
HAL Id: tel-02500765
https://theses.hal.science/tel-02500765

Submitted on 6 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Generation for the Performance Evaluation of
Scheduling Algorithms

Mohamad El Sayah

To cite this version:
Mohamad El Sayah. Random Generation for the Performance Evaluation of Scheduling Algorithms.
Performance [cs.PF]. Université Bourgogne Franche-Comté, 2019. English. �NNT : 2019UBFCD046�.
�tel-02500765�

https://theses.hal.science/tel-02500765
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE L’ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE – FRANCHE-COMTÉ

PRÉPARÉE À L’UNIVERSITÉ DE FRANCHE-COMTÉ

Ecole doctorale n°37

Sciences pour l’Ingénieur et Microtechniques

Doctorat d’Informatique

Par

Mohamad EL SAYAH

Random Generation for the Performance Evaluation of Scheduling Algorithms

Thèse présentée et soutenue à Besançon, le 20/11/2019

Composition du Jury :

NICOD Jean-Marc Professeur à l’ENSMM Besançon Président
BEAUMONT Olivier Directeur de recherche à Inria Bordeaux - Sud-Ouest Rapporteur
LEGRAND Arnaud Directeur de recherche à CNRS Grenoble Rapporteur
DUFOSSÉ Fanny Chargée de recherche à Inria Grenoble Examinatrice
CANON Louis-Claude Maître de Conférences à l'Université de Franche-Comté Co-directeur de thèse
HÉAM Pierre-Cyrille Professeur à l'Université de Franche-Comté Directeur de thèse

Titre : Génération Aléatoire pour l’Évaluation de Performance d’Algorithmes d’Ordonnancement

Mots clés : ordonnancement, génération aléatoire, instances, DAGs, matrices de coûts, uniforme

Résumé : L’objectif du travail réalisé dans cette
thèse consiste à mettre au point des techniques
pour l’évaluation de la performance
d’algorithmes dans le contexte de
l’ordonnancement. Dans de nombreuses
branches de la recherche en informatique, de
très nombreuses publications mettent en avant
de nouveaux algorithmes évalués comme plus
performants que les précédents; mais le
protocole expérimental utilisé est souvent mal
ou trop peu décrit, voire biaisé, ne permettant ni
une reproductibilité des résultats, ni de donner
une confiance suffisante sur l’ampleur de
l’amélioration. Cela suppose d’analyser
finement les problèmes considérés afin de
définir ce que peuvent être des instances
pertinentes.

Dans cette thèse nous étudions deux types
d’instances, les DAGs et les matrices de coûts.
Pour chaque type nous étudions un problème
d’ordonnancement différent. Nous étudions des
propriétés qui ont tendances à influencer la
structure des instances générées aléatoirement,
puis analysons des méthodes existantes de
génération aléatoire vis-à-vis des propriétés
séléctionnées. Ensuite, nous proposons un
générateur aléatoire capable de générer de façon
uniforme des matrices de coûts tout en
controlant leurs hétérogénéités, puis nous
analysons l’impact des générateurs des DAGs et
des matrices de coûts sur la performance de
certaines heuristiques d’ordonnancement.

Title : Random Generation for the Performance Evaluation of Scheduling Algorithms

Keywords : scheduling, random generation, instances, DAGs, cost matrices, uniform

Abstract : The objective of the work done in
this thesis is to develop techniques for
evaluating the performance of algorithms in the
context of scheduling. In many branches of
computer science, numerous publications
highlight new algorithms evaluated as more
efficient than the previous ones; but the
experimental protocol used is often bad or
poorly described, or even biased, allowing
neither a reproducibility of the results nor
giving sufficient confidence on the extent of the
improvement. This entails finely analyzing the
problems considered in order to define what
may be relevant instances.

In this thesis we study two types of instances,
DAGs and cost matrices. For each type we study
a different scheduling problem. We study
properties that tend to influence the structure of
randomly generated instances, then analyze
existing random generation methods for the
selected properties. Then, we propose a random
generator able to generate cost matrices in a
uniform way while controlling their
heterogeneities, then we analyze the impact of
the generators of DAGs and cost matrices on the
performance of some scheduling heuristics.

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon

Acknowledgement

I express here my gratitude to everyone who directly or indirectly helped me
during the course of my PhD.

First and foremost, I would like to express my deep and sincere gratitude to
my supervisors Dr. Pierre-Cyrille Héam and Dr. Louis-Claude Canon for
the continuous support of my PhD research, for their patience, enthusiasm, and
immense knowledge. Their dynamism, vision, sincerity, and motivation have deeply
inspired me. They have taught me the methodology to carry out the research and
to present the research work clearly as possible. Their guidance helped me in all
the time of research and their valuable advices have helped me in shaping this
thesis in a better way and making my PhD experience more productive. It was a
great privilege and honor to work and study under their guidance. The incredibly
valuable sessions spent together shaped my understanding for the subject. Time
and again, I felt that either it be my scientific or administrative troubles, once they
used to come under their notice, they used to either get sorted or they used to
assist me in having the means to do so myself. I would also like to thank them for
their friendship, empathy, and great sense of humour. I cannot express in words
the amount of reverence I feel for them. I could not have imagined having better
advisors and mentors for my PhD study. I will always be indebted to them.

I am thankful to Dr. Olivier Beaumont and Dr. Arnaud Legrand for
reviewing this research work. I extend my sincere appreciation to Dr. Jean-Marc
Nicod and Dr. Fanny Dufossé for acting as examiners. I am honored by their
participation in the jury committee.

I am grateful to the Republic of France, the country whose welcomed me
with open arms, continued support, and facilitation.

My appreciation also goes to the members of Université de Franche-Comté
and École doctorale SPIM. I must also mention all the members of the DISC
laboratory, who have provided me with a great environment in which to do
science.

1

Special thanks are due to Dr. Nicolas Janey for his help with lab courses I
gave at the university of Franche-Comté.

I would like to say to Ayham that you have been my friend and colleague.
Thank you for always being interested in listening to the progress in my work.

I also need to thank my dear colleague Guillaume for his help.

I would like to thank my dear PhD students for the good time sepent together,
especially Jean-Philippe and Vahana.

Special thanks are due to Dr. Francis Rousseaux for the help and support
he had offered me during my studies at Université de Reims Champagne-Ardenne.

Some special words of gratitude go to my friend Mostafa who has always been
a major source of support when things would get a bit discouraging.

Last, but not the least, I am forever indebted to my greatest parents, my
father Khodr and my mother Rola, my wonderful sisters and teachers Mayssa
and Dima, and my humorist brother Dr. Zaki, for always being there, to care,
protect and raise me. I am extremely thankful to them for their rightful teachings
and unconditional love, prayers, sacrifices, and for all of their support over the
years in the many forms it has taken. They always represent an endless source
of encouragement that kept my spirits high. Also, I would like to express my
deep love to my adorable nieces Lilia, Léna, and Tiana, and to my magnificent
brother-in-law Omar. You are all my other half. Staying away from you has been
the biggest ordeal.

Finally, I dedicate this thesis to my family, all the people who love me, and the
soul of my grandfather Abou Nabil.

2

Contents

Acknowledgement 2

I Introduction and Preliminaries 7

1 Introduction 9

1.1 Context . 9

1.2 Scheduling . 10

1.3 Motivation and Problem Statement 11

1.4 Contributions . 12

1.5 Thesis outline . 13

1.6 Publications . 14

2 Uniform Random Generation 15

2.1 Introduction . 15

2.2 Recursive Method . 16

2.2.1 Principle . 16

2.2.2 Example of Binary Tree Recursive Generation 16

2.3 Markov Chain Method . 19

2.3.1 Definitions . 20

3

2.3.2 Stationary Distribution . 23

2.3.3 Total Variation Distance and Mixing Time 25

2.3.4 Statistical Tests . 28

2.4 Random Constrained Vector Generation 29

2.4.1 Recursive Generation . 29

2.4.2 MCMC Generation . 32

2.4.3 Recursive vs MCMC . 35

II Directed acyclic graphs 39

3 Motivation and Problem Statement for DAGs 41

3.1 Introduction . 41

3.2 Properties and Notations . 42

3.3 Generation of DAGs . 46

3.3.1 Tools for DAG Generation 47

3.3.2 Instance Sets . 48

3.3.3 Layer-by-Layer Methods . 49

3.3.4 Uniform Random Generation 50

3.4 Uniformity of the Random Generation 51

3.5 Scheduling . 52

4 Analysis of DAGs Properties and Generation Methods 55

4.1 Analysis of Special DAGs . 55

4.2 Analysis of Existing Generation Methods 59

4.2.1 Erdős-Rényi . 60

4.2.2 Uniform Random Generation 64

4

4.2.3 Random Orders . 71

4.2.4 Layer-by-Layer . 73

4.3 Conclusion . 78

5 Performance Evaluation of Scheduling Algorithms for DAGs 83

5.1 Selected Scheduling Algorithms . 84

5.2 Performance of Scheduling Algorithms Regarding Generation Methods 84

5.3 Conclusion . 85

Conclusion of Part II 89

III Cost matrices 91

6 Motivation and Problem Statement for Cost Matrices 93

6.1 Introduction . 93

6.2 Cost Matrices . 95

6.2.1 Definition . 95

6.2.2 Properties . 95

6.2.3 Existing Generation Methods of Cost Matrices 98

6.3 Cost Matrices as Contingency Tables 99

6.3.1 Contingency Tables . 99

6.3.2 Existing Generation Methods of Contingency Tables 100

6.3.3 Uniform MCMC Generation of Cost Matrices 101

6.4 Problem Statement and Contribution 103

7 Constrained Random Generation of Cost Matrices 105

7.1 Symmetric Ergodic Markov Chain 106

5

7.2 Rapidly Mixing Chains . 112

7.3 Initial Matrices Generation . 113

7.4 Mixing Time Estimation . 116

7.5 Analysis of Constraints Effect on Cost Matrix Properties 119

7.6 Conclusion . 120

8 Performance Evaluation of Scheduling Algorithms for Cost Ma-
trices 125

8.1 Selected Scheduling Algorithms . 125

8.2 Analysis of Constraints Effect on Scheduling Algorithms 127

8.3 Conclusion . 128

Conclusion of Part III 131

IV General Conclusions and Perspectives 133

9 General Conclusion and Perspectives 135

9.1 General Conclusion . 135

9.2 Perspectives . 136

Bibliography 139

6

Part I

Introduction and Preliminaries

7

Chapter 1

Introduction

Contents
1.1 Context . 9
1.2 Scheduling . 10
1.3 Motivation and Problem Statement 11
1.4 Contributions . 12
1.5 Thesis outline . 13
1.6 Publications . 14

1.1 Context

A scheduling problem involves executing a set of activities on a set of available
resources while following some rules to provide the maximum possible effectiveness.
Scheduling problems are found in several fields. For instance, we can find scheduling
problems in transportation, computer science, telecommunication, management of
projects, . . .

In this thesis, we are interested in the evaluation of the performance of heuristics
in the context of scheduling. Since our aim is to evaluate scheduling heuristics,
the natural question to ask is: we have a lot of heuristics, which one is the
best? Practically, several tools exist to make an evaluation of the performance of
scheduling heuristics. For instance, we can evaluate the performance of scheduling
heuristics using data sets that correspond to real applications, or using mathematical
analytical methods, or using an exhaustive generation, . . . When one wishes to

9

study the properties of a combinatorial object, the ideal would be to make an
experimental study with the help of an exhaustive generator. Effectively, when the
search space is too big, the exhaustive generator will not work. Due to this issue,
in this thesis we do a random generation of instances to sample the search space.

However, random generation methods are prone to bias when they rely on
random instances with an uncontrolled or irrelevant distribution. It is thus crucial
to provide guarantees on the random distribution of generated instances by ensuring
a known selection of any instance among all possible ones. The empirical assessment
is critical to determine the best scheduling heuristics on any parallel platform.
Simulation is an effective tool to quantify the quality of scheduling heuristics. It
can be performed with a large variety of environments and application models,
resulting in broader conclusions.

1.2 Scheduling

In this thesis, we are interested in the analysis of the performance of some
scheduling algorithms focusing on the random generation of instances. It is nev-
ertheless essential, before being able to tackle this subject, to recall some basic
definitions in scheduling. We will naturally limit ourselves to the part of the field
that interests us more particularly, namely the scheduling for parallel machines.
First, we will recall the general definition of the problem of scheduling. Then, we
will describe the classical notation used in the literature to classify the versions of
the latter.

Let us consider a set of machines M = {M1,M2, . . . ,Mm} and a set of tasks
to achieve T = {T1, T2, . . . , Tn} where m is the number of machines and n the
number of tasks. Informally, we can define a scheduling problem as follow: a
scheduling consists of a function that associates a start date to each task and
another function that allocates a processor to the task. This scheduling respects a
number of constraints, such as the fact that a single task can use a given machine
at a specific time. More simply, a scheduling problem is defined as the distribution
of a set of tasks to a set of machines, with the objective of optimizing one or more
performance criteria.

An instance of a scheduling problem is characterized by the description of tasks,
machines and objectives. To simplify this characterization, Graham [GLLK79]
proposed the three-field notation: α|β|γ. In this notation, the α field defines the
type of machines used, the field β the characteristics of an instance of the problem
and γ the objective function to be optimized. We detail here some of the notations,

10

and therefore problems, encountered in the literature.

For the α, three notations are used: P, Q and R. The symbol P denotes the
problems for which identical processors are used to perform the tasks. Each task
can therefore be executed on each processor with the same time. The symbol
Q denotes uniform heterogeneous processors, i.e. each processor j has a certain
processing speed of the instructions sj and therefore executes a task i containing oi
operations in pij = oisj. Finally, the symbol R denotes non-uniform heterogeneous
processors, i.e. the execution time of a task is independent from one processor
to another, and is therefore noted pij. Note also the use of 1 as a symbol for the
first field, i.e. that the machine has only one processor. The field β contains the
notation pi for the execution time of a task, especially in the case of unitary tasks:
pi = 1, i.e. all tasks take exactly the same unitary time to be executed. The
availability dates are ri and the deadline dates di. The prec notation indicates
the presence of dependencies between the tasks. Finally, the γ field represents
the objective functions. Among these functions, the ones relying on the end dates
denoted by Ci are the most popular. A classical objective in the literature is the
minimization of the maximum Ci, which is called the makespan (Cmax). There is
also the minimization of the sum of the completion dates. It is very useful for
studying the average completion time of the tasks.

Note that in some models the tasks are not sequential: they may for example
require a fixed number of processors. In this thesis we are interested in sequential
tasks.

1.3 Motivation and Problem Statement

In order to analyze existing random generators and/or new random generators
of instances, the first step is to identify the type of instances. In our research, we
focus on two types of instances: directed acyclic graphs (DAGs) and cost matrices.
After choosing the types of instances, it remains to specify the main questions to
which this thesis respond. Basically, four major questions are asked:

1. As mentioned in Section 1.1, some instances can be straightforward to solve.
Therefore, to avoid easy instances, the properties of such instances must be
analyzed.
What are the properties of each type of instances (DAGs and cost
matrices)?

2. Next, for both types of instances, it will be important to make an analysis of

11

existing random generators regarding the identified properties.
How are existing random generators behaving regarding the iden-
tified properties?

3. In the literature, uniform random generators of instances exist. Some of
existing generators ensure some properties of instances but provide no formal
guarantee on the distribution of the instances. Other methods exist, some of
them with stronger formal guarantees. We are looking for a method that can
generate, uniformly at random, instances that have a given set of properties.
How to ensure a uniform distribution among instances that have
given properties?

4. Generating random instances allows the assessment of existing scheduling
algorithms in different contexts.
How are scheduling algorithms performing depending on the ran-
dom generator?

1.4 Contributions

The thesis responds to several questions mentioned in Section 1.3. Regarding
Part II (which concerns DAGs), first, we identify a list of 34 DAG properties and
focus on a selection of 8 such properties. Among these, the mass quantifies how
much an instance can be decomposed into smaller ones. Second, existing random
generation methods are formally analyzed and empirically assessed with respect to
the selected properties. We establish the sub-exponential generic time complexity
for decomposable scheduling problems with uniform DAGs. Last, we study how
the generation methods impact scheduling heuristics with unitary costs for the
problem denoted by P |pj = 1, prec|Cmax.

Regarding Part III (which concerns cost matrices), we focus on the study of
two properties of cost matrices: the heterogeneity and the correlation. We show
the advantages and the limitations of existing generation methods of cost matrices
regarding the selected properties. Then, we propose a Markov Chain Monte Carlo
approach to draw random constrained cost matrices from a uniform distribution.
Finally, we study how our random cost matrices generator impact scheduling
heuristics for the problem denoted by R||Cmax.

Table 1.4 represents a summary of the four main questions in the thesis with
our contributions.

12

Questions DAGs Cost Matrices
Properties identification Identification of 34 and se-

lection of 8 such properties
Summary of properties

Analysis of generation meth-
ods regarding properties

Analysis of existing random
generation methods regard-
ing properties

Behavior of existing gen-
eration methods regarding
properties

Uniform random generation
(constrained instances)

Recursive method for aver-
age costs and MCMC for
cost matrices

Algorithms performance
evaluation regarding genera-
tion methods

Analysis for the problem
P |pj = 1, prec|Cmax

Analysis for the problem
R||Cmax

Table 1.1: Summary of main questions and contributions

1.5 Thesis outline

The thesis is structured as follow:

• Part I is composed of two chapters. Chapter 1, the current chapter, is
dedicated to a general introduction, a summary of the main questions of the
thesis and our contributions. In Chapter 2, our interest is about the uniform
random generation. First, we explain the uniform random generation of
combinatorial objects. Second, we show how to generate uniformly at random
instances using a recursive method. Then, we give some definitions of Markov
Chain process and we show how to be close to the uniform distribution using
this approach. Finally, we compare between both methods of generation by
an illustration of a constrained uniform random generation of a vector.

• Part II is composed of three chapters related to the random generation of
DAGs. In Chapter 3, we expose the related works of the random generation
of DAGs. We list some properties of DAGs and we mention the existing tools
to generate DAGs in the context of scheduling in parallel systems and the sets
of task graphs. Then, we describe some ad hoc method to generate DAGs
and we discuss the uniformity of the random generation of DAGs. Then, we
recall the problem statement concerning the random generation of DAGs
after defining the studied scheduling problem. In Chapter 4, we analyze
properties of 8 special DAGs and we study four existing random generation
methods of DAGs according to these properties. Finally, in Chapter 5, we
study the impact of the four random generators (mentioned in Chapter 4) on
three different scheduling algorithms.

13

• Part III is composed of three chapters related to the random generation of
cost matrices. In Chapter 6, first, we recall the definition of a cost matrix
with its properties. Second, we analyze the advantages and the limitations of
existing generation methods of cost matrices. Then, we mention contingency
tables and we show how to generate uniformly at random cost matrices
as contingency tables using MCMC process. Finally, we recall the studied
problem in this part that is how to ensure a uniform distribution among a set of
cost matrices that have a given task and machine heterogeneity. In Chapter 7,
first, we formally prove the uniformity of constrained random generation of
cost matrices. Second, we show how can a Markov Chain mix faster. Then,
we define three extremely different cost matrices that represent the initial
states of three Markov Chains to assess the convergence time. Finally, we
analyze the effect of our constraints on the properties of the generated cost
matrices. In Chapter 8, we analyze the effect of the constraints (used in the
generation of cost matrices) on three different scheduling algorithms.

• Part IV is dedicated to the general conclusions and perspectives.

1.6 Publications

Regarding the study of DAGs, our results were accepted to be presented at the
25th International European Conference on Parallel and Distributed Computing
(Euro-Par 2019). Moreover, we published a research report [CSH19] in order to
publish, in the future, an extended journal version of our results. Also, the artifacts
for our paper were accepted in Euro-Par, i.e. the support material (e.g., source
code, tools, models) to assess the reproducibility of our experimental results1.

Regarding the study of cost matrices, our results were presented at the 16th
annual meeting of the International Conference on High Performance Computing
and Simulation (HPCS 2018) [CESH18]. In addition, we published a research
report [CESH18], which includes more details about our results.

1https://doi.org/10.6084/m9.figshare.8397623

14

https://doi.org/10.6084/m9.figshare.8397623

Chapter 2

Uniform Random Generation

Contents
2.1 Introduction . 15
2.2 Recursive Method . 16

2.2.1 Principle . 16
2.2.2 Example of Binary Tree Recursive Generation 16

2.3 Markov Chain Method 19
2.3.1 Definitions . 20
2.3.2 Stationary Distribution 23
2.3.3 Total Variation Distance and Mixing Time 25
2.3.4 Statistical Tests . 28

2.4 Random Constrained Vector Generation 29
2.4.1 Recursive Generation 29
2.4.2 MCMC Generation . 32
2.4.3 Recursive vs MCMC . 35

2.1 Introduction

In this thesis, we are mostly interested in uniform random generation, i.e. all
objects of the same size have the same probability of being randomly generated.
Also, we study particular random generators. Yet, for some problems, uniformly
generated instances do not often correspond to real cases, thus these instances are

15

uninteresting. For instance, in uniformly distributed random graphs (using the
Erdős-Rényi algorithm), the probability that the diameter is 2 tends exponentially
to 1 as the size of the graph tends to infinity [Fag76]. Studying the problem
characteristics to constrain the universe of the uniform random generation on a
category of instances is thus critical. For instance, we might be interested by the
uniform random generation of graphs with diameter equals to ten.

Section 2.1 is dedicated to the introduction of the random generation of combi-
natorial objects. In Section 2.2, we explain how the recursive random generation
works and we illustrate this method by generating binary trees. Then, in Sec-
tion 2.3, we mention some Markov Chain properties, then the technique used in
this thesis to estimate the mixing time of a Markov Chain and finally, we illustrate
the computation of the mixing time of a Markov Chain with an example of cards
shuffling. Finally, in Section 2.4, we show how to generate uniformly and at random
a constrained vector by using both methods: recursive and MCMC (Markov Chain
Monte Carlo), and we compare these two generation methods by mentioning their
strengths and weaknesses.

2.2 Recursive Method

2.2.1 Principle

For a clear and detailed explanation of the recursive method, the reader is
referred to [FS09]. The idea of the recursive method is to randomly generate using
a combinatorial decomposition of the object. Once the decomposition is done, it is
possible to build recursively the object. To understand more precisely the recursive
method, we give an idea of this principle with the example of random generation
of a binary tree.

2.2.2 Example of Binary Tree Recursive Generation

Binary Tree A binary tree is a rooted tree such that each node has 0, 1 or 2
children. The nodes without children are called leaves (external nodes) and the
nodes that have children are called internal nodes. Let A be a binary tree with n
internal nodes and v an internal node of A. We call the left subtree of v, denoted
Left(v), the subtree of A having for root the left child of v (resp. right subtree).
Therefore, the left subtree of A is the left subtree of its root, and the right subtree
of A is the right subtree of its root. Let size(Left) be the size of the left subtree of

16

A (resp. size(Right)). Thus, the size of A is: size(A) = 1 + size(Left) + size(Right).

0

1

3

7

4

8 9

2

5

10 11

6

12 13

Figure 2.1: Example of binary tree with 14 nodes.

Example. Figure 2.1 illustrates a binary tree with 14 nodes. Node 0 is the root
node of the binary tree. Nodes 1 to 6 are the internal nodes. Nodes 7 to 13 are the
leaves. The left subtree is the set of nodes {1, 3, 4, 7, 8, 9}. The right subtree is the
set of nodes {2, 5, 6, 10, 11, 12, 13}. The size of the binary tree is 1 + 6 + 7 = 14.

Recursive Generation Suppose n is the size of a binary tree. The number of
unlabeled binary trees of size n, Bn, can be recursively expressed by the following
equation:

Bn =
n∑
i=1

Bi−1Bn−i (2.1)

where i− 1 is the number of nodes in the left-subtree and n− i is the number of
nodes in the right-subtree. Note that B0 = 1 because there is only one empty tree.

Example. Let’s calculate the number of unlabeled binary trees of size n = 4 using
Equation 2.1.

For n = 0, there is only one empty tree, thus B0 = 1.

For n = 1, we have one tree, thus B1 = 1.

For n = 2, B2 = B0B1 +B1B0 = 1× 1 + 1× 1 = 2 trees:

17

For n = 3, B3 = B0B2 +B1B1 +B2B0 = 1× 2 + 1× 1 + 2× 1 = 5 trees:

For n = 4, B4 = B0B3 +B1B2 +B2B1 +B3B0 = 1× 5 + 1× 2 + 2× 15× 1 = 14
trees.

Note that we have counted the unlabelled binary trees. Thus, to count the
labeled binary trees, each unlabelled binary tree can be labeled in n! different ways.

Example. Now let’s calculate the number of labeled binary trees of size n = 4
using the direct formula: B4 = 14× 24 = 336 labeled binary trees.

The recursive method goes through two stages. In the first stage, we decompose
the binary tree by computing Bi for all i ∈ {1, . . . , n}. The calculation can be
recursively done. Then, we apply Algorithm 2.1 (ComputeSizeLeft(n)) to compute
the size k of the left-subtree. One can deduce that the size of the right-subtree is
n− 1− k. Algorithm 2.1 (ComputeSizeLeft(n)) starts by initializing to zero the

Algorithm 2.1: ComputeSizeLeft(n)
Input: Bi for all i ∈ {1, . . . , n}
Output: The size k of left-subtree if tree not empty

⊥ otherwise.
1 begin
2 k = 0
3 s = Bn−1

Bn

4 r = random value ∈ [0, 1]
5 while s < r do
6 k = k + 1
7 s = s+ BkBn−k−1

Bn

8 return k

size of the left-subtree. It samples uniformly a random value between zero and one,

18

and computes the ratio of the penultimate counted number of binary trees to the
overall number of binary trees. Then, it checks if the ratio is less than the sampled
value. While the condition is true, the algorithm iteratively increments the size of
the left-subtree by one and updates at each iteration the computed ratio by adding
to it the probability calculated in the Equation 2.2.

P(size(left) = k) = BkBn−k−1

Bn

(2.2)

In the second stage, we apply Algorithm 2.2 (RecursiveBinaryTree(n)) to
build the random object recursively. Algorithm 2.2 (RecursiveBinaryTree(n))
starts by recovering the size of the left-subtree (computed using Algorithm 2.1
ComputeSizeLeft(n)), then, it builds the left-subtree and right-subtree.

Algorithm 2.2: RecursiveBinaryTree(n)
Output: Binary tree if tree not empty

⊥ otherwise.
1 begin
2 if n = 0 then
3 return ⊥
4 k = ComputeSizeLeft(n)
5 Left = RecursiveBinaryTree(k)
6 Right = RecursiveBinaryTree(n− k − 1)
7 return the binary tree whose left subtree is Left and right subtree is

Right

2.3 Markov Chain Method

In probability theory, Markov Chains constitute a practical probabilistic tool
that applies to various fields. A Markov chain is a stochastic process describing a
sequence of possible events in which the probability of each event depends only on
the state attained in the previous event. Markov Chains play an important role
for implementing random generators due to their relative ease of adaptation to
different problems and their applicability to complex sampling problems.

Monte Carlo methods are about simulations. The concept is to use randomness
to solve problems that might be deterministic in principle.

19

Markov Chain Monte Carlo (MCMC) methods are a combination of both
techniques. They allow to simulate a distribution using Markov Chains. Hundreds
of Markov Chain applications exist. MCMC are used in numerical approximation,
for example in the estimation of kinetic parameters in systems biology [GR14].
Linguistics are interested in the relationship between languages and therefore in a
form of phylogenesis, which also gives rise to the use of Markov Chains [NW08].
In computer science, we can find the application of MCMC in Machine Learning
problems [EM12]. In bioinformatics, we can find MCMC in gene prediction. We
can find the use of Markov Chains in internet applications like the PageRank of a
webpage used by Google [Sul07].

