800 Hz, depending on whether or not they incorporate a silicon spiral structure.  

Their ageing characteristics at high temperatures have been estimated and it appears that they can operate at 
200°C without observed ageing and up to about 300°C without significant deterioration. Hybrid fluidic membranes, 
made of pairs of RTV-silicone membranes coupled by an intermediate liquid, allowing mechanical coupling between 
two opposite chambers of the machine, were also designed and tested. These hybrid fluidic membranes offer 
sufficient performance for the micromachine under consideration and their resonance frequencies were lower than 
for the membrane alone, which may be an advantage and can have numerous applications possibilities in the field 
of harvesting. 

As the machine consisted of an assembly of various structured plates, the development of these assembly 
techniques was a major work challenge. In particular, a complete study of an assembly process at room 
temperature by gold thermocompression was carried out to prevent future damage to the polymer membranes 
during assembly (classical anodic bonding requires temperatures above 300°C). This study made it possible to 
produce very tight assemblies with tensile failure stresses in the order of 20 to 30 MPa, which are among the best 
reported in the literature. This technique will therefore make it possible to preserve the mechanical qualities of the 
membranes, but also enable the use of a gas at a pressure higher than 10 bar without causing the assemblies to 
rupture. 

The first tests of operation in motor mode of these machines were carried out but unfortunately proved 
unsuccessful: despite a temperature difference of about 100 °C between the hot and cold springs, the 
micromachine did not start. On the other hand, tests carried out with micromachines operating in cooling mode 
and activated by magnets and electromagnets were encouraging. Indeed, preliminary results showed very slight 
cooling. However, these results need to be consolidated and supplemented by systematic measurements.  

In view of the difficulty encountered in visualising and measuring the membranes motions, the pressures and 
temperatures of the gases inside this machine, it will also be necessary in the future to produce easily 
instrumentable subassemblies of this machine, which can be optimised separately. In particular, it will be necessary 
to incorporate electromechanical actuators to move the membranes. The influence of these electromagnets 
(heating) will have to be taken care of. The implementation of a system of actuation will enable to check the 
efficiency of the gas transfers inside the machine and to optimize the pressure drops according to the amplitude 
and frequency of the internal gas flows. To this end, thanks to the present work, the necessary technological 
building blocks are now available and should enable these studies to be continued in the future under much more 
comfortable conditions than at the outset.
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APPENDIX A: TRANSDUCERS 

1.1.  Comparisons of various energy harvesters  
Flexoelectric polymers are ideal for energy harvesting in smart textiles, since they can withstand high stresses.  

Principles Alternative Expression Common Materials Pros Constrains 

Electromagnetic Electromechanc 

electrodynamic 

DC generator 

Neodymium iron 

boron (NdFeB) 
Simple construction on a large 

scale 

Low output impedance 

Higher output current 

Low output voltage 

(<1 V) 
Downsizing limitations 

Affected by 

electromagnetic field 

Piezoelectric Piezoelectricity Lead zirconate titanate Simple structure on a small scale 
High output voltage (>5 V) 

High coupling coefficient 

Low output current 
Low strain limit 

Brittle 

Electrostatic Triboelectric capacitive Conductive capacitor Very high output voltage (>100 

V) 
Smart material not needed 

Ease of voltage rectification and 

frequency tuning 

Biased voltage required 
High impedance needed 

Low output current 

Magnetostrictive  Electrostriction Metglas High energy density 
Long life cycle 

Affected by 

electromagnetic field 

Downsizing limitation 

Flexoelectric  Polymeric Barium strontium 

titanate 
High‐strain limit High dielectric 

permittivity 

Low stress limit 

Hybrid Thermoelectric‐

electromagnetic 
Chromel‐alumel‐ 

NdFeB 

Multi‐energy sources Complexity 

Table 5-5: Comparisons of various energy harvesters [15]. 

1.2.  Comparison of energy harvester architecture 
Table 5-6 : Comparison of energy harvester architecture [15].

Architecture Simplicity Low 

Frequency 

Wide 

Bandwidth 

Multi
 
Degree of 

Freedom 
Microscaling Mesoscaling HighStrain 

Ratio 

Cantilever ✓ ✓ (polymeric 

material) 
✓ (cantilever 

array) 

X ✓ X X 

Linear ✓ (coil‐spring 

magnet) 
✓ X X X 

(electrostatics) 
✓ ✓ 

Spiral X ✓ (levitation 

magnet) 
✓ ✓ (translation 

and torsion) 
✓ X X 

Rotational X ✓ ✓ (hybrid) ✓ (translation 

and rotation) 
✓ X (vulnerable to 

heavy ball 

magnet impact) 

✓ 

Aeroelastics X X X X ✓ X ✓ 

Mechanical ✓ (market‐

ready 

DC 

generator) 

✓ (gear 

reduction 

tuning) 

X X X ✓ ✓ (gear 

reduction) 

Hydraulic ✓ (market‐

ready 

DC 

generator) 

✓ X X X ✓ ✓ 
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Mechanisms Architecture Power, 
mW 

Area, 
mm2 

Volume, 
mm3 

Acceleration, m/s2 Vibration 
Frequency, 
Hz 

Bandwidth, 

Hz, min-max 

ES Linear 0.01 … … 19.62 10 … … 

EM Linear 0.493 … 1940 29.43 13 … … 

PE Spiral 0.046 … 203.4 39.24 52 … … 

PE + PV Linear 0.02 … … … 17 … … 

EM Flutter 0 … 2625 … … … … 

EM + PE Linear + cantilever 0.913 … … … 31.2 30 34 

FE Linear 0.404 720 … 5 74 72.75 75.25 

PE Spiral 0.00033 … 8000 … 100 … … 

ES Linear 0.1 529 … … 43.5 …  

PE Cantilever 0.03 … 300 … 30 … … 

PE Flutter 0.0114 … … … … … … 

EM Linear 6000 … 100 500 9.81 15.5 … … 

EM Pendulum 0.9702 … … 4.905 3.5 … … 

EM + PE Cantilever 3.32 … 4000 2.943 33.5 25.5 62 

EM + PE Linear 0.55 … 48 433 … 3 … … 

PE Flutter 0.00001 560 … … 20 … … 

ES Diaphragm 40 18870.93 … … … … … 

ES Diaphragm 345.42 700 … … 40 2 54 

ES Rotation 2.808 … … … 2.5 … … 

EM Rotation 21.6 … … … 2.5 … … 

PE Diaphragm 0.01786 0.2 … … 2 … … 

PE + MS Cantilever … … … 0.981 21 … … 

ES Linear 1.23 … 428 750 29.43 … 2.5 7.5 

ES Rotation 0.128 … … … 10 … … 

EM Linear 304 … 7700 0.73575 6.7 … … 

EM Linear 410 … 7700 0.981 6.7 … … 

EM Linear 50 000 … 31 800 7.848 3.33 … … 

EM Linear 14 550 … 12 500 0.38259 8 … … 

EM Linear 90 000 … 150 000 19.62 37 … … 

EM Linear 28 300 … 22 500 29.43 20 … … 

EM Linear 1180 … 7400 15.696 9 … … 

FE Diaphragm … … … …  … … 

EM Cantilever 0.53 … 240 … 322 … … 

EM Linear 0.4 … 23 500 … 2 … … 

EM Linear 0.025 … 25 000 …  … … 

EM Diaphragm 0.01 … 1000 0.0001 64 … … 

FE Diaphragm 0.29 … 8624 … 102 … … 

FE Diaphragm 0.153 … 8624 … 41 … … 

PE Rotational 0.043 … 1850 … 2 … … 

EM Mechanical 4302 … … … 2.5 … … 

EM Mechanical 33 400 … … … 1.67 … … 

Table 5-7:Data on VEH R&D based on mechanism and architecture. Abbreviations: EM (electromagnetic); ES (electrostatic); 
FE (flexoelectric); PE (piezoelectric); MS (magnetostrictive); R&D (research and development); VEH (vibration ‐ based energy 

harvester). [15] 
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1.3.  Piezoelectric transducers: state-of-the-art devices and materials 
Piezoelectric MEMS Transducers (PMT) are materials that can convert mechanical energy into electrical energy 

based on mechanical stress or strain effect that generates an electrical polarization inside them as illustrated in 

Figure 5-30 a). PMTs are preferable to electromagnetic and electrostatic transducers in the specific application of 

cantilevers harvesters because of their higher energy density and their CMOS technology compatible manufacturing 

process [17]. PMTs have two modes of piezoelectric operation: the d31 or d33 mode. In the first mode, the stress or 

the deformation is perpendicular to the direction of generation of the charges, whereas in the second mode, the 

stress and the electric field have the same direction. Figure 5-30 b) illustrates the stack of material used in the 

fabrication of the MEMS piezoelectric micro-cantilevers vibration harvester. 

a) 
b) 

Figure 5-30: a) Stress or strain in a piezoelectric material causes an asymmetric charge distribution in the material, and hence 
a voltage over a capacitor b) A MEMS-based piezoelectric micro-cantilevers design [248], [7]. 

Almost any moving or bending structure (e.g. membrane) can be covered with a piezoelectric layer to convert the 

resulting mechanical stress or strain into electrical charges (i.e. a voltage over a capacitor). The piezoelectric 

transducer quality factor (Q = f0/Δf) decreases slightly at higher accelerations due to the air damping, which is a 

well-known mechanical loss factor [249]. In the literature, thin films of piezoelectric materials were widely proposed 

for piezoelectric transducers. Commonly used piezoelectric materials such as piezoceramics (lithium niobate 

LiNbO3, barium titanate BaTiO3, lead titanate PbTiO3, lithium tantalate LiTaO3) and quartz crystals are relatively 

large size and incompatible with silicon substrates [7]. Moreover, lead-zirconate-titanate (PZT), which is most 

extensively used transducer material in the field of energy harvesting, is brittle in nature and need a polishing 

and/or post-baking step to present a piezoelectric effect. Therefore, these materials are not suitable for vibration 

micro harvester’s fabrication since silicon is the basic materials in MEMS technology. Moreover, as Lead-based 

piezoelectric materials are toxic in nature, for medical application, researchers are interested in synthesizing Lead-

free piezoelectric material such as piezoelectric thin film based on polyvinylidene fluoride polymer (PVDF), layers 

of polycrystalline zinc oxide (ZnO) and of aluminum nitride (AlN), which are compatible with standard 

microelectronic processing technologies for MEMS transducer fabrication. PVDF is also commonly used 

piezoelectric polymer, which is flexible, light weight, biocompatible and inexpensive [250] PZT is fragile as  

compared  to  PVDF and has low energy conversion efficiency [251]. 

 To allow larger resulting strains in the piezoelectric material (i.e. effectively harvesting energy from vibrations), 

both material and device architecture should be designed in such way to mechanically amplify the applied stresses, 

providing larger charge/voltage generation. The efficiency of the conversion of a mechanical strain into an electrical 

energy is described by the electromechanical coupling coefficient, which is the most significant property of a 

piezoelectric material. This coefficient depends directly on piezoelectric parameters and elastic modulus, while it is 

inversely proportional to the dielectric constant of the material.  

The PZT piezoceramic has been for a long time the preferred choice for the fabrication of the piezoelectric 

harvesters since it has the highest electromechanical coupling coefficient among the most used piezoelectric 

materials for vibration energy harvesting applications. However, it has a low dielectric constant. Moreover, the 

extreme fragility of the PZT limits the maximum of deformation before rupture and its treatment remains delicate. 

