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Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par
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Abstract

Classical approaches for robot navigation among people have focused on guaranteed collision-
free motion with the assumption that people are either static or moving obstacles. However,
people are not ordinary obstacles. People react to the presence and the motion of a robot.
In this context, a robot that behaves in human-like manner has been shown to reduce over-
all cognitive effort for nearby people as they do not have to actively think about a robot’s
intentions while moving on its proximity.

Our work is focused on replicating a characteristic of human-human interaction dur-
ing collision avoidance that is the mutual sharing of effort to avoid a collision. Based on
hundreds of situations where two people have crossing trajectories, we determined how
total effort is shared between agents depending on several factors of the interaction such
as crossing angle and time to collision. As a proof of concept our generated model is
integrated into Reciprocal Velocity Obstacles (RVO). For validation, the trajectories gener-
ated by our approach are compared to the standard RVO and to our dataset of people with
crossing trajectories.

Collaboration during collision avoidance is not without its potential negative conse-
quences. For effective collaboration both agents have to pass each other on the same side.
However, whenever the decision of which side collision should be avoided from is not
consistent for people, the robot should also account for the risk that both agents will at-
tempt to incorrectly cross each other on different sides. Our work first determines the
uncertainty around this decision for people. Based on this, a collision avoidance approach
is proposed so that, even if agents initially choose to incorrectly attempt to cross each
other on different sides, the robot and the person would be able to perceive the side from
which collision should be avoided in their following collision avoidance action. To vali-
date our approach, several distinct scenarios where the crossing side decision is ambiguous
are presented alongside collision avoidance trajectories generated by our approach in such
scenarios.

Keywords: Human-Robot Interaction, Navigation, Human-Robot Motion, Human-
Robot Collaboration, Effort Distribution, Collision Avoidance, Near-Symmetry scenarios
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Résumé

Ces dernières années, la tendance des robots capables de partager des espaces domestiques
ou de travail avec des personnes a connu une croissance importante. Du robot guide à
l’aspirateur autonome, ces robots dits "de service" sont de plus en plus intégrés dans la vie
quotidienne des profanes.

Bien que les progrès des logiciels et du matériel aient permis un comportement plus
intelligent et plus autonome des robots, la présence plus répandue des robots parmi les
gens pose un nouvel ensemble de défis pour la communauté scientifique. Même si les gens
ne sont pas que des obstacles ordinaires, les approches classiques de navigation se sont
concentrées sur la garantie d’un mouvement sans collision en supposant que les gens sont
soit des obstacles statiques, soit des obstacles en mouvement.

Traiter les gens comme des obstacles ordinaires signifie qu’un robot est incapable de
tenir compte de la réaction d’une personne au mouvement du robot. Pour cette raison, un
mouvement donné d’un robot peut être perçu comme dangereux ou inhabituel, ce qui incite
les gens à adopter un mouvement plus prudent pendant qu’ils réfléchissent activement aux
intentions du robot.

Dans ce contexte, notre travail se concentre sur la manière dont un robot doit se déplacer
au milieu des gens, ce qu’on appelle un problème de Mouvement homme-robot. Plus pré-
cisément, nous nous concentrons sur la reproduction d’une caractéristique de l’interaction
homme-homme lors de la prévention des collisions, à savoir le partage mutuel des adapta-
tions effectuées pour résoudre une collision.

Etant donné que les situations d’évitement des collisions entre les personnes sont ré-
solues en coopération, cette thèse modélise la manière dont cette coopération se fait afin
qu’un robot puisse reproduire leur comportement. Pour ce faire, des centaines de situations
où deux personnes ont des trajectoires de croisement ont été analysées. À partir de ces tra-
jectoires humaines impliquant une tâche d’évitement des collisions, nous avons déterminé
comment l’effort total est partagé entre chaque agent en fonction de plusieurs facteurs de
l’interaction tels que l’angle de croisement, le temps avant collision ainsi que la vitesse.
Pour valider notre approche, une preuve de concept est intégrée dans le framework Robot
Operating System (ROS) utilisant une version modifiée de Reciprocal Velocity Objects
(RVO) afin de répartir l’effort d’évitement des collisions de façon humanoïde.

Bien que la modélisation de la manière dont un robot devrait collaborer avec des per-
sonnes ait fourni une base de référence importante pour le comportement d’évitement
des collisions, la collaboration pendant une collision pourrait éventuellement engendrer
de conséquences négatives. En particulier, pour assurer une collaboration efficace lors de
la prévention des collisions, il est necessaire de prévoir si la personne tentera d’éviter la
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collision en passant du côté gauche ou du côté droit, c’est-à-dire en prenant une décision
de classe homotopie. Cependant, à situation ou cette décision de classe d’homotopie n’est
pas cohérente pour les gens, le robot est obligé de tenir compte de la possibilité que les
deux agents tentent de se croiser d’un côté ou de l’autre et prennent une décision nuisible
à la prévention des collisions.

Ainsi, dans cette thèse, nous évaluons également ce qui détermine la frontière qui sépare
la décision d’éviter la collision d’un côté ou de l’autre. En faisant une approximation
de l’incertitude entourant cette limite, nous avons élaboré une stratégie d’évitement des
collisions qui tente de résoudre ce problème. Notre approche est basée sur l’idée que le
robot doit planifier son mouvement d’évitement des collisions de telle sorte que, même si
les agents, dans un premier temps, choisissent à tort de se croiser sur des côtés différents,
le robot et la personne soient capables de percevoir sans ambiguïté la bonne décision de
classe d’homotopie sur leur action suivante.

Mots-clés: Interaction homme-robot, Navigation, Mouvement homme-robot, Collabo-
ration homme-robot, Distribution de l’effort, Évitement des collisions, Scénarios de quasi-
symétrie
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Chapter 1

Introduction

"Models are useful distillations of reality. Although wrong
by definition, they are the wind that blows away the fog and
cuts through the untamed masses of data to let us see
answers to our questions."