2.3.1 Definitions

For a general reference on finite Markov Chains, the reader is referred to [LPW06].
A finite Markov Chain describes a process that randomly governs moving an element
from a finite set Ω to another element of Ω. A rough vision of this process is to
say that if x is an element of the set Ω then, starting from x, the next position
will be determined by a probability P (x, ·) defined on the set Ω. A square matrix
M is stochastic if for each row i, ∑jM(i, j) = 1 and if for all i, j, 0 ≤M(i, j) ≤ 1.
Definition 2.1 formally specifies this property.

Definition 2.1 (Markov property). A Markov Chain on a finite space Ω with
stochastic transition matrix M is a sequence (Xi)i∈N of random variables on Ω
satisfying for all k > 1, all y, x0, x1 . . . , xk ∈ Ω:

P(Xk = y | X0 = x0, X1 = x1, . . . , Xk−1 = xk−1) = P(Xk = y | Xk−1 = xk−1)
= M(xk−1, y).

(2.3)

Equation 2.3 is called the Markov property. This property is translated by
saying that a Markov Chain is memoryless. This expresses the fact that the
distribution of the next position, given the current position and all past positions,
does not depend on the already visited states, i.e. that the future only depends on
the immediate past.

We can associate a directed graph G to the Markov Chain over the state space
Ω. The set of vertices represents Ω, and for each (x, y) ∈ Ω2, (x, y) is an edge of
G. The set of edges represents all the possible transitions between any pair of
states. Each edge of the graph is weighted by a probability and the sum of the
probabilities, for each vertex, on outgoing edges is equal to 1.

20

M =


1 0 0 0

0.5 0 0.5 0
0 0.5 0 0.5
0 0 0 1

0 25 50 751

1
2

1
2

1
2

1
2

1

Figure 2.2: Graph and transition matrix for the gambler’s ruin problem.

Example. Figure 2.2 illustrates an introductory example of the gambler’s ruin
problem. Suppose a player has 25 euros. He tosses a coin until he loses or the coin
comes up heads 2 times in a row. For each toss of coin, if the coin comes up heads
he wins 25 euros and if it comes up tails he loses 25 euros.

We can also note that for every natural number t, M t(x, y), the coefficient of
the xth row and yth column of M t is the probability (knowing that the current
state is x) of changing from state x to state y in t steps [LPW06, Section 1.1]. If
we have M t(x, y) > 0, it means that a path of length t from x to y exists in the
underlying graph associated with the related Markov Chain. In particular, there
exists in G a cycle of length t passing through x, if and only if M t(x, x) > 0.

Definition 2.2 (irreducibility). We consider M the transition matrix and G the
graph underlying a Markov Chain on a state space Ω. We say that the chain M
is irreducible if for all states x and y of Ω there exists a natural integer t such
that M t(x, y) > 0. The chain M is therefore irreducible if the graph G is strongly
connected.

Example. In Figure 2.2, M is not irreducible since starting from state 0 or 4,
it is impossible to reach another state. But, in Figure 2.3, the Markov Chain is
irreducible since each state can be accessed from any other state.

Definition 2.3 (period of an element). We consider an element x of the state
space Ω of a Markov Chain M . We call period of x, and we denote τ(x), the
greatest common divisor of the set{

t ∈ N \ {0} ,M t(x, x) > 0
}
.

The period of x is also the greatest common divisor of the set of all the lengths of
the cycles of G passing through x.

Example. In Figure 2.3, the lengths of the cycles passing through A or C are 2
and 4. The greatest common divisor of 2 and 4 is 2. Therefore, the period of states
A and C is 2. The lengths of the cycles passing through state B are 2. Thus, the
period of state B is 2.

21

M =

 0 1 0
0.5 0 0.5
0 1 0

A B C

1

0.5

0.5

1

Figure 2.3: Irreducible periodic Markov Chain.

M =

 0.3 0.7 0
0.5 0 0.5
0 1 0

A B C0.3

0.7

0.5

0.5

1

Figure 2.4: Ergodic Markov Chain.

Note that if a Markov Chain M is irreducible, then, all states of M have the
same period [LPW06, Lemma 1.6].

Definition 2.4 (period of irreducible chain). We consider M an irreducible Markov
Chain. We call the period of M and we denote by τ(M) the period of all elements
of the state space associated with M .

Definition 2.5 (aperiodicity). We consider M an irreducible Markov Chain. We
say that M is aperiodic if τ(M) = 1.

Example. In Figure 2.4, the common period of all states is τ(M) = 1, then the
Markov Chain is aperiodic.

Theorem 2.6 (ergodicity). A Markov Chain M is ergodic if it is irreducible and
aperiodic.

Example. In Figure 2.4, the Markov Chain is irreducible since the underlying
graph is strongly connected. The common period of all states is τ(M) = 1, thus the
chain is aperiodic. Therefore, the Markov Chain is ergodic.

Definition 2.7 (symmetry). A symmetric matrix M is a square matrix that is
equal to its transpose: M = MT .

We consider M the transition matrix and G the underlying graph of a Markov
Chain on a state space Ω. The Markov Chain is symmetric if M is a symmetric
matrix. In other words, if there is an edge (x, y) with probability p, then the graph
has an edge (y, x) with the same probability.

22

M =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

A B C0.5

0.5

0.5
0.5
0.5

0.5

Figure 2.5: Symmetric Markov Chain.

Example. In Figure 2.5, the transition matrix M is symmetric since M = MT and
we can notice from the underlying graph that we can move between each connected
pair of nodes with the same probability in both directions.

Random mapping Finally, we will rely on a random mapping in Chapter 7 to
build a specific Markov Chain. Consider a Markov Chain on a state space Ω with
transition matrix M , and a set of independent and identically distributed random
variables in a set Λ. Informally, a random mapping on Ω is defined by the function
Ω× Λ→ Ω. Intuitively, the function Ω× Λ→ Ω takes in the current state with
some new random information, then it determines the next state of the Markov
Chain.

2.3.2 Stationary Distribution

A stationary distribution of a Markov Chain is a probability distribution that
remains unchanged in the chain as time progresses. The stationary distribution is
represented as a row vector whose entries are probabilities summing to 1.

Definition 2.8 (stationary distribution). Let Ω be the state space and M the
transition matrix associated with a Markov Chain. We consider π a probability law
on Ω and we say that π is a stationary distribution (or invariant probability) if:

πM = π. (2.4)

In other words, if the chain starts at the date t = 0, with a distribution that
corresponds to a stationary distribution (µ0 = π), then for every date t, we have
µt = π. Note that any finite-state Markov Chain has at least one stationary
distribution [LPW06, Section 1.7].

Example. To illustrate the stationary distribution, let us consider this example.
Let M be the transition matrix for the Markov Chain on Figure 2.6 having two

23

M =
(

1/3 2/3
1/2 1/2

)
A B

1
3

1
2

2
3

1
2

Figure 2.6: Markov Chain with a stationary distribution.

states with a distribution π which assigns probability 3
7 to the first state and 4

7 to
the second state. Let us check if π is stationary.

πM =
(

3
7

4
7

)(1
3

2
3

1
2

1
2

)
=
(

3
7

4
7

)
= π.

So regardless the initial configuration of µ0, the probability of finding a state in one
of the 2 states tends to the stationary distribution as the number of steps in the
MC grows.

Theorem 2.9 (unique stationary distribution, see [LPW06, Corollary 1.17]). A
Markov Chain has a unique stationary distribution if the Markov Chain is irre-
ducible.

Example. In Figure 2.4, the Markov Chain is ergodic, therefore it has a unique
stationary distribution. Contrarily, in Figure 2.2, the Markov Chain of the gambler’s
ruin problem has 2 stationary distributions concentrated at the states 0 and 75.

Theorem 2.10 (uniform stationary distribution, see [LPW06, Section 1.6]). If the
Markov Chain is ergodic and symmetric, then the unique stationary distribution is
uniform, i.e. walking enough steps in the graph leads to any state with the same
probability whatever the starting vertex of the walk.

Example. An illustration example of the uniformity of the stationary distribution
is depicted on Figure 2.7 where each reflexive transition has a probability 1

2 .
Each other transition has a probability 1

6 . This Markov Chain is ergodic and
symmetric thus it has a unique uniform stationary distribution. For instance,
starting arbitrarily from the vertex A, after one step, we are in any other vertex
with probability 1

6 (and with probability 0 in the vertex A since there is no self-loop
on it). After two steps, we are in the vertex A with probability 1

6 and in any other
with probability 5

36 . In this simple example, one can show that after n+ 1 step, the
probability to be in the vertex A is pn+1 = 1

7 −
1
7

(
−1
6

)n
and is 1−pn+1

6 for all the
other vertices. All probabilities tends to 1

7 when n grows.

24

Proof. Let An be the event: the chain is in A at step n (pn = p(An)). If at step n
we are in A, then pn+1 = 0. Otherwise, pn+1 = 1

6 .

p(An+1) = p(An+1 | An)p(An) + p(An+1 | Ān)p(Ān).

We have: p(An+1 | An) = 0, p(An+1 | Ān) = 1
6 , and p(Ān) = 1− pn. Therefore:

pn+1 = 1
6 (1− pn) .

It follows that:

pn+1 −
1
7 = 1

6 −
1
6pn −

1
7

= −1
6

(
pn −

1
7

)
− 1

42 −
1
7 + 1

6
= −1

6

(
pn −

1
7

)
.

Consequently,
(
pn+1 − 1

7

)
is a geometric sequence and we have:

pn+1 −
1
7 =

(
p0 −

1
7

)(
−1

6

)n+1

=
(

1− 1
7

)(
−1

6

)n+1

= 6
7

(
−1

6

)n+1

= 1
7

(−1)n+1

6n .

It follows that pn+1 = 1
7 −

1
7

(
−1
6

)n
.

Example. An illustration example of the non-uniformity of the stationary distri-
bution is depicted on Figure 2.2. The Markov Chain of the gambler is ruin is not
irreducible since the state 25 cannot reach other states. Thus, the Markov Chain
is not ergodic. Therefore, in this example we do not have a uniform stationary
distribution.

2.3.3 Total Variation Distance and Mixing Time

Total Variation Distance Let µ and ν be two probability distributions on
a state space Ω. To know how far away from stationarity we are, we have to
measure the total variation distance between µ and ν, assuming that one of these
distributions is the stationary one and the other is the one at a given step.

25

A

C

DB

E F

G

1
2

1
2

1
2

1
2

1
2

1
2

Figure 2.7: Example of the uniformity of the stationary distribution of a Markov
Chain. The probability of each non-reflexive transition is 1

6 .

Definition 2.11 (total variation distance). The total variation distance between µ
and ν is

‖µ− ν‖TV = max
A⊂Ω
|µ(A)− ν(A)|. (2.5)

Proposition 2.12. Let µ and ν be two probability distributions on Ω. Then the
total variation distance can be reduced to the sum:

‖µ− ν‖TV = 1
2
∑
x∈Ω
|µ(x)− ν(x)|. (2.6)

Example. Let’s assume that four tutorial sessions take place from 10- 12, 12-
14, 14-16, and 16-18, respectively. The total number of attendees is 100. Let
µ = (1

4 ,
1
4 ,

1
4 ,

1
4) be the probability distribution of the hour slots. Let’s assume that

the number of attendees in each tutorial session hour slot is not distributed randomly
at uniform. Let ν = (10

100 ,
40
100 ,

30
100 ,

20
100) be the probability distribution of the attendees.

Then, the total variation distance between µ and ν is:

‖µ− ν‖TV = 1
2

(∣∣∣∣14 − 10
100

∣∣∣∣+ ∣∣∣∣14 − 40
100

∣∣∣∣+ ∣∣∣∣14 − 30
100

∣∣∣∣+ ∣∣∣∣14 − 20
100

∣∣∣∣) = 0.3.

Mixing Time When we perform a random walk on an ergodic Markov Chain,
it is necessary to know when to stop moving, i.e. when to stop the process and
return the current state. This issue is called mixing time, i.e. the number of steps
required in order to be ε-close to the stationary distribution.

26

Definition 2.13 (mixing time). The mixing time tmix(ε) of an ergodic Markov
Chain is defined by:

tmix (ε) = min{t ∈ N : d(t) ≤ ε} (2.7)

where d(t) is the distance from the stationary distribution as measured with the
total variation distance.

Bounding Mixing Time Practically, when using MCMC, it is very important
to know how long does it take for an irreducible finite state Markov Chain to
converge to its stationary distribution. If the chain does not run long enough,
the distribution generated will differ significantly from the stationary distribution
leading to invalid results. On the other hand, running the chain for too long can be
very costly in terms of processing time. Thus, it is necessary to bound the mixing
time of a Markov Chain. In general and unfortunately, finding a precise upper
bound for the mixing time is very difficult to solve but progress has been made
using analytic methods.

Note that, in this thesis, we are not interested in finding a lower bound on the
mixing time since our objective is to detect the convergence of Markov Chains.
Thus, we are only interested in finding an upper bound on the mixing time of
Markov Chains.

Example. The hypercube of dimension n is the graph whose vertices are the
elements of the set {0, 1}n. Two vertices of the hypercube are connected by an edge
if and only if they differ from only one coordinate. Figure 2.8 shows the hypercube
of dimension n = 3. The random walk on {0, 1}n moves from a vertex to one of its
adjacent vertices by, uniformly at random, flipping a bit of the selected vertex.

000

100

010

110

001

101

011

111

Figure 2.8: Hypercube of dimension n = 3.

27

For instance, if the random walk starts at the vertex having the coordinates 000,
then we select uniformly at random one bit from 000. Suppose that the selected
bit is the first 0 then it will be replaced by 1 and the move in the chain will be
from vertex 000 to vertex 100. The process will be repeated until being close to the
stationary distribution.

2.3.4 Statistical Tests

A frequently used approach to tackle the convergence of the Markov Chain
consists in using statistical tests. It’s about validating a hypothesis on mixing time
in a generator that relies on a Markov Chain Monte Carlo algorithm. Statistical
tests are tools that can be used to check if the quality of a sample generated with
an MCMC algorithm is sufficient to provide an accurate approximation of the
target distribution.

Among existing MCMC statistical tests, there is for instance Geweke diagnostic
[GPH83], which divides the Markov Chain into 2 segments, then it computes the
mean of each segment and finally detect the convergence according to the spectral
density of the values representing the equality of means of both segments. Another
statistical test is the autocorrelation test, which is the Pearson correlation [BCHC09]
that indicates the extent to which two variables are linearly related. The test
consists in recording the moves in the graph associated with a Markov Chain by
associating them with a numerical value. This test calculates the autocorrelation
of the state reached at the ith step. If the values of the autocorrelation remain
high when the number of steps increases, this indicates a long mixing time. The
third example of MCMC statistical diagnostics is the Gelman-Rubin test [GR+92],
which runs chains (at least two) of the same length 2n, starting from distinct points.
It rejects the first n steps of each chain and finally computes the potential scale
reduction factor reflecting how much sharper the distributional estimate might
become if the simulations were continued indefinitely.

In this thesis, we tried to use some statistical methods to detect the convergence
of Markov Chains, but it did not lead to interpretable result. Due to the difficulty
of using such methods, we finally decided to use a simpler visual method to detect
the convergence of Markov Chains.

The approach is the following one: we start from different points of the state
space (ideally well spread in the graph of the Markov Chain), then perform random
walks from each starting point. At each iteration of the Markov process, we monitor
a numerical parameter (a statistical measure). Finally, and after a long run, we
detect the convergence of the Markov Chain by selecting the number of attempted

28

iterations when the curves of the different random walks overlap.

2.4 Random Constrained Vector Generation

To better understand the recursive and the MCMC methods, we generate
(see [FS09, p. 39]) randomly and uniformly, using both methods, a vector v ∈ Nn

satisfying:
n∑
i=1

v(i) = N, (2.8)

where N represents the sum of the vector v, n is the length of v and for vector
v = (v1, . . . , v`), vi is denoted v(i). Moreover, we want to limit the maximum value
in the vector v, which is useful to avoid large variance. For this purpose, we restrict
the generation to a vector whose elements are in a controlled interval [α, β] such
that α ≤

⌊
N
n

⌋
≤
⌈
N
n

⌉
≤ β are positive integers.

2.4.1 Recursive Generation

As mentioned above, we want to generate uniformly and at random a constrained
vector v using the recursive method as we did in [CESH18, Section III].

Let hα,βN,n be the cardinal of Hα,β
N,n, the set of all vectors of size n, with sum N

and minimum and maximum values, α and β, respectively. By decomposition, one
has

hα,βN,n =
β∑

k=α
hα,βN−k,n−1. (2.9)

Moreover,
hα,βN,n = 0 if αn > N or βn < N and,
hα,βN,1 = 1 if α < N < β.

(2.10)

In Equation 2.9, the first element of the vector is assumed to take each value
between α and β. Algorithm 2.3 (Generate Sequences) uniformly generates a
random vector over Hα,β

N,n.

Example. Assume that we want to generate uniformly at random, using Algo-
rithm 2.3 (Generate Sequences), a vector v of size n = 3 and overall sum N = 4
where v(i) ∈ {1, 5} for all i ∈ {1, . . . , n}.

29

Algorithm 2.3: Generate Sequences
Input: Integers N , n, α, β
Output: v ∈ Nn such that α ≤ v(i) ≤ β and ∑i v(i) = N if it is possible

⊥ otherwise.
1 begin
2 if α > β or nα > N or nβ < N then
3 return ⊥
4 for 1 ≤ k ≤ n and 0 ≤ N ′ ≤ N do
5 compute hα,βN ′,k using (2.9) and (2.10).
6 for i ∈ [1, . . . , n] do
7 s = 0

8 pick at random v(i) ∈ [α, β] with P(v(i) = k) =
hα,βN−s−k,k

hα,βN−s,n−i
9 s = s+ v(i)

10 return v

The first step (precalculation) is the recursive decomposition of the vector v. By
decomposition, we obtain the vector D such as:

D = [(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2),
(2, 3), (2, 4), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)].

Each element of D has two values. The first value represents the size of the vector
while the second one represents the sum. For instance, D9 = (2, 3), the ninth
element of D, represents the representations of 2 elements and of sum equals to 3.
This corresponds to H1,5

3,2 .

The second step is enumaration. We count the number of representations of each
element of D.

(1,1) : 1 (2,1) : 2 (3,1) : 3
(1,2) : 1 (2,2) : 3 (3,2) : 6
(1,3) : 1 (2,3) : 4 (3,3) : 10
(1,4) : 1 (2,4) : 5 (3,4) : 15

Table 2.1: The number of decomposition of each element of D into n elements such
that N1 +N2 + . . .+Nn = N . In this example, α = 1 and β = 5.

30

For instance, D10 = (2, 4) and its representations are: (4,0), (0,4), (1,3), (3,1),
and (2,2).

The final step is the generation of the vector v. According to Table 2.1, h1,5
4,3 = 15.

These 15 objects can be decomposed into γ smaller classes, each one of size γi. We
want to sample the integer i with a probability γi

15 where ∑ γi = 15. We sample an
integer in {1, 15} and we compare it to γ1, γ1 + γ2, γ1 + γ2 + γ3, etc. as long as these
values are smaller.

For instance, we generate the following vector: v = (1, 2, 1).

Note that integers involved in these computations may become rapidly very
large. Working with floating point approximations to represent integers may be
more efficient. Moreover, even with the rounded errors the random generation
stays very close to the uniform distribution [DZ99].

Figure 2.9 depicts the distribution of the values when varying the interval [α, β]
for n = 10 and N = 100. Without constraint (α = 0 and β = 100), the distribution
is similar to an exponential one: small values are more likely to appear in a vector
than large ones. When only the largest value is bounded (α = 0 and β = 15), then
the shape of the distribution is inverted with smaller values being less frequent.
Finally, bounding from both sides (α = 5 and β = 15) leads to a more uniform
distribution.

Figure 2.10 shows the CV (Coefficient of Variation), which is the ratio of the
standard deviation to the mean, obtained for all possible intervals [α, β]. The more
constrained the values are, the lower the CV. The CV goes from 0 when either
α = 10 or β = 10 (the vector contains only the value 10) to 1 when α = 0 and
β = 100.

In the absence of constraints (α = 0 and β = N), it is also possible to generate
uniform vectors using Boltzmann samplers [DFLS04]: this approach consists in
generating each v(i) independently according to an exponential law of parameter γ.
Theoretical results of [DFLS04] show that by choosing the right γ, the sum of the
generated v(i)’s is close to N with a high probability. In order to get precisely
N , it suffices to use a rejection approach. This is consistent with the seemingly
exponential distribution in Figure 2.9 in the unconstrained case. Moreover, in this
case, Figure 2.10 shows that the CV is close to one, which is also the CV of an
exponential distribution.

31

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Value

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Constraints α = 0
β = 100

α = 0
β = 15

α = 5
β = 15

Figure 2.9: Frequency of each value in a vector of size n = 10 with N = 100
generated by Algorithm 2.3 (Generate Sequences) for three combinations of con-
straints for the minimum α and maximum β. For each case, the frequencies were
determined by generating 100 000 vectors and are normalized to the maximum
frequency. The frequency for large values when α = 0 and β = 100 are not shown.

2.4.2 MCMC Generation

We want to generate uniformly at random a constrained vector using MCMC
approach. Let n be the size of the vector, N the sum of its elements, and α ≤
v(i) ≤ β for all 1 ≤ i ≤ n. v represents one vector of the state space of the Markov
Chain. The first step is to arbitrary generate v such as v(i) = N

n
. Then, we select

uniformly at random 2 distinct elements from v. Let vi and vj be these elements.
In order to move in the chain, we add 1 to vi and subtract 1 from vj iff the resulting
elements v′i and v′j are respectively in [α, β]. Thus, both selected elements vi and vj
will be changed while the sum of the vector v remains unchanged (if the resulting
elements v′i and v′j are not in [α, β], then we do not modify neither vi nor vj). We
repeat the same process until the vector v is close to the stationary distribution.

The following is a formal proof of the uniformity of the random generation of a
vector using MCMC approach.

Proof. The Markov Chain of the vector is aperiodic and its underlying graph is
strongly connected, thus the Markov Chain is ergodic.

The aperiodicity of the Markov Chain is easy to prove. Practically, when we add
or substract 1 from an element of our vector, it is possible to have rejections if the

32

10

100

0.0 2.5 5.0 7.5 10.0
min (α)

m
ax

(β
)

0.25

0.50

0.75

CV

Figure 2.10: Mean CV in vectors of size n = 10 with N = 100 generated by
Algorithm 2.3 (Generate Sequences) for different constraints for the minimum
α and maximum β. Each tile corresponds to 10 000 vectors. The contour lines
correspond to the levels in the legend (0.25, 0.5 and 0.75).

new value is not in [α, β]. Thus, the Markov Chain is aperiodic.

The following is the proof of the strong connectivity of the underlying graph of
the Markov Chain. This property is proved by induction (prove that a property
holds for every natural number).

Let v = v1, . . . , vn and v′ = v′1, . . . , v
′
n. The distance between v and v′ is:

d(v, v′) =
n∑
i=1
|vi − v′i|.

One has d(v, v′) = 0 iff v = v′. If v 6= v′, there exists i such that vi < v′i (since∑
vi = ∑

v′i = N) and j such that vj > v′j. Moreover, α ≤ vi < v′i ≤ β and
α ≤ v′j < vj ≤ β.

Let v′′ = (v1, . . . , vi−1, vi + 1, vi+1, . . . , vj, vj − 1, vj+1, . . .), where all elements of v′′
are in [α, β].

There is an edge from v to v′′ in the underlying graph of the Markov Chain.
Moreover, d(v′′, v′) < d(v, v′). Thus, the construction of a path from v to v′ can
be done by an easy induction on d(v, v′). Therefore, the underlying graph of the
Markov Chain is strongly connected and the Markov Chain is ergodic.

In addition, the transition matrix of the Markov Chain is symmetric since for
all states the probability of the transition from a state to another one in both

33

directions is the same. More specifically, the probability of any transition is 1
n(n−1) ,

i.e. the probability of choosing a given i and j in Algorithm 2.4 (Constrained Vector
MCMC Generation).

Therefore, the distribution of vectors generated with constraints using MCMC
approach is uniform.

Algorithm 2.4 (Constrained Vector MCMC Generation) generates a random
vector using MCMC approach.

Algorithm 2.4: Constrained Vector MCMC Generation
Input: Integers N , n, α, β, nbIterations
Output: v ∈ Nn such that α ≤ v(i) ≤ β and ∑i v(i) = N if it is possible

⊥ otherwise.
1 begin
2 if α > β or nα > N or nβ < N then
3 return ⊥
4 for i ∈ [1, . . . , n] do
5 v(i)← N

n

6 iter ← 1
7 while iter ≤ nbIterations do
8 i← rand(1, n)
9 j ← (rand(0, n− 2) + i) mod n+ 1

10 if (v(i) + 1) ≤ β and (v(j)− 1) ≥ α then
11 v(i)← v(i) + 1
12 v(j)← v(j)− 1
13 iter ← iter + 1
14 return v

Example. Assume that we want to generate, using Algorithm 2.4 (Constrained
Vector MCMC Generation), a vector v of size n = 3, an overall sum N = 9, where
v(i) ∈ {1, 5} for all i ∈ {1, . . . , n}, and the number of iterations is 100.

The initial vector is v = (3, 3, 3). As we see in Algorithm 2.4 (Constrained Vector
MCMC Generation), at each iteration we sample uniformly at random 2 elements
of v and modify their values by adding one to an element and substracting one
from the second element. The choices to modify 2 elements of v are the following
ones: [(-1,0,1), (-1,1,0), (0,1,-1), (0,-1,1), (1,-1,0), (1,0,-1)]. Assume that we

34

select randomly at uniform the choice (-1,1,0). We add the sampled choice to v (if
all elements of v remain in {1, 5}), thus the new vector v, after the first iteration
will be: v = (2, 4, 3). We repeat the process until reaching the number of iterations.
Finally and after 100 iterations, we will obtain for instance the vector v = (2, 6, 1).

Practically, the Markov Chain can be modified to mix faster: rather than
changing each element by +1 or −1, each element of v can be modified by +k or
−k such that the constraints given by α and β are valid.

Algorithm 2.5 (Constrained Vector Faster MCMC Generation) generates a
random vector using faster MCMC approach.

Algorithm 2.5: Constrained Vector Faster MCMC Generation
Input: Integers N , n, α, β, nbIterations
Output: v ∈ Nn such that α ≤ v(i) ≤ β and ∑i v(i) = N if it is possible

⊥ otherwise.
1 begin
2 if α > β or nα > N or nβ < N then
3 return ⊥
4 for i ∈ [1, . . . , n] do
5 v(i)← N

n

6 iter ← 1
7 while iter ≤ nbIterations do
8 i← rand(1, n)
9 j ← (rand(0, n− 2) + i) mod n+ 1

10 k ← rand(max(α− v(i), v(j)− β),min(v(j)− α, β − v(i)))
11 if (v(i) + k) ≤ β and (v(j)− k) ≥ α then
12 v(i)← v(i) + k
13 v(j)← v(j)− k
14 iter ← iter + 1
15 return v

2.4.3 Recursive vs MCMC

Recursive vs mcmc vs mcmcFaster In order to compare both methods of
generation, and to show when both methods converge to a uniform distribution

35

(distribution obtained by the recursive method), we illustrate on Figure 2.11 the
comparison with the example of 1000 vectors of size n = 100 with N = 1000,
α = 5 and β = 30. Vectors generated using mcmc and mcmcFaster approaches are
respectively generated with Algorithms 2.4 (Constrained Vector MCMC Generation)
and 2.5 (Constrained Vector Faster MCMC Generation) while vectors generated
using the recursive method are generated with Algorithm 2.3 (Generate Sequences).
Note that we assume that studying the variance of the costs provides a good

variance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

10

20

30

40

Iteration

type mcmc mcmcFaster

Figure 2.11: Evolution of the variance for vectors of size n = 100, with sum of
elements N = 1000, minimum value of elements α = 5, maximum value of elements
β = 30. Vectors generated using mcmc and mcmcFaster approaches are generated
with Algorithms 2.4 (Constrained Vector MCMC Generation) and 2.5 (Constrained
Vector Faster MCMC Generation). Each boxplot corresponds to 1000 vectors. The
horizontal blue line corresponds to the mean of variances of 1000 vectors generated
with Algorithm 2.3 (Generate Sequences) with the same characteritics of vectors in
boxplots.

indication of whether the stationary distribution is reached.

