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ABSTRACT

Wave imaging remained diffraction-limited for centuries, until methods, such as

PALM, STORM and STED were proposed in optics. Thanks to such methods, imaging

with a resolution much better than the wavelength became possible. Inspired by these

super-resolution methods, the present PhD study is focused on beating the diffraction

limit in acoustic-resolution photoacoustics. In the frames of this study, super-resolution

is demonstrated experimentally in vitro with such techniques as super-localisation,

fluctuation-based analysis and model-based reconstruction. For each method, the reso-

lution limit is identified, strong and weak points are analysed, prospects are discussed.

In addition, super-resolution by sparsity-based reconstruction is demonstrated in rela-

tion to sparse-array imaging. At the end, all studied super-resolution methods are com-

pared. An extra chapter is devoted to overcoming visibility problems in photoacoustic

imaging by means of fluctuation analysis.

Keywords: Photoacoustics, Super-resolution, Diffraction limit, Localization, Sparsity,

Sparse array, Visibility.

i



REMERCIEMENTS
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CHAPTER 1

Introduction

1.1 Optical imaging and its limitations

1.2 Principles of conventional optical imaging

Optical imaging includes a number of techniques that use light to obtain images from

inside the body, tissues or cells. Optical images can provide structural information about

the object or information about particular properties, such as chemical composition or

absorption. Optical instruments are widely used to magnify and resolve objects that are

too small to be seen with the bare eye.

One of the simplest optical instruments that serve to magnify small objects is a 4f

microscope. A schematic of such a microscope is shown in Fig. 1.1. The microscope

consists of two converging lenses: the objective lens with focal length f1 and the tube

lens with focal length f2. The distance between the lenses is equal to the sum f1 + f2.

The imaged object is placed at the distance f1 from the objective lens whereas the

camera is placed at the distance f2 from the tube lens. When light propagates from the

object to the camera, a magnified image is formed on the camera.

Fig. 1.1 Simplest optical microscope. When the object to the left of the objective re-
emits light, a magnified image appears on the camera to the right of the tube lens.

The ability to distinguish different parts of the imaged object is characterized by the

resolution of the imaging system. In most conventional applications, imaging is made

possible by focusing light. In the optical microscope shown in Fig. 1.1 the entire object

is illuminated and focusing is achieved in reception. Some other optical instruments

exploit focusing in transmission or in both transmission and reception of light.
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For instance, focusing in transmission is used in scanning fluorescence microscopy

[Lichtman and Conchello, 2005]. This technique relies on fluorophore molecules that

emit light at a specific visible wavelength when exposed to light at a different wave-

length. When fluorophores are bound to the structure of interest, this structure can be

imaged with high contrast as the photons originating from the fluorophores can be eas-

ily separated from those coming from the background. As excitation of fluorophores

requires high energies, wide illumination can not be used and focusing in transmission

is preferred.

Another example of focusing in transmission is provided by optical-resolution pho-

toacoustic imaging (OR-PAI). This kind of photoacoustic (PA) imaging is based on

detection of acoustic waves resulting from absorption of light focused in a chosen re-

gion of the object [Wang and Hu, 2012; Beard, 2011; Yao and Wang, 2013]. Thanks to

light focusing, objects features comparable to the optical wavelength can be resolved in

OR-PAI.

Confocal microscopy [Pawley, 2010] exploits focusing in transmission as well as

in reception. Confocal microscopes reconstruct 3D objects by capturing multiple 2D

images at different depths and at each depth the photons that do not originate from the

selected slice of the object are discarded. This is achieved by placing a pinhole in the

objective confocal plane in front of the detector. As a result, only light produced by

fluorophores very close to the imaged plane can be detected, leading to an improved

resolution, especially in the sample depth direction.

Whatever focusing technique is used, the in-plane (lateral) resolution of any con-

ventional imaging system is restrained by diffraction effects, usually conditioned by the

finite aperture and finite bandwidth of the system. Due to diffraction, a single point

source results in a finite-size spot on the observation plane. This spot is called the point

spread function (PSF) of the imaging system. For instance, imaging a point source with

a system having a circular aperture (for example, the microscope shown in Fig. 1.1)

produces the PSF shown in Fig. 1.2. The central bright region of this PSF is called the

Airy disc.

It should be emphasized that in optical microscopy one usually considers intensity

images while in acoustic/photoacoustic microscopy amplitude images are usually used.

So, in this PhD study, we will always consider amplitude images.

The resolution of an imaging system can be characterized by the full width at half

maximum (FWHM) of the PSF (Fig. 1.2b). In this PhD study we shall consider differ-

ent sources resolvable if they are separated by more than a FWHM of the PSF. Fig. 1.3

provides examples of completely resolved sources, sources separated by a FWHM of

the PSF and unresolved sources.

In conventional optical microscopy resolution is limited by diffraction only in the

2



Fig. 1.2 (a) PSF of an imaging system with a circular aperture. The colormap corre-
sponds to the normalized intensity I/I0. (b) Lateral profile of the PSF shown in (a).

Fig. 1.3 (a) Completely resolved sources. (b) Sources separated by a FWHM of the
PSF. (c) Sources separated by less than a FWHM of the PSF.

weak scattering regime, for example close to the surface of the imaged organs. When

photons travel deeper into biological tissue they undergo scattering and even diffraction-

limited focusing is no longer possible. The greater the imaging depth, the more scatter-

ing events occur and the more difficult it is to provide a tight focusing.

There are two characteristic lengths to estimate the degree of scattering: the scatter-

ing mean free path (scattering MFP) and the transport mean free path (transport MFP).

At the depths smaller than the scattering MFP most photons preserve their initial direc-

tion. Such photons are called ballistic photons. When light propagates in a scattering

and absorbing medium, its ballistic intensity decays according to the Beer-Lambert law:

I = I0e
−µez, (1.1)

3



where µe is the extinction coefficient which is the sum of the absorption coefficient

µa and the scattering coefficient µs. It should be noted that all these three coeffi-

cients are wavelength-dependent. The scattering MFP ls = 1/µs can be viewed as

the distance between two consecutive scattering events. The transport MFP is given

by l∗ = ls
1−g , where g is the anisotropy factor which is defined by the direction of the

scattered light. For biological tissues, where light is mostly scattered in the forward

direction, the anisotropy factor g will be between 0.8 and 1. There are few ballistic

photons between the scattering MFP and the transport MFP. The transport MFP l∗ can

be considered as the propagation distance at which the photons lose the memory of their

initial incident direction and light propagation becomes isotropic.

With the notion of the scattering and transport MFP two regimes of light propagation

can be defined: the weak scattering regime (below scattering MFP), and the scattering

regime which includes intermediate scattering (between the scattering MFP and the

transport MFP) and strong scattering (beyond transport MFP). In tissues in the near-

infrared the scattering MFP is ∼ 100 µm and the transport mean free path is around 1

mm [Ntziachristos, 2010].

Fig. 1.4 Resolution limits and penetration depth for pure optical imaging techniques.

So, in the general case resolution is affected by both diffraction and scattering. Var-

ious techniques have been developed to perform imaging beyond the diffraction limit

or in a highly scattering environment. Fig. 1.4 schematically summarizes the position

of the most typical optical imaging techniques in the depth vs. resolution space, along

with their scattering and diffraction limits.
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1.2.1 Optical imaging beyond the diffraction limit

To overcome the diffraction limit in the weak scattering regime, a number of methods

have been proposed, including Photo-activated Localization Microscopy (PALM) [Bet-

zig et al., 2006], Stochastic Optical Reconstruction Microscopy (STORM) [Rust et al.,

2006], Stimulated Emission Depletion (STED) [Hell and Wichmann, 1994] microscopy

and Super-resolution Optical Fluctuation Imaging (SOFI) [Dertinger et al., 2009]. With

the advent of these methods, imaging far beyond the optical diffraction limit became

possible for the first time. Eric Betzig, Stefan W. Hell and William E. Moerner were

awarded the Nobel Prize in Chemistry 2014 for the development of PALM and STED

microscopy.

PALM and STORM rely on random activation of different sparse subsets of flu-

orescent molecules. By accumulating the positions of distinguishable sources on each

acquired diffraction-limited image, a super-resolved image is obtained. The STED tech-

nique functions by depleting fluorescence in specific regions of the sample while leav-

ing the center focal spot active to emit fluorescence. This is achieved by exploiting the

non-linear response of fluorescent particles to the incident illumination. As a result,

only the photons emitted by fluorescent particles residing in a doughnut-shape region

of the focal spot are detected leading to the resolution improvement determined by the

size of the active zone.

SOFI is based on independent fluorescence fluctuations from different fluorophores.

By applying high order statistical analysis to a series of acquired diffraction-limited

images, closely spaced emitters can be resolved.

More detailed description of optical super-resolution methods relevant to this work

will be given in the corresponding chapters of this PhD manuscript.

1.2.2 Optical imaging in the scattering regime

Several optical techniques have been developed to reach diffraction-limited resolution

in imaging beyond the scattering MFP. In general, these techniques exploit light in the

near-infrared region 600-900 nm as this region offers the greatest penetration depth

(extending to several centimetres) in biological tissues. Among the most popular tech-

niques for imaging between the scattering MFP and the transport MFP are confocal

microscopy [Pawley, 2010], two-photon microscopy [Helmchen and Denk, 2005] and

Optical Coherence Tomography (OCT) [Huang et al., 1991]. These methods are based

on optical sectioning, i.e. the 3D object is imaged slice by slice. The central idea of

these methods is to prevent photons that do not originate from the imaged slice from

reaching the detector. In confocal microscopy, this is achieved by using a pinhole in

front of the detector. In two-photon microscopy, two-photon excitation of fluorophores

is used to reduce the PSF size in the axial direction. In OCT photons originating from

5



the imaged plane are selected by interferometry.

Imaging beyond the transport mean free path can be done with Diffuse Optical To-

mography (DOT) [Hoshi and Yamada, 2016]. In DOT, the imaged object is illuminated

in the near-infrared spectral region and the light scattered while propagating in tissue

is detected at many positions. Image reconstruction in DOT is based on modelling

propagation of photons in highly scattering media. Due to the complexity of the recon-

struction inverse problem, the depth-to-resolution ratio in DOT turns out to be of the

order of 1.

1.3 Photoacoustic imaging

1.3.1 Introduction

Resolution similar to that of pulse-echo imaging can be achieved in acoustic-resolution

photoacoustic imaging (AR-PAI) which permit imaging up to several centimeters be-

yond the transport MFP [Wang and Hu, 2012; Beard, 2011; Yao and Wang, 2013].

While light is highly scattered at such depths, it is also absorbed and through this

absorption acoustic waves can be generated. As ultrasonic scattering in tissues (∼
1.2 × 10−3 mm−1 in human skin at 5 MHz [Sehgal and Greenleaf, 1984]) is much

weaker than optical scattering (∼ 10 mm−1 in human skin at 700 nm), it is possible

to perform imaging with acoustic diffraction-limited resolution by collecting the gener-

ated acoustic waves. As a result, a depth-to-resolution ratio of the order of 100 can be

achieved in conventional AR-PAI. At depths of the orders of ten centimeters the light

intensity becomes too weak for the generated PA waves to be detected.

Fig. 1.5 Position of acoustic-resolution and optical-resolution photoacoustic imaging in
the depth vs resolution space.
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Fig. 1.5 shows how PA imaging deals with the resolution problem. Although AR-

PAI permits imaging beyond the limit of conventional optical techniques and beyond the

transport MFP, its resolution remains modest at high depths. In this PhD study we will

fill this gap by developing methods to improve resolution in deep-tissue PA imaging.

1.3.2 Photoacoustic generation

The PA effect consists of emission of ultrasound (US) waves caused by light absorp-

tion. Absorption of light typically leads to a small temperature rise (less than 0.1 K)

that induces a pressure rise [Beard, 2011]. This pressure rise relaxes in the form of a

broadband (approx. tens of megahertz) low-amplitude (less than 10 kPa) acoustic wave

which propagates in the medium until it is detected by an US probe.

1.3.2.1 Principle

In the context of AR-PAI relevant to this PhD study, PA imaging is performed in the

heat confinement regime. This means that there is no significant heat diffusion over the

sample volume during light absorption. Mathematically, this condition is formulated as

τp << τth =
D2
a

χ
, (1.2)

where τp is the laser pulse duration, Da is the characteristic size of the absorber, and χ

is the heat diffusion coefficient (χ ≈ 1.4 × 10−7 m2/s in water at 20◦C). For a typical

pulse duration of τp = 5 ns condition (1.2) is fulfilled when Da >> 27 nm. In this

PhD study, the minimal size of absorbers is Da = 10 µm, so in the following, we will

always assume that condition (1.2) is satisfied.

The PA effect is then described by the following equation [Wang and Wu, 2012]:

[ ∂2
∂t2
− v2s∆

]
p(−→r , t) = Γµa(

−→r )
∂φr(
−→r , t)
∂t

, (1.3)

where p(−→r , t) is the PA pressure wave, φr(−→r , t) is the fluence rate , vs is the speed of

sound (≈ 1500 m/s in water at 20◦C), µa(−→r ) is the distribution of optical absorption,

Γ is the constant called the Gruneisen parameter (Γ ≈ 0.1 in water at 20◦C).

1.3.2.2 PA point source

The PA point source is an absorber small enough that PA generation only depends on

its absorption cross-section. For τp = 5 ns light pulses, an absorber can be consid-

ered [Calasso et al., 2001] as a point source when its size is much smaller than typically

7.5 µm. For the PA point source, it can be shown that the pressure field p(−→r , t) is
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a spherical wave whose amplitude is proportional to the time derivative of the light

intensity I:

p(−→r , t) ∼ dI(τ̂)

dτ̂
, where τ̂ =

t− ||−→r ||/vs
τp

. (1.4)

Fig. 1.6 shows a typical PA signal and its spectrum corresponding to a point-like

absorber illuminated by a τp = 5 ns light pulse.

Fig. 1.6 (a) PA signal from a point-like absorber illuminated by a τp = 5 ns light pulse.
(b) Spectrum of the signal in (a).

1.3.2.3 Stress confinement regime

The stress confinement regime means that propagation of acoustic waves across the

absorber during the illumination can be neglected. This condition can be formulated as

τp << τac =
D2
a

vs
, (1.5)

For a typical pulse duration of τp = 5 ns condition (1.5) is satisfied when Da > 7.5

µm [Calasso et al., 2001].

In the heat and stress confinement regime, light absorption can be considered in-

stantaneous:

φr(
−→r , t) = φ(−→r )δ(t). (1.6)

Then, the source term in (1.3) can be replaced by initial conditions as follows:

[ ∂2
∂t2
− v2s∆

]
p(−→r , t) = 0, t > 0

p(−→r , t = 0) = p0(
−→r ) = Γµa(

−→r )φ(−→r ) (1.7)
∂p

∂t
(−→r , t) = 0

In the heat and stress confinement regime, the duration of a PA signal is determined
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by the size of the absorber and the speed of sound. The spectrum of such signal will

have a characteristic frequency which is inversely proportional to the absorber size. An

example is provided in Fig. 1.7 which shows PA signals emitted by a Da = 100 µm

cylinder and a Da = 100 µm sphere [Diebold and Sun, 1994] as well as the spectra of

these signals.

Fig. 1.7 (a,b) PA signal emitted by a Da = 100 µm sphere and its spectrum. (c,d) PA
signal emitted by a Da = 100 µm cylinder and its spectrum.

1.3.3 Principles of acoustic-resolution photoacoustic imaging

In this section, we describe general principles of conventional AR-PAI. In particular, we

consider image reconstruction, classical resolution limits and compare the frequency

content of PA signals corresponding to different absorbers.

1.3.3.1 Conventional image reconstruction in AR-PAI

PA reconstruction consists of finding the initial pressure distribution p(−→r , t = 0) from

measurement of p(−→r , t) at the surface of the probe. The solution p0 = p(−→r , t = 0) to

Eq. (1.7) can be obtained using the following equation [Xu and Wang, 2005]:

p0(
−→r ) =

∫
S0

[
2p(−→r0 , t)− 2t

∂p(−→r0 , t)
∂t

]
t=
|−→r −−→r0|

vs

dΩ0

Ω0

, (1.8)
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where −→r0 is the positions on the transducer surface, S0 is the reception aperture corre-

sponding to the solid angle Ω0 = 2π in a planar geometry. In the following, we will use

the discretized version of p(−→r0 , t) which is the pressure p(−→rk , ti) on transducer element

k at time ti.

Eq. (1.8) can be considered equivalent to delay-and-sum beamforming involving

two terms. The reader is referred to Appendix 1 for more information on the beam-

forming algorithm.

It should be mentioned that in the far-field approximation it is the second term in

the right hand side of Eq. (1.8) that is dominant [Xu and Wang, 2005]. However, in real

imaging conditions taking the derivative of received pressure signals is challenging due

to the presence of noise.

Quantitative estimation of the pressure field p0(−→r ) using Eq. (1.8) also entails other

difficulties. Via the linear response of the transducer, the pressure p(ti,−→rk ) is related to

the signal S(ti, k) available at the output of the acquisition machine. However, this

response is a non-trivial function that depends on the transducer properties and the

positioning of PA sources. In addition, Eq. (1.8) does not include effects related to

propagation in the viscous medium, such as acoustic wave attenuation. The transducer

response and effects related to propagation in the medium can both be taken into account

in model-based reconstruction based on the signals S(ti, k) corresponding to a PA point

source are measured experimentally or predicted theoretically. We will employ the

model-based approach to demonstrate super-resolution in Chapters 5 and 6.

On the other hand, Eq. (1.8) is effectively used in conventional PA imaging to per-

form qualitative reconstruction. In particular, a qualitative estimate of absorbed energy

is obtained by applying delay-and-sum beamforming to the signals S(ti, k) which are

related in a complex manner to the pressure p(−→r0 , t) in the right hand side of Eq. (1.8).

We will use this approach to demonstrate the result of standard PA reconstruction in all

Chapters of this PhD manuscript.

1.3.3.2 Resolution in AR-PAI

In AR-PAI resolution is determined by acoustic diffraction. Thus, for a spherically

focused ultrasound transducer of diameter D, central frequency fc and bandwidth ∆f

the lateral resolution defined as the lateral FWHM of the amplitude PSF at distance R

from the transducer surface is:

∆X = ∆Y ∼ λac
R

D
, (1.9)

where λac = vs
fc

is the wavelength corresponding to the central frequency of the trans-

ducer.

The axial resolution is given by
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∆Z = vs∆τ ∼
vs

∆f
= λac

fc
∆f

, (1.10)

with ∆τ being the duration of the imaging pulse.

For wideband resonance transducers, the ratio fc/∆f is usually of the order of 1.

So, in AR-PAI, classical resolution in the lateral and axial directions is limited by the

acoustic wavelength.

1.3.3.3 Frequency content of detected PA signals

In this PhD study, imaging is always performed with wideband resonant transducers,

which only detect signals within their frequency bandwidth.

Fig. 1.8 shows a typical transducer transfer function in the time domain and in the

frequency domain. The frequency response is symmetric with respect to the central

frequency fc and has a certain full width at half maximum (FWHM) denoted ∆f .

Fig. 1.8 Typical transducer response (a) and its spectrum (b). Central frequency fc = 15
MHz, bandwidth ∆f = 13 MHz.

When a PA signal is detected, the transducer transfer function shown in Fig. 1.8

acts as a band-pass filter. Fig. 1.9 illustrates typical signals detected by a transducer

with the characteristics shown in Fig. 1.8 for the case of a point source (a), a 100-um

diameter sphere (b), and a 100-um diameter cylinder (c).

It can be observed that the shape of the output signal is determined by the transducer

response rather than the imaged object (Fig. 1.6 and 1.7). In the present work, different

types of absorbers are considered, including red blood cells and beads (both about 10

µm in diameter) as well as microfluidic channels with typical dimensions of a few tens

of micrometers. A given transducer will in principle detect the waves emitted by all

these types of absorbers, but with a SNR strongly dependent on the position of the

input PA spectrum with respect to the spectral response of the transducer.
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Fig. 1.9 Normalized PA signals detected by a transducer with the characteristics shown
in Fig. 1.8 for the case of a point source (a), a 100-µm diameter sphere (b), and a
100-µm diameter cylinder (c).

1.3.4 Linear array imaging

1.3.4.1 Transducer geometry

In this PhD study, multielement linear arrays are used for detection of acoustic waves

(Fig. 1.10). Such arrays permit obtaining two-dimensional (2D) PA images in a single

acquisition as detection is performed in parallel by a number of quasi-identical trans-

ducer elements. By translating or rotating the array in space, volumetric reconstruction

can be achieved.

Fig. 1.10 (a) Imaging geometry with a linear transducer array. (b) Detailed scheme of
imaging geometry with a linear transducer array. Inset: two neighbouring transducer
elements with relevant dimensions: element width wel, element height hel, and element
pitch.

The transducer elements usually have a rectangular shape and are arranged in a

single row. The width wel and the height hel of each element are chosen to provide the

required properties of the probe, including sensitivity and resolution. On the one hand,

the area of each element should be large to provide a good sensitivity. On the other hand,

the spacing between neighbouring elements should not exceed λac/2 (λac = vs/fc is
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the wavelength at the central frequency fc of the transducer) to avoid artifacts due to

spatial undersampling. So, in practice there is virtually no space between neighbouring

transducer elements and the center-to-center distance between the elements, called the

element pitch, is very close to the element width wel. The element height hel usually

determines elevational focusing in the Y direction at a certain distance zf from the

transducer surface. This mechanical focusing is achieved by using an acoustic lens at

the transducer surface and permits suppressing signals from sources outside the imaging

plane XZ.

1.3.4.2 Point Spread Function

Fig. 1.11 illustrates a typical PA acquisition corresponding to a single point source

in the imaging plane XZ. Fig. 1.11b shows the data which is available at the output

of the acquisition machine after recording PA signals. This data is usually called a

radio-frequency frame or an RF frame. Each value of the RF frame corresponds to the

signal S(ti, k) which is equal to the quantized value of voltage on transducer element

k registered at time ti. The interval between successive time values ti and ti+1 is equal

to ∆ts = 1/fs, where fs is the sampling frequency of the acquisition machine. As can

be clearly seen, a PA acquisition results in a curved trajectory on the RF frame. The

shape of this trajectory is determined by the arrival time of the PA signal on different

transducer elements. It can be noticed that some background noise is also present in

Fig. 1.11b. This noise results from thermal noise of the acquisition equipment and

usually determines the signal-to-noise ratio (SNR) in PA imaging.

Fig. 1.11c illustrates the bipolar PSF derived by applying delay-and-sum beamform-

ing to the RF data shown in Fig. 1.11b. This PSF contains axial oscillations resulting

from the finite transducer bandwidth. These oscillations can be removed (see Appendix

1) to obtain what can be called the envelope PSF, which is shown in Fig. 1.11d. Note

that any linear operation should involve the PSF and not its envelope, as taking the en-

velope is not a linear operation. The full width at half maximum of the envelope PSF is

determined by the diffraction-limited resolution in the lateral direction X:

∆X ∼ λac
R

D
(1.11)

and in the axial direction Z:

∆Z ∼ λac
fc

∆f
. (1.12)

In Eq. (1.11) and (1.12) R is the distance from the transducer surface to the source,

fc is the central frequency of the transducer, ∆f is the transducer bandwidth, and D =

pitch ∗ Nel is the length of the linear array. Imaging is usually performed at the depth
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corresponding to the elevational focal distance of the transducer, i.e. at R ∼ zf .

The size of the elevational focal zone determines the diffraction-limited resolution

in the direction Y perpendicular to the imaging plane XZ:

∆Y ∼ λac
zf
hel
, (1.13)

where hel is the height of a transducer element.

Fig. 1.11 (a) Single point source in the imaging zone. (b) RF frame corresponding to
PA imaging of the point source in (a). (c) Bipolar PSF corresponding to the RF data in
(b). (d) Envelope PSF corresponding to the RF data in (b).

Fig. 1.12 Five point-like absorbers too close from each other appear as a continuous
unresolved distribution due to a finite size of the PSF.

Based on the PSF shown in Fig. 1.11, Fig. 1.12 illustrates how five point-like

absorbers very close from each other appear as a continuous unresolved distribution.
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The main objective of this PhD thesis is to propose and investigate methods to overcome

the acoustic diffraction limit observed in Fig. 1.12.

1.4 State-of-the-art and objectives of this thesis

Photoacoustic (PA) imaging is the cross-sectional or three-dimensional (3D) imaging

of a material using the photoacoustic effect [Wang and Wu, 2012; Beard, 2011; Yao

and Wang, 2013]. A PA image can be viewed as an ultrasound image in which the

contrast depends not on the mechanical and elastic properties of the tissue, but on its

optical properties, most specifically optical absorption [Beard, 2011]. PA imaging may

provide better tissue differentiation and specificity than ultrasound (US) because dif-

ferences in optical absorption between different tissues can be more significant than

those in acoustic impedance. For example, due to the strong optical absorption of

haemoglobin PA imaging is used to visualize the microvasculature that can be hard

to image in pulse-echo ultrasound imaging because of the weak echogenicity (although

recently developed ultrasound Doppler imaging techniques [Mace et al., 2013] may

now provide visualization quality comparable to that of PA imaging). In addition to

visualizing anatomical structures, PA imaging can also provide functional information

on blood oxygenation, blood flow and temperature. All of this can be achieved over

a wide range of length scales from micrometres to centimetres with scalable spatial

resolution. These attributes lend PA imaging to a wide variety of applications in clini-

cal medicine, preclinical research and basic biology for studying cancer, cardiovascular

disease, abnormalities of the microcirculation and other conditions [Beard, 2011]. In

PA imaging, pulsed illumination in the visible and near-infrared part of the spectrum

between 550 and 900 nm is usually used. Signal acquisition can be performed by a sin-

gle element transducer or a multielement array. Such probes are usually those that are

used in US imaging, where they are employed not only for reception but also for trans-

mission of acoustic waves. The frequency of PA signals typically ranges from 1 to 100

MHz [Beard, 2011]. Optical-resolution photoacoustic imaging (OR-PAI) and acoustic-

resolution photoacoustic imaging (AR-PAI) have been briefly presented in section 1.2.

In OR-PAI optical resolution is achievable, but the penetration depth of this technique

is limited to about 100 µm in biological tissues, as for other optical microscopy tech-

niques. Although AR-PAI allows a greater penetration depth (up to several centimeters),

its resolution remain restrained by acoustic diffraction, leading to a depth-to-resolution

ratio of about 100 (Fig. 1.5).

The main goal of the actual PhD study is to propose methods to overcome the

diffraction limit in acoustic-resolution PA imaging. Besides the acoustic diffraction

barrier, we will also try to overcome one other important limitation in AR-PAI. The
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issue is that some parts of the imaged objects may be invisible after PA reconstruction.

Such artifacts usually arise due to the coherent simultaneous generation of PA waves

by all parts of the object. As a result, the limited bandwidth or the limited detection

aperture of the US transducer may lead to what can be called visibility problems.

There have already been some attempts to achieve super-resolution in AR-PAI.

These attempts were based on random optical speckle illuminations, each illumina-

tion leading to a random distribution of PA sources inside the imaged object. By pro-

cessing PA images acquired for different illumination patterns, super-resolution can be

achieved. For example, Chaigne et al. [Chaigne et al., 2016] showed that by calculat-

ing the variance PA image a
√

2 resolution improvement can be achieved. Some other

works suggested using the so-called model-based approach to obtain super-resolved

images [Hojman et al., 2017; Murray et al., 2017]. Briefly speaking, model-based

reconstruction involves a forward linear model expressed as R = AT , where R is

the acquired PA images, T is the object to reconstruct, A is a PSF-encoding matrix.

Model-based reconstruction usually exploits some additional assumptions on the ob-

ject, such as sparsity [Murray et al., 2017]. It was shown that in terms of resolution

model-based reconstruction outperforms the variance-based approach [Murray et al.,

2017] and Richardson-Lucy deconvolution [Hojman et al., 2017; Murray et al., 2017].

In addition, it was proposed to use speckle illuminations to overcome the limited-view

and limited-bandwidth problems in AR-PAI [Gateau et al., 2013].

However, a great disadvantage of using optical speckle illuminations, whether to

achieve super-resolution or to palliate visibility problems, is that in deep-lying tissues

the size of the optical speckle grain is several orders of magnitude smaller than that of

the acoustic PSF [Gateau et al., 2013]. This difference in dimensions leads to a very

small amplitude of fluctuations since the PA signal at each image pixel is the sum of PA

signals from a large number of speckles fluctuating within the acoustic PSF [Goodman,

2007; Gateau et al., 2013]. For example, for speckles of size λlaser/2 ∼0.3 µm (reached

at ∼1 mm depth in biological tissues under near infrared [Ntziachristos, 2010]) and a

typical acoustic wavelength λac = 100 µm, the number of optical speckles inside the

acoustic PSF is about N = 106 which makes it virtually impossible to extract the fluc-

tuations of interest from the noise fluctuations. So, using optical speckle illuminations

would be challenging in clinical applications of AR-PAI.

