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Abstract

The one-dimensional, chiral and dissipationless edge channels of the quantum Hall effect

form the electrical analogue of optical fibers, allowing the implementation of electron

quantum optics experiments where one coherently manipulates the trajectories of single

electronic wave packets [i]. A recent series of experimental and theoretical works have

put into light strong effects of decoherence and energy relaxation caused by interactions

with quasiparticles present in neighboring edge channels, capacitively coupled to the

edge channel in which the experiment is performed [ii, iii]. This coupling leads to new

eigenstates challenging the usual representation of excitations in the quantum Hall

effect.

We have experimentally investigated the energy relaxation of electrons emitted at

a well-defined energy in a quantum Hall edge channel, in presence of a second edge

channel co-propagating along the former. Our setup relies on a pair of electrostatically

defined quantum dots, used as energy-resolved emitter and detector. The emitter is

realized by applying a finite drain-source voltage on the first quantum dot, with a

single resonant level in the bias window, the position of which sets the energy at which

electrons are emitted above the drain Fermi energy. After a tunable propagation length

in the micrometer scale, we perform an energy spectroscopy of the emitted electrons

using the second quantum dot as an energy filter [iv]. This detection technique was

previously used to characterize the energy relaxation for an out-of-equilibrium energy

distribution of electrons generated in a quantum point contact [v].

Our results, obtained at filling factor 2 of the quantum Hall effect, show that al-

though the propagation over submicron lengths leads to sizable energy relaxation, a

small portion of quasiparticles are not affected by energy relaxation even at relatively

high energies, up to 150 µeV. Additionally, we investigated simultaneously the charge

current and the heat current propagating in the edge channel while relaxation takes

place. Surprisingly, we observe that the amount of energy lost during propagation

is markedly larger than expected [vi], suggesting that relaxation mechanisms towards

external degrees of freedom play an important unexpected role in electron quantum

optics experiments.

Furthermore, we have experimentally demonstrated that the relaxation of the quasi-

particle peak injected in the outer edge channel can be strongly suppressed by decou-
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xii Abstract

pling the edge channel of the neighboring inner co-propagating edge channel. Clear

signatures of a reduced relaxation rate have been observed both in the decaying am-

plitude of the quasiparticle peak and in the amount of energy leaking out of the edge

channel.

To conclude, in this experiment we captured the limitations imposed by the energy

relaxation in quantum Hall edge channels and circumvent them by considerably ex-

tending the lifetime of finite energy excitations.

[i] E. Bocquillon, et al., Annalen der Physik 526, 1 (2014).

[ii] I. Levkivskyi, et al., PRB 85, 075309 (2012).

[iii] E. Bocquillon, et al., Nat. Commun. 4, 1839 (2013).

[iv] C. Altimiras, et al., Nature Physics 6, 34 (2009).

[v] H. le Sueur, et al., PRL 105, 056803 (2010).

[vi] C. Grenier et al, Mod. Phys. Lett. B 25, 1053 (2011).

Keywords: RELAXATION, SPECTROSCOPY, EDGE CHANNEL, QUANTUM

HALL EFFECT, QUANTUM DOTS



Résumé

Les canaux de bord unidimensionnels et chiraux de l’effet Hall quantique for-

ment l’analogue électrique des fibres optiques, permettant la réalisation d’expériences

d’optique quantique électronique où l’on manipule de manière cohérente les trajec-

toires de paquets d’ondes électroniques uniques [i]. Une série récente de travaux

expérimentaux et théoriques a mis en lumière de forts effets de décohérence et de

relaxation en énergie provoqués par des interactions avec des quasiparticules présentes

dans des canaux voisins, couplés capacitivement au canal dans lequel l’expérience est

réalisée [ii, iii]. Ce couplage conduit à des nouveaux états propres du transport rendant

caduque la représentation habituelle des excitations dans l’effet Hall quantique.

Nous avons étudié expérimentalement la relaxation en énergie d’électrons émis à

une énergie bien définie dans un canal de bord de l’effet Hall quantique, en présence

d’un second canal de bord co-propageant le long du premier. Notre méthode repose sur

une paire de boites quantiques electrostatiquement définies, utilisées comme émetteur

et détecteur à énergie résolue. L’émetteur est réalisé en appliquant une tension de

drain-source finie sur la première boite quantique, avec un seul niveau discret dans

la fenêtre de transport, dont la position définit l’énergie à laquelle les électrons sont

émis au-dessus de l’énergie de Fermi du drain. Après une longueur de propagation

ajustable à l’échelle micrométrique, nous effectuons une spectroscopie des électrons

émis en utilisant la deuxième boite quantique [iv]. Cette technique de détection a déjà

été utilisée pour caractériser la relaxation en énergie pour une distribution électronique

hors d’équilibre générés dans un contact ponctuel quantique [v].

Nos résultats, obtenus au facteur de remplissage 2 de l’effet Hall quantique, mon-

trent que même si la propagation sur des longueurs submicroniques conduit à une

relaxation en énergie importante, une petite partie des quasiparticules ne sont pas af-

fectées par la relaxation, même à des énergies relativement élevées, jusqu’ à 150 µeV.

De plus, nous avons étudié simultanément le courant de charge et le courant de chaleur

se propageant dans le canal de bord pendant que la relaxation a lieu. Étonnamment,

nous observons que la quantité d’énergie perdue pendant la propagation est nettement

plus importante que prévu [vi], ce qui suggère que les mécanismes de relaxation vers des

degrés de liberté externes jouent un rôle inattendu et important dans les expériences

d’optique quantique électronique.
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xiv Résumé

Nous avons en outre démontré expérimentalement que la relaxation du pic des

quasiparticules injecté dans le canal de bord extérieur peut être fortement supprimée

en découplant le canal de bord du canal de bord voisin interne. Des signes évidents

d’un taux de relaxation réduit ont été observés tant dans l’évolution de l’amplitude du

pic des quasiparticules que dans la quantité d’énergie s’échappant du canal de bord.

En conclusion, dans cette expérience, nous avons capturé les limitations imposées

par la relaxation en énergie dans les canaux de bord de l’effet Hall quantique et nous les

circonvenons en prolongeant considérablement la durée de vie des excitations à énergie

finie.

[i] E. Bocquillon, et al., Annalen der Physik 526, 1 (2014).

[ii] I. Levkivskyi, et al., PRB 85, 075309 (2012).

[iii] E. Bocquillon, et al., Nat. Commun. 4, 1839 (2013).

[iv] C. Altimiras, et al., Nature Physics 6, 34 (2009).

[v] H. le Sueur, et al., PRL 105, 056803 (2010).

[vi] C. Grenier et al, Mod. Phys. Lett. B 25, 1053 (2011).

Mots Clés: RELAXATION, SPECTROSCOPIE, ÉTATS DE BORD, L’EFFET HALL

QUANTIQUE, BOITE QUANTIQUES



Chapter 1

Introduction (French)

Ce chapitre est un résumé des investigations menées au cours de cette thèse. La

première partie présente le contexte général du transport électronique mésoscopique.

Je décris brièvement l’effet Hall quantique et les propriétés des canaux de bord. Elle est

suivie d’une discussion sur les mécanismes de décohérence et de relaxation qui peuvent

avoir lieu dans ce régime et comment ces processus ont été étudiés expérimentalement

dans le cadre de l’optique quantique électronique. Plusieurs observations inattendues

sur ces expériences ainsi que quelques questions ouvertes au niveau le plus fondamental

sur les différents modèles théoriques ont motivé ce travail. Dans ce qui suit, je présente

l’expérience dont nous avons réalisé une spectroscopie à énergie résolue de la relaxation

des quasiparticules dans un canal de bord de l’effet Hall quantique. Enfin, je discute

des principaux résultats et observations de cette expérience au cours de laquelle le pic

de quasiparticules a été mesuré directement pour la première fois dans un canal de

bord chiral unidimensionnel.

1.1 Transport mésoscopique dans les semiconduc-

teurs

Les semiconducteurs sont des systèmes fascinants pour étudier le transport électronique

dans la matière condensée. Une des raisons est qu’il est possible de fabriquer ces

matériaux avec un haut niveau de contrôle de la pureté et du désordre de la struc-

ture cristalline. Ainsi, plusieurs de leurs propriétés électroniques intrinsèques peuvent

être conçues à la demande. Une autre raison est qu’il existe déjà une technologie très

mature pour réduire les dimensions de ces systèmes jusqu’à l’échelle nanométrique où

une description quantique est nécessaire puisque la théorie classique du transport com-

mence à échouer. Ces degrés de tunabilité ouvrent la voie à l’exploration du transport

électronique dans une grande variété de régimes.

En particulier, dans les gaz électroniques bidimensionnels (2DEG) obtenus dans

les hétérostructures semiconductrices, la densité des électrons, typiquement de l’ordre

1



2 Introduction (French)

de ns ∼ 1011 cm-2, est suffisamment faible pour que les interactions ne puissent être

efficacement criblées mais suffisamment élevées pour mettre ces interactions en jeu,

de manière non négligeable, en provoquant de fortes corrélations quantiques entre les

particules. De plus, la mobilité elevé obtenue sur ces systèmes, typiquement de l’ordre

de µτ ∼ 106 cm2/Vs, permet de concevoir des dispositifs électroniques avec des di-

mensions inférieures à certaines des échelles de longueur caractéristiques du transport

électronique, telles que: le longueur élastique le où les particules se propagent sans

perte d’énergie, le libre parcours moyenne l̄ où les particules se propagent de façon

balistique sans avoir des collisions ou même la longueur de cohérence lϕ qui définit

la distance à laquelle elles maintiennent la phase liée à leur nature ondulatoire. Par

conséquent, les signatures du caractère quantique du transport électronique se reflètent

sur des quantités macroscopiques mesurables telles que le courant et la résistance. Ce

régime est mieux connu sous le nom de régime de transport mésoscopique.

Dans le gaz d’électron bidimensionnel (2DEG) à base de GaAs/AlGaAs, de nom-

breux phénomènes mésoscopiques caractéristiques ont été observés. Par exemple la

quantification de la conductance dans un régime balistique [1, 2, 3] ; l’effet du blocage de

Coulomb dans des systèmes très confinés comme les bôıtes quantiques et l’interférence

quantique des ondes electroniques comme dans l’effet Aharonov-Bohm observé sur

des systèmes en géométrie annulaire [6, 7] ou l’effet de localisation faible observé

dans des systèmes désordonnés [8]. L’effet Hall quantique entier [9], qui est

observé lorsqu’un 2DEG est sous un fort champ magnétique perpendiculaire et à une

température suffisamment basse, est d’un intérêt particulier pour cette thèse. Il s’agit

d’un phénomène quantique robuste et remarquable qui change radicalement les lois clas-

siques habituelles pour décrire le transport électronique, même dans le circuit résistif

le plus simple.

1.2 L’effet Hall quantique

Dans la théorie semi-classique, les particules chargées se déplaisant sous un champ

magnétique décrivent des trajectoires circulaires, les orbites cyclotron, comme conséquence

de la force de Lorentz. Alors que la fréquence du cyclotron ωc n’est fixée que par le

champ magnétique B, le rayon de l’orbite rc dépend tant du champ magnétique que

de l’énergie E de la particule:

wc =
eB

m
rc =

v

wc
=

√
2Em

eB
(1.1)

Puisque les particules dans un conducteur ont une énergie maximale de l’ordre de

l’énergie Fermi EF , en augmentant le champ magnétique le rayon peut être rendu si pe-

tit qu’il devient comparable à la longueur d’onde de Broglie de la particule. On s’attend

donc à observer des effets de quantification de l’énergie et du rayon orbital dans la lim-
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ite des champs magnétiques élevés. En fait, les principales propriétés électroniques

d’un 2DEG sous un fort champ magnétique perpendiculaire sont décrites par la théorie

quantique en termes de niveaux de Landau. Ce sont des niveaux d’énergie discrets,

séparés par ~ωc comme représenté sur la Fig. 1.1a, qui résultent directement de la

quantification du mouvement cyclotron.

Afin d’observer les effets de la quantification de Landau sur les propriétés de trans-

port, deux conditions principales doivent être satisfaites: Premièrement, les électrons

doivent être capables d’effectuer au moins une orbite cyclotron complète avant d’être

dispersés, ce qui implique que ωcτ = Bµτ � 1; Deuxièmement, la température

électronique T doit être suffisamment petite pour qu’un seul niveau de Landau soit

excité thermiquement à la fois: kbT � ~ωc.
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Figure 1.1: (a) Niveaux de Landau plats En = ~ωc(n + 1/2) formés dans un 2DEG infini
sous un champ magnétique uniforme B. (b) Niveau de Landau formé dans un système de taille
finie Lx dans la direction x̂. Le potentiel de confinement créé aux frontières (ici représentées sous
forme de murs durs) fait monter les niveaux de Landau. (c) Chaque fois qu’un niveau de Landau
croise le niveau de Fermi EF en b, un état de bord chiral se développe situé dans l’échantillon
à la position du croisement des niveaux. Le nombre d’états de bord est donné par le nombre de
niveaux de Landau remplis dans le coeur (bulk) du système.

De plus, lorsqu’un 2DEG de taille finie est considéré, les niveaux de Landau sont

modifiés près des frontières du système: ils sont pliés vers le haut en raison du potentiel

de confinement qui définit les frontières (Fig 1.1b). Néanmoins dans le coeur (bulk) du

système, les niveaux de Landau restent plats (s’il n’y a pas de désordre) et séparés par

l’énergie du cyclotron ~ωc.
De plus, l’énergie des niveaux de Landau peut être réglée avec le champ magnétique

pour faire en sorte que l’énergie de Fermi EF se situe entre deux niveaux de Landau

dans le coeur (bulk) du système. Dans cet condition, le coeur (bulk) devient isolante

et les seules excitations à faible énergie qui sont possibles se situent près des bords

du système. Cela signifie que dans ce régime, les électrons ne peuvent se propager

que le long des frontières du système dans les états de bord [10]. Comme détaillé

dans les Fig 1.1b et 1.1c un état de bord est développé chaque fois qu’un niveau de

Landau croise l’énergie de Fermi et il est situé dans la position où le croisement a lieu.
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Dans cette représentation simple, le nombre de canaux de bord est donné par la partie

entière du facteur de remplissage ν = nsh/eB, qui correspond au nombre de niveaux

de Landau qui sont en dessous du niveau de Fermi.

La chiralité traditionnelle imposée par le champ magnétique dans un mouvement

cyclotron se reflète ici par le fait que les états de bord se propageant dans des directions

opposées sont situés dans des côtés opposés du système, généralement séparés par

une distance macroscopique. En conséquence, la rétrodiffusion est supprimée et la

propagation des électrons résulte robuste contre les impuretés et le désordre. Dans

ce régime, le transport est dit chiral et topologiquement protégé: les particules se

propagent de façon balistique sur les canaux de bord. Pour ces raisons, les états de bord

de l’effet Hall quantique ont été considérés comme de bons candidats pour l’obtention

des fils quantiques unidimensionnels idéals où les particules peuvent se propager de

manière cohérente et sans dissipation.

1.3 Optique quantique électronique

Les propriétés particulières de la propagation des électrons dans les canaux de bord

dans le régime de l’effet Hall quantique entier ont incité les physiciens à effectuer

des expériences semblables à l’optique quantique où les électrons sont utilisés pour

imiter la propagation des photons. Les progrès faits dans cette direction ont con-

duit au développement récent d’un champ spécifique dans le domaine du transport

mésoscopique qui est connu sous le nom de optique quantique électronique.

Au cours des dernières décennies, un effort considérable a été fait pour déterminer

dans quelle mesure cette analogie peut être étendue. Alors que les propriétés balis-

tiques des canaux de bord assurent le mouvement des électrons en forme de faisceau, il

a également été démontré que des nanostructures électrostatiques comme les contacts

ponctuels quantiques (QPC) et les bôıtes quantiques (QD) pouvaient être efficacement

mises en œuvre comme analogues électroniques des diviseurs de faisceau et des fil-

tres des particules resolus en énergie. De plus, récemment, plusieurs types de sources

d’électrons uniques ont été développés afin de réaliser ces expériences avec des partic-

ules individuelles [11, 12, 13, 14, 15, 16, 17].

En physique de la matière condensée, le caractère fermionique des électrons ainsi

que l’interaction de Coulomb ont un rôle important à jouer. Les expériences d’optique

quantique électronique permettent de sonder l’analogie entre la propagation cohérente

des électrons et des photons, mais aussi de mettre en évidence leurs différences. Une

aspiration majeure de ce domaine est d’étudier et de comprendre l’importance des in-

teractions électroniques afin de pouvoir manipuler l’état quantique des excitations in-

dividuelles dans les canaux de bord de l’effet Hall quantique. Cela fournirait une base

prometteuse pour la mise en œuvre de qubits volants électroniques pour l’information

quantique [18, 19]. Dans le domaine de l’information quantique, les qubits volants sont
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nécessaires pour la transmission cohérente de l’information entre les parties séparées du

réseau physique [20, 21]. La propagation chirale et robuste des électrons dans le régime

de l’effet Hall quantique offre de grands avantages à cette fin puisque les trajectoires

des électrons peuvent être facilement manipulées par des grilles électrostatiques. De

plus, il a été proposé de mettre en œuvre des qubits volants électroniques, non seule-

ment pour transférer l’information mais aussi pour effectuer des opérations logiques

puisque l’information peut également être codée dans les trajectoires des électrons [21].

Par conséquent, une étape fondamentale consiste à déterminer jusqu’à quel point les

électrons peuvent se propager de façon cohérente et sans relaxation le long des canaux

de bord de l’effet Hall quantique.

Dans cette thèse, nous abordons cette question en étudiant expérimentalement la

relaxation des quasiparticules émises à une énergie bien définie au-dessus de la mer de

Fermi d’un canal de bord, dans le régime de l’effet Hall quantique entier au facteur de

remplissage ν = 2. Cette expérience sonde la importance des interactions qui permet

aux particules d’échanger de l’énergie et donc de relaxer dans le régime IQHE.

1.4 Le rôle des interactions

La simple quantification du mouvement cyclotron des électrons est suffisante pour ex-

pliquer de nombreuses observations expérimentales du transport électronique dans le

régime de l’effet Hall quantique entier, mais ce n’est qu’une description sans interac-

tions. Comme elle ne tient pas compte des interactions, on sait peu de choses sur la

relaxation et la décohérence des quasiparticules.

Le rôle de les interactions dans les systèmes électroniques est une question très

fondamentale qui a été considérée originellement dans la théorie de Landau des liquides

Fermi [22, 23, 24]. Il décrit un gaz de Fermi où les interactions de Coulomb entre

les particules sont allumées de façon adiabatique à partir du cas non interactif. Il en

résulte un système, le liquide de Fermi, dont l’état fondamental est toujours une mer de

Fermi et les excitations à faible énergie sont encore décrites par des états des particules

uniques à longue durée de vie qui suivent une statistique de Fermi.

Cependant, l’hypothèse adiabatique n’est pas toujours valide. Un exemple bien

connu est le cas d’un supraconducteur, dont l’état fondamental est radicalement différent

de celui d’une mer Fermi. Par conséquent, il ne peut pas être décrit par cette théorie.

Un autre cas où l’hypothèse adiabatique est susceptible d’échouer est celui des systèmes

de faible dimension car les effets des interactions sont généralement renforcés en raison

du confinement supplémentaire; par conséquent, de nombreux effets inhabituels des

particules fortement corrélées ont été suggérés de se déveloper. La théorie du liquide

de Luttinger [25, 26] décrit un gaz de Fermi unidimensionnel avec des interactions

et prédit plutôt que les excitations dans ce système sont mieux représentées par des

quasiparticules bosoniques qui se composent des excitations collectives [27, 28].
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Dans ce contexte, la nature même des quasiparticules se propageant dans les canaux

de bord chiraux de l’effet Hall quantique est encore sous investigation [29, 30, 31]. En

raison de son caractère unidimensionnel, il n’est pas clair dans quelle mesure les exci-

tations fondamentales de basse énergie peuvent être représentées comme des quasipar-

ticules de Landau stables. Dans les expériences menées dans le cadre de cette thèse,

nous sondons directement dans quelle mesure les quasiparticules peuvent se propager

avant de se décomposer en excitations collectives.

1.5 Décohérence dans les canaux de bord

Au cours des deux dernières décennies, plusieurs expériences ont été réalisées pour

étudier les propriétés des états de bord dans le régime de l’effet Hall quantique entier,

principalement au facteur de remplissage ν = 2.

Des interféromètres de Mach-Zehnder (MZI) ont été conçus pour étudier les pro-

priétés de cohérence du canaux de bord en produisant une interférence quantique

qui reflète la propagation balistique et cohérente des électrons [32, 33, 34, 35, 36].

Des interférences avec une visibilité aussi élevée que 90% ont été obtenues [37] et

des longueurs de cohérence de l’ordre de 20µm à une température de 20mK ont

été déterminées expérimentalement [33]. Ultérieurement, il a également été démontré

que le bruit électronique présent dans le canal de bord voisin co-propagation et dans

l’environnement contitue une source de décohérence qui peut être manipulée expérimentalement[38,

39].

Le développement d’une source d’électrons unique à la demande qui assure un bon

contrôle du temps d’émission et de la résolution en énergie d’un paquet d’ondes a ouvert

la voie à l’étude de la décohérence au niveau des particules individuelles [11, 40]. Des

interférences à deux particules dans la configuration de Hong-Ou-Mandel ont été mises

en œuvre, suggérant que la décohérence des particules individuelles résulte en effet

de l’émergence d’excitations collectives induites par l’interaction de Coulomb entre les

deux canaux de bord co-propageants [41, 42, 43].

Certaines de ces observations concordaient bien avec le modèle théorique qui décrit

les deux canaux de bord co-propageant couplés par l’interaction de Coulomb en terme

de la théorie du liquide de Luttinger [44, 45, 46]. Cependant, d’autres expériences

récentes réalisées avec des MZI, où des particules ont été injectées au-dessus de la mer

de Fermi à une énergie bien définie, ont démontré une cohérence quantique robuste à

haute énergie: il a été observé qu’au-dessus d’une énergie seuil, la visibilité des franges

d’interférence reste constante et indépendante de l’énergie [47]. Ces résultats sont en

forte contradiction avec les modèles théoriques qui prédisent plutôt une diminution

continue de la visibilité en fonction de l’énergie d’injection.

Les explications de ces observations inattendues dans les expériences d’interférence

font encore l’objet d’un débat. De plus, puisque les interactions permettent d’échanger
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de l’énergie entre les particules du système, l’étude des mécanismes de relaxation dans

les canaux de bord peut donner de nouvelles perspectives pour mieux comprendre le

rôle des interactions au niveau le plus fondamental.

1.6 Relaxation dans les canaux de bord

Les expériences qui étudient la relaxation en énergie consistent essentiellement à mettre

le système hors équilibre, d’une manière contrôlable, puis à mesurer comment il revient

à l’état d’équilibre. Ce faisant, nous pouvons étudier le mécanisme de relaxation et

sonder ses dépendances avec d’autres paramètres tels que la température électronique,

la distance de propagation ou l’environnement électromagnétique. Cette idée a été

mise en œuvre pour étudier le rôle des interactions dans divers systèmes mésoscopiques

comme des fils métalliques diffusifs [48], des nanotubes de carbone [49], des nanostruc-

tures dans les semiconducteurs [50] et récemment dans les canaux de bord de l’effet Hall

quantique entier au facteur de remplissage ν = 2 [51, 52]. Puisque la propagation dans

le régime de l’effet Hall quantique est chirale, l’évolution de l’état hors équilibre peut

être suivie le long du bord de l’échantillon: le temps et la distance sont liés simplement

par la vitesse de dérive vd.

Dans la Réf. [51] il a été démontré qu’une mesure directe de la fonction de distri-

bution fr(E) dans le canal de bord peut être obtenue à partir du courant tunnel IQD

à travers une bôıte quantique qui est faiblement couplé au canal de bord. Cette tech-

nique de spectroscopie repose sur l’effet tunnel des électrons à travers un seul niveau

discret dans une bôıte quantique, dans le régime de transport élastique et séquentiel,

dont l’énergie du niveau dicret E2 peut être manipulée électrostatiquement pour sonder

la fonction de distribution du canal de bord à différentes énergies. Si le canal de bord

à étudier se trouve à la source de la bôıte quantique, le courant tunnel est simplement:

IQD(E2) = Imax

(
fr(E2, µr)− Fd(E2, µd)

)
(1.2)

où Imax est une constante déterminée par les caractéristiques de la bôıte quantique et

Fd est la fonction Fermi au réservoir de drain de la bôıte sur lequel une tension de

polarisation Vd est appliquée afin de séparer le potentiel électrochimique des réservoirs

de drain (µd) et de source (µr): |eVd| = µr − µd.
Comme nous le verrons au chapitre 5, cette méthode a été mise en œuvre pour

mesurer la relaxation d’un état hors-équilibre injecté sur un canal de bord qui consiste

en une fonction de distribution fi(E), avec une forme en double marche, générée avec

un contact ponctuel quantique à une transmission intermédiaire τqpc ∼ 0.5 et polarisé

avec une tension V1. Ainsi, le QPC mélange les distributions de Fermi1F (E) d’un

contact ohmique mis à la masse avec la distribution de Fermi F (E − eV1) du contact
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ohmique biaisé.

fi(E) = τqpcF (E − eV1) + (1− τqpc)F (E) (1.3)
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Figure 1.2: Top: Représentation schématique de la configuration expérimentale implémente
pour étudier la relaxation d’une fonction de distribution qui a une forme en double marche dans
le régime IQHE au facteur de remplissage ν = 2. Le QPC biaisé a une transmission intermédiaire
τqpc crée une fonction de distribution avec une forme en double marche fi dans le canal du bord
extérieur. Après quelques micromètres de propagation, là où la relaxation peut avoir lieu, la
distribution fr résultante est mesurée à l’aide d’une bôıte quantique implémenté comme filtre
d’énergie. (Bottom:) État initial et final de la fonction de distribution avant et après le processus
de relaxation.

La figure 1.2 illustre la configuration expérimentale pour l’étude de la relaxation de

une fonction de distribution avec une forme en double marche injectée dans le canal

du bord extérieur obtenue dans le régime de l’effet Hall quantique entier à facteur de

remplissage ν = 2. Sur ces expériences, il a été démontré qu’après une courte distance

de propagation, d’environ 0.8µm, l’état de déséquilibre injecté ne se relâche pas du

tout. Des expériences ultérieures ont montré que le processus de relaxation s’effectue

progressivement tandis que les particules se propagent sur quelques micromètres. Une

relaxation complète vers un régime d’électrons chauds a été mesurée après une distance

de 10µm [52] et il reste inchangé à plus grande distances, jusqu’à 30µm.

L’interaction de Coulomb entre les deux canaux de bord co-propageant, qui sont

seulement couplés capacitivement, a été identifiée comme la principale source de re-

laxation. En fait, un échange d’énergie direct a été observé entre les deux canaux de

bord et il a été démontré que cet échange d’énergie pouvait être empêché en forçant

le canal de bord intérieur à former des boucles. Lorsque le canal de bord intérieur

forme des boucles, sa densité d’état devient discrète comme dans une bôıte quantique,

1Les fonctions de distribution de Fermi sont représentées en majuscule F (E) tandis que les autres
fonctions de distribution sont représentées en minuscule f(E).
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ainsi le canal de bord extérieur est maintenant couplé à un système avec un spectre

d’énergie quantifié au lieu d’un spectre continu. Cela limite les énergies auxquelles ils

peuvent échanger de l’énergie en réduisant la relaxation de la fonction de distribution

hors équilibre qui a été injectée dans le canal du bord extérieur [53].

Bien que certaines des observations concordent bien avec le scénario de couplage

capacitif de deux canaux de bord en interaction, il a été également observé que 25%

du courant de chaleur injecté s’échappe du système constitué par les deux canaux de

bord, ce qui suggère qu’il pourrait y avoir des degrés de liberté supplémentaires qui

jouent un rôle imprévu dans le mécanisme de relaxation et dont les modèles théoriques

précédents n’ont pas tenu compte [52, 54, 55].

Au chapitre 5 nous présentons des mesures que nous avons effectuées dans le même

régime, pour étudier la relaxation d’une fonction de distribution avec une forme en dou-

ble marche, qui sont en accord avec les principaux résultats des expériences réalisées à

l’origine par l’équipe Phynano du laboratoire C2N(LPN) [51, 52]. Dans ces expériences,

nous avons vérifié que sur nos échantillons, qui ont une géométrie différente, nous ob-

servons le même taux de relaxation pour la fonction de distribution à double marche,

ce qui signifie que le processus de relaxation n’est pas fortement affecté par le désordre

particulier dans l’échantillon, ou la configuration géométrique spécifique des électrodes

métalliques qui définissent l’appareil. Nos mesures sont en accord avec le fait que la

fonction de distribution en double marche se relaxe vers un régime d’électrons chauds

à une distance de 10µm de propagation.
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Figure 1.3: Température d’excès mesurée après une courte (longue) distance de propagation
tracée avec les gros symboles remplis en rouge (verts) en fonction de la tension de polarisation
V1 dans le QPC. Nos mesures se situent dans la zone ombrée en rouge (verte) pour la courte
(longue) distance. Ces régions ombrées ont été déterminées à partir des données présentées dans
la Réf. [52] (Voir chapitre 5 pour plus de détails). La conservation de l’énergie dans le canal
de bord est indiqué par la ligne pointillée noire épaisse (Texc,i), tandis que la conservation de
l’énergie sur le système de deux canaux couples est indiqué par la ligne pointillée bleue mince
(Tminexc ) qui est la limite inférieure prévue par la théorie.

De plus, nous avons observé la même fuite d’énergie de ∼ 25% de l’ensemble du
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système constitué par les deux canaux de bord en interaction. Il s’agit d’une vérification

importante de l’observation faite en premier lieu dans la Réf. [52] que nous reproduisons

quantitativement pour la première fois et qui suggèrent qu’il s’agit en fait d’une car-

actéristique intrinsèque du mécanisme de relaxation. Cette fuite d’énergie est mis en

evidence en regardant la température d’excès Texc, qui est proportionnelle à la racine

carrée du courant de chaleur dans le canal de bord. Celle-ci est présentée dans la figure

1.3 en fonction de la tension de polarisation V1 dans le QPC pour deux longueurs de

propagation, L = 3.8µm (rouge) et L = 6.3µm (verte). Ici, la fuite d’énergie se mani-

feste par l’augmentation de l’écart observé entre les points mesurés, à grande tension

de polarisation et à grande distance, et la ligne diagonale Tminexc (ligne bleue en pointillés

fins) qui est la limite inférieure prévue par tous les modèles théoriques.

1.7 Relaxation á des énergies définies

Bien que les expériences décrites jusqu’à présent aient clairement démontré que les

interactions entre les canaux de bord sont la principale source de décohérence et de

relaxation, elles ont également montré que ces processus pouvaient être contrôlés et sup-

primés jusqu’à un certain niveau. Cependant, l’énergie manquante suggère également

que la compréhension actuelle du mécanisme de relaxation n’est pas complète. En

outre, il reste encore des questions fondamentales auxquelles ces expériences n’ont

pas permis de répondre: Comment un pic de quasiparticules, bien défini en

énergie, se relaxera-t-il vers la mer de Fermi? et Jusqu’á quelle distance

les excitations résolues en énergie peuvent-elles se propager dans un canal

de bord avant de se relaxer? Ce sont là des questions fondamentales abordées à

l’origine dans la théorie de Landau des liquides de Fermi, qui sont d’une importance

fondamentale pour la manipulation cohérente des quasiparticules dans le régime de

l’effet Hall quantique entier pour des applications futures.

Dans cette thèse, nous abordons ces questions et apportons des preuves expérimentales

de la désintégration d’un pic des quasiparticules en effectuant une spectroscopie résolue

en énergie de la relaxation des quasiparticules injectées, à une énergie bien définie, au-

dessus de la mer de Fermi dans un canal de bord dans l’effet Hall quantique. Les

expériences sont réalisées sur un 2DEG à base de GaAs/AlGaAs avec des densités

d’électrons allant de n ≈ 2.5 × 1011 cm-2 et une mobilité de l’ordre de µτ ∼ 2 × 106

cm2V-1s-1. Les 2DEG sont fabriqués au laboratoire C2N par A. Cavanna et U. Gennser.

1.7.1 Configuration expérimentale

Notre configuration repose sur une paire de bôıtes quantiques électrostatiquement

définies, utilisées comme émetteur et détecteur résolus en énergie comme illustré dans

la Fig. 1.4. Le dispositif est fabriqué au laboratoire C2N par D. Mailly par lithogra-
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Figure 1.4: Top: Micrographie électronique à balayage de l’échantillon E33. Deux bôıtes
quantiques sont définies électrostatiquement afin d’effectuer une spectroscopie résolue en énergie
de la relaxation dans un canal de bord. Les deux QDs sont faiblement couplés uniquement au
canal de bord extérieur, tandis que le canal de bord intérieur est entièrement réfléchi par toutes
les électrodes qui définissent les deux QDs. Le premier QD (à gauche) injecte des quasiparticules
au-dessus de la mer de Fermi dans le canal de bord qui provient du contact C4 mis à la masse. Les
excitations injectées se propagent dans le canal de bord, de 3 à 4, jusqu’à ce qu’elles atteignent
le deuxième bôıte quantique (à droite) qui est implémenté comme un détecteur. Bottom: Dia-
gramme des énergies et distribution des particules dans les différentes parties de l’appareil. Le
schéma d’injection est représenté par 1, 2, 3. La propagation se produit entre 3 et 4. Le schéma
de détection est représenté par 4, 5 et 6. Le signal attendu à être mesuré dans la transcon-
ductance à travers la deuxième bôıte quantique est représenté par 7. Voir le texte pour plus
des détails (section 6.2). Les dispositifs sont fabriqués au laboratoire C2N où les 2DEG sont
produits par A. Cavanna et U. Gennser, tandis que les nanostructures métalliques sont faites par
D. Mailly.
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phie électronique. Le premier bôıte quantique est définie par l’ensemble d’électrodes

{G1, G2, G3, G4} sur le côté gauche, et le second bôıte quantique est définie par

l’ensemble d’électrodes {G1, G6, G7, G8} sur le côté droit. L’émetteur est obtenu en

appliquant une tension drain-source finie V1 sur la premier bôıte quantique (1), avec

un seul niveau résonant dans la fenêtre de polarisation (2). La position du niveau

résonant, qui est contrôlée par la tension Vp1 sur l’électrode G3, définit l’énergie E1 à

laquelle les électrons sont émis au-dessus de l’énergie de Fermi EF du drain (3). Par

conséquent, la fonction de distribution hors équilibre injectée fi(E) est constituée de la

mer de Fermi en équilibre F (E) et des quasiparticules émises avec une distribution de

Lorentz L(E,E1) centrée à l’énergie E1 dont l’amplitude T1 et la largeur à mi-hauteur

Γ1 sont déterminées par les caractéristiques du niveau résonant dans la premier bôıte

quantique.

fi(E) = F (E,EF ) + L1(E,E1) (1.4)

Après une longueur de propagation dans l’échelle micrométrique (de 3 à 4), nous

effectuons une spectroscopie résolue en énergie des électrons émis en utilisant le second

bôıte quantique comme filtre d’énergie (4, 5, 6 et 7). Pour cette procédure de détection

nous suivons la méthode précédemment démontré pour détecter la relaxation de une

fonction de distribution avec une forme en double marche (Section 1.6).

1.7.2 Relaxation du pic de quasiparticules

Dans le chapitre 6 nous présentons les données que nous avons obtenues en mettant en

ouvre le dispositif de la Fig. 1.4, ce qui constitue la première observation expérimentale

d’un pic de quasiparticules au-dessus de la mer de Fermi d’un canal de bord.

Relaxation vs Energie d’Injection

La figure 1.5 montre une mesure effectuée après une courte distance de propagation

L = 0.48µm à une température T0 = (23.1±0.6)mK. La figure montre la mer de Fermi

mesurée à l’équilibre et toutes les fonctions de distributions mesurées à différentes

énergies d’injection E1 ∈ {22, 43, 65, 87, 108, 130, 152, 173}µeV. S’il n’y a pas eu de

relaxation, l’amplitude attendue du pic des quasiparticules est T ∼ 0.3. Bien que

l’on observe une relaxation croissante au fur et à mesure que l’énergie d’injection E1

augmente, la structure d’un pic a quand même été détectée dans toutes les courbes.

Ces observations, obtenues au facteur de remplissage ν = 2 de l’effet Hall quantique,

montrent que bien que la propagation sur une distance submicrométrique entrâıne un

relaxation important du pic injecté, une petite partie des quasiparticules survit à la

relaxation, même aux énergies relativement élevées, ici jusqu’à 175µeV.

Comme le montre la figure 1.6, une caractérisation détaillée de l’évolution du pic

des quasiparticules en fonction de l’énergie d’injection E1 montre que le processus de

relaxation qui a eu lieu le long de la propagation n’affecte pas l’énergie à laquelle le pic
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Figure 1.5: Spectre R-72. Évolution de la fonction de distribution f(E) mesurée après
une distance de propagation L = 0.48µm tout en augmentant l’énergie d’injection E1, indiquée
par les lignes pointillées verticales, autour desquelles est centrée une structure du pic qui est le
reste du pic des quasi-particules injecté. La mer de Fermi en équilibre (ligne bleue claire) avec
le potentiel électrochimique EF ∼ 0µeV a été mesuré quand aucune particule n’a été injectée
(E1 = −22µeV <EF ).

est centré étant toujours trouvé autour de l’énergie d’injection E1. De plus, la forme du

pic est toujours bien décrite par une fonction de Lorentz dont la largeur ΓL (FWHM)

reste constante et indépendante de l’énergie d’injection. Plus important encore, ces

mesures ont montré que l’amplitude du pic de quasiparticules diminue suivant une

décroissance exponentielle en fonction de l’énergie d’injection. L’énergie caractéristique

Edecay de la désintégration exponentielle était de l’ordre de Edecay ∼ 60µeV pour une

distance de propagation L = 0.48µm à une température T0 = 23.1± 0.6 mK.

(a) (b) (c)

Figure 1.6: (a)Fonction de distribution f(E) mesurée et présenté en échelle semi-
logarithmique afin de mettre en évidence l’évolution du pic des quasi-particules tout en aug-
mentant l’énergie d’injection E1. La ligne pointillée correspond à un modèle lorentzien du pic
des quasiparticules. (b) Centre du pic Epeak (cercles bleus) et largeur du pic à mi-hauteur
FWHM (diamants rouges) extrait des ajustements de Lorentzian fits en fonction de l’énergie
d’injection E1. La ligne pointillée bleue est une ligne y = x. (c) Hauteur de pic (carrés noirs)
extraite des ajustements montrés dans a versus E1, en échelle semi-logarithmique. La ligne noire
est un ajustement exponentiel du décroissance.
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Relaxation vs Distance de Propagation

De plus, nous avons observé que l’énergie caractéristique Edecay est fortement affectée

par la température électronique T et la distance de propagation L. D’une part, une

augmentation de la température électronique de ∆T = 150 mK réduit l’énergie car-

actéristique Edecay par presque un facteur deux. Par contre, une augmentation de la

longueur de propagation de L = 0.48µm à L = 0.75µm entrâıne une diminution de

l’énergie de relaxation de Edecay ∼ 60µeV vers Edecay ∼ 20µeV . L’effet de la distance

est illustré dans la figure 1.7b qui montre la fonction de distribution mesurée à chaque

distance, pour des différentes énergies d’injection, et la décroissance exponentielle de

l’amplitude du pic des quasiparticules obtenue à partir d’eux.
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Figure 1.7: (a) Fonctions de distribution mesurées après la propagation. Les courbes ont été
décalées verticalement pour plus de clarté. Top: Spectre mesuré dans l’échantillon E33 pour
L = 0.48µm. Chaque courbe correspond à un incrément de l’énergie d’injection δE1 ≈ 21µeV,
de E1 = −21µeV (bleu) à E1 = 173µeV (rouge). La ligne grise épaisse est une fonction de
Fermi qui correspond aux données obtenues à E1 = −21µeV. Bottom: Spectre mesuré dans
l’échantillon D31 pour L = 0.75µm. Chaque courbe correspond à un incrément de l’énergie
d’injection δE1 ≈ 9µeV, de E1 = 9µeV (bleu) à E1 = 121µeV (rouge). (b) Hauteur de pic
extraite des ajustements de une fonction de Lorentz illustrés dans la Fig. 1.6, tracée en l’échelle
semi-logarithmique en fonction de l’énergie d’injection E1 pour les deux longueurs de propagation
L = 480 nm (cercles rouges) et L = 750 nm (diamants bleus) représentées dans a. Les lignes
pointillées rouges et bleues sont des ajustements exponentiels.

Une comparaison des distributions de particules observées à plusieurs distances pour

un pic de quasiparticules injecté approximativement à la même énergie E1 ≈ 40µeV

est présentée dans la figure 1.8. Avec l’analyse précédente du comportement du pic
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de quasiparticules, cette comparaison permet de décrire comment le mécanisme de

relaxation amène le système à l’équilibre. Dans un premier temps, une grande partie

des particules injectées perdent de l’énergie et l’amplitude du pic de quasiparticules

injecté diminue rapidement sur une distance de propagation sub-micrométrique. Notez

qu’aucun relaxation n’a été observé pour les distances sub-micrométriques quand on il

a été investigué la propagation d’une fonction de distribution avec une forme en double

marche [51]. Une fois que le pic de quasiparticules a presque disparu à une distance

d’environ ∼ 1µm, ce qui reste est une distribution différente d’un fonction de Fermi,

qui est toujours hors équilibre, qui n’as pas des traits aigus et qu’a une longue queue

qui s’étend dans une large gamme d’énergies. Comme on peut le voir qualitativement

dans la Fig. 1.8 cette distribution ne change pas beaucoup tant qu’elle se propage

jusqu’à 3.4µm. En fait, à ce stade, il ressemble à un état intermédiaire du processus

de relaxation de la distribution avec une forme en double marche, pour la quelle la

relaxation totale vers l’équilibre est atteint à de grandes distances (∼ 10µm).

On peut donc distinguer deux échelles de temps dans le processus de relaxation,

qui ont d’abord été mises en évidence dans le modèle théorique décrit dans la Réf. [56].

La première étape du processus de relaxation, qui se produit sur des longueurs sub-

micrométriques, rapproche les particules injectées vers la mer de Fermi en décomposant

le pic de quasiparticules en une distribution étendue de particules sur une large gamme

des énergies. La deuxième étape du processus de relaxation, qui amène la distribu-

tion étendue des particules dans une distribution de Fermi, se produit sur plusieurs

micromètres de propagation.

R-72 R-21 Rc4-6

𝑓
(𝐸

)

𝐸1𝐸1𝐸1

Figure 1.8: Fonction de distribution mesurée (ligne continue) pour une énergie d’injection
similaire E1 à des distances de propagation croissantes: L = 480nm (left), L = 750nm (middle)
et L = 3.4µm (right). Dans chaque cas, la ligne en pointillés est la mer de Fermi en équilibre
mesurée quand aucune particule n’a été injectée.

Signatures de la résurgence du pic de quasiparticules

En plus, pour une distance de propagation L = 750 nm et à basse température T ∼
20 mK, nous avons observé des signatures d’un résurgence du pic de quasiparticules.

Comme on peut le voir dans la Fig. 1.7b l’amplitude du pic de quasiparticules non
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seulement s’écarte soudainement de la décroissance exponentielle près de E1 ∼ 80µeV,

mais elle augmente à mesure que l’énergie d’injection est incrémenté. Ce comportement

a été observé dans plusieurs spectres mesurés en utilisant différentes configurations

électrostatiques dans les deux bôıtes quantiques, ce qui permet dé exclure des artefacts

occasionnés par la présence de possibles états excités ou des instabilités de charge dans

les électrodes à proximité. Bien que le modèle théorique proposé dans la Réf. [57]

n’explique pas la décroissance exponentielle de l’amplitude du pic de quasiparticules,

il prédit un comportement oscillatoire de l’amplitude du pic en fonction de l’énergie

d’injection E1 qui pourrait expliquer nos observations.

1.7.3 Courant de Chaleur

Dans le chapitre 7 nous étudions le courant de chaleur J(E) porté par les excitations

électrons-trous créées dans la fonction de distribution injectée fi(E), ce qui fournit des

informations additionnelles sur l’échange d’énergie dans le système grâce au processus

de relaxation.

