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Abstract 

Mercury (Hg) is an ubiquitous heavy metal which is highly toxic and causes great concern all over 

the world. Once Hg is emitted to the atmosphere by natural sources, anthropogenic sources and re-

emitted sources, it can experience a series of redox processes and deposit back to the Earth’s 

surface. Early atmospheric Hg model simulations indicated that atmospheric elemental Hg(0) 

emissions are oxidized by OH, ozone or halogens to more reactive divalent Hg(II) forms. Recent 

reports suggest that Hg(0) is oxidized to Hg(II) by a Br-induced two-stage reaction and results in 

formation of a series of end products of Hg(II)XY complexes (e.g., HgCl2, HgBrOH, HgBr2, 

HgBrI, HgBrCl, HgBrNO2, HgBrONO, HgBrOOH, HgBrOBr, HgBrOI, HgBrOCl). 

Photoreduction of atmospheric Hg(II) compounds back to Hg(0) competes with Hg(II) deposition 

and changes the magnitude and pattern of atmospheric Hg(II) deposition via rainfall and dry 

deposition. Hg(II) photoreduction is therefore important to understand. Photoreduction of 

atmospheric Hg(II) compounds can take place in both aqueous phase and gaseous phase. To 

balance fast oxidation of atmospheric Hg(0), a fast aqueous photoreduction of atmospheric Hg(II) 

complexes is assumed in cloud water and optimized in atmospheric Hg models. However, lab or 

field observation for this process is lacking. The objectives of this PhD research are to conduct 

aqueous phase photoreduction of atmospheric Hg(II) complexes in rainfall. 

Photoreduction experiments of simulated rainfall solutions containing known amounts of 

Hg, halides (Cl, Br, I) and DOC (dissolved organic carbon) indicated that the presence of halides 

bound to Hg(II) inhibits Hg(II) photoreduction. Rainwater Hg(II) photoreduction rates, under fully 

sunlit conditions, are an order of magnitude slower than the optimized maximum in-cloud 
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photoreduction rate of > 1.0 h−1 in global Hg models. The ensemble of observations suggests that 

atmospheric gaseous HgBr2, HgCl2, HgBrNO2, HgBrHO2 forms, scavenged by aqueous aerosols 

and cloud droplets, are converted to Hg(II)-DOC forms in rainfall due to abundant organic carbon 

in aerosols and cloud water. Aqueous phase photoreduction of Hg(II)-DOC complexes is the 

dominant reduction pathway within clouds and rainfall and proceeds at reaction rates that are 

slower than in terrestrial and marine waters, likely due to different origin and molecular structure 

of atmospheric DOC. The model results based on the observed rainfall Hg(II) photoreduction rate 

constants indicated that photoreduction of Hg(II)-DOC in aqueous aerosols and clouds is too slow 

to balance fast oxidation of atmospheric Hg. Our collaborators have in parallel made theoretical 

estimates of the gas phase photolysis rates of Hg(II) compounds. The results of our combined 

studies show that gas phase photolysis of Hg(II) compounds can be fast, and is fast enough to 

rebalance the GEOS-Chem modeled atmospheric Hg cycle between Hg(0) oxidation and Hg(II) 

reduction. 

 

Key words: 

Mercury, redox reaction, rainwater, divalent speciation, photoreduction rate, halide, organic 

carbon, atmospheric model  
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Résumé  

Le mercure (Hg) est un métal lourd omniprésent et hautement toxique, lequel suscite de vives 

inquiétudes dans le monde entier. Une fois que le Hg est émis dans l'atmosphère par des sources 

naturelles, des sources anthropiques et des sources réémises, il peut subir une série de processus 

d'oxydoréduction et se déposer à la surface de la Terre. Les premières simulations de modèles 

atmosphériques du Hg ont indiqués que le Hg(0) atmosphérique est oxydé par OH, l'ozone ou les 

halogènes. Un rapport récent propose que le Hg(0) est principalement oxydé en complexes de 

Hg(II) par une réaction en deux étapes induite par le Br et aboutit à la formation d'une série de 

produits finaux de complexes de Hg(II)XY (par exemple, HgCl2, HgBrOH, HgBr2, HgBrI, HgBrCl, 

HgBrNO2, HgBrONO, HgBrOOH, HgBrOBr, HgBrOI, HgBrOCl). La photoréduction des 

composés atmosphériques de Hg(II) entre ensuite en compétition avec les dépôts de Hg(II) ce qui 

modifie l'ampleur et la variabilité des dépôts atmosphériques de Hg(II) par voie humide (pluie) et 

par voie sèche (poussières). La photoréduction des composés atmosphériques de Hg(II) pourrait 

avoir lieu à la fois en phase aqueuse et en phase gazeuse. Pour équilibrer l'oxydation rapide du 

Hg(0) atmosphérique, on suppose une photoréduction aqueuse rapide des complexes de Hg(II) 

dans les nuages et optimisée dans le modèle CTS. Cependant, l'observation en laboratoire ou sur 

le terrain de ce processus est manquante. Les objectifs de cette thèse sont de déterminer les vitesses 

de photoréduction en phase aqueuse de complexes atmosphériques de Hg(II) dans la pluie. 

Des expériences de photoréduction des eaux de pluies simulées contenant des quantités 

connues de Hg, d'halogénures (Cl, Br, I) et de DOC (carbone organique dissoute) ont montré que 

la présence d'halogénures inhibe la photoréduction de Hg(II). Les taux de photoreduction des eaux 

de pluie, dans des conditions d'ensoleillement total, sont d'un ordre de grandeur inférieur au taux 

optimisé de photoreduction dans les nuages > 1,0 h-1 dans les modèles globaux de Hg. L'ensemble 
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des observations suggère que les formes HgBr2, HgCl2, HgBrNO2, HgBrHO2 gazeuses 

atmosphériques, absorbées par les aérosols aqueux et les gouttelettes de nuages, sont converties en 

formes Hg(II)-DOC dans les précipitations en raison de l'abondance de carbone organique dans 

les aérosols et les eaux de nuages. La photoréduction en phase aqueuse des complexes Hg(II)-

DOC est la principale voie de réduction dans les eaux atmosphériques. Elle s'effectue à une vitesse 

de réaction plus lente que dans les eaux terrestres et marines, probablement en raison de l’origine 

et de la structure moléculaire différentes du DOC atmosphérique. Les résultats du modèle basés 

sur les constantes de vitesse de photoréduction du Hg(II) observées dans les précipitations ont 

indiqué que la photoréduction du Hg(II)-DOC dans les aérosols et les nuages aqueux est trop lente 

pour équilibrer l'oxydation rapide du Hg(0) atmosphérique. Nos collaborateurs ont estimés 

théoriquement les vitesses de photolyse du Hg(II) en phase gazeuse. Les résultats de nos études 

combinées montrent que la photolyse en phase gazeuse de composés de Hg(II) peut être rapide et 

suffisamment rapide pour rééquilibrer le cycle de Hg atmosphérique modélisé. 

 

Mots clés: 

Mercure, réaction redox, eaux de pluie, précipitation, spéciation, cinétique de réduction, halogènes, 

carbone organique, modèle atmosphérique  
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Chapter 1. Introduction 

This Chapter is an overview of Hg characteristics and Hg transport and transformation mechanisms 

in the environment including Hg toxicity, atmospheric Hg sources and deposition, atmospheric Hg 

redox processes, and global atmospheric Hg model development. 

1.1. Global Hg cycle 

Mercury(Hg) is an unusual persistent and toxic heavy metal contaminant for human and ecosystem 

health damages that has been of great concern to the public and policy makers (Streets et al. 2017). 

Hg is released to troposphere mainly as Hg(0) (Gaseous Elemental Mercury, GEM), less as Hg(II) 

(including Gaseous Oxidized Mercury (Hg(II)g) and Particulate Bound Mercury (Hg(II)p) ) by natural, 

anthropogenic and remitted sources (Horowitz et al. 2017b). Subsequently, a small fraction of Hg(0) 

will be vertically released to stratosphere and further oxidized to Hg(II),  and finally deposited back 

to troposphere (Horowitz et al. 2017b). Different Hg species in the atmosphere result in different 

physicochemical properties (e.g., solubility, chemical activity, atmospheric lifetime) (Ariya et al. 

2015a). Hg(0) is relatively insoluble, inert and has a long residence time of several months to a year 

in the atmosphere compared to Hg(II) (Schroeder and Munthe 1998, Lin and Pehkonen 1999b). It can 

undergo regional and worldwide transport by atmospheric circulation due to its long lifetime in the 

atmosphere, and be directly absorbed by plants and oceans (Jiskra et al. 2018b). Hg(0) can also be 

oxidized to Hg(II), which readily partitions into particles associated with aerosols and clouds and 

deposits to terrestrial and aquatic systems associated with dry and wet mechanisms. The oxidation of 

Hg(0) to Hg(II) results in reactive, soluble Hg species with shorter atmospheric residence times of a 

few days to a few weeks (Ariya et al. 2015a). Following atmospheric Hg deposition, a portion of Hg 

in the aquatic ecosystems will be transformed into neuro-toxic monomethyl-mercury (MeHg), which 

can be further bioaccumulated and biomagnified along aquatic food chains and poses a  threat to 

human and wildlife health (Feng and Qiu 2008). A fraction of Hg circulates in the aquatic system and 

continues to deposit to deep-water sediment (Selin 2009).  Hg(II) and Hg(II) compound existed in the 

atmosphere and deposited in the terrestrial and aquatic systems can be remitted to atmosphere after 
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reduction to Hg(0) (Si and Ariya 2018). Hg has been defined as a global pollutant due to its long-

range transport and subsequent deposition, persistence in the environment, accumulation and 

magnification in the food chains, adverse effect on human and ecosystem health (Liu, Cai and 

O'Driscoll 2012).  

The inventory of Hg emission to atmosphere by natural, anthropogenic and reemitted 

processes has been widely studied (Streets et al. 2017, UNEP 2013a). The major global atmospheric 

Hg reservoir is 3900Mg. year-1 including 3500Mg. year-1 Hg(0) and 400Mg. year-1 Hg(II), which 

indicates that Hg(0) is the predominant form of atmospheric Hg emission (7490 Mg. year-1, figure 2). 

Amounts of atmospheric Hg emission from all sources were defined in a wide range (5000-6000 Mg. 

year-1) due to the uncertainties of Hg sources and poor understand of atmospheric Hg(0)/Hg(II) redox 

reactions (Horowitz et al. 2017b). As a result, Hg emissions were overestimated or underestimated in 

the model compared to the observed values. Emissions of natural, anthropogenic and reemitted 

sources account for 3%, 27% and 70% of total annual emission respectively (figure 3), which indicated 

that reemitted sources are the predominant pathways of atmospheric Hg emission, much larger than 

natural sources and anthropogenic sources.   

Natural source of atmospheric Hg is an important sources for Hg(0) emission. The release of 

natural process is constituted by 250Mg. year-1 including the weathering of Hg-containing rocks, 

geothermal activity and volcanism (Streets et al. 2017). Anthropogenic sources are widely distributed 

on the earth surface including artisanal and small-scale gold mining, coal burning, ferrous and non-

ferrous metals production, cement production. Anthropogenic source is not only an important source 

for Hg(0) emission, but also a dominant source for Hg(II) emission. Total annual emission of 

anthropogenic Hg is about 2270Mg. year-1, which consists of 1470Mg. year-1 Hg(0) and 800Mg. year-

1 Hg(II). Emission of deposited mercury from oceans, lakes, rivers and soils is an important natural 

process, called re-emitted sources. Both natural and anthropogenic sources are potential re-emitted 

sources. Total annual emission of reemitted part is 6020Mg year-1, which refers to 4600Mg year-1 

ocean sources, 1200Mg year-1 vegetation, soil, and snow sources, 220Mg year-1 forest or biomass 
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burning sources (Figure 1). Hg absorbed by plant can be reemitted to air by forest or biomass burning. 

Ocean is an important atmospheric Hg reservoir that contributes a large number of Hg(0) (54%, figure 

1) and inputs large number of atmospheric Hg (Obrist et al. 2018). It has been reported that Hg(0) 

evasion from ocean is induced by reduction of dissolved Hg(II). But the detailed reduction pathway 

and mechanism of oceanic Hg is not very clear due to the low concentration of Hg and complicated 

physical-chemical properties in the ocean. More work is needed to conform reduction emission of 

oceanic Hg to atmosphere, to better establish database for global atmospheric Hg model development.  

Deposition of atmospheric Hg(0) and Hg(II) to earth surface is an important process for Hg 

exchange between the atmosphere and terrestrial and aquatic systems (Ariya et al. 2015a). Hg(0) and 

Hg(II) (including Hg(II)g and Hg(II)p) can be deposited to terrestrial and aquatic systems by wet and 

dry processes and absorption of plants and oceans (Jiskra et al. 2018b). Hg deposition is an important 

pathway for Hg input to ocean, which results in 54% Hg(II) deposition to ocean from atmosphere 

(Obrist et al. 2018). Hg(0) uptake by plants is a potential pathway for sink of atmospheric Hg to 

terrestrial environment (Jiskra et al. 2018b). 
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In the figure 1, the total input of Hg(0) and Hg(II) from atmospheric environment to terrestrial 

environmental is about 2200Mg.year-1, which is much lower than the amount of  3200 Mg.year-1 

achieved from recent research (Obrist et al. 2018). But the remission of Hg from terrestrial 

environmental to atmospheric environment is approximately 1420 Mg.year-1, which is consistent with 

the range of 1700-2800 Mg.year-1 achieved from recent research (Selin 2009, Liu et al. 2012, Amos 

et al. 2013, Mason et al. 2012, Smith-Downey, Sunderland and Jacob 2010).  

Hg, especially methylmercury is highly toxic on human and ecosystem health (Liu et al. 2012). 

Both inorganic Hg and MeHg can be accumulated and biomagnified through food chains (Figure 4). 

In the figure 4, the concentrations of Hg and MeHg in the aquatic system is in the range of 1-5ppt and 

0.05-1.0ppt respectively. As a result, the concentrations of Hg and MeHg in the high trophic level of 

Bass have reached in the range of 500-5000ppb for both inorganic Hg and MeHg species. Inorganic 

Hg and MeHg have accumulated 105-5*106 and 5*105-108 times respectively. Human history has 

experienced two notorious Hg poisoning events, which resulted in serious diseases and casualties. One 

Figure 1 Global budget of tropospheric mercury 

in the GEOS-Chem 3D Hg model. HgII includes 

gaseous and particulate forms in local 

thermodynamic equilibrium (Amos et al., 2012). 

The bottom panel identifies the major chemical 

reactions from Table 1 cycling Hg0, Hg(I) and 

HgII. Hg masses are in Mg, and rates (fluxes) in 

Mg yr-1. Reactions with global rates lower than 

100 Mg yr-1 are not shown. (Figure from 

Horowitz et al., 2017) 
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of them is the Minamata incident, which was caused by the release of highly toxic MeHg in industrial 

wastewater from the 1930s to the 1960s in Minamata, Japan.  The other event is the Iraqi disaster in 

1971, where organo-mercury fungicide treated seed grains were consumed by humans. Consumption 

of fish is a dominant pathway for human exposure to MeHg (Kessler 2013).  

In order to reduce mercury emissions and limit mercury pollution, a global treaty named 

UNEP Minamata Convention was signed by 126 countries in 2013 (UNEP 2013b). This treaty calls 

for more research on the source, transport and transformation of Hg in the environment as well as 

the relationship between Hg exposure and environmental variables. 

  

Figure 2 Amount and ratio of annual global Hg(0)/Hg(II) emission. Data are from Horowitz et al., 

2017 (Horowitz et al. 2017b). Hg(0) is emitted from anthropogenic and re-emitted sources, Hg(II) is 

emitted from natural and anthropogenic sources. 
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Figure 3 Annual global atmospheric Hg emission from natural source, anthropogenic source, re-

emission source. Data are extracted from Horowitz et al., 2017 (Horowitz et al. 2017b). Natural 

source is geogenic source, re-emitted sources refer to ocean, vegetation, soil, snow and biomass 

burning. 

 

 

 
Figure 4 Mercury biomagnification in the food web. From Cleckner et al., 1998. Trophic transfer of 

methylmercury in the northern Everglades. Biogeochemistry, vol40, pp.347-361. 
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1.2. Redox reactions of atmospheric Hg 

Once Hg is emitted to atmosphere, it can undergo a series of redox processes, modifying 

atmospheric Hg speciation, transport and deposition (Ariya et al. 2015a). Chemistry transport model 

(CTMs) is an important tool for understanding global Hg cycle and predicting Hg exposure, has 

drawn much attention on Hg(0) oxidation and Hg(II) reduction (Horowitz et al. 2017b, Dibble, Zelie 

and Mao 2012a, Lin and Pehkonen 1999b, Wang et al. 2014b). There are many potential Hg(0) 

oxidants, such as O3, OH, HO2, H2O2, NO2, NO3. But Hg(0) is thought to be oxidized to Hg(II) by a 

two-stage Br-induced reaction  (Horowitz et al. 2017b, Wang et al. 2014b, Holmes, Jacob and Yang 

2006b) (Figure 1). First, Hg(0) is oxidized to intermediate Hg(I)Br, which is very unstable, and can 

be readily dissociated back to Hg(0). Hg(I)Br can also be further oxidized to Hg(II) complexes by a 

series of atmospheric radicals (e.g., OH, Br, I, Cl, NO2, HO2, BrO, IO, ClO). As a result, a series of 

end products of Hg(II)XY complexes (e.g., HgCl2, HgBrOH, HgBr2, HgBrI, HgBrCl, HgBrNO2, 

HgBrONO, HgBrOOH, HgBrOBr, HgBrOI, HgBrOCl, HgO) including halogen atoms and oxygen-

containing species are produced (Horowitz et al. 2017b). Variations of Hg(0) oxidation has been 

implemented in the global Hg CTMs and resulted in a short residence time of atmospheric Hg, 

which is not matched to observations (Horowitz et al. 2017b). 

Aqueous phase Hg(II) photoreduction has been widely observed in the earth surface water 

(Qureshi et al. 2011b). Reduction of Hg(II) to Hg(0) in the aquatic system is dominated by abiotic 

and biotic processes (Qureshi et al. 2011b, Amyot et al. 1994, Zhang and Lindberg 2001, Amyot et 

al. 2004, Mason, Morel and Hemond 1995, Siciliano, O'Driscoll and Lean 2002). Biotic processes 

include microbially mediated reduction, heterotrophic bacterial and algae reduction (Rolfhus and 

Fitzgerald 2004). Abiotic processes are dominated by photochemically mediated reactions (Amyot 

et al. 2000). Photoreduction of Hg(II) is strongly dependent on light wavelength and intensity 

(Garcia et al. 2005). Compared to visible light, ultraviolet radiation (UV) was reported to be more 

efficient for photoreduction of Hg(II) (Amyot, Gill and Morel 1997, Lalonde et al. 2004, O'Driscoll 

et al. 2006). Dissolved Organic Matter (DOM) is widely distributed in the aquatic environment and 
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can strongly bind with mercury (Ravichandran 2004). It has been reported that Hg must bind to 

dissolved organic matter (DOM) before photoreduction could take place (Costa and Liss 1999) 

(Allard and Arsenie 1991). Hg(II) could be photoreduced by two mechanisms. First, Hg(II) or Hg(I) 

is directly reduced by ligand metal charge transfer (LMCT).  Second, Hg(II) is reduced by a formed 

reactive intermediate (e.g., OH2·).  

Inorganic (e.g., halides) and organic ligands (e.g., DOM) are widely present in the aquatic 

system. Dissolved divalent Hg is readily bound to different kinds of inorganic and organic ligands 

and forms Hg-inorganic and Hg-organic complexes. The binding of Hg to different ligands and sites 

determines the amount of reducible form of Hg(II) complexes (O'Driscoll et al. 2006). The 

introduction of light wavelength and intensity would further influence photoreducible form of Hg(II) 

complexes. The process of Hg(II)-DOM photoreduction would be inhibited in the presence of halide 

ligands due to the binding competition between Hg-DOM complexes and Hg(II)-halide complexes 

(Allard and Arsenie 1991). 

Reduction of atmospheric Hg(II) compounds is poorly understood. Little experimental 

observational resulted in the lack of reduction kinetics and mechanisms in the atmospheric liquid 

water (Pehkonen and Lin 1998a, Seigneur, Vijayaraghavan and Lohman 2006b). Aqueous SO3 and 

HO2 have been considered dominant reductants for atmospheric Hg(II) reduction (Pehkonen and Lin 

1998a). But aqueous reduction of atmospheric Hg(II) by SO3 and HO2 are denied due to their 

irrelevance of global scale (Horowitz et al. 2017b). To balance fast Hg(0) oxidation in the model, a 

fast aqueous-phase photoreduction of atmospheric Hg(II) compounds has been assumed in cloud and 

the reduction rates are optimized in Global Hg CTMs (Selin et al. 2007a, Horowitz et al. 2017b) 

(Figure 1). Due to the fast reduction rate constants (>~1-3h-1), the lifetime of in-cloud Hg(II) is <1h. 

Therefore, it is important to explore atmospheric aqueous Hg(II) reduction kinetics and mechanism 

and apply it for development of global Hg CTMs (Horowitz et al. 2017b, Seigneur et al. 2006b, 

Gardfeldt et al. 2003). In this PhD project we will address this data gap, by studying the 
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photoreduction rates of Hg(II) species in rainwater, and in experimental solutions containing halide 

ions (Cl, Br, I) and dissolved organic matter. 