In this PhD study we propose and investigate super-resolution methods for deep-

tissue PA imaging. These methods do not rely on optical speckle illuminations and can

be implemented on a standard PA imaging system. We will consider methods based on
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response from contrast agents as well as methods for contrast-free imaging, that may

rely on fluctuations of red blood cells (RBCs) or just on a PA signal from the imaged

microvasculature. Most of the proposed methods are developed based on the principles

of super-resolution techniques introduced in optics and then partially adopted for US

imaging. In the last chapter, we show that visibility problems in PA imaging can be

successfully overcome by using PA signal fluctuations caused by a blood flow. After

this general introductory chapter, the PhD manuscript is organized with the following

structure:

Chapter 2. The experimental equipment is described, including the illumination

source and the US acquisition equipment. A schematic of the experimental setup is il-

lustrated. The fabrication of the microfluidic samples, used in most of the experiments,

is briefly described.

Chapter 3. The principles of US super-localization imaging are used to form the

basis of PA localization imaging, and the results of a proof-of-principle experiment are

reported. Three methods of detecting localization sources are proposed. The limitations

of the approach are discussed.

Chapter 4. The principles of super-resolution optical fluctuation imaging (SOFI)

imaging are used to form the grounds of PA super-resolution imaging based on fluctua-

tions of moving optical absorbers. The method is first illustrated with numerical simu-

lations, and demonstrated experimentally with two proof-of-principle experiments, one

relying on the fluctuations induced by flowing absorbing microbeads, the other relying

on blood flow fluctuations. The limitations of the method are discussed.

Chapter 5. Model-based super-resolution is introduced and demonstrated experi-

mentally. L1-norm-based reconstruction applied to mean and variance data are com-

pared with both experimental and simulation results. Using simulations, model-based

reconstruction applied to either raw RF data or beamformed images are also compared.

The mechanism of L1-based reconstruction and the role of the non-negativity constraint

is investigated theoretically. The limitations of model-based reconstruction are dis-

cussed.

Chapter 6. The model-based approach introduced in the previous chapter is applied

to demonstrate super-resolution in both PA and US imaging with a small number of

transducer elements (sparse array). Additional simulations are performed to investigate

how the reconstruction quality depends on the number of transducer elements and the
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signal-to-noise level.

Chapter 7. Fluctuations of moving optical absorbers are exploited to suppress visi-

bility artifacts in PA imaging. The effect of the absorber size and the concentration of

absorbers are studied theoretically.

Chapter 8. All the studied super-resolution methods are compared. The most re-

cent advances in super-resolution PA imaging are discussed and an outlook for super-

resolution PA imaging is provided.
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CHAPTER 2

Experimental equipment, materials and methods

This chapter provides a description of the experimental equipment that was used in the

course of this PhD study. First, an overview of the setup used in all experiments is pre-

sented, then a more detailed description of various instruments (light source, ultrasound

acquisition electronics, etc.) along with their relevant specifications is provided. In the

last section, microfluidic samples used in most experiments are described.

2.1 Experimental setup

A schematic of the experimental setup used in all the experiments is shown in Fig. 2.1.

The sample is placed in a water tank perpendicularly to the imaging plane of a linear

transducer array (type L7-4/L22-8, see section 2.5) such that the distance between the

sample and the ultrasound probe is approximately equal to the elevational focus distance

of the transducer. The pulsed laser (τp = 5 ns, λlaser = 532/670 nm, PRR=100 Hz, see

section 2.2) illuminates the sample and at each laser shot photoacoustic (PA) signals are

recorded by the multichannel acquisition electronics (Verasonics Vantage system, see

section 2.3). In experiments with microbeads or human blood, the liquid is flown into

the circuit with a syringe pump (KDS Legato 100, KD Scientific, Holliston, MA, USA)

providing a controlled flow rate.

The voltage divider and the signal generator (BNC 575, Berkeley Nucleonics Corp.,

San Rafael, CA, USA) in Fig. 2.1 provide synchronization between the trigger signal

levels of the acquisition electronics and the laser (see section 2.4). The bypass circuit is

used to reduce the laser jitter (see section 2.2).
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Fig. 2.1 Schematic of the experimental setup common to all the experiments. The
sample placed in a water tank is illuminated by the pulsed laser and the acquired signals
are registered by the acquisition electronics. The syringe pump provides a constant flow
rate in the experiments with microbeads or human blood. The voltage divider and the
signal generator provide synchronization between the trigger signals of the light source
and the acquisition machine.

2.2 Light source

The light source is a diode-pumped Nd:YAG laser (Spitlight DPSS 250, Innolas Laser

GmbH, Krailling, Germany) providing high-energy τp = 5 ns light pulses with the

maximal pulse repetition rate PRR=100 Hz. The laser wavelength 1064 nm permits

obtaining light at 532 nm via the second harmonic generator (SGH) unit or light in

the infraraed range 680-980 nm via the optical parametric oscillator (OPO) unit. In

Chapters 3-6 light at 532 nm is used while in Chapter 7, illumination at 680 nm is

exploited. A photo of the laser is shown in Fig. 2.2.

An important property of the laser is the laser jitter. The jitter indicates how well

the emission of a laser pulse is synchronized with the trigger signal. For the laser used

in this study, the default value of jitter is ±20 ns meaning that the light pulse is emitted

within a 40 ns time window. As in PA imaging a good synchronization between the

beginning of PA acquisition and the moment of light emission is important, we reduced

the default jitter down to ±1 ns using a special bypass circuit (Fig. 2.1) ordered from

the laser manufacturer.
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Fig. 2.2 (a) The laser head unit (side view). (b) The front view of the laser, with the
output windows for 532 nm and 680-980 nm .

During acquisition of PA signals, the laser electronics produce noise that is captured

by all elements of the US probe and appear as horizontal lines on the acquired radio-

frequency (RF) frame (Fig. 2.3a). To remove this noise, we subtract the mean value

for each line of the RF frame. This permits reducing the laser noise substantially (Fig.

2.3b). The position and amplitude of noise slightly fluctuate from one PA acquisition

to the next. So, averaging over a certain number of frames can further reduce the noise.

This can be done when the fluctuations of the relevant signal from one acquisition to

the next can be neglected.

Fig. 2.3 (a) The laser noise appears as horizontal lines on the acquired RF frame. (b)
This noise can be considerably reduced by subtracting the mean value over each line of
the RF frame.

2.3 Ultrasound electronics

The acoustic part of the imaging equipment consists of US probes (section 2.5) con-

nected to a High Frequency Vantage 256 system (Verasonics, Kirkland, WA, USA). In

all our PA experiments the Vantage system is used for reception of acoustic waves, and

in the only US experiment (Chapter 6), the machine is also used to transmit a plane
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wave from the elements of a transducer array. The machine controls 256 independent

transmit channels and 256 independent receive channels to connect multielement trans-

ducer arrays. Two Cannon HDI-format ZIF connectors are provided at the front of the

system, each providing access to 128 channels (Fig. 2.4a).

Fig. 2.4 High Frequency Vantage 256 system. (a) Probe connectors. (b) Main compo-
nents of the Vantage system, including Scanhead Interface (SHI), Back Plane Module,
Transmit Power Controller (TPC), I/O Panel .

A schematic of the main components of the Vantage system is shown in Fig. 2.4b.

These components include:

• Scanhead Interface (SHI) - This is the module that contains the transducer con-

nectors.

• Acquisition Modules (AM) - These electronic boards contain the circuitry for

transmitting and receiving ultrasound signals for multiple channels. Each module

supports up to 64 transmitters and 64 receive channels. The received US signals

are digitized and stored in local memory on the AM prior to transfer to the host

computer. The AM also provide the per channel digital filtering and and signal

conditioning that can be applied after A/D conversion.

• Back Plane Module - This module contains the hardware sequencer that controls

the operation of the Acquisition Modules.

• Transmit Power Controller (TPC) - The TPC module provides the high voltage

power supply for the transmitters, as well as several other power supply levels

used by the system.

• I/O Panel - The I/O Panel provides the PCI express cable connection for connect-

ing to the host computer. It also provides the BNC connections for two input

triggers and one output trigger, as well as clock outputs for synchronization with

external devices.
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The Vantage system provides several adjustable parameters to control reception of

US waves and pre-processing of the acquired data.

To provide the best compatibility with the US probes, the imput impedance of the

Vantage system can be tuned. We chose the highest value of the input impedance of

approximately 8 Ohm (RcvProfile.LnaZinSel = 31).

The Vantage system has two controllable amplifiers that also provide high-pass fil-

tering. For the preamplifier prior to the A/D (PGA) we chose the maximal gain of 30 dB

(RcvProfile.PgaGain = 30) and the filter breakpoint at approximately 80 kHz (RcvPro-

file.PgaHPF = 80). For the low noise amplifier (LNA) we chose the maximal gain of

24 dB (RcvProfile.LnaGain = 24) and the filter breakpoint at approximately 200 kHz

(RcvProfile.LnaHPF = 200).

The sampling frequency of the Vantage system can also be tuned. Specifically, we

chose the sampling mode corresponding to the mode where the sampling frequency

is set as close as possible to fs = 4 × fc, where fc is the central frequency of the

ultrasound (US) probe (Receive.samplesPerWave=4). The frequency fs is picked up

from the discrete set of available sampling frequencies: on the high frequency version

of the Vantage system used here, the maximum available sampling frequency is 62.5

MHz. This frequency is at least two times greater than the maximal frequency in the

impulse response of each US probe that we used. In practice, the sampling frequency

was 20.83 MHz and 62.5 MHz in the experiments with the L7-4 probe (fs = 5 MHz)

and the L22-8 probe (fs = 15 MHz) correspondingly.

Fig. 2.5 Typical RF frame acquired in the absence of the imaged object and the laser
noise.

The acquisition data is transferred to the host computer as a radio-frequency (RF)

frame. The RF frame contains the quantized and pre-processed signals received by each

transducer element at every time sample. Each value is a 15bit signal ranging from

-16384 to +16384. An example of the RF frame acquired in the absence of imaged

object and laser noise is shown in Fig. 2.5. This frame contains only the noise produced
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by the acquisition pipeline (US probe and Vantage system). The rms of this noise is

about σn = 30 for both US probes used in this study (see section 2.5).

2.4 Synchronization

In all the experiments, acquisition of PA signals is performed after illuminating the

sample. To synchronize the beginning of the acquisition with the moment of illumi-

nation measures have been taken. To provide the minimal jitter, we compared three

synchronization schemes:

1) The output trigger signal FL Sync from the laser pump source is sent to the

US acquisition electronics (AE). The AE waits for a fixed time (until the light pulse is

supposed to be emitted) and registration of PA signals begins. This scheme was rejected

due to the large jitter between the FL Sync signal and the light emission (about 1 µs).

2) The output trigger signal from the laser Pockels cell is sent to the AE at the mo-

ment of light emission. On receiving this signal, AE begins registration of PA signals.

This scheme was rejected due to the large jitter at the Trig In port of the AE (about 0.5

µs).

3) The adopted synchronization sequence providing the jitter of about 2 ns is schemat-

ically shown in Fig. 2.6. First the output trigger signal FL Sync from the laser pump

source is sent to the AE. Then, the AE makes a pause of 230 µs to wait until the energy

stored in the laser reaches its maximum. At this moment the AE generates the Trig

Out signal that is sent to the input trigger of the Pockels cell of the laser. The state of

the Pockels cell changes and the intracavity laser light is allowed to exit. This creates

a high intensity laser pulse. The maximum of the output light intensity is reached ap-

proximately 400 ns after the Trig Out signal is sent. The maximal laser PRR being 100

Hz, the next pulse is generated 10 ms after the previous one.

As the input/output trigger levels of the laser and the AE are different, a voltage

divider and a signal generator were used to provide the compatibility between the trigger

signals. Fig. 2.7 shows the input and output signals of these devices.
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Fig. 2.6 Synchronization sequence for PA acquisition. The laser sends the output trig-
ger signal FL Sync to the acquisition electronics which waits until the energy inside the
laser reaches its maximum. Then, the Trig Out signal is sent by the acquisition elec-
tronics to the laser and a light pulse is generated. The minimal time between successive
pulses is 10 ms.

Fig. 2.7 (a) The voltage divider provides the correspondence between the FL Sync sig-
nal sent by the laser and the trigger circuit of the acquisition electronics. (b) The signal
generator provides the correspondence between the Trig Out signal sent by the acquisi-
tion electronics and the trigger circuit of the laser.

2.5 Ultrasound probes

Two bandwidth-limited linear transducer arrays are used as US probes in the experi-

ments: L22-8 (Capacitive Micromachined Ultrasonic Transducer (CMUT) linear array)

and L7-4 (piezoelectric linear array), both manufactured by Verasonics Inc., Kirkland,

WA, USA. Some characteristics of these probes are reported in Table 2.1. Notably,

each probe has only one connector. This means that although the probe L22-8 has 256

elements, only 128 of them can be used simultaneously as each connector of the ac-

quisition system can be used for simultaneous acquisition of at most 128 signals (see

section 2.3).

Fig. 2.8 and 2.9 illustrate point spread functions (PSFs) acquired for the probe L22-
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Model Central Bandwidth Number of Element Element Elevation
frequency, at -3dB, elements pitch, height, focus,

MHz MHz µm mm mm
L22-8 15 12 128 used 100 1.5 15

out of 256
L7-4 5 5 128 310 7.5 25

Table 2.1 Characteristics of the US probes used in the experiments.

8 in PA and plane-wave US imaging correspondingly. Fig. 2.10 shows a PA PSF for the

probe L7-4.

All the PSFs are acquired based on a small microfluidic channel (channel width and

height being wch = 10 µm and hch = 50 µm correspondingly), placed perpendicu-

larly to the imaging plane XZ at the elevational focus of the US probe. For a linear

array transducer with focusing in elevation such a microchannel can be considered as a

point source in the imaging plane XZ as the signals originating from the outside of the

imaging plane are attenuated by the acoustic lens of the linear array.

In PA imaging, the PSFs were acquired by illuminating the channel filled with an

absorbing liquid (Patent Blue V). In US imaging, the PSF was acquired by receiving

the backscattered signals after sending a plane wave to the channel filled with air.

Standard delay-and-sum beamforming reconstruction [Xu and Wang, 2005] was

then performed to measure the full width of maximum (FWHM) of the central lobe

of each PSF in the X and Z directions. The FWHM in the Y direction was estimated

using Eq. (1.13). The results are summarized in Table 2.2. It should be kept in mind

that we define the conventional resolution of the imaging system based on the FWHM

of the PSF (see section 1.2).

Model Mode ∆X , µm ∆Z, µm ∆Y , mm
L22-8 PA 154 139 1
L7-4 PA 389 418 1

L22-8 US 154 80 1

Table 2.2 FWHM of the PSFs shown in Fig. 2.8-2.10.
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Fig. 2.8 PA PSF acquired with the L22-8 probe. The lateral dimension of the PSF,
defined as the lateral FWHM of the central lobe, is about 154 µm. The axial dimension
of the PSF, defined as the FWHM of the PSF envelope along the Z axis, is about 139
µm.

27



Fig. 2.9 US PSF acquired with the L22-8 US probe. The lateral dimension of the PSF,
defined as the lateral FWHM of the central lobe, is about 154 µm. The axial dimension
of the PSF, defined as the FWHM of the PSF envelope along the Z axis, is about 80 µm.
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Fig. 2.10 PA PSF acquired with the L7-4 US probe. The lateral dimension of the PSF,
defined as the lateral FWHM of the central lobe, is about 389 µm. The axial dimension
of the PSF, defined as the FWHM of the PSF envelope along the Z axis, is about 418
µm.
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2.6 Microfluidic circuits

In Chapters 3-6 our experiments are based on microfluidic samples. These samples are

prepared using polydimethylsiloxane (PDMS) with a standard soft-lithography man-

ufacturing technology [Tang and Whitesides, 2010]. Each sample has a structure to

image sandwiched between two layers of PDMS. The thickness of the upper layer (the

layer to be placed closer to the US probe) is around 180 µm.

The geometry of the samples is detailed in Fig. 2.11a,c. A photo of one of the

samples filled with absorbing liquid is shown in Fig. 2.11b. For cross-sectional imaging,

we use the central part of the circuit, containing either five parallel microchannels (Fig.

2.11a,b) or two approaching channels (Fig. 2.11c). Apart from the structure to image,

the microfluidic circuit contains other important elements, such as randomizers and

dust filters. These elements play a great role in experiments with 10 µm microbeads

or red blood cells. The randomizers are loops with a short branch and a long one. A

microbead going into one branch or the other, the microbeads flow is scrambled. As

a result, the distribution of microbeads in different channels is not correlated in time.

The dust filters are stacks of pillars separated by 30 µm. These pillars are necessary to

avoid large pieces of dust blocking the flow inside the circuit.

Fig. 2.11 (a,c) Overview of the microfluidic circuit, showing various circuit elements
(input and output ports, dust filters, and randomizers). The imaging plane crosses five
parallel channels (a) or two approaching channels (c). (b) Photo of a sample with the
pattern shown in (a).

For the pattern with five parallel microchannels (Fig. 2.11a), numerous samples

30



have been fabricated with different center-to-center interchannel distances Lcc = 180

µm, 125 µm, 75 µm. The channel width is wch = 20 µm for Lcc = 75 µm and

wch = 40 µm in all other cases. For the pattern with two approaching microchannels

(Fig. 2.11c), the interchannel distance varies between and 180 µm and 80 µm. The

channel width is wch = 40 µm. For both patterns, the channel height is hch = 50 µm.

Notably, the minimum interchannel distance Lcc = 75 µm and the minimum channel

width wch = 20 µm are determined by technological limitations.

When microfluidic samples are used in US or PA experiments, the imaged structure

built in a PDMS block is usually covered by a glass plate through which imaging is

done. However, in our experiments imaging was performed through a 180 µm-thick

PDMS layer glued to the PDMS block carrying the imaged structure. The reason is

that only a small portion of the incident acoustic energy penetrates the glass plate as

the physical properties of glass (mass density ρ ≈ 5000 kg/m3, speed of sound vs ≈
4540 m/s) are far from those of water (mass density ρ ≈ 1053 kg/m3, speed of sound

vs ≈ 1500 m/s). However, the physical properties of PDMS are closer (mass density

ρ ≈ 969 kg/m3, speed of sound vs ≈ 1000 m/s [Rahman et al., 2012]) to those of

water. As a result, reflections at the PDMS/water interface can almost be avoided. The

disadvantages of imaging through PDMS include significant acoustic attenuation and

abberations when the PDMS layer is thick.

In this PhD study, whatever reconstruction method is used, we neglect presence of

the 180 µm-thick PDMS layer covering the channels. In particular, we assume the

homogeneous speed of sound vs = 1500 m/s (corresponding to the speed of sound in

water at 20◦C) everywhere in the propagation medium.
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CHAPTER 3

Localization-based super-resolution imaging

3.1 Principles of localization-based super-resolution imaging

Localization-based imaging techniques rely on the possibility with a diffraction-limited

imaging system to determine the position of a point source with a precision much better

than the size of the point spread function (PSF) provided that PSFs corresponding to

different sources are separated in some parameter space [Betzig, 1995]. In this Chap-

ter, we describe principles of optical super-resolution localization-based imaging, that

were also used to obtain super-resolution in ultrasound imaging, and then apply these

principles to demonstrate super-resolution in photoacoustics.

3.1.1 Localization-based super-resolution in optics

Localization-based techniques were first proposed to overcome the diffraction limit

in optical imaging. In particular, in the methods named PALM [Betzig et al., 2006],

FPALM [Hess et al., 2006] and STORM [Rust et al., 2006] super-resolution is achieved

by detecting distinguishable sources on different sparse subsets of fluorescent molecules.

Fig. 3.1 illustrates the resolution improvement provided by PALM. If conventional fluo-

rescence imaging provides resolution of several hundred nanometers, localization-based

methods lead to resolution ranging from a few to tens of nanometers.

The idea of localization-based fluorescence imaging is to separate the photons emit-

ted by one fluorophore from those emitted by the others. Contrary to standard fluores-

cence imaging, in localization-based methods all the fluorescent particles do not emit

at the same time. Conversely, random sparse subsets of fluorophores are activated at

different time moments by a specific illumination wavelength. Each subset leads to a

diffraction-limited image, but the concentration of sources in the subset is weak enough

for the centers of individual PSFs to be detected. The super-resolved image is then ob-

tained as a histogram of the fluorophore positions detected for each subset. To avoid

accumulation of active fluorophores in the sample, which would eventually lead to a

diffraction-limited resolution, spontaneously occurring photobleaching (a phenomenon

that makes fluorophores irreversibly inactive) is used in PALM, while reversible switch-
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Fig. 3.1 (a) Comparative summed-molecule total internal reflection fluorescence (TIRF)
(a) and PALM (b) images of the same region within acryoprepared thin section from a
COS-7 cell expressing the lysosomal transmembrane protein CD63 tagged with the PA-
FP Kaede [Betzig et al., 2006].

ing between active and inactive fluorescent states is exploited in STORM.

In every diffraction-limited image the coordinates of each isolated PSF are deter-

mined by fitting the measured emission profile to a known function, which is usually

a Gaussian function in two dimensions. It can be shown [Betzig et al., 2006] that the

fitting error σf depends on the number of collected photonsNp as σf ∼ 1/
√
Np. Super-

resolution can be achieved if this error is much smaller than the size of the PSF. So, a

certain number of photons from each fluorophore should be detected. In addition, to

reconstruct the entire imaged structure, many fluorophores residing in different parts

of the sample should be localized. Thus, localization-based imaging consists in many

cycles involving activation and deactivation of different fluorescence molecules. In

PALM, at typical frame rates of 0.5 s to 1.0 s, between 2 and 12 hours are required to

get a single super-resolved image based on ∼ 105 localized molecules [Betzig et al.,

2006].

3.1.2 Localization-based super-resolution in ultrasound imaging

Underlying ideas of optical localization methods were subsequently applied to demon-

strate super-resolution in ultrasound (US) imaging [Desailly et al., 2013; Viessmann

et al., 2013; OReilly and Hynynen, 2013; Errico et al., 2015; Christensen-Jeffries et al.,

2015; Luke et al., 2016]. As in optics, having sparse distribution of active sources is cru-

cial for US super-localization imaging. In ultrasound, such individual sources are based

on microbubbles flowing inside the imaged structure. This flow results in a random dis-

tribution of microbubbles in the imaging zone at any given moment. By accumulating

the positions of microbubbles detected at each acquisition, a super-resolved image can

be constructed.

In first proof-of-concept US experiments, tube-like phantoms were reconstructed

33



by localizing microbubbles flowing through the samples [Viessmann et al., 2013; OR-

eilly and Hynynen, 2013]. However, to achieve the required sparsity of sources, the

microbubbles had to be induced at a very low concentration. To overcome this limita-

tion, Desailly and colleagues suggested sono-activated contrast agents and used them

to reconstruct the sub-wavelength structure of a microfluidic circuit [Desailly et al.,

2013]. The width of the microfluidic channels reconstructed using localization was 13

times smaller compared to conventional US imaging (Fig. 3.2b,c). In sono-activated

localization microscopy contrast agents do not have to be present at an extremely low

concentration as they can be randomly and sparsely activated at appropriate transmit

US pressure. As a result, there is always at least one microbubble in the imaging

zone and fewer US acquisitions are needed to reconstruct the object. This pioneer-

ing study triggered many subsequent works [Errico et al., 2015; Christensen-Jeffries

et al., 2015; Luke et al., 2016], including the in vivo demonstration of US localization

microscopy for super-resolution vascular imaging in rodent brain [Errico et al., 2015]

with the thinnest reconstructed blood vessel being 10 times smaller than the acoustic

wavelength.

Fig. 3.2 Comparison between fluorescence microscopy (a), standard US imaging (b),
US super-localization (c), and the localization imaged superimposed with optical image
(d). The width of the microfluidic channels reconstructed using localization is 13 times
smaller compared to conventional US imaging [Desailly et al., 2013].

3.1.3 Motivation for localization-based photoacoustic imaging

In photoacoustic (PA) imaging, overcoming the acoustic diffraction limit by localiza-

tion was first proposed by Iskander-Rizk and colleagues [Iskander-Rizk et al., 2017]

who used the difference between the absorption spectra of two unresolved absorbers to

separate and then localize the targets. Although sources separated by 1/20 of the PSF

width were resolved, this approach was limited to imaging only two spectrally distinct

absorbers within each PSF.

Here, in a PA proof-of-principle experiment, we demonstrate that localizating opti-

cal absorbers (small microbeads) flowing through a microfluidic sample permits recon-
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structing the sub-diffraction structure of the object in 2D cross-sectional imaging. In

our demonstration, PA localization makes use of a low concentration of sources which

permits distinguishing signals from different absorbers at any particular moment. At

any time the distribution of absorbers inside the imaged structure is different, so with

multiple PA acquisitions signals from all parts of the object can be obtained. By con-

structing a histogram of the positions localized on many PA images, we can build the

eventual super-resolved image of the whole object.

Although we performed localization-based imaging of samples with different inter-

channel distances (Lcc = 180 µm, 125 µm, 75 µm), here we provide the results for

the smallest interchannel separation Lcc = 75 µm as the finest structure that could be

manufactured using the adopted microfluidic technology (see section 2.6).

3.2 From photoacoustic RF signals to localization images

3.2.1 Localization in the RF-space vs localization in the BF-space

Localization-based imaging relies on the possibility to determine the coordinates of an

isolated source with a precision much better than the size of its PSF. We shall now

propose two methods to localize PA sources under the assumption that there is only one

source in the imaging zone at the moment of the PA acquisition.

As stated in section 1.3.4.2, the data available at the output of the acquisition ma-

chine is a radio-frequency (RF) frame, containing the signals acquired by all transducer

elements. The detected PA response results in a curved space-time trajectory on this

frame, determined by the arrival times of the PA signal on different transducer elements.

The coordinates of the source can then be found by using this curve. Alternatively, the

RF frame can be beamformed to obtain the PSF in the beamforming space (object space,

or BF-space) XZ. In this case, the coordinates of the source can be determined based

on this PSF.

Fig. 3.3 illustrates localization of a single source in the RF- and the BF-space. To

localize the source in the RF-space, the theoretical model based on time delays is fitted

to the experimental trajectory, derived from measuring time delays. The experimental

curve is built by looking for the maxima of the signals received by each transducer el-

ement. For each column k, (k = 1..Nel) of the RF frame, the position of the detected

maximum is associated with the arrival time tk corresponding to the transducer element

placed at {xk, zk}. Here, we consider a linear transducer array, for which all Nel ele-

ments are arranged in a single row and zk = 0, k = 1..Nel. Outliers on the experimental

curve tk(xk), that may appear due to the presence of noise, are excluded using a three

point median filter. Then, the source coordinates {xs, zs} are established with the least

squares 2nd order polynomial fitting based on the theoretical model predicted by time
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delay laws:

(tk(xk) + t0)
2 =

1

v2s
[(xk − xs)2 + (zk − zs)2]. (3.1)

As stated above, we impose zk = 0 in Eq. (3.1).

To apply model (3.1) we suppose vs = 1500 m/s for the speed of sound in water

and we take the value of t0 that provides the maximal intensity on the conventional

reconstruction image for one microbead.

It follows from Eq. (3.1) that yk = (tk(xk)+ t0)
2v2s is a 2nd order polynomial of xk:

yk = p1x
2
k + p2xk + p3, where the coefficients p1, p2, p3 depend on the source position

{xs, zs}. We measure the coefficients p1, p2, p3 by fitting the experimental curve yk(xk)

to the theoretical one predicted by model (3.1). Then, the source coordinates {xs, zs}
are estimated as xs = −0.5p2, zs =

√
p3 − x2s.

To localize the source in the BF-space, the maximum of the beamforming PSF is

identified. Then, the position of this maximum is refined by applying the 2nd order

polynomial fitting to a number of neighbouring points on the beamforming grid. The

source coordinates {xs, zs} are then associated with the refined position of the maxi-

mum.

Fig. 3.3 (a) Localization in the RF space (t0 = 9.67 µs). The coordinates of the source
are determined by fitting the theoretical curve (yellow) to the experimental one (red
crosses). (b) Localization in the BF-space. The coordinates of the source are associated
with the maximum of the PSF (the black cross).

To determine whether localization is more precise in the BF-space or RF-space, we

carried out numerical simulations. In simulations, the same source was localized many

times at different levels of the signal to noise ratio (SNR). The SNR was defined in the

RF-space as the ratio between the maximum of the modelled RF signal from the source

and the standard deviation of the added gaussian noise.

Fig. 3.4 shows the standard deviation for localization in the lateral X and the axial

Z directions computed for different SNR. It can be clearly seen that for a small SNR
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detecting the maximum in the BF-space provides a better precision than fitting the curve

in the RF-space. The reason is that beamforming increases the SNR thanks to coherent

summation of signals and incoherent summation of noise. So, the single maximum in

the beamformed image can be detected more precisely than the Nel maxima on the RF

frame. For a large SNR localization can provide an acceptable precision (significantly

below the full width at half maximum (FWHM) of the PSF) whichever approach is

used.