PZT requires polishing or annealing after deposition of the film. In addition, the PZT is a ferroelectric material, so it 

cannot withstand temperatures above the Curie temperature which is below 300 °C for PZT thin films. 
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1.3.1. PZT thin films 

Despite all the microfabrication stresses associated with the PZT thin film, there are some interesting achievements 

in the literature. A harvester based on an aluminum cantilever beams with a steel proof mass and PZT layers glued 

on the top and bottom of the proof mass was proposed by Mitcheson and al in [252]. For 47 ms-2 vibrations at 150 

Hz, this harvester can generate 32.5µW. The model of transducers developed by Zhou et al. in [253], relying on 

interdigitated electrodes (in order to operate in the more efficient d33 mode), could generate a power density 

greater than 2 μW.mm-2g-1 (for 100 μm × 200 μm PZT cantilever of 1 kHz of resonance frequency). In [254], Jeon et 

al. reported 1 μW of continuous electrical power delivered to a 5.2 MΩ resistive load at 2.4 V with a PZT cantilever 

beam of 13.9 kHz of resonance frequency and dimensions of 170 μm × 260 μm. In [255], a 1.64 μm thick layer of 

PZT on a cantilever produces a voltage of 898 mV and a power of 2.16 μW at a resonance frequency of 608 Hz under 

an acceleration of 1 g. In [256], Isarakorn et al. mentioned a 1000 × 2500 × 0.5 μm3 PZT epitaxially grown thin film 

on a silicon platform exhibiting a power of 13 μWmm-2g-1 at a resonance frequency of 2.3 kHz for an optimal resistive 

load of 5.6 kΩ. Shen et al. in [257], demonstrated that a micromachined SOI (silicon-on-insulator) -based PZT 

cantilever structure exhibited an average power of 0.32 µW and power density of 416 µWcm-3 at 0.75g acceleration 

at its resonant frequency of 183.8 Hz. 

A piezoelectric material such as aluminum nitride (AIN), whose manufacturing process is easier and fully compatible 

with MEMS technology is often chosen instead of a PZT. Indeed, AlN thin films can be deposited using low 

temperature techniques used for MEMS device’s microfabrication [7]. 

1.3.2. AlN thin films 

This material has been recently proposed for the vibration harvesting transducers fabrication. AlN material has a 

lower electromechanical coupling coefficient compared to PZT. However, its lower dielectric constant allows to 

generate a much higher voltage compared to PZT, and the harvested power can either be equal to, or exceed, the 

power obtained with PZT. Moreover, AlN thin films are biocompatible and can be grown below 400°C (by sputtering 

for instance) on different substrates including dielectrics, semiconductors, metals and flexible substrates like 

polymers. Molybdenum was often chosen as the AIN electrode material because it promotes a preferential 

orientation (002) of the AlN film. It has a low resistivity and it can be easily etched by H2O2, thus reducing the 

complexity of device fabrication [7]. The AlN layer can also be etched by an H3PO4-based solution for its 

structuration [7]. A few AlN thin films energy harvesting transducers started to be reported in the literature.  

In [258], a 1.5 × 0.75 mm2 AlN (1 μm layer) cantilever device has been shown to produce an analytical power output 

of 60 nW for an optimal resistive load at 900 Hz with an acceleration of 10 ms-2. Van Schaijk et al., in [259], 

presented a MEMS-based AlN cantilever providing an output power of 10 μW under an acceleration of about 8g at 

a resonance frequency around 1 KHz. Based on this work, Elfrink et al. also reported on a MEMS AlN-based 

cantilever beam of 2.1 × 7 × 0.8 mm3 oscillating at 572 Hz and generating an output power of 60 μW under 2g 

acceleration [260]. At the nanoscale, other piezoelectric materials such as GaN and ZnO, look particularly promising 

because of their piezoelectric and mechanical properties discussed in [261], [262], [263]. 

Unfortunately, scaling the energy harvester transducer sizes proportionally reduces the power that can be 

extracted from vibrations. Moreover, it increases the transducer resonant frequency at which the harvesting device 

operates at the maximum efficiency far away from the spectrum of vibration frequency available in the 

environment, thus contributing to further lower the collected power. Another piezoelectric energy harvester 

promising application concerns their use on soft substrates such as Kapton or polyethylene terephthalate (PET) 

compatible with soft electronics, thus allowing to recover much more power because of the bending of the entire 

electronic system structure [[]. In this context, mechanical and electrical properties of transducers based on AlN 

thin films on polyimide flexible substrates have already been developed [264]. 
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1.4.  Electromagnetic transducers  

a) 
b) 

 
c) d) e) 

 f) 

Figure 5-31: a) The coil and the magnetic field move relative to each other, inducing a voltage V = −dφ/dt in the coil [7]. b)  A 
Schematic 3D view of the sandwiched vibration-based power generator [265].  Photographs of fabricated Ni spring: c) Cu 

coils, d) the assembled prototype, e) and f) The orientations of eccentric proof mass energy harvester [15]. 

Electromagnetic harvesting transducers are based on a time varying magnetic field inducing an electric current into 

a conductor according to Faraday’s law. The time varying magnetic field can be generated by the movements of the 

electrical conductor (typically a coil) relative to a permanent magnet and vice versa (cf. Figure 5-31 a). 

Electromagnetic energy harvester’s miniaturization is still limited by the miniaturization of permanent magnet 

(PM). Macro sized PMs are still used to provide the required magnetic field because the development of films of 

PMs is still a challenge. Moreover, Arnold [266] concluded that power density decreases as the dimensions of the 

device are reduced.  Tabeling has shown that, at small scale (on the order of a few hundred micrometers), when 

using a magnetic field (whether produced locally or from the exterior) the electromagnetic forces generated are 

lower than those associated with electrostatic forces [108]. Therefore, integration of electromagnetic energy 

harvesters is still a challenge for research.  

Wang et al. in [265], proposed a micromachined spiral nickel spring with an NdFeB permanent magnet in the middle 

located between two fixed micromachined spirals copper coil (cf. Figure 5-31 b)) integrated with silicon frame. The 

load voltage generated by the prototype is 162.5 mV at its resonance frequency (280.1Hz) and the input vibration 

acceleration is 8 ms-2.When the load resistance is 81 Ω, the maximal load power obtained is about 21.2 μW [265]. 
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APPENDIX B: STIRLING MOTOR 

1.1.  Carnot efficiency 
Sadi Carnot was interested in the optimization of thermal machines. In 1824, he published a book entitled 
«Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance» in which he 
thus developed a theoretical thermodynamic cycle whose effficiency is maximum [23]. This cycle is called the Carnot 
cycle [23]. It is a cycle supposed to function without dissipative phenomenon (i.e a reversible cycle). It is a motor 
cycle, which is only valid theoretically. It consists of these four successive transformations: 

− Isothermal compression reversible at a cold temperature (𝑇𝑐), 

− Reversible adiabatic compression, 

− Reversible isothermal relaxation at a hot temperature (𝑇ℎ), 

− Reversible adiabatic relaxation. 

He defines the output of this cycle as the ratio between the useful output work (𝑊) and the input thermal energy 
(𝑄). 

  c
h

W

Q

−
 =                                       (2.1) 

              
        

By introducing the first principle of thermodynamics for a closed system with the heat rejected by the system, and 
the Clausius-Carnot equation that is derived from the second principle of thermodynamics for a reversible system, 
he finally obtains the equation : 

c hW Q Q 0+ + =          (2.2) 

c h

c h

Q Q
0

T T
+ =           (2.3) 

c
c

h

T
1

T
 = −            (2.4) 

 

 This yield therefore represents the maximum yield that can have a thermal machine operating with a hot 
temperature 𝑇ℎ and a cold temperature 𝑇𝑐. Note that the unit yield (η𝑐 = 1) is impossible to obtain except in the 
theoretical case where 𝑇𝑐 = 0 𝐾. 

In our case study of low temperatures, with 𝑇ℎ = 500 K (230 °C) and 𝑇𝑐 = 293 K (20°C), we have a maximum yield 
of 41.7%. It should be noted that with these temperature levels, under no circumstances will it be possible to exceed 
this yield. 

This yield of Carnot which constitutes the ideal case thus makes it possible to compare the different systems of 
conversion of thermal energy to a theoretical maximum, and this even when the levels of the temperatures 
between these machines are different. It therefore serves as a reference for existing thermal machine technologies. 
Consequently, the efficiency (𝜂𝑟) of any thermal machine is the ratio between the yield of the machine in question 
(η) and the yield of the Carnot cycle calculated at the same temperatures: 
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r

c


 =


           (2.5) 

 If we consider the theoretical case of a perfect regenerator (i.e a transfer without loss of heat from the 
cooling phase to the heating phase), the efficiency of the Stirling machine becomes equal to the yield of Carnot. 
Therefore, the invention of the regenerator by Robert Stirling has significantly improved the performance of its 
motor. 

1.2.  Advantages and disadvantages of Stirling motors 

1.2.1. - Advantages 

1.2.1.a.  As motorization motor (direct operation): Rotation work and electricity 
production  

Since future cars are more likely to be powered by electric motors or fuel cells, Stirling motors (with their high 
conversion efficiency) could serve as an electrical source for driving these electric motors. Stirling motors work best 
in machines that require continuous mechanical or electrical energy using a temperature gradient. They are also 
ideal for exploiting the heat of the sun by using a mirror that concentrates this energy on a surface that can be used 
as a source of heat for the motor [267]. 

In the air, since an aircraft motor runs almost all the time at constant power, the Stirling motor is really in its field 
of predilection. Associated with this, its silence and its low vibratory level, compared to a traditional motor, the 
Stirling motor can constitute an asset as well for the passengers of the plane. In addition, at altitude, since the 
outside air drops in temperature, it can be the cold source of the Stirling motor  and allow an aircraft to fly faster. 
However, it would essentially be necessary to develop a Stirling motor which also has a good power / weight ratio 
to be able to compete in the field of aviation. Indeed, during the years 1940 to 1980, the company Philips studied 
the applications of the Stirling motor in the Ford Torino car, but this test was not transformed and the project was 
abandoned [41]]. Probably, the reasons, apart from the high cost of the project compared to the standardization 
of traditional thermal motors at that time, are related to the difficulty of having an motor capable of quickly varying 
its power and its speed. A prototype 4-cylinder Stirling motor, however, was built in 1976 and developed 170 hp at 
4000 rpm (code name was 4-215 D.A). NASA made the same attempt with an American Motors Corporation (AMC) 
Spirit car in 1979. The name of this motor was P40 [268]. 

To conclude, we can cite the production by General Motors in 1968 of a hybrid car named STIR-LEC consisting of 
Stirling motor charging batteries [269]. These provided the energy needed for an electric motor to propel it. At sea, 
the Kockums company developed during the 1980s its Stirling Air-Independent Propulsion (AIP) motor [270]. It also 
has been used aboard the French submarine SAGA [271]. 

 

1.2.1.b.  As cooler or heat pump (Reverse operation) 

When you apply mechanical energy into a Stirling motor and run it backward, the motor will effectively remove 
heat from the heat sink (cooled part of the motor) and will expel it towards the part that should be heated (heat 
source). That turns a Stirling motor into a very efficient cooling device ("cryocooler") [29]. 

Due to the high efficiency achieved by Stirling macro machines for cooling, Stirling micro chillers are a potentially 
interesting alternative for small devices cooling. In a micro scale Stirling cooler, heat is released from the hot 
chamber during the compression phase and absorbed from the cold chamber during the expansion phase. The 
craze for the miniaturization of Stirling coolers for application in the cooling of electronics for example, have been 
restrained to scale by the use of traditional components (eg pistons, crank-rod and pressurized chamber) [99], 
[100]. Efforts to build a micro-scale Stirling cooler prototype, through a series of cryocooler patents ( [94], [101]), 
have solved the problems of friction losses and gas leaks by replacing conventional pistons and the associated links 
by electrostatic diaphragms. 
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1.2.1.c.  As a lost heat harvester 

The energy needs of the industry (ENI) continue to increase and represent more than 1/3 of the total energy 
consumed (TEC) in the industrialized countries. For example, on 2014 in France the ENI was 19.2% (Energy balance 
of France for 2014), in China 70% [3], in the USA 33% [ [4]. The problem that must be emphasized is that 20 to 50% 
of this consumption is dissipated by conduction, convection and radiation from hot equipment or in the form of 
hot smoke as is the case in the USA [5]. In France, for example, it is estimated that more than 27 TWh of heat whose 
temperature is between 100 and 200°C is lost each year. In the United Kingdom, it is estimated that 14 TWh / year 
is recoverable, which represents 4% of its annual energy consumption. Even in an internal combustion motor, it is 
estimated that 75% of the thermal energy generated during combustion is lost through the motor equipment [6].  