 

1.3. The objectives of this study 

In order to validate fitted photoreduction rates of atmospheric Hg(II) in CTM models, photoreduction 

rate observations in rain water were made in this PhD research. Chapter 1 is an overview of Hg 

characteristics (atmospheric Hg transport and transformation, atmospheric Hg sources and deposition, 

Hg toxicity), redox reaction of atmospheric Hg (atmospheric Hg oxidation, dissolved Hg(II) reduction 

in the aquatic system, model development of aqueous phase reduction of atmospheric Hg(II)). The 

rainfall sampling and laboratory photoreduction experiments are detailed in Chapter 2. The results of 

these experiments are presented in detail in Chapter 3, and include additional, simulated rainwater 

experiments in the Hg – halide – DOC system, including thermodynamic equilibrium speciation 

calculations. In Chapter 4 we compare the photoreduction rates measured in the laboratory 

experiments (both simulated sunlight and real sunlight) with the photoreduction rate in Hg CTMs, and 

re-assess photoreduction fluxes of atmospheric aqueous Hg(II) and gaseous Hg(0) in these global Hg 

models. To do so, we collaborate with Spanish, American and Russian colleagues who are experts in 

Hg modeling, and who have performed all the model simulations. The rainfall photoreduction rates 

observed in Chapter 3, prove to be critical in revising modern atmospheric Hg models in Chapter 4. 

Chapter 5 closes this PhD thesis with a summary of conclusions and perspectives for future research. 
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Chapitre 1. Introduction 

Il s'agit d'un aperçu des caractéristiques du mercure et des mécanismes de transport et de 

transformation du mercure dans l'environnement, notamment la toxicité atmosphérique du mercure, 

les sources et dépôts de mercure dans l'atmosphère, les processus d'oxydoréduction du mercure dans 

l'atmosphère et son fractionnement isotopique, ainsi que l'élaboration du modèle de mercure 

atmosphérique dans le monde. 

1.1. Cycle global du mercure 

Le mercure (Hg) est un contaminant persistant et toxique, responsable des dommages pour la santé de 

l'homme et des écosystèmes, qui préoccupe grandement le public et les décideurs (Streets et al. 2017). 

Le mercure est rejeté dans la troposphère principalement sous forme de Hg(0) (mercure élémentaire 

gazeux, GEM), et en une moindre fraction en Hg(II) (y compris le mercure oxydé gazeux (Hg(II)g) et 

le mercure lié aux particules (Hg(II)p)) par des origines naturelles, anthropiques et réémises (Horowitz 

et al. 2017). Les différentes espèces de mercure présentes dans l'atmosphère ont des propriétés 

physicochimiques différentes (par exemple, la solubilité, l'activité chimique, la durée de vie dans 

l'atmosphère) (Ariya et al. 2015). Le Hg(0) est relativement insoluble, inerte et a une longue durée de 

vie dans l'atmosphère de plusieurs mois à un an par rapport au Hg(II) (Schroeder et Munthe, 1998; 

Lin et Pehkonen, 1999). Le Hg(0) peut subir un transport régional et mondial par la circulation 

atmosphérique en raison de sa longue durée de vie dans l'atmosphère et être directement absorbé par 

les plantes et les océans (Jiskra et al. 2018). Le Hg(0) peut également être oxydé en Hg(II), qui se 

dépose dans les systèmes terrestres et aquatiques associés aux mécanismes de dépôt secs et humides. 

L'oxydation du Hg(0) en Hg(II) se traduit par la création d'espèces de mercure solubles réactives 

présentant des temps de séjour dans l'atmosphère plus courts, de quelques jours à quelques semaines 

(Ariya et al. 2015). À la suite des dépôts atmosphériques de mercure, une partie de celui-ci dans les 

écosystèmes aquatiques sera transformée en monométhyle-mercure (MeHg) neurotoxique, qui peut 

être bioaccumulé et bioamplifié le long des chaînes alimentaires aquatiques et constitue une menace 

pour la santé humaine et de la faune (Feng et Qiu 2008). Une fraction de mercure circule dans le 
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système aquatique et se déposera dans les sédiments marins profonds (Selin 2009). Les composés en 

Hg(II) présents dans l'atmosphère et déposés dans les systèmes terrestre et aquatique peuvent être 

remis dans l'atmosphère après réduction en Hg(0) (Si et Ariya 2018). Le mercure a été défini comme 

un polluant mondial en raison de son transport à longue distance et de ses dépôts ultérieurs, de sa 

persistance dans l'environnement, de son accumulation dans les chaînes alimentaires, et de ses effets 

néfastes sur la santé humaine et des écosystèmes (Liu, Cai et O'Driscoll 2012). 

 

1.2. Réactions redox du Hg atmosphérique 

Une fois que le mercure est émis dans l'atmosphère, il peut subir une série de processus rédox, 

modifiant la spéciation, le transport et le dépôt de mercure dans l'atmosphère (Ariya et al. 2015). Le 

modèle de transport chimique (CTM) est un outil important pour la compréhension du cycle global du 

mercure et la prévision de l'exposition au mercure. De nombreux travaux ont été réalisés sur 

l'oxydation du Hg(0) et la réduction du Hg(II) (Horowitz et al. 2017, Dibble, Zelie et Mao 2012, Lin 

et Pehkonen 1999, Wang et al. 2014). Il existe de nombreux oxydants potentiels pour le Hg(0), tels 

que O3, OH, HO2, H2O2, NO2, NO3. Cependant, on pense que le Hg(0) s'oxyde en Hg(II) par une 

réaction induite par le Br en deux étapes (Horowitz et al. 2017, Wang et al. 2014, Holmes, Jacob et 

Yang 2006). Premièrement, le Hg(0) est oxydé en un Hg(I)Br intermédiaire, qui est très instable et 

peut être facilement dissocié en Hg(0). Le Hg(I)Br peut également être oxydé davantage en complexes 

Hg(II) par une série de radicaux atmosphériques (par exemple OH, Br, I, Cl, NO2, HO2, BrO, IO, ClO). 

En conséquence, une série de produits finis de complexes Hg(II)XY (par exemple, HgCl2, HgBrOH, 

HgBr2, HgBrI, HgBrCl, HgBrNO2, HgBrONO, HgBrOOH, HgBrOB, HgBrOI, HgBrOI, HgBrOI, 

HgBrOl, HgBrOl, HgBrIOH, HgBrOO) (Horowitz et al. 2017). Des mécanismes d'oxydation du Hg(0) 

ont été mises en œuvre dans les CTMs globaux pour le mercure et ont abouti à un court temps de 

séjour du mercure dans l'atmosphère, ce qui ne correspond pas aux observations (Horowitz et al. 2017). 

La photoréduction en phase aqueuse de Hg(II) a été largement observée dans les eaux terrestres 

et marines (Qureshi et al. 2011). La réduction du Hg(II) en Hg(0) dans le système aquatique est 
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dominée par des processus abiotiques et biotiques (Qureshi et al. 2011, Amyot et al. 1994, Zhang et 

Lindberg 2001, Amyot et al. 2004, Mason, Morel et Hemond 1995, Siciliano, O'Driscoll et Lean 2002). 

Les processus biotiques comprennent la réduction à médiation microbienne, la réduction par des 

bactéries hétérotrophes et des algues (Rolfhus et Fitzgerald, 2004). Le processus abiotique est dominé 

par la médiation photochimique (Amyot et al. 2000). La photoréduction du Hg(II) dépend fortement 

de la longueur d'onde et de l'intensité de la lumière (Garcia et al. 2005). Comparativement à la lumière 

visible, le rayonnement ultraviolet (UV) serait plus efficace pour la photoréduction du Hg(II) (Amyot, 

Gill et Morel 1997, Lalonde et al. 2004, O'Driscoll et al. 2006). La matière organique dissoute (DOM) 

est largement répandue dans l'environnement aquatique et peut se lier fortement au Hg(II) 

(Ravichandran 2004). Il a été rapporté que le mercure doit se lier à la matière organique dissoute 

(DOM) avant que la photoréduction puisse avoir lieu (Costa et Liss, 1999). Le Hg(II) pourrait être 

photo-réduit par deux mécanismes. Premièrement, le Hg(II) ou le Hg (I) est directement réduit par 

transfert de charge de métal à ligand (LMCT). Deuxièmement, le Hg(II) est réduit par un intermédiaire 

réactif formé (par exemple, OH2
.). 

Les ligands inorganiques (par exemple les halogènes) et les ligands organiques (par exemple 

les substances humiques) sont largement présents dans le système aquatique. Le Hg divalent dissous 

se lie facilement à différents types de ligands inorganiques et organiques et forme des complexes Hg-

inorganiques et Hg-organiques. La liaison de Hg à différents ligands et sites détermine la quantité de 

la forme réductible de complexes de Hg(II) (O'Driscoll et al. 2006). La longueur d'onde et l'intensité 

de la lumière influencerait davantage la forme photoréductible des complexes de Hg(II). Il a été 

rapporté que le Hg(II) devait se lier à la matière organique dissoute (DOM) avant que la 

photoréduction puisse avoir lieu (Allard et Arsenie, 1991). Le processus de photoréduction par Hg(II) 

-DOM serait inhibé en présence de ligands halogénés en raison de la compétition de liaison entre les 

complexes Hg-DOM et les complexes Hg(II) -halogène (Allard et Arsenie, 1991). 

La réduction des composés atmosphériques de Hg(II) est mal comprise. Peu d’observations 

expérimentales ont élucidés les mécanismes dominantes de réduction du Hg(II) dans l’eau liquide 
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atmosphérique (Pehkonen et Lin 1998, Seigneur, Vijayaraghavan et Lohman 2006). Le SO3 et le HO2 

aqueux ont été considérés comme des réducteurs dominants pour la réduction atmosphérique du Hg(II) 

(Pehkonen et Lin, 1998). Mais la réduction aqueuse de Hg(II) atmosphérique par SO3 et HO2 a été 

remise en question en raison de leur manque de pertinence à l'échelle globale (Horowitz et al. 2017). 

Pour équilibrer l'oxydation rapide du Hg(0) dans le modèle, une photoréduction rapide en phase 

aqueuse de composés atmosphériques de Hg(II) a été supposée dans les eaux de nuages, et les taux de 

réduction sont optimisés dans les modèles globaux du Hg (Selin et al. 2007, Horowitz et al. 2017). En 

raison des constantes rapides du taux de réduction dans les modèles (> ~ 1-3 h-1), la durée de vie du 

Hg(II) dans le nuage est inférieure à 1h. Par conséquent, il est important d’explorer la cinétique et le 

mécanisme de réduction du Hg(II) aqueux dans l’atmosphère et de les appliquer au développement de 

CTMs globaux pour le mercure (Horowitz et al. 2017, Seigneur et al. 2006, Gardfeldt et al. 2003). 

Dans ce projet de thèse, nous étudierons les taux de photoréduction des espèces de Hg(II) dans les 

eaux de pluie et dans les solutions expérimentales contenant des ions halogénés. 

 

1.3. Les objectifs de cette étude 

Afin de valider les taux de photoréduction optimisés du Hg(II) atmosphérique dans les modèles CTM, 

des expériences de photoréduction du Hg(II) dans l'eau de pluie ont été effectuées. Le chapitre 2 décrit 

les expériences d'échantillonnage des précipitations et de photoréduction en laboratoire. Les résultats 

de ces expériences sont présentés en détail au chapitre 3 et incluent des expériences supplémentaires 

simulées sur l'eau de pluie dans le système Hg-halogénure-DOC, y compris des calculs de spéciation 

d'équilibre thermodynamique. En chapitre 4, nous comparons les taux de photoréduction mesurés dans 

les expériences de laboratoire (lumière solaire simulée et réelle) avec le taux de photoréduction dans 

les modèles CTM du mercure, et nous évaluons l’impact des flux de photoréduction sur les 

concentrations de Hg(II) et de Hg(0) dans l’atmosphère. Pour ce faire, nous collaborons avec des 

collègues espagnols, américains et russes, experts en modélisation du mercure. Les taux de 

photoreduction des précipitations observés en chapitre 3 se révèlent déterminants pour la révision des 
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modèles de Hg atmosphériques modernes en chapitre 4. Le chapitre 5 clôture cette thèse par un résumé 

des conclusions et des perspectives des recherches futures. 
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Chapter 2. Experimental methods 

Both indoor and outdoor experiments were carried out for photoreduction kinetics and are described 

in detail in this chapter. Simulated sunlight was used for indoor experiments, and outdoor 

experiments were exposed to natural sunlight. The objective of this study is to evaluate aqueous 

phase photoreduction rate constants of atmospheric Hg(II) in the rainwater. The whole experiment 

was divided into two steps with 2 years from 25 October, 2015 to September, 2017. In the first step, 

we carried out 23 groups of photoreduction experiment of simulated rainwater in the Hg-halide-

DOC system under xenon lamp light condition from October, 2015 to September, 2016 including 

thermodynamic equilibrium speciation calculation of dissolved Hg(II) compounds. In the second 

step, we conducted 13 groups of photoreduction experiment of rainfall Hg in the GET lab using 

xenon lamp light and outside the GET lab with natural sunlight from October, 2016 to September 

2017.  

2.1. A scheme for photochemical reduction experiment 

In order to measure gross photoreduction rate constants of simulated rainfall Hg and rainfall Hg, an 

adapted apparatus from Bergquist et al. (2007) was used shown in figure 5 (Bergquist and Blum 2007). 

Photochemical experiments were carried out in a 60mm diameter, 0.5 L quartz reactor with both 

simulated and natural sunlight. Indoor photochemical experiments were conducted in a climatized 

room(20°C) under a 40mm diameter of focused beam of xenon lamp light. Outdoor photochemical 

experiments were exposed to the natural sunlight irradiation form 10-18h in a full sun of summer time. 

In order to eliminate the influence of other light sources and dissolved oxygen, the reactor was covered 

with aluminium foil and purged with Hg-free argon gas at 80 mL min-1 to remove product Hg(0) 

within minutes during the experiment (O'Driscoll et al. 2006). Higher flow rates of 300 mL min-1 were 

tested and gave identical results, suggesting that the flow rate had no effect on the observed gross 

photoreduction rate. Subsamples were collected at different intervals over the course of the 

experiments. The produced Hg(0) products were collected in Hg absorber in case of atmospheric Hg 
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pollution. Dark control experiments were carried out under the same conditions in the absence of light 

irradiation.  

 

 
 

Figure 5 Experimental apparatus used for photochemical reduction experiment 

2.2. Light source and light intensity measurement 

For controlled indoor laboratory experiments, a Sutter Instruments Lambda LS solar simulator 

(Xenon lamp light) with Perkin Elmer 300W PE300BUV Xenon lamp was used to shine artificial 

solar light (in the UVA, UVB, UVC, VIS and IR range) in a 40mm focused beam through the 

reactor. Outdoor experiments were performed under natural sunlight (summertime, from 10-18h in 

full sun) outside the GET laboratory building in Toulouse, France. Two different light sources were 

intercompared with each other based on the experimental results. Light intensities of significant 

wavelengths of simulated and natural sunlight were measured with a solar light PMA 2200 

radiometer, including PMA 2106, PMA 2110 and PMA 2130 for UV-B (280-320nm), UVA(320-

400nm) and visible light(400-780nm) detector respectively. 



 

28 

 

 

2.3. Simulated and real rainfall samples  

2.3.1. Simulated rain water preparation 

Milli-Q water was used for the preparation of Hg solution, Hg and halogen solution, Hg, halogen 

and DOM solution with the addition of commercially available NIST 3133 HgNO3, SRFA and 

halides (KCl, KBr, KI). The NIST SRM 3133 (10,000 µg g-1 Hg(II) in 10 vol.% HNO3) was used as 

Hg standard, from which more diluted stock solutions were prepared. It is well known that NO3
-can 

be photolyzed to form hydroxy radical (OH*) when light wavelength is greater than 290nm. OH* 

can further interact with DOM and halides to generate a variety of active radical, which can affect 

the photoreduction of dissolved Hg(II) compounds in the Hg-DOM-halide system. In order to check 

the influence of NO3
- on photoreduction of dissolved Hg(II) compounds in the Hg-DOM-halide 

system, control experiment was conducted in the presence of 0.1mM KNO3 or 5mM KNO3 

background electrolyte. As representative of natural DOC Suwannee river fulvic acid (SRFA) was 

obtained from the International Humic Substances Society and dissolved in MQ water for use a 

source of natural dissolved organic carbon (Maizel and Remucal 2017). KBr, KI and KCl salts were 

obtained from Sigma-Aldrich and diluted to 0.1 mM stock solutions. Experimental Hg/halide ratios 

were chosen to approximate the range of natural ratios. 

2.3.2. Rainfall sampling, treatment, storage and preparation  

There are 10 rainfall samples collected at two different sites in the summer of 2017 (July to August): 

8 of them were collected in sub-urban Toulouse, France (43°33'41.10"N, 1°28'42.28"E) and the 

remaining two were collected at the high altitude (2877 m a.s.l.) Pic du Midi Observatory (PDM), 

France (42°56'10.85"N, 0° 8'32.76"E) (Fu et al. 2016b, Marusczak et al. 2017). Eight 36cm diameter 

x 40cm height acid-cleaned polypropylene buckets were used simultaneously following Enrico et al. 

(2016) for the collection of large volume of rain water from the beginning of a precipitation event to 

the end of the same precipitation event (Figure 6) (Enrico et al. 2016a). As a result, all the collected 

rainfall in 8 buckets were transferred to one bucket as a single rainfall event and stored in the 2L 

acid-cleaned pyrex bottles with GL45 caps as soon as possible. Each bucket was purified with 1% 
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HCl for 24h and sequently rinsed with MQ water for 3 times prior to precipitation sampling. The 

detailed information of collected rainfall from suburban Toulouse and Pic Du Midi Observatory is 

listed in table 1. 

 

Figure 6 Site A at suburban Toulouse, France and site B at high altitude (2877m.a.s.l) Pic du Midi 

Observatory (PDM) for rainfall sampling, and detailed sampling scheme of rain water 

Table 1 detailed information of collected rainfall from suburban Toulouse and Pic Du Midi 

Observatory 

Label type date (time, dd/mm/yyyy) event site volume (L) 

Toulouse      
T-R1 rain 13:30, 3/6/2017-17:30, 3/6/2017 single Surburban Toulouse (GET lab) 2.50 

T-R2 rain 5:00, 9/6/2017-7:30, 9/6/2017 single Surburban Toulouse (GET lab) 1.95 

T-R3 rain 17:00, 26/6/2017-8:00, 27/6/2017 single Surburban Toulouse (GET lab) 0.75 

T-R4 rain 17:00, 27/6/2017-11:00, 28/6/2017 single Surburban Toulouse (GET lab) 8.6 

T-R5 rain 17:00, 28/6/2017-9:00, 29/6/2017 single Surburban Toulouse (GET lab) 1.75 

T-R6 rain 18:00, 19/7/2017-10:00, 20/7/2017 single Surburban Toulouse (GET lab) 23.4 

T-R7 rain 14:00, 24/7/2017-17:30, 24/7/2017 single Surburban Toulouse (GET lab) 0.63 

T-R8 rain 20:00, 30/8/2017-8:30, 31/8/2017 single Surburban Toulouse (GET lab) 6.5 

Pic du Midi      
PDM-R9 rain 5/9/2017-12/9/2017 multiple Pic du Midi Observatory 1 

PDM-R10 rain 26/9/2017-3/10/2017 multiple Pic du Midi Observatory 1 

 
Selected rainfall samples were filtered on pre-burnt 47mm quartz fiber filters (Millipore) in 

an acid-cleaned polycarbonate filtration unit (Fisher Scientific). Subsamples of filtered and 

unfiltered rainwater were taken for total Hg (THg, 10mL, acidified to 0.4 vol.% with bi-distilled 9N 

HCl, 0.5 vol% BrCl), TOC/DOC (20mL, acidified to 0.4 vol.% with 9N HCl), anions, pH (30mL, 
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unacidified), and major and trace metals (10mL, acidified to 2 vol.% 15.8N HNO3). Remaining rain 

samples were stored in the refrigerator in the dark at 4°C until analysis. 

Rainfall experiments were done at both ambient Hg levels, and at 10 augmented Hg levels. 

Following sample addition, the reactor was wrapped with aluminum foil and equilibrated overnight. 

At the start of photoreduction experiment a sample aliquot (t=0) was taken and the reactor was 

exposed to natural sunlight outdoors (up to 8h) or to a solar simulator indoors (up to 48h). 

2.3.3. pH measurement  

The pH of all the rain samples and experimental solutions were measured as soon as possible after 

collection and preparation using an Orion pH electrode, calibrated against NIST traceable standards 

of pH 4 and 7 at GET, Toulouse, France. 

2.3.4. Ions (cations and anions) measurement 

Major cations in rainfall and experimental solutions were analyzed by high resolution ICP-MS 

(Thermo-Scientific Element-XR) at OMP, Toulouse, France. Anions were analyzed by ion exchange 

chromatography at EcoLab, Toulouse, France. 

2.3.5. DOC measurement 

DOC or TOC was measured on a total organic carbon analyzer (Shimadzu TOC VSCN) at GET, 

Toulouse, France. 

2.3.6. Hg concentration measurement 

Artificial rain water, rainfall and photochemical samples were analyzed for Hg concentration in 

duplicate following U.S. EPA method 1631 by cold vapor atomic fluorescence spectrometry (CV-

AFS) (Agency 2002). All the samples were digested by BrCl2 overnight for at least 24h and stored 

in the refrigerator until analysis. The digested samples would be taken out and reduced to Hg(0) by 

addition of SnCl2 prior to analysis. The reduced Hg is absorbed on a gold trap to form an amalgam 

by sparging of Hg-free argon gas. Hg was desorbed from the gold trap when it was heating and 

transported to atomic fluorescence unit for quantification. Artificial rain water, rainfall and 

photochemical samples were divided into low and high Hg concentration samples and measured by 
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low and high concentration CV-AFS respectively. Samples with high Hg concentrations were 

diluted to 100 times and analyzed in 5 ml aliquots at fixed time steps. Diluted NIST 3133 was used 

for standard curve generation and CV-AFS calibration. 2-5ml low Hg concentrations samples were 

used for Hg measurement at fixed time steps. CV-AFS standard curve was made by diluted NIST 

3133 and analysis accuracy was evaluated by regular analysis of the NRC ORMS-5 certified 

reference material (26.2 ng/L) with good results (25.2 ± 3.3, 1σ, n=79).  