First, we recursively generate 1000 vectors, compute the variance of each vector,
then compute the mean of variances, which is equal to 26 (represented by the blue

36

line). Second, for mcmc and mcmcfaster methods, we arbitrary generate an initial
vector where each of its elements is equal to N

n
and we monitor the variance of

each vector. Next, 10 000 walks are performed and the value of the variance is
reported after every 1 000 iterations.

We can observe that the pair of boxplots1 are synchronized with the uniform
distribution after about 8 000 iterations. In other words, in this example, we
illustrate the mcmc and mcmcfaster seems to be close to the uniform distribution
after about 8 000 iterations. Boxplots corresponding to mcmcFaster method tend to
the uniform distribution after about 1 000 iterations while boxplots corresponding
to mcmc method tend to the uniform distribution after about 8 000 iterations. This
result illustrates that using mcmcFaster method to generate constrained vectors
leads to rapidly mixing the Markov Chain.

Advantages and limitations Markov Chain Monte Carlo and the recursive
random generation are powerful methods. Both approaches have gained widespread
use due to their advantages but at the same time each method has some limitations.
In Table 2.2, we list the most well-known advantages and limitations of the MCMC
and recursive random generation methods.

MCMC Recursive

Advantages Relatively simple to implement Generally computationally
efficient

Applicable to complex sampling
problems Avoids convergence issues

Limitations

Can be very difficult to assess
accuracy and evaluate

convergence, even empirically

Can be very difficult to find the
calculation formulas

Has a burn-in phase, which starts
with arbitrary position and ends

up with reaching the target
distribution. This burn-in phase

usually takes a long time,
especially when the distribution
is defined over high dimensional

space

The precalculation can take a
long time if the size of the object

is too big

Table 2.2: Advantages and limitations of MCMC and recursive generation.

1Each boxplot consists of a bold line for the median, a box for the quartiles, whiskers that
extend at most to 1.5 times the interquartile range from the box and additional points for outliers.

37

38

Part II

Directed acyclic graphs

39

Chapter 3

Motivation and Problem
Statement for DAGs

Contents
3.1 Introduction . 41

3.2 Properties and Notations 42

3.3 Generation of DAGs . 46

3.3.1 Tools for DAG Generation 47

3.3.2 Instance Sets . 48

3.3.3 Layer-by-Layer Methods 49

3.3.4 Uniform Random Generation 50

3.4 Uniformity of the Random Generation 51

3.5 Scheduling . 52

3.1 Introduction

In the context of parallel systems, instances for numerous multiprocessor schedul-
ing problems contain the description of an application to be executed on a plat-
form [Leu04]. This part focuses on scheduling problems requiring a Directed Acyclic
Graph (DAG) as part of the input. Such a DAG represents a set of tasks to be exe-
cuted in a specific order given by precedence constraints: the execution of any task
cannot start before all its predecessors have completed their executions. Scheduling

41

a DAG on a platform composed of multiple processors consists in assigning each
task to a processor and in determining a start time for each task. While this
work studies the DAG structure for several scheduling problems, it illustrates and
analyzes existing generation methods in light of a specific problem with unitary
costs and no communication. This simple yet difficult problem emphasizes the
effect of the DAG structure on the performance of scheduling heuristics.

Section 3.2 is dedicated to listing DAG properties. In Section 3.3, we describe
the tools that have been proposed in the literature to generate DAGs in the
context of scheduling in parallel systems. Then, we mention the existing sets of
task graphs and finally we describe the Layer-by-Layer methods and the uniform
random method to generate DAGs. Section 3.4 explains the different meanings of
uniformity in the context of DAG generation. Finally, in Section 3.5, we describe
the studied scheduling problem for DAGs in this thesis.

3.2 Properties and Notations

All graphs considered throughout this thesis are finite. A directed graph is a
pair (V,E) where V is a finite set of vertices and E ⊆ V × V is the set of edges.
A path is a finite sequence of consecutive edges, that is a sequence of the form
(v1, v2), (v2, v3), . . . , (vk−1, vk); k is the length of the path, i.e. the number of vertices
on this path.

The output degree of a vertex v is the cardinal of the set {(v, w) | w ∈ V, (v, w) ∈ E}.
Similarly the input degree of a vertex v is the cardinal of the set {(w, v) | w ∈
V, (w, v) ∈ E}. The output (resp. input) degree of a directed graph is the maximum
value of the output (resp. input) degrees of its vertices. The degree of a vertex is
the sum of its input and output degrees.

A directed graph is acyclic (DAG for short) if there is no path of strictly positive
length k such that v1 = vk (with the above notation). Let Dn be the set of all
DAGs whose set of vertices is {1, 2, . . . , n}. In a DAG, if (v, w) is an edge, v is a
predecessor of w and w a successor of v.

In a DAG D with n vertices, all paths have a length less than or equal to n. The
length of a DAG is defined as the maximum length of a path in this DAG. The
depth of a vertex v in a DAG is inductively defined by: if v has no predecessor,
then its depth is 1; otherwise, the depth of v is one plus the maximum depth of its
predecessors.

Note that the following properties that we introduce are useful to characterize

42

DAGs for the scheduling problem defined in Section 3.5.

The shape decomposition of a DAG is the tuple (X1, X2, . . . , Xk) where Xi is the
set of vertices of depth i. Note that k is the length of the DAG. The shape of the
DAG is the tuple (|X1|, . . . , |Xk|). The maximum (resp. minimum) value of the
|Xi| is called the maximum shape (resp. minimum shape) of the DAG. Computing
the shape decomposition and the shape of a DAG is easy. If |Xi| = 1, the unique
vertex of Xi is called a bottleneck vertex.

A block is a subset of vertices of the form ∪i<j<i+`Xj with ` > 1 where Xi is either
a singleton or i = 0, Xi+` is either a singleton or i + ` = k + 1, and for each
i < j < i+ `, |Xj| 6= 1.

We denote by massabs(B) the cardinal of B = ∪i<j<i+`Xj and by massabs(D) =
max{massabs(B) | B is a block} the absolute mass of D. The relative mass, or
simply the mass, is given by mass(D) = massabs(D)

n
.

1 2 3

5 4 8

6

7

(a)

1 2 3

5 4 6

8

7

(b)

Figure 3.1: Examples of DAGs.

Example. The following properties belong to the DAG on Figure 3.1(a):

• The predecessors of vertex 3 are vertices 2, 4, and 7.
• The successor of vertex 2 is vertex 3.
• A longest path is (5, 4), (4, 6), (6, 7), (7, 3), its length is 5.
• The output degree of vertex 4 is 3.
• The input degree of vertex 7 is 2.
• The depth of the vertex 8 is 3.
• The shape decomposition is the tuple ({1, 5}, {2, 4}, {6, 8}, {7}, {3}).
• The shape is the tuple (2, 2, 2, 1, 1).
• It has two bottleneck vertices 7 and 3.
• It contains only one block of length l = 4

43

• Its absolute mass is 2 + 2 + 2 = 6.

In a DAG, two distinct vertices v and w are incomparable if there is neither a path
from v to w, nor from w to v.

The width of a graph is the maximum size of the subset of vertices whose elements
are pair-wise incomparable. Since vertices of same depth are incomparable, the
maximum shape of a DAG is less than or equal to its width. In the context of
scheduling, the width represents the maximum number of vertices (tasks) that can
be executed in parallel. It is also the size of the largest antichain1, which can be
computed in polynomial time using Dilworth’s theorem and a technique developed
by Ford and Fulkerson [FJF16]. The methodology is conjectured to have a time
complexity of O(n5/2) [Plo07]. In some cases (for instance the comb DAG, see
Section 4.1), the width can be much larger than the maximum shape.

Table 3.1 compares the width and the maximum shape on the DAGs obtained
with two random generators explored in this part. The first generator is the Erdős-
Rényi where an upper-triangular adjacency matrix is randomly generated. For each
pair of vertices (i, j) with i < j, there is an edge from i to j with an independent
probability p (see Section 4.2.1). The second generator generates DAGs uniformly
at random using recursive approach (see Section 4.2.2).

Example. Consider the DAG on Figure 3.1(a). The vertices that can be executed
in parallel are: (1,5), (2,4), and (6,8). Therefore, the width of the DAG is 2.

n Erdős-Rényi Uniform
10 2.95 – 0.34 – 2 2.35 – 0.09 – 1
20 3.52 – 0.45 – 2 2.77 – 0.14 – 1
30 3.62 – 0.46 – 2 3.13 – 0.23 – 1

Table 3.1: Comparison of width and maximum shape of randomly generated DAGs
with different methods: “Erdős-Rényi” for the so-called algorithm with parameter
p = 0.5 (see Section 4.2.1) and “Uniform” for the recursive random generator (see
Section 4.2.2). Reported numbers x− y − z correspond respectively to the average
width, the average difference between width and shape width, and the maximum
difference pointed out. Each experiment is performed by sampling 100 DAGs.

Two DAGs (V1, E1) and (V2, E2) are isomorphic, denoted (V1, E1) ∼ (V2, E2), if
there exists a bijective map ϕ from V1 to V2 such that (x, y) ∈ E1 iff (ϕ(x), ϕ(y)) ∈

1Set of incomparable vertices (for which no path exists between any pair of vertices).

44

E2. The relation ∼ is an equivalence relation. Intuitively, two DAGs are isomorphic
if they are equal up to vertices names.

Example. The DAGs on Figure 3.1 are isomorphic.

The transitive reduction of a DAG D [AGU72] is the DAG DT for which: DT

has a directed path between u and v iff D has a directed path between u and v;
there is no graph with fewer edges than DT that satisfies the previous property.
Intuitively, this operation consists in removing redundant edges.

Example. The transitive reduction of the DAG on Figure 3.1(a) is:

1 2 3

5 4 8

6

7

Figure 3.2: Transitive reduction of the DAG on Figure 3.1(a)

The reversal of a DAG D is the DAG DR for which there is an edge between u
and v iff there is an edge between v and u in D. Intuitively, this operation consists
in reversing the DAG.

Example. The reversal DAG of the DAG on Figure 3.1(a) is:

1 2 3

5 4 8

6

7

Figure 3.3: Reversal DAG of the DAG on Figure 3.1(a)

Finally, Table 3.2 presents some of the DAG properties that may impact the
performance of scheduling algorithms. We discard the minimum input and output
degrees because they are always degmin

in = degmin
out = 0. We also discard the mean

input and output degrees because they are always equal to half the mean degree
(degmean

in = degmean
out = degmean

2). For all nine edge-related properties (m and the
degree-based properties) applied to a DAG D, we can also compute them on the

45

transitive reduction DT . The vertex-related properties (n, the width and the
shape-based ones) remain the same on the transitive reduction. For all seven
shape-based properties on a DAG D, we can also compute them on the reversal
DR. The edge-related properties remain the same through the reversal with the
inversion of degmax

in and degsd
in with degmax

out and degsd
out, respectively. Finally, some

of these properties are related: n× degmean = m
2 and len× shmean = n.

Symbol Definition
n number of vertices
m number of edges

degmax(degmax
in , degmax

out) maximum (input, output) degree
degmin minimum degree

degmean mean (input, output) degree
degsd(degsd

in , degsd
out) standard deviation of the (input, output) degrees

len or k length (also called height, number of levels, longest
path or critical path length)

width width
shmax maximum shape
shmin minimum shape

shmean mean shape (parallelism in [TK02])
shsd standard deviation of the shape

sh1 number of source vertices (vertices with null input
degree)

shk last element of the shape
mass (relative) mass

p connectivity probability

K
number of permutations (for the random orders
method in Section 4.2.3)

P set of processors

Table 3.2: List of DAG properties and other notations. When necessary, we specify
on which DAG a property is measured (e.g. m(DT) for the number of edges in the
transitive reduction of D).

3.3 Generation of DAGs

Our approach is similar to the one followed in [CMP+10] and [Mar18], which
consists in studying the properties of randomly generated DAGs before comparing

46

the performance of scheduling heuristics. In [CMP+10], three properties are
measured and analyzed for each studied generation method: the length of the
longest path, the distribution of the output degrees and the number of edges.
We describe 15 such properties in Table 3.2. The authors consider five random
generation methods (described in this section and Section 4.2): two variants of the
Erdős-Rényi algorithm [ER59], one layer-by-layer variant [ACD74], the random
orders method [Win85] and the Fan-in/Fan-out method [CMP+10]. Finally, for
each generation method, we compare the performance of four scheduling heuristics.
The results of [CMP+10] are consistent with the observations done in Section 4.2
(Figures 4.2, 4.5 and 4.8) for the length and the number of edges.

A similar approach is undertaken in [Mar18]. First, three characteristics are
considered: the number of vertices in the critical path, the width (or maximum
parallelism) and the density of the DAG in terms of edges. These characteristics are
studied on DAGs generated by two main approaches (the Erdős-Rényi algorithm
and a MCMC approach) with sizes between 5 and 30 vertices. Finally, although
no DAG property is studied, scheduling heuristics are compared using a variety of
random and non-random DAGs in [KA99].

We describe below generation tools, data sets and random generation methods.

3.3.1 Tools for DAG Generation

Many tools have been proposed in the literature to generate DAGs in the context
of scheduling in parallel systems. TGFF (Task Graphs For Free)2 is the first tool
proposed for this purpose [DRW98]. This tool relies on a number of parameters
related to the task graph structure: maximum input and output degrees of vertices,
average for the minimum number of vertices, etc. The task graph is constructed
by creating a single-vertex graph and then incrementally augmenting it. Until the
number of vertices in the graph is greater than or equal to the minimum number
of vertices, this approach randomly alternates between two phases: the expansion
of the graph and its contraction. The main goal of TGFF is to gain more control
over the input and output degrees of the tasks.

DAGGEN3 was later proposed to compare heuristics for a specific problem
[DNSC09]. This tool relies on a layer-by-layer approach with five parameters: the
number of vertices, a width and regularity parameters for the layer sizes, and a
density and jump parameters for the connectivity of the DAG. The number of

2http://ziyang.eecs.umich.edu/projects/tgff/index.html
3https://github.com/frs69wq/daggen

47

http://ziyang.eecs.umich.edu/projects/tgff/index.html
https://github.com/frs69wq/daggen

elements per layer is uniformly drawn in an interval centered around an average
value determined by the width parameter and with a range determined by the
regularity parameter. Lastly, edges are added between layers separated by a
maximum number of layers determined by the jump parameter (edges only connect
consecutive layers when this parameter is one). For each vertex, the method adds a
uniform number of predecessors in an interval determined by the density parameter.

GGen4 has been proposed to unify the generation of DAGs by integrating
existing methods [CMP+10]. The tool implements two variants of the Erdős-
Rényi algorithm, one layer-by-layer variant, the random orders method and the
Fan-in/Fan-out method. It also generates DAGs derived from classical parallel
algorithms such as the recursive Fibonacci function, the Strassen multiplication
algorithm, the Cholesky factorization, etc.

The Pegasus workflow generator5 can be used to generate DAGs from several
scientific applications [JCD+13] such as Montage, CyberShake, Broadband, etc.
XL-STaGe6 produces layer-by-layer DAGs using a truncated normal distribution
to distribute the vertices to the layers [CDB+16]. This tool inserts edges with a
probability that decreases as the number of layers between two vertices increases.
A tool named RandomWorkflowGenerator7 implements a layer-by-layer variant
[GCJ17]. Other tools have also been proposed but are no longer available as of
this writing: DAGEN [AM11], RTRG8 [SAHR12], MRTG [AAP+16].

Finally, other fields such as electronic circuit design or dataflow also use DAGs.
In this last field, however, requirements differ: the acyclicity is no longer relevant,
while ensuring a strong connectedness is important. Two noteworthy generators have
been proposed: SDF3 inspired from TGFF9 [SGB06] and Turbine10 [BLDMK14].

3.3.2 Instance Sets

The STG (Standard Task Graph) set11 has been specifically proposed for
parallel systems [TK02] and is frequently used to compare scheduling heuristics
[AKN05,DŠTR12]. The DAG structures of STG relies on four different methods.

4https://github.com/perarnau/ggen
5https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
6https://github.com/nizarsd/xl-stage
7https://github.com/anubhavcho/RandomWorkflowGenerator
8http://users.ecs.soton.ac.uk/ras1n09/rtrg/index.html (unavailable as of this writ-

ing)
9http://www.es.ele.tue.nl/sdf3/

10https://github.com/bbodin/turbine
11http://www.kasahara.elec.waseda.ac.jp/schedule/

48

https://github.com/perarnau/ggen
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://github.com/nizarsd/xl-stage
https://github.com/anubhavcho/RandomWorkflowGenerator
http://users.ecs.soton.ac.uk/ras1n09/rtrg/index.html
http://www.es.ele.tue.nl/sdf3/
https://github.com/bbodin/turbine
http://www.kasahara.elec.waseda.ac.jp/schedule/

Two methods, sameprob and samepred, rely on the Erdős-Rényi algorithm, while
the other two, layrprob and layrpred, constitute layer-by-layer variants. A
connection probability is given to sameprob and layrprob, while an average
number of predecessors is given to samepred and layrpred. With these last two
methods, the parameter is apparently converted to a connection probability inferred
from the size of the DAG. Any layer-by-layer variant proceeds by first distributing
vertices into layers such that the average layer size is 10. Then, edges between any
pair of vertices from distinct layers are added from top to bottom according to the
connectivity parameter. The size of the DAGs varies from 50 to 5,000. For each
size, the data set contains 15 instances for each combination of a method among
the four ones and a value for the connectivity parameter among three possible ones
(leading to 180 instances). Both layer-by-layer variants do not guarantee that the
layer of any vertex equals its depth. As a consequence, the length is not necessarily
n
10 + 2 (2 dummy vertices are always added) where n is the number of vertices12

and this problem becomes more apparent with large DAGs generated by layrpred
because there are not enough inserted edges to ensure the layered structure. The
STG set also contains costs and real DAGs such as robot control, sparse matrix
solver and SPEC fpppp program.

PSPLIB13 contains difficult instances for RCPSP (Resource-Constrained Project
Scheduling Problems) [KSD95], a scheduling problem in the field of project man-
agement. Finally, in the graph drawing context, a set of 112 real-life graphs were
proposed14 [DBGL+97] but are no longer available.

In addition to those implemented in GGen and the ones in STG, other DAGs
from real-cases can be used such as the LU decomposition [LKK83], the parallel
Gaussian elimination algorithm [CMRT88], the parallel Laplace equation algorithm
[WG90], the mean value analysis (MVA) [AVÁM92], which has a diamond-like
structure, the FFT algorithm [CLRS09], which has a butterfly structure, the QR
factorization, etc.

3.3.3 Layer-by-Layer Methods

The layer-by-layer method was first proposed by [ACD74] but popularized later
by the introduction of the STG data set [TK02]. This method produces DAGs in
which vertices are distributed in layers and vertices belonging to the same layer
are independent. The method consists in three steps: determining the number of

12This is the case for the instance rand0038.stg for size 50.
13http://www.om-db.wi.tum.de/psplib/
14ftp://infokit.dis.uniromal.it/public/ (unavailable as of this writing)

49

http://www.om-db.wi.tum.de/psplib/
ftp://infokit.dis.uniromal.it/public/

layers; distributing the vertices to the layers; connecting the vertices from different
layers. In most proposed methods, there is at least one parameter for each step.
For instance, the shape parameter controls the number of layers and is related to
the ratio of

√
n to the number of layers [THW02a, IT07,GCJ17].

The number of layers can be drawn from a parameterized uniform distribu-
tion [ACD74,THW02a, IT07,SMD11], given as a parameter [CMP+10,GCJ17] or
generated in a non-parameterized way [AK98,TK02,CDB+16].

Similarly, vertices can be distributed by generating a number of vertices at
each layer with a parameterized uniform distribution [ACD74, THW02a, IT07,
DNSC09,SMD11], by selecting a layer for each vertex with a parameterized normal
distribution [CDB+16], by using a balls into bins approach [CMP+10,GCJ17] or
in a non-parameterized way [AK98]. Note that generating a uniform number of
vertices per layer may lead to a different number of vertices n than expected. Also,
using a balls into bins strategy may lead to empty layers.

Finally, the connection between vertices can depend on a connection probability
[TK02,DNSC09,CMP+10,SMD11,CDB+16] or an average number of predecessors or
successors for each vertex [ACD74,TK02,THW02a]. Although vertices in the same
layer may have different depth (e.g. this occurs in the STG data set), adding specific
edges prevents this situation [DNSC09,GCJ17]. The layer-by-layer approach can
also lead to DAGs with multiple connected components except for [ACD74]. Finally,
some methods allow edges between non-consecutive layers [ACD74,TK02,CMP+10],
while others limit them [DNSC09,CDB+16,GCJ17].

3.3.4 Uniform Random Generation

Many works address the problem of randomly generating DAGs. Uniform
random generation of DAGs can be done using counting approaches [Rob73] based
on generating functions. Many existing methods have been developped in the
literature and the most important ones are described in Section 4.2.

While previous uniform approaches consider only the size of the DAG n as
a parameter, other studies have proposed to generate directed graphs from a
prescribed degree sequence [MKI+03, KN09, AAK+13]. A uniform method is
proposed in [MKI+03] but may produce cyclic graphs. In contrast, the method
proposed in [KN09] forbids cyclicity but has no uniformity guarantee. Last, in
the context of sensor streams, several methods has been proposed [AAK+13] to
generate DAGs with a prescribed degree distribution.

50

Finally, a multitude of related approaches has been proposed but are discarded
in this study because of their specificity. For instance, specific structures may
be used to assess the performance of scheduling methods [LALG13,CMSV18] or
special DAGs with known optimal solutions relatively to a given platform may also
be built [KA99,OVRO+18].

3.4 Uniformity of the Random Generation

Isom. classes Matrices ER Labeling(
0 0

0

)
1
8 1(

1 0
0

) (
0 1

0

) (
0 0

1

)
3
8 6(

0 1
1

)
1
8 3(

1 1
0

)
1
8 3(

1 0
1

)
1
8 6(

1 1
1

)
1
8 6

Table 3.3: DAGs with 3 vertices: there is one row for each isomorphism class. For
each class, we report: all corresponding (upper triangular) adjacency matrices; the
probability of generating such a DAG with the Erdős-Rényi algorithm (p = 0.5);
and, the number of DAGs in each isomorphism class (i.e. the number of labelings).

This work focuses on the importance of generating DAGs uniformly. We discuss
the notion of uniformity through the example with 3 vertices given in Table 3.3. In
this instance, there are six isomorphism classes (i.e. six different unlabeled DAGs)
for a total of 25 different (labeled) DAGs. A generator is thus uniform up to
isomorphism if it generates each isomorphism class (or unlabelled DAGs) with a
probability 1

6 or uniform on all (labelled) DAGs if it generates each DAG with a
probability 1

25 . We also say that we generate non-isomorphic DAGs in the former
case. Finally, when considering only transitive reductions, we discard the complete
DAG. The probability to generate each of the remaining isomorphism classes (resp.
labeled DAGs) with a uniform generator becomes 1

5 (resp. 1
19). This leads to four

different uniformity definitions.

51

3.5 Scheduling

We consider a classic problem in parallel systems noted P |pj = 1, prec|Cmax in
Graham’s notation [GLLK79]. The objective consists in scheduling a set of tasks
on homogeneous processors such as to minimize the overall completion time. The
dependencies between tasks are represented by a precedence DAG (V,E) where
|V | = n is the number of tasks and |E| = m the number of edges. Before starting
its execution, all the predecessors of a task must complete their executions. The
execution cost pj of task j on any processor is unitary and there are no costs on
the edges (i.e. no communication). A schedule defines on which processor and at
which date each task starts executing such that no processor executes more than
one task at any time and all precedence constraints are met. The problem consists
in finding the schedule with the minimum makespan, i.e. overall completion time
before the first task starting its execution and the last one completing its execution.

A possible schedule for the DAG of Figure 3.1(a) on two processors P1 and P2,
assuming costs are unitary, consists in starting executing tasks 1 and 2 on processor
P1 as soon as possible (i.e. at times 0 and 1), while processor P2 processes tasks 5,
4, 8, 7 and 3 similarly. The execution of task 6 follows the termination of task 2 on
processor P1 to satisfy the precedence constraint of task 7. The makespan of this
schedule is 5.

This problem is strongly NP-hard [Ull75], while it is polynomial when there
are no precedence constraints (P |pj = 1|Cmax), which means the difficulty comes
from the dependencies. Many polynomial heuristics have been proposed for this
problem (see Section 5.2). With specific instances, such heuristics may be optimal.
This is the case when the width does not exceed the number of processors, which
leads to a potentially large length. Any task can thus start its execution as soon as
it becomes available. The problem is also polynomial with the instance consisting
of a chain of length len with n− len additional independent tasks (i.e. m = len− 1
and the width equals n− len + 1, which is large when the length is small). In this
case, any heuristic prioritizing critical tasks and scheduling all other tasks as soon
as possible will be optimal.

Although this work studies random DAGs with heuristics for the specific problem
P |pj = 1, prec|Cmax, generated DAGs can be used for any scheduling problem with
precedence constraints. While avoiding specific instances depending on their width
and length is relevant for many scheduling problems, it is not necessary the case
for all of them. For instance, with non-unitary processing costs, instances with
large width and small length are difficult because the problem is strongly NP-Hard
even in the absence of precedence constraints (P ||Cmax) [GJ78].

52

The proposed mass measure has a direct implication in the scheduling problem
P |pj = 1, prec|Cmax. Consider a DAG D = (V,E) whose minimum shape is 1;
there exists a bottleneck vertex v such that the shape of the DAG is of the form
(X1, . . . , X`, {v}, X`+1, . . . , Xk). The scheduling problem for D can be decomposed
into two subproblems, one for the sub-DAG of D whose set of vertices is {v}∪⋃i≤`Xi

and one for the sub-DAG ofD whose set of vertices is {v}∪⋃i>`Xi. Using recursively
this decomposition, the initial problem can be decomposed into nc + 1 independent
scheduling problems, where nc is the number of bottleneck vertices.

Applying a brute force algorithm for the scheduling problems computes the
optimal results in a time T ≤ ncTm, where Tm is the maximum time required to
solve the problem on a DAG with massabs(D) vertices. Since exponential brute
force exact approaches exist, it follows that if massabs(D) = O(logk n) for a constant
k, then an optimal solution of the scheduling problem can be computed in sub-
exponential time. Consequently, scheduling heuristics are irrelevant for task graph
with polylogarithmic absolute mass. Similarly, the same arguments work to claim
that interesting instances for the scheduling problem must have quite a large
absolute mass (not in o(n)). It is therefore preferable to have instances with no or
few bottleneck vertices, that is a unitary mass.

The relevance of the mass property is limited to the class of scheduling problems
for which the instance can be cut into independent subinstances. While the mass is
still relevant with non-unitary processing costs, it is no longer the case when there
are communication costs and requires to be adjusted.