This lost thermal energy is in the form of three categories that can be defined as follows [4]:  

− The heat is considered at low temperature when below 230 °C. 

−  average temperature when heat temperatures are between 650 and 230 °C. 

− High temperature when temperature heat above 650 °C. 

Stirling macro and micro machines can reduce this huge waste of energy. For instance, cogeneration systems are 
commercialized, consisting of a conventional boiler that provides heat to homes and a Stirling motor coupled to it 
that recovers heat losses to convert it into electricity [9]. 

1.2.2. Disadvantages  

Car motorization experiences with Stirling motors have not always been successful. The problem lies partly in the 
fact that Stirling motors do not start instantly (it takes time for the all-important heat exchanger to warm up and 
the flywheel to run up to speed), and they do not work so well in stop-start operation (unlike internal combustion 
motors). To effectively expel waste heat, they also need large radiators. That are some reasons why their direct use 
in cars seem to be less suitable than an ordinary internal combustion motor. 

In conclusion, because Stirling motor don't internally involve burning fuel, the biggest advantage of Stirling is that 
they can be much cleaner and environmental friendly and can run from all kinds of different fuels (we could imagine 
a less volatile, less explosive, less polluting) They are They are much quieter than or internal combustion motors, 
because they do not have the complex system of opening and closing valves and, Moreover, unlike steam motors 
and internal combustion motors, which typically burn coal (to boil water) or fuel (to use explosion). 

1.3.  Schmidt model 

1.3.1. Zero order analysis 

Based on experimentally obtained results, the zero-order analysis developed by William Beale during the 1970s 
[33], makes it possible to determine corrective coefficients for the theoretical formulas. According to Beale, when 
considering a Stirling machine running in the motor cycle, its mechanical power could be expressed by the following 
relation: 

𝑊𝑚 = 𝐶𝑡. 𝑃𝑐𝑦𝑐𝑙𝑒 . 𝑓. 𝑉𝑠𝑤𝑐 . 𝑓(𝑇)    (2.6) 

Around 1980, Walker [Walker (1980)] based on several practical tests on Stirling machines, proposed the following 
formulation of Beale's initial formula: 

𝑊𝑚 = 0.15 𝑃𝑐𝑦𝑐𝑙𝑒 . 𝑓. 𝑉𝑠𝑤𝑐     (2.7) 

In general, the Beale formula is used in optimizing the choice of the temperature regime. Its formula has been 
widely used by Sent (1982), West (1986) and Organ (1992). These scientists validated it by including the effects of 
the temperature ratio. According to West, Beale's formula should be modified as follows: 

𝑊𝑚 = 0.25 𝑃𝑐𝑦𝑐𝑙𝑒 . 𝑓. 𝑉𝑠𝑤𝑐
𝑇ℎ−𝑇𝑐

𝑇ℎ+𝑇𝑐
    (2.8) 
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For Stirling machines operating in a cooling cycle (cryogenic), Walker in 1983 based on the Beale formula, 
establishes an expression to approximate the cooling capacity of a Stirling machine based on the analysis of 
experimental results. The formula he proposed is the following: 

𝑄𝑐 = 10−6𝑃𝑐𝑦𝑐𝑙𝑒. 𝑓. 𝑉𝑠𝑤𝑐𝑇𝑐   (2.9) 

Table5-8.2. 

 

 

 

Table 5-9: Theoretical expressions of power and efficiency for zero order analysis 

1.3.2. First order analysis or Ideal Isothermal Analysis 

The first order analysis (or isothermal), proposed by Gustave Schmidt in 1871 [37], makes it possible to estimate 
the mechanical power of an motor as well as his performance from its geometry. It is often the basis of pre-studies 
of the Stirling motor. . In Schmidt's model there are assumptions: The movement of the pistons is sinusoidal and 
their oscillation frequency is constant. The evolution of compression and expansion phases are isothermal. The gas 
is ideal so the perfect gas state equation is applicable. The regenerator is perfect (infinite heat capacity). The mass 
of injected gas is constant and its instantaneous pressure is uniform (no leakage) so that the conservation of the 
mass applies. The thermal equilibrium conditions are then assumed to be established. All these hypotheses lead to 
thermal efficiency equal to that of Carnot. 

The motor is divided into three zones (hot side expansion, cold side compression and the regenerator) and five cells 
designated by the first letter of their names: c, k, r, h and e respectively designating the compression chamber, the 
cold exchanger, the regenerator, the hot exchanger and the expansion chamber. There is no mass accumulation 
inside a chamber. The known data are the volumes of the spaces k, r, and h and the temperatures of k, and h. 

 

Figure 2.5-32 : Schematic view of the zones and cells of the isothermal model [Urieli, 1984] 

Extracted from https://www.ohio.edu/mechanical/stirling/ 

Expression of the pressure variation P of the gas 

 

The total mass of the gas inside the machine is constant in the thermodynamic cycle and implies:  

 

5

i 1
m mi mc mk mr mh me cste

=
= = + + + + =  Eq. 5-1 

 

W. Beale P=  K. Pmc  f  Vsc  f(T) 

Walker K  f(T) = 0,15 

West K=0,25 et f(T)= 
𝑻𝒌−𝑻𝒉

𝑻𝒌+ 𝑻𝒉
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and the gas is perfect so:   

i iP V m r T=
   then     

 

5 i

i 1
i

VP
m

r T=
= 

 Eq. 5-2 

 

Since there is no leakage, the pressure P of the gas is constant, so:  

 

c ek r h

k k r h h

m r
P

V VV V V

T T T T T

=

+ + + +

 Eq. 5-3 

The expression of the regenerator temperature is determined as follows: 

As the regenerator is supposed perfect so:  

r
r

r

P V
T

m r
=

            (2.13) 

Since dT follows a straight its slope is: 

( )h k

r

T T

L

−

 with Lr, regenerator length and his ordinate at the origin is kT
 so:  

 

( )
( )h k

k
r

T T
T x x T

L

−
= +

       (2.14) 

 

 

Figure 2.9 : Temperature gradient of the gas along the regenerator 

 

However 

( )
rL

r

0

m x Adx= 
, with ρ the density of the gas and A the regenerator depth.  
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( )
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r
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P
m Adx
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        (2.15) 

Then replacing T(x) by his expression in rm
: 
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−

       (2.16) 

 

By identification, in relation to 

( )h kr
r r

r h

k

T TPV
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        (2.17) 

Then by replacing the expression of rT
 in that of the pressure, it comes:  

( )

h

kc ek h
r

k k h k h h

m r
P

T
ln

TV VV V
V

T T T T T T

=
 
 
 + + + +
−     (2.18) 

The movements of the motor pistons and displacers being considered sinusoidal, for an Alpha configuration, the 
variations of volumes are expressed as follows: 

( )

( )swc
c clc

swe
e cle

V
V V 1 cos

2
V

V V 1 cos
2

= + +   

= + + +  




    (2.19 a,b) 

With:  

Vclc and Vcle respectively the dead spaces of the chambers of compression and expansion; Vswc, Vswe, are 
respectively the swept volumes in the compression and expansion chambers; α is the phase shift between the 
piston the displacer. This angle represents the phase advance of the expansion space volume variations with respect 
to the compression space volume variations; 

θ the angle of the cycle.  

 

Replacing the expressions of the volumes in that of the pressure, it comes: 

( ) ( )swc swe

k h

m r
P

V cos V cos
s

2 T 2 T

=
  + 

+ +

   (2.20) 

Where 
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  By developing the expression in
( )cos  + 

, it comes the following: 
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We introduce the two parameters: 

2 2
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Introducing c and β into the expression of pressure yields a simpler form for the pressure P: 

( )

m r
P

s 1 bcos
=

+ 
         (2.25) 

Where 

( ) =  +
              

          (2.26) 

And  

c
b

s
=

   (2.27) 

The mean pressure on a cycle is written as follows:  

( )

2 2

mean

0 0

1 1 m r
p P d d

2 2 s 1 bcos

 

=  = 
  +  

  (2.28) 

Using integration tables, the average pressure is expressed as follows:  

mean
2

m r
P

s 1 b
=

−           (2.29) 

This equation also makes it possible to calculate the mass of gas in the motor knowing the average pressure. As we 
have the pressure we can calculate the work. 

 

- Expression of the work W 
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Knowing that for the compression and expansion volumes: 

c c

e e

Q W

Q W

=


=             
          (2.30a,b) 

The work during the cycle becomes: 

e c
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With: 
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It comes: 
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   (2.34a,b) 

Then replacing the pressure with its value, see Eq. (2.25), we obtain: 

( )( )
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  (2.35a,b) 
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2

c swc mean

2
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1 b 1

W V P sin
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1 b 1

W V P sin
b

 − −


=  

 − −
 =   −
   (2.36a,b) 

With the expressions (2.30a,b), (2.31) and (2.36a,b), one can calculate: 

- The power of the Stirling cycle: 
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W W f=
  where f is the frequency   (2.37) 

- The efficiency: 

e

W

Q
 =

          (2.38) 

These integrals are solved using tables. For the beta and gamma configurations these are the expressions of the 

volumes that change but the principle remains as it is. Vk, Vr and Vh, volumes are considered as dead spaces.  

The performance of the motor depends of the nature of the gas and is directly proportional to the average pressure 

and the volume swept. 

So we can rewrite Schmidt's equation as 

( )
2

c e mean swc swe mean sw

1- b -1
W = W + W = P V sinβ V sin β α Sc P  V
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   + −  =  
 

π    (2.39) 

Where Sc is the Schmidt number: 

( )
( )2

swc swe

sw sw

1 b 1
V V

Sc sin sin
bV V

− − 
=  + − 

     (2.40) 

The Schmidt number characterizes the efficiency with which one can transform the size of the motor (Vsw ) and its 

average pressure (Pmean) in exploitable power. Vsw  is the total swept volume (i.e. 𝑉𝑠𝑤 =  𝑉𝑠𝑤𝑐 + 𝑉𝑠𝑤𝑒).  

Based on this analysis, the table 2.X presents the the main equations  describing the performances of a Stirling 

motor. 

Parameters Expressions 

Dead space ratio 
k r h
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(V V V )

V

+ +
 =

 

Temperature ratio 
h

c
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T
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Swept volume ratio 
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V
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Phase shift α 

Expressions to be calculated  

Schmidt number ( )
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− − 
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Appendix B: Stirling engine  

Page 185 on 229 

 

swe

h

swc swe

k h

V
sin

T
arctan

V V
cos

T T

 
 

  =
 

+  
   

 

2 2

swe swc swe swc

h k h k

1 V V V V
c 2 cos

2 T T T T

   
= + +   

   
 

  

  

 

( )

h

kclc swc cle swek h
r

k k k h k h h h

T
ln

TV V V VV V
s V

T 2T T T T T T 2T

 
 
 

= + + + + + +
−

 

 
c

b
s

=
 

Table 5-10: Parameters and expressions for isothermal analysis 

1.3.3. Second order analysis or Ideal Adiabatic Analysis 

This analysis allows to determine the effects of the adiabatic operation of the compression and expansion spaces 
on the motor performance and to examine the detailed behavior of the relevant variables across the cycle 
(temperature ratio, phase angle, swept volume ratio, ratio of dead space). This model is more realistic for estimating 
the mechanical power of an motor as well as its performance from its geometry. The known data are the volumes 
of spaces k, r, and h and the temperatures of k, and h. 

 

Parameters Expressions 

Mean pressure mean
2
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P

s 1 b
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−  

Work c mean swW S P V=  
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Figure 5-33: Schematic view of the zones and cells of the adiabatic model [28]. 

