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Résumé

Les systèmes autonomes sont récemment devenus une solution efficace pour des ap-
plications telles que l’exploration et la surveillance d’environnements. Dans ces sit-
uations, l’utilisation de plusieurs robots pourrait améliorer l’efficacité des solutions
proposées, bien que cela nécessite des stratégies d’organisation qui soient à la fois ro-
buste, flexible et adaptables à la taille de la flotte de robots. En robotique en essaim,
ces qualités sont assurées par la décentralisation, la redondance (plusieurs/tous les
robots effectuent la même tâche), des interactions locales et des règles simples. Les
interactions et communications locales sont une composante clef de la robotique en
essaim. Jusqu’ici, la communication n’a été utilisée que pour des tâches relativement
simple, tels que signaler les préférences ou l’état d’un robot. Cependant, la com-
munication peut être bien plus riche et similaire aux langages humains. Dans ces
conditions, elle permettrait aux essaims de robots de gérer de nouvelles situations qui
ne seraient pas prévues par leurs concepteurs. De riches communications sont donc
nécessaires pour obtenir des essaims entièrement autonomes, en particulier dans des
environnements inconnus.

Dans cette thèse, nous proposons une approche pour faire émerger des com-
munications riches dans des essaims de robots en utilisant les jeux de langages
comme protocole de communication et l’agrégation probabiliste comme cas d’étude.
L’agrégation probabiliste est un prérequis pour de nombreuses tâches en robotique en
essaim mais elle est aussi extrêmement sensible aux conditions expérimentales. Elle
requiert donc un réglage spécifique de ses paramètres pour chaque nouvelle condition,
y compris les changements d’échelle ou de densité.

Avec notre approche, nous avons observé que l’exécution simultanée du jeu de
nommage et de l’agrégation mène, dans certaines conditions, à un nouveau com-
portement d’agglomération en plusieurs groupes, chacun avec son propre nom, qui
est contrôlable via les paramètres de l’agrégation. En poussant ces interactions plus
loin, nous démontrons que les dynamiques sociales du jeu de nommage peuvent
sélectionner des paramètres d’agrégation efficaces. Cette sélection culturelle crée
donc des contrôleurs résilients, qui évoluent en-ligne en fonction du contexte courant.



Abstract

Automatically-controlled artificial systems have recently been used in numerous set-
tings including environmental monitoring and explorations, with great success. In
such cases, the use of multiple robots could increase efficiency, although we should
ensure that their communication and organisation strategies are robust, flexible,
and scalable. These qualities can be ensured through decentralisation, redundancy
(many/all robots perform the same task), local interaction, and simplistic rules, as
is the case in swarm robotics. One of the key components of swarm robotics is local
interaction or communication. The later has, so far, only been used for relatively
simple tasks such as signalling a robot’s preference or state. However, communica-
tion has more potential because the emergence of meaning, as it exists in human
language, could allow robots swarms to tackle novel situations in ways that may
not be a priori obvious to the experimenter. This is a necessary feature for having
swarms that are fully autonomous, especially in unknown environments.

In this thesis, we propose a framework for the emergence of meaningful commu-
nications in swarm robotics using language games as a communication protocol and
probabilistic aggregation as a case study. Probabilistic aggregation can be a prereq-
uisite to many other swarm behaviours but, unfortunately, it is extremely sensitive to
experimental conditions, and thus requires specific parameter tuning for any setting
such as population size or density.

With our framework, we show that the concurrent execution of the naming game
and of probabilistic aggregation leads, in certain conditions, to a new clustering and
labelling behaviour that is controllable via the parameters of the aggregation con-
troller. Pushing this interplay forward, we demonstrate that the social dynamics of
the naming game can select efficient aggregation parameters through environmental
pressure. This creates resilient controllers as the aggregation behaviour is dynami-
cally evolved online according to the current environmental setting.
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Chapter 1

Introduction

Cooperation is ubiquitous in nature, from social insects (ants, bees, etc) to humans
[Kropotkin, 1902]. Humans are indeed social animals, which is especially evident
with labour [Marx, 1875, p.142]. For example, building work requires many part
of the product to be completed at the same time and is often made more efficient
through bucket brigading. Cooperation also allows time-critical tasks, such as sheep
shearing or crop harvesting, to be carried out in large areas. A major factor in these
successful examples of cooperation is communication. Although various communi-
cation modalities can be found in, e.g. bees, birds or chimps, the forms used by
humans are the most complex [Hauser et al., 2002].

Our main form of communication is obviously natural language, which acquired
its complexity by evolving during cooperative task execution [Wittgenstein, 1953].
For a long time, philosophers have tried to understand how language connected
words and meaning. In this endeavour, they were partially motivated by a desire to
reach less ambiguous communication [Stokhof, 2018], which would have facilitated
scientific cooperation and, thus, progress. These efforts led to new logical formalisms,
such as boolean and propositional logic. These latter formalisms, combined with
mechanisation, which was devised to better exploit cooperative human labour, laid
the foundations to computer sciences [Church, 1962] and, then, robotics.

Nowadays, automatically-controlled artefacts are posed to replace humans in per-
ilous, difficult or time-critical tasks such as search-and-rescue missions [Kumar et al.,
2004], crop monitoring [Albani et al., 2017] or infrastructure repairing [Dams et al.,
2017]. Such missions have similar requirements to the human tasks we highlighted
above, and could thus benefit from the deployment of multiple and cooperative
robots. Ideally, the algorithm executed during these missions would work efficiently
with varying number of robots as, e.g., larger areas may require more robots. Fur-
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thermore, the environments of deployment are not always controllable. Robots thus
need to be able to achieve their task in varying conditions. Finally, robots are prone
to system faults and have limited embedded resources: sensors, actuators, processing
power and energy. They can therefore stop working during the course of a mission,
which should not alter the functioning of the others.

Swarm robotics takes inspiration from social animals in order to solve such chal-
lenges [Brambilla et al., 2013]. Indeed, using only simplistic rules and local interac-
tions, swarm of insects have shown to be able to collectively build elaborate struc-
tures [Grassé, 1959] or, even, make qualitative choices in a way that resembles a single
complex brain [Seeley et al., 2012]. Such behaviours can even create state-of-the-art
computational optimisers [Dorigo et al., 2006]. This instance of intelligence emerging
from local interactions between comparatively simple individuals highlights features
that are typical of System-of-Systems (SoS). Indeed, although a robotic swarm can
be perceived as a single entity executing a task, just as a humanoid robot could
[Mondada et al., 2004], the major difference between the two is that, in a swarm bot,
the parts (i.e. the robots as opposed to the various circuitries in a typical robot) are
autonomous, following their own individual purpose. Consequently, they dynami-
cally connect, rather than statically feeding into each other, to fulfil a design that
they are not explicitly working towards. These are features that separate SoS from
mere systems [Boardman and Sauser, 2006]. Besides, the robustness thus obtained
improves deployment time and maintenance as failure or unavailability of any part
of the SoS does not have to stop the deployment. Conversely, the simplicity of the
different parts and the absence of hardware connection between them reduces opera-
tional and maintenance costs as well as energy consumption, which is an increasingly
significant concern. These qualities ensure that robot swarms are scalable, flexible
and robust.

Communication, the main focus of this thesis, also has a central role in swarm
robotics, although it has, so far, been mostly limited to signalling. However, robots
are embodied entities and thus exist in the real world, which is open-ended. For
robots to be able to carry their task in such an environment, they need to be able to
bring forth new meanings according to the situation [Steels, 2003], just as humans
do. Previous work in that direction have highlighted a co-dependency between task-
solving and language development [Tuci et al., 2011]. Furthermore, linguistic and
philosophical research have shown that language and action can co-evolve in a com-
plex social system (where a language is embedded in a cooperative action) through
self-organisation only. This phenomenon, which is highly compatible with the ethos
of swarm robotics, is often called cultural evolution.

This thesis aims to introduce the framework of cultural evolution into swarm
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robotics. This endeavour showed that cultural evolution impacts the dynamics of
known swarm behaviours in a way that make new features emerge. Moreover, cou-
pled with stochastic communication noise, cultural evolution can tune a controller’s
parameters according to the local and current context. In this regard, we used self-
organised aggregation as a case study. We highlighted the similarities and common
interests between swarm robotics and cultural evolution as both depend on collective
self-organisation to enable the emergence of complex structures. This thesis presents
a number of original contributions, which were published in international conferences
and journals.

We studied the effect self-organised aggregation and cultural evolution have on
each other, leading to new behaviours. In most settings, cultural evolution does not
affect the aggregation but provides an additional collective decision-making mecha-
nism. We also showed that, in specific conditions, agents form a controllable quantity
of coalitions, each with its own identifier. These findings were published in an inter-
national conference:

• “Group-size regulation in self-organised aggregation through the
naming game,” Nicolas Cambier, Vincent Frémont, and Eliseo Ferrante.
In International Symposium on Swarm Behavior and Bio-Inspired Robotics
(SWARM 2017), Kyoto, Japan, Oct 2017.

In an effort to better understand the dynamics of self-organised aggregation, we
studied the effect of informed robots in probabilistic aggregation with shelters. We
discovered that low proportion of informed robots were able to make an entire swarm
converge to the best choice. This study was presented in an international conference.

• “Self-organised Aggregation in Swarms of Robots with Informed
Robots,” Ziya Firat, Eliseo Ferrante, Nicolas Cambier, and Elio Tucci. In In-
ternational Conference on Theory and Practice of Natural Computing (TPNC
2018), Dublin, Ireland, Dec 2018.

We also proposed to use the dynamics of cultural evolution in order to create a
new, dynamic, approach to self-organised aggregation. This proposition hinges on
using culturally evolving words as encodings of aggregation parameters (comparable
to a genetic code). In this approach, social dynamics maintain good aggregation
parameters that appear through stochastic communication noise. This proposition
was the topic of the following publication:
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• “Embodied evolution of self-organised aggregation by cultural prop-
agation,” Nicolas Cambier, Vincent Frémont, Vito Trianni, and Eliseo Fer-
rante. In Eleventh International Conference on Swarm Intelligence (ANTS
2018), Rome, Italy, Oct 2018.

This approach was subsequently considerably improved on, to the point that our
new model was able to largely outcompete an optimised controller performing regular
aggregation. We established several experiments in various environments in order to
propose a thorough analysis of the mechanisms enabling this achievement. A journal
paper covering this topic is currently in preparation:

• “Cultural Evolution of Probabilistic Aggregation,” Nicolas Cambier,
Vincent Frémont, Vito Trianni, and Eliseo Ferrante. Swarm Intelligence. (in
preparation)

This research has application for the exploration of unknown environments with
fleets of Unmanned Aerial Vehicles (UAVs) as it can be extended to area coverage
and active SLAM.

Lastly, we produced a review on the emergence of communication in robotic
swarms, which supports the approach presented in this thesis, i.e., self-organising
communications to produce adaptable and autonomous swarms:

• “Language Evolution in Swarm Robotics: a Perspective,” Nicolas
Cambier, Roman Miletitch, Vincent Frémont, Marco Dorigo, Eliseo Ferrante,
and Vito Trianni. Frontiers in Robotics and AI, 2020. (accepted)

As well as an extensive state of the art, our contributions and their possible ap-
plications will be presented in this thesis. In Chapter 2, we will survey the state of
the art in swarm robotics, focusing especially on communication and self-organised
aggregation. Then, in Chapter 3, we will examine existing work regarding the evo-
lution of language in artificial systems under a linguistic and philosophical lens.
In Chapter 4, we will define a methodological framework to merge swarm robotic
and the evolution of language, using insightful examples identified in the previous
chapters. This framework will be exploited in Chapter 5, with promising results
towards heightened swarm control and group/area labelling. It will be used again in
Chapter 6 to show that cultural evolution can enable online parameter optimisation.
Finally, in Chapter 7, we will present our conclusions and the direction of our future
works.
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Chapter 2

Swarm Robotics: State of the Art

Swarm robotics is the scientific field that takes inspiration from social animals in or-
der to solve challenging tasks with robots. Swarm robotic systems are entities built
of several individual robots and hold three properties (Robustness, Flexibility, and
Scalability), which are ensured through decentralisation, redundancy (many–often
all–robots perform the same task), local interaction, and simplistic rules [Brambilla
et al., 2013]. As they are composed of many interacting individuals whose collabo-
ration provokes the emergence of complex and interesting behaviours, swarms are a
prime example of System-of-Systems (SoS) [Boardman and Sauser, 2006].

In order to design adaptable swarm robotic behaviour, Section 2.1, will first
present a taxonomy of the different design methodologies that exist in swarm
robotics. Then, Section 2.2, will address signalling, which is the main modality
of communication in swarm robotic systems, and a necessity to produce adaptable
behaviours. In Section 2.3, we will review the state of the art regarding self-organised
aggregation, which will be our case study for collective behaviour in this thesis. Fi-
nally, in Section 2.4, we will consider some examples of applications that could benefit
from swarm robotics, namely area coverage and simultaneous localisation and map-
ping (SLAM).

2.1 Design Methodologies

In this section we will use a taxonomy similar to a review of the swarm robotics
literature [Brambilla et al., 2013]. The authors proposed to classify the design meth-
ods used in the literature in two categories: Behaviour-based and Automatic design
methods. In this section, we will explore the design tools available in swarm robotics
for these two categories in, respectively, Section 2.1.1 and Section 2.1.2.
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2.1.1 Behaviour-based Design

Behaviour-based design methods consist in combining different behaviours to de-
fine the way a robot interacts with its environment and its neighbours, in a way
that these interactions create an emerging behaviour that solves the task at hand.
One major model of behaviour-based controller is Probabilistic Finite State Machine
(PFSM). As emerging behaviours are difficult to predict, these approaches are often
bio-inspired.

A survey of the best-of-n problem [Valentini et al., 2017] further divides
behaviour-based design methods (or “bottom-up” approaches, as they call them)
in the “opinion-based” and “ad-hoc” subcategories. Although this survey was con-
cerned only with the best-of-n problem (“an abstraction capturing the structure and
logic of discrete consensus achievement problems” and encompassing the majority of
the tasks studied in swarm robotics), we believe that the categorisation it presents
is applicable to most collective behaviours.

In “opinion-based” approaches, the robots have an internal representation of
their individual choices and the crux of the design consists in enabling them to
communicate their decisions to each other and to change opinion in order to reach a
consensus. This results in generic controllers that are suited to different tasks such
as monitoring [Albani et al., 2018] or foraging [Miletitch et al., 2018] and transition
from one target to the other according to some utility function.

In contrast, “ad-hoc” approaches are designed to solve a specific task. In best-of-
n problems, they can be divided in two further subcategories: aggregation strategies
and navigation strategies [Valentini et al., 2017].

On one hand, aggregation strategies enable a swarm of robots to gather in
a single area. In behaviour-based aggregation, individuals usually explore the en-
tire environment randomly until they find a shelter or an aggregate and stop. A
second mechanism is required to reach a collective decision on which area to actu-
ally converge to (otherwise, the robots would just form several small clusters). This
mechanism is based on a probabilistic stopping and leaving criteria. Aggregation
strategies are thus modelled as two-states PFSM with probabilities modelled after
real cockroaches [Garnier et al., 2005, Correll and Martinoli, 2007, Bayindir and
Sahin, 2009] or honeybees [Bodi et al., 2012]. Less direct emulations do exist and
can use a third state that ensures a robot has left the vicinity of the aggregate be-
fore having the possibility to join again. Other, non-behaviour-based, approaches to
self-organised aggregation exist, which will be reviewed in Section 2.3, along with a
more extensive discussion on behaviour-based aggregation.

On the other hand, navigation strategies are mostly concerned with exploring
the environment efficiently, sometimes to find some target object. They can take
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inspiration from birds to produce a flocking behaviour [Ferrante et al., 2014]. They
can also use some kind of stigmergic communication (see in Section 2.2), which
require them to alternate between exploring and acting as a trail for other robots
by joining the tail of a chain according to some probability [Nouyan et al., 2009,
Campo et al., 2010]. The switch between the two roles can become unnecessary
when different kinds of robots are used for each role [Ducatelle et al., 2011a].

Behaviour-based design methods have limits as, as explained above, the prop-
erties of such systems-of-systems are difficult to predict. Therefore, formal design
methodologies have yet to emerge and designers are often left to tune their con-
trollers by trial-and-error [Francesca et al., 2015]. Moreover, bio-inspiration does not
ensure well-functioning algorithms, especially when such algorithms have been tuned
so much that their original inspiration is more akin to a remote metaphor than to a
real template [Camacho-Villalón et al., 2018].

2.1.2 Automatic Design

In opposition to behaviour-based design methods, automatic design methods propose
to automatically optimise controllers according to a high-level description of the
problem to solve. However, our survey of the literature regarding automatic design
methods suggests that the schism between automatic and behaviour-based methods
is not as obvious as it appears at first sight as they all have to be a priori designed to
a certain degree. In this section, we will review four approaches to automatic design:
Evolutionary swarm robotics [Nolfi and Floreano, 2000], Automatic Modular design
[Francesca et al., 2014], Turing Learning [Li et al., 2016] and Embodied Evolution
[Bredeche and Montanier, 2010].

Evolutionary swarm robotics proposes to use the principles of Darwinian
evolution in order to efficiently optimise a robot’s controller. The narrative behind
this use of genetic algorithms, is that this process is responsible for incredibly efficient
and robust structures in nature.

Evolutionary swarm robotics features the traditional methods of genetic algo-
rithms; a pool of random genetic sequences (each an encoding of a possible solution
to the problem at hand) are replaced in subsequent generations by the produce of
reproduction (by recombination and mutation) between the best individuals of the
previous run. In evolutionary swarm robotics, the robots’ controller is modelled as
neural networks that maps sensory inputs to actuators [Nolfi and Floreano, 2000,
Trianni et al., 2008]. Thus, the genetic sequence is an encoding of the parameters of
this neural network. The initial population’s individual parameters/gene sequences
are randomly set and then selected for reproduction according to a fitness function;
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the high-level description of the problem mentioned earlier.
Despite their efficiency, evolutionary approaches such as evolutionary swarm

robotics or automatic modular design have many problems [Valentini et al., 2017].
Even though evolutionary swarm robotics is the most widely utilised approach to
develop efficient collective behaviours, it has a specific problem as, from the usage
of neural networks, it follows that the evolved controller are black-boxes. They are
thus difficult to model and analyse mathematically and to maintain accordingly.