Fig. 3.4 Standard deviation of localized positions in the lateral (a) and axial (b) di-
rections, estimated for different SNR in the BF-space (red dots) and the RF-space (blue
dots). The dashed line denotes the PSF FWHM in the lateral (a) and axial (b) directions.
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3.2.2 Choice of the localization method in the BF-space

As follows from Fig. 3.4, the localization error increases significantly for low values of

the SNR. To improve the detection precision when the SNR is small, the matched filter

approach can be used. The principle of this approach is illustrated in Fig. 3.5. While

the initial beamformed image appears noisy, correlation with the PSF lifts up microbead

signals that are different from those produced by electronic noise. The 2D correlation

image XC is obtained with the following equation:

XC(n, l) =

∑N
i=1

∑M
j=1XBF (i, j) ·Xref (i− n, j − l)∑N

i=1

∑M
j=1X

2
ref (i, j)

, (3.2)

where XBF is the beamformed image and Xref is the reference PSF.

Fig. 3.5 Matched filter approach for denoising. Correlation of the initial beamformed
image (a) with the known PSF (b) improves the apparent SNR (c). The black cross in
(c) shows the position of the detected maximum.

To study the effect of the matched filtered approach on the localization error, we

carried out numerical simulations. As follows from Fig. 3.6 the matched filter approach

indeed leads to a certain improvement in the localization precision.

3.2.3 Expected localization precision

The experimental SNR calculated for a single microbead was SNR≈1. As follows from

our simulations (Fig. 3.6), when microbeads are localized in the BF-space, the expected

uncertainty in the lateral direction is σx = 5.6 µm and σx = 10.5 µm with and without

the matched filter correspondingly.
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Fig. 3.6 Localization precision in the lateral (a) and axial (b) directions, estimated for
different SNR in the BF-space with (green dots) and without (red dots) the matched
filter method. The dashed line denotes the PSF FWHM in the lateral (a) and axial (b)
directions.

3.3 Experimental demonstration

3.3.1 Samples

3.3.1.1 Microfluidic circuits

The sample to image consists of five identical parallel microfluidic channels with a rect-

angular cross-section (Fig. 3.7). To perform cross-sectional imaging, the microchannels

are placed perpendicularly to the imaging plane XZ of a linear transducer array (type

L22-8, see Chapter 2) at the US probe elevational focus distance zf = 15 mm. In this

plane, each channel is hch = 50 µm high and wch = 20 µm wide, the center-to-center

distance between neighbouring channels being Lcc = 75 µm. For more details on fabri-

cation of the microfluidic sample the reader is referred to Chapter 2.

Fig. 3.8 shows a schematic view of the imaged cross-section and the result of stan-

dard PA imaging of the channels filled with absorbing liquid. Importantly, Fig. 3.8b

confirms that the resolution of conventional PA imaging is too coarse to recover the

structure of the circuit.
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Fig. 3.7 A microfluidic sample consisting of five parallel microchannels is placed per-
pendicularly to the imaging plane XZ of the linear transducer array at the US probe
elevation focus distance zf = 15 mm. In this plane, each channel is hch = 50 µm high
and wch = 20 µm wide, the center-to-center distance between neighbouring channels
being Lcc = 75 µm.

Fig. 3.8 A schematic view of the imaged cross-sections (a) and the standard PA recon-
struction image (b).

3.3.1.2 Absorbers

The super-resolved image was obtained by localizing Da = 10 µm diameter spherical

microbeads flowing through the microfluidic sample. The concentration of microbeads
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in the circuit was set such that there was statistically < N > = 1 microbead in the

imaging plane at each laser shot. The average number of microbeads in the imaging

plane is given by < N >= ηV/V0, with η being the volume fraction of microbeads in

the suspension, V the volume of the intersection between the sample and the imaging

zone, V0 the volume of a single microbead. The volume of the imaged part of the object

is V = wch×hch×∆Y ×Nchannels, where wch is the channel width, hch is the channel

height, ∆Y ≈ 1 mm is the size of the elevational focus of the US probe (see section

2.5). So, to get < N > = 1 microbead in the imaging plane the volume fraction of

microbeads in the suspension was set to be η = 6× 10−5.

The suspension of microbeads was prepared according to the following recipe: 0.1%

of the initial 5% w/v microbeads water suspension (Microparticles GmbH, Berlin, Ger-

many), 0.025% of a buffer solution (TWEEN20, Sigma-Aldrich Corp., St. Louis, MO,

USA), 19.6% of a density gradient medium (OptiPrep, ProteoGenix SAS, Schiltigheim,

France), and 80.3% of water. The buffer solution was used to avoid microbeads sticking

to each other whereas the density gradient medium was added to prevent microbeads

from precipitating and getting stuck inside the pump system.

3.3.2 Measurement protocol

A schematic of the experimental setup is shown in Fig. 2.1. The suspension of mi-

crobeads was flown through the microfluidic circuit by use of a syringe pump providing

a constant volumetric flow rate, corresponding to about 10 cm/s in the microchannels to

image. At each laser shot (λlaser = 532 nm, PRR = 100 Hz), PA signals from the mi-

crobeads in the imaging plane were recorded by a linear transducer array (type L22-8).

For further details about the acquisition equipment the reader is referred to Chapter 2.

In total, 20,000 PA frames were acquired, resulting in a total experiment time of Texp =

3 min.

The experimental SNR calculated as the ratio between the maximum of the single-

exposure RF signal corresponding to one microbead and the standard deviation of elec-

tronic noise calculated over a signal-free region of the RF data was SNR≈1. Among

the many factors contributing to this value of the SNR, the most significant are the laser

fluence, the absorption spectrum of the bead, and the sensitivity of the transducer array.

These parameters affect the amplitude of PA signals while the noise is dictated by the

acquisition electronics only. The relatively low laser fluence 3mJ/cm2 was chosen as

a realistic value for clinical applications. Although according to the safety norms [NE,

2000] for λlaser = 532 nm and τp = 5 ns the maximal fluence at the skin surface is 20

mJ/cm2, the real intensity at the imaging depth will be smaller due to blood absorp-
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tion. In practice, the SNR could be potentially increased by using sources with a more

significant absorption at the laser wavelength λlaser.

In addition to the localization experiment, we obtained the PSF of the imaging sys-

tem. This PSF was necessary to localize microbeads with the matched filter approach.

To do so, a sample with only one microfluidic channel was perfused with the suspension

of microbeads at a very slow flow rate. When a microbead appeared in the channel, the

corresponding PA signal was acquired and used to obtain the beamforming PSF. The

measured PSF FWHM was about ∆X = 178 µm and ∆Z = 137 µm.

To perform localization-based reconstruction we first had to identify microbead sig-

natures in the acquired PA data. This was done separately by using beamformed im-

ages and correlation images (matched-filter approach). In the beamforming operation,

we assumed a homogeneous speed of sound vs = 1500 m/s, neglecting the thin (180

µm-thick) polydimethylsiloxane (PDMS) layer covering the channels (see section 2.6).

The beamforming grid step was 10 µm. To be distinguishable in a diffraction-limited

image, sources at the same depth must be separated by at least the lateral FWHM of

the PSF (∆X = 178 µm). As the microfluidic channels were separated by Lcc = 75

µm, in each image at most two beads could be detected. So, potential microbead traces

were identified by looking for the 1st and the 2nd order maxima in each image. When

the 1st order maximum was identified, all surrounding pixels with amplitude greater

than 50% the amplitude of the detected maximum were cut out from the image. The

second order maximum was then localized. The detected position of each maximum

was then refined. To do so, we applied 2nd order polynomial fitting to points adjacent

to the localized maximum on the coarse beamforming grid. Afterwards, to discard false

detection events resulting from noise and images with no microbeads, all detected max-

ima below an empirically determined threshold were discarded. Finally, the localization

image was built as a probability map by computing and smoothing a 2D histogram of

the detected maxima positions. The histogram was constructed on a grid with a bin size

of dx × dz = 5 µm x 5 µm. Then, the histogram was smoothed out by a 2D gaussian

filter with the kernel size σg = 10 µm to compensate for the spatial heterogeneity of the

localization events.

3.3.3 Typical RF signals from a single bead

Fig. 3.9 illustrates typical PA signals for a single microbead. As seen from Fig. 3.9a,b

the microbead signals are completely masked by noise. This falls in line with the low

value of the experimental SNR≈1. However, beamforming makes the microbead visi-

ble (Fig. 3.9c,d) as it increases the effective SNR due to coherent summation of signals
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Fig. 3.9 Typical PA signals of one microbead. (a) RF frame. (b) Signal on the 64th
transducer element (dashed line in (a)). (c) Bipolar PSF. (d) Envelope PSF.

and incoherent summation of noise in the RF frame.

3.4 Results

The experimental results are summarized in Fig. 3.10. As shown in Fig. 3.10a, after

standard beamforming reconstruction the five microchannels appear indistinguishable.

In contrast to the conventional reconstruction, the localization approach provides super-

resolved images with five well separated regions (Fig. 3.10b-g). These localization

images were obtained using the initial set of 20,000 beamformed images. The number

of detected microbeads was 695 and 693 for localization applied to the beamformed

images and correlation images correspondingly. The five cross-sections corresponding

to 100 pixels on the 10 µm beamforming grid, on average about 7 localization events

per pixel were detected. As follows from Fig. 3.10h, both source detection methods (on

beamforming and correlation images) provide a very similar resolution improvement

with the average channel-to-channel distance, estimated from the peaks centers, being

close to its true value of 75 µm. Estimating the channel width from the FWHM on the

localization images provides values ranging from 18 to 25 µm, close to the expected

value of wch = 20 µm.
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Fig. 3.10 Experimental results, SNR≈1. (a) Conventional cross-sectional PA image of
the five channels. (b,c) Raw histograms resulting from localization on: (b) - beam-
formed images, (c) - correlation images. (d,e) Images obtained by spatially smoothing
the raw histograms (b-c) with a σg = 10 µm 2D gaussian filter. (f) Transverse profiles
at z = 14.55 mm, corresponding to images: (a) - blue, (d) - red, (e) - green.

To test whether the matched filter approach can improve the localization quality

when the SNR is even smaller than the experimental value of 1, we artificially reduce

the initial SNR by a factor 2.5 by adding gaussian noise to the acquired RF data. The

reconstruction images are shown in Fig. 3.11. To obtain an acceptable reconstruction,

we had to increase the threshold for each source detection method. As a result, the

number of detected microbeads dropped to 318 for localization on beamformed images

and correlation images. While the number of localization events is the same for both

methods, identifying sources on beamformed images results into reconstruction of a

significantly lower quality compared to the matched filter approach.
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Fig. 3.11 Reconstruction results with added noise, SNR≈0.4. (a) Conventional cross-
sectional PA image of the five channels. (b,c) Raw histograms resulting from localiza-
tion on: (b) - beamformed images, (c) - correlation images. (d,e) Images obtained by
spatially smoothing the raw histograms (b-c) with a σg = 10 µm 2D gaussian filter. (f)
Transverse profiles at z = 14.55 mm, corresponding to images: (a) - blue, (d) - red, (e)
- green.

3.5 Conclusion

The inability to reconstruct the object with standard beamforming complies with the

diffraction theory as, by construction, the center-to-center distance between neighbour-

ing channels (Lcc = 75 µm) is well below the classical resolution limit defined by the

lateral FWHM of the PSF which was estimated to be ∆X = 178 µm.

As expected, the localization approach provides a super-resolved image of the ob-

ject. Not only the center-to-center distance is correctly reproduced but also the chan-

nel width. In fact, the presence of noise leads to overestimation of the channel width

(σx = 5.6 µm and σx = 10.5 µm for localization on beamforming and correlation im-
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ages correspondingly, see section 3.2.3). Then, using the gaussian filter with the kernel

size of σg = 10 µm increases the channel width further. However, the finite microbeads

diameter (Da = 10 µm) leads to a distribution of particles positions which is 10 µm

narrower than the channel width (wch = 20 µm). In addition, the apparent channel width

is also related to the flow structure that dictates the probability of detecting a microbead

at a given position. So, the observed good quantitative agreement might well be a matter

of coincidence.

As concerns localization on beamformed and correlation images, the two techniques

showed very similar performance for the initial dataset because the initial SNR was rel-

atively high. However, when the SNR was reduced by adding noise to the initial data,

the matched filter approach outperformed localization on beamformed images. The

reason is that the matched filter permits detecting microbeads by enhancing the image

features that result from microbead signatures (i.e. PSFs) rather than from electronic

noise of the system. When the SNR is small, relevant signals have the same amplitude

as noise and the matched filter permits distinguishing them.

In our experiment, the total acquisition time required to reconstruct the 5 channels

was about 3 minutes. This indicates that PA localization imaging, like US localization

imaging [Couture et al., 2018; Hingot et al., 2019], suffers from a low temporal resolu-

tion. A long imaging time in PA and US super-localization results from the requirement

for a low concentration of localization sources and a high number of localization events

required to reconstruct the imaged structure. Increasing the concentration may reduce

the imaging time, but separating different sources on each acquired image will be more

challenging. A classical approach consists in detecting sources by identifying them on

beamformed images [Viessmann et al., 2013; OReilly and Hynynen, 2013; Siepmann

et al., 2011] or RF frames [Desailly et al., 2013]. As has been demonstrated here,

when the SNR is small, the matched filter can be efficiently used to distinguish rele-

vant signals from noise. However, to be separable from one another the sources must

be by more than a PSF apart since RF data and beamformed images are diffraction-

limited. In the case of higher concentrations, sources are closer and single images are

to be super-resolved. Such super-resolved images can be obtained, for example, through

sparsity-based reconstruction [Shu et al., 2018]. Additionally, a recent study [van Sloun

et al., 2018] showed that the deep learning framework can be employed to improve US

localization at high microbubble concentrations.

Regarding the number of localization events, in biomedical imaging each blood

vessel requires several localization events to be reconstructed, the number of localiza-

tion events increasing with the amount of super-resolved pixels that the vessel encom-
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passes [Couture et al., 2018; Hingot et al., 2019]. It is to be noted that due to a viscous

movement, the probability of a localization event is distributed non-uniformly across

the vessel, so longer acquisition time is needed to collect enough data to reconstruct

the vessel at its borders than to reconstruct the vessel central part. For example, in our

experiment, the centers of the microfluidic channels became distinguishable after pro-

cessing 1/3 of the acquired images. While it can be viewed as an obstacle to localization

imaging, the non-uniform probability of localization events carries some additional in-

formation. In this regard, it has been pointed out that localization statistics can be used

to infer information about the flow, including the flow profile and the flow rate [Hingot

et al., 2019].

In this chapter, we showed that localization of flowing optical absorbers can lead to

super-resolution in PA imaging. Although here the demonstration of super-resolution

was limited by the smallest features that could be fabricated using the adopted technol-

ogy (channels of wch = 20 µm separated by Lcc = 75 µm), much closer objects can in

principle be resolved in super-localization. It should be noted, however, that absorbers

must physically be able to circulate in the imaged structure.

It is to be noted that in parallel to our work, another group turned out to be also ex-

ploring the localization approach in PA imaging [Dean-Ben and Razansky, 2018]. By

obtaining a super-resolved image of a 220 µm diameter pipette tip, it was shown that

PA super-localization can be performed in three dimensions. Here, by using more elab-

orate samples we managed to demonstrate that smaller features (Lcc = 75 µm) can be

resolved in cross-sectional imaging. As follows from both studies, localization-based

imaging is in principle independent of the acquisition geometry and the discussion con-

ducted in this chapter would also be relevant for 3D super-localization imaging.

Finally, the results of our work [Vilov et al., 2017] and those of Razanski et al. [Dean-

Ben and Razansky, 2018] formed the basis for the first in vivo study based on PA super-

localization [Zhang et al., 2019]. In particular, 3D super-resolved images of the cor-

tical layer of the mouse brain were obtained. As contrast agents, biocompatible dyed

droplets were used. It was shown that blood vessels separated down to 25 µm can

be reconstructed in super-localization, with the conventional resolution limit being 150

µm.

47



CHAPTER 4

Super-resolution photoacoustic imaging based on flow-induced
fluctuations

4.1 Principle of fluctuation-based super-resolution imaging

4.1.1 Super-resolution optical fluctuation imaging (SOFI)

Fluctuation-based super-resolution photoacoustic (PA) imaging, described in this Chap-

ter, is inspired by the principles of super-resolution optical fluctuation imaging (SOFI)

[Dertinger et al., 2009]. The SOFI approach is based on independent stochastic fluctu-

ations of fluorescence molecules. In SOFI, a series of N diffraction-limited images is

first acquired in traditional camera-based fluorescence microscopy, the pixel size in each

image being smaller than the conventional resolution. The n-th order super-resolved im-

age is then obtained as the n-th order cumulant of the original pixel time series. The

n-th order cumulant involves convolution between the object structure and only the n-th

order point spread function (PSF), other orders of the PSF do not interfere. As the n-th

order PSF is narrower than the 1st order PSF, the nth order cumulant provides a
√
n

resolution increase. For n¿1 the n-th order cumulant Cn(−→r ) is calculated recursively

using the previous order cumulants and moments µm(−→r ) = 1/N
∑N

k=1 [Ak(
−→r )]

m:

Cn(−→r ) = µn(−→r )−
n−1∑
k=1

(
n− 1

k − 1

)
Ck(
−→r )µn−k(

−→r ), (4.1)

whereAk(−→r ) is a diffraction-limited image obtained at acquisition k. Note thatC1(
−→r ) =

µ1(
−→r ) is the mean image, and C2(

−→r ) is the variance image.

Fig. 4.1a,c shows the standard reconstruction and the second-order SOFI images of

the α-tubulin network of a 3T3 fibroblast cell obtained in the first demonstration of this

approach [Dertinger et al., 2009]. In addition to the resolution improvement, a certain

background suppression is noticeable in the SOFI image. The reason is that the SOFI

algorithm intrinsically removes uncorrelated background. The results of deconvolution

applied to the standard reconstruction image and the corresponding second order SOFI
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image are shown in Fig. 4.1b,d. As can be seen, the standard reconstruction image

is deconvolved well, and the quality of the deconvolved image is comparable with the

second-order SOFI image. However, deconvolution of the second-order SOFI image

provides a better reconstruction compared to deconvolution of the mean image.

Fig. 4.1 SOFI images of cells. Wide-field image of QD625 labeled 3T3 cells [Dertinger
et al., 2009]. (a) Original image generated by time averaging all frames of the acquired
movie (3,000 frames, 100ms per frame). (b) The image in (a) deconvolved. (c) Second-
order SOFI image. (d) The image in (c) deconvolved. (e–h) Magnified views of the
boxed regions in (a)–(d). (Scale bars: (a)–(d), 2 µm; (e)–(h), 500 nm.)

4.1.2 Fluctuation-based photoacoustic imaging

Let us consider acoustic-resolution PA imaging with short pulse illumination, PA sig-

nals experiencing pulse-to-pulse fluctuations. Assuming that the PSF does not change

within the imaging zone, one can consider the result of standard PA reconstruction as

the convolution between the acoustic PSF h(−→r ) and the distribution of absorbed opti-

cal energy Ek(−→r ) = Ik(
−→r ) × αk(−→r ), where Ik(−→r ) is the light intensity distribution

and αk(−→r ) is the distribution of optical absorption at laser shot k. As in optics, the PA

resolution is limited by the size of the acoustic PSF. To achieve sub-diffractional resolu-

tion via a SOFI-like approach, one needs PA sources that would fluctuate stochastically

and independently. A first approach consisted in creating intensity fluctuations Ik(−→r )

by illuminating the imaged object with a different optical speckle pattern at each laser

shot k [Chaigne et al., 2016]. In that study, the 2nd order cumulant (variance) image

was calculated and a resolution improvement of about
√

2 was reported. It should be

mentioned that the variance PA image is the sum of the signal variance and the noise
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variance. A major disadvantage of using optical speckle illuminations is that in deep

tissues the variance signal originating from speckle fluctuations can be too weak to

distinguish from the noise fluctuations (see section 1.4).

4.1.3 The proposed approach based on flow-induced fluctuations

In this chapter, we experimentally demonstrate a new super-resolution technique using

fluctuations originating from moving optical absorbers rather than from optical speck-

les. Importantly, in our experiments red blood cells (RBCs) play the role of moving

absorbers since fluctuations of RBCs are intrinsic to flows in blood vessels. Exploiting

these fluctuations would therefore eliminate the need for contrast agents or additional

imaging equipment in clinical setting. In the case of absorbers flowing in a static struc-

ture, the distribution of optical absorption can be expressed as

αk(
−→r ) = µ0[f(−→r )× gk(−→r )], (4.2)

where µ0 is the optical absorption of the material of absorbers, gk(−→r ) is the sum of

delta functions at every point source at laser shot k, and f(−→r ) is the object structure

such that f(−→r ) = 1 inside the imaged object and f(−→r ) = 0 outside. PA reconstruction

image Ak corresponding to laser shot k can thus be written as:

Ak(
−→r ) = I(−→r )[αk(

−→r ) ∗ h(−→r )], (4.3)

where h(−→r ) is the bipolar PSF in the beamforming space. As our approach is based

on flow fluctuations rather that light intensity fluctuations, we shall use homogeneous

illumination: I(−→r ) = I0.

By averaging over M PA images, one obtains

< Ak(
−→r ) >∼< αk(

−→r ) ∗ h(−→r ) >
M→∞−−−−→ µ0η[f(−→r ) ∗ h(−→r )], (4.4)

where η =< gk(
−→r ) >k,−→r is the volume fraction of absorbers that are on average

homogeneously distributed in the sample.

To investigate the potential of the SOFI approach in PA fluctuation-based imaging,

numerical simulations were first carried out by Thomas Chaigne, in the context of the

collaboration between our group and Pr. Ori Katz’s group. In these FDTD-based 2D

simulations, we modelled PA signals generated by optical absorbers distributed ran-

domly inside a flat branching structure mimicking a vascular network. An example of

a single random distribution of absorbers gk(−→r ) inside the branching structure f(−→r )

is provided in Fig. 4.2a. Some simulation results are illustrated in Fig. 4.2b-g. In

particular, Fig. 4.2c shows the mean image that is an estimate of f(−→r ) ∗ h(−→r ) and

corresponds to conventional PA imaging. It can be clearly seen that the resolution pro-
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vided by conventional imaging is too poor to resolve the branching structure. Fig. 4.2d-f

shows the 2nd-, 3rd- and 5th-order cumulant images calculated for N = 50,000 simu-

lated distributions of absorbers. In each image the inset displays the absolute value of

the corresponding nth-power PSF |hn(−→r )|.
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Fig. 4.2 Numerical results obtained for a vessel-like phantom. (a) Branching structure
(white) with small round shape absorbers (orange). The yellow lines indicate the di-
rections of the cross-sections in (b) and (g). (b) Cross-sections along the horizontal
yellow line in (a): dashed gray: target structure, red: variance, blue: 5th-order cu-
mulant, black: transverse cross-section of the main lobe of the PSF (inset in (c)). (c)
Absolute value of the mean PA image. Scale bar: 100 µm. Inset: absolute value of the
PSF, |h(−→r )|. (d) Variance image. Inset: |h2(−→r )|. (e) Absolute value of the 3rd-order
cumulant. Inset: |h3(−→r )|. (f) Absolute value of the 5th-order cumulant. Inset: |h5(−→r )|.
(g) Cross-sections along the oblique yellow line in (a): dashed gray: target structure,
red: variance, blue: 5th-order cumulant.

The results shown in Fig. 4.2d-f confirm the ability of high-order fluctuation pro-

cessing to enhance the resolution. The resolution increases with the order of the cu-

mulant : while it is impossible to distinguish individual vessels in the variance image

(Fig. 4.2d), the 5th-order cumulant (Fig. 4.2f) successfully resolves most of the branch-

ing structure. Fig. 4.2b,g provides a comparison of resolution given by different cumu-

lant orders. As a quantitative measure of the resolution improvement, we computed the

full width at half maximum (FWHM) of an isolated thin vessel cross-section (Fig. 4.2b)
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for different cumulant orders and compared it with the transverse FWHM of the 1st-

order PSF (inset in Fig. 4.2c). The resulting transverse FWHM were found to be ∆X

= 49 µm for the 1st-order PSF, ∆X = 36.5 µm for the variance image and ∆X = 21

µm for the 5th-order cumulant. This narrowing of the FWHM falls in line with the

theoretically expected
√
n resolution improvement [Dertinger et al., 2009].

To experimentally validate the proposed approach, we conduct two proof-of-principle

experiments. In the first experiment, we seek to obtain a super-resolved cross-sectional

image of five parallel microfluidic channels by using fluctuations of microbeads passing

through the channels. In the second experiment, we perform super-resolution imaging

of the same structure by using fluctuations of a blood flow passing through the chan-

nels. To perform SOFI-based reconstruction, we compute not only the variance image,

as Chaigne et al. did with speckle illuminations [Chaigne et al., 2016], but also cumu-

lant images of higher orders.

4.2 Materials and methods

4.2.1 Samples

In both experiments we used identical microfluidic samples consisting of five parallel

microchannels with a rectangular cross-section (Fig. 4.3). To perform cross-sectional

imaging, the microchannels were placed perpendicularly to the imaging plane XZ of a

linear transducer array (type L22-8, see Chapter 2) at the ultrasound (US) probe eleva-

tional focus distance zf = 15 mm. In this plane, each channel was hch = 50 µm high and

wch = 40 µm wide, the center-to-center distance between neighbouring channels being

Lcc = 180 µm. For more details on fabrication of the microfluidic sample the reader is

referred to Chapter 2.

In the first experiment, a water suspension of 10 µm diameter absorbing beads was

used. The particle concentration in the suspension was set at ∼ 104 particles per mm3

(6.3% volume fraction) corresponding to about 15 particles per channel (within the 1

mm thick imaging plane defined by the elevation focus of the US transducer). This rel-

atively low particle concentration was chosen in order to avoid microbeads clogging the

microfluidic circuit. The suspension of microbeads was prepared according to the fol-

lowing recipe: 12.5% of the initial 5% microbeads water suspension (Microparticles

GmbH, Berlin, Germany), 0.025% of a buffer solution (TWEEN20, Sigma-Aldrich

Corp., St. Louis, MO, USA), 19.6% of a density gradient medium (OptiPrep, Pro-

teoGenix SAS, Schiltigheim, France), and 67.9% of water. The buffer solution was

used to avoid microbeads sticking to each other whereas the density gradient medium

was added to prevent microbeads from precipitating and getting stuck inside the pump

system.
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Fig. 4.3 The microfluidic sample consisting of five parallel microchannels is placed
perpendicularly to the imaging plane XZ of the linear transducer array at the US probe
elevation focus distance zf = 15 mm. In this plane, each channel is hch = 50 µm high
and wch = 40 µm wide, the center-to-center distance between neighbouring channels
being Lcc = 180 µm.

In the second experiment, the microbeads suspension was replaced with whole

blood flowing through the channels.

4.2.2 Measurement protocol

The experimental setup is shown in Fig. 2.1. A liquid with moving absorbers (mi-

crobeads/RBCs) was flown into the microchannels by a syringe pump providing a con-

stant volumetric flow rate, corresponding to about 2.5 cm/s in the channels to image.

At each laser shot (λlaser = 532 nm, PRR=100 Hz), the PA signals emitted by the ab-

sorbers passing through the imaging plane were recorded by a linear transducer array

(type L22-8). For further information about the acquisition equipment the reader is re-

ferred to Chapter 2. In the first experiment,N = 20,000 PA acquisitions were performed

resulting in the total experiment time of Texp = 3.3 min. In the second experiment, N =

75,000 PA acquisitions were done resulting in the total experiment time of Texp = 12.5

min.

4.2.3 Signal processing

First, the horizontal (arriving at the same time on all transducer elements) laser noise

on each acquired RF frames was removed by subtracting the mean value over each

53



line of the frame (see section 2.2). Afterwards, complex-value beamforming images

were obtained by applying standard delay-and-sum beamforming to the RF data (see

Appendix 1 for the beamforming algorithm). In this beamforming operation, we as-

sumed a homogeneous speed of sound vs = 1500 m/s, neglecting the thin (180 µm-

thick) polydimethylsiloxane (PDMS) layer covering the channels (see section 2.6). To

perform statistical analysis, we removed correlated images: to do it, we determined the

fluctuation decorrelation rate by computing correlation between the real components

of successive beamforming images after removing from each reconstruction pixel its

mean value. As a result, every 5th image was chosen for further processing in both

experiments, reducing the effective laser PRR from 100 Hz to 20 Hz.

4.2.3.1 SVD analysis to separate sources of fluctuations

Although the laser noise had been removed, the obtained beamformed images were still

contaminated by electronic noise of the acquisition system. To separate fluctuations of

absorbers from this electronic noise, we used spatiotemporal filtering through singu-

lar value decomposition (SVD). In brief, SVD decomposes the initial data into a basis

of spatiotemporal singular vectors. By choosing carefully the singular vectors corre-

sponding to relevant fluctuations, one can discard signals with different spatiotemporal

behaviour such as tissue clutter, electronic noise, etc. Specifically, in our experiments

all singular vectors with indices i > 12 were attributed to electronic noise of the acqui-

sition system. In addition, the first two singular vectors were found to encode a strong

mean signal, probably due to the imperfect laser jitter correction. So, only the singular

vectors with indices i = 3...11 were kept for the subsequent processing. More details on

the SVD approach can be found in Appendix 3.

4.2.3.2 Cumulants for complex-valued signals

In PA and US imaging, the finite bandwidth of the US probe leads to axial oscillations

in the reconstruction image. These oscillations are not related to the imaged object

and therefore should be removed to avoid being recognized as real structure patterns.