2.3.7. kinetics of photoreduction  

In the photochemical experiments, The reactor was bubbled with 80mL.min-1 Hg-free argon gas for 

the removal of Hg(0) product and prevention of Hg(II) re-oxidation. So the whole reaction is defined 

as a gross photoreduction process (Qureshi et al. 2011b). Concentrations of DOM and halide were 

far excess of Hg concentration in the simulated and real rainfall samples, which would not limit Hg 

photoreduction. Dissolved Hg(II) is thought to be present as Hg(II)-ligand (Hg(II)L) complexes and 

reduced to Hg(0) in the presence of simulated solar light (Eq.1). The whole reduction process was 

assumed as a pseudo first-order reduction reaction with rate constant, kred (Eq.2) (O'Driscoll et al. 

2006).  

Hg(II)L + hv  Hg(0),                   (Eq.1)  

d[Hg(II)L]

dt
 = kred  [Hg(II)L],             (Eq.2)  

where Hg(II)L is the complexed inorganic Hg(II) in the solution. Hg(0) is the produced dissolved 

gaseous mercury (DGM) during the photoreduction process, hv is the light irradiation including 

natural sunlight or xenon lamp light.  

2.3.8. Aqueous Hg speciation modeling  

The speciation of Hg compounds in simulated and real rain water was calculated using the 

geochemical equilibrium modeling software Visual Minteq Version 3.1. Calculation of Hg 

speciation of simulated rain water was based on measured pH, Hg, halide and DOM concentrations. 

Modelling of Hg speciation of real rain water was based on the measured pH, Hg, halide, DOM and 

ion concentrations. Trace metal, incl Hg(II), ion-DOC binding in Visual Minteq is based on the 
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Stockholm Humic Acid Model with the shmgeneric14.vdb database (Gustafsson 2001) and which 

has been validated for Hg(II) elsewhere (Richard, Bischoff and Biester 2016). Since atmospheric 

humic-likes substances are generally low molecular weight compounds, and we use SRFA as a 

surrogate, we simulate equilibrium Hg(II) binding to fulvic acids only with binding constant 

logKHgFA2 of 6.7, and Lk2 spread factor of 3.2. At our experimental rainfall Hg/DOC ratios of 0.5 

to 6.8 ng.mg-1, Hg(II) is coordinated to thiol groups on the DOC compounds (Haitzer, Aiken and 

Ryan 2002b), which is represented in visual Minteq by the Hg(II)-FA2 complexes in the database 

and equilibrium speciation results. The nominal pH was 4 in all experimental solutions, and ranged 

from 3.8 to 6.3 in rainwater samples. No buffer was used to stabilize pH, in order to 

avoid photochemical artifacts, and in general drift in pH was limited to not more than 0.2 units.  
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Chapter 3. Experimental rainwater divalent mercury speciation and 

photoreduction rates in the presence of halides and organic carbon (Science of the 

Total Environment) 

3.1. Article 

Title: Experimental rainwater divalent mercury speciation and photoreduction rates in the 

presence of halides and organic carbon 

 

Xu Yang,1 Martin Jiskra,1,2 Jeroen E. Sonke1 

 
1Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, CNRS/IRD/Université 

Toulouse III-Paul Sabatier, 31400 Toulouse, France 

 
2Environmental Geosciences, University of Switzerland Basel, Bernoullistrasse 30, 4056 Basel, 

Switzerland 
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Abstract 

Mercury (Hg) photochemical redox reactions control atmospheric Hg lifetime and therefore play an 

important role in global Hg cycling. Oxidation of Hg(0) to Hg(II) is currently thought to be a Br-

initiated two-stage reaction with end-products HgBr2, HgBrOH, HgBrONO, HgBrOHO. Atmospheric 

photoreduction of these Hg(II) compounds can take place in both the gas and aqueous phase. Here we 

present new experimental observations on aqueous Hg(II) photoreduction rates in the presence of 

dissolved organic carbon and halides and compare the findings to rainfall Hg(II) photoreduction rates. 

The pseudo first-order, gross photoreduction rate constant, kred, for 0.5 µM Hg(II) in the presence of 

0.5 mg L-1 of dissolved organic carbon (DOC) is 0.23 h-1, which is similar to the mean kred (0.15±0.01 

h-1(σ, n = 3)) in high altitude rainfall and at the lower end of the median kred (0.41h-1, n=24) in 

continental and marine waters. Addition of bromide (Br-) to experimental Hg(II)-DOC solutions 

progressively inhibits Hg(II) photoreduction to reach 0.001 h-1 at total Br- of 10 mM. Halide 

substitution experiments give Hg(II)Xn
(n-2) photoreduction rate constants of 0.016, 0.004 h-1, and 

<detection limit for X = Cl-, Br-, and I- respectively and reflect increasing stability of the Hg(II)-halide 

complex. We calculate equilibrium Hg(II) speciation in urban and high-altitude rainfall using Visual 

Minteq, which indicates Hg(II)-DOC to be the dominant Hg species. The ensemble of observations 

suggests that atmospheric gaseous HgBr2, HgCl2, HgBrNO2, HgBrHO2 forms, scavenged by aqueous 

aerosols and cloud droplets, are converted to Hg(II)-DOC forms in rainfall due to abundant organic 

carbon in aerosols and cloud water. Eventual photoreduction of Hg(II)-DOC in aqueous aerosols and 

clouds is, however, too slow to be relevant in global atmospheric Hg cycling. 
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1. Introduction 

Mercury (Hg) is a ubiquitous heavy metal found throughout the atmosphere, hydrosphere, biosphere, 

geosphere and anthroposphere (Selin 2009). Neurotoxicity of Hg to humans and wildlife is of global 

concern due to widespread exposure via seafood consumption (Wolfe, Schwarzbach and Sulaiman 

1998). Emission of Hg to the atmospheric boundary layer occurs mainly in the form of gaseous 

elemental Hg(0), and to a lesser extent (10%) as gaseous oxidized Hg(II) and particle-bound Hg(P) 

from natural, anthropogenic and re-emitted sources (Schroeder and Munthe 1998, Futsaeter and 

Wilson 2013). Hg(0) is characterized by its low chemical reactivity and solubility, and long 

atmospheric lifetime of several months to over a year. Hg(0) is therefore fairly homogenously 

distributed throughout the atmosphere, and can be transported far from its emission sources and 

deposited to remote ecosystems (Horowitz et al. 2017b, Jiskra et al. 2018b, Saiz-Lopez et al. 2018). 

Oxidation of Hg(0) results in the formation of gaseous Hg(II) compounds, which are highly soluble, 

reactive and have a short atmospheric lifetime of days to weeks, and are readily scavenged by aerosols 

and clouds and returned to the Earth’s surface by dry and wet deposition (Ariya et al. 2015a, Saiz-

Lopez et al. 2018). Atmospheric Hg(II) compounds can also be reduced back to Hg(0) in both the 

aqueous and gas phase and results in a prolonged lifetime of atmospheric Hg(0) (Munthe, Xiao and 

Lindqvist 1991a, Si and Ariya 2008b, Saiz-Lopez et al. 2018). Redox processes of atmospheric Hg(0) 

and Hg(II) are considered as an important dynamic balance in global atmospheric Hg cycling and have 

been widely implemented in global atmospheric Hg chemistry and transport models (Travnikov and 

Ryaboshapko 2002, Selin et al. 2007a, Horowitz et al. 2017b). Therefore, quantifying the kinetics and 

identifying the pathways of these reactions is crucial to better understand transport and deposition of 

atmospheric Hg to aquatic and terrestrial systems (Bash et al. 2014b). 

Production of atmospheric Hg(II) compounds is an important process in the atmosphere, as it 

is dominantly responsible for atmospheric Hg dry and wet deposition (Lin and Pehkonen 1999b, Selin 

et al. 2007a). Speciation of atmospheric Hg(II) is poorly understood, and has only identified as HgCl2 

and HgBr2 in urban and indoor air and as HgCl2 in power plant plumes (Ernest et al. 2014b, Deeds et 

al. 2015a). Previous research has indicated that gas phase oxidation of atmospheric Hg(0) potentially 
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involves various types of oxidants including O3, OH, HO2, H2O2, NO3 and halogen species (Dibble et 

al. 2012a, Peleg et al. 2015, Horowitz et al. 2017b). Currently main oxidation of Hg(0) to Hg(II) is 

thought to be a Br-induced two-step reaction: first, Hg(0) is oxidized to Hg(I)Br by atomic bromide. 

Secondly, the relatively unstable Hg(I)Br is further oxidized to Hg(II) by other atmospheric radicals, 

such as OH, Br, I, Cl, NO2, HO2, BrO, IO and ClO, to produce dominant Hg-halide end products 

HgBr2, HgBrOH, HgBrONO, HgBrOHO (Saiz-Lopez et al. 2018). These gaseous oxidized Hg(II) 

compounds are water soluble and therefore partition efficiently into cloud water and aqueous aerosols 

in general (Horowitz et al. 2017b).   

Photoreduction of dissolved Hg(II) bound to inorganic and organic ligands as well as with 

humic substances in terrestrial and marine aquatic systems has been widely identified as an important 

emission source of Hg(0) to the atmosphere (Ariya et al. 2015a). Compared to direct photolysis of 

aqueous inorganic Hg complexes, the Hg-humics photoreduction process is considered to be induced 

by light energy absorption of dissolved humic substances followed by a primary or secondary reaction 

(Ravichandran 2004, Zhang 2006). The primary reaction is known as ligand to metal charge transfer: 

first, the dissolved Hg(II)-DOM complex is reduced to reactive and unstable Hg(I), second, the short-

lived reactive intermediate Hg(I) quickly reduced to Hg(0) (Zheng and Hintelmann 2009). The 

secondary reaction has been proposed by Pehkonen and Lin (1998) via a two-step reduction process: 

first, dissolved Hg(II) is reduced to Hg(I) by HO2·, second, Hg(I) is further reduced to Hg(0) by 

HO2· (Pehkonen and Lin 1998a). The Hg photoreduction rates in natural waters are consistent with 

pseudo-first-order reaction kinetics and have been reported in a wide range of variability of 0.00125 

to 2.5 h-1 relative to different light irradiation and DOM (Xiao, Stromberg and Lindqvist 1995, 

O'Driscoll et al. 2006, Qureshi et al. 2011b).   

Atmospheric Hg(II) photoreduction to Hg(0) in aqueous aerosols and clouds determines the 

lifetime of atmospheric Hg against wet deposition. The first global Hg chemistry and transport model 

(CTM) included Hg(II) reduction in the atmospheric aqueous phase by sulfite (SO3
2-), with kred of 0.6 

s-1 (2160 h-1) based on experimental work by Munthe et al. (Munthe et al. 1991a, Shia et al. 1999a). 
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A later study that directly measured the reactant HgSO3 put into question the previously proposed 

reduction mechanism and rate constant, reporting kred of 0.0106 s-1 (38.2 h-1) (Van Loon, Mader and 

Scott 2000b). Shia et al.’s CTM also included aqueous phase reduction of Hg(II) by hydroperoxyl, 

HO2, radicals, based on Pehkonen and Lin (1998) with 2nd order kred of 1.7*104 M-1 s-1 (Pehkonen and 

Lin 1998a, Shia et al. 1999a). This reaction, which proceeds by a Hg(I) intermediate step has been 

questioned by Gardfeldt and Jonsson based on the rapid oxidation of the Hg(I) form back to Hg(II) 

(Gardfeldt et al. 2001). These aqueous phase Hg(II) reduction mechanisms have been gradually 

abandoned in Hg CTMs, to adopt a fitting approach where aqueous phase Hg(II) photoreduction rates 

are optimized to balance fast Hg(0) oxidation and reproduce global variability in observed Hg(0). 

(Travnikov and Ryaboshapko 2002, Selin et al. 2007a, Horowitz et al. 2017b). The fitted kred are 

typically on the order of 1.0 h-1, which corresponds to Hg(II) lifetimes in clouds and aqueous aerosol 

of ~20 minutes (Selin et al. 2007a). Despite the long history of experimental and model studies on 

atmospheric aqueous Hg(II) photoreduction, the process has never been directly observed or 

quantified on natural samples. Recently, we conducted the first aqueous phase photoreduction 

experiments of Hg(II) in rainfall and observed slow values for kred in sub-urban (0.05 ± 0.02 h-1, 1σ, 

n=9) and high-altitude rain (0.15 ± 0.01 h-1, 1σ, n=3) (Saiz-Lopez et al. 2018). We evaluated the upper 

value of kred (0.15 h-1) for atmospheric aqueous Hg(II) photoreduction in the GEOS-Chem and 

GLEMOS Hg CTMs, and found that the observation-based, slow kred leads to a major redox imbalance 

in the models. Model results showed a strong negative bias in the size of the Hg(0) pool and a positive 

bias in Hg(II) wet deposition (Saiz-Lopez et al., 2018).  Based on theoretical chemistry computation 

of kred, we proposed that gas phase photoreduction of Hg(II)BrX to Hg(I)Br is an alternative and fast 

reduction pathway for atmospheric Hg(II). 

In this study we perform cation, anion and DOC analyses on the rainwater samples used by 

Saiz-Lopez et al. (2018), in order to assess the equilibrium speciation of atmospheric aqueous Hg(II). 

We present new experimental observations on the photoreduction rate constants of Hg bound to 

different types and concentrations of halides (Cl, Br, I ions) and to 1mg.L-1dissolved organic matter 
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(DOM), in the form of fulvic acids. The objective of the present study is to better understand Hg 

speciation and dynamics in atmospheric waters, from an equilibrium speciation and photoreduction 

kinetics perspective. We aimed to identify in particular the nature of the slow reducing Hg(II) 

complexes in rainfall.  
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2. Materials and methods 

2.1. Sampling and experimental preparation 

Twenty-three experimental solutions containing Hg(II), DOM and halogen were prepared from 

commercially available NIST 3133 Hg, SRFA and halides (KCl, KBr, KI). The NIST SRM 3133 

(10,000 µg g-1 Hg(II) in 10 vol.% HNO3) was used as Hg standard, from which more diluted stock 

solutions were prepared. Suwannee river fulvic acid (SRFA) was obtained from the International 

Humic Substances Society and dissolved in MQ water for use as a source of natural DOM (Maizel 

and Remucal 2017). KBr, KI and KCl salts were obtained from Sigma-Aldrich and diluted to 0.1 mM 

stock solutions. Collection of 12 rainfall events was previously detailed in Saiz-Lopez et al. (2018) 

(Saiz-Lopez et al. 2018). In brief, rainfall was collected at two different sites: in sub-urban Toulouse, 

France (n= 8, 1.479◦E, 43.562◦N) and at the high altitude (2877 m a.s.l.) Pic du Midi Observatory 

(PDM), France (n=2, 0.142◦E, 42.937◦N) in the summer of 2017 (Fu et al. 2016a, Marusczak et al. 

2017). Large volume rain water was collected in 8 acid-cleaned polypropylene buckets simultaneously 

following Enrico et al. (2016) (Enrico et al. 2016a). Single event samples were transferred to 2L acid-

cleaned pyrex bottles with GL45 caps. Selected samples were filtered on pre-burnt 47mm quartz fiber 

filters (Millipore) in an acid-cleaned polycarbonate filtration unit (Fisher Scientific). Subsamples of 

filtered and unfiltered rainwater were taken for total Hg (THg, 10mL, acidified to 0.4 vol.% with bi-

distilled 9N HCl, 0.5 vol% BrCl), TOC/DOC (20mL, acidified to 0.4 vol.% with 9N HCl), anions, pH 

(30mL, unacidified), and major and trace metals (10mL, acidified to 2 vol.% 15.8N HNO3). 

Remaining rain samples were stored in the refrigerator in the dark at 4°C until analysis. 

 

2.2.Photoreduction experiments  

Photochemical experiments were carried out in a 60mm diameter, 0.5 L quartz reactor. For controlled 

indoor laboratory experiments (Xenon lamp light) a Sutter Instruments Lambda LS solar simulator 

with Perkin Elmer 300W PE300BUV Xenon lamp was used to shine artificial solar light, 

corresponding to a solar light unit, (in the UVA, UVB, UVC, VIS and IR range) in a 40mm focused 
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parallel beam through the reactor. Light intensities of key wavelengths of artificial solar irradiation 

were measured with a solar light PMA 2200 radiometer, including PMA 2106, PMA 2110 and PMA 

2130 for UV-B (280-320nm), UVA(320-400nm) and visible light (400-780nm) detector respectively 

(Supplementary Table S1). Outdoor experiments were performed under natural sunlight (summertime, 

from 10-18h in full sun) outside the GET laboratory building in Toulouse, France. No formal 

actinometric calibration of the experimental set-up was performed. Instead we inter-compared Xe 

lamp experiments to outdoors full sunlight experiments, which yielded similar Hg(II) reduction rates. 

Dynamic changes of natural UV and visible irradiation intensities of these experiment days were 

simultaneously measured once per hour and put in Supplementary Table S2. Rainfall experiments 

were done at both ambient Hg levels, and at 2-40 augmented Hg levels. Experiments on artificial 

Hg-halogen solutions were carried out at higher Hg concentrations (8-100 µg/L) with the goal to 

analyze Hg stable isotope fractionation (data not shown here). Although, the NIST3133 Hg standard 

solution is prepared in 10 vol.% HNO3, the amounts of NO3
- introduced into the reactor are relative 

small, ~ 16 µM. Since photoreaction of NO3
- can generate a cascade of radical reactions, we compared 

NIST Hg additions to natural rainwater samples, and found no significant difference in Hg(II) 

reduction rate, suggesting absence of NO3
- related bias. Experimental Hg/halide ratios were chosen to 

approximate the range of natural ratios. Following sample addition, the reactor was wrapped with 

aluminum foil and equilibrated overnight. At the start of photoreduction experiment a sample aliquot 

(t=0) was taken and the reactor was exposed to natural sunlight outdoors (up to 8h) or to a solar 

simulator indoors (up to 48h). During the experiment the reactor was continuously purged with Hg-

free argon gas at 80 mL min-1 to remove product Hg(0) within minutes (O'Driscoll et al. 2006). Higher 

flow rates of 300 mL min-1 were tested and gave identical results, suggesting that the flow rate had no 

effect on observed the gross photoreduction rate. Subsamples were collected at different intervals over 

the course of the experiments. Dark control experiments were carried out under the same conditions 

in the absence of light irradiation. Analysis of the photoreduction product Hg(0) was attempted, but 

failed due to leaks on the quartz reactor cap, which is a common problem in these type of experiments.  



 

41 

 

 

 

2.3.Hg, pH, cations and anions, DOC measurement 

Samples were measured for total Hg concentration in duplicate following U.S. EPA method 1631 by 

cold vapor atomic fluorescence spectrometry (CV-AFS) in 5 ml aliquots at fixed time steps. CV-AFS 

analysis accuracy was evaluated by regular analysis of the NRC ORMS-5 certified reference material 

(26.2 ng/L) with good results (25.2 ± 3.3, 1σ, n=79). The pH of all the rain samples and experimental 

solutions were measured as soon as possible after collection and preparation using an Orion pH 

electrode, calibrated against NIST traceable standards of pH 4 and 7. Major cations in rainfall and 

experimental solutions were analyzed by high resolution ICP-MS (Thermo-Scientific Element-XR) at 

OMP, Toulouse, France. Anions were analyzed by ion exchange chromatography at EcoLab, Toulouse, 

France. DOC or TOC was measured on a total organic carbon analyzer (Shimadzu TOC VSCN) at 

GET, Toulouse, France. 

 

2.4. Gross photoreduction kinetics  

The photoreduction experiments are considered as gross photoreduction due to the continuous purging 

of 80 mL min-1 Hg-free argon gas in the reactor, which removes product Hg(0) and prevents it from 

re-oxidation to Hg(II). Dissolved Hg(II) is thought to be present as Hg(II)-ligand (Hg(II)L) complexes 

and reduced to Hg(0) in the presence of simulated solar light (Eq.1). The whole reduction process is 

considered as a pseudo first-order reduction reaction with rate constant, kred (Eq.2) (Xiao et al. 1995, 

O'Driscoll et al. 2006, Qureshi et al. 2011b). 

Hg(II)L + hv  Hg(0),  (Eq.1) 

 = kred  [Hg(II)L],  (Eq.2) 

where Hg(II)L is the complexed inorganic Hg(II) in the solution, Hg(0) is the produced dissolved 

gaseous mercury (DGM) during the photoreduction process,  hv is the light irradiation including 

natural sunlight or xenon lamp light. In order to see whether our photoreduction reactions are pseudo 

first-order one, ln  is plotted as a function of time (h) shown in Supplementary Fig. S1a-e. 
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Result show that generally the data show strong linear relationships (r2 of 0.69-1) and the pseudo-first 

order approach is therefore appropriate.  