Automatic Modular Design (AutoMoDe), in contrast, uses optimisation
methods to build a Finite State Machine (FSM) instead of a neural network
[Francesca et al., 2014]. In this approach, a wide variety of base behavioural mod-
ules and condition-defined events are available. Examples of behavioural modules
include random walk, phototaxis and obstacle avoidance whilst events include the
detection of white or black floor, neighbours count, fixed probability, etc. AutoMoDe
then encodes a FSM wherein states are modules and transitions are events into a
mathematical problem that it tries to optimise. As a matter of fact, AutoMoDe
has been shown to outperform both evolutionary robotics and behaviour-based ap-
proaches [Francesca et al., 2015]1, even more so when given the ability to evolve
communication [Hasselmann et al., 2018].

Despite their remarkable efficiency, both performance- and design-wise, offline
approaches (evolutionary or otherwise) suffer from a series of problem when applied
to swarm robotics [Francesca and Birattari, 2016]. Indeed, the many runs necessary
for the optimisation mean that it has to be executed in simulation. In addition to
being a centralised approach, this also risks overfitting the controller to the simu-
lated setting, which means that the performances suffer during the deployment in
real world [Jakobi et al., 1995]. Moreover, this “reality gap” might not be induced
by reality itself but simply by the slight differences between settings [Ligot and Bi-
rattari, 2018], which highlights the sensitivity of evolved controller to experimental
conditions [Trianni et al., 2003]. Therefore, on one hand, off-line approaches are com-
putationally intensive but, on the other hand, they are often efficient for extremely
specific scenarios and must thus be re-executed for any new setting.

Turing Learning is a coevolutionary approach to designing bio-inspired con-
trollers [Li et al., 2016]. The aim of this approach is to reproduce existing natural
behaviours through observation of their motion only and by evolving two models:
the replica and the classifier. The replica is the controller whose goal is to trick
the classifier into categorising the replica’s motion as genuine, i.e. as data observed

1Let us note that manually-built controllers were also more efficient if they were designed only
with the modules and event available to AutoMoDe. Beating them even required an update to Au-
toMoDe’s optimisation algorithm. An interesting example of creativity benefiting from constraints.
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from the natural behaviour. Conversely, the goal of the classifier is to be able to
discriminate between genuine data and data produced by the replica. This approach
has been used to reproduce two canonical problems in swarm robotics: self-organised
aggregation (cf. Section 2.3) and object clustering.

Turing Learning has a couple of advantages compared to other evolutionary meth-
ods. Firstly, it can be performed on-line and in the real-world (although the optimi-
sation is still performed on a centralised server), thus greatly reducing the problems
of the reality gap and of adaptation to new environments. Secondly, it does not
require any kind of metric and/or fitness function and is thus able to reproduce the
original behaviour more accurately as swarm behaviours are too unpredictable to be
inferred from metric-based method.

The obvious weakness of Turing Learning is that it is only able to reproduce
existing behaviours. Although many natural swarm behaviours are extremely effi-
cient, this fundamentally limits the possibility of innovation. Moreover, as swarm
behaviours are indeed complex and can vary depending on the environment, ex-
periments with the original natural system might need to be performed for new
challenging settings before being able to teach them to the robots.

Embodied Evolution is the only automatic design method that enables robots
to learn continuously in their lifetime. Thus, it bypasses the problem of adapting
from one environment to another, including in silica to real life. It it a distributed
adaption of evolutionary robotics in the sense that is uses the same tools but that the
selection and replacement are performed locally by each robot. This local evolution
can follow three models: distributed (each robot has a unique genome which changes
when mating with other robots), encapsulated (each robot performs the evolutionary
process internally without exchanging genetic material) or a hybrid between the two,
also called the physically distributed island model [Silva et al., 2015]. Thus, embodied
evolution adds the mating operator[Bredeche et al., 2018].

Mating is the local exchange of genetic code between two robots. It can be
symmetrical [Bredeche and Montanier, 2010] or, oppositely, robots can stop at a given
point in their lifetime to “receive” genetic material [Noskov et al., 2013]. Moreover,
mating can be more or less distinct from the replacement operator as new genetic
material can be integrated to current genome on the fly [Watson et al., 2002] or
added to a genetic pool specific to each robot [Noskov et al., 2013]. The local and
distributed nature of the mating operator also create a greater genetic diversity that
eventually increases performances for a given task compared to centralised evolution
[Pérez et al., 2018].

Further, the ability to mate can also serve as an implicit selection operator thus
rendering a fitness function unnecessary [Bianco and Nolfi, 2004]. The idea under-
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lying this implicit fitness is that robots that are more capable to feed at an energy
source (foraging) or to catch other robots (self-assembly) will also communicate with
more robots (resp. because it continues to move and because it seeks them) and thus
spread its genetic code accordingly. This approach with implicit fitness characterises
algorithms like minimal Environment-driven Distributed Evolutionary Adaptation
(mEDEA) [Bredeche and Montanier, 2010]. A subsequent variation of this concept,
MONEE [Noskov et al., 2013] ported this implicit fitness to other, less fitting tasks,
by rewarding robots that successfully accomplish their task with a reward. These
rewards are then transmitted, along with their genetic code, to “eggs”, which are
inactive robots (because they have reached the end of their life-cycle) gathering ge-
netic material. Before starting a new life-cycle, the eggs thus select their new genome
according to the rewards associated. This is called “parental investment”. Embod-
ied evolution has recently been adapted to low-cost robots by replacing the sexual
reproduction metaphor (i.e. mating-selection-replacement) by the horizontal trans-
fer of genetic code found in bacteria [Bredeche, 2019]. In this algorithm, only small
bits of the genome are transmitted to conspecifics and these bits override the cur-
rent ones in the receiver only if the reward associated to the donor is higher than
the receiver’s current reward. This transfer takes advantage of the constraints of
low-cost robots as the size of the bits of code transmitted depend on the bandwidth
of the robots. Smaller bandwidth therefore provide higher performances (as various
genomes are eliminated less quickly and more variations appear) at the cost of a
slower convergence time.

As we saw in this section, although all of these approaches have an automatic
optimisation dimension to them, latter ones also display aspects of behaviour-based
design as their controller learn to mimicry specific biological behaviours (Turing
Learning) or are a priori designed to some extent (Embodied Evolution). This is
not, however, necessarily a problem as these approaches can conversely avoid the
requirement to formulate a fitness function for the task, which can fail to encompass
every aspect of the problem or lead to large reality gaps [Nelson et al., 2009].

2.2 Signalling

Local communication is a central aspect of swarm robotics and often takes inspi-
ration from the communication behaviour of social insects that use these kind of
interactions to organise themselves. Animal communication, or signalling, has a
long history in ethology. Indeed, signalling was initially defined as rigid signals trig-
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gering a pre-determined and hard-wired reaction in conspecifics2. As information
theory grew in popularity, signals started to be viewed as encodings, first, of the
signaller’s internal state and, later, of environmental information. In any of these
cases, signalling is always conceived as having biologically evolved by bringing an
evolutionary advantage, either because cooperation is essential to survival or egoisti-
cally, as helping conspecifics with similar genetic make-up (i.e. children) propagates
one’s own genome. Eventually, empirical studies demonstrated that signalling can
even be symbolic as, e.g. vervet monkeys have specific alarm calls for each of their
predator species. As a result, when threatened, signallers can give their listeners the
opportunity to use the strategy most effective to escape this specific predator.

These information-based definitions were later replaced by an influence based one:
Animal signalling is the use of “specialized, species-typical morphology or behavior to
influence the current or future behavior of another individual” [Owren et al., 2010].
This definition has the advantage of encompassing previous definitions while being
much more rigorous. Indeed, this new definitions more clearly rejects behaviours
such as, e.g. incidental cueing/implicit information transfer (i.e. passive perception
of conspecifics such as in self-organised aggregation).

A previous research on communication in swarm robotics [Trianni and Dorigo,
2006] isolated three communication behaviours in insect societies: stigmergy (i.e.
indirect communication), direct interaction and direct communication.

The definition of signalling emphasised above includes all three of these com-
munication (whereas earlier definitions would have excluded “direct interactions” as
there is no encoding of information involved in these behaviours). The rest of this
section will therefore review the state of the art for signalling in swarm robotics by
focusing on stigmergy (Section 2.2.1), direct interaction (Section 2.2.2) and direct
communication (Section 2.2.3).

2.2.1 Stigmergy

Stigmergy is a behaviour wherein communication is effectuated through modifica-
tions of the environment. It was first introduced in the midst of the XXth century
to describe the behaviour of termites [Grassé, 1959], which are capable of building
complex nest structures only by depositing their small balls of mud next to other
balls with higher probability.

This behaviour can easily be reproduced with robots [Beckers et al., 2000] for
object clustering or object aggregation (the latter involves objects that have to be

2The claims in the following paragraph are all largely based on Owren et al.’s historical notes
on animal signalling [Owren et al., 2010]
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Figure 2.1: Example of collective chain formation. From [Nouyan et al., 2009],
reproduced with permission c©2009 IEEE.

connected to each other) [Brambilla et al., 2013].
Another classical example of stigmergy can be found with the exploration of ant

colonies who use pheromone trails to find the shortest path between their nest and
food sources [Deneubourg et al., 1990].

However, pheromones are difficult to reproduce in robotics swarms. A few work
on this topic propose particular actuator/sensors for this purpose, such as UV-light
emitters that leave a mark on a specifically-designed floor [Alers et al., 2014]. Because
these approaches are not exactly versatile, many research on the topic of stigmergy
in swarm robotics prefer, as illustrated in Figure 2.1, to use a part of the swarm as
pheromone trails that guide the way for other robots [Nouyan et al., 2009, Campo
et al., 2010]. The remaining robots (those that do not constitute de chain) can then
follow the chain to the target. The difference between “pheromone” and regular
robots can also be formalised by using a different kind of robot for each role [Ducatelle
et al., 2011a].

2.2.2 Direct Interaction

In direct interaction, an individual directly influences another by physical contact
which provokes a response. This is a somewhat unintuitive example of communi-
cation if one focuses their understanding of communication on information theory.
However, under an influence-based definition, direct physical contacts can be un-
derstood as signalling as long as they trigger a behaviour on the other side of the
interaction (i.e. merely pushing another robot is not signalling, unless the pushed
robot eventually starts to walk in the same direction by itself).
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Although examples of direct interaction are rare in swarm robotics (because con-
tact between robots is generally avoided or discarded [Trianni and Dorigo, 2006]),
some examples can be found in coordinated motion, which can apply to self-assembly
and collective transport [O’Grady et al., 2010].

Self-assembled swarms can cross obstacles that individual robots cannot, such as
hills (by multiplying motor power) or holes (by forming structures that are larger
than the hole). In both cases, the individual parts of the structure have to move in
a common direction, even if some of them are not able to see the target and, thus,
to decide said direction. In such cases, there are two challenges. The first is to self-
assemble, which can be complicated as choosing who is the gripper and who is the
grippee is not straightforward. This can however be negotiated via direct interactions
[Ampatzis et al., 2009]. The second challenge is then to move in a common direction,
which can be done by aligning oneself with the direction of traction sensed by the
robot’s torque [Groß et al., 2006].

This is quite similar to the collective transport behaviour of ants [Kube and
Bonabeau, 2000], which can effectively be reproduced in robots in a similar fashion
[Baldassarre et al., 2006, Groß et al., 2006].

2.2.3 Direct Communication

Direct communication is non-mediated transmission of information that requires no
physical interaction, such as the waggle dance that bees use to inform their colleagues
of the position of pollination sites [Riley et al., 2005].

This is the most common form of communication in swarm robotics. It can be
used for, e.g., foraging [Ducatelle et al., 2011b], self-organised aggregation [Soysal
and Sahin, 2005] or morphogenesis [O’Grady et al., 2009], and its various possible
modalities have been thoroughly studied [Mathews et al., 2010, Trianni et al., 2016].
In fact, direct communication supersedes all other forms of communication in swarm
robotics. Indeed, stigmergic implementations are often closer to a metaphor that
actually uses directly communicating robots as pheromone trails [Ducatelle et al.,
2011a]. Furthermore, direct interaction requires specific sensors (torque feedback)
and physical contact between robots, which make real-world implementations diffi-
cult. Therefore, it is often replaced—or complemented [Trianni and Dorigo, 2006]—in
collective transport and coordinated motion by direct communication of the robots’
direction to similarly effective outcome [Campo et al., 2006, Ferrante et al., 2013],
using strategies that are more similar to flocking [Ferrante et al., 2014].

Numerous works in evolutionary swarm robotics have also grappled with direct
communication. They showed that the latter can emerge spontaneously [Floreano
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et al., 2007], i.e. without any explicit requirement for communication in the fit-
ness function or in the task at hand. Through these works, direct communication
was shown to provide a significant advantage to foraging [Floreano et al., 2007] and
categorisation [Ampatzis et al., 2008, Tuci, 2009] as well as creating more resilient
controllers for such tasks as categorisation, synchronization and aggregation [Hassel-
mann et al., 2018].

2.3 Self-Organised Aggregation

Self-organised aggregation is a decision-making process ubiquitous in nature [Ca-
mazine, 2003] whereby agents gather all around the same area, without relying on
global information, global communication, or any kind of centralised information or
decision. In addition to being a widely studied behaviour of swarm robotics, it is
also one of its most fundamental building blocks. Indeed, many problems in swarm
robotics require the swarm to gather in order to be solved. These include self-
assembly and obstacle avoidance [O’Grady et al., 2010], coordinated motion [Trianni
et al., 2006, Ferrante et al., 2014] and cooperative object transport [Tuci et al., 2018].

Depending on the objective, the site of aggregation can be either an area in
the environment that can be clearly perceived by all agents (and that has to be
selected amongst several similar shelters) or non-specific and non-differentiable from
any other part of the arena. Approaches to aggregation with shelters will be reviewed
in Section 2.3.1 whilst Section 2.3.2 will review approaches that do not require shelter
to form aggregates.

2.3.1 Aggregation with Shelters

Early studies on aggregation were inspired from Blattella germanica cockroach lar-
vae’s behaviour. In this model, agents collectively choose a shelter among several
possibilities [Deneubourg et al., 2002]. In order to choose a shelter, each agent ex-
plores the entire environment randomly and stops according to the quantity Xi of
conspecifics in shelter i, following a probability Pi given by Equation 2.1:

Pi =
a

1 + bX2
i

(2.1)

with a = 0.01 and b = 0.16 [Deneubourg et al., 2002].
By only using this mechanism, agents would aggregate randomly in all of the

shelters. However, agents can also leave the cluster with probabilities that, according
to later models [Amé et al., 2006], increase with n in order to avoid overcrowding as
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shelters have a limited carrying capacity (see Equation 2.2). The models suggest that
the probability to join can also be affected by the carrying capacity of the shelter.

Ri = µ(1− Xi

S
) (2.2)

where S is the quantity of agents that can fit in a shelter.
The decision making dynamics of this behaviour was also studied using differential

equations [Amé et al., 2006]. This work analysed the decision making dynamics of
a swarm of size N when it had to choose between two or more identical shelters of
total carrying capacity S. An important find in this study is that of the mechanism
of the decision making of the agents according to the ratio σ = S/N . Indeed, agents
only make a collective choice if and only if there is a shelter for which σ ≥ 1. In any
other case, they distribute themselves equally in as few shelters as possible (even if
the shelters have room to fill). Later studies continues this analysis with experiments
on robots and shelters of carrying capacity [Garnier et al., 2009, Campo et al., 2011].
These works showed that agents following this kind of probabilistic aggregation are
able to collectively select shelters that are neither too small nor to big.

Because, as expressed above, self-organised aggregation has many applications for
collective behaviours, this model has inspired many algorithms in swarm robotics.
The closest studies [Garnier et al., 2005, 2009], performed a very similar aggrega-
tion task, and even used the probability tables reported from observations of actual
cockroaches [Jeanson et al., 2005].

Other insect species have also been taken as inspiration to perform self-organised
aggregation. Following a principle very similar to cockroaches, honeybees can aggre-
gate on hotspots [Bodi et al., 2012]. The only significant difference between the two
behaviours is that, here, the probability distribution to stay do not increase with
quantity of neighbours but with the local temperature, though the decision to stay
or not is still triggered only when meeting other agents or aggregates.

Finally, automatic designs of aggregation with shelters are possible [Hasselmann
et al., 2018], especially modular designs which perform better than any other evolved
behaviour and resist better to the reality gap.

2.3.2 Aggregation without Shelters

The behaviour of cockroaches has also been studied in continuous environments. To
model the relevant distribution of probabilities, Jeanson et al. [Jeanson et al., 2005]
designed separate experiments with groups of two to four larvae in a featureless arena.
By tracking the paths of the larvae, they were able to compute the resting times of
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agents depending on the quantity of conspecifics around them. Their observations
show that the walk of the larvae depend on their position in the arena (random walk
in the center against wall-following on the periphery) and that the distribution of the
resting times is bimodal; pauses can belong to either of two distributions: short or
long pauses. In addition to both distributions increasing with n, the probability to
choose a long pause also increases with n. From this, they were able to recreate their
model artificially for validation by inverting the resting times into leaving probabil-
ities by time-steps of one second. This model was also ported to robots for further
study, which demonstrated that successful robotic aggregation highly depends on the
probability of encounter between robots and, thus, on external parameters such as
the density of robots and their communication range [Garnier et al., 2008].

Later works [Correll and Martinoli, 2007, 2011] proposed a simplified implementa-
tion by averaging the original bimodal distribution into a unimodal one and ignoring
the variation of the walk mentioned above. As a result, this model of aggregation can
be summarised as a probabilistic finite state machine (PFSM) with only two states,
one to walk and one to stay, and simple transition probabilities that vary with n.

A modification of these distribution similar to [Correll and Martinoli, 2011] also
allowed [Bayindir and Sahin, 2009] an update of the formula proposed in [Amé et al.,
2004] (observations with shelters) to perform aggregation without shelters. Shelter-
less aggregation is also achievable using a PFSM with three states as, in addition to
walking, they can approach or be repelled by aggregates [Soysal and Sahin, 2005],
which is not bio-inspired.