Extracted from https://www.ohio.edu/mechanical/stirling/ 

The advantages of this analysis are that the amount of heat transferred to the regenerator is estimated and the 
method may include heat transfer and friction flow analysis of the heat exchangers. The disadvantage is that this 
analysis leads to nonlinear differential equations that can only be solved numerically. 

The Table 2.4 presents the set of differential equations resulting from the ideal adiabatic analys of a Stirling motor 
, [28]. 
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Table 5-11: Parameters and expressions for adiabatic analysis 

Parameters Equations 

Pressure 
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APPENDIX C: MICROFLUIDICS  

1.1.  For permanent flows  

1.1.1. Effect of low Reynolds number in Microsystems  

Low Reynolds number determination in micro canals with rectangular cross-sections (cf. Figure 5-34 a) where the 
aspect-ratio (w/b) of the cross-section of the canal is arbitrary [108] is challenging but of big interest. 

a) 
b) 

Figure 5-34: a) Schema of the cross section of a rectangular channel. b) The friction factor (C) variation, for a channel 
characterized by a ratio of X = w / b [108]. 

For b ≤ w, an estimate of the flux (up to about 10%) is established from the following expression [108]: 

𝑄 ≈
𝑤𝑏3𝐺

12𝜇
(1 −

6𝑏25

𝜋5𝑤
) 

The coefficient C linking the flow Q to the pressure gradient G is the friction factor defined by. 

𝑄 = 𝐶
𝑤𝑏3𝐺

𝜇
 

The variations of the friction factor as a function of the aspect ratio 𝜒= w/b for a rectangular channel are illustrated 

in Figure 5-34 b, for X varying between 1 and 100. The analysis of this curve 𝐶(𝜒) shows that once the form factor 

𝜒 is greater than 10, we find the asymptotic value 1/12, which corresponds to the limit of the Poiseuille plane. In a 

symmetrical way, in the case where 𝜒 is very small, the evolution of the factor 𝐶(𝜒) is as follows [108]:  

𝐶(𝜒) ≈
𝜒2

12
 

1.1.2. hydrodynamic resistance notion  

To determine what will be the flows in each branch of a given microfluidic circuit, since they are often quite 

complex, it is useful to revisit the idea of hydrodynamic resistance. The following relation introduces the notion of 

hydrodynamic resistance R of a channel [108]. 

∆𝑃 = 𝑅𝑄𝑚 

where ∆𝑃 and 𝑄𝑚 are respectively the pressure difference along the canal and the mass flux through the canal. An 

electronic analogy can be made in which the pressure corresponds to a voltage and the flow corresponds to the 

intensity of the current. At very low Reynolds numbers, this analogy is robust in the case of a constant, 

incompressible flux along an invariant channel in the x direction and depends only on y and z, which represent the 

transverse coordinates of the flux. The pressure drop associated with a flow of fluid in a channel of section S and 

length L, crossed by a flow 𝑄𝑚, can be expressed as follows [108]:
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∆𝑃 = 𝐾𝑣
𝐿

𝑆
= 𝑅𝑄𝑚 

In the case of a plane Poiseuille flux between two plates separated by a distance b and a width w (with 𝑏 ≪ w), 𝐾 

which represents a dimensional factor, is expressed as follows: 

𝐾 =
12

𝑏2
 

The hydrodynamic resistance R for the case of a planar Poiseuille flow, is expressed as follows: 

𝑅 =
12𝑣𝐿

𝑏2𝑆
 

This expression resembles that of electrical resistance with the resistivity here being represented by the factor 12ν 

/ b2. The hydrodynamic resistance has the unit m-1s-1. Analysis of this relationship shows that the hydrodynamic 

resistance increases considerably as the scale (or length of the channel) decreases. In the most general case where 

the cross-section of the channel has a ratio of given length, R is expressed as follows [108] : 

𝑅 =
𝑣𝐿

𝐶(𝜒)𝑏3𝑤
 

Hydrodynamic circuits function as electronic circuits. For example, in a hydrodynamic circuit, two resistors R1 and 

R2 placed in series equivalent to a resistor R1 + R2, and two resistors in parallel equivalent to a resistor whose 

expression is:  

𝑅 =
𝑅1𝑅2

𝑅1 + 𝑅2
 

When it comes to micro-fluidic circuits with several branches of canals, these analogies are extremely useful.  

To conclude, note that local equations are not equivalent between electrokinetics and Stokes fluxes in 

microchannels [108]. Indeed, in the Stokes approximation, the velocity does not come directly from a potential 

itself, whereas in electrokinetics, the density of the electric current is proportional to the local electric field, which 

derives from a potential. So, this analogy applies only to global quantities and for a Reynolds number not much 

larger than 1 and as long as the non-linearities of the Navier-Stokes equation do not cease to be negligible. The 

channels are assumed to be invariant in the flow direction [108]. 

1.1.3. hydrodynamic capacity notion  

When deformable elements (control membranes of mechanical microvalves) are used in a micro-fluidic circuit (cf. 
Figure 5-35), the notion of hydrodynamic capacity becomes relevant [108]. The hydrodynamic capacitance (unit 
ms2) notion of an element can be introduced with this formula: 

𝑄𝑚 = 𝐶
𝑑∆𝑃

𝑑𝑡
 

Let us consider an nondeformable channel of volume V, closed, containing a compressible fluid whose density 𝜌 (𝑡) 
varies with time. There appears a mass of fluid 𝑄𝑚 among the density variations of this volume of fluid, which is 
given by the expression: 

𝑄𝑚 = 𝑉
𝑑𝜌

𝑑𝑡
 

Indeed, the variations of density are related to the variations of pressure by the relation [108]]: 

∆𝑃 = 𝜅−1 𝛿𝜌

𝜌
. 

In this relation κ represents the compressibility of the fluid. The expression of the hydrodynamic capacity is deduced 
in this particular case: 
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𝐶 = 𝜅𝑚0 

Where 𝑚0 represents the fluid mass in the element. Let's now consider the case where the canal is deformable by 

a membrane introduction, but the fluid is incompressible. Figure 5-35 illustrate the system. 

 

Figure 5-35: Flow system in which a deformable membrane (schematized by a piston / spring system) is located inside a 
microchannel [108]. 

The membrane in question is schematized by a piston / spring system. A pressure difference (∆𝑃 = 𝑃1 − 𝑃2) 

imposed between the inlet (P1) and the output (P2) of the microchannel allows the circulation of the flow inside. 

In such a system, the flow is related to the pressure drop by the following equation [108]:  

𝑄𝑚 = 𝑅∆𝑃 + 𝐶
∆𝑃

𝑑𝑡
 

In this expression R is the hydrodynamic resistance of the channel and C its capacity, which is expressed as follows:  

𝐶 =
2𝜌

𝑘
 

 𝑘 in this relation is the constant of the spring which comes from the measurement of the rigidity of the spring or 

the membrane. It is possible for example by this type of calculation to determine the response time constant of a 

valve of a microfluidic circuit. The time constant is RC in this example. The Reynolds number is intrinsically small in 

microsystems. Consequently, these types of flows are governed by Stokes equations with moderate Reynolds 

numbers of the order of several tens. 

This is the case for example of micro flux for the extraction of heat from microprocessors. These exchangers must 

operate at moderately high Reynolds numbers to achieve efficient heat transfer. This is also the case in inkjet 

printers, in which the speeds are of the order of several meters per second, for jet diameters around 100 μm. The 

Reynolds number is therefore about 100. However, such a Reynolds number is too high for the use of the Stokes 

approximation, but is not high enough to produce hydrodynamic instabilities [108]. 

1.1.4. The bottleneck effects  

The plug effect is an effect related to the compressibility of a gas. The plug effect imposes a particular design ratio 

between chamber and microfluidic channel, especially in the case of gas. For a rigid system, the bottleneck effect 

occurs in a chamber containing a movable piston connected to a capillary when the piston suddenly sweep the gas 

(cf. Figure 5-36). Consider the case where the capillary is a microchannel of rectangular cross-section. Thus, the 

piston being stationary initially, then starts to move abruptly at a predetermined speed U to move the fluid. The 

flow is then directed along the x axis, where x = 0 is the initial position of the piston. In the plane of the piston 

chamber cross-section, the flow rate of the fluid is assumed to be uniform. The equations governing the problem 

under these conditions are then expressed as follows: 

 

Figure 5-36: Diagram illustrating the geometry of the bottleneck effect [108]. 
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𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑈𝑐)

𝜕𝑥
= 0 

𝜌
𝐷𝑈𝑐

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑈𝑐

𝜕𝑥2
 

where ρ, µ, 𝑈𝑐, 𝑡 and 𝑝 are respectively the fluid density, its viscosity, the velocity in the chamber, the time variable 

and the pressure.  Even though the velocities themselves are very small compared to the speed of sound 

propagation, we have assumed that the fluid is compressible because this character is essential for the effect we 

are discussing. For liquids, compressibility can be characterized by the following equation [108]: 

𝜕𝑝

𝜕𝜌
=

𝐸

𝜌
 

where E represents the Young's modulus. At very low Reynolds numbers, the inertial term in the Navier-Stokes 

equation can be neglected, leading to the following approximation [108]: 

𝑝 +
𝜇

𝐸

𝜕𝑝

𝜕𝑡
= 𝐹(𝑡) 

where F(t) being a time-dependent function. For normal fluids such as water, the time constant μ / E is of the order 

of 10-12 s. We can therefore neglect it, if we consider the evolution of the phenomena described here, this time 

constant is extremely fast. Therefore p ≈ F (t). In other words, the pressure and the density are uniform in the piston 

chamber. Thus, in the piston chamber, the velocity of the fluid decreases linearly with the coordinate x. The junction 

with the microchannel takes place at x = L and this microchannel or the capillary of length l has a rectangular cross 

section of width w and height b. The flux conservation at the chamber - microchannel junction is expressed as 

follows [108]. 

𝑈𝑐(𝐿, 𝑡) =
4𝑤𝑏

𝜋𝐷2
𝑈𝑐𝑎𝑛(𝑡) 

 

where D represents the diameter of the chamber. At the level of the microchannel or capillary, if it is a thin channel 

(where w >> b (height)), we have the following relation, if for simplicity, the pressure is assumed to be zero at the 

output of the microchannel: 

𝑈𝑐𝑎𝑛(𝑡) ≈
𝑏2

12𝑙𝜇
𝑝 

Or into the form of a differential equation [108]: 

(1 − 𝛼𝑡)
𝜕𝑝

𝜕𝑡
+

𝑝

𝜏
=

𝑈𝐸

𝐿
 

Here, 𝛼 =
𝑈

𝐿
, and 𝜏 is a time constant expressed as follow: 

𝜏 =
3𝜋𝑙𝜇𝐷2𝐿

𝐸𝑤𝑏3
 

If we assume that αt is largely inferior to 1, (which is equivalent to saying that the piston is still far from reaching 

the chamber-channel junction), we obtain the following solution [108]: 

𝑝(𝑡) = 𝑝𝑖𝑛𝑓(1 − 𝑒−𝑡/𝜏 

Thus, the equilibrium of the flow is reached once the time τ, above, has elapsed. Note that in this type of 
microsystems, it is possible that τ becomes higher, since it varies with the inverse of the height of the microchannel 
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at power 3. By way of example, τ is of the order of a few tens of seconds for the water pushed into a microchannel 
of length 2 cm, 1 micrometer height and width 100 μm. On the other hand, if this same type of microchannel had 
a height of 100 nm, this characteristic time would have been of the order of a few hours. It is therefore essential to 
consider this characteristic time during the design of ultraminiaturized microfluidics systems. To overcome this time 
constant, it is necessary to work with a flow at constant pressure, but not at constant speed or constant flow. To 
put the fluids in motion in microchannels in this case, the use of pressure sources is preferable to syringes. 