Courant de Chaleur vs Énergie d’Injection

L’injection de quasiparticules avec une distribution de Lorentz L1(E,E1) centrée sur

l’énergie d’injection E1 entrâıne une augmentation du potentiel électrochimique ∆µ

donné par:

∆µ =

∫
L1(E,E1)dE (1.5)

ce qui est lié au courant de charge dans le canal de bord. En plus, l’injection de nouvelles

particules entrâıne également une augmentation du courant de chaleur ∆Ji puisque de

nouvelles excitations de électron-trou ont été créées sur le système. L’augmentation

du courant de chaleur ∆Ji qui a été injecté devrait suivre un comportement linéaire

en fonction de l’énergie d’injection E1, donnée par:

∆Ji(E1) = (E1 − µ)∆µ+
1

2
(∆µ)2 (1.6)

Remarquablement, comme le montre la figure 1.9 pour deux distances de prop-

agation L = 0.48µm (gauche) et L = 0.75µm (droite), nous observons une grande

différence entre le courant de chaleur injecté ∆Ji (ligne rouge) et le courant de chaleur

détecté ∆Jr (ligne noire avec symboles) mesuré après propagation. Dans les deux cas,

on peut voir qu’à haute énergie d’injection E1, le courant de chaleur détecté est beau-

coup plus petit que ce qui était attendu, indiquant que l’énergie n’est pas conservée sur

le canal de bord. Comme l’a clairement démontré H. le Sueur et al. [52], l’interaction

avec le canal de bord co-propageant induit un échange d’énergie entre les deux canaux

de bord, ce qui devrait être, en partie, responsable de l’écart observé sur la figure 1.9a

et 1.9b.
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Figure 1.9: Comparaison entre le courant de chaleur en excès ∆Ji qui a été injecté (ligne
rouge) dans le canal de bord et le courant de chaleur en excès ∆Jr qui a été mesuré après une
propagation (symboles noirs). Chaque graphe correspond à la mesure prise après une longueur
de propagation L = 0.48µm (a) et L = 0.75µm (b). Dans les deux cas, la ligne pointillée bleue
représente la limite inférieure ∆Jminr qui est prédite par tous les modèles théoriques comme
conséquence de l’équipartition d’énergie entre les deux canaux de bord co-propageants. La zone
ombrée en gris correspond à la partie finale de la spectroscopie, où l’énergie d’injection atteint
sa valeur maximale quand le niveau d’énergie discret dans la premier bôıte quantique sort de la
fenêtres de biais.

Cependant, les différents modèles théoriques qui décrivent ce système en interaction,

soit dans le cadre des fermions chiraux [54] soit dans le cadre de la théorie des liquides de

Luttinger qui suggère le développement des excitations de plasmons [58, 55], prévoient

que cette interaction mène à une équipartition d’énergie entre les canaux voisins. En

conséquence, il y a une limite inférieure ∆Jminr pour le courant de chaleur restant sur

un canal de bord qui devrait être atteint à pleine relaxation. Cette limite inférieure est

indiquée par la ligne pointillée bleue pour les mesures présentées sur la Fig. 1.9. On

voit clairement que le courant de chaleur en excès qui reste dans le canal mesuré après

la propagation est bien en dessous de la limite inférieure. Nous observons qu’il reste

jusqu’à 70% moins d’énergie que ∆Jminr pour une distance de propagation L = 0.75µm.

Ces mesures montrent qu’il y a une très grande fuite d’énergie qui n’est en accord

avec aucun des modèles théoriques actuels qui décrit l’interaction dans le régime de

l’effet Hall quantique entier au facteur de remplissage ν = 2. En plus, dans le cas de la

relaxation de la fonction de distribution avec une forme en double marche, nous avons

observé une fuite d’énergie plus faible, en accord avec les résultats présentés dans la

Réf. [52] (Voir Fig. 1.3). Nos mesures dans les deux régimes excluent absolument

tout artefact expérimental qui pourrait mener à une fuite d’énergie apparente. Alors

qu’une fuite d’énergie constante de 25% a été observée sur la relaxation de la fonction

de distribution avec une forme en double marche, nous rapportons ici que la relaxation

des excitations résolues en énergie conduit à une fuite d’énergie qui dépend fortement

de l’énergie d’injection E1 du pic de quasiparticules. Ainsi, la quantité d’énergie perdue

pendant la propagation suggère que les mécanismes de relaxation vers des degrés de

liberté externes jouent un rôle important et inattendu dans les expériences d’optique
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quantique électronique.

Courant de chaleur vs Longueur de propagation

Nous avons observé qu’une fuite d’énergie importante se développe très rapidement

au cours du premier micromètre de propagation. A L = 2.17µm et au-delà, la fuite

d’énergie n’augmente pas beaucoup et semble avoir atteint un comportement station-

naire. Cela coincide avec le fait que le processus de disparition de la structure du pic

de quaisparticules se produit à des distances sub-micrométriques. A toutes les dis-

tances, nous observons que la fuite d’énergie est plus large à des énergies d’injection

plus élevées. Grosso modo, la fraction du courant thermique résiduel ∆Jr/∆Ji suit

une dépendance 1/E1 en fonction de l’énergie d’injection E1.

Courant de chaleur vs Température

Tel que décrit précédemment, les mesures de la relaxation après une courte distance

de propagation (L = 0.48µm) ont montré que l’amplitude du pic de quasiparticules

diminue environ deux fois plus vite lorsque la température électronique augmente de

150 mK. Cependant, pour le même ensemble de spectres, nous avons mesuré que la

température n’a aucun effet sur la quantité de courant de chaleur qui s’échappe du

canal du bord.

1.7.4 Réduction de la relaxation

Dans le chapitre 8 nous démontrons que la relaxation du pic de quasiparticules injecté

dans le canal de bord extérieur peut être affaibli (jusqu’à cinq fois) en découplant ce

canal de bord du canal de bord intérieur voisin. Nous montrons qu’il est possible

d’atteindre ce régime simplement en mettant en place une grille de déplétion, sur la

surface de l’échantillon, qui est utilisée pour dévier seulement le canal de bord intérieur

le long d’un trajet plus long, laissant le canal de bord extérieur se propager seul en

suivant le court trajet comme illustré schématiquement sur les panneaux de gauche de

la figure 1.10.

Le design de nos échantillons (Fig. 1.4) permet de modifier, in situ, la distance

de propagation sur le même dispositif en polarisant une grille métallique de surface:

l’électrode A2. Lorsque l’électrode A2 n’est pas négativement polarisé ((VA2 ≥ 0V),

les deux états de bord se propagent librement sur le court trajet direct entre les deux

bôıtes quantiques. Inversement, quand il est complètement polarisé à pinch-off (VA2 ∼
−0.5V) il pousse les deux canaux de bord à suivre un chemin plus long. De cette

façon, il était possible d’augmenter la distance de propagation dans l’échantillon D31

de L = 0.75µm jusqu’à L = 2.17µm. Cependant quand l’électrode A2 est polarisée

à une tension intermédiaire, −0.5V ≤ VA2 ≤ 0.0 V, nous pouvons accéder à un régime
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Figure 1.10: a, c, e: Micrographies électroniques à balayage en fausses couleurs d’un
échantillon typique, représentant les trajectoires des canaux de bord pour VA2 = 0.2 V (a,
A2 grille surlignée en orange), VA2 = −0.1 V (c, A2 grille surlignée en violet), et VA2 = −0.5
V (e, A2 grille surlignée en bleu). Dans a, les deux canaux de bord co-propaguent le long
d’un chemin court de L ≈ 750 nm. Dans c, les deux canaux de bord sont séparés spatialement
(lignes pointillées orange) lorsqu’ils passent sous la grille A2. Dans e, les deux canaux de bord
co-propaguent le long d’un chemin de L ≈ 2.17µm long. b, d, f : Fonction de distribution f(E)
mesuré pour les configurations représentées respectivement dans a, c, et e. Chaque courbe,
décalée pour plus de clarté, correspond à un incrément d’énergie d’injection δE1 ≈ 9µeV , de
E1 ≈ −26µeV (bleu) à E1 ≈ 122µeV (rouge, b) et E1 ≈ 98µeV (rouge, d et f). L’encart dans b
est un zoom sur la région délimitée par le carré noir pointillé.
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différent sur lequel le couplage entre les deux états de bord co-propageant peut être

syntonisé.

Une représentation schématique de ces trois régimes distincts est présentée dans

la figure 1.10, ainsi que les fonctions de distribution mesurées après la propagation

dans le canal du bord extérieur, où le pic de quasiparticules a été injecté. Dans le

régime intermédiaire (Fig. 1.10(d)), le pic résiduel de quasiparticules détecté est re-

marquablement plus grand que celui mesuré dans la Fig. 1.10(b) pour la même distance

de propagation, ce qui suggère que le mécanisme de relaxation habituelle a été con-

sidérablement atténué.

Ces observations adressent un aspect central dans le domaine du electron quan-

tum optics qui n’a pas été démontré à ce niveau jusqu’à présent: jusqu’à quel point

une excitation électronique peut-elle se propager sur le canal de bord avant de se

dégrader? Avec ces expériences, nous avons déterminé les limitations imposées par la

relaxation dans le régime de l’effet Hall quantique entier, dans des conditions standard,

et nous avons démontré comment la relaxation peut être considérablement réduite en

prolongeant au moins cinq fois la durée de vie des excitations à énergie finie.

1.7.5 Coexistence de nombreux pics de quasiparticules

Enfin, dans la dernière partie du chapitre 8 nous présentons quelques mesures où de

nombreux pics de quasiparticules ont été injectés simultanément dans le canal de bord

en implémentant, dans le premier bôıte quantique, un niveau résonant avec des états

excités.

La figure 1.11a montre les fonctions de distribution f(E) mesurées après une longueur

de propagation L = 0.75µm obtenues aux différentes énergies d’injection E1(Vp1).

Nous pouvons identifier deux pics de quasiparticules principaux situés à proximité

l’un de l’autre qui sont détectés autour de l’énergie d’injection E1. Ils peuvent être

facilement vus dans la figure 1.11b qui est un zoom sur les queues des distribu-

tions présentées sur la figure 1.11a. Notez qu’il y a un petit troisième pic autour

d’une énergie E = 80µeV qui apparâıt sur les trois premières courbes étiquetées avec

l’énergie d’injection E1 ∈ {0, 10, 20}µeV. Une analyse détaillée de cette mesure permet

d’identifier chaque pic avec un état excité dans la structure des niveau d’énergies de la

bôıte quantique d’injection. Cela est constitué d’un état fondamental, un premier état

excité à 21µeV et un second état excité à 80µeV.
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Figure 1.11: Top: Fonctions de distribution, à différentes énergies d’injection, mesurées
dans l’échantillon D31 avec une tension de polarisation VA2 = −0.1 V et avec la premier bôıte
quantique dans une configuration où le niveau résonant présente des états excités. Les courbes
ont été décalées verticalement pour plus de clarté par un décalage constant proportionnel à
l’augmentation de l’énergie d’injection δE1 = 10µeV. Bottom: Zoom sur les queues de la
fonction de distribution présentées dans le panneau supérieur montrant que différents pics de
quasiparticules coexistent pendant leur propagation. Trois pics de quasiparticules peuvent être
identifiés.





Chapter 2

Introduction

This chapter is a summary of the investigations carried out during this thesis. The

first part introduces the general context of the mesoscopic electronic transport. I

describe briefly the quantum Hall effect and the properties of the edge channels. It is

followed by a discussion about the decoherence and relaxation mechanisms that can

take place in this regime and how these processes have been investigated experimentally

within the framework of the electron quantum optics. Several unexpected observations

on those experiments as well as some open questions at the most fundamental level

of different theoretical models have motivated this work. In the following I present

the experiment on which we have performed an energy resolved spectroscopy of the

relaxation of quasiparticles in a quantum Hall edge channel. Finally I discuss the main

results and observations of this experiment on which the quasiparticle peak was directly

measured for the first time in a 1-dimensional chiral edge channel.

2.1 Mesoscopic Transport in Semiconductors

Semiconductors have shown to be fascinating systems to investigate electronic transport

in condensed matter. One of the reasons is that it is possible to fabricate these materials

with a high level of control in the purity and the disorder of the crystalline structure.

Therefore several of their intrinsic electronic properties can be designed at demand.

Another reason is that there exists already a very mature technology to shape these

systems down to the nano-scale where the classical transport theory starts to fail and

a quantum description is needed. These degrees of tunability open a path to explore

the electronic transport in a wide variety of regimes.

In particular, in 2-dimensional electron gases (2DEG) obtained in semiconductor

heterostructures, the density of electrons, typically of the order of ns ∼ 1011 cm-2, is low

enough such that the interactions can not be effectively screened but sufficiently high

to bring those interactions at play, in a non negligible way, inducing strong quantum

correlations between the particles. Moreover, the high mobility, typically of the order

23



24 Introduction

of µτ ∼ 106 cm2/Vs, obtained on these systems makes possible to design electronic

devices with dimensions below some of the characteristic length scales of the electronic

transport, such as: the elastic length le where particles propagate without loosing

energy, the mean free path l̄ where particles propagates free of collisions in a ballistic

fashion or even the coherence length lϕ that sets the distance over which the particles

keep the phase associated to its wave nature. Consequently, signatures of the quantum

character of electronic transport are reflected on measurable macroscopic quantities

like the current and the resistance. This regime is better known as the mesoscopic

transport regime.

In GaAs/AlGaAs 2DEG many hallmark mesoscopic phenomena have been ob-

served. For example the quantization of the conductance in a ballistic regime [1, 2, 3];

the Coulomb blockade effect in highly confined systems like quantum dots [4, 5]; and

quantum interference between particles like in the Aharonov-Bohm effect realized in

ring geometries [6, 7] or the weak localization observed in disordered systems [8]. Of

particular interest on this thesis is the integer quantum Hall effect [9] that is ob-

served when a 2DEG is under a strong perpendicular magnetic field and at low enough

temperature. This is a striking robust quantum phenomena that radically changes

the usual classical laws for describing the electronic transport even in the most simple

resistive circuit.

2.2 The Quantum Hall Effect

In the semi-classical theory, charged particles under a magnetic field move in cyclotron

orbits as a consequence of the Lorentz force. While the cyclotron frequency ωc is fixed

only by the magnetic field B, the radius of the orbit rc depends both on the magnetic

field and the energy E of the particle:

wc =
eB

m
rc =

v

wc
=

√
2Em

eB
(2.1)

Since the particles in a conductor have a maximum energy of the order of the Fermi

energy EF , by increasing the magnetic field the radius can be made so small that it

becomes comparable to the de Broglie wavelength of the particle. Hence quantization

effects of the energy and the orbital radius are expected to arise in the limit of high

magnetic fields. In fact the main electronic properties of a 2DEG under a strong

perpendicular magnetic field are described by the quantum theory in terms of Landau

levels. These are discrete energy levels, separated by ~ωc as represented in Fig. 2.1a,

that result directly from the quantization of the cyclotron motion.

In order to observe the effects of the Landau quantization in the transport proper-

ties, two main conditions have to be satisfied: First, the electrons need to be able to

perform at least a complete cyclotron orbit before being scattered out, which implies
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that ωcτ = Bµτ � 1; Second, the electronic temperature T needs to be small enough

such that only one Landau level is thermally excited at a time kbT � ~ωc.
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Figure 2.1: (a) Flat Landau levels En = ~ωc(n + 1/2) formed in an infinite 2DEG under a
uniform magnetic field B. (b) Landau level formed in a system with finite size Lx along the x̂
direction. The confinement potential created at the boundaries (here represented as hard walls)
bends up the Landau levels. (c) Each time a Landau level crosses the Fermi level EF in b, a
chiral edge state develops on the sample located at the position of the crossing. The number of
edge states is given the number of filled Landau level at the bulk of the system.

Additionally, when a 2DEG with finite size is considered the Landau levels are

modified near the boundaries of the system: they are bent up as a consequence of the

confining potential that defines the boundaries (Fig 2.1b). Nevertheless in the bulk,

Landau levels remain flat (if there is no disorder) and separated by the cyclotron energy

~ωc.
Furthermore, the energy of the Landau Levels can be tuned with the magnetic field

to let the Fermi energy EF laying in between two bulk levels. In this condition the bulk

becomes insulating and the only possible low energy excitations are located near the

edges. It means that in this regime the electrons can propagate only along the borders

of the system in the so called edge states [10]. As detailed in Fig 2.1b and 2.1c an

edge state is developed each time a Landau levels crosses the Fermi energy and it is

located in the system at the position where the crossing takes place. In this simple

representation, the number of edge channels is given by the integer part of the filling

factor ν = nsh/eB, which corresponds to the number of bulk landau levels that are

below the Fermi level.

The classical chirality imposed by the magnetic field in a cyclotron motion is re-

flected here by the fact that edge states propagating in opposite directions are located

in opposite sides of the system, usually separated by a macroscopic distance. As a

consequence, backscattering is suppressed and the propagation of electrons results ro-

bust against impurities and disorder. In this regime the transport is said to be chiral

and topologically protected: the particles propagate on the edge channels in a ballistic

fashion. For these reasons the edge states of the quantum Hall effect have been con-

sidered as good candidates of ideal 1-dimensional quantum wires where the particles
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can propagate coherently and without dissipation.

2.3 Electron Quantum Optics

The peculiar properties of the propagation of electrons in the edge channels of the

integer quantum Hall regime has motivated physicist to perform quantum optics-like

experiments where electrons are use to mimic propagation of photons in quantum optics

experiments. Progress in this direction has lead to the recent development of a field

within the mesoscopic transport that is known as electron quantum optics.

During the last decades a considerable effort has been done in order to determine

how far this analogy can be extended. While the ballistic properties of the edge channels

provides the beam like motion of the electrons, it was also demonstrated that electro-

static nanostructures such as quantum point contacts (QPC) and quantum dots (QD)

could be efficiently implemented as the electronic analogous of beam spliters and energy

filters. Moreover, recently several types of single electron sources have been developed

in order to perform these experiments with unique particles [11, 12, 13, 14, 15, 16, 17].

In condensed matter physics, the Fermi character of the electrons as well as the

Coulomb interaction are expected to play an important role. Electron quantum optics

experiments provide a way to probe the analogy between the coherent propagation of

electrons and photons, but also to highlight their differences.

A major aspiration of this field is to investigate and to understand the importance of

the electronic interactions in order to be able to manipulate the quantum state of single

excitations in quantum Hall edge channels. This would provide a promising platform

for the implementation of electronic flying qubits for quantum information [18, 19]. In

quantum computation, the flying qubits are needed for the coherent transmission of the

information between separated parts of the physical network [20, 21]. The robust chiral

propagation of electrons in the quantum Hall effect regime offers great advantages for

this purpose since the electron trajectories can be manipulated easily with electrostatic

gates. Moreover, electronic flying qubits have been proposed to be implemented, not

only to transfer information but to perform logic operations since the information can

also be encoded in the trajectories of the electrons [21]. Therefore a fundamental step

is to determine how far the electrons can propagate coherently and free of relaxation

along the quantum Hall edge channels.

In this thesis we address this question by experimentally investigating the relaxation

of quasiparticles emitted at a well defined energy above the Fermi sea of an edge channel

in the integer quantum Hall regime at filling factor ν = 2. This experiments probes the

strength of the interactions in the IQHE regime which allows the particles to exchange

energy and therefore to relax.
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2.4 The Role of Interactions

The simple quantization of the cyclotron motion of electrons is good enough to explain

many experimental observations of the electronic transport in the integer quantum

Hall regime but it is only a non interacting description. Since it does not take into

account the interactions, little can be known about the relaxation and decoherence of

quasiparticles.

The role of the interaction in electronic systems is a very fundamental question

that was originally considered in the Landau theory of Fermi liquids [22, 23, 24]. It

describes a Fermi gas where the Coulomb interactions between particles are turned on

adiabatically from the non interacting case. This results in a system, the Fermi liquid,

whose ground state is still a Fermi Sea and the low energy excitations are still described

by long-lived single-particle states that follow a Fermi statistic.

However the adiabatic hypothesis does not always hold. A well known example

is the case of a superconductor, whose ground state is radically different to a Fermi

sea. Consequently it can not be described by this theory. Another case where the

adiabatic hypothesis is expected to fail are low dimensional systems because the effects

of the interactions are usually enhanced due to the extra confinement, in consequence

unusual many body effects have been suggested to occur. The Luttinger liquid theory

[25, 26] describes a 1-dimensional interacting Fermi gas and predicts instead that the

excitations in this system are better represented by bosonic quasiparticles that consist

of collective excitations [27, 28].

In this context, the very nature of quasiparticles propagating in chiral quantum

Hall edge channels is still under investigation [29, 30, 31]. Due to its 1-dimensional

character, it is not clear to what extent the fundamental low energy excitations can

be represented as stable Landau quasiparticles. In the experiments carried out in this

thesis we directly probe how far the quasiparticles can propagate before decaying into

collective excitations.

2.5 Decoherence in Edge Channels

During the last two decades several experiments were performed to investigate the

properties of the edge states in the integer quantum Hall regime, mainly at filling

factor ν = 2.

Mach-Zehnder interferometers (MZI) have been implemented to investigate the co-

herence properties of the edge channel by producing quantum interference reflecting

the ballistic and coherent propagation of electrons [32, 33, 34, 35, 36] . Interferences

with a visibility as high as 90% were obtained [37] and coherence lengths of the order

of 20µm at a temperature of 20mK were experimentally determined [33]. Later it was

also shown that the electrical noise present in the co-propagating edge channel and the
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environment was a source of decoherence that could be manipulated [38, 39].

The development of an on-demand single electron source that ensures a good con-

trol on the emission time and energy resolution of a wave packet has opened a way

to investigate the decoherence at the the single particle level [11, 40]. Two-particle

interferences in the Hong-Ou-Mandel configuration were implemented suggesting that

the decoherence of single particles results indeed from the emergence of collective exci-

tations induced by Coulomb interaction between the two co-propagating edge channels

[41, 42, 43].

Some of these observations were in good agreement with the theoretical model

that describe the two co-propagating edge channels coupled by Coulomb interaction

in term of the Luttinger liquid theory [44, 45, 46]. However, other recent experiments

performed with MZI, where particles were injected above the Fermi sea at a well defined

energy, demonstrated a robust quantum coherence at high energy: it was observed that

above a threshold energy, the visibility of the interference fringes remain constant and

independent of the energy [47]. These results are in strong contradiction with the

theoretical models that instead predict a continuous decrease of the visibility as a

function of the injection energy.

Explanations for the unexpected observations in interference experiments are still

under debate. Moreover, since the interactions provide a way to exchange energy

between the particles of the system, the investigation of the relaxation mechanisms in

the edge channels can give new insights to better understand the role of the interactions

at the most fundamental level.

2.6 Relaxation in Edge Channels

Experiments that investigate the energy relaxation consist basically in bringing the sys-

tem out of equilibrium, in some controllable way, and then measure how it comes back

to the equilibrium state. By doing that we can investigate the relaxation mechanism

and probe its dependencies with other parameters such as the electronic temperature,

the propagation distance or the particular electromagnetic environment. This idea was

implemented to investigate the role of the interactions in various mesoscopic systems

like metallic diffusive wires [48], carbon nanotubes [49], nanostructures in semiconduc-

tor [50] and recently in the edge channels of the IQHE [51, 52] at filling factor ν = 2.

Since the propagation in the quantum Hall regime is chiral the evolution of the out-of-

equilibrium state can be followed along the edge of the sample: time and distance are

related simply by the drift velocity vd.

In Ref. [51] it was demonstrated that a direct measurement of the distribution

function fr(E) in the edge channel can be obtained from the tunneling current IQD

trough a quantum dot that is weakly coupled to the edge channel. This spectroscopy

technique relies on the elastic and sequential tunneling of electrons trough a single
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discrete level in the quantum dots whose energy E2 can be electrostatically manipulated

to probe the distribution function of the edge channel at different energies. If the edge

channel to be investigated is at the source of the quantum dot, then the tunneling

current simply reads:

IQD(E2) = Imax

(
fr(E2, µr)− Fd(E2, µd)

)
(2.2)

where Imax is a constant determined by the characteristics of the quantum dot and Fd is

the Fermi function at the drain reservoir on which a finite bias voltage Vd is applied in

order to separate the electrochemical potential of drain (µd) and source (µr) reservoirs:

|eVd| = µr − µd.
As it will be discussed in chapter 5, this method was implemented to measure the

relaxation of an out-of-equilibrium state injected on the edge channel which consists

of a double step distribution function fi(E) generated with a quantum point contact

set at an intermediate transmission τqpc ∼ 0.5 and biased with a voltage V1. Thus, the

QPC mixes the Fermi distributions1F (E) of a grounded ohmic contact with the Fermi

distribution F (E − eV1) of the biased ohmic contact:

fi(E) = τqpcF (E − eV1) + (1− τqpc)F (E) (2.3)

𝜏𝑞𝑝𝑐

1 2

Vp2 Vd

V1

1

𝐸

𝑓𝑖(𝐸)

0

𝜏𝑞𝑝𝑐

𝐸𝐹-e𝑉1𝐸𝐹 𝐸

1

0.5

μ𝑟
0

𝐹(𝐸)

Figure 2.2: Top: Schematic representation of the experimental configuration to investigate
the relaxation of a double step distribution function in the IQHE regime at filling factor ν = 2.
The biased QPC at intermediate transmission τqpc creates a double step distribution function fi
in the outer edge channel. After few micrometers of propagation, where relaxation takes place,
the resulting distribution fr is measured with a quantum dot implemented as an energy filter.
(Bottom:) Initial and final state of the distribution functions before and after the relaxation
process.

1Fermi functions are represented in capital letter F (E) while other distribution function are rep-
resented in small letter f(E).
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Fig. 2.2 illustrates the experimental configuration for the investigation of the re-

laxation of the double step distribution function injected in the outer edge channel

obtained in the integer quantum Hall regime at filling factor ν = 2. On these exper-

iments it was demonstrated that after a short distance, of about 0.8µm, the injected

out-of-equilibrium state does not relax at all. Subsequent experiments showed that

the relaxation process takes place progressively while the particles propagates along

few micrometers. A full relaxation towards a hot electron regime was measured to be

achieved at a distance of 10µm [52] and to remain unchanged at large distances, up to

30µm.

The Coulomb interaction between the two co-propagating edge channels, that are

only capacitively coupled, was identified as the mean source of relaxation. In fact a

direct energy exchange was observed between the two edge channels and it was shown

that this energy exchange could be prevented by forcing the inner edge channel to form

loops. When the inner edge channel forms loops, its density of state becomes discrete as

in a quantum dot, thus the outer edge channel is now coupled to a quantized spectrum

instead of continuous spectrum. This limits the energies at which they can exchange

energy reducing the relaxation of the double step distribution function that was injected

in the outer edge channel [53].

Although some of the observations are in good agreement with the scenario of

two interacting edge channels capacitively coupled, it was also observed that 25% of

the injected heat current leaks out of the system constituted by the two edge channels

suggesting that there could be extra degrees of freedom that play an unexpected role in

the relaxation mechanism and that were not considered in previous theoretical models

[52, 54, 55].

In chapter 5 we present measurements that we have performed in the same regime,

to investigate the relaxation of a double step distributions function, which are in agree-

ment with the main results of the experiments originally done in the Phynano team

of the C2N(LPN) laboratory [51, 52]. In these experiments we have verified that in

our samples, which have a different geometry, we observe the same relaxation rate

for the double step distribution function, meaning that the relaxation process is not

strongly affected by the particular disorder or the specific geometrical configuration

of the metallic electrodes that define the device. Our measurements are in agreement

with the fact that the double step distribution function relaxes towards a hot electron

regime within the 10µm of propagation.

Furthermore, we observed the same energy leak of ∼ 25% from the whole system

constituted by the two interacting edge channels. This is an important verification of

the observation done first in Ref. [52] that we quantitatively reproduce for the first

time and which suggest that it is in fact an intrinsic characteristic of the relaxation

mechanism. This energy leak can be seen in the measured excess temperature Texc,

which is proportional to the square root of the heat current in the edge channel, that is
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Figure 2.3: Excess temperature measured after the short (long) propagation distance plotted
using big red (green) filled symbols as a function of the bias voltage V1 across the QPC. Our
measurements fall within the corresponding expected range represented by the red (green) shaded
region for the short (long) distance. These shaded regions were determined using the data
presented in Ref. [52] (See chapter 5 for further details). In a the energy conservation on the
edge channel is indicated by the thick black dashed line (Texc,i), while energy conservation in the
whole system of two interacting edge channels is indicated by the thin blue dashed line (Tminexc )
which is a lower bound predicted by the theory.

presented in Fig 2.3 as a function of the bias voltage V1 in the QPC for two propagation

lengths, L = 3.8µm (red) and L = 6.3µm (green). Here, the energy leak manifests as

the increasing deviation seen in the measured points at large bias voltage and large

distance from the diagonal line Tminexc (blue thin dashed line) which is the lower bound

predicted by all the theoretical models.

2.7 Finite Energy Relaxation

While the experiments described up to now have clearly demonstrated that the inter-

channel interactions at filling factor ν = 2 are the main source of decoherence and

relaxation, they also showed that these processes could be controlled and suppressed up

to some level. However, the missing energy also suggest that the current understanding

of the relaxation mechanism is not complete. Moreover, there remains still fundamental

questions that could not be answered from these experiments: How a quasiparticle

peak, well defined in energy, will relax toward the Fermi sea? and How

far can energy resolved excitations propagate in an edge channel before

relaxing?. These are basic questions originally addressed in the Landau theory of

Fermi liquids which are of fundamental importance for the coherent manipulation of

quasiparticle in the QHE regime for future applications.

In this thesis we address these questions and provide experimental evidence of

the decay of a quasiparticle peak by performing a finite energy spectroscopy of the



32 Introduction

relaxation of quasiparticles injected, at a well defined energy, above the Fermi sea in

a quantum Hall edge channel. Experiments are performed on a GaAs/AlGaAs based

2DEG with electron densities ranging n ≈ 2.5× 1011 cm-2 and mobility of the order of

µτ ∼ 2× 106 cm2V-1s-1. The 2DEGs are grown at the C2N laboratory by A. Cavanna

and U. Gennser.

2.7.1 Experimental Configuration

Our setup relies on a pair of electrostatically defined quantum dots, used as energy-

resolved emitter and detector as illustrated in Fig. 2.4. The device is fabricated at

the C2N laboratory by D. Mailly using electron beam lithography. The first quantum

dot is defined by the set of gates {G1, G2, G3, G4} in the left side, and the second

quantum dot is defined by the set of gates {G1, G6, G7, G8} in the right side. The

emitter is realized by applying a finite drain-source voltage V1 on the first quantum dot

(1), with a single resonant level in the bias window (2). The position of the resonant

level, which is controlled with the plunger gate voltage Vp1, sets the energy E1 at which

electrons are emitted above the drain Fermi energy EF (3). Therefore, the injected out-

of-equilibrium distribution function fi(E) consist on the equilibrium Fermi sea F (E)

and the emitted quasiparticles with a Lorentz distribution L(E,E1) centered at the

energy E1 whose amplitude T1 and width Γ1 are determined by the characteristics of

the resonant level in the first quantum dot.

fi(E) = F (E,EF ) + L1(E,E1) (2.4)

After a tunable propagation length in the micrometer scale (from 3 to 4), we

perform an energy resolved spectroscopy of the emitted electrons using the second

quantum dot as an energy filter (4, 5, 6 and 7) in a similar way as it was done for the

spectroscopy of the double step distribution function (Section 2.6).

2.7.2 Quasiparticle Peak Relaxation

In chapter 6 we present data that we obtained by implementing the device of Fig. 2.4

which constitutes the first experimental observation of a quasiparticle peak above the

Fermi sea of an edge channel.

Relaxation vs Injection Energy

The Figure 2.5 shows a measurement performed after a short propagation distance L =

0.48µm at a temperature T0 = (23.1±0.6)mK. The figure displays the measured Fermi

sea at equilibrium and all the measured distributions at different injection energies

E1 ∈ {22, 43, 65, 87, 108, 130, 152, 173}µeV. If there was no relaxation, the expected

amplitude of the quasiparticle peak is T ∼ 0.3. Although we observe an increasing
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Figure 2.4: Top: Scanning electron micrograph of the sample E33. Two quantum dots are
electrostatically defined in order to perform an energy resolved spectroscopy of the relaxation
in an edge channel. The two QDs are tunnel coupled only to the outter edge channel, while
the inner edge channel is fully reflected by all the electrodes that define the two QDs. The first
QD (left) injects quasiparticles above the Fermi sea in the edge channel that comes from the
grounded contact C4. The injected excitations propagates in the edge channel, from 3 to 4, until
they reach the second quantum dot (right) that is implemented as a detector. Bottom: Energy
diagram and distribution of particles in different parts of the device. The injection scheme is
represented by 1, 2, 3. The propagation happens between 3 and 4. The detection scheme is
represented by 4, 5 and 6. The expected signal to be measured in the transconductance across
the second quantum dots is represented by 7. See text for further details (section 6.2). The
devices are fabricated at the C2N laboratory where the 2DEGs are grown by A. Cavanna and U.
Gennser, while the metallic nanostructures are fabricated by D. Mailly.

relaxation as the injection energy E1 is increased, the peak structure was still detected

in all the curves. These observations, obtained at filling factor 2 of the quantum Hall



34 Introduction

0 50 100 150 200

Energy (µeV)

0.0

0.2

0.4

0.6

0.8

1.0

f(
E

)

-2
2

 u
e
V

2
2

 u
e
V

4
3

 u
e
V

6
5

 u
e
V

8
7

 u
e
V

1
0

8
 u

e
V

1
3

0
 u

e
V

1
5

2
 u

e
V

1
7

3
 u

e
V

Figure 2.5: Spectrum R-72. Evolution of the distribution function f(E) measured after
a propagation distance L = 0.48µm while increasing the injection energy E1, indicated by the
vertical dashed lines, around which is centered a peak structure that is the remnant of the
injected quasiparticle peak. The equilibrium Fermi sea (the lighter blue line) with electrochemical
potential EF ∼ 0µeV was measured when no particles were injected (E1 = −22µeV <EF ).

effect, shows that although the propagation over a sub-micrometer distance leads to an

important relaxation of the injected peak, a small portion of the quasiparticles survives

to the relaxation even at relatively high energies, up to 175 µeV.

As presented in Fig. 2.6, a detailed characterization of the evolution of the quasipar-

ticle peak as a function of the injection energy E1 shows that the relaxation process that

took place along the propagation does not affect the energy at which the peak is cen-

tered being always found around the injection energy E1. Additionally the peak shape

was found to be still well described by a Lorentz function whose width ΓL (FWHM)

remains constant and independent of the injection energy. More importantly, these

measurements showed that the amplitude of the quasiparticle peak decreases following

and exponential decay as a function of the injection energy. The characteristic energy

Edecay of the exponential decay was found to be of the order of Edecay ∼ 60µeV for a

propagation distance L = 0.48µm at a temperature T0 = 23.1± 0.6 mK.

Relaxation vs Length

Furthermore, we have observed that the characteristic energy Edecay is strongly affected

by the electronic temperature T and the propagation distance L. On the one hand,

an increase in the electronic temperature of ∆T = 150 mK reduces the decay energy

Edecay by almost a factor two. On the other hand, an increase in the propagation

length from L = 0.48µm up to L = 0.75µm leads to a decrease in the decay energy

from Edecay ∼ 60µeV toward Edecay ∼ 20µeV . The effect of the distance is shown

in the Fig. 2.7b which display the distribution function measured at each distance

for different injection energies and the exponential decay of the quasiparticle peak’s
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(a) (b) (c)

Figure 2.6: (a)Measured distribution function f(E) in semi-log scale in order to highlight
the evolution of the quasiparticle peak while increasing the injection energy E1. The dashed
line corresponds to Lorentzian fits of the quasiparticle peak. (b) Center of the peak Epeak (blue
circles) and full width at half a maximum FWHM (red diamonds) extracted from the Lorentzian
fits plotted versus injection energy E1. The blue dashed line is a y = x line. (c) Peak height
(black squares) extracted from the fits shown in a versus E1, in semi-log scale. The black line is
an exponential decay fit.
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Figure 2.7: (a) Distribution functions after the propagation. The curves were vertically
shifted for clarity. Top: Spectrum measured in sample E33 for L = 0.48µm. Each curve,
correspond to an increment of the injection energy δE1 ≈ 21µeV, from E1 = −21µeV (blue) to
E1 = 173µeV (red). The thick grey line is a Fermi function fit of the data at E1 = −21µeV.
Bottom: Spectrum measured in sample D31 for L = 0.75µm. Each curve, correspond to an
increment of the injection energy δE1 ≈ 9µeV, from E1 = 9µeV (blue) to E1 = 121µeV (red).
(b) Peak height extracted from the Lorentzian fits illustrated in Fig. 2.6, plotted in semi-log scale
as a function of injection energy E1 for the two propagation lengths L = 0.48µm (red circles)
and L = 0.75µm (blue diamonds) shown in a. The red and blue dashed lines are exponential
fits.
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A comparison of the distributions of particles observed at several distances for a

quasiparticle peak injected approximately at the same energy E1 ≈ 40µeV is shown in

the figure 2.8. Together with the precedent analysis of the quasiparticle peak behavior

this comparison allows to describe how the relaxation mechanism brings the system to

equilibrium. At first, a large amount of the injected particles lose energy and the ampli-

tude of the injected quasiparticle peak rapidly decays in a sub-micrometer propagation

distance. Notice that no relaxation was observed for sub-micrometer distances when

the propagation of a double step distribution function was investigated [51]. Once the

quasiparticles peak has almost vanished at a distance of about ∼ 1µm what is left is a

non-Fermi distribution, with no sharp features and a long tail that extends in a wide

range of energies, which is still out of equilibrium. As can be qualitatively seen in

the Fig. 2.8 this distribution does not change much while it propagates up to 3.4µm.

In fact, at this point it resembles an intermediate state of the relaxation process of

the double step distribution which was seen to finally achieve the equilibrium at large

distances ∼ 10µm.

Therefore we can distinguish two time scales in the relaxation process, which were

first pointed out in the theoretical model described in Ref. [56]. The first step of

the relaxation process, that occurs on sub-micrometer lengths, brings the injected

particles closer to the Fermi sea decomposing the quasiparticle peak into an extended

distribution of particles that spreads over the whole energy range. The second step in

the relaxation process, that brings the resulting extended distribution of particles into

a Fermi sea, occurs over several micrometers of propagation.

R-72 R-21 Rc4-6

𝑓
(𝐸

)

𝐸1𝐸1𝐸1

Figure 2.8: Measured distribution function (continuous line) for similar injection energy E1

at increasing propagation distances: L = 480nm (left), L = 750nm (middle) and L = 3.4µm
(right). The dashed line is the equilibrium Fermi sea measured in each case when no particles
were injected.

Signatures of a Quasiparticle Peak Revival

Additionally, for a propagation distance L = 750 nm and at low temperature T ∼
20 mK, we have observed signatures of a quasiparticle peak revival. As it can be

seen in Fig. 2.7b the amplitude of the quasiparticle peak not only suddenly deviates
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from the exponential decay near E1 ∼ 80µeV, but surprisingly it increases as the

injection energy increases. This behavior was observed in several spectra measured

using different electrostatic configuration in both quantum dots which allows to rule out

artifacts caused by possible excited states or charge instabilities in nearby electrodes.

Although the theoretical model proposed in Ref. [57] does not explain the exponential

decay of the quasiparticle peak’s amplitude, it predicts an oscillatory behavior of the

peak’s amplitude as a function of the injection energy E1 which could explain our

observations.

2.7.3 Heat Current

In chapter 7 we investigate the heat current J(E) carried by the electron-hole ex-

citations created in the injected distribution function fi(E), which provides direct

information about the exchange of energy in the system due to the relaxation process.

Heat Current vs Injection Energy

The injection of quasiparticles with a Lorentz distribution L1(E,E1) centered around

the injection energy E1 leads to an increase in the electrochemical potential ∆µ given

by:

∆µ =

∫
L1(E,E1)dE (2.5)

which is related to the charge current in the edge channel. Additionally, the injection

of new particles also leads to an increase in the heat current ∆Ji since new electron-

hole excitations have been created on the system. The heat current increase ∆Ji that

have been injected is expected to follow a linear behavior as a function of the injection

energy E1, given by:

∆Ji(E1) = (E1 − µ)∆µ+
1

2
(∆µ)2 (2.6)

Remarkably, as shown in the Fig. 2.9 for two propagation distances L = 0.48µm

(left) and L = 0.75µm (right), we observe a large discrepancy between the injected

heat current ∆Ji (red line) and the detected heat current ∆Jr (black line with symbols)

measured after the propagation. In both cases, we can see that, at high injection energy

E1, the detected heat current is much smaller than what was expected, indicating that

the energy in not conserved on the edge channel. As it was clearly demonstrated by

H. le Sueur et al. [52], the interaction with the co-propagating edge channel induces

an energy exchange between the two edge states, which is expected to be, in part,

responsible of the observed discrepancy on Figure 2.9a and 2.9b.

However, the different theoretical models that describes this interacting system,

within the framework of chiral fermions [54] or within the framework of the Luttinger

liquid theory which suggest the development of plasmon excitations [58, 55], predict

that the interaction leads to an energy equipartition between the edge channels. In
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Figure 2.9: Comparison between the excess heat current ∆Ji that was injected (red line) on
the edge channel and the excess heat current ∆Jr that was measured after a propagation (black
symbols). Each plot corresponds to measurement taken after a propagation length L = 0.48µm
(a) and L = 0.75µm (b). In the two cases the blue dashed line represent the lower bound ∆Jminr

that is predicted by all the theoretical models as a consequence of the energy equipartition
between the two co-propagating edge channels. The area shaded in grey correspond to the final
part of the spectroscopy, where the injection energy is reaching its maximum value and the
discrete level in the first quantum dot is going out of the bias windows.

consequence there is a lower bound ∆Jminr for the remaining heat current on the edge

channel which is expected to be achieved at full relaxation. This lower bound is in-

dicated by the blue dashed line for the measurements shown on the Fig. 2.9. It is

clearly seen that the remaining excess heat current measured after the propagation is

well below the lower bound. We observe that there is up to 70% less remaining energy

than ∆Jminr for a propagation distance L = 0.75µm.

These measurements show that there is a very large energy leak which is not in

agreement with any of the current theoretical models that describes the interaction

in the integer quantum Hall regime at filling factor ν = 2. Additionally, when the

relaxation of the double step distribution function was measured we observed a smaller

energy leak, in agreement with the results reported in Ref. [52] (See Fig. 2.3). Our

measurements in both regimes absolutely rules out possible experimental artifact that

could lead to an apparent energy leak. While a constant 25% of energy leak was

observed on the relaxation of the double step distribution function, here we report

that the relaxation of energy resolve excitations leads to an energy leak that strongly

depends on the injection energy E1 of the quasiparticle peak. Therefore the amount of

energy lost during propagation suggests that relaxation mechanisms towards external

degrees of freedom play an important and unexpected role in electron quantum optics

experiments.

Heat Current vs Length

We have observed that large energy leak develops very fast during the first micrometer

of propagation. At L = 2.17µm and beyond that the energy leak does not increases
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much and it seems to have reached a stationary behavior. This is coincident with the

fact that the process on which the quasiparticle peak structure vanishes happens in

sub-micrometer distances. At all distances, we observe that the energy leak is larger

at higher injection energy. Roughly, the fraction of remaining heat current ∆Jr/∆Ji

follows a 1/E1 dependence as a function of the injection energy E1.

Heat Current vs Temperature

As described before, measurements at the short propagation distance (L = 0.48µm)

showed that the amplitude of the quasiparticle peak decays approximately two times

faster when the electronic temperature is increased by 150 mK. However, for the same

set of spectra, we measured that the temperature has no effect on the amount of heat

current that leaks out of the edge channel.

2.7.4 Suppression of the Relaxation

In chapter 8 we demonstrate that the relaxation of the quasiparticle peak injected in

the outer edge channel can be weakened (up to five times) by decoupling this edge

channel of the neighboring inner edge channel. We show that it is possible to achieve

this regime simply by implementing a surface depletion gate which is used to divert

only the inner edge channel along a longer path, leaving the outer edge channel to

propagate alone following the short path as schematically illustrated on the left panels

of Fig. 2.10.