One can also use the framework of evolutionary swarm robotics (see Section 2.1.2)
to create optimal aggregation behaviours [Trianni et al., 2003, Dorigo et al., 2004,
Şahin, 2004], which can cause the formation of either static clusters (as with proba-
bilistic aggregation) or denser dynamic flocks. Embodied evolution can also ensure
self-organised aggregation. OdNeat, is a multi-purpose embodied evolution algo-
rithm, implemented as a distributed island model [Silva et al., 2015]. In this model,
the neural network controller is evolved locally in each agent but some horizontal
genetic exchanges are possible for robots in close proximity. The evolution algo-
rithm optimises the topology as well as the weights of the neural network and also
maintains a tabu list of the worst controllers. When the rewards used to calculate
the fitness of the controller are the quantity of horizontal genetic exchanges, this
algorithm successfully evolves aggregation controllers that perform similarly well to
offline evolutionary methods.

Abandoning the biologically-inspired approaches of evolutionary robotics or
ethology, a later model [Gauci et al., 2014] of aggregation reached scalable results
with deterministically controlled robots equipped with a single one-bit sensor,
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without using any PFSM but only a simple sensors-actuators mapping. However,
they also had to perform experiments with every possible parameter tunings before
selecting the most efficient. This controller also yielded dynamic flocks moving in
circular motions and merging with each other. More recently, [Katada, 2018] created
a probabilistic aggregation controller by formalising it as an optimisation problem
that they solved with Particle Swarm Optimisation [Eberhart and Kennedy, 1995].
In addition to being scalable and interpretable, the controller they ended up with
was very similar to [Soysal and Sahin, 2005]. Finally, likening robots to Brownian
Particles [Einstein, 1905], shows that sensorless agents that can only sense when
they run into obstacles can distribute themselves in distinct areas of high and low
densities following a random walk under some speed conditions [Mayya et al., 2019].
This simplistic behaviour is sufficient to aggregate around a third of robots and
has applications in contexts where aggregating a significant part of the swarm is
necessary for the exchange of information whilst the spread of the whole is still
important (e.g. distributed sensing or area surveillance).

To conclude, self-organised aggregation is amongst the simplest collective be-
haviours. Its various models are also very similar to those of other behaviours such
as chain formation [Deneubourg et al., 2002, Nouyan et al., 2009], PFSM for for-
aging [Albani et al., 2018] or, more generally, evolutionary robotics solutions. It is
also an instance of collective decision-making, which can itself take the form of many
swarm robotics behaviours [Valentini et al., 2017]. Therefore, in addition to being a
prerequisite for other, more complex behaviours, self-organised aggregation can also
be exploited as an initial case study for swarm robotics in general.

2.4 Applications to Collective Exploration

Exploration of unknown environments is a challenging task, that is often accom-
plished with unmanned vehicles in order to limit human hazard. Performing explo-
ration simultaneously with several vehicles can be a necessity in cases where the area
of exploration is especially large.

Robust, flexible and scalable solutions are of paramount importance for this task
as real robots are prone to communication and detection errors and other failures.
This concern is even more prevalent for UAVs as the weight of aerial vehicles is
critical to their battery usage [Kumar and Michael, 2017]. As a consequence, UAVs
are bound by a trade-off between payload and battery, leading them to be severely
limited with regard to the reliability of their equipment (even more so considering the
challenges induced by three-dimensional motions). Moreover, the consequently short-
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lived batteries induce the risk of several agents deactivating during the execution of
a task. Therefore, collective exploration should be ensured by fully distributed bio-
inspired strategies [Albani et al., 2017].

This section presents an overview of the challenges of collective exploration of
unknown environments in robotics along with some examples of solutions swarm
robotics has or could bring to them. This section is divided into two parts, which deal,
respectively with area coverage (Section 2.4.1) and active SLAM3 (Section 2.4.2).

2.4.1 Area Coverage

Multi-robot area coverage is a task wherein robots have to organise in order to
maximise their exploration of an environment as quickly as possible and avoiding
coverage redundancy (i.e. several robots exploring the same area) as much as
possible. The two main approaches to this problem are blanket and sweeping
coverages [Papatheodorou and Tzes, 2018].

On one hand, Blanket coverage consists in distributing the robots in a static net-
work that covers as much as the environment as possible. Therefore, this approach
presents a trade-off between remaining within communication range and maximising
the coverage of the environment. In this regard, most effort exploit the works of
the wireless sensor networks (WSN) community on the same topic [Mulligan and
Ammari, 2010]. A good solution for homogeneous environments is to divide them in
Voronoi diagram (as illustrated in Figure 2.2) and to assign each robot to a region
[Vieira et al., 2003]. These non-overlapping regions are ideal for multi-robot area
coverage because they reduce redundant data whilst optimising the constraints re-
lated to radio range, energy waste and communication interference. For an unknown
environment, however, a blanket strategy would need to possess a dynamic variation.
Existing examples include area negotiation [Ahmadi and Stone, 2006] and dynamic
segmentation in Voronoi regions [Wurm et al., 2008].

Swarm robotics can tackle this challenge in a distributed and flexible fashion by,
as usual, getting inspiration from natural sciences. Indeed, equations of electrostatic
potential fields can maximize the area covered and form a well-connected commu-
nication network [Howard et al., 2002], without requiring any knowledge about the
area.

On the other hand, sweeping strategies consist on following an a priori set path
optimised to the constraints of the exploration task and can be exploited with one

3Simultaneous Localisation and Mapping
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Figure 2.2: Example of a Voronoi diagram. Each region Vi has a centre point pi.
Any point in Vi is closer to pi than to any other centre point.

[Ahmadi and Stone, 2005] or multiple robots [Kurabayashi et al., 1996]. However,
these sweeping strategies heavily rely on planning and, thus, known environment,
which is a strong assumption.

Swarm robotic approach can improve the flexibility of sweeping coverage. If
recognisable landmarks are available, swarm robots can discretise their environment
by building a dynamic graph wherein vertices are the landmarks [Rutishauser et al.,
2009]. Individual robots can locally exchange the vertices they have mapped as well
as the ones they have already explored and then move to the closest unexplored
vertex. If no landmark is available, sweeping can still be performed using basic be-
haviours such as random walk, wall-following, obstacle avoidance, etc, or combination
thereof [Doty et al., 1993]. These behaviours can be tuned for maximum efficiency in
robot swarms with in-depth mathematical [Correll, 2008] or experimental [Dimidov
et al., 2016] study of their dynamics.

2.4.2 Simultaneous Localisation and Mapping

Simultaneous localisation and mapping (SLAM) is a twofold challenge between es-
timating the state of one or more robots and building a model of the information
acquired by their sensors, i.e. a map. SLAM has applications in all manner of sit-
uations as soon as robot’s displacements in an uncharted area are required. It is
also an alternative to user-built maps and is especially useful indoor where Global
Navigation Satellite System (GNSS) localisation is often unavailable. In addition to
serving as a support for other operations such as path planing, place recognition or
loop closure, the maps also limits the error in the estimation of the pose. SLAM is
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thus a task of paramount importance in robotic exploration.
Applications where robots do not passively perceive and process data but also

explore the environment to maximise the exhaustivity and accuracy of the map and
of the localisation are called active SLAM. Although area coverage (see Section 2.4.1)
can obviously be used for such purpose, the modalities of SLAM algorithms create
some specific requirements. Therefore, before we can look into applications of swarm
robotics for active SLAM, we have to describe the workings of SLAM and its specific
objective when it comes to navigation.

On the purely computational side of SLAM, modern systems can be divided
into two modules: the front-end and the back-end [Cadena et al., 2016], with the
front-end extracting relevant features and abstracting the sensor output into general
models, whilst the back-end processes data into the map. On a more engineering-
oriented perspective, SLAM includes three features: the formal encoding of the map,
the sensors used and data processing [Saeedi et al., 2016]. Whilst the back-end is
equivalent to data processing in this perspective, the front-end should be associated
mainly with the sensors as it is an abstraction of them.

Map Representation. As mapping is half of SLAM, the representation of the
map we eventually want to obtain is of paramount importance. As most usages of
SLAM are in 2D space, the state of a robot is most often described as its pose, i.e.
position and orientation [Cadena et al., 2016]. The literature exposes six types of
such representations, each adapted to different uses [Saeedi et al., 2016]:

• Grid maps build a discrete representation of the space by dividing it in adja-
cent cells. The most common maps are occupancy grid maps [Mahdoui et al.,
2017] where each cell represents a rectangular area and is associated with a
probability that there is an object in the cell.

• Feature maps, or landmark maps [Atanasov et al., 2015] only register landmarks
and their global positions.

• Topological maps are abstract representation of space in a network-like config-
uration wherein vertices are places and edges show accessibility from one place
to another [Beeson et al., 2010]. This representation has been likened to the
way animals and even humans build a cognitive representation of large-scale
spaces [Kuipers, 2000].

• Appearance maps connect images of an environment in a graph wherein edges
link views that are sufficiently similar to picture the same place [Saeedi et al.,
2016].
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• Hybrid maps combine different mapping methods to fill the deficits of each
other.

The choice of representation for the map is thus highly dependant on the goals
the SLAM algorithm is deployed for. Nevertheless, some of these formalism are
only applicable with certain sensors. Thus, in any SLAM implementation, the map
representation will also be dependant on the available sensors.

Sensors and front-end. Robots all suffer from limitations with regards to the
amount of equipment they can carry. These limitations mainly impact the quality
and diversity of exteroceptive sensors (i.e. sensors that perceive and obtain measure-
ments from the environment) which are most often heavy and energy-intensive. These
sensors include sonars, range lasers, GNSS and cameras [Fuentes-Pacheco et al.,
2015]. Among these, cameras are the most advantageous as they are lightweight
and have low power consumptions. Nevertheless, a single source of measurements is
insufficient to ensure a robust and accurate estimation of a robot’s position [Castel-
lanos et al., 2001]. This problem can be mitigated using proprioceptive sensors (e.g.
accelerometers or gyroscopes) to estimate the robot’s current pose as its previous
pose translated according to the sensors’ measurement.

Likewise, one can also directly use the robot’s odometry [Thrun et al., 2005] which
is not the measurement of displacement but the displacement that should correspond
to the activation of the actuators. Odometry is a good example to explain the role of
the front-end. Indeed, robots can have different actuators (wheels, propellers, etc.)
with different sizes of effectiveness. As a SLAM implementation aims to be portable,
it can not directly feed the actuation data (i.e. actuators have been activated for
x seconds with a power of y.) into the back-end. Instead the front-end should be
specific to the robot and translate the effect of the actuation, according to its own
specifications, into a common measurement, e.g. a distance.

Data processing or back-end. The predictive transform from the previous po-
sition to the current position, however, are not deterministic [Thrun et al., 2005].
Indeed, both proprioceptive sensors and odometry suffer from noisy measurements.
Consequently, left as is, this approach accumulates error and leads to entirely false
localisations. The role of the back-end is to correct these estimations in order to
produce accurate localisation and mapping.

The most straightforward solution is using probabilistic (Bayes) filters to correct
the noise according to previous displacements. In this regard, the Kalman filter
[Kalman, 1960] is the most widely used approach (e.g. EKF-SLAM Bailey et al.
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(a) (b)

Figure 2.3: Paths of agents following a noisy random walk (a) and passed through a
Kalman filter (b) (colour schemes are random).

[2006]). From previous displacements, this filter builds a correlation matrix between
the x,y,z coordinates and crosses its prediction with the current motion data to
predict the most probable position. Its effect is illustrated in Figure 2.3. Though
extremely useful, the Kalman filter is somewhat limited as it would not correct the
consistent skewing that could arise, e.g. from asymmetrically calibrated wheels in
odometry.

Another way to correct a localisation is to average it with other estimations
that were produced at the same location; a robot can recognise a previously visited
location by comparing its exteroceptive sensors measurements and then correct its
current estimation of its pose using its estimation at the time of the previous visit.
This is called “loop closure” and is one of the cornerstone of SLAM as the accuracy
of the process depends on this [Mur-Artal and Tardós, 2017]. Loop closure can also
be performed using other robots data. This possibility provides a higher quantity
of corrections but also introduces the challenges of transmitting the relevant data
from robot to robot whilst accounting for the robot’s capabilities and ensuring the
continued exploration of the environment.

Active SLAM. SLAM presents a trade-off between exploration and communica-
tion. On one hand, exploration is obviously the goal and requires the robots to spread
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for maximum efficiency. On the other hand, robots need to group occasionally as
the “mapping” part of the process includes data fusion and loop-closure which are
enabled by direct communication (that is, unless the data processing is performed
on a central server [Karrer et al., 2018]). Moreover, certain areas might need to
be updated regularly (e.g. in surveillance tasks) which means that robot need to
either explore these areas multiple times or remain in their vicinity. This balance
between exploration and exploitation is most often tackled by computing the utility
of each possible localisation. This utility depends on the action of other robots,
which therefore have to communicate their current maps. As the data to transmit
and to compute in this case can be of a huge size, the robots are often limited to
transmitting frontier points [Mahdoui et al., 2017], i.e. the limits of the explored
area. The challenges of active SLAM are thus threefold as robots need to choose
between exploration, exploitation and communication [Cadena et al., 2016]

Applications of Swarm Robotics. In addition to some proposition of Sec-
tion 2.4.1 (e.g. [Rutishauser et al., 2009] is perfectly adapted to active SLAM with
landmark maps), other swarm robotic approaches to these challenges are also possi-
ble. Firstly, localisation errors can be greatly reduced by performing social odometry,
i.e. correcting each other’s measurements as robots encounter. Social odometry has
been shown to improve the performances of robots that had to forage “food” from
different sources by strengthening their confidence in the localisation of their target
[Miletitch et al., 2013].

More generally, behaviour-based approaches to foraging could easily be adapted
to active SLAM as these approaches already implement some kind of utility functions
and, e.g., frontier points can be considered as “food sources”.

There are typically two approaches to foraging: threshold-based approaches
or stochastic task-switching. The formers [Momen and Sharkey, 2009] use the
division of labour model observed in social insects [Bonabeau et al., 1996]. Here, the
probability to switch to a task decreases with the number of robots that are already
executing it. This decreasing is not linear but rather follows a threshold function.
In other words, the probability to join a task remains extremely low until the
threshold value is passed, in which case the probability converges relatively abruptly
(depending on n) to 1. Stochastic task-switching consists in a PFSM whereby
robots move towards a food source with a fixed probability or remain idle with
another fixed probability [Correll, 2008]. In this approach, all target-commitment
are independent states that all transition by an idle state. Robots can also recruit
or inhibit their conspecifics according to the size of the task [Albani et al., 2018]
(e.g. if they discover a new room).
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Despite its remoteness to swarm robotics, even passive SLAM (i.e. the perception
and processing of data), can benefit from swarm robotic approaches, especially from
its communication modalities. Indeed, an essential feature of swarm communica-
tion is its situatedness [Campo, 2011]. Contrary to abstract communication, whose
content only is relevant (e.g. transmission of absolute position), situated communi-
cation uses its content as well as its context [Stoy, 2001]. This property is the reason
approaches such as social odometry [Miletitch et al., 2013] or embodied evolution
with implicit fitness [Bredeche and Montanier, 2010] work so well in swarm robotics.
The simple fact that the communication is possible is already an information that
can be exploited (resp. “we are in the same area” and “this robot survived with the
attached genomes”). In Chapter 3, we will argue that this situated communication
can be pushed even further in order to make a cultural system emerge, which, as has
already been suggested [Albani et al., 2017], could help to build and label exploration
maps.
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Chapter 3

Evolution of Language: State of
the Art

As we have seen in Chapter 2, one of the key components of swarm robotics is local
interaction or communication. The later has, so far, only been used for relatively
simple tasks such as signalling a robot’s preference or state. However, new environ-
ments can greatly affect the efficiency of pre-designed interaction strategies. Indeed,
pre-programmed communication is, by definition, insufficient to tackle an open-ended
world [Steels, 2003]. For swarms to be fully autonomous, the emergence of meaning,
as it exists in human language, is therefore necessary.

This chapter will thus explore the possibilities offered to us with regards to evolv-
ing useful communication by leaning on theories from fields related to natural lan-
guages such as linguistic and the philosophy of language. As we said in Section 2.1,
swarm robotic controllers can either be automatically or manually designed. This
mirrors the main debate regarding the question of the evolution of language, which
is about whether language is innate or learned [Bates, 2003]. In the first view, our
ability to master the complexities of language is biologically imprinted and results
from millennia of evolution. In the second view, our abilities are not especially
optimised for language and the latter would have gained its complexity through
self-organisation in order to be transmittable.

Providing evidences for either position is not actually straightforward as language
is a complex system at the intersection between three processes: socio-ecological evo-
lution1, biological evolution, and cultural evolution [Steels, 2011]. Although every-

1Socio-ecological evolution postulates that the pressure to use symbolic communication due to
the humanity’s initial environmental niche would be conserved and heightened through the integra-
tion of language into social structures, even though it stopped being an environmental necessity.
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body agrees that socio-ecological evolution is the background against which the two
other processes act [Steels, 2011], the relative importance of biological and cultural
evolution remain unknown.

Section 3.1 will be an overview of works focusing on biological evolution of lan-
guage complexity which, as we will see, has been a dominant paradigm that influenced
applications in artificial systems. Section 3.2 will propose an alternative approach to
evolving complex communication systems based on cultural evolution.

3.1 Biological Evolution

Biolinguistics is a field of linguistics that studies the evolution of natural languages.
Its main assumption is that the capacity to use, understand and produce natural
languages is mostly genetic and thus evolves biologically. In section 3.1.1, we will
detail this assumption and the evidences that support it.

In order to better understand the evolution of such a complex system as language,
artificial models have been proposed. As we will see in Section 3.1.2, by simulating
the process of language inheritance across multiple generations, multi-agent systems
can clarify the role of biological evolution in language.

Finally, the biolinguistic view is fully compatible with modern optimisation tools
that use genetic evolution. Section 3.1.3 will show how engineering has therefore
exploited this paradigm to create multi-agent systems that would solve practical
tasks.

3.1.1 The Biolinguistic Paradigm

The biolinguistic paradigm2 emphasises the importance of biological evolution in
forming a faculty of language. The Faculty of Language in a Broad sense (FLB) is
indeed biological as language is enabled by anatomical (vocal tract, auditory system,
etc) and “computational” (brain power) features. These features are not unique
to humans as they are found in many animals [Hauser et al., 2002]. Moreover,
robots are already equipped with actuator-sensor systems and computational power
that enable communication. The Faculty of Language in a Narrow sense (FLN),
however, is arguably unique to humanity [Hauser et al., 2002]. The FLN is mostly an
ability to understand and build recursive structures. Recursion, in turn, enables the

2This is sometimes called the nativist, innate or Chomskyan paradigm, the latter from Noam
Chomsky who as been its major proponent. However, in this work, we will restrain ourselves to the
denominations laid out in [Steels, 2011] as our work is in its continuation.
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compositionality—i.e. creating new sentences by recombining learned examples—
and the double articulation of language 3 [Smith, 2014].