—Dana K. Keller

Classical approaches in robotics attempt to guarantee safe robot motion in the presence
of static (Crowley, 1985) and moving obstacles (Quinlan and Khatib, 1993). However,
treating people as ordinary obstacles can have unintended negative consequences. Notably,
not respecting social norms and expectations can cause people to perceive a robot behavior
as unsafe or unnatural. Even behaviors that appear polite at a glance, such as a robot
yielding to a person in a crossing scenario, may violate expectations of nearby people. A
robot should not always yield, it must understand what is the expectation of people for the
robot in a given situation and plan motions that respect this expectation.

This thesis reports on the effort to examine this problem as a problem of collaboration.
Within this context, this chapter introduces our research problem statement. Moreover, our
contributions and publications are also highlighted followed by the content organization of
the following chapters of this document.

1.1 Collaborative collision avoidance

A robot that behaves in a more human-like manner has been shown to reduce global cog-
nitive effort for people in the environment (Carton et al., 2016). Ideally, a robot that moves
in a manner indistinguishable from a fully aware and benevolent person would inspire a
more relaxed behavior from people, in other words, people would be less concerned with
the likely robot motions. Such natural motion would help make robots more acceptable to
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(a) Left or right? A person’s decision is am-
biguous

(b) Robot has a slight preference to cross in
front but cannot contribute to collision avoid-
ance, should it still pass first or yield?

Figure 1-1: Robot’s perspective in situations of near symmetry.

people. This would reduce the discomfort caused by the robot within spaces that require
interaction with people, such as navigation in homes (Cosgun et al., 2016; Ziebart et al.,
2009), in crowded environments (Bohórquez and Wieber, 2018; Trautman and Krause,
2010; Shiomi et al., 2014; Triebel et al., 2015) and in unknown environments (Koenig and
Likhachev, 2002; Dolgov et al., 2010).

Despite the potential benefits of human-like collision avoidance, many classical and
state of the art approaches assume that the person behaves as a moving obstacle. For
instance, in Bohórquez and Wieber (2018) a footstep planner for a bipedal walking robot
was able to efficiently navigate within crowds but with the assumption that people always
preserve their original velocity with no regard for the chosen robot motion. In contrast, our
work attempts to find a compromise between guaranteed safe navigation and navigation
that is perceived as safe and natural by nearby people.

Based on a dataset of people in dyadic collision avoidance situations which is the result
of a collaboration with the laboratory Mouvement, Sport, Santé (M2S), this thesis is con-
centrated on imitating the manner in which people avoid collision with each other. More
specifically, our focus is on allowing a robot in dyadic collision avoidance situation with
a person to replicate the usual impact of collision avoidance in both time to the goal and
energy expenditure, what we define in our work as collision avoidance effort, based on
situational factors that describe a collision situation, such as crossing order.

Crossing order represents the order in which agents reach the intersection between their
trajectories. In practice, such ordering indicates that one person is crossing in front and the
other person is crossing behind. Crossing in front or behind another person has been shown
to affect the manner in which people avoid collisions with each other (Olivier et al., 2013)
and were also shown to be strongly correlated to the value of the derivative of the bearing
angle at the start of collision avoidance (Cutting et al., 1995).

Although the distribution of motion adaptations based on crossing order is an important
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aspect of human motion, it is nonetheless not sufficient to reproduce collision avoidance
behavior of people. For instance, people have been shown to sometimes reverse their cross-
ing order when collision avoidance starts (Knorr et al., 2016) even though that can entail
longer time to avoid collision (Vassallo et al., 2018).

Our dataset of people in dyadic collision avoidance situations shows that crossing or-
der reversals are more frequent whenever the amount of convergence or divergence of the
obstacle to the center of the field of view of a person is negligible - what we call near sym-
metry situations. As a consequence, as shown in Fig. 1-1a and 1-1b, the boundary between
the decision to cross before or after another person (or from the left or right side in case of
head-on collision) becomes less evident.

When crossing order is not evident it is possible that people initially attempt to avoid
collision while incorrectly choosing the same crossing order. In this thesis we also present a
collision avoidance approach to reduce the negative impact of this ineffective collaboration
in the collision avoidance. That is, we intend to plan collision avoidance motions in such
a way that minimizes the amount of time both agents remain with an ambiguous crossing
order.

Our objective is to formalize a robot collision avoidance behavior as a collaborative task
while accounting for and mitigating ineffective collaboration. This would allow people to
act more naturally towards a robot. This approach is inline with recent results in social
sciences studies, where people are shown to be more cautious around a robot that does not
respect social norms (Vassallo et al., 2017) while people react more naturally when they
know that a robot behaves in a human-like manner (Vassallo et al., 2018).

Our objective is to develop a collision avoidance algorithm that can

1. Predict, based on situational factors, the expected distribution of motion adaptations
between agents during dyadic collision avoidance.

2. Determine, at a given instant, whether an agent will choose to cross first or last in a
collision avoidance scenario and the uncertainty associated with this decision

3. Develop a human-like collision avoidance approach for a robot in order minimize the
amount of time in a near-symmetry scenario, reducing the amount of time in which
ineffective collaboration is possible.

1.2 Contributions

Scientific contributions described in this thesis include:
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1. A model for asymmetric distribution of motion adaptations between a robot
and a person during collision avoidance. Our model does not attempt to share
collision avoidance effort equally or to simply minimize the combined amount of
motion adaptations, instead, it predicts the amount of collision avoidance effort a
person would have been expected to invest to avoid a future collision in a given
scenario. This prediction can then be used to change the collision avoidance behavior
of existing navigation approaches.

2. Collision avoidance approach that accounts for the potential uncertainty in cross-
ing order determination and mitigates its potential negative consequences. We
approximate the uncertainty over a person’s decision to cross first or last in a given
scenario. Based on this uncertainty, our collision avoidance approach minimizes in-
effective collaboration by adapting the collision avoidance behavior of a robot in
tandem with the uncertainty over crossing order. Our approach guarantees with a
certain confidence that even if agents initially assume the same crossing order they
will be more likely to perceive the correct crossing order in their next decision step.