In conventional PA and US imaging, such oscillations are eliminated by computing

the envelope of the complex analytical signal, i.e. the magnitude of complex-value

images, obtained with Hilbert transform (see Appendix A). To retrieve similar envelope-

or magnitude-related information as a result of SOFI processing, one can not simply

apply Hilbert transform to cumulant images obtained for non-complex RF data, since

cumulant images are non-linearly related to the initial RF data. For example, cumulants

of even orders are, by definition, non-negative.

To eliminate PSF-related oscillation artifacts in cumulant images, we developed

an analytical signal processing framework by generalizing real-value moments and
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cumulants to complex random variables [Eriksson et al., 2010]. The proposed anal-

ysis is based on complex-value PA images obtained by beamforming complex RF

data with the real part composed of the acquired RF data and the imaginary part ob-

tained by applying columnwise Hilbert transform to the acquired RF data. Following

Eriksson et al. [Eriksson et al., 2010] we define the nth order complex moment as:

mp,q(
−→r ) = 1/N

∑N
k=1 [Ak(

−→r )]p.[Ak(
−→r )∗]

q where q = n − p. Then, complex cumu-

lants of order n = p + q, Kp,q, are linked to complex moments mp,q in the following

way (derived from Eriksson et al. [Eriksson et al., 2010]):

For q > 0 :

Kp,q(
−→r ) = mp,q(

−→r )−
p∑

u=1

q−1∑
v=1

(
p

u

)(
q − 1

v

)
Kp−u,q−v(

−→r )mu,v(
−→r ) (4.5)

−
q−1∑
v=1

(
q − 1

v

)
Kp,q−v(

−→r )m0,v(
−→r )−

p∑
u=1

(
p

u

)
Kp−u,q(

−→r )mu,0(
−→r );

For q = 0 :

Kp,0(
−→r ) = mp,0(

−→r )−
p−1∑
u=1

(
p− 1

u− 1

)
Ku,0(

−→r )mp−u,0(
−→r ). (4.6)

There are n+1 complex cumulants for a given order n = p+q. In addition,Kp,q = K∗q,p.

Thanks to additivity and homogeneity of complex cumulants [Eriksson et al., 2010],

the nth order complex cumulant involves convolution with h(r)ph(r)q∗, i.e. with the

complex PSF of the nth-order only. In particular, for even orders n and p = q,

|Kp,q(
−→r )|, involves convolution with |h(−→r )|2p = |h(−→r )|n which is the real nth-order

PSF, so the cumulant images obtained for even orders are the closest to the object. For

both even and odd orders, we observed that the more p differs from q, the coarser the

resulting cumulant image.

4.3 Results

4.3.1 Bead samples

In the first experiment, we seek to obtain super-resolution via SOFI imaging based on

PA signal fluctuations induced by a flow of absorbing microbeads in the microfluidic

channels.

Fig. 4.4 shows typical signals from one PA acquisition in the microbeads experi-

ment. It can be noticed that on the RF frame apart from the relevant signal from the

microbeads passing through the imaging plane (the curve with the maximum at {t ≈ 12

µs, N ≈ 64}) there are signals from other sources, including a signal from the sample
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surface (horizontal line at t ≈11.75 µs) and some horizontal laser noise (at t ≈11.75

µs) which has not been completely removed by subtracting the average value across

each line of the RF frame.

Fig. 4.4 Typical PA signals from one PA acquisition in the microbeads experiment. (a)
RF frame. (b) Signal on the 64th transducer element (dashed line in (a)).

In our experiments, reconstruction was based on the set of images obtained by ap-

plying SVD filtering to the whole series of the initial beamforming images. Fig. 4.5

shows a typical beamforming image resulting from a single PA acquisition (a,b) and

the corresponding filtered image after applying SVD processing (c,d). First, no image

displays the correct structure. Then, it can be clearly seen that SVD filtering makes

relevant fluctuations more visible by removing the noise as well as the parasite source

seen in the top left corner of the reconstruction images shown in Fig. 4.5a,b.

Fig. 4.5 Typical beamforming image resulting from a single PA acquisition (a,b) and
the corresponding filtered image after applying SVD processing (c,d) in the microbeads
experiment. (a,c) Reconstruction image corresponding only to the real part of the RF
data. (b,d,) Envelope reconstruction image.

Reconstruction results obtained in the microbeads experiment are summarized in
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Fig. 4.6. As can be observed, the microfluidic channels are indistinguishable in the

mean image (Fig. 4.6c) while they are resolved by cumulants starting from the 2nd

order (Fig. 4.6d-g,i-l).
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Fig. 4.6 Experimental results obtained by calculating real value cumulants with Eq.
(4.1). (a) Top-view photograph of the microfluidic circuit demonstrates 5 parallel chan-
nels crossing the XZ imaging plane (dashed orange line). Scale bar: 250 m. (b)
Schematic of the imaged channels cross-section with relevant dimensions. (c) Absolute
value of the mean PA image, which represents the result of conventional PA imaging.
Scale bar: 250 m. (d) Variance image (2nd-order cumulant). (e) Absolute value of
the 3rd-order cumulant. (f) 6th-order cumulant. (g) One-dimensional profiles across
the channels (orange dashed line in (c)) for the mean (black), variance (red), 3rd-order
(green) and 6th-order (blue) cumulant images. (h) Pulse-echo US image of the 5 chan-
nels filled with air illustrates the inability to resolve the structure with conventional
imaging. (i-k) nth-root of the nth-order cumulant: n = 2 (i), n = 3 (j) and n = 6 (k)
computed to provide images with comparable intensity. (l) One-dimensional profiles
across the channels for the nth-root of the nth-order cumulant: n = 1 (black), n = 2
(red), n = 3 (green) and n = 6 (blue).

To confirm the inability to resolve the channels in conventional imaging we also

obtained an US pulse-echo image of the microchannels filled with air. In this image,

shown in Fig. 4.6h, the channels appear as a continuous line (the saturated top line

corresponds to the strong reflection at the PDMS/water interface). So, the channels in
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Fig. 4.6h are indistinguishable, like in the mean PA image (Fig. 4.6c). This inability to

resolve the channels in conventional imaging stands in agreement with the diffraction

theory as by construction the center-to-center distance between neighbouring channels

Lcc = 180 µm is below the the lateral FWHM of the PSF (∆X ≈ 200 µm).
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Fig. 4.7 Experimental results obtained by calculating real value cumulants with Eq.
(4.5). (a) Top-view photograph of the microfluidic circuit demonstrates 5 parallel chan-
nels crossing the XZ imaging plane (dashed orange line). Scale bar: 250 m. (b)
Schematic of the imaged channels cross-section with relevant dimensions. (c) Absolute
value of the mean PA image, which represents the result of conventional PA imaging.
Scale bar: 250 m. (d) Absolute value of the 2nd-order complex cumulant. (e) Absolute
value of the 3rd-order complex cumulant. (f) Absolute value of the 6rd-order complex
cumulant. (g) One-dimensional profiles across the channels (orange dashed line in (c))
for the mean (black), variance (red), 3rd-order (green) and 6th-order (blue) cumulant
images. (h) Pulse-echo US image of the 5 channels filled with air illustrates the inabil-
ity to resolve the structure with conventional imaging. (i-k) nth-root of the nth-order
complex cumulant: n = 2 (i), n = 3 (j) and n = 6 (k) computed to provide images with
comparable intensity. (l) One-dimensional profiles across the channels for the nth-root
of the nth-order cumulant: n = 1 (black), n = 2 (red), n = 3 (green) and n = 6 (blue).

In contrast to the conventional resolution images, cumulant processing resolves

individual channels (Fig. 4.6d-f). The corresponding resolution improvement can be

observed on the one-dimensional profiles shown in Fig. 4.6g. The lateral FWHM of
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the leftmost channel was estimated to be ∆X = 132 µm, 108 µm, 90 µm, 84 µm

and 72 µm for orders from 2 to 6 correspondingly. So, the experimental resolution

improvement follows closely the theoretical
√
n. Since nth-order cumulants are non-

linearly related to the absorption profile they overweight structures producing stronger

signals [Dertinger et al., 2009]. To account for this nonlinear weighting, the nth-root of

the nth-order cumulant can be used rather than the nth-order cumulant itself (Fig. 4.6i-

k). In such a case, the nth-root provides a quantity that is linearly related to the absorp-

tion profile. Notably, even when the nth-root is taken, the channels are better resolved

at higher orders (Fig. 4.6l).

We would also like to emphasize that more images were needed to calculate high

order cumulants. In numerical simulations, we observed that the number of PA images

required for computing the n-th order cumulant increases with the cumulant order n in

a complex manner [Chaigne et al., 2017].

The experimental results presented as real cumulants in Fig. 4.6 are shown in Fig.

4.7 as the magnitude of complex cumulant images. In particular, Fig. 4.7d- f shows the

complex cumulants calculated for even (p = q) and odd (p = q + 1) orders. By taking

the absolute value of complex cumulants, the axial oscillations present in Fig. 4.6 are

effectively removed. In addition, the lateral profiles and resolution obtained with the

real and complex cumulants are the same. Again, taking the nth root of cumulants

permits correcting the difference between the strength of the sources while preserving

super-resolution.

4.3.2 Blood samples

Although the results obtained in the first experiment demonstrate that SOFI processing

based on fluctuations caused by moving absorbers can lead to super-resolution, this

does not unconditionally mean that the proposed approach will also be effective when

exploiting blood flow fluctuations for super-resolution imaging of blood vessels. A

possible discrepancy in the results might be caused, for example, by diverging physical

properties of the two kinds of absorbers and the difference in their concentration (c ∼
104 particles/mm3 for microbeads against c ∼ 106 particles/mm3 for RBCs). Hence,

to demonstrate that SOFI processing can lead to super-resolution by exploiting RBCs-

induced fluctuations we carried out the second experiment where a flow of human blood

was induced inside the channels.

Fig. 4.8 shows typical signals from one PA acquisition in the blood flow experiment.

It can be noticed that apart from the relevant signal from the RBCs in the imaging

plane (the curve with the maximum at {t ≈ 11.75 µs, N ≈ 64}) on the RF frame

there is a signal from the sample surface (horizontal line at t ≈11.75 µs) and a signal

from a parasite source on the surface (the curve with the maximum at {t ≈ 11.8 µs,
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N ≈ 96}). It should also be noted that the signal from RBCs is stronger than the signal

from microbeads (Fig. 4.4). As the experimental conditions were almost identical,

this strong difference in the signal amplitude can be explained by the much higher

concentration of RBCs compared to the concentration of microbeads and the difference

between the absorption coefficients of these two types of absorbers.

Fig. 4.8 Typical PA signals from one PA acquisition in the blood flow experiment. (a)
RF frame. (b) Signal on the 64th transducer element (dashed line in (a)).

Fig. 4.9 Typical beamforming image corresponding to a single PA acquisition (a,b) and
the corresponding filtered image after applying SVD processing (c,d) in the blood flow
experiment. (a,c) Reconstruction image corresponding only to the real part of the RF
data. (b,d,) Envelope reconstruction image.

Fig. 4.9 shows a typical beamforming image corresponding to a single PA acqui-

sition (a,b) and the corresponding filtered image after applying SVD processing (c,d).

Although the effect of SVD filtering on each beamforming image may not seem sig-

nificant, we did not manage to obtain a super-resolved SOFI image without using SVD

to separate relevant fluctuations from the noise of the acquisition system. It is to be

emphasized that contrary to the well-controlled experiment with microbeads, it was
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considerably more difficult to provide a stable and controllable blood flow inside the

sample. So, the quality of SOFI processing was highly dependent on the chosen dataset

and the selection of singular vectors for SVD filtering.

Fig. 4.10 summarizes the reconstruction results in the blood flow experiment. First,

Fig. 4.10b shows an optical microscope image taken when a blood flow was induced

inside the channels. The upper inset in Fig. 4.10b illustrates packing of RBCs inside

the channels while the lower inset shows static RBCs located at the input of the cir-

cuit. Both insets confirm the expected shape and concentration of RBCs. Then, as

in the experiment with microbeads, SOFI processing reconstructs five super-resolved

channels (Fig. 4.10c-f) which are completely indistinguishable in the mean PA image

(Fig. 4.10a).

It is to be noted that we did not manage to reconstruct the object with any cumulant

of order n < 6. A possible reason is that not all noise-related fluctuations are removed

by the SVD filtering as this technique can not distinguish relevant and non-relevant

fluctuations with the same spatiotemporal behaviour. As a result, the object becomes

apparent only at n = 6 as the 6th-order cumulant of noise-related fluctuations gets weak

enough.
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Fig. 4.10 SOFI demonstration using human blood at physiological concentration andN
= 15,000 PA images. (a) Mean PA image. Scale bar: 100 µm. (b) Microscope picture
of blood flow in the microfluidic channels. Scale bar: 250 µm. Upper inset: larger
magnification. Lower inset: RBCs at the input of the circuit. (c) 6th-order complex
cumulant. (d) 6th root of the 6th-order complex cumulant. (e-f) Corresponding intensity
profiles comparing the mean (blue), 6th-order cumulant (red), and microscope profiles
(dashed black).
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4.4 Conclusion

We demonstrated that flow-induced fluctuations of PA signals can be used to provide

resolution beyond the acoustic diffraction limit. Specifically, we showed that a
√
n

resolution improvement can be achieved via nth-order cumulant analysis. Importantly,

thanks to the extended SOFI processing developed in this Chapter, PSF-related oscilla-

tions in the resulting super-resolution images can be eliminated. As follows from the

results of the experiment with human blood, the proposed method may potentially be

used for super-resolution imaging of small densely packed blood vessels. In contrast to

localization-based imaging (see Chapter 3) which requires diluted contrast agents added

to the blood flow, fluctuation-based imaging is intrinsically based on the endogenous PA

contrast of blood.

Despite these promising results, fluctuation-based PA imaging suffers from several

limitations. First, as was demonstrated by our blood flow experiment, it can be difficult

to separate relevant fluctuations from noise-related fluctuations. When this is done via

SVD filtering, the choice of the relevant singular vectors is non-trivial and may be

challenging when the imaged object is not known a priori. One other limitation is that

objects associated with stronger PA signals mask objects associated with weaker PA

signals when high order cumulants are computed. As a consequence, in the real imaging

environment slight spatial variations of the light intensity may result in weak sources

being invisible in the n-th order cumulant image. Finally, the temporal resolution of

the proposed technique is intrinsically low. One of the main reasons is that calculating

the nth-order cumulant requires a certain number of uncorrelated PA images. The need

for uncorrelated images may increase further the total acquisition time when imaging

small vessels, where blood velocities are of the order of several millimeters per second.

On the other hand, the temporal resolution will be limited by the laser pulse repetition

rate when imaging large blood vessels, where blood velocities are high. Nevertheless,

the eventual acquisition time may be shorter than the acquisition time required by the

localization approach (see Chapter 3) since in SOFI imaging a high density of absorbers

can be used, whereas localization generally requires that few absorbers appear in the

imaging zone at a given moment.

The results of this Chapter obtained in cross-sectional (two-dimensional) imaging

of a vessel-like phantom form the base for in vivo fluctuation-based super-resolution

imaging in three dimensions. Such experiments are being prepared in the context of the

PhD study of Guillaume Godefroy. Regarding the contributions of different members of

our research team to the results reported in this Chapter, all the experiments were done

by me with the assistance of Bastien Arnal. Bastien Arnal performed the SOFI-based

processing with complex-value signals and Thomas Chaigne performed the numerical

simulations. Here, not all simulation results have been reported. For example, in the
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simulations it was demonstrated that the number of PA images required for computing

the n-th order cumulant increases with the cumulant order n in a complex manner. For

more simulation results, the reader is referred to [Chaigne et al., 2017].
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CHAPTER 5

Super-resolution by model-based reconstruction1

5.1 Introduction

The duty of any image reconstruction method is to obtain an estimate of the imaged

object using the measurement data, i.e. to solve the so-called inverse problem. Con-

ventional diffraction-limited photoacoustic (PA) reconstruction was described in sec-

tion 1.3.3.1. In the conventional reconstruction image, the object is distorted due to

the system response that depends on PA generation, wave propagation in the medium,

transducer aperture, transducer response function, etc. As a result of the finite system

response, high spatial frequencies are lost and sub-diffractional features are indistin-

guishable in conventional reconstruction. The model-based reconstruction approach

proposed in this Chapter may provide super-resolution as it explicitly takes the sys-

tem response into account. The lack of information about high spatial frequencies is

compensated by special constraints placed on the object to reconstruct.

This Chapter is organized as follows. First, we present the grounds of the model-

based approach. These grounds do not depend on the nature of the inverse problem and

would be valid for other imaging techniques. Afterwards, we propose a forward model

for PA imaging that can be used as a basis for the proposed reconstruction approach.

Then, we explain why the model-based approach could effectively handle the reso-

lution problem in PA imaging. After presenting some studies involving model-based

reconstruction in PA imaging, we report results of a proof-of-concept experiment. In

this experiment, we compare reconstruction based on different constraints imposed on

the sought object. After that, we conduct more experiments alongside with numerical

simulations to determine the resolution limit that can be achieved in model-based recon-

struction. We end this Chapter with a theoretical analysis focused on some important

aspects of model-based reconstruction including the reliability of the method.

1Numerical simulation data was provided by E. Bossy.
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5.2 Model-based reconstruction approach

5.2.1 Forward measurement model

The imaged object is defined by the probed property, such as optical absorption. Hence,

the imaged object is in principle continuous. However, the measurement data is often

discrete in modern digital imaging systems. So, using digital methods for reconstruct-

ing the object should involve discretization of the object. To construct an appropriate

forward model that can be used in reconstruction, we discretize the imaged object by

representing it in the vector form TN×10 . As concerns the discrete measurement data,

we consider that it is contained in the vector RM×1. In the absence of noise, a forward

linear problem can be written in the form of a system of linear equations:

R = AT0, (5.1)

with AM×N being a matrix of system response (also the propagation matrix or the

forward model).

In practice, there is some additive noise inevitably present in the measurement vec-

tor R. By taking this noise into account, one can model measurements (5.1) as

R = AT0 +B, (5.2)

with BM×1 being a random vector describing the measurement noise.

5.2.2 Ill-posed linear inverse problems

The noiseB can not be separated from the measurement dataR. So, the inverse problem

consists in finding the best estimate T̂0 of the imaged object T0 from the measurements

R using a known matrix A (either measured or theoretically predicted). The inversion

result depends heavily on the matrix A, so good estimation of this matrix is important.

In the following sections, we will discuss how the matrix A can be obtained in the case

of PA imaging.

In this chapter we will deal with situations when computing the object by direct

inversion T̂0 = A−1R is not possible. To explain why, we shall invoke the Kronecker-

Capelli theorem. According to this theorem, a linear system has a solution if and only

if the rank of its coefficient matrix AM×N is equal to the rank of its augmented matrix

[A|R]. If rank(A) = N , the solution is unique, otherwise there are infinitely many

solutions. This being said, it should be noted that in practice rank(A) will not be equal

to rank([A|R]) due to the noise in the vector R. Second, even when the presence of

noise can be neglected, in this chapter we will consider systems for which rank(A) <

N . In other words, we will have to deal with systems admitting many possible solutions,
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or underdetermined systems. Problems that admit many solutions or those that do not

admit any solutions are called ill-posed problems. In this chapter, we are going to

consider ill-posed inverse problems.

So, inversion-based reconstruction should pursue two goals:

• Minimize the influence of the noise B on the inversion result.

• Choose among all possible objects the one which is the closest to the imaged

object T0.

To simultaneously attain these two goals we will perform inversion using so-called

regularization methods.

5.2.3 Regularization-based solution

5.2.3.1 Principle

An estimate T̂0 of the imaged object T0 can be obtained via the following minimization:

T̂0 = argmin
T

{||R−AT ||22 + α||ΦT ||pp}, (5.3)

where Φ is a certain transformation applied to the tested object T and the Lp norm is

defined as ||T ||p = p

√∑N
i=1 |T (i)|p.

The first term Jf = ||R − AT ||22 in the right hand side of Eq. (5.3) is called the

fidelity term. When the fidelity term equals zero, the object T fits perfectly the mea-

surement data R for the given model A. In this case, the solution can be considerably

affected by the noise in the measurement vector R.

The second term Jr = α||ΦT ||pp is the regularization term that is responsible for

both selecting the unique object defined by the desired properties/constraints and min-

imizing the influence of the noise. The regularization parameter α should provide the

trade-off between fitting the probed object to the measurement data on the one hand and

handling the noise and the constraint on the other hand.

It should also be noted that some additional constraints may be placed on the object

T while performing minimization (5.3). For example, the non-negativity constraint:

T (i) ≥ 0, i = 1..N .

5.2.3.2 Solutions corresponding to different constraints

The second term Jr = α||ΦT ||pp in the right hand side of (5.3) permits choosing the

unique object defined by the transformation Φ, norm Lp and regularization parameter

α. Let us consider the most common cases:
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1) α = 0 (Jr = 0). Minimization (5.3) may result in one of many possible objects

(non-uniqueness of the solution). Among these objects, the one with the minimal L2

norm is given by

T̂L2 = (V Σ−1U ∗)R, (5.4)

where the matrices V and U correspond to the singular value decomposition (SVD) of

the matrix A:

A = UΣV ∗, (5.5)

The matrix Σ−1 is diagonal, its diagonal values being Σ−1(i, i) = 1/σi, where σi ≥ 0

are the diagonal values of the matrix Σ.

When none of the singular values σi are zero operation (5.4) corresponds to Moore-

Penrose pseudoinverse. The problem of Eq. (5.4) is that the resulting object T̂L2 can

be very sensitive to the noise in the vector R. The simplest way to make the solution

less sensitive to noise is to replace the matrix Σ−1 with the matrix Σ−1ST whose diagonal

values are calculated as Σ−1ST (i, i) = wST (σi)/σi, where wST is the simple truncation

weighting function:

wST (σ) =

{
1, σ > σ0

0, σ ≤ σ0
(5.6)

The thresholding value σ0 plays the role of the regularization parameter α in (5.3). An

inversion based on Eq. (5.6) is said to be based on a truncated singular value decom-

position. 2) α 6= 0 and Jr = ||T ||22. Minimization (5.3) corresponds to Tikhonov

regularization. The Tikhonov solution can also be obtained using Eq. (5.4) when the

matrix Σ−1 is replaced with the matrix Σ−1TH whose diagonal values are calculated as

Σ−1TH(i, i) = wTH(σi)/σi, where wTH is the Tikhonov weighting function:

wTH(s) =
s2

s2 + α
. (5.7)

It should be noted that calculating SVD is challenging when the matrix A is large.

In this case, iterative algorithms based on minimization (5.3) are preferred. Iterative

algorithms are also used when additional constraints are to be involved in regularization.

3) α 6= 0 and Jr = ||T ||1. L1-based (or sparsity-based) regularization is usually the

method of choice when reconstructing sparse objects. The discrete object T is said to

be k-sparse if it contains only k non-zero elements. The ability of L1-based reconstruc-

tion to provide the sparsest solution was demonstrated in the context of compressed

sensing [Eldar and Kutyniok, 2012]. In the case of L1-based regularization there is no

analytical solution and iterative minimization algorithms are to be used.

4) α 6= 0, Jr = ||T ||1, with the additional non-negativity constraint imposed:

T (i) ≥ 0, i = 1..N . As the imaged object, such as a distribution of optical absorp-
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tion, can not be negative, negative values in the reconstruction image may appear due

to reconstruction artifacts only. So, to remove the negative values in the vector T the

non-negativity constraint is sometimes applied at each iteration of the reconstruction

algorithm. In addition, it has been noticed that the use of the non-negativity constraint

can lead to iterative minimization converging faster.

5) α = 0 (Jr = 0), with only the non-negativity constraint imposed: T (i) ≥ 0,

i = 1..N . To our knowledge, there is no reliable information on the possibility to re-

construct the object by using the non-negativity constraint without the regularization

term. However, in this study, we will show that in some cases the non-negativity con-

straint can successfully replace the regularization term. We will call such reconstruction

positivity-based reconstruction.

5.3 Photoacoustic forward model

5.3.1 Physical model

In this section, we discuss construction of a matrix-based forward model describing PA

imaging with a multielement transducer array. The PA acquisition can be split into three

stages:

1) Generation and propagation of PA waves. The PA effect in the heat confinement

regime is described by Eq. 1.3. Then, the PA pressure wave p(−→r , t) can be related

to the probed optical absorption µa(−→r ) via a linear operator H1(
−→r , t) encoding the

Green function of the medium:

p(−→r , t) = H1[µa(
−→r )φr(

−→r , t)], (5.8)

where µa(−→r ) is the absorption distribution and φr(−→r , t) is the fluence rate that can be

written for short laser pulses as φr(−→r , t) = φ(−→r )f(t) with f(t) being the time profile

of a laser pulse.

2) Reception at many points by different transducer elements (spatial discretization)

and integration of each received signal over the area of the corresponding element. For

each element k the measured pressure can be written as

pmes(
−→rk , t) = H2[p(

−→r , t)], (5.9)

where −→rk is the radius-vector to element k and H2(
−→rk ,−→r , t) is a linear operator of

spatial discretization and integration.

3) Conversion to electrical signals, quantization and discretization in the time do-

68



main. The recorded electrical signals are related to the measured pressure as

S(ti,
−→rk ) = H3[pmes(

−→rk , t)], (5.10)

where H3(
−→rk , t) is a linear operator of conversion, quantization and discretization in

time.

Combining Eq. (5.8)-(5.10) one obtains

S(ti,
−→rk ) = H3H2H1[µa(

−→r )φ(−→r )f(t)]. (5.11)

Eq. (5.11) can be written in a shorter form:

S(ti,
−→rk ) = A[µa(

−→r )φ(−→r )], (5.12)

where A is a global linear operator that relates the continuous imaged object with the

measurement signal which is sampled in space and in time. It should be kept in mind

that in general the operator A depends on the temporal intensity profile f(t). However,

for nanosecond laser pulses, the influence of the intensity profile can be in practice

neglected due to the limited detection bandwidth included in H3, a widely used as-

sumption in photoacoustic imaging (see section 1.3.3.3).

5.3.2 Discretization of the problem

To obtain a model appropriate for digital processing, we shall discretize the operator A
and the imaged object µa(−→r ) in Eq. (5.12). Supposing that φ(−→r ) = const, the imaged

object can be discretized on an arbitrary spatial grid, so that each cell of the object

T 0(i, j, k) is assigned to the optical absorption µa(xi, yj, zk). The matrix T 0 can then

be rearranged to form the vector T0 representing the object. Importantly, the vector T0
defines the imaged object only on the chosen grid. The received radio-frequency (RF)

signals S(ti,
−→rk ) can also be rearranged to form the measurement vector RRF . Then,

the discretized forward problem reads

RRF = ARFT0, (5.13)

where ARF is the matrix corresponding to the discretized version of the operator A.

There are two main ways to estimate the object T0 from the measurements. First,

by performing inversion corresponding to forward model (5.13). Second, one can try

to derive T0 from estimation of the object via a backprojection/beamforming algorithm.

The two following sections describe each of these two possible approaches.
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5.3.3 Construction of the RF-space propagation matrix ARF

Each column of the matrix ARF contains the radio-frequency point spread function

(RF-PSF) associated with a point source at a certain position in the imaging zone. In

other words, each column of ARF is the vector R corresponding to a point source at a

certain position in the imaging zone.

There are different possible methods to estimate the matrix ARF .

1) To estimate ARF theoretically, one needs to compute the operator H1 in Eq.

(5.8) using the propagation theory, calculate the operator H2 in Eq. (5.9) according to

the acquisition geometry and estimate the operator H3 in Eq. (5.10). This approach

assumes a good knowledge of the propagation medium, imaging geometry and elec-

troacoustic properties of each transducer element. As in practice all these parameters

are not perfectly known, the resulting matrix ARF may suffer from cumulative errors.

2) The matrix ARF can be measured experimentally by acquiring PA signals for

each point in the imaging zone. First, the measurement time is proportional to the

number of acquisition points and can be too long. Second, the direct measurement

approach assumes that all points in the imaging zone are accessible that is not often the

case. Finally, a high precision of the displacement motors is needed and the medium

should be stable during the whole measurement process.

3) Only one RF-PSF in the imaged zone is measured experimentally. All columns of

ARF are derived from this RF-PSF by using a certain propagation model. This approach

assumes that the only difference between signals detected for different source positions

consists in different propagation time. This difference is encoded in the operator H1

in Eq. (5.8) while the operator H2 in Eq. (5.9) is independent of the transducer and

source coordinates. We implement this approach in the present chapter.

Under the assumptions stated above, if the single RF-PSF is acquired for a source

placed at {xq, zq}, then column p of the matrix ARF should be derived from the RF-

PSF data which is shifted for each transducer element k according to the time difference

∆tpqk:

∆tpqk =
1

vs

(√
(xk − xp)2 + (zk − zp)2 −

√
(xk − xq)2 + (zk − zq)2

)
, (5.14)

where {xk, zk} are the coordinates of element k of the transducer array, {xp, zp} are the

coordinates corresponding to point p of the reconstruction grid.