The sample design (Fig.2.4) allows to change, in situ, the propagation distance on

the same device by polarizing a surface metallic gate: the electrode A2. When the

electrode A2 is not polarized (VA2 ≥ 0V ), both edge states propagate freely along the

short direct path between the two quantum dots. Conversely, when it is fully polarized

at pinch-off (VA2 ∼ −0.5V ) it forces both edge channels to follow a longer path. In

this way, it was possible to increase the propagation distance in sample D31 from

L = 0.75µm up to L = 2.17µm. However when the electrode A2 is polarized at an

intermediate voltage, −0.5V ≤ VA2 ≤ 0.0V , we can access a different regime on which

the coupling between the two co-propagating edge states can be tuned.

A schematic representation of these three distinct regimes is shown in the figure

2.10, together with the distribution functions measured after the propagation in the

outer edge channel, where the quasiparticle peak was injected. In the intermediate

regime (Fig. 2.10(d)), the residual quasiparticle peak that is detected is remarkably

larger than what it was measured in Fig. 2.10(b), at the same propagation distance,

suggesting that the usual relaxation mechanism was considerable suppressed.

These observations address a central aspect in the field of electron quantum optics

that has not been demonstrated at this level up to now: how far can an electron

excitation propagates on the edge channel before decaying?. With theses experiments,
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Figure 2.10: a, c, e: False-colour scanning electron micrographs of a typical sample, depicting
the trajectories of the edge channels for VA2 = 0.2 V (a, A2 gate highlighted in orange), VA2 =
−0.1 V (c, A2 gate highlighted in purple), and VA2 = −0.5 V (e, A2 gate highlighted in blue).
In a, the two edge channels co-propagate along a L ≈ 750 nm short path. In c, the two edge
channels are spatially separated (orange dotted lines) as they flow below the A2 gate. In e, the
two edge channels co-propagate along a L ≈ 2.17µm long path. b, d, f : Measured f(E) for the
configurations depicted in resp. a, c, and e. Each curve, offset for clarity, corresponds to an
injection energy increment δE1 ≈ 9µeV , from E1 ≈ −26µeV (blue) to E1 ≈ 122µeV (red, b)
and E1 ≈ 98µeV (red, d and f). The inset in b is a zoom on the region delimited by the black
dashed square.
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we determined the limitations imposed by the relaxation in the integer quantum Hall

regime, under standard conditions, and we demonstrated how the relaxation can be

considerably reduced extending the lifetime of finite energy excitations at least five

times.

2.7.5 Coexistence of Multiple Quasiparticle Peaks

Finally, in the last part of chapter 8 we present some measurements were multiple

quasiparticle peaks were simultaneously injected in the edge channel by implementing,

in the first quantum dot, a resonant level with excited states.

The figure 2.11a shows the distribution functions f(E) measured after a propagation

length L = 0.75µm obtained at the different injection energies E1(Vp1). We can identify

two main quasiparticle peaks in close proximity that are detected around the injection

energy E1. They can be easily seen in the figure 2.11b which is a zoom on the tails

of the distributions presented on Fig. 2.11a. Notice that there is a small third peak

around an energy E = 80µeV that appears on the first three curves labeled with the

injection energy E1 ∈ {0, 10, 20}µeV . A detailed analysis of this measurement allows

to identity each quasiparticle peaks with one excited state in the level structure of the

quantum dot which consists of a ground state, a first excited state at 21µeV and a

second excited state at 80µeV .
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Figure 2.11: Top: Distribution functions, at different injection energies, measured in sample
D31 with a polarization voltage VA2 = −0.1V and with the first quantum dots in a configu-
ration where the resonant level presents excited states. The curves were vertically shifted for
clarity by a constant offset proportional to the injection energy increase δE1 = 10µeV . Bot-
tom: Zoom on the tails of the distribution function presented in the upper panel showing that
different quasiparticle peaks coexist while they propagates. Three quasiparticle peaks could can
be identified.



Chapter 3

The Quantum Hall Effect

This chapter describes the basic theory of the integer quantum Hall effect. In the first

part I present the main electronic properties of the 2-dimensional electron gas where

the quantum Hall effect is induced. Then I describe the dynamics of the electrons

of the conduction band when the system is placed under electric and magnetic fields.

While a classical theory is enough to explain the properties at low fields, a full quantum

description of the electron motion is required to understand the transport properties

observed at high magnetic fields. The formation of Landau levels is described within

a non interacting picture, neglecting the Coulomb interaction between the electrons,

which leads to the formation of fully independent co-propagating edge channels as the

eigenstate of transport in the quantum Hall effect. Finally I discus the importance of

the disorder for the experimental observation of this phenomena.

3.1 2-Dimensional Electron Gas

2-dimensional electron gases have been observed in a set of different systems: electrons

can be trapped in the flat surface of liquid He or they can be found naturally in

2-dimensional materials like Graphene. Furthermore they can be artificially created

on heterostructure devices, such as MOSFETs (metal-oxide-semiconductor field effect

transistors) or doped GaAs/AlGaAs semiconductors, which are layered systems that

combine different materials to engineer the resulting band structure. This means that

it is possible to control in some degree the type of carriers, the carrier density, the

location of the active layer and the intrinsic resistivity, etc.

3.1.1 GaAs/AlGaAs heterostructure

In GaAs/AlGaAs heterostructure the 2DEG is located at the interface between the

GaAs and the AlGaAs layers. The electrons are confined by a triangular potential

well that results from the band bending at the interface. The confinement potential is

a combination of the repulsive barrier due to the conduction band offset between the

43
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Figure 3.1: Left: A typical GaAs heterostructure on which a 2-dimensional electron gas,
highlighted in yellow, forms at the interface between the AlGaAs and the GaAs layers. Right:
The band bending diagram of the heterostructure: As a result of charge equilibration the con-
duction band energy along the z direction forms a triangular quantum well, where the electrons
are trapped, located approximately 90 nm below the surface.

two semiconductors1and the attractive potential due to the positively charged ionized

donors left in the AlGaAs side (See Fig 3.1).

The confinement of the electrons results in the quantization of the motion along

the direction perpendicular to the interface, defined as ẑ, generating 2-dimensional sub-

bands {Exyi(k)} (Fig. 3.2). Electrons are free to move in the plane of the interface but

the transverse kinetic energy Ez takes only discrete values {Ezi}. In GaAs a typical

energy separation between subbands is of the order of 10-40 meV. This means that at

low temperature, typically below 100K, and low electrons density only the first subband

is occupied and the system behaves as an effective 2-dimensional conductor.

GaAs and AlGaAs have very similar crystalline structure, with a lattice constant

that differs by less than 0.15% [59], and they can be fabricated by Molecular Beam

Epitaxy (MBE). In this process the heterostructure is grown layer by layer, with high

purity and crystalline order, such that the interface where the 2DEG is hosted can

be defined at a perfect crystalline plane. This is important in order to reduce the

backscattering due to the roughness at the interface. Additionally, a spacer made

of undoped AlGaAs is used to further separate the donors and the 2DEG reducing

also the backscattering with the ionized impurities. This is a remarkable advantage

with respect of MOSFET devices where these two backscattering sources are a major

limitation that can not be overcome easily since the 2DEG is formed directly at the

interface between the donor layer and an amorphous oxide.

A direct consequence of the low backscattering rate and a the low effective electron

mass in GaAs is that a high mobility can be obtained in this heterostructure which is

fundamental for the emergence of quantum phenomena at macroscopic scales.

1A conduction band offset is created at the interface since the GaAs and the AlGaAs have different
band gap
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In this thesis the experiments are performed using GaAs/AlGaAs based 2DEG

with electron densities ranging n ≈ 2.5 × 1011 cm-2 and mobility of the order of µτ ∼
2 × 106 cm2V-1s-1. The 2DEGs are grown at the C2N laboratory by A. Cavanna and

U. Gennser.
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Figure 3.2: (a) The triangular potential well that forms in the GaAs/AlGaAs interface leads
to the quantization of the kinetic energy Ez along the vertical direction (ẑ) in a set discrete values
{Ezi}.(b) Electrons are free to move on the x−y plane, hence a parabolic dispersion relation
Exy(k) develops from each Ezi value.(c) Each 2-dimensional sub-bands contributes to the total
density of states with a constant characteristic value ρ2D. (d)The thermal occupation of the
states is described by a Fermi function. The low electron density in obtained in GaAs/AlGaAs
sets the Fermi level in the first 2D-subband.

3.1.2 Electronic properties

Here we describe several electronic properties of the 2DEG at zero magnetic field and we

give some characteristic values estimated for a typical electron density ns ≈ 2.5× 1011

cm-2 unless a different value is specified.

Density of states

Free electrons in 2 dimensions have the simple parabolic dispersion relation Exy(k)

describing their kinetic energy, from which a constant density of state ρ2D(E) can be

deduced:

Exy(k) =
~2k2

2m
ρ2D(E) =

gsm

2π~2
(3.1)

where gs = 2 is the spin degeneracy in GaAs.

Fermi level

The electron density ns sets the Fermi level EF at zero temperature simply through

the density of states: ns = ρ2DEF with the energies measured from the bottom of
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the conduction band Ez1. Similarly, other related quantities at the Fermi level can be

obtained from the electron density, such as the Fermi wave vector kF which indicates

the radius of the circular Fermi surface of the system, the Fermi wavelength λF and

the Fermi velocity vF :

kF =

√
4πns
gs

λF =
2π

kF
vF =

~kF
m

(3.2)

Fermi wavelength

Due to the low electron density in GaAs/AlGaAs, the Fermi wavelength λF can be

of the order of 50 nm. In the one hand λF is much bigger than the lattice constant,

that is of the order of 5.6 Å, which indicates that electrons are well delocalized over

many unit cells. Thus they are less sensitive to local defect in the crystalline structure.

The residual interaction with the lattice is considered in the effective mass approxi-

mation. This is: the effective mass m of the electrons is determined by the curvature

of the conduction band, which gives m = 0.067 × m0, with m0 the electron mass at

rest. In the other hand, at low electron density, λF which is similar to the average

distance between electrons aee = 1/
√
πns becomes larger than the effective Bohr ra-

dius aB = 4π~2ε/(me2) ∼ 10 nm. It indicates that the systems enters a regime where

the electrostatic energy of the Coulomb interaction between electron becomes non neg-

ligible in comparison to the kinetic energy2 since aee/aB = Eint/Ekin. Additionally,

the screening on 2D is less effective than in 3D, as a consequence the electrostatic

potentials decay following a 1/r3 power law instead of an exponential decrease and

no screening length can be well defined. Therefore Coulomb interactions between the

electrons is expected to start to play a role in low density 2-dimensional electron gases.

Fermi velocity

Quasiparticles excited above the Fermi level at an energy δE = 300µeV , which is

the maximum excitation energy that will be investigated along this thesis, propagate

at a velocity v =
√

2(EF + δE)/m. A comparison with the Fermi velocity, which

is of the order of 2 × 105 m/s for an electron density ns ≈ 2.5 × 1011 cm-2, shows

that the relative change in the propagation speed of a single particle states is less

than 2%. However when the system is placed under a strong magnetic field and the

Coulomb interaction are considered, the behavior can be different from this simple non

interacting description of the 2DEG.

2The Hamiltonian of N interacting electrons: H =
∑ −~2

2m ∇
2 +

∑
e2

4πε|ri−rj | can be expressed in

term of the ration rs = aee/aB by measuring the distances in units of aee (r ≡ aeeu and∇2 ≡ ∇′2/a2ee)
and the energies in terms of the Rydberg energy ERyd = me4

32~2π2ε2 . This results in: H ′ = H/ERyd =
− 1
r2s

∑
∇′2 + 2

rs

∑
1

|ui−uj | . Thus at large rs the interacting term becomes relevant.
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Occupation function

At finite temperature not only the density of state but also the occupation function

must be taken into account to describe the system. Since the Fermi energy is well above

the bottom of the conduction band, at temperatures below 10K the energy of the

thermal excitations is less than 5% of the Fermi energy EF , then the electronic system

behaves as a degenerate system. It means that the Fermi-Dirac quantum statistic f(E),

that takes into account the Pauli principle, replaces the classical Boltzmann statistic.

f(E) =
1

exp(E−µ
kbT

) + 1
(3.3)

In Fermi degenerate systems the electrochemical potential µ and the Fermi energy

coincide contrary to classical system where the chemical potential deviates from the

EF as the temperature is increased3.

Mean free path

The mobility µτ is related to the mean scattering time τ̄ which sets the mean free

path l̄F for particles at the Fermi level:

µτ =
eτ̄

m
l̄F = vF τ̄ (3.4)

The high mobility obtained in GaAs/AlGaAs 2DEG by reducing the different sources

of scattering allows the mean free path to reach values well above of the smallest size of

electronic circuits that can be fabricated at the laboratory. Mean free path up 10µm

can be obtained [60] at low temperature (T < 0.35 K) in 2DEG’s with an electron

density ns = 2.42× 1011 cm-2 and a mobility µτ = 11.7× 106 cm2/Vs, opening the way

for the investigation of the ballistic transport regime.

Conductivity

The intrinsic conductivity σ of the 2DEG is defined by both, the electron density

and the mobility. It implies that simple measurement of the resistance, by applying an

electric field, will not be enough to determined ns and µτ separately. Instead, electric

and magnetic fields will be needed to determine both parameters independently.

σ = nseµτ (3.5)

All these quantities set the relevant energy, length and time scale of the electronic

transport in 2DEG.

3In general, the electrochemical potential µ is the sum of the chemical potential µch and the
electrostatic potential µel that fix the energy of the bottom of the conduction band. In degenerate
systems µch = EF .
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3.2 Classical Dynamics: Weak Fields

In this section I briefly describe the electron motion under uniform magnetic and

electric fields in terms of the solutions of the classical Newton’s equation mr̈ = F.

This basic description will help to understand in which conditions the effects of the

quantum mechanics will become important and which aspects of the electron motion

will be modified.

3.2.1 Motion in an Electric Field: Drude’s model

The solution of the classical equation of motion shows that electrons acquire momentum

in the same direction of the electric field E but it also indicates that they can be

continuously accelerated by an applied constant electric field.

[ṗ]field = mr̈ = −eE (3.6)

However even in the cleanest systems there is always a residual disorder that set the

stationary regime on which the particles lose momentum, due to the scattering with

the defects of the crystalline structure, at the same rate at which they gain momentum

due to the field (Fig 3.3a).

[ṗ]scatt = [ṗ]field ⇒ mvD
τ

= −eE ⇒ vD =
eτ

m
E (3.7)

The characteristic velocity vD is now constant and proportional to the electric field

E . This is described by the Drude model that actually introduces the concept of the

mobility as the proportionality constant: µτ
.
= vD/E

3.2.2 Motion in a Magnetic Field: Cyclotron motion

Charged particles in a magnetic field are under the action of the Lorentz force:

mr̈ = −ev ×B (3.8)

Since the motion of electrons on the 2DEG in the z -direction is frozen, only a

perpendicular magnetic field B = Bẑ has a relevance. The solution to the equation is

a cyclotron motion: the electrons perform circular orbits with a cyclotron frequency

ωc set by the magnetic field and with a cyclotron radius rc:

ωc = eB/m rc = v/ωc (3.9)

The radius depends on the initial kinetic energy of the particle but the movement is

isochronous: Fast particles move in large orbits and slow particles in small orbits, such



3.2 Classical Dynamics: Weak Fields 49

that all of them perform a single orbital trip in the same period of time, returning to

their initial position simultaneously (Fig 3.3b). This is an usual property of harmonic

oscillators for which the period is independent of the amplitude or, in other words, the

initial excitation. In fact, the circular motion can be viewed as the combination of an

harmonic oscillation in the x̂ direction with another in the ŷ direction dephased by

π/2.
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Figure 3.3: (a) Electrons under a uniform electric field E reach a stationary regime where they
propagate at a constant speed vD due to the random collisions with scattering centers (blue dots)
in the crystalline structure.(b) Under a uniform magnetic field B the electrons perform cyclotron
orbit with a radius proportional to its kinetic energy but with the same angular frequency ωc
driving an isochronous movement: All particles return to their initial position after the same
period of time.(c) A combination of a uniform electric and magnetic fields drives a drift of the
cyclotron orbit along a direction perpendicular to the electric field.

3.2.3 Motion in Magnetic and Electric Fields

When both, magnetic and electric fields are considered simultaneously in the equation

of motion,

mr̈ = −e(E + v ×B) (3.10)

the resulting movement is a combination of a cyclotron motion and a drift motion at

a constant speed (Fig 3.3c). Remarkably there is no need of considering the residual

disorder in the 2DEG, as in the Drude model, to find a stationary regime. In this

case the Drude velocity vD would be an upper limit for vd. However the resulting drift

velocity is perpendicular to the magnetic field and also it is perpendicular to the electric

field.

vd = −E ×B

B2
(3.11)

This behavior is counter-intuitive if we expect that the drift velocity will describe

the motion of the center of the cyclotron orbit as a sort of center of mass. It puts in

evidence that the dynamics of electrons under electric and magnetic field can results

in interesting phenomena due to the non linear character of the Newton equation
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introduced by the Lorentz force. In fact we can not simply use the superposition

principle to add the solution of the section 3.2.1 and 3.2.2

3.2.4 The Classical Hall Experiment

A well known experiment where the classical motion of electrons in 2 dimensions under

electric and magnetic field is in action is the Hall experiment. The 2DEG is shaped

in a Hall bar and placed in a perpendicular magnetic field as shown in the Fig 3.4a.

Additionally a voltage drop that is applied between the Ohmmic contact 1 and 4

generates an electric field Ee along the x̂ direction. As a result of these two external

fields, the injected electrons in contact 1 acquire a drift motion in the +ŷ direction

while they propagate in a similar way as shown in Fig 3.3c. Consequently, negative

charges accumulate in the upper border of the Hall bar generating an internal additional

electric field EH = −EH ŷ that is called the Hall field. The following incoming electrons

are now under the effect of these three fields:

mr̈ = −e(Ee + EH + v ×B) (3.12)

The stationary regime is reached when the accumulation of charges at the border of

the sample is sufficiently large such that the force created by the Hall field compensates

the Lorentz force in the equation of motion. Then electrons move only along the

horizontal direction under the single effective action of the external electric Ee.

The longitudinal resistance Rxx measured between the contacts 2 and 3 is related

to the conductivity simply through Ohm’s law,

Rxx =
V23

i0
−→ Rxx =

L

σW
(3.13)

while the Hall resistance, defined as Rxy, is related to the density of electrons:

Rxy =
V35

i0
−→ Rxy =

B

ens
(3.14)

Knowing the geometrical factors W and L of the sample, a simple measurement of

the resistances Rxx and Rxy gives access to the electron density ns and the mobility

µτ (See Eq. 3.5) which are the two main parameters that characterize a 2DEG. Fig

3.4b is a typical measurement of the Hall resistance in our samples showing the linear

dependence with the magnetic field. It also shows the onset of the deviations from this

model that arises at high field.
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Figure 3.4: (a)A typical Hall bar configuration from which the electron density ns and the
mobility µτ can be measured when electric and magnetic fields are applied inducing the classical
Hall effect: a Hall voltage Vxy = V35 develops in the direction perpendicular to the current due
to charge accumulation on the border of the sample. (b) Linear behavior of the Hall Resistance
at low magnetic field measured at a temperature T ∼ 100 mK.

3.3 Quantum Hall Effect: Dynamics in Strong Fields

In the classical description of the electron motion under a perpendicular and homo-

geneous magnetic field B = Bẑ, the radius rc of the cyclotron orbit decreases with

the magnitude B but increases with the energy of the particle (See Eq. 3.9). At high

enough magnetic field, the orbital length lc = 2πrc becomes smaller than the elastic

length le, therefore the electrons can complete at least one tour around the orbit before

an scattering event. In this limit, if the temperature is low enough, the quantum wave

nature of the particle confined in the orbit emerges in the transport properties. Addi-

tionally, in this regime the concept of cyclotron radius loses meaning and a new length

scale arises: the magnetic length lB =
√

~/eB. In the following sections I will present

an extensive description of the quantum Hall effect neglecting the coulomb interaction

between the electrons of the 2DEG. First, I show that a uniform high magnetic field

induces the quantization of the cyclotron motion which results in the formation of

Landau levels. Second, I will consider in addition the effect of a uniform electric field,

which induces the orbital drift of the quantized circular motion. Finally, I describe

these two effects for a system with a finite size which results in the development of

edge states.

3.3.1 Observation of the Quantum Hall Effect

Measurements in the Hall configuration shows very peculiar deviations from the clas-

sical description at high magnetic fields and low temperatures. First, the longitudinal

resistance Rxx moves away from its constant value at low B and develops strong os-

cillations. This is known as the Shubnikov-de-Haas effect [61] and the minima of
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the oscillations occur periodically as a function of 1/B with a period:

∆

(
1

B

)
=
e

h

gs
ns

(3.15)

Second, at even higher fields the Hall resistance Rxy, instead of simply increasing

linearly with B, develops wide plateaus while the longitudinal resistance Rxx vanishes

in the same region as it can be observed in the measurement presented in the figure

3.5. Moreover, the values of Rxy at the plateaus are a precise sequence determined by

an integer number N and two fundamental constants,

Rxy =
1

N

h

e2
(3.16)

This is the integer quantum Hall effect (IQHE) discovered by von Klitzing in

1980 [9]. Remarkably the same quantized values of Rxy were observed in systems with

different geometries, composition and disorder. The constant RK =h/e2 can be exper-

imentally determined with a precision of few parts per billion [62] such that nowadays

the phenomenon is used to maintain the standard unit of the electrical resistance for

the International Unit System (SI) and it also provides an accurate method to measure

the fine structure constant4.
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Figure 3.5: At high magnetic field, the Hall resistanceRxy (black) displays constant plateaus at
the quantized values: Rk/N . Simultaneously the minima of the Shubnikov-de-Haas oscillations
observed in the longitudinal resistance Rxx (blue) at intermediate magnetic fields (B ∼ 1T )
develops into wide regions where Rxx vanishes. Vertical dashes lines shows the magnetic fields
at which the filling factor ν = nsφ0/B reaches integer values.

4The fine structure constant α is related to the Quantum Hall effect through: h/e2 = Z/2α with
Z =

√
µ0/ε0 the impedance of the free space.
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3.3.2 Orbital Quantization: Landau Levels

In this section I present a quantum description of the electron motion using the wave

function Ψ(x, y) and the energy spectrum Exy which are the solutions of the stationary

Schrödinger equation:

ĤΨ(x, y) = ExyΨ(x, y) (3.17)

In a first place I describe the system without any gauge choice to represent the

magnetic field in order to show that many important properties can be derived from

general considerations. A particular gauge will be set only to obtain the functional

form of the wave function and it will be specified in each case. Additionally, I describe

solutions of the Schrödinger equation for spinless electrons but the spin degree of free-

dom will be incorporated latter on.

Landau Levels

The Hamiltonian describes the free electrons in the magnetic field B =∇×A(r)

through the mechanical momentum operator π̂:

Ĥ =
π̂2

2m
=

(p̂+ eA)2

2m
(3.18)

It is worth to remember that it is the mechanical momentum the one that is related

to the velocity π = mṙ, while the canonical momentum p = mṙ − eA is a gauge

dependent quantity.

First, each component of the canonical momentum operator acts on a wave function

ψ(r) as a derivative p̂α=−i~ δ̇
δα

and they satisfy the usual commutation rule [p̂x, p̂y] = 0.

Second, the vector potential acts on a wave function just as a multiplicative operator

and it is related to the magnetic field trough B = δAy(r)

δx
− δAx(r)

δy
. With this in mind

it is not difficult to show that the components of the mechanical momentum operator

satisfy the commutation rule5: [π̂x, π̂y] = i~/l2B
Therefore we can use the components of the mechanical momentum to define others

more convenient operators, a and a†, which satisfy the commutation relation
[
a, a†

]
=1

a =
l√
2~

(πx − iπy) a† =
lB√
2~

(πx + iπy) (3.19)

These are the ladder operators, in terms of which the Hamiltonian reduces simply to:

H = ~ωc
(
a†a+ 1/2

)
(3.20)

In this representation it is clear that the Hamiltonian describes an harmonic oscillator

5We should demonstrate the equality (π̂xπ̂y − π̂yπ̂x)ψ(r)=(i~/l2B)ψ(r) where each component of
the mechanical momentum acts as π̂αψ(r)=−i~δ(ψ(r))/δα+ eAα(r)ψ(r) for α=x, y.
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at a frequency ωc and whose energy spectrum is a set of discrete energy level

En = ~ωc(n+ 1/2) (3.21)

In the case of a 2DEG under a magnetic fields these are called the Landau levels

which are not just traditional discrete level since they have a high degeneracy. Addi-

tionally we must notice that any particular gauge choice was needed in order to find

the energy spectrum.
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Figure 3.6: (a)Flat Landau levels, equally separated, develop as a consequence of the cyclotron
quantization. (b)The uniform density of states ρ2D of spinless particles (gs = 1 in Eq. 3.1) within
an energy range of ~ωc collapses to form the highly degenerate Landau levels around each energy
En. (c)When the spin degree of freedom is considered, each Landau level splits in two spin
polarized levels separated by the Zeeman energy EZ = gµBB but also the zero field DOS ρ2D
duplicates since gs = 2 in Eq. 3.1 for particles with spin 1/2. Therefore each discrete level has
the same degeneracy Dn = 1/2πl2B than in the spinless case. The number label +n(−n) refers
to the landau Level n and spin number +1/2(−1/2).

Density of States

The formation of Landau levels leads to a dramatic change on the density of states

from the constant value ρ2D characteristic of a 2DEG. A large portion of ρ2D in the

energy range ~ωc around each Landau energy collapses to form a δ-function defining

the discrete levels. Therefore the degeneracy of each level is Dn = ρ2D~ωc for spinless

particles (Fig 3.6a and 3.6b).

The DOS is now periodic with ~ωc, and therefore with B. Since many properties

of the electronic transport depends on the DOS at the Fermi level, some of these

quantities shows oscillatory behavior at high magnetic field. This is the origin of the

Shubnikov-de-Haas (SdH) oscillations seen in the longitudinal resistance and the

Haas-van-Alphen oscillations that appear in the magnetic susceptibility [61].

As mentioned at the beginning of this section, two main conditions have to be

satisfied in order to observe the effects of the Landau quantization in the transport

properties. First, the electrons need to be able to perform at least a complete cyclotron

orbit before being scattered out, which implies that:

ωcτ = Bµτ � 1 (3.22)
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Second, the temperature needs to be small enough such that only one Landau level is

thermally occupied at a time:

kbT � ~ωc (3.23)

The first condition actually can be used to obtain an estimation of the mobility µτ by

measuring the magnetic field BSdH at which the first Shubnikov-de-Haas oscillations

are observed on the longitudinal resistance6.

Group velocity

Since the LL’s are independent of the momentum k, the dispersion relation is flat

and the group velocity associated to them is zero. Landau levels describe then states

that can not propagate as expected from the classical picture of a cyclotron motion.

vg =
1

~
∂En
∂k

= 0 (3.24)

Wave function

A more complete description of the electronic state is given by the wave func-

tion Ψ(x, y) which can be obtained after choosing a particular gauge to represent the

magnetic field through the vector potential. Since the magnetic field is homogeneous

and it imposes a defined chirality in the rotation of electrons, we can use a symmet-

ric gauge on which A = 1
2
B × r = (−By/2, Bx/2, 0) that in cylindrical coordinates

reads: A = −Br/2 êθ. In addition we must remember that the origin of coordinates is

arbitrary, thus the same solutions will be found for any other choice of the origin.

Within this gauge the wave function has the form:

Ψn,m(r) = Cn,m

(
r

lB

)|n−m|
exp (i(n−m)θ) L

|n−m|
min{n,|m|}

(
r2

2l2B

)
exp

(
− r2

4l2B

)
(3.25)

where Cn,m is the normalization constant and Lβα is the generalized Laguerre polyno-

mial. Wave functions within the same Landau level n are distinguished by a second

quantum number, m > 0, that is related to the angular momentum Lz = ~(n−m).

Semiclassical Interpretation

Even though the notion of cyclotron orbit is meaningless in the quantum limit, it is

still worth to have a semi-classical view of the electron motion in terms of trajectories

in order to better understand the different terms of the wave function. The Fig. 3.7

represents the density probability of a wave function Ψn,m at the lowest Landau level

6In general, the value of the mobility estimated from the onset of the Shubnikov-de-Haas oscillations
can be up to one order of magnitude lower than the actual value of the 2DEG mobility µτ at zero field.
A more precise estimation of µτ can be obtained by a detailed modeling of the complete functional
form of the oscillations Rxx(B) (See Section 2.7.6 of Ref. [63]).
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(n = 0) but with a finite angular momentum7.

Ψ0,m(r) = C0,m

(
r

lB

)m
exp (−imθ) exp

(
− r2

4l2B

)
(3.26)

On the one hand, the wave function is extended on the radial direction with a char-

acteristic width of the order of lB as it can be see from the Gaussian term, but the

maximum of the density probability form a circumference of radius
√

2mlB preserving

the rotational symmetry. On the other hand, an expression of the cyclotron radius can

be obtained following its classical definition in the circular motion. It shows that the

magnetic length lB is the cyclotron radius for all the states in the lowest Landau level,

n = 0:

rc = v/wc =
√

2En/m/wc → rc =
√

2 lB
√
n+ 1/2 (3.27)

Consequently we can interpret to the wave function Ψ0,m like describing a localized state

which can be seen as a linear combination of several cyclotron orbits with radius lB and

whose centers are over the circumference of radius
√

2mlB. The motion of electrons is

essentially a cyclotron motion, but a coherent superposition of many of them is needed

to form the wave functions that are solutions of the Schrödinger equation (Fig. 3.7 ).

Ψ0,𝑚(𝐫)
2

𝑥

𝑦

𝑥0

𝑦

Figure 3.7: Left: Probability density |Ψ0,m(r)|2 of a state in the first Landau Level n = 0
with a finite angular momentum Lz = ~m has a peak on the circumference of radius

√
2mlB

and a Gaussian dependence on the radial direction with an extension of the order of lB . Right:
The complete wave function Ψ0,m(r) can be interpreted as a coherent superposition of many
classical cyclotron orbits with radius lB located on the circunference of radius

√
2mlB . Pictures

were adapted from Ref. [64].

Flux quantization.

The density of states ρ2D gives the number of states per unit of energy and area,

thus the degeneracy Dn of each LL gives the number of states per unit area that there

are in the system when a LL is complete. Since Dn = 1/2πl2, it follows that there is

7The generalized Laguerre polynomial Lαβ(x)=1 ∀α if β = 0
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one state per area 2πl2, which enclosed exactly one flux quanta φ0 = h/e. Furthermore

from 3.27 it can be shown that each successive orbit (n→ n + 1) incorporates a flux

quanta [65]. This flux quantization is a direct consequence of the Bohr-Sommerfield

quantization condition applied to the cyclotron motion.

Spin.

The spin degree of freedom can be considered in the Hamiltonian (Eq. 3.18) by adding

a term +gµBsB where µB is the Bohr magneton and g is the coupling constant which

in vacuum is g = 2 but in GaAs it is renormalized to g ≈ −0.4 due to the spin-orbit

interaction. This sets the Zeeman energy to be ∼ 70 times smaller than the cyclotron

energy ~ωc. Since s = ±1/2 the effect of adding the spin degree of freedom in the

precedent description is that each Landau Level now split in two but each component

still has the degeneracy Dn = 1/2πl2 since the density of states at zero field ρ2D also

duplicates (Fig. 3.6c). The energy spectrum of the system is simply:

Ens = ~ωc(n+ 1/2) + gµBsB n = 0, 1, 2, ... s = ±1/2 (3.28)

It is important to notice that the lowest Landau level, labeled by n = 0, now consist

of two spin family levels.

Filling factor.

Since the quantum number n does not indicates anymore the number of discrete Landau

levels, it is useful to introduce the concept of filling factor ν which accounts for the

number of occupied Landau level at the Fermi energy. Therefore the filling factor is

related to the total density of electrons trough:

ns = Dnν −→ ν = ns
h

eB
= ns

φ0

B
(3.29)

This expression can be rewritten in terms of the total number of electrons Ne and the

total magnetic flux φ = BA threading the system area A as: ν = Ne

φ/φ0
. This shows

that the filling factor indicates the number of electrons per flux quanta.

3.3.3 Orbital Drift: Finite Group Velocity

Landau gauge.

Let’s consider that in addition to the uniform magnetic fieldB = Bẑ there is a uniform

electric field E = E x̂, which defines a preferential direction, ŷ, where the momentum

is conserved. Thus it is convenient to use in this situation a gauge with a translation

symmetry on ŷ. This is the case of the Landau gauge, which is commonly used for

its mathematical simplicity, where the vector potential has a single component A =
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(0, xB, 0) and the wave function takes the form:

Ψnk(x, y) =
1√
L
eikyyψnk(x) (3.30)

For each k-family on the ŷ direction, the ψnk(x) is the solution of the Schrödinger

equation8:

1

2m

[
p2
x + (~ky − eBx)2 − eEx

]
ψnk(x) = Enkψnk[

p2
x

2m
+
mω2

c

2
(x−Xk)

2

]
ψnk(x) =

[
Enk + eEXk −

m

e

(
E
B

)2
]
ψnk(x)

(3.31)

The last form makes evident that it is again the equation of an harmonic oscillator at

the frequency ωc but centered at Xk

Xk = −kyl2B +
eEml4B
~2

(3.32)

Eigenvalues and group velocity.

The first thing to notice is that the spectrum for the full wave function Ψnk(x, y) is no

longer degenerate since the states are spread in energy through Xk (Fig 3.8a ):

Enk = ~ωc
(
n+

1

2

)
− eEXk +

1

2
m

(
E
B

)2

(3.33)

Thus the group velocity gives:

vg =
1

~
∇kEnk =

E
B
ŷ (3.34)

which, of course, coincides with the expectation values 〈v̂x〉= 0 and 〈v̂y〉= E/B and

with the result of the classical description (Eq. 3.11)

Wavefunctions.

The second thing, is that the ψnk part of the wave function is similar to that obtained

with the symmetric gauge (Section 3.3.2) since there is an oscillatory polynomial mod-

ulated by a Gaussian decay along the non symmetric direction:

ψnk(x) =

(
1

π

)1/4(
1

2nn!lB

)1/2

exp

(
−(x−Xk)

2

2l2B

)
Hn

(
x−Xk

lB

)
(3.35)

where the Hn is the Hermite polynomial9.

8Notice that, in order to simplify the notation, a simple sub-index k is used to label the solutions
ψnk(x) for a given ky-family.

9The Hermite polynomial of order n is generated by Hn(x) = (−1)nexp(x2) dn

dxn exp(−x2)
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The wave function is fully extended on the ŷ-direction as a free wave while it spreads

along the x̂-direction in a length of
√

2n+ 1lB, which is in fact the quantized cyclotron

radius rn (Eq. 3.27).

Therefore Ψnk describes an electron in a cyclotron motion centered in Xk that drifts

perpendicular to the electric field following an equipotential line. This can also be seen

from the spectrum, where the first term is the energy of the quantized cyclotron motion,

the second is the electrostatic potential energy at Xk and the last one is the kinetic

energy of the drift motion.

Figure 3.8b shows the probability density along x̂ calculated for an state of n = 4 as

an example. Even though there is an oscillatory finite probability to find the electron

inside the cyclotron orbit, the probability is higher at the two outer most peaks located

roughly at rn of the center Xk. This is the remanent of the classical cyclotron orbit.

𝑥 ∝ −𝑘𝑦

𝐸𝑛𝑘

ℏω𝑐

∝ ℇ/𝐵

(a)

Ψ4,𝑘(𝐫)
2

𝑦

𝑥 − 𝑋𝑘0

𝑟𝑛

ℇ

𝐵

(b)

Figure 3.8: (a) Landau levels of an infinite 2DEG of spinless particles under a uniform electric
field E acquires a uniform dispersion which sets a finite group velocity vg = E/B in the direction
perpendicular to the electric field. (b) The probability density of an state Ψn,k(r) with n = 4
shows that the electron is more likely to be found at a distance rn from the center of motion.
Ψn,k(r) has the same translation symmetry than the Landau gauge along the ŷ direction.

3.3.4 Finite Size System: Edge States

In a realistic system with a finite size, the boundaries impose a confining potential

U(r) that keeps the electrons inside through the electric field that is locally created

Eb = −∇rU(r).

When U(r) is smooth in a range of the order of rn, the typical extension of a wave

function, it can be approximated by a Taylor expansion up to 1st or 2nd order and

then analytic solutions of the Schrödinguer equation can be found.
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However, despite the particular functional form of the solutions, we can still say

that the wave functions will be characterized by a center of motion Xk related to ky,

due to the magnetic field as usual, with a contribution due to the electric field:

Xk = −kyl2 + F(Eb) (3.36)

The wave function it will also drift along equipotential lines at a local constant

speed vg ∼ Eb/B and the energy spectrum will have mainly the contributions from the

equipotential energy, the kinetic energy of the orbital drift and the quantized cyclotron

energy as in Eq 3.33:

Enk = ~ωc
(
n+

1

2

)
− eU(Xk) +

1

2
mv2

g (3.37)

The figure 3.9b shows the spectrum along x̂ for a 2DEG of finite area S = LxLy

under a magnetic field B = −Bẑ. The flat Landau levels of the bulk are bent up

when they approaches the boundaries. consequently, they describe localized states in

the bulk and propagating states at the edges that are known as the Edge States .

This description neglects the Coulomb interaction in the electronic gas which will be

considered in the next chapter and which gives rise to the edge reconstruction, a mech-

anism for which the edge states acquires internal degree of freedom. As can be seen on

equation 3.37, the spin degree of freedom was also neglected by simplicity, but it can

be easily incorporated on this description as explained in section 3.3.2.
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Figure 3.9: Formation of edge states for a 2DEG of spinless particles due to con-
finement impose by the finite size of the system. (a) Flat Landau levels of an infinite
2DEG under a uniform magnetic field B. (b) Landau level of a system with finite size Lx along
the x̂ direction. The electric field Eb created at the boundaries bends up the Landau levels. (c)
Each time a Landau level crosses the Fermi level EF it develops a chiral edge state on the sample
located at the position of the crossing. The number of edge states is given by the filling factor
ν = 2 which indicates the number of filled Landau level at the bulk of the system. The center of
motion of different edge states are spatially separated by ∆Xk which depends on the sharpness
of the confinement potential U .
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Transport Properties on the Edge States

The group velocity calculated from the spectrum changes sign at opposite sides of

the system indicating that the propagation of edge states is chiral :

vg ∝
δEnk
δky

∝ δU (Xk)

δXk

δXk

δky
(3.38)

When the Landau levels are filled up to a Fermi energy EF that is not aligned with

a bulk Landau level, the only possible low energy excitations (electron-hole excitations

near the Fermi sea) are on the edge states. In the bulk, all the states are below the EF ,

so they are fully occupied and they will not contribute to the transport. The number of

edge states is determined by the number of fully occupied bulk Landau levels which is

given by the filling factor ν. Each edge channel is located in the sample at the position

where the LL crosses the Fermi level, which defines its center of motion Xk (Fig 3.9c).

Electrons propagating in one edge state undergo no backscattering, so the motion is

ballistic. Despite the impurities an electron with +k momentum can not be backscat-

tered because all the states with −k momentum are located at the other edge of the

sample. Therefore the tunneling element that mixes the two state is exponentially

small due to the macroscopic distance between both borders Lx � lB.

On the one hand, the wave function of co-propagating edge states originated from

different Landau levels will be spatially separated on the sample if the distance between

their centers of motion ∆Xn,n+1
k is larger than the wave function extension lB:

lB � ∆Xn,n+1
k ⇐⇒ lBe

∂U(x)

∂x
� ~ωc (3.39)

This implies that the confinement potential must be smooth enough. As a conse-

quence, the elastic scattering rate τn,n+1
el between the co-propagating edge states is

exponentially suppressed from its value τel at zero magnetic field [66]:

1

τn,n+1
el

=
1

τel

(
∆Xn,n+1

k

lB

)4n+2

exp

[
−1

2

(
∆Xn,n+1

k

lB

)2
]

(3.40)

T. Martin and Shechao Feng [66] showed that the inelastic scattering rate, which can

be mediated by acoustic phonons at temperatures of the order of T ∼ 1 K, also results

exponentially suppressed by the same poor wavefunction overlap and the low thermal

occupation of the phonon bath.

On the other hand, the wavefunction of edge states with different spin polarization

coming from the same Landau level, are well separated if:

lB � ∆Xs
k ⇐⇒ lBe

∂U(x)

∂x
� gµBB (3.41)

where ∆Xs
k is the separation between their centers of motion. G. Müller et al. [67]
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reported that while a Landau gap of 3.2meV induces a spatial separation ∆Xn,n+1
k ≈

780 Å between spin-degenerate edge channels, a Zeeman gap EZ = gµBB ∼ 90µeV

will produce a spatial separation ∆Xs
k ≈ 20 Å between spin polarized co-propagating

edge channels. Therefore a large overlap is expected since the spatial extent of the

wave function lB ≈ 130 Å at the same magnetic field.

However, even if the wavefunctions of neighboring edge states overlap, the electrons

can not simply tunnel due to spin and momentum conservation. Tunneling of electrons

between edge states with different spin polarization requires a spin flip process which

can be mediated by the spin-orbit interaction, the nuclear spin polarization (hyperfine

interaction) or by magnetic impurities. However the amount of magnetic impurities

is expected to be very low in 2DEG fabricated by molecular beam epitaxy due to the

high degree of control in the fabrication process.

The tunneling of electrons between the edge states involving spin flip processes

mediated by the hyperfine interaction with the nuclear spins was originally investigated

by Dovers [68] and Kane [69] with transport measurements. In a subsequent work of

Keith R. Wald et al. [70] we can see that scattering processes that involves the tunneling

of electron between adjacent edge states where the electron spin flips while the nuclei

spin of the Ga and As ions flops does not take place if the energy of the electrons is

below 200µeV .

G. Muller et al. [67] showed that the spin-orbit interaction in GaAs heterostruc-

tures allows transitions between neighboring spin polarized edge states which is also

accompanied by a change in the k−momentum. Additionally, the spin-orbit interac-

tion induces an effective magnetic field in the plane of the 2DEG seen from the moving

frame of the electrons, which give rise to an enhancement of the Landé g-factor at the

edge. As a consequence, long equilibration lengths leq ∼ 160µm where predicted in

agreement with experimental observations.

Due to this property edge states can be considered as independent wave guides for

the wave function of electrons. Aditionally, each edge state is characterized by the

intrinsic resistance RK which defines the quantum of conductance G0 = 1/RK = e2/h.

Within this picture, edge states carry the current acting as parallel ideal unidimen-

sional quantum wires.

Edge States in the Hall Configuration

The previous description of the edge states predicts the observed values of the Hall

resistance and the vanishing longitudinal resistance measured in Hall bar geometry.

In the usual six contact configuration (Fig. 3.10) a voltage difference V1 is applied

between contact 1 and 4 which drives a current through N edge channels, each one of



3.3 Quantum Hall Effect: Dynamics in Strong Fields 63

resistance RK . The total injected current I1 at contact 1, reads:

I1 = I(out) − I(in) =
N∑ V1

RK

−
N∑ V4

RK

=
N(V1 − V4)

RK

(3.42)

Due to the lack of inter-channel scattering, each edge state carry the electrochemical

potential µi of the reservoir i from which they have emanated and dissipate this energy

at the reservoir where they arrive. In this example the contact 1 and 4 are the reservoir

while the contacts 2, 3, 5 and 6 are voltage proves (floating ohmic contacts) weakly

coupled to the 2DEG. Thus V1 =V2 =V3 and V4 =V5 =V6.

The longitudinal and the Hall resistance are obtained by measuring respectively

the voltage difference between the probes 2 & 3 and between the probes 3 & 5, thus:

Rxx =
V2 − V3

I1

→ Rxx = 0

Rxy =
V3 − V5

I1

=
V1 − V4

I1

=
RK

N
→ Rxy =

RK

N

(3.43)
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Figure 3.10: Edge states propagation in a Hall bar geometry at filling factor ν = 2.