A standard Stirling micromachine can be composed of two opposite flat faces, consisting of one side of a flexible 
membrane in a cold chamber and the other side of another flexible membrane in a hot chamber, with three micro 
channels for connecting these two chambers as illustrated in Figure 5-37. These three microchannels necessarily 
consist of a first horizontal microchannel, followed by a second vertical microchannel, then a third horizontal 
microchannel, the vertical microchannel containing the regenerator. The first horizontal microchannel connects the 
hot chamber to the regenerator, the latter being connected to the third horizontal microchannel leading into the 
cold chamber. Horizontal microchannels are necessary because in the case of membranes, there is no gap between 
the circumference of the membrane and its displacement chamber as is the case with a piston and its sliding 
chamber. On each side, one of the flat faces of these chambers is in contact with a thermal source (hot or cold) and 
the other plane being occupied by the membrane which compresses and / or displaces the working gas. 

The simplest (and most compact) size and shape of the upper wall of the chamber is obtained when its shape and 
perimeter correspond to the perimeter of the membrane, since this upper wall (i.e. the exchanger) and the 
membrane share the same workspace. The diameter of the membrane can be chosen between 5 and 10 mm, with 
a thickness between 50 to 250 microns, to limit its resonance frequency to kHz. 

a) b) 
Figure 5-37: Schema of two potential models of 3D Stirling micromachines (alpha configurations) with. a) two aligned 

chambers. b) two unaligned chambers 

The Stirling micromachine system exploits the inertia of suspended membranes to act on the working gas. Thus, 
the cyclic pressure applied between the membranes causes a phasing of the latter at a well-defined phase angle. 
In motor mode, the membranes produce a work due to the expansion of the working gas but also compresses and 
displaces the latter during the thermodynamic cycle. 

1.1.5. Fluid-structure interaction 

A better heat transfer between the alternating flow gas and the walls of the chambers and the regenerator is 
essential for a better operation of the Stirling machines (operating in alternating mode), because of the primordial 
influence of thermal exchanges on the thermodynamic efficiency. During alternating compressions and detents of 
the gas, the boundary layer gas and the center cylinder gas is both heated, or cooled, by the wall. In addition, during 
compression of the gas, its atomic density near the wall is greater than that in the center and vice versa when the 
gas is in expansion. Finally, the working fluid in Stirling machines undergoes non-simultaneous variations in pressure 
and temperature during the cycle.  In general, from a theoretical point of view, fins are added at the inner walls to 
increase the surface exchange between the gas and the wall as illustrated in Figure 5-38. But, physically, the 
integration of fins in micrometric chambers can cause a problem of flow of the oscillating gas by increasing friction. 
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From a technologically point of view, microfabrication of these blades can be a complicated operation resulting in 
the increase of dead spaces that can kill the operation of the miniature machine. 

 

Figure 5-38: Problem of heat exchange between fluid and chamber; grids difficult to integrate 

The thermal regenerator is between the hot and cold heat exchangers (cf. Figure 5-39). In conventional machines, 
it often has either a porous matrix or an assembly of small gratings of thin metal fabric, plates or balls, within which 
the working gas flows alternately.  

 
a) b) 

Figure 5-39: a) various structures of grids for regenerator. b) Coiled or plate stacks for regenerator matrix [95]. 

Theoretically during the thermodynamic cycle of the motor, when the gas returns to the hot chamber, it receives 
heat from the porous material of the regenerator. On the other hand, when it returns to the cold part, the gas 
supplies heat to the porous material. According to Reader and Hooper, a Stirling motor without regenerator should 
absorb up to five times more heat at the hot source to achieve the same performance as if it had a regenerator 
[13]. Consequently, the amount of cooling will be considerably affected.   

The coefficient of pressure loss according to various experimental and numerical studies ( [95]- [95]) can be put 
under the following general expression Table 5-12: 

𝐶𝑓
′ =

𝑎

𝑅𝑒
+ 𝑏𝑅𝑒𝑐 

 

𝑅𝑒 =
𝑈𝑑ℎ

𝑣
 

 

𝑅𝑒𝜔 =
𝜔𝑑ℎ

2

𝑣
 

In this equation, the Reynolds number 𝑅𝑒 is based on the maximum value of the velocity in the channel. When 
considering the alternation of the flow, the Reynold number in alternating flow is defined by 𝑅𝑒𝜔 equation [106]: 

Flow  
Geometry of the 

channels 
a  b  c  Media Comments  

Oscillating  

  

Fabrics 129  2.91  -0.103  Porous     

Random fibers 192  4.53  -0.067  

Stacking spheres 79 ε-0,6 1.1 ε-0,6 0  

  

  

Rectangular 
sections 

 64b’  0  0  𝑅𝑒𝜔 ≤ 277.6  

64b′(
𝑅𝑒

277.6
)

1/2

 

b’=1.47-1.48d 

+0.92d2   

0  0    

  

 𝑅𝑒𝜔 > 277.6   

Circular sections 64      Laminar flow 
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Parallel plans 96      

Permanent  

𝑅𝑒 =
𝑈𝑑ℎ

𝑣
  

Circular sections 64  0  0    

Non 

porous  

  

Laminar flow 
developed 

Flat plates 96  0  0  

Square sections 57  0  0  

Table 5-13: Relationships concerning the coefficient of pressure drop 𝐶𝑓
′ ( [106] ). The parameter d  is the smallest ratio of 

the sides of the rectangle.  

Kahaleras et al. have studied experimentally the dynamic operation of a metal regenerator (in isothermal condition 
and axial temperature gradient) crossed by air in alternating flow [119] From their dynamic and nonstationary 
measurements of the pressure, velocity and temperature of the gas at the ends and inside the regenerator 
channels, they were able to establish a semi-empirical expression of the pressure drop coefficient. This regenerator 
(porosity rate ε = 35%), made from a rapid prototyping technique using laser melting of metal powder, consists of 
a porous matrix made of 316L stainless steel with a total length Ltot = 80 mm and an external diameter Dext = 9.5 
mm constructed on the basis of linear channels with square sections of hydraulic diameters dh = 0.5 mm as 
illustrated in Figure 5-40 a). The Figure 5-40b) shows the different measuring points and  

 

a) 

b) 
 

 

Figure 5-40: Transverse section of a regenerator with implantation of micro thermocouples (Ltot = 80 mm, Dext = 9.5 mm). The 
temperature sensors are micro thermocouples of type K (Chromel-Alumel) of diameter = 12.7 μm (measurement uncertainty 

≤ 0.1 °C, cut-off frequency fc ≈ 30 Hz in forced convection). b) Measurement diagrams with details of instantaneous 

quantities measured on the test bench (pressures P, local velocities V and temperatures T) [106]. 

1.2.  Permanent Vs Alternate flows 
Kahaleras tests of alternate flows were carried out in the frequency band 0 <f <15 Hz, the inertia of the sensors is 
then negligible (f <f c). The wall gas pressure (Kulite XT190 sensor), the speed (TSI 1201 hot wire probe) and the 
fluid temperature at the center of the tube are measured at the inlet and outlet of the regenerator. A temperature 
gradient (0 <∆𝑇<90 ° C) is maintained along the regenerator by a "hot" exchanger and a "cold" exchanger placed at 
each end of the regenerator. From these instantaneous measurements (pressures, temperatures and speeds) at 
both ends of the regenerator and the gas temperatures at three equidistant points within the regenerator, the 
dynamic characteristics of the regenerator are determined. 

1.2.1. Permanent Flow 

The regenerator, in constant isothermal flow (∆𝑇 = 0°𝐶), is subjected to a flow of air at ambient temperature (T 
amb = 24 ° C) and under an absolute feed pressure upstream of the regenerator (Palim = 2 bar) . Figure 5-41 d) is 

the steady state pressure drop curve. It shows a classical behavior of the form: ∆𝑃 = 𝐾𝑄𝑚
2 

1.2.2. Alternate flow at ∆𝑻 = 𝟎°𝑪 

The alternate isothermal flow is achieved by a pneumatic cylinder whose swept volume allows to cross the entire 
gas through the regenerator. The absolute supply pressure of the bench is Palim = 2 bar during the tests, and the 
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atmospheric pressure is Patm = 0.987bar. The effects of fluid compressibility were neglected for a temperature 
gradient of zero, since the average temperature of the gas recorded during the tests did not vary and Te = Ts = 
24.5°C. 

a) 

b) 

c) 

 

d) 

Figure 5-41: At f = 6 Hz, ∆T = 0°C: a) Instantaneous pressures at both ends of the regenerator depending on the angle of 
rotation. b) Regenerator linear pressure loss. c) Instantaneous speeds at both ends of the regenerator according to the angle 

of rotation. d) Linear charge loss (∆P/L) of the regenerator as a function of the mass flow rate Qm (Palim = 2 bar) in steady 
state conditions [106].  

Figure 5-41 a) shows the pressure variations as a function of the rotation angle of the drive motor of the cylinder 
(360 ° corresponding to a round trip, for a rotation frequency of 6 Hz) and in an operating mode in steady state. In 
the "go" phase (0° < φ <180 °), at the inlet of the regenerator, the pressure Pe increases, while at the same time, 
due to the pressure drop, the pressure Ps, at the outlet, decreases almost symmetrically. In "return" phase (180° < 
φ < 360°), the phenomenon observed in the "go" phase is reversed. Thus, the linear pressure drop (represented in 
Figure 5-41 b) shows a maximum value for a rotation angle of φ= 180° corresponding to the half-cycle period for 
which the volume of gas has been swept by the piston. The gas velocities Ve and Vs (cf. Figure 5-41 c) also have 
reversed gaits. At φ= 180°, they decrease strongly when ∆𝑃/𝐿 tends towards its maximum value. The maximum 
speeds (for φ = 90 ° and 270 °) are 90° out of phase with the maximum linear pressure drop (at φ = 180°). 

The pressure drop curves in the case of permanent flow (Figure 5-41 d) ) and in the oscillating case (Figure 5-41 b) 
show that these two phenomena are completely different. This is explained by the fact that in alternating flow 
velocities and pressures vary over time, which is not the case in permanent flow. The analysis of these curves shows 
that the maximum pressure drop amplitude for φ=180° is 750 Pa/mm (Figure 5-41 b). 

1.2.3. Alternate flow at ∆𝑻 = 40 ° C 

In alternating flow, when the regenerator is subjected to a temperature gradient (∆𝑇 = 40°C) at its extremities, the 
observed effect is an increase in the amplitude of the pressures at its ends ( cf. Figure 5-42 a) as well as the linear 
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pressure drop (Figure 5-42 b). The maximum linear pressure drop increases by 80% due to the increase of the 
temperature gradient (from 0 to 40 ° C) to φ= 180 ° and ∆𝑃/Lmax = 1350 Pa / mm). Velocities Ve and Vs also increase 
(Figure 5-42 c) compared to the isothermal case (Figure 5-41 c).  The speed Vs on the cold side is higher than that 
Ve on the warm side, because the viscosity forces have increased with temperature.  The analysis of Figure 5-42 d) 
shows that the temperatures of the gas at the heart of the regenerator have maximum values for φ = 180°, 
corresponding to the point of maximum pressure and minimum speeds. This effect is more marked on the hot side 
(TR1) than on the cold side (TR5). In this same figure, the temperature increase of 20°C with respect to the inlet 
temperature for φ = 0° (TR1max = 81°C, TR1 = 60°C) can be linked to the compressibility of the gas. 

a) b) 

c) 
d) 

Figure 5-42: At f = 6 Hz, DT = 40 ° C: a) Instantaneous pressures at both ends of the regenerator according to the angle of 
rotation. b) Linear charge loss of the regenerator. c) Instantaneous speeds at both ends of the regenerator according to the 

angle of rotation. d) Instantaneous temperature of the fluid within the regenerator [106]. 

The central temperature TR3 (TR3max = 50 ° C for φ= 180 °) is less affected by the compressibility of the gas; in 
addition, at this point of the regenerator, part of the heat has been transferred to the solid matrix. The temperature 
TR5 = 22.4°C is almost constant over a period. This shows the efficiency of the cold exchanger to cool the cold zone 
of the regenerator. In sum, the regenerator in oscillating flow condition, undergoes changes in internal 
temperatures over time at each location. Therefore, the temperature of the gas in a regenerator cannot, therefore, 
be represented by a linear expression as is often the case in the literature. 