 

2.5. Aqueous Hg speciation modeling 

The speciation of dissolved Hg in rain water and experimental solutions was calculated using the 

geochemical equilibrium modeling software Visual Minteq version 3.1 with default parameters. The 

input data were based on pH, temperature (22℃), Hg concentration, DOC concentration, cation types 

and concentrations (Rb, Mo, Cd, Ba, La, Tl, Pb, Th, U, Na, Mg, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, 

Zn, Sr and K), anion types and concentrations (F-, Cl-, N-NO2-, Br-, N-NO3
-, S-SO4

2-, P-PO4
3-). Trace 

metal, incl Hg(II), ion – DOC binding in Visual Minteq is based on the Stockholm Humic Acid Model 

with the shmgeneric14.vdb database (Gustafsson 2001), and which has been validated for Hg(II) 

elsewhere (Richard et al. 2016). Since atmospheric humic-likes substances are generally low 

molecular weight compounds, and we use SRFA as a surrogate, we simulate equilibrium Hg(II) 

binding to fulvic acids only with binding constant logKHgFA2 of 6.7, and Lk2 spread factor of 3.2. At 

our experimental rainfall Hg/DOC ratios of 0.5 to 6.8 ng.mg-1, Hg(II) is coordinated to thiol groups 

on the DOC compounds (Haitzer et al. 2002b), which is represented in visual Minteq by the Hg(II)-

FA2 complexes in the database and equilibrium speciation results. The nominal pH was 4 in all 

experimental solutions, and ranged from 3.8 to 6.3 in rainwater samples. No buffer was used to 

stabilize pH, in order to avoid photochemical artifacts, and in general drift in pH was limited to not 

more than 0.2 units. 
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3. Results and Discussion 

3.1. Photoreduction of aqueous Hg(II)-halide, Hg(OH)2 and Hg(II)-DOC 

Experimental photoreduction of Hg(II) in the presence of different types of halides and different  ratios 

of Br-/DOC were carried out to explore the influence of halide types and Br-/DOC ratios on Hg(II) 

photoreduction rates (Table 2). The photoreduction kinetics are shown in Figure 7a-c indicate that 

different Hg(II) reduction rates occurred in all experiments including dark control and photo-induced 

conditions. Table 3 (exp. A3-A6) shows estimated equilibrium Hg(II) speciation at the start of the 0.1 

mM halogen experiments, indicating that HgCl2(aq) (97%), HgBr2(aq) (98%) and HgI2(aq) (62%) + HgI3
-

(aq) (37%) were dominant. Two types of Hg(II) control experiments were carried out: exp. A1, presence 

of light, in MQ water, suggesting Hg(OH)2(aq) as the dominant species (95%), and exp. A2, A3, two 

dark controls (i.e. no light), in MQ with 95% Hg(OH)2(aq), and in presence of 0.2mM KBr with 95% 

HgBr2(aq). 
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Table 2 Compositions and conditions of experimental Hg and rainfall solutions of photoreduction 

experiments. A and R represent experimental Hg solution and rainfall solution. UF and F indicate 

unfiltered and filtered rainfall. Xe represents xenon solar simulator. TL and PDM indicate sub-urban 

Toulouse sample and high altitude (2877 m a.s.l.) Pic du Midi Observatory sample. 
 

Experiment no. Figure legend pH light Hg DOC Hg/DOC halide halide conc. SRFA Hg/halide halide/DOC  
       ng.mL-1 mg.L-1 ng.mg-1   mM mg.L-1 mg.mol-1 mol.g-1  
A1 Hg-Xe light 4.1 Xe light 100 / / / / / / /  
A2 Hg-dark control 4.1 Dark control 100 / / / / / / /  
A3 Hg-0.2mM KBr-dark control 4.1 Dark control 100 / / KBr 0.2 / 500 /  
A4 Hg-0.1mM KCl-Xe light 4.2 Xe light 100 / / KCl 0.1 / 1000 /  
A5 Hg-0.2mM KBr-Xe light 4.2 Xe light 100 / / KBr 0.2 / 500 /  
A6 Hg-0.1mM KI-Xe light 4.0 Xe light 100 / / KI 0.1 / 1000 /  
A7 Hg-1mg/L SRFA-Xe light 7 Xe light 100 0.5 200000 / / 1 / /  
A8 Hg-0.001mM KBr-1mg/L SRFA-Xe light 4.1 Xe light 100 0.5 200000 KBr 0.001 1 100000 0.002  
A9 Hg-0.01mM KBr-1mg/L SRFA-Xe light 4.1 Xe light 100 0.5 200000 KBr 0.01 1 10000 0.02  
A10 Hg-0.1mM KBr-1mg/L SRFA-Xe light 4.1 Xe light 100 0.5 200000 KBr 0.1 1 1000 0.2  
A11 Hg-1mM KBr-1mg/L SRFA-Xe light 4.1 Xe light 100 0.5 200000 KBr 1 1 100 2  
A12 Hg-10mM KBr-1mg/L SRFA-Xe light 4.1 Xe light 100 0.5 200000 KBr 10 1 10 20  
A13 Hg-0.1mM KCl-1mg/L SRFA-Xe light 4.2 Xe light 100 0.5 200000 KCl 0.1 1 1000 0.2  
A14 Hg-0.1mM Kl-1mg/L SRFA-Xe light 7 Xe light 100 0.5 200000 KI 0.1 1 1000 0.2  
             F- Cl- Br- I-    
       ng.L-1      mg.L-1 mg.L-1 mg.L-1 mg.L-1    
R1 Rain event 1-U-Xe light-TL 4.7 Xe light 8.98 2.14 4.2 0.02 0.8781 0.002 0.0011    
R2 Rain event 1-U-Xe light-TL 4.4 Xe light 82.22 2.14 38.4 0.02 0.8781 0.002 0.0011    
R3 Rain event 2-F-Xe light-TL 4.1 Xe light 88.98 2.10 42.3 0.02 0.2588 0.002 0.0011    
R4 Rain event 3-U-Xe light-TL 6.3 Xe light 88.93 3.47 25.6 0.02 0.1917 0.003 0.0011    
R5 Rain event 4-F-Natural light-TL 6.1 sunlight 87.93 1.42 61.7 0.01 0.091 0.001 0.0011    
R6 Rain event 5-F-Natural light-TL 6.3 sunlight 91.44 0.84 108.4 0.01 0.6257 0.002 0.0011    
R7 Rain event 5-F-Dark control-TL 6.3 dark control 92.41 0.84 109.5 0.01 0.6257 0.002 0.0011    
R8 Rain event 8-U-Natural light-TL 5.1 sunlight 2.57 2.46 1.0 0.01 0.1 0.001 0.0011    
R9 Rain event 8-U-Xe light-TL 5.1 Xe light 2.48 2.46 1.0 0.01 0.1 0.001 0.0011    
R10 Rain event 8-U-Xe light-TL 3.8 Xe light 102.53 2.46 41.6 0.01 0.1 0.001 0.0011    
R11 Rain event 9-U-Xe light-PDM 5.9 Xe light 2.26 0.75 3.0 0.01 0.0386 n.a. 0.0011    
R12 Rain event 10-U-Xe light-PDM 6.1 Xe light 2.00 0.28 7.1 0.01 0.0305 n.a. 0.0011    
R13 Rain event 10-U-Xe light-PDM 6.1 Xe light 1.99 0.28 7.1 0.01 0.0305 n.a. 0.0011    
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Figure 7a-c Experimental photoreduction rates of 100ppb (0.5um) dissolved Hg(II) were carried out: 

a) in the presence of different types of halides (experiment nos. A4-A6, table 1) and for light and dark 
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control experiments (experiments nos. A1-A3, table 1), b) in the presence of different Br-/DOC ratios 

(experiment nos. A7-A12, table 1), c) in the presence of different types of halide/DOC  (experiment 

nos. A13 and A14, table 1). SRFA, Suwannee river fulvic acid. Uncertainties on Hg concentrations  

were evaluated by regular analysis of the NRC ORMS-5 certified reference material (26.2 ng/L). Our 

analysis result had good results (25.2 ± 3.3, 1σ, n=79) and indicated that the uncertainty was 13.1% 

(1σ). 

Table 3 Equilibrium Hg(II) speciation of 100ppb experimental Hg solution and rainfall solution 

Experiment no. Experiment name Hg(II) species and percentage 
    species (%) species (%) species (%) species (%) species (%) 

A1/A2 Hg+Xe light/dark control Hg2+ HgOH+ Hg(OH)2     
    0.96 4 95     
A3/A5 Hg+ 0.2mM KBr+dark control/Xe light HgBr2 (aq)  HgBr3 

-  HgBr4 2- HgBrOH (aq)   
    95 5 0.02 0.01   
A4 Hg+ 0.1mM KCl+Xe light HgCl+ HgCl2 (aq)  HgCl3

-  HgClOH (aq) Hg(OH)2 
    0.21 97 0.10 3 0.02 
A6 Hg+ 0.1mM KI+Xe light HgI2 (aq)  HgI3 

-  HgI4 2-     
    62 37 0.33     
A7 Hg+ 1mg.L-1 SRFA Hg2+ /FA2Hg (aq)  HgOH+ Hg(OH)2   
    0.03 97 0.13 2.634   
A8 Hg+ 0.001mM KBr + 1mg.L-1 SRFA+Xe light HgBr+ HgBr2 (aq)  /FA2Hg (aq)  HgBrOH Hg(OH)2 
    0.28 46 52 1.45 0.014 
A9 Hg+ 0.01mM KBr + 1mg.L-1 SRFA+Xe light HgBr+ HgBr2 (aq)  HgBr3

-  /FA2Hg (aq)  HgBrOH 
    0.02 70 0.16 30 0.13 
A10 Hg+ 0.1mM KBr + 1mg.L-1 SRFA+Xe light HgBr2 (aq)  HgBr3

-  HgBrOH /FA2Hg (aq)    
    90 2 0.02 7   
A11 Hg+ 1mM KBr + 1mg.L-1 SRFA+Xe light HgBr2 (aq)  HgBr3

-  HgBr4
2- /FA2Hg (aq)    

    77 18 0.34 5   
A12 Hg+ 10mM KBr + 1mg.L-1 SRFA+Xe light HgBr2 (aq)  HgBr3

-  HgBr4
2- /FA2Hg (aq)    

    25 60 13 2   
A13 Hg+ 0.1mM KCl + 1mg.L-1 SRFA HgCl+ HgCl2 (aq)  HgCl3

-  /FA2Hg (aq)  HgClOH (aq) 
    0.10 48 0.05 50 1.42 
A14 Hg+ 0.1mM KI + 1mg.L-1 SRFA HgI2 (aq)  HgI3

-  HgI4
2- /FA2Hg (aq)    

    62 37 0.33 0.08   
    Species (%) percentage (%)       
R1 Rain event 1-U-Xe light-TL /FA2Hg (aq)  100       
R2 Rain event 1-U-Xe light-TL /FA2Hg (aq)  100       
R3 Rain event 2-F-Xe light-TL /FA2Hg (aq)  100       
R4 Rain event 3-U-Xe light-TL /FA2Hg (aq)  100       
R5 Rain event 4-F-Natural light-TL /FA2Hg (aq)  100       
R6 Rain event 5-F-Natural light-TL /FA2Hg (aq)  100       
R7 Rain event 5-F-Dark control-TL /FA2Hg (aq)  100       
R8 Rain event 8-U-Natural light-TL /FA2Hg (aq)  100       
R9 Rain event 8-U-Xe light-TL /FA2Hg (aq)  100       
R10 Rain event 8-U-Xe light-TL /FA2Hg (aq)  100       
R11 Rain event 9-U-Xe light-PDM /FA2Hg (aq)  100       
R12 Rain event 10-U-Xe light-PDM /FA2Hg (aq)  100       
R13 Rain event 10-U-Xe light-PDM /FA2Hg (aq)  100       
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We observed low, but measurable, dark control reduction rates, kred, of 0.009 h-1 for the 

Hg(OH)2(aq) complex in MQ water, and 0.001 h-1 for the HgBr2(aq) complex (Figure 7a, Table 2 

experiments A2, A3). Dark reduction is generally attributed to abiotic, non-photochemical Hg(II) 

reduction and/or microbial Hg(II) reduction. Under full solar illumination by the Xe lamp, the stronger 

Hg-halide complexes resulted in progressively slower Hg(II) photoreduction rates, kred, of 0.016 h-1,  

0.004 h-1, for HgCl2, HgBr2, and undetectable for HgI2/HgI3
- (Figure 7b, Table 2 experiments A4, A5, 

A6). Experiments with F- ion were attempted, but unsuccessful as F- binds only weakly to Hg(II), 

resulting in dominant Hg(OH)2 complexes under all environmentally relevant F- concentrations. The 

light control experiment in absence of halides resulted in a fast photoreduction rate of the Hg(OH)2(aq) 

complex in MQ water with kred of 0.022 h-1 (Figure 7a, Table 2 experiment A1). The fastest 

photoreduction was observed for Hg-DOC complexes  with kred of 0.23 h-1 (Figure 7a, Table 2 

experiment A7), which is slightly lower than published rate constants under similar conditions: kred = 

0.47 h-1 (Bergquist and Blum 2007), and a literature review on aqueous Hg(II) photoreduction in 

continental and marine waters with median kred = 0.41 h-1 (Qureshi et al. 2011b). Duplicate 

experiments on Hg-DOC and on HgBr2 species resulted in typical uncertainties of 30% (1σ) on kred. 

The dark control experiment with Hg(OH)2 (Figure 7a, exp.A2) shows in fact a kred that is faster (0.009 

h-1) than some of the Hg-halide photoreduction experiments, e.g. HgBr2 at 0.004 h-1. We suggest that 

the absence of stabilizing halide or DOC ligands in solution renders this dark control not representative 

of the true experimental or environmental dark Hg(II) reduction rates. The low dark control kred of 

0.001 h-1 of Hg(II) in the presence of Br is likely more representative (exp. A3). 

Previous studies on Hg(II)-halide photochemistry suggested that ligand to metal charge 

transfer due to UVC absorption in the 200-300nm wavelength range can result in  Hg(0) or Hg(I) 

products depending on Hg/halide ratio and presence of oxygen (Horvath and Vogler 1993). At our 

experimental conditions, under low UVC irradiation, and with molar Hg/halide ratios >100 and in 

absence of oxygen, Hg(0) should be the product. Xiao et al. (1994), performed similar experiments on 
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Hg(OH)2(aq) photoreduction at a higher pH of 7, finding kred of 0.43 h-1 which is 7x faster than our 

observations (Xiao et al. 1994). The difference is likely due to a different experimental set-up, possibly 

due to their use of a more powerful (450W) medium pressure Hg vapor lamp. Compared to a Xe lamp 

which reproduces a solar light spectrum, medium pressure Hg vapor lamps emit primarily in the 200-

600nm region, with a particularly strong UVA line at 365.4 nm. 

 

3.2. Photoreduction of Hg(II) in the presence of both halides and DOC 

Photoreduction kinetics of Hg vary at different Br-/DOC ratios in the presence of halide and DOC 

(Figure 7b). The pseudo first-order reduction rate constant kred reached a high value of 0.23 h-1 in the 

absence of Br- (Table 2, exp.A7). Addition of Br- at a low Br-/DOC  ratio of 0.002mol.g-1 resulted in 

a decreased kred to 0.14h-1, and approximately 98% of Hg(II) was reduced during 48h (Table 2, 

exp.A8). The continuous increase in Br-/DOC ratio further inhibits Hg photoreduction to reach 

0.001h-1 at a Br-/DOC ratio of 20mol.g-1 and results in only about 7% of Hg(II) loss in the solution 

(Table 2, exp.A9-A12). Our experiments revealed that kred had a strong linear correlation with the 

Br-/DOC ratios during 48h (Figure 8). 

 

Figure 8 Hg(II) photoreduction rates are plotted against different Br-/DOC ratios (experiment nos. 

A7-A11, table 1). Br-/DOC ratio is shown on a common logarithmic scale.  kred was evaluated by 

y = -0.22ln(x) - 2.18
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duplicate experiments on Hg-DOC and on HgBr2 species and resulted in typical uncertainties of 30% 

(1σ). 

Composition calculation of the dominant Hg(II) species in the Br- + DOC system are shown 

in Table 3 and show a progressive change from DOC dominated to Br- dominated Hg(II) coordination 

with the increase of Br-/DOC from 0.002mol.g-1 to 20mol.g-1. When Br/DOC >0.2 mol g-1, HgBr2(aq) 

is the dominant species (84%), whereas at Br/DOC <0.2 mol g-1, Hg-DOC dominates. These mixed 

ligand experiment show coherent behavior of Hg(II) photoreduction rates, varying between the fast 

(Hg-DOC) and slow (HgBr2) end-members (Figure 8). Additional experiments at Cl-/DOC of 0.2 mol 

g-1, with calculated speciation of HgCl2 (48%) and Hg-DOC (50%), resulted in a kred of 0.16 h-1. An 

I-/DOC = 0.2 mol g-1 experiment resulted in a slow kred of 0.0023 h-1 during the first 72h, followed by 

insignificant Hg(II) photoreduction from 72 to 168h (Figure 7c). The decrease in kred from 0.16 to 

0.011 to 0.0023 h-1 for the Cl-, Br-, I- mixed ligand experiments in the presence of constant DOC 

concentration corroborates the role of the halide ion in stabilizing Hg(II) in solution (Keql increasing 

from Cl- to Br- to I-)  , and effectively inhibiting photoreduction relative to Hg-DOC species. The 

inhibitory effect of halogen ligands on photoreduction can be explained by different photosensitizer 

properties of the halogens and DOC ligands. DOC contains chromophore moieties such as aromatic 

rings and conjugated double bonds which efficiently absorb UV-light at multiple wavelengths (Del 

Vecchio and Blough 2002). On the contrary, the ionic single bond of Hg(II)-X has more restricted UV 

absorption properties, likely leading to lower photoreduction yields (Saiz-Lopez et al. 2018).  

 

3.3.Photoreduction of rainfall Hg(II)  

We previously published experimental rainfall Hg(II) gross photoreduction rates, which ranged from 

0.016 to 0.072 h-1 (mean 0.051 ± 0.019 h−1, σ, n = 10) in suburban Toulouse, and from 0.14 to 0.19 h-

1 (mean 0.15 ± 0.01 h−1, σ, n = 3) at the remote high-altitude PDM (Saiz-Lopez et al. 2018). Here we 

complete this dataset with rainfall chemistry data for the same samples, including major cations, 

anions (including Cl-, Br- and F-, but not I-), pH and DOC (Table 2, experiments R1-R13). We use V. 
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Minteq to estimate the Hg(II) species distribution among inorganic (F-, Cl-, Br-, NO3
-, SO4

2-, OH-) and 

organic, DOC ligands, assuming that equilibrium conditions are met, and that the rainfall is saturated 

in CO2 with respect to an atmospheric pCO2 of 400 ppmv. Particulate Hg(II) forms are ignored in the 

speciation calculations based on the low (<5%) particulate Hg detected by filtration . For I-, we assume 

a total concentration of 1.1 µg L-1, identical to the mean rainfall total I observed at PDM (Suess et al. 

2019). In the V. Minteq speciation model we assumed atmospheric DOC to be in the form of strong 

fulvic-type acids (FA2). Speciation calculation results are summarized in Table 3, and indicate that in 

all rainfall samples Hg is bound to DOC, notably to the stronger FA2 type sites that represent phenolic, 

thiol and bidentate complexes with Hg(II). The Hg/DOC concentration ratios we observe in rainfall 

range from 0.5 to 6.8 ng.mg-1, indicating that Hg(II) is likely coordinated to thiol groups on the DOC 

compounds (Haitzer et al. 2002b). Observed Cl-/DOC, Br-/DOC and estimated I-/DOC levels in 

rainfall range from 0.02 to 6 x 10-7 mol/g, corroborating that the photoreduction kinetics should be 

dominated by the Hg(II)-DOC experimental end-member. 

 

Figure 9 Rainfall DOC (mg.L-1) plotted as a function of Hg(II) photoreduction rate (h-1) in the 

presence of xenon lamp light and natural sunlight. kred was evaluated by duplicate experiments on 

Hg-DOC and on HgBr2 species and resulted in typical uncertainties of 30% (1σ). 
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Figure 10 Comparison of experimental and model photoreduction rates of Hg(II) in different media. 

 Figure 9 shows a negative relationship between rainfall DOC and Hg(II) photoreduction rate 

(kred, h-1; r2 = 0.91). The relationship is driven by the PDM data which has lower DOC and faster kred. 