Semiclassical Interpretation of the Edge States

The chiral propagation of the edge states can be understood from the classical

cyclotron motion of an electron in a finite size system with hard walls. While the

electrons on the bulk are localized on simple cyclotron orbits, the circular motion of

the electrons that are near the edges is interrupted by the walls resulting in skipping

orbits (See Fig 3.11). The chirality of the cyclotron motion imposed by the magnetic

field directly implies that the skipping orbit are also chiral in the same way the edge

states are chiral in the quantum description.
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Figure 3.11: Semiclassical interpretation: edge states are the quantum equivalent of the
classical skipping trajectories that results when cyclotron orbits are reflected on a hard wall
representing the boundaries of the system. The regime of filling factor ν = 1 was represented for
simplicity.

3.4 Disorder

Paradoxically, the Quantum Hall effect could not be observed in an ideal system with

no disorder, meaning that the quantized values of Rxy will only occur at the very precise

values of the magnetic field at which the filling factor takes exactly integer values (See

Fig. 3.5) and they would not be observed as wide plateaus. It turns out that the

disorder is fundamental not only to break the translation symmetry but also because it

plays a central role in some processes that make possible a stable conduction through

the edge states in wide ranges of the magnetic field. I describe in this section the most

relevant of these processes.

3.4.1 Stability of the Fermi Level

In order to observe the IQHE with edge channels carrying the current we made the

implicit hypothesis that the Fermi level can be tuned at free will in between two bulk

Landau levels. As we will see this is not the case since the Fermi level is unstable on

regions of low density of states, meaning that it can easily fluctuate by large amounts,

of the order of ~ωc.
The Fermi level, which indicates the energy of the last occupied levels in a system10,

is related to the number of particles to arrange, the number of available states at per

energy and the degeneracy of those states. It can be calculated at zero temperature

as:

ns =

∫ EF

0

ρ(E)dE (3.44)

Fluctuations on the electron density dns are then related to the variations of the Fermi

10In a system at equilibrium at finite temperature EF indicates the energy at which the occupation
probability is 50%.
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level through the DOS at the Fermi energy:

dns = ρ(EF , B)dEF (3.45)

When the magnetic field applied to a 2DEG is changed, the Fermi level will adjust to

keep the density of electrons constant (dns = 0) compensating the variations induced

on the density of states ρ due to the change in the quantized cyclotron energy ~ωc and

the degeneracy Dn of each Landau level.

If the Fermi level is in a region of low ρ, small changes on the degeneracy of the

Landau levels will produce large changes in EF . Therefore the Fermi level position is

unstable. Conversely, when the Fermi level is in a region of large ρ, the fluctuations of

EF are small and it is stable while particles are reorganized among the many available

levels. Consequently, in an ideal system without disorder the Fermi level will always

be aligned to a Landau level. Thus if the magnetic field is increased, the Fermi level

will jump from one Landau level to another while they are being depopulated. The

presence of disorder avoid these jumps by inducing a finite width on the Landau levels,

thus increasing the density of state in this region, which helps to stabilize the Fermi

level.

The equation 3.45 also shows that for a fixed magnetic field, which fixes ρ(E,B),

and at an energy of large density of states the electron density can be largely modified

when EF is changed. Then the 2DEG is called compressible . In other regions, when

ρ is small, the density of electrons is constant and insensitive to changes in EF and the

2DEG is incompressible (Fig. 3.12).
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Figure 3.12: The disorder in the electrostatic potential on the 2DEG induces a finite width of
the Landau levels. The 2DEG is compressible in regions where the DOS is high since the electron
density can be tuned with the Fermi level EF . Conversely, the 2DEG is said to be incompressible
where the DOS is low.
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3.4.2 Pinning of Localized States

The second main reason why the disorder is important is that the bulk localized states,

which in a semi-classical interpretation corresponds to the cyclotron orbit that do not

interact with the boundaries of the 2DEG, are not really localized in an ideal system

with no disorder, meaning that they are not pinned and they can flow in response to

electric fields (Fig. 3.13a).

In usual transport measurements the applied voltage difference used to drive the

current generates an extra electric field which was not considered in the previous de-

scription of the electron motion. Therefore there are two electric fields, which are

illustrated in the Fig. 3.13b for a two terminal device for simplicity:

1- The electric field Eb, that is naturally created at the boundaries, which drives

the center of motion of the cyclotron orbit along the edges defining the edge states.

This electric field is much more intense than the external fields but it only exist close

to the boundaries.

2- The external electric field Ee = E ŷ created by the applied voltage difference

which dominates in the bulk. In response to this field, the cyclotron orbits in the bulk

will drift along the x̂-direction connecting counter propagating edge channels. This

would break the description of the Hall bar experiment given in section 3.3.4 that suc-

cessfully explained the observation of the quantized Hall resistance and the vanishing

longitudinal resistance.

In fact, when the disorder is considered the description in terms of chiral propa-

gating edge channels separated by an insulating bulk holds perfectly. The disorder

generates on the bulk a random potential landscape with hills and valleys which widen

the Landau levels. Moreover, the local variation of this potential on the scale of lB

creates a local electric field that induces a drift of the cyclotron orbits in the bulk.

However the equipotential around hill and valleys are close paths, hence the cyclotron

orbits are pinned and effectively localized as shown in Fig. 3.13c.

3.4.3 Percolation

The random potential created by the disorder also explains the occurrence of plateaus

in Rxy and the transitions between them. When the magnetic fields increases, the LL’s

are raised in energy but at the same time they are being depopulated. It means that the

Fermi energy EF falls within a LL exploring different spatial electrostatic landscapes.

Fig. 3.14 shows this situation, zooming in the second LL, while it is aligned with

the Fermi level (Top left panel). The rest of the left panels in Fig. 3.14 shows the

equipotentials U = EF in a particular region of the sample while the LL is being

depopulated from the stage labeled as 1 down to 5.

The typical size of the closed equipotential grow when the Fermi energy is close to

the center of the Landau energy which corresponds to the peak in the DOS. At this
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Figure 3.13: (a)In absence of disorder the cyclotron orbits in the bulk are not pinned and the
can move in response to electric fields, thus the bulk is not insulating. (b) In a usual transport
measurement, the external electric fields Ee induces the drift of the unpinned cyclotron orbit in
the bulk connecting counter propagating edge channels, leading to a non vanishing longitudinal
resistance in opposition to the experimental observations. (c) The disorder generates a random
potential landscape which traps the cyclotron orbit on the bulk along closed equipotential lines,
therefore a vanishing longitudinal resistance and a quantized Hall resistance are attainable.

condition, a finite thermal energy can induce the electrons to tunnel from one edge

channel to the counter-propagating through several equipotential paddles in the bulk.

Therefore the bulk conduction is allowed, thus the longitudinal resistance Rxx shows a

peak and the Hall resistance Rxy moves away from the quantized plateaus.

This effect defines two regimes in the DOS (Top right panel in Fig. 3.14). One

around the center of the peak, when the equipotential U=EF are large and percolation

is possible through the bulk. This regime consist of bulk extended states. The

second regime consists of the regions located away from the peak, where equipotentials

are small and are isolated. These region defines the bulk localized states11.

In consequence the plateaus on Rxy are observed in ranges of the magnetic field

between two LL’s where the bulk consists of localized states. The transitions between

plateaus occurs within the region of extended states of each LL.

11Note that these regions defined on the DOS are not necessarily the same that defines the com-
pressibility of the 2DEG seen in Section 3.4.1.
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Figure 3.14: Left: Zoom in the second Landau level which reflects the disordered electrostatic
potential presented in the bulk of the 2DEG. When changing the magnetic field or the Fermi
level it is possible to explore different electrostatic configurations. By increasing the magnetic
the Landau level is being depopulated from from 1 to 5. The equipotential lines resulting in the
bulk of the sample for this five configurations are shown below. When the puddles are big enough
the electrons can tunnel through the bulk which consist of extended states. Right: Extended
and localized states in the DOS.



Chapter 4

Electron Quantum Optics

This chapter addresses the general concepts of the electron quantum optic field and how

the role of the interactions in the Quantum Hall regime can be investigated in this field.

The first part presents the fundamental nanoestructures that are usually implemented

in order to perform quantum optics-like experiments with electrons in the quantum

Hall effect regime. These nanostructures provides the electronic analogous of particle

sources, waveguides, beam splitters, etc. In particular we focus on the description of

quantum dots and show how they can be implemented as energy filters, which are the

main element that we use in our experiments. The second part of the chapter presents

two main framework that incorporate the Coulomb interaction in the description of

the quantum Hall effect. Firts we discuss the electrostatic description, which predicts

the edge reconstruction for smooth confinements and the development of an internal

structure in the edge channel. Finally we present the Luttinger liquid theory which

predicts the decay of the Landau quasiparticles in the 1D chiral edge channel.

4.1 Optic with Electrons

As seen in the previous chapter, in the integer quantum Hall effect regime the elec-

trons propagate in a chiral and ballistic fashion along the edge states. Thus edge states

behave as wave-guides that can be used to manipulate the beam like motion of elec-

trons in a similar way as optic fibers are used to manipulate photons in optics. Indeed,

this analogy has motivated scientist to perform quantum optics-like experiments in 2D

materials using electrons to mimic the photons.

The investigations in the field of photon quantum optics have demonstrated

that it is possible to produce, characterize and manipulate the quantum states of the

electromagnetic field which allows to implement those states to perform quantum com-

putation algorithms. One of the objectives of the emerging field of electron quantum

optics is to achieve such a degree of control on the quantum state of electrons in solid

state systems. Besides the potential applications in future technologies there is also a

69
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fundamental interest in the phenomena that could result from the different nature of

electrons and photons.

One the one hand, photons are bosonic particles whose quantum statistic, which

determines the equilibrium properties of an ensemble of particles, is described by the

Bose-Einstein distribution. On the other hand, electrons are fermions and they obey

the Pauli principle, thus their quantum statistic is described by the Fermi-Dirac distri-

bution. Furthermore, the exclusion principle leads to the formation of the Fermi sea,

which is a many body state, as the ground state of an electronic system. Therefore,

unlike photons that can propagate through an electromagnetic vacuum, the electrons

are always in presence of a Fermi sea when they propagate in a conductor.

Another major difference is that since electrons are charged particles they can

easily interact with the surrounding charges in the heterostructure, the electromagnetic

environment or even with the particles that constitute the Fermi sea. In fact, it has

been predicted that these interactions can induce decoherence and relaxation. Since the

electron quantum optic experiments are sensitive to the phase coherence, they provide

a variety of versatile tools to investigate the decoherence and relaxation mechanism.

Nowadays a lot of effort is devoted to the manipulation of the quantum state of

electrons at the single particle level. In that direction many types of single electron

sources have been develop based on elementary nanostructures. Among the single

electron sources that have been demonstrated in GaAs system are: the mesoscopic

capacitor realized with an AC driven quantum dot [11], the single electron pump

based on dynamic quantum dots [12, 13], the leviton pulse emitted by an Ohmic

contact driven by a high frequency voltage [14, 15] and the transfer of electrons by

surface acoustic waves along electrostatically defined quantum wires [16, 17].

Therefore, in the next sections, after a brief introduction to the Landuer-Buttiker

formalism, I will describe some of the basic nanostructures that are commonly used

to perform electron quantum optics experiments where one coherently manipulates

the quantum state of the electrons and its propagation across the system. These

nanostructures can be implemented to realise the electronic analogous of the usual optic

components such as particle sources, beam splitters, energy filters, interferometers, etc.

In particular, apart from the ac-sources mentioned before I will describe how a simple

ohmic contact can be considered both as a dc-source of particles and as an effective

local source of relaxation and decoherence. I will continue the discussion by describing

a quantum point contact and how it can be implemented has a beam splitter and

as a heat source. Finally, I will focus on the description of quantum dots that are

used as energy filters and which are the main components that we implement during

this thesis to perform an energy resolved spectroscopy of the relaxation of electrons in

quantum Hall edge channels.
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4.1.1 Landauer Description
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Figure 4.1: (a) Two terminal device with a single conduction channel: The quantum conductor
is represented in the Landauer-Büttiker formalism as a scattering center S connected with ideal
lead to the particle reservoirs. (b). Representation of a multiterminal device with many modes
in each lead. The scattering matrix S relates the incoming state in each mode of every lead with
all the outgoing states in every mode of every lead.

In classical transport, usually in a diffusive regime, the Ohm’s law relates two

macroscopic observables, the current I and the voltage drop Vsd through the resistance

R of the conductor, which is a coefficient that characterizes the whole system: Vsd = IR.

Although the resistance is an extensive property it can be linked to the resistivity ρe,

which is an intrinsic quantity that characterized the microscopic details of the system,

through geometrical factor such has the length L along the direction of the current and

the transversal area S. The conductance G = 1/R and the conductivity σ = 1/ρe are

consequently related by the same factors:

R =
ρL

S
←→ G =

σS

L
(4.1)

In the ballistic or coherent transport regime, when the size of the system is compara-

ble or smaller than the elastic length le or the coherence length lϕ, the conductivity can

not be well defined as a local quantity because the transport depends on the properties

of the whole system. Thus the conductance G is the most convenient and well defined

coefficient to describe the relation between the current and the voltage: I = GVsd. In

the general case of non linear transport, the differential conductance G = dI/dVsd is

instead most convenient.

Furthermore, the conductance can be still related to the intrinsic properties of the

electronic system within the Landauer-Büttiker formalism [71, 72, 73] which describes

the electron propagation in a quantum conductor as the scattering of electronic waves.
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The quantum conductor is represented as a scattering center, characterized by a scat-

tering matrix S, where incoming electron waves are scattered in outgoing waves. For

the simplest case of a two terminal device, with a single conduction channel, incoming

waves with amplitudes A and D result in outgoing waves with amplitudes B and C

(See Fig 4.1a), given by:[
B

C

]
= S

[
A

D

]
with S =

[
r t′

t r′

]
(4.2)

The diagonal elements of the scattering matrix are simply the complex reflection

amplitudes of the wave at each side, while the off-diagonal elements are the complex

transmission amplitudes from one side to the other. The reflection and transmission

probabilities for the current of particles are: R = |r|2 and T = |t|2, which are real

numbers. Due to current conservation the scattering matrix is unitary1, which implies

that R+T =1.

In consequence, for a two terminal device with a single conduction channel this

formalism gives the conductance G in terms of the transmission T of the channel and

the electric conductance quantum G0 = e2/h:

G =
e2

h
T (4.3)

This is known as the Landauer formula and it can be generalized to other cases. If the

same system has a spin 1/2 degeneracy, there are two independent states per energy

that contribute to the conduction, thus the conductance of a two terminal device

doubles:

G =
2e2

h
T (4.4)

In fact each spin family acts as an independent conduction channel that contributes

equally to the global conductance. The Landauer formula can be extended to the case

where there are N conduction channels, each one characterized by a transmission Tn
such that the conductance of a two terminal device is given by:

G =
e2

h

N∑
n

Tn (4.5)

Furthermore this description can be generalized to describe a system with multiple

conduction channels, with different transmission and in a multiprobe geometry [73, 74,

75]. In such a case the scattering matrix relates the incoming state in each mode of

every lead with all the outgoing states in every mode of every lead (See Fig. 4.1b).

1A unitary matrix satisfy S†S = 1 where S† denotes the Hermitian conjugate and 1 the unity
matrix
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4.1.2 Ohmic Contacts

Ohmic contacts implemented either as current leads or as voltage probes are particle

and energy reservoirs at a thermal equilibrium characterized by a local electrochemical

potential µ and a temperature T . They absorb all the incoming particles and emits

particles with a Fermi distribution f(E, µ, T ) and random wave function phases.

A steady DC source of particles.

Figure 4.2(a) represents a two terminal device with N = 2 edge channels. Each lead,

labeled as 1 and 2, is set at a different voltage. The lead 1 is biased at a voltage V1

and emits particles from the bottom of the conduction band up to the electrochemical

potential µ1 = EF − eV1 with a Fermi distribution f1. As an ideal lead, it emits the

same distribution of particles in each outgoing edge channel. In a similar way the lead

2, connected to the ground (V2 = 0), emits particles up to the Fermi level µ2 = EF

with a distribution f2 in each edge channel.
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Figure 4.2: A biased Ohmic contact injects a net current in the system emitting free electrons
in the bias energy windows eV1. The free waves can be combined to build a representation in
terms of sequentially emitted and single occupied orthogonal wave packets [76].

The net current I injected by the biased lead 1 takes into account the incoming

and outgoing distribution of particles at all energies in each of the N edge channels:

I = Iout − I in = N

∫
dE e v(E) ρ(E) [f1(E, µ1, T )− f2(E, µ2, T )] (4.6)

In the 1-dimensional edge channel the velocity v(E) perfectly compensates the

energy dependence of the density of state ρ(E) up to a constant: v(E)ρ(E) = 1/h.

This perfect cancellation in 1-dimension leads to the quantization of the conductance

for N channels as seen before:

I =
e

h
N

∫
dE [f1(E, µ1, T )− f2(E, µ2, T )] =

e

h
N(µ1 − µ2) =

e2

h
N(V1 − V2) (4.7)
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Therefore a biased ohmic contact can be seen as a steady source of particles (a dc

source) that emits free electrons in the bias energy windows (µ1−µ2). Furthermore, the

emitted waves can be combined to construct orthogonal wave packets that the ohmic

emits, with single occupation, in each edge channel separated by a time e(V1 − V2)/h.

This representation, shown in Fig 4.2, only relies on the Pauli and the Heisenberg

Principles as described in Ref. [76].

A Model for Inelastic and Incoherent Scattering.

In the Landauer-Büttiker formalism the scattering matrix only describes elastic pro-

cesses while inelastic scattering can take place only inside the ohmic contacts. Elec-

trons that are absorbed by a voltage probe (a floating ohmic contact) lose their phase

coherence and relax to the equilibrium state defined in the reservoirs, then they are re-

emitted or replaced by other electrons such that the current is conserved on the whole

quantum conductor (Fig. 4.3). Büttiker [77] pointed out that in fact voltage probes

can be used to mimic the effects of phase-randomizing inelastic scattering events on

quantum transport.
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Figure 4.3: Left: A voltage probe is a floating Ohmic contact that can be implemented to
introduce relaxation and decoherence in the system. When considering the electronic transport
in the quantum Hall effect regime, a voltage probe will introduce equilibration among the co-
propagating edge channels. Right: As an example, an out-of-equilibrium state injected in the
outer edge channel before the voltage probe is brought to an equilibrium distribution after the
voltage probe with the particles redistributed in both edge channels.

At first D. Sprinzak et al. implemented a voltage probe to quench the phase coher-

ence in an entangled interferometer-detector system realized in the IQHE [78]. Later,

S.Oberholzer et al. used a voltage probe to induce inter edge channel equilibration and

redistribution of the current fluctuations in two co-porpagating edge channels [79].
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However a first quantitative and systematic experimental demonstration of the de-

phasing properties of a voltage probe in a quantum conductor was done by P. Roulleau

et al. in 2009 [80]. They implemented a Mach-Zehnder interferometer (MZI) with

one of the arms connected to a small floating ohmic contact through a quantum point

contact. The quantum point contact allows to control the transmission probability Tp
for a particle to be absorbed by the voltage probe. They observed that the visibility

of the quantum interferences decreases when particles have a higher probability to be

absorbed by the voltage probe with a
√

1− Tp dependence.

Additionally, C. Altimiras et al. used a voltage probe to progressively induce a

faster relaxation of an out-of-equilibrium state created on an edge channel in the integer

quantum Hall effect regime [53].

Therefore voltage probes serve as a simple model to include relaxation and decoher-

ence in quantum transport. The importance of this approach resides on the simplicity

of the model to include the effects of rather complicated processes in theoretical calcula-

tions or in experiments. There exists as well more sophisticated models that generalize

the Büttiker approach in order to describe phase breaking and inelastic scattering in a

more distributed way [81, 82, 83].

4.1.3 Quantum Point Contact
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Figure 4.4: A quantum point contact nanostructure formed by two metallic finger placed on
the surface of the GaAs heterostructure, which is only capacitively coupled to the 2DEG creating
an electrostatic barrier for the electrons.

A quantum point contact (QPC) can be realized with a metallic nanostructure as

shown in Fig. 4.4 which consists of two electrodes placed on the surface of the GaAs

heterostructure defining a small gap. The metallic gates are only capacitively coupled

to the 2DEG which is at about ∼ 90 nm under the surface. When the electrodes are

polarized with a negative voltage Vqpc they create an electrostatic barrier generating a

smooth constriction in the electrostatic landscape where the edge states propagate.

The constriction brings closer counter propagating edge states corresponding to the

same Landau level. Therefore the QPC allows the edge channel to have finite proba-
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bility of being backscattered or transmitted through the region. Since the edge states

developed from higher Landau levels are located closer to the bulk, the edge states can

be successively reflected by the QPC. The outer edge channel, which corresponds to

the lowest Landau level (n = 0 and spin polarization s = +1/2) is always the last edge

state to be reflected.
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Figure 4.5: Measurement of the differential conductance G of a QPC as a function of the
polarization voltage Vqpc. The QPC can be used to control the number of edge channels that
are transmitted from ones side to the other (Insets: a,b,c). In the transition region between the
large quantized plateaus, the QPC works as a beam splitter for one edge channel (Inset d). A
schematic representation of the measurement circuit is shown in inset d where we only depict
the partitioned edge channel that is driven by a small ac-signal for a lock-in detection.

The Fig. 4.5 shows the transmission and reflection probability of a QPC as a

function of the polarization voltage Vqpc measured in the integer quantum Hall effect

at filling factor ν = 2. The reflection and transmission coefficients are obtained by

measuring the differential conductance G of the QPC at the two outputs by using a

standard lock-in technique. As seen in the measurements, the QPC is an electrostatic

gate that can be operated to control the number of edge channels that are transmitted

from one side of the system to the other side (Fig. 4.5 (a)-(c)). The large plateaus

indicates the quantization of the conductance on each edge state as predicted by the

Landauer-Büttiker theory as integer multiples of the electric conductance quantum G0.

In the vertical transition regions between the plateaus there is an edge channel that is

partially transmitted and partially reflected. Thus the QPC works as a beam splitter

for that edge state, while the other is completely reflected or transmitted.

Furthermore, a QPC can be implemented as well as a heat source when a finite

bias voltage Vsd is applied while the transmission of the QPC is set to an intermediate

value 0 < τqpc < 1 for a single edge channel (See Fig. 4.6). In such conditions the

QPC mixes the two incoming distribution such that at the right output of the QPC

the distribution of particles is a double step function2.

2At the other output we find the complementary distribution:

fout/left(E) = (1− τqpc)fF (E − eVds) + τqpcfF (E)
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fout(E) = τqpcfF (E − eVds) + (1− τqpc)fF (E) (4.8)

This is an out-of-equilibrium state that carries a heat current due to the electron-

hole excitations that have been created on the edge channel. The relaxation of such

distribution of particles along the edge channel was experimentally measured by H. le

Sueur et al. [52] in order to investigate the role of interactions in the IQHE regime.

I will discus some of their observation in the next chapter in connection with the

measurements performed in this thesis in the same regime.
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Figure 4.6: The biased QPC, set at an intermediate transmission τqpc, mixes the incoming
distributions from a grounded contact (up right) and the biased contact (down left) at Vsd.
At the right output a double step distribution function is created only on the partitioned edge
channel. This out-of-equilibrium distribution carries a charge and a heat current. The Fermi
level EF defines the zero in the energy scale.

4.2 Quantum Dot

A metallic nanostructure as shown in figure 4.7, that is only capacitively coupled to

the 2DEG, can be used to confine the electrons in a small region defining a quantum

dot (QD). A suficiently large negative polarization of the set of electrodes deplete the

2DEG underneath but also trap some electrons in the central region of the structure.

The pair of electrodes G1 -G2 (G1 -G4 ) defines a QPC that allows to control

the coupling strength between the confined electrons and the source (drain) reservoir,

hence the transmission probability Ts (Td). The plunger gate or electrode G3 is used

to add an electrostatic energy to the ensemble of electrons in the QD which will be

used to control the electrochemical potential of the QD.

Electrostatically defined QD’s in GaAs heterostructures shows remarkable charac-

teristic behaviors of a zero dimensional many body system such energy and charge quan-

tization and strong electron-electron correlations that results in the Coulomb blockade

phenomena. In the following sections I will describe the basic notions of these effects

in order to shows how a quantum dot can be implemented as an tunable energy filter.

In absence of interactions the distribution of particle in the inner edge channel is not affected since it
is completely reflected at the QPC.
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All the measurements were performed in the systems where we will perform the energy

resolved spectroscopy of the relaxation.
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Figure 4.7: (a) Scanning electron micrograph of a typical quantum dot implemented during
this thesis. The schematic circuit allow to characterize the quantum dot by measuring the either
the reflected or the transmitted current. (b) Energy diagram showing the discrete energy levels
of the QD developed due to the spacial confinement. The electrostatic barriers, characterized by
transmission probabilities Ts and Td, defines the coupling of the QD with the source and drain
reservoirs which have a continuum of states at thermal equilibrium. Notice that only the outter
edge channel is coupled to the reservoir while the inner edge channel which also forms a QD is
completely isolated from the reservoirs, thus it does not contributes to the transport trough the
structure.

4.2.1 Charge quantization

In the weak coupling regime the electrons are well localized in the central region of the

structure and therefore the total charge in the QD can only be an integer number of e,

QN = −Ne N ∈ N (4.9)

This means that the quantum fluctuations in the particle number N is small under the

condition that the tunnel resistance of each QPC is large enough:

Rt >
h

e2
←→ Gqpc

G0

< 1 ←→ Ts,d < 1 (4.10)

We must notice that such a charge quantization is not guaranteed in a normal conductor

like any of the electrodes that define the QD. When these electrodes are polarized

the induced charge Qg that appears is due to the rearrangement of the electron gas

inside of the metal with respect to the positive background ions. Thus Qg can change

continuously between any values. In the metal electrode the polarization charge is

related to the applied voltage Vg through the geometrical capacitance Cg,

Qg = CgVg (4.11)
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Recently S. Jezouin et al. [84] experimentally demonstrated how the quantization of

the charge in a metallic QD was progressively destroyed while reducing the strength

of the tunneling barriers. A full control of the quantum fluctuations allows them to

explore the whole regime from the tunnel barrier to the ballistic regime.

4.2.2 Energy quantization

The extreme spatial confinement leads to the full quantization of the energy spectrum

of the electrons in the QD, pretty much as the text book problem of a particle in a box

in quantum mechanics (Fig 4.7)b. Of course, the particular energy spectrum {Em}
depends on the details of the confinement potential and the sample geometry. In any

case, beside possible degeneracies, the energy levels are single particle levels that at

zero temperature must be occupied one by one following the Pauli exclusion principle

like in the atomic model. For this reason QDs are also known as artificial atoms.

As it will be described in the next section (4.2.3), in small QDs the electron-electron

interaction is not negligible and it will introduce an extra energy scale that modifies

the energy level separation between the last occupied level and the next empty level.

Occupation at finite temperature

At finite temperature the occupation of the energy level of the QD can not be simply

described by a Fermi-Dirac distribution since the system is highly interacting and it

is almost isolated from the reservoirs causing the total energy of the system to be

strongly dependent on the number of particles. At equilibrium the thermal occupation

of a set of discrete energy levels is better described by the Gibbs distribution which can

be calculated in the grand canonical ensemble in statistical mechanics [85, 63]. When

the thermal energy is comparable to the level spacing the Gibbs distribution can be

radically different from the Fermi function [86].

Intrinsic Lineshape

The QD can be understood as well as an effective Fabry-Perot interferometer where

the edge channel interferes with itself due to the multiple internal reflections.

The intrinsic lineshape L(E,E1) of a particular energy level E1, calculated either

with this simple model or with the scattering theory, is Lorentzian:

L(E,E1) = T1
(Γ1/2)2

(E − E1)2 + (Γ1/2)2 (4.12)

with an amplitude T1 and a width Γ1 (FWHM) that depends on the transmission

probability Ts (Td) between the QD and the source (drain) reservoir, the propagation

speed vd and the size of the QD through the variable a that is the total propagation
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length between two successive reflection in the same barrier:

T1 =
4TsTd

(Ts + Td)2 Γ1 =
~vd
2a

(Ts + Td) (4.13)

A simple model of a circular QD with a radius r = 250nm, which set a = πr, at

the tunneling regime Ts ≈ Td ≈ 0.005 and assuming a propagation speed vd = 2× 105

m/s gives an estimation for the linewidth Γ1 = 5µ eV expected for a QD defined by a

structure as the one shown in Fig. 4.7.

The amplitude T1 gives the transmission probability through a single resonant level.

In the case of symmetric barriers Ts = Td the discrete level has a perfect transmission

T1 = 1 and the electrons that have the same energy can tunnel the QD without

reflection even if each QPC is tuned almost at pinch-off (Ts=Td � 1).

4.2.3 Charging effects

The effects of the residual Coulomb interaction in the 2DEG is enhanced in the QD

since the electrons are not free to rearrange themselves to minimize the electrostatic

energy. Therefore electron-electron interactions strongly affects the tunneling process

in the QD and the addition of an extra electron raises the total energy of the QD not

only due to the new single particle level that is occupied but also due to the Coulomb

repulsion between the electrons.

The constant interaction model describes the Coulomb interaction, as a mean field

theory, assigning a finite capacitance Ceq to the QD [87, 88]. This capacitance can be

understood as the total geometrical capacitance between the small QD area and the

surrounding electrodes (Cg), the source (Cs) and the drain reservoir (Cd) (See Fig 4.8a

for the equivalent circuit representation).

Ceq = Cs + Cd + ΣgatesCg (4.14)

drainsource

TS TD

𝐸𝐹

𝐸

𝜇𝑁

𝜇𝑁+1

𝜇𝑁−1

𝑉𝑠 𝑉𝑑

𝑉𝑝

𝐶𝑠 𝐶𝑑

𝐶𝑔

𝑸𝑫

(a) (b)

Figure 4.8: (a) Equivalent circuit of a QD in the constant interaction model. (b) Energy
diagram of the quantum dot showing the electrochemical potential µN corresponding to states
with different number of charge N (green) and the discrete single particle energy levels (red).
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The total ground state energy U(N) of the QD containing N electrons is the sum

of all the single particle energies and the electrostatic energy stored in the capaci-

tance3Ceq due to the charge imbalance between the quantized charge in the Dot and

the continuous induced charge on the leads and the metal electrodes. Here we consider

only the induced charge Qg by the plunger gate voltage Vp applied in the electrode G3,

since the other electrodes are usually polarized to a fix value to form the QD and will

only contribute with a constant offset to the energy. Then the total energy reads:

U(N) =
N∑
n=1

En +
(−eN +Qg)

2

2Ceq
(4.15)

The electrochemical potential µD(N) = U(N)− U(N − 1) that indicates the mini-

mum energy that was necessary to add the N th electron is:

µD(N) = EN +
e2

Ceq

(
N − 1

2

)
− e Cg

Ceq
Vp (4.16)

which shows that the electrochemical potential of the dot can be linearly controlled

with the plunger gate voltage Vp through its lever arm defined as αp = Cg/Ceq.

At zero bias voltage Vsd = Vs − Vd, if µD(N) is aligned with the electrochemical

potential of the leads (resonant condition), the electrons can tunnel through the QD

while the charge fluctuates between the two values N ↔ N − 1. Conversely, if µD(N)

is put below the electrochemical potential of the leads, the state with N charges sta-

bilizes and there is no current until the next alignment between µD(N + 1) and the

electrochemical potential of the leads. The period in the gate voltage ∆Vg between two

successive resonant conditions is

∆Vg =
1

eαp

(
(EN+1 − EN) +

e2

Ceq

)
(4.17)

At fix plunger gate voltage Vp, the change in electrochemical potential ∆µD =

µD(N + 1) − µD(N) between the state with N + 1 charges and the state with and N

charges results:

∆µD = e2

(
1

CQ
+

1

Ceq

)
= dEN+1 + Ec (4.18)

where CQ = ρ1De
2 is the quantum capacitance of the QD from the zero dimensional

density of states ρ1D = 1/dEN+1. We can identify the two contribution to ∆µD: An

increase of the chemical potential due to the increase in the number of particles (CQ

term) and an increase of the electrotatic potential due to the Coulomb interaction (Ceq

term). The latter defines the charging energy Ec = e2/Ceq.

3Assuming that the QD’s capacitance is constant and that the set of single particle energy levels
{EN} is not essentially modified by the Coulomb interaction
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Figure 4.9: (a) Energy diagram of the QD and the reservoirs at finite bias Vsd. The ground
state of the quantum dots with different number of particles N is represented in green and the
excited states in red. (b) Measurement of the differential conductance as a function of the bias
voltage Vsd and the plunger gate voltage Vp. Two Coulomb diamonds are observed, where the
transport is suppressed, which correspond to the charge states with N and N + 1 electrons. In
between the Coulomb diamonds sequential transport is allowed but the charge fluctuates only
by ±e. The excited states appear as additional faint lines, highlighted by the red dashed lines,
in between adjacent Coulomb diamonds.

4.2.4 Coulomb Blockade

The interplay between the spatial confinement and the charging effects can be clearly

seen by measuring the differential conductance G = dI/dVsd of the QD as a function

of the source-drain bias voltage Vsd and the plunger gate voltage Vp in the regime in

which the thermal energy is smaller than the charging energy and the level spacing

{Ec, dEm} � kbT (Fig. 4.9b).

The large rhomboidal regions are called Coulomb Diamonds and correspond to

situations where the current through the QD is suppressed due to the charging effects.

This is known as the Coulomb blockade regime. Essentially it occurs because the

electrochemical potential of the QD is outside of the bias energy windows and hence

tunneling can’t take place. Thus the total charge of the QD is stable and well defined.

Outside of these regions, the current can flow through the QD but the tunneling

remains sequential as a collateral consequence of the charging effects. If the bias energy

window is |eVsd| < ∆µD, then only one discrete level can be occupied at a time and the

charge of the QD fluctuates by 1e. If the bias energy window is ∆µD < |eVsd| < 2∆µD,

then the level of µN and µn+1 can be simultaneously inside of the bias window and two

states cna be occupied at a time , thus the charge of the dot fluctuates by 2e. Increasing

the bias, increases the number of discrete levels that can simultaneously contribute to

the current across the quantum dot, which gives rise to the Coulomb staircase. During

the experiments carried out along this thesis, we remains in the low bias regime such

that the transport is sequential through a single energy level.



4.2 Quantum Dot 83

A comparison between the vertical and the horizontal elongation of the Coulomb

diamonds provides an accurate determination of the lever arm αp of the plunger gate as

well as a good estimation of the charging energy and the level spacing of the quantized

energy levels.

4.2.5 QD thermometry

𝒯 1 = 34.6 %

𝛼𝑝 = 0.035 ± 0.003

𝑇 = (21.6 ± 0.3)mK
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Figure 4.10: (a) At zero bias voltage, a discrete level of in the QD is at a resonance condition
when it is aligned to the electrochemical potential of the leads. (b) A measurement of the
differential conductance G or the transmission T1 = G/G0 as a function of the plunger gate
voltage shows a peak each time the QD is at a resonant condition. (c) Fit of the thermal
broadened Coulomb resonance using Eq. 4.19, from which the electronic temperature T = 21.5
mK can be extracted while the phonon temperature was about ∼ 18 mK.

The Fig. 4.10b shows a measurement of the differential conductance dI/dVsd at

zero bias as a function Vp showing the equidistant Coulomb peaks characteristic of

successive resonant conditions in the QD 4.10a.

When the thermal energy kbT of the electrons in the leads is larger than the intrinsic

width Γ1 of the discrete levels in the QD, the Coulomb resonances measured in the

differential conductance does not reflect the intrinsic lineshape of the resonant levels.

Instead, Beenakker [86] calculated that in this regime, the line shape of the peaks

measured in the differential conductance G(Vp) becomes:

G(Vg) = Gmax

[
cosh

(
αpe(V

(i)
p − Vp)

2kbT

)]−2

(4.19)

In this regime the QD level is probing the thermal broadening of the Fermi sea at

the leads. Therefore QD’s are used as local thermometers that are directly coupled to

the electronic system. The fig. 4.10c shows a fit of a single Coulomb resonance using

equation 4.19 from with we obtain an electronic temperature of (21.5± 0.3)mK while

the base temperature of the fridge was (18± 0.3)mK.
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4.2.6 QD as an energy filter

Let’s consider the transport through the QD in the coherent resonant tunneling regime

(Ec > kbT > Γ1) where elastic tunneling events are the first order processes that can

take place. At finite bias Vsd the QD can be implemented as a tunable energy filter

as long as there is a single active level within the bias energy window as represented

in Fig. 4.11a. Such condition is obtained close to the vertex between two adjacent

Coulomb diamonds, the charge degeneracy point, at low bias |eVsd| < ∆µD such that

the transport remains sequential. The Fig. 4.11b shows a measurement on which only

the boundaries of the Coulomb diamonds are observed and no other extra features are

seen indicating that indeed transport occurs through a single active level.

Although a detailed and quantitative description will be discussed in section 6.2,

let us explain here the basic ideas by which a quantum dots can be implemented as an

energy filter to inject or detect particles. Briefly, such implementation is possible since

the tunneling through the QD is sequential and elastic. As shown in the Fig. 4.11a

when the electrochemical potential µN of the QD is within the bias energy window

µs − µd = eVsd, only the electron in the source reservoir that has the same energy

than µN can tunnel into the QD. Electrons in the source reservoir at higher or lower

energies than µN can not tunnel since there are no available states on the dot at those

energies. The electron in the QD has a lifetime τN given by the intrinsic width4 Γ1 of

the resonant level τN = h/Γ1 after which it will be emitted in the drain reservoir since

µN > µd. The emitted electron is released at an energy E1(V p) = µN(Vp)− µd above

the electrochemical potential of the lead. Of course the selected energy E1 is a linear

function of the plunger gate voltage Vp, thus the QD behaves as a tunable energy filter.

Figure 4.11: (a) Energy diagram of the quantum dot with a single active level on the bias
windows. (b) Differential conductance measurement in a regime of sequential transport through
a single resonant level. No signatures of excited states are seen in between adjacent Coulomb
diamonds. (c) Transconductance measurement at a finite bias eV sd = µs − µd = 94µ eV.

4Notice that the the intrinsic width Γ1 is determined by the transmission, Ts and Td, of the two
barriers that form the quantum dot as explained in section 4.2.2.
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This is a clear example on which the QD can be implemented as an energy filter

to select the energy at which the electron are injected over the Fermi sea of the drain

lead. However one can imagine that if the distribution of particles in the source lead is

unknown, the QD in the same configuration, can be implemented as an energy resolved

detector to measure the unknown distribution. This can be done by measuring the

transmitted current I(E1) as a function of the resonant energy E1. In order to access to

the absolute value of the transmitted current I(E1) it is more convenient to measure the

transconductance dI/dVp(Vp) than the usual differential conductance dI/dVsd(Vp).

A typical transconductance measurement is shown in Fig. 4.11c which is detected

by a standard low frequency lock-in technique with a small ac-excitation dVp on the

plunger gate in addition to its finite dc-value Vp. Then the transmitted current I(E1)

(Fig. 4.12a) is obtained simply by integrating the transconductance measurement (Fig.

4.11c).

The transmitted current as a function of the resonant energy is expected to follow

from the convolution of the bias energy windows (fs − fd) and the lineshape L(E,E1)

of the detector described by equation 4.12:

I(E1) =
e

h

∫
L(E,E1) [fs(E, µs)− fd(E, µd)] dE (4.20)

When the Fermi energy of both leads are well separated (eVsd � kbT ) there are

three regions that can be distinguished in the measured I(E1) (Fig. 4.12a). The

transmitted current for each one of these regions reads:

(i) Ii(E1) =
e

h

∫
L(E,E1) [1− fd(E, µd)] dE

(ii) Iii(E1) =
e

h

∫
L(E,E1)dE −→ Imax =

e

h

π

2
Γ1T1

(iii) Iiii(E1) =
e

h

∫
L(E,E1) [fs(E, µs)] dE

(4.21)

Equation 4.21(ii) defines the maximum transmitted current Imax when the discrete

level is well inside the bias windows. The small wiggle of the current in this region

reflects the variations of the transmission T1 or the intrinsic width Γ1 as a function

of the plunger gate voltage Vp. Additionally in 4.21(iii) the QD is probing the Fermi

sea of the source lead and, in fact, if Γ1 � kbT it provides a direct measurement of

the Fermi sea since the lineshape can be approximated by a normalized delta function

L(E,E1)→ (πΓ1T1/2)× δ(E − E1):

Iiii(E1) = Imax × fs(E1, µs) (4.22)

The Figure 4.12(b) shows the measured Fermi Sea of the edge channel in the source

lead at equilibrium. We see that it is well described by a Fermi function with an
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effective temperature T = 68 mK. Deviations from a Fermi distribution appears at the

tails of the Fermi Sea as a consequence of the finite width of the discrete level. Further

details of the effect of the convolution will be presented in section 6.3.

Quantum dots were already identified to function as energy filters in double quan-

tum dots configurations [89] and they were also implemented in magnetic focusing

experiments [90]. More recently C. Altimiras et al. experimentally demonstrated that

indeed the same approach can be use to extract the full energy distribution f(E) of

the particles in an edge channel in the IQHE regime as discussed above [51].

Figure 4.12: (a) Transmitted current at finite bias I(E1) normalized by the maximum current
Imax. (b) Measured Fermi distribution from the source lead (region (iii)). The red line is a fit
with a Fermi function at an electronic temperature T = 68 mK. Deviations between the measured
points and the fit at the tails of the distributions arise from the finite width Γ1 of the discrete
level in the QD.

4.2.7 Excited states

Excited states in a QD arises when there are there are multiple energy levels that allow

to change the charge state from N to N + 1.

When many excited states are available within the bias window the transport re-

mains sequential, since the charging energy prevents electrons to tunnel simultaneously,

but they act as alternative channels for the tunneling current. The intrinsic transmis-

sion of a discrete level in a QD depends on the extension of the associated wave function

and its overlap with the wave function of the electrons in the leads, hence different ex-

cited states can have different transmission probabilities. Therefore excited states affect

the global transmission of the QD and the mean escaping time of the electrons, thus

the effective linewidth of the QD. They can also leads to regions of negative differential

conductance (NDC) and no monotonous behavior of the temperature dependence of

the Coulomb peaks’ amplitude at zero bias.

Excited states can be detected in different ways. They can be seen as extra lines

between Coulomb diamonds in measurements of the differential conductance or the

transconductance as a function of bias and gate voltage (See Fig. 4.9). The extra lines
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are usually parallel to the boundaries of the Coulomb diamonds since the excited states

change the global transmission when they enter or leave the bias window. The excited

states can be seen as well in the precise determination of the lever arm of the QD or

as an effective increase in the electronic temperature extracted from the measurement

of the Fermi distribution of the source and/or drain reservoir.

In the constant interaction model, excited states are just the single particle levels

{Em} due to the spatial confinement for a fixed number of electrons. However in real

QDs excited states can be originated from more complex processes such as collective

excitation [91]. In addition asymmetric coupling to the leads can cause some of the

excited states to be suppressed in some regions between Coulomb diamonds and or

produce shifts in the Coulomb peaks positions as investigated by E. Bonet. et al. [92].

In order to perform the energy resolved spectroscopy by implementing quantum

dots as energy filter we will avoid electrostatic configurations that lead to the presence

of excited states in the quantum dots. This can be achieved by tuning the polarization

voltages in the four electrodes that defines the QD in order to change its size or position

until the conditions are found.

4.3 Interactions in 1D

As mentioned before, electron quantum optics experiments provide a way to investi-

gate the role of the interactions in the electronic transport in the quantum Hall effect

regimen. Beyond the standard dc charge transport, measurements of the coherence of

quantum states, the energy transport or time resolved propagation of charges allows to

unveil and characterize the different interaction mechanisms. In this section I present

a description of some of those mechanisms that have been so far identified to affect the

propagation of electrons along quantum Hall edge channels. In this thesis we explore

the consequences of the interactions by looking at the energy transport associated to

the propagation of charges.

4.3.1 Edge Reconstruction

The competition between the confinement potential, that tends to push the edge chan-

nels together, and the repulsive Coulomb interaction between neighboring edge chan-

nels can leads to a completely new spatial reorganization of the edge states. This is

known as edge reconstruction which take place for smooth enough confinements.