The idea is illustrated in Fig. 5.1: the signals corresponding to the point P (olive)

are derived by shifting in time the signals acquired for the point Q (crimson) according

to the time differences ∆tpq1 = (r3 − r1)/vs = t3 − t1 (1st element) and ∆tpq3 =

(r4 − r2)/vs = t4 − t2 (3rd element).
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Fig. 5.1 Construction of the propagation matrix ARF : the signals corresponding to
the point P (olive) are derived by shifting in time the signals acquired for the point Q
(crimson) according to the time differences ∆tpq1 = (r3−r1)/vs = t3−t1 (1st element)
and ∆tpq3 = (r4 − r2)/vs = t4 − t2 (3rd element).

5.3.4 Construction of the BF-space propagation matrix ABF

Let us denote RBF the vector obtained by rearranging the beamformed image. As the

beamformed image is linearly related to the optical absorption, there exists a matrix

ABF such that

RBF = ABFT0. (5.15)

Each column of the matrix ABF contains a bipolar PSF in the beamforming space (BF-

PSF).

Two techniques can be used to compute ABF :

1) Each column of ABF is obtained by beamforming the RF data contained in each

column of ARF .

2) One column of ABF is computed by beamforming data corresponding to one

point source and all other columns are obtained by translating this PSF in the beam-

forming space. In this case, translational invariance of the BF-PSF is assumed.

In this PhD study, we only assume translational invariance in the time domain to

compute the matrix ARF . So, we construct the matrix ABF from ARF using the first

suggested technique, without supposing translational invariance in the beamforming
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space.

5.3.5 Resolution and ill-posedness of the reconstruction problem

Here, we shall specify some cases when PA reconstruction deals with an underdeter-

mined system and regularization-based techniques are required to obtain the right solu-

tion. For the sake of simplicity, we neglect the noise in the measurement data.

Let us consider imaging in an isotropic homogeneous medium performed with a

multielement transducer array with a circular aperture of diameter D. The resonance

frequency of the transducer fc corresponds to the wavelength λac = vs/fc, where vs is

the speed of sound in the medium. The spacing between neighbouring elements of the

array is approximately λac/2 (λac << D), following the Nyquist condition for spatial

sampling. So, the total number of transducer elements is Nel ≈ πD/(λac/2). The

imaging geometry is shown Fig. 5.2.

Fig. 5.2 Imaging with a multielement array having a circular aperture covering the
whole angle Ω0 = 2π. The distance between neighbouring elements is about λac/2,
the aperture diameter is D.

We seek to reconstruct the object over a 2D grid with a step of λac/2. The grid fills

the whole imaging space inside the transducer aperture. Then, the number of points N

of this grid can be estimated as

N ∼ πD2

4 ∗
(
λac
2

)2 . (5.16)

If the RF signals are acquired with the sampling frequency fs = 2fc = 2vs/λac then

the number of samples M can be estimated as

M ∼ 2Nel
D

λac
= 4N. (5.17)

72



It follows from Eq. (5.16) and (5.17) that M ≥ N . If the M measurements are

independent then rank(A) = N . Therefore, the inverse problem is well-posed and

there is only one object TN×1 that can be reconstructed for the acquisition data RM×1.

If for one reason or another the number of measurements M becomes smaller than

the number of unknowns N then rank(A) ≤ min(M,N) = M < N and the recon-

struction problem will be ill-posed. There are two common situations:

1) When the reception aperture does not cover the whole tomographic angle Ω0 =

2π.

2) When the reconstruction grid step is below λac/2, i.e. when a sub-diffractional

resolution is required.

In this chapter, we will try to achieve super-resolution with the model-based ap-

proach, i.e. we will deal with case (2).

5.4 State-of-the-art and objectives of this chapter

In PA imaging, the model-based approach was first introduced to palliate visibility ar-

tifacts in 3D photoacoustic tomography (PAT) [Wang et al., 2012; Liu et al., 2012;

Buehler et al., 2011; Provost and Lesage, 2008; Meng et al., 2012; Dean-Ben et al.,

2012; Han et al., 2017].

In PAT, volumetric reconstruction is achieved in multiple acquisitions by scanning

the imaged object from different angles or in a single acquisition by using a receiver

whose elements can capture acoustic waves emitted in many directions. When PA ac-

quisitions are performed under different angles, not all the angles are usually accessible

or scanning at many positions can be time-consuming. This lack of scanning angles

results in specific artifacts in the reconstruction image when standard reconstruction

methods, such as delay-and-sum beamforming/backprojection, are used. Artifacts re-

lated to spatial undersampling do also appear in single-shot imaging when transducer

elements are placed more than λac/2 apart. This problem is pertinent in 3D PAT where

the number of elements is reduced due to technical limitations (see Chapter 6). It has

been demonstrated that accompanied by additional priors on the imaged object model-

based reconstruction can remove artifacts related to an incomplete set of scanning an-

gles [Wang et al., 2012; Liu et al., 2012; Buehler et al., 2011; Provost and Lesage,

2008], a large spacing between transducer elements [Meng et al., 2012] or both [Dean-

Ben et al., 2012; Han et al., 2017]. Fig. 5.3 shows how the model-based approach can

be used to improve reconstruction results in limited-view 3D PAT [Wang et al., 2012].

In parallel to using model-based reconstruction to handle reconstruction artifacts in

PAT, it was proposed to employ this approach to achieve super-resolution in US and PA

imaging.

For example, in US imaging the vector R can be associated with the diffraction-

73



Fig. 5.3 Mean intensity projection renderings of 3D images of a mouse body recon-
structed from the 180-view data with (a) a backprojection algorithm (b) model-based
reconstruction [Wang et al., 2012].

limited envelope image while the propagation matrix A will contain a library of en-

velope PSFs [Morin et al., 2012; Zhao et al., 2016; Shu et al., 2018]. To improve the

resolution further, it has also been proposed to apply model-based reconstruction to

fluctuation data. The method called sparsity-based ultrasound super-resolution hemo-

dynamic imaging (SUSHI) [Bar-Zion et al., 2018] relies on sparsity-based regulariza-

tion with the vector R representing the time variance of the beamformed image and the

matrix A consisting of PSFs raised to the 2nd power.

In PA imaging, some groups reported [Hojman et al., 2017; Murray et al., 2017]

to achieve super-resolution in model-based reconstruction involving joint support re-

covery, i.e. the fact that under Ms random optical speckle illuminations PA signals

can be generated only at the points belonging to the imaged object. In this case, the

vector R contains the results of all Ms acquisitions. The joint support can be taken

into account by using a mixed L1/L2 term [Murray et al., 2017] as the regularization

term in minimization (5.3) or by reconstruction based on the multiple sparse Bayesian

learning (M-SBL) algorithm [Hojman et al., 2017]. It was shown that in terms of resolu-

tion model-based reconstruction outperforms fluctuation-based reconstruction [Murray

et al., 2017] and Richardson-Lucy deconvolution [Hojman et al., 2017; Murray et al.,

2017]. To provide an example, the MSB-L approach is compared with other recon-

struction techniques in Fig. 5.4. Despite these promising results, using optical speckle

illuminations in clinical imaging is challenging as the small fluctuation signal can be

difficult to distinguish on the strong background when imaging is performed at depths

exceeding several millimeters (see section 1.4).

In this Chapter we obtain super-resolution via the model-based approach without

relying on speckle illuminations. We first achieve super-resolution using only one con-
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Fig. 5.4 Model-based reconstruction leads to super-resolution of point targets. (a)
Ground truth. (b) Standard beamforming reconstruction. (c) Richardson-Lucy decon-
volution. (d) Model-based reconstruction (M-SBL algorithm) [Hojman et al., 2017].

ventional PA acquisition (i.e. in single-shot imaging). For this data, we compare differ-

ent regularization

schemes and reconstruction images resulting from RF and BF data. Then, we try to

estimate the resolution limit of sparsity-based reconstruction. Afterwards, we test a

SUSHI-like approach in photoacoustics by applying sparsity-based reconstruction to

variance data. The last part of this Chapter is devoted to a theoretical investigation

of sparsity-based reconstruction. In this last part, we study how the reconstruction re-

sult depends on the regularization parameter and on the non-negativity constraint. In

this context, we also discuss reliability and limitations of sparsity-based reconstruction.

Finally, we discuss positivity-based reconstruction in the noiseless case.

5.5 A proof-of-principle experiment

In a proof-of-principle experiment, we sought to obtain super-resolution in single shot

PA imaging. As in the previous chapters, we will perform cross-sectional imaging of a

microfluidic sample consisting of five parallel channels separated by a sub-diffractional

distance. Then, we will try to reconstruct the imaged cross-section using different reg-

ularization schemes applied to RF and BF data.

5.5.1 Materials and methods

5.5.1.1 Measurement protocol

The sample to image consists of five identical parallel microfluidic channels with a rect-

angular cross-section (Fig. 5.5). To perform cross-sectional imaging, the microchannels

are placed perpendicularly to the imaging plane XZ of a linear transducer array (type

L22-8) at the US probe elevational focus distance zf = 15 mm. In this plane, each chan-

nel is hch = 50 µm high and wch = 40 µm wide, the center-to-center distance between

neighbouring channels being Lcc = 125 µm. To provide a good PA contrast the sample

is filled with absorbing liquid (Patent Blue V). For more details on fabrication of the

microfluidic sample the reader is referred to Chapter 2.
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Fig. 5.5 The sample to image consists of five identical parallel microchannels filled with
absorbing liquid. The sample is placed at zf = 15 µm from the US probe, each channel
is wch = 40 µm wide, the interchannel center-to-center distance is Lcc = 125 µm. The
sample is illuminated by a single laser pulse and the resulting PA signals are received
by the US probe connected to the acquisition electronics.

A schematic of the experimental setup is shown in Fig. 2.1. In the experiment, PA

signals were acquired on illuminating the sample with a single laser pulse (λlaser = 532

nm, fluence = 3 mJ/cm2). To apply model-based reconstruction, we also acquired

the PSF of the imaging system, the full width at half maximum (FWHM) of the BF-

PSF being ∆X = 154 µm, ∆Z = 139 µm (see section 2.5). For any details on the

experimental equipment the reader is referred to Chapter 2.

Fig. 5.6 shows the acquired single-shot RF data. The laser noise was removed

by subtracting the average value for each line of the RF frame (see section 2.2). The

horizontal line appearing at t = 9.35 µs corresponds to the signal from the sample

surface. The signal-to-noise ratio (SNR) calculated as the ratio between the maximum

of the RF signal and the noise variance computed over a signal-free region of the RF

data is SNR=max(RF )/σn ≈ 4000/30 = 133.

The result of standard beamforming reconstruction is illustrated in Fig. 5.7. Being

separated by less than the FWHM of the PSF (Lcc = 125 µm ¡ 154 µm), the microchan-

nels appear indistinguishable.
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Fig. 5.6 (a) RF data acquired in single shot imaging of the microchannels filled with
absorbing liquid. The horizontal line appearing at t = 9.35 µs corresponds to the
signal from the sample surface. (b) The signal acquired by the 64th transducer element,
designated with the dashed line in (a).

Fig. 5.7 Standard beamforming reconstruction of the imaged cross-section of the five
parallel microchannels separated by Lcc = 125 µm. Being separated by less than the
FWHM of the PSF (∆X = 154 µm), the microchannels appear indistinguishable.

5.5.1.2 Reconstruction methods

We first performed reconstruction based on the acquired RF data and then based on the

BF data.

The RF-based reconstruction involves the following forward model (Eq. (5.13)):

RRF = ARFT0,

where RM×1
RF is the vector representation of the RF frame, AM×N

RF is the propagation

matrix, TN×10 is the imaged object discretized on the reconstruction grid.

The number N depends on the reconstruction zone that can be chosen based on the

region corresponding to the unresolved structure of the sample on the diffraction-limited

beamforming image. The beamforming image is shown in Fig. 5.7. So, the size of the

reconstruction zone is about 750 µm× 150 µm. By discretizing the imaged object on

a Lcc/10 = 12.5 µm grid, one obtains N = 750 × 150/(12.5)2 = 720. The number
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M is determined by the number Nel of transducer elements and the number Nt of time

samples in the RF frame, the latter being reduced using the approach demonstrated in

Appendix 2. So, M = Nel × Nt = 128 × 37 = 4736. The propagation matrix ARF

is constructed using only one PSF acquisition in the imaging zone. The approach is

described in detail in section 5.2.3. Although M > N , calculating the rank of the

matrix ARF gives rank(ARF ) = 346 < N .Hence, the inverse problem is ill-posed,

which could be expected as the reconstruction grid is chosen with a sub-diffractional

step.

The BF-based reconstruction involves the following forward model (Eq. (5.15)):

RBF = ABFT0,

where RM×1
BF is the vector representation of the standard beamforming image, AM×N

BF

is the propagation matrix, TN×10 is the imaged object discretized on the reconstruction

grid.

The number N = 720 is determined by discretization of the object on the recon-

struction zone and is the same as for the RF-based reconstruction. The number M is

determined by the number of points in the beamforming zone. Each point source in

the reconstruction zone can be associated with a PSF in the beamforming zone. As

the PSF has a certain size (PSF FWHM being ∆X = 154 µm, ∆Z = 139 µm),

the beamforming zone should be chosen larger than the reconstruction zone (see Ap-

pendix 2). So, we choose the beamforming zone of 1000 µm× 500 µm. The sampling

frequency of the acquisition machine being fs = 4fc (fc = vs/λac is the central fre-

quency of the US probe), the minimal beamforming grid step is λac/4 ≈ 25 µm. Thus,

M = 1000 × 500/252 = 800. Again, although M > N , calculating the rank of the

matrix ABF gives rank(ABF ) = 324 < N . So, the inverse problem is again ill-posed.

To solve the ill-posed reconstruction problem for the RF and BF data, we tested

several approaches:

• Moore-Penrose pseudoinverse with simple truncation weighting function via Eq.

(5.4) and (5.6).

• Tikhonov regularization via Eq. (5.4) and (5.7).

• Positivity-based reconstruction via minimization (5.3 with α = 0 and the non-

negativity constraint.

• Sparsity-based reconstruction via minimization (5.3) without the non-negativity

constraint.

The regularization parameter α for Tikhonov regularization and the thresholding

singular value s0 for pseudoinverse reconstruction were estimated using the L-curve
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method [Hansen, 1999]. To do it, we first plotted the L2 norm of the reconstructed

object ||T̂L2||22 as a function of the norm of the residual ||R − AT̂L2||22 in logarithmic

scale for a series of values of the sought parameter. Afterwards, the parameter corre-

sponding to the corner of the obtained curve was taken. In sparsity-based reconstruction

the regularization parameter α was determined heuristically by comparing visually the

reconstructed object with the real sample.

When the non-negativity constraint was not applied at each iteration of the algo-

rithm, all negative values on the final reconstruction image were replaced with zeros.

Minimization (5.3) is performed using the FISTA algorithm. The reader is referred

to Appendix 2 for more details on the minimization algorithm.

5.5.1.3 Results

Experimental results obtained with model-based reconstruction applied to RF data are

shown in Fig. 5.8. Moore-Penrose pseudoinverse, Tikhonov regularization and positivity-

based reconstruction are all unable to recover the object structure. In contrast, L1-based

regularization provides a super-resolved image with five well separated regions.

First, both Moore-Penrose pseudoinverse and Tikhonov regularization lead to a

smooth profile that is far from the true object structure. In these techniques noise

suppression is achieved by ignoring a number of highly (spatially) oscillating singu-

lar vectors of the propagation matrix A. The number of singular vectors to ignore is

determined by the thresholding singular value σ0 in Eq. (5.6) for Moore-Penrose pseu-

doinverse and the regularization parameter α in Eq. (5.7) for Tikhonov regularization.

However, the discarded singular vectors do encode some object features. So, by un-

avoidably discarding singular vectors to suppress noise, Moore-Penrose pseudoinverse

and Tikhonov regularization fail to reconstruct the fine structure of the imaged object.

Then, positivity-based reconstruction leads to an image with point-like artifacts. As

mentioned in section 5.1.3.2 there is no evidence that the non-negative constraint can

lead to the correct object.

Finally, L1 - based regularization provides super-resolution. Apparently, on the L1

reconstruction image the microchannels appear as points since the reconstruction of

the full channel dimensions would not provide the minimum-L1-norm solution. This

pointy structure was the closest to the imaged object for α varying from zero to the

value at which the reconstructed object completely disappears. Importantly, it was ob-

served that the reconstructed object is highly dependent on α. In particular, at small α

a series of unregularized solutions was observed, the number of non-zero points of the

object decreasing rapidly with the increase of α. Then, the regularized solution shown

in Fig. 5.8d appeared. Afterwards, the object sparsity (or the number of reconstructed

channels) decreased gradually with the increase of α until the reconstructed object com-
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Fig. 5.8 Model-based reconstruction for five parallel microfluidic channels (RF data).
(a) Moore-Penrose pseudoinverse image. (b) Tikhonov regularization image, very sim-
ilar to (a). (c) Positivity-based reconstruction. (d) L1 regularization image. The recon-
struction recovers five distinct regions corresponding to the microfluidic channels. (e)
Reconstruction image (d) after smoothing out with a 2D spatial Gaussian filter (σg =
12.5 µm) and interpolating on a 3 µm grid. (f) Normalized amplitude profiles. Blue:
envelope image (Fig. 5.7); Red: Pseudoinverse image (a); Yellow: Tikhonov regular-
ization image (b); Violet: L1 regularization image (e).

pletely disappeared. So, without knowing the imaged object a priori we would not have

been able to make the right choice of the regularization parameter and obtain a correct

reconstruction.

To correct for the pointy appearance of the sources caused by the nature of the L1

- based solution, the point-like image in Fig. 5.8d was convolved with a 2D gaussian

function with a kernel size corresponding to one reconstruction point (σg = 12.5 µm).

On the resulting lateral profile (Fig. 5.8f, violet) the average distance between neigh-
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bouring peaks corresponds to the interchannel separation Lcc = 125 µm.

Fig. 5.9 Model-based reconstruction for five parallel microfluidic channels (BF data).
The results are similar to those in RF-based reconstruction (Fig. 5.8). (a) Moore-
Penrose pseudoinverse image. (b) Tikhonov regularization image. (c) Positivity-based
reconstruction. (d) L1 regularization image. (e) Reconstruction image (d) after smooth-
ing out with a 2D spatial Gaussian filter (σg = 12.5 µm) and interpolating on a 3 µm
grid. (f) Normalized amplitude profiles. Blue: envelope image (Fig. 5.7); Red: Pseu-
doinverse image (a); Yellow: Tikhonov regularization image (b); Violet: L1 regulariza-
tion image (e).

Experimental results obtained with model-based reconstruction applied to BF data

are shown in Fig. 5.9. It can be clearly seen that they are very close to those obtained

with RF data (Fig. 5.8). However, one may suppose that the positivity-based recon-

struction leads to the right object that can be recognized in the reconstruction image

despite the presence of noise. We also note that thanks to the smaller size of the matrix

A and the vectors X and Y , computation burden in BF-based reconstruction is reduced

and the reconstruction time is shorter than in RF-based reconstruction.
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5.5.1.4 First conclusions

We demonstrated experimentally that sparsity-basedreconstruction can provide super-

resolution in acoustic-resolution photoacoustic imaging. With other regularization schemes,

such as Moore-Penrose pseudo-inverse, Tikhonov regularization and positivity-based

reconstruction, super-resolution was not achieved. We also showed that regularization

provides very similar results when applied to RF or BF data. We note that working on

BF data may be preferable as in this case the matrix-based reconstruction is faster. A

number of important questions still have to be addressed:

1. What is the ultimate resolution that can be reached in sparsity-based reconstruc-

tion ?

2. Is there a way to choose the regularization parameter without a priori knowledge

of the object?

3. For a good SNR, would the positivity-based reconstruction provide the right ob-

ject?

In the following sections, we will try to answer questions (1)-(3).

5.6 Two-channel case to further investigate the resolution limit

In this section, we shall investigate the resolution limit of sparsity-based reconstruction.

We define the resolution limit as the minimal lateral distance ∆X at which two point

sources lying at the same depth Z can be separated in reconstruction.

To this end, in experiments and then in simulations we reconstruct different cross-

sections of two approaching channels lying in the XY plane. In experiments, the min-

imal center-to-center separation is 75 µm due to fabrication limitations (see section

2.6). So, we choose the probe L7-4 which has a coarser resolution (PSF FWHM ∆X

= 389 µm) compared to the probe L22-8 (PSF FWHM ∆X = 154 µm) to reach the

sub-diffractional regime more easily with the microfluidic sample. To reduce the com-

putational burden, we apply model-based reconstruction not to RF but to BF data.

5.6.1 Simulations of RF data : method

In order to remove experimental uncertainties and focus on the fundamental limitations

and principles of the methods in question we complement our experimental investiga-

tions with numerical simulations. The simulated data is generated on the following

grounds:

• All the transducer elements are point sources;
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• The emitted PA wave is the same for all imaged point sources, the detected signals

are identical in amplitude and spectrum, but they are shifted in time according to

the distance between each imaged source and each transducer element;

• The detected signals have the central frequency and bandwidth corresponding to

those used in experiments, with the same sampling frequency as in experiments.

5.6.2 Single shot/mean image

5.6.2.1 Experiments

The sample to image consists of two approaching microfluidic channels lying in the

plane XY at zf = 25 mm from the US transducer (Fig. 5.10). In the plane XZ, each

channel is wch = 40 µm wide and hch = 50 µm high, the interchannel center-to-center

distance ∆X varies between 80 µm and 360 µm.

Fig. 5.10 Several cross-sections (in the XZ plane) of two approaching microchannels
are imaged by moving the US probe along the Y axis. The sample is place at zf = 25
mm from the US probe, each channel is wch = 40 µm wide and hch = 50 µm high, the
interchannel center-to-center distance varies between 80 µm and 360 µm. At each laser
shot PA signals emitted by the microbeads crossing the imaging plane XZ are captured
by the linear transducer array (type L7-4) connected to the acquisition electronics.

A schematic of the experimental setup is shown in Fig. 2.1. In the experiment, a

flow of spherical absorbing 10-µm diameter beads was induced through the channels.

We used a flow of beads instead of a homogeneous absorbing liquid in order to be

able to use the same dataset to test a SUSHI-like reconstruction approach combining

fluctuation-based reconstruction with model-based reconstruction (see section 5.6.3).

At each laser shot (λlaser = 532 nm, fluence = 3 mJ/cm2) the PA signals from the

beads in the imaging plane were registered by a linear transducer array (type L7-4). By

moving the US probe along the Y axis, several cross-sectional images were obtained
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for interchannel distances ranging from 80 µm to 360 µm. For more information about

the acquisition equipment the reader is referred to Chapter 2.

The suspension of microbeads was prepared according to the following recipe:

12.5% of the initial 5% microbeads water suspension (Microparticles GmbH, Berlin,

Germany), 0.025% of a buffer solution (TWEEN20, Sigma-Aldrich Corp., St. Louis,

MO, USA), 19.6% of a density gradient medium (OptiPrep, ProteoGenix SAS, Schiltigheim,

France), and 67.9% of water. The buffer solution was used to avoid microbeads sticking

to each other whereas the density gradient medium was added to prevent microbeads

from precipitating and getting stuck inside the pump system.

In total, 20,000 acquisitions were made for each position of the probe. In each posi-

tion, the acquired data was beamformed and averaged over time. In each beamforming

image the SNR computed as the maximum of the signal over the standard deviation of

noise in a signal-free region was SNR ≈ 7000/2 = 3500.The size of the propagation

matrix AM×N
BF was M=216, N=1107. The rank of the propagation matrix ABF was

rank(ABF ) = 206 < N .

To apply model-based reconstruction, we also acquired a PSF corresponding to one

isolated microchannel (see section 2.5). The PSF FWHM was ∆X = 389 µm, ∆Z =

418 µm.

Projections of XZ reconstruction images onto the X axis obtained for different dis-

tances ∆X between the channels are combined in Fig. 5.11. The channels remain

distinguishable down to 80 µm (the PSF lateral FWHM being ∆X = 398 µm) which

was the minimal center-to-center distance available on the microfluidic sample.

Fig. 5.11 Sparsity-based reconstruction for two approaching channels (experiment, BF-
based, mean data): projections of XZ reconstruction images onto the X axis, obtained
for different distances ∆X between the channels. The green lines designate theoretical
separation.
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5.6.2.2 Noise-free simulations

As in the experiment all the imaged cross-sections were properly reconstructed, we

had to perform numerical simulations for shorter interchannel distances to find the true

limit of sparsity-based reconstruction. To look for the best achievable resolution, the

simulations were performed without adding noise.

The simulation results are shown in Fig. 5.12. It can be noticed that the channels

are resolved for ∆X > 22 µm. The corresponding regularization parameter α = αopt

was the same for all interchannel distances. Below α = αopt the channels were poorly

resolved as the regularization term was too low for the minimization algorithm to work

properly (see Eq. (5.29)). For α > αopt the channels appeared closer than they were on

the sample as some measurement data was ignored since the fidelity term was allowed

to be relatively high. The numerically determined resolution limit can be explained

by the PSFs of the approaching channels getting more and more correlated when the

channels become closer. Each PSF corresponding to a point in the discretized imaging

zone is encoded as a column of the propagation matrix A. Then, at the imaging depth

z = zf the correlation between columns corresponding to PSFs separated by ∆X = 20

µm is C = 0.87 whereas the correlation between columns related to PSFs separated by

∆X = 100 µm is C = 0.24. So, the PSFs corresponding to the approaching channels

get so similar to each other that the reconstruction algorithm is unable to distinguish

them, which leads to a faulty reconstruction.

Fig. 5.12 Sparsity-based reconstruction for two approaching channels (simulations, BF-
based, mean data): projections of XZ reconstruction images onto the X axis, obtained
for different distances ∆X between the channels. The green lines designate theoretical
separation.

5.6.2.3 Conclusion/discussion

We demonstrated experimentally that in sparsity-based reconstruction two point sources

could be resolved down to 80 µm which is about four times smaller than the FWHM of
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the PSF (∆X = 389 µm). In simulations, we were able to model sources separated by

smaller distances, with a perfectly known propagation model and without any additional

noise. As a result, the corresponding resolution limit was about 24 µm for the same PSF

FWHM as in the experiment (∆X = 389 µm). This figure is apparently related to the

available numerical precision. It still remains unclear whether a similar resolution could

be obtained experimentally even at a very high SNR since in practice the propagation

model is not perfectly known. In addition, the reported resolution limits would probably

not have been obtained if the SNR were lower. So, additional studies are needed to

determine the effect of model imperfection and the SNR on the resolution limit.

5.6.3 Fluctuation-based+model-based imaging

In fluctuation-based imaging the super-resolved image is obtained by calculating a cer-

tain statistical property over each pixel of a stack of beamformed images (see Chapter

4). In particular, it was demonstrated by Chaigne et al. [Chaigne et al., 2016] that

variance-based reconstruction can lead to a
√

2 resolution improvement in PA imag-

ing. In the same study, it was shown that the result of fluctuation-based imaging may

be additionally improved by applying L2 reconstruction to the variance image. The

corresponding forward model can be expressed as:

RV AR
BF = AV AR

BF T0, (5.18)

where the vector RV AR
BF represents the variance beamforming image (pixelwise time

variance calculated over a set of beamformed images) and AV AR
BF is the elementwise

matrix product AV AR
BF (i, j) = ABF (i, j)ABF (i, j).

Later on, it was demonstrated that L1 (sparsity-based) reconstruction applied to the

variance image can lead to super-resolution in US imaging [Bar-Zion et al., 2018]. Fig.

5.13 shows some in vivo results obtained for a rabbit kidney in [Bar-Zion et al., 2018].

It can be seen that the SUSHI approach (sparsity-based reconstruction applied to the

variance image) can resolve close blood vessels which appear indistinguishable when

other reconstruction techniques are applied.

Inspired by [Bar-Zion et al., 2018] we tried to obtain super-resolution in PA imag-

ing by applying sparsity-based reconstruction to the variance beamforming image. We

investigated the resolution limit of the proposed technique in experiments and in simu-

lations using the model of two approaching channels.
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Fig. 5.13 Experimental reconstruction of blood vessels in a rabbit kidney [Bar-Zion
et al., 2018]. (a) Mean beamforming image. (b) SOFI image (c) SUSHI image (d) super-
localization result. (e) and (f) Intensity profiles measured along the solid and dashed
yellow lines on (a)–(d). (e) shows that in high density areas (e.g., bifurcations), SUSHI
is superior, while in low density areas [e.g., isolated vessel in (f)], SUSHI exhibits
comparable spatial resolution to super-localization.

5.6.3.1 Experimental protocol

The experimental protocol has been described in section 5.5.2.1. To perform variance-

based reconstruction, for each imaged cross-section we computed the variance beam-

forming image. On each variance image the SNR calculated as the maximum of the

signal over the standard deviation of noise in a signal-free region was SNR≈ 1.2 ×
106/756 = 1600. The size of the propagation matrix AV AR

BF was M=216, N=1107. The

rank of the propagation matrix AV AR
BF was rank(AV AR

BF ) = 216 < N .

5.6.3.2 Experimental results

Projections of XZ reconstruction images obtained for different distances ∆X between

the channels are combined in Fig. 5.14. As in the mean-based reconstruction (Fig.

5.11), the channels remain distinguishable down to 80 µm (the PSF lateral FWHM

being ∆X = 398 µm) which was the minimal center-to-center distance available on the

microfluidic sample.
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Fig. 5.14 Sparsity-based reconstruction for two approaching channels (experiment, BF-
based, variance data): projections of XZ reconstruction images onto the X axis, ob-
tained for different distances ∆X between the channels. The green lines designate
theoretical separation.