Within the urban rainfall data, the DOC vs kred relationship remains significant, but less pronounced 

(r2 = 0.24) (Supplementary Fig. S2). The variation in rainfall kred is not driven by Hg/DOC ratio (r2 = 

0.14) (Supplementary Fig. S3). We observed no statistically significant (p>0.05) differences between 

rainfall Hg(II) reduction rates under natural (0.063 ± 0.026 h−1, 2σ, n=3) and simulated sunlight (0.037 

± 0.032 h−1, 2σ, n=5). We suggest that the overall DOC vs. kred trend in Fig. 3 is possibly driven by 

rainfall DOM molecular properties, likely to be different in the urban boundary layer and free 

troposphere. One possible reason may be the partial oxidation of thiol groups in atmospheric DOC at 

the remote PDM site (Tyndall and Ravishankara 1991). A lower availability of the high-affinity thiol 

ligands should result in weaker complexation of Hg(II) by low affinity O/N ligands and therefore 
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faster photoreduction rates (Jiang et al. 2015). A more detailed characterization of DOC is needed to 

understand this observation. Fig. 4. summarizes published kred and our experimental and rainfall kred 

observations. Rainfall kred are of similar magnitude as the lower (slower) end of kred in terrestrial and 

marine waters. Once more this points to differences in OM, Hg-OM properties and trace metal : OM 

ratios in atmospheric, terrestrial and marine waters. Understanding the influence of aquatic 

geochemistry on Hg photoreduction rates requires investigating all three water types with the same 

experimental and analytical techniques.  
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4. Conclusions 

In this study we performed Hg(II) photoreduction experiments in the presence of halides (Cl, Br, I) 

and DOC. The Hg(II) photoreduction rates observed in rainwater (0.05 h-1 in urban to 0.15 h-1 in 

remote rainfall) are faster than those of isolated HgBr2 complexes (0.004 h-1), and resemble more the 

rates of Hg(II)-DOC compounds (0.23 h-1). Our observations on experimental and rainfall Hg(II) 

photoreduction rates and on estimated Hg(II) speciation in rainfall lead to a number of suggestions on 

cloud water Hg chemistry. Previous research on gas-phase Hg chemistry has shown that elemental Hg 

emissions are partially oxidized by a two-step mechanism, involving Br radicals in step 1, and NO2, 

HO2 radicals in step 2, to produce Hg-halide end products HgBr2, HgBrOH, HgBrONO, HgBrOHO 

(Horowitz et al. 2017b, Saiz-Lopez et al. 2018). These gaseous oxidized Hg(II) compounds are water 

soluble and therefore partition efficiently into aqueous aerosols and eventually in cloud water and rain 

(Amos et al. 2012b, Horowitz et al. 2017b). Aerosols contain abundant organic carbon, in large excess 

over halide ions, which is reflected in the low halide/DOC ratios of rainfall observations (0.04 – 0.75 

g g-1). Despite the strong binding properties of halide ions towards Hg(II), our equilibrium Hg(II) 

speciation calculations, and experimental photoreduction rate observations suggest that scavenged 

Hg-halide complexes are rapidly transformed into aqueous Hg-DOC complexes in rainfall, and by 

extension in cloud-water. 
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Figure 11a-e Pseudo first-order photoreduction rate constants (kred) of Hg(II) was plotted as the slope 

of ln[Hgt/Hg0] versus time (h), a) in the presence of different types of halides and for light and dark 

control experiments, b) in the presence of different Br-/DOC ratios, c) in the presence of different 

types of halide/DOC, d) and e) in the rainfall sample. 
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Figure 12 photoreduction rates, kred plotted as a function of urban toulouse rainfall DOC in the 

urban rainwater 

 
Figure 13 photoreduction rates, kred plotted as a function of Hg versus DOC in the rainwater. 
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Table 4 Summary of photoreduction experiments of artificial Hg solution (NIST 3133, 100ppb) for 

light and dark control experiments (A1-A3) and in the presence of different types of halides (A4-A6), 

in the presence of different Br-/DOC ratios (A7-A12), in the presence of different types of halide/DOC 

(A13-A14). Hg concentrations in italics are included in kinetic rate constants analysis. Pseudo first-

order reduction rate constants were calculated based on total Hg(II) concentration. 

experiment no.   A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 
pH   4.1 4.1 4.1 4.2 4.2 4.0 7.0 4.1 4.1 4.1 4.1 4.1 4.2 7.0 
argon gas  ml/min 80 80 80 80 80 80 80 80 80 80 80 80 80 80 
gross or net   gross gross gross gross gross gross gross gross gross gross gross gross gross gross 
light source   Xe dark control dark control  Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe 
UVB W/m2 25 / / 25 25 25 25 25 25 25 25 25 25 25 
UVA W/m2 186 / / 186 186 186 186 186 186 186 186 186 186 186 
visible light W/m2 242 / / 242 242 242 242 242 242 242 242 242 242 242 
Hg conc. ng/l 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
DOC conc. mg/l / /  / /  / / 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
matrix type   / / KBr KCl KBr KI / KBr KBr KBr KBr KBr KCl KI 
matrix conc. mM / / 0.20 0.10 0.20 0.10 0.00 0.001 0.01 0.10 1.00 10.00 0.10 0.10 
 kred h-1 0.022 0.009 0.001 0.016 0.004 0.0018 0.23 0.137 0.046 0.011 0.0055 0.001 0.158 0.0023 
                                
  h ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml 
Hg conc. 0 86 85 113 101 101 100 92 100.5 102 109 105 114 107 119 
  0.17   73           89.4 95 99         
  0.25 86     102   100             103   
  0.50 88 74   101   99   84.1   102     94   
  0.67                 94           
  0.75 87     100   98             98   
  1 86 70   101   99   78 92 96     91   
  2 85 69   100   99   65 88 99     79   
  3 84 66   95   99   55 85 96     71   
  4 82 63   91   99   51 81 99     62   
  5 83 64       100   45 78 97         
  6 79 63   90   99   41 74 102 99 109 44   
  12 75 61       97 6 16 56 95         
  19         92.2                   
  24 59 54 110 69   97 3.8 4 26 78 89 109 2.4 116 
  36 42 50       97 2.6 2.2 5.8           
  43         86.1                   
  48 29 51 106     99 2.1 1.8 2.5 61 80 106   106 
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Table 5 Measurement of natural UV and visible light intensities of outdoor photochemical 

experiments. Solar light PMA 2200 radiometer including PMA 2106, PMA 2110 and PMA 2130 

employed for UV-B (280-320nm), UVA (320-400nm) and visible light (400-780nm) detector 

respectively. 

Experiment no. Experiment name date light type time UVB  UVA  visible light  experiment time 
         280-320 nm 320-400 nm 400-780 nm   

R5 Rain event 4-F-
Natural light-TL 

4/7/2017 Natural sunlight 10:05 0.600 24.37 97.595 0 

       11:05 1.200 36.54 126.718 1 
       12:20 1.750 44.52 149.16 2.25 
       13:05 2.010 51.58 155.571 3 
       14:05 2.040 51.88 165.487 4 
       15:05 1.900 46.52 160.229 5 
       16:30 1.530 39.51 131.985 6 
       17:05 0.950 32.32 116.568 7 
       18:05 0.510 22.73 89.029 8 

R6 Rain event 5-F-
Natural light-TL 

5/7/2017 Natural sunlight 9:23 0.38 18.32 69.575 0 

       10:23 0.77 28.25 103.967 1 
       11:23 1.28 37.63 127.156 2 
       12:23 1.66 44.77 147.202 3 
       13:23 1.81 48.12 161.099 4 
       14:23 1.78 46.33 154.710 5 
       15:23 1.52 43.10 143.031 6 
       16:23 1.13 35.67 123.698 7 
       17:23 0.67 26.20 99.251 8 
       18:23 0.31 17.18 71.396 9 
       19:23 0.11 8.58 37.998 10 
       20:23 0.02 2.78 10.648 11 

R8 Rain event 8-U-
Natural light-TL 

31/8/2017 Natural sunlight 14:53 0.950 26.28 67.366 0 

       15:08 0.830 33.79 167.210 0.25 
       15:23 0.85 22.79 79.887 0.50 
       15:38 0.37 10.13 24.658 0.75 
       15:53 0.41 13.52 35.166 1 
       16:53 0.140 6.03 16.319 2 
       17:53 0.07 4.58 12.769 3 
   1/9/2017 Natural sunlight 10:27 0.49 22.12 81.995 3 
       11:27 0.97 32.93 110.323 4 
       12:27 1.23 41.36 141.488 5 
       13:27 1.43 46.25 154.211 6 
       14:27 1.49 38.58 181.882 7 
       15:27 0.67 18.49 43.545 8 
       16:27 0.36 10.91 23.268 9 
       17:27 0.15 8.81 24.532 10 
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Chapter 4. Photoreduction of gaseous oxidized mercury changes global 

atmospheric mercury speciation, transport and deposition (published coauthor 

article in Nature Communications) 
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Abstract 

Anthropogenic mercury (Hg(0)) emissions oxidize to gaseous Hg(II) compounds, before deposition 

to Earth surface ecosystems. Atmospheric reduction of Hg(II) competes with deposition, thereby 

modifying the magnitude and pattern of Hg deposition. Global Hg models have postulated that Hg(II) 

reduction in the atmosphere occurs through aqueous-phase photoreduction that may take place in 

clouds. Here we report that experimental rainfall Hg(II) photoreduction rates are much slower than 

modeled rates. We compute novel absorption cross sections of gaseous Hg(II) compounds and show 

that fast Hg(II) photolysis can dominate atmospheric mercury reduction and lead to a substantial 

increase in modelled, global atmospheric Hg lifetime by a factor two. Models with Hg(II) photolysis 

show enhanced Hg deposition to land, which may prolong recovery of aquatic ecosystems long after 

Hg emissions are lowered, due to the longer residence time of Hg in soils than in oceans. These results 

call for a reassessment of atmospheric cycling and its impact on ecosystem health. 
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Introduction 

Atmospheric mercury, a contaminant of global concern, is primarily emitted in the gaseous elemental 

Hg(0) form, with smaller contributions of gaseous oxidized Hg(II) and particle-bound Hg(II). Gaseous 

oxidized Hg(II)XY compounds may contain a variety of X,Y halogen atoms or oxygen-containing 

species, including Br, BrO, Cl, I, O, OH, HO2, NO2, and organic groups. Due to the low ambient 

concentration (pg m-3), gaseous oxidized Hg(II) compounds have only been identified as HgCl2 and 

HgBr2 in urban and indoor air(Deeds et al. 2015b) and as HgCl2 in power plant plumes(Ernest et al. 

2014a). The atmospheric Hg(0) and Hg(II) forms have markedly different water solubility, chemical 

reactivity and lifetime against deposition. The lifetime of Hg(0) against deposition is in the range of 

several months to over a year, whereas that of Hg(II) compounds is on the order of days to 

weeks(Ariya et al. 2015b). Eventually, Hg(0) is oxidized to Hg(II) compounds, which are soluble, 

partition into aerosol, and deposit readily both by dry and wet mechanisms. Direct assimilation of 

Hg(0) by plants and oceans is also thought to be important(Horowitz et al. 2017a, Jiskra et al. 2018a). 

The long lifetime of Hg(0) leads to Hg deposition far from its emission sources to remote ecosystems, 

including the open oceans and polar regions. In aquatic ecosystems, Hg(II) is methylated and may be 

biomagnified up the food chain to levels that induce toxic effects in wildlife and humans(Sonke 2011). 

The development of atmospheric chemistry and transport models (CTMs), an important tool 

for understanding global Hg cycling and predicting future Hg exposure, has drawn much attention to 

the mechanistic aspects of Hg(0) oxidation. While gas-phase O3, OH, HO2, H2O2, and NO3 are all 

potential Hg(0) oxidants(Horowitz et al. 2017a, Dibble, Zelie and Mao 2012b, Lin and Pehkonen 

1999a, Wang et al. 2014a), the oxidation process under atmospheric conditions is thought to be 

initiated primarily via photolytically produced atomic bromine by a two-stage mechanism (Fig. 

1)(Horowitz et al. 2017a, Wang et al. 2014a, Goodsite, Plane and Skov 2004, Holmes, Jacob and Yang 

2006a).  In the first step, the dominant reaction to produce gaseous oxidized Hg(II) compounds is 

thought to be the oxidation of Hg(0) by bromine atoms, yielding the unstable intermediate HgBr. This 

radical can be readily dissociated back to Hg(0), but HgBr can also be competitively oxidized by other 
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major radical oxidant species in the atmosphere (e.g. OH, Br, I, Cl, NO2, HO2, BrO, IO and ClO) to a 

series of currently-assumed stable Hg(II) compounds, as shown in Figure 14: 

 
Figure 14 Current understanding of the formation of oxidized Hg(II) compounds from atmospheric 

gaseous elemental mercury initiated by different oxidant species. This scheme also includes other 

secondary oxidation mechanisms involving single-step reactions with Cl2, O3, BrO and ClO. 

Much less is known about the reduction of Hg(II) compounds to Hg(0) in the atmosphere. 

Global Hg CTMs, based on Hg(0) oxidation alone, predict an unrealistically short residence time of 

Hg(0), and the simulated spatiotemporal Hg(0) variations would not match observations(Horowitz et 

al. 2017a). To reconcile such differences, these models need to include an adjustable term to account 

for Hg(II) reduction in the atmosphere. Such reduction has been presumed to occur in the aqueous 

phase of clouds(Horowitz et al. 2017a, Lin and Pehkonen 1999a, Shia et al. 1999b). Faster gas-phase 

Hg(0) oxidation kinetics has led to the need of these models to employ ever faster in-cloud Hg(II) 

reduction(Horowitz et al. 2017a), with maximum rate constants > ~1-3 h-1, corresponding to in-cloud 

Hg(II) lifetimes < 1 hour on a global mean basis (see SI). Although aqueous Hg(II) photoreduction in 

Earth’s surface waters is a well-documented process(Qureshi et al. 2011a), little experimental or 

observational evidence exists in the case of atmospheric liquid water(Pehkonen and Lin 1998b). 

Earlier studies suggested that Hg(II) reduction could proceed via aqueous SO3 and HO2 reaction 

pathways(Pehkonen and Lin 1998b, Seigneur, Vijayaraghavan and Lohman 2006a), but these 

pathways are now considered irrelevant at the global scale(Horowitz et al. 2017a). Therefore, the 

relevance of atmospheric aqueous Hg(II) reduction and the validity of their inclusion in the global 

mercury CTMs has been questioned(Horowitz et al. 2017a, Seigneur et al. 2006a, Gårdfeldt et al. 

2003). 
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None of the global mercury models has tested the possibility of an alternative explicit gas-

phase photoreduction of Hg(II) compounds, due to the poor understanding of its mechanism and 

reaction rates(Horowitz et al. 2017a). The most recent studies – albeit 27 years ago -  suggested no 

gas-phase photoreduction for HgCl2 and Hg(CN)2 and slow photoreduction rates(Lindqvist et al. 1991, 

Strömberg, Strömberg and Wahlgren 1991) for Hg(OH)2 and Hg(SH)2, despite an earlier study of the 

UV absorption cross sections which suggested that HgBr2 and HgI2 could undergo relatively fast 

photolysis(Wadt 1980, Maya 1977). As far as we are aware there have been no further experimental 

or theoretical studies on the photolytic properties of Hg(II) compounds of atmospheric relevance. 

Here, we revisit the photoreduction pathways of atmospheric Hg(II) compounds. First, we 

show that irradiation experiments with boundary layer and free tropospheric rainwater do not support 

fast aqueous-phase Hg(II) photoreduction. We then compute the UV-VIS absorption cross sections of 

the following Hg(II) compounds: HgCl2, HgBr2, HgBrI, HgBrOBr, HgBrOI, HgBrNO2, HgBrONO, 

HgBrOH, HgBrOOH and HgO, using high-level quantum chemical methods, and infer the 

corresponding atmospheric photoreduction rates. Our results show for the first time that gas-phase 

Hg(II) photoreduction can proceed at relevant timescales, and is more important than in-cloud Hg(II) 

photoreduction. Inclusion of this new gaseous-phase Hg(II) photoreduction mechanism in two state-

of-the-art global Hg models reveals major implications for our understanding of Hg cycling in the 

atmosphere, and its deposition to the surface environment. 
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Results 

Laboratory rainfall Hg(II) photoreduction experiments. To study aqueous phase Hg(II) 

photoreduction, ten rainfall events were sampled in sub-urban Toulouse and at the high altitude 

(2877m) Pic du Midi Observatory (PDM, France) in the summer of 2017. Rainfall samples were 

irradiated in a quartz reactor with natural sunlight or with a solar simulator (see Methods). We observe 

(Supplementary Figure 1a and 1b, Supplementary Data  and Supplementary Table 1) no statistically 

significant differences between rainfall Hg(II) reduction rates under natural (0.063 ± 0.013 h-1) and 

simulated sunlight (0.037 ± 0.016 h-1), and for filtered  (0.058 ± 0.011 h-1) and unfiltered  (0.039 ± 

0.020 h-1) suburban rainwater (t-test, all p>0.05). The mean photochemical reduction rate of suburban 

rainfall was 0.08 ± 0.05 h-1 (σ, n=10). The mean rate at the remote PDM samples was two-fold higher, 

0.15 ± 0.01 h-1 (σ, n=3), than that of the suburban Toulouse samples, and three times slower than the 

median photoreduction rate of 0.41 h-1 (n=24) for inland and marine waters(Qureshi et al. 2011a). Our 

experimental rainwater photoreduction rates, under fully sunlit conditions, are an order of magnitude 

slower that the optimized maximum in-cloud photoreduction rate(Horowitz et al. 2017a, Selin et al. 

2007b) in global Hg CTMs of >1.0 h-1.  

 

Quantum chemical computation of gaseous Hg(II) absorption cross sections. We now turn to the 

computation of electronic spectra and absorption cross sections of gas-phase Hg(II) compounds which 

are required to estimate the corresponding photoreduction rates. A summary of the novel UV-VIS 

spectra and absorption cross sections, computed at the CASSCF/MS–CASPT2/SO–RASSI level of 

theory (Methods), is presented in Figure 15 for the 170 to 600 nm wavelength range. The calculated 

spectra of HgCl2 and HgBr2 are in very good agreement with previous experimental(Maya 1977, 

Roxlo and Mandl 1980, Schimitschek, Celto and Trias 1977, Frantom, Bletzinger and Garscadden 

1980) and computed spectra(Wadt 1980) (Figure 16), thus providing strong support for the theoretical 

method applied here. The majority of the spectra consist of well-defined absorption bands in the 200-

350 nm range, which are red-shifted when Cl is replaced with Br and I atoms. Note that three different 
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isomers could form from the reaction of HgBr with NO2: HgBrNO2, and syn- and anti-HgBrONO. 

However, high-level quantum chemical computations indicate that syn-HgBrONO is the most 

thermodynamically stable species(Jiao and Dibble 2017b). 
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Figure 15  Ball-and-stick representation and computed UV-VIS absorption spectra and cross sections 

(σ, cm2) of the Hg(II) compounds studied in the present work. The light-coloured areas correspond to 

the uncertainty of the cross section due to the statistical sampling. Note the different range of σ values 
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for some of the spectra. Also note that only wavelengths >290 nm are relevant for ambient 

tropospheric conditions.  

 

Computation of photolysis rates and atmospheric lifetime of Hg(II) compounds. The annually 

averaged atmospheric lifetime against photolysis in the troposphere for the Hg(II) compounds studied 

here are presented in Figure 17 (see also Supplementary Table 2 and Supplementary Figure 2 for 

zonal-averaged atmospheric lifetimes). The species with the longest lifetime is HgCl2 (48 years), and 

the species with the shortest lifetime is HgBrOBr (< 1 second). These lifetimes were calculated by 

assuming a complete UV-Visible driven photodissociation to HgBr under atmospheric conditions. In 

the case of the parent HgBr2 compound it is well known that irradiation with ~200 nm UV light yields 

the monohalide (HgBr) with nearly 100% efficiency(Schimitschek et al. 1977, Erlandson and Cool 

1983, Whitehurst and King 1987, Wilcomb, Burnham and Djeu 1980). Moreover, detailed quantum-

Figure 16 Calculated and experimental(Frantom et al. 1980) cross section of gas-phase 

HgBr2. The calculated spectrum was obtained at the CASSCF/MS–CASPT2/SO–RASSI level 

of theory with the ANO-RCC-VTZP basis set. The light coloured areas correspond to the 

numerical error of absorption cross sections due to the statistical sampling 
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chemical computations of the Cl- and Br-dihalides predict further efficient photodissociation at 

wavelengths(Wadt 1980) longer than 200 nm. There are no comparable experimental or calculated 

photolysis data for the other HgBr-X compounds studied here. Nevertheless, a similar very efficient 

photodissociation step is to be expected for these mercury halides considering the even lower 

dissociation energies of the HgBr-X bond, as compared with that of the parent HgBr-Br dihalide 

(Supplementary Table 3)(Dibble et al. 2012b, Jiao and Dibble 2017b). In addition to this primary 

photolysis reaction to HgBr, it has been shown that Hg(0) is also generated in the HgBr2 

photodissociation through direct or secondary channels, although to a much lesser extent(Baker and 

Seddon 1988, Schilowitz and Wiesenfeld 1982). Based on this evidence, we consider in the 

atmospheric modelling below that HgBr is the main product of HgBrX photodissociation, although 

we also ran one scenario where HgBrX photodissociation results in Hg(0) production. 

 

Figure 17 Annually- and globally-averaged photolysis rate (s-1) and lifetime (h) of Hg(II) compounds 

in the troposphere. 
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Discussion 

Table 6 Model test runs for different atmospheric Hg(II) reduction scenarios in the GLEMOS model. 