1.3 Thesis Structure

Chapter 2 - Collision avoidance between people
There is abundant literature in the domain of social sciences that discusses and analyzes
human behavior during collision avoidance. Chapter 2 draws on this literature to describe
concepts for characterizing the temporal evolution of a collision scenario between two peo-
ple and the impact of different initial conditions on the decision making of a person. The
impact of different initial conditions is evaluated with respect to both situation-specific fac-
tors (position, velocity, etc.) and person-specific factors (such as age and gender). The
manner in which these factors affect role selection, that is, whether a person will cross in
front or behind another person, is also presented alongside a discussion about situations
where people change their original roles (role reversals). Furthermore, the concept of ho-
motopy class is also presented and its differences with respect to the concept of crossing
order are specified. Finally, in our closing remarks a discussion is made on how situational
factors could be used to predict the manner in which people distribute motion adaptations
to avoid collision and also about the potential negative impact of role reversals in collision
avoidance.

Chapter 3 - State of the art in Human-Robot Motion
This chapter reviews the state of the art in Human Robot Motion (HRM). Before the discus-
sion of specific approaches, the concept of (dis)comfort is presented in order to aggregate
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similar terms used throughout the literature. Based on our definition of comfort, state of
the art works in HRM are divided into three categories. First, approaches are presented
that deal with comfort in the domain of social spaces and its sub-categories: personal,
interaction, activity and affordance spaces. Second, the literature on concepts such as leg-
ibility, visibility and attention is presented and their impact on comfort is also discussed.
Third, a number of human-aware collision avoidance approaches are discussed involving
both human-like models, such as the Social Force Model, and approaches that attempt to
minimize discomfort-like measures during motion planning. Moreover, recent approaches
that attempt to avoid the potential of future collision by following the flow of people are
also discussed. In our final remarks, the focus of our work in collaboration between peo-
ple during collision avoidance is established within the context of human-aware collision
avoidance.

Chapter 4 - Literature on collaboration during collision avoidance
This chapter reviews previous research on the problem of collaboration during collision
avoidance. Five techniques that address this problem are presented and discussed. These
techniques are divided in two categories: reactive and planning-based. Reactive approaches,
such as Reciprocal Velocity Obstacles, are discussed with respect to their strategy for col-
laboration during collision avoidance. Planning-based approaches based on minimization
of discomfort and on learning from human trajectories are described. Finally, a detailed
comparison of features found in each of the examined approaches is presented and com-
pared to our work. In this comparison our work was found to be one of the few works that
imitate the distribution of motion adaptations used by people to avoid collision and the only
work that dealt with the explicit detection and mitigation of situations with unclear roles
between agents.

Chapter 5 - Effort distribution during collision avoidance
Our first contribution, introduced in this chapter, presents a model to imitate the manner
in which people collaborate to avoid future collision. To that end, we first describe our
dataset created in collaboration with the laboratory Mouvement, Sport, Santé. In order to
evaluate human behavior within this dataset, a novel cost function is presented based on the
impact on both energy and time to the goal of a person due to collision avoidance. This cost
function is then applied within our dataset in order to shown, in a statistically significant
manner, that there is a difference in the distribution of effort between roles. Based on these
results, a number of situation specific factors at the start of collision avoidance are used as
a predictor of collision avoidance effort and its distribution among agents. This predictor
is then implemented into the navigation approach named Reciprocal Velocity Obstacles in
order to allow for more human-like behavior and also to validate the developed predictor.
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For validation a comparison between standard Reciprocal Velocity Obstacles, our approach
and the baseline behavior obtained from our dataset is made. Our approach better imitated
human behavior in most of the evaluated cases while its main limitation was being unable
to replicate role reversals.

Chapter 6 - Human-robot collision avoidance under near symmetry
Our second contribution is presented in this chapter, which attempts to mitigate potential
negative consequences of collaborative collision avoidance when crossing order between
agents is either ambiguous or undefined. First, an extension of the Minimum Predicted
Distance is presented in order to better visualize the negative impact of crossing order am-
biguity in the trajectories of people. Based on evaluation of our dataset, the boundary that
separates the choice of role for a given agent is specified based on the derivative of the
bearing angle. This boundary allows our model to predict the role uncertainty of a given
scenario for nearby people. Our approach exploits properties of uniform distributions in
order to guarantee, with a certain confidence, that even if agents initially choose the same
role they will be able to perceive the correct role in the next time step. Finally, validation
of our collision avoidance approach is presented over several distinct scenarios and com-
pared to Reciprocal Velocity Obstacles, a method that is unable to misjudge crossing order.
The main benefit of our approach is reducing the amount of time agents remain in a situa-
tion with ambiguous crossing order as a consequence of ineffective collaboration between
agents due to ambiguous crossing order.

Chapter 7 - Conclusion
The closing chapter of the thesis provides a general overview of our work. Additionally, a
detailed review of our contributions and the limitations of the current iteration of our ap-
proach are presented. Its final section presents possible perspectives for our work, such as
evaluating our approach in virtual reality, accounting for robot-robot scenarios and experi-
ments with multiple people.

Appendix A: List of publications
A list of the publications associated with this work is shown within this appendix. More-
over, their respective references are also displayed alongside an overview of the contribu-
tions within each publication.

Appendix B: Generalized Linear Model
An introduction to Generalized Linear Model is made which is followed by a theoretical
description of its characteristics and components. Moreover, a presentation of the most
commonly used distributions and link functions are also presented. The concept of GLM is
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used within Chapter 5 in order to learn the distribution of effort from trajectories of people.