1.3.  Oscillating flow pressure drop coefficient  
The expression of the pressure drop coefficient is deduced from the expressions in Table 5-14. The Reynolds 
number in alternating flow 𝑅𝑒𝜔 will be in the range 0.1 < 𝑅𝑒𝜔 <1.53 for the frequency range 1 < f <15 Hz since the 
oscillating flow takes place in a porous medium consisting of square section channels, side d equal to the hydraulic 
diameter dh = 0.5 mm. In this configuration, 𝑅𝑒𝜔 will always be lower than the value 277.6 (Table 5-15) and the 
Reynolds number Re will be determined on the maximum value of the velocity within a channel of hydraulic 
diameter dh = 0.5 mm as follow. 

𝐶𝑓𝜔
′ =

94

𝑅𝑒
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With 𝑎 = 64𝑏′; 𝑏′ = 1.47 − 1.48𝑑 + 0.92𝑑2; 𝑎 = 0.5𝑚𝑚 ; 𝑏 = 0 ; 𝑐 = 0. 

 

The maximum velocity of the fluid in the cross-section at the inlet of the regenerator is calculated according to 
formula [108]:  

𝑢𝑚𝑎𝑥 =
2𝜋𝑉𝑝𝑖𝑠𝑡𝑁𝑝𝑖𝑠𝑡

30𝐴𝑟𝑒𝑔
 

 
with 𝑉𝑝𝑖𝑠𝑡 the volume swept by the piston, 𝑁𝑝𝑖𝑠𝑡  the piston speed, 𝐴𝑟𝑒𝑔 the cross-section of the regenerator. Tanaka 

et al. [120] proposed a correlation for the pressure drop coefficient as a function of maximum Reynolds number for 
10 ≤ 𝑅𝑒𝜔 ≤  1000: 

𝐶𝑓 =
175

𝑅𝑒𝑚𝑎𝑥
+ 1.60 

The authors concluded that the choice of the hydraulic diameter 𝐷ℎ as reference length for the calculation of the 
Reynolds number and the pressure drop coefficient, ensures the validity of the correlation for different forms and 
materials of regenerators. They also show that the coefficient of pressure loss in oscillating flow is greater than the 
coefficient of pressure loss in unidirectional continuous flow [[].  

The instantaneous displacement of an incompressible fluid for an alternating flow in a regenerator (of woven metal 
filaments) can be expressed by [106]: 

𝑥𝑝 =
(𝑥𝑚𝑎𝑥)𝑝

2
(1 − cos(𝜔𝑡)) 

where (𝑥𝑚𝑎𝑥)𝑝 is the maximum displacement of fluid in the regenerator with: 

(𝑥𝑚𝑎𝑥)𝑝 =
𝑥𝑚𝑎𝑥

𝜀
=

𝑉𝑝𝑖𝑠𝑡

𝜀 𝐴𝑟𝑒𝑔
 

For the maximum loss of load coefficient, they propose the relationship: 

𝐶𝑓𝑚𝑎𝑥
=

1

𝐴𝐷ℎ

[
403.2

𝑅𝑒𝜔
+ 1789.1] 

The authors then deduce a correlation of the average pressure loss coefficient in the form: 

𝐶𝑓𝑎𝑣
=

1

𝐴𝐷ℎ

[
247.3

𝑅𝑒𝜔
+ 1003.6] 

With 0.001 ≤ 𝑅𝑒𝜔 ≤  0.13 ; 614.73 ≤ 𝐴𝐷ℎ
≤  2827.56 and 𝑃𝑟 = 0.71 

According to them, the loss of charge increases with the Reynolds number frequency 𝑅𝑒𝜔 and the adimensional 
displacement of the fluid 𝐴𝐷ℎ

. Their study also shows that the coefficient of pressure drop in alternating flow is 4 

to 6 times greater than that of the permanent unidirectional flow. Their experimental results have also 
demonstrated for a Reynolds number frequency 𝑅𝑒𝜔 = 0.055, the existence of a phase shift of 24 ° between the 
pressure drop and the speed and that this phase shift strongly depends on the frequency Reynolds number 𝑅𝑒𝜔 
and slightly the adimensional displacement of the fluid 𝐴𝐷ℎ

. Isshiki et al. [272] show that, for a Womersley number 

𝑊0 = 1.2, the ratio between the alternating and continuous flow friction factor is close to 1, then it grows rapidly 
with the Womersley number, and reaches 4.1 for a Womersley number 𝑊0 = 5. In addition, the phase difference 
between the pressure drop and the fluid speed tends to 72 ° for a Womersley number 𝑊0 = 5. For low Womersley 
numbers (𝑊0 < 1), they find that the viscous force is dominant and represents almost the entire total pressure 
drop. On the other hand, for Womersley numbers greater than 1, the influence of the inertia force is significant and 
reaches 76% of the total pressure drop for a Womersely number equal to 5. 
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Otherwise, the ability to accurately predict pressure drop and heat transfer rates in a regenerator is of paramount 
importance for the optimal design of a Stirling micromotor or a Stirling micro chiller. The most common correlation 
equation used in designing a regenerator to estimate pressure drop is given by Tong and London [227], who, on the 
basis of continuous flow through stacked screens, were able to obtain data. All correlation equations obtained on 
stacked screens are expressed in terms of the Reynolds number in the steady flow case. For instance, Miyabe et al. 
in their study of pressure drop through a stack of woven screens, obtained the following equation of correlation of 
a steady flow [273]:  

𝑓𝑠𝑡 =

∆𝑝𝑠𝑡
𝑛

1
2

𝜌(𝑢𝑠𝑡)𝑝
2

=
33.6

𝑅𝑒𝛽
+ 0.337 

𝑅𝑒𝛽 =
(𝑢𝑠𝑡)𝑝𝛽

𝜐
 

where   ∆𝑝𝑠𝑡 represents the   steady   flow   pressure drop, n, the number of screens   packed   in the column,  (𝑢𝑠𝑡)𝑝 

is the cross-sectional mean   flow velocity in the packed column, 𝛽 characterize the distance between meshes and 
Re is the Reynolds number. Correlation equations based on a steady flow was apparently not suitable to predict 
correctly the pressure drop in a regenerator since Stirling-cycle machines operates under periodically reversing gas 
flow conditions. For example, Martini and Rix have found that to obtain a good agreement between the pressure 
drop simulation and the experimental measurements, the friction coefficient supplied by Tong and London must 
be arbitrarily adjusted from a constant value of 3 to 5. 
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APPENDIX D: MEMS MANUFACTURING TECHNIQUES 

At FEMTO-ST Institute, we have a clean room called "MIMENTO" dedicated to the manufacture of microsystems. 

1.1.  Use of MEMS technologies: environment, materials used and limitations 
Silicon is the most commonly used structuring material because of its well-known properties and well-developed 
manufacturing tools. The fabrication of a MEMS prototype in a clean room occurs by first patterning a substrate (a 
silicon wafer for example) by lithography and then depositing or removing material from it. Often, many of these 
steps are repeated to create ‘features’ on the substrate. Sometimes it is then necessary to assemble several 
substrates to produce the final product or for encapsulation to protect a device against the aggression of the 
environment (to increase its lifetime). The clean room manufacturing assembling techniques used in our work are 
presented in detail here.  

There are two types of micromachining identified, surface and bulk, and they are defined by  whether the material 
is deposited onto the wafer (substrate) surface or three-dimensional features are etched into the bulk of the wafer. 
Often, many modern MEMS features incorporate both surface and bulk micro-machining into their processing. In 
fact, surface micro-machining is commonly used for static and thermoelectric systems fabrication whereas bulk 
micromachining techniques are more applicable for thermomechanical systems. The term "thermo-mechanical" is 
used here to describe systems that transform thermal energy through mechanical means. 

1.2.  The clean room environment 
Microfabrication is carried out in a “clean room” that is an extremely clean and maintained environment. Before 
describing what is a clean room, note that a dust seed has a micrometer size and tend to adsorb on surfaces. 
Therefore, their presence in a microfluidic canal for example, because of their size causes problem. This is one of 
the reasons that we work in clean rooms. Because of this, the classification The quality of the clean room, in term 
of cleanliness, is based on the number of dust particles whose size is less than 4 μm, contained in a volume equal 
to one inch-cube (i.e. 2.54 cm3). For the microfabrication of MEMS, we find the clean rooms whose class goes from 
1000 to 10000 and for microelectronics (microprocessors fabrication spaces), the quality level is higher and varies 
from 10 to 1. A clean room is defined as an environment regulated in light (white and yellow in general), in 
temperature (around 20°C), in hygrometry and permanently crossed by filtered air streams allowing the 
uninterrupted elimination of dust and gases that inevitably enter the workspace due to human presence and 
chemical processes. However, to preserve the cleanliness of the room for a class of 1000 to 10000, the users of the 
room should wear specialized clothing, cover hair and put on gloves and shoe-covers. While these precautions are 
not necessary for rooms of higher classes (i.e. less ‘clean’). 

Note that in clean rooms, equipment cannot structure all materials. In general, only silicon and glass are used as 
basic materials to be structured.   

1.4.  MEMS scales 
When one makes a device whose geometric dimensions (length, width or thickness) is a fraction of a micron up to 
the millimeter, one is in the field of microfabrication. However, if it has a nanometer value, the nanomanipulation 
techniques apply, including the so-called bottom-up approach. We will not tackle this vast subject here, and will 
limit ourselves only to micrometric scales and the associated fabrication methods. The microfabrication 
technologies can be divided into two categories: silicon technologies and “soft” technologies, which use materials 
like elastomers or plastics. 

1.5.  Basic material in clean room 
Basic materials in MEMS technology are divided into two classes according to their stiffness as follows:
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1.5.1. Hard technologies  

Silicon and glass or hard technologies is a very mature technology. Silicon is an available material with very 
documented properties (crystallographic orientations for example) and whose integration with electronic circuits 
is easy (cf. [108]) . Silicon is delivered in the form of wafers (cf. [108] b) that constitute without defects almost a 
monocrystal. Working with silicon is advantageous because it allows taking advantage of existing sophisticated 
knowledge and equipments. This material has very interesting physicochemical characteristics. 

The silicon can be doped to change its electrical conductivity otherwise it is an insulator at room temperature. 

Silicon is a good thermal conductor comparable to a metal with low thermal expansion. For example, at 300 K, the 
coefficient of expansion is 2.33 10-6 (K-1) which is comparable to that of glass, this coefficient decreases with 
temperature and becomes negative at the temperature of 100 K. 

The native oxide of silicon, which is called silica, adheres well to the substrate, has a very good thermal stability, 
excellent resistance to certain important reactive elements of etching and is not soluble in water. In other words, 
silica is very interesting as a mask for dry and wet etching.  

There are 3 and 6-inch silicon wafer sizes used in microfabrication and 8 and 12-inch wafers for microelectronics. 
On the other hand, these wafers have a standard thickness of 500 μm.  

There are also wafers SOI (silicon on insulator) which are composed of three layers including two in silicon and one 
in silicon oxide, which make it easier to achieve several devices including those involving sacrificial layers such as 
beams for example. 

 

Properties Values Units 

Rupture strength  7 GPa 

Young’s modulus 190 GPa 

Density 2.33 g/cm3 

Thermal conductivity 2.33 W/cm.K 

Electrical resistivity 2.3 105 Ω.cm 

Thermal diffusivity 0.9 cm2/s 

Specific heat (at constant pressure) 0.7 J/g.K 

Fusion temperature  1415  K 

Table 5-16: Physical properties of monocrystalline silicon wafers [108]. 

Silicon is an ordered crystal in the minimum energy state, while glasses are not ordered and not stable systems. 
However, silicon and glass wafers are fragile material that have not a plastic zone. This signifies that, beyond the 
elastic deformation zone, is the mechanical rupture zone, corresponding to a limit of 7 GPa (a maximal strain of 
about 3.5%) [108]. 