Run ID Scenario 

Run #1 No Hg(II) reduction 

Run #2 Hg(II) reduction in aqueous phase using the experimentally derived 
rate constant (0.15 h-1) in this study 

Run #3 Gas phase Hg(II) photoreduction to Hg(0) 

Run #4 Gas phase Hg(II) photoreduction to HgIBr 

The absorption cross sections of syn-HgBrONO, HgBrOOH, HgBrOH, HgBr2, HgBrOCl and 

HgBrOBr were implemented into the GEOS-Chem(Horowitz et al. 2017a) and GLEMOS(Travnikov 

2005, Travnikov et al. 2017) global Hg chemistry and transport models (Methods), since these Hg(II) 

species are the most likely to be formed in the atmosphere(Horowitz et al. 2017a, Wang et al. 2014a, 

Jiao and Dibble 2017b). GEOS-Chem simulates Hg(II) as a single tracer, whereas GLEMOS simulates 

Hg(II) species individually. In GEOS-Chem the rapidly photolyzing Hg(II) species (HgBr-[ONO, 

OOH, OCl, OBr]) are calculated to be at pseudo-steady-state with HgIBr to prevent over-reduction. 

syn-HgBrONO and HgBrOOH generally dominate the production of Hg(II) in both models 

(Supplementary Figure 3), whilst HgBr2 becomes the prevalent Hg(II) species in the troposphere 

(Supplementary Figure 4) due to its longer lifetime against photolysis. Note that direct photoreduction 

to Hg(0) produces unrealistically long Hg lifetimes >19 months in both models. Therefore, 

photoreduction was considered to produce HgIBr in all cases. Indeed, intensive photolysis of syn-

HgBrONO and HgBrOOH causes HgIBr to be a relevant species in the free troposphere 

(Supplementary Figure 5 and Fig. 5). HgIBr can then be re-oxidized to gaseous Hg(II), or decay to 

Hg(0) by thermal dissociation, which is strongly dependent on pressure and temperature(Horowitz et 

al. 2017a, Dibble et al. 2012b). Atmospheric aqueous Hg(II) reduction parameterizations in both 

models were capped with an upper limit that corresponds to our observed rainfall photoreduction rate 

constant, kred = 0.15 (h-1). Published model runs with fast aqueous phase Hg(II) reduction and without 

the gas-phase photoreduction(Horowitz et al. 2017a, Travnikov 2005, Travnikov et al. 2017) yield 

total atmospheric Hg lifetimes of 5.2 and 4.6 months against deposition. Our new results show that 
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gaseous Hg(II) photoreduction increases the Hg lifetime to 13 and 10 months in GEOS-Chem and 

GLEMOS model Run#4, respectively. We find that gas-phase photoreduction is the dominant 

reduction pathway. GLEMOS does not include the highly uncertain reduction reaction(Horowitz et al. 

2017a) HgBr + NO2  Hg(0) + BrNO2. Omitting this reaction in GEOS-Chem lowers the Hg lifetime 

from 13 to 8 months in model Run#4. 
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 (a)  

(b)  

(c)  

(d)  

Figure 18 Global budget of Hg chemical cycling covering the troposphere and lower stratosphere 

(up to ca. 30 kms) for different tests in GLEMOS: (a) – Run #1; (b) – Run #2; (c) – Run #3; (d) – Run 

#4. The mass estimates are in Mg, the fluxes are in Mg a-1. 

We further examined the global atmospheric Hg(0) and Hg(II) distribution in GLEMOS. The 

different model simulated scenarios for atmospheric Hg(II) reduction are shown in Table 1. Figs. 6-7 
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show the effect of the new photoreduction scheme on the global distribution of Hg(0) surface 

concentration. All these simulations were made with the previously assumed aqueous photoreduction 

mechanism removed. We find that simulations without the gaseous photoreduction lead to 35-40% 

underestimation of observed Hg(0) (Runs #1 and #2). The gas phase Hg(II) photoreduction to Hg(0) 

(Run #3) results in unrealistically high Hg(0) concentrations with almost two-fold overestimation of 

the observations and strong underestimation of wet deposition. The model run with incorporation of 

the gas phase photoreduction to HgBr (Run #4) shows that Hg(0) levels are 18% overestimated, and 

model Hg(II) wet deposition 20% underestimated with respect to observations (Fig. 6, Supplementary 

Table 4). The results of test Run#4 are closest to the observations which suggest that gas phase 

reduction processes are important but also that re-oxidation via the HgBr intermediate is important. 

An additional step in the evaluation of model results can be made by examining the variability of 

modelled and observed Hg concentrations. Previous studies indicated that longer Hg(0) lifetimes lead 

to lower simulated Hg(0) variability, as represented by the standard deviation (1σ) of mean Hg(0) 

concentrations(Horowitz et al. 2017a, Travnikov et al. 2017). Here, gas-phase photoreduction leads 

to simulated Hg(0) levels at the measurement sites (1.62±0.36 ng/m3, 1σ, STP) that have a larger 

standard deviation than observed Hg(0) (1.38±0.25 ng/m3, 1σ, STP). This indicates that the longer 

Hg(0) lifetime estimates of 8-13 months resulting from model Run#4 are broadly compatible with 

observed Hg(0) variability (1σ). The resulting global zonal distribution of Hg(0) and speciated Hg(II) 

(syn-HgBrONO, HgBrOOH, HgBrOH, HgBr, HgBr2) reveals the major effects of gas-phase Hg(II) 

photoreduction in the global budget of atmospheric oxidized mercury (Supplementary Figures 4-9) 

and in the global patterns of mercury surface deposition (Fig. 8 and Supplementary Figure 10). In 

particular, it leads to strong decrease of free tropospheric concentrations of syn-HgBrONO and 

HgBrOOH, which were previously considered as dominant HgII species. In contrast, concentrations 

of HgBrOH and HgBr2 increase drastically due to the lower photolysis rates. The incorporation of gas-

phase photoreduction leads to an increase in global Hg(0) deposition from 11% (Run#1) to 24% 

(Run#4) at the expense of Hg(II) deposition (down by 13%, Fig. 8 and Supplementary Figure 10). We 
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further observe a reduction of Hg deposition (dry and wet) to the ocean (down by 15%, Fig. 8 and 

Supplementary Figure 10). and an increase of Hg(0) dry deposition to the land surface (22%), 

particularly to vegetation in line with the recent findings that foliar uptake by vegetation drives 

continental Hg(0) seasonality(Jiskra et al. 2018a). Global chemical budget diagrams (Fig. 5) 

summarize the Hg(0), Hg(I) and Hg(II) cycling in different model runs. 

 
 

(a)  (b)  

  

(c)  (d)  

 
 

Figure 19 Spatial distribution of Hg(0) surface concentration for different atmospheric Hg(II) 

reduction simulations in the GLEMOS model: (a) Run #1; (b) Run #2; (c) Run #3; (d) Run #4. 

Circles show observed values in the same color scale. The measurement dataset is the same as 

in ref (Travnikov et al. 2017).  
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(a)    (b)  

Figure 20 Comparison of simulated Hg(0) air concentration (a) and Hg(II) wet deposition (b) from 

the GLEMOS model with measurements for the year 2013. The measurement dataset is the same as 

in ref (Travnikov et al. 2017). 

 

(a)  (b)  

  

(c)  (d)                                                                                                                       

 
 

Figure 21 Spatial distribution of total Hg (i.e. Hg0 + HgII) deposition for different tests in 

GLEMOS: (a) – Run #1; (b) – Run #2; (c) – Run #3; (d) – Run #4. Circles show observed values 

in the same color scale. The measurement dataset is the same as in ref 32 in the main text. 

This work shows that the presence of an efficient gaseous phase Hg(II) photoreduction 

challenges our understanding of Hg cycling in the atmosphere and its deposition to the surface 

environment. We show that the new gas-phase Hg(II) photoreduction mechanism is likely the 

dominant reduction pathway for atmospheric mercury which changes the concept of the speciation of 
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Hg(II) in the atmosphere.  Its inclusion in state-of-the-art global models leads to significant 

modifications in the local scale deposition of Hg to the Earth’s surface. As a result, enhanced 

deposition to land surfaces may prolong recovery of aquatic ecosystems long after Hg emissions are 

curbed, due to the longer residence time of Hg in soils than in oceans(Schuster et al. 2018).   
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Methods 

1. Computation of UV-Vis absorption spectra and cross sections 

A set of theoretical methods previously calibrated(Sitkiewicz et al. 2016b) were used for calculating 

the electronic absorption spectra and cross-sections of HgCl2, HgBr2, HgBrI, HgBrOBr, HgBrOI, 

HgBrOCl, HgBrNO2, HgBrONO, HgBrOH, HgBrOOH and HgO. Specifically, the highly accurate 

multireference CASSCF/MS-CASPT2 method(Finley et al. 1998), with the ANO-RCC-VTZP basis 

set(Roos et al. 2004) was applied, taking into account scalar relativistic and spin-orbit coupling (SOC) 

effects (see below section 1.1 and 1.2, and Supplementary Table 5 for further details). Scalar 

relativistic effects were included by means of the third-order Douglas-Kroll and Hess (DKH3) 

Hamiltonian, and the spin-orbit coupling (SOC) was computed using the restricted active space state 

interaction (RASSI) method, as implemented in the Molcas 8 program(Aquilante et al. 2016). 

Vertical transition energies from the ground to electronically excited states and the 

corresponding oscillator strengths, expressed as absorption cross-sections (cm2), were determined as 

described previously(Sitkiewicz et al. 2016b). The agreement between computed and experimental 

transition energies was in the range of 5-10%, for those few cases in which gas-phase experimental 

data were available, namely for mercury compounds HgCl2 and HgBr2 (Figure 2).  The corresponding 

uncertainty in the calculated cross-section values is ±25% for the most intense transitions (see Figure 

2), similar to the actual dispersion of the experimental values(Maya 1977, Roxlo and Mandl 1980, 

Schimitschek et al. 1977, Frantom et al. 1980). 

The atmospheric modelling methods used in the present work require as input data the 

absorption spectrum of any compound that may undergo photolysis under atmospheric conditions. 

Therefore, absorption spectra were generated for all the compounds studied here by sampling the 

nuclear coordinates of the ground-state equilibrium structure and frequencies according to a Wigner 

distribution, as described in refs(Barbatti, Aquino and Lischka 2010, Crespo-Otero and Barbatti 2012). 

The Wigner distribution of geometries was obtained with the Newton-X 1.4 program(Barbatti et al. 

2007, Barbatti et al. 2014), and an in-house program was used to compute the cross sections from the 
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energies and oscillator strengths generated by the Molcas program. The ground-state structures and 

frequencies needed to generate the Wigner distribution were obtained by using the PBE0 

functional(Adamo and Barone 1999) with the Def2QZVP basis set(Andrae et al. 1990, Peterson et al. 

2003, Weigend and Ahlrichs 2005) as implemented in the Gaussian 09 package(Frisch et al. 2009). 

The minor differences (see section 1.1 and 1.2) observed in the simulated spectra due to ground-state 

geometries generated using either CASPT2, CCSD or DFT functionals are presented in 

Supplementary Figure 11.  

 

1.1 Details on the selected active spaces 

In this section, the selected active spaces for the CASSCF/CASPT2 computations are briefly discussed. 

First general details are given and next we discuss those aspects which refer to each group of 

compounds. 

According to our first paper on benchmarking the methodology for the representative HgBr2 

molecule(Sitkiewicz et al. 2016a) and on the basis of several test CASSCF computations with distinct 

active spaces for the whole set of molecules, some rules regarding the selection of the active spaces 

could be established: 

1) For all the systems, s-subshell orbitals (and electrons) are not relevant in the studied energy range 

(up to 170 nm) and therefore were kept inactive and doubly occupied, except for the 6s orbital of Hg, 

which has a key role in the transitions. 

2) The 5d orbitals of Hg are neither involved in the transitions within the energy region of our interest, 

and therefore were not correlated in CASSCF/CASPT2 simulations for any system with the exception 

of the 11Σ and 13Π states of HgO. For this system, tests showed a small contribution of the 5d orbitals 

for high-energy transitions close to 170 nm. 

3) The 6p orbitals of Hg, especially those perpendicular to σ orbitals of Hg-X, namely 6px and 6py, 

should be correlated at the CASSCF level. On the other hand, test calculations have shown that the 
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Hg atomic orbital of 6pz-type, colinear with mercury covalent bonds, have not any significance in the 

transitions relevant for this study, and were not included in the active spaces for the larger systems. 

 

3) The two last NOs of non-bonding character, consisted of Br 4dxz/yz + Br 4dxz/yz AOs and used in our 

first benchmark study, were not necessary for the computations and were omitted in the di- and 

triatomic systems, in order to reduce computational effort. 

 

For each particular compound, the following criteria were adopted: 

HgCl2 HgBr2 and HgBrI – CAS(12,10). For these systems, the optimal active spaces consisted of 12 

electrons distributed over 10 NOs of the following character: σ/σ*-type(Hg 6s ± Cl 3pz / Br 4pz / I 6pz  

and Hg 6pz ± Cl 3pz / Br 4pz / I 5pz),  σnb-type (Cl 3pz / Br 4pz / I 5pz), and πnb-type (Cl 3px/y / Br 4px/y 

/ I 5px/y and Hg 6px/y). Although included in the active space, the σ* orbital, Hg 6pz ± Cl 3pz / Br 4pz / 

I 5pz  (NO 10) was not occupied due to the excitations. 

1Σ HgO and 3Π HgO. The optimal active spaces consisted of 16 electrons distributed over 12 NOs. 

For these systems only, the active space additionally had to include 10 electrons belonging the Hg 5d-

subshell, where the remaining NOs were of the following type: σ/σ*-type (Hg 6s ± O 2pz and Hg 6pz 

± O 2pz), and πnb-type (O 2px/y and Hg 6px/y). In contrast to the other systems studied, σ* Hg 6pz + O 

2pz had observable contribution in the excitations. 

HgBrOBr and HgBrOI. The optimal active spaces consisted of 16 electrons distributed over 12 NOs. 

It consisted of the NOs formed by Hg 6s and the AOs of p-type: O 2px/y/z, Br 4px/y/z / I 5px/y/z and Hg 

6px/y. Tests have shown that for the relevant energy region in the UV-VIS range, there are no relevant 

transitions to the Hg 6pz orbital, and therefore it was not included in the active space due to the 

computational limits. 

syn-HgBrONO and anti-HgBrONO. For these two isomers, the optimal active spaces consisted of 16 

electrons distributed over 12 NOs. It consisted of the NOs formed by Hg 6s and the AOs of p-type: O 

2px/y/z, Br 4px/y/z / I 5px/y/z and Hg 6px/y. Several orbitals from the full valence space had to be omitted 
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due to the computational limits. Tests have shown that for the relevant wavelength region in the UV-

VIS, one σ-type bonding NO between O-N-O group of atoms remain doubly occupied (and moved to 

the inactive space), whereas the Hg 6pz orbital and the higher σ*-type virtual orbitals are not active 

and therefore were kept in the secondary space. 

HgBrOH and HgBrOOH. In the case of HgBrOOH, the optimal active spaces were similar to those 

of HgBrOBr and HgBrOI. They consisted of 16 electrons distributed over 12 NOs formed by Hg 6s 

and the AOs of p-type: O 2px/y/z, Br 4px/y/z / I 5px/y/z and Hg 6px/y. Tests have shown that for the selected 

energy region in the UV-VIS there are no relevant transitions to the Hg 6pz orbital, and therefore it 

was not included in the active space due to the computational limits. In the case of HgBrOH, full 

valence active space (12,11) with additional p-type orbitals of Hg was selected. 

HgBrNO2. For this compound, the selected active space is chemically the same as of the syn- and 

anti-HgBrONO, the optimal active spaces consisted of 16 electrons distributed over 12 NOs. It 

consisted of the NOs formed by Hg 6s and the AOs of p-type: O 2px/y/z, Br 4px/y/z / I 5px/y/z and Hg 

6px/y. Several orbitals from the full valence space had to be omitted due to the computational limits. 

Tests have shown that for the relevant energy region in the UV-VIS, one σ-type bonding NO between 

O-N-O group of atoms remain doubly occupied (and moved to the inactive space), whereas the Hg 

6pz orbital and the higher σ*-type virtual orbitals are not active and therefore were kept in the 

secondary space. 

For the di- and triatomic systems, the highest possible symmetries, which enabled for every 

possible displacement of atoms, were used in the calculations – C2v in HgO and Cs in HgCl2, HgBr2 

and HgBrI. For other studied systems, no symmetry was adapted (C1 group). For a particular system, 

number of SF states to account for in the CASSCF/CASPT2 calculations was selected accordingly to 

the energy criteria, in such way to include all relevant SF transitions up to 170 nm (and later apply 

SOC effects). All of the parameters of the carried simulations of the spectra, such the number of 

sampled geometries Np, broadening of the Gaussian shape functions δ, and the numbers of included 

states per symmetry, are presented in detail in Supplementary Table 5. 
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1.2. Test of geometry distribution used for simulations (DFT vs CASPT2 vs CCSD distribution) 

The comparison of the simulated UV-VIS spectra when using differently generated sets of geometries 

is presented in Supplementary Figure 11 for the representative HgBr2 molecule. The optimization of 

the geometry of the ground state and the frequencies of normal modes were obtained (and further used 

in Wigner distribution) using three different quantum-chemical methods:  

 PBE0/Def2QZVP (presented in paper),  

 CCSD/Def2QZVP  

 SS-CASPT2(12,10)/ANO-RCC-VTZP 

The computations of the electronic structure of the excited states were done at the same level of theory: 

SOC-DKH3-MS-CASPT2(12,10)/ANO-RCC-VTZP. The number of sampled geometries Np and 

broadening of the Gaussian shape functions δ, were the same for all of the optimization methods: 

Np=100 and  δ=0.05 eV, as shown in Supplementary Table 5. 

 
2. Computation of the photolysis rates 

In this study we employ the global 3D chemistry-climate model CAM-Chem (Community 

Atmospheric Model with chemistry, version 4.0)(Gent et al. 2011), to estimate the photolysis rate (J), 

and therefore the atmospheric lifetime (τ=1/J), of the different Hg(II) species according to their 

computed absorption cross section. The model includes a comprehensive chemistry scheme to 

simulate the evolution of trace gases and aerosols in the troposphere and the stratosphere(Ordóñez et 

al. 2012). The model runs with the chlorine, iodine and bromine chemistry schemes from previous 

studies(Fernandez et al. 2014, Saiz-Lopez et al. 2014, Saiz-Lopez et al. 2015), including the 

photochemical breakdown of bromo- and iodo-carbons emitted from the oceans(Ordóñez et al. 2012) 

and abiotic oceanic sources(Prados-Roman et al. 2015) of HOI and I2. We have included all the Hg(II) 

species (HgCl2, HgBr2, HgBrI, HgBrOCl, HgBrOBr, HgBrOI, HgBrNO2, HgBrONO (syn and anti), 

HgBrOH, HgBrOOH and HgO) and their computed absorption cross sections. CAM-Chem has been 

configured in this work with a horizontal resolution of 1.9º latitude by 2.5º longitude and 26 vertical 
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levels, from the surface to 40 km altitude. The model run in this study was performed in the specified 

dynamics mode(Ordóñez et al. 2012) using offline meteorological fields instead of an online 

calculation. This offline meteorology consists of a high frequency meteorological input from a 

previous free running climatic simulation. 

 

3. Description of the GEOS-Chem model 

In this study, we use the GEOS-Chem Hg simulation from ref(Horowitz et al. 2017a) using the surface 

slab ocean boundary parametrization(Soerensen et al. 2010). The model calculates the transport and 

chemistry of tracer species Hg(0) and Hg(II). The parametrization of gas-particle partitioning of Hg(II) 

is from ref(Amos et al. 2012a), and the mercury redox chemistry (described in detail in Supplementary 

Table 6) includes Br- and Cl-initiated oxidation. Radical concentrations for Hg redox chemistry are 

from ref(Schmidt et al. 2016) with a diurnal cycle based on solar zenith angle imposed on top of 

monthly averages. Photolysis of HgBr-X species is calculated using the GEOS-Chem 

implementation(Eastham, Weisenstein and Barrett 2014) of the Fast-JX code(Bian and Prather 2002). 

 

4. Description of the GLEMOS model 

For evaluation of the new Hg chemical mechanisms under the atmospheric conditions we apply the 

3D multi-scale chemical transport model GLEMOS (Global EMEP Multi-media Modelling System). 

The model simulates atmospheric transport, chemical transformations and deposition of Hg 

species(Travnikov 2005, Travnikov and Ilyin 2009, Travnikov et al. 2017). In this study the model 

grid has a horizontal resolution 3°×3° and covers troposphere and lower stratosphere up to 10 hPa (ca. 

30 km) with 20 irregular terrain-following sigma layers. The atmospheric transport of the tracers is 

driven by meteorological fields generated by the Weather Research and Forecast modelling system 

(WRF)(Skamarock et al. 2005) fed by the operational analysis data from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) (ECMWF, 2018)(ECMWF: European Centre for 

Medium-Range Weather Forecasts (datasets available from 

http://www.ecmwf.int/en/forecasts/dataset). In the current version the model transports Hg(0) and four 
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Hg(II) species (HgBr2, HgBrOH, HgBrOOH, HgBrNO2) as separate species. Gas-particle partitioning 

of Hg(II) is parameterized following ref(Amos et al. 2012a)55. A two-step mechanism of Hg(0) 

oxidation by Br in gas phase is included (ref (Horowitz et al. 2017a)5): 

Hg(0) +X + M → HgIX + M        (R1)  

HgIX + M → Hg(0) +X + M        (R2) 

HgIX + Y → Hg(0) +XY        (R3) 

HgIX + Y + M → HgIIXY + M,       (R4) 

The full reaction scheme is listed in Supplementary Table 6. Briefly, X ≡ Br is the first-step Hg(0) 

oxidant, Y is the second-step Hg(I) oxidant, and M is a molecule of air. The reaction rate constants 

are from: ref (Donohoue et al. 2006b) for R1; ref (Dibble et al. 2012b) for R2; ref (Balabanov, Shepler 

and Peterson 2005b) for Y ≡ Br in R3; ref (Goodsite et al. 2004) for Y ≡ Br and OH in R4; ref (Jiao 

and Dibble 2017b) for Y ≡ HO2 and NO2 in R4. Six-hourly concentration fields of Br are archived 

from a GEOS-Chem simulation(Parrella et al. 2012), whereas OH, HO2, NO2 and particulate matter 

(PM2.5) fields are imported from MOZART(Emmons et al. 2010). The aqueous-phase chemistry 

includes oxidation(Lin and Pehkonen 1999a, Gårdfeldt et al. 2001, Munthe 1992b) of Hg(0) by 

dissolved O3, OH and Cl(I)I. We have included the gas-phase photoreduction of HgBr2, HgBrOH, 

HgBrOOH, syn-HgBrONO using the rates calculated by CAM-Chem and the aqueous-phase 

photoreduction in cloud droplets with the photolysis rate constant 0.15 h-1 estimated in this study. We 

perform simulations for the period 2007-2013 using anthropogenic emissions for 2010 (AMAP/UNEP 

2013b, AMAP/UNEP 2013a). Prescribed fluxes of Hg natural and secondary emissions from soil and 

seawater are generated depending on Hg concentration in soil, soil temperature and solar radiation for 

emissions from land and proportional to the primary production of organic carbon in seawater for 

emissions from the ocean(Travnikov and Ilyin 2009). The first 6 years of the period are used for the 

model spin up to achieve the steady-state Hg concentrations in the troposphere. The model results are 

presented as annual averages for 2013. 
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5. Description of rainfall Hg(II) gross reduction rate experiments 

Ten rainfall events were sampled in sub-urban Toulouse and at the high mountaintop Pic du Midi 

Observatory (Sprovieri et al.) in the summer of 2017 using ultra-clean methods(Enrico et al. 2016b). 