Appendix C: Properties of Uniform Distributions
A short theoretical introduction to uniform distributions is showcased in this appendix.
Presenting the notation of density and cumulative distribution functions of uniform distri-
butions. Furthermore, a discussion about two properties of uniform distribution is made
and the manner in which these properties can be applied into Chapter 6 in order to mitigate
the negative impact of near-symmetry in a collision avoidance scenario is discussed.
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Chapter 2

Collision avoidance between people

Contents
2.1 Collision avoidance behavior . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Minimum predicted distance . . . . . . . . . . . . . . . . . . . 28

2.1.2 Phases of collision avoidance during interaction . . . . . . . . . 29

2.1.3 Personal and situational factors impact on interaction . . . . . . 30

2.2 Roles during collision avoidance . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Predicting the role of a person during collision avoidance . . . . 33

2.2.2 Role reversal in the literature . . . . . . . . . . . . . . . . . . . 34

2.3 Homotopy class decision . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

This chapter describes some of the most relevant concepts for characterizing a collision
situation, and describes the impact of different initial conditions of interaction during such
a task on the decision making of a person. These concepts relate to both situation-specific
and person-specific characteristics of a collision avoidance scenario. This allows us to build
foundations to the design of “human-like” robot behavior when avoiding a collision with
people.

2.1 Collision avoidance behavior

People have been shown to predict the risk of future collision and to react appropriately to
reduce such risk using motion adaptations (Olivier et al., 2012). Collision risk represents
the perception of people that their distance to a given obstacle will be smaller than an ac-
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Human behavior

(a) Collision avoidance situation between
two people.
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(b) Temporal evolution of distance and MPD from
reconstructed positions.

Figure 2-1: A collision scenario with its corresponding temporal evolution for both distance
and MPD value.

ceptable threshold in the future. This threshold was also found to encompass their personal
space1.

The bounds of the time interval in which agents recognize each other up until the time
in which minimum distance between agents is reached represents the interaction phase
(Olivier et al., 2012). As shown in Fig. 2-1, interaction begun at the moment the walls no
longer occluded people from seeing each other. Moreover, interaction ended when distance
between people reached its smallest value. A detailed visual breakdown of the interaction
phase is presented in the Sec. 2.1.1.

In order to properly characterize the behavior of people during interaction in this sec-
tion, we recall a standard measure, the Minimum Predicted Distance (MPD), that calculates
the future distance of closest approach between people (Olivier et al., 2012). We describe
how the temporal evolution of MPD during interaction between people is used in the liter-
ature to describe collision avoidance progress. In Sec. 2.1.3 we discuss several factors that
can impact the behavior of people during the interaction phase.

2.1.1 Minimum predicted distance

Collision avoidance progress can be measured in terms of the MPD between people. This
variable is presented in the literature as the minimum distance people would reach in the

1The concept of personal space is described in details in Chapter 3.
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future in case no motion adaptations are performed and is defined as

MPD(t) =
∞

min
l=t

‖(~pr(t) + ~vr(t) · (l − t)) − (~pp(t) + ~vp(t) · (l − t))‖ (2.1)

where ~pr(t) and ~pp(t) represent, respectively, the current position of an agent r and p at
time t. In the same manner, ~vr(t) and ~vp(t) represent, respectively, the velocity of agent r
and p at time t and ‖·‖ denotes the euclidean distance.

Whenever the minimum predicted distance is smaller than a certain threshold this indi-
cates a future collision will happen if agents do no shift their motion. For people, collision
risk was generally perceived as high enough to justify collision avoidance motions when-
ever their MPD was at most one meter (Olivier et al., 2012). Thus, whenever people are at
a certain distance from each other and MPD is below a certain threshold, people adapt their
motion in order avoid collision - increasing the value of MPD.

The MPD provides a numerical representation of collision risk and also collision avoid-
ance progression.

2.1.2 Phases of collision avoidance during interaction

The temporal evolution of MPD during collision avoidance among people allowed social
science studies to decompose interaction between people into three successive phases: ob-
servation, reaction and regulation (Olivier et al., 2012). These phases can be summarily
described as:

1. Observation during which the possibility of a collision situation is recognised, prior
to motion adaptation. During this phase, the MPD does not change.

2. Reaction phase includes most of the actual motion to avoid the collision, where
agents choose motion adaptations that increase the MPD above a certain margin that
avoids collision and preserves personal space between agents;

3. Regulation is the phase where the agent maintains the MPD at a stable value without
collision risk until minimum distance is reached.

This division is based on the temporal evolution of MPD in reaction to the motion
adaptations done to avoid collision (Olivier et al., 2012). All the aforementioned phases
can be observed in Fig. 2-2 which breaks down the behavior of MPD at the start of the
interaction until after the end.

The observation phase has a short duration as people were found to be able to effi-
ciently detect a potential future collision risk a single step after seeing a moving obstacle
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Figure 2-2: Breakdown of temporal evolution of MPD over different phases. The MPD
values are shown from the start of the interaction until after the end.

(Gérin-Lajoie et al., 2005). The phase with longest duration, referred as reaction phase, is
responsible for the increase in MPD. Collision avoidance and its associated motion adap-
tations start from this phase. Finally, the regulation phase represents the final phase of
the interaction. In this phase, MPD remains constant until the minimum distance between
agents is reached. After the interaction, in the absence of additional obstacles, the MPD
continues to increase as agents move further away from each other.

2.1.3 Personal and situational factors impact on interaction

The behavior of people during interaction is determined by several factors. These factors
are generally subdivided into two categories, the situational factors (such as speed, heading
and crossing angle) and personal factors (such as height or gender).

Recent studies concerning the manner in which people adapt their motion to avoid a
collision between each other, such as Knorr et al. (2016), observed that situational factors
are more important than personal factors for explaining behavior during collision avoid-
ance. In this subsection, we discuss both situational and personal factors and their impact
on people’s behavior based on existing literature.
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Personal factors

Personal factors represent person-specific characteristics (Knorr et al., 2016), such as age,
height and gender. These factors have been shown to have an impact on interpersonal
coordination during interaction.