  
Figure 5-43: a) Standard glass wafer 4 inch thickness 500 µm. b) Standard 4  inch (10cm of diameter) silicon wafer 500 µm 

thick. 

Glass wafers (cf. 2.11a) are also used in clean rooms. Taking into account that many microstructures are often 
created on wafers by ultrasonic drilling or a combination of photolithography and dry or wet etching. Among the 
most efficient and used glass materials, BOROFLOAT 33 glass wafers (BF33) stand out for their mechanical 
resistance and stability during these processes. Among the many characteristics of BF33 glass wafers are: 
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• their adaptation for anodic bonding (silicon + glass), particularly because of their low coefficient of linear 
thermal expansion close to that of silicon, a good flatness and their stability in the face of sudden 
temperature rise without breaking or deforming, 

• their resistance to acids, alkalis and organic substances, because during chemical etching based on masks, 
an aggressive mixture of corrosive chemicals are applied in order to create high definition channels with 
controlled depths, 

• exceptionally high UV transmission and light transparency, 

• Excellent mechanical strength, 

• High chemical durability. 

 

 

 

 

 

 

Table 5-17: Properties of BOROFLOAT 33 glass wafers. Extracted from 
https://www.schott.com/borofloat/english/download/index.html 

 

 

 

 

 

 

 

 

 

 

 

 

* According to ISO 7991 

1.5.2. Soft technologies  

 Plastics, polymers and elastomers or soft technologies are an evolving area. Note that plastics have the 
advantage of being, in general, 100 times cheaper than silicon. Moreover, their time of prototyping and cost of 
manufacturing is lower. Some polymer materials allow the development of a microfluidic circuit in just a few 
minutes by using an in-situ polymerization [108] and their aspect like surface effects, transparency, diversity of 
materials are native. While silicon-based technologies, require times typically about one week. They are also very 
interesting materials for observation because of their transparency, which is also very useful in the field of 
microfluidics. Elastomers are often used when a very flexible component is needed for example an actuation 
membrane, a pneumatic system or for thermomechanical systems based on fluid expansion. The term "plastic 

Thermal properties Values 

Coefficient of      
Linear Thermal Expansion (C.T.E.) α (20 - 300 °C)  

 3.25 x 10-6 K-1 * 

Specific heat capacity cp (20 - 100 °C)  0.83 kJ/(kg·K) 

Thermal conductivity λ (90 °C)  1.2 W/(m·K) 

Maximum operating temperatures Values 

Maximum Operating Temperature 
For short-term usage   (< 10 h)  

500 °C 

For long-term usage   (≥ 10 h)  450 °C 

Mechanical properties Values 

Density ρ (25 °C)  2.23 g/cm3 

Young’s Modulus Ε    64 kN/mm2 

Poisson’s Ratio µ  0.2 

Bending Strength σ 25 MPa  

 
Material 

Critical forces 

Mean value  FC [mN] Stadev.* [mN]  

BOROFLOAT® 33    363.8         4.3  

Other borosilicate glass  271.2         1.9 

Soda-lime flat glass   214.4         4.6 

https://www.schott.com/borofloat/english/download/index.html
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MEMS" is also widely used when working with elastomers (like PDMS) or plastic (like PMMA).  “Plastic MEMS” 
occupy a domain between 0.5 and 500 µm in size of microfabrication of devices [108].  

 
Figure 5-44: Scale and different types of microtechnologies  [108]. 

 

These particular MEMS are made, depending on the materials, from the direct method (for example by laser 
ablation) or replication implying the use of a mold to be built first (as is the case with the PDMS). All these 
techniques result from an intelligent adaptation of techniques well mastered in the field of plastics. 

1.6.  Photolithography method 
Lithography technique is the transfer of a master pattern or design feature to the working substrate. There are 
several types of lithography classified according to the combination of material and energy used to transfer the 
pattern on the substrate. The choice of the type of lithography to use depends on the resolution or the size of the 
smallest desired pattern. There are two major types of lithography, electronic lithography using an electron beam 
as structuring energy and photolithography based on light beam (generally UV between 300 and 400 nm). In our 
work, we used this last technique, which resolution is between 0.13 µm linewidth to 5µm. 

In conventional photolithography, the working substrate is initially coated with a light sensitive chemical material 
called photoresist. The photoresist layer is then patterned by exposure to UV light through a pattern mask and 
reducing or enlarging optics of a dedicated equipment. A mask is a master image of the desired pattern made on a 
quartz plate by chromium deposit forming the patterns with submicron precision. The photoresist is deposited on 
the substrate using a spin-coater rotating at a speed between 1000 and 10000 rev / min. Indeed, it is a drop which 
is deposited in the center of the substrate then the substrate is rotated. The thickness (h) of photoresist obtained 
is uniform to about ten nanometers. Knowing the characteristics of the photoresist (c and μ) and the characteristic 
of the spinner one can find the speed of rotation to use to obtain the desired thickness with the following equation 
[108]. 

ℎ = 𝑘. 𝑐(
µ

𝜔2)1/3         

           
   (2.41) 

k is a constant characteristic of the spin, c is the initial concentration of the photoresist in the solution, μ is its 

viscosity and  is the speed of rotation of the spin.  

The photosensitive resist has a non-Newtonian flow and its viscosity increases over time due to the evaporation of 
the solvent it contains. This evaporation occurs during the stretching because the surface-to-volume ratio increases 
considerably, which promotes evaporation, so the resist concentration increases favoring the initiation of the 
polymerization process. Thus at the end of this process, the film no longer has a liquid structure but rather that of 
glass. As the thickness of the resin increases, the accuracy of the pattern decreases as the penetration and 
homogeneity of the luminous flux during the exposure decreases. Therefore, the thin deposits are preferred, but 
depend on the selectivity of the etching technique that will follow. After spreading, the resist typically still contains 
15% of solvent, which must be evacuated to avoid cracks once the film has completely polymerized. The film is 
slightly heated (around 100 °C for a few minutes) to evaporate the rest of the solvent before the next step, which 
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is insolation. During this insolation step, the luminous flux initiates physicochemical reactions involving a 
modification (weakening or strengthening of the chemical bonds) of the solubility of the resist relative to certain 
liquid solvents called developers. Depending on the type of resin, this step does not bring about the same effects.  

For a so-called positive resist, it will cause a rupture or weakening of the covalent internal bonds by causing a 
rearrangement of the latter in a soluble form in a specific solution. For a so-called negative resist, there will be on 
the contrary a formation of covalent bonds between main or secondary chain, making them insoluble in a specific 
developer. Negative resists adhere better to the substrate and are more chemically resistant, while positive resists 
have the advantage of having higher photosensitivity contrast. Then a development process allows for the removal 
of UV exposed areas of the substrate generating the desired pattern on the substrate in the case of positive resist. 
While in the case of a negative resist, this action will dissolve the parts not exposed to UV. It is obvious that the 
microfabricated object will not have a geometric precision superior to that of the mask used. Masks are often made 
using electron beams lithography technique, which will not be described here. 

Subsequent surface or bulk micromachining (etching or depositing) then will defines a feature directly on the 
surface or in the volume of the substrate. Depending on the complexity of the desired feature, this lithography and 
micromachining process is repeated until the desired structure is fabricated. Feature resolution on the substrate 
depends on the wavelength of light used during the exposure. Currently, deep UV lamps exist with research 
oriented towards the use of extreme UV. 

Note that technologies based on lithography, etching and deposition techniques can be applied in the range of 
scales between 0.2 and 500 micrometers. These are called the “hard” technologies, because they use hard materials 
such as glass or silicon.  The combination of these three techniques makes it possible to obtain complex microfluidic 
devices that are open or closed, containing sputtered or evaporated electrodes allowing electrical access to the 
exterior. 

1.7.  Thin film Deposition techniques onto silicon and glass 

There is a variety of deposition techniques that make it possible to deposit metals, insulators, polymers 
and even proteins on a substrate. These techniques are classified in two categories: 

Physical vapor deposition (PVD). In this technique, the substrate is put into contact with a gas containing species, 
certain species in the gas adsorb on the substrate, forming a layer that constitutes the deposit. There is two types 
of PVD thin film deposition. There is thermal evaporation and deposition by sputtering.  

In the case of thermal evaporation, the solid material to be deposited is placed in a chamber maintained at low 
pressure of the order of 10-8 Torr. Then, the system is heated to high temperature the material is then sublimed 
and produces a flux of atoms that adsorbs on the surface of the target. But the concern is that if the chamber was 
not at high pressure the deposit of the desired material will take place simultaneously with other molecules 
contained in the chamber. In addition, the deposition rates are not very high (a few Å per second), and the method 
is mainly reserved for metal deposits.  

Regarding sputtering, the materials to be deposited is placed on the cathode and the substrate is placed on the 
anode. The system is then placed in a cold plasma. The cathode is then subjected to a high energy particle flux (of 
the order of 0.3 to 2 keV) which produces an ejection of material deposited on the substrate due to the electric 
polarization. Good adhesion between the layer and the substrate is achieved because the energetic ions collect at 
the target and penetrate one or two of the first molecular layers of the substrate. 

Chemical vapor deposition CVD. In this case, species in contact with the substrate surface react, forming 
components that are chemically bonded to the surface. In the case of CVD, after the substrate is brought into 
contact with a gas containing reactive species. There are two reactions that can occur: 

• the reaction occurs in the gas and the products of the reaction are adsorbed on the surface of the substrate 
resulting in a homogeneous reaction; 

• the reaction takes place directly on the surface of the substrate, resulting in a heterogeneous reaction. 

Note that most CVD deposition equipment is based on heterogeneous reactions, since the adhesion of the 
produced film is superior compared to that of the homogeneous case. However, the evaporation of a material on 
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a substrate containing a pre-existing relief does not necessarily lead to layers of uniform thickness. The deposit may 
result in a compliant or non-compliant layer (cf.  [108] a): 

- In the case where the deposit is compliant, the deposited film has a constant thickness at all points of the surface 
substrate. 

- Non-compliant deposit: in this case, the deposited film does not have a constant thickness and has rolls and 
crevices. 

And in the case of physical deposit, to obtain a consistent deposit, the incident particles must be sufficiently 
energetic to diffuse towards the target surface before forming chemical bonds. 

a) Conformal 

deposit  

 

b) non conformal deposit  

Isotropic wet etching 

using EDP  

c) 

anisotropic wet 

etching using KOH  

d)  

                                                               

  
 

 
e) 

Figure 5-45:  a) and b) Conformal and non-conformal deposition. c) Isotropic wet etching using EDP and d) anisotropic wet 
etching using KOH lead to rounded or faceted forms, respectively (From [108]).  e) Different types of dry etching for silicon 

(from left to right): physical, chemical, physico-chemical, and physico-chemical with inhibitor 

1.8.  Etching techniques of silicon and glass 
There are two types of etching in the clean room: isotropic and anisotropic 

− In the case of an isotropic etching (cf.  [108] b), the etching takes place in the three directions of the material 
with the same speed. For example, with this method, one can create spherical cavities in silicon and glass. 

− On the contrary, an anisotropic etching (cf. [108] b) is an etching, which is carried out preferentially along 
certain crystalline planes of the material. With this technique, trapezoidal cavities bringing out the planes (111) 
are produced in silicon. Note that since the glass is not a crystal (i.e. amorphous solid) this type of etching is 
excluded.  