If the confinement is sharp (hard wall) the repulsive interaction between edge chan-

nels can be neglected. Thus they are well described by the non interacting picture as

represented in Fig. 4.13a (See Eq. 3.39).

For smooth confinements, the non interacting picture predicts well separated edge

states in comparison with their widths rn ∼ lB. However this implies that the local
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density of electron has a sharp transition when an edge state crosses the Fermi level as

shown in Fig. 4.13a. This spatial profile on the density of electrons is unstable and it

will be modified due to the Coulomb interaction between particles.

The self-consistent solution indicates that the confined 2DEG splits into a series

of regions consisting of compressible edge channels and incompressible bulk

strips, which corresponds to the regions indicated, respectively by the red and the

blue arrows in the figure 4.13(b) [93]. The compressible edge state strips are flattened

Landau levels at the Fermi energy that are partially filled. Thus, like in a metal,

electrons can screen the original confinement potential to keep the compressible region

as an equipotential while the density of electrons varies across it, resulting in a self-

consistent confinement potential that is also flat. Now, between the edge channels there

are incompressible bulk stripes, which can not screen the external potential and where

the density of electrons remains constant (See Fig. 4.13(b)). The number of compress-

ible edge strips remains equal to the filling factor, preserving the correspondence with

the number of expected edge states. The existence of these type of structures have

been experimentally investigated in Ref. [94, 95, 96].

Position and width of the strips

The position and width of the incompressible bulk strips can be estimated within this

electrostatic model in terms of the depletion length LD [93]. Let see this description in

order to have an estimation of the characteristic width of a reconstructed edge channel

and its separation to the neighboring co-propagating edge channels.

Metal gates that are capacitively coupled to the 2DEG deplete the 2DEG under-

neath when a negative potential Vg is applied on them. It means that the density of

electrons is reduced to zero over a distance LD from the electrode. Beyond the de-

pletion length, the electrons screen the potential which give rise to a smooth density

profile n(x). At zero magnetic field, the depletion length and the density profile reads,

LD =
2Vgε

eπns
(4.23)

n(x) =

(
x− LD
x+ LD

)1/2

nsΘ(x− LD) (4.24)

where Θ(x) is the step function. For a typical electron density ns = 2× 1015m−2 and

a polarization voltage Vg = 1V , the depletion length5is LD = 225 nm.

At filling factor νL, the location xi and the width ai of the incompressible bulk strip

i coming from to the Landau level n = i can be evaluated from:

xi = LD
ν2
L + i2

ν2
L − i2

(4.25)

5Using the dielectric constant in GaAs ε = 12.8ε0.
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Figure 4.13: Bottom panels: electron density profile n(x) as a function of the spatial coordi-
nate x. Middle panels: the electrostatic potential V (x) and the dispersion induced in the Landau
levels. Filled circles indicate fully occupied states (incompressible 2DEG), half-filled circles indi-
cate partially occupied states (compressible 2DEG) and open circles indicate empty states above
the Fermi level EF . Upper panels: spatial distribution of the edge states (highlighted in red) that
are developed parallel to the y direction of the system. The top arrows indicate the direction
of propagation of the current for a magnetic field B = +Bẑ. (a)-Left: In the non interacting
picture discussed in section 3.3.4 an edge channel is develop each time a Landau level crosses
the Fermi level and at this position the electron density has a sharp increase. The edge states
have a characteristic width of the order of the magnetic length lB ∼ 10 nm (at B = 5 T) and
neighboring edges channels are separated by ∆Xk which depends on the profile of the confining
potential Vconf . (a)-Right: Interacting model - Edge Reconstruction: The coulomb interaction
in the 2DEG leads to a reorganization of the charges resulting in a smooth increase of the electron
density profile n(x). This process leads to self consistent confining potential Veff that flattens the
Landau levels in regions where the edge states are developed (half filled circles). Consequently
the edge states acquire a finite width of the order of ∼ 100 nm separated by thinner incom-
pressible bulk stripes where the electron density remains constant. Notice the anti-parallel and
alternating pattern form by the slope of the potential Veff and the density profile n(x) causing
that edge and bulk stripes can carry a current but in opposite directions. Adapted picture from
Ref. [93]

ai =

√
8aBLD
π

νLi
1/2

ν2
L − i2

(4.26)
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where aB = 4πε~2
me2

is the Bohr radius in the 2DEG which gives aB ∼ 10nm. The ratio

a1/x1 ∼
√
aB/LD � 1 indicates that in general the incompressible bulk strips are

separated by much more wider compressible edge stripes. The width b1 of the outer

edge strip can then be estimated as:

b1 = x1 − LD =
2LD
ν2
L − 1

(4.27)

At filling factor νL = 2 and for the estimated depletion length LD ∼ 225 nm, this

gives a width for the outer edge strip of b1 ∼ 150 nm which is separated from the inner

edge channel by a bulk strip of width a1 ∼ 50 nm.

Currents Distribution

A remarkable consequence of this model is that both type of strips can transport a

current but they do it in opposite directions [97]. The incompressible bulk strips

carry a density current jbulk due to the finite slope of the dispersion relation ∇Veff (x),

while the compressible edge strips now carry a density current jedge due to the

finite gradient in the density of electrons ∇n(x):

jbulk ∝ ∇Veff (x) (4.28)

jedge ∝ ∇n(x) (4.29)

We can see that these two contributions have opposite directions because the con-

finement potential profile and the electron density profile are anti-parallel defining an

alternating pattern along the edge of the system (Fig. 4.13). At equilibrium, both

contributions exactly cancels. However when a finite bias is applied to the edge of the

system increasing the electrochemical potential by ∆µ, the width of compressible edge

strip decreases while the incompressible region become wider giving rise to the excess

current [98]. Despite the presence of this alternating pattern of strips with counter-

propagating currents, Thouless [98, 99] demonstrated that the Büttiker formalism is

still valid even when it was built based on a completely different model.

Edge Magnetoplasmons

Furthermore, in this model additional excitations can appear across the finite width

of the compressible edge strip which are known as edge magnetoplasmons [100]. These

excitations are density oscillations across the stripe width that can propagate. The

infinite number of modes allowed can be labeled by the number of nodes j that they

create inside of the strip as represented in the figure 4.14. An hydrodynamic description
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[100] gives the dispersion relation for each mode6j:

E(k)j=0 = ln

(
e−γ

2|ka|

)
2n̄e2

4πεωc
k

E(k)j>0 =
2n̄e2

4πεωc

k

j

(4.30)

from where we can see that they are gapless excitations that propagates with different

drift velocities v
(j)
d ∝ ∂E(k)j/∂k. Usually the j= 0 mode is called the charge mode

because it consist of a density modulation of charge along the axis of the compressible

edge stripe, while the other modes are known has neutral modes since the charge

modulation is transversal to the stripe as represented in Fig. 4.14. However since the

electron density is not constant along the strip width, this modes can also propagate

a finite charge.
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Figure 4.14: Representation of different acoustic modes which can exist since the compressible
edge stripe has a finite width bi that the result from the edge reconstruction process. The charge
mode (j = 0) corresponds to a density modulation along the direction ŷ of the propagation of the
edge state strip. Conversely, the neutral modes (j > 0) are modulation of the electron density
across the width in the transverse direction x̂.

These acoustic branches of edge excitations can be seen as additional internal de-

grees of freedom of the edge states but they can not be detected in usual dc-charge

transport measurements since this approach averages the detected signal in time. How-

ever the acoustic excitations can be investigated in Time of Flight experiments due to

the different drift velocities of the excitations. Time resolved experiments of this type

have been carried out to detect the charge mode and the additional acoustic excitations

[101, 102, 103] and additionally it was demonstrated that the drift velocities could be

tuned by screening the Coulomb interaction on the edge channel with nearby electrode

[104].

However only from the observations of time of flight experiments it is not possible

to definitely conclude that the reconstructed edge states can host an infinite internal

excitations since there exist an alternative theory, based in a completely different treat-

ment of the interactions, which also leads to the development of plasmonic excitations

6γ is the Euler constant.
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that propagates at different velocities. In the next section, I will describe this second

approach and its implication in the relaxation of particles in edge channels.

4.3.2 Luttinger Liquid Theory

The interaction between particles in a Fermi system is a very fundamental question

that was originally considered by Landau in the theory of Fermi liquids [22, 23, 24].

However this is a perturbative theory that fails to describe Fermi systems on which the

ground state is radically different from a Fermi sea, like the case of superconductors.

Fermi liquid theory also fails to describe a simple metallic state in low dimensions, since

the Fermi sea becomes unstable in 1D against any small perturbation. The interacting

many fermion system in 1D is described by the Tomonaga-Luttinger liquid theory

[25, 26].

Fermi Liquid

It describes an interacting Fermi gas, the Fermi liquid, where the interactions are

adiabatically turned ON such that they do not drive any phase transition or symmetry

breaking in the process. As a consequence, there is a 1 : 1 correspondence between

the excitations of the Fermi liquid to those of the Fermi gas and the following general

properties are preserved:

1. The ground state of the Fermi liquid is still a Fermi Sea.

2. The low energy excitations, called quasiparticles, follow a Fermi statistic.

3. The transport is still described by the Boltzmann equation.

4. The correlation between particles are weak even if the interactions are strong.

The mean difference with the Fermi gas is that now the quasiparticles have a finite

lifetime. In fact if we excite a quasi-electron at a state |ẽk〉 with momentum k, it

decays into two quasi-electrons and one quasi-hole. Three quasiparticles are needed

due to the charge, momentum and energy conservation,

|ẽk〉 −→ |ẽk′〉+ |ẽk′′〉+ |h̃k′′′〉 (4.31)

When the electron is close to the Fermi Sea, there are less available states for the

decaying process and the quasiparticle becomes longlived. Moreover the lifetime at low

energy, which scales as τ ∼ ~/(E−EF )2, is longer than the inverse of excitation energy

~/(E−EF ) indicating that in fact the quasiparticle is well defined at low energy ([105]

and ref. therein).

The Fermi liquid theory works well for most of the electronic systems in 3D and

2D since even if the interaction is strong, it only opens a gap in a relatively small part
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of the Fermi surface and therefore the system can be considered as a very dilute gas

of interacting quasiparticles. This implies that the interactions can be treated with a

perturbation theory.

Luttinger Liquid

When the dimensionality of the Fermi gas is reduced the phase space at the Fermi

surface does it as well. In the extreme case of a 1-dimensional Fermi gas, the Fermi

surface consists only of two singular point: ±kF . As a consequence, any interaction

that couples the states at the Fermi level opens a gap that completely destroys the

whole Fermi surface of the system. It does not matter how small the interaction are,

they can not be turned ON adiabatically or described by a perturbation theory. The

free-electron like metal state in 1 dimension is not stable.

This is where it comes the Luttinger liquid theory which describes the interacting

Fermi gas within a non perturbative approach leading to the formation of the Luttinger

liquid state where:

1. The elementary excitations are collective modes that follows a Bose-Einstein

statistics.

2. The correlation between the particles are always strong.

3. Spin and charge excitations are gapless and have a linear dispersion relation.

An effective linearization of the dispersion relation of a given system can be ob-

tained by the bosonization approach which allows to compute exact solutions of the

interacting many fermions problem. All the physical properties can be calculated in

term of only two parameter per degree of freedom α: The speed of propagation of the

excitation vα and the renormalization coupling constant Kα. In general terms, a non

interacting system with free electrons has Kα = 1; if Kα > 1 the effective interaction

in the system are atractive but if Kα < 1 the interaction are repulsive. Properties such

as the specific heat, the susceptibility, the electronic compressibility and conductance

depend on these parameters. Moreover they dictate the power-law behavior in all the

correlation functions [30, 29].

The bosonization approach that was initially applied and improved by Haldane,

Mattis and Lieb [28, 106] predicts some peculiar and interesting phenomena:

1. Charge-spin separation: charge and spin excitations have different propagation

velocities, vc and vs respectively. For repulsive interaction they satisfy that vs <

vF < vc where vF is the Fermi velocity.

2. Charge fractionalization: An injected wavepacket of charge q breaks up into

several fractionalized charge wavepackets.
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3. A renormalization of the quantum of conductance: G = G0Kc

Several systems have been identified to behave as Luttinger liquids such as: semi-

conductor 1D-wires [107, 108, 109], quasi-1D organic crystals [110], Carbon nanotubes

[111] and the edge states of the fractional quantum Hall effect [112].

4.3.3 A Chiral Luttinger Liquid in the IQHE

A important generalization of the Luttinger Liquid theory was originally investigated

by Wen [31, 113] to describe the dynamics of excitation in the edge channels of the frac-

tional quantum Hall effect where the propagation is chiral. As a result, the bosoniza-

tion approach in the Luttinger liquid theory can be still used to describe the Coulomb

interaction between the particles along the 1-dimensional chiral edge channels. More-

over, the same approach can be implemented to describe the electrostatic interaction

between two co-propagating edge channels in the integer quantum Hall effect regime.

Within this framework, the Hamiltonian of a single non interacting edge channel

can be expressed in terms of the local density operator ρ̂(x) and the drift velocity vd

of the particles,

H0 = π~vd
∫
ρ̂2(x)dx (4.32)

Intra-channel Interactions.

In a similar way the interaction between the particles propagating in the same edge

channel can be described as a local density-density interaction characterized by a cou-

pling strength g,

H ′0 = H0 +Hintra = (π~vd + g)

∫
ρ̂2(x)dx (4.33)

which simply leads to a renormalization of the drift velocity v = vd + g/π~.

Inter-channel Interactions.

At filling factor ν = 2 the co-propagating edge channels are capacitively coupled re-

sulting in a finite inter-channel interaction. Additionally, since they are located at

different positions they can have different degree of screening on the internal interac-

tions7resulting in different drift velocities v1 and v2. Therefore the Hamiltonian of the

system at filling factor ν = 2 describes each edge channel i = 1, 2 with its own drift

velocity vi and its density operator ρi, while the mutual interaction is characterized by

the coupling constant g12,

H = H ′0 +Hinter = π~
∫ (

v1ρ̂
2
1(x) + v2ρ̂

2
2(x) +

g12

π~
ρ̂1(x)ρ̂2(x)

)
dx (4.34)

The interacting problem can be diagonalized performing a rotation transformation of

7The degree of screening can be adjusted with the proximity to metallic electrodes [104]
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the density operators characterized by an angle θ, which result in

H = π~vc
∫
ρ̂2
c(x)dx+ π~vs

∫
ρ̂2
s(x)dx (4.35)

This gives rise to the development of two new orthogonal eigenmodes, ρc and ρs, which

are a combination of the two independent edge channel and that are characterized by

the drift velocities, vc and vs, respectively:

ρc = cos(θ)ρ1 + sin(θ)ρ2 with vc =
v1 + v2

2
+

√(g12

π~

)2

+

(
v1 − v2

2

)2

(4.36)

ρs = sin(θ)ρ1 − cos(θ)ρ2 with vs =
v1 + v2

2
−

√(g12

π~

)2

+

(
v1 − v2

2

)2

(4.37)

The hybridization of the edge channel depends on the angle θ of the transformation

which defines the so called mixing angle ϕ = 2θ that is more commonly used in the

literature and which is determined by the coupling constant:

tan(ϕ) =
g12/(π~)

v1 − v2

(4.38)

A remarkable consequence of the hybridization is that the a wavepacket carrying a

charge q0 injected in one edge channel will fractionalize into the two presented modes,

ρc and ρs, with each one carrying a non trivial charge, qc and qs respectively, given by:

qc = αq0 + βq0 qs = (1− α)q0 − βq0 (4.39)

with the coefficients defined as

α =
1 + cos(ϕ)

2
β =

sin(ϕ)

2
(4.40)

𝑣𝑐𝑣𝑛

Figure 4.15: A wave packet injected in one edge channel fractionalizes into two modes: the
slow neutral mode that propagates at a speed vn and fast charge mode that propagates at a
speed vc. Picture adapted from Ref. [114].
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Strong Coupling Regime

In the strong coupling regime g12 � (v1− v2), which gives a mixing angle ϕ = π/2 (or

θ = π/4) there is the maximum hybridization.

ρc =
1√
2

(ρ1 + ρ2) with vc =
v1 + v2

2
+
g12

π~
(4.41)

ρs =
1√
2

(ρ1 − ρ2) with vs =
v1 + v2

2
− g12

π~
(4.42)

In this case ρc defines a symmetric distribution of charge, called the charge mode that

has no net spin, while ρs describes a dipolar distribution of charge that is neutral but

that carries a spin. Since they have different propagation speeds vs < vc it results in

the spin-charge separation phenomena.

Relaxation of Landau quasiparticles

The emergence of the new eigenmodes must be seen as the development of collective

excitation that challenge the idea of well defined and longlived Landau quasiparticles

as the low energy excitations in the edge channel of the integer quantum Hall effect.

P. Degiovanni et al. modeled the relaxation of quasiparticles injected at a well

defined energy E0 above the Fermi sea of an edge channel in the integer quantum

Hall regime at filling factor ν = 2[115]. The interaction with the co-propagating edge

channel and the electrons in the Fermi sea were described as a scattering region of

length L, through which the particles pass, using the plasmon scattering approach.

The 2x2 unitary plasmon scattering matrix S(ω, L) in frequency domain is given by

the mixing angle ϕ = 2θ that characterize the strength of the interactions

S(ω, L) = eiωL/v0e−i(ωL/v)(cos(ϕ)σz+sin(ϕ)σx) (4.43)

where v0 and v are velocities such that the velocity of the spin (s) and charge (c)

eigenmodes are: v−1
c,s = v−1

0 ± v−1, while σz and σx are the Pauli matrices [55].

This approach allows to compute the probability Z of a particle injected at an

energy E0 above the Fermi sea to propagate across the interaction region without

losing energy. In Ref. [55] the elastic scattering probability Z(E) for a single electron

excitation was explicitly determined8in the strong coupling regime (ϕ = π/2) to be

given by:

Z(E0) = (J0(E0L/~v))2 (4.44)

This indicates that the quasiparticle decays over a distance of Lin = ~v/E0. For a

injection energy of E0 ∼ 100µeV and a velocity parameter of the order of the typical

drift velocity v ∼ 0.5× 105 m/s we get Lin ∼ 1.3µm. We will therefore experimentally

investigate the relaxation of a quasiparticles within this distance.

8J0(x) is the first kind Bessel function which roughly decays as 1/
√
x
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Numerical calculation of the elastic scattering probability Z(E0) were obtained also

for different coupling parameters ϕ displaying an oscillatory behavior as shown in Fig.

4.16.

𝑍
(𝐸

0
)

𝐸0𝐿/ℏ𝑣

Figure 4.16: Elastic scattering probability Z(E0) for a single electronic excitation, injected
at a well defined energy E0 above the Fermi Sea of an edge channel in the integer quantum
Hall regime at filling factor ν = 2, after a propagation length L calculated by C. Grenier et al.
[116, 115]. The calculations were performed at different coupling regimes given by the mixing
angle ϕ.

Furthermore a full visualization of the relaxation scenario of Landau quasiparticles

well resolved in energy Γ0 � E0 was computed by D. Ferraro et al. using the Wigner

function representation [56]. This approach allows to have access to the time evolution

of the wavepacket and the energy distribution function. On these calculations, they

pointed out that the decaying process of the wavepacket involve two time scales. First,

the energy resolved excitation relax towards the Fermi Sea after a time of flight τrel ∼
~/E0. Then, after a time of flight given by the wavepacket extension τdec ∼ ~/Γ0 it

splits in two components which are the slow and fast modes expected to produce the

spin charge separation.

Finite frequency admittance and noise measurements have demonstrated the spin

charge separation [117, 118] in the quantum Hall effect. Moreover, the same mecha-

nism was also proposed to explain the unexpected lobe-type structure observed in the

visibility of MZI at finite voltage [44]. The same phenomena is thought to be also

responsible for the decoherence observed in MZI as well as in HOM interferometers

[43] since the information of a quantum state produced in one edge channel is lost in

the decaying process.

H. le Sueur et al. performed the first attempts to experimentally investigate the

energy relaxation mechanism on the edge channels [52]. However, due to their ex-

perimental configuration, they were only able to investigate the relaxation of an state

that was already close to the Fermi sea and that was not resolved in energy. Their

observations would correspond to the final phase of the relaxation process, during the
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second time scale τdec, illustrated in Fig. 4.17 insets (d),(e) and (f). These experiments

provided the first accurate measurements of a part of the relaxation process which

could be compared with the theoretical models.

Some deviation provided the first clue that the theoretical model based on two

interacting edge channel is not complete. On this thesis we experimentally address the

primordial relaxation of Landau quasiparticles, injected at a well defined energy, that

takes place during the first time scale τrel, illustrated in Fig. 4.17 insets (a),(b) and (c).

We will observe, in other words, Landau quasiparticles splashing down on the Fermi

Sea.

Figure 4.17: Relaxation scenario computed with the Wigner function representation by D.
Ferraro et al.. Panels (a) to (f) represent the time evolution of the Wigner function along the
propagation. First, the Landau quasiparticle, injected at an energy E0 = ~ωe = 10~τ−1e relaxes
toward the Fermi sea indicated by the horizontal dashed line at ω = 0 (Panel a, b and c). In
the second part, Wigner function splits in two parts: the slow and fast mode (inset d, e and f).
Picture taken from [56].



Chapter 5

Relaxation of a double step

distribution function

In this chapter I describe the experiments carried out in the Phynano team, at the

C2N(LPN) laboratory, which constitutes the first attempt to experimentally inves-

tigate the energy relaxation mechanism in the integer quantum Hall effect at filling

factor ν = 2 [51, 52]. I present measurements that we did in the same regime which

are in agreement with their main observations and which allow us to draw some im-

portant conclusions about our system. Our measurement contribute to consolidate the

reproducibility and replicability of such important observations by obtaining the same

quantitative results in a different laboratory using different devices. Moreover these

experiments are an important benchmark that provides us a solid basis from which we

can move forwards to perform the energy resolved spectroscopy.

5.1 Description of the experiment

Experiments are performed in the integer quantum Hall regime at filling factor ν =

2 where two chiral edge channels co-propagate along the edges of the system. The

experiments are carried out at low temperature Tbase ∼ 20 mK where each edge

channel is fully spin polarized.

In this experiment we investigate the relaxation of an out-of-equilibrium state cre-

ated near the Fermi sea using a biased QPC set at an intermediate transmission

0 < τqpc < 1 for a single edge channel, as depicted in Fig 5.1, while the other edge

channel is completely reflected. As explained in section 4.1.3 in these conditions the

QPC creates a double step distribution of particles fi(E) at the left output which then

propagates along the edge channel. For an applied bias voltage V1 at the source of the

QPC, the injected distribution reads

fi(E) = τqpc F (E − eV1) + (1− τqpc)F (E) (5.1)

99
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where the capital letter F denotes that the distribution is a Fermi function. The

derivative of fi(E) consists of a double dip structure whose relative amplitude is set

by the transmission of the QPC:

dfi
dE

(E) = τqpc
dF

dE
(E − eV1) + (1− τqpc)

dF

dE
(E) (5.2)
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Figure 5.1: Top: Schematic representation of the experimental configuration to investigate
the relaxation in the IQHE regime at filling factor ν = 2. The biased QPC at transmission
τqpc creates a double step distribution function fi (with electrochemicl potential µi) in the outer
edge channel. After few micrometers of propagation, where relaxation takes place, the resulting
distribution fr (with electrochemicl potential µr) is measured with a quantum dot implemented
as an energy filter. The horizontal dashed lines denotes the electrochemical potential µ1, µF and
µd of the equilibrium distribution functions respectively emitted by the ohmic contact biased at
voltage V1, the grounded contact and the ohmic contact biased at voltage V2.

After a tunable propagation length L of several micrometers on which the energy

is redistributed among the particles, the resulting distribution fr is measured using a

quantum dot with a single active level at a tunable energy E2. The quantum dot is then

implemented as an energy filter allowing to directly extract the unknown distribution

function fr, at its source lead, from the transmitted current IQD(E) as explained in

section 4.2.6. A constant bias voltage V2 is also applied at the drain lead of the QD

such that the transmitted current results:

IQD(E2) = Imax

(
fr(E2, µr)− Fd(E2, µd)

)
(5.3)

which is obtained after integration of the measured transconductance signal
dIQD

dE2
:

dIQD
dE2

(E2) = Imax

(
dfr
dE2

(E2, µr)−
dFd
dE2

(E2, µd)

)
(5.4)
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where Imax is a constant which only depends on the characteristics of the detector

quantum dot1. We can see that a large enough voltage V2 allows to decouple both

derivative signals, dfr/dE and dFd/dE, when |µr − µd |&|eV2 |� kbT .

𝝉𝒒𝒑𝒄

V1

𝑽𝒑𝟐

𝑳 = 𝟔. 𝟑 𝝁𝒎

𝑳 = 𝟑. 𝟖 𝝁𝒎

V2

1 𝝁𝒎

Figure 5.2: Colored scanning electron micrograph of the sample (C4) with the 2DEG mesa
highlighted as the blue cross-shaped region. The electrodes colored in green are used to define the
QPC, which injects the double step distribution function in the edge channel, and the QD that is
used as a detector. In red is represented the path followed by the outer edge channel. The yellow
electrodes is used either completely polarized to define a short path, or completely unpolarized
in order to let the edge channel to follow the longer path indicated by the red dotted line along
the edge mesa. The inner edge channel is not shown for simplicity but it is completely reflected
by all the gates that defines the QPC and the QD, however in the central region the inner edge
channel is reflected by the path selector gate in the same way as the outer edge channel. The
gray electrodes near the QPC are not used and they remain unpolarized.

5.2 Distribution Functions Partially Relaxed

First, the injected distribution fi and the resulting distribution fr are compared in

order to describe the relaxation process. C. Altimiras et al. [51] observed that within a

distance 0.8µm there is no relaxation: a double step distribution function was measured

which corresponds to the injected distribution (Eq. 5.1). Subsequently, H. le Sueur

et al. [52] measured that a full relaxation towards a hot Fermi sea is reached after a

propagation length of 10µm. The hot Fermi sea, characterized by a temperature T =

80 mK, was found to remain stationary for longer distances (up to 30µm). Therefore

1Following the discussion of section 4.2.6 the constant Imax depends on the intrinsic linewidth Γ2

of the resonance at the quantum dot and its transmission T2, resulting in: Imax = eπΓ2T2/2h.
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it was established that the whole relaxation mechanism takes place between 0.8µm

and 10µm after the injection point.

We have performed the same type of measurement at two propagation distances,

L = 6.3µm and L = 3.8µm. A scanning electron micrograph of our sample is shown

in figure 5.2 displaying a schematic representation of the path followed by the outer

edge channel. The propagation distance L between the QPC at the left and the QD

at the right can be tuned in situ between the two values by using the central electrode

highlighted in yellow.
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Figure 5.3: Measurements at the long propagation distance L = 6.3µm. (a) The operating
points of the injector QPC are characterized by measuring the transmission as a function of the
bias voltage. (b) 2D-plot of the transconductance signal measured as a function of the detection
energy E2 of the QD and the bias voltage V1 across the QPC. The energy EF corresponds to
the electrochemical potential measured from the equilibrium distribution function emitted by a
grounded ohmic contact when V1 = 0. (c) Some horizontal traces taken from the 2D plot at
fixed V1. When the voltage V1 is increased, the dip in the transconductance signal moves towards
positive energies while the peak remains relatively unchanged. (d) The distribution functions
obtained from the integration of the dip are approximately well described by Fermi functions. A
Fermi function is plotted in black dotted line for the distribution measured at V1 = 30.4µeV

Long Propagation Distance.

For the longer propagation distance L = 6.3µm, Figure 5.3b shows a 2D plot of the

measured transconductance dIQD/dE2 as a function of the energy E2 along the x-axis
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for different bias voltages V1 across the QPC (y-axis).

Figure 5.3c shows some horizontal traces measured at the fixed bias values V1 ∈
{0.0, 9.4, 21.0, 30.4, 43.3, 51.4, 58.4}µeV . The left peak located around E2 = µd =

−103µeV corresponds to the derivative dFd

dE2
in eq. 5.4 which is taken as a fixed point

where all the curves are aligned. The right dip located at positive energies corresponds

to the derivative dfr
dE2

of the distribution functions measured after the propagation.

We observe that while the voltage V1 is increased, the dip moves towards more posi-

tive energies, its amplitude decreases, its width increases but the dip remains relatively

symmetric. Moreover, as expected the changes observed on the dip are significantly

larger than the small changes seen on the peak.

The figure 5.3d shows the distributions functions fr(E2) obtained after integration

of the dip signals. The distributions are similar to Fermi functions which is not sur-

prising since a full relaxation is expected at 10µm. At increasing bias voltage V1 the

measured distributions can be fitted with Fermi function which show increasing elec-

tronic temperatures following T ∈ {60, 78, 98, 110, 121, 136, 160} mK respectively for

the curves measured at bias V1 ∈ {0, 9.4, 21, 30.4, 43.3, 51.4, 58.5}µeV. As an example,

the Fermi fit of the distribution measured at V1 = 30.4µeV is plotted in black dotted

line in Fig. 5.3d.

Short Propagation Distance.

At a shorter propagation distance L = 3.8µm, similar measurements are shown in

Figure 5.4. At V1 = 0 the distribution is a Fermi function with a temperature T =

(43±1) mK which is simply the equilibrium Fermi sea of the edge channel. However, at

finite bias the distributions fr(E2) deviates from a Fermi function. This can be more

easily noticed when looking at the dip in the transconductance signal of Fig.5.4(b)

which displays a double dip structure, even though the two components are not well

separated. This structure is a remnant of the injected double step distribution function

fi(E2) which is partially relaxed at this distance. A very similar transconductance

signal was measured for a propagation distance of L = 4µm in Ref [52].

Therefore, we observe that in our samples the relaxation of a double step distribu-

tion function takes place within the same range of propagation distance measured by

the other group. This suggests that the relaxation process is not very much dependent

of the particular disorder of the sample or the specific geometrical arrangement of the

electrodes used to define the QPC and the QD.

Additionally, we can clearly see that although the largest changes are seen prin-

cipally in the dip structure, the peak located around E2 = −80µeV also shows an

evolution with the bias voltage V1. These changes in the peak most probably arise

from the charge noise generated in the measured edge channel. In principle, the shot
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noise spectrum density in this edge channel is simply related to the bias V1 through,

SI = 2eG0V1τqpc(1− τqpc) (5.5)

To assess the voltage fluctuations one has to estimate an effective bandwidth on which

integrating these fluctuations. Fluctuations at too high frequencies average to zero

along the part of the edge channel interacting with the dot. A maximum frequency

is also set by the voltage itself, thus ∆f = eV1/h. For the shorter propagation, case

one clearly sees that the width of the peak increases with the bias. This is associated

with the increase of these charge fluctuations. A simple estimation of the voltage

fluctuations ∆V 2 = SIR
2
K∆f/2 for a bias voltage V1 = 100µeV and a transmission

τqpc = 0.5, gives ∆V ≈ 35µeV which is of the order of the width increase that we

observe.
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Figure 5.4: Measurements at the short propagation distance L = 3.8µm. (a) The operating
points of the injector QPC are characterized by measuring the transmission as a function of the
bias voltage. (b) 2D-plot of the transconductance signal as a function of the bias voltage V1
across the QPC and the detection energy E2 of the discrete level at the detector. (c) Some
traces from the 2D plot at fix and positive V1. They shows the development of a double dip
structure as the voltage V1 is increased. (d) Distribution function obtained from the integration
of the dip observed in the transconductance traces. The distributions correspond to the injected
double step distribution function that is partially relaxed, which can be better appreciated from
the double dip structure in c.
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5.3 The Electrochemical Potential

The electrochemical potential µ of a distribution of particles indicates the highest

energy states that are occupied at zero temperature following the Pauli’s exclusion

principle and therefore it reflects the number of particles in the system trough the

density of states. In a Fermi distribution at finite temperature, the electrochemical

potential indicates the energy of the states that have a probability of 50% to be occupied

by thermal excitation. Furthermore, the electrochemical potential is not restricted to

characterize Fermi functions, but it can be defined for any arbitrary distribution of

particles f(E) as follow [51]:

µ = EA +

∫ EB

EA

f(E)dE (5.6)

where EA and EB are such that f(E) = 1 ∀E ≤ EA and f(E) = 0 ∀E ≥ EB. This

determination gives the electrochemical potential up to an arbitrary constant, EA, but

this is not an problem since only the changes in the electrochemical potential ∆µ will

be relevant.

On the one hand, the increase in the electrochemical potential ∆µi that is expected

can be calculated from the injected distribution function fi(E) and the equilibrium

Fermi sea F (E) as follows:

∆µi = µi(V1)− µ0 = τqpceV1 (5.7)

On the other hand, the increase in the electrochemical potential ∆µr that is measured

after the propagation can be calculated from the detected distribution fr at bias V1

and the detected Fermi sea with the QPC at zero bias:

∆µr(V1) = µr(V1)− µr(V1 = 0) (5.8)

Figure 5.5 shows a comparison where we see that the measured increase in the

electrochemical potential ∆µr follows the linear behavior that is expected in coincidence

with the injected quantity ∆µi. A reasonably good agreement is found within the

experimental errors, which indicates the important fact that the injected particles are

not tunneling out of the edge channel while they propagate for distances up to 6.3µm.

This verification is in agreement with the observed much longer particle equilibration

distance leq ∼ 160µm between co-propagating edge channel [67].

Therefore the number of particles injected on the edge channels is preserved during

the relaxation mechanism. This is a characteristic behavior that is expected if the

relaxation is driven by intra-channel interactions or by the interaction with an effective

environment that is only capacitively coupled to the injected particles in the outer edge

channel. These type of processes will be further described in the next section.
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Figure 5.5: Left: Measured bias dependent transmission τqpc(V1) of the QPC. Right: Com-
parison between the electrochemical potential increase ∆µr measured after the propagation
(black) and the same quantity estimated at the injection point ∆µi (red). The two plots at
the upper part were measured with the long propagation distance L = 6.3µm and the bottom
plots at the short propagation distance L = 3.8µm.

5.4 The Quasiparticle Energy

The heat current J carried by an arbitrary distribution of particles is the total energy

stored in the system by creating electron-hole excitations on the distribution. In 1D

the heat current can be exactly calculated from the distribution of particles f(E, µ)

due to the exact energy dependence cancellation: ρ1D(E)v(E) = 1/h

J =

∫ EB

EA

ρ1D(E)v(E)(E − µ) [f(E, µ)−Θ(µ− E)] dE (5.9)

J =
1

h

∫ EB

EA

(E − µ) [f(E, µ)−Θ(µ− E)] dE (5.10)

where Θ(x) is the Heaviside step function, thus Θ(µ−E) represents a Fermi function of

electrochemical potential µ at zero temperature. Applying this equation, the injected

double step distribution (Eq. 5.1) carries a heat current Ji given by:

Ji =
π2

6h
(kbT )2 +

τqpc(1− τqpc)
2h

(eV1)2 (5.11)

Following Ref [51, 52] we can identify the first term as the equilibrium heat current

Jeq that is due to the thermal excitation of the Fermi sea, and the second term as the

excess heat current Jexc which is due to the additional electron-holes excitations

created by the QPC.
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It is convenient to define the quasiparticle temperature Tqp and the excess

temperature Texc as the effective temperature that would be needed for a Fermi

distribution to carry a purely thermal heat current equals to Ji or Jexc respectively:

Ji =
π2

6h
(kbTqp)

2 (5.12)

Jexc =
π2

6h
(kbTexc)

2 (5.13)

which implies the relation T 2
exc = T 2

qp − T 2. These effective temperatures are a con-

venient way to look at the heat current since they provide an energy scale, through

the Boltzman constant, which can then be easily compared with other energy scales

involved in the relaxation process. On the one hand, for the injected distribution func-

tion fi(E), the excess temperature Texc,i depends linearly on the bias voltage V1 at the

QPC:

Texc,i =

√
3τqpc(1− τqpc)

πkb
eV1 (5.14)

In a similar way, from the detected distribution fr, measured after the propagation,

we can compute the excess current Jexc,r = Jr(V1) − Jr(V1 = 0) and its associated

excess temperature Texc,r in order to compare them with the values obtained from the

injected distribution.

If the relaxation mechanism is dominated only by intra-channel interactions that

redistribute the energy among the kinetic degree of freedom of the particles within the

same edge channel, then it is expected that the injected excess heat current Jexc,i will

be conserved during the propagation, Jexc,i = Jexc,r, thus we expect to find the same

excess temperatures: Texc,i(V1) = Texc,r(V1). Figure 5.6a shows the excess temperature

Texc,r measured after the propagation (plotted as big red and green symbols) for the

two distances on which we have performed this experiment. The estimation of the

excess temperature Texc,i in the injected distribution with a transmission τqpc = 0.5 is

plotted as a thick black dashed line. In our experiments, the measured bias dependent

transmission varies within the range τqpc(V1) ∈ [0.35; 0.65] as can be seen on the left

panels of Fig. 5.5. Although they substantially differ from the exact value τqpc = 0.5

it will only modify the slope of the dashed line in Fig. 5.6a by less than 5% due to the

square root factor in Eq 5.14. Thus the slope of the Texc(V1) function does not depend

strongly on the transmission around τqpc ∼ 0.5.

The comparison between the excess temperature Texc,i at the injection and the Texc,r

after the relaxation shows that the energy is not conserved inside the edge channel

among the kinetic degrees of freedom of the charge particles. We observe that the

discrepancy increases at a larger propagation distance and a large bias. However this

energy loss is in the expected ranges, the red and green regions that are defined for

each propagation distance by the measurements presented in Ref. [52] for similar
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distances. The current understanding of the relaxation mechanism suggests that part

of this energy was transferred towards the co-propagating edge channel, which was

directly measured in Ref. [52].
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Figure 5.6: a) Excess temperature measured after the short (long) propagation distance
plotted in big red (green) filled symbols as a function of the bias voltage V1 across the QPC. Our
measurements fall within the expected range represented by the red (green) shaded region for
the short (long) distance. These shaded regions were determined from the data measured at Ref.
[52]. In a the energy conservation on the edge channel is indicated by the thick black dashed
line (Texc,i), while energy conservation in the whole system of two interacting edge channels is
indicated by the thin blue dashed line (Tminexc ) which is a lower bound predicted by the theory. b)
Simplified figure taken from Ref.[52]. The data presented in this reference was used to determine
the red and green shaded region displayed in a.

Nevertheless if the energy is redistributed only among the charged particles now

in the two co-propagating edge channels, still there is a minimum value for Texc that

is expected to remain in each edge channel. This lower bound, plotted as thin blue

dash line, arises from the heat current equipartition at equilibrium which sets Tminexc =

Texc,i/
√

2. However we observe that the measured Texc,r (symbols) is smaller than

that lower value, which is particularly pronounced at large bias voltage V1, indicating

that the energy redistribution implies extra degrees of freedom which are not related

with the charge transport along the two edge channel. This observation also confirms

the measurements done in Ref [52], where an energy leak of the two interacting edge

channels system was identified in a similar way. They measured that up to 20% of the

injected energy was leaking out of the system of two interacting edge channels at larger

distances (∼ 30µm).

It is important to stress that the development of the neutral and the charge mode

predicted to arise between two interacting edge channels, presented in section 4.3.3,

sets the same lower bound Texc,i/
√

2. Therefore the observation of an energy leak

beyond that limit means that this model is not complete. Additionally, in a later

experiment [53] it was demonstrated that the energy exchange between co-propagating

edge channels could be frozen by forcing the inner edge channel to form closed loops.



5.5 Transmission Dependence 109

By doing that, the density of states of the inner edge channel is modified, forcing it to

develop discrete energy levels. This limits the energy at which the inner edge channel

can be coupled to the outer edge channel where the quasiparticles are injected. In this

regime, it was shown that the relaxation of the out-of-equilibrium state injected in the

outer edge channel does not excite internal modes in the same edge channel. However

it was pointed out that this observation does not rule out the existence of internal

neutral modes in the co-propagating edge channel (the inner edge channel) to which

the energy could be transferred.

5.5 Transmission Dependence
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Figure 5.7: Measurements of the partially relaxed distribution function at the propagation
length L = 3.8µm at fixed bias voltage V1 = 58.4µeV : (a) 2D plot of the transconducntance
signal as a function of the energy of the detector and the polarization gate voltage of the QPC.
The red signal to the right is proportional to the derivative dfr/dE. (b) Transmission of the
QPC measured as a function of the polarization gate voltage applied in the electrodes that define
the QPC. (c) Traces taken from the 2D plot on which we can see that the relative amplitude of
the two components of dfr/dE are modulated by τqpc.

At the short propagation distance the two components of the derivative dfi/dE,

which leads to the dips in the transconductance measurement in Fig. 5.4, were iden-

tified but they were not well resolved since the measured distribution fr is already

partially relaxed. Nevertheless we can test more accurately that there are in fact two
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different components by investigating their dependence on the transmission τqpc of the

QPC.

At a fixed bias voltage across the QPC, V1 = 58µeV , we measured the dfr
dE

(E) while

the transmission of the QPC was varied in the range τqpc ∈ [0.45; 0.8] non monotonously

(Fig. 5.7b). The measurements of the transconductance at the different values of τqpc

is shown in the 2D plot presented in Fig. 5.7a and some particular traces are shown in

Fig. 5.7c. The main result is that the relative amplitude between the two components

is modulated by τqpc, with the component at higher energy being more intense when

τqpc>0.5 as predicted by eq. 5.2. This observation further confirms that at the distance

of 3.8µm we have measured a partially relaxed double step distribution function.

5.6 Conclusions

In this chapter we have investigated the relaxation of an out-of-equilibrium state gen-

erated close to the Fermi sea by a biased QPC. We have presented measurements that

quantitatively reproduce the experiments originally done in the Phynano team of the

C2N(LPN) laboratory [51, 52] which helps to consolidate the scientific evidence of the

relaxation mechanism.

We have observed the same relaxation rate of the injected double step distribution in

our samples which have a different geometrical configuration of the metallic electrodes

that define the device. Our measurements are in agreement with the fact that the

double step distribution function relaxes towards a hot electron regime within the

10µm of propagation.

Since we observe that the electrochemical of the injected distribution is preserved

(µi = µr), we can confirm that in our system the injected particles do not tunnel

out of the edge channel while the energy relaxation takes place, at least below the

6.3µm of propagation. This distance is of the order of the relevant length scale of

the relaxation meachanism previously observed [51, 52]. Therefore this rules out the

inter-channel scattering as the relaxation mechanism or tunneling towards other nearby

compressible regions.

Additionally, we observed a non conservation of the energy on the edge channel

where the particles were injected. The energy loss increases at longer propagation

distance and it was found to be of the same order as reported in Ref. [52] for similar

lengths. Moreover we observed as well the same leak of energy from the whole system

constituted by the two interacting edge channels. This is an important observation

done first in Ref. [52] that we quantitatively reproduce and which indicates that it

is an intrinsic characteristic of the relaxation mechanism. This result provides the

first signatures that suggest that the description presented in terms of the Luttinger

liquid theory (Section 4.3.3) is not complete although many of its prediction, such as

the charge fractionalization and the development of the spin-charge modes, have been
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experimentally tested.

Last but not least, we have performed these measurements in a configuration where

part of the longer propagation path was defined by a chemical etched defined boundary

of the 2DEG (See Fig. 5.2) indicating that the type of edge confinement does not

radically change the energy relaxation process.

To conclude, the experiments presented in this chapter indicate that our experi-

mental setup and approach are good, which is important for the experiment that will

be presented in the next chapter.





Chapter 6

Relaxation of a Quasiparticle Peak

In this chapter we experimentally investigate the energy relaxation of electrons emitted

at a well-defined energy in a quantum Hall edge channel, in presence of a second edge

channel co-propagating along the former. In the first part we describe our setup which

relies on a pair of electrostatically defined quantum dots, used as energy-resolved emit-

ter and detector. In a second part, we present our measurements of the quasiparticle

peak obtained after short propagation lengths in the sub-micrometer scale and at low

temperature. Then, we investigate the relaxation process as a function of several pa-

rameters such the energy at which the particles are injected, the electronic temperature

and the propagation distance. Finally, in the last part we discuss data showing signa-

tures of a quasiparticle peak revival which was observed several times under different

conditions.