One such impact was observed in Van Basten et al. (2009) during head-on collision
avoidance trials, where gender distribution in a group of people affected their degree of
collaboration. In particular, in their dataset two males collaborated less than two females
to avoid future collision. Moreover, the minimum clearance between a pair of males was
smaller than between two people with different genders. Another interesting observation
was that one short person and one tall person collaborate less than two short people.

The degree of collaboration during collision avoidance is not the only potential impact
of personal factors in human behavior during motion. In Costa (2010), the gender distri-
bution within a group of people had an influence in group organization. Groups of males
in forward motion were more likely to be further apart than both mixed groups and female
groups. This was seen in both dyads and triads, however, this pattern did not generalize to
larger groups. Moreover, it was found that groups with significant height difference walked
abreast less often than groups with similar height.

In Vallis and McFadyen (2005), during interaction with static obstacles it was found
that children avoid collision differently from adults. More specifically, children rely more
on visual information in comparison to adults in order to increase accuracy. In addition,
children were found to choose different change in travel direction to avoid collision, this is
caused by several factors including a greater role of foot placement for control of center of
mass deviation.

Situational factors

Situational factors are based on situation-specific characteristics, such as position, heading
and speed. The importance of situational factors for successful collision avoidance was
shown in (Basili et al., 2013; Huber et al., 2014), where depending on the crossing an-
gle and the available space, people adapted walking speed and/or walking path to avoid
collision. Moreover, several existing methods that replicate behavior of people (obtained
from empirical data) are only able to do so when situational factors are taken into account
(Helbing and Molnár, 1995; Moussaïd et al., 2011).

Among the situational factors that influence the type and amount of motion adaptations
for people, we list:

• Time to collision (also known as time to contact) (Alenyà et al., 2009) affects the
perceived risk of collision which can have a substantial impact on motion adaptations.
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• Initial crossing order, which is calculated before start of the collision avoidance, can
determine the behavior of an agent with respect to distribution of motion adaptations
(Olivier et al., 2013).

• Bearing angle represents the position of another person in one’s field of view and can
impact collision avoidance behavior. For instance, a person walking behind another
person generally does not to expect the person in front to contribute to collision
avoidance. Discussed in detail in Sec. 2.2.1.

• Derivative of the bearing angle: this situational factor was found to reliably predict
future collision. Whenever agents are approaching each other and the derivative of
the bearing angle is equal to zero a collision is inevitable. Furthermore, the value of
the derivative of bearing angle can also predict crossing order depending on whether
the object is diverging or converging from the gaze axis (center of the field of view).
This is discussed in detail in Sec. 2.2.1.

• Speed of people: the speed in which a person walks has a strong relationship with
their derivative of the bearing angle. However, the difference in speed between peo-
ple may also have an impact on collision avoidance. For instance, it is important to
evaluate the impact of a person going much faster than another one in the distribution
of motion adaptations to avoid collision.

• Crossing angle has been shown to affect the choice between adapting speed and/or
walking path (Basili et al., 2013; Huber et al., 2014).

2.2 Roles during collision avoidance

During the observation phase, people perceive their role in a future collision situation as
either crossing in front or behind. In general terms, these roles define the type of motion
adaptation one must perform to avoid future collision in a collaborative manner (Olivier
et al., 2013). The person crossing in front role generally chooses to accelerate while also
changing heading, while the person crossing behind usually decelerates while also chang-
ing heading.

A recent work found that there is a difference in the amount of motion adaptations done
by the person crossing in front and the person crossing behind (Olivier et al., 2013), their
findings indicate that, in average, the person crossing behind contributes more to collision
avoidance than the person crossing in front. Given the change in behavior depending on a
person’s role, in this section, we describe what factors were found to predict the perceived
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crossing order of an agent. This allow us to understand how to predict and replicate human
behavior in a more realistic fashion.

2.2.1 Predicting the role of a person during collision avoidance

Several works have studied the manner in which one can predict the role of a person during
collision avoidance. In Knorr et al. (2016), one experiment was executed to predict crossing
order from speed and heading (velocity) for each agent before motion adaptations started
occurring. They were able to estimate with 93% accuracy the future role of each agent
2.5 meters before participants crossed each other. In other words, in the large majority of
the cases, crossing order was defined early and did not change. According to Knorr et al.
(2016), correctly predicting the role of people depends on whether both pedestrians are
able to predict the order in which their intersection will be reached.

Crossing order decision can be explained in terms of the visual stimuli of the agents
(Cutting et al., 1995), where

• the person crossing in front sees the person crossing behind diverge from the center
of its field of view (bearing angle goes away from zero) as the time to collision
diminishes,

• while the person crossing behind sees the person crossing in front converging to-
wards the center of its field of view (bearing angle approaches zero).

Both the person crossing in front and behind can be visualized in Fig. 2-3a.
Determining the role of an agent before motion adaptations is important in order to

properly understand and replicate human behaviour. In Cutting et al. (1995), the derivative
of bearing angle was found to correctly predict future collision and its sign was found to be
a reliable indicator of future crossing order. The bearing angle denotes the angle between
the heading of an agent and another obstacle (dynamic or otherwise). In order to calculate
the value of the derivative of the bearing angle, let r and p represent a robot and a person
respectively. From the local coordinate space of the robot r, the bearing angle to p is
defined as αr,p(t) = atan2(y,x) where, for brevity, we define x = xp(t) and y = yp(t). The
total derivative2 of αr,p(t) is then defined as

α̇r,p(t) =
y

x2 + y2 dx+
x

x2 + y2 dy , (2.2)

where xr(t) and yr(t) represent the x and y position of agent r at time t. A visual represen-
tation of the bearing angle, from the local coordinate space of a robot, and its derivative

2For more information on total derivatives see Wolfram (2019)

33



(a) Person crossing in front sees the person
crossing behind diverge from the center of
its field of view.