5.6.3.3 Simulation results

As in single-shot imaging, we performed noise-free simulations to determine the fun-

damental limit of the technique. The simulation results are shown in Fig. 5.15. It

can be noticed that the channels are resolved for ∆X ≥ 16 µm. So, the resolution

improvement is about 22/16 ≈
√

2 compared to sparsity-based reconstruction applied

to the mean image (section 5.5.2.2). It is to be noted that in fluctuation-based super-

resolution imaging the variance beamforming image also demonstrates a
√

2 resolution

improvement with respect to the mean image [Chaigne et al., 2016].

Fig. 5.15 Sparsity-based reconstruction for two approaching channels (simulations, BF-
based, variance data): projections of XZ reconstruction images onto the X axis, ob-
tained for different distances ∆X between the channels. The green lines designate
theoretical separation.
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5.6.3.4 Conclusion/discussion

We showed that sparsity-based reconstruction applied to the variance image leads to

super-resolution in PA imaging. Being a combination of two other super-resolution

techniques, the applied method improves the resolution of each of them. As a result,

the maximal resolution is only about
√

2 times better than in classical sparsity-based

reconstruction (16 µm beside 22 µm). So, if Fig. 5.13 from [Bar-Zion et al., 2018]

was complemented with the result of sparsity-based reconstruction applied to the mean

image the difference between SUSHI and classical sparsity-based reconstruction would

probably be merely noticeable. It should be kept in mind that a certain number of

acquisitions should be made to obtain the variance image and the
√

2 gain in spatial

resolution may cost too much in terms of temporal resolution.

5.6.4 Some insights into performance and mechanism of model-based reconstruction

In this section we will perform computer simulations to better understand model-based

reconstruction in the context of super-resolution PA imaging. We restrict our analysis

to reconstruction based on the following minimization:

T̂0 = argmin
T

{||RRF −ARFT ||22 + α∗||T ||1}. (5.19)

When sparsity-based reconstruction (α 6= 0) is considered, the non-negativity con-

straint T (i) ≥ 0 is not used unless the opposite is stated.

When the positivity-based reconstruction is considered, the non-negativity con-

straint is imposed but the regularization parameter α is equal to 0.

For the rest of this section we will suppress the indices of RRF and ARF .

In the first part of the section, we shall study sparsity-based reconstruction. In partic-

ular, we will investigate how the reconstruction result depends on the regularization pa-

rameter. As noted in section 5.1.2, regularization should suppress the noise and choose

a solution which is close to the imaged object. So, first we consider noise suppression

(in the absence of object) afterwards we discuss object reconstruction (in the absence

of noise) and then we analyze object reconstruction in the presence of noise, which is

close to real imaging conditions. In the first part, we will also determine the role of the

non-negativity constraint when it complements sparsity-based reconstruction. We will

conclude this part by discussion on the choice of the regularization parameter, giving

an answer to question (2) of section 5.4.1.4.

In the second part of the present section we shall determine whether in the noiseless

case the correct object can be provided by positivity-based reconstruction (question (3)

of section 5.4.1.4). To do it, we will apply positivity-based reconstruction to simulation

data for the two approaching channels. In these simulations, we will also determine the
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resolution limit of positivity-based reconstruction.

The simulation data was generated on the following grounds:

• All the transducer elements are point sources;

• The emitted PA wave is the same for all imaged point sources, the detected signals

are identical in amplitude and spectrum, but they are shifted in time according to

the distance between each imaged source and each transducer element;

• The detected signals have a central frequency and bandwidth corresponding to

those used in experiments, with the same sampling frequency as in experiments;

• When noise is considered, gaussian noise with a zero mean and the rms of σn =

30 is added to the detected signals. Such noise resembles the noise produced by

the acquisition electronics used in our experiments (see section 2.3).

5.6.5 Mechanism and performance of sparsity-based reconstruction

To study sparsity-based reconstruction, we generated PA data for a modelled object

consisting of K = 5 points separated by Lcc = 125 µm. The propagation matrix

AM×N (M = 4608, N = 765), size of the reconstruction zone (550 µm × 200 µm),

frequency and bandwidth of the received signals (corresponding to the probe L22-8)

as well as other reconstruction and imaging parameters are close to the experiment

with five parallel microchannels, the maximum of the RF signal related to a single

reconstruction point being A1 = 15. When noise is considered, white Gaussian noise

with controlled rms value is added to each detected signal.

5.6.5.1 Renormalization

Let us consider the fidelity term Jf = ||R −AT ||22 in minimization (5.19). When the

vector RM×1 is acquired in the absence of imaged object (T = 0), it contains only

noise. If the noise rms is σn then ||R||22 ≈ Mσ2
n. Therefore, the fidelity term Jf

is approximately equal to Mσ2
n when the object is perfectly reconstructed. So, it is

convenient to introduce

J∗f = ||R−AT ||22/(Mσ2
n) = Jf/(Mσ2

n) (5.20)

and then consider reconstruction only around J∗f = 1.

One can also consider the normalized regularization parameter

α∗ = α/(Mσ2
n). (5.21)
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In this case, minimization (5.19) will be equivalent to minimization (5.22):

T̂0 = argmin
T

{J∗f + α∗||T ||1}. (5.22)

5.6.5.2 Reconstruction in presence of noise only (no object)

Let us consider the vector R which contains only noise. In this case the reconstructed

object T will also contain only noise. Simulation curves illustrated in Fig. 5.16 show

that more and more noise in T is removed when the regularization parameter increases.

First, even at very small values of α∗ about 98% of noise energy is already rejected. This

substantial noise reduction is due to the matrix A being considerably structured. Then,

for high values of α∗ the fidelity term J∗f = ||R − AT ||22/(Mσn) is close to one (the

norm ||T ||1 approaching zero), which means that all noise is suppressed.In addition, it

can be noticed that the non-negativity constraint leads to the noise being removed more

rapidly with the growth of α∗.

Fig. 5.16 J∗f term (a) and ||T ||1 norm (b) computed by minimizing Eq. (5.22) with (red
dots) and without (blue dots) the non-negativity constraint. The measurement vector R
contains only gaussian noise with σn = 30.
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5.6.5.3 Reconstruction of an object with no noise

Let us consider the following 1D minimization problem (r, a, t ∈ R1):

t = argmin
t
{||r − at||22 + α||t||1} (5.23)

The L1 norm and the fidelity term Jf corresponding to the solution t to minimization

problem (5.23) can easily be found (the number of sources K = 1):

||t||1 = − 1

2a2
Kα +

r

a
K. (5.24)

Jf =
1

4a2
Kα2. (5.25)

It should be noted that L1 norm (5.24) is a linear function of αthat attains zero at

αe = 2ra. (5.26)

Below, we will show that if sparsity-based regularization leads to the correct object

reconstruction, Eq. (5.24)-(5.26) correspond well to minimization problem (5.19) when

K is the object sparsity (number of non-zero points) and the following substitutions for

the variables a and r are applied:

a2 = EPSF , (5.27)

with EPSF ≈ 1
N

∑M
i=1

∑N
j=1 A(i, j)A(i, j) being the average energy of the RF-PSF;

r =
A1

APSF

√
EPSF , (5.28)

with A1 being the maximum of the RF signal corresponding to a single point in the

reconstruction grid and APSF ≈ 1
N

∑N
j=1max(A(:, j)) being the average amplitude of

the RF-PSF.

It follows from our experimental and simulation observations that the numerical

minimizer works properly only when the regularization term becomes significant and

the ratio between the regularization Jr and fidelity Jf terms reaches a certain value γ.

Afterwards, the ratio between the regularization Jr and fidelity Jf terms will decrease

with α, as follows from Eq. (5.24) and (5.25). So, a correct reconstruction can be

expected when
Jr
Jf

=
α||T ||1

||R−AT ||22
= −2 +

4ar

α
≤ γ. (5.29)

Using Eq. (5.29), one obtains the minimal value αs that is necessary to retrieve the

minimum-L1-norm solution:
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αs =
4ar

2 + γ
= 4

1

2 + γ

EPSF
APSF

A1 = A1F (γ). (5.30)

For the modelled object, the values of a and r estimated using Eq. (5.27) and (5.28)

were a = 5.2 × 105, r = 258. The normalization factor in Eq. (5.20) and (5.21) was

Mσ2
n = 4.1 × 106. The parameter α∗e = 64 was computed using Eq. (5.26). The

parameter α∗s = 2× 10−3 was estimated heuristically.

Fig. 5.17 Sparsity-based reconstruction (without the non-negativity constraint) of the
modelled object in absence of noise. (a,b) Reconstruction (dotted blue) and theoretical
(solid red) curves for the ||T ||1 norm and the fidelity J∗f term, overview. Three distinct
regions are observed: insufficient regularization (0 ≤ α∗ < α∗s), regularized solution
(α∗s ≤ α∗ < α∗e), total object suppression (α∗e ≤ α∗). (c,d) Zoom of (a,b) for small
α∗. (e-h) Objects reconstructed at different α∗, denoted as α∗1 = 0, α∗2 = 2.4 × 10−3,
α∗3 = 31, and α∗4 = 64 in (a-d).

L1 reconstruction results obtained for the modelled object are shown in Fig. 5.17.

Three regions with different reconstruction behaviour can be distinguished.

I) 0 ≤ α∗ < α∗s. Condition (5.29) is not satisfied and the L1 reconstruction does

not provide the minimum-L1-norm solution. In fact, the reconstruction passes through

different solutions (starting from the object shown in Fig. 5.17e) to the underdetermined

system R = AT . The L1 norm decreases steeply (the vertical part in Fig. 5.17b) until
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the minimum-L1-norm solution, which matches the modelled object, is reached (Fig.

5.17f).

II) α∗s ≤ α∗ < α∗e. The reconstruction passes from the minimum-L1-norm solution

(Fig. 5.17f) to the complete destruction of the object T . In particular, in the reconstruc-

tion image the number of sources K decreases while the distances between them shrink

(Fig. 5.17f-h).

III) α∗e ≤ α∗. All the signal is suppressed and T (i) = 0,∀i = 1..N . So, the fidelity

term attains its maximum whereas the L1 norm reaches zero.

Notably, the theoretical ||T ||1 and J∗f curves, obtained using Eq. (5.24) and (5.25),

match a large part of the reconstruction curves. The deviation of the ||T ||1 and J∗f

reconstruction curves from the theoretical behaviour at large α∗ is probably due to the

strong interference between the sources. As follows from the observed evolution of

the reconstructed object, when α∗ >> α∗s the ||T ||1 and J∗f curves might still obey

Eq. (5.24) and (5.25) with the number of sources K decreasing and the parameter r

increasing.

5.6.5.4 Reconstruction of an object under noisy condition

L1 reconstruction results obtained for the modelled object with added noise are shown

in Fig. 5.18.

Contrary to reconstruction in absence of noise (Fig. 5.17), when noise is present,

reconstruction at α∗ = α∗2 = 2.4× 10−3 (Fig. 5.18f) does no longer provide the correct

object. It is only at α∗ = α∗4 = 4.82 when reconstruction becomes satisfactory (Fig.

5.18h).

The ||T ||1 and J∗f curves shown in Fig. 5.18a-d do have two contributions: from the

relevant signal (Fig. 5.17a-d) and from the noise (Fig. 5.16). So, at α∗ = α∗4 = 4.82

most of the noise is suppressed, with the J∗f noise term reaching one and the L1 noise

norm reaching zero. As a result, the object becomes recognizable in the reconstruction

image (Fig. 5.18h). For α∗4 ≤ α∗ reconstruction follows the noiseless case (Fig. 5.17).

5.6.5.5 Choice of the regularization parameter

As follows from object reconstruction in the noiseless case, the reconstruction algorithm

provides the best possible solution at α = αs. Below this value, the regularization term

is too small and the algorithm does not provide the minimum-L1-norm solution. Above

this value, the reconstruction image undergoes undesirable transformations.

The value of α∗s could be found by fitting theoretical J∗f and ||T ||1 curves to the

reconstruction ones. However, to build the theoretical model, one must know the object

sparsity K and the maximum A1 of the RF signal corresponding to a single point on

the reconstruction grid. These values are not usually available in practice. In addition,
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Fig. 5.18 Sparsity-based reconstruction (without the non-negativity constraint) of the
modelled object in presence of noise. (a,b) Reconstruction (dotted blue) and theoretical
(solid red) curves for the ||T ||1 norm and the J∗f term, overview. (c,d) Zoom of (a,b)
for small α∗. (e-h) Objects reconstructed at different α∗, denoted as α∗1 = 0, α∗2 =
2.4× 10−3, α∗3 = 0.12, and α∗4 = 4.82 in (a-d). The object appear unrecognizable(e-g)
until most of the noise is suppressed (h).

the presence of noise can make fitting more challenging as noise perturbs the initial part

of the J∗f and ||T ||1 curves (Fig. 5.18). Moreover, when too much noise is added, the

imaged object is not recognizable at α = αs. In this case, the imaged object may appear

at higher α∗ when most of the noise is suppressed, but the reconstruction fidelity can

not be assured.

In summary, the right value of the regularisation parameter can hardly be estimated

without exploiting additional (not following from sparsity-based reconstruction) infor-

mation about the object.

5.6.6 Influence of the non-negativity constraint

5.6.6.1 Noise-free situation

Several reconstruction images obtained in sparsity-based regularization with the non-

negativity constraint are shown in Fig. 5.19. On comparing Fig. 5.17e and 5.19a, one
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remarks that the non-negativity constraint is enough to provide the right solution when

α∗ = 0 (the L1 regularization term does not intervene at all). Starting from α∗ = α∗s,

condition (5.29) is fulfilled. As a result, it is the L1 regularization term that contributes

the most to the reconstruction and the reconstruction results shown in Fig. 5.17f-h and

5.19b-d appear identical.

Fig. 5.19 Sparsity-based reconstruction (with the non-negativity constraint) of the mod-
elled object in absence of noise, the reconstruction images corresponding to different
values of the regularization parameter: α∗1 = 0 (a), α∗2 = 2.4 × 10−3 (b), α∗3 = 31 (c),
and α∗4 = 64 (d). The non-negativity constraint leads to the right solution (a) even when
α∗ = 0 and the L1 regularization term is not present at all.

5.6.6.2 Noisy situation

Reconstruction results obtained with added noise are shown in Fig. 5.20. As in the

noiseless case (Fig. 5.19), the object can be already recognized at α∗1 = 0. At higher α∗

L1 regularization suppresses the noise further.

Fig. 5.20 Sparsity-based reconstruction (with the non-negativity constraint) of the mod-
elled object in presence of noise, the reconstruction images corresponding to different
values of the regularization parameter: α∗1 = 0 (a), α∗2 = 2.4× 10−3 (b), α∗3 = 0.12 (c),
and α∗4 = 4.82 (d). The object is already quite well reconstructed at α∗1 = 0. Then, at
higher α∗ L1 regularization suppresses the noise further.
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5.6.7 Reliability

Fig. 5.21 shows several modelled objects and images reconstructed using the sparsity-

based approach. Although two sources separated by ∆X = 25 µm are correctly re-

constructed (Fig. 5.21a,d), the object consisting of three sources separated by the same

distance is not reconstructed properly (Fig. 5.21b,e). In particular, the central source

is not visible in the reconstruction image. A possible reason is that the signal from

the central source is masked by signals from the two other sources due to interference

effects. It is only when the source separation reaches ∆X = 50 µm that interference

effects become weak enough and all the three sources are reconstructed (Fig. 5.21c,f).

Fig. 5.21 Modelled objects (a-c) and corresponding reconstruction images (d-f) ob-
tained in sparsity-based reconstruction. (a) 2 points separated by ∆X = 25 µm. (b) 3
points separated by ∆X = 25 µm. (c) 3 points separated by ∆X = 50 µm.

This simple example shows that the reliability of sparsity-based reconstruction de-

pends in a complex manner on the imaged object. Being able to distinguish two sources

separated by a certain distance ∆X does not mean that any object with the minimal

feature separation equal to ∆X will be correctly reconstructed.

5.6.8 Positivity-based reconstruction

In this section we will determine whether the non-negativity constraint can be enough

to reconstruct the object without using the regularization term. To be able to compare

the positivity-based resolution with the resolution provided by sparsity-based regular-

ization, we apply positivity-based reconstruction to the noise-free simulated data for the

two channel experiment that we used in section 5.5.3.3.
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5.6.8.1 Resolution limit

The positivity-based reconstruction results obtained for the simulated two channel ex-

periment are shown in Fig. 5.22. It can be noticed that these results are similar to the L1

reconstruction images obtained without the non-negativity constraint (Fig. 5.22). How-

ever, the resolution limit in positivity-based reconstruction is higher: ∆X = 44 µm

beside ∆X = 24 µm in sparsity-based reconstruction (the PSF lateral FWHM being

∆X = 398 µm).

Fig. 5.22 Positivity-based reconstruction for two approaching channels (simulations,
BF-based, without noise): projections of normalized XZ reconstruction images (recon-
struction grid step dx = 6 µm) onto the X axis, obtained for different distances ∆X
between the channels. The green lines designate theoretical separation. (a) Reconstruc-
tion applied to the mean image. (b) Reconstruction applied to the variance image.

5.6.8.2 Reliability

Fig. 5.23 illustrates several modelled objects and images obtained in positivity-based re-

construction. These results are similar to those shown for sparsity-based reconstruction

in Fig. 5.21. In particular, for the same minimal distance between object features, one

object can be reconstructed well (Fig. 5.23a,d), while another one is not reconstructed

(Fig. 5.23b,e). Similarly to sparsity-based reconstruction, reliability of positivity-based

reconstruction depends in a complex manner on the imaged object.
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Fig. 5.23 Modelled objects (a-c) and corresponding reconstruction images (d-f) ob-
tained in positivity-based reconstruction. (a) 2 points separated by ∆X = 25 µm. (b) 3
points separated by ∆X = 25 µm. (c) 3 points separated by ∆X = 50 µm.

5.7 Conclusion

In this Chapter, super-resolution in cross-sectional PA imaging was obtained by ex-

ploiting a model-based reconstruction approach. In particular, it was shown that in

a real imaging environment where some noise is present, L1 (sparsity-based) recon-

struction can lead to sub-diffractional resolution while other model-based techniques

(Moore-Penrose pseudoinverse, Tikhonov regularization, positivity-based reconstruc-

tion) may result in the imaged object appearing unrecognizable in the reconstruction

image. In our study, five regularly distributed targets of equal strength separated by

Lcc = 125 µm were resolved in the L1 reconstruction image, the classical resolution

limit being around 154 µm. In the same proof-of-principle experiment we also showed

that model-based reconstruction provides equivalent results whether it is applied to RF

or BF data.

In another experiment, we demonstrated that two point targets can be resolved at

least down to 80 µm in L1 reconstruction. Shorter distances were explored in computer

simulations, where we demonstrated that two point targets can be resolved down to 24

µm (classical resolution limit being about 398 µm). This limit is probably related to the

maximal numerical precision and for the same acoustic signals will vary slightly for dif-

ferent acquisition equipment and signal processing pipeline. We also demonstrated that

when the variance image is used for reconstruction instead of the single-shot (mean)

image the resolution can be about
√

2 times better. This resolution improvement corre-

sponds to the resolution gain provided by 2nd order statistical analysis [Chaigne et al.,

2016].
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To understand better the mechanism of sparsity-based reconstruction, especially the

role of the regularization parameter (which the reconstruction result depends on) and

the non-negativity constraint, we carried out a theoretical analysis. We proposed a

model that describes the evolution of the fidelity term and the L1 norm of the recon-

structed object as a function of the regularization parameter and verified this model in

simulations. We showed that the regularization parameter in L1-based reconstruction

can hardly be predicted without using additional (not related to regularization) informa-

tion about the object. By testing different objects we also demonstrated that it is hard

to predict whether L1 reconstruction will provide the right object at any value of the

regularization parameter.

Additional studies were carried out to determine whether the positivity-based re-

construction (model-based reconstruction with the non-negativity constraint without the

regularization term) can in principle (at infinite SNR) provide super-resolution. In com-

puter simulations it was shown that two targets can be resolved down to 44 µm which is

a bit higher than for sparsity-based reconstruction. However, similarly to sparsity-based

reconstruction, the possibility to reconstruct a given object using the non-negativity con-

straint can not be certain.

To sum up, sparsity-based reconstruction can lead to super-resolution but additional

knowledge about the object is necessary to assess the reconstruction result and to predict

the optimal value of the regularization parameter. In this regard, additional information

can be provided by other imaging techniques. One other approach would be to use

the deep learning framework trained with pairs consisting of input RF/BF data and

corresponding regularization parameters. Some combinations of the deep learning and

sparsity-based techniques have already been proposed [van Sloun et al., 2018].

It should also be noted that in this chapter we demonstrated that under some condi-

tions sparsity-based reconstruction can successfully resolve point targets separated by a

sub-diffractional distance. This can be applied in super-localization imaging, where the

concentration of contrast agents at any time moment is currently limited by classical res-

olution (see Chapter 1). If sparsity-based reconstruction could be employed to resolve

densely packed contrast agents, this could drastically improve the temporal resolution

of super-localization. In US super-localization, it has already been proposed to use

L1-based reconstruction [Shu et al., 2018] to detect microbubbles on each diffraction-

limited image. From the results reported in [Shu et al., 2018] and those of the present

chapter one can expect that sparsity-based reconstruction will permit a significant in-

crease in the concentration of contrast agents in PA as well as in US super-localization.
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CHAPTER 6

Photoacoustic and ultrasound imaging with a sparse array

6.1 Introduction

6.1.1 2D imaging vs 3D imaging

Detection arrays consisting of a number of identical elements are often used for ac-

quiring acoustic signals in ultrasound (US) as well as in photoacoustic (PA) imaging.

Developed for cross-sectional 2D imaging, linear transducer arrays usually have Nel =

128 or Nel = 256 elements arranged in a single row, the element spacing being about

λac/2 [Cheston and Frank, 1990] (λac = vs/fc being the acoustic wavelength at the

central frequency fc of the transducer). Such arrays permit imaging an object in the XZ

plane in a single scan (see section 1.3.4). As stated in Chapter 1, at a distance R from

the transducer aperture, the classical lateral resolution of a linear array is given by

∆X ∼ λac
R

D
, (6.1)

where D is the length of the transducer aperture.

If one wants to retrieve a volumetric distribution of the probed quantity in a single

scan, detection arrays with a 2D or 3D aperture, such as matrices of elements or ring

arrays, are to be used. To provide classical resolution given by Eq. (6.1) in the lateral

directions X and Y, the aperture size in the plane XY should be D × D. In addition,

to avoid grating lobes appearing due to spatial undersampling, the element spacing

should be at most λac/2. Thus, detection arrays for 3D imaging should have at least

N2
el elements. For example, if a linear array has 128 elements, the corresponding array

for 3D imaging should have N2
el = 16384 elements. However, such a great number

of elements are hard to connect and are hard to control [Fenster et al., 2001]. So, it

is important to propose methods that would provide the same quality of reconstruction

images with fewer transducer elements.
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6.1.2 State-of-the-art

One of the earliest schemes for reducing the number of elements is to use a sparse ar-

ray. Sparse arrays were first proposed in 3D US imaging [Turnbull and Foster, 1991;

Smith et al., 1991]. The corresponding reduction scheme suggests using a selection of

elements of a periodic dense array without changing the total transducer aperture. Such

a selection can either be a random subset of elements [Turnbull and Foster, 1991] or a

defined pattern [Smith et al., 1991]. The advantage of random sparse arrays is that in

these arrays grating lobes are avoided by eliminating the uniform, periodic arrangement

of elements [Turnbull and Foster, 1991]. Experimental investigations of imaging per-

formance of sparse arrays confirmed [Roux et al., 2017b,a; Cohen and Eldar, 2018] that

such arrays can provide a diffraction-limited resolution similar to that of all-element

arrays.

Sparse arrays have also been used for 3D photoacoustic tomography (PAT) [Ephrat

et al., 2008; Roumeliotis et al., 2011, 2012; Han et al., 2017; Dean-Ben et al., 2012;

Wang et al., 2012]. In PA sparse-array imaging, transducer elements are usually reg-

ularly distributed. To compensate for artifacts arising from spatial undersampling, re-

construction via the model-based approach is usually employed. For additional details

on model-based reconstruction in PA imaging the reader is referred to Chapter 5.

All the studies on sparse arrays cited above considered only diffraction-limited reso-

lution. It has been only recently that super-resolution was demonstrated in sparse-array

imaging. In particular, a super-resolved image of two touching subwavelength-diameter

tubes was obtained in sparse-array 3D US imaging [Harput et al., 2019]. However,

the demonstrated resolution improvement was achieved by super-localization which re-

quires contrast agents and has a poor temporal resolution (see Chapter 3).

6.1.3 Objectives of this chapter

In this chapter, we propose to apply model-based reconstruction, in particular L1 (sparsity-

based) regularization, to achieve super-resolution in sparse-array imaging. Model-based

reconstruction is chosen as, in opposite to other super-resolution techniques, including

super-localization, it can provide super-resolution in single-shot imaging and it does not

require any contrast agents (see Chapter 5). We restrict out demonstration to 2D imag-

ing although the same principles could be used in 3D imaging. Our study is based on

two proof-of-concept experiments, the first experiment demonstrating super-resolution

in sparse-array PA imaging, the second one demonstrating super-resolution in sparse-

array US imaging. In these experiments, we obtain a cross-sectional image of five

parallel microfluidic channels separated by a sub-diffractional distance. In addition, we

conduct computer simulations to determine how the L1 reconstruction quality is related

to the number of transducer elements and the signal-to-noise ratio (SNR).
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6.2 Experimental demonstration

6.2.1 Materials and methods

6.2.1.1 Samples

In both PA and US experiments we use identical samples, each consisting of five parallel

microfluidic channels with a rectangular cross-section (Fig. 6.1). To perform cross-

sectional imaging, the microchannels are placed perpendicularly to the imaging plane

XZ of a linear transducer array (type L22-8) at the US probe elevational focus distance

zf = 15 mm. In this plane, each channel is hch = 50 µm high and wch = 40 µm wide,

the center-to-center distance between neighbouring channels being Lcc = 125 µm. To

provide a good contrast, the sample is filled with absorbing liquid (Patent Blue V) in

the PA experiment and left empty in the US experiment. For more details on fabrication

of the microfluidic samples the reader is referred to Chapter 2.

Fig. 6.1 Samples carrying five parallel microchannels are placed perpendicularly to the
imaging plane. Each channel hch = 50 µm high and wch = 40 µm wide, the center-
to-center distance is Lcc = 125 µm. In the PA experiment, the sample is illuminated
by a laser pulse and the resulting PA signals are received by a linear US probe. In the
US experiment, a plane wave is emitted in the sample’s direction and the backscattered
signals are registered.

6.2.1.2 Experimental protocols

A schematic of the experimental setup is shown in Fig. 2.1. In our experiments, trans-

mission and reception of acoustic waves were assured by 128 elements of a linear trans-

ducer array (type L22-8).
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In the PA experiment, PA signals were acquired on illuminating the sample with a

single laser pulse (λlaser = 532 nm, fluence= 3 mJ/cm2).

In the plane wave US experiment, US backscattered signals were registered after

a short US pulse was sent perpendicularly to the sample. This pulse was simultane-

ously emitted by all the 128 available elements of the linear transducer array (emission

amplitude 35 V).

For additional information on the experimental equipment the reader is referred to

Chapter 2.

To apply model-based reconstruction, we also acquired the PSF of the imaging sys-

tem in both PA and US regimes. The PSF full width at half maximum (FWHM) was

∆X = 154 µm, ∆Z = 139 µm in PA imaging and ∆X = 154 µm, ∆Z = 80 µm in

US imaging (see section 2.5).

The experimental SNR was computed as the ratio between the maximum of the

acquired radio frequency (RF) signal and the standard deviation of electronic noise

calculated over a signal-free region of the RF data. In the PA experiment, the estimated

SNR was SNRPA ≈ 4500/30 = 150. In the US experiment, the estimated SNR was

SNRUS ≈ 2500/30 = 83.

6.2.1.3 Image reconstruction

Image reconstruction was performed via L1 regularization that was considered in detail

in Chapter 5. The L1 reconstruction was based on the following minimization:

T̂0 = argmin
T

{||R−AT ||22 + α||T ||1}, (6.2)

where RM×1 represents the received radio frequency (RF) PA or RF US data, T̂N×10 is

an estimate of the imaged object discretized on the reconstruction grid, AM×N is the

propagation matrix containing the PSF for each point of the reconstruction grid, α is the

regularization parameter. The matrix A was constructed using the single PSF acquired

in the imaging zone (see section 5.2.3 for construction of the matrix A).

As follows from section 5.6.5.1 the fidelity term Jf = ||R −AT ||22 in Eq. (6.2) is

proportional to the number of transducer elements when the choice of α provides the

right object. So, if the regularization parameter α = α(N1) is somehow obtained for

N1 elements, the same ratio between the fidelity Jf and the regularization Jr = α||T ||1
terms for N2 elements will be at α(N2) = N2/N1α(N1). This choice would provide

an efficient noise suppression at Nel = N2. On the other hand, the regularization term

should be large enough to reconstruct the right object. In this regard, α should first be

estimated for the smallest number of elements at which reconstruction is acceptable.