The purpose of this work is first to identify such DAGs properties to determine
how the uniform generation of DAGs should be constrained with the objective to
control them to avoid easy instances. Second, we plan to analyze existing generation
methods relatively to the identified properties.

53

54

Chapter 4

Analysis of DAGs Properties and
Generation Methods

Contents
4.1 Analysis of Special DAGs 55
4.2 Analysis of Existing Generation Methods 59

4.2.1 Erdős-Rényi . 60
4.2.2 Uniform Random Generation 64
4.2.3 Random Orders . 71
4.2.4 Layer-by-Layer . 73

4.3 Conclusion . 78

In this chapter, Section 4.1 is dedicated to analyzing properties of 8 special
DAGs. In Section 4.2, we analyze 4 different existing generation methods of DAGs
according to the selected properties in Section 4.1. Finally, we conclude this chapter
in Section 4.3 by mentioning the most noteworthy obtained result.

4.1 Analysis of Special DAGs

To analyze the properties described in Section 3.2, we introduce in Table 4.1
a collection of special DAGs. The first three DAGs (Dempty, Dcomplete and Dchain)
constitute extreme cases in terms of precedence. The next two DAGs (Dout-tree and
Dcomb), to which we can add the reversal of the complete binary tree (Din-tree =
DR

out-tree), are examples of binary tree DAGs. The last three DAGs (Dbipartite,

55

Dsquare and Dtriangular) are denser with more edges and with a compromise between
the length and the width for these last two DAGs.

Name description representation

Empty (Dempty) no edge

Complete (Dcomplete) maximum number of edges

Chain (Dchain) transitive reduction of the com-
plete DAG

Complete binary tree
(Dout-tree)

each non-leaf/non-root vertex has
a unique predecessor and two suc-
cessors

Comb (Dcomb) a chain where each non-leaf vertex
has an additional leaf successor

Complete bipartite
(Dbipartite)

n
2 vertices connected to n

2 vertices

Complete layer-by-
layer square (Dsquare)

similar to the complete bipartite
with

√
n layers of size

√
n

Complete layer-
by-layer triangular
(Dtriangular)

similar to the complete layer-by-
layer square but the size of each
new layer increases by 1

Table 4.1: Special DAGs. The number of vertices n is assumed to be a power of two
minus one for the tree, odd for the comb, even for the bipartite, a square for the
square and a triangular number for the triangular (one of the form 1+2+3+· · ·+k).

Table 4.2 illustrates the properties for these special DAGs. To discuss them,
we analyze the most extreme values for each property. They are reached with the
empty and complete DAGs except for the maximum standard deviations. Tables 4.3
and 4.4 synthesize the exact properties of the special DAGs. We publish all of
these tables in our research report [CSH19].

The maximum value for the shape standard deviation is n−1
2 (reached with an

empty DAG to which a single edge is added). When considering only transitive
reductions (i.e. when discarding the complete DAG), the maximum value for the
maximum degrees remains n with either a fork (a single source vertex is the

56

predecessor of all other vertices) or a join (the reversed fork). Proposition 4.1 states
that the maximum number of edges among all transitive reductions is

⌊
n2

4

⌋
(reached

with the bipartite DAG). As a corollary, the maximum value for the minimum
and mean degrees is n

2 . Studying the maximum achievable values for the degree
standard deviations is left to future work.

Proposition 4.1. The maximum number of edges among all transitive reductions
of size n is

⌊
n2

4

⌋
.

Proof. Transitive reductions do not contain triangle (i.e. clique of size three),
otherwise there is either a cycle or a redundant edge. By Mantel’s Theorem [Man07],
the maximum number of edges in a n-vertex triangle-free graph is

⌊
n2

4

⌋
. This is

the case for the complete bipartite DAG because the number of edges is n2

4 =
⌊
n2

4

⌋
when n is even and n2−1

4 =
⌊
n2

4

⌋
when n is odd.

The edge-related properties are considerably affected when considering the
transitive reduction of the complete DAG, i.e. the chain. Except for the stan-
dard deviations, all such properties are divided by O(n). Considering transitive
reductions can thus lead to different conclusions. The edge-related properties also
highlight the asymmetry of both trees through the difference between input and
output degrees.

Moreover, the density of a DAG appears to be quantified by the edge-related
properties (e.g. the complete DAG and last three DAGs). Small values for the
degree standard deviations characterize DAGs in which every vertex shares a similar
structure (e.g. the empty DAG, chain, trees and combs). The length and shape-
based properties show whether the DAG is short (empty and bipartite DAGs),
balanced (the trees, square triangular DAGs) or long (the complete DAG, chain and
combs). The maximum shape equals the width except for the reversed comb, which
confirms the results shown in Table 3.1 on the similarity between the maximum
shape and the width.

Finally, large values for the shape standard deviation characterize DAGs for
which the parallelism varies significantly. This is the case for the trees and triangular
DAG.

The analysis of these special DAGs provides some insight to select the relevant
properties. Each given DAG possesses 18 properties, to which we add 9 properties
by considering the transitive reduction and 7 properties by considering the reversal
(for a total of 34 properties, n excluded). We limit the scope of our study to discard
some properties for simplicity.

57

First, we assume that the generated DAGs are symmetrical and have similar
properties through the reversal operation (which is the case for all special DAGs
except for the trees and combs). This eliminates the 7 properties on the reversal.
Moreover, the following properties become redundant with degmax and degsd: degmax

in ,
degmax

out , degsd
in and degsd

out (which eliminates 8 additional properties). Second, we
assume that only transitive reductions are meaningful in the context of scheduling
without communication. This eliminates only 4 other properties because we keep
the number of edges in the initial DAG as it provides meaningful information on the
generation method. Moreover, we discard the mean degree because it is redundant
with n and m, and provides little insight. Similarly, the minimum degree is not
kept because it may be uninformative as it is low for source and sink vertices. We
also discard the width and maximum shape because the mean shape provides a
more global information. The mass already takes into account the minimum shape,
which we discard. The last two shape properties (sh1 and shk) provides only local
information and are thus not kept.

This leaves 8 properties. In particular, we measure the following edge-related
properties on the transitive reduction of any DAG: the number of edges, maximum
degree and degree standard deviation. Additionally, we keep the length, the mean
shape (even though it is redundant with n and len, it provides essential information
on the global parallelism of the DAG), the shape standard deviation and the mass.
The final property is the number of edges in the initial DAG.

Figure 4.1 shows the makespan obtained with three scheduling heuristics (de-
scribed in Section 5.2) with all special DAGs as the number of processors varies.
HEFT is always optimal because of the regularity of the DAG structures and
because costs are unitary. This is also the case for the other heuristics most of the
time. A zero mass, for long DAGs such as the complete DAG and chain, leads to
an even easier scheduling problem where the number of processors has no impact.
This confirms the discussion in Section 3.5 stating that low mass is characteristic
of easy instances.

For the other DAGs, increasing the number of processors decreases the makespan
until it reaches 1, 2, 7, 11, 15 and 50 for the empty DAG, bipartite DAG, trees,
square DAG, triangular DAG and combs, respectively. Note that the stairs for the
square are due to its layered structure. For the reversed comb, MinMin behaves
poorly because this simple heuristic does not take into account the critical path
and fill the processors with any of the initial source vertices.

Finally, the sub-optimal schedule produced by HCPT for the comb DAG is
because, contrarily to HEFT with its insertion mechanism, this heuristic does not
rely on backfilling and cannot schedule a task before any other already scheduled

58

DR
comb Dbipartite Dsquare Dtriangular

Dempty Dcomplete/Dchain Dout-tree/Din-tree Dcomb

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16

50

100

50

100

Processor number |P |

M
ak

es
pa

n

Heuristic HEFT MinMin HCPT

Figure 4.1: Makespan obtained with three heuristics (described in Section 5.2) on
all special DAGs of Section 4.1 for P |pj = 1, prec|Cmax. The number of vertices is
n = 128 for the empty DAG, complete and bipartite DAGs, n = 127 for the trees
and combs, n = 121 for the square DAG, and n = 120 for the triangular DAG
(1 + · · ·+ 15 = 120).

tasks.

4.2 Analysis of Existing Generation Methods

This section covers and analyzes existing generation methods: the classic Erdős-
Rényi algorithm; a uniform random generation method via a recursive approach;
a poset-based method; and, an ad-hoc method frequently used in the scheduling
literature.

59

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0.0

0.4

0.8

1.2

0
1
2
3
4
5

0
100
200
300
400

2.5
5.0
7.5

10.0
12.5

0
1000
2000
3000
4000
5000

0.0
0.3
0.6
0.9

0
25
50
75

100

0
10
20
30
40
50

Probability p

Va
lu

e

Figure 4.2: Properties of 300 DAGs of size n = 100 generated by the Erdős-Rényi
algorithm with probability p uniformly drawn between 0 and 1. The smoothed line
is obtained with a linear regression using a polynomial spline with 10 degrees of
freedom. The degree CV (Coefficient of Variation) is the ratio of the mean degree
to the degree standard deviation. Red lines correspond to formal results for the
length and mean shape (Proposition 4.2), the number of edges, and the number of
edges in the transitive reduction (Proposition 4.3).

4.2.1 Erdős-Rényi

This approach is based on the Erdős-Rényi algorithm [ER59] with parameter
p (noted G(n, p) in [Bol01]): an upper-triangular adjacency matrix is randomly
generated. For each pair of vertices (i, j) with i < j, there is an edge from i to
j with an independent probability p. The expected number of edges is therefore
pn(n−1)

2 .

The approach is not uniform (nor uniform up to isomorphism) for DAGs. For
instance, a generator that is uniform up to isomorphism picks up the empty DAG
with probability 1/6 (see Table 3.3). Moreover, a random generator that is uniform
over all the DAGs (see Section 3.4 for the distinction) generates the empty DAG
with probability 1/25. With p = 0.5, the Erdős-Rényi algorithm generates the
DAG with no edges with probability 1/8.

Figures 4.2 and 4.3 show the effect of both parameters, probability p and size
n, on the properties of the generated DAGs. For readability of both figures, each

60

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

0.4
0.6
0.8
1.0

0.25
0.50
0.75
1.00

0
250
500
750

1000

2.5
5.0
7.5

10.0
12.5

0

1000

2000

3000

0.2

0.4

0.6

0.8

0

20

40

60

3
4
5
6

Number of vertices n

Va
lu

e

Figure 4.3: Properties of 191 DAGs generated by the Erdős-Rényi algorithm with
probability p = 0.15 and for each size n between 10 and 200. The smoothed line
is obtained with a linear regression using a polynomial spline with 4 degrees of
freedom. Red lines correspond to formal results for the length and mean shape
(Proposition 4.2), the number of edges, and the number of edges in the transitive
reduction (Proposition 4.3).

61

standard deviation is replaced by a CV (Coefficient of Variation), which is the ratio
of the standard deviation to the mean. The most evident effect on both figures is
that the number of edges m increases linearly as p increases and quadratically as n
increases, which is a direct consequence of the algorithm and the expected number
of edges. Similarly, but with more variation, the length also increases as either
parameter increases. This effect also concerns the mean shape because shmean = n

len
(for instance, the length is close to 20 when p = 0.125, whereas the mean shape
is close to 5). Therefore, on Figure 4.2, the mean shape decreases as the inverse
function of the probability p because the length increases quasi-linearly with p.
This effect is consistent with Proposition 4.2 which suggests that the expected
mean shape is no greater than 1

p
.

Proposition 4.2. Let D be a DAG with n vertices randomly generated by the
Erdős-Rényi algorithm with parameter p. Denoting by (X1, . . . , Xk) its shape
decomposition, one has, for each 1 ≤ i ≤ k, E(|Xi|) ≤ 1

p
.

Proof. Let Mi,j be the upper triangular matrix corresponding to D. Let Yi =
∪j<iXj. If j ∈ Xi, then, for all r < j such that r /∈ Yi, Mr,j = 0. Therefore, since
the Mr,j are independent Bernoulli random variables of parameter p, P(j ∈ Xi) ≤
(1−p)j−|Yi|. Consequently, E(xi) ≤ 1+(1−p)+ . . .+(1−p)n−|Yi| ≤ 1

1−(1−p) = 1
p
.

A more remarkable effect can be seen for the number of edges in the transitive
reduction m(DT). This property shows that after a maximum around p = 0.10,
adding more edges with higher probabilities leads to redundant dependencies and
simplifies the structure of the DAG by making it longer. The same observation
can be done with degmax(DT). This is consistent with the fact that the algorithm
generates the empty DAG when p = 0 and the complete DAG when p = 1.
Proposition 4.3 also confirms this effect.

Proposition 4.3. Let D be a DAG with n vertices randomly generated by the Erdős-
Rényi Algorithm with parameter p. One has E(m(DT)) ≤ n−1

p
− 1−p2

p3 (1−(1−p2)n−1).

Proof. Let Mi,j be the upper triangular matrix corresponding to D.

A = {(i, j) | 1 ≤ i < j ≤ n, (i, j) ∈ E s.t. ∀i < r < j, (i, r) /∈ E or (r, j) /∈ E},

where E is the set of edges of D. By definition of DT , if (i, j) ∈ DT , then (i, j) ∈ A.
Consequently,

m(DT) ≤ |A|. (4.1)

62

Moreover, for every i < j, P((i, j) ∈ A) = P(Mi,j = 1 and ∀i < r < j, Mi,r =
0 or Mr,j = 0). Since the Mi,j are independent Bernoulli random variables,

P((i, j) ∈ A) = P(Mi,j = 1)Πj−1
r=i+1P(Mi,r = 0 or Mr,j = 0)

= pΠj−1
r=i+1(1− P(Mi,r = 1 and Mr,j = 1))

= pΠj−1
r=i+1(1− p2) = p(1− p2)j−i−1.

Let Ai,j be the Bernoulli random variable encoding that (i, j) ∈ A. One has
|A| = ∑

i<j Ai,j. Consequently,

E(|A|) =
n∑
j=2

j−1∑
i=1

E(Ai,j) =
n∑
j=2

j−1∑
i=1

p(1− p2)j−i−1

=
n∑
j=2

j−2∑
r=0

p(1− p2)r with r = j − i− 1

= p
n∑
j=2

1− (1− p2)j−1

1− (1− p2)

= 1
p

n∑
j=2

(1− (1− p2)j−1)

= n− 1
p
− 1
p

n∑
j=2

(1− p2)j−1

= n− 1
p
− 1− p2

p

n−2∑
j=0

(1− p2)j

= n− 1
p
− 1− p2

p

1− (1− p2)n−1

1− (1− p2)

= n− 1
p
− 1− p2

p3 (1− (1− p2)n−1).

One can conclude using Equation (4.1).

We rely on this apparent threshold around p = 10% to characterize three
probability intervals: below 5%, between 5% and 15%, and above 15%. DAGs
generated with a probability in the first interval are almost empty (hence a length
lower than 10 and a mean shape higher than 10) with few vertices having some edges
and many with no edges (hence the high degree standard deviation). For these
DAGs, most edges are not redundant. Given the high shape standard deviation,

63

many tasks must be available at first. As mentioned in Section 3.5, these DAGs lead
to a simplistic scheduling process that consists in starting each task on a critical
path as soon as possible and then distributing a large number of independent
tasks. Analogously, DAGs generated with probabilities p greater than 15% contain
many edges that simplify the DAG structure by increasing the length and thus
reducing the mean shape (recall that with a small width, the problem is easy, see
Section 3.5). At the same time, the mass decreases continuously, allowing the
problem to be divided into smaller problems. In particular, for probability p greater
than 90%, DAGs are close to the chain, which is trivial to schedule. Therefore,
most interesting DAGs are generated with probabilities between 5% and 15%.

As shown on Figure 4.3, the size of the DAG n has a simpler effect on the
number of edges in the transitive reduction m(DT) than the probability p: m(DT)
increases linearly with n (see Proposition 4.3). Moreover, the length increases with
n as the shape mean remains constant (see Proposition 4.2). As a consequence,
the mass decreases with n because the probability to obtain the value 1 increases
in a vector with constant mean but increasing size. It is thus advisable to lower
the probability with large sizes to maintain a constant mass.

The analysis of the Erdős-Rényi algorithm provides some insight on the desirable
characteristics for the purpose of comparing scheduling heuristics. The effect of
probability p illustrates the compromise between the length and mean shape to
avoid simplistic instances that are easily tackled (see Section 3.5). Moreover, the
maximum number of edges in the transitive reduction m(DT) is around 5

2n in
both figures. However, we know that reaching n2

4 is possible (Proposition 4.1)
and layer-by-layer DAGs (square and triangular) are in O(n 3

2). Therefore, the
Erdős-Rényi algorithm fails to generate DAGs with such large m(DT).

4.2.2 Uniform Random Generation

There are two main ways to provide a uniform random generator to uniformly
generate elements of Dn (uniform over all labelled DAGs, see Section 3.4). The first
one consists in using a classical recursive/counting approach [Rob73]. This counting
approach relies on recursively counting the number of DAGs with a given number
of source vertices, that is vertices with no in-going edges. See [KM15, Section 4] for
a complete algorithm that uniformly generates random DAGs with this approach.
The second one relies on MCMC approaches [MDB01, IC02,MP04]. We describe
below the recursive approach.

Let an = |Dn|, an,s be the number of DAGs of Dn having exactly s source

64

vertices (sh1 = s). It is proved in [Rob73] that:

an =
n∑
k=1

an,k and an,k =
(
n

k

)
bn,k with bn,k =

n−k∑
s=1

(2k − 1)s2k(n−k−s)an−k,s.

First, we compute all values ai and ai,k for 1 ≤ i ≤ n and 1 ≤ k ≤ i with
the initial conditions ai,i = 1 for 1 ≤ i ≤ n. Next, a shape is generated using
Algorithm 4.1 (RandomShape(n)), where ⊕ is the concatenation of vectors.

Algorithm 4.1: RandomShape(n)
Data: n, ai, ai,k for 1 ≤ i ≤ n and 1 ≤ k ≤ i.
Result: A shape with n elements.

1 Randomly generate s ∈ {1, n} with distribution P(s = j) = an,j
an

;
2 return [s]⊕ RandomShape(n− s);

Finally, Algorithm 4.2 (ShapeToDAG([s1, . . . , sk])) builds the final DAG by
using the shape vector. Each element of the shape vector represents a number of
source vertices. The algorithm starts by generating the vertices of the first element
of shape. Then, for the next element in the shape vector, it generates the vertices
and randomly connects each one to a random vertex from the previous level. Then,
it connects uniformly each vertex of the previous level to a vertex from the current
level. Then, each vertex in the current level is connected to a vertex from other
previous levels with probability 1

2 .

Figure 4.4 depicts the effect of the number of vertices on the selected DAG
properties. Three effects are noteworthy: the length closely follows the function 3n

2 ,
the number of edges m is almost indistinguishable from the function n2

4 and the
number of edges in the transitive reduction m(DT) closely follows 1.4n. The first
effect is consistent with a theoretical result stating that the expected number of
source vertices sh1 in a uniform DAG is asymptotically 1.488 as n → ∞ [Lis75].
This implies that the expected value for each shape element is close to this value
by construction of the shape. Proposition 4.7 confirms this expectation is no larger
than 2.25, which makes the DAG an easy instance for scheduling problems (see
Section 3.5). For the second effect, we know that the average number of edges in
a uniform DAG is indeed n2

4 [MDB01, Theorem 2]. Despite the large amount of
studies dedicated to formally analyzing uniform random DAGs, to the best of our
knowledge, the last effect has not been formally considered. We finally observe
that the mass decreases as the size n increases and it converges to zero when the
size n tends to infinity (This result is proved below).

65

Algorithm 4.2: ShapeToDAG([s1, . . . , sk])
Data: [s1, . . . , sk] a shape with n elements.
Result: A DAG with n vertices.

1 for i ∈ [1, . . . , k] do
2 for j ∈ [1, . . . , si] do
3 Generate a vertex v with level i;
4 if i > 1 then
5 Connect a random vertex from level i− 1 to vertex v;
6 Connect each vertex from previous level to vertex v with

probability
si−1

2si−1−1

2si−1−1−1
si−1−1 ;

7 Connect any other vertex from other previous levels to vertex v
with probability 0.5;

8 end
9 end

10 end
11 return the resulting DAG;

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

0.1
0.2
0.3
0.4

0.20
0.25
0.30
0.35
0.40
0.45

0

100

200

300

3
4
5
6
7

0
2500
5000
7500

10000

0.2

0.3

0.4

0.5

0

50

100

1.2
1.4
1.6

Number of vertices n

Va
lu

e

Figure 4.4: Properties of 191 DAGs generated by the recursive algorithm for each
size n between 10 and 200. The smoothed line is obtained with a linear regression
using a polynomial spline with 4 degrees of freedom. Red lines correspond to formal
results for the length and mean shape, and the number of edges (the bound from
Theorem 4.4 is discarded because it is too far).

66

As shown in Section 3.5, such instances can be decomposed into independent
problems and efficiently solved with a brute force strategy. This leads to a sub-
exponential generic time complexity with uniform instances. To obtain a similar
average number of edges m with the Erdős-Rényi algorithm, we must choose a
probability p = 0.5. We can compare both methods by considering p = 0.5 and
n = 100 on Figures 4.2 and 4.4, respectively. We observe that DAGs generated
by both methods share similar properties. This leads to similar conclusions as in
Section 4.2.1.

Theorem 4.4. Let D be a DAG uniformly and randomly generated among the
labeled DAGs with n vertices. One has P(massabs(D) ≥ log4(n)) → 0 when n →
+∞.

In order to prove Theorem 4.4, we will study probabilistic properties for DAGs.

Probabilistic properties The following represents the probabilistic properties
of the shape of a DAG D randomly generated with the uniform distribution. In
this context, we consider a random shape (x1, . . . , xk) generated by Algorithm 4.1
(RandomShape(n)), for a DAG with n vertices. Let Pα be the probability of event
parametrized by the number of vertices α (if we α is ommited, P denotes Pn). Let
Pα be the probability of event parameterized by the number of vertices α (if α is
ommited, P denotes Pn). Note that the length k of the shape is a random variable
and that the xi’s are dependent random variables. However, the distribution of xi
only depends on the sum si of the xj’s, with j < i. Formally, if si < n, P(xi = r |
x1, . . . , xi−1) = an−si,r

an−si
= P(xi = r | si) because the probability only depends on the

value of si. It follows that if si < n, P(xi = r | x1, . . . , xi−1) = Pn−si(x1 = 1).

Therefore, using also [Lis75, Proposition 3]: if n− si ≥ 2 and r ≥ 2,

P(xi ≤ r | si) ≥ 1− n− si − r
n− si + 1

2
(r + 1)! 2

r(r−1)
2

. (4.2)

It follows from Equation (4.2), for r ≥ 2 and if n− si ≥ 2,

P(xi > r | si) ≤
n− si − r
n− si + 1

2
(r + 1)! 2

r(r−1)
2
≤ 2

(r + 1)! 2
r(r−1)

2
.

The above equation still holds if n− si < 2 since the probability is null.

These upper bounds show that the probability of having large values in the
shape is very small. For instance, the probability that xi ≥ 9 is less than 10−11.

67

Moreover, since for r > 2, (r + 1)! ≥ 2r+1, one has for every r > 2,

P(xi > r | si) ≤ 2−
r(r+1)

2 .

It follows that
P(xi > r) ≤ 2−

r(r+1)
2 . (4.3)

The following lemma will be useful.

Lemma 4.5. One has, for every r > 2, n ≥ 2, P(max(xi) > r) ≤ n2−
r(r+1)

2 .

Proof.

P(max(xi) > r) =P(
⋃

1≤i≤k
{xi > r})

≤
k∑
i=1

P(xi > r)

≤
k∑
i=1

2−
r(r+1)

2 using Equation (4.3)

≤ n2−
r(r+1)

2

We can now claim an upper bound for the expected value of shmax(D) = max(xi).

Proposition 4.6. One has E(max(xi)) = O(log n).

Proof. Let h =
⌊√

6 log2 n
⌋

+ 1.

E(max(xi)) =
n∑
r=1

P(max(xi) = r).r

=
h∑
r=1

rP(max(xi) = r) +
n∑

r=h+1
rP(max(xi) = r)

≤
h∑
r=1

hP(max(xi) = r) +
n∑

r=h+1
rP(max(xi) = r)

≤ h2 +
n∑

r=h+1
rP(max(xi) ≥ r)

68

≤ h2 +
n∑

r=h+1
rP(max(xi > r − 1)

≤ h2 +
n∑

r=h+1
rn2−

r(r−1)
2

≤ h2 + n2−
h(h+1)

2

n∑
r=h+1

r

≤ 6 log2 n+ n32−
h(h+1)

2

Since r > 3 for n ≥ 2, we can apply Lemma 4.5 to eliminate the probability in
the second term. Note that 2−

h(h+1)
2 ≤ 2−h

2
2 ≤ 2−3 log2 n. Since n32−3 log2 n = 1, we

have E(max(xi)) ≤ 6 log2 n+ 1, proving the result.

It is proved in [Lis75] that E(x1) converges to a constant (approximately 1.488)
when n grows to infinity. One can easily obtain a bound for each level and each n.

Proposition 4.7. One has, for every n ≥ 2, every 1 ≤ i ≤ k, E(xi) ≤ 2 + 1
4 .

Proof.

E(xi) =
n∑
r=1

rP(xi = r) = P(xi = 1) + 2P(xi = 2) +
n∑
r=3

rP(xi = r)

Note that P(xi = 1) + P(xi = 2) ≤ 1.

E(xi) ≤ 2 +
n∑
r=3

r

2r(r+1)/2 ≤ 2 +
n∑
r=3

1
2r

r

2(r+1)/2

≤ 2 +
n∑
r=3

1
2r .

Since r ≥ 3 for n ≥ 2, we can apply Lemma 4.5 to eliminate the probability in the
last term. Since ∑n

r=1
1
2r ≤ 1, E(xi) ≤ 2 + 1

4 .

Previous results confirm experimental results in Section 4.2.2 and show that the
values of the shape are all quite small. In order to evaluate the mass of a random
DAG, we will now investigate the lengths of the bloc. More precisely, let

`max = max{` | ∃i s. t. (1− xi)(1− xi+1) . . . (1− xi+`−1) 6= 0},

69

the maximum length of a sequence of consecutive xi non equal to 1.

It is proved in [Lis75, page 407] that for every n > 0, P(x1 = 1) ≥ 1
96 + 17

8(n+1)
in a uniform labeled DAG with n vertices and that P(x1 = 1) ≤ 2

3 . Note that
practical evaluation leads to claim that the probability to have only a single vertex
in a level is greater than or equal to 1/3

Lemma 4.8. For every l > 0, P(`max ≥ `) ≤ n
(
1− 1

96

)`
.

Proof. Let xi = 0 when k < i ≤ n (recall that k is the length of the shape vector).
One has

P(`max ≥ `) = P(∪n−`+1
i=1 {xi > 1, . . . , xi+`−1 > 1})

≤
n−`+1∑
i=1

P(xi > 1, . . . , xi+`−1 > 1)

Now we claim that for every 0 < r ≤ `, every i ≤ n− `+ 1,

P(xi+r > 1 | xi > 1, . . . , xi+r−1 > 1) ≤ 1− 1
96 (4.4)

Let Hn = {2, . . . , n}. Each non zero xi is in Hn. Therefore,

P(xi+r > 1 | xi > 1, . . . , xi+r−1 > 1) =∑
λ∈Hr

n

P(xi+r > 1 | (xi, . . . , xi+r−1) = λ)P((xi, . . . , xi+r−1) = λ).