(0,0)

α (t)
α (t)
.

agent
r,p

r,p

(b) Robot crossing behind sees the other
agent converging towards the center of its
field of view (local coordinate space).

Figure 2-3: An example of crossing order being established between people and the same
concept in terms of the robot from the perspective of its local coordinate space.

can be seen in Fig. 2-3.

2.2.2 Role reversal in the literature

In the context of collision avoidance, role reversal refers to the change of role between
agents after the start of the collision avoidance. This means that although one agent was
predicted to pass in front and the other behind during collision avoidance, during the ac-
tual collision avoidance their roles were swapped. In practice, this means that during role
reversal the MPD between agents first decreases (due to change of role) and then increases
until collision avoidance is completed.

In Knorr et al. (2016), using solely the speed and heading of each agent they were able
to predict the crossing order with 93% accuracy. This means that role reversals happened in
only 7% of the cases observed. This is likely due to the fact that role reversals are generally
a less time-efficient way to solve collision avoidance particularly when roles are defined
and well perceived.

For proper visualization of role reversal in collision avoidance scenarios, a modified
version of MPD was proposed in Vassallo et al. (2017). In this version, named Signed
Minimum Predicted Distance (SMPD), the person crossing in front has a positive MPD
value while the person crossing behind has a negative MPD value. This means that when-
ever roles are changed the sign of SMPD at the start of the interaction will be different from
the sign at the end.

Using this modified measure, it was found that people preferred to cross behind when
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avoiding collision with a robot that is in forward motion but not reacting to other obstacles
(Vassallo et al., 2017). This behavior was associated with perceived safety as the person
crossing behind can see the person crossing in front in their field of view until the end of
the interaction. Change on crossing order can be perceived as a problematic behavior given
that it was found to increase the time required to avoid collision (Vassallo et al., 2018).

Conversely, in a subsequent work (Vassallo et al., 2018), whenever people perceived
the robot as moving and avoiding collision in a human-like fashion they were more likely
to preserve the currently perceived crossing order and behave in a similar way as if there
were two people (such as in the experiments of Olivier et al. (2013)).

2.3 Homotopy class decision

Although the concept of crossing order is used extensively in the literature (Vassallo et al.,
2018; Olivier et al., 2013), it is not general enough to describe all collision avoidance
situations. As an example, in future head-on collision scenarios crossing order is undefined.
More generally, in any collision scenario where the derivative of the bearing angle is exactly
equal to zero crossing order cannot be determined and it is either ambiguous or undefined
at that point in time.

Given the cases where crossing order is unable to characterize collision avoidance, a
more general way to describe the manner in which people avoided the collision is necessary.
To this end, the concept of homotopy class can be used. This concept was defined in
Kuderer et al. (2013) as the side in which agents pass each other. As can be seen in Fig.
2-4, trajectories within the same homotopy class can be continuously deformed into each
other.

In Bhattacharya (2010), it was shown that two trajectories are homotopic if and only if
both have the same integral of their derivative of the bearing angle. Each discrete decision
about whether to pass left or right of someone represents a homotopy class decision. In
Kuderer et al. (2013), the homotopy class of each distinct trajectory pair was calculated
using

Θ
p
r =

∫

t
α̇r,p(t)dt (2.3)

In this formulation, agents that pass each other on their right side will generate a Θ
p
r = π

while passing each other on the left side results in Θ
p
r = −π . This formulation is elegant

as its value is independent of the duration of collision avoidance. However, it is important
to note that although Θ

p
r correctly associates the choice of homotopy class of two actual

(or predicted) trajectories, to complement these results Kuderer et al. (2013) also built a
probability distribution that is able to predict the most likely choice of homotopy class for
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obstacleAgent goal

(a) Homotopy class decisions with respect to a static obstacle.

Agent Agent

(b) Homotopy class decisions with respect to a moving obstacle.

Figure 2-4: Each unique color represents a distinct homotopy class decision. Paths within
the same homotopy class can be continuously deformed into each other.

any given person in the environment.
The relation between number of obstacles and possible combinations of homotopy class

decisions is exponential. Choosing the most likely discrete decision on whether to cross on
the right or left side of a person is insufficient to accommodate scenarios of uncertainty. In
the absolute worst case of future collision, that happens in symmetric collision scenarios,
people cannot predict the order in which they will reach their intersection point (see Sec.
2.2.1). In more general terms, people find it more difficult to determine the correct homo-
topy class when they approach each other in near symmetric scenarios. Thus in a perfectly
symmetric scenario, in the absence of other obstacles, two people involved in collision
avoidance would choose to cross in front or behind with equal probability.

2.4 Discussion

In this section we discussed several factors that allowed one to characterize collision avoid-
ance progress. Our first step is establishing the focus of our work on using only situational
factors. In that sense, personal factors such as age, gender, emotional state and physical
properties of one’s body (e.g. body size and weight) were not considered. Although we
established through careful analysis of the literature that personal factors can impact colli-
sion avoidance behavior and group organization, in Knorr et al. (2016) it was shown that
situational factors represent the most relevant factors in determining collision avoidance
behavior.
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Our work is based on using situational factors to describe current and future behavior
of people. The robot would then attempt to replicate this decision in order to achieve
more human-like behavior. In other words, predict the manner in which situational factors
determine the role and the mean effort required to avoid a future collision. Particularly in
cases where there is a non-trivial motion adaptation required for collision avoidance.

Another objective of our work, that also relies on some of the aforementioned situa-
tional factors, intends to evaluate and mitigate the potential negative impact of role rever-
sals on collision avoidance. More specifically, our contribution lies in using situational
factors to determine when the homotopy class decision is ambiguous e.g. derivative of the
bearing angle is zero. In such cases, both agents may incorrectly choose the same role for
collision avoidance, thus their motion adaptations, when seem in conjunction, would be
detrimental to collision avoidance.
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Chapter 3

Robot motion among people
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As more robots share living spaces with people, work in Human Robot Motion (HRM)
has seen an increased interest in recent years. Works in the domain of HRM attempt to
model the manner in which robots should move among people.