Recursivity ensures complex languages which, nonetheless, children master rela-
tively quickly and, more importantly, with a comparatively tiny subset of examples.
To explain this success in face of the “poverty of linguistic stimulus”, Noam Chomsky
proposed that human brains are innately equipped with a Language-Acquisition De-
vice (LAD) [Chomsky, 1964]. The LAD would be a cognitive unite in the brain that
would have evolved biologically and that would be hard-wired for the understanding
and production of language.

According to Chomsky, the LAD would provide humans with an endowed uni-
versal grammar that underlies all existing grammars. As this universal grammar
would be part of the FLN, it would be recursive and so would any of its derivative.
This enables to formalise any grammar as a set of recursive rules as in the minimal
example below:
S → NP VP
NP → D NP
NP → A N
VP → V
N → box
A → blue
V → flies
D → the
Consequently, the sentence “The blue box flies” can be grammatically verified by
backtracking the rules as follows:
The blue box flies → D A N V
D A N V → D NP V
D NP V → NP V
NP V → NP VP
NP VP → S
The fact that we can return to the root of this grammar (i.e. S) demonstrates that
“The blue box flies” is grammatically correct. Generative grammars have had a
substantial impact, including in computer science as they are widely used in the
implementation of parsing algorithms to compile programming languages and they
can also model finite state automata [Reghizzi et al., 2013].

A major argument supporting universal grammar and, therefore, the LAD and
biolinguistics, is the existence of language universals (LU) [Chomsky, 1980]. LUs are

3meaning depends on two levels at the same time as (1) words are specific patterns of sounds
and (2) sentences are specific patterns of words.
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features or constraints that are found in the majority of languages across the globe.
For example, no language expresses tense using noun affixes [Pinker and Bloom,
1990]. As we will see in Section 3.2.1, some LUs also express an implication between
several features. LUs seem difficult to take into account without supposing that
all humans are biologically (and identically) wired for speech following a universal
grammar that dictates the presence of these LUs.

Despite this agreement between biolinguists, the latter are opposed by two an-
tagonist views. The adaptationist view of biolinguistic [Pinker and Bloom, 1990],
supports that the LAD has “evolved through selection for the function it now fulfils”
[Kirby, 1999]. Conversely, the exaptationist view supports that the LAD would have
evolved for other purposes and the fact that it enables the FLN would only be a
side-effect.

3.1.2 Synthetic Models

Many synthetic models have been developed in order to study the evolution of lan-
guage in long time-scales. Indeed, studying multi-agent simulations that can repro-
duce and interact at a very fast pace, informs researcher in ways that human observa-
tion can not. Moreover, robots offer the opportunity of grounded simulations as the
complexity of the actual world (which could not be reproduced in an abstract simu-
lation) plays an important part in the development of a language. Indeed, language
must, for example, account for the difference of perspective between agents [Steels
and Loetzsch, 2008] or be sufficiently powerful to discriminate an object against a
continuous spectrum of stimuli [Steels and Loetzsch, 2012].

Examples of the linguistic models implemented on robotic platforms [Tuci, 2009,
Tuci et al., 2011] use the framework of Evolutionary Swarm Robotics (see Sec-
tion 2.1.2) as well as Evolutionary Robotics to show how language can evolve in
co-dependence with performing actions. The latter [Tuci, 2009] was a categorisation
task wherein groups of robots had to decide the direction of rotation of a revolving
door according to perceptual cues that, like the robots, were distributed on both sides
of the door. This only demonstrates that robots can evolve a simple signalling system
to categorise the environment. Nevertheless, the latter [Tuci et al., 2011] showed that
a uniquely linguistic feature such as compositionality can evolve through generations
of single robots obeying to varying orders.

Agent-based computational models have also been proposed to simulate the evo-
lution of language across several generations. In this model, the capacities of an
agent, such as a neural network [Niyogi and Berwick, 1997], are encoded as a DNA
string. These agents then reproduce to form a new generation by transmitting their
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genes (according to Darwinian theory) and/or by teaching their language to their
offspring.

Such models allows researchers to study the interplay between biological and
cultural evolution such as in the Baldwin effect. The Baldwin effect is a well-known
biological phenomenon that could support the adaptionist view of language. It states
that skills acquired within a lifespan can be easier to learn for each new generation
as a stronger predisposition to this skill becomes a selective advantage, which leads
to new generations with a genome more adapted to this task [Baldwin, 1896]. In this
explanation, babies born with a higher predisposition to a language could participate
earlier to social activities and, thus have a higher change to survive which, generation
after generation, would encode these predispositions into their genetic code, which
would eventually have become the LAD.

Nonetheless, an agent-based model such as described above enabled researchers
to test this hypothesis. In this model, genes are associated with an advantages for
some features of language. Comparing different possible kind of influences (genes
influence language, language influences genes–i.e. genes compatible with language
are a selective advantage–, and combination thereof) over several generations showed
that languages changes too rapidly for specifically adapted organs/instinct to appear
because of the selective pressure. The LAD could not, therefore, have evolved because
of a societal pressure to speak. Nonetheless, the Baldwin Effect could refine these
biological modules once a complex language is used in a population.

This study does not entirely refutes an important role of biology in the formation
of language. However, it clearly contradicts the adaptationist view, leaving only the
exaptationist to fully support the biolinguistic paradigm. The shape of the LAD
would thus have no particular evolutionary advantage. However, some mathematical
modelling [Nowak et al., 2001] indicate that coherence might be a strong factor in
the natural evolution of UG under selection pressure.

Similar computational models show that the transmission of a language from
generation to generation can suffice to transform a weak learning bias into a given
linguistic feature (i.e. a LU) with almost certainty [Kirby et al., 2007]. This
learning bias could be biological but could also be induced by the constraints
of the learning to the point, claim the authors, that culture may completely
neuter innate bias in the resulting language or even weaken the genes that encode
them (by reducing selective pressure). Finally, compositionality can also emerge
without any reproduction but, rather, by repetitions of a teacher-learner cycle.
Using the iterated model, it has been shown that the “poverty of linguistic
stimulus”, rather than being an argument for UG, can actually be responsible
for the cultural emergence of compositionality. In fact, compositionality allows
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learners to slip past this bottleneck (i.e. the subset of data they are taught) in order
to learn the full language [Smith et al., 2003], without requiring biological adaptation.

The findings presented above strongly undermine the fundamental hypothesis
of biolinguistics, as does the fact that even the existence of language universals is
increasingly called into question as it may have resulted from ethnocentric observa-
tions [Evans and Levinson, 2009]. It is worth reiterating, however, that the impact
of evolution on natural languages should not be entirely dismissed as other biolog-
ical experiments have shown that even apes are not capable to manage recursive
phrase structures contrary to infants [Fitch and Hauser, 2004]. In this section, we
only demonstrated that cultural evolution is also an important part of the evolution
of language and can explain many of its more complex aspects which tended to be
obstructed by fully adaptationist approaches until recently. As we have just seen,
simulated studies strongly imply that self-organisation can indeed induce many LU
without requiring any biological explanation. This hypothesis will be developed in
Section 3.2.1.

Despite the theoretical debate regarding biology as an explanation of linguistic
complexities, its assumptions still can be (and have been) useful for artificial systems
as they are highly compatible with one of the most common modern optimisation
tools.

3.1.3 Applications to Artificial Systems

Due to its strong propensity towards an evolutionary robotics framework, it is not
surprising that all previous work related to evolving communication in swarm of
robots share the assumptions of biolinguistics. This is; however, also a weakness,
as this strong focus on offline optimisation does not allow open-ended communica-
tion and, as we have seen in Section 2.2 constrains these works to developing mere
signalling.

In the first work in this direction, small colonies of robots were evolved within
a particular scenario that did not especially encourage communication [Floreano
et al., 2007]. In this experiment, the robots were assigned a foraging task (i.e.
find a food source in order to feed). However, the environment also hosted poison
sources undistinguishable from food sources as both emitted red light. At the end
of a classical evolutionary process, both kind of colonies (light equipped or not) had
significantly improved their performance, especially in those equipped with lights
wherein two types of signalling emerged in different populations. Indeed, agents
either activated their blue lights near the food sources or they activated them near the
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poison sources. This study also showed how, as in nature, suboptimal communication
systems can be adopted and maintained as the individual can not afford to pass
through a chaotic period in order to find a new optimum. Moreover, these results also
demonstrate that communication with emerged meaning can provide an advantage
to robots swarms in a typical scenario of swarm robotics.

Later works [Ampatzis et al., 2008] (see also Section 3.1.2 for [Tuci, 2009]) hence-
forth used ER to evolve signalling for other behaviours, expecting these signalling
systems to produce more adaptable behaviours, especially when porting controllers
evolved in silico to the real world. This outcome was successfully produced in a
categorisation task wherein two, then four, robots had to collectively discriminate
between two different environments and perform phototaxis or antiphototaxis ac-
cordingly [Ampatzis et al., 2008]. In the successfully evolved controllers, signalling
had emerged (again, without any incentive in the fitness function) as a social and
personal cue to switch from phototaxis to antiphototaxis (i.e. that the robots where
in the second environment). Although the controller thoroughly resisted the reality
gap, the authors emphasise that the uniformity of the controllers was most certainly
a reason of its success as the robots did not have to deal with dishonest communica-
tion. Moreover, useful signalling systematically emerged in generations succeeding
the first successes in the main task.

More recently, it has been shown that automatic modular design evolves more
resilient communication than ER for such classical examples of swarm behaviours as
aggregation (see Section 2.3), coordination4 and categorisation [Hasselmann et al.,
2018].

Evolutionary approaches to language have also been used for task-solving in ab-
stract multi-agent settings with The Prey-Predator pursuit problem [Jim and Giles,
2000]. This problem involves five agents (one prey and four predators) moving on
a two dimensional grid-world. The goal of the predators is to cooperate in order to
surround the prey by all four sides at the same time, thus capturing it. Jim and Giles
[Jim and Giles, 2000] used this pursuit problem in order to study the effectiveness of
language as a cooperation scheme. We describe this more abstract implementation
below because it allowed more comprehensive efforts and could well find applications
with newer swarm robotics platforms such as ARK [Reina et al., 2017] or the kilogrid
[Valentini et al., 2018].

In this experiment, besides choosing one of the four directions to move towards,
a predator executes another action: sharing a message of l bits on a message board,
accessible to all predators. Of course, this message is not always the same and

4In this setting, robots had to explore an arena wherein a dark spot was painted. The task was
for all robots to stop as soon as possible after one of the robots had found the spot.
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depends on the state of the agents, which is defined by the data it perceives: the
range and bearing of the prey and the messages currently on the message board. So,
in effect, for a predator, one turn consists of three actions:

1. Read all characters on the message board.

2. Taking these characters into account, choose and move towards a direction.

3. Write a new message on the message board.

with all predators executing their turns simultaneously (thus acting from the same
messages).

The strategy of the predators (i.e. the decision they take depending on the
message board and on their own sensory information) is homogeneous and remains
constant during each scenario. This strategy is coded as a binary chromosome string.
This chromosome string associates each combination of sensory information (range,
bearing, and message board) to one move and one message.

The researchers also implemented a growing process which consists of taking a
population of predators that have already reached an efficient language, increasing
the length l of the messages, and then evolving them further. This process makes the
language developed adaptive, which means that the language is capable of adapting
itself to integrate new meanings or accommodate new individuals.

Eventually, this work shows that this communication scheme does help (as they
produced the best results for this problem at the time) and that the time necessary
to capture the prey decreases as the length of the messages increases. Moreover,
the results showed that, for the same length, grown languages are as efficient as
non-grown ones but that they are faster to evolve.

In parallel, the same problem was addressed using the Enforced Population
Method (ESP), which consists of evolving the neurons of a neural network indi-
vidually [Yong and Miikkulainen, 2001]. In this experiment, the prey actively tries
to escape as it always chooses the direction opposite the nearest predator. Using
ESP to evolve both communicating and non-communicating predators, they found
that both performed as well although the communicating agents where slower to
evolve and adjusted more poorly against preys exhibiting behaviours that were not
considered during the training phase. However, they note that the communicating
agents are more flexible (compared to non-communicating agents that each evolve
a specific role) and that their unsatisfactory effectiveness is probably due to them
switching role too many times as the scenario develops.

Other works recently studied the advantages procured by communication scheme
for the pursuit problems [Goings et al., 2014], but none highlighted a definitive ad-
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vantage of communication, even when the setting was especially designed to require
communication [Rahman and Jain]. Overall, in the case of a pursuit problem, the
evidences towards communication being an advantage seem contradictory, although,
we can note that it helps for very challenging settings as the prey’s behaviour as
programmed in [Jim and Giles, 2000] make it more difficult to catch. Moreover,
this survey showed that adaptive languages are faster to evolve and as efficient as
non-adaptive ones.

The works cited above, simulated as well as embodied, all share the assumption
that language or signalling evolve biologically, which is unsurprising as they are using
the framework of automatic design available in swarm robotics and, more generally,
optimisation. These implementations all share the same weaknesses as any work
under the framework of evolutionary designs: they are computationally expensive,
centralised and do not adapt well to new experimental conditions.

3.2 Cultural Evolution

Cultural evolution explains the complexity of language by self-organisation [Steels,
2011]. It supposes that no particular area of the brain is dedicated to language.
Instead, specific forms of language would emerge through usage under constraints
such as unreliable channels or limitations on memory and perception [Bates, 2003].
These forms are thus common, not because they are innate, but because they are
among the only possible solutions to conveying a rich set of meanings onto these
constraints.

To study this emerging phenomenon, evolutionary linguists use computational
models with large quantities of interacting agents. These models do not require
replacement nor reproduction but play out in a single open-ended experiment. This
field has largely been influenced by Language Games (LG): a category of games aimed
to study the way a population can self-organise in order to enable the emergence of
languages that map words to meanings [Steels, 2011]. Moreover, the languages thus
created are adaptive as they are capable to take new meanings into account (and
actually emerged that way in the first place) and to include new agents (even if these
agents already have a language).

LG are interesting from an epistemological perspective: They draw their origin
from the philosophy of language, the study of how words and grammar acquire
meaning, but they are used as a linguistic tool to explain the organisation of language.
Linguistic and philosophy of language are very different fields of inquiry with few
bridges between them and LGs are one of these bridges. Section 3.2.1 will revisit
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LU and show that LG can be a linguistic explanation for them whilst Section 3.2.2
will delve into the origins of LG. Eventually, Section 3.2.3 will focus on the simplest
instance of LG, which is the Naming Game, and highlight some common points of
interests between the NG and swarm robotics.

3.2.1 Cultural Evolution of Language Universals

LUs are not just linguistic features that are found in every language. As a matter of
fact, several LUs express a dependency between some of these features [Greenberg,
1963]. These dependency can be hierarchical [Kirby, 1999] and, thus, formalised as
follows:

∀L[(P1(L)→ P2(L))&(P2(L)→ P3(L))&...&(Pn−1(L)→ Pn(L))]

These LUs are most often written by linguists as Pn > Pn−1 > ... > P3 > P2 > P1
to express their relative height in a hierarchy of type, in the sense that Pn is true of
many languages but Pn−1 is found only in a subset of them and so on and so forth.

Vowel systems are one of these LUs [Crothers, 1978]. Indeed, the observation
of more than 400 languages showed languages having the same number of vowels
turned out to use resembling sets (among 37 existing vowels) and that, like BCT,
larger vowel systems tended to contain all the vowels found in smaller systems.

These vowel systems actually follow a complex taxonomy and various implications
are possible with different statistical probabilites (it is therefore a statistical rather
than an absolute universal [Kirby, 1999]). However, we can illustrate this universal
with languages using only three vowels, such as Classical Arabic, Inuktitut (one of
the main Inuit languages), or Quechua. All three of these language only use /i, a, u/.
These vowels are also used in the majority of languages with more vowels, such as
Spanish, which has /a, e, i, o, u/. A tentative hierarchy of vowel systems [Crothers,
1978] is presented in Figure 3.1.

A language game that can explain these similarities is the imitation game
[De Boer, 2000]. In this game, agents are equipped with an articulatory synthesizer,
a module for calculating the distances between different vowels (according to human
perception) and a repertoire for storing vowel prototypes. Then, two agents (among
many) are selected randomly and start the game proper. The first agent (the
initiator) selects a random vowel from its repertoire and utters it. The second agent
(the imitator) then tries to imitate this vowel by uttering the closest likeness in its
own repertoire. The initiator subsequently has to find the closest vowel to the one
uttered by the imitator in its own repertoire, the goal being to thus find the initial
vowel. Depending on the issue of previous games and on the success of the current
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Figure 3.1: Crothers [1978]’s hierarchy of vowel systems.

one, both agents then either “merge” their vowels (they shift their vowel in the
articulatory space towards the one they perceived) or add a new one. This protocol,
coupled with some communication noise, causes the emergence of vowel systems
that are strikingly similar to those found in actual human languages because the
agents self-organise in order to produce vowels that are as distinguishable from each
other as possible.

Another example of LU is the hierarchy of Basic Colour Terms (BCTs). According
to surveys with 20 then 110 languages [Berlin and Kay, 1969, Kay and Regier, 2003].
BCTs are categories supposedly delimiting the colour spectrum consistently across
every language, the categorisation being established by a word. A BCT also has a
“focus”: the colour value that corresponds the most to the BCT. In [Berlin and Kay,
1969], the authors argue that, even though languages do not all contain the same set
of BCTs in their lexicon, these sets obey a hierarchy according to which any lexicon
containing a lower-ranked colour term will also have every higher-ranked colour terms
(e.g. the presence of red necessarily implies black and white). The hierarchy of BCTs
is black, white > red > green, yellow > blue > brown > purple, pink, orange, grey
(note that green and yellow do not necessarily appear simultaneously but there is no
universal order of precedence between them) [Kay and Regier, 2003].

For example, Darkinyung, an Australian language, only has two colour terms:
mining (black) and barag (white), which they use, for any (resp.) dark/light colour.
Additionally, Ibiobio (from Nigeria) uses four colours focusing on white, black, red
and green but no example exist that uses, e.g. white, red, green and blue.