Now, P(xi+r > 1 | (xi, . . . , xi+r−1) = λ) = 0 if si+r ≥ n (for 1 < i ≤ n, si is the sum∑i−1
j=1 xi). Moreover, if si+r < n, P(xi+r > 1 | (xi, . . . , xi+r−1) = λ) = Pn−si+r(x1 >

1) < (1− 1
96) using Liskovets result (see also Page 67). Consequently,

P(xi+r > 1 | xi > 1, . . . , xi+r−1 > 1) ≤
(

1− 1
96

) ∑
λ∈Hr

n

P((xi, . . . , xi+r−1) = λ).

Since ∑λ∈Hr
n
P((xi, . . . , xi+r−1) = λ) ≤ 1, Equation (4.4) holds.

Moreover, we show that P(xi > 1) ≤ 1 − 1
96 for 1 ≤ i ≤ n. Liskovets result

directly gives that P(x1 > 1) < 1− 1
96 . For 1 < i ≤ n, P(xi > 1) = ∑n

m=1 P(si =
m)P(xi > 1|si = m) ≤ 1 − 1

96 because P(xi > 1|si = m) = 1 − P(xi = 1|si =
m)− P(xi = 0|si = m) and P(xi = 1|si = m) = Pn−m(x1 = 1) > 1

96 .

Therefore,

P(`max ≥ `) ≤
n−`+1∑
i=1

(
1− 1

96

)
P(xi+1 > 1, . . . , xi+`−1 > 1|xi > 1)

70

≤
n−`+1∑
i=1

(
1− 1

96

)2
P(xi+2 > 1, . . . , xi+`−1 > 1|xi > 1, xi+1 > 1)

≤
n−`+1∑
i=1

(
1− 1

96

)`

≤ n
(

1− 1
96

)`
,

proving the result.

One can now prove Theorem 4.4.

Proof of Theorem 4.4. Consider the event An = shmax(D) ≥ log2(n) and Bn =
`max(D) ≥ log2(n). Using Markov Inequality and Proposition 4.6, P(An) ≤ 1

logn .
Therefore, P(An)→ 0 when n→ +∞.

Moreover P(Bn) ≤ n(1 − α0)log2 n by Lemma 4.8. But log(n(1 − α0)log2 n) =
log n+ log(1− α0) log2 n. Since 0 < 1− α0 < 1, log n+ log(1− α0) log2 n→ −∞
when n→ +∞. Consequently n(1− α0)log2 n → 0 when n→ +∞.

Therefore P(An ∪Bn)→ 0 when n→ +∞.

4.2.3 Random Orders

The random orders method derives a DAG from randomly generated orders
[Win85]. The first step consists in building K random permutations of n vertices.
Each of these permutations represents a total order on the vertices, which is also
a complete DAG with a random labeling. Intersecting these complete DAGs by
keeping an edge iff it appears in all DAGs with the same direction leads to the
final DAG. This is a variant of the algorithm presented in [CMP+10] where the
transitive reduction in the last step is not performed because we already measure
the properties on the transitive reduction.

Figure 4.5 shows the effect of the number of permutations K on the DAG
properties with boxplots1. The extreme casesK = 1 andK →∞ are discarded from
the figure for clarity. They correspond to the chain and the empty DAG, respectively.
Recall that for the chain, m(DT) ≈ len = 100, m ≈ 5,000, shmean = degmax(DT) = 1
and the CVs and mass are zero. Similarly, for the empty DAG, len = mass = 1,
the mean shape is 100 and all the other properties are zero.

1Each boxplot consists of a bold line for the median, a box for the quartiles, whiskers that
extend at most to 1.5 times the interquartile range from the box and additional points for outliers.

71

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214

0.875
0.900
0.925
0.950
0.975
1.000

0

2

4

6

0
100
200
300
400
500

0
10
20
30
40

0

1000

2000

0.0
0.3
0.6
0.9

5
10
15
20

25
50
75

100

Number of permutations K

Va
lu

e

Figure 4.5: Properties of 420 DAGs of size n = 100 generated by the random
orders algorithm for each number of permutations K between 2 and 15 (30 DAGs
per boxplot). Red lines correspond to formal results for the length and mean shape.

The number of permutations quickly constrains the length. For instance, the
length is already between 15 and 20 when K = 2 and at most 5 when K ≥ 5.
A formal analysis suggests that the length is almost surely in O(n1/K) [Win85,
Theorem 3], which is consistent with our observation. The number of edges and the
maximum degree in the transitive reduction reach larger values than with previous
approaches for any size n (twice larger than with the Erdős-Rényi algorithm).
Moreover, the mass is always close to one for K > 1. Some specific values can
finally be explained. First, the maximum value for degCV(DT) is exactly 7 and
corresponds to DAGs of size n = 100 with a single edge (2 vertices have degree 1
and 98 others have 0). Also, the shape CV is at most 0.98 when the length is 2
(which frequently when K ≥ 10). This CV corresponds to a shape with values 99
and 1.

Figure 4.6 shows the effect of the number of vertices n for a fixed number of
permutations K. We selected K = 3 to have the maximum number of edges in the
transitive reduction. The sublinear relation between the length and size n is again
consistent with the previously cited result (i.e. O(n1/K)). Even though K = 3 is
small, the length is already low, leading to line patterns for both the length and
the mean shape. Note that the mass is frequently either 1 or almost 1 (i.e., 1− 1

k
),

which corresponds to cases where only the last value of the shape shk is one.

72

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

0.900
0.925
0.950
0.975
1.000

0.3
0.4
0.5
0.6

0

500

1000

10

20

30

0

2000

4000

0.25

0.50

0.75

5

10

10

20

30

Number of vertices n

Va
lu

e

Figure 4.6: Properties of 191 DAGs generated by the random orders algorithm
with K = 3 permutations and for each size n between 10 and 200. The smoothed
line is obtained with a linear regression using a polynomial spline with 4 degrees of
freedom. Red lines correspond to formal results for the length and mean shape.

The random orders method can generate denser DAGs than Erdős-Rényi or
uniform DAGs without the mass issue, but with difficult control over the compromise
between the length and the mean shape.

4.2.4 Layer-by-Layer

Many variants of the layer-by-layer principle have been used throughout the
literature to assess scheduling algorithms and are covered in Section 3.3.3. This
section analyzes the effect of three parameters (size n, number of layers k and
connectivity probability p) using the following variant inspired from [CMP+10,
GCJ17]. First, k vertices are affected to distinct layers to prevent any empty layer.
Then, the remaining n− k vertices are distributed to the layers using a balls into
bins approach (i.e. a uniformly random layer is selected for each vertex). For each
vertex not in the first layer, a random parent is selected among the vertices from
the previous layer to ensure that the layer of any vertex equals its depth (similar
to [DNSC09,GCJ17] and the recursive method in Section 4.2.2). Finally, random
edges are added by connecting any pair of vertices from distinct layers from top to
bottom with probability p.

73

This variant departs from [CMP+10,GCJ17] to ensure generated DAGs have a
length equal to k and mean shape equal to n/k. Moreover, with some parameter
values, this method produces some of the special DAGs covered in Section 4.1. It
generates the empty DAG when k = 1, whereas it generates the complete DAG
with k = n and p = 1. To interpret the number of edges depicted in Figures 4.7
to 4.9, we study the case (called regular) when all layers have the same size n/k,
which constitutes an approximation of the DAGs generated by the layer-by-layer
variant studied in this section. When p = 1, the DAG is the bipartite one for k = 2
and the square one for k =

√
n. In such DAGs and when n is a multiple of k,

the expected number of edges and the expected number of edges in the transitive
reduction are given by Proposition 4.9.
Proposition 4.9. In a regular layer-by-layer DAG with n vertices generated with
parameters p and k, such that k divides n and all layers have the same size, the
expected number of edges is

E(m) = n
(

1− 1
k

)(
p
(
n

2 − 1
)

+ 1
)

(4.5)

and the expected number of edges in the transitive reduction is

E(m(DT)) ≥ p(k − 1)
(
n

k

)2
+ (1− p)n

(
1− 1

k

)
. (4.6)

Proof. Let start with Equation 4.5. We analyze the average number of outgoing
edges for a vertex from layer j with 1 ≤ j < k. By construction, there is at least
one outgoing edge from this vertex to a successor of the next layer and there are
n(1− j

k
)− 1 remaining potential successors. Thus, the average number of outgoing

edges from this vertex is p(n(1− j
k
)− 1) + 1. It follows that the average number of

outgoing edges from all vertices of layer j is n
k
(p(n(1− j

k
)− 1) + 1) because each

layer is of size n/k. The average total number of edges is therefore:
k−1∑
j=1

n

k

(
p
(
n
(

1− j

k

)
− 1

)
+ 1

)
=

k−1∑
j=1

p
n2

k
− pn

2

k2 j − p
n

k
+ n

k

= (k − 1)
(
p
n2

k
− pn

k
+ n

k

)
− pn

2

k2

k−1∑
j=1

j

= n
(

1− 1
k

)(
pn− p+ 1− pn2

)
= n

(
1− 1

k

)(
p
(
n

2 − 1
)

+ 1
)
.

We follow a similar analysis for Equation 4.6. In the transitive reduction, any
edge from two successive layers is never removed. We focus on the average number

74

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

0 0.250.50.75 1 0 0.250.50.75 1 0 0.250.50.75 1 0 0.250.50.75 1

0.950
0.975
1.000
1.025
1.050

0.2
0.3
0.4
0.5
0.6

250
500
750

1000

10

20

30

0
1000
2000
3000
4000

0.1
0.2
0.3
0.4
0.5

9.950
9.975

10.000
10.025
10.050

9.950
9.975

10.000
10.025
10.050

Probability p

Va
lu

e

Figure 4.7: Properties of 300 DAGs of size n = 100 generated by the layer-by-layer
algorithm with k = 10 layers and probability p uniformly drawn between 0 and 1.
The smoothed line is obtained with a linear regression using a polynomial spline
with 4 degrees of freedom. Red lines correspond to formal results for the length
and mean shape, the number of edges (Equation 4.5), the number of edges in the
transitive reduction (Equation 4.6), and the mass.

of such edges as a lower bound to the average total number of edges in the transitive
reduction. By construction, there is again at least one outgoing edge from a vertex
of any of the first (k − 1) layers and there are n

k
− 1 remaining potential successors

in the next layer. It follows that the average number of outgoing edges from all
vertices of any of the first (k−1) layer is n

k
(p(n

k
−1) +1). The average total number

of edges between successive layers, a lower bound on the average number of edges
in the transitive reduction, is therefore:

(k − 1)n
k

(
p
(
n

k
− 1

)
+ 1

)
= (k − 1)pn

2

k2 − (k − 1)pn
k

+ (k − 1)n
k

= p(k − 1)
(
n

k

)2
+ (1− p)n

(
1− 1

k

)
.

Figure 4.7 shows the effect of the probability p. The analysis for regular layer-by-
layer DAGs closely approximates the results. The number of edges m is predicted
to increase linearly from 90 to 4,500 (Equation 4.5), while this quantity in the

75

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

1 10 100 1 10 100 1 10 100 1 10 100

0.00
0.25
0.50
0.75
1.00

0.1
0.2
0.3
0.4
0.5

0

500

1000

0
10
20
30
40
50

0

1000

2000

0.0

0.2

0.4

0.6

0
25
50
75

100

0
25
50
75

100

Number of layers k

Va
lu

e

Figure 4.8: Properties of 300 DAGs of size n = 100 generated by the layer-by-layer
algorithm with probability p = 0.5 and a number of layers k randomly drawn
between 1 and 100 (k = beU(log(1),log(101))c where U(a, b) is a uniform distribution
between a and b). The smoothed line is obtained with a linear regression using a
polynomial spline with 5 degrees of freedom. Red lines correspond to formal results
for the length and mean shape, the number of edges (Equation 4.5), the number of
edges in the transitive reduction (Equation 4.6), and the mass.

transitive reduction m(DT) is expected to increase from 90 to 900 (Equation 4.6).
Remark that this last property undergoes a steeper increase for probability p < 0.1
than for larger p. With many edges (p > 0.1), adding a new one is likely to
result into the introduction of redundant edges, which is not the case for p < 0.1.
More generally, the layered structure ensures a steady increase of m(DT) as the
probability p increases because any edge between two consecutive layers cannot
become redundant through the insertion of any edge. The mass is always close to
one because the probability to have a layer with one vertex is close to zero with
k = 10 layers.

Figure 4.8 represents the effect of the number of layers k. With regular layer-by-
layer DAGs, the expected number of edges E(m) goes from 0 to 2,524.5 for k = 1
to 100 (Equation 4.5), which is close to the results with our layer-by-layer variant.
The increase is steep because it is already 2,295 for k = 10, which is consistent with
Figure 4.8. The number of edges in the transitive reduction E(m(DT)) decreases
from an expected value of 1,275 to 99 as the number of layers goes from k = 2 to
100 (Equation 4.6). The expected value for k = 10 is 495 and is consistent with

76

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

0.7

0.8

0.9

1.0

0.2
0.3
0.4
0.5
0.6
0.7

0

500

1000

1500

10

20

30

0
2500
5000
7500

0.1
0.2
0.3
0.4
0.5
0.6

2.5
5.0
7.5

10.0
12.5

3
6
9

12

Number of vertices n

Va
lu

e

Figure 4.9: Properties of 191 DAGs generated by the layer-by-layer algorithm with
probability p = 0.5, k =

√
n (rounded to closest integer) layers and for each size n

between 10 and 200. The smoothed line is obtained with a linear regression using a
polynomial spline with 4 degrees of freedom. Red lines correspond to formal results
for the length and mean shape, the number of edges (Equation 4.5), the number of
edges in the transitive reduction (Equation 4.6), and the mass.

both Figures 4.7 and 4.8. Finally, the mass is unitary when there are at least two
balls in each bin. Since there is initially one ball per bin, this occurs when there is
at least one of the n− k additional balls in each of the k bin. To compute if there
are enough additional balls to have a unitary mass with probability greater than
0.5, we can use a bound for the coupon collector problem [LPW06, Proposition 2.4].
This occurs when dk log(2k)e+ k < n, which is the case for k ≤ 20 when n = 100.
This is consistent with Figure 4.8 where the mass becomes non-unitary around this
value.

When varying the number of vertices n, we expect the number of edges m to
increase quadratically from 20 to around 9,380 (Equation 4.5), which is consistent
with the results on Figure 4.9. Similarly, the number of edges in the transitive
reduction m(DT) is expected to increase quadratically from around 14.4 to around
1,420 (Equation 4.6).

In Figures 4.7 to 4.9, the length and mean shape show stable behavior consistent
with our expectation. In all figures, the shape CV can formally be analyzed using
the balls into bins model and we refer the interested reader to the specialized

77

literature [KSC78]. Finally, in the transitive reduction, the maximum degree
degmax(DT) has a similar trend as the number of edges m(DT).

To avoid non-unitary mass, the layer-by-layer method can be adapted to ensure
that each layer has two vertices initially. For instance, we can rely on a uniform
distribution between two and a maximum value, or on a balls into bins approach
with two balls per bin initially. It is also possible to use the method described
in Section 2.4 to have a uniform distribution of the vertices in the layers over all
possible distributions and with a constraint on the minimum value.

4.3 Conclusion

In this chapter, 8 DAG properties have been selected among the proposed ones.
It is noteworthy that the mass property leads to a sub-exponential generic time
complexity for a class of scheduling problems when DAGs are generated uniformly
at random. Finally, this chapter analyses, formally and empirically, existing random
generation methods.

In the next chapter, we study how the generation methods impact the perfor-
mance of scheduling heuristics with unitary costs.

78

DAG m degmax degmax
in degmax

out degmin degmean degsd degsd
in degsd

out

Dempty 0 0 0 0 0 0 0 0 0
Dcomplete

n2

2 n n n n n 0 n√
12

n√
12

Dchain n 2 1 1 1 2
√

2
n

1√
n

1√
n

Dout-tree
Dcomb

n 3 1 2 1 2 1 1√
n

1

Din-tree
DR

comb
n 3 2 1 1 2 1 1 1√

n

Dbipartite
n2

4
n
2

n
2

n
2

n
2

n
2 0 n

4
n
4

Dsquare n
√
n 2

√
n

√
n

√
n

√
n 2

√
n

√
2
√
n

√√
n

√√
n

Dtriangular
2n
√

2n
3 2

√
2n

√
2n

√
2n 2 4

3

√
2n 2

3
√
n

√
n

3

√
n

3

DAG len width shmax shmin shmean shsd sh1 shk mass
Dempty 1 n n n n 0 n n 1
Dcomplete
Dchain

n 1 1 1 1 0 1 1 0

Dout-tree log2(n) n
2

n
2 1 n

log2(n)
n√

3 log2(n)
1 n

2 1
Din-tree log2(n) n

2
n
2 1 n

log2(n)
n√

3 log2(n)
n
2 1 1

Dcomb
n
2

n
2 2 1 2

√
2
n

1 2 1
DR

comb
n
2

n
2

n
2 1 2

√
n
2

n
2 1 1

2
Dbipartite 2 n

2
n
2

n
2

n
2 0 n

2
n
2 1

Dsquare
√
n

√
n

√
n

√
n

√
n 0

√
n
√
n 1

Dtriangular
√

2n
√

2n
√

2n 1
√

n
2

√
n
6 1

√
2n 1

Table 4.2: Approximate properties of special DAGs (negligible terms are discarded
for clarity). More specifically, each approximate property approx(n) is related to
the exact one exact(n) such that limn→∞

approx(n)
exact(n) = 1. The exact properties are

given in Tables 4.3 and 4.4.

79

D
A

G
m

deg
m

ax
deg

m
ax

in
deg

m
ax

out
deg

m
in

deg
m

ean
deg

sd
deg

sdin
deg

sdout

D
em

pty
0

0
0

0
0

0
0

0
0

D
com

plete
n(n−

1)
2

n
−

1
n
−

1
n
−

1
n
−

1
n
−

1
0

√
n

2−
1

12

√
n

2−
1

12
D

chain
n
−

1
2

1
1

1
2(1
−

1n)
√

2n (1
−

2n)
√

1n (1
−

1n)
√

1n (1
−

1n)
D

out-tree
D

com
b

n
−

1
3

1
2

1
2(1
−

1n)
√

1
−

1n
−

4n
2 √

1n (1
−

1n)
√
n−

1 √
n+

1
n

D
in-tree

D
Rcom

b
n
−

1
3

2
1

1
2(1
−

1n)
√

1
−

1n
−

4n
2

√
n−

1 √
n+

1
n

√
1n (1
−

1n)

D
bipartite

n
24

n2
n2

n2
n2

n2
0

n4
n4

D
square

n(√
n
−

1)
2 √

n
√
n

√
n

√
n

2(√
n
−

1)
√

2 √
n
−

4
√
√
n
−

1
√
√
n
−

1

D
triangular

k(k+
1)(k−

1)
3

2(k
−

1)
k
−

1
k

2
43 (k
−

1)
√

23
(k
−

1)
√

(k−
1)(k+

2)
3 √

2

√
(k−

1)(k+
14)

3 √
2

Table
4.3:Edge-related

propertiesofspecialD
AG

s.For
D

triangular ,
k

isthe
length

ofthe
D

AG
(k
≈
√

2n
−

12
because

n
=

k(k+
1)

2
).

80

D
A

G
le

n
w

id
th

sh
m

ax
sh

m
in

sh
m

ea
n

sh
sd

sh
1

sh
k

m
as

s
D

em
pt

y
1

n
n

n
n

0
n

n
1

D
co

m
pl

et
e

D
ch

ai
n

n
1

1
1

1
0

1
1

0

D
ou

t-
tr

ee
lo

g 2
(n

+
1)

n
+

1
2

n
+

1
2

1
n

lo
g 2

(n
+

1)

√
n

lo
g 2

(n
+

1)

(n+
2

3
−

n
lo

g 2
(n

+
1)

)
1

n
+

1
2

1
−

1 n

D
in

-t
re

e
lo

g 2
(n

+
1)

n
+

1
2

n
+

1
2

1
n

lo
g 2

(n
+

1)

√
n

lo
g 2

(n
+

1)

(n+
2

3
−

n
lo

g 2
(n

+
1)

)
n

+
1

2
1

1
−

1 n

D
co

m
b

n
+

1
2

n
+

1
2

2
1

2(
1
−

1
n

+
1)

√ 2
n

+
1(

1
−

2
n

+
1)

1
2

1
−

1 n

D
R co

m
b

n
+

1
2

n
+

1
2

n
+

1
2

1
2(

1
−

1
n

+
1)

n
−

1
n

+
1√ n−

1
2

n
+

1
2

1
1 2

+
12
n

D
bi

pa
rt

it
e

2
n 2

n 2
n 2

n 2
0

n 2
n 2

1
D

sq
ua

re
√
n

√
n

√
n

√
n

√
n

0
√
n
√
n

1
D

tr
ia

ng
ul

ar
k

k
k

1
k
+

1
2

√ k2
−

1
12

1
k

1
−

1 n

Ta
bl

e
4.

4:
Ve

rt
ex

-r
el

at
ed

pr
op

er
tie

s
of

sp
ec

ia
lD

A
G

s.
Fo

r
D

tr
ia

ng
ul

ar
,k

is
th

e
le

ng
th

of
th

e
D

A
G

(k
≈
√

2n
−

1 2
be

ca
us

e
n

=
k
(k

+
1)

2
).

81

82

Chapter 5

Performance Evaluation of
Scheduling Algorithms for DAGs

Contents
5.1 Selected Scheduling Algorithms 84

5.2 Performance of Scheduling Algorithms Regarding Gen-
eration Methods . 84

5.3 Conclusion . 85

Generating random task graphs allows the assessment of existing scheduling
algorithms in different contexts. Numerous heuristics have been proposed for
the problem denoted P |pj = 1, prec|Cmax (homogeneous tasks and processors, see
Section 3.5) or generalizations of this problem. Such heuristics rely on different
principles. Some simple strategies, like MinMin, executes available tasks on the pro-
cessors that minimize completion time without considering precedence constraints.
In contrast, many heuristics sort tasks by criticality and schedule them with the
Earliest Finish Time (EFT) policy (e.g. HEFT and HCPT). Finally, other principles
may be also used: migration for BSA [KA00], clustering for DSC [YG94], etc. We
focus on the impact of generation methods on the performance of a selection of
three heuristics for this problem: MinMin, HEFT, and HCPT.

83

5.1 Selected Scheduling Algorithms

HEFT [THW02a] (Heterogeneous Earliest Finish Time) first computes the
upward rank of each task, which can be seen as a reverse depth (depth in the
reversal DAG). It then considers tasks by decreasing order of their upward ranks
and schedules them with the EFT policy. Backfilling is performed following an
insertion policy that tries to insert a task at the earliest idle time between two
already scheduled tasks on a processor if the slot is large enough to accommodate
it. The time complexity of this approach is dominated by the insertion policy in
O(n2). Numerous heuristics are equivalent to HEFT when tasks and processors
are homogeneous: PEFT [AB14], HLEFT [ACD74], and HBMCT [SZ04].

HCPT [HJ03] (Heterogeneous Critical Parent Trees) starts by considering any
task on a critical path by decreasing order of their depth. The objective is to
prioritize the ancestors of such tasks and in particular when their depths are large.
This process generates a priority list of tasks, and then schedules them with the
EFT policy. The time complexity is O(m+n log(n)+n|P |) where |P | is the number
of processors.

Finally, MinMin [IK77a, Algorithm D] [FGA+98, minmin] considers all available
tasks any time a processor becomes idle and execute available tasks on the processors
that minimize completion time. With homogeneous tasks and processors, this
algorithm is equivalent to MaxMin [IK77a, Algorithm E] [FGA+98, maxmin]. The
time complexity is O(m).

5.2 Performance of Scheduling Algorithms Re-
garding Generation Methods

Figure 5.1 shows the absolute difference between HEFT, HCPT and MinMin
for each generation method covered in Section 4.2. We can notice that despite
guaranteeing an unbiased generation, instances built with the recursive algorithm
fail to discriminate heuristics except when there are two processors. Recall that
the mean shape is close to 1.5 for such DAGs and few processors are sufficient to
obtain a makespan equal to the DAG length (i.e. an optimal schedule).

In contrast, instances built with the random orders algorithm lead to different
performance for each scheduling heuristic. However, this generation method has no
uniformity guarantee and its discrete parameter K limits the diversity of generated
DAGs.

84

Finally, the last two algorithms, Erdős-Rényi and layer-by-layer, fail to highlight a
significant difference between MinMin and HEFT even though the former scheduling
heuristic can be expected to be inferior to the latter as it discards the DAG structure.

To support these observations, we analyse below the maximum difference
between the makespan obtained with HEFT and the ones obtained with the other
two heuristics. Because it lacks any backfilling mechanism, HCPT performs worse
than HEFT with an instance composed of the following two elements:

• First, a chain of length k with |P | − 1 additional tasks with predecessor
the (k − 2)th task of the chain and successor the kth task of the chain.
Alternatively, this first element can be seen as a chain of length k − 3
connected to a fork-join with width |P |.

• The second element is a chain of length k − 1.

HCPT schedules the first element and then the second one afterward, leading to a
makespan of 2k − 1 whereas the optimal one is k by reversing the execution order
of the two elements. With n = 100 tasks and |P | ≤ 10, the difference from HEFT
with this instance is greater than or equal to 45.

Moreover, MinMin also performs worse with specific instances. Consider the ad-hoc
instances considered in [CMSV18] each consisting of one chain of length k and a
set of k(|P | − 1) independent tasks. Discarding the information about critical tasks
prevents MinMin from prioritizing tasks from the chain. With n = 100 tasks and
with |P | ≤ 10, the worst-case absolute difference can be greater than or equals to 9
(when MinMin completes first the independent before starting the chain).

While the previously described difficult instances (with a large length and width)
for HCPT rely on a specific weakness, it is interesting to analyze the properties of
the difficult instances for MinMin. Each DAG is characterized by a length equals
to len = n

|P | and a number of edges in the transitive reduction m(DT) = len − 1
(leading to a large width and a large shape standard deviation). With n = 100
tasks, with both HCPT and MinMin, the absolute difference from HEFT can be
greater than or equal to nine.

5.3 Conclusion

We study, in Section 5.2, the impact of four generation methods of DAGs
(Erdős-Rényi, uniform random generation, random orders, and layer-by-layer) on

85

three scheduling algorithms (HEFT, HCPT, MinMin). The experiments illustrate
the need for better generation methods that control multiple properties while
avoiding any generation bias.

In particular, this study highlights the need for a generator that uniformly
samples all existing DAGs having a given properties: size n, number of edges m
and/or m(DT), length and/or width, and with a unitary mass.

86

|P | = 2 |P | = 3 |P | = 5 |P | = 7 |P | = 10

Erd.
R

p=
0.05

Erd.
R

p=
0.15

Erd.
R

p=
0.4

U
niform

—
R

.ord.
K

=
2

R
.ord.
K

=
3

R
.ord.
K

=
5

Layered
p=

0.2
Layered
p=

0.5
Layered
p=

0.8

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

Absolute makespan difference

H
eu

ris
tic

Figure 5.1: Difference between the makespan obtained with any heuristic and the
best value among the three heuristics for each instance. Each boxplot represents
the results for 300 DAGs of size n = 100 built with one of the following methods:
the Erdős-Rényi algorithm (with probabilities 0.05, 0.15, and 0.4), the recursive
algorithm, the random orders algorithm (with a number of permutations K equals
to 2, 3, and 5), and the layer-by-layer algorithm (with a number of layers k = 10
and probabilities 0.2, 0.5, and 0.8). Costs are unitary and |P | represents the number
of processors.

87

88

Conclusion of Part II

Regarding the study of DAGs instances, our work contributes in three ways to
the final objective of uniformly generating random DAGs belonging to a category of
instances with desirable characteristics. At a first stage, we identify a list of 34 DAG
properties and focus on a selection of 8 such properties. Among selected properties,
the mass quantifies how much an instance can be decomposed into smaller ones.
Then, we formally analyze and empirically assess existing random generation
methods regarding the selected properties. We establish the sub-exponential
generic time complexity for decomposable scheduling problems with uniform DAGs.
Last, we study how the generation methods impact scheduling heuristics with
unitary costs and we highlight the need for a generator that uniformly samples all
existing DAGs having a given properties.