To etch materials in a clean room, the two commonly used methods are:  

1.8.1.a.  Wet etching  

Wet etching is based on liquid chemicals. However, the combinations of the chemicals differ according to whether 
it is desired to carry out an isotropic or anisotropic etching and also according to the material to be etched. 
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 Wet anisotropic silicon etching: facets (111) are produced using KOH in basic medium. It makes it possible to make 
cavities of flat surfaces, wells or canals with flat walls, but of trapezoidal section. The etching rate increases with 
temperature and is not the same for different crystallographic orientations. For example, the etching speed 
according to the plans (111) is slow of the order of 13 microns / hour while it is fast in the other planes. It can be 
deduced that a silicon crystal immersed in the chemical solution KOH will spontaneously reveal cut-out shapes 
according to the planes where the etching rate is the slowest (i.e. the dense planes), i.e. the planes (111). Moreover, 
the surface state is atomically smooth formed of terraces. Note, however, that with KOH, hydrogen bubble (H2) 
production will introduce fluctuations in the local concentration of chemical reagents in the solution. This 
phenomenon leads to inhomogeneities in etch rates leading to rough surface conditions. To avoid this, as the 
production of H2 bubbles increases with temperature, the KOH solution must be maintained at moderately high 
temperatures and stir the solution. In practice, in a well-controlled standard process, the surfaces have a local 
roughness of around 20 nm [108]. 

Isotropic wet etching of silicon and glass: Hydrofluoric acid (HF) makes it possible to create spherical cavities in the 
glass, whereas in the case of silicon, it is an EDP solution that is used. For the latter material, the acid product 
generally used is HNA, which is a mixture of HF, HNO3 and CH3COOH at room temperature. In general, an accuracy 
of about 10% is obtained on the depth. In practice, the mask is also etched chemically by the solution of the order 
of a few percent of that of the etching of the substrate material. For example, the silica, which is often used as a 
mask in the case of the HNA solution, is attacked by the latter, but at a speed 80 times lower than that of silicon. 
Another problematic phenomenon is that the chemical reagents of the solution not only etch in volume under the 
exposed parts (i.e. intentionally not protected by the mask), but also under the mask. Therefore, one finds oneself 
at the end of the engraving with larger diameter cavities than what was provided on the mask [108]. 

1.8.1.b.  Dry etching of silicon 

The dry etching can be categorized in 4 types that are obtained by playing on the nature of the etching plasma 
containing the ions as illustrated in figure 2.13c). In this type of etching, it is the attack of a substrate by an ionic 
species contained in a gas phase or plasma. Depending on the type of etching conditions, the shapes obtained may 
be isotropic or anisotropic. Note that this anisotropy is controlled by the system and not by the crystalline structure 
of the substrate material to be etched. For example, one can, thanks to that, etching channels with right angles in 
glass. The 4 types of dry etching are organized as follows: 

Physical etching or sputtering of the material to be etched: ions are accelerated by an electric field (of the order of 
10 to 5 keV) and bombard the unprotected surface of the substrate. This results in an etching effect produced by 
the physical action of the incident ion flux. This type of etching is anisotropic and not very selective. At low ion 
beam etching (IBE), the etching rate is in the range of 0.6 to 18 μm.h-1. 

Chemical etching: In the case of chemical etching, chemical species subjected to an electric field in a pressurized 
chamber (about 10-1 to 1 Torr), migrate to the surface of the substrate and develop chemical reactions, producing 
volatiles species. The etching rates are of the order of a few micrometers per minute and a surface roughness of 
the order of one micrometer. It is an isotropic etching that occurs in this case. 

Physico-chemical etching: In this type of etching, which is the most common in the field of microfabrication, the 
two actions (physical and chemical etchings) are combined. It is a reactive ion etching (RIE) in an RF (Radio 
Frequency) plasma that increases the temperature. It is carried out by removal of material by bombarding the 
surface of the sample with active ions and by chemical reaction of reactive species in the plasma. The etching rates 
are of the order of 0.1 μm.min-1. It is a technique often used to etch not only the silicon, but also its oxide coated 
with a photoresist mask, this allows to transfer the pattern of the resin mask to the silica to be used in turn as a 
mask for a wet etching. 

Physico-chemical etching with inhibitor or DRIE: The difference with simple physicochemical etching is the use of 
a protective layer along the sides of the etched cavities while the bottom is attacked chemically and physically by 
the reactive species and plasma ions. This type of engraving makes it possible to produce geometries with a high 
aspect ratio. We then speak of deep reactive ion etching DRIE or ionic etching with inhibitor and it now requires 
specific equipment for MEMS that can achieve it. This technique makes it possible to obtain very deep engravings 
of more than 500 μm with aspect ratios exceeding 100:1. It also makes it possible to perform in-depth complex 
shapes that are not based on the crystallographic planes of the substrate material.  This technique requires the 
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creation of a cold plasma that makes it possible to produce reactive species from a gas that is not spontaneously 
reactive with silicon. This is the case for example CF4-based plasma, this compound alone does not attack the silicon, 
but the CF3

+, CF3 and F ions formed in its plasma, are reactive with respect to silicon. This makes it possible to reduce 
the roughness. With respect to the etching mechanism of the DRIE, the chemical reactions at the surface of the 
substrate create nonvolatile compounds, which are subject to the action of the ion flux, are ejected out of the 
exposed surfaces. These ions adsorb to adjacent vertical surfaces and form a polymerized protective film. This 
subtle process enhances the anisotropic effect of etching. In an RIE process, an inhibitory film is formed with 
plasmas produced from CCl4 and CF2.(2Cl2) compounds. This phenomenon, coupled with plasma energy sources 
called Ion Plasma Coupling (ICP), gives rise to very deep etchings that can cross the thickness of the standard 1mm 
silicon wafer with a fast speed of the order of 10 μm / min. It is also called a BOSCH process that alternates a silicon 
etching phase (SF6 Sulfur Hexafluoride) and a deposition phase (or passivation) producing a layer very close to 
Teflon due to the decomposition of C4F8. The passivation of the flanks of the etching makes it possible to preserve 
the anisotropy. 

 

1.9.  Bonding techniques 
Bonding techniques are critical steps in fabrication and assembly of MEMS devices. Bonding techniques can be 
briefly classified into two major categories—direct bonding and bonding with an intermediate layer. 

1. Direct Bonding = Anodic bonding, fusion bonding, and activated surface bonding 

− Anodic bonding : cleaned extensively, aligned, and brought into pressure contact. High voltage ( kV) and high 
temperature cause an irreversible bond to form between the substrates. for bonding glass or glass coated 
substrates with silicon and nitride substrates. 

− Fusion bonding :  the attractive forces that exist between extremely clean flat surfaces in contact to form a 
strong bond between them. the alignment and bonding process is usually performed under vacuum with 
external pressures to help form good contact. followed by a thermal cycling process to strengthen the bond. 
for bonding silicon wafers. 

− Surface activation bonding : the substrates are pre-treated with oxygen plasma, hydration processes or other 
chemicals to increase the reactivity, and then brought into contact with or without external pressure and high 
temperature to form an irreversible bond. The effect of surface treatment processes lasts only for a small time 
interval and the bonding processes including alignment need to be completed within this time window. for 
bonding PDMS devices to PDMS or glass (commonly used materials in prototyping microfluidic devices) 

 

2. Bonding With Intermediate Layer = Adhesive bonding, eutectic bonding, bonding bonding, and 
thermocompression bonding 

− Adhesive bonding : requires a thin adhesive layer on the device, (by spin coating or spray coating when the 
wafers to be bonded have nonuniform topography). Some typical adhesives used are epoxy, spin-on-glass and 
UV curable glue. 

− Eutectic bonding : uses a thin gold layer as an adhesive to bond silicon wafers. The wafers to be bonded are 
brought into contact and the temperature is raised (sometime by in situ electrical heating using patterned gold 
lines) to gold-silicon eutectic point to form an irreversible bond. Localized bonding overcomes the high 
temperature problem but requires the deposition and patterning of one or more additional bonding layers 
(gold, silicon). This may not be compatible with some device materials like plastics and polymers or with some 
fabrication processes. 

− Thermocompression bonding : the deposition and patterning of additional layers like bonding or other soft 
metals and use either heat and/or pressure to form bonds between substrates. 
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Bonding 
techniques 

Conditions / Procedures Applications Limitations 

Direct Bonding  Anodic bonding, fusion bonding, and activated surface bonding 

Anodic bonding Cleaned extensively, aligned, and 
brought into pressure contact.  

High voltage (kV) and high 
temperature cause an irreversible 

bond to form between the 
substrates 

glass or glass coated 
substrates with silicon 
and nitride substrates 
Glass-Silicon hermetic 

and irreversible 
bonding 

The bonding temperatures in 
combination with voltage required may 
not always compatible with electronic 

wafers 

Fusion bonding The attractive forces that exist 
between extremely clean flat 

surfaces in contact to form a strong 
bond between them.  

The alignment and bonding process 
is usually performed under vacuum 

with external pressures to help 
form good contact. Followed by a 

thermal cycling process to 
strengthen the bond. 

silicon wafers  

surface 
activation 

bonding (SAB) 
Plasma 

activated  

The substrates are pre-treated with 
oxygen plasma, hydration 

processes or other chemicals to 
increase the reactivity, and then 

brought into contact with or 
without external pressure and high 

temperature to form an 
irreversible bond. 

PDMS devices to 
PDMS or glass 

(commonly used 
materials in 
prototyping 

microfluidic devices). 
Can be used to bond 
flexible materials like 

polymers.  
is a derivative of direct 
bonding, uses surface 

activation prior to 
bonding without the 

use of any 
intermediate layer,  

 

The effect of surface treatment 
processes lasts only for a small time 
interval and the bonding processes 

including alignment need to be 
completed within this time window. 

But patterning of the bond, i.e. bonding 
of specific area on the substrate, cannot 

be done 

Bonding With 
Intermediate 

Layer 

Adhesive bonding, eutectic 
bonding, bonding bonding, and 

thermocompression bonding 

  

Adhesive 
bonding  

Requires a thin adhesive layer on 
the device, (by spin coating or 

spray coating when the wafers to 
be bonded have nonuniform 

topography). Some typical 
adhesives used are epoxy, spin-on-

glass and UV curable glue. 

between Silicon and 
Pyrex wafers. 

A low-temperature 
adhesive bonding, 
typically polymer 

adhesives, such as SU-
8, are used.  

known to be less hermetic and have a 
small range of temperature stability 

Eutectic 
bonding  

Uses a thin gold layer as an 
adhesive to bond silicon wafers.  

The wafers to be bonded are 
brought into contact and the 

temperature is raised (sometime 
by in situ electrical heating using 

patterned gold lines) to gold-silicon 
eutectic point to form an 

irreversible bond.  
 

flip-chip, in metal alloy 
bonding 

high bond strength 
and hermeticity, 

eutectic bonding in 
[3], which is among 
the best reported 

bonding strengths. 

Localized bonding overcomes the high 
temperature problem but requires the 

deposition and patterning of one or 
more additional bonding layers (gold, 
silicon). This may not be compatible 

with some device materials like plastics 
and polymers or with some fabrication 
processes. sensitive to oxides near the 

sur-face and hence use of a flux or a 
reducing atmosphere is neces-sary. 

Au/Si à 380°C 

 

 



Appendix D: MEMS Manufacturing techniques  

Page 208 on 229 

Bonding techniques Conditions / Procedures Applications Limitations 

Bonding bonding and 
thermocompression 

bonding 

the deposition and 
patterning of additional 

layers like bonding or 
other soft metals and 
use either heat and/or 
pressure to form bonds 

between substrates.  
several materials can be 
bonded, But better for 
solid (rigid) material. 

bonding between two 
substrates. . (Most of the 

successful approaches use 
copper or gold as the bonding 
material). The results suggest 

that an increase of the bonding 
time can compensate a lower 

bonding temperature,  

The softening of the material as 
temperature increases is used to 
lower the pressure re-quirement 

for the formation of a strong bond. 
oxides occurring naturally on the 

surface of the material prevent the 
formation of strong bonds. 

removing contaminants on the 
surface by UV radiation 

require a temperature of about 300 
°C. tre-mendous pressure would be 

required to achieve 
thermocompression bonding at 

room tempera-ture, which would 
probably damage the bonded 

parts.  
no strong bond can be obtained 

below a bond-ing temperature of 
150 °C [18]  

Table 5-18: All bonding techniques usually used in clean rooms 
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