BCTs can also appear by self-organisation, as shown by the category game
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[Baronchelli et al., 2010]. The category game is a variation of the guessing game in
which only the speaker knows the topic and the hearer actually has to guess the
topic amongst various objects [Steels, 2001]. The guessing game is relatively similar
to the imitation game except, in this instance, the topic is exterior to the agents and
the second agent, rather than imitating the first, has to point the topic it believes
to be correct. In the category game, the topics that have to be guessed are values
on a continuous scale (such as colours in the colour spectrum). Thus the creation of
words for random topics drawn from this scale results in discrete categories that can
be named. When agents perceive colours the way humans do (i.e. according to the
Just Noticeable Difference scale), the category game indeed self-organises to create
the BCTs found in human languages.

As explained in Section 3.1.1, the existence of LUs is one of the main evidence for
the existence of the LAD, and thus, for the importance of biological evolution in the
formation of language. However, as we have just seen, LGs show that LUs could have
been single-handedly shaped by self-organisation around biological limitations, but
without resorting to the LAD explanation. Therefore, LGs offer a different account
of the role of both culture and biology in the development of language. In this
account, biological evolution only provides us articulatory, perceptional and neuronal
capacities and limitations to perform language. It is cultural evolution which enables
the self-organisation of complex subsystems in language itself. Nevertheless, these
studies are not the reason LGs were created as a philosophical tool.

3.2.2 Origins of Language Games

LGs were initially introduced by Ludwig Wittgenstein in his Philosophical Investiga-
tions [Wittgenstein, 1953]. In this work, he opposes what he calls the “Augustinian
Conception of Language”. Although this concept is a very wide umbrella, that im-
perfectly encompasses many intellectual and opposing currents, the Augustinians’
core idea is that words are mere denominations of actual objects [Younes, 2016].
This view can be attributed to virtually all Western philosophers until then, from
Plato to Gottlob Frege and even Wittgenstein in his Tractatus (an earlier work)
[Rousseau, 1990].

The most straighforward example of an “Augustinian Conception of Language”
is what Gottlob Frege called psychologism. Psychologism is similar to information-
based definitions of communication as seen in Section 2.2. It imagines that each
word has a straightforward link to an actual object, as if it were just a code.

Frege, who was one of the most immediate predecessor to Wittgenstein, tried
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to break away from psychologism, which he viewed as the governing paradigm until
then. Frege wanted to establish purely logical formalisms and remove any ambiguity
in scientific ventures. This was the foundation of analytical philosophy. He tried to
do so for mathematics (which eventually failed due to the so-called “Russel Paradox‘”
[Irvine and Deutsch, 2016]) and then for language5.

Frege realised that psychologism lacked rigour by remarking that, A = B sen-
tences referring to the same object B can have very different meaning (which psychol-
ogism did not permit). For example, the sentence “Harold Saxon is Harold Saxon”
(A = A) is simply a tautology, it provides no information. Conversely, the sen-
tence “Harold Saxon is The Master” (A = B) provides information as to the true
(and malevolent) identity of Harold Saxon, even though “Harold Saxon” and “The
Master” are just different encoding of the same person/object.

Consequently, Frege introduces an intermediate between the Sign (i.e. the word)
and the Reference (i.e. the actual object referred to): the Sense [Frege, 1892]. To
continue with our earlier example, the Sign “Harold Saxon”, has the Sense of “The
Prime Minister of Britain who replaced Harriet Jones”6. The Sign “The Master”,
however, has the Sense of “The renegade Time-Lord who’d get dizzy if he tried to
walk in a straight line”7. Both, however, refer to the same person. Frege’s theory
can then be expanded to sentences, even subordinate ones. The goal, with this
clarification, is to be able to ascertain whether a sentence is true or not by ensuring
that every reference in it exists and that the stated relation between them is true. To
make these verifications, Frege uses mathematical functions that denote propositions.
For example, the proposition “Nyssa is asleep”8 can be denoted f(Nyssa), where
f(x) : x is asleep [Younes, 2016]. This laid the foundations of propositional logic.

This system becomes exponentially complex with subordinates as implicit senses
appear between each part of the sentence. Moreover, some references simply do not
exist because they are fictional (as is actually the case of our first example). To
answer this second problem, Frege draws a strict delimitation between a scientific
use of language (to acquire or share knowledge) and an aesthetic use (to entertain).
He calls this the presupposition of reference. Wittgenstein, however, sees this model
as overtly idealistic. Indeed, Frege might have, with the presupposition of reference,
removed the necessity for a Platonic World of Ideal (cf. Allegory of the Cave), but

5These efforts can be connected to generative grammars as described in Section 3.1.1. However,
generative grammars formalise natural language by focusing on its structure, whereas analytical
philosophy focuses on meaning. The former is the most effective [Stokhof, 2018].

6“The Sound of Drums,” Doctor Who, BBC, 5 Feb. 2008.
7“The Mark of the Rani,” Doctor Who, BBC, 2 Feb. 1985.
8“Kinda,” Doctor Who, BBC, 1 Feb. 1982.
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he is still trying to fit language into the “perfect” box of logic, despite evidences
that this is just not how language works [Younes, 2016]. As a result, Frege is still an
“Augustinian” according to Wittgenstein.

It is worth noting that the “Augustinian Conception of Language” can be con-
sidered to epistemologically underlie computer science as it sets the basis of both
Shannon’s communication theory [Shannon, 1948] and propositional logic, which is
at the centre of the theory of computability and complexity [Church, 1962].

Wittgenstein deliberately seceded with these kind of majestic edifices of logic
(which, earlier in his life, he himself pushed even further). For him, the meaning of
a word is not the actual object it refers to but simply its usage in a context.

He calls this context of usage a “language game” and defines it as“consisting
of language and the actions into which it is woven” [Wittgenstein, 1953]. This is
a break from his earlier, propositional view that envisioned language as a calculus
rather than as a game. Wittgenstein explains that, though they encompass all human
activity, these game can be extremely simplistic or very complex. They are all games
only by virtue of a family resemblance, and not by a specific set of shared features.
Therefore, imagining a language independently from a form of life is futile. As forms
of life are collective, this introduces, for the first time a social and cultural aspect to
the philosophy of language.

In Wittgenstein’s view, explaining a name by pointing at the bearer of the name
(cf. Figure 3.2), as earlier philosopher thought words got their meaning from, is
simply one possible usage of the name in a specific context; a “naming game” of
sorts.

3.2.3 The Naming Game

As we have seen in this section, evolutionary linguistics postulates that language
acquires meaning through social activities. This opposes both the linguistic idea
than the complexity of language is biologically imprinted and the philosophical idea
that meaning is referring to actual objects or objective truth.

Evolutionary linguists propose to prove this by implementing specific game proto-
cols into computer simulations or robotic supports. Many LGs have been developed
so far (e.g. imitation, guessing and category games in Section 3.2.1) but the first
and simplest LG to be introduced was the naming game (NG) [Steels, 1995], which
will be presented in this section. Though it was originally developed to study how
words were linked to meaning, it more generally illustrates how a norm can become
shared among many agents and can thus inform our understanding of other social,
economic and ecological phenomena [Steels and Loetzsch, 2012, Baronchelli, 2018].
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Figure 3.2: Example of the AIBO game dialog between robot and a human. The
robot performs image segmentation and tries to associate words spoken to the human
(i.e. “ball”) to the actual ball. For the interaction to be successful, the robot first
has to be put in the right conditions by specific keywords. Reproduced from [Steels,
2001] c©2001 IEEE.
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The NG is played by two agents, chosen randomly in the population, who must
agree on a word to name a predetermined topic. Each agent has an individual lexicon,
containing a list of possible words for each topic and a score of association between
each word-topic couple. In order to reach their goal, the agents will take different
roles that can change between each game; one will be the speaker and the other one
will be the hearer. There are many variations of the NG, but it generally proceeds
similarly to what follows:

1. Initiation: The speaker chooses a topic in the environment and introduces it
in an extralinguistic way (e.g. pointing).

2. Communication: The speaker looks in its lexicon for words associated with the
topic.

• If it has at least one word, it chooses the word the most associated with
the topic and tells this word to the hearer.

• If it has no word, it adds a new random word to its lexicon and tells this
word to the hearer.

3. Reply: The hearer hears the word.

• If the word is already associated with the topic (through previous nam-
ing games with other agents of the population), its association score is
increased and the hearer transmits the success to the speaker.

• If the word was unknown, it is now associated with the topic with a base
score and the hearer transmits the failure to the speaker.

4. Confirmation: The speaker receives the status of the game.

• If it is a success, the association score between the word chosen and the
topic is increased.

• If it is a failure, the association score between the word chosen and the
topic is decreased.

Variations of the NG are possible. For example, the word spoken by the speaker
can be chosen stochastically (with probability proportional to the association scores)
or, in case of success, the speaker and hearer can both drop all words associated
to the topic except the one that just provoked the success (minimal naming game)
[Loreto et al., 2010]. Furthermore, the set of possible words is theoretically infinite
so we can assume that the probability that two agents invent the same word is
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almost null. Therefore, we can reduce the environment to a single topic (and delete
the initiation step) without loss of generality as the word-topic associations are
completely independent [Baronchelli et al., 2006].

Regardless of these variations, the NG always results in the whole population
agreeing on one word for the topic and suffices to show how self-organisation can re-
sult in a shared and efficient communication system without any generational trans-
mission [Baronchelli et al., 2006].

Mathematical analyses of the NG, showed that the latter is characterised by a
sudden pass from a phase of disorder (large quantity of synonymous) to a phase of
order wherein one word breaks the symmetry and imposes itself steadily across the
whole population [Baronchelli et al., 2008]. This dynamics follows the S-shape, or
snowball effect, which fits actual linguistic data as well as logistic spreading models
which can explain this pattern [Solé et al., 2010].

In a general model, if xi is the number of agents knowing the word Wi, and Ri is
the rate of learning Wi, the population dynamics of word spreading can be expressed
as:

dxi
dt

= Rixi(1− xi)− xi (3.1)

which has two possible equilibrium points: x?i = 0 and

x?i = 1− 1

Ri

(3.2)

This means that Ri > 1 is necessary for xi to continue growing, i.e. that under this
threshold of learning rate, the population xi will die [Solé et al., 2010]. In the NG
this happens when a specific word Wj starts to win more games, which means that
more lexicons contain only Wj and that the other words will fail more often and stop
to propagate.

Furthermore, different update schemes can be envisioned for the lexicon. Indeed,
both agents can update their lexicon after the game but, alternatively, only one of
the hearer/speaker could make the update. Mathematical analysis of the spread of
the words with these different schemes actually demonstrated that the speaker do
not actually need to update its lexicon after the game to conserve a similar S-shaped
dynamic [Baronchelli, 2011]. As a consequence, it appears that the hearer does not
need to communicate the success or failure of the game which, in turns, renders the
confirmation step of the NG useless. Eventually, it means that the naming game
can be played with several hearers at once as the speaker can just broadcast its
chosen word without needing to wait for any answer, as per Algo. 1. Moreover,
in this variation of the naming game, agents with more neighbours have a higher
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chance to be “elected”, which means that the word they initially promote has a
higher chance to be the chosen name for the predetermined topic, at least in static
networks [Baronchelli, 2011].

LGs have been directly compared to ants foraging [Nolfi and Mirolli, 2009, p.
225] and bees’ building of honeycombs [De Boer, 2000] as all three cases form macro-
scopic structures through the self-organisation of locally interacting agents. It is
indeed striking how similar the epistemology of swarm intelligence (and, by exten-
sion swarm robotics) and of evolutionary linguistics are. It thus seems that both
field could inform each other. Seminal work [Trianni et al., 2016] in this direction
implemented the NG in a swarm of kilobots (”low-cost robot designed to make test-
ing collective algorithms on hundreds or thousands of robots accessible to robotics
researchers” [Rubenstein et al., 2012]). In this study, whose main aim was to inves-
tigate whether the dynamics of the NG change when implemented on agents that
are mobile and embodied, the swarm was not engaged in any collective behaviour.
Rather, the robots were all executing an individual random walk. This implementa-
tion benefited from the hearer-only update scheme (as discussed above) as kilobots,
and swarm bots in general, are not build for directed communication; their only
possible transmission scheme is to broadcast. The major conclusion from this work
is that the embodiment of agents playing a NG reduces the strain on their memory
as the collision between transmissions results in a loss of data (and thus the abortion
of a part of the games). Conversely these collisions lead to the formation of aggre-
gates of robots that do not interact much, leading to slower convergence than with
simulated agents. Despite this, the algorithm still makes the swarm converge to a
single word.

Still related to swarm robotics, LGs were mentioned as an interesting lead for for-
aging [Miletitch et al., 2018] to, e.g. assign labels to profitable resources, and develop
a language grounded in their activity. To the best of our knowledge, no result as yet
come from this suggestion. Nevertheless, this is a commendable commitment as it
returns to the core of Wittgenstein’s argument that LG are language interwoven with
an activity, whereas existing implementation of LG still focus on very “linguistic”
tasks such as naming or categorising.
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Chapter 4

Methodology

Communication is of paramount importance to swarm robotics and, as we have seen
in Chapter 3, it can emerge culturally from local interaction in order to be adaptive,
just like any other swarm behaviour. This adaptiveness is necessary to efficiently
tackle new situations in an open-ended world [Steels, 2003].

In Chapters 2 and 3, we highlighted self-organised aggregation and the naming
game (more specifically, the hearer-only minimal naming game, henceforth MNG)
as fruitful use cases for, resp., swarm behaviours and cultural evolution. Conse-
quently, the remaining of this thesis aims to propose a framework to merge swarm
behaviours and cultural communication, taking self-organised aggregation and the
MNG as examples.

Both behaviour-based (Section 2.1.1) and automatic (Section 2.1.2) design
methodologies have been tackled on self-organised aggregation (see Section 2.3).
However, as the main argument of this thesis is to propose a methodology for de-
signing communication that relies on self-organisation rather than generational trans-
mission, it is only natural that our methodology will lean towards behaviour-based
design.

In Section 4.1, we will introduce two models of aggregation without shelter, which
were especially designed to better study the influence the MNG could have on them.
Then, in Section 4.2, we will propose two ways to link the aggregation with the
MNG.

4.1 Parametric Aggregation

The most used behaviour-based approach for self-organised aggregation is the one
taking inspiration from cockroaches [Deneubourg et al., 2002, Jeanson et al., 2005,
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Figure 4.1: (a) Base PFSM of our aggregation controller. (b) PFSM of our aggrega-
tion controller with linear transition functions.

Garnier et al., 2005], which is also called probabilistic aggregation and can be used
both for aggregation with and without shelters (see Section 2.3 for more details).
However, in aggregation without shelter, the success and quality of aggregation is
highly dependant on the encounter probability of agents, which is itself dependant on
a high quantity of parameters such as the communication range, the robots’ speed,
the density of the population, etc. [Correll and Martinoli, 2007].

We designed two parametric aggregation controllers whose internal parameters
can counteract external conditions in order to be able to reach effective aggregation
whatever the setting. Both controllers have the same base. In order to design
our PFSM, we started with an extremely simplified modelling of the cockroaches’
behaviour, similar to [Correll and Martinoli, 2007, Bayindir and Sahin, 2009]. In this
model, the agent’s behaviour is independent from one’s location in the environment
(as opposed to the cockroaches’ differing behaviour depending on whether they roam
in an open area or follow a wall) and unimodal, which halves both the quantity of
states and transitions. Consequently, as shown in Figure 4.1a, our automaton had
only two states at that point:

1. WALK: the robot explores the area following a random walk.

2. STAY : the robot stops.

The difference between the two controllers lies mainly in their transition functions.
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The linear transition function and its implications will be introduced in Section 4.1.1.
The exponential transitions functions will be presented in Section 4.1.2.

4.1.1 Linear Transition Function

In order to make our initial controller parametric, we devised a simple linear proba-
bility function as expressed in Equation 4.1.

ptransition = min(1, pbase.n) (4.1)

wherein n is the quantity of neighbours in the STAY state and pbase is a parameter to
set according to the aggregation strength desired and to the density of the population.

This equation determines the probability to join/stay in an aggregate and, thus,
its complementary (1− ptransition) gives the probability to leave the aggregate. The
main strength of this function is that its single parameter (pbase) is instinctively
understandable: g = 1/pbase is the minimal quantity of neighbours necessary to
make sure a robot stays in its place1. Any quantity lesser than that leads to a
proportionately less solid position.

However, Jeanson et al. [Jeanson et al., 2005] observed that the probability to
leave an aggregate is an order of magnitude weaker than the probability to join it (this
is most obvious in Correll and Martinoli’s averaged model [Correll and Martinoli,
2011]). In order to respect this necessary difference whilst keeping a single probability
equation, we introduced a period of time TSTAY that must elapse before each trial
to leave the STAY state by a robot in that state.

Finally, the robots need to be able to leave an aggregate without risking to join
it back immediately in the next time-step, or they would then never really leave as,
again, they can join at any time-step but only try to leave once every TSTAY time-
steps. Consequently, we introduced a third state in our PFSM, LEAV E, which
is entered by the robots leaving the STAY state (according to the transition rule
exposed earlier) and which is left deterministically after a time period of TLEAV E

time-steps.
The resulting three-state PFSM of this controller, which is somewhat similar to

[Soysal and Sahin, 2005], is illustrated in Figure 4.1b. Due to the presence of waiting
periods (i.e. TSTAY and TLEAV E), this approach can be slow. For this reason, we
designed a second set of exponential transition functions that would not require these
periods by being closer to the original cockroach model.

1Obviously, this means that, for the aggregation to perform optimally, g should be greater or
equal to the maximum quantity of neighbours perceivable by a robot at any point. Otherwise, some
aggregates could potentially become indestructible.
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n pJoin pLeave
0 0.03 n.a.
1 0.42 1/49
2 0.50 1/424
3 0.51 1/700

4+ 0.51 1/1306

Table 4.1: Averaged probability to join and leave a cluster as computed by Correll
and Martinoli [2007] from observation of gregarious arthropods [Jeanson et al., 2005].

4.1.2 Exponential Transition Functions

In the present case, we used two transition functions. The first, pJoin expresses the
probability to transition from WALK to STAY while the second, pLeave handles
the transition from STAY to WALK. This is similar to a previous model [Correll
and Martinoli, 2007] that averaged the original bimodal distributions [Jeanson et al.,
2005] into a single table reproduced in Figure 4.1. However, here, we propose a
parametric variation of this model by fitting the probability table from Figure 4.1
through probability functions with parametrisable steepness, allowing to strengthen
or weaken the agents’ alignment and dispersion at will.