89

90

Part III

Cost matrices

91

Chapter 6

Motivation and Problem
Statement for Cost Matrices

Contents
6.1 Introduction . 93
6.2 Cost Matrices . 95

6.2.1 Definition . 95
6.2.2 Properties . 95
6.2.3 Existing Generation Methods of Cost Matrices 98

6.3 Cost Matrices as Contingency Tables 99
6.3.1 Contingency Tables . 99
6.3.2 Existing Generation Methods of Contingency Tables . . 100
6.3.3 Uniform MCMC Generation of Cost Matrices 101

6.4 Problem Statement and Contribution 103

6.1 Introduction

As mentioned before, random generation is sensitive to bias when it relies on
random instances with an uncontrolled distribution. For instance, among existing
generation methods of cost matrices, the shuffling method [CP17] starts by an
initial matrix in which rows are proportional to each other (leading to large row
and column correlations). Then, it proceeds to mix the values in the matrix such

93

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000
Iteration

Measure
row corr
col corr
CV

Figure 6.1: Cost Coefficient-of-Variation (ratio of standard deviation to mean) and
mean row and column correlations at each iteration of the shuffling method [CP17]
when generating a 100× 30 cost matrix. The shuffling method arbitrarily stops
after 3 000 iterations (represented by the black vertical line).

as to keep the same sum on each row and column. This ensures that the row and
column heterogeneity remains stable, while the correlation decreases. However,
this approach is heuristic and provides no formal guarantee on the distribution
of the instances. In addition, when the number of shuffles increases, the cost CV
increases, which leads to a difficult interpretability of results (see Figure 6.1).

In Section 6.2, we present cost matrices, their properties, and existing generation
methods. In Section 6.3, we present the notion of contingency tables. We also show
how we use the cost matrices as contingency tables and we describe the existing
random generation methods of contingency tables. Last, we propose an asymptotic
uniform random generation of cost matrices, which goes through two stages. The
first stage consists in generating a pair of vectors that represent the fixed sum of
the cost on each row and column of the cost matrix. The second stage is about
generating, first, an initial cost matrix with elements bounded by the values of
the pair of vectors generated in the first stage. Then, we generate randomly cost
matrices by using the MCMC approach: at each iteration, we shuffle some values
in the matrix, thus we obtain a new matrix. We move in the graph of the Markov
Chain until being close to the stationary distribution. Finally, in Section 6.4, we
define the studied problem in this part, which is ensuring a uniform distribution
among the random generated cost matrices that have a given heterogeneity, which
constrains the generation.

94

6.2 Cost Matrices

6.2.1 Definition

A cost matrix M is a matrix where the element of row i and column j, M(i, j),
represents the execution cost of task i on machine j.

Example. The following matrix represents a cost matrix where rows represent tasks

and columns represent machines M =

M1 M2


T1 5 2
T2 3 4
T3 4 4
T4 3 1
T5 2 3

. For example, M(5, 2) = 3

is the execution cost of task 5 on machine 2.

Note that it is possible to use rational values (instead of integers) by converting
them to integers when generating randomly cost matrices. Practically, this conver-
gence leads to large costs in the matrix, which causes a heavy calculation in terms
of costs random generation.

6.2.2 Properties

Multiple criteria characterize cost matrices. In this thesis, we focus only on the
study of the correlation and heterogeneity properties of cost matrices.

Armstrong [AJ97] was the first to introduce the concept of cost matrix het-
erogeneity. According to [AJ97], cost matrices are divided into four categories
depending on their heterogeneity properties regarding tasks and machines: low/low,
low/high, high/low, and high/high. For instance, high/low refers to high task
heterogeneity and low machine heterogeneity. Task heterogeneity is the degree
to which the execution times of different tasks vary for the same machine, i.e.
the variation along the same column in the cost matrix. Analogously, machine
heterogeneity is the degree to which the execution time of a given task varies for
different machines, i.e. the variation along the same row of a cost matrix.

The correlation is a measure of the linear dependence between two variables. It
has a value between +1, and -1, where +1 is total positive linear correlation, 0 is
no linear correlation, and -1 is total negative linear correlation. In our context, the

95

correlation represents the dependence between rows, columns, of cost matrices. It
also plays an important role as it corresponds to the machines being either related
or specialized, with some affinity between the tasks and the machines [CHP17].

The heterogeneity and the correlation properties can be quantified using statis-
tical measures. In the following, we mention the statistical measures used in our
context where M represents a cost matrix with n rows and m columns:

• The cost Coefficient-of-Variation (CV): a statistical measure of dispersion of
a probability distribution. It is the ratio of the standard deviation to the
mean. The cost Coefficient-of-Variation is an indicator of the overall variance
of the costs in the matrix.√

1
nm

∑n
i=1

∑m
j=1

(
M(i, j)/ N

nm
− 1

)2

• The mean of row Coefficients-of-Variation (mean row CV): a statistical
measure representing the mean of the Coefficient-of-Variation computed on
each row of the cost matrix. It indicates the task heterogeneity, i.e. the
variance of costs on the rows of the matrix.

∑n
i=1

√
1
m

∑m

j=1(M(i,j)−µ(i)
m

)2

nµ(i)

• The mean of column Coefficients-of-Variation (mean column CV): a statistical
measure representing the mean of the Coefficient-of-Variation computed on
each column of the cost matrix. It indicates the machine heterogeneity, i.e.
the variance of costs on the columns of the matrix.

∑m
j=1

√
1
n

∑n

i=1(M(i,j)− ν(j)
n

)2

mν(j)

• The Pearson’s χ2 statistic: a statistical test for independence between cate-
gorical variables. In our context, the Pearson’s χ2 assesses the proportionality
of the costs in the matrix.

∑n
i=1

(M(i,j)−µ(i)ν(j)/N)2

µ(i)ν(j)/N

• The mean of row correlations (mean row corr): as explained before, the
correlation is a measure of the dependence between two variables. The mean
of row correlations shows if rows of a cost matrix are proportional where
ρ(M(i, .),M(i′, .)) denotes the Pearson coefficient of correlation between rows
i and i′.

96

1
n(n−1)/2

∑n−1
i=1

∑n
i′=i+1 ρ(M(i, .),M(i′, .))

• The mean of column correlations (mean col corr): it shows if columns of a
cost matrix are proportional where ρ(M(., j),M(.j′)) denotes the Pearson
coefficient of correlation between columns j and j′.

1
m(m−1)/2

∑m−1
j=1

∑m
j′=j+1 ρ(M(., j),M(., j′))

Table 6.1 provides a list of the most used notations in this part, which concerns
cost matrices.

Symbol Definition
n Number of rows (tasks)
m Number of columns (machines)

M(i, j) Element on the ith row and jth column of matrix
M

N Sum of elements in a matrix (∑i,jM(i, j))

µ
Vector of size n. µ(i)

m
is the mean cost of the ith

task.

ν
Vector of size m. ν(j)

n
is the mean cost on the jth

machine.

Hα,β
N,n

Elements v ∈ Nn s.t. α ≤ v(i) ≤ β and∑n
i=1 v(i) = N .

hα,βN,n Cardinal of Hα,β
N,n.

d(A,B) Distance between matrices A and B.

ΩN
n,m(µ, ν) Set of contingency tables of sum N and sums of

rows and columns µ and ν.

α, β Scalar constraints on minimal/maximal values for
generated matrices.

α, β Vector constraints on minimal/maximal values for
generated matrices.

Amin, Bmax
Matrix constraints on minimal/maximal values
for generated matrices.

ΩN
n,m(µ, ν)[...] Subset of ΩN

n,m(µ, ν) min/max-constrained by [...].
f(·, ·) Random mapping for the Markov Chains.

Table 6.1: List of notations concerning the part of cost matrices.

97

6.2.3 Existing Generation Methods of Cost Matrices

Different methods of generating cost matrices exist. Some of these methods do
not provide formal guarantee on the distribution of the generated instances, while
other methods provide stronger formal guarantees. In the following, we briefly
describe the existing methods and we mention their strengths and weaknesses.

Range-Based, Coefficient-of-Variation-Based Two main methods have been
used in the literature: RB (range-based) and CVB (Coefficient-of-Variation-Based)
[ASM+00, ASMH00]. Both methods follow the same principle: n vectors of m
values are first generated using a uniform distribution for RB and a gamma
distribution for CVB; then, each row is multiplied by a random value using the
same distribution for each method. A third optional step consists in sorting each
row in a submatrix, which increases the correlation of the cost matrix. However,
these methods are difficult to use when generating a matrix with given heterogeneity
and low correlation. The produced cost matrices may not be representative of
realistic settings [CHP17,CP17].

Shuffling-Based, Noise-Based More recently, two additional methods have
been proposed for a better control of the heterogeneity: SB (shuffling-based) and
NB (noise-based) [CP17]. In the first step of SB, one column of size n and one
row of size m are generated using a gamma distribution. These two vectors are
then multiplied to obtain a n×m cost matrix with a strong correlation. To reduce
it, values are shuffled without changing the sum on any row or column: selecting
four elements on two distinct rows and columns (a submatrix of size 2× 2); and,
removing/adding the maximum quantity to two elements on the same diagonal
while adding/removing the same quantity to the last two elements on the other
diagonal. While NB shares the same first step, it introduces randomness in the
matrix by multiplying each element by a random variable with expected value one
instead of shuffling the elements. When the size of the matrix is large, SB and NB
provide some control on the heterogeneity but the distribution of the generated
instances is unknown.

Correlation Noise-Based, Combination-Based Finally, CNB (correlation
noise-based) and CB (combination-based) have been proposed to control the
correlation [CHP17]. CNB is a direct variation of CB to specify the correlation
more easily. CB combines correlated matrices with an uncorrelated one to obtain the
desired correlation. As for SB and NB, both methods have asymptotic guarantees

98

when the size of the matrix tends to infinity, but no guarantee on how instances
are distributed.

6.3 Cost Matrices as Contingency Tables

6.3.1 Contingency Tables

The term contingency table was first used in 1904 by Karl Pearson [Pea04].
Contingency tables (also called crosstabs or two-way tables) are an important data
structure in statistics for representing the distribution of multivariate data. A
contingency table is represented by a positive matrix with the sum of each row
(resp. column) displayed in an additional total row (resp. column).

A contingency table M of n rows and m columns is the matrix M(i, j) with row
sums µ, and column sums ν. We denote by ΩN

n,m(µ, ν) the set of n×m cotingency
tables M over N such that for every i ∈ {1, . . . , n} and every j ∈ {1, . . . ,m},

m∑
k=1

M(i, k) = µ(i) and
n∑
k=1

M(k, j) = ν(j). (6.1)

For example, the matrix

Mexa =

 2 3
1 6
5 9


is in Ω3,2(µexa, νexa), where µexa = (5, 7, 14) and νexa = (8, 18).

Contingency tables are used for testing properties such as, for instance, the
similarity between two rows or two columns [DG00a].

Example. Let us consider that the number of registered students in the master’s
degree in the departement of computer science in a university is 100. The program
offers 3 track options in the following areas: software engineering, networking
and cryptology. The following matrix represents the contingency table showed in
Table 6.2.

60 15 25()90 55 12 23
10 5 3 2

99

Software Engineering (60) Networking (15) Cryptology (25)
Male (90) 55 12 23

Female (10) 5 3 2

Table 6.2: Example of contingency table representing the distribution of 100
registered students in the master’s degree in the departement of computer science.

The first row represents males while the second one represents females. Columns
represent tracks. The first column is for software engineering, the second one is
for networking and the last one is for cryptology. For example, we see that the
overall number of students in the track of software engineering (first column) is 60
of which 55 males and 5 females.

Since contingency tables are important data structures, we study in this work
cost matrices as contingency tables, i.e. each cost matrix corresponds to a con-
tingency table in order to control the execution costs of tasks and the machines
speeds.

6.3.2 Existing Generation Methods of Contingency Tables

In the literature, MCMC is the most used approach to generate randomly
contingency tables (see for example [CDHL05,DS+98,Fis12]). The first step is to
generate a positive row vector r (resp. column c)representing the sums on rows
and columns. Second, generate an initial positive contingency table (initial state
of the MCMC) M(i, j), where the sum of elements of row Mi and column Mj is
equal to the element ri (resp. cj). To determine the next state M ′(i, j), we select,
for instance, uniformly at random two distinct rows (resp. columns) from M(i, j).
Thus, we obtain a 2× 2 submatrix subM such as:

subM =
(
M(i1, j1) M(i1, j2)
M(i2, j1) M(i2, j2)

)
.

Then, we add for instance
(

+1 −1
−1 +1

)
to subM (taking into consideration that

subM remains positive). By making this change, we point out that M ′(i, j) differs
from M(i, j) in four entries. Moving enough in the Markov Chain leads to a
contingency table that will almost be independent of the initial one.

100

6.3.3 Uniform MCMC Generation of Cost Matrices

Let n be the number of tasks, m the number of machines, and N the total sum
of costs. To use MCMC with contingency tables, we need 2 vectors. Thus, the
uniform random generation of cost matrices is based on two steps:

1. The first step in order to generate cost matrices is to fix the average cost of
each task and the average speed of each machine. Since n and m are fixed,
instead of generating cost averages, we generate the sum of the cost on each
row (average cost of each task) and column (average speed of each machine),
which is related. Thus, we generate randomly and uniformly two vectors
µ ∈ Nn and ν ∈ Nm satisfying:

n∑
i=1

µ(i) =
m∑
j=1

ν(j) = N, (6.2)

This random generation can be performed uniformly using the recursive
Algorithm 2.3 (Generate Sequences).

2. Next, the cost matrices can be generated using MCMC approach, and re-
lying on contingency tables as explained in Section 6.3.2. From an initial
contingency table (which represents the initial cost matrix), a random walk
in the graph of contingency tables is performed. Recall that according to
Theorem 2.10 if the Markov Chain associated with this walk is ergodic and
symmetric, then the unique stationary distribution exists and is uniform.
Walking enough steps in the graph of the Markov Chain leads to be in any
state with the same probability.

The following example illustrates the uniform random generation of 2× 3 cost
matrices.

Example. An illustration example of the uniformity of the random generation of
cost matrices is depicted on Fig 6.2. This example is the same one described on
Figure 2.7 where each state of the Markov Chain is represented by a cost matrix.
The sum of each row is three and the sum of each column is two. As proved before,
when the number of steps n grows, the distribution of cost matrices is close to a
uniform distribution and the probability to be in each state tends to 1

7 .

We see that we can generate uniformly at random both vectors, µ representing
the sums on rows (resp. ν on columns) using the recursive Algorithm 2.3 (Generate
Sequences). Then, based on these vectors, we can generate uniformly at random

101

1 1 1
1 1 1

2 0 1
0 2 1

1 0 2
1 2 0

2 1 0
0 1 2

1 2 0
1 0 2

0 1 2
2 1 00 2 1

2 0 1

1
2

1
2

1
2

1
2

1
2

1
2

Figure 6.2: Example of the underlying graph of a Markov Chain when the sum
of each row is 3 and the sum of each column is 2. Unless otherwise stated, each
transition probability is 1

6 .

cost matrices using MCMC approach. But, we have to note that the distribution of
the set of cost matrices generated using the vectors µ and ν (initial cost matrices)
is not uniform. The following example will clarify this non-uniformity.

Example. We want to generate a 2× 2 matrix with an overall sum of elements
N = 4. As we see in Table 6.3, there are 35 distinct matrices such that there is a
unique matrix with all coefficients 1; four matrices with coefficients 0 and 4; six
matrices with coefficients 0 and 2; and, twelve matrices with coefficients 0, 1 and 3;
twelve matrices with coefficients 0, 1 and 2.

The probability to sample uniformly at random any matrix from the distribution
of the 35 matrices is 1

35 .

Now, to generate with our approach, using a contingency table, the matrix(
1 1
1 1

)
, we have 5 different representations for a row and column sum vectors:

{(1, 3), (3, 1), (2, 2), (4, 0), (0, 4)}

The row and column sum vector representing the matrix
(

1 1
1 1

)
is (2,2). Thus,

the probability to sample the vector (2,2) over the set of the 5 different vectors is

102

1
5 . Therefore, the probability to sample the row sum and the column sum vectors is
1
5 ×

1
5 .

The probability to sample uniformly at random a matrix with a sum of 2 on
each row and column is 1

3 , since we have just 3 matrices with a sum of 2 on each

row and column:
(

1 1
1 1

)
,
(

2 0
0 2

)
, and

(
0 2
2 0

)
.

Therefore, the probability to sample the matrix
(

1 1
1 1

)
, after sampling the row

sum and column sum vectors (2,2), is 1
5 ×

1
5 ×

1
3 = 1

75 , which is not equal to the
computed probability (1

35) for the uniform distribution. Consequently, we can notice
that the distribution of the matrices generated using the vectors is not uniform.

(
1 1
1 1

)
(

4 0
0 0

) (
0 4
0 0

) (
0 0
4 0

) (
0 0
0 4

)
(

2 2
0 0

) (
0 0
2 2

) (
0 2
0 2

) (
2 0
2 0

) (
2 0
0 2

) (
0 2
2 0

)
(

3 1
0 0

) (
0 0
3 1

) (
3 0
1 0

) (
0 3
0 1

) (
3 0
0 1

) (
0 3
1 0

)
(

1 3
0 0

) (
0 0
1 3

) (
1 0
3 0

) (
0 1
0 3

) (
1 0
0 3

) (
0 1
3 0

)
(

2 1
1 0

) (
2 1
0 1

) (
2 0
1 1

) (
0 2
1 1

) (
0 1
2 1

) (
0 1
1 2

)
(

1 2
1 0

) (
1 2
0 1

) (
1 1
2 0

) (
1 1
0 2

) (
1 0
2 1

) (
1 0
1 2

)

Table 6.3: All 35 representations of the 4 coefficients for a 2× 2 matrix with sum
of elements N = 4.

6.4 Problem Statement and Contribution

As we see in Section 6.2, among existing random generators of cost matrices, we
do not have methods with a strong formal guarantee on the distribution of the cost
matrices with a control on their heterogeneity. Thus, it remains an open problem

103

to ensure a uniform distribution among the set of cost matrices that have a given
task and machine heterogeneity.

Our objective is to control the row and column heterogeneity of cost matrices,
while limiting the overall variance and ensuring a uniform distribution among the
set of possible instances.

In order to control the heterogeneity, we show how to restrict this uniform
random generation to interesting classes of vectors, and we extend known results
for contingency tables to contingency tables with min/max constraints. We use
MCMC to generate contingency tables with min/max constraints and we empirically
evaluate the mixing time (the mixing time is the number of steps to walk in order
to be close to the uniform distribution), using statistical estimations. Note that
obtaining theoretical bound on mixing time is a very hard theoretical problem,
still open in the general case of unconstrained contingency tables. Finally, we use
our random generation process to evaluate the performance of different scheduling
algorithms.

104

Chapter 7

Constrained Random Generation
of Cost Matrices

Contents
7.1 Symmetric Ergodic Markov Chain 106

7.2 Rapidly Mixing Chains 112

7.3 Initial Matrices Generation 113

7.4 Mixing Time Estimation 116

7.5 Analysis of Constraints Effect on Cost Matrix Prop-
erties . 119

7.6 Conclusion . 120

In this chapter, Section 7.1 is dedicated to building symmetric and ergodic
Markov Chains for the problem of generating uniformly at random cost matrices
with min/max constraints. First, we define the set of all possible cost matrices with
given row and column sums. Second, Markov Chains are proposed using a dedicated
random mapping and are proved to be symmetric and ergodic. In Section 7.2, we
use classical techniques to transform the Markov Chains into another symmetric
ergodic MC mixing faster (i.e. the number of steps required to be close to the
uniform distribution is smaller). In Section 7.3, we define three extremely different
starting cost matrices. In Section 7.4, we graphically estimate the mixing time of
the Markov Chain for different sizes of cost matrices. Then, in Section 7.5, we
analyze the effect of the added constraints on the properties of the generated cost
matrices. Finally, Section 7.6 is dedicated to concluding the chapter.

105

7.1 Symmetric Ergodic Markov Chain

As we show in Section 6.2.3, we can generate cost matrices by, first generating
two vectors, then applying MCMC approach. In general, the graph of the Markov
Chain is not explicitly built and neighborhood relation is defined by a random
mapping on each state.

Constraining Contingency Tables We also introduce min/max constraints
in order to control the variance of the value. We denote by ΩN

n,m(µ, ν) the set of
positive n×m matrices M over N as in Section 6.3.1.

The first restriction consists in having a global minimal value α and a maximal
global value β on the considered matrices. Let α, β be positive integers such that
α < β. We denote by ΩN

n,m(µ, ν)[α, β] the subset of ΩN
n,m(µ, ν) of matrices M such

that for all i, j, α ≤M(i, j) ≤ β.

Consider the matrix
Mexa =

(
2 1 5
3 6 9

)
.

For example, Mexa ∈ Ω2,3(µexa, νexa)[0, 10].

Moreover, according to Equation (6.1), one has

ΩN
n,m(µ, ν) = ΩN

n,m(µ, ν)[0, N]
= ΩN

n,m(µ, ν)[0,min(max1≤k≤m µ(k),
max1≤k≤n ν(k))].

(7.1)

Now we consider min/max constraints on each row and each column. Let
αc, βc ∈ Nm and αr, βr ∈ Nn, such that for all 1 ≤ i ≤ n, all 1 ≤ j ≤ m,
αr(i) < βr(i) and αc(j) < βc(j). We denote by ΩN

n,m(µ, ν)[αc, βc, αr, βr] the subset
of ΩN

n,m(µ, ν) of matrices M satisfying: for all i, j, αc(j) ≤ M(i, j) ≤ βc(j) and
αr(i) ≤M(i, j) ≤ βr(i).

For instance,

Mexa ∈ Ω2,3(µexa, νexa)[(1, 1, 5), (4, 8, 9), (0, 1), (5, 9)].

Using Equation (6.1), one has for every α, β ∈ N,

ΩN
n,m(µ, ν)[α, β] = ΩN

n,m(µ, ν)[(α, . . . , α),
(β, . . . , β), (α, . . . , α), (β, . . . , β)]. (7.2)

106

To finish, the more general constrained case, where min/max are defined
for each element of the matrices. Let Amin and Bmax be two n × m matrices
of positive integers such that for all i, j Amin(i, j) < Bmax(i, j). We denote by
ΩN
n,m(µ, ν)[Amin, Bmax] the subset of ΩN

n,m(µ, ν) of matrices M such that for all i, j,
Amin(i, j) ≤M(i, j) ≤ Bmax(i, j).

For instance, one has Mexa ∈ ΩN
n,m(µ, ν)[Aexa, Bexa], with

Aexa =
(

1 1 4
0 0 5

)
and Bexa =

(
5 4 6
4 7 12

)
.

For every αc, βc ∈ Nm, αr, βr ∈ Nn, one has

ΩN
n,m(µ, ν)[αc, βc, αr, βr] = ΩN

n,m(µ, ν)[A,B], (7.3)

where A(i, j) = max{αc(j), αr(i)} and B(i, j) = min{βc(j), βr(i)}.

Symmetry and Ergodicity of Markov Chains As explained before, the
random generation process is based on symmetric ergodic Markov Chains. The
following is dedicated to define such chains on state spaces of the form ΩN

n,m(µ, ν),
ΩN
n,m(µ, ν)[α, β], ΩN

n,m(µ, ν)[αc, βc, αr, βr] and ΩN
n,m(µ, ν)[Amin, Bmax].

According to Equations (7.1), (7.2) and (7.3), it suffices to work on ΩN
n,m(µ, ν)

[Amin, Bmax]. To simplify the notation, let us denote by Ω the set ΩN
n,m(µ, ν)

[Amin, Bmax].

For any 1 ≤ i0, i1 ≤ n, any 1 ≤ j0, j1,≤ m, such that i0 6= i1 and j0 6= j1,
we denote by ∆i0,i1,j0,j1 the n × m matrix defined by ∆(i0, j0) = ∆(i1, j1) = 1,
∆(i0, j1) = ∆(i1, j0) = −1, and ∆(i, j) = 0 otherwise. For instance, for n = 3 and
m = 4 one has

∆1,2,1,3 =

 1 0 -1 0
-1 0 1 0
0 0 0 0

 .
Tuple (i0, j0, i1, j1) is used as follow to shuffle a cost matrix and to transit from

one state to another in the Markov Chain: ∆i0,i1,j0,j1 is added to the current matrix,
which preserves the row and column sums.

Formally, let K = {(i0, j0, i1, j1) | i0 6= i1, j0 6= j1, 1 ≤ i0, i1 ≤ n, 1 ≤ j0, j1 ≤ m}
be the set of all possible tuples. Let f be the mapping function from Ω ×K to
Ω defined by f(M, (i0, j0, i1, j1)) = M + ∆(i0,j0,i1,j1) if M + ∆(i0,j0,i1,j1) ∈ Ω and M

107

otherwise. The mapping is called at each iteration, changing the instance until it
is sufficiently shuffled.

We consider the Markov chainM defined on Ω by the random mapping f(·, UK),
where UK is a uniform random variable on K.

The following result gives the properties of the Markov Chain and is an extension
of a similar result [DC95] on ΩN

n,m(µ, ν). The difficulty is to prove that the underlying
graph is strongly connected since the constraints are hindering the moves.

Theorem 7.1. The Markov Chain M is symmetric and ergodic.

The proof of Theorem 7.1 is based on Lemma 7.3 and 7.4.

Definition 7.2. Let A and B be two elements of Ω. A finite sequence u1 =
(i1, j1), . . . , ur = (ir, jr) of pairs of indices in {1, . . . , n} × {1, . . . ,m} is called a
stair sequence for A and B if it satisfies the following properties:

1. r ≥ 4,

2. if k 6= `, then uk 6= u`,

3. if 1 ≤ k < r is even, then jk = jk+1 and A(ik, jk) < B(ik, jk),

4. if 1 ≤ k < r is odd, then ik = ik+1 and A(ik, jk) > B(ik, jk),

5. r is even and jr = j1,

Consider, for instance, the matrices

A1 =


3 0 0 0 7
7 4 0 0 0
0 7 5 0 0
0 0 7 6 0
0 0 0 7 5

B1 =


2 1 0 0 7
7 3 1 0 0
0 7 4 1 0
0 0 7 5 1
1 0 0 7 4

 .

The sequence (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4),
(4, 5), (5, 5), (5, 1) is a stair sequence for A1 and B1.

Lemma 7.3. Let A et B be two distinct elements of Ω. There exists a stair
sequence for A and B.

108

Proof. The proof is by construction. Since A and B are distinct, using the con-
straints on the sums of rows and columns, there exists a pair of indices u1 = (i1, j1)
such that A(i1, j1) > B(i1, j1). Now using the sum constraint on row i1, there
exists j2 such that B(i1, j2) < A(i1, j2). Set u2 = (i1, j2). Similarly, using the
sum constraint on column j2, there exists i3 6= i1 such that A(i3, j2) > B(i3, j2).
Set u3 = (i3, j2). Similarly, by the constraint on row i3, there exists j4 such that
A(i3, j4) < B(i3, j4). At this step, u1, u2, u3, u4 are pairwise distinct.

If j4 = j1, then u1, u2, u3, u4 is a stair sequence for A and B. Otherwise, by
the j4-column constraint, there exists i5 such that B(i5, j4) > A(i5, j4). Now, one
can continue the construction until the first step r we get either ir = is or jr = js
with s < r (this step exists since the set of possible indexes is finite). Note that we
consider the smallest s for which this is case.