So, in our experiments we first determined α = α(Nel = 8) by comparing visually
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the reconstructed object with the real sample. Based on α(Nel = 8) the regularization

parameter for other values of Nel was obtained.

Reconstruction (6.2) was performed with a fast iterative shrinkage-thresholding al-

gorithm (FISTA) [Beck and Teboulle, 2009; Vu, 2016]. Details on the realization of

the reconstruction algorithm can be found in Appendix B. The object to image was dis-

cretized over a cartesian grid with a Lcc/10 = 12.5 µm step, resulting in Nx = 61 points

in the X direction and Nz = 13 points in the Z direction. In the PA experiment, the

length of the vector TN×1 was N = Nx × Nz = 793, the length of the vector RM×1

was M = 4636, the rank of propagation matrix AM×N was rank(A) = 346 < N .

In the US experiment, the length of the vector TN×1 was N = Nx × Nz = 793, the

length of the vector RM×1 was M = 5632, the rank of propagation matrix AM×N was

rank(A) = 368 < N .

A 2D Gaussian filter with σg = Lcc/10 = 12.5 µm was applied after reconstruction to

smooth the pointy images. Bicubic interpolation was used afterwards to improve image

visualization. The interpolated values were placed on a spacial grid with a Lcc/40 ≈ 3

µm step.

6.2.2 Results

6.2.2.1 Photoacoustic and ultrasound super-resolution with the full array

First, we tested whether a super-resolved image of the object can be obtained in PA and

US regimes with all 128 available transducer elements. Standard delay-and-sum beam-

forming and L1 reconstruction results obtained in all-element imaging are compared in

Fig. 6.2.

As shown in Fig. 6.2a,e, after standard reconstruction the five imaged cross-sections

appear indistinguishable. This complies with the diffraction theory as, by construction,

the center-to-center distance between neighbouring channels (Lcc = 125 µm) is below

the resolution limit defined by the lateral FWHM of the PSF (∆X = 154 µm in PA and

US imaging). As expected from the results of Chapter 5, the L1 approach provides a

super-resolved image with five well separated regions in both PA and US experiments.

Importantly, here we extend the results of Chapter 5 to single-shot plane wave US imag-

ing, illustrating the generality of the proposed reconstruction approach.

Although the PA and US reconstruction images in Fig. 6.2 look similar, some arti-

facts are present in the US images. Furthermore, the average interchannel distance in the

US images (112 µm) also deviates from the true value (Lcc = 125 µm), whereas in the

PA images the interchannel distance is restored correctly. There are several constraints

that may lead to the observed differences in PA and US reconstruction. For example,

since in the US experiment the acoustic wave crosses the upper PDMS layer two times

whereas there is only one passage in the PA experiment, one can expect the US data re-
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Fig. 6.2 Images reconstructed in the PA (a-d) and US (e-h) experiments using 128 el-
ements of the probe. (a,e) Conventional beamformforming cross-sectional images of
the sample. The microchannels are indistinguishable as the center-to-center distance
Lcc = 125 µm is smaller than the lateral FWHM of the PSF (154 µm). (b,f) Images
obtained with L1 - reconstruction. The reconstruction recovers five distinct regions cor-
responding to the microfluidic channels. (c,g) Reconstruction images (b) and (f) after
smoothing out by a 2D spatial Gaussian filter (σg = 12.5 µm) and interpolating on a 3
µm grid. (d,h) Red: normalized amplitude profile on the envelope images (a) and (b);
blue: normalized amplitude profile on the filtered reconstruction images (c) and (g).

construction to be more erroneous as we neglect the deviation of the speed of sound in

PDMS from the speed of sound in water. In addition, reverberations between the PDMS

surface and the PDMS-channel interface interfere significantly with the useful signal in

US imaging. Given the actually rather strong assumption that consists in neglecting the

presence of PDMS (especially in US imaging), the proposed super-resolution recon-

struction scheme can be considered relatively robust in spite of the sample geometry

being simple.

6.2.2.2 Photoacoustic and ultrasound super-resolution with a sparse array

To investigate whether L1 reconstruction can lead to super-resolution in sparse-array

imaging we applied L1 reconstruction to data acquired by only a fraction of the probe

elements. To this end, we removed the elements of the vector R and the rows of the

matrix A corresponding to the transducer elements taken out from consideration. To

preserve the classical resolution limit, the resulting probe aperture was kept constant

by including the first and the last elements of the transducer array. The other elements

were regularly distributed along the probe. The objects reconstructed with 4, 8 and 16
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elements are compared to the full-array reconstruction in Fig. 6.3.

Fig. 6.3 Images obtained with L1 reconstruction in PA and US experiments usingNel =
4, 8, 16 and 128 transducer elements regularly distributed along the probe aperture. A
2D spatial Gaussian filter (σg = 12.5 µm) interpolation on a 3 µm grid were applied
after the reconstruction.

It turns out that in both PA and US experiments super-resolved images of the mi-

crochannels can be obtained by using down to 8 elements of the probe. Interestingly,

the drastic reduction in the number of probe elements (8 against 128) did not affect the

apparent image quality. However, with less than 8 elements used for the reconstruction,

the resulting object is unrecognizable in the reconstruction image.

The fact that L1 reconstruction fails to recover the object with less than 8 transducer

elements could be explained by lack of information about the object. Indeed, the quan-

tity of the useful signal decreases when the number of elements is reduced whereas the

noise level remains the same. So, it can be supposed that for a given SNR there is the

minimal number of elements Nelmin that provides the required quality of reconstruc-

tion.

6.3 Theoretical investigation

To investigate how Nelmin depends on the SNR, we carried out a series of numerical

simulations mimicking our PA experiment (but also representative for the US experi-

ment). The five imaged cross sections were modelled as five point sources separated by

Lcc = 125 µm. In the simulations, we performed model-based reconstruction of this

modelled object using a perfectly known propagation matrix A for several levels of the

SNR.

107



6.3.1 Simulation methods

The simulation data was generated on the following grounds:

• All the transducer elements are point sources;

• The emitted PA wave is the same for all imaged point sources, the detected signals

are identical in amplitude and spectrum, but they are shifted in time according to

the distance between each imaged source and each transducer element;

• The detected signals have a central frequency and bandwidth corresponding to

those used in experiments, with the same sampling frequency as in experiments;

• Different levels of SNR are chosen by changing the amplitude of the modelled

PA signals. In all simulations, Gaussian noise with a zero mean and the rms

of σn = 30 is added to the detected signals. Such noise resembles the noise

produced by the acquisition electronics in our experiments (see section 2.3).

As a metrics of the reconstruction quality, we computed the correlation between

each reconstructed object T̂0 and the true modeled object Tref :

C =

∑n
i=1 T̂0(i) · Tref (i)√∑n

i=1 T̂
2
0 (i) ·

∑n
i=1 T

2
ref (i)

. (6.3)

Before computing correlation (6.3), the filtering and interpolation used for the recon-

struction images (see section 6.2.1.3) were also applied to Tref . For each SNR level,

correlation (6.3) was calculated for 100 noise realizations, Fig. 6.4 represents the aver-

age correlation value.

6.3.2 Results

Fig. 6.4 illustrates how the average correlation between the reconstruction image and

the modeled object depends on the number of transducer elements and the SNR.

First, it can be clearly seen from Fig. 6.4 that for any number of elements the cor-

relation increases with the SNR. Then, for small number of transducer elements, the

SNR required for a given correlation goes down steeply while the number of elements

increases. When more than 8 elements are taken, the SNR required for a given correla-

tion decreases very gradually with the increase of the number of elements.

The observed behaviour can be partially explained using the rank of the propaga-

tion matrix A. Regularization-based reconstruction has two tasks: to provide the right

object out of many possible objects corresponding to the input data and to suppress

noise. The number of possible objects depends on the rank of the propagation matrix

A. The higher the rank, the fewer objects match the input data. Fig. 6.5 shows how the
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Fig. 6.4 Simulation results. (a) - correlationC as a function of the single-element signal-
to-noise ratio (SNR) and the number of transducer elements Nel, dotted line: SNRPA

= 150 in the PA experiment, dashed line: SNRUS = 83 in the US experiment. (b-d) -
typical simulation images: (b) - Nel = 64, SNR = 16, C = 0.85, (c) - Nel = 16, SNR =
10, C = 0.57, (d) - Nel = 128, SNR = 0.8, C = 0.23.

rank of the propagation matrix depends on the number of transducer elements Nel. For

small number of elements, rank(A) increases rapidly, then it levels off at Nel = 32.

This means that for Nel > 32 adding more transducer elements does not bring new

information about the object. A possible reason is that signals from neighbouring ele-

ments become highly correlated. However, adding new transducer elements improves

the SNR. This correlates with the observed behaviour of the C = 0.8 curve plotted in

Fig. 6.4: for Nel > 32 this curve fits A/
√
Nel, A = const.

Fig. 6.5 Rank of the propagation matrix A as a function of the number of transducer
elements (simulations). For small number of elements Nel , rank(A) increases rapidly,
then it levels off at Nel = 32. This means that for Nel > 32 adding more transducer
elements does not bring new information about the object.

It can also be observed that when central elements of the probe make up a large
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proportion of the elements taken (for example, in imaging with 3 or 5 transducer ele-

ments), the observed correlation experiences a noticeable drop. This may arise from the

fact that signals coming from different microchannels are the least distinguishable on

the central part of the probe aperture.

Finally, our simulations show than if the SNR is very high, only two transducer ele-

ments could be enough for an acceptable reconstruction. This result stands in agreement

with the triangulation principle stating that only two antennas are needed to localize a

point source lying on a plane. Then, the ability to distinguish different sources is limited

by the SNR.

Although our simulations provide a good qualitative explanation of the experimen-

tal results, they predict a high correlation coefficient for Nel > 2 transducer elements

and the experimental SNR (SNRPA = 150, SNRUS = 83) whereas the experimental

reconstruction does not provide the correct object with less than 8 elements. This quan-

titative discrepancy is due to the reconstruction of the simulated data being based on a

perfectly known forward model while the experimental reconstruction involves several

assumptions and approximations. For example, in experiments the PSF is not perfectly

known as it may vary from one experiment to another due to a small difference between

the samples and some alignment uncertainties. In addition, in simulations the signal

amplitude is the same on all transducer elements while for a real transducer the signal

amplitude decreases towards the boundary elements.

6.4 Conclusion

We demonstrated experimentally that L1 reconstruction can provide super-resolution

in single-shot sparse-array PA and US imaging. In particular, super-resolved images

obtained using only 8 transducer elements were close to those reconstructed with 128

transducer elements. By use of computer simulations, we showed that for each SNR

there exists a minimal number of array elements required for a given quality of recon-

struction. This minimal number decreases when the SNR goes up.

One of the major advantages of L1 reconstruction is that this approach can in prin-

ciple be applied to any spatial distribution of the transducer elements as the imaging

geometry is automatically taken into account by the propagation matrix. So, one could

expect that results similar to those reported here would have been obtained even if the

transducer elements were not distributed regularly on the probe aperture. For the same

reason, L1 reconstruction could provide super-resolution in 3D imaging. In this case,

the additional coordinate(s) of the transducer elements would also be taken into account

by the propagation matrix.

Following these promising preliminary results, more theoretical simulations and

experiments should be conducted to further investigate L1 reconstruction in super-
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resolution sparse-array imaging. Certainly, additional experiments are needed to test

the proposed approach with more sophisticated samples and in the case of 3D imag-

ing. In addition, it would be interesting to study how the resolution limit of l1 - based

reconstruction depends on the probe aperture.
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CHAPTER 7

Flow-based visibility enhancement in photoacoustic imaging

7.1 Introduction

7.1.1 Origin of visibility problems in photoacoustic imaging

In ultrasound (US) imaging, spatial heterogeneities of acoustic properties of the imaged

medium lead to formation of speckles that enable visualization of large or complex-

shaped structures [Wagner, 1983]. In contrast, photoacoustic (PA) imaging is generally

considered to be speckle-free. The reason [Guo et al., 2009] is that in PA imaging

under instantaneous and homogeneous illumination, all points of the imaged object

experience a simultaneous pressure rise which results in emission of strongly coherent

acoustic waves interfering constructively in some directions and destructively in others.

While the absence of speckles in PA imaging is often presented as an advantage of the

technique, it may also lead to some reconstruction artifacts. Fig. 7.1 illustrate two

common visibility artifacts in PA imaging with images obtained with the commercial

system AcousticX (https://www.cyberdyne.jp).

Fig. 7.1 Visibility artifacts are present in PA images: the central part of large objects is
not reconstructed, blood vessels along the Z axis are not visible. (a) Tumor in a mouse
body. (b) Blood vessels in a human body. The images are obtained with the commercial
system AcousticX (https://www.cyberdyne.jp).

It can be clearly seen in Fig. 7.1 that only the boundaries of the tumor (a) and

those of the blood vessels (b) are visible in the PA images. The reason is that large

(compared to the acoustic wavelength λac) absorbers produce PA signals with a strong
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low-frequency component that is usually filtered out by the transfer function of the re-

ceiving US probe. As a result, it is the boundaries of large absorbers that are mostly

present after reconstruction. This effect can be referred as the limited-bandwidth prob-

lem. One other problem is that structures elongated in some directions are not fully

reconstructed. PA imaging of elongated structures leads to interference effects resulting

in formation of PA waves that favours some directions rather than others. When the

field of view of the US probe does not cover all the angles, such PA waves may escape

detection and the related PA absorbers may not be entirely reconstructed. This effect

can be referred as the limited-view problem. The limited-view problem is illustrated in

Fig. 7.1a which reveals horizontal bright boundaries but does not display the vertical

ones.

7.1.2 State-of-the-art

Many studies devoted to suppression of PA imaging artifacts considered the limited-

view problem only. Particularly, acoustic waves propagating in various directions can

be captured by rotating a linear transducer around the object [Yang et al., 2007] or by

rotating the imaged object itself [Kruger et al., 2003]. It has also been proposed to place

additional US transducers [Shu et al., 2016] to augment the detection view of a single

transducer array. Instead of additional transducers, acoustic reflectors can be placed at

boundaries of the imaging zone [Huang et al., 2013; Li et al., 2015]. In such a case,

reconstruction can be improved by taking into account reflected PA signals that can be

separated in time from PA waves directly emitted in the direction of the US probe. As

an extreme case, the imaged object can be placed inside a reverberating cavity [Cox

et al., 2007; Ellwood et al., 2014; Cox and Beard, 2009]. This allows detection of PA

waves emitted in all possible directions even if a single element transducer is used [Cox

and Beard, 2009].

A major disadvantage of the mentioned methods is that some angles can be inacces-

sible for transducers and reflectors in real clinical imaging. In addition, using acoustic

reflectors requires perfect knowledge of acoustic properties of the propagation medium

and the reflectors.

Other techniques eliminate interference effects by creating small PA sources inside

the imaged object. Such methods can potentially handle both limited-view and limited-

bandwidth problems. For example, artificial PA sources can be created by heating the

sample locally by means of focused ultrasound [Wang et al., 2015]. By scanning the

whole volume with an US beam and accumulating PA images obtained at each point, the

entire object is reconstructed. However, this approach is time-consuming and limited

by safety thresholds of ultrasound in medical use. It has also been proposed to tackle

visibility issues by using moving absorbers whose distribution in the imaging zone is
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random at any time moment. The reconstruction image can then be computed as the

pixelwise sum of non-negative PA images obtained by model-based reconstruction at

each laser shot [Deán-Ben et al., 2017]. A weak point of this method is the model-

based approach that requires knowledge of the PSF and the so-called regularization

parameter, the latter being difficult to estimate (see Chapter 5). Alternatively, if moving

absorbers are sparsely distributed inside the sample, visibility artifacts can be eliminated

by PA localization [Dean-Ben and Razansky, 2018]. However, the need for sparsely

distributed absorbers entails the use of contrast agents and may extend considerably

the acquisition time. One other method consists in creating fluctuating point-like PA

sources by using random optical speckle patterns [Gateau et al., 2013]. In this case,

the reconstruction image is obtained by calculating a statistical property of each pixel

over a series of PA images, each image corresponding to a different speckle pattern.

However, using optical speckle illuminations in clinical imaging is challenging as the

small fluctuation signal can be difficult to distinguish on the strong background when

imaging is performed at depths exceeding several millimeters (see section 1.4).

7.1.3 Principles of the proposed approach

As Gateau et al. [Gateau et al., 2013], we propose to handle visibility issues by com-

puting the variance of PA images based on fluctuations of optical absorbers. However,

we shall consider fluctuations originating from moving optical absorbers rather than

from optical speckles. Importantly, we propose that red blood cells (RBCs) play the

role of moving absorbers since fluctuations of RBCs are intrinsic to blood vessels and

the usage of these fluctuations would therefore eliminate the need for contrast agents in

clinical imaging.

To demonstrate that variance-based imaging relying on RBCs fluctuations can suc-

cessfully eliminate visibility artifacts, we report results of three proof-of-concept PA

experiments, each carried out for a vessel-mimicking sample in which a flow of human

blood was induced. In this Chapter, we also conduct numerical simulations in order to

understand the physics of the proposed approach and determine its limitations.

7.2 Proof-of-principle experimental demonstration

7.2.1 Materials and methods

7.2.1.1 Samples

Fig. 7.2 illustrates the imaging geometries used in the PA experiments and computer

simulations. The first experiment consisted in imaging a C-shaped structure formed by

a polycarbonate (PC) capillary (inner diameterD = 100 µm, wall thickness w = 20 µm,

Paradigm Optics Inc., Vancouver, USA ) whereas the second and the third experiments
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consisted in imaging a cross-section of a glass tube (inner diameter D = 1 mm, wall

thickness w = 100 µm, Capillary Tube Supplies Ltd, UK) placed perpendicularly to the

imaging plane and inside the imaging plane correspondingly. In each experiment, the

center of the sample is placed at the US probe (type L22-8) elevational focus distance

zf = 15 mm. The blood flow inside the sample is assured at a constant physiological

rate (1.7 cm/s for the PC capillary, 1 cm/s for the glass tube).

Fig. 7.2 Imaging geometries used in experiments and simulations. (a) A C-shaped
capillary loop (D = 100 µm) lying in the imaging plane. (b) A tube (D = 1 mm) lying
perpendicular to the imaging plane. (c) A tube (D = 1 mm) lying in the imaging plane
parallel to the US transducer array.

7.2.1.2 Measurement protocols

The experimental setup is shown in Fig. 2.1. In each experiment, radio-frequency

(RF) signals are acquired by illuminating the sample with flowing blood by laser pulses

(τpulse = 5 ns, PRR = 100 Hz) at λlaser = 532 nm (C-shaped sample) or at λlaser =

680 nm (glass tube). For additional information on the imaging equipment the reader is

referred to Chapter 2.

The wavelength λlaser = 680 nm was used for imaging the glass tube due to the high

absorption of blood at 532 nm. While for the thin C-shaped capillary the illumination

could be considered almost uniform within the sample, for the glass tube with a much

larger cross-section the light intensity decline on the tube diameter might be consid-

erable. Blood absorption at 680 nm (µa ∼ 1 mm−1) being much smaller than at 532

nm (µa ∼ 10 mm−1), it is λlaser = 680 nm that was chosen for imaging the glass tube

sample.

The total number of acquired RF frames are N = 1,000 (C-shaped capillary), N =

10,000 (glass tube, perpendicular orientation), N = 1,000 (glass tube, parallel orienta-

tion) resulting in the total experiment time of Texp = 10 s, Texp = 100 s, and Texp = 10 s

for the first, second, and third experiments correspondingly.
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7.2.1.3 Image reconstruction

To perform PA reconstruction, we first assembled complex RF data by merging the real

part consisting of the acquired RF data and the imaginary part obtained by applying

columnwise Hilbert transform to the acquired RF data. Then, complex beamformed

images (or IQ images) were obtained by separately beamforming the real and the imag-

inary parts of the complex RF data (see Appendix 1). Afterwards, we proceeded with

the removal of correlated images. To do so, we determined the fluctuation decorrelation

rate by computing correlation between the real components of successive IQ images af-

ter removing from each reconstruction pixel k its mean value< sk >. For the remaining

M uncorrelated complex IQ images, we computed the mean image and the standard de-

viation image by calculating for each pixel k the complex mean< sk >= 1
M

∑M
i=1 sk(i)

and the complex variance σ2
k = 1

M

∑M
i=1(sk(i)− < sk >)(sk(i)− < sk >)∗. At the

final step of the reconstruction we obtained the envelope image by taking the module of

the complex mean image and the standard deviation image by taking the square root of

the variance image.

Before computing the standard deviation image for the experimental data, we ap-

plied spatiotemporal filtering through singular value decomposition (SVD) to the com-

plex IQ data in order to reduce the impact of the laser noise appearing as unstable

horizontal lines on RF data. In brief, SVD decomposes the initial data into a basis

of spatiotemporal singular vectors. By choosing carefully the singular vectors corre-

sponding to relevant fluctuations, one can discard signals with different spatiotemporal

behaviour such as tissue clutter, laser and electronic noise, etc. Specifically, in our ex-

periments the laser noise was empirically found to reside in the first 21 singular vectors,

whereas the information about the fluctuations turned out to be encoded in the follow-

ing 49 vectors. All singular vectors with indices i > 70 were attributed to the electronic

noise of the acquisition system. So, by choosing the singular vectors with indices i =

22...70 we managed to clean the acquired data not only from the laser noise but also

from the electronic noise. More details on the SVD approach can be found in Appendix

3.

7.2.2 Results

7.2.2.1 C-shaped sample

To test the proposed approach in the limited-view scenario, we carried out an experi-

ment with the C-shaped capillary lying in the imaging plane (Fig. 7.2a). The exper-

imental results are demonstrated in Fig. 7.3. First, due to the limited view problem,

the vertical segment of the sample does not appear in the mean image: interference

effects lead to PA waves that propagate parallel to the surface of the transducer array
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and therefore can not be captured. In contrast, the fluctuation-based image reveals the

previously invisible part. However, the apparent reconstruction is not fully homogenous

(contrary to the simulation results presented below). A possible reason is that the SVD

spatiotemporal filtering applied in order to remove the noise affects some useful signal

as well.

Fig. 7.3 Experimental results obtained for the C-shaped capillary (see Fig.7.2a) and
human blood flowing through the sample. Reconstruction is based on N = 1,000 PA
images, experiment duration Texp = 10 s. (a) Mean envelope PA image leads to a defi-
cient reconstruction, the vertical segment disappears due to the limited-view problem.
(b) Fluctuation-based reconstruction recovers the entire object.

7.2.2.2 Straight line tube sample

To test the proposed approach in the limited-bandwidth scenario, we carried out an

experiment with a glass tube placed perpendicularly (Fig. 7.2b) to the imaging plane

and inside (Fig. 7.2c) the imaging plane. The experimental results are demonstrated

in Fig. 7.4. First, due to the limited-bandwidth problem, the central part of the sample

does not appear in the mean image: the tube diameter D = 1 mm is by an order of

magnitude greater than the acoustic wavelength λac = 0.1 mm (for the central frequency

of transducer fc = 15 MHz and the speed of sound in water vs = 1500 m/s). Second,

due to the limited-view problem, the left and the right vertical boundaries of the tube in

Fig. 7.4a are not visible since only the upper and the lower horizontal boundaries emit

PA waves towards the transducer array. In contrast, the fluctuation-based reconstruction

provides a faithful image of the object. The appearance of clutter below the object in

Fig. 7.4b,d is probably related to signal reverberations within the walls of the glass

tube.

It should be emphasized that in order to discard correlated images we took every

10th image in the experiment with the perpendicular tube orientation (see Fig. 7.2b)
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Fig. 7.4 Experimental results obtained for the glass tube oriented perpendicularly (a,b)
and parallel (c,d) to the imaging plane (see Fig.7.2b,c) and human blood flowing
through the sample. Reconstruction is based on N = 1,000 PA images, experiment
duration: (a,b) - Texp = 100 s, (c,d) - Texp = 10 s. (a,c) Mean envelope PA image leads
to a prominent buildup of the sample boundaries, the central part disappears due to the
limited-bandwidth problem. (b,d) Fluctuation-based reconstruction recovers the entire
object.

while in the two other experiments (see Fig. 7.2a,c) we took every single image. The

difference in the decorrelation rate results from different decorrelation distances deter-

mined by the ∆X , ∆Y , and ∆Z dimensions of the acoustic PSF for displacements in

the X, Y, and Z directions correspondingly. In the conditions of our experiments, the

estimated full width at half maximum (FWHM) of the PSF in the X, Y and Z directions

turned out to be ∆X = 154 µm, ∆Y = 1 mm, and ∆Z = 118 µm correspondingly.

Hence, at the laser PRR of 100 Hz and the flow rate of 1 cm/s, any 10 successive im-

ages corresponding to the perpendicular tube orientation (along the Y direction) could

be considered correlated. So, 90 % of the images obtained for the perpendicular tube

orientation were discarded. As a result, we had to acquire 10,000 PA images and take

only 1,000 of them which increased the experiment time Texp by a factor of 10.
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7.3 Theoretical analysis

In this section we investigate the mechanism by which the proposed approach leads to

suppression of visibility artifacts. In particular, we shall study how the amplitude of

the fluctuation signal depends on the volume fraction of absorbers and the number of

absorbers per acoustic PSF.

7.3.1 Theoretical model

In the case of absorbers flowing in a static structure, the distribution of optical absorp-

tion can be expressed as

αk(
−→r ) = µ0[f(−→r )× gk(−→r )], (7.1)

where µ0 is the optical absorption of the material of absorbers, gk(−→r ) is the distribution

of absorbers at laser shot k, and f(−→r ) is the object structure. PA reconstruction image

Ak corresponding to laser shot k can thus be written as:

Ak(
−→r ) = I0[αk(

−→r ) ∗ h(−→r )], (7.2)

where I0 is the light intensity and h(−→r ) is the bipolar PSF in the beamforming space.

By averaging over M PA images, one obtains

< Ak(
−→r ) >∼< αk(

−→r ) ∗ h(−→r ) >
M→∞−−−−→ µ0η[f(−→r ) ∗ h(−→r )], (7.3)

where η =< gk(
−→r ) > is the volume fraction of absorbers that are assumed homoge-

neously distributed.

Now we shall compute the variance PA image

σ2[A](−→r ) ∼<
∫

(α(−→r ′)− < α(−→r ′) >)h(−→r −−→r ′)d−→r ′×

×
∫

(α(−→r ′′)− < α(−→r ′′) >)h(−→r −−→r ′′)d−→r ′′ >=

=

∫∫
C(−→r ′,−→r ′′)h(−→r −−→r ′)h(−→r −−→r ′′)d−→r ′d−→r ′′,

(7.4)

where C(−→r ′,−→r ′′) =< (α(−→r ′)− < α(−→r ′) >)(α(−→r ′′)− < α(−→r ′′) >) > is the covari-

ance of absorption distribution.

Assuming that the absorbers are sufficiently small compared to the PSF, the covari-

ance C(−→r ′,−→r ′′) can be considered proportional to the delta function δ(−→r ′ − −→r ′′), so

C(−→r ′,−→r ′′) = σ2
α(−→r ′)δ(−→r ′ −−→r ′′), where σ2

α(−→r ′) is the variance of absorption distri-

bution.

If at laser shot k there is an absorber at point −→r then gk(
−→r ) = 1, otherwise
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gk(
−→r ) = 0. In addition, if the absorbers are uniformly distributed inside the sample

then the probability to find an absorber at any point −→r is equal to the volume fraction

of absorbers η. Such statistical properties describe a Bernoulli distribution, so for the

variance σ2
α(−→r ) one can write σ2

α(−→r ) = µ2
0η(1− η)f 2(−→r ).

Thus,

σ2[A](−→r ) ∼ µ2
0η(1− η)

∫
f 2(−→r ′)h2(−→r −−→r ′)d−→r ′ = µ2

0η(1− η)[f 2(−→r ) ∗ h2(−→r )].

(7.5)

Contrary to reconstruction (7.3) that leads to feature suppression due to strong in-

terference effects resulting from convolution with the bipolar PSF h(−→r ), fluctuation-

based reconstruction (7.5) recovers the entire object as interference effects are avoided

by convolution with the positive h2(−→r ). In other words, while PA signals interfere

either constructively or destructively depending on the part of the object considered,

variance signals from independent fluctuating sources always sum up incoherently.

For complex IQ data, complex variance can be computed by replacing h(−→r −−→r ′′)
in Eq. (7.4) with its complex conjugate h∗(−→r − −→r ′′). This will smooth out the PSF-

related oscillations in the reconstruction image as the object f 2(−→r ) will be convoluted

with the smooth PSF envelope |h(−→r )|2:

σ2[A](−→r ) ∼ µ2
0η(1− η)[f 2(−→r ) ∗ |h(−→r )|2]. (7.6)

7.3.2 Validation in numerical simulations

7.3.2.1 Principle of the numerical simulations

To perform numerical simulations, for each of the imaging geometries shown in Fig.

7.2 we modelled radio frequency (RF) PA signals associated with randomly generated

patterns of sources in the imaging plane. Each pattern was obtained by discretizing the

imaged cross-section on a grid with a step corresponding to the absorber diameter Da

and assigning with a certain probability p a virtual source to each point of this grid.