For both pJoin and pLeave , we used exponential decay functions of the form e−qn

where q is a parameter. pJoin was then modified to fit some requirements of this
controller. In particular, pJoin need not be null when n = 0. Indeed, as n only counts
staying robots, if pJoin(0) = 0, no robot would ever stop. As a result, pJoin can be
expressed as in Equation 4.2.

pJoin(n) = ε+ ρ(1− e−an) (4.2)

In this equation, ε is the base join probability and ρ “squeezes” the function so that
pJoin ≤ 1. a is a parameter that handles the strength of the alignment. Indeed pJoin
becomes steeper as a increases.

pLeave , on the other hand, is a straightforward exponential decay function:

pLeave(n) = e−bn (4.3)

Here, b handles the strength of the dispersion as pLeave becomes steeper when b
increases, and thus dispersion weakens. These functions can easily be fitted to the
baseline values from Figure 4.1, with ε and ρ manually set to respect the limits
of Table 4.1 (i.e. pJoin(0) = 0.03 and limn→inf pJoin(n) = 0.51) and a and b fitted
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ε = 0.03
ρ = 0.49
a = 1,70188 (RMSE = 0.003549)
b = 3.88785 (RMSE = 0.001262)

Figure 4.2: Plotting of Pjoin and pLeave according to (resp.) Eq. 4.2 and 4.3 and
parametrised with the values for ε, ρ, a and b that best fit the values from Table 4.1
[Correll and Martinoli, 2007] (circles).

mathematically. The fit between these functions and the baseline are shown in
Figure 4.2 and feature a remarkable matching.

This controller was first introduced in [Cambier et al., 2018]. Furthermore, we also
developed a three-state automaton using Equations 4.2 and 4.3 in order to achieve
aggregation with shelters [Firat et al., 2018].

We can broadly understand the effect of parameters a and b as strengthening
(increase a or b) or weakening (decrease a or b) the cohesion of a cluster. The
difficulty of self-organised aggregation is, of course, to find a trade-off between these
two forces.

4.2 Integration of the Hearer-Only Minimal Nam-

ing Game

Self-organised aggregation and the MNGs are both collective decision-making pro-
cesses [Valentini et al., 2017, Trianni et al., 2016]. These processes do not happen
on the same time-scale nor progress according to identical conditions as the MNG
depends mostly on the quantity of interactions whilst aggregation depends on the
quality of the clusters encountered (i.e. size, concentration, etc.).

Consequently, integrating them within each other can provoke the emergence
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of new behaviours as both processes will affect each other. This will be shown
in Section 4.2.1, which proposes an approach to making these processes interact
bidirectionally. Then, Section 4.2.2 shows that interactions between these dynamics
can reinforce them as the MNG closes a positive-feedback loop that automatically
selects aggregation parameters.

4.2.1 Bidirectional Interaction

Making the MNG interact with an aggregation controller is not straightforward.
Indeed, we can not just run the MNG independently from the aggregation as, then,
if the aggregation would impact the MNG (because the latter’s dynamic is dependant
upon the shape of the communication network), the MNG would change nothing to
the aggregation.

Thus, we have to find a way for the MNG to affect the aggregation. To this end,
we decided to articulate the MNG around the PFSM’s STAY state, as the agents
should eventually converge to this state for the aggregation to succeed. Consequently,
our modifications to the model were twofold:

• Agents in the STAY state are speakers.

• The transition functions now depend on the quantity s of MNG won as an
hearer in this time-step instead of the quantity n of agents.

The speaking and hearing processes are described in pseudocode in Algo. 1.
For example, ptransition from Section 4.1.1 is now expressed as per Equation 4.4.

ptransition = min(1, pbase.s) (4.4)

with s as the quantity of successful MNG in a row during the last time-step. The
MNG is played only with the neighbours in the STAY state.

Although the exact consequences of these interactions are studied in Chapter 5,
we can already predict a few features of the new behaviours they will create.

Within a time-step, an agent plays the MNG in a random order with every single
word received. If all the words received are identical (as it will often happen within
an aggregate), two cases can happen. In the first case the hearer already knows
that word, all the MNG will therefore be successful and s = n. In the second case,
wherein hearer does not know the word, the first MNG will be a failure but the word
will be added to the lexicon and all subsequent MNGs will be successes so s = n−1.

If even one word received is different from the others, the game will be lost at
least once. In that case, s will be reset to 0 (as s is the quantity of subsequent
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wins). This means that a single mismatched word can, depending on its (random)
place in the list of words, dramatically change the final value of s. For example, if
the mismatch word is at the start of the list, the first game will be a failure but all
the games following will be successes so s = n − 1. This is the best case scenario.
However, if the mismatch word is at the end of the list, then s is reset at the very
end too and all the wins are discarded: s = 0. Generally speaking, any failure will
discard every prior victory in the time-step. Consequently, a single agent with a
differing word can scatter a strong aggregate with a non-zero probability.

Moreover, as the MNG requires a minimum number of interactions before a suc-
cess, initial clusters will not be able to form immediately, which will thus delay the
start of the aggregation process. However, if the MNG has enough time for the
whole swarm to converge to a single word, then this model would behave exactly
as an MNG-less aggregation as the MNG thus becomes a straightforward signal of
agents in the STAY state.

4.2.2 Circular Interaction

With bidirectional interactions, we made the MNG and the aggregation affect each
other. This interaction interfered with the normal process of both dynamics to create
new behaviours. In the present section, however, we propose circular interactions,
i.e. the dynamics reinforce each other. The key of this positive-feedback loop is to
use the words of the MNG as the parameters (e.g. a, b and ρ) of the aggregation. In
this scenario, the agents are heterogeneous as their controllers’ parameters are free
and evolve culturally according to local interactions.

The positive feedback-loop is articulated around three points:

• Aggregation parameters are set according to the values encoded in a word
selected from the lexicon.

• Communication is noisy.

• Only robots in STAY are speaking (all robots are hearing).

Designing an effective positive-feedback loop required an in-depth understanding
of the behaviour aimed at. We started with the effect of cohesion in self-organised
aggregation which, as we have already said in Section 4.1.2, needs to be regulated
very accurately. This is the reason why, in both our controllers, we have made
this feature parametric. Indeed, if cohesion is too weak, no durable cluster will
form. Conversely, if cohesion is too strong, the agents will aggregate in several static
clusters that will never break and, thus, never join in a single aggregate. Moreover,
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in that case, agents will form sparser clusters because, as they need few neighbours
to stay, they will stop at the first occasion rather than exploring further to find
more densely populated areas. Following the above observations, we formulated the
following premise, wherein, by analogy to graph theory, the degree of an agent is its
number of neighbours:

Premise 1 Agents with (near) optimal aggregation parameters have a higher degree,
on average, than agents with suboptimal parameters.

With the role of cohesion clearer, we continued to design our positive-feedback loop by
studying the characteristics of the MNG. Indeed, as we have seen in Section 3.2.3, in
addition to allowing broadcasting, the major difference between the MNG and other
variations of the naming game is that agents with more neighbours (i.e., higher
degree) have a higher chance to be “elected”. Therefore, we formulated a second
premise:

Premise 2 Words promoted by agents with higher degree propagate more on average.

From Premises 1 and 2, we concluded that words promoted by robots with (near)
optimal aggregation parameters should propagate more on average. Therefore, by
using words from the lexicon as values of the parameters (encoded in a bit string), we
closed a positive feedback-loop (illustrated in Figure 4.3) whereby better parameter
settings propagate more and, as they are shared by new robots, propagate even more.
The parameters can be set according to the latest winning word (as we will see in
Section 6.1) or to a random word from the lexicon (see Section 6.2).

Thus the encoded values of the parameters represent the “meme” in a cultural
evolution process. An essential component of any evolutionary processes are muta-
tions, which introduce the needed novelty required to search for optimal parameters.
Mutations also exist in language due to the noise inherent in sound-based messaging
[Steels and Kaplan, 1998] and can also contribute to its self-organisation [De Boer,
2000].

To implement mutations, we added noise to the messages broadcasted by the
speakers as described by Shannon in his Communication Theory [Shannon, 1948].
The use of this model of noise is rather fitting as Shannon’s model of communication
(messages passing through a noisy channel) can represent biological mutation [Nolfi
and Floreano, 2000] as well as a constraint for language [Nowak and Komarova, 2001,
Steels, 2005, Lyon et al., 2007]. In our model, each bit of any message received has
a probability m to flip.

Besides being able to generate new parameters in order to explore the solution
landscape, mutations have another impact on our model. As mentioned above, the
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Figure 4.3: Positive feedback-loop

MNG always converges to a single solution, although in some cases it can take a
very long time. Therefore, variability within the population disappears as different
words are replaced by the most common one, meaning that sparse mutations are
not sufficient to perturb this equilibrium. Furthermore, convergence in the MNG is
a rather fast process [Baronchelli et al., 2006] in well-mixed populations, meaning
that the evolutionary process can stagnate after a very short exploration of the
solution landscape, granting too short time for aggregation to take place. To solve
this problem, we could allow the robots to play the MNG at a lower pace. However,
mutations are a much better solution because, by creating new words during the
game, they increase failed games by an order of l.m per time-step (a message is l
bits, each with a probability m to flip) and therefore greatly slow the MNG down. In
other words, mutations allow the MNG convergence to happen in a time-scale more
compatible with the self-organised aggregation process.

Finally, in line with Section 4.1.1, and because Premise 2 comes from observations
on static networks, we made sure that only robots in the STAY state can become
speakers. In preliminary experiments, we used s as the variable in the transition
functions (as in Section 4.1.1). However, as we’ll see in Section 6.1.2, these prelim-
inary experiments revealed that s was incompatible with communication noise and
we thus reverted to using n. As counting the number of successful MNG is not a
necessity in that case, the agents only play a single, random, MNG per time-step,
in order to reduce the pace of the MNG. In this latter version, we also initialise all
lexicons at the start of the experiments (rather than waiting for robots to speak)
in order to sample a larger quantity of initial parameters. The differences between
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Bidirectional Circular v1 Circular v2
Speakers Agents in STAY Agents in STAY Agents in STAY
Hearers Every agent Every agent Every agent

Word creation Speak & lexicon=∅ Speak & lexicon=∅ At initialisation
#MNGs per step All All 1 (random)

Variable s s n
Parameters Fixed Winning word Random word

Noise No Yes Yes

Table 4.2: Summary of the features of the bidirectional and circular interactions.
Circular is presented in two versions as v1 was used for preliminary experiments (in
Section 6.1), which enabled us to develop v2: the definitive version (Section 6.2).

these two version and also the bidirectional link are summarised in Table 4.2.
In the end, circular interaction creates an on-line and embodied cultural evolution

of aggregation controllers. Although, as we will see in Chapter 6, this process does not
actually optimises the parameters (but still produces extremely resilient controllers),
it introduces several components that are comparable to genetic optimisation (as
presented in Section 2.1.2.

Lexicon The lexicon is a list of possible words. Each word encodes a specific pa-
rameter setting. This is comparable to a genetic pool in biological evolution.

Speaking In traditional self-organised aggregation, staying robots send a signal to
their neighbours when they are stopped so that they can be counted. In our
algorithm, the robots use this signal to transmit a word selected randomly from
their lexicon (mating).

Hearing When a robot receives a word, either of two things can happen. If the
hearer does not already know the word, it adds it to its lexicon (i.e. collection of
cultural material). If the hearer already knows the word, it reduces the lexicon
to this single word. As the words received are from robots that successfully
aggregated (i.e. stopped), the lexicon should converge towards words that
enable aggregation (selection). The aggregation parameters are set according
to a word from this lexicon (replacement).

Communication noise Stochastic noise forces the exploration of new parameters
(mutation).
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This model was originally proposed in [Cambier et al., 2018], although it has
since received several improvements. The exact effect of this model of interaction,
as well as the dynamics of this culturally evolving aggregations will be studied in
Chapter 6, but we can already see that the self-organisation in this approach emerges
from existing constraints as is the case in natural languages (see Section 3.2.1).

53



Algorithm 1 Minimal Naming Game

1: procedure Naming Game
2: function Hear(word)
3: if word inside Lexicon then
4: Lexicon.clear()
5: Lexicon.add(word)
6: return true . Successful Game
7: else
8: Lexicon.add(word)
9: return false . Unsuccessful Game

10: function Speak
11: if Lexicon == ∅ then
12: Lexicon.add(generateRandomWord())

13: word← Lexicon[rand()]
14: Broadcast(word)
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Chapter 5

Group-size Regulation in
Self-Organised Aggregation
through the Naming Game

Self-organised aggregation and the MNG are both self-organised behaviour that can
be played simultaneously and affect each other. Our objectives in this chapter are
twofold. Firstly, we will investigate the influence of the differing time-scales between
self-organised aggregation and the MNG on the dynamics of self-organised aggrega-
tion. Secondly, we will aim to understand the effect of a dynamic swarm network
on the spread of words in a MNG. Differently from [Trianni et al., 2016], the aim
here is to study what happens when the swarm is undergoing the dynamics dictated
by a collective, coordinated behaviour, rather than engaged in an individual random
walk.

To meet these objectives, we will study the dynamics of both processes when their
interactions are bidirectional, as presented in Section 4.2.1. In order to generalise our
observations, we will use this scheme on controllers using linear (see Section 4.1.1)
and exponential (Section 4.1.2) transition functions. These observations will also be
performed with different experimental setup. Section 5.1 will present experiments
with a linear transition function on a physics-based simulator and section 5.1 will
focus on experiments with exponential transition functions on a conceptual grid-
world simulator. Our conclusions for this study will be exposed in Section 5.3.
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5.1 Linear Transitions

In this section, we present published results [Cambier et al., 2017] on the study
of bidirectional interactions between the MNG and a probabilistic aggregation con-
troller using linear transition functions. Section 5.1.1 will detail our experimental
setup and section 5.2.2 will discuss our results.

5.1.1 Experimental Setup

The algorithm described in Section 4.2.1 can help us answer two questions: ”How
does the MNG influence aggregation?” and ”How does aggregation influence the
MNG”.

To this end, we implemented our algorithm on a simulated version of the foot-bot,
a version of the MarXbot [Bonani et al., 2010] which is a differential wheeled robot.
As MarXbot are equipped with proximity sensors, we implemented the random walk
as walking in a straight line until encountering an obstacle and then turning ac-
cording to a uniform random angle [Nouyan and Dorigo, 2006, Roduit, 2009]. This
implementation thus performs obstacle avoidance as well as a brownian motion. Be-
sides the wheels, the foot-bots involved in the experiments were equipped with IR
sensors in order to detect obstacles and with the range and bearing module developed
for the swarmanoid project [Dorigo et al., 2013]: a combination of four IR sensors
permanently rotating to make 360◦ scans and allowing to exchange data via IR light.
This module is very suitable for the setting of this work as infra-red communication
suffices to emulate the interactions between cockroaches [Garnier et al., 2005, Correll
and Martinoli, 2007] and the possibility to exchange (a limited amount of) data is
useful to play language games. We studied the behaviour of these robots under our
model by running several experiments in a 6x7.5m arena on the ARGoS simulator
[Pinciroli et al., 2012], which, as shown in Figure 5.1, offers the possibility to visualise
a range of information as well as the simulation itself.

The experimental design that we used is described in Table 5.1. We varied
only two parameters: the population size N and the pBase probability. Moreover,
the experiments were run with two versions of our algorithm: Vanilla (game-less,
as presented in Section 4.1.1) and NG (bidirectional interactions with the MNG,
as presented in Section 4.2.1). As TSTAY and TLEAV E obviously influence align-
ment/dispersion, their values were set, after some parameter tuning, to (resp.) 200
and 50 in all experiments. We performed 20 independent runs for each parameter
configuration in order to have statistically meaningful results.

The experiments were stopped when the swarm stabilised. The condition we used
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Figure 5.1: A picture of the ARGoS simulator in the course of an experiment with
realistic footbots. The simulator can display extraneous information such as ongoing
communications.

Table 5.1: Table of Experiments
Version Label NG? N pBase Runs

s20p14 No 20 0.14 20
s20p17 No 20 0.17 20

Vanilla s20p20 No 20 0.20 20
s100p14 No 100 0.14 20
s100p17 No 100 0.17 20
s100p20 No 100 0.20 20
s20p14 Yes 20 0.14 20
s20p17 Yes 20 0.17 20

NG s20p20 Yes 20 0.20 20
s100p14 Yes 100 0.14 20
s100p17 Yes 100 0.17 20
s100p20 Yes 100 0.20 20
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to determine whether stabilisation had happened or not was that every individual
remain still for more than 600 time-steps. With TSTAY set at 200, it means that
every robot has decided to stay three times in a row. However, it is possible that
stabilisation never happens, in which case the experiments were stopped after 1 000
000 time-steps (100 000 seconds).

To study the impact the MNG and an aggregation behaviour have on each other,
we manually analysed the final state of each run and we computed two quantities:
the amount of aggregates and the amount of words in the game. Obviously, to
evaluate the former quantity, one has to define an aggregate. For the purpose of
this analysis, we viewed the final state as a graph where each node is a robot and
distances lesser than the range and bearing’s reach are edges. With these notions, we
defined an aggregate as a set of nodes where each node is linked to any other node
by at least two paths. With this definition, elongated aggregates are possible but
chains of robots cannot bridge aggregates together nor can be considered aggregates
by themselves. Moreover, if an experiment stopped because of the time constraint
and if less than 90% of the robots were part of aggregates, the aggregates were not
counted as they were deemed unstable. The quantity of words in the game is much
simpler to count as it is straightforwardly the size of the set of all the single-word
lexicons.

Finally, following [Gauci et al., 2014], we computed the dispersion of the aggre-
gates using the second moment, or variation, of the robots’ positions. Using pi as the
position of robot i (among n in the aggregate), and p̄ the centroid of these positions,

p̄ =
1

n

n∑
i=1

pi (5.1)

the second moment of the robots is given by:

v =
1

4r2n

n∑
i=1

||pi − p̄||2 (5.2)

where r is the radius of a robot. As the robots are not mere points and occupy space
(wherein other robots can not fit), 4r2 normalises v to render it independent of r.
As aggregates may have different sizes, we also added n in the denominator, which
normalises v with regard to the size of the aggregate.

5.1.2 Results

The data retrieved from our experiments are presented in Fig. 5.2. These plots were
computed from our counts of the quantities of aggregates and words for each run
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of each experiment. The dots represent the mean number of aggregates/words by
experiment and the error bars represent the standard deviation. Consequently, a
shorter bar indicates that the final outcome of an experiment is consistent. Longer
bars indicate that the outcome vary more widely.