• If ir = is, s < r, the sequence u1, u2, . . . , ur satisfies the conditions 2., 3.
and 4. of Definition 7.2. Moreover both r and s are odd. The sequence
us, . . . , ur satisfies the Conditions 2. to 5. of Definition 7.2. Since r > s and
by construction, r− s > 4. If follows that the sequence ur, ur−1, . . . , us+1 is a
stair sequence for A and B.

• If jr = js, then both r and s are even. The sequence us+1, . . . , ur satifies the
Conditions 1. to 5. of Definition 7.2 and is therefore a stair sequence for A
and B.

Given two n×m matrices A and B, the distance from A to B, denoted d(A,B),
is defined by:

d(A,B) =
n∑
i=1

m∑
j=1
|A(i, j)−B(i, j)|.

Lemma 7.4. Let A et B be two distinct elements of Ω. There exists C ∈ Ω such that
d(C,B) < d(A,B) and tuples t1, . . . , tk such that C = f(. . . f(f(A, t1), t2) . . . , tk)
and for every ` ≤ k, f(. . . f(f(A, t1), t2) . . . , t`) ∈ Ω.

Proof. By Lemma 7.3, there exists a stair sequence u1, . . . , ur for A and B. Without
loss of generality (using a permutation of rows and columns) we may assume that
u2k+1 = (k, k) and u2k = (k, k + 1), for k < r

2 and ur = (r2 , 1).

To illustrate the proof, we introduce some r
2×

r
2 matrix M over {+,−,min,max},

called difference matrices, such that: if M(i, j) = +, then A(i, j) > B(i, j); if

109

M(i, j) = −, then A(i, j) < B(i, j); if M(i, j) = min, then A(i, j) = Amin(i, j); and
if M(i, j) = max, then A(i, j) = Bmax(i, j).

Considering for instance the matrices A1 and B1 defined before, with a global
minimum equal to 0 and global maximum equal to 7, a difference matrix is


+ − min min max

max + − min min
min max + − min
min min max + −
− min min max +

 .

Note that it may exist several difference matrices since, for instance, some + might
be replaced by a max.

The proof investigates several cases:

Case 0: If r = 4, then k = 1 and t1 = (2, 1, 1, 2) works. Indeed, since Bmax(i, j) ≥
A(1, 1) > B(1, 1) ≥ Amin(i, j), one has Amin(1, 1) ≤ A(1, 1)− 1 < Bmax(1, 1).
Similarly, Amin(2, 1) < A(2, 1) + 1 ≤ Bmax(2, 1), Amin(1, 2) < A(1, 2) +
1 ≤ Bmax(1, 2) and Amin(2, 2) ≤ A(2, 2) − 1 < Bmax(2, 2). It follows that
C = f(A, (2, 1, 1, 2)) ∈ Ω and d(C,B) = d(A,B)− 4 < d(A,B). In this case,
the following matrix is a difference matrix:(

+ −
− +

)
.

Case 1: If Case 0 does not hold and if A(1, r2) < Bmax(1, r2), then, k = 1 and t1 =
(1, r2 ,

r
2 , 1) works. One has d(f(A, t1), B) = d(A,B)− 4 if A(1, r2) < B(1, r2),

and d(f(A, t1), B) = d(A,B)− 2 otherwise. In this case, the following matrix
is a difference matrix:

+ − A(1, r2)
+ −

+ −
+ .. .

. . . −
+ −

− +


.

Case 2: If Cases 0 to 1 do not hold. On one hand, A(1, r2) = Bmax(1, r2) because
Case 1 does not hold. On the other hand, r > 4 because Case 0 does not hold.

110

Thus, i0 = max{i | 1 ≤ i ≤ r
2 − 2 and A(i, r2) > Amin(i, r2)} exists (it is at

least the case for i = 1 because A(1, r2) > Amin(1, r2)). In this case t1 = (i0, i0 +
1, i0 + 1, r2), t2 = (i0 + 1, i0 + 2, i0 + 2, r2), . . . , t r

2−1−i0 = (r2 − 2, r2 − 1, r2 − 1, r2)
works because A(i, r2) = Amin(i, r2) < Bmax(i, r2) for i0 < i ≤ r

2 − 2. With C =
f(. . . f(f(A, t1), t2) . . . , t r

2−1−i0), one has d(C,B) = d(A,B)−2×(r2−i0−1)−2
if A(i0, r2) > B(i0, r2), and d(C,B) = d(A,B) − 2 × (r2 − i0 − 1) otherwise.
Moreover, for every ` ≤ r

2 − 2 − i0, f(. . . f(f(A, t1), t2) . . . , t`) ∈ Ω. In this
case, the following matrix is a difference matrix:



+ − max
+ −

+ − A(i0, r2)
+ . . .

. . . −
+ −

− +


.

One can now prove Theorem 7.1.

Proof. If A = f(B, (i0, j0, i1, j1)), then B = f(A, (i1, j1, i0, j0)), proving that the
Markov Chain is symmetric.

Let A0 ∈ Ω. We define the sequence (Ak)k≥0 by Ak+1 = f(Ak, (1, 1, 2, 2)).
The sequence Ak(1, 2) is decreasing and positive. Therefore, one can define the
smallest index k0 such that Ak0(1, 2) = Ak0+1(1, 2). By construction, one also has
Ak0 = Ak0+1. It follows that the Markov Chain is aperiodic.

Since d is a distance, irreducibility is a direct consequence of Lemma 7.4.

Consider the two matrices A1 and B1 defined previously with Bmax containing
only the value 7. Case 4 of the proof can be applied. One has t1 = (1, 2, 2, 5) and

f(A1, t1) = A2 =


3 1 0 0 6
7 3 0 0 1
0 7 5 0 0
0 0 7 6 0
0 0 0 7 5

 .

111

Next, t2 = (2, 3, 3, 5) and

f(A2, t2) = A3 =


3 1 0 0 6
7 3 1 0 0
0 7 4 0 1
0 0 7 6 0
0 0 0 7 5

 .

We have t3 = (3, 4, 4, 5) and

f(A3, t3) = A4 =


3 1 0 0 6
7 3 1 0 0
0 7 4 1 0
0 0 7 5 1
0 0 0 7 5

 .

Finally, f(A4, (5, 1, 1, 5)) = B1 (Case 0): there is a path from A1 to B1 and, since
the chain is symmetric, from B1 to A1.

7.2 Rapidly Mixing Chains

The Markov Chain can be classically modified in order to mix faster: once an
element of K is picked up, rather than changing each element by +1 or −1, each
one is modified by +a or −a, where a is picked uniformly in order to respect the
constraints of the matrix which will not increase a lot the cost of a movement in
the Markov Chain.

This approach, used for instance in [DG00b], allows moving faster, particularly
for large N ’s.

Moving in ΩN
n,m(µ, ν), from matrix M , while (i0, j0, i1, j1) has been picked in

K, a is uniformly chosen such that a ≤ min{M(i0, j1),M(i1, j0)} in order to keep
positive elements in the matrix. It can be generalized for constrained Markov
Chains.

For instance, in ΩN
n,m(µ, ν)[α, β], one has

a ≤ min{α−M(i0, j0), α−M(i1, j1),
M(i0, j1)− β,M(i1, j0)− β}.

This approach is used in the experiments described in Sections 7.4 and 7.5.

112

7.3 Initial Matrices Generation

The Markov Chain described in Section 7.1 requires an initial matrix. Before
reaching the stationary distribution, the Markov Chain iterates on matrices with
similar characteristics to the initial one. However, after enough steps, the Markov
Chain eventually converges. We are interested in generating several initial matrices
with different characteristics to assess this number of steps. Formally, given µ,
ν, Amin and Bmax, how to find an element of ΩN

n,m(µ, ν)[Amin, Bmax] to start the
Markov Chain?

We identify three different kinds of matrices for which we propose simple
generation methods:

• a homogeneous matrix with smallest cost CV (Algorithm 7.1 (Homogeneous
Matrices))

• a heterogeneous matrix with largest cost CV (Algorithm 7.2 (Heterogeneous
Matrices))

• a proportional matrix with smallest Pearson’s χ2 statistic (Algorithm 7.3
(Proportional Matrices))

Ideally, initial matrices could be generated with an exact method (e.g. with an
integer programming solver). However, the optimality is not critical to assess the
time to converge and Algorithms 7.1 (Homogeneous Matrices) to 7.3 (Proportional
Matrices) have low costs but are not guaranteed.

Moreover, the convergence may be the longest when the search space is the
largest, which occurs when the space is the least constrained. Thus, Algorithms 7.1
(Homogeneous Matrices) to 7.3 (Proportional Matrices) are used to study con-
vergence without constraints Amin and Bmax. Only Algorithm 7.3 (Proportional
Matrices) supports such constraints and is used to study their effects in Section 7.5.

Algorithm 7.1 (Homogeneous Matrices) starts with an empty matrix. Then, it
iteratively selects the row (or column) with largest remaining sum. Each element
of the row (or column) is assigned to the highest average value. This avoids large
elements in the matrix and leads to low variance. Algorithm 7.2 (Heterogeneous
Matrices) also starts with an empty matrix. Then, it iteratively assigns the element
that can be assigned to the largest possible value. This leads to a few large
elements in the final matrix. Algorithm 7.3 (Proportional Matrices) starts with
the rounding of the rational proportional matrix (i.e. the matrix in which costs

113

Algorithm 7.1: Homogeneous Matrices
Input: Integer vectors µ, ν
Output: M ∈ ΩN

n,m(µ, ν)
1 begin
2 M ← {0}1≤i≤n,1≤j≤m
3 while ∑n

i=1
∑n
j=1M(i, j) 6= N do

4 if max(µ(i))/m ≥ max(ν(j))/n then
5 i← arg maxi µ(i)
6 sort j1, . . . , jm such that ν(jk) ≤ ν(jk+1)
7 for jk ∈ {j1 . . . , jm} do
8 d← min(ν(jk), µ(i)

m−k+1)
9 M(i, jk)←M(i, jk) + d

10 µ(i)← µ(i)− d
11 ν(jk)← ν(jk)− d
12 else
13 perform the same operation on the transpose matrix (swapping µ

and ν)

14 return M

Algorithm 7.2: Heterogeneous Matrices
Input: Integer vectors µ, ν
Output: M ∈ ΩN

n,m(µ, ν)
1 begin
2 M ← {0}1≤i≤n,1≤j≤m
3 while ∑n

i=1
∑n
j=1M(i, j) 6= N do

4 D ← min(µT · 1m, 1Tn · ν)
5 imax, jmax ← arg maxi,j D(i, j)
6 d← D(imax, jmax)
7 M(imax, jmax)← d
8 µ(imax)← µ(imax)− d
9 ν(jmax)← ν(jmax)− d

10 return M

114

Algorithm 7.3: Proportional Matrices
Input: Integer vectors µ, ν, integer matrices Amin, Bmax
Output: M ∈ ΩN

n,m(µ, ν)[Amin, Bmax]
1 begin
2 M ← max(Amin,min(bµT × ν/N + 1/2c, Bmax))
3 µ(i)← µ(i)−∑m

j=1M(i, j) for 1 ≤ i ≤ n

4 ν(j)← ν(j)−∑n
i=1M(i, j) for 1 ≤ j ≤ m

5 while ∑m
j=1M(i, j) 6= µ(i) or ∑n

i=1M(i, j) 6= ν(j) do
6 choose random i and j
7 d← 0
8 if M(i, j) < Bmax(i, j), (µ(i) > 0 or ν(j) > 0) then d← 1
9 if M(i, j) > Amin(i, j), (µ(i) < 0 or ν(j) < 0) then d← −1

10 M(i, j)←M(i, j) + d
11 µ(i)← µ(i)− d
12 ν(j)← ν(j)− d
13 return M

are proportional to the corresponding row and column costs) and proceeds to few
random transformations to meet the constraints.

In Algorithms 7.1 (Homogeneous Matrices) and 7.2 (Heterogeneous Matrices),
the argmin and argmax can return any index arbitrarily in case of several minimums.
In Algorithm 7.2 (Heterogeneous Matrices), 1n denotes a vector of n ones. Finally,
in Algorithms 7.2 (Heterogeneous Matrices) and 7.3 (Proportional Matrices), µT
denotes the transpose of µ, which is a column vector.

Example. In this example, we illustrate 3 different cost matrices generated using
Algorithms 7.1 (Homogeneous Matrices) to 7.3 (Proportional Matrices), where the
vector (25, 35, 45, 55) represents the sum of each row and column.

Homogeneous Heterogeneous Proportional
0 0 7 18
0 10 12 13
11 11 12 11
14 14 14 13




25 0 0 0
0 35 0 0
0 0 45 0
0 0 0 55




4 5 7 9
5 8 10 12
7 10 13 15
9 12 15 19


115

7.4 Mixing Time Estimation

We can now generate a matrix that is uniformly distributed when the Markov
Chain is run long enough to reach a stationary distribution. The mixing time
tmix(ε) of an ergodic Markov Chain is the number of steps required in order to
be ε-close to the stationary distribution(see 2.13). Computing theoretical bounds
on mixing time is a hard theoretical problem. For two-rowed contingency tables,
tmix(ε) is in O(n2 log(N

ε
)) [DG00b] and it is conjectured that it is in Θ(n2 log(n

ε
)).

The results are extended and improved in [CDG+06] for a fixed number of rows.
As far as we know, there are no known results for the general case. A frequently
used approach to tackle the convergence problem (when to stop mixing the chain)
consists in using a statistical test. Starting from a different point of the state
space (ideally well spread in the graph), we perform several random walks and we
monitor numerical properties in order to observe the convergence. For our work,
used parameters are defined in Section 6.2.2.

We first illustrate the approach with the example of a 20 × 10 matrix with
N = 4 000 with given µ and ν. Starting from three different matrices as defined in
Section 7.3, we monitor the measures defined in Section 6.2.2 in order to observe
the convergence (here, approximately after 6 000 iterations). It is, for instance,
depicted in Figure 7.1 for the cost CV (diagrams for other measures are similar
and seems to converge faster).

Next, for every measure, many walks with different µ and ν (but same N)
are performed and the value of the measures is reported in boxplots1 for several
walking steps, as in Figure 7.2 for the CV, allowing to improve the confidence
in the hypothesis of convergence. One can observe that the three boxplots are
synchronized after about 6 000 iterations.

These experiments have been performed for several matrices sizes, several
µ, ν generations (with different min/max constraints), and different N . The
experimental results seem to point out that the convergence speed is independent of
N (assuming that N is large enough to avoid bottleneck issues) and independent of
the min/max constraints on µ and ν. Estimated convergence time (iteration steps)
obtained manually with a visual method (stability for the measures) for several
sizes of matrices are reported in Table 7.1. A quick analysis that is not provided
in this manuscript shows that the mixing time seems to be linearly bounded by
nm log3(nm). We did not prove this mixing time, this is only an observation and
may depends on constraints and sampling rejection.

1Each boxplot consists of a bold line for the median, a box for the quartiles, whiskers that
extend at most to 1.5 times the interquartile range from the box and additional points for outliers.

116

row corr col corr

col CV χ2

CV row CV

0 2000 4000 6000 8000 0 2000 4000 6000 8000

1.0

1.5

2.0

2.5

3.0

0

10000

20000

30000

0.00

0.25

0.50

0.75

2

3

4

1.0

1.5

2.0

2.5

3.0

3.5

0.00

0.25

0.50

0.75

Iteration

Va
lu

e

Homo-
geneous

Hetero-
geneous

Propor-
tional

Figure 7.1: Evolution of the measures for a 20× 10 matrix, with N = 20×n×m =
4 000. Initial row and column sums (µ and ν) are generated with Algorithm 2.3
(Generate Sequences) without constraints (i.e. α = 0 and β = N). Initial matrices
are generated with Algorithms 7.1 (Homogeneous Matrices) to 7.3 (Proportional
Matrices) without constraints.

117

row corr col corr

col CV χ2

CV row CV
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00 0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

1

2

3

0

10000

20000

30000

0.00

0.25

0.50

0.75

1.00

1

2

3

4

5

1

2

3

4

0.00

0.25

0.50

0.75

1.00

Iteration

C
V

Homo-
geneous

Hetero-
geneous

Propor-
tional

Figure 7.2: Evolution of the measures for matrices with the same characteristics as
in Figure 7.1. Each boxplot corresponds to 100 matrices, each based on distinct
row and column sums. When a row or column sum is zero, all undefined measures
are discarded.

118

(n,m) mixing time
(5, 5) 200
(5, 10) 600
(5, 15) 1 000
(10, 10) 2 500
(10, 15) 3 500
(10, 20) 6 000
(25, 10) 7 500
(15, 20) 8 000
(15, 25) 13 000
(20, 25) 30 000
(20, 30) 50 000
(40, 20) 65 000
(40, 40) 210 000

Table 7.1: Estimated mixing times with a visual method and with varying number
of rows n and columns m.

7.5 Analysis of Constraints Effect on Cost Ma-
trix Properties

This section studies the effect of the constraints on the matrix properties. The
section relies on matrices of size 20× 10 with non-zero cost. This is achieved by
using α ≥ m for µ, α ≥ n for ν and a matrix Amin containing only ones.

Section 7.4 provides estimation for the convergence time of the Markov Chain
depending on the size of the cost matrix in the absence of constraints on the vectors
(α and β) and on the matrix (Amin and Bmax). We assume that the convergence
time does not strongly depend on the constraints. Moreover, this section relies on an
inflated number of iterations, i.e. 50 000, for safety, starting from the proportional
matrix (Algorithm 7.3 (Proportional Matrices)).

We want to estimate how the constraints on the µ and ν random generation
influence the matrix properties. Figure 7.3 reports the results. Each row is
dedicated to a property from the CV to the column correlation that are presented
in Section 6.2.2, with the inclusion of the µ and ν CV.

On the left of the plot, only ν is constrained. In the center only µ and
in the right, both µ and ν. Constraints are parametrized by a coefficient in
λ ∈ {0, 0.2, . . . , 1}: intuitively, large values of λ impose strong constraints and limit

119

the CV. The influence of λ on the CV of µ and/or ν is consistent with Figure 2.10
in Section 2.4.1: the value decreases from about 20 to 0 as the constraint increases.

The heterogeneity of a cost matrix can be defined in two ways [CP17]: using
either the CV of µ and ν, or using the mean row and column CV. Although
constraining µ and ν limits the former kind of heterogeneity, the latter only
decreases marginally. To limit the heterogeneity according to both definitions, it is
necessary to constraint the matrix with Amin and Bmax.

Figure 7.4 shows the effect of these additional constraints when the cost matrix
cannot deviate too much from an ideal fractional proportional matrix. In particular,
µ (resp. ν) is constrained with a parameter λr (resp. λc) such that α = bλrN

n
c (resp.

bλcN
m
c) and β = d N

λrn
e (resp. d N

λcm
e). The constraint on the matrix is performed

with the maximum λ of these two parameters. This idea is to ensure the matrix is
similar to a proportional matrix M with M(i, j) = µ(i)×ν(j)

N
when any constraint

on the row or column sum vectors is large. Note that when λ = 1, Amin = Bmax
and Theorem 7.1 does guarantee the convergence of the MCMC. This is however
not an issue because there is a single possible cost matrix in each of these cases.

The figure shows that the cost CV decreases as both λr and λc increase.
Moreover, as for the µ (resp. ν) CV, the mean column (resp. row) CV decreases
as λr (resp. λc) increases. We can thus control the row and column heterogeneity
with λr and λc, respectively. Note that when reducing the heterogeneity, row or
column correlations tend to increase. In particular, large values for λr/λc lead to
jumps from small correlations when λr = λc to large row (resp. column) correlation
when λr = 1 (resp. λc = 1).

7.6 Conclusion

We propose a Markov Chain Monte Carlo approach to draw random cost
matrices from a uniform distribution: at each iteration, some costs in the matrix
are shuffled such that the sum of the costs on each row and column remains
unchanged. By proving its ergodicity and symmetry, we ensure that its stationary
distribution is uniform over the set of feasible instances.

Finally, experiments show that constraining the matrix generation with a
minimum and maximum matrices leads to large correlations. For instance, with
λr = 0.9 and λc = 1, we can generate a 20× 10 matrix with a high correlation on
columns.

In Chapter 8, we analyze the performance of three scheduling algorithms using

120

the generated constrained cost matrices and we prove that our experiments are
consistent with previous studies in the literature.

121

µ ν µν

C
V

row
C

V
colC

V
µ

C
V

ν
C

V
χ

2
row

corr
colcorr

0
0.

2
0.

4
0.

6
0.

8 1 0
0.

2
0.

4
0.

6
0.

8 1 0
0.

2
0.

4
0.

6
0.

8 1

1.0
1.5
2.0
2.5
3.0

0.75
1.00
1.25
1.50

0.9
1.2
1.5
1.8

0.0
0.5
1.0

0.0
0.5
1.0
1.5

150020002500300035004000

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6

Coefficient λ

Figure 7.3: Values for the measures presented in Section 6.2.2 and the cost sums
(µ and ν) CV after 50 000 iterations starting with a proportional 20× 10 matrix
generated with Algorithm 7.3 (Proportional Matrices) with different constraints
on µ and/or ν (either ones on the first two columns, both on the third) and with
N = 20 × n × m = 4 000. The constraint on µ (resp. ν) is parameterized by a
coefficient 0 ≤ λ ≤ 1 such that α = bλN

n
c (resp. bλN

m
c) and β = d N

λn
e (resp. d N

λm
e),

with the convention 1/0 = +∞. Each matrix contains non-zero costs. Each boxplot
corresponds to 30 matrices, each based on distinct row and column sums.

122

λc = 0 λc = 0.2 λc = 0.4 λc = 0.6 λc = 0.8 λc = 0.9 λc = 0.95 λc = 1

λ
r =

0
λ
r =

0.2
λ
r =

0.4
λ
r =

0.6
λ
r =

0.8
λ
r =

0.9
λ
r =

0.95
λ
r =

1

0.00.51.01.5 0.00.51.01.5 0.00.51.01.5 0.00.51.01.5 0.00.51.01.5 0.00.51.01.5 0.00.51.01.5 0.00.51.01.5

col corr
row corr

col CV
row CV

CV

col corr
row corr

col CV
row CV

CV

col corr
row corr

col CV
row CV

CV

col corr
row corr

col CV
row CV

CV

col corr
row corr

col CV
row CV

CV

col corr
row corr

col CV
row CV

CV

col corr
row corr

col CV
row CV

CV

col corr
row corr

col CV
row CV

CV

Figure 7.4: Values for the measures presented in Section 6.2.2 and the cost sums
(µ and ν) CV after 50 000 iterations starting with a proportional 20× 10 matrix
generated with Algorithm 7.3 (Proportional Matrices) with different constraints on
µ, ν and the matrix, and with N = 20×n×m = 4 000. The constraint on µ (resp. ν)
is parameterized by a coefficient 0 ≤ λr ≤ 1 (resp. 0 ≤ λc ≤ 1) such that α = bλrN

n
c

(resp. bλcN
m
c) and β = d N

λrn
e (resp. d N

λcm
e), with the convention 1/0 = +∞. The

constraint on the matrix is parameterized by a coefficient λ = max(λr, λc) such
that Amin = bλMc and Bmax = dM/λe with M(i, j) = µ(i)×ν(j)

N
. Each matrix

contains non-zero costs. Each boxplot corresponds to 30 matrices, each based on
distinct row and column sums. When λr = λc = 1, all costs are identical and the
correlations are discarded.

123

124

Chapter 8

Performance Evaluation of
Scheduling Algorithms for Cost
Matrices

Contents
8.1 Selected Scheduling Algorithms 125

8.2 Analysis of Constraints Effect on Scheduling Algorithms127

8.3 Conclusion . 128

In this chapter, Section 8.1 is dedicated to the description of three selected
scheduling algorithms: EFT, HLPT, and BalSuff. In Section 8.2, we analyze the
effect of the constraints (used for the generation of cost matrices) on each of the
selected scheduling algorithm defined in Section 8.1. Section 8.3 is dedicated to
the conclusion of this chapter.

8.1 Selected Scheduling Algorithms

Generating random matrices with parameterized constraints allows the assess-
ment of existing scheduling algorithms in different contexts. In our context, we
focus on the impact of cost matrix properties on the performance of three heuristics
for the problem denoted R||Cmax. Recall that the problem R||Cmax consists in
assigning a set of independent tasks to machines such that the makespan (i.e.
maximum completion time on any machine) is minimized. The cost of any task

125

on any machine is provided by the cost matrix and the completion time on any
machine is the sum of the costs of all tasks assigned to it.

The heuristics we consider constitute a diversified selection, in terms of principle
and cost, among the numerous heuristics that have been proposed for the problem
R||Cmax:

EFT Earliest Finish Time (EFT) [IK77b] is a classic scheduling algorithm, which
iteratively assigns each task by selecting the task (among the set of ready tasks) that
finishes the earliest on any machine. Thus, EFT has a heterogeneous mechanism.
The time complexity of EFT is O(n2m).

HLPT Heterogeneous Longest Processing Time (HLPT) [CP17] is an extension
of LPT [Gra69] and variant of HEFT [THW02b]. HLPT performs as the original
LPT when machines are uniform. It differs from EFT by considering first the
largest tasks instead of the smallest ones based on their minimum cost on any
machine. HLPT starts by sorting tasks in decreasing order of their processing
times. Then, it tries to find the best allocation for each task depending on the
machine load starting from the longest task, with a minimum completion time in
O(nm+ n log(n)) steps.

BalSuff Sufferage with machine balancing (BalSuff) is an efficient algorithm
[CP17] that balances each task to minimize the makespan. The BalSuff algorithm
uses the sufferage matrix in which each value is the difference between the processing
time on the current machine and the minimum processing time of the task. The
higher the value the more the task will suffer from being mapped on this machine.
A null value indicates that the task does not suffer, i.e. the machine processes the
task in shortest time. First, BalSuff starts by mapping tasks on their best machine.
Second, BalSuff tries to rearrange the tasks in a way such that the makespan is
improved and the chosen task is the one that suffers the least from moving. The
algorithm stops when there is no more tasks on the most loaded machine that could
benefit from moving. Note that if two tasks have the same sufferage value on the
most loaded machine the tasks are considered in an arbitrary order (order of the
task list of the machine). The algorithm BalSuff has an unknown complexity.

126

8.2 Analysis of Constraints Effect on Scheduling
Algorithms

We selected 25 scenarios that represent different combinations in terms of pa-
rameters, heterogeneity and correlation. The constraint on µ and ν is parameterized
by a coefficient 0 ≤ λ ≤ 1 such that α = bλN

n
c (resp. bλN

m
c) and β = d N

λn
e (resp.

d N
λm
e). Coefficients λr and λc ∈ {0, 0.25, 0.5, 0.75, 1}.

We have extreme cases when λr (resp. λc) is 0 or 1:

• λr = λc = 0 represents the most heterogeneity and the least correlation.

• λr = 0 and λc = 1 represents a high task and low machine heterogeneity, a
low task and high machine correlation.

• λr = 1 and λc = 0 represents a low task and high machine heterogeneity, a
high task and low machine correlation.

• λr = λc = 1 represents identical costs for all tasks on any machine.

Figure 8.1 depicts the results: for each scenario and matrix, the makespan for
each heuristic was divided by the best one among the three. All heuristics exhibit
different behaviors that depend on the scenario.

BalSuff outperforms both competitors except in the top right of the figure.
Moreover, when λr = 0.75 and λc = 1, BalSuff is even the worst in the median case.
HLPT is always the best when λc = 1. In this case, each task has similar costs
on any machine. This corresponds to the problem P ||Cmax, for which LPT, the
algorithm from which is inspired HLPT, was proposed with an approximation ratio
of 4/3 [Gra69]. The near-optimality of HLPT for instances with large row and
low column heterogeneity is consistent with the literature [CP17]. Finally, EFT
performs poorly except when λr = 1. In this case, tasks are identical and it relates
to the problem Q|pi = 1|Cmax. These instances, for which the row correlation is high
and column correlation is low, have been shown to be the easiest for EFT [CHP17].
The case λr = λc = 1 leads to identical costs for which all heuristics perform the
same.