Rainfall samples were transferred to a 0.5L quartz reactor and illuminated with natural sunlight 

outdoors (up to 8h), or with a solar simulator indoors (up to 48h). Filtered samples were passed through 

a 0.45 micro-m quartz filter membrane to remove particles, in un-filtered samples this step was left 

out. Total Hg concentration of selected rainfall samples was augmented 10x with a NIST 3133 

standard Hg solution, and equilibrated 24 h before light exposure. During light exposure, the quartz 

reactor was purged with Hg-free argon gas to remove product Hg(0). Reactant Hg(II) concentrations 

were measured in duplicate by cold vapor atomic fluorescence spectroscopy (CV-AFS) in 5mL 

aliquots recovered from the reactor at fixed time steps and acidified to 0.04 M HCl, and 0.1 M BrCl. 

CV-AFS analysis accuracy was evaluated by regular analysis of the NRC ORMS-6 certified (25.6 ng 

L-1) reference material with good results (24.8 ± 1.6 ng L-1, 1σ, n=33). Five out of twelve experiments 

showed increasing or constant reactant Hg(II) levels during the initial 2-4 hours, followed by a gradual 

decreasing in the final 24 hours (Supplementary Material). These initial observations, tentatively 

explained by Hg(II)-DOM interaction with the quartz reactor wall, were not included in the rate 

constant calculation. This simplification did not affect the main outcome of this study. For further 

discussion on in-cloud Hg photoreduction see Supplementary Note. 
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Code and data availability 

The code and data that support the findings of this study are available upon request. 
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1. Supplementary Figures 

 

 
Figure 22 Experimental HgII photoreduction rates for a) short outdoors exposure of Toulouse rainfall 

to sunlight (events 4, 5, 8), to no light conditions (event 8 dark control), and Pic du Midi rainfall to 

simulated light conditions (events 9, 10), b) controlled exposure of Toulouse rainfall to simulated 

sunlight. (events 1, 2, 3, 8). UF and F indicate unfiltered and filtered rainfall. The combined analysis 

uncertainty of Hg concentration measurements was 13% (2σ level). 
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Figure 23 Photolysis rates (J, s-1) zonal-averaged along all longitudes for the studied HgII compounds, 

computed with global 3D chemistry-climate model CAM-Chem. 
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Figure 24 Fraction of HgBrX (X = BrO, ClO, syn-ONO, HO2) in colours and photolysis lifetimes 

(seconds) in contours modelled by GEOS-Chem. Note that HgBrOH and HgBr2 are both very small 

fractions of HgBrX and are not shown. 
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(a)  (b)  

(c)  (d)  

 
 

Figure 25 Annual zonal mean volume mixing ratios of HgBr2 (ppqv Hg) for different tests in 

GLEMOS: (a) – Run #1; (b) – Run #2; (c) – Run #3; (d) – Run #4. 

 

(a)  (b)  

(c)  (d)  

 
 

Figure 26 Annual zonal mean volume mixing ratios of HgBr (ppqv Hg) for different tests in 

GLEMOS: (a) – Run #1; (b) – Run #2; (c) – Run #3; (d) – Run #4. 
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(a)  (b)  

(c)  (d)  

 
 

Figure 27 Annual zonal mean volume mixing ratios of Hg0 (ppqv) for different tests in 

GLEMOS: (a) – Run #1; (b) – Run #2; (c) – Run #3; (d) – Run #4. 

 
 

(a)  (b)  

(c)  (d)  

 
 

Figure 28 Annual zonal mean volume mixing ratios of HgBrOH (ppqv Hg) for different tests in 

GLEMOS: (a) – Run #1; (b) – Run #2; (c) – Run #3; (d) – Run #4. 
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(a)  (b)  

(c)  (d)  

 
 

Figure 29 Annual zonal mean volume mixing ratios of HgBrOOH (ppqv Hg) for different tests 

in GLEMOS: (a) – Run #1; (b) – Run #2; (c) – Run #3; (d) – Run #4. 
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Figure 30 Annual zonal mean volume mixing ratios of syn-HgBrONO (ppqv Hg) for different 

tests in GLEMOS: (a) – Run #1; (b) – Run #2; (c) – Run #3; (d) – Run #4. 

 

 

(a)  (b)  

  

(c)  (d)  

 
 

Figure 31 Spatial distribution of HgII wet deposition for different tests in GLEMOS: (a) – Run 

#1; (b) – Run #2; (c) – Run #3; (d) – Run #4. Circles show observed values in the same color 

scale. The measurement dataset is the same as in ref Tranikov et al., 2017(Travnikov et al. 

2017) in the main text.  
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Figure 32 Calculated spectra of HgBr2 using different ensembles of geometries generated at different 

level of theory. Electronic structure computations were done at the CASSCF/MS–CASPT2/SO–RASSI 

level with the ANO-RCC-VTZP basis set. 
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2. Supplementary Tables 
 

Table 7 Summary of HgII photoreduction experiments for rainfall collected in suburban Toulouse 

(events 1-8) and in the free troposphere of the Pic du Midi Observatory (PDM, 2877m altitude). UF, 

unfiltered; F, filtered; Xe, xenon solar simulator. Legends are referred to Supplementary Data. 

Experiment name Figure legend kred (h-1) 
   

PC-R1U1XL rain event 1 - UF - Xe light 0.043 

PC-R1U2S2XL rain event 1 - UF - Xe light 0.071 

PC-R2F1S1XL rain event 2 - F -Xe light 0.064 

PC-R3U1S1XL rain event 3 - UF - Xe light 0.016 

PC-R4F1S1NL rain event 4 - F - sunlight 0.069 

PC-R5F1S1NL rain event 5 - F - sunlight 0.047 

R5F2S1DC rain event 5 - F - dark control 0.007 

PC-R8U1NL rain event 8 - U - sunlight 0.071 

PC-R8U2XL rain event 8 - U - Xe light 0.047 

PC-R8U3S1XL rain event 8 - U - Xe light 0.031 

mean 
 

0.077 

σ 
 

0.052 
   

PC-9 PDM rain event 9 – U – Xe light 0.145 

PC-10 PDM rain event 10 – U – Xe light 0.188 

PC-10 duplicate PDM rain event 10 - U - Xe light 0.136 
mean 

 
0.153 

σ 
 

0.012 

   
Selin et al., 
2007(Selin et al. 
2007b) 

GEOS-Chem vs 7-04 2.9 

Horowitz et al., 
2017(Horowitz et al. 
2017a) 

GEOS-Chem vs 9-02 1.0 
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Table 8 Photolysis rate (J) and annually averaged lifetime in the troposphere (𝜏) of the HgII 

compounds. 

Compound J/s-1 𝝉 /s 
HgCl2 6.28E-10 1.59E+09 
HgBr2 9.70E-07 1.03E+06 
HgBrI 1.67E-04 5.99E+03 
HgBrONO_syn 9.60E-04 1.04E+03 
HgBrONO_anti 2.31E-03 4.34E+02 
HgBrNO2 3.95E-03 2.53E+02 
HgBrOOH 1.32E-02 7.57E+01 
HgBrOI 1.78E-02 5.60E+01 
HgBrOBr 2.17E-02 4.61E+01 
HgO 5.42E-01 1.84E+00 
HgBrOH 1.07E-05 9.34E+04 
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Table 9 Calculated bond dissociation energies D0 (at 0K) for BrHgX species. All values in kJmol-1. 

 D0 

BrHgBr 305.4(Balabanov and Peterson 2003), 

303.8(Shepler, Balabanov and Peterson 

2007) 

BrHgNO2 138.9(Dibble, Zelie and Jiao 2014), 

149.0(Jiao and Dibble 2015), 142.7(Jiao 

and Dibble 2017a), 139.3(Dibble et al. 

2012b) 

anti-BrHgONO 156.1(Dibble et al. 2014), 160.7(Jiao and 

Dibble 2015), 151.9(Jiao and Dibble 

2017a), 150.2(Dibble et al. 2012b) 

syn-BrHgONO 177.0(Dibble et al. 2014), 182.2(Jiao and 

Dibble 2015), 177.4(Jiao and Dibble 

2017a), 176.1(Dibble et al. 2012b) 

BrHgOOH 177.4(Jiao and Dibble 2015), 

167.4(Dibble et al. 2012b) 

BrHgOBr 232.6(Dibble et al. 2012b), 223.8(Jiao 

and Dibble 2015) 

BrHgOCl 220.6(Dibble et al. 2012b), 211.7(Jiao 

and Dibble 2015) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 10 Statistics of the model evaluation against measurements 

Run ID Hg0 concentration Hg wet deposition 
Correlation (a)  Relative bias, % (b) Correlation (a)  Relative bias, % (b) 

Run #1 0.63 -39 0.51 -6.8 
Run #2 0.63 -35 0.53 -8.5 



 

100 

 

 

Run #3 0.71 91 0.11 -78 
Run #4 0.68 18 0.52 -21 

 

(a) Pearson’s correlation coefficient: 
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Table 11 Summary of the computational details used in the quantum-chemical calculation of spectra 

and cross sections of mercury compounds: geometry optimization and vibrational analysis, 

computation of the excited states, symmetry constraints, active space used in the CASSCF/CASPT2 
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calculations, number of the sampled geometries (Monperrus et al.), number of states for each 

irreducible 

representation including ground state (Nfs), phenomenological broadening δ. 

 

System HgCl2, HgBr2, 
HgBrI 

1Σ HgO, 3Π HgO 
syn-, anti-
HgBrONO, 
HgBrNO2  

HgBrOBr, 
HgBrOI 

HgBrOH, 
HgBrOOH 

Geom. opt. 
and vibr. 
analysis  

Method: PBE0 
Basis set: Def2QZVP 

Comp. of 
the excited 
states 

Method: SOC-DKH3-MSCASPT2 
Basis set: ANO-RCC-VTZP 

Symmetry Cs C2v C1 C1 C1 

Active 
space (12,10) (16,12) (16,12) (16,12) 

HgBrOH: (12,11) 
HgBrOOH: 
(16,12) 

Np 100 100 200 150 HgBrOH: 150 
HgBrOOH: 200 

Nfs (per 
Irrep) 

1A′ : 10 

1A″: 10 
3A′ : 10 

3A″: 10 

1A1: 8 

1A2: 8 
1B1: 8 

1B2: 8 

3A1: 8 

3A2: 8 
3B1: 8 

3B2: 8 

1A: 25 3A : 25 1A: 25 
3A : 
25 

1A: 20 
 

3A : 20 
 

δ [eV]7 0.05 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Table 12 Chemical schemes used in the GLEMOS and GEOS-Chem models. 
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GLEMOS: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N Reaction Rate, molecule cm-3 s-1 Reference 

R1 MHgBrMBrHg 0  1.5 × 10-32 (T/298)-1.86 [Hg0][Br][M] 
Donohoue et al. 
(2006)(Donohoue et al. 
2006a) 

R2 MBrHgMHgBr  0  1.6 × 10-9 exp(-7801/T) [HgBr][M] Dibble et al. (2012)(Dibble et 
al. 2012b) 

R3 2
0 BrHgBrHgBr   3.9 × 10-11 [HgBr][Br] 

Balabanov et al. 
(2005)(Balabanov, Shepler 
and Peterson 2005a) 

R4 2HgBrBrHgBr M
  2.5 × 10-10 (T/298)-0.57 [HgBr][Br] Goodsite et al. 

(2004)(Goodsite et al. 2004) 

R5 HgBrOHOHHgBr M
  2.5 × 10-10 (T/298)-0.57 [HgBr][OH] Goodsite et al. 

(2004)(Goodsite et al. 2004) 

R6 22 HgBrNONOHgBr M
  kNO2([M],T)[HgBr][NO2] 

Jiao and Dibble (2017)(Jiao 
and Dibble 2017a) 

R7 22 HgBrHOHOHgBr M
  kHO2([M],T)[HgBr][HO2] 

Jiao and Dibble (2017)(Jiao 
and Dibble 2017a) 

R8 productsHgHgBrY h
 0 ,  

Y = Br, OH, NO2, HO2  
kphoto([M],T)[HgBrY] This study 

R9 productsHgBrHgBrY h


 ,  
Y = Br, OH, NO2, HO2 

kphoto([M],T)[HgBrY] This study 

R10 )()( 0 aqHghaqHg II    4.25× 10-5 s-1 This study 
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GEOS-Chem: 

 Reaction Rate expression Ref 
R1 𝐻𝑔0 + 𝐵𝑟 + 𝑀 → 𝐻𝑔𝐵𝑟 + 𝑀 1.46  10-32 (T/298)-1.86[Hg0][Br][M] (Donohoue et al., 

2006)(Donohoue et 
al. 2006a) 

R2 𝐻𝑔𝐵𝑟 + 𝑀 →  𝐻𝑔0 + 𝐵𝑟 + 𝑀 1.6  10-9 (T/298)-1.86 exp(-
7801/T)[HgBr][M] 

(Dibble et al., 2012) 
(Dibble et al. 2012b) 

R3 𝐻𝑔𝐵𝑟 + 𝐵𝑟 →  𝐻𝑔0 + 𝐵𝑟2 3.9  10-11 [HgBr][Br] (Balabanov et al., 
2005)(Balabanov et 
al. 2005a) 

R4 𝐻𝑔𝐵𝑟 +  𝑁𝑂2 →  𝐻𝑔0 + 𝐵𝑟𝑁𝑂2 3.4  10-12 exp(391/T)[HgBr][NO2] (Jiao & Dibble 
2017)(Jiao and 
Dibble 2017a) 

R5 𝐻𝑔𝐵𝑟 + 𝐵𝑟 
𝑀
→  𝐻𝑔𝐵𝑟  3.0  10-11 [HgBr][Br] (Balabanov et al., 

2005)(Balabanov et 
al. 2005a) 

R6 𝐻𝑔𝐵𝑟 + 𝑁𝑂2  
𝑀
→  𝐻𝑔𝐵𝑟𝑁𝑂2 𝑘𝑁𝑂2

([M],T)[HgBr][NO2] (Jiao & Dibble 
2017)(Jiao and 
Dibble 2017a) 

R7 𝐻𝑔𝐵𝑟 + 𝑌 
𝑀
→  𝐻𝑔𝐵𝑟𝑌 

𝑌 =  𝐻𝑂2, 𝐶𝑙𝑂, 𝐵𝑟𝑂, 𝑂𝐻, 𝐵𝑟2 
𝑘𝐻𝑂2

([M],T)[HgBr][Y] (Jiao & Dibble 
2017)(Jiao and 
Dibble 2017a) 

R8 𝐻𝑔0 + 𝐶𝑙 + 𝑀 → 𝐻𝑔𝐶𝑙 + 𝑀 2.2  10-22 exp(680(1/T – 
1/298))[Hg0][Cl][M] 

(Donohoue et al., 
2005)(Donohoue, 
Bauer and Hynes 
2005) 

R9 𝐻𝑔𝐶𝑙 + 𝐶𝑙 →  𝐻𝑔0 + 𝐶𝑙2 1.20  10-11exp(-5942/T)[HgCl][Cl] (Wilcox 
2009)(Wilcox 2009) 

R10 𝐻𝑔𝐶𝑙 + 𝐵𝑟 
𝑀
→  𝐻𝑔𝐵𝑟𝐶𝑙 3.0  10-11 [HgCl][Br] (Balabanov et al., 

2005)(Balabanov et 
al. 2005a) 

R11 𝐻𝑔𝐶𝑙 + 𝑁𝑂2

𝑀
→  𝐻𝑔𝐶𝑙𝑁𝑂2 𝑘𝑁𝑂2

([M],T)[HgBr][NO2] (Jiao & Dibble 
2017)(Jiao and 
Dibble 2017a) 

R12 𝐻𝑔𝐶𝑙 + 𝑌 
𝑀
→  𝐻𝑔𝐶𝑙𝑌 

𝑌 =  𝐻𝑂2, 𝐶𝑙𝑂, 𝐵𝑟𝑂, 𝑂𝐻, 𝐵𝑟2 
𝑘𝐻𝑂2

([M],T)[HgBr][Y] (Jiao & Dibble 
2017)(Jiao and 
Dibble 2017a) 

R13 𝐻𝑔(𝑎𝑞)
0 +  𝑂3(𝑎𝑞)  →  𝐻𝑔(𝑎𝑞)

𝐼𝐼 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 4.7  107 [Hg0
(aq)][O3(aq)] (Munthe 

1992)(Munthe 
1992a) 

R14 𝐻𝑔(𝑎𝑞)
0 + 𝐻𝑂𝐶𝑙(𝑎𝑞)

→ 𝐻𝑔(𝑎𝑞)
𝐼𝐼 + 𝑂𝐻(𝑎𝑞)

−

+ 𝐶𝑙(𝑎𝑞)
−  

2  106 [Hg0
(aq)][HOCl(aq)] (Lin & Pehkonen 

1998)(Lin and 
Pehkonen 
1998),(Wang & 
Pehkonen 
2004)(Wang and 
Pehkonen 2004) 

R15 𝐻𝑔(𝑎𝑞)
0 + 𝑂𝐻(𝑎𝑞) → 𝐻𝑔(𝑎𝑞)

𝐼𝐼 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 2.0  109 [Hg0
(aq)][OH(aq)] (Lin & Pehkonen 

1997)(Lin and 
Pehkonen 
1997),(Buxton et al., 
1998)(Buxton et al. 
1988) 

R16 𝐻𝑔(𝑎𝑞)
𝐼𝐼 + ℎ → 𝐻𝑔(𝑎𝑞)

0  6.5  10-2 𝑗𝑁𝑂2
[OA][HgII

(aq)] (Buxton et al., 
1998)(Buxton et al. 
1988) 

R17 𝐻𝑔𝐵𝑟𝑋 + ℎ → 𝐻𝑔𝐵𝑟 + 𝑋 
𝑋 =  𝑁𝑂2, 𝐻𝑂2, 𝐶𝑙𝑂, 𝐵𝑟𝑂, 𝑂𝐻, 𝐵𝑟 

𝑗𝑌 [HgBrX] This study 
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3. Supplementary Note: text for in-cloud Hg photoreduction 

 

The first global Hg CTM(Shia et al. 1999b) included Hg(II) reduction in the aqueous phase by sulfite 

(SO3
2-), with kred of 0.6 s-1 (2160 h-1) based on work by Munthe et al.1991(Munthe, Xiao and Lindqvist 

1991b) 

 

HgSO3
0

(aq)  Hg0
(aq)   with d[HgSO3

0]/dt = kred x [HgSO3
0]                     (Eq.1)   

Hg(SO3)2
2-

(aq)  Hg0
(aq) with d[Hg(SO3)2]/dt = kred x [Hg(SO3)2]                  (Eq.2)   

A later study that directly measured the reactant HgSO3 put into question the previously proposed 

reduction mechanism and rate constant, reporting kred of 0.0106 s-1 (38.2 h-1) at pH=3 and regardless 

of Hg, SO3, and O2 concentrations (though not independent of other competing ligands).(Van Loon, 

Mader and Scott 2000a) Shia et al.’s CTM(Shia et al. 1999b) also included aqueous phase reduction 

of Hg(II) by hydroperoxyl, HO2, radicals, based on Lin and Pehkonen (1998):(Lin and Pehkonen 1998) 

 

Hg2+
(aq) + HO2(aq)  Hg0

(aq) with d[Hg2+]/dt = kred x [Hg2+] x [HO2]      (Eq.3) 

  

with kred of 1.7 104 M-1 s-1. This reaction, which proceeds by a Hg(I) intermediate step has been 

questioned by Gardfeldt and Jonsson(Gårdfeldt and Jonsson 2003)  based on the rapid oxidation of 

the Hg(I) form back to Hg(II). It is also important to note that the reaction rate expressions Eq.1 and 

2 depend on free Hg2+ or HgSO3
0 ion concentrations, which cannot be measured and have to be 

estimated based on equilibrium speciation calculations. In the 1990’s and early 2000’s it was generally 

assumed that inorganic ligands such as Cl- were among the dominant Hg binding ligands in 

atmospheric waters, or that high SO3 concentrations in polluted areas inhibited Hg reduction via the 

slower Eq. 2. The subsequent gradual acceptance of simple and complex (humics) dissolved organic 

ligands as dominant Hg binding ligand in natural waters, including rainfall(Bash et al. 2014a) results 

in low HgSO3, Hg(SO3)2 and even lower free Hg2+ ion concentrations.(Haitzer, Aiken and Ryan 
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2002a),(Tipping 2007) Consequently these aqueous phase Hg(II) reduction mechanisms have been 

gradually abandoned in Hg CTMs. 

The uncertainty in atmospheric Hg(II) reduction pathways has led subsequent models to adopt 

a fitting approach (e.g. CTM-Hg, GEOS-Chem) to aqueous phase Hg(II) reduction.(Seigneur et al. 