The first observation to make is that, in small populations (N = 20), low values
of pBase are often insufficient to secure the emergence of aggregates. Nevertheless,
with a sufficiently high value of pBase (higher than 0.17), the NG version forms a
single aggregate with a quorum of 90%.
We should note that, as the mean quantity of aggregates remains near one, the
Vanilla version has a better success rate than the NG version when pBase is lower or
equal to 0.17. However, as the count of the words shows, the NG-swarms consistently
converge on a single word. Therefore, as explained in Section 4.2.1, s = n and they
will eventually behave identically to the Vanilla-swarms. This means that, given more
time, they would reach the same success rate. In any case, with the NG algorithm, a
swarm of 20 robots displays a normal aggregation behaviour as the impact of the stay
probability on the efficiency of aggregation is well-known [Soysal and Sahin, 2005].

However, with a larger population (N = 100), the results with NG are more
surprising. Interestingly, the mean quantity of aggregates neatly increases with pBase.
As the error bars show low deviations, this quantity is also relatively consistent from
run to run. Thus, with the right value, traditional aggregation in a single aggregate
is still possible but the algorithm also allows the experimenter to divide the swarm
in a configurable quantity of aggregates.

Furthermore, we observe that, apart from the cases where no aggregation hap-
pened, the quantity of words in the game remains extremely close to the quantity of
aggregates. This correlation is made even clearer with the visual examples that can
be seen in Fig. 5.3. We can see that each aggregate has its own word–which can act
as a label–as if different MNGs were played in each aggregate. This is incidentally
also the case in small swarms but less ostensibly as they end up with one or zero
aggregates and a single word. Consequently, the NG algorithm also labels each robot
of an aggregate with an identical word.

Finally, looking at the average dispersion of the aggregate (or of the whole popula-
tion in cases no aggregate formed) in Table 5.2, we can see that, in small populations
(N = 20) with Vanilla, the variation of the positions of the robots (as computed from
Eqs. (5.1) and (5.2)) is lower than the equivalent experiments with NG, which means
that the aggregates are less dispersed with Vanilla than with NG. However, this dif-
ference is only significant with the s20p17 experiment, which can easily be explained
by having a look back at Fig. 5.2. Indeed, as the proximity of the mean quantity
of aggregates to zero shows, the NG version of s20p17 often failed to aggregate in
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Figure 5.2: Mean (dot) and standard deviation (bars) of the quantity of aggregates
in vanilla/NG aggregation (resp. left/middle) and of words (right) in stabilised
swarms of 20/100 (resp. top/bottom) robots or after 100 000 seconds. These charts
show that the Vanilla algorithm displays a normal aggregation behaviour as, with
appropriate pBase [Soysal and Sahin, 2005], the robots consistently gather themselves
in a single aggregate. Moreover, we observe a visual correlation between the final
quantity of aggregates and the final quantity of words in the populations playing a
MNG. Finally, in cases where the swarm does not stabilises (0 aggregates), the whole
population still converges on one word.
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Figure 5.3: Examples of stabilised swarms with a N = 100 and pBase configured
as (resp.) 0.14 (top), 0.17 (middle), and 0.20 (bottom). For visibility, each word
is associated with a different colour in this display. We see that the quantity of
aggregates increases with pBase and that each aggregate converged on a different
word.
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Table 5.2: Average 2nd moment of aggregates
Vanilla NG

s20p14 70.3017 85.6672
s20p17 12.5599 56.6773
s20p20 16.4397 17.8883
s100p14 65.0273 37.1738
s100p17 80.9566 19.9819
s100p20 85.5426 18.1084

this setting. Consequently, the average variation of the positions of the robots in
the s20p17 experiment with NG presented in Table 5.2 is increased by the disper-
sion of non-aggregated swarms. As the equivalent for Vanilla always aggregated, the
variation is obviously much lesser.

Yet, in large populations (N = 100) the roles are reversed and NG is now much
less dispersed. The explanation here is more subtle: As the density of robots is
quite high (N increased but the size of the arena remained the same), many are
within communication range from the initialisation of the runs. Consequently, in
the Vanilla version, many robots stop almost immediately and, as they are already
well surrounded, remain in this state indefinitely. The scarce robot that did not stop
immediately thus quickly meets the aggregate (which spans the whole arena) and
enters the STAY state too. Thus the aggregation process is fast but non-qualitative.
In the NG version, however, the robots cannot agree on a word at the outset. They
are therefore forced too explore the arena and aggregate much later, but in tighter
aggregates. Thus, the aggregation is slower but qualitative.

To summarise, the influence of the MNG on aggregation is minor with small
populations (N = 20) but provides remarkable benefits with larger population sizes
(N = 100) as the swarm can then divide itself in several, tighter, aggregates. How-
ever, more experiments with more population sizes are needed to fully understand
the connection between the MNG and the multiplication of aggregates. For instance,
it is not clear here whether the density or the population size is the main cause of
this quantitative change in behaviour. Conversely, the impact of aggregation on the
MNG is that, by reducing robot mobility through aggregation, different MNGs are
played in parallel, thus preventing the population from converging to a single word.
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Figure 5.4: A picture of the grid simulator in the course of an experiment. Black
squares are walking agents and other colours are uniquely associated to each possible
word and are displayed only when agents having selected the corresponding word are
staying.

5.2 Exponential Transitions

In order to generalise our results and for coherency with Chapter 6, this section
will present experiments using an aggregation controller with exponential transition
functions simulated on a grid world. Our experimental setup, which is in line with
the methodology that will be used in Chapter 6, will be presented in Section 5.2.1.
The results of these experiments will be shown in Section 5.2.2.

5.2.1 Experimental Setup

To run our experiments, we implemented a grid world model illustrated in Figure 5.4.
In this model, the world is a bounded grid and the agents can move in four directions:
up, down, right, left (which they select randomly). We chose to implement this model
as a grid (rather than a continuous space) because, as collisions are an essential
feature of embodied experiments and as this work emphasises the importance of on-
the-field deployment, collisions are of paramount importance for our purpose. A grid
model makes them much easier to implement.

In the following experiments, agents can communicate with agents at a Manhat-
tan distance of two or less i.e. a diagonal adjacent cell counts as two because it needs
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two movements to be reached. This distance allows agents to move while aggregated
within aggregates, which would not be possible if the range was set to one, as all
agents would be densely packed close to each other. Conversely, we used the Man-
hattan distance rather than the Chebyshev distance (i.e. diagonals counting as one)
in order to limit the size of the neighbourhood. The experiments were performed in
a 15X15 grid on this abstract simulator1.

This controller has four parameters, ε, ρ, a and b and, due to the fact that decision-
making happens on every time-step (i.e. no waiting period between transition in the
PFSM), is much less stable than the linear controller on which these experiments
were made in the first place [Cambier et al., 2017]. In order to obtain results that
would be comparable to the original experiments, we fixed ε and ρ as, resp., 0.03 and
0.49, following our baseline [Correll and Martinoli, 2011]. Moreover, b (that handles
the STAY → LEAV E transitions) was set to an arbitrary high value of 150 which
provides stability similar to the linear controller.

We are consequently left with a single parameter a, as was the case in Section 5.1.
We ran our experiments with six values of a, ranging regularly from 0 to 2.5.

Moreover, we implemented a new definition of aggregates in order to detect them
automatically. This definition states that aggregates are independent graphs wherein
the vertices are agents connected by edges if and only if they are within communi-
cation range. Apart from that, our metrics remained identical to those presented in
Section 5.1.1.

5.2.2 Results

Figure 5.5 shows that, with a ∈ [0, 2.5] this controller still aggregates normally
without the MNG and/or with N = 20. Moreover, with N = 100 and symmet-
ric interaction, the quantity of aggregates formed follows an upward tendency as a
increases.

Conversely, the MNG continues to converge on a single word (even when no
aggregation happens), except when several aggregates are formed, in which case
each aggregate gets a different word (this is illustrated in Figure 5.6). These are
all similar behaviours to what we observed in Section 5.1.2, although the increase is
not as linear, which can be explained by the fact that the transition function is now
exponential. Indeed, the quantity of aggregates doubles from a = 0 (1 aggregate)
to a = 0.5 (2 aggregates) but a has to go up to 2.5 for a similar increase to happen

1the difference in the proportion of area occupied by the agents compared to experiments in
Section 5.1 is irrelevant. Indeed, the probability of interaction are different anyway since the
communication range and agents’ size and speed are also different.
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Figure 5.5: Mean (dot) and standard deviation (bars) of the quantity of aggregates in
vanilla/NG aggregation (resp. left/middle) and of words (right) in swarms of 20/100
(resp. top/bottom) agents after 30 000 time-steps.

again (3 aggregates).
Finally, the spread of the aggregates follow the same pattern as before with

Vanilla and NG-aggregation both producing similarly sparse aggregates, except
in dense scenarios, wherein NG-aggregation yields more, tighter, aggregates (see
Table 5.3).

Overall, these results are extremely similar to those presented in Section 5.1.2.

5.3 Discussion

We believe that evolutionary linguistic models such as the MNG can offer robotic
swarms a way to make collective decisions when several unforeseen alternatives are
available. This chapter focused on implementing such a model in an aggregation
behaviour, which can be seen as a prerequisite for other types of collective behaviours
and tasks [Brambilla et al., 2013].

To study the interplay between self-organised aggregation and the MNG, we
strongly linked both dynamics by (1) allowing robots to speak only when staying in
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Figure 5.6: Examples of stabilised swarms with a N = 100 and parameter a config-
ured as (resp.) 0 (left), 0.50 (middle), and 2.50 (right). For visibility, each word
is associated with a different colour in this display. We see that the quantity of
aggregates increases with a and that each aggregate converged on a different word.

Table 5.3: Average 2nd moment of aggregates for two population sizes and six pa-
rameter settings

Vanilla NG
s20a0 0.7847 1.1667
s20a50 3.25 3.25

s20p100 3.235 3.65
s20p150 4.63 3.7375
s20p200 3.935 4.95
s20p250 3.2375 3.235
s100a0 13.2693 25.1182
s100a50 13.2698 13.2947
s100p100 32.3291 4.8461
s100p150 26.2767 14.0400
s100p200 27.6019 15.0285
s100p250 29.3686 7.8441
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an aggregate and (2) making the strength of the aggregates directly proportional to
the rate of successes in the MNG.

The robustness of our observations was demonstrated by implementing our ap-
proach on two different aggregation controllers: the first, using linear transition
functions was assessed in a physics-based simulator (Section 5.1) and the second,
with exponential functions, demonstrated similar dynamics in an abstract simulator
(Section 5.2).

The results of our simulations with the ARGoS simulator show that, in small
population sizes (N = 20), the aggregation dynamics with the MNG remains un-
changed with respect to a vanilla aggregation algorithm without the MNG, but with
the added feature of the convergence on a single word, which could be used later
in other collective behaviours. However, with larger population sizes (N = 100),
the swarm displays three interesting emerging features: (a) The possibility to select
the quantity of final aggregates by increasing the value of the aggregation parame-
ter; (b) more compact aggregates; (c) aggregates associated each to a different word
(labelling).
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Chapter 6

Dynamics of Culturally Evolving
Probabilistic Aggregation

A major setback of probabilistic aggregation is that its efficiency is extremely sensi-
tive to experimental conditions such as population size [Bayindir and Sahin, 2009] or
agent’s capabilities (e.g., speed, communication range) [Correll and Martinoli, 2011].
As the target behaviour is an “emergent property of the interaction between the robot
and the environment” [Nolfi and Floreano, 2000], the correct settings are almost im-
possible to predict. Probabilistic aggregation therefore requires supervised tuning of
internal model parameters in order to be effective in a specific settings [Soysal and
Sahin, 2005, Bayindir and Sahin, 2009]. As seen in Section 2.3 other approaches
to self-organised aggregation exist but they usually require a fair amount of offline
tuning, whether by automatic optimisation [Trianni et al., 2003, Dorigo et al., 2004,
Şahin, 2004] or brute-force search [Gauci et al., 2014], with only few effort on online
optimisation [Silva et al., 2015].

In this chapter, we show that the circular interactions suggested in Section 4.2.2
results in an alternative approach to implementing an embodied evolutionary process,
using a cultural rather than a biological evolution metaphor [Steels, 2011]. Cultural
Evolution (CE) postulates that good ideas spread widely in a population as a result
of social dynamics [Castellano et al., 2009]. Here, we propose that these social
dynamics can be coupled with the self-organised aggregation dynamics in a way that
makes parameters setting that are good for aggregation spread widely in the robot
swarm, hence promoting a suitable tuning of the parameters to the specific conditions
encountered by the robots.

To demonstrate this concept, we ran preliminary experiments on a physics-based
simulator (Section 6.1). Then, by implementing our system on a conceptual simula-
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tor, we gained a better understanding of our system (Section 6.2), which enabled us
to improve it. These improvements then enabled us to successfully implement this
algorithm on kilobots [Rubenstein et al., 2012]. In both cases, our controller uses
exponential transition functions (see Section 4.1.2), although it is set differently to
highlight different dynamics. We will discuss our conclusions in Section 6.3.

6.1 Preliminary experiments

This section presents the experimental setup (Section 6.1.1) and results (Sec-
tion 6.1.2) of preliminary studies we performed for the cultural evolution of ag-
gregation parameters using circular interactions. This section extends on a research
that was originally published in [Cambier et al., 2018].

6.1.1 Experimental Setup

The proposed embodied evolution was implemented on simulated MarXbots [Bonani
et al., 2010] within the ARGoS simulator [Pinciroli et al., 2012]. The MarXbots were
moving at a speed of 10cm/s and communicating with robots within a range of 70cm.
As in Section 5.2.1, we set ε and ρ (from Equation 4.2) as, resp., 0.03 and 0.49 in
order to optimise only two parameters of our controller: a and b (the latter from
Equation 4.3). Furthermore, we decided to discretise a and b in the range (1,5] with
steps of 0.25 as this was the most dynamic range we could find. This allowed us to
encode these parameters on 1 byte (four bits for each parameter) and to analyse the
performances of each parameter setting by displaying them in two dimensions, as in
Figure 6.1.

Also as in Section 5.2.1, in these preliminary experiments, the transition proba-
bilities were computed using s (the quantity of MNG successes) rather than n (the
quantity of neighbours).

We used a circular arena of constant radius r = 10m and with three different
population sizes N = {25, 50, 100}. We evaluated the aggregation behaviour using
the cluster metric [Gauci et al., 2014], which is the ratio between the size of the
biggest cluster and the swarm size N . We first performed a brute-force analysis
of the parameter space of our aggregation behaviour without CE (following only
Section 4.1.2).

To highlight the dynamics produced by embodied evolution, we contrasted it
with selected non-evolving instantiations, namely the baseline controller obtained
by fitting the parameters a and b to the probability table from [Correll and Mar-
tinoli, 2007], and the optimal controller obtained with the parameter settings that
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maximised the cluster metric, as identified through brute-force search. We ran the
following experiments:

• 20 runs of embodied evolution with mutation rate m = 0.001

• 20 runs of the baseline controller featuring fixed parameters (a, b) =
(1.70188, 3.88785), set to fit [Correll and Martinoli, 2007]

• 10 runs of the optimal controller with fixed parameters:

– N = 25 : (a, b) = (2.25, 3.5)

– N = 50 : (a, b) = (1.25, 2.0)

– N = 100 : (a, b) = (1.25, 1.25)

In addition to the cluster metric, we recorded the variation over time of the number
of clusters formed and the number of free agents.

In addition, we confronted three experimental conditions in which density of
robots was maintained constant: N = 25 with r = 5m, N = 50 with r = 7m, and
N = 100 with r = 10m. We contrasted CE with the baseline controller and with the
optimal controller obtained with brute force search for N = 25 and r = 5m. The
latter is tested also in the other conditions, to verify whether fixed parametrisations
that prove optimal on a given scale also perform well with larger scales.

6.1.2 Results

The results are displayed in Figure 6.1. A close look reveals that most differences in
the quality of the aggregation are attributable to parameter b, i.e., dispersion (at least
within the range we tested). Moreover, the size of the largest aggregate increases as
b decreases until a threshold value (specific to N), after which aggregation suddenly
becomes impossible due to too strong dispersion. Finally, we can observe that, the
larger N , the stronger the dispersion needs to be to obtain large aggregates, which
reduces the amount of good parameter settings as they are lower-bounded by the
threshold. These observations are compatible with Premise 1 (from Section 4.2.2)
and show the cohesion trade-off evoked to build this premise.

Note also that these results are obtained by fixed parametrisations, and clearly
reveal the sensitivity of the probabilistic aggregation to the working conditions, as
the parametrisations that maximise the cluster metric strongly vary with the swarm
size N . In contrast, the proposed CE model should be able to tune the parameters
of each robot online, and, therefore, to exploit both adaptation of the parameters
and some heterogeneity within the swarm.
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Figure 6.1: Average size of the largest cluster for each value of the parameters a and
b, evaluated with the cluster metric and averaged over 10 independent runs.

A comparison between fixed and evolving aggregation in an arena of constant
radius r = 10 (i.e. variable density) is shown in Figure 6.2. It is possible to no-
tice that the CE model fails to produce stable aggregates when N = 25. This is
because the MNG is particularly slow at low densities, because interactions among
agents happen with very low probability [Trianni et al., 2016, Cambier et al., 2017].
As a consequence, the number of successful games is small—also due to mutations
disturbing the language dynamics—and clusters quickly disband. However, as N
increases, we can see that CE presents dynamics that are very close to the baseline
aggregation behaviour [Correll and Martinoli, 2007], i.e. a short phase of building
aggregates followed by stagnation. For N = 100, CE attains values for the cluster
metric that are higher than the baseline controller. Additionally, evolution is differ-
ent from the baseline in respect of the number of free agents. Indeed, almost all the
agents of the baseline behaviour stay in clusters after the build-up phase, whilst the
evolutionary model continues to explore for a longer time and never entirely stops.
This demonstrates a better handling of the dispersion trade-off, which explains our
model’s higher scalability especially for large N . The optimal controllers, instead,
proceed by slowly and constantly building up a large aggregate, maintaining at the
same time a large fraction of exploring robots. This slow process represents the only
means to increase the size of the largest cluster at the expenses of small clusters,
when parameters are fixed and the system is homogeneous. However, a very spe-
cific parameterisation is necessary to observe this behaviour, especially for large N ,
as shown in Figure 6.1, making these controllers very sensitive to variation in the
experimental conditions.