Moving in an unnatural or unsafe manner can cause discomfort for people around the
robot. As there is currently no commonly agreed formal definition for comfort or discom-
fort within the domains of HRM or robotics. In our work we rely on a qualitative definition
for comfort, proposed by Kolcaba (1992), as "the state in which the body is relieved of
unpleasant sensory or environmental stimuli". Even though alternate terms also exist, such
as hindrance in Ziebart et al. (2009), disturbance in Cosgun et al. (2016) and social work
in Ferrer and Sanfeliu (2014b), we aggregate these similar terms within the more general
concept of comfort.
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(a) Respect personal space
around a person

(b) Activity space between
person and the television.

(c) Interaction space formed
in a group in conversation.

Figure 3-1: Different social spaces formed around people.

Given this context, a robot that moves in what we call an acceptable or appropriate
manner minimizes the amount of discomfort caused to a person or to a group due to the
robot’s motion (or lack thereof). For instance, a robot that acts in a human-like manner was
found to reduce global cognitive effort for people in the environment in Carton et al. (2016)
and by consequence reducing discomfort caused by the robot’s presence.

The concept of comfort can also be used for vehicles. In Gulati and Kuipers (2008)
defines a comfortable wheelchair ride as a ride having low jerk, smooth velocity and accel-
eration without oscillation that maintains sufficient clearance from its surroundings. The
model shows that people prefer to navigate at 1

4 distance of a corridor wall in order to use
one half of the corridor and leave the other half free. Such situation, however, is not the
main focus of our work.

In this chapter, we first introduce several different areas of study within HRM. For each
area we present the most important works and their contributions to the state of the art.
Finally, we discuss where our work fits within HRM and how our contributions improve
upon its state of the art.

3.1 Accounting for social spaces during navigation

People consider some regions as belonging to them, as showcased in Fig. 3-1, thus when-
ever another agent enters this region discomfort can be caused to the affected person. The
size and shape of these regions, called social spaces, depends on several factors such as
current velocity and activity.

3.1.1 Personal space

One of the core concepts in human interaction in social spaces is called proxemics. It can
be defined as a natural distance people put between themselves in different social situations
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(Rios-Martinez et al., 2014). The term was coined in Hall (1982), where different social
situations were described and the resulting differences in a person’s social space compared.

The social space of an individual has a different shape than that of a group (sometimes
referred to as “we-space”). According to Hall (1982), an individual social space can be
broadly categorized in four different concentric circles, these are:

1. Public zone > 3.6 meters

2. Social zone > 1.2 meters

3. Personal zone > 0.45 meters

4. Intimate zone ≤ 0.45 meters

The public zone is not seen as belonging to the person, in this sense, people you are
not familiar, nor interacting with, can cross it without causing discomfort. In contrast, the
Social Zone is commonly reserved for acquaintances. Friends and family are able to enter
the personal zone, while in general the Intimate Zone is reserved for whispering, embracing
and similar actions. This proxemics model has been used throughout several HRI concepts
to develop better social robot behavior during interaction with an individual or a group.

Several studies detected changes in the shape and size of the zones in different situa-
tions. In Hayduk (1981), it was found that people are more protective of their frontal space
than their back. Furthermore, in Gerin-Lajoie et al. (2008) asymmetries in the personal
space were found, being larger in the opposite side of the person’s dominant hand.

A long-term study on proxemics between human and robot found that a distance com-
fortable for people between a person and a robot remains stable after short adaptation period
(Walters et al., 2011). Moreover, people allowed for less distance when they are approach-
ing a robot than when a robot approached them.

In an attempt to map the best manner for a robot to approach a person, while respect-
ing their personal space, Torta et al. (2011) designed a navigation approach that respects
personal space and chooses the best direction to approach a person. To that end, an user
study involving a bipedal robot approaching people was made and their preferences were
evaluated.

Other factors can also affect the size of a personal space. For instance, whenever the
gaze direction of the robot was oriented towards a person’s face, the minimum comfortable
distance increases for women and decreases for men (Takayama and Pantofaru, 2009).
Another important factor was that in corridors people perceived negatively a robot that
passes within the intimate space of a person but also a robot that excessively increases its
lateral distance to the person Pacchierotti et al. (2006).
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Figure 3-2: The interaction space has to be accounted for during motion planning. Appro-
priate motion represents more than just guaranteed safe motion. Trajectory in red is safe
but not appropriate while trajectory in green is both safe and appropriate.

3.1.2 Activity, interaction and affordance spaces

Beyond the aforementioned personal space, there are three important spaces that have an
important social significance: interaction, activity space and affordance space.

A social space that is formed through an action that is being performed by people within
a certain space is called an activity space (Lindner and Eschenbach, 2011). In that sense, a
robot passing through a soccer field while a match is happening, even if in a collision free
manner, would not be an acceptable motion because it violates an existing activity space.

An important subtype of activity space is formed when two or more people are involved
in an interaction. This behavior engenders what is called an interaction space (Lindner and
Eschenbach, 2011). Thus a robot should not violate the space defined by this interaction,
moreover, it should account for what is defined as the buffer region (Kendon, 1990) around
an interaction space that also should not be invaded upon. In Fig. 3-2, the agents considers
two possible plans, one collision free but not an appropriate motion while the other is both
collision free and appropriate.

A motion planner capable of accounting for both personal and interaction spaces was
developed in Rios-Martinez et al. (2012). This planner built a social filter composed of two
modules

1. a personal space module that creates a costmap map composed of two gaussians
centered at the front and at the back of each person. As they found that people are
more sensitive to the frontal area, the front Gaussian is larger;

2. and also an interaction space module that associated an additional cost to candidate
trajectories whenever a trajectory would pass within the space formed by two people
interacting.