6.1 Motivation

As seen in the previous chapter, the relaxation of a double step distribution function,

created with a biased QPC, starts to take place at a distance of 0.8µm and ends

at a distance of 10µm. Therefore a characteristic length scale Lin for the relaxation

process is expected to be of the order of few micrometers. Assuming an exponential

decay for the excess temperature: Texc(L) ∝ exp(−L/Lin), an experimental value of

Lin = (2.5±0.4)µm was determined in Ref. [52]. Notice that this characteristic length

Lin does not determine the distance over which a full relaxation is achieved, which

occurs at 10µm. Instead, Lin is the characteristic propagation length over which the

injected out-of-equilibrium distribution is only ”partially” relaxed, meaning that indeed

energy exchange between the particles has already started but the relaxation still is not

complete and the distribution of particles is not a Fermi function yet. Notice as well

that this length Lin has a similar magnitude to the propagation length LHOM ≈ 3µm

on which the spin-charge mode separation was resolved in the same system using a

Hong-Ou-Mandel interferometer [43]. Therefore it is possible that in the experiments

113
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described in the previous chapter we were probing the relaxation of the injected out-of-

equilibrium state, generated near the Fermi sea, during the same time scale on which

the spin-charge separation takes place. This is the second time scale, τdec, of the two

scales that were described in D. Ferraro’s work [56] about the relaxation in this same

system.

In this chapter we want to experimentally address the previous time scale: the first

elementary step of the relaxation process of quasiparticles injected at a well defined

energy above the Fermi sea. During this early step the energy resolved excitations get

close to the Fermi sea within a characteristic time τrel defined in Ref. [56] as described

at the end of section 4.3.3. In order to investigate this process we implement an energy

resolved injection and detection scheme that allows us to perform an energy resolved

spectroscopy of the relaxation in the edge channel. Additionally we investigate the

relaxation process on sub-micrometer propagation distances, where a priori the double

step distribution function discussed before has not relaxed at all [51].

6.2 Experimental description

As before, we investigate the energy relaxation in the integer quantum Hall regime at

filling factor ν = 2, for which a magnetic field B ∼ 5T is applied to the sample and

the experiments are carried out at low temperatures T ∼ 20 mK.

Our experimental setup to perform an energy resolved spectroscopy on the edge

channel is based on two electrostatically defined quantum dots that are implemented as

energy filters as shown in Fig. 6.1. The surface of the 2DEG mesa appears as dark grey

and its chemically etched boundaries are hundreds of micrometers away from the central

region where the two QD’s are defined. The black boxes {C1, C2, C3, C4, C5, C6, C7}
are large ohmic contacts also connected to the 2DEG far away from the central region.

Finally, the light grey and green strips are surface metallic electrodes, capacitively

coupled to the 2DEG.

The set of electrodes {G1, G2, G3, G4} are used to define the first quantum dot

(QD1), the injector, at the left side, while the set of electrodes {G1, G6, G7, G8}
defines the second quantum dot (QD2), the detector, at the right side. Both QD’s

are tunnel coupled only to the outer edge channel depicted as an yellow line. The inner

edge channel, depicted in red dashed line, is totally reflected by all the electrodes that

define the two QD’s.

The applied perpendicular magnetic field going into the plane of the figure set the

chirality (anti-clockwise) on the propagation of the edge channels. Thus the edge state

moves from the first QD toward the second QD following the boundaries of the deplete

electrode G1. The surface electrode A2 is used to select the propagation path between

the two QD’s. When A2 is not polarized, both edge channels move freely along the

short path depicted in Fig. 6.1. The electrode A2, seen in Fig. 6.1 as an island labeled
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A2, is connected to a bonding pad located far away (not shown), through a bridge

(not shown). Therefore when A2 is completely polarized at pinch-off, the small gap

between A2 and G1 is closed and both edge channels are forced to take a longer path

going all around the perimeter defined by island labeled A2 in Fig. 6.1. This defines a

long propagation path that is about three times longer than the short path.

The Injection (QD1)

A negative bias voltage V1 is applied at the ohmic contact C1, which sets the

electrochemical potential µs of the edge channels in the source of QD1 to the value

µs = EF − eV1. Thus µs is above the Fermi level of the edge channel at the drain of

QD1, this is, the edge channel that is emitted by the cold ground C4.

The QD1 is set to have a single active level within the bias window [EF ;µs] as shown

in Fig. 4.11. The energy E1 of the discrete level, measured from the Fermi level1, is

tuned with the plunger gate voltage Vp1 applied on the electrode G3. As explained in

section 4.2.3 (Eq. 4.16) there is a linear relation between them defined by the lever

arm now denoted as α1:

E1 = −e α1Vp1 (6.1)

The QD1 injects particles at an energy E1 above a cold Fermi Sea defined by the

grounded ohmic contact C4. The quasiparticles are injected at a rate given by the

transmission T1 of the resonant level and within a bandwidth [E1 − Γ1/2;E1 + Γ1/2]

defined by the intrinsic width Γ1 of the discrete level. In this configuration the particles

can be injected at a maximum energy E1,max = −eV1.

Therefore, when the discrete level is fixed at an energy E1 well inside of the range

[EF ;µs], the QD1 generates on the edge channel a distribution of particles fi(E) given

by:

fi(E) = F (E,EF ) + L1(E,E1) (6.2)

where F (E,EF ) is the equilibrium Fermi sea at the electrochemical potential EF and

L(E,E1) is a Lorentz peak centered around E1, which reproduces the lineshape of the

discrete level.

Then the energy resolved quasiparticles peak generated above the Fermi sea in the

injected distribution fi(E) propagates for a short distance where the interaction can

induce relaxation. The resulting distribution fr(E) after the propagation is detected

with the other quantum dot: QD2.

The Detection (QD2)

The second QD is implemented as a detector in the same way as it was done

1We chose the Fermi level EF as the zero of the energy scales. Thus an energy E1 = 0 means that
the discrete level is aligned with the Fermi level. A positive (negative) energy E1 indicates that the
discrete energy level is above (below) the Fermi level. During all our experiments, the Fermi level
corresponds to the electrochemical potential of an ohmic contact connected to a cold ground, here
C4, at base temperature.
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Figure 6.1: Top: Scanning electron micrograph of the sample E33. Two quantum dots are
electrostatically defined in order to perform an energy resolved spectroscopy of the relaxation
in an edge channel. The two QDs are tunnel coupled only to the outer edge channel, while the
inner edge channel is fully reflected by all the electrodes that define the two QDs. The first
QD (left) injects quasiparticles above the Fermi sea in the edge channel that comes from the
grounded contact C4. The injected excitations propagates in the edge channel, from 3 to 4, until
they reach the second quantum dot (right) that is implemented as a detector. Bottom: Energy
diagram and distribution of particles in different parts of the device. The injection scheme is
represented by 1, 2, 3. The propagation happens between 3 and 4. The detection scheme is
represented by 4, 5 and 6. The expected signal to be measured in the transconductance across
the second quantum dots is represented by 7. See text for further details (section 6.2). The
devices are fabricated at the C2N laboratory where the 2DEGs are grown by A. Cavanna and U.
Gennser, while the metallic nanostructures are fabricated by D. Mailly.

for the experiment discussed in the previous chapter. A large positive bias voltage

V2 � kbT/e is applied in contact C5 at the drain of QD2 in order to separate the
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Fermi level EF of the edge channel that is being investigated and the electrochemical

potential µd = EF − eV2 of the Fermi function Fd(E, µd) at the drain lead. This

is exactly the same type of tuning of the detector QD that was implemented in the

experiments described in chapter 5.

The detector is set to have a single discrete level in the energy range [EF −µd;EF −
µs]. The discrete level can be set at an energy E2, measured from the Fermi level,

which is controlled by the plunger gate voltage Vp2 applied on the electrode G7. The

lever arm α2 sets the linear relation:

E2 = −e α2Vp2 (6.3)

The distribution of particles fr(E) that arrives at the detector after the propa-

gation is measured through the tunneling current across the QD2 obtained from the

transconductance signal that is measured on contact C7. Following equation 4.20, the

transmitted current I2(E2) reads:

I2(E2) =
e

h

∫
L2(E,E2) [fr(E, µr)− Fd(E, µd)] dE (6.4)

where L2(E,E2) is the Lorentzian lineshape of the detector’s resonance centered at the

tunable energy E2 and characterized by the transmission T2 and the intrinsic width Γ2.

If the resonance at the detector is sharp enough Γ2 � {kbT ; Γ1}, it can be approx-

imated by a normalized delta function L2(E,E2)→ (πΓ2T2/2)× δ(E − E2) such that

the transmitted current I2(E2) and the transconductance signal dI2/dE2 reads:

I2(E2) = I2,max (fr(E2, µr)− Fd(E2, µd)) (6.5)

dI2

dE2

(E2) = I2,max

(
dfr
dE2

(E2, µr)−
dFd
dE2

(E2, µd)

)
(6.6)

where I2,max = eπΓ2T2/2h. Therefore the distribution function fr(E2, µr) after the

propagation can be directly measured.

6.3 Finite bandwidth emission and detection

In many cases the condition Γ2 � {kbT ; Γ1} cannot be well satisfied. Usually we find

resonances on the quantum dots with similar widths Γ2 ∼ Γ1. This means that the

detector is not perfect and deviations from equations 6.5 and 6.6 will occur on the

measurements. In this section I numerically compute the expected signal I2(E2) for a

measurement of a Fermi sea and a Lorentz peak performed with a non-ideal detector

with a finite linewidth Γ2 ∼ Γ1. These effects will be seen in the experimental data

presented in the following section.
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Detection of a Fermi Sea

First let’s consider that the QD1 at the injection is set out of resonance with the

discrete level below the Fermi level (E1 < 0) or above the electrochemical potential µs

of the source lead (E1 > −eV1). In such a case, no particles are injected on the edge

channel thus the injected distribution and the distribution after the propagation are

equal to the equilibrium Fermi sea at the electronic temperature T0:

fi(E) = fr(E) = F (E,EF , T0) (6.7)

The detected distribution fr,c(E) from the transmitted current across the QD2 is

the convolution of the signal to be detected fr(E) and the Lorentz lineshape of the

detector L2(E,E2). It can be numerically computed from:

fr,c(E) =
I2(E)

I2,max

=

∫
L2(E,E2)fr(E)dE2 (6.8)

The figure 6.2a shows calculations of the convoluted distribution using various

linewidth Γ2 for the detector. We observe that the convoluted signal looks like a hot

Fermi sea when Γ2 is increased. Therefore the electronic temperature T0,c extracted

from the convoluted signal differs from the real electronic temperature T0. The partic-

ular dependence of T0,c with the linewidth of the detector is shown in the figure 6.2b

which can be exploited to have an estimation of Γ2 during the experiments.
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Figure 6.2: (a) A Fermi function F (E) with an electronic temperature T0 = 30 mK is plotted
in continuous blue line. The convoluted function fr,c(E) (Eq. 6.8) that is measured when the
quantum dot, used as a detector, has a non negligible linewidth Γ2 ∼ kbT0, is plotted in dash
line for different values of Γ2. (b)As a result of the non ideal detection, the detected Fermi
sea fr,c(E) looks hotter than the real Fermi sea F (E). For a given electronic temperature T0,
the effective temperature T0,c measured from the convoluted function fr,c(E) increases with the
linewidth of the detector. Knowing T0 and T0,c this plot allows to extract an estimation of Γ2.

Moreover, the convoluted distribution shows also some deviation from an actual

Fermi function. This can be seen as the long tail that develops on the distribution in

figure 6.3(a). We find that, instead of using a Fermi fit, the convoluted distribution is
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better described by a function of the form:

fr,c(E) ≈ 1

2
− 1

π
arctan

(
E − EF
kbT0,c

)
(6.9)

This particular observation concerns experiments where quantum dots are imple-

mented as energy filters to perform an energy resolved spectroscopy. Following the

experiments described in chapter 5 about the relaxation of a double step distribution

function, it was subsequently predicted that the relaxation process of this type of dis-

tribution is expected to go trough a metastable state, under certain conditions, before

reaching the final equilibrium [58]. Namely, when the double step distribution function

is created using a low transmission τqpc in the biased QPC, the injected distribution

evolves into a metastable state fatn(E) described by:

fatn(E) ≈ 1

2
− 1

π
arctan

(
E − EF

Γatn

)
(6.10)

whit Γatn = 2eτqpcV1/π a characteristic width and V1 the bias voltage across the QPC.

This metastable state is expected to arise after a propagation distance Lex = ~vs/eV1

as a consequence of the emergence of the charge and spin modes which propagate

respectively at velocities vc and vs [58].

A recent experiment has implemented a quantum dot to perform the spectroscopy of

the relaxation in this regime in order to elucidate the metastable state [119]. However,

the effects of a non-ideal detection were not considered. A non ideal detection of

a simple Fermi sea will produce in fact the same functional form as the predicted

metastable state (Eq. 6.9 and Eq. 6.10). Since the metastable state is obtained at low

QPC transmission, both effects can be comparable in magnitude. Thus, we suggest

that these effects should be taken into account to accurately investigate the relaxation

process with this system. Moreover, the observation of similar distribution functions

with the arctangent dependence under conditions where it is not expected to develop

could be explained simply by the convolution of the Fermi sea with the lineshape of

the detector without invoking more complicated processes (See Ref. [119]).

Additionally, quantum dots can display a many body effect, the Fermi edge singu-

larity [120], which is also observed in some measurements of Ref. [119]. This many

body effect, which was recently observed in laterally defined quantum dots [121], in-

duce a distribution function with a tail which has the same functional form as the

mestastable state and as the convoluted Fermi sea that would be measured with a non

ideal detector quantum dot.

Therefore, the effects of the non-ideal detection obtained with a quantum dot can

have an important impact in the interpretation of these recent experimental results

[119, 121]. As we will see in the next section, it will also affect, in a non-trivial way,

the observation of a quasiparticle peak injected above the Fermi sea.
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Figure 6.3: (a) The Fermi sea with an electronic temperature T0 = 30 mK and the detected
function f0,c that results from the convolution with the detector’s lineshape with a linewidth
Γ2 = 10µeV are plotted in continuous blue and red line, respectively. The convoluted function
f0,c is better fitted with an arctangent function (short dash), following Eq. 6.9, than with a
Fermi function (long dash). (b) When a Lorentz peak of amplitude T1 = 0.9, width Γ1 = 10µeV
centered at E1 is convoluted with a second Lorentz peak of different width Γ2, it results in a
Lorentz peak with reduced amplitude T1,c and larger width Γ1,c (Eq. 6.12 and 6.13).

Detection of a Lorentzian Peak

When the first quantum dot is set at resonance, with the discrete level well inside of

the bias windows (0� E1 � −eV1), it injects quasiparticles above the Fermi sea with

a Lorentz peak distribution L1(E,E1). The amplitude T1 of the Lorentz peak is the

transmission of the resonance and its width Γ1 is the intrinsic width of the resonance

which sets the lifetime of the electrons in the discrete level.

If we consider the ideal case where no relaxation occurs along the propagation, the

same injected distribution arrives to the detector. If the detector is non ideal, Γ1 ∼ Γ2,

then the detected signal L1c(E,E1) will correspond to the convolution of the injected

peak L1(E,E1) with the lineshape L2(E,E2) of the detector QD2:

L1,c(E,E1) =

∫
L2(E,E2)L1(E,E1)dE2 (6.11)

This can be analytically solved and as a result we obtain that the convoluted signal

is also a Lorentz peak centered in E1, with an effective amplitude T1,c and a total width

Γ1,c given by:

T1,c = T1
Γ1

Γ1 + Γ2

(6.12)

Γ1,c = Γ1 + Γ2 (6.13)

Figure 6.3(b) shows the injected peak in blue line and how this peak is observed with

a detector for different linewidth Γ2. The points are the numerical calculation of eq.

6.11 and the solid lines are the analytic solutions using eq. 6.12 and 6.13 in terms

of the initial parameters. However, despite these changes, the area under the peak is
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conserved: π
2
Γ1,cT1,c = π

2
Γ1T1.

The importance of this observation is that it indicates that even if there is no re-

laxation along the propagation distance the detected quasiparticle peak will have a

smaller amplitude T1,c than the expected value from the transmission T1 of the in-

jector quantum dots. This effective reduction on the amplitude of the peak is only

a consequence of a non ideal detection, but it can be taken into account in order to

access to the actual relaxation when needed. In general we will use this effect only

in order to estimate the expected amplitude of the quasiparticle peak in the different

measurements.

When the quasiparticle peak is injected close to the limits of the bias windows

(E1 ∼ 0 or E1 ∼ −eV1) additional deviations can arises since the injected peak is not

a perfect Lorentz peak. In a general case, the injected peak is modulated by the bias

windows in the first QD:

Linj(E,E1) = L1(E,E1)× [Fs(E, µs, T0)− F (E,E, T0)] (6.14)

When the resonant level is well inside of the bias windows Linj(E,E1) reduces to

L1(E,E1). In other cases, Linj(E,E1) is an asymmetric peak as shown in Figure

6.4(a).
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Figure 6.4: (a)The equilibrium Fermi sea of the edge channel (blue) over which it is repre-
sented the injected peak (red) for various energies E1 within the bias windows of QD1 indicated
in dash gray line. The injected peak deviates from a Lorentz function when it is close to the limits
fo the bias window: E1 ∼ 0µeV or E1 ∼ −eV1 = 100µeV . (b) The injected distribution (blue)
becomes rounded (red) when it is convoluted with the lineshape (black dash) of the detector.
Moreover the injected peak will be detected with a reduced amplitude and larger width even if
there was no relaxation just as a consequence of the non ideal detection.

Detection of the Injected Distribution

The Figure 6.4(b) shows, in blue, the injected distribution function fi(E) where there

is a quasiparticle peak of amplitude T1 = 0.9 and width Γ1 = 10µeV at an energy

E1 = 75µeV above a cold Fermi sea at the equilibrium temperature T0 = 30 mK. It

is also depicted, in red, how this same distribution will be seen as a convoluted signal
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fi,c(E) detected with a QD2 whose resonance (black dash line) has a width Γ2 = Γ1 in

the case where there is no relaxation. When, in addition, relaxation takes place along

the propagation the detected signal fr,c(E) will differ from fi,c(E).

In the previous discussion nothing was said about the transmission T2 of the reso-

nance at the detector. This is because it does not play an important role since it only

determines the normalization constant I2,max in equation 6.8.

6.4 Measured Quasiparticle Peak at Short Distance

In the following I present measured data of the relaxation of a quasiparticle peak,

injected above the Fermi sea, after a short propagation length L = (0.48 ± 0.05)µm.

The quasiparticle peak is generally injected at an energy E1 in the range [ 0 ; 200]µeV

above the Fermi level.

The left panel of Fig. 6.5a presents a typical spectrum where the transconductance

dI2/dE2 is measured as a function of the detection energy E2 (x-axis) for several in-

jection energies E1 (y-axis). Each horizontal sweep is measured several times, between

4 and 10, in order to avoid artifacts arising from possible charge fluctuations on the

QD’s and averaged to increase the signal-to noise ratio. This is shown in the left panels

of Fig 6.5b and 6.5c for two conditions, respectively: when no particles are injected

(E1 = −53µeV < 0) and when particles are injected at E1 = 79µeV .

The large peaks in the left panels of Fig. 6.5b and 6.5c correspond to the verti-

cal blue line in the spectrum which is the derivative dFd/dE2 of equation 6.6. The

large dip and the rest of the signal at positive energies on these plots correspond to

the derivative dfr/dE2 of the injected distribution after propagation (Eq. 6.6). The

transconductance signal between the large peak and the large dip, roughly in the en-

ergy range [−80,−20]µeV in this particular measurement, is expected to be flat and

equals to zero. However as discussed in Ref. [121], the Fermi edge singularity2 can lead

to an effective energy dependent transmission T (E) of the quantum dot. A reminiscent

of this phenomenon on the quantum dot QD2 can then give rise to the small wiggle

seen in our transconductance measurements between the large peak and the large dip.

The part of the signal related to the derivative dfr/dE2 has two components: the

large dip located around E2 ∼ 0 which is the red vertical line in the spectrum, and

the additional small peak-dip structure that corresponds to the diagonal line on the

spectrum. These two components are the most important part of the transconductance

signal that we want to investigate. In order to get the distribution function fr(E) we

have to integrate this part of the signal. To do so, we proceed to numerically integrate

the transconductance signal (dI2/dE2) starting from the most positive energy Emax

2The Fermi edge singularity is due to the Coulomb interaction between a localized electron in the
QD with the continuum of the Fermi sea in leads of the QD [121].
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Figure 6.5: Spectrum R-107: (a) 2D-plot of a typical transconductance measurement
(dI2/dE2), normalized by the constant I2,max(E1) following equation 6.6, as a function of the
detection energy E2 in the detector QD (x-axis) for different injection energy E1 in the first QD
(y-axis) with a propagation length L = 0.48µm. Two injection configurations in the first QD are
represented in the right part: when no particles are injected (E1 =−53µeV <EF ) and when the
particles are injected at E1 = 79µeV . (b) A trace, taken from the 2D-plot, when no particles
were injected (left plot) shows a large peak which corresponds to the derivative dFd/dE2 and a
large dip that corresponds to the derivative dfr/dE2 (See eq. 6.6). The integration of the later
gives the distribution function (blue dots) on the edge channel that we are investigating, which
looks like a Fermi sea at temperature T0,c higher than the electronic temperature T0. (c) Same
type of plots than (b) but in a configuration when particles were injected at E1 = 79µeV . The
injected quasiparticle peak is seen in the diagonal line in the 2D-plot in (a) and as small dip-peak
structures in the transconductance trace (left-c). After integration, the measured distribution
(red dots) shows a quasiparticle peak that is smaller than expected as a consequence of the
relaxation undergone along the propagation. The red dashed line is the estimation in the case
when there is no relaxation but the signal is measured with the non ideal detector used for the
spectroscopy.
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towards the negative energy side. We perform the integration in this sense in order to

reduce the accumulated error, due to the numerical integration of a noisy signal, in the

part of the resulting function I2(E2) that is related to dfr/dE2. Then we multiply the

resulting function by (−1) to compensate the inverted integration sense. Notice that

we want to obtain a function I2(E2) and not the single value of the overall analytic

area under the whole transconductance signal. This is:

I2(E2) =

∫ E2

Emax

dI2

dE
(E)dE (6.15)

As indicated by equation 6.5, I2(E2) is proportional to dfr/dE2 through the constant

I2,max. We determine this constant by assuming that I2(E2)/I2,max must equals 1 when

it gets flat at energies below E2 = 0. When the obtained function I2(E2) after the

integration does not get perfectly flat below E2 = 0, usually due to the small wiggle

between the large peak and the large dip in the transconductance signal (See left panels

in Fig. 6.5b and Fig. 6.5c), the normalization constant I2,max is determined assuming

that I2(E2)/I2,max must not be larger than 1 in order to provide a good representation

of a distribution function. In practice, in this case we normalize to 1 the first maximum

that we find below E2 = 0 in the obtained function I2(E2).

In summary, after the described integration and normalization procedure of the

dI2/dE2 signal we obtain the measured distribution function fr(E2) which is shown in

the right panels of the figures 6.5b and 6.5c for the two horizontal sweeps indicated

on the spectrum. In the first case, no particles were injected, and so it displays the

measurement of the equilibrium Fermi sea on the edge channel. The measurement is

well described by a Fermi function, besides the discrepancies at the tails, with an effec-

tive electronic temperature T0,c = (51.0± 0.5)mK. The actual electronic temperature

T0 = (26, 2 ± 0.9)mK of the 2DEG was measured before the spectrum employing an-

other much thinner resonance on the QD’s which usually can not be used to perform the

spectroscopy due to the low signal-to-noise ratio3. The measured T0,c gives an estima-

tion of the linewidth Γ2 of the detector using the type of plot presented in Fig. 6.2b but

calculated for the actual temperature T0. This procedure gives Γ2 = (10.0 ± 0.5)µeV

for the detector. Following a similar procedure during a characterization of the injector

QD we estimate Γ1 = (16.9± 0.5)µeV

In the second case, Fig 6.5c, the quasiparticles were injected at the energy E1 =

79µeV with an amplitude T1 = (0.62±0.03) which was also extracted from the charac-

terization of QD1. In the picture we observe a comparison of the calculated distribu-

tion fi,c if there was no relaxation at all and the measured distribution fr,c. We can

see that already for this short propagation distance, the quasiparticles peak has gone

3Although the signal-to-noise ration can be improved by increasing the number of repetition of
each measurements, more than 10 repetition extent the acquisition time of the whole spectrum above
12 hours.
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through an important relaxation process, but still a remanent of the injected peak is

detected. Although in a previous experiment [50] a peak of particles above the Fermi

level of a 2DEG at zero magnetic field was detected using a similar technique, our

measurements provides the first observation of a quasiparticle peak above the Fermi

sea of a 1-dimensional chiral quantum Hall edge channel at high magnetic field. In

the following sections I will describe the measured relaxation as a function of several

parameters that we can experimentally tune like the injection energy, the electronic

temperature and the propagation distance.

An additional feature can be seen in the 2D-plot of Fig 6.5a. When particles are

injected, there is a broadening of the vertical blue line which corresponds to the signal

of the derivative dFd/dE of the Fermi sea at the drain of the QD detector. This Fermi

sea is not connected to the edge channel where the particles are injected because it

comes directly from the biased ohmic contact C5 in Fig. 6.1. The broadening that

we observe could be caused by the charge noise generated in the edge channel into

which the particles are injected, in a similar way as discussed in the last part of section

5.2. In this case the current noise spectrum would be related to the current trough

the quantum dot: SI = 2eI × 1
2
, but in this case we observe that the broadening is

independent of the injection energy.

6.5 Relaxation vs Injection Energy
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Figure 6.6: Spectrum R-72. Evolution of the distribution function measured after a prop-
agation distance L = 0.48µm while increasing the injection energy E1, indicated by the vertical
dashed lines, around which is centered a peak structure that is the remanent of the injected quasi-
particle peak. The equilibrium Fermi sea (light blue) with electrochemical potential EF ∼ 0µeV
was measured when no particles were injected (E1 = −22µeV <EF ).

Figure 6.6 shows data corresponding to another realization of the spectroscopy at

the short distance using a different set of resonances in both QD’s. For this case the
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equilibrium electronic temperature was T0 = (23.1 ± 0.6) mK and we estimated that

Γ1 = (12.8± 0.4)µeV, T1 = (0.44± 0.04) and Γ2 = (5.9± 0.9)µeV.

The figure displays the measured Fermi sea at equilibrium and all the measured

distributions at different injection energies E1 ∈ {22, 43, 65, 87, 108, 130, 152, 173}µeV.

The expected amplitude of the quasiparticle peak if there was no relaxation is T1,c ∼ 0.3.

Although we observe an increasing relaxation as the energy of the quasiparticle peak is

increased, the peak structure was still detected at relatively high energies (∼ 173µeV).

This is more than 80 times higher that the energy kbT0 of the thermal excitation at the

Fermi sea and the phonon bath (at Tph ∼ 18.5) mK which constitutes the environment

of the system.

Qualitatively we can distinguish three components on the measured distribution

fr,c. As shown in Fig. 6.7(left) we find an underlying hot Fermi sea (dashed blue)

over which there is an extended population of particles (dashed red) that give rise to

a non Fermi contribution which spreads on the whole energy range below E1. The

third component is the residual peaked distribution located around the injection en-

ergy E1. Alternatively, as it was extensively analyzed in the theoretical work presented

in the PhD thesis of C. Grenier [57], the relaxation can be described in term of three

components on the electron-hole excitation distribution: The electron-hole pairs cre-

ated around the Fermi level (representing the heating of the Fermi sea), the relaxation

tail at intermediate energies (representing the on going relaxation process) and the

residual quasiparticle peak which subsists to the relaxation. The Figure 6.7(right)

shows these components on the measured electron-holes pair distribution obtained as:

fr,c(E2, µ)− θ(µ− E2), where θ(x) is the step function.
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Figure 6.7: Left: Partially Relaxed distribution function (red continuous line) measured after
a propagation distance L = 0.48µm. Three components can be distinguished: an underlying
hot Fermi sea (dash blue), a distribution of particles extended between the Fermi level EF =
0µeV and the injection energy E1 = 87µeV , and a remanent quasiparticle peak centered at the
injection energy E1. Right: Alternatively, three components can be identified in the electron-
hole distribution which coincide with the components described in the theoretical investigation
presented in the PhD thesis of C. Grenier [57]. These components are a distribution of electron-
hole pairs around the Fermi level, a relaxation tail and the remanent quasiparticle peak.
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The Figure 6.8 presents the same set of distributions shown in Fig. 6.6 but plotted

on a semi-log scale in order to highlight the quasiparticle peak. The circles are the

experimental data while the dashed lines are fits using a Lorentz function as suggested

by the the intrinsic lineshape of the energy level on the QD’s. The Lorentz fit is centered

at an energy Epeak that coincides with the injection energy E1 within the experimental

errors (Fig. 6.8(b)) which stresses the fact that the peak structure that is measured

in the distribution function corresponds to a remanent of the injected quasiparticle

peak at the tunable energy E1. The fitted full width at half a maximum (FWHM) ΓL

remains constant and close to the expected value for a non-ideal detection (Eq. 6.13):

Γ1,c = Γ1 + Γ2 = (18.7± 0.7)µeV.

(a) (b) (c)

Figure 6.8: (a)Measured distribution function fr,c(E) in semi-log scale in order to highlight
the evolution of the quasiparticle peak while increasing the injection energy E1. The dashed
line corresponds to Lorentzian fits of the quasiparticle peak. (b) Center of the peak Epeak (blue
circles) and full width at half a maximum FWHM (red diamonds) extracted from the Lorentzian
fits plotted versus injection energy E1. The blue dashed line is a y = x line. (c) Peak height
extracted from the fits shown in a (black squares) versus E1, in semi-log scale. The black line is
an exponential decay fit.

Additionally and most importantly we observe that the amplitude of the measured

quasiparticle peak follows an exponential decay with a rather large characteristic energy

Edecay ≈ 57µeV:

T1,c = T1,0 exp

(
− E1

Edecay

)
(6.16)

In the theoretical model investigated by C. Grenier et al. [116, 115] the relative

amplitude decay T1,c/T1,0 represents the probability for a particle to remain at the in-

jected energy after the propagation across an interacting region. However this quantity,

called the elastic scattering probability (ESP), does not follow an exponential decay in

the theoretical model, instead it follows an oscillatory behavior as presented in Fig.

4.16. Nevertheless, one could think to link the characteristic decay energy that we

measured Edecay to characteristic energy E0 = ~v/L of the theoretical model at strong

coupling parameter (ϕ = π/2). This would provide, for the short propagation length

L = 0.48µm, a characteristic velocity v ∼ 4.2× 104 m/s.

The obtained velocity is in the range of drift velocities v ∈ [5, 50] × 104 m/s that

have been reported for 2DEGs measured in the IQHE regime at filling factor ν = 2 in

devices where the edges where electrostatically defined as recapitulated in Ref. [52].
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Moreover the obtained velocity v is also similar to the velocity vsc = vcvs/(vc − vs)

which have been observed to be in the range vsc ∈ [2.7, 8.7]× 104 m/s as discussed in

Ref. [119] (see also references therein) using a different analysis of the data presented

in ref. [52]. This velocity vsc sets the distance lsc over which the spin and charge modes,

that propagates respectively with velocities vs and vc, are well separated assuming they

have a comparable spatial wave packet extension. The similarity between the obtained

v and vsc provides an insight that the spin charge mode separation could be at play

during the relaxation process. In appendix-B I present a detailed discussion about the

propagation speed of the excitations and the relation with other velocity parameters of

the theoretical model, which set the energy, time and length scales in different recent

experiments.

6.6 Relaxation vs Temperature

Here we investigate the relaxation process as a function of the electronic temperature in

the range T ∈ [23; 170] mK. In particular we focus on the behavior of the quasiparticle

peak. In the following we perform the spectroscopy using the same set of resonances

that was used to measure the distributions presented in Fig. 6.5 . The resonances are

labeled as: res-C for the injector QD1 and res-E for the detector QD2. At the lowest

electronic temperature T = (23.1 ± 0.6) mK we estimate that Γ1 = (18.7 ± 0.7)µeV,

T1 = (0.60± 0.05) and Γ2 = (11.2± 0.8)µeV.

For each stationary value of the phonon temperature Tph (this is the fridge tem-

perature measured with a calibrated thermometer), the electronic temperature T is

determined using the sharpest available resonance for QD1 to which we refer as res-

1D. The electronic temperature was obtained by fitting the Coulomb peak measured

at zero bias, which is thermally broadened, using equation 4.19. For comparison we

also measure the effective electronic temperatures, TresC and TresE, from the Coulomb

peaks at zero bias once the QDs are tuned in the resonances chosen for the spectroscopy.

These measurements are shown in figure 6.9 on which we observe that the measured

electronic temperature T (red dots) closely follows the phonon temperature (black line)

down to the lowest value T = (23.1±0.6)mK obtained for a base phonon temperature

of Tph = (18.1± 0.1)mK. In this regime, the effective temperatures, TresC and TresE,

are higher than Tph which manifests the underlying non negligible finite width of those

resonances [122]. Additional discrepancies are seen also at higher temperatures where

surprisingly we obtained values below Tph. There are few artifacts and/or mechanisms

that could lead to this observation as I will briefly describe in the following paragraphs.

Quantum dots are sensitive to charge instabilities which can depend on proximity

to surrounding metallic electrodes or gates, the detailed electrostatic landscape, the

materials of the semiconductor heterostructure or the presence of fluctuating external

electromagnetic fields. Charge instabilities lead to random fluctuations of the energy
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Figure 6.9: Comparison between the phonon temperature Tph and the electronic temperature
T (circles) extracted from the thinnest Coulomb peak in the differential conductance of the QD
at zero bias. The black line is the T = Tph function, while the dashed line represent deviations
of 10%. Additionally, square and triangle symbols, are the effective electronic temperatures
extracted from the resonances implemented in each dot to perform the spectroscopy at different
temperatures.

of the active level in the QD, usually seen as telegraphic noise in the transmitted cur-

rent. Charge instabilities can cause both: an effective narrowing or a broadening of

the Coulomb peak during a usual differential conductance measurement. As a con-

sequence of this artifact, fictitious fluctuation of the electronic temperature can be

detected when comparing individual measurements taken under the same conditions.

In order to avoid this effect, several measurements of the same Coulomb peak, under

the same experimental conditions, are necessary to obtain a statistical mean value of

the electronic temperature. The effective temperatures shown in Fig 6.9 have been

determined only from few repetitions (< 4) hampering the determination of a proper

representative mean value and the correct standard deviation. This could explain the

fact that some measured values are below the phonon temperature, but it is not enough

to explain why this effect is more pronounced at higher phonon temperature as seen

in the data.

Moreover we notice that similar deviations below the phonon temperature, and

beyond the error bars, are seen in other experiments that use quantum dots as ther-

mometers [51, 123]. Furthermore, quantum dots in a similar configuration that we have

in our sample have been implemented to purposely lower the electronic temperature

in a 2DEG below the fridge temperature by several tens of mili-Kelvins when being

implemented as quantum dots refrigerators [124, 125, 126].

Let’s see now what happens to the relaxation process at different temperatures.

Figure 6.10 shows the excess distribution of particles ∆fr,c(E) which we obtain by

subtracting from each distribution fr,c the measured Fermi Sea fr,Fermi. Here fr,Fermi
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is the measured distribution when no particles were injected.

∆fr,c(E) = fr,c(E)− fr,Fermi(E) (6.17)

These are all the particles that we have injected initially as a single peak which are now

distributed all over from the Fermi level up to the injection energy E1. The Figure 6.10

shows the evolution of the excess distributions as we increase the energy E1 for three

electronic temperatures T ∈ {39; 120; 170} mK. In each plot the curves were vertically

shifted by a constant proportional to the increment in injection energy δE1 ≈ 20µeV,

from E1 ≈ 5µeV (blue) up to E1 ≈ 160µeV (red).

As the temperature is increased we observe that the component of particles that is

close to the Fermi level gets broader which might be a manifestation of the interaction

between these particles and the hotter underlying Fermi sea. In consequence, the

quasiparticle peak disappears in the tail of that component at high temperatures.

Figure 6.10: Excess particle distribution function ∆fr,c(E) measured after a propagation
length L = 0.48µm at temperature T = 39 (left),120 (center) and 157 mK (right). Each curve,
offset for clarity, corresponds to a increment of the injection energy E1 =20µeV , from E1 =5µeV
(blue), to E1 =160µeV (red).

In a similar way as before we obtain for each temperature the characteristic decaying

energy Edecay and the width of the quasiparticle peak ΓL (FWHM) by using a Lorentz

model. The behavior of these two parameters as a function of the electronic temper-

ature is plotted in Fig. 6.11a. The Edecay, plotted in blue, shows that the amplitude

of the quasiparticle peak decays faster at higher temperature, roughly with a decaying

energy following Edecay = 75µeV−2.5kbT . This behavior implies that the decaying

energy decreases almost by a factor two when the system is warmed by ∆T ≈ 150 mK.

Such an increase in the temperature, increases the energy of the thermal excitations

in the electronic environment only by kb∆T ≈ 13µeV and yet it affects the relaxation

of the quasiparticles at much higher energies E1,max ≈ 160µeV. Thus, this behavior

suggests that the injected electrons indeed interact with thermalized excitations at

much lower energies such as the particles on the Fermi sea in the same edge channel

or the particles in the effective environment (quasiparticles in the co-propagating edge

channel, charges in nearby electrodes, etc).
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Additionally we measured the width ΓL of the quasiparticle peak as a function

of the temperature plotted in red in Fig. 6.11b. We have seen before that at low

temperature the width of the measured quasiparticle peak was independent of the

injection energy and it was given by the intrinsic linewidth of the discrete levels in the

injector and the detector quantum dots, which is also the case on these measurements:

ΓL ≈ Γ1 + Γ2 ≈ 30µeV. The Intrinsic width of a discrete QD level is not thermally

broadened, instead it only depends on the transmission of the barriers that defines the

QD. Therefore, from the point of view of the simple model that describes the QD’s

we do not expect any temperature dependence on the width of the quasiparticle peak.

The measurements shows that although there is a systematic increase of ΓL with the

temperature, it does not follows the thermal broadening of the Fermi Sea as presented

in Fig. 6.11b in the form of the absolute width increase relative to the measurements

at Tph ∼ 20 mK.

Moreover, ballistic and elastic charge transfer between two quantum dots separated

by a distance of ∼ 2µm was performed in GaAs at zero magnetic field by Rossler et al.

[50]. The experimental configuration is similar to our case in that single energy levels on

quantum dots are used as energy filter to emit and detect particles. A peak of particles

associated to the elastic transfer of electrons was detected, which is the equivalent of

the quasiparticle peak, and its evolution with the temperature was investigated. They

observed a similar dependence of the increase in the width of the peak. This behavior

of the quasiparticle peak at zero magnetic field in a 2-dimensional system is plotted

(green data) as a comparison to our data in Fig 6.11b.

A widening of the quasiparticle peak which increases with the electronic tempera-

ture can also be related to the charge noise generated in the edge channel. In this case

the current noise is directly related to the thermal excitation following a typical
√
T

dependence.

6.7 Relaxation vs Length

We investigate now the evolution of the injected distribution as a function of the

propagation distance from the sub-micrometer regime up to few micrometers at low

temperature T ∼ 20 mK. Although in each sample we could change the propagation

distance with the electrode G5 in Fig. 6.1, it allows us to chose only between two

values. Therefore we compare here data from three different samples where the direct

short path was designed to have different lengths. The data shown in the previous

sections of this chapter corresponds to the sample E33 for which the short path has

the smallest length that we have investigated L = (0.48± 0.05)µm and the long path

is L = (1.44 ± 0.05)µm. The other two samples are: sample D31 with distances

L = (0.74±0.05)µm and L = (2.17±0.05)µm; and sample C4 with a single path of L =

(3.4± 0.1)µm. All distances were measured from the scanning electron micrographs.
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Figure 6.11: (a) Characteristic energy Edecay (blue circles) of the exponential decay of the
quasiparticle peak height and the width ΓL of the quasiparticle peak (red diamonds), both ex-
tracted from the Lorentzian fits as illustrated in Fig. 6.8, plotted versus temperature. (b) The
width increase versus temperature for the Coulomb resonance (res-1D) in the differential conduc-
tance of the first quantum dot (empty black square), the measured quasiparticle peak (empty red
diamonds) and the quasiparticle peak at zero magnetic field (full green circles) measured in Ref.
[50]. The black dotted line is a

√
T increase from the value at the lowest electronic temperature.

For each sample we verified that the main features, which will be described in the

following part, of the measured distribution are consistent when the spectroscopy is

performed using different sets of resonances on both QD’s, when the QD’s are formed

under different strength of the confining potential or, sometimes, in different cooling

cycles.

In the left panels of figure 6.12 we observe the measured transconductance signal

dI2(E2)/dE2 as a function of the detection energy E2 and the injection energies E1

for three propagation distances. The right panel of Fig. 6.12 show some distribution

functions obtained after integration at particular injection energies. As before the

curves are vertically shifted, for clarity, by a constant proportional to the increase on

the injection energy δE1 from curve to curve (See caption for the energies E1 at each

curve).

On the table 6.1 it is summarized for each spectrum the values of the intrinsic

linewidth Γ1 of the injection QD1, its transmission T1 and the intrinsic linewidth of

the detector Γ2 which we use to estimated the amplitude T1,c of the detected peak once

it is convoluted with the detector if no relaxation occurs (Eq. 6.12).

Notice that although the resonances used in both quantum dots for the spectrum

measured at the propagation distance L = 0.48µm and L = 0.75µm are different, they

lead to that same expected amplitude T1,c for the quasiparticle peak that would be

detected in the case when there is no relaxation. However, the measurements of the

quasiparticle peak detected after a propagation length L = 0.75µm is strongly different

from the measurement done at L = 0.48µm. In the spectrum taken at L = 0.48µm
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Figure 6.12: The left panels are the measured spectra of the normalized transconductance as
a function of the detection energy E2 (x-axis) and the injection energy E1 (y-axis) for different
propagation distances L. The right panels shows the distribution functions obtained from the
spectra where the curves were vertically shifted for clarity. Top: Spectrum measured in sample
E33 for L = 0.48µm. Each curve, correspond to an increment of the injection energy δE1 ≈
21µeV , from E1 = −21µeV (blue) to E1 = 173µeV (red). the thick grey line is a Fermi function
fit of the data at E1 = −21µeV . Middle: Spectrum measured in sample D31 for L = 0.75µm.
Each curve, correspond to an increment of the injection energy δE1 ≈ 9µeV , from E1 = 9µeV
(blue) to E1 = 121µeV (red). The inset is a zoom on the region delimited by the black dotted
square. Bottom: Spectrum measured in sample E33 for L = 2.17µm. Each curve, correspond to
an increment of the injection energy that alternates between δE1 ≈ 8.9µeV and δE1 ≈ 13.4µeV ,
from E1 = 0.0µeV (blue) to E1 = 111.5µeV (red).In all the panels, the vertical offset is equal to
5.5× 10−3δE1.
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Length
(µm)

Γ1

(µeV )
T1

(%)
Γ2

(µm)
T1,c

(%)

0.48 (12.8± 0.4) (44± 4) (5.9± 0.9) (30± 8)
0.75 (16.3± 0.7) (54± 4) (9.6± 0.9) (34± 7)
2.17 (17.0± 0.5) (43± 4) (15.3± 1.0) (23± 4)

Table 6.1: Intrinsic linewidth Γ1 and transmission T1 of the resonance in the first quantum
dot and intrinsic linewidth Γ2 of the resonance in the detector quantum dot. From equation 6.13,
we estimated the expected amplitude T1,c of the quasiparticle peak to be detected in the case
when there is no relaxation.

the quasiparticle peak is clearly seen, but when the propagation distance is increased

by almost a factor two, the quasiparticle peak becomes very small, however it can

still be identified when zooming on the tails of the measured distributions (Inset in

right panel of Fig. 6.12-Medium). Therefore, this demonstrates that the increase in

the propagation distance strongly affects the quasiparticle peak. Finally the spectrum

taken at a distance L = 2.17µm shows almost no signatures of the injected quasiparticle

peak which was also verified at the longest distance L = 3.4µm. Only a non equilibrium

distribution near the Fermi sea is observed after the propagation.