127

8.3 Conclusion

To see the impact of the properties of the random cost matrices generated
with constraints (for the problem R||Cmax), we evaluate the performance of three
different scheduling algorithms: EFT, HLPT, and BalSuff.

As we see in Section 8.2, we selected 25 different senarios in terms of correlation
and heterogeneity. In some cases, one of the scheduling algorithms outperforms the
others, and in other cases its performance changes. The performance of BalSuff
and HLPT tends to be the same. When the constraint on columns is very high,
HLPT outperforms Balsuff in some cases, and in the rest it is the opposite.

This result is interesting. It shows that the scheduling algorithms, that we
tested, have effectively varied relative performance depending on parameters used
to constrain the random generation of cost matrices.

128

λc = 0 λc = 0.25 λc = 0.5 λc = 0.75 λc = 1

λ
r =

0
λ
r =

0.25
λ
r =

0.5
λ
r =

0.75
λ
r =

1

Ba
lS

uff

H
LP

T

EF
T

Ba
lS

uff

H
LP

T

EF
T

Ba
lS

uff

H
LP

T

EF
T

Ba
lS

uff

H
LP

T

EF
T

Ba
lS

uff

H
LP

T

EF
T

1.00
1.25
1.50
1.75
2.00

1.00
1.25
1.50
1.75
2.00

1.00
1.25
1.50
1.75
2.00

1.00
1.25
1.50
1.75
2.00

1.00
1.25
1.50
1.75
2.00

R
el

at
iv

e
m

ak
es

pa
n

Figure 8.1: Ratios of makespan to the best among BalSuff, HLPT and EFT. The cost
sums (µ and ν) CV after 50 000 iterations starting with a proportional 20×10 matrix
generated with Algorithm 7.3 (Proportional Matrices) with different constraints
on µ and ν and with N = 20 × n ×m = 4 000. The constraint on µ (resp. ν) is
parameterized by a coefficient 0 ≤ λr ≤ 1 (resp. 0 ≤ λc ≤ 1) such that α = bλrN

n
c

(resp. bλcN
m
c) and β = d N

λrn
e (resp. d N

λcm
e), with the convention 1/0 = +∞. The

constraint on the matrix is parameterized by a coefficient λ = max(λr, λc) such
that Amin = bλMc and Bmax = dM/λe with M(i, j) = µ(i)×ν(j)

N
. Each matrix

contains non-zero costs. Each boxplot corresponds to 100 matrices, each based on
distinct row and column sums. When λr = λc = 1, all costs are identical and the
correlations are discarded.

129

130

Conclusion of Part III

Regarding the study of cost matrices instances, our work focuses on the gen-
eration of cost matrices that can be used in a wide range of scheduling problems
to assess the performance of any proposed solution. We propose a Markov Chain
Monte Carlo method to randomly generate cost matrices from a uniform distri-
bution. We suffle, at each iteration, some costs in the matrix such that the sums
of the costs on each row and column remain unchanged. We formally prove that
the Markov Chain is ergodic and symmetric, thus we ensure that its stationary
distribution is uniform over the set of feasible instances. Moreover, the result holds
when restricting the set of feasible instances to limit their heterogeneity. Finally,
we study the impact of our generator on scheduling heuristics (EFT, HLPT, and
BalSuff) with heterogeneous costs and processors and we highlight the influence of
the parameters of the generator on the performance of these heuristics.

131

132

Part IV

General Conclusions and
Perspectives

133

Chapter 9

General Conclusion and
Perspectives

Contents
9.1 General Conclusion . 135
9.2 Perspectives . 136

9.1 General Conclusion

As a reminder, this thesis is focused on essentially four questions related to the
following ideas: 1) identify the properties of instances (DAGs and cost matrices),
2) analyze the behavior of existing random generators of instances according to the
identified properties, 3) ensure a uniform distribution among instances that have
given properties, 4) evaluate the performance of scheduling heuristics regarding
random generators of both types of instances.

Regarding the first question, this thesis provides answers more specifically for
DAGs than for cost matrices. For DAGs, we identify 34 properties and focus on
a selection of 8 such properties. We show that the mass property quantifies how
much an instance can be decomposed into smaller ones. Concerning cost matrices,
we show that our focus is on two properties: the correlation and heterogeneity. In
order to represent these properties in a meaningful way, we quantify them using
statistical measures.

Regarding the second question, we analyze four different existing random

135

generators of DAGs: the Erdős-Rényi, a uniform random generation method,
random orders, and a layer-by-layer generator. Based on this analysis, we establish
the sub-exponential generic time complexity for decomposable scheduling problems
with uniform DAGs. For cost matrices, we see that the methods used in the
literature to generate cost matrices are biased. Hence, we mention the need for a
generator that guarantees a uniform distribution among the set of cost matrices
that have a given task and machine heterogeneity.

Regarding the third question, the thesis provides answers for cost matrices
and not for DAGs. We propose a new random generator of cost matrices. Our
generator relies on Markov Chain Monte Carlo approach to draw random instances
with constraints from a uniform distribution. Moreover, we formally prove that the
Markov Chain is ergodic and symmetric. Thus, we ensure a uniform distribution
over the set of cost matrices generated randomly.

Regarding the fourth question, we highlight the impact of the four random
generators of DAGs on three scheduling heuristics (HEFT, HCPT, and MinMin)
for a scheduling problem with dependent tasks and we show the need for better
generation methods that control multiple properties while avoiding any generation
bias. For cost matrices, we study, the impact of our proposed random generator
of cost matrices on three scheduling heuristics (EFT, HLPT, and BalSuff) for a
scheduling problem with independent tasks. We highlight that for these scheduling
heuristics, the performance varies depending on the parameters used to constrain
the random generation.

9.2 Perspectives

In the following, we would propose, as perspectives, further investigations
concerning DAGs and cost matrices.

P1: As we see in Table 1.4, this thesis does not include a study concerning
the proposition of a new random generator of DAGs that can produce instances
according to specific constraints on properties. Therefore, it seems logical as a
perspective to propose a new method that can uniformly at random generate
DAGs with constraints on some properties to avoid pathological instances that are
straightforward to solve.

Regarding the generation, for instance, we could generate uniformly at random
DAGs with constraints using MCMC approach as we did in the generation of cost
matrices in Chapter 7.

136

Regarding the constraints, let us discuss an example. If a DAG has a width lower
than the number of processors, then the problem is easy to solve. In contrast, when
the length of a DAG is low, tasks are almost independent and the DAG is not
difficult for the problem. Therefore, it seems important to constrain the uniform
generation of DAGs such that the length can be controlled.

P2: As a second perspective, we could extend our study to real applications.
Practically, all instances generated in our study are random ones. Thus, it is
natural to wonder how realistic these instances are. Note that this perspective
needs a lot of time to be applied because we will have to analyze real applications
(which is not simple to obtain), then make a performance evaluation.

P3: As a third perspective, we could communicate a reference data set with
instances that we have preselected (metadata) and make this data set available on
an online open access repository (sustainable website) like figshare, so that it can
be used by researchers to evaluate their algorithms.

137

138

Bibliography

[AAK+13] Deepak Ajwani, Shoukat Ali, Kostas Katrinis, Cheng-Hong Li, Alfred J
Park, John P Morrison, and Eugen Schenfeld. Generating synthetic
task graphs for simulating stream computing systems. Journal of
Parallel and Distributed Computing, 73(10):1362–1374, 2013.

[AAP+16] Mishra Ashish, Sharma Aditya, Verma Pranet, Abhijit R Asati, and
Raju Kota Solomon. A modular approach to random task graph
generation. Indian Journal of Science and Technology, 9(8), 2016.

[AB14] Hamid Arabnejad and Jorge G Barbosa. List scheduling algorithm for
heterogeneous systems by an optimistic cost table. IEEE Transactions
on Parallel and Distributed Systems, 25(3):682–694, 2014.

[ACD74] Thomas L Adam, K. Mani Chandy, and JR Dickson. A comparison
of list schedules for parallel processing systems. Communications of
the ACM, 17(12):685–690, 1974.

[AGU72] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2):131–
137, 1972.

[AJ97] Robert K Armstrong Jr. Investigation of effect of different run-time
distributions on smartnet performance. Technical report, NAVAL
POSTGRADUATE SCHOOL MONTEREY CA, 1997.

[AK98] Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication
in parallel program scheduling. IEEE Transactions on Parallel &
Distributed Systems, 9:872–892, 1998.

[AKN05] Mona Aggarwal, Robert D Kent, and Alioune Ngom. Genetic algo-
rithm based scheduler for computational grids. In High Performance
Computing Systems and Applications, 2005. HPCS 2005. 19th Inter-
national Symposium on, pages 209–215. IEEE, 2005.

139

[AM11] DI George Amalarethinam and GJ Joyce Mary. DAGEN-A Tool To
Generate Arbitrary Directed Acyclic Graphs Used For Multiproces-
sor Scheduling. International Journal of Research and Reviews in
Computer Science, 2(3):782, 2011.

[ASM+00] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, Debra
Hensgen, and Sahra Ali. Representing task and machine hetero-
geneities for heterogeneous computing systems. Tamkang J. Sci.
Engineer., 3(3):195–208, 2000.

[ASMH00] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, and
Debra Hensgen. Task execution time modeling for heterogeneous
computing systems. In Heterogeneous Computing Workshop (HCW),
pages 185–199. IEEE, 2000.

[AVÁM92] Virǵılio AF Almeida, IMM Vasconcelos, Jose Nagib Cotrim Árabe,
and Daniel A Menascé. Using random task graphs to investigate the
potential benefits of heterogeneity in parallel systems. In Proceedings
of the 1992 ACM/IEEE conference on Supercomputing, pages 683–691.
IEEE Computer Society Press, 1992.

[BCHC09] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen.
Pearson correlation coefficient. In Noise reduction in speech processing,
pages 1–4. Springer, 2009.

[BLDMK14] Bruno Bodin, Youen Lesparre, Jean-Marc Delosme, and Alix Munier-
Kordon. Fast and efficient dataflow graph generation. In Proceedings
of the 17th International Workshop on Software and Compilers for
Embedded Systems, pages 40–49. ACM, 2014.

[Bol01] Béla Bollobás. Random Graphs. Cambridge University Press, 2001.

[CDB+16] Pedro Campos, Nizar Dahir, Colin Bonney, Martin Trefzer, Andy
Tyrrell, and Gianluca Tempesti. Xl-stage: A cross-layer scalable tool
for graph generation, evaluation and implementation. In Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS),
2016 International Conference on, pages 354–359. IEEE, 2016.

[CDG+06] Mary Cryan, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, and
Russell Martin. Rapidly mixing markov chains for sampling contin-
gency tables with a constant number of rows. SIAM Journal on Comp.,
36:247–278, 2006.

140

[CDHL05] Yuguo Chen, Persi Diaconis, Susan P Holmes, and Jun S Liu. Sequen-
tial monte carlo methods for statistical analysis of tables. Journal of
the American Statistical Association, 100(469):109–120, 2005.

[CESH18] Louis-Claude Canon, Mohamad El Sayah, and Pierre-Cyrille Héam.
A Markov Chain Monte Carlo Approach to Cost Matrix Generation
for Scheduling Performance Evaluation. In International Conference
on High Performance Computing & Simulation (HPCS), 2018.

[CHP17] Louis-Claude Canon, Pierre-Cyrille Héam, and Laurent Philippe. Con-
trolling the correlation of cost matrices to assess scheduling algorithm
performance on heterogeneous platforms. Concurrency and Computa-
tion: Practice and Experience, 29(15), 2017.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[CMP+10] Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram,
Jean-Marc Vincent, and Frédéric Wagner. Random graph generation
for scheduling simulations. In Proceedings of the 3rd international
ICST conference on simulation tools and techniques, page 60. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering), 2010.

[CMRT88] Michel Cosnard, Mounir Marrakchi, Yves Robert, and Denis Trys-
tram. Parallel gaussian elimination on an mimd computer. Parallel
Computing, 6(3):275–296, 1988.

[CMSV18] Louis-Claude Canon, Loris Marchal, Bertrand Simon, and Frédéric
Vivien. Online scheduling of task graphs on hybrid platforms. In
European Conference on Parallel Processing, pages 192–204. Springer,
2018.

[CP17] Louis-Claude Canon and Laurent Philippe. On the heterogeneity bias
of cost matrices for assessing scheduling algorithms. IEEE Transac-
tions on Parallel and Distributed Systems, 28(6):1675–1688, 2017.

[CSH19] Louis-Claude Canon, Mohamad El Sayah, and Pierre-Cyrille Héam. A
comparison of random task graph generation methods for scheduling
problems. arXiv preprint arXiv:1902.05808, 2019.

[DBGL+97] Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamas-
sia, Emanuele Tassinari, and Francesco Vargiu. An experimental

141

comparison of four graph drawing algorithms. Computational Geome-
try, 7(5-6):303–325, 1997.

[DC95] Persi Diaconis and L. Salo Coste. Random walk on contingency
tables with mixed row and column sums. Technical report, Harvard
University, Department of Mathematics, 1995.

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaef-
fer. Boltzmann samplers for the random generation of combinatorial
structures. Combinatorics, Probability & Computing, 13(4-5):577–625,
2004.

[DG00a] Martin Dyer and Catherine Greenhill. Polynomial-time counting and
sampling of two-rowed contingency tables. Theoretical Computer
Science, 246(1-2):265–278, 2000.

[DG00b] Martin E. Dyer and Catherine S. Greenhill. Polynomial-time counting
and sampling of two-rowed contingency tables. Theor. Comput. Sci.,
246(1-2):265–278, 2000.

[DNSC09] Pierre-Francois Dutot, Tchimou N’takpé, Frederic Suter, and Henri
Casanova. Scheduling parallel task graphs on (almost) homogeneous
multicluster platforms. IEEE Transactions on Parallel and Distributed
Systems, 20(7):940–952, 2009.

[DRW98] Robert P Dick, David L Rhodes, and Wayne Wolf. TGFF: task
graphs for free. In Proceedings of the 6th international workshop on
Hardware/software codesign, pages 97–101. IEEE Computer Society,
1998.

[DS+98] Persi Diaconis, Bernd Sturmfels, et al. Algebraic algorithms for
sampling from conditional distributions. The Annals of statistics,
26(1):363–397, 1998.

[DŠTR12] Tatjana Davidović, Milica Šelmić, Dušan Teodorović, and Dušan
Ramljak. Bee colony optimization for scheduling independent tasks
to identical processors. Journal of heuristics, 18(4):549–569, 2012.

[DZ99] Alain Denise and Paul Zimmermann. Uniform random generation
of decomposable structures using floating-point arithmetic. Theor.
Comput. Sci., 218(2):233–248, 1999.

[EM12] Daniel Eaton and Kevin Murphy. Bayesian structure learning using
dynamic programming and mcmc. arXiv preprint arXiv:1206.5247,
2012.

142

[ER59] P Erdős and Alfréd Rényi. On random graphs I. Publ. Math. Debrecen,
6:290–297, 1959.

[Fag76] Ronald Fagin. Probabilities on finite models. J. Symb. Log., 41(1):50–
58, 1976.

[FGA+98] Richard F Freund, Michael Gherrity, Stephen Ambrosius, Mark Camp-
bell, Mike Halderman, Debra Hensgen, Elaine Keith, Taylor Kidd,
Matt Kussow, John D Lima, Francesca Mirabile, Lantz Moore, Brad
Rust, and Howard Jay Siegel. Scheduling resources in multi-user, het-
erogeneous, computing environments with SmartNet. In Heterogeneous
Computing Workshop (HCW), pages 184–199. IEEE, 1998.

[Fis12] George S Fishman. Counting contingency tables via multistage markov
chain monte carlo. Journal of Computational and Graphical Statistics,
21(3):713–738, 2012.

[FJF16] Lester Randolph Ford Jr and Delbert Ray Fulkerson. Flows in net-
works. Princeton university press, 2016. First edition in 1962.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics.
cambridge University press, 2009.

[GCJ17] Indrajeet Gupta, Anubhav Choudhary, and Prasanta K Jana. Gener-
ation and proliferation of random directed acyclic graphs for workflow
scheduling problem. In Proceedings of the 7th International Conference
on Computer and Communication Technology, pages 123–127. ACM,
2017.

[GJ78] M.R. Garey and D.S. Johnson. Strong NP-completeness results:
motivation, examples, and implications. J. Assoc. Comput. Mach.,
25(3):499–508, 1978.

[GLLK79] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy
Kan. Optimization and approximation in deterministic sequencing
and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326,
1979.

[GPH83] John Geweke and Susan Porter-Hudak. The estimation and application
of long memory time series models. Journal of time series analysis,
4(4):221–238, 1983.

[GR+92] Andrew Gelman, Donald B Rubin, et al. Inference from iterative
simulation using multiple sequences. Statistical science, 7(4):457–472,
1992.

143

[GR14] Ankur Gupta and James B Rawlings. Comparison of parameter
estimation methods in stochastic chemical kinetic models: examples
in systems biology. AIChE Journal, 60(4):1253–1268, 2014.

[Gra69] R. L. Graham. Bounds on Multiprocessing Timing Anomalies. Journal
of Applied Mathematics, 17(2):416–429, 1969.

[HJ03] Tarek Hagras and Jan Janecek. A simple scheduling heuristic for
heterogeneous computing environments. In International Symposium
on Parallel and Distributed Computing, page 104. IEEE, 2003.

[IC02] Jaime Shinsuke Ide and Fábio Gagliardi Cozman. Random generation
of bayesian networks. In Advances in Artificial Intelligence, 16th
Brazilian Symposium on Artificial Intelligence, SBIA 2002, Porto de
Galinhas/Recife, Brazil, November 11-14, 2002, Proceedings, Lecture
Notes in Computer Science, pages 366–375, 2002.

[IK77a] Oscar H. Ibarra and Chul E. Kim. Heuristic Algorithms for Scheduling
Independent Tasks on Nonidentical Processors. Journal of the ACM,
24(2):280–289, April 1977.

[IK77b] Oscar H Ibarra and Chul E Kim. Heuristic algorithms for scheduling
independent tasks on nonidentical processors. Journal of the ACM
(JACM), 24(2):280–289, 1977.

[IT07] E Ilavarasan and P Thambidurai. Low complexity performance effec-
tive task scheduling algorithm for heterogeneous computing environ-
ments. Journal of Computer sciences, 3(2):94–103, 2007.

[JCD+13] Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi, Gau-
rang Mehta, and Karan Vahi. Characterizing and profiling scientific
workflows. Future Generation Computer Systems, 29(3):682–692, 2013.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison
of the task graph scheduling algorithms. Journal of Parallel and
Distributed Computing, 59(3):381–422, 1999.

[KA00] Yu-Kwong Kwok and Ishfaq Ahmad. Link contention-constrained
scheduling and mapping of tasks and messages to a network of hetero-
geneous processors. Cluster Computing, 3(2):113–124, 2000.

[KM15] Jack Kuipers and Giusi Moffa. Uniform random generation of large
acyclic digraphs. Statistics and Computing, 25(2):227–242, 2015.

144

[KN09] Brian Karrer and Mark EJ Newman. Random graph models for
directed acyclic networks. Physical Review E, 80(4):046110, 2009.

[KSC78] Valentin Fedorovich Kolchin, Boris Aleksandrovich Sevastyanov, and
Vladimir Pavlovich Chistyakov. Random allocations. Winston, 1978.

[KSD95] Rainer Kolisch, Arno Sprecher, and Andreas Drexl. Characteriza-
tion and generation of a general class of resource-constrained project
scheduling problems. Management science, 41(10):1693–1703, 1995.

[LALG13] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Out-
standing paper award: Analysis of global edf for parallel tasks. In
Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on,
pages 3–13. IEEE, 2013.

[Leu04] Joseph YT Leung. Handbook of scheduling: algorithms, models, and
performance analysis. CRC Press, 2004.

[Lis75] Valery Liskovets. On the number of maximal vertices of a random
acyclic digraph. Theory Probab. Appl., 20(2):401–409, 1975.

[LKK83] Robert Earl Lord, Janusz S Kowalik, and Swarn P Kumar. Solving
linear algebraic equations on an mimd computer. Journal of the ACM
(JACM), 30(1):103–117, 1983.

[LPW06] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains
and mixing times. American Mathematical Society, 2006.

[Man07] Willem Mantel. Problem 28. Wiskundige Opgaven, 10(60-61):320,
1907.

[Mar18] Apolinar Velarde Martinez. Synthetic loads analysis of directed acyclic
graphs for scheduling tasks. International Journal of Advanced Com-
puter Science and Applications, 9(3):347–354, 2018.

[MDB01] Guy Melançon, I. Dutour, and Mireille Bousquet-Mélou. Random
generation of directed acyclic graphs. Electronic Notes in Discrete
Mathematics, 10:202–207, 2001.

[MKI+03] Ron Milo, Nadav Kashtan, Shalev Itzkovitz, Mark EJ Newman, and
Uri Alon. On the uniform generation of random graphs with prescribed
degree sequences. arXiv preprint cond-mat/0312028, 2003.

145

[MP04] Guy Melançon and Fabrice Philippe. Generating connected acyclic
digraphs uniformly at random. Inf. Process. Lett., 90(4):209–213,
2004.

[NW08] Johanna Nichols and Tandy Warnow. Tutorial on computational
linguistic phylogeny. Language and Linguistics Compass, 2(5):760–
820, 2008.

[OVRO+18] Julian Oppermann, Sebastian Vollbrecht, Melanie Reuter-Oppermann,
Oliver Sinnen, and Andreas Koch. GeMS: a generator for modulo
scheduling problems: work in progress. In Proceedings of the Inter-
national Conference on Compilers, Architecture and Synthesis for
Embedded Systems, page 7. IEEE Press, 2018.

[Pea04] K. Pearson. On the theory of contengency and its relation to associa-
tion and normal correlation. Drapers’ Company Reserach Memoirs,
1904.

[Plo07] Anatoly D Plotnikov. Experimental algorithm for the maximum
independent set problem. arXiv preprint arXiv:0706.3565, 2007.

[Rob73] R. W. Robinson. Counting labeled acyclic digraphs. In F. Harray,
editor, New Directions in the Theory of Graphs, pages 239–273, New
York, 1973. Academic Press.

[SAHR12] Rishad A Shafik, Bashir M Al-Hashimi, and Jeff S Reeve. System-
level design optimization of reliable and low power multiprocessor
system-on-chip. Microelectronics Reliability, 52(8):1735–1748, 2012.

[SGB06] Sander Stuijk, Marc Geilen, and Twan Basten. SDF3: SDF for Free.
In Application of Concurrency to System Design, 2006. ACSD 2006.
Sixth International Conference on, pages 276–278. IEEE, 2006.

[SMD11] Boonyarith Saovapakhiran, George Michailidis, and Michael Devet-
sikiotis. Aggregated-dag scheduling for job flow maximization in
heterogeneous cloud computing. In Global Telecommunications Con-
ference (GLOBECOM 2011), 2011 IEEE, pages 1–6. IEEE, 2011.

[Sul07] Danny Sullivan. What is google pagerank? a guide for searchers &
webmasters. SearchEngineLand, 26:070426–011828, 2007.

[SZ04] Rizos Sakellariou and Henan Zhao. A hybrid heuristic for dag schedul-
ing on heterogeneous systems. In Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, page 111. IEEE,
2004.

146

[THW02a] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-
effective and low-complexity task scheduling for heterogeneous comput-
ing. IEEE transactions on parallel and distributed systems, 13(3):260–
274, 2002.

[THW02b] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-
effective and low-complexity task scheduling for heterogeneous com-
puting. IEEE Trans. on Parallel and Dist. Systems, 13(3):260–274,
2002.

[TK02] Takao Tobita and Hironori Kasahara. A standard task graph set for
fair evaluation of multiprocessor scheduling algorithms. Journal of
Scheduling, 5(5):379–394, 2002.

[Ull75] J.D. Ullman. NP-complete scheduling problems. J. Comput. System
Sci., 10:384–393, 1975.

[WG90] M-Y Wu and Daniel D Gajski. Hypertool: A programming aid for
message-passing systems. IEEE transactions on parallel and distributed
systems, 1(3):330–343, 1990.

[Win85] Peter Winkler. Random orders. Order, 1(4):317–331, 1985.

[YG94] Tao Yang and Apostolos Gerasoulis. DSC: Scheduling parallel tasks on
an unbounded number of processors. IEEE Transactions on Parallel
and Distributed Systems, 5(9):951–967, 1994.

147

	 Acknowledgement
	I Introduction and Preliminaries
	1 Introduction
	1.1 Context
	1.2 Scheduling
	1.3 Motivation and Problem Statement
	1.4 Contributions
	1.5 Thesis outline
	1.6 Publications

	2 Uniform Random Generation
	2.1 Introduction
	2.2 Recursive Method
	2.2.1 Principle
	2.2.2 Example of Binary Tree Recursive Generation

	2.3 Markov Chain Method
	2.3.1 Definitions
	2.3.2 Stationary Distribution
	2.3.3 Total Variation Distance and Mixing Time
	2.3.4 Statistical Tests

	2.4 Random Constrained Vector Generation
	2.4.1 Recursive Generation
	2.4.2 MCMC Generation
	2.4.3 Recursive vs MCMC

	II Directed acyclic graphs
	3 Motivation and Problem Statement for DAGs
	3.1 Introduction
	3.2 Properties and Notations
	3.3 Generation of DAGs
	3.3.1 Tools for DAG Generation
	3.3.2 Instance Sets
	3.3.3 Layer-by-Layer Methods
	3.3.4 Uniform Random Generation

	3.4 Uniformity of the Random Generation
	3.5 Scheduling

	4 Analysis of DAGs Properties and Generation Methods
	4.1 Analysis of Special DAGs
	4.2 Analysis of Existing Generation Methods
	4.2.1 Erdős-Rényi
	4.2.2 Uniform Random Generation
	4.2.3 Random Orders
	4.2.4 Layer-by-Layer

	4.3 Conclusion

	5 Performance Evaluation of Scheduling Algorithms for DAGs
	5.1 Selected Scheduling Algorithms
	5.2 Performance of Scheduling Algorithms Regarding Generation Methods
	5.3 Conclusion

	 Conclusion of Part II

	III Cost matrices
	6 Motivation and Problem Statement for Cost Matrices
	6.1 Introduction
	6.2 Cost Matrices
	6.2.1 Definition
	6.2.2 Properties
	6.2.3 Existing Generation Methods of Cost Matrices

	6.3 Cost Matrices as Contingency Tables
	6.3.1 Contingency Tables
	6.3.2 Existing Generation Methods of Contingency Tables
	6.3.3 Uniform MCMC Generation of Cost Matrices

	6.4 Problem Statement and Contribution

	7 Constrained Random Generation of Cost Matrices
	7.1 Symmetric Ergodic Markov Chain
	7.2 Rapidly Mixing Chains
	7.3 Initial Matrices Generation
	7.4 Mixing Time Estimation
	7.5 Analysis of Constraints Effect on Cost Matrix Properties
	7.6 Conclusion

	8 Performance Evaluation of Scheduling Algorithms for Cost Matrices
	8.1 Selected Scheduling Algorithms
	8.2 Analysis of Constraints Effect on Scheduling Algorithms
	8.3 Conclusion

	 Conclusion of Part III

	IV General Conclusions and Perspectives
	9 General Conclusion and Perspectives
	9.1 General Conclusion
	9.2 Perspectives

	Bibliography