To understand the heterogeneity of parameters obtained through CE, Figure 6.3
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Figure 6.2: Averaged time evolution over i runs of the three variations: CE (i = 20),
baseline controller with parameters fixed to match the probability table from [Correll
and Martinoli, 2007], i = 20) and optimal (i = 10).

shows the frequencies of the different parametrisations found within the swarm at
the end of the 20 performed runs, for N = {25, 50, 100}. It is possible to notice that
some parameter settings have been selected multiple times across different scales
and evolutionary runs. Furthermore, judging by the values distribution, the model
converges towards the higher region of the maps, i.e. low dispersion parameter
settings. As the optimal parameter setting for the non-evolving model (Fig. 6.1) lies
on the other end of the dispersion spectrum, we can understand that the CE builds
up aggregates in a different way, by varying the parameters during the run and by
exploiting heterogeneity among the robots. Indeed, robots can, for example, develop
a parametrisation leading to high-cohesion that barely allows leaving, and just wait
for other robots with low-cohesion parameters to disperse and wander into their
trap-like cluster which would, as a consequence, grow and become more effective to
capture other robots.

We have observed that the CE results in larger clusters when the number of robots
is high. As exhibited in Figure 6.4, with constant density, the CE is sufficiently scal-
able. Indeed, we can see that, with sufficient robot density, the evolutionary model
initially performs as well as the baseline behaviour [Correll and Martinoli, 2007] and
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Figure 6.3: Total occurrences of each possible parameter settings (with CE) at the
end of 20 runs in setting with N = {25, 50, 100} and a circular arena of radius r = 10.

Figure 6.4: Averaged time evolution over 20 runs of the three variations with constant
density: CE, baseline behaviour and optimal controller for N = 25 and r = 5m (i.e.
(a, b) = (1.5, 2.75)).

not too distant from the optimal behaviour. However, CE scales up better than either
of the fixed-parameters alternatives. We conclude that CE represents a promising so-
lution for scalable behaviour rather than optimal probabilistic aggregation, provided
that the density of robots remains sufficiently high.
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6.2 In-depth study

The results presented in Section 6.1 only consider a small parameter space. In order
to be able to study a much larger parameter space, we thus moved to an abstract
simulator that could run faster experiments. The simulator, as well as our parameter
space and the details of our experimentations will be presented in Section 6.2.1. Then,
our experimental results will be examined in Section 6.2.2.

6.2.1 Experimental Setup

The simulator we used for the following experiments is a grid world similar to the one
we presented in Section 5.2.1. The only difference is that, in the present case, we set
the communication range to 1 in order to favour packed aggregates and to make the
aggregation more difficult as agent encounters become rarer. Conversely, here, we
used the Chebyshev distance (i.e. diagonals also count as a distance of 1) rather than
the Manhattan in order to avoid excessively restricting the neighbourhood. Indeed,
this way, the maximum neighbour size is 8 instead of 4 with the Manhattan distance.

Contrary to Section 6.1, in the following experiments, n remains the number of
neighbours and keeps being used as is in the transitions functions (instead of s). This
is because, as we have observed in Section 6.1.2, the noise increases the rate of loss
in the MNG, which means that increasing the noise would stop the aggregation as
much as it would allow to find new parameters. Furthermore, agents play a single
game per time-step with a single word selected randomly from all the words received
in this time-step. This is to slow the dynamics of the MNG down.

For the transition functions of the controller, we maintained the exponential
equations (cf. Section 4.1.2) and set ε = 1−ρ so that pJoin would always converge to
1. The remaining three parameters remained free in the range [0, 1] (for ρ) and [0, 5]
(for a and b). We did not explore the range beyond 5 for a and b as, at this point,
pJoin and pLeave already converge to, resp., 1 and 0 for n = 1. All the parameters
were encoded on 24 bits (1 byte each), which ensures really small steps of an order
of 10−2.

The experiments were performed with N = {25, 50, 100, 200} agents in grids of
constant density. Two densities were considered: high (1 agent every 12 cells) and
low (1 agent every 25 cells). The corresponding grid sizes are detailed in Table 6.1.
All experiments were run for 300 000 time-steps and over 100 independent runs.

We ran our CE algorithm with two mutation rates m = {0.01, 0.001}. Each
setting was run 100 times.

In order to compare the CE aggregation with its fixed variation, we optimised
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Table 6.1: Grid sizes

High Density (1/12) Low Density (1/25)
N=25 17x17 25x25
N=50 24x24 35x35
N=100 35x35 50x50
N=200 49x49 71x71

Table 6.2: Optimal fixed parameters

Density Param. N=25 N=50 N=100 N=200

High (1/12)
a 2.86 4.27 0.61 0.18
b 2.57 2.08 1.8 1.42
ρ 0.35 0.95 0.22 0.11

Low (1/25)
a 3.55 2.36 3.4 2.38
b 2.67 2.1 1.89 1.42
ρ 0.89 0.7 0.6 0.62

the latter using irace [López-Ibáñez et al., 2016]. The controller was optimised in-
dependently for each setting with a budget of 20000 runs each time. The mean
cluster metrics of all parameter settings thus obtained are presented in Figure 6.5.
We selected the best parameter setting of each configurations to run them against
our cultural evolution algorithm. The optimal parameter thus found are available in
Table 6.2.

As a proof of concept, we also implemented this algorithm on kilobots [Rubenstein
et al., 2012] simulated in ARGoS. In order to make sure the kilobots could get out of
their aggregate’s communication range when they decide to leave, we set a decision
time of 60 time-steps. The PFSM thus ticks every 6 seconds. These experiments
were performed with N = {25, 50}, over 20 runs each.

6.2.2 Results

We expect CE-aggregation to select efficient parameters online. To verify this hy-
pothesis, we compared the CE-aggregation with a regular aggregation algorithm set
with optimal (fixed) parameters. This comparison was performed in eight different
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Figure 6.5: Box-plot of the average performances obtained by 10 optimisation runs
in irace for each configurations. A downward trend is clearly visible as the quantity
of agents (and/or the density) increases (resp. decreases).

76



Figure 6.6: Comparison between CE aggregation and optimal fixed aggregation with
a constant density of 1/12.

experimental conditions and each optimal setting is specific to the given conditions.
We refer the reader to Table 6.2 for these settings.

Figure 6.6 presents this comparison with the first four conditions, i.e. with four
different populations sizes but maintaining a high population density. Solid lines
represent the median cluster metric and shaded regions indicate the 1st and 3rd
quartiles. From the outset, we see that CE-aggregation can perform as well as—or
better—than optimal parameters. Indeed, a low mutation rate (m = 0.001) enables
the whole swarm to aggregate in a single cluster for low population sizes, i.e. N = 25
and N = 50, although the process is longer in the latter case. Nevertheless, with this
mutation rate, CE-aggregation does not scale up well and quickly yields outright bad
performances. This is not comparable to the optimal, which not scale up perfectly
either (although it does better), but requires a complete change of parameter for
each experimental conditions. Even though a higher mutation rate (m = 0.01)
gives slightly lesser performances at low scales, it also outperforms the optimal fixed
aggregation for N = 200.

These impressions can be confirmed using the Wilcoxon rank-sum test, as in
Table 6.3. In this table, positive (resp. negative) “statistic” values indicate that
CE-aggregation yields higher (lower) performances than the optimal. The p-value
gives a confidence interval as values lower than 0.05 reliably indicate that the values
yielded by both algorithm are drawn from two different distributions. In addition to
confirming the observations we already made, this test shows that the high-mutation
CE-aggregation also outperforms the optimal for N = 100.

These trends are even more visible in low densities, as presented in Table 6.4.
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m N statistic p-value

0.01

25 -8.46145571612 2.64060339719e-17
50 -7.33138835582 2.27780537046e-13
100 2.97971274785 0.00288518801021
200 10.5517749091 4.98464345723e-26

0.001

25 -0.564422832926 0.572466403302
50 -2.32854960943 0.0198829382166
100 -9.40460382655 5.22265814727e-21
200 -12.0397987413 2.19490470991e-33

Table 6.3: Wilcoxon rank-sum with the null hypothesis that the final cluster metrics
of CE aggregation and fixed aggregation (in high-density arenas) are drawn from the
same distribution.

The lack of scalability for low mutation rates is explained by the fact that, in large
aggregates, the few mutations happening are “drowned out”, in the MNG, by the
numerous successful words. As a result, the agents completely stop exploring new
parameter settings and, as shown by the lack of free agents in Figure 6.7, they
settle in many small clusters; up to ten in large populations (N = 200). Conversely,
high mutations rates allow new mutations to take hold of large aggregates and to
completely change their dynamics, resulting in a larger proportion of free agents. This
is obviously limiting in small populations as the agents never aggregate entirely, but
this is also the reason CE-aggregation can outperform a fixed, optimal, aggregation
controller.

Indeed, the combination of the MNG and of mutations enable two new dynam-
ics. Firstly, as said in Section 6.1.2, the agents controllers become heterogeneous.
Therefore, agents that aggregate can tune their parameters to form extremely strong
aggregates that just can not disperse. These aggregates form “traps” which wait for
agents with weaker parameters to come to them and be captured. This reinforce-
ment is possible because, if a weaker parameter setting appears in the population,
the agent leaves with a high probability and immediately stops spreading these weak
parameters.

Secondly, the MNG has a stochastic component and therefore, weak mutations
can survive and infect a major part of an aggregate, leading to an haemorrhage of
agents. This event appears with a probability that decreases with the size of the
aggregate (as, again, mutations are “drowned out” more easily). Therefore, this
dynamic reinforces the main mechanism of self-organised whereby small aggregates
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Figure 6.7: Comparison between CE aggregation and optimal fixed aggregation with
a constant density of 1/25.

disband more easily.
As Tables 6.3 and 6.4 show, CE-aggregation with m = 0.01 is the most resilient

setting. We thus used this parameter to assess our implementation on kilobots. The
ensuing performances, plotted in Figure 6.8, are not as impressive as in our abstract
model. Nevertheless, they compare favourably to the results presented in Section 6.1,
despite being obtained with kilobots, which are much more challenging due to asyn-
chronous messaging and a complete absence of proximity sensors [Rubenstein et al.,
2012]. The latter provokes many collisions that force aggregates to disband. More-
over, the large decision-time, which is necessary for kilobots to leave their aggregates,
considerably slows the dynamics down. This means that aggregation with even 50
robots can take a while to stabilise, as indicated by the large dispersion of the cluster
metric towards the end of the experiments. To the best of our knowledge, this is the
only successful attempt at implementing self-organised aggregation on kilobots.

6.3 Discussion

In this chapter, we presented a novel Cultural Evolution (CE) approach for swarm
robotics based on social dynamics. The main idea underlying this proposal is linking
the spreading of opinions in the population to the self-organising processes displayed
by the robot swarm. Starting from the CE metaphor, which postulates that good
ideas spread widely in a population, we proposed that good parameters of a self-
organising behaviour can spread following a social dynamics process, leading to a
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m N statistic p-value

0.01

25 -8.77420949367 1.72108567037e-18
50 -8.29652696624 1.07199196017e-16
100 4.90388149646 9.39611881503e-07
200 9.50844785425 1.93528452088e-21

0.001

25 -1.22902461022 0.21906257901
50 -2.2686865817 0.0232873921706
100 -8.9770107713 2.78222662183e-19
200 -12.1302041301 7.30670741954e-34

Table 6.4: Wilcoxon rank-sum with the null hypothesis that the final cluster metrics
of CE aggregation and fixed aggregation (in low-density arenas) are drown from the
same distribution.

Figure 6.8: Performances of CE aggregation implemented on kilobots. The diameter
of the area d = {1, 1.4} metres for, resp., N = {25, 50} in order to keep the density
constant.
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swarm capable of adapting its behaviour to the current environmental conditions it
is experiencing. This was possible to the extent that communication noise created
new parameters settings.

We assessed this idea on probabilistic aggregation, using the MNG as the cultural
transmission operator. After a phase of preliminary experiments on a physics-based
simulator (Section 6.1), we were able to improve this idea by weakening the coupling
between aggregation and MNG (Section 6.2) as the only necessary link between the
two is to use the MNG’s words as the aggregation parameters and to only let the
staying robots speak.

Experimental results on an abstract grid world simulator showed that the pro-
posed CE process (a) alters the dynamics of aggregation by introducing varying and
heterogeneous alignment and dispersion across the swarm, and (b) it autonomously
selects parameter settings that outperform regular aggregation with optimal param-
eters. The robustness of this approach was assessed with simulated kilobots.
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Chapter 7

Conclusion

With this thesis, we aimed to devise a framework for the emergence of meaningful
communication in robotics in order to enable the exploration of unknown and open-
ended environments. For this purpose, we presented the various design methods
of swarm robotics and possible applications as well as detailing the importance of
communication and the usages of self-organised aggregation (Chapter 2). Then, we
emphasised the importance of communication in emerged behaviours and proposed
to focus on self-organising language rather than evolving it in a biological fashion as
this course of action is at the same time linguistically realistic and coherent with the
principles of swarm robotics (Chapter 3). Afterwards, we used self-organised aggre-
gation and the minimal naming game (MNG) as examples to build a methodological
framework to integrate swarm robotics and evolutionary linguistics (Chapter 4).

We demonstrated that bidirectional interactions between the dynamics of self-
organised aggregation and the MNG provoked the emergence of a new clustering
behaviour, with each aggregate having its own associated word (Chapter 5). Sub-
sequently, we showed that both dynamics could also reinforce each other as they
led to a form of embodied evolution (Chapter 6). This find paves the way towards
swarms of robots that can adapt to any situation regardless of the unpredictability
of the environment. This is obviously of paramount importance for the exploration
of unknown environments.

Several directions are enabled by the present contribution. As a matter of fact,
the dynamics we have observed in our contributions can be relevant to other task than
aggregation as several swarm behaviours use similar stochastic models. A natural
extension would be to (1) integrate the naming game into foraging and to compare
the resulting cultural evolution to adaptive strategies. Self-organised aggregation is
also very similar to area coverage as both put emphasis on maintaining a consistent
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topology. Hence, (2) cultural evolution could naturally be applied to area coverage.
Moreover, the present contribution is only a first stone towards a new framework,

we should thus also consider more ambitious models of languages than mere one-
word lexicon. As previous works have shown that the observations obtained from
language games for lexicon formation can be applied to grammar [Nolfi and Mirolli,
2009, p. 285], future work should aim to (3) exploit the characteristics that make
natural languages so powerful.

Furthermore, the work presented in this thesis very much assumes a conversa-
tional (language game protocols) and sociological frame [Goffman, 1974] (the base
aggregation controller). Future work should try and (4) make these frames emerge
as well, as is usually the case in evolutionary robotics.

An immediate application of the dynamics offered by symmetric interactions can
be envisioned for 3D mapping and exploration with UAVs. Indeed, the differing word
for each aggregate can be used as a label for each area of interest. This means that,
even without accurate positioning, data with the same label can be interpreted as
coming from the same area. This can later help the fusion of the data into topo-
logical/semantic or even appearance maps. This opens a way for self-organising
language to enable a topological map representation, which is similar to the way hu-
mans conceptualise large spaces. Swarm robotic models could therefore also serve to
(5) investigate the relationship between space conceptualisation and language forma-
tion in human populations. This line of enquiry could have far-reaching consequences
in cognitive and linguistic theory as well as improving the quality of simultaneous
localisation and mapping.
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Marco Dorigo, Vito Trianni, Erol Şahin, Roderich Groß, Thomas H Labella, Gianluca
Baldassarre, Stefano Nolfi, Jean-Louis Deneubourg, Francesco Mondada, Dario
Floreano, et al. Evolving self-organizing behaviors for a swarm-bot. Autonomous
Robots, 17(2):223–245, 2004.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE
computational intelligence magazine, 1(4):28–39, 2006.

Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Ste-
fano Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani, Manuele Brambilla,
Arne Brutschy, et al. Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms. IEEE Robotics & Automation Magazine, 20(4):60–71, 2013.

Keith L Doty, Reid R Harrison, and Instantiating Real. Sweep strategies for a
sensory-driven. In Behavior-Based Vacuum Cleaning Agent, AAAI 1993 Fall Sym-
posium Series, Instantiating Real-World Agents, Research Triangle Park, Raleigh,
NC, pages 1–6. Citeseer, 1993.

89



Frederick Ducatelle, Gianni A Di Caro, Carlo Pinciroli, and Luca M Gambardella.
Self-organized cooperation between robotic swarms. Swarm Intelligence, 5(2):73,
2011a.

Frederick Ducatelle, Gianni A Di Caro, Carlo Pinciroli, Francesco Mondada, and
Luca Gambardella. Communication assisted navigation in robotic swarms: self-
organization and cooperation. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4981–4988. IEEE, 2011b.

Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory.
In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, pages 39–43. Ieee, 1995.

Albert Einstein. Investigations on the theory of the brownian movement. Ann. der
Physik, 1905.

Nicholas Evans and Stephen C Levinson. The myth of language universals: Language
diversity and its importance for cognitive science. Behavioral and brain sciences,
32(5):429–448, 2009.

Eliseo Ferrante, Manuele Brambilla, Mauro Birattari, and Marco Dorigo. Socially-
mediated negotiation for obstacle avoidance in collective transport. In Distributed
autonomous robotic systems, pages 571–583. Springer, 2013.

Eliseo Ferrante, Ali Emre Turgut, Alessandro Stranieri, Carlo Pinciroli, Mauro Bi-
rattari, and Marco Dorigo. A self-adaptive communication strategy for flocking in
stationary and non-stationary environments. Natural Computing, 13(2):225–245,
2014.

Ziya Firat, Eliseo Ferrante, Nicolas Cambier, and Elio Tuci. Self-organised aggre-
gation in swarms of robots with informed robots. In International Conference on
Theory and Practice of Natural Computing, pages 49–60. Springer, 2018.

W Tecumseh Fitch and Marc D Hauser. Computational constraints on syntactic
processing in a nonhuman primate. Science, 303(5656):377–380, 2004.
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Miletitch, Gaëtan Podevijn, Andreagiovanni Reina, Touraj Soleymani, Mattia Sal-
varo, Carlo Pinciroli, et al. Automode-chocolate: automatic design of control
software for robot swarms. Swarm Intelligence, 9(2-3):125–152, 2015.

Gottlob Frege. ‘on sense and reference’. Basic Topics in the Philosophy of Language,
Prentice-Hall, Englewood Cliffs, NJ, pages 142–160, 1892.
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