On the two shortest distances we observe that the amplitude of the quasiparticle

peak decays exponentially with increasing injection energy. The Figure 6.13 shows that

the decaying energy Edecay decreases at longer propagation distance demonstrating that

relaxation becomes stronger. In section 6.8 we will address the peculiar behavior at

high energy observed on the spectrum measured at L = 0.75µm.

Figure 6.13: Peak height extracted from the Lorentzian fits illustrated in Fig. 6.8, plotted
in semi-log scale as a function of injection energy E1 for two propagation lengths L = 480 nm
(red circles) and L = 750 nm (blue diamonds). The red and blue dashed lines are exponential
fits. The particular behavior of the measurements at L = 750 nm around E1 ∼ 100µeV will be
discussed in section 6.8.

A comparison of the whole distributions of particles observed at several distances

for a quasiparticle peak injected approximately at the same energy E1 ≈ 40µeV is
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shown in the figure 6.14. Together with the preceding analysis of the quasiparticle

peak behavior we can describe how the relaxation mechanism brings the system to

equilibrium. At first, a large amount of the injected particles lose energy and the

amplitude of the injected quasiparticle peak rapidly decays in a sub-micrometer prop-

agation distance. Notice that no relaxation was observed for sub-micrometer distances

when the propagation of a double step distribution function was investigated [51]. Once

the quasiparticles peak has almost vanished at a distance of about ∼ 1µm what is left

is a non-Fermi distribution, with no sharp features and a long tail that extends in a

wide range of energies, which is still out of equilibrium. As can be seen in the Fig.

6.14 this distribution does not change much while it propagates up to 3.4µm. In fact,

at this point it resembles an intermediate state of the relaxation process of the double

step distribution which was seen to finally achieve the equilibrium at large distances

∼ 10µm (See Fig. 5.4 and section 5.2).

R-72 R-21 Rc4-6

𝑓
(𝐸

)

𝐸1𝐸1𝐸1

Figure 6.14: Measured distribution function (continuous line) for similar injection energy E1

at increasing propagation distances: L = 480nm (left), L = 750nm (middle) and L = 3.4µm
(right). The dashed line is the equilibrium Fermi sea measured in each case when no particles
were injected.

In chapter 5 we have verified that in our systems we observe the same relaxation

rate for a double step distribution function as reported in Ref. [52]. Therefore, these

observations demonstrate that the first part of the relaxation we have described here,

which takes place in the sub-micrometer scale, is a genuine phase of the decaying

process of the Landau quasiparticles that has not been observed before.

These experimental observations provide an answer for a very fundamental question

that was formulated as a central objective of this thesis work: How do quasiparticles

emitted in a narrow energy window relax during propagation?. As schematically rep-

resented in the figure 6.15 our observation shows that the quasiparticle peak does not

drop toward the Fermi sea nor does it broaden, as one may simply think as a first

guess. On the contrary, the relaxation process preserves the quasiparticle peak posi-

tion E1 and width ΓL but its amplitude decreases while particles are transferred to

lower energies.
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Figure 6.15: Schematic representation of the relaxation process observed in our measurements.

6.8 Signatures of a Quasiparticle Peak Revival

As mentioned in the previous section we have observed a peculiar behavior of the quasi-

particle peak at high energy on the spectrum measured at the propagation distance

L ≈ 0.75µm (Fig. 6.13). The amplitude of the quasiparticle peak not only suddenly

deviates from the exponential decay, but surprisingly it increases as the injection energy

increases.

The Figure 6.16 shows a zoom on the tail of the distributions from another realiza-

tion of the spectrum which was measured using the same set of QD’s resonances and

under the same experimental conditions than the spectrum presented in the middle

panel of Fig. 6.12. Here we can see that the quasiparticle peak literally disappears in

the energy range Edrop ∼ (75±15)µeV following the exponential decay and afterwards

it re-appears at higher energies as a small but well defined peaked structure which

follows the injection energy E1. This can be seen either in the transconductance signal

or the distribution function.

In the spectrum presented in middle panel of Fig. 6.12 each horizontal sweep was

repeated 10 times, which were then averaged, in order to rule out drifts and switching

effects on both quantum dots due to possible random charge fluctuations. Additionally,

the whole spectrum was measured 5 times, using the same set of resonances on both

dots and changing only the bias energy windows applied to each dot. In all of them

the peak was found to have the same behaviour around the same energy Edrop which

shows that it is not caused neither by a particular electrostatic configuration of the

leads around the dots.

We have also performed the spectroscopy using two different resonances on the

quantum dot at the injection and two different resonances on the quantum dots at the

detection: a total of 4 different spectra. Since the same feature was observed we can

infer that it is not generated by a particular level structure on the energy levels of the

QD’s which could be argued since the amplitude of the measured quasiparticle peak

T1,c depends on Γ1, Γ2 and on the transmission of the first quantum dots which can

be energy dependent T1(E) in some cases. In particular, T1(E) shows only smooth

variations which cannot account for the quasiparticle peak resurgence.

As a final test, the magnetic field was turned off, all the electrodes and Ohmic
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Figure 6.16: Quasiparticle peak revival observed in Spectrum R-20. Left: Zoom in
the dip structure associated to the derivative dfr,c/dE usually observed in the transconductance
measurement. The large dip corresponds to the derivative of the distribtuion function near
the Fermi level, while the additional signal that follows the vertical dashed line corresponds to
the remanent quasiparticle peak. Right: Zoom in the tail of the distributions obtained after
integration of the signal presented in the left panels. The legend of each plot indicates the
injection energy E1.

contacts on the 2DEG were connected to the ground and the sample was warmed

up to room temperature. Then a new cooling cycle was initiated and the quantum

dots were re-defined in completely different electrostatic configurations with which the

spectrum was measured at the same propagation length. As a result, the same striking

feature was observed in the same energy range.

We can therefore conclude that the revival of the quasiparticle peak that we have

presented is a robust observation, measured here in more than ten spectra where dif-

ferent parameters were varied showing no dependence with any of them. Four of these

spectra that represent the different conditions that were discussed are presented in Fig

6.17.

Additionally the Coulomb diamonds measured for the set of resonances that we

used to obtain these spectra did not show the presence of excited states in the energy
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Figure 6.17: Four different spectra measured in sample D31 for a propagation length L =
0.75µm and al low temperature T ∼ 20 mK. The spectra R-07, R-16, R-20 where measured
using different resonances and bias conditions on the injector QD-1 and the detector QD-2. The
spectrum R-24 was measured in a different cooling cycle and each horizontal sweep is the average
of 7 consecutive measurements. In all these different conditions we observe that the quasiparticle
peak signal vanishes around Edrop = (75± 15)µeV and reappears at higher energies.

range where the quantum dots were tuned.

Although the exponential decay is not described by the current theoretical models

for the relaxation of quasiparticles in quantum Hall edge channels, the approach consid-

ered by C. Grenier et al. indicates that the amplitude of the quasiparticle peak decays

non monotonously: it shows an oscillatory behaviour. This theoretical model predicts

that the injected quasiparticles relax by decomposing onto the plasmon modes. Since

the charge mode is expected to propagate with a large velocity than the spin mode, a

charge-like plasmon can catch up and recombine with a downstream spin-like plasmon

leading to a revival of the quasiparticle excitation and thus of the quasiparticle peak

amplitude, which is the reason for the oscillatory behavior. Thus, one possibility is

that the increase in the amplitude we have measured could be the onset of these os-

cillations. The energies at which are located the minima observed in the oscillations

in the theory do not strongly depend on the coupling constant as seen in the figure

4.16. Therefore the first minima occurs at the energy EJ0 = 2.4 ~v/L which is given by

the first zero of the Bessel function4that describe the strong coupling regime ϕ = π/2
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(Eq: 4.44) If we take the energy Edrop at which the measured amplitude starts to

grow, deviating from the exponential decay, to be equal to EJ0 we can estimate the

characteristic velocity v. Using the value of the propagation distance L ≈ 0.75µm, we

find v ≈ (3.5 ± 0.7) 104 m/s which is of the same order of magnitude than the value

v ≈ 4.2× 104 m/s determined previously from the exponential decay (Section 6.5).

Therefore although this theory does not describe well the decaying functionality of

the measured amplitude, it provides a framework that supports the evidence of the

observation of a quasiparticle revival with a reasonable parameter v.

6.9 Conclusions

In this chapter we have investigated the relaxation of a quasiparticle peak emitted at a

well defined energy over the Fermi sea of an edge channel in the integer quantum Hall

effect regime at filling factor ν = 2. These experiments constitutes the first observation

of a quasiparticle peak above the Fermi sea of an edge channel.

We observed that after a short propagation distance in the sub-micrometer scale,

a considerable amount of the injected particles lose their energy and relax toward the

Fermi sea. However, although the propagation over submicron lengths leads to sizable

energy relaxation, a small portion of quasiparticles are not affected by energy relaxation

even at relatively high energies, up to 150µeV. Therefore we were able to measure the

a components of particles that has relaxed, a component of particles that were in the

process of relaxation and a component of particles that survives to the relaxation.

We measured that while the relaxation takes place, the injection energy E1 around

which the quasiparticle peak is centered was preserved as well as its width ΓL. However,

the amplitude of the measured quasiparticle peak shows an exponential decay as a

function of the injection energy E1 which was not predicted by any theoretical model

up to our knowledge.

Moreover, we have observed that the characteristic energy Edecay of the exponential

decay of the quasiparticle peak’s amplitude as a function of the injection energy E1 is

strongly affected by the propagation distance and the electronic temperature. On the

one hand, an increase in the propagation distance from L = 480 nm up to L = 750 nm

leads to a decrease in the decay energy from Edecay ∼ 60µeV to Edecay ∼ 20µeV. On

the other hand, an increase in the electronic temperature of ∆T = 150 mK reduces the

decay energy by almost a factor of two.

Furthermore, the comparison of our measurements taken at increasing propagation

distance in the range L ∈ [0.48; 3.4]µm allows to distinguish two time scales in the

relaxation process, which were first pointed out in the theoretical model presented in

Ref. [56]. The first part of the relaxation process, that takes place in sub-micrometer

4The Bessel function J0(x) of the first kind has the first positive zero at x = 2.4048.
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lengths, brings the injected particles closer to the Fermi sea decomposing the quasi-

particle peak into an extended distribution of particles that spreads over the whole

energy range from the Fermi level up to the injection energy. The second part in the

relaxation process that brings the resulting extended distribution of particles into a

Fermi sea takes places along several micrometers of propagation. In fact, this last part

of the relaxation process is presumably the same that is involved in the relaxation of

a double step distribution function as investigated in Ref. [52] and in chapter 4.

The sub-micrometer length over which we observe that the quasiparticle peak de-

cays challenges the interpretation of recent experiments of electron interferences with

quasiparticles propagating in the outer edge channel of the integer quantum Hall effect

at filling factor ν = 2. On the one hand, in Ref. [47] a quantum dot was used to inject

quasiparticles at a well defined energy into a Mach-Zehnder interferometer (MZI) that

was subsequently used to measure the quantum coherence of the quasiparticle excita-

tion. Surprisingly, for energies greater than 20µeV, the visibility of the interferences

was shown to remain almost constant instead of decreasing as expected. However, the

separation between the emitter quantum dot and the input of the MZI was of 2.7µm.

Our measurements indicate that, over this distance, the emitted quasiparticle should

have gone through an important energy relaxation before entering the interferometer.

On the other hand, in Ref. [43] a Hong-Ou-Mandel (HOM) interferometry was imple-

mented in order to measure the decoherence of single electron wave packets propagating

in the edge channel. The single occupied wave packets were emitted, at an energy of

E1 ∼ 60µeV above the Fermi sea, by ac-driven quantum dots which were previously

demonstrated to work as tunable single particle sources [11]. Each quantum dot is

located at one input of a QPC, such that the emitted quasiparticle collide when they

synchronously arrive to the QPC, which is the interferometer. Although the distance

between the quantum dots and the interferometer was about 3µm, this experiment has

shown that after this propagation length there is a collision of quasiparticles partially

coherent. Our measurements suggest that very little of the quasiparticle peak should

have remained after the propagation.

Additionally, for a propagation distance L = 750 nm and at low temperature T ∼ 20

mK, we have observed signatures of a quasiparticle peak revival in several spectra

measured using different electrostatic configuration in both quantum dot which allows

to rules out artifacts caused by possible excited states or charge instabilities in nearby

electrodes. Although the theoretical model proposed in Ref. [57] does not explain

the exponential decay of the quasiparticle peak’s amplitude, it predicts an oscillatory

behavior which could partially explain our observations.

To conclude, we have presented robust experimental observations of the relaxation

of a quasiparticle peak which are in agreement with the previous investigations of

the energy relaxation in quantum Hall edge channels [52] but which strongly defy the

current theoretical models that address this question [57, 56] challenging the usual
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representation of excitations in the quantum Hall effect.





Chapter 7

Charge and Heat Current

In this chapter we investigate two important quantities that can be obtained from

the distribution function fr,c that we measure after the propagation. In the first part

we focus on the increase in the electrochemical potential ∆µ, which gives information

about the current of particles injected into the edge channel. Then we consider the heat

current J(E) carried by the electron-hole excitations, which provides direct information

about the exchange of energy in the system due to the relaxation process.

7.1 The electrochemical potential

The electrochemical potential µ of any distribution function f(E) is obtained by mea-

suring the area under the distribution from an energy EA, at which f(E)=1 ∀E≤EA,

up to the energy EB at which f(E)=0 ∀E≥EB:

µ = EA +

∫ EB

EA

f(E) dE (7.1)

In consequence when new particles are added to the system, occupying empty states,

there is an increase in the electrochemical potential ∆µ. Thus, in our experiment, ∆µ

provides a measurements of the amount of injected particles that carry the current and

the energy. Tunneling of particles into the edge channel or out of the edge channel

along the propagation length can then be detected.

Injected ∆µi Before Propagation

As usual, an electrochemical potential increase ∆µ in a distribution of particles can

be related to a voltage difference ∆V through: ∆µ = e∆V . Our experimental setup

allows us to measure the injected current I1(E1) as a function of the injection energy E1

from the reflected signal on the first quantum dot at the ohmic contact C3 (Fig. 6.1).

Thus the expected increase of the electrochemical potential on the outer edge channel

where the current is injected can also be obtained as a function of the injection energy

143
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Figure 7.1: (a) Illustration of an arbitrary distribution function f(E) and its electrochemical
potential µ (blue vertical dashed line) obtained using equation 7.1. (b) Electrochemical potential
increase ∆µi (red line) measured from the injected current I1 as a function of the injection
energy E1. The left and right current flanks are respectively fitted with the functions 1−FL(E)
and FR(E) (dash line), where FL(E) and FR(E) are Fermi function with effective electronic
temperatures TLeff and TReff respectively.

E1:

∆µi(E1) = eI1(E1)Rk (7.2)

From this measurement we can also characterize the resonant level that we use to

inject the particles as shown in figure 7.1b. The two steps on the current are described

by Fermi functions, as explained in section 4.2.6 (eq. 4.21), with effective temperatures

TLeff and TReff . A comparison with the electronic temperature T2DEG of the 2DEG using

the type of plot presented on figure 6.2b gives a mean value of the intrinsic width Γ1

of the resonant level.

The amplitude of the current step is given by eπ
2h

Γ1T1, from which we can obtain

the energy dependent transmission T1(E1) that describe the smooth variations of the

current along the step.

The incertitude on the determination of ∆µi comes from the calibration of our

experimental setup (∼ 3%) and from the lever arm incertitude (≤ 5%).

Measured ∆µr After Propagation

The measured Fermi sea Fr(E) at equilibrium (before the injection of particles) is

characterized by an electrochemical potential µ0 which is close to the Fermi level EF

that was chosen as the zero energy point in the energy scale. In general we measure

that µ0 ∼ 2µeV > EF which is just a constant offset generated as a consequence of the

non-ideal detection.

The increase in the electrochemical potential ∆µr(E1) measured after the propaga-

tion is obtained as the difference between the electrochemical potential µr, measured
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on the detected distribution fr,c, and the one of the Fermi sea:

∆µr(E1) = µr(E1)− µ0 (7.3)

The errors in the measurement of ∆µr come from the incertitude on the lever

arm (≤ 5%) and from the incertitude on the normalization point of the distribution

functions given by the variation of T2(E2) which can go from 10% up to 20% in some

cases on which there are signatures of the Fermi edge singularity which leads to a

strong increase of T2(E) near the Fermi level [121, 120]. In general we perform the

spectroscopy when this effect is not pronounced.

Additionally, it can be shown that the measured ∆µr is independent of the intrinsic

width of the resonance in the detector. A non-ideal detection only adds the same small

offset for all the measured µr which is also accounted for µ0.

Comparison: ∆µi vs ∆µr

The figure 7.1 shows a comparison between the expected electrochemical potential

increase ∆µi and the electrochemical potential increase ∆µr that is measured after

the propagation along a distance L = 0.48µm and L = 2.17µm.

Within experimental error we observe an agreement between both quantities which

indicates that no particles are tunneling out of the edge channel during the relaxation

process within the propagation distances that were investigated. Although sometimes

there is a small difference, being ∆µi < ∆µr, it is unlikely that particles tunnel from

the incompressible bulk or from the co-propagating edge channel whose electrochemical

potential is at the equilibrium value µ0 < µr.
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Figure 7.2: Comparison between the electrochemical potential increase ∆µi (red line) at the
injection point, obtained from the measured injected current I1, and the electrochemical poten-
tial increase ∆µr (black symbols) measured after the propagation, obtained from the detected
distribution functions, as a function of the injection energy E1. The area shaded in red represents
the incertitude in the measurement of ∆µi. Two comparisons are shown, for a measurement per-
formed after a propagation distance L = 0.48µm (a) and for L = 0.48µm (b), which indicates
that the current of particles is preserved on the edge channel.



146 Charge and Heat Current

7.2 The Heat Current

The heat current J is the energy carried by the electron and hole excitations existing

on the distribution function, which can be calculated from the integration:

J =
1

h

∫ EB

EA

(E − µ) [f(E, µ)−Θ(µ− E)] dE (7.4)

Where EA and EB are defined as for the electrochemical potential (Eq. 7.1) and Θ(x)

is the step function.

A Fermi sea with electrochemical potential µ0 at zero temperature carries no heat

current simply because there are no electron or hole excitations. Notice that the concept

of electron excitation and hole excitation are defined as deviations from this zero

temperature ground state but that the carriers are always electron particles. In this

context, a hole excitation means that there is an empty state below the electrochemical

potential µ and an electron excitation means that there is an occupied state above µ.

Furthermore the amount of hole excitations ∆µh and electron excitations ∆µe con-

tained in any distribution function, which are illustrated as an example on figure 7.3a,

can be measured by:

∆µh =

∫ µ

EA

[1− f(E)] dE (7.5)

∆µe =

∫ EB

µ

f(E) dE (7.6)

This is similar to the way in which the electrochemical potential µ is used to measure

the number of particles by counting the occupied states. The number of electron and

hole excitation is not a conserved quantity as it is the number of electron particles,

thus they can be created or destroyed as the energy of the system changes.

As explained in section 5.4, a Fermi distribution at temperature T0 carries the equi-

librium heat current J0 = π2

6h
(kbT0)2 due to the thermal excitations. When additional

hole and electron excitations are created, an excess heat current ∆J can be defined

as: ∆J = J−J0. The measurement of the excess heat current while relaxation takes

place on the edge channel provides a view of the energy flow in the system between

the interacting parts, including the environment.

Injected Before Propagation

When new particles are added to the system, changing the electrochemical potential

from µ0 to µ, the additional hole excitations and electron excitations that are created

have different contribution to the excess heat current depending at which energy the

new particles have been injected. When a quasiparticle peak is injected on the edge

channel, the excess heat current ∆Ji can be analytically calculated in terms of the
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Figure 7.3: (a) Illustration of the hole excitations ∆µh and the electron excitations ∆µe that
exists in an arbitrary distribution function f(E). (b) Numerical calculations of the excess heat
current ∆Ji = Ji(E1) − J0 carried by a distribution function f(E) using equation 7.4. Empty
circles correspond to the calculation from a distribution function that consists of a Fermi sea
and a quasiparticle peak injected at the injection energy E1: fi(E) = F (E) + L1(E,E1). Blue
squares (red circles) correspond to the calculation from the distribution function fi,c(E), which
is the distribution function fi(E) measured with a non ideal detector with linewidth Γ2 = 10µeV
(Γ2 = 20µeV ). The red dashed line is the same data plotted in the red circles but shifted down
by a constant offset showing that a non ideal detection only adds and offset to the measure excess
heat current.

parameters that characterize the injected distribution such as the injection energy E1

around which the quasiparticle peak is centered, its amplitude T1 and its width Γ1,

∆Ji(E1) = (E1 − µ)
π

2
Γ1T1 +

1

2

(π
2

Γ1T1

)2

(7.7)

Since the electrochemical potential increase in this case is ∆µ = µ − µ0 = π
2
Γ1T1,

which accounts simply for the area under the quasiparticle peak, we can express the

the excess heat current as follow:

∆Ji(E1) = (E1 − µ)∆µ+
1

2
(∆µ)2 (7.8)

It can be demonstrated from the definition (Eq. 7.4) that actually this is a very general

way to express the excess heat current generated by the injection of new particles to the

system, which is independent of the specific shape of the quasiparticle peak and of the

low energy excitations on the distribution function (See Appendix A). In a general case

when new particles are injected in the system with a distribution P1(E) the increase

in the electrochemical potential is given by ∆µ =
∫
P1(E)dE and the energy E1 in

equation 7.8 is simply the characteristic energy of the states on which the particles

have been injected :

E1 =

∫
EP1(E)dE∫
P1(E)dE

(7.9)

When all the particles are injected at an energy above µ, the first term on Eq. 7.8
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describes the contribution ∆Jqp associated to the excitations injected as a quasiparticle

peak ∆µqp = ∆µ centered around the characteristic energy E1. Additionally, the in-

jection of new particles to the system creates new electron-hole excitations ∆µeh = ∆µ

located near the electrochemical potential µ, which therefore have a characteristic en-

ergy of µ±∆µ/2 that is independent of the injection energy E1 of the quasiparticle peak.

In consequence, the second term on Eq. 7.8 describes the contribution ∆Jeh associated

to these low energy excitations. It must be stressed that it is due to the quasiparti-

cle peak contribution that the total excess heat current ∆Ji(E1) = ∆Jqp(E1) + ∆Jeh

increases linearly with the injection energy E1.

∆Jqp(E1) = (E1 − µ)∆µqp (7.10)

∆Jeh(E1) =
1

2
(∆µeh)

2 (7.11)

Notice that the equation 7.8 allows to use the measured increase in the electro-

chemical potential ∆µr to compute the excess energy that has been injected without

relying on the estimations of the parameters that characterizes the quasiparticle peak

{Γ1, T1}. By doing that we actually estimate the injected excess heat current as if all

the detected particles had been injected as a peak around the energy E1. In conse-

quence, rather than using equation 7.7 this is a more accurate way of calculating the

injected excess heat current that in fact also takes into account the small experimental

shifts, coming from charge instabilities, which can occur during the measurements of a

distribution function and which give rise to the random fluctuations on the measured

∆µr.

The error on the estimation of ∆Ji comes from the errors in ∆µr (10%− 20%) and

from the lever arm incertitude (≤ 5%).

Measured After Propagation

The total excess heat current Jr(E1) when particles were injected at energy E1 is

obtained from the detected distribution fr, after the propagation, using the integral

formula (Eq. 7.4). Then, the excess heat current ∆Jr is obtained by subtracting the

total excess current Jr,0 calculated in the same way from the measured Fermi sea when

no particle were injected:

∆Jr(E1) = Jr(E1)− Jr,0 (7.12)

The incertitude on these measurement arises from the calibration of the energy axis

which is set by the lever arm (∼ 3%) and from the incertitude on the normalization

point of the distribution functions which can go from 10% up to 20% in a similar way

as for the electrochemical potential.

Importantly, the excess heat current measured in this way does not depends on

the width Γ2 of the detector. We numerically show on picture 7.3b that the non ideal
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detection only adds the same constant offset to Jr and Jr,0. Therefore, although the

detector is not ideal, we have access to the exact heat current carried in the edge

channel after the propagation.

Heat Current Comparison: ∆Ji vs ∆Jr

On the figure 7.4a we show a comparison of the injected excess heat current ∆Ji(E1)

and the detected excess heat current ∆Jr(E1) measured after the propagation as a

function of the injection energy E1 for a propagation length L = 0.48µm. The figure

7.4b shows the same comparison for a larger propagation length L = 0.75µm.

Remarkably, we observe a very large discrepancy between the injected heat current

and what we have detected, which is beyond the incertitude of both measurements. We

can see that, at high injection energy E1, the detected heat current is much smaller than

what was expected, indicating that the energy in not conserved on the edge channel.

As it was clearly demonstrated by H. le Sueur et al. [52], the interaction with the

co-propagating edge channel induces an energy exchange between the two edge states,

which is expected to be, in part, responsible of the observed discrepancy on Figure 7.4a

and 7.4b.

An alternative way to see this non conservation of the energy on the edge channel is

shown on the figures 7.4c and 7.4d where we have plot the ratio between the excess heat

current ∆Jr measured after propagation and the injected amount ∆Ji. If the relaxation

mechanism distributes the energy only between the charged excitations within the edge

channel, then we expect the ratio ∆Jr(E1)/∆Ji(E1) to be constant and equal to one.

On the contrary, we observe that the proportion of remaining energy on the edge

channel is smaller as we increase the injection energy E1 of the quasiparticle peak.

On chapter 6 we demonstrated that the injected particles relaxes exponentially

faster as the injection energy is increased, which is seen from the amplitude of the

residual quasiparticle peak. In addition, the measurements of the heat current indicates

that when particles relaxes from a state of higher energy, the process takes more energy

out of the edge state. Therefore, the faster the relaxation process happens, the

more energy is leaking out from the edge channel.

As we mentioned, part of the energy must have been transferred toward the co-

propagating edge channel due to their mutual interaction. However, the theoretical

models that describes this interacting system, within the framework of chiral fermions

[54] or within the framework of the Luttinger liquid theory which suggest the develop-

ment of plasmons excitations [58, 55], predict that the interaction leads to an energy

equipartition between the edge channels. In consequence there is a lower bound ∆Jminr

for the remaining heat current on the edge channel which is expected to be achieved at

full relaxation. This lower bound is plotted in blue dashed line for the measurements

shown on the Fig. 7.4.

It is clearly seen that the remaining excess heat current measured after the prop-
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Figure 7.4: Top: Comparison between the excess heat current ∆Ji that was injected (red
line) on the edge channel and the excess heat current ∆Jr that was measured after a propagation
(black symbols). The area shaded in grey correspond to the final part of the spectroscopy, where
the injection energy E1 is reaching its maximum value and the discrete level in the first quantum
dots is going out of the bias windows. This implies that beyond that energy the number of
injected particles starts to drop towards zero and therefore the excess heat current decreases too.
Bottom: Fraction of the excess heat current ∆Jr/∆Ji that remains on the edge channel after
the propagation as a function of the injection energy E1. The two panels to the left (a and c)
correspond to a measurement taken after a propagation length L = 0.48µm, while the two panels
to the right (b and d) correspond to a measurement taken after a propagation length L = 0.75µm.
In the four cases the blue dashed line represent the lower bound ∆Jminr that is predicted by all
the models as a consequence of the energy equipartition between the two co-propagating edge
channels.

agation goes well below the lower bound. We observe that there is up to 70% less

remaining energy than ∆Jminr . During the experiment described in Ref. [52] a missing

energy was also observed: The detected excess heat current was about 25% less than

the lower bound and no particular dependence on the bias voltage on the QPC was

pointed out. Here we observe that the energy leaking the system of the two interacting

edge channels is not constant but instead it increases with the injection energy E1 of

the quasiparticle peak. This suggest that the mechanism that induces the relax-

ation of the injected quasiparticles is not exclusively due to the interaction

between the two edge channels.

Since our experimental scheme only relies on the detection of charged particles, the

increasing energy leak of the whole system that we observe could suggest that there are

additional degrees of freedom which do not directly participate in the charge transport
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but which can be excited during the relaxation mechanism as initially suggested in Ref.

[52].

It is important to notice that the development of the slow (neutral) and the fast

(charged) modes that arises from the interaction between the two edge channel can

not explain the missing energy. This mechanism is exactly what sets the lower bound

∆Jminr within the Luttinger liquid theory approach [58].

Additional neutral internal degrees of freedom in each edge channel are expected

to arise due to the edge reconstruction as described in section 4.3.1. Although in our

experiment we can not conclusively determine if this mechanism also participates on

the relaxation, this scenario could be a priori compatible with such a large energy leak

since there are many neutral internal excitations that could capture the missing energy.

As pointed out in Ref [58] the integral equation that we use to compute the heat

current (Eq. 7.4) only accounts for the single-particle energy of free electrons. More-

over it was shown that this equation does not provides the actual total heat flux if the

plasmon modes, considered within the Luttinger liquid theory, have a non linear disper-

sion. Therefore, the discrepancy was proposed to explain the missing energy observed

on Ref. [52] and it was suggested that it could be found experimentally by investigating

its bias dependence and the plasmon spectrum. However, they also showed that a non

linear spectrum of charge plasmons arising from the screened Coulomb interaction, the

same that gives rise to the edge reconstruction [100], is still a small effect and could

not account for the 25 % of energy loss. Other possible dispersion spectra still remain

to be theoretically investigated.

For the relaxation of the double step distribution (Chapter 5) P. Degiovanni et

al. [55] also modeled the inter-edge channel interaction within the plasmon scattering

formalism, neglecting the additional modes associated to the internal structure of the

edge channel [100]. Within this approach it was possible to reproduce the non linear

dependence seen between the measured excess heat current JQPCexc and the bias voltage

on the QPC by assuming a drift velocity vd ≈ 105 m/s. However it was necessary to

assume ad hoc that a constant 25 % of the heat current is transferred to other degrees

of freedom not captured by the model.

Finally, A. M. Lunde et al. [54], inspired by the weak relaxation seen at sub-

micrometer distances on Ref. [52, 51], proposed to describe the interaction between

coupled edge states in a perturbative approach. This model uses the scattering approach

to describe the interaction in terms of a two-body collision within the chiral fermion

theory including non-momentum conservation scattering processes. In this work the

25 % missing energy was quantitatively explained by considering that equipartition

occurs among three relaxation channels instead of two. They suggested that the addi-

tional relaxation channel could be related to bulk excitations which can be coupled via

long range Coulomb interaction to both edge channels. However the higher 70 % miss-

ing energy that we observe seems not compatible with this scenario and it disproves
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the central hypothesis that the interactions can be taken into account in a perturbative

approach.

7.3 Heat Current vs Electrochemical Potential

As seen before, the measured heat current does not follows the expected behavior as

a function of the injection energy E1 given by equation 7.8. However we observe that

there is a particular relation between the measured excess heat current ∆Jr and the

measured increase in the electrochemical potential ∆µr.

The non linear curve of the measured heat current ∆Jr (black points in Fig. 7.4a

and 7.4b) can be reproduced with an empiric formula with only two free dimensionless

parameters, γqp and γeh, following:

∆Ji(E1) = γqp(E1 − µr)∆µr + γeh
1

2
(∆µr)

2 (7.13)

∆Ji(E1) = γqp∆J
(in)
qp (E1) + γeh∆J

(in)
eh

Importantly, notice that this establishes a relation between two measured quantities

from the same distribution functions fr,c detected after the propagation at different

injection energies E1.

The figure 7.5 shows the measured increase in the electrochemical potential ∆µr(E1)

as a function of the injection energy E1 in the left panels, while in the right panels it

displays the measured excess heat current ∆Jr(E1) (black symbols) and the fit (red

line) obtained using the equation 7.13, both as a function of the injection energy E1.

From top to bottom the plots correspond to data measured at increasing propagation

length L = {0.48, 0.75, 2.17}µm which shows a variety of cases demonstrating that

the measurements can be well described by the empiric formula.

Although the measured excess heat current ∆Jr does not follows the expected linear

dependence with the injection energy E1, the fairly good description provided by the

empiric formula indicates that the relaxation mechanism preserves the dependence with

the number of particles. This can be seen in detail by noticing that the same smooth

variations measured in ∆µr(E1) are also found in the excess heat current ∆Jr(E1),

namely: when ∆µr increases (decreases), ∆Jr increases (decreases). In other terms

the relaxation mechanism is independent of the number of injected particles which is

proportional to T1 × Γ1.

The empiric equation 7.13 allows to quantitatively characterize the energy leak in

terms of the two coefficients γqp and γeh. Importantly, the two parameters are unique

to describe the whole energy range for a given configuration of the experiment: they

do not depend on the injection energy E1 of the quasiparticle peak. Therefore if we

obtain both parameters by measuring the residual heat current within an initial energy
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Figure 7.5: Left: Electrochemical potential increase ∆µr measured after the propagation as a
function of the injection energy E1. Right: Excess heat current ∆Jr (black symbols) measured
after the propagation from the same spectrum from which the electrochemical potential increase
∆µr, plotted in the corresponding panel to the left, was obtained. The red line corresponds
to a fit using the empiric formula 7.13 with the coefficients γqp and γeh shown in the upper

right corner. The orange line corresponds to the quasiparticle peak contribution γqp∆J
(in)
qp (E1)

using the coefficient γqp obtained from the fit. From top to bottom, each pair of panels is a
measurement taken for a propagation length L = 0.48µm (a and b), L = 0.75µm (c and d) and
L = 2.17µm (e and f)

range, then we can predict how much energy will be lost when a quasiparticle peak

with different amplitude T1 and width Γ1 is injected at a different energy E ′1 outside of

the initial known range. This is shown in the figure 7.5d where the parameters γqp and

γeh have been obtained by fitting the data at energies E1 < 120µeV which is indicated

by the vertical dotted line. Using these parameter we can then predict which will

be remaining heat current when the quasiparticle peak is injected at higher energies
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120µeV < E1 < 240µeV even when the amplitude of the quasiparticles peak changes

non monotonously. The predicted curve is plotted as light blue line and it describes

well by the measured points in this high energy range with the parameter obtained in

the low energy range.

In figure 7.6 we show the values of the two coefficients γqp and γeh measured from

different spectra obtained in different conditions as a function of the transmission T1 and

the intrinsic width Γ1 of the resonance in the first quantum dot which was implemented

to inject the quasiparticle peak. As expected, no clear dependence is seen of either of

the fitting parameters with T1 or Γ1.

However we can see that for the ensemble of data these parameters have a char-

acteristic mean value γqp = (0.065 ± 0.040) and γeh = (1.5 ± 0.6) which characterizes

the dispersion of points. Since γeh ∼ 1, it indicates that the electron-hole excitation

contribution to the heat current (Eq. 7.11) remains almost unchanged after the re-

laxation. This is consistent with the fact that these excitations, created close to the

electrochemical potential µ, are out of equilibrium quasiparticles near the Fermi sea,

and then it is expected that they will equilibrate on longer distances (between ∼ 1

to 10µm [52]). Additionally, since these excitations are close to the electrochemical

potential, their characteristic energy is usually smaller than the characteristic energy

E1 of the quasiparticle peak, thus their contribution to the total injected heat current

is actually small in comparison with the contribution of the quasiparticle peak as can

be seen from equation 7.8 for E1 � µ. In consequence, most of the injected heat

current, which was injected as a quasiparticle peak, is lost from the edge channel after

the propagation since γqp � γeh.

Therefore, we can say that while electron particles relaxes to occupy the empty

states near the Fermi level, they release their energy into the system but most of it

leaks out of the edge channel instead of being integrally transferred towards the Fermi

sea increasing its temperature.

7.4 The heat current vs Distance

Using equation 7.4 we can compute and compare the heat current from the detected

distribution function fr even at large distances when there is no well defined quasipar-

ticle peak. The same applies to the injected heat current which is calculated using the

equation 7.8 from the measured ∆µr.

The figure 7.7a shows the ratio between the measured excess heat current ∆Jr

and the injected excess heat current ∆Ji obtained from multiple spectra measured at

different propagation lengths L. We observe a well separated trend between the data

of spectra measured at L = 0.48µm and at L = 0.75µm. At L = 2.17µm and beyond

the ratio ∆Jr/∆Ji does not change much and seems to have reached a baseline that

describes a stationary behavior which depends on the injection energy E1. This is
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Figure 7.6: The parameters γqp (left panels) and γeh (right panels), obtained from the fit
of the measured excess heat current ∆r using the empiric equation 7.13 for the ensemble of
spectra measured under different configuration of the experiment, plotted as a function of the
transmission T1 (upper panels) or as a function of the intrinsic width Γ1 (lower panels) of the
resonant level in the first quantum dot. The horizontal dashed line centered in the area shaded
in grey, represents the mean value of the parameter and its standard deviation obtained from
the ensemble of points in each plot.

coincident with the fact that the process on which the quasiparticle peak structure

vanishes happens in sub-micrometer distances.

Though only at a qualitative level, this can also be seen in the evolution of the γeh

coefficient obtained for each spectrum as a function of the propagation distance which is

shown in the figure 7.7b. The γeh coefficient, which represents the major contribution

to the measured excess heat current ∆Jr, follows a more convergent evolution as a

function of the distance in comparison with the behavior of the γqp coefficient.

7.5 The heat current vs Temperature

In section 6.6 we have seen that, at the short propagation distance (L = 0.48µm), the

amplitude of the quasiparticle peak decays roughly two times faster when the electronic

temperature is increased by 150 mK. However in this section we show that, for the same

set of spectra, the temperature has no effect on the amount of heat current

that leaks out of the edge channel.
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Figure 7.7: (a) Fraction of the excess heat current ∆Jr/∆Ji that remains on the edge channel
after the propagation as a function of the injection energy E1 measured in several spectra taken
at different propagation distances: L = 0.48µm (red circles), L = 2.17µm (blue diamonds),
L = 0.48µm (orange squares) and L = 3.4µm (black stars). (b) The parameters γqp (top)
and γeh (bottom), obtained from the fit of the measured excess heat current ∆r using the
empiric equation 7.13 for the ensemble of spectra measured under different configuration of the
experiment, plotted as a function of propagation length L.

First, the figure 7.8a shows that although the electronic temperature increases from

23 mK up to 170 mK, the amount of injected particles does not change which can be

seen from the unchanged increase in the electrochemical potential ∆µr that is measured

after the propagation. This confirms that the product of the transmission T1 and the

intrinsic width Γ1 of the resonant level in the first quantum dot does not depend

on the electronic temperature as predicted by the simple model of the electrostatic

confinement on the quantum dot presented in section 4.2.

The Figure 7.8b shows the ratio ∆Jr/∆Ji between the measured and the injected

excess heat current. As it can be seen, all the curves follow the same behavior and

no clear dependence on the temperature is observed within the experimental accuracy.

Although each point is obtained after performing a statistical average of several mea-

surements under the same conditions, the dispersion of the points is limited by the

electrostatic stability of the sample.

Therefore we can conclude from these measurements that an increase in the elec-

tronic temperature leads to a stronger relaxation of the quasiparticle peak; however

it does not affect the final amount of energy that is lost from the edge channel in the

process.

7.6 Conclusions

First, we have shown that a comparison of the increase in the electrochemical potential

∆µi measured at the injection point and ∆µr measured after the propagation demon-

strate that there is no particle exchange between the edge channel while the relaxation

takes place. Thus, this measurement verifies that the particle current is conserved on
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Figure 7.8: (a) Electrochemical potential increase ∆µr measured after the propagation from
an ensemble of spectra measured at increasing temperatures. (b)Fraction of the excess heat
current ∆Jr/∆Ji that remains on the edge channel after the propagation as a function of the
injection energy E1 measured on the spectrum taken at increasing temperature.

the edge channel as expected.

Second, we have shown that the measurements of the heat current in the edge

channel indicate that there is a very large energy leak which is not in agreement with

any of the current theoretical models that describes the interaction in the integer

quantum Hall regime at filling factor ν = 2. Moreover, this energy leak was consistently

observed in all the spectra of the relaxation of the quasiparticle peak suggesting that

it is a robust observation and a characteristic of this regime. In addition, such a

large energy leak was not observed when we investigated the relaxation of a double

step distribution function on chapter 5, on which the hole excitations and electrons

excitations not only are low energy excitation but also they contribute symmetrically

to the injected excess heat current. When the relaxation of the double step distribution

function was measured we observed a small energy leak, in agreement with the results

reported in Ref. [52]. Our measurements in both regimes absolutely rule out possible

experimental artifacts that could lead to an apparent energy leak.

While a constant 25% of energy leak was observed on the relaxation of the double

step distribution, here we report that the relaxation of energy resolved excitations leads

to an energy leak that strongly depends on the injection energy E1 of the quasiparticle

peak. In fact, the fraction of remaining energy, ∆Jr/∆Ji, roughly follows a 1/E1

dependence.

Furthermore, a detailed analysis of the relation between the charge current ∆µr and

the remaining heat current ∆Jr shows that actually the remaining energy corresponds

to the energy injected as low energy electron-hole excitations created near µ.

We hope that these unexpected an intriguing observations can provide new useful

information to finally identity the complete relaxation mechanism that could explain

the missing energy paradox and the role of the interactions in the decoherence in

quantum Hall edge channel at filling factor ν = 2.





Chapter 8

Decoupling the Edge States

In this chapter we show that the relaxation of the quasiparticle peak can be weakened by

decoupling the two co-propagating edge channels with the help of a depletion gate. We

show that when the edge channels are decoupled, the probability for the quasiparticle

peak to survive can increase up to 5 times. Furthermore, in this regime the energy

leaking out of the system is also strongly reduced. This experiment provides a clear

demonstration of the role of the interaction between co-propagating edge channels in

the relaxation of quasiparticles emitted in a narow energy band above the Fermi sea.

8.1 The Suppression of the Relaxation

We investigate the effects of decoupling the co-propagating edge states on two samples,

D31 and E33, where the short propagation path was designed to have a length L =

0.75µm and L = 0.48µm respectively. In chapter 6 we have demonstrated that for

these propagation distances it was possible to detect a residual quasiparticle peak that

survives the relaxation. Although it was clearly observed in the spectroscopy for a

propagation length L = 0.48µm, we showed that it was hardly detectable when the

distance is beyond L = 0.75µm. We found that a substantial part of the relaxation

of the quasiparticle peak takes place in the sub-micrometer scale. In this section

we show how the relaxation can be diminished, leading to a better preservation of

the quasiparticle peak even at L = 0.75µm, by decoupling the co-propagating edge

channels.

8.1.1 Reducing the Relaxation at L = 0.75µm

The sample design (Fig.6.1) allows to change, in situ, the propagation distance on the

same device by polarizing a surface metallic gate: the electrode A2. When it is fully

polarized at pinch-off (VA2 ∼ −0.5V ) it forces the edge channels to follow a longer

path which is designed to be three times larger than the short direct path between the

two quantum dots. Conversely, the edge states propagate freely along the short path

159
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Figure 8.1: a, c, e: False-colour scanning electron micrographs of a typical sample, depicting
the trajectories of the edge channels for VA2 = 0.2 V (a, A2 gate highlighted in orange), VA2 =
−0.1 V (c, A2 gate highlighted in purple), and VA2 = −0.5 V (e, A2 gate highlighted in blue).
In a, the two edge channels co-propagate along a L ≈ 750 nm short path. In c, the two edge
channels are spatially separated (orange dotted lines) as they flow below the A2 gate. In e, the
two edge channels co-propagate along a L ≈ 2.17µm long path. b, d, f : Measured f(E) for the
configurations depicted in resp. a, c, and e. Each curve, offset for clarity, corresponds to an
injection energy increment δE1 ≈ 9µeV , from E1 ≈ −26µeV (blue) to E1 ≈ 122µeV (red, b)
and E1 ≈ 98µeV (red, d and f). The inset in b is a zoom on the region delimited by the black
dashed square.
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when the electrode A2 is not negatively polarized (VA2 ≥ 0V ). In this way, it was

possible to increase the propagation distance in sample D31 from L = 0.75µm up to

L = 2.17µm. However when the electrode A2 is polarized at an intermediate voltage,

−0.5V ≤ VA2 ≤ 0.0V , we can access to a different regime on which the coupling

between the two co-propagating edge states can be tuned.

A schematic representation of these three distinct regimes is shown in the figure 8.1,

together with the distribution functions measured after the propagation in the outer

edge channel, where a quasiparticle peak was injected as in the previous chapters.