These social modules were integrated into the into their approach, called “RiskRRT” to
allow a robot to navigate with socially-aware behavior.
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Another approach that is able to account for interaction spaces was presented in Cosgun
et al. (2016). In their approach, path length cost, safety and the discomfort caused by
disturbing an interaction space are accounted for. The disturbance in interaction space is
calculated by first checking whether the robot path intersects a line segment between all
pairs of people. Based on this, the actual cost of intersecting this line is determined based
on the current orientation of each pair of people, a pair facing each other would incur
higher trajectory costs while a pair of people facing opposite directions would incur zero
additional cost.

Although interaction and personal spaces have been explored consistently in the afore-
mentioned works, other spaces have received moderate attention. Among these we high-
light the affordance space, which have been defined in Gibson (2014) as dispositional prop-
erties of an environment in which actions can be performed. A soccer field or a telephone
that are not being used are not activity spaces but represent instead affordance spaces. As
such, an activity space requires actions by one or more people within its space to exist
while affordance spaces represent a potential for activity.

Building upon this concept, in Lindner and Eschenbach (2013), a model was developed
that is able to reason about whether an agent should use an affordance space or not. This
is done while taking into account the possible actions of other agents and also the available
affordance spaces. These two data points are used to build an affordance-space map that is
used to reason about the impact of the robot’s decisions on other agents. In that sense, an
agent would be able to balance the urgency of an activity to the discomfort it could cause
to people (blocking a door for example).

3.2 Approximating internal state of a person

While respecting social spaces is an important component of appropriate motion, under-
standing the perception of people regarding the robot’s intention is also of fundamental
importance.

For example, for maximum comfort should a robot approach a person from the side
or directly from the front? Several works attempted to answer related questions using the
concepts of visibility, legibility and perceived safety.

3.2.1 The impact on comfort of the presence of a robot

Sisbot et al. (2007) has shown that in the presence of a robot, people feel more comfortable
when the robot is within their field of view. To that end, their path planner created a
costmap around each person where higher costs are given to regions further away from the

43



center of their field of view. Thus, a robot would avoid going behind a person unless the
path in front of the person’s field of view was significantly longer. Furthermore, another
costmap was created to account for hidden zones, where they account for the fact that when
a robot is passing behind an obstacle the person would not feel threatened by the motion of
the robot. However, to avoid a potential surprise factor, as when a robot suddenly appears
from behind an object, an extra cost is added behind obstacles to allow for larger distance
between the robot and obstacles that occlude the robot from a person’s view. This larger
distance causes, in turn, a smoother entrance into a person’s field of view.

Although Sisbot et al. (2007) assumes that maintaining the robot within the visual field
is desirable, other researchers have shown that having the robot in view can be distracting.
Based on a similar premise, a model was devised in Maisonnasse et al. (2006) to approxi-
mate direction of a person’s attention in a given situation. To that end, they build a model
inspired in the physical concept of gravity, in this model they calculate an attraction vec-
tor that encodes the average attention gaze direction and intensity. This attraction vector
changes in tandem to the position and velocity of other nearby agents. This vector is then
combined with the current velocity of the person to find an attention vector.

In order to improve upon such concept of attention, in Paulin et al. (2019), a model was
created in which the robot evaluates multiple possible attention vectors - an attention map -
of a person within the environment. The attention map is calculated using a custom visual
saliency method inspired on the human visual system. The potential distraction caused by
a robot may be evaluated with respect to multiple places observed by the person. Both
Sisbot et al. (2007) and Paulin et al. (2019) also include a surprise factor but in the latter
it is determined from the rate of change of the attention map resulting from the robot’s
motion. Finally, in order to find acceptable paths based on these premises, multi-criteria
optimization based on Approximation-Guided Evolution (AGE), described in Wagner et al.
(2015), was chosen given its ability to accommodate multiple optimization objectives.

3.2.2 Legible motion during navigation among people

Legible navigation can be described as a robot motion that allows a person to intuitively
understand the robot’s intentions while navigating (Kruse et al., 2012) such as shown in Fig.
3-3. Other terms in the robotics literature that convey similar meanings are: readability,
predictability and anticipation (Carton et al., 2016).

Legible motions should indicate its goal direction and also demonstrate its awareness
of both static and dynamic obstacles (Lichtenthaler et al., 2012). For example, in Fig. 3-3a,
the person is unable to perceive the goal of the robot and is thus forced to avoid potential
collision. On the other hand, in Fig. 3-3b, the robot clearly indicates early on its intention
to turn which allows the person to avoid unnecessary motions.

44



(a) Person misunderstands the robot’s inten-
tion. (b) Person correctly perceives robot’s goal.

Figure 3-3: Robot should account the perception of a person of their behavior.

The concept of legibility is also associated with the concept of field of view (described
in Sec. 3.2.1). For a motion to be legible the person should be able to actually see the robot,
thus motion planning should attempt to prefer maintaining the robot within a person’s field
of view whenever feasible. This means not approaching a person directly from the back.

In Lichtenthaler et al. (2012), it was suggested that a person would perceive a situa-
tion as more comfortable if she can predict the next actions of the robot. A more precise
definition of legible motion was given in Kruse et al. (2010) as:

“A prerequisite of human comfort is legible behavior, which means that an or-
dinary, uninstructed person can understand and anticipate the robot’s actions.”

Based on this definition, Kruse et al. (2010) designed a navigation strategy that allows
a robot to convey its intention to move through a space that a person currently occupies.
Their conclusion is that a robot can exploit the fact that people are benevolent and capable
of self-propelled motion in order communicate through motion the robot’s intention of
passing through a region that a person currently occupies.

The benefits of readable motion were extensively studied in Carton et al. (2016), where,
in a mutual avoidance experience, readable motion reduced planning effort for people in the
environment. Their work also showed that people utilize similar motion planning behaviors
in the vicinity of robots.

3.3 Human-aware collision avoidance

To accommodate the presence of dynamic obstacles, trajectory deformation ap- proaches,
such as in Delsart and Fraichard (2008), add the time dimension in