Typical patterns corresponding to the perpendicular tube orientation are shown in Fig.

7.5. The probability p was taken equal to the imposed volume fraction of sources η.

Fig. 7.5 Typical simulation patterns for different volume fraction η of sources. (a) η =
5%, (b) η = 50%, (c) η = 95%.
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The simulation signals were generated using the 2D version of SimSonic, finite-

difference time-domain simulation software (www.simsonic.fr) which models propa-

gation of acoustic waves (including PA waves). Photoacoustic sources were defined

with random patterns such as those presented in Fig. 7.5. For each pattern, a set of PA

signals was recorded by 128 virtual point-like detectors. As in all our simulations, the

detected signals had the central frequency and the bandwidth corresponding to those

used in experiments, with the same final sampling frequency as in experiments after

downsampling the simulated signals.

Two kinds of simulation data were generated, based on two different types of ran-

dom absorbers distributions. First, different values of volume fraction η = 5%, 25%,

40%, 50%, 60%, 75%, 95% were chosen with Da corresponding to an approximate

RBC diameterDa = Drbc = 10 µm. Second, different source diametersDa = 2.5 µm , 5

µm, 7.5 µm, 10 µm, 15 µm, 20 µm, 25 µmwere chosen with the volume fraction η cor-

responding to the average RBCs volume fraction in human blood η = ηRBC = 50%. For

eachDa the number of sources per acoustic PSF was calculated asNs = ∆X×∆Z/D2
a,

where ∆X and ∆Z is the full width at half maximum (FWHM) of the PSF along

the X and Z axes respectively (∆X = 154 µm, ∆Z = 118 µm). In total, for each η

(Da = Drbc) and each Ns (η = ηRBC), 100 RF data frames were generated based on

100 random patterns.

7.3.2.2 Influence of the volume fraction (fixed absorber)

To study the influence of the volume fraction η on PA reconstruction, we computed

the mean and the variance PA images for different η and fixed absorber diameter Da

corresponding to the average RBC size Da = DRBC = 10 µm.

Fig. 7.6 and 7.7 show simulation results for the C-shaped sample and the round

tube obtained for η = 50%. It can be seen that as in experiments, fluctuation-based

reconstruction recovers the entire object whereas some object parts are missing on the

mean image due to the limited-view and limited-bandwidth problems.

Fig.7.8 shows how the mean signal from the object boundaries and the fluctuation

signal from the inner part of the object depend on the volume fraction η. First, as

predicted by Eq. (7.3) the boundary buildup is proportional to the concentration of

absorbers. As concerns the fluctuation signal, the Bernoulli standard deviation predicted

by Eq. (7.6) is fully validated. So, the standard deviation curve has a domed shape with

a single maximum at η = 50%. It is worth mentioning that this maximum is of primary

interest for reconstruction based on blood flow fluctuations as the average RBCs volume

fraction in human blood is very close to η = 50%.
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Fig. 7.6 Simulation results obtained for the C-shaped capillary (see Fig.7.2a) and the
volume fraction of sources η = 50%. (a) Mean envelope PA image leads to a deficient
reconstruction, the vertical segment disappears due to the limited-view problem. (b)
Fluctuation-based reconstruction recovers the entire object.

Fig. 7.7 Simulation results obtained for the glass tube oriented perpendicularly (a,b) and
parallel (c,d) to the imaging plane (see Fig.7.2b,c) and the volume fraction of sources
η = 50%. (a,c) Mean envelope PA image leads to a prominent buildup of the sample
boundaries, the central part disappears due to the limited-bandwidth problem. (b,d)
Fluctuation-based reconstruction recovers the entire object.
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Fig. 7.8 Simulation results for different volume fraction η, the absorber diameter is
Drbc = 10 µm. (a) The mean signal from sample boundaries is proportional to the
concentration of sources. (b) Typical mean image, dotted rectangles: regions used to
compute the mean value in (a). (c) The standard deviation calculated for the central part
of the object has a domed shape and reaches its maximum at η = 50% corresponding
to the RBCs volume fraction in human blood. (d) Typical standard deviation image,
dotted circle: region used to compute the standard deviation value in (c).

This being said, the maximum at η = 50% to a certain extent dictates the SNR re-

quired for reconstruction based on blood flow fluctuations. As the noise variance is to

be subtracted from the reconstruction image, the variance corresponding to RBCs fluc-

tuations should be greater than the error in estimation of noise variance. In addition, the

number M of acquired PA images should be high enough to provide a robust estimate

of signal variance for all points of the imaged object. As the error in variance estimation

is proportional to 1/M , the reconstruction quality is only limited by the experiment du-

ration, provided that the sample and noise remain stationary during the total acquisition

time.

7.3.2.3 Influence of the absorber dimension (fixed average absorption)

To study the influence of the number of absorbers Na per acoustic PSF on PA recon-

struction, we computed the mean and the variance PA images for different Na and fixed
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volume fraction of absorbers η corresponding to the RBCs volume fraction in human

blood η = ηRBC = 50%.

The simulation results are shown in Fig. 7.9. It can be noticed that the standard

deviation approaches the A/
√
Na (A = const) law when the number of absorbers

becomes large. The observed deviation from the theoretical 1/
√
Na curve for small Na

is probably related to transition to another regime where the bandwidth-limited effects

become significant due to the PSF getting smaller than an individual absorber.

Fig. 7.9 Simulation results for different number Na of absorbers per PSF, the absorbers
volume fraction is η = 50%. (a) The mean signal from sample boundaries is independent
of the number of absorbers. (b) Typical mean image, dotted rectangles: regions used
to compute the mean value in (a). (c) The standard deviation approaches the fitting
A/
√
Na (A = const) curve when the number of absorbers becomes large. (d) Typical

standard deviation image, dotted circle: region used to compute the standard deviation
value in (c).

The A/
√
Na law explains why using RBCs fluctuations may outperform the ap-

proach based on optical speckle fluctuations. Indeed, the number of 10-µm RBCs in-

side the ∆X ×∆Y ×∆Z = 154 µm× 1 mm × 118 µm volume of the PSF is around

NRBC ∼ 104 whereas the number of optical speckles (speckle size is λlaser/2 ∼ 0.3

µm at ∼1 mm depth in biological tissues under near infrared [Ntziachristos, 2010]) is

around Nsp ∼ 108. So, the fluctuation signal from optical speckles is by several or-

ders of magnitude weaker than the fluctuation signal from RBCs. As a result, it should
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be much more difficult to distinguish the weak fluctuation signal over the strong back-

ground when using optical speckle illuminations.

7.4 Conclusion

We demonstrated that PA visibility artifacts caused by limited view and limited band-

width of the US probe can be suppressed by using fluctuations of moving RBCs. In

particular, visibility artifacts can be eliminated on the variance PA image.

In numerical simulations, we demonstrated that the RBC volume fraction in human

blood turns out to be close to the value optimizing the amplitude of the fluctuation sig-

nal. Moreover, we established that the fluctuation amplitude decreases with the number

of fluctuating photoacoustic sources Na inside the acoustic PSF as 1/
√
Na which ex-

plains why using optical speckle fluctuations [Gateau et al., 2013] to overcome visibility

problems is impractical in deep-tissue imaging.

The temporal resolution of the proposed technique is limited by the fluctuation

statistics as calculating statistical properties requires a certain number of PA images.

However, based on blood fluctuations that are naturally present in living tissues, our

approach does not require contrast agents. In addition, the implementation of the pro-

posed technique is straightforward as it does not need any additional equipment. This

makes the proposed method attractive for biomedical deep-tissue imaging.
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CHAPTER 8

Conclusion

8.1 Main results

In chapters 3-5 of this PhD study we proposed several methods to overcome the acous-

tic diffraction barrier in photoacoustic (PA) imaging. For experimental demonstration

of each method, we performed cross-sectional imaging of five parallel microchannels.

Being indistinguishable on the standard reconstruction image, the microchannels were

well reconstructed by most of the proposed techniques. In chapter 7 we proposed a

new method to overcome visibility problems in PA imaging. The main results of each

chapter can be summarized as follows.

In the third chapter, localization-based PA imaging was proposed. In the experi-

ment, microchannels separated by 75 µm (conventional resolution limit being around

154 µm) were resolved by acquiring a series of PA images for a diluted suspension

of microbeads passing through the channels. Using numerical simulations, we demon-

strated that when the signal-to-noise ratio (SNR) is low, a single microbead is localized

more precisely on the beamforming (BF) image that on the raw radio-frequency (RF)

data. When the SNR is high, localization in the RF- and in the BF-space provides

equivalent results. By adding artificial noise to the experimental data, we showed that

the matched filter approach in the BF-space can improve localization results. The ad-

vantages and disadvantages of PA localization-based imaging are similar to those of

ultrasound (US) localization. Regarding the advantages, the method can in principle

provide an infinite resolution and is based on a relatively simple signal processing. As

for the disadvantages, the method provides a very low temporal resolution and requires

diluted contrast agents to perform clinical imaging.

In the fourth chapter, fluctuation-based imaging (photoacoustic SOFI) was pro-

posed. In the proof-of-principle experiment, microchannels separated by 180 µm (con-

ventional resolution limit being around 200 µm) were resolved by exploiting fluctu-

ations of a flow of human blood passing through the channels. We showed that as

in optics [Dertinger et al., 2009], the n-th order cumulant calculated over the initial

pixel time series provides a
√
n resolution improvement. We also developed a complex

cumulant framework that permits correcting PSF-related artifacts on the cumulant im-
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age. A major advantage of the proposed technique is that it can potentially be used for

contrast-free imaging of microvasculature where blood flow fluctuations are a natural

source of PA signal fluctuations. However, we observed that separating relevant fluc-

tuations from noise can be challenging. One other limitation is that objects associated

with stronger PA signals mask objects associated with weaker PA signals when high

order cumulants are computed. Finally, as PA super-localization, fluctuation-based PA

imaging has a low temporal resolution. At low blood velocities, the temporal resolution

is limited by the requirement for uncorrelated PA images. At high blood velocities, the

temporal resolution is limited by the imaging rate. In addition, the number of required

PA acquisitions increases with the cumulant order n.

In the fifth chapter, we proposed to use model-based reconstruction to achieve super-

resolution in single-shot PA imaging. In the proof-of-principle experiment, microchan-

nels separated by 125 µm (conventional resolution limit being around 155 µm) were

resolved in sparsity-based reconstruction. Other model-based reconstruction techniques

(Moore-Penrose pseudoinverse, Tikhonov regularization, positivity-based reconstruc-

tion) did not provide a super-resolved image of the sample. In this experiment, we also

demonstrated that model-based reconstruction applied to RF and BF data generates

equivalent results. In another experiment we sought the minimal separation between

two point sources that can be resolved in sparsity-based reconstruction. Experimen-

tally, we managed to resolve two sources separated by 80 µm (conventional resolution

limit being around 398 µm) which was the smallest distance available on the sample.

In additional noise-free numerical simulations we determined that sparsity-based recon-

struction can resolve two point sources separated down to 24 µm (conventional reso-

lution limit being around 398 µm). This resolution limit may depend on the PSF vari-

ability in the imaging zone, reconstruction algorithm and available numerical precision.

To understand better the mechanism of sparsity-based reconstruction, we performed

a theoretical analysis. Based on this analysis, we admitted that the regularization pa-

rameter, which is crucial to provide the right solution in sparsity-based reconstruction,

can hardly be predicted without using additional (not related to sparsity-based recon-

struction) information about the imaged object. Moreover, it was demonstrated that it is

hard to predict whether sparsity-based reconstruction will provide the right object at any

value of the regularization parameter. We showed, however, that super-resolution can

also be obtained in model-based reconstruction by using the non-negativity constraint

only (without the regularization term). This approach does not need the regularization

parameter but it is more sensitive to noise and its reliability is also questionable.

In the sixth chapter, we applied sparsity-based reconstruction in sparse-array imag-

ing. In two proof-of-principle experiments, we performed single-shot PA and US imag-

ing of the five microchannels (separated by 125 µm, conventional resolution limit being
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around 155 µm) with a linear transducer array. We demonstrated that the reconstruction

quality in super-resolution imaging does not degrade significantly while using much less

transducer elements when used conventionally (8 elements against 128). In numerical

simulations, we showed that for any SNR there is the minimal number of transducer

elements that is required to provide the desired reconstruction quality. This number

decreases with the growth of the SNR. At a very high SNR only two elements can be

sufficient for reconstruction.

In the seventh chapter, we demonstrated that PA signal fluctuations caused by a

blood flow can be successfully used in PA imaging to eliminate visibility artifacts due

to limited-view and limited-bandwidth problems. In particular, we demonstrated that

such artifacts disappear on the variance PA image. The advantages and disadvantages

of the method are the same as for fluctuation-based super-resolution imaging.

In the frames of this PhD study two papers came out [Vilov et al., 2017; Chaigne

et al., 2017]. Meanwhile, another group explored PA super-localization and their re-

sults were published [Dean-Ben and Razansky, 2018] at the same time as ours. In that

work of Dean-Ben et al. [Dean-Ben and Razansky, 2018] localization-based imaging

was performed in three dimensions, whereas in our study we demonstrated a more sig-

nificant resolution improvement. In addition, when we had obtained the main results

of chapter 5, Egolf et al. [Egolf et al., 2018] published their results on sparsity-based

reconstruction in super-resolution PA imaging. However, their study was limited to

a single experimental demonstration, without comparing sparsity-based reconstruction

with other model-based techniques and without any discussion on the regularization

parameter and the non-negativity constraint.

8.2 Discussion and perspectives

Each of the proposed PA super-resolution methods has advantages and drawbacks and

the choice of a particular method will be conditioned by the needs and limitations of a

particular application. Thus, for example, from the point of view of the possible reso-

lution limit, localization-based imaging is probably the best. However, among all the

studied methods, super-localization provides the worst temporal resolution. The tem-

poral resolution of fluctuation-based imaging is only slightly better, although numerical

implementation of this method is probably the easiest. So, among all the studied meth-

ods, model-based reconstruction is the only method appropriate for dynamic single-shot

imaging. In addition, model-based reconstruction is the method of choice when super-

resolution should be obtained in sparse-array imaging. However, implementation of

model-based reconstruction is complex and the corresponding reconstruction might be

unreliable.

Some of the considered methods might be combined to satisfy the needs of a partic-
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ular application. Thus, for example, inspired by the SUSHI approach [Bar-Zion et al.,

2018], we combined fluctuation-based imaging and sparsity-based reconstruction (see

chapter 5). In numerical simulations, we observed that this permits obtaining resolution
√

2 times better than in classical sparsity-based reconstruction but with the temporal

resolution of the fluctuation-based approach. One other idea is to perform sparsity-

based reconstruction as a part of super-localization, as proposed in [Shu et al., 2018].

If the limitations of the model-based approach could be overcome this would improve

temporal resolution of super-localization by allowing higher concentrations of contrast

agents.

So, further studies are needed to handle the limitations of each of the proposed

methods. For example, it is important to find a reliable method for separating relevant

fluctuations from noise in fluctuation-based imaging. To this end, we employed SVD

filtering, but it was based on the choice of relevant singular vectors which was made

with the knowledge of the imaged object. As concerns sparsity-based reconstruction,

the main limitation is the choice of the regularization parameter that reconstruction

crucially depends on. In this study, the regularization parameter was also determined

with the knowledge of the imaged object. A possible solution would be to use the deep

learning framework trained with pairs consisting of input PA data and corresponding

regularization parameters. Some combinations of the deep learning and sparsity-based

techniques have already been proposed [van Sloun et al., 2018].

Despite the present limitations, most of the methods proposed in this PhD study are

based on basic signal processing and do not require extra imaging equipment. They can

be, therefore, straightforwardly implemented in commercial and scientific PA imaging

systems. In this regard, it should be emphasized that some of our results have already

formed the basis for an in vivo study in the field. In particular, PA localization based on

biocompatible dyed droplets was employed to obtain 3D super-resolved images of the

cortical layer of the mouse brain [Zhang et al., 2019].

Finally, I would like to note that in the frames of my PhD study I designed two

multielement probes for 3D PA imaging.

The first probe, manufactured by Vermon S.A. (Tours, France), is a 256-element

probe for super-resolution PA imaging with the center frequency of 25 MHz. The 0.25

mm × 0.5 mm rectangular-shaped elements of the probe are regularly distributed on a

20-mm diameter ring providing the focal distance of about 14 mm. In the center of the

probe there is a 13-mm diameter hole to insert an optical fiber guiding laser light. The

probe permits imaging in the zone of about ∆X ×∆Y ×∆Z ≈ 2.5 mm × 2.5 mm ×
2.5 mm.

The second probe, manufactured by Imasonic SAS (Voray-sur-l’Ognon, France), is

a 256-element universal probe with the center frequency of 8 MHz. The 2-mm diameter
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round-shaped elements of the probe form a random pattern covering a semi-spherical

aperture with a 35 mm radius. In the center of the probe there is a 8-mm diameter hole

to insert an optical fiber guiding laser light. The probe permits imaging in the zone of

about ∆X ×∆Y ×∆Z ≈ 6 mm × 6 mm × 10 mm.

Due to some technical difficulties, the probes arrived in our laboratory much later

than expected. As a result, I did not manage to perform experiments with them due

to the time constraint. However, with these probes our research group is currently

investigating the application of the proposed methods for 3D super-resolution imaging.

This constitutes a part of the PhD study of Guillaume Godefroy. In the frames of his

study, in vivo experiments are also planned.
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Appendix A

Delay-and-sum beamforming

Here, we describe in detail the beamforming algorithm that we used to demonstrate the

results of standard (diffraction-limited) photoacoustic (PA) reconstruction in this PhD

study.

Fig. A.1 shows a typical radio-frequency (RF) frame that is available at the output of

the acquisition machine as a result of a PA acquisition with a multielement array. Each

cell of this frame contains the signal S(ti, k) which is equal to the quantized value of

voltage on transducer element k registered at time ti. The interval between successive

time values ti and ti+1 is equal to ∆ts = 1/fs, where fs is the sampling frequency of

the acquisition machine.

Fig. A.1 PA data in the form of an RF frame available at the output of the acquisition
machine as a result of a PA acquisition with a multielement array consisting of Nel =
128 transducer elements.

In delay-and-sum beamforming each point of the reconstruction image A(x, y, z) is

obtained with the following equation:

A(x, y, z) =

Nel∑
k=1

S(t(k, x, y, z), k), (A.1)

where Nel is the total number of transducer elements, S(t(k, x, y, z), k) is the signal on

element k at the time moment t(k, x, y, z). The time moment t(k, x, y, z) corresponds
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to the arrival of the signal from the source placed at {x, y, z} on element k.

Under the assumption that PA waves propagate in a homogeneous isotropic medium

the arrival time t(k, x, y, z) is given by

t(k, x, y, z) =
1

vs

√
(xk − x)2 + (yk − y)2 + (zk − z)2, (A.2)

where vs is the speed of sound in the medium, xk, yk and zk are the coordinates of

transducer element k.

From now on we will consider that RF data is obtained with a bandwidth-limited

transducer with the central frequency fc and the spectrum full width at half maximum

(FWHM) ∆f . In addition, we assume that ∆f 6 2fc, which is true for the probes L7-4

and L22-8, used in this PhD study (see section 2.5).

As the time is discrete in the RF frame, S(t(k, x, y, z), k) can not be obtained di-

rectly by taking a specific cell of the frame. However, its approximate value can be

derived using the shift theorem:

S(t(k, x, y, z), k) ≈ Re(S ′(tn, k) · e2πjfc(t(k,x,y,z)−tn)), (A.3)

where j =
√
−1, S ′(t, k) = S(t, k) + jH(S(t, k)) is the analytical signal with the real

part corresponding to column k of the RF frame and the imaginary part corresponding

to the Hilbert transform of this column. The ”nearest” time sample tn is chosen such

that tn ≤ t(k, x, y, z) < tn+1. In general, the narrower the transducer bandwidth ∆f ,

the closer approximation (A.3) to the exact value of S(t(k, x, y, z), k).

For a linear transducer array with the imaging plane XZ it is convenient to assume

yk = 0, zk = 0 for all k = 1..Nel. It should also be noted that in imaging with a linear

transducer array all out-of-plane sources lying withing the elevational focus ∆Y will be

projected on the reconstruction image XZ.

Fig. A.2 shows the point spread function (PSF) obtained via beamforming recon-

struction for a single point source in the imaging plane XZ of a linear transducer array.

This PSF is bipolar due to oscillations related to the finite transducer bandwidth.

As the axial oscillations of the PSF shown in Fig. A.2 are not related to the imaged

object, they should be removed.

Let us consider a signal on one of the probe elements (i.e. one of the columns of

the RF frame shown in Fig. A.1). Being bandwidth-limited, this signal can be repre-

sented as the product of the slow varying envelope u(t) with the fast varying content

cos(2πfct):

S(t) = u(t)cos(2πfct). (A.4)

According to the Bedrosian theorem, as u(t) has no frequency content above the carrier
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Fig. A.2 Bipolar PSF obtained by beamforming RF data that corresponds to a single
source in the imaging plane XZ.

frequency fc (since ∆f 6 2fc), Hilbert transform of (A.4) is given by

H(S(t)) = u(t)sin(2πfct). (A.5)

The oscillations at carrier frequency fc can be eliminated by taking the envelope of the

complex analytical signal S ′(t) = S(t) + jH(S(t)):

|S ′(t)| =
√

[S(t)]2 + [H(S(t))]2 = u(t). (A.6)

Thus, to remove the axial PSF oscillations, the envelope image should be formed.

To do it, two RF frames should be independently beamformed. The first RF frame will

be provided directly by the acquisition machine, while the second frame is obtained by

applying columnwise Hilbert transform to the first one. Then, the envelope image is

computed as the absolute value of the ”analytical image” formed by the first (real part)

and the second (imaginary part) beamformed images. The operation is illustrated in

Fig. A.3.
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Fig. A.3 (a) Bipolar PSF, same as in Fig. A.2. (b) PSF resulting from beamforming of
the RF frame obtained by applying columnwise Hilbert transform to the RF frame. (c)
Envelope PSF image computed as the absolute value of the ”analytical image” formed
by the beamformed images shown in (a) and (b).
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Appendix B

Remarks on the numerical norm-based reconstruction

As mentioned in Chapters 5-7, to perform iterative minimization (for L1-based and

positivity-based reconstruction), the FISTA algorithm [Beck and Teboulle, 2009; Vu,

2016] was used. Here, we list some technical modifications that were applied to im-

prove the performance of the initial FISTA code [Vu, 2016].

1) Transformation of the matrix ARF .

In reconstruction based on radio frequency (RF) data, the matrix ARF needs to be

passed to the FISTA algorithm. Each column of this matrix contains the vector form

of the system’s response at a particular point of the reconstruction zone or the RF point

spread function (RF PSF). This vector is a rearranged RF data frame, whose dimensions

are M = Mt ×Me, where Mt is the number of time samples and Me is the number

of transducer elements. For a typical RF frame, shown in Fig. B.1a, the number M

reaches 12800. A typical reconstruction zone consists of several hundred points. As

the number of reconstruction points is equal to the number of columns of the matrix

ARF and the size M of the RF frame is equal to the number of rows, a typical matrix

ARF will contain several million elements. To reduce the size of the matrix ARF and

the eventual computational time, we apply fixed time delays to each column of the

RF frame. These time delays are computed to flatten the curve corresponding to the

photoacoustic (PA) signal. Thus, the new RF frame will contain much fewer elements.

As all columns of the matrix ARF must have the same length, all the transformed RF

frames must have the same size. It should also be emphasized, that the same time delays

are applied to all RF frames. So, the size of each RF frame should be chosen so that

a PA signal originating from any point of the imaging zone will be confined within the

RF frame. Finally, to preserve the relation between the measurement vector R and the

propagation matrix ARF the same transformation should be applied to the imaging RF

data.

For the frame shown in Fig. B.1 the proposed transformation results in the frame

shown in Fig. B.1b. As can be seen, the applied transformation almost halved the initial

number of entries ( M = 12800 for the initial RF frame, M = 5180 for the final RF

frame).
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Fig. B.1 RF frame size reduction. (a) initial RF frame, comprising M = 12800 ele-
ments, (b) RF frame after transformation, comprising M = 5180 elements.

2) Derivation of the matrix ABF .

The matrix ABF is derived from the matrix ARF by unwrapping each column

onto the RF space, beamforming and then rearranging the obtained beamforming point

spread functions (BF PSFs) into the columns of the matrix ABF . However, the beam-

forming operation spreads out the signal confined in the limited RF space onto the

unlimited beamforming space. In order to avoid a large part of the signal being lost,

the beamforming zone must be chosen larger than the reconstruction zone. To preserve

most of the relevant signal in the beamforming operation, we left margins of about 1/2

of the full width at half maximum (FWHM) of the BF PSF between the border of the

reconstruction zone and the border of the beamforming zone (see Fig. B.2 ).

Fig. B.2 Choice of the beamformig zone: the beamforming zone should be chosen
larger than the reconstruction zone. We propose to leave margins of about 1/2 of the
full width at half maximum (FWHM) of the beamforming PSF in order to properly take
into account the points at the border of the reconstruction zone .

3) Elimination of irrelevant points.

As in most cases we performed reconstruction of sparse objects, many points on the
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reconstruction grid were filled with zeros already after first few iterations of the algo-

rithm. Thus, it was unnecessary to keep information about all these points during the

entire reconstruction process. So, to speed up the calculations, every 1000 iterations

of the algorithm the pixels T (i) below 0.1% of the mean signal level mean(|T |) =

1/N
∑N

i=1 |T (i)| were detected: T (i) < 10−3 ×mean(|T |). Then, the corresponding

columns were extracted from the propagation matrix A and the minimization algorithm

was relaunched with the reduced propagation matrix. The removed pixels were perma-

nently filled with zeros in the final reconstruction image.

4) Choice of the stopping criterion.

The stopping criterion was chosen based on the object sparsity K (number of re-

constructed point sources)that was estimated for the object T as K ≈ ||T ||1/mean(T ).

The minimization algorithm was forced to stop when the estimation of K changed by

less than 0.01% in the last 1000 iterations.

147



Appendix C

Singular value decomposition filtering

Here, we describe the singular value decomposition (SVD) filtering that we used to sep-

arate relevant fluctuations from noise in imaging based on fluctuations of photoacoustic

(PA) signals. In such imaging, reconstruction is done by calculating a certain statisti-

cal property related to relevant fluctuations. This can be simple variance (see Chapter

7) or high order cumulants (see Chapter 4). As PA data always contains some noise,

statistical quantities of this noise may be as strong as those of relevant PA signals. So,

separating signal fluctuations from noise fluctuations is important before performing

fluctuation-based reconstruction.

The idea of SVD filtering is to separate fluctuations with different spatiotemporal

behaviour. In ultrasound (US) imaging, it was first proposed to use this technique to

discriminate tissue and blood motion [Demené et al., 2015]. Realization of SVD filter-

ing in photoacoustics is close to SVD filtering in US and we will base our explanation

on the analysis from [Demené et al., 2015]. SVD filtering can be applied to raw radio-

frequency (RF) or beamformed (BF) data. In our experiments, we always applied SVD

to BF data.

Let us consider the initial set composed by Nt two-dimensional BF images, each

consisting of Nz × Nx pixels. This set can be rearranged to form a two-dimensional

matrix SNs×Nt , where Ns = Nz ×Nx. The SVD of the matrix S can be expressed as

S = UΣV ∗, (C.1)

where V Nt×Nt and UNs×Ns are unitary matrices, ∗ designates conjugate transpose. The

matrix Σ is diagonal, its diagonal values σi are called the singular values of the matrix

A and are conventionally arranged in the descending order: σ1 > σ2 > ... > σNl
, where

Nl = min(Ns, Nt). So, the matrix S can also be expressed as [Demené et al., 2015]:

S =
∑
i

σiAi, (C.2)

where the matrix Ai is the outer product U i⊕V i with U i and V i being the ith columns

of the corresponding SVD (C.1).
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One can notice that SVD decomposes the initial matrix S in a sum of separable

images, characterized by the vector U i, that are modulated in time by the temporal

signal V i. The singular values σi indicate the weight of each pattern U i in the set of PA

images: large singular values are associated with static or quasi-static features, such as

tissue motion, whereas low singular values are associated with unstable features, such

as noise fluctuations which vary from one image to another. SVD filtering generates a

new series of images S′ by selecting relevant singular vectors i = a..b, i.e. those that

are associated with PA signal fluctuations:

S′ =
b∑
i=a

σiAi, (C.3)

where the matrix Ai corresponds to SVD (C.1).

A major difficulty of SVD filtering is to choose the set of singular values i = a..b

that corresponds to the imaged structure. In this regard, different methods were pro-

posed and compared in [Baranger et al., 2018]. The simplest approach consists in

selecting relevant singular vectors based on a visual inspection of the objects recon-

structed with different sets of singular vectors. A better choice could be made by com-

puting the so-called spatial similarity matrix which is based on correlation between

magnitudes of spatial vectors |U i|.In this matrix, regions with high correlation between

neighbouring vectors will correspond to fluctuations of the same spatial distribution.

By detecting the region corresponding to relevant fluctuations, right singular values are

selected. For the details, the reader is referred to [Baranger et al., 2018]. We used the

spatial similarity matrix to choose the optimal set of singular values in the actual study.
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