The figures 8.1(a)-(b) correspond to the spectroscopy of the relaxation of the quasi-

particle peak after the short propagation distance L = 0.75µm. Similar to the dis-

cussion presented in section 6.7, in this regime a residual quasiparticle peak is still

observed at high energies E1 ∼ 130µeV which is emphasized on the inset of fig. 8.1(b)

which is a zoom of the region highlighted by the dashed box.

In the intermediate regime, shown in the figure 8.1(c)-(d), the interaction between

the two edge channels was weakened, likely by diverting the inner edge channel along

the longer path while the outer edge channel, where the quasiparticle peak is injected,

propagates still along the short path. In this intermediate regime, the residual quasi-

particle peak that is detected is remarkably larger than what it was measured in Fig.

8.1(b), at the same propagation distance, suggesting that the usual relaxation mecha-

nism was considerable suppressed.

Finally, the figure 8.1(e)-(f) shows the last regime where both edge channels are sent

along the long path of L = 2.17µm in which no signatures of the injected quasiparticle

peak are detected on the distribution functions measured after the propagation.

Quasiparticle Peak Decay

The relaxation process was seen to generate an exponential decay of the amplitude

T1,c of the quasiparticle peak as a function of the energy E1 at which it was injected

(Section 6.5). Such behavior, characterized by a decaying energy Edecay, serves as an

indicator to quantitatively characterize the relaxation process. From equation 6.16,

the relation T1,c/T1,0 = exp(−E1/Edecay) represents the probability for a particle to

propagate on the edge channel through an interacting region without losing energy,

namely the elastic scattering probability.

In figure 8.2 we show how the exponential decay of the normalized peak height

T1,c/T1,0 is strongly affected when going through the intermediate regime by gradually

polarizing the gate A2 from VA2 = +0.2V up to VA2 = −0.5V . We observe, in figure

8.2b, that the decaying characteristic energy reaches a maximum Emax
decay ∼ 100µeV at

the intermediate regime which is 5 times bigger than the nominal value Edecay ∼ 20µeV

measured at the same propagation distance in presence of the co-propagating edge chan-

nel. It clearly indicates that in the intermediate regime the particles at a given energy

are 5 times more likely to reach the detector without losing energy. This represents
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Figure 8.2: (a) Normalized quasiparticle peak height plotted in semilog scale as a function of
the injection energy E1 for the different polarization voltage VA2 in gate A2 measured in sample
D31. The dashed line are exponential fits. (b) Characteristic energy Edecay extracted of the
exponential decay fit in (a) as a function of the polarization voltage VA2.

a remarkable suppression of the relaxation process since it implies that particles can

now propagate for a distance that is at least five times longer and still being detected

as a residual quasiparticle peak. Therefore these measurements demonstrate that it

is possible to tune the coupling between co-propagating edge channels in order to ex-

tend the distance over which a quasiparticle peak, injected at a well defined energy,

propagates before decaying from a sub-micrometer scale up to several micrometers.

With this experiments, we determined the limitations imposed by the relaxation and

we demonstrate how that can be considerable improved.

Heat Current

As investigated in chapter 7 the relaxation also induces an energy loss from the outer

edge channel which is observed by measuring the heat current that remains after the

propagation. In Figure 8.3 we show the ratio between the residual excess heat current

∆Jr after the propagation and the injected excess heat current ∆Ji, which represents

the fraction of remaining energy in the edge channel where the quasiparticles are in-

jected. As explained before, ∆Jr/∆Ji = 1.0 means that the energy is redistributed

within the edge channel while the limit ∆Jr/∆Ji = 0.5 is expected when full equili-

bration between the two edge channels is achieved.

We observe that when the system is placed in the intermediate regime, more energy

remains in the edge channel, in agreement with the reduction of the relaxation of the

quasiparticle peak. However, even when the relaxation is minimized, there is still an

energy leakage from the edge channel. It could be attributed in part to the residual

path, along which the two edge channel co-propagates next to each other, between

the quantum dots’ tunneling points and the position at which the edge channels are
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Figure 8.3: Fraction of the excess heat current ∆Jr/∆Ji that remains on the outer edge
channel after the propagation as a function of the injection energy E1 measured at different
polarization voltage VA2 in the gate A2. The horizontal blue dash line is the lower bound
expected for an energy equipartition between two co-propagating edge channels.

effectively decoupled. This residual path can be up to 200nm long in sample D31.

In addition we still observe that the remaining energy on the edge channel goes

below the limit expected at full equilibration between two interacting edge channels,

even when the two edge states are maximally decoupled at VA2 = −0.1V .

As done in section 7.3 we can describe the remaining excess heat current ∆Jr

in terms of the injected heat current with the excitations in the quasiparticle peak

∆J
(in)
qp = (E1 − µr) ∗∆µr and the injected heat current with the electron-hole excita-

tions created near the electrochemical potential ∆J
(in)
eh = (∆µr)

2/2 using the empiric

equation (Eq. 7.13):

∆Jr(E1) = γqp∆J
(in)
qp + γeh∆J

(in)
eh (8.1)

Two examples of the fits in the intermediate regime are shown in figure 8.4. Addi-

tionally, we show the contribution due to the injected quasiparticle peak in yellow (The

first term of Eq. 8.1) and the contribution due to the injected low energy excitations

in blue (The second term of Eq. 8.1).

Figure 8.5 shows that both coefficients γqp and γeh display a maximum centered

at the condition of maximal decoupling of the edge channel that was achieved on this

experiment. Notice that at the intermediate regime, both parameters take values that

are well above the mean value observed for all previous experiments, which is indicated

by the horizontal dashed line together with its standard deviation defining the shaded

region. This is also an indication that in the intermediate regime, a large amount of

the injected energy remains in the edge channel.

8.1.2 Reducing the Relaxation at L = 0.48µm

We have performed this experiment as well in the sample E33 on which the short

direct path between the quantum dots was designed to have a length L = 0.48µm.
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Figure 8.4: Excess heat current ∆Jr (black symbols) measured after the propagation in the
intermediate regime, with VA2 = 0V (top) and VA2 = −0.1V (bottom), as a function of the
injection energy E1. The red line corresponds to a fit using the empiric equation 8.1 which links
the measured ∆Jr(E1) with the measured electrochemical increase ∆µr(E1) using two parameter
γqp and γeh. The yellow (blue) points correspond to the contribution due to the first (second)
term in equation 8.1 using the parameters extracted from the fit.
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Figure 8.5: As a function of the polarization voltage VA2, we plot the evolution of the coeffi-
cients γqp (left) and γeh (right) obtained from the empiric fit of the measured excess heat current
∆Jr as a function of the injection energy E1 as illustrated in Fig. 8.4. The horizontal dashed line
centered in the area shaded in grey, represents the mean value of the parameter and its standard
deviation obtained from the ensemble of points presented in the Fig. 7.6 which were measured
with both edge channel co-propagating along the path.

Since the propagation length is smaller in this sample, the relaxation undergone by

the quasiparticle peak in normal conditions is already weaker. Therefore the difference

between the normal regime, where both edge channels co-propagates along the short

path, and the intermediate regime, where the edge channels are decoupled, is less

pronounced than in sample D31 where the short path has L = 0.75µm.
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Quasiparticle Peak Decay

In figure 8.6a we show the evolution of the characteristic energy Edecay of the expo-

nential decay of the quasiparticle peak’s amplitude as a function of the polarization

voltage in the electrode A2. As in sample D31, the decaying energy passes through a

maximum value at the intermediate regime, achieved at VA2 = −0.12V .
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Figure 8.6: (a) Characteristic energy Edecay, extracted of the exponential fit of the quasipar-
ticle peak’s amplitude, plotted as a function of the polarization voltage VA2 applied in the gate
A2 in sample E33. (b) Fraction of the excess heat current ∆Jr/∆Ji that remains on the outer
edge channel after the propagation as a function of the injection energy E1 measured at different
polarization voltage VA2 measured in sample E33. The horizontal blue dash line is the lower
bound expected for an energy equipartition between two co-propagating edge channels.

Heat Current

When looking at the remaining heat current on the edge channel, we observe as well

that there is less energy loss in the intermediate regime. This can be clearly seen on

the figure 8.6b where we observe the curve measured at the intermediate regime to be

well separated from the ensemble of other measurements.

8.1.3 Intermediate Regime vs Distance

The figure 8.7a shows a comparison of the exponential decay of the quasiparticle peak’s

amplitude in the initial state (full symbols), where both edge channels co-propagates

along the short distance, and the optimum intermediate regime (open symbols), where

the edge channels are decoupled. We show a comparison of the change observed at the

two propagation distances L = 0.75µm and L = 0.48µm. We observe that when the

excitations propagate along a distance L = 0.75µm in the intermediate regime (open

blue circles) there is even less relaxation than if the excitations propagate along the

short distance L = 0.48µm with edge channels co-propagating next to each other.
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A similar behavior can be observed in the heat current (Fig. 8.7b): by decoupling

the edge states at L = 0.75µm there is less energy loss than if the system propagates

along L = 0.48µm in normal conditions.

The similarity between the two measurements in the decoupled regime (open squares

and open circles), indicates that even if the propagation distance is different in both

samples, the relaxation undergone by the quasiparticle peak is similar. This is in

agreement with the idea that in both cases there could be a residual short distance

along which both edge channels co-propagates. In our sample design it is possible that

such residual distance can arise just after the injection point next to the first quantum

dot or just before the measurement point next to the second quantum dot.
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Figure 8.7: (a) Comparison of the exponential decay of the normalized quasiparticle peak’s
amplitude as a function of the injection energy E1 measured when: the two edge channels
propagates together along the short path L = 0.75µm in sample D31 (filled circles), the two
edge channel are maximally decoupled in sample D31 (open circles), the two edge channels co-
propagate along the short path L = 0.48µm in sample E33 (filled squares), the two edge channel
are maximally decoupled in sample E33 (open squares). (b) Fraction of the excess heat current
∆Jr/∆Ji that remains on the outer edge channel after the propagation measured in the same
condition as the data in (a) represented respectively with the same symbols.

8.2 Coexistence of Quasiparticle Peaks

When the sample D31 was placed in the intermediate regime (VA2 = −0.1V ) we

have observed that, in addition to the spectacular reduction of the relaxation, multiple

quasiparticle peaks can propagate simultaneously at different energies. In this section

we briefly describe an example of these observations where multiple quasiparticle peaks

coexist and survive to the relaxation along the propagation length L = 0.75µm.

Multiple quasiparticle peaks can be injected on the edge channel by using the first

quantum dots as an energy filter with many active levels in the bias energy window.

We realize this by selecting resonant levels with excited states, meaning that there are
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many active levels on the bias energy window; however the charge state of the quantum

dot only fluctuates by ±1e when particles are transmitted.

In figure 8.8a we show a measurement of the transconductance dI/dVp as a function

of the bias voltage Vsd and the plunger gate voltage Vp applied on the first quantum dot

which is used to inject the particles. The two most intense lines define the boundaries

of adjacent Coulomb diamonds where the dot is in the Coulomb blockade regime with

a fixed number charges. In between these boundaries, transport is allowed trough the

discrete levels that lies within the bias windows. This measurement shows signatures

of the presence of excited states as additional features in between the boundary lines.

The figure 8.8b is a trace at fixed bias voltage on which excited states are seen as

additional peaks or dips in between the two outermost structures which define the bias

window.
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Figure 8.8: (a) Transconductance measurement in the first quantum dot as a function of the
plunger gate voltage Vp and the bias voltage Vsd applied on the dot. (b) single horizontal trace
of the transconductance measured in (a) taken at fixed bias voltage Vsd ≈ 105µeV .

The figure 8.9a shows a 2D-plot of the normalized transconductance measured as a

function of the detection energy E2 (x-axis) at different injection energies E1 (y-axis)

using the first quantum dot in a configuration with excited states. Contrary to the

usual case where a single diagonal line is observed, this measurement displays multiple

parallel diagonal lines at positive energies. Each diagonal line describes an individual

quasiparticle peak.

The figure 8.9b shows the distribution functions fr,c measured after the propagation

that have been obtained from the spectrum at the different injection energies E1. We

can identify two main quasiparticle peaks in close proximity that are detected around

the injection energy E1. They can be easily seen in the figure 8.10 which is a zoom

of the tails of the distributions presented on Fig. 8.9b. Additionally we notice that

there is a small third peak around an energy E = 80µeV that appears on the first

three curves labeled with the injection energy E1 ∈ {0, 10, 20}µeV . Moreover in this
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Figure 8.9: (a) 2D-plot of the normalized transconductance as a function of the detection
energy E2 (x-axis) at different injection energy E1 (y-axis) measured in sample D31 with a
polarization voltage VA2 = −0.1V and with the first quantum dots in a configuration where
the resonant level present excited states. (b) Distribution functions obtained from (a) after
integration of the transconductance signal. The curves were vertically shifted for clarity by a
constant offset proportional to the injection energy increase δE1 = 10µeV .

last figure we can see that the different quasiparticle peaks enter and leave the bias

energy windows E ∈ [0 , 94]µeV , defined by the first quantum dot, at different E1,

corresponding to different plunger gate voltage Vp on the first quantum dot.
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Figure 8.10: Zoom on the tails of the distribution function presented in Fig. 8.9b where
different quasiparticle peaks coexist while they propagates.

From these measurements we obtain the position of each quasiparticle peak as a

function of the injection energy E1 which evolves as parallel lines as shown in Figure

8.11a. The position lines are labeled as E(0), E(1), E(2) such that the quasiparticle peak

at position E(0) is the last one to enter the bias energy windows and the last one to

leave it, thus it corresponds to the peak that is closer to the Fermi level on a given
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distribution fr,c, hence the least energetic peak.

This measurement provides an estimation of the energy difference between the

discrete levels: ∆E21 = E(2) − E(1) = 60µeV and ∆E10 = E(1) − E(0) = 20µeV .

The figure 8.11b shows the measurement of the differential conductance on the first

quantum dot at the finite bias Vsd = 94µV at which it was implemented on the

spectroscopy. The measured ∆E21 and ∆E10 defines the vertical shaded region at

which it is expected to observe signatures of the additional excited states while they

successively exceed E1 = eVsd = 94µeV leaving the bias energy windows. Indeed,

it is in the shaded regions where the differential conductance presents extra features

characteristics of excited states, which can lead to an increase or a decrease in the

overall conductance depending on the relative coupling of the different excites states.

In consequence, it can be inferred that the level structure on the first quantum dot

consists of three discrete levels: A ground state that follows E(0), a first excited state

at 21µeV that follows E(1) and a second excited state at 80µeV that follows E(2).

0 20 40 60 80 100

Energy (µeV )

0

20

40

60

80

100

120

140

E
p
ea
k
 (
µ
eV

 )

E(2)

E(1)

E(0)

(a)

40 20 0 20 40 60 80 100 120

Energy E1  (µeV)

0.80

0.85

0.90

0.95

1.00

1.05

(d
I 1
/d
V
sd

)
/
G

0

∆E10

∆E20

(b)

Figure 8.11: (a) Evolution of the energies E(0), E(1) and E(2) at which the three quasiparticle
peaks are centered as a function of the injection energy E1 which depends on the plunger gate
voltage Vp applied on the first quantum dot. (b) Transconductance of the first quantum dot as a
function of the injection energy E1(Vp1) measured in the same conditions at which the spectrum
presented in Fig. 8.9 was obtained. The red (green) regions correponds to the energy E1 at which
it is expected to observe signatures of the presence of the first (second) excited state inferred
from the data plotted in a.

Therefore by implementing a resonant condition in the first quantum dot with

excites states we are able to sequentially inject particle on the edge channel at different

well defined energies. Notice that particles will have a different probability to tunnel

across each excited states, which depends on the coupling between the discrete level

and the reservoir, however only one discrete level is active at the time and particles are

injected on the edge channel one by one.

Additionally, from the spectrum we measure the evolution of each quasiparticle

peak’s amplitude which still decays exponentially as shown on figure 8.12. We observe

as well that the two better resolved quasiparticle peaks, associated to the two lowest

discrete levels E(0) and E(1), have a characteristic decay energy Edecay that is enhanced
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since the inner edge channel is decoupled from the outer edge where the quasiparticles

have been injected. In normal conditions, when the two edge channel co-propagate

following the same short path, the decaying energy was only Edecay ≈ 20µeV .

The coexistence of multiple quasiparticle peaks propagating at different energies

was observed several times only when the system was in the intermediate regime on

which both edge channels are decoupled. However we were not able to conclusively test

if this is a fundamental condition to observe the coexistence of several quasiparticle

peaks, since we do not have measurements with the first quantum dot showing clear

signatures of excited states for other propagation lengths or in other inter edge channel

coupling conditions.
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Figure 8.12: (a) Evolution as a function of the injection energy E1(Vp1) of the amplitude of
the three quasiaprticle peaks observed in the measured distribution functions presented in Fig.
8.9. The dashed lines are exponential fits. (b) Evolution of the normalized quasiparticle peak’s
amplitude presented in a in semilog scale. The dashed lines are the exponential decay from the
extrapolated initial value at E1 = 0.

8.3 Conclusions

In this chapter we demonstrated that the relaxation of the quasiparticle peak injected

in the outer edge channel can be weakened up to five times by decoupling this edge

channel of the neighboring inner edge channel.

We have shown that it is possible to achieve this regime simply by implementing a

surface depletion gate which is used to divert only the inner edge channel along a longer

path, leaving the outer edge channel to propagate alone following the short path.

Clear signatures of a reduced relaxation have been observed both in the charac-

teristic energy Edecay of the exponential decay undergone by the quasiparticle peak’s

amplitude and in the remaining excess heat current ∆Jr measured on the outer edge

channel.

These observations address a central aspect in the field of electron quantum optics

that has not been demonstrated at this level up to now: how far can an electron ex-

citation propagates on the edge channel before decaying?. This question also plays
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an important role for the future manipulation of the quantum state of single electron

excitation propagating in quantum Hall edge channels which has been proposed as a

convenient system to realize flying qubits for quantum computation in solid state sys-

tems. With these experiments, we determined the limitations imposed by the relaxation

in the integer quantum Hall regime, under standard conditions, and we demonstrated

how the relaxation can be considerably reduced extending the lifetime of finite energy

excitations at least five times.

Moreover we have shown that multiple quasiparticle peaks, injected at different

energies, can coexist and survives to the relaxation along the propagation length L =

0.75µm when the system is set at the intermediate regime where the edge channels are

decoupled.





Chapter 9

Conclusions and Perspectives

This thesis explores the relaxation of a quasiparticle peak injected in the outer edge

channel obtained in the integer quantum Hall regime at filling factor ν = 2. We have

performed an energy resolved spectroscopy of the relaxation by implementing two quan-

tum dots as energy filters. The first quantum dot continuously injects particles at a

given energy E1 in the range E1 ∈ [0 ; 200]µeV. The quasiparticles were injected with a

Lorentz distribution, with a typical width Γ1 ∼ 10µeV, above the Fermi Sea of the outer

edge channel. After a tunable propagation length L in the range of L ∈ [0.48 ; 3.4]µm,

where relaxation can take place, we perform the spectroscopy of the distribution of

particles in the outer edge channel by implementing a second quantum dot as energy

filter. This detection scheme was previously implemented in order to investigate relax-

ation of a double step distribution function injected in the outer edge channel in the

same regime [51, 52].

The main results obtained along this thesis are:

1 - We have quantitatively reproduced the main observations on the relaxation

of a double step distribution function previously investigated in Ref. [51, 52]. Our

observations are in agreement with the fact that the relaxation of this out of equilibrium

state occurs between 1µm and 10µm of propagation, which indicates that we find the

same relaxation rate despite the differences in the devices. Moreover we confirm that

this relaxation process leads to ∼ 20% of the injected energy to leaks out of the system

of the two interacting edge channels.

2 - After a short propagation length L < 1µm, we have measured a residual quasi-

particle peak, which represents the particles that survives to the relaxation. This

constitutes the first experimental observation of a quasiparticle peak in a quantum

Hall edge channel.

3 - Although the propagation over sub-micrometer lengths leads to a sizable energy

relaxation, a residual quasiparticle peak was observed to subsists even at relatively high

energies, up to 150µeV.

173



174 Conclusions and Perspectives

4 - We have measured that while the width (FWHM) of the quasiparticle peak

remains constant as a function of the injection energy E1, the amplitude of the quasi-

particle peak exponentially decreases as a function of E1. Moreover, we observed that

the relaxation process does not affect the energy at which the quasiparticle peak is

centered, being always coincident with the injection energy.

5 - We have observed that the characteristic energy Edecay of the exponential decay

of the quasiparticle peak’s amplitude is strongly affected by the propagation length

L and the temperature T . On the one hand, when increasing the propagation length

from L = 0.48µm to L = 0.75µm, the decay energy Edecay decrease from 60µeV to

20µeV. On the other hand, when the temperature is increased from 20mK to 170mK,

the decay energy decrease from Edecay ≈ 60µeV to Edecay ≈ 30µeV.

6 - A comparison of these measurements with the ones obtained after a longer

propagation length 1µm < L < 3.4µm, where no quasiparticle peak was observed

although the distribution was not yet at equilibrium, allows to distinguish two time

scales in the relaxation process. During a first step, which occurs over a sub-micrometer

distance, the quasiparticle peak gets progressively dissolved as described in (4) bringing

the injected particles closer to the Fermi sea. As a consequence, the quasiparticle peak

evolves into an extended distribution of particles that spread over the whole energy

range from the Fermi level EF ∼ 0µeV up to the injection energy E1. The second step

in the relaxation process, which brings the resulting extended distribution of particles

into a Fermi sea, occurs over several micrometers of propagation. We suggest that this

second time scale is the same that is involved in the relaxation process of the double

step distribution function, which consist of out of equilibrium quasiparticles near the

Fermi sea, while the first time scale appears only on the relaxation of the quasiparticle

peak, which consist of out-of equilibrium quasiparticles well above of the Fermi sea.

These two time scales in the relaxation process were first predicted in the theoretical

work presented in Ref. [56].

7 - The measurements of the heat current that remains on the edge channel after

the propagation shows that the amount of energy lost during propagation is markedly

larger than expected. We observed that up to 70% of the injected energy leaks out of

the system of two interacting edge channels. This suggests that relaxation mechanisms

towards external degrees of freedom play an important unexpected role in electron

quantum optics experiments.

8 - Finally, we have demonstrated that the relaxation of the quasiparticle peak

injected in the outer edge channel can be strongly suppressed by decoupling the two

co-propagating edge channels. In this regime, it was possible to extend the distance

over which the quasiparticle propagates before decaying, from the sub-micrometer scale

up to several micrometers.

To conclude, in this thesis we captured the limitations imposed by the energy relax-
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ation in quantum Hall edge channels and circumvent them by considerably extending

the lifetime of finite energy excitations. However, there remain some open questions

indicating that the current understanding of the excitations in the quantum Hall effect

is not complete:

1 - So far it was not possible to identify which is the origin of the large energy leak

that was observed in the relaxation of the quasiparticle peak. Possible candidates are:

bulk excitation as considered in Ref. [54] or the internal degrees of freedom develops

in the edge channel as a consequence of the edge reconstruction [93]. Other possible

explanations involves non linear dispersion of edge magnetoplasmons in the Luttinger

liquid theory [58]. Although our measurement does not allows us to distinguish between

different scenarios, they shed some light on this subject in order to better understand

the mechanisms that are involved.

2 - Additionally, on the one hand, the exponential decay of the quasiparticle peak

amplitude that we observed is not predicted by any of the current models that de-

scribe the interactions in this system. On the other hand, we have observed signatures

of a quasiparticle peak revival in several of our measurements. Up to our knowledge,

such a behavior is only observed in the calculations presented in Ref. [116] where the

quasiparticle peak’s amplitude decreases with the injection energy E1 following an os-

cillatory behavior.

Since this experiment shows that the interaction with the co-propagating edge channel

is a key element in the relaxation of the quasiparticle peak as well as it was shown for

the double step distribution function [52], as a perspective it would be interesting to

perform similar measurements at other filling factors ν. The relaxation of the quasi-

particle peak injected in the outer edge channel but at filling factor ν = 3 or ν = 1

would provide useful information to identify the origin of the large energy leak we have

seen. Additionally, this experiment could be extended to the fractional quantum Hall

regime where it is well known that the Coulomb interaction leads to the formation of

excitations with fractional charges.





Appendix A

Injected Heat Current

This appendix present the demonstration that when new particles are injected in the

system around a characteristic energy E1 the injected excess heat current ∆J has the

general form:

∆J = (E1 − µ)∆µ+
1

2
∆µ2 (A.1)

where ∆µ is the increase in the electrochemical potential due to the injected particles.

First, lets consider that the initial state is a distribution function f0(E), character-

ized by an electrochemical potential µ0, which is not necessarily a Fermi distribution.

Then, lets imagine that new particles are injected in the system, with a distribution

P1(E) which can have any functional dependence on the energy. In any realistic exper-

iment P1(E) is a continuous function. In particular, during the experiments presented

in this thesis it was shown that the particles were injected with a Lorentz distribution

function, P1(E) = L1(E,E1), centered around the injection energy E1 given by the

resonant level in the quantum dot implemented as the emitter. Therefore, in the gen-

eral case, the final distribution function f1(E) after the injection of particles results

f1(E) = f0(E) + P1(E) and it is characterized by an electrochemical potential µ1.

𝐸1 𝐸𝜇1𝜇0 𝐸𝐵𝐸𝐴

𝑓0(E)

𝑃1(E)

𝑓(E)

0

1

Figure A.1: Distribution functions.
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Electrochemical potential increase ∆µ

The electrochemical potential µ0 of the initial distribution function f0(E) is obtained

by measuring the area under the distribution from an energy EA, at which f0(E) =

1 ∀E≤EA, up to the energy EB at which f0(E)=0 ∀E≥EB:

µ0 = EA +

∫ EB

EA

f0(E) dE (A.2)

In the following, without losing generality, we fix the constants EA and EB such that

the conditions also holds after the injection of particle, thus f1(E) = 1 ∀E ≤ EA

and f1(E) = 0 ∀E ≥ EB. Additionally, we chose the zero energy point to be EA.

In consequence we can avoid writing the limits of the integration everytime and the

electrochemical potential µ0 simply reads:

µ0 =

∫
f0(E) dE (A.3)

After the injection of particles, the electrochemical potential µ1 of the distribution

function f1(E) is:

µ1 =

∫
f1(E)dE =

∫ [
f0(E) + P1(E)

]
dE = µ0 +

∫
P1(E)dE (A.4)

Therefore, the increase in the electrochemical potential ∆µ = µ1 − µ0, results:

∆µ =

∫
P1(E)dE (A.5)

Heat current increase ∆J

The initial distribution function f0(E) carries a heat current J0 that can be calculated

from the integration:

hJ0 =

∫
(E−µ0)

[
f0(E)−Θ(µ0 − E)

]
dE (A.6)

where we have drop the integration limits EA and EB for simplicity and the Θ(µ0−E)

is the Fermi function at zero temperature with electrochemical potential µ0.

After the injection of particles the heat current J1 reads:

hJ1 =

∫
(E−µ1)

[
f1(E)−Θ(µ1 − E)

]
dE (A.7)

In the following we will develop this last equation to arrive to the general form (Eq.

A.1). First, notice that we can write Θ(µ1 −E) = Θ(µ0 −E) + ∆Θµ0,µ1(E) where the
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rectangular function ∆Θµ0,µ1(E) is defined as:

∆Θµ0, µ1(E) =

1 if µ0 < E < µ1,

0 if E < µ0 or µ1 < E.
(A.8)

Therefore the equation A.7 can be written as:

hJ1 =

∫ [
(E−µ0)−∆µ

]
×
{[
f0(E)−Θ(µ0−E)

]
+P1(E)−∆Θµ0, µ1(E)

}
dE (A.9)

hJ1 =

∫
(E − µ0)

[
f0(E)−Θ(µ0 − E)

]
dE

+

∫
(E − µ0)P1(E)dE −

∫
(E − µ0)∆Θµ0, µ1(E)dE

−
∫

∆µ
[
f0(E)−Θ(µ0 − E)

]
dE −

∫
∆µP1(E)dE +

∫
∆µ∆Θµ0, µ1(E)dE

(A.10)

The first integral term in the right hand side of eq. A.10 is the heat current in

the initial distribution function hJ0. The second integral can be written in term of

a characteristic energy E1 which is the mean energy at which additional particles are

injected:

E1 =

∫
EP1(E)dE∫
P1(E)dE

(A.11)

In the third and sixth integral terms in the right hand side of equation A.10, the

∆Θµ0, µ1(E) function reduces the limits of the integration to be done between µ0 and

µ1. Therefore we have:

hJ1 = hJ0 + (E1 − µ0)

∫
P1(E)dE −

∫ µ1

µ0

(E − µ0)dE

−∆µ

∫ [
f0(E)−Θ(µ0 − E)

]
dE −∆µ

∫
P1(E)dE + ∆µ

∫ µ1

µ0

dE

(A.12)

The fourth term in the right hand side in equation A.12 is null since the integrated

function is anti-symmetric around µ0. Additionally, the last two term in equation A.12

cancel each other since
∫
P1(E)dE = ∆µ. Thus, the excess heat current ∆J = J1− J0

is given only by:

h∆J = (E1 − µ0)∆µ− (E − µ0)2

2

∣∣∣∣µ1
µ0

(A.13)

h∆J = (E1 − µ0)∆µ− (∆µ)2

2
(A.14)
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Finally, substituting µ0 = µ1 −∆µ, we obtain:

h∆J = (E1 − µ)∆µ+
(∆µ)2

2
(A.15)

Therefore this is a very general equation for the increase in the heat current due

to the injection of new particles, around a characteristic energy E1, that increases the

electrochemical potential by ∆µ. Furthermore it does not depends on the particular

functional form of the injected distribution of particles P1(E) and neither on the details

of the low energy excitation of the initial distribution function f0(E) which was not

restricted to be a Fermi function.



Appendix B

Propagation Speed and Related

Parameters

Currently there are several publications that describes the interactions between two

co-propagating edge channels in the integer quantum Hall effect (IQHE) regime based

in the Luttinger liquid theory [116, 119, 58, 118, 42, 47]. When investigating the vari-

ous consequences of the Coulomb interaction, different authors describe the properties

of the system using different parameters to characterize the interactions. A central

parameter in these works is the propagation speed of the excitations since it defines

the relevant energy, length and time scales on the experiment. We notice that, the dis-

tinction between some parameters and the actual propagation speed of the excitations

was not clear in some cases. Therefore, the purpose of this appendix is to clarify these

concepts and their relation among the different descriptions. In particular we focus on

the publications that we discuss along the manuscript in relation to our experiment

and gives some estimated values.

The bosonization approach in the Luttinger Liquid description allows to write the

Hamiltonian of the system H = H0 +Hint in term of a local density density interaction

(Section 4.3.3). The non interacting part H0 accounts for the kinetic energy of the

excitations in each edge channel α = 1, 2:

H0 =
∑
α=1,2

π~ vdα
∫
ρ2
α(x) dx (B.1)

where vdα is the drift velocity in each channel within the non interacting description.

A explicit distinction, vd1 6= vd2 is made because they can be slightly different since

they are given by the ratio between the local electric field and the the magnetic field.

The interacting term Hint in the Hamiltonian accounts for the intra and inter edge

channel Coulomb interaction. The screened Coulomb interaction between a particle

at position x1 in the edge channel α and another particle at position x2 in the edge

channel β is described by a short ranged coupling: gαβ(x1, x2) = gαβ δ(x1 − x2). Thus,
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the interacting term reads:

Hint =

∫
ρα(x)gαβ ρβ(x) dx (B.2)

Therefore the matrix element Hαβ of the total Hamiltonian H = H0 +Hint can be

written as:

Hαβ = π~
∫
ρα(x)

[
δαβ vdα + gαβ/π~

]
ρβ(x) dx (B.3)

And the matrix element Vαβ of the global coupling is just defined as:

Vαβ = δαβ vdα + gαβ/π~ (B.4)

We can see that the diagonal terms represents the intrachannel interaction and only

renormalize the drift velocity in each edge channel. The non-diagonal term describes

the interchannel coupling and must be symmetric, gαβ = gβα, due to the Onsager-

Büttiker relations as discussed in Ref. [57].

Propagation speed in Ref. [57, 116]

In Ref. [57] and [116], the case of two edge channels coupled over a finite length L is

described using the scattering formalism. The interacting region is characterized by

a scattering matrix S for edge magnetoplasmons in terms of three parameters which

play, in this case, the same role as the Luttinger or the Fermi liquids parameters [57].

To Follow the notation in Ref. [57], the term gαβ/π~ in eq.B.4 is replaced by the

equivalent term: e2Vαβ/h. Subsequently, they show that the global coupling V can be

written in the matrix representation using the Pauli matrices σz and σx:

V = v̄1 +
∆v

2
σz +Wσx (B.5)

where the three scalar parameters are defined in terms of the three independent cou-

pling terms {V11, V22, V12} that describe the interactions and the non interacting drift

velocities:

v̂ =
vdα + vdβ

2
+
e2

2h
(V11 + V22) (B.6)

∆v =
vdα − vdβ

2
+
e2

h
(V11 − V22) (B.7)

W =
e2

h
V12 (B.8)

These independent parameters {v̄,∆v,W} can be combined again in order to define

a new set of parameters {v0, v, ϕ} in term of which it is written the plasmon scattering
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matrix at finite frequency ω:

S(ω, L) = eiLV
−1

= eiωL/v0eiωL/v(cosϕσz+sinϕσx) (B.9)

where the new parameters are defined as:

v0 =
v̂2 −

[ (
∆v
2

)2
+W 2

]
v̄2

(B.10)

v =
v̄2 −

[ (
∆v
2

)2
+W 2

]
√(

∆v
2

)2
+W 2

(B.11)

tan(ϕ) =
W

∆v/2
(B.12)

As described in section 4.3.3, ϕ is known as the mixing angle. In this way, the

system is described in term of a new set of independent parameters {ϕ, vc, vs} by

introducing the propagation speeds, vc and vs, of the charge (c) and spin (s) modes,

the new eigenmodes of the interacting system, that are given by:

vc =

(
1

v0

− 1

v

)−1

(B.13)

vs =

(
1

v0

+
1

v

)−1

(B.14)

In the last part of Section 4.3.3 we discussed the calculations obtained with this

model presented in Ref. [116, 57]. In particular the Fig. 4.16 shows the probability

Z(E0) that a particle, injected at energy E0, has to propagate across the interacting

region of length L without losing energy. It is important to notice that Z(E0) is given

as a function of E0L/~v, where v is the parameter defined in Eq. B.11. Importantly,

notice that in the non interacting case W ∼ 0, the parameter v can strongly deviates

from the drift velocity, if vd1 ≈ vd2, since it becomes:

v =
2vd1vd2

vd1 − vd2

(B.15)

Propagation speed in Ref. [119]

In Ref. [119] it is experimentally investigated the relaxation of a double step distribu-

tion function created with a biased QPC in the regime of low transparencies (τqpc � 1).

As theoretically predicted in Ref. [58] a metastable state should develop at intermediate

propagation distances as a consequence of the spin-charge separation. A fundamental

parameter to estimated the regime on which the metastable state is expected is given

by a velocity parameter vsc that is defined in the experimental work as follow. When
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the QPC, based with Vs, is set at a given low transmission τqpc, it injects particles in

the edge channel with an average rate: eτqpcVs/h. The uncertainty relation implies

that each electron wavepacket has a spread h/eVs in time and ∆x = vmh/eVs in space,

being vm a typical velocity in the edge channel. Due to the Coulomb interaction the

injected wavepackets splits developing the spin and charge modes that propagates at

velocities vs and vc respectively. The distance Ls(t) between the two component in-

crease with time, and they will be well separated at a time ts for which Ls > ∆x. This

gives ts > ∆x/(vc − vs). At this time, the charge mode has traveled for a distance

Lsc = vcts which results:

Lsc =
vcvm
vc − vs

h

eVs
≈ vcvs
vc − vs

h

eVs
= vsc

h

eVs
(B.16)

where it was taken vm ≈ vs and it was defined the velocity vsc as:

vsc =
vcvs
vc − vs

(B.17)

In Ref. [119], the length Lsc is considered as the length that is required for the

spin-charge separation where the metastable state is expected to be observed. Lsc

is obtained by estimating vsc from several experimental measurements assuming an

exponential relation between the measured step width ∆ and the propagation distance

L:

∆/eVs = e(−L/Lsc) = e(−e|Vs|L/hvsc) (B.18)

Importantly, notice that the velocity vsc is similar to the parameter v discussed in

the previous section in relation with the description in Ref. [116, 57]. In the interacting

regime we can write:

v = 2
vsvc
vc − vs

= 2 vsc (B.19)

Propagation speed in Ref. [44]

Ref. [44] is the seminal work in which it was proposed that the development of the

spin and charge eigenmodes is responsable for the dephasing that was experimentally

observed in Mach-Zehnder interferometers (MZI) at filling factor ν = 2 [35, 33, 34, 36].

According to this work, the temperature dependence of the visibility and the period of

its oscillations as a function of the bias voltage (the lobe structure) are determined by

an energy scale ε given by:

ε = 2
vsc

LU + LD
(B.20)

where LU and LD are the lengths of the two arms in the interferometer. This energy

scale ε would depend only on the slow mode speed vs in the case of vc � vs that

is obtained for a long range Coulomb interaction. However, in the general case they
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found that the dephasing length lϕ follows:

lϕ =
vsc~
πkBT

(B.21)

Estimated values

In Ref. [127, 52] it was reported that for GaAs/AlGaAs devices in the integer quantum

Hall regime at filling factor ν = 2, a standard drift velocity vd is found in the range

vd ∈ [5, 50]× 104 m/s. This range was obtained from different sources which concerns

only devices where the edges were defined by metal gates as recapitulated in Ref. [127].

Moreover, it was indicated that devices without metal gates can display a typical drift

velocity one order of magnitude larger.

Following the procedure described in the section B, the velocity vsc measured in

their devices was estimated to be vsc ∼ 2.7×104 m/s. However, by analysis of the data

reported in Ref. [52] using the same procedure (Eq. B.18) it indicates vsc ∼ 8.7× 104

m/s in that case. Moreover, it is reported that this values are comparable to the range

vsc = [6.0; 7.5]× 104 m/s obtained from time-of-flight experiments (See [119] and Ref.

therein).

Additionally, using Eq. B.21 we can estimate a value for vsc using the experimental

determination of the dephasing length lϕ ∼ 20µm measured at a temperature T = 20

mK [33]. This estimation gives vsc ∼ 17× 104 m/s.

Finally, in our experiments we measured an exponential decay of the quasiparticle

peak’s amplitude as a function of the injection energy E1. The characteristic energy

Edecay of such behavior can be scaled with the propagation distance L to obtain a

characteristic speed vdec:

Edecay = ~v/L (B.22)

As can be seen in the Fig. B.1 from these measurements we obtain a value of the speed

vdec ∼ 3.5× 104 m/s which is of the order of the speed vsc mentioned before.
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Figure B.1: Characteristic energy Edecay measured from the exponential decay of the quasi-
particle peak’s amplitude in spectra taken at different propagation lengths L.
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Reference Velocity
Corresponding 

velocity in the other 
references

Defined as / Related to

us
𝑣𝑐 - - Charge mode velocity

𝑣𝑠 - - Spin mode velocity

K. Itoh et al.
[119]

𝑣𝑠𝑐
𝑣𝑐𝑣𝑠
𝑣𝑐 − 𝑣𝑠

It defines the minimum length for the 
spin-charge separation

C. Grenier et al.
[57,116]

𝑣+ 𝑣𝑐 Charge mode velocity

𝑣− 𝑣𝑠 Spin mode velocity

𝑣 2 𝑣𝑠𝑐 They parametrize the scattering matrix 
for plasmons for two interacting edge 

channels𝑣0 2
𝑣𝑐𝑣𝑠
𝑣𝑐 + 𝑣𝑠

Ivan P. Levkivskyi
et al.
[44]

𝑢 𝑣𝑐 Charge mode velocity

𝑣 𝑣𝑠 Spin mode velocity

𝑢 𝑣

𝑢 − 𝑣
𝑣𝑠𝑐

It defines the energy scale for the 
temperature dependence and the 
period of the lobe structure in the 

visibility of MZI.

𝑢 𝑣

𝑢 + 𝑣

𝑣0
2

Related to the phase shift and the 
phase rigidity in a MZI.

Figure B.2: Comparison between the velocities that are defined in the different references
which were discussed in this appendix. Following the corresponding reference, the rightmost
column briefly describes in which mechanism each parameter is involved.





Symbols and Constants

Tph : Phonon temperature

Te : Electronic temperature

T : Transmission probability

µ : Electrochemical potential

 L : Propagation distance

λF : Fermi wavelength

EF : Fermi energy

e : Electron charge (magnitude) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.602 10−19C

v : Vector

v̂ : Scalar operator

v̂ : Vectorial operator
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tron quantum optics in quantum hall edge channels. Modern Physics Letters B,

25(12n13):1053–1073, 2011.

[117] Erwann Bocquillon, Vincent Freulon, P Degiovanni, B Plaçais, A Cavanna, Y Jin,
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Relax Team. Ramiro Rodriguez, François Parmentier, Patrice Roche.

Arg Team. Sofia, Raul, Ayelen, Ramiro, Mery, Matias.



201


	Acknowledgments
	Acronyms
	Content
	Abstract
	Résumé
	Introduction (French)
	Transport mésoscopique dans les semiconducteurs
	L'effet Hall quantique
	Optique quantique électronique
	Le rôle des interactions
	Décohérence dans les canaux de bord
	Relaxation dans les canaux de bord
	Relaxation á des énergies définies
	Configuration expérimentale
	Relaxation du pic de quasiparticules
	Courant de Chaleur
	Réduction de la relaxation
	Coexistence de nombreux pics de quasiparticules


	Introduction
	Mesoscopic Transport in Semiconductors
	The Quantum Hall Effect
	Electron Quantum Optics
	The Role of Interactions
	Decoherence in Edge Channels
	Relaxation in Edge Channels
	Finite Energy Relaxation
	Experimental Configuration
	Quasiparticle Peak Relaxation
	Heat Current
	Suppression of the Relaxation
	Coexistence of Multiple Quasiparticle Peaks


	The Quantum Hall Effect
	2-Dimensional Electron Gas
	GaAs/AlGaAs heterostructure
	Electronic properties

	Classical Dynamics: Weak Fields
	Motion in an Electric Field: Drude's model
	Motion in a Magnetic Field: Cyclotron motion
	Motion in Magnetic and Electric Fields
	The Classical Hall Experiment

	Quantum Hall Effect: Dynamics in Strong Fields
	Observation of the Quantum Hall Effect
	Orbital Quantization: Landau Levels
	Orbital Drift: Finite Group Velocity
	Finite Size System: Edge States

	Disorder
	Stability of the Fermi Level
	Pinning of Localized States
	Percolation


	Electron Quantum Optics
	Optic with Electrons
	Landauer Description
	Ohmic Contacts
	Quantum Point Contact

	Quantum Dot
	Charge quantization
	Energy quantization
	Charging effects
	Coulomb Blockade
	QD thermometry
	QD as an energy filter
	Excited states

	Interactions in 1D
	Edge Reconstruction
	Luttinger Liquid Theory
	A Chiral Luttinger Liquid in the IQHE


	Relaxation of a double step distribution function
	Description of the experiment
	Distribution Functions Partially Relaxed
	The Electrochemical Potential
	The Quasiparticle Energy
	Transmission Dependence
	Conclusions

	Relaxation of a Quasiparticle Peak
	Motivation
	Experimental description
	Finite bandwidth emission and detection
	Measured Quasiparticle Peak at Short Distance
	Relaxation vs Injection Energy
	Relaxation vs Temperature
	Relaxation vs Length
	Signatures of a Quasiparticle Peak Revival
	Conclusions

	Charge and Heat Current
	The electrochemical potential
	The Heat Current
	Heat Current vs Electrochemical Potential
	The heat current vs Distance
	The heat current vs Temperature
	Conclusions

	Decoupling the Edge States
	The Suppression of the Relaxation
	Reducing the Relaxation at L=0.75 m 
	Reducing the Relaxation at L=0.48 m 
	Intermediate Regime vs Distance

	Coexistence of Quasiparticle Peaks
	Conclusions

	Conclusions and Perspectives
	Injected Heat Current
	Propagation Speed and Related Parameters
	Symbols and Constants