2006a),(Selin et al. 2007c) GEOS-Chem provides the most explicit parameterization that is well suited for 

comparison to our experimental results. Selin et al. (2007)(Selin et al. 2007c) optimized in-cloud Hg(II) 

photoreduction in the GEOS-Chem CTM as kred = 8 10-10 [OH] (s-1) where [OH] is the gas phase 

concentration in units of molecules cm-3. [OH] serves as a proxy for the actinic flux in the VIS region. 

For a typical [OH] of 106 , kred is 8 10-4 s-1 (2.9 h-1) which resulted in a mean lifetime of 20 min for 

dissolved HgII in cloud in the model. Note that the associated rate expression, d[HgII]/dt=kred x [HgII] 

is expressed relative to total divalent HgII concentration in cloud water. Horowitz et al. 

(2017),(Horowitz et al. 2017a) using the most recent two-step fast Hg0 oxidation scheme in GEOS-

Chem, extended atmospheric HgII reduction to aqueous-phase HgII–organic complexes in both 

aqueous aerosols and clouds. kred (s-1) is parameterized as αjNO2[OA], were α is a scaling factor, jNO2 

the NO2 photolysis frequency, a proxy for the UV actinic flux, [OA] the local concentration of organic 

aerosol. If we take generic values of jNO2 = 10-2 s-1 and maximum [OA] = 1 ug m-3 (STP), we obtain 

a maximum rate constant of 1 h-1. 

Following an experimental study on aqueous Hg(II) reduction by dicarboxylic acids (Hg2+
aq + 

DCAaq + hv → Hg0
aq) by Si and Ariya (2008),(Si and Ariya 2008a) Bash et al. (2014)(Bash et al. 

2014a) recently incorporated this reaction into the CMAQ model using a rate of 1.2 × 104 M−1·s−1 (the 

highest rate observed for oxalic acid). Global oxalic acid concentrations in rainfall and cloud water 

are on the order of 5 µeq/L (2.5 µM), yielding an approximate maximum kred of 1.2 104 x 2.5 10-6 = 

0.03 s-1 (108 h-1) for the reaction rate expression d[Hg2+]/dt=kred[Hg2+]. As argued above, free Hg2+ 

(likely < 10-15 mol/L) is only a very small fraction of the total HgII concentration.  

Therefore, a conditional rate constant relative to total HgII will be orders of magnitude slower. 
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Supplementary Data summarizes the rainfall events, rainfall pH and incubation conditions (filtration, 

UVA, UVA, VIS) used in this study. pH was measured using an Orion pH electrode, calibrated against 

NIST traceable standards of pH 4 and 7. UVA, UVB, VIS intensity of outdoors sunlight and of the 

solar simulator (xenon lamp) were measured with a Solar Light PMA2200 Radiometer with specific 

UVB (PMA2106), UVA (PMA2110) and Visible (PMA2130) detectors. Additional details can be 

found in the Methods section. Photoreduction rates were generally 1st order with respect to total Hg 

concentrations during the first 12 hours. Duplicate incubations of rainfall samples 1, 8 and 10 indicate 

a mean RSD of 29% on kred.  
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Chapter 5. Conclusions and perspectives 

5.1.  conclusions  

Redox reactions of atmospheric Hg influence Hg transport and deposition, and determine oxidation 

states of Hg, which play a key role in biogeochemical cycle of Hg (Ariya et al. 2015a). It has been 

reported that atmospheric Hg(0) is oxidized to Hg(II) dominantly by a Br-induced two-stage reaction 

and results in formation of a series of end products of Hg(II)XY complexes (e.g., HgCl2, HgBrOH, 

HgBr2, HgBrI, HgBrCl, HgBrNO2, HgBrONO, HgBrOOH, HgBrOBr, HgBrOI, HgBrOCl) and 

oxygen-containing species (HgO) (Saiz-Lopez et al. 2018, Horowitz et al. 2017b). Atmospheric Hg(II) 

photoreduction to Hg(0) changes solubility, chemical reactivity and lifetime of atmospheric Hg, and 

is an important pathway to modify the magnitude and pattern of atmospheric Hg deposition. At the 

start of this PhD research, photoreduction of atmospheric Hg(II) was thought to take place in the 

atmospheric aqueous phase (i.e clouds, rainfall, hydrated aerosols), but not in the gas phase. Due to 

the lack of experimental observations for both aqueous and gaseous phase photoreduction of 

atmospheric Hg(II),fast in-cloud aqueous phase Hg(II) photoreduction rates were assumed and 

optimized in global Hg models such as GEOS-Chem and GLEMOS to balance fast Hg(0) oxidation 

and reproduce global variability in observed Hg(0). (Travnikov and Ryaboshapko 2002, Selin et al. 

2007a, Horowitz et al. 2017b). The fitted model kred are typically on the order of 1.0 h-1, which 

corresponds to Hg(II) lifetimes in clouds and aqueous aerosol of ~20 minutes (Selin et al. 2007a).  

In order to partly fill the missing data gap, we conducted the first aqueous phase 

photoreduction experiments of Hg(II) in rainfall. Our experimental observations for rainfall Hg(II) 

photoreduction show that there is no statistically significant differences between rainfall Hg(II) 

reduction rates under natural (0.063 ± 0.013h−1) and simulated sunlight (0.037±0.016h−1), and for 

filtered (0.058±0.011h−1) and unfiltered (0.039±0.020h−1) suburban rainwater (t-test, all p > 0.05). The 

mean photochemical reduction rate of suburban rainfall was 0.051 ± 0.019 h−1 (σ, n = 10). The mean 

rate at the remote Pic du Midi (PDM) samples was two-fold higher, 0.15 ± 0.01 h−1 (σ, n = 3), than 
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that of the suburban Toulouse samples, and three times slower than the median photoreduction rate of 

0.41 h−1 (n = 24) for previously published inland and marine waters. Our experimental rainwater 

photoreduction rates, under fully sunlit conditions, are an order of magnitude slower than the 

optimized maximum in-cloud photoreduction rate of > 1.0 h−1 in global Hg models. Photoreduction 

experiments of simulated rainfall solutions containing known amounts of Hg, halides (Cl, Br, I) and 

DOC were also performed and combined with equilibrium speciation calculations using the Visual 

Minteq program. The ensemble of observations suggests that atmospheric gaseous HgBr2, HgCl2, 

HgBrNO2, HgBrHO2 forms (Figure 1-1), scavenged by aqueous aerosols and cloud droplets, are 

converted to Hg(II)-DOC forms in rainfall due to abundant organic carbon in aerosols and cloud water. 

Aqueous phase photoreduction of Hg(II)-DOC complexes is the dominant reduction pathway in the 

atmospheric system and proceeds at reaction rates that are slower than in terrestrial and marine waters, 

likely due to different origin and molecular structure of atmospheric DOC.  

Aqueous phase reduction of atmospheric Hg(II) was simulated by GEOS-Chem and GLEMOS 

models using the experimentally derived rate constant for free tropospheric rainfall at the PDM (0.15 

h−1). The model results indicated that the slow atmospheric reduction leads to a simulated imbalance 

in the atmospheric Hg(0) pool which is biased low (1650Mg in figure 4-b, chapter 4), compared to 

Hg(0) observations (3500Mg in Figure 1-1). As a result, photoreduction of Hg(II)-DOC in aqueous 

aerosols and clouds is too slow to balance fast oxidation of atmospheric Hg. As a result of this the 

model description of the atmospheric Hg cycle has become incomplete. Either some reactions are 

missing or some of the reaction rates included in the model are incorrect. 

Our collaborators at the Spanish CSIC have proposed, as part of our studies at the PDM, the 

possibility that gaseous Hg(II) compounds may directly photolyse to the Hg(I)Br intermediate. By 

using high-level quantum-chemical computation they have been able to estimate gas phase photolysis 

rate constants for a dozen Hg(II) compounds, which have been included in the global Hg models 

GEOS-Chem and GLEMOS. The results of our combined studies show that gas phase photolysis of 

Hg(II) compounds can be fast, and is fast enough to rebalance the modeled atmospheric Hg cycle. 



 

110 

 

 

Figure 4-d in chapter 4 shows that including gas phase Hg(II) photolysis leads to an unbiased global 

Hg(0) inventory of 3800Mg, similar to observations (3500Mg). 
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5.2.  Perspectives 

Even if we have achieved initial experimental observation data for aqueous phase photoreduction of 

atmospheric Hg, further research are needed to be done to address the effects of environmental factors 

(e.g., different wavelengths and intensities of sunlight, inorganic and organic ligands) on 

photoreduction rates and for the development of global atmospheric Hg model. The following research 

needs can be identified: 

1) The relationship of reduction rates and mechanisms between photoreduction of dissolved Hg(II) in 

the aquatic system and rainfall are not clearly described in Chapter 3. More research need to be done 

to understand the differences in aqueous photoreduction of dissolved Hg(II)-DOM complexes 

between atmospheric system and terrestrial and marine aquatic systems. 

2) Aqueous HgBr2 can be partially reduced to monohalide (HgBr) in the presence of ~200nm UV light. 

Aqueous phase reduction of Hg(II) by hydroperoxyl radicals (HO2·) including the production of an 

intermediate of Hg(I)Br has been proposed and implemented in the early Hg models (Pehkonen and 

Lin 1998a, Shia et al. 1999a). Previous studies on Hg(II)-halide photochemistry suggested that ligand 

to metal charge transfer due to UV absorption in the 200-300nm wavelength range can result in  Hg(0) 

or Hg(I) products depending on Hg/halide ratio and presence of oxygen (Horvath and Vogler 1993). 

Is it possible that aqueous phase reduction of Hg(II)-halide to Hg(I)-halide occurs in the atmosphere 

in the presence of a range of UV light wavelength? 

3) Based on theoretical chemistry computation of kred, we proposed that gas phase photoreduction of 

Hg(II)BrX to Hg(I)Br increase the Hg lifetime to 13 and 10 months in GEOS-Chem and GELOS 

models, and is a dominant reduction pathway for atmospheric Hg(II). However, there are no 

observational data to support this findings, and further experiments are needed on gas phase Hg(II) 

photolysis, and on heterogeneous Hg(II) photolysis on aersols. 

4) Hg stable isotopes have proven useful to understand Hg reduction mechanisms. The next challenge 

is the perform similar Hg isotope analyses on gaseous Hg(II) compound photolysis. 
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Chapitre 5. Conclusions et perspectives  

5.1. Conclusions 

Les réactions d'oxydoréduction du mercure dans l'atmosphère influencent le transport et le dépôt de 

mercure et déterminent les états d'oxydation du mercure, qui jouent un rôle clé dans le cycle 

biogéochimique du mercure (Ariya et al. 2015). Il a été rapporté que le Hg(0) atmosphérique est oxydé 

en Hg(II) principalement par une réaction en deux étapes induite par le Br et aboutit à la formation 

d'une série de produits finaux de complexes Hg(II)XY (par exemple, HgCl2, HgBrOH, HgBr2, HgBrI, 

HgBrCl, HgBrNO2, HgBrONO, HgBrOOH, HgBrOBr, HgBrOI, HgBrOCl) et les espèces contenant 

de l'oxygène (HgO) (Saiz-Lopez et al. 2018, Horowitz et al. 2017). La photoréduction du Hg(II) 

atmosphérique en Hg(0) modifie la solubilité, la réactivité chimique et la durée de vie du Hg 

atmosphérique. Elle constitue un moyen important de modifier l'ampleur et la structure du dépôt de 

Hg dans l'atmosphère. Au début de cette thèse, on pensait que la photoréduction du Hg(II) 

atmosphérique avait lieu dans la phase aqueuse atmosphérique (nuages, précipitations, aérosols 

hydratés), mais pas dans la phase gazeuse. En raison du manque d'observations expérimentales sur la 

photoréduction à la fois en phase aqueuse et gazeuse du Hg(II) atmosphérique, des vitesses de 

photoréduction rapides en phase aqueuse dans les nuages ont été supposées et optimisées dans des 

modèles globaux de mercure tels que GEOS-Chem et GLEMOS. (Travnikov et Ryaboshapko 2002, 

Selin et al. 2007, Horowitz et al. 2017). Les modèles ajustés ont des constantes de photoreduction, 

kred, qui sont typiquement de l'ordre de 1,0h-1, ce qui correspond aux durées de vie du Hg(II) dans les 

nuages et aérosols aqueux d'environ 20 minutes (Selin et al. 2007). 

Afin de combler en partie le manque de données manquantes, nous avons mené les premières 

expériences de photoréduction en phase aqueuse du Hg(II) dans les précipitations. Nos observations 

expérimentales sur la photoréduction des précipitations au Hg(II) montrent qu’il n’existe aucune 

différence statistiquement significative entre les taux de réduction du Hg(II) observes sous la lumière 

du soleil naturelle (0,063 ± 0,013h−1) et la lumière solaire simulée par une  lampe a Xe (0,037 ± 0,016h-

1), ni entre l’eau de pluie suburbaine filtrée (0,058 ± 0,011h−1) et non filtrée (0,039 ± 0,020h−1) (test t, 
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toutes p> 0,05). Le taux moyen de réduction photochimique des précipitations en périphérie urbaine 

était de 0,051 ± 0,019 h-1 (σ, n =10). Le taux moyen des échantillons distants du Pic du Midi (PDM) 

était trois fois plus élevé, soit 0,15 ± 0,01 h−1 (σ, n = 3), que celui des échantillons de Toulouse de 

banlieue et trois fois plus lent que le taux de photoreduction médian 0,41 h−1 (n = 24) pour les eaux 

continentales et marines publiées antérieurement. Les vitesses de photoreduction du Hg dans les eaux 

de pluie, dans des conditions d'ensoleillement total, sont inférieurs d'un ordre de grandeur aux taux 

optimisés de photoreduction dans les nuages, >1.0 h-1 dans les modèles globaux de mercure. 

Des expériences de photoréduction de solutions pluviométriques simulées contenant des 

quantités connues de Hg, d'halogénures (Cl, Br, I) et de carbone organique dissoute (DOC) ont 

également été réalisées et combinées avec des calculs de spéciation à l'équilibre à l'aide du programme 

Visual Minteq. L'ensemble des observations suggère que les formes HgBr2, HgCl2, HgBrNO2, 

HgBrHO2 gazeuses dans l'atmosphère (Figure 1-1), absorbes par des aérosols aqueux et des 

gouttelettes de nuages, sont converties en formes Hg(II)-DOC dans les précipitations en raison de 

l'abondance de carbone organique dans les aérosols et les eaux de nuages. La photoréduction en phase 

aqueuse des complexes Hg(II)-DOC est la principale voie de réduction dans le système atmosphérique. 

Elle s'effectue à une vitesse de réaction plus lente que dans les eaux terrestres et marines, probablement 

en raison de l’origine et de la structure moléculaire différentes du COD atmosphérique. 

La réduction en phase aqueuse du Hg(II) atmosphérique a été simulée par les modèles GEOS-

Chem et GLEMOS en utilisant la constante de vitesse observée expérimentalement pour les 

précipitations troposphériques libres au PDM (0,15 h-1). Les résultats du modèle indiquent que la lente 

réduction du Hg(II) dans les eaux atmosphériques entraînait un déséquilibre simulé dans le réservoir 

de Hg(0) atmosphérique, qui est biaisé (1650Mg dans la Figure 4-b, chapitre 4), par rapport aux 

observations de Hg(0) (3500Mg dans la Figure 1-1). En conséquence, la photoréduction du Hg(II)-

DOC dans les aérosols et les nuages aqueux est trop lente pour permettre l’équilibrage de l’oxydation 

rapide du Hg atmosphérique. En conséquence, la description du modèle du cycle atmosphérique du 
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mercure est devenue incomplète. Certaines réactions manquent ou certaines des vitesses de réaction 

incluses dans le modèle sont incorrectes. 

 Nos collaborateurs à la CSIC espagnole ont proposé, dans le cadre de nos études au PDM, la 

possibilité que des composés gazeux du Hg(II) puissent se photolyser directement vers l'intermédiaire 

Hg(I)Br. En utilisant un calcul quantique chimique de haut niveau, ils ont pu estimer les constantes de 

vitesse de photolyse en phase gazeuse pour une douzaine de composés de Hg(II), qui ont été inclus 

dans les modèles globaux de mercure GEOS-Chem et GLEMOS. Les résultats de nos études 

combinées montrent que la photolyse en phase gazeuse de composés de mercure(II) peut être 

suffisamment rapide pour rééquilibrer le cycle de mercure atmosphérique modélisé. La figure 4-d de 

chapitre 4 montre que l'inclusion de la photolyse du Hg(II) en phase gazeuse conduit à un stock global 

non biaisé de Hg(0) de 3800 Mg, similaire aux observations (3500 Mg). 
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5.2. Perspectives 

Même si nous avons obtenu des données d’observation expérimentales initiales sur la photoréduction 

en phase aqueuse du Hg atmosphérique, des recherches supplémentaires sont nécessaires pour 

examiner les effets des facteurs environnementaux (par exemple, différentes longueurs d’onde et 

intensités de la lumière solaire, présence d’autres ligands inorganiques et organiques) sur les vitesses 

de photoréduction et pour le développement du modèle global de Hg atmosphérique. Les besoins de 

recherche suivants peuvent être identifiés: 

1) La relation entre les taux de réduction et les mécanismes de photoréduction du Hg(II) dissous dans 

les précipitations n’est pas clairement décrite au chapitre 3. Il est nécessaire de poursuivre les 

recherches pour comprendre les différences de vitesses de photoréduction entre les systèmes 

atmosphériques et les systèmes aquatiques terrestres et marins. Particulièrement la structure 

moléculaire du DOC et les sites de complexation impliques doit être mieux comprise, et paramétrisé. 

2) Le HgBr2 aqueux peut être partiellement réduit en monohalogénure (HgBr) en présence d'environ 

200 nm de rayons ultraviolets. La réduction en phase aqueuse de Hg(II) par les radicaux hydroperoxyle 

(HO2·), y compris la production d'un intermédiaire de Hg(I)Br, a été proposée et mise en œuvre dans 

les premiers modèles de mercure (Pehkonen et Lin 1998, Shia et al. 1999). Des études antérieures sur 

la photochimie des halogénures de Hg(II) suggéraient que le transfert de charge ligand-métal dû à 

l'absorption UV dans la plage de longueurs d'onde de 200 à 300 nm pouvait donner lieu à des produits 

de Hg(0) ou de Hg(I), en fonction du rapport Hg/ halogénure et de la présence de l'oxygène (Horvath 

et Vogler 1993). Est-il possible qu'une réduction en phase aqueuse de l'halogénure de Hg(II) en 

halogénure de Hg(I) ait lieu dans l'atmosphère en présence d'une plage de longueurs d'onde de la 

lumière ultraviolette? 

3) Sur la base du calcul théorique en chimie de kred, nous avons proposé que la photoréduction en 

phase gazeuse de Hg(II)BrX à Hg(I)Br augmente la durée de vie du mercure à 13 et 10 mois dans les 

modèles GEOS-Chem et GELOS et constitue une voie de réduction dominante pour le Hg(II) 



 

116 

 

 

atmosphérique. Cependant, il n'y a pas de données d'observation pour étayer ces résultats et d'autres 

expériences sont nécessaires, cette fois ci en phase gazeuse, et en phase d’aerosol. 

4) Les isotopes stables du mercure se sont révélés utiles pour comprendre les mécanismes de réduction 

du mercure. Le prochain défi consiste à effectuer des analyses isotopiques du mercure similaires sur 

la photolyse du composé gazeux du Hg(II).  
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Résumé: 
      La photoréduction atmosphérique du Hg pourrait avoir lieu à la fois en phase gazeuse et 
aqueuse. Les taux de photoréduction du Hg(II) que nous observons dans l’eau de pluie, en condition 
d'ensoleillement total, sont d'un ordre de grandeur inférieur au taux optimisé de photoréduction dans 
les nuages >1.0 h-1 dans les modèles globaux de mercure. La photoréduction aqueuse de mercure dans 
l’atmosphère est trop lente pour constituer une voie de réduction dominante. Les formes HgBr2, HgCl2, 
HgBrNO2, HgBrHO2 gazeuses atmosphériques, balayées par les aérosols aqueux et les gouttelettes de 
nuages, sont converties en formes de Hg(II)-DOC dans les précipitations en raison de l'abondance de 
carbone organique dans les aérosols et de l'eau de nuages. Des calculs théoriques montrent que les 
taux de photolyse en phase gazeuse de composés de mercure(II) peuvent être suffisamment rapide 
pour rééquilibrer le cycle de mercure atmosphérique modélisé. 
 
Mots clés: Mercure, eau de pluie, taux de photoréduction, phase gazeuse, phase aqueuse, modèle 

atmosphérique 

 

Abstract: 
         Atmospheric Hg photoreduction could take place in both gas- and aqueous phase. Rainwater 
Hg(II) photoreduction rates, under fully sunlit conditions, are an order of magnitude slower than the 
optimized maximum in-cloud photoreduction rate of > 1.0 h−1 in global Hg models. Atmospheric 
aqueous Hg photoreduction is too slow to be dominant reduction pathway. Atmospheric gaseous 
HgBr2, HgCl2, HgBrNO2, HgBrHO2 forms, scavenged by aqueous aerosols and cloud droplets, are 
converted to Hg(II)-DOC forms in rainfall due to abundant organic carbon in aerosols and cloud water.        
Computation of gas phase photolysis rates of Hg(II) compounds can be fast, and is fast enough to 
rebalance the modeled atmospheric Hg cycle between Hg(0) oxidation and Hg(II) reduction. 
 
Keywords:  Mercury, rain water, photoreduction rate, gas phase, aqueous phase, atmospheric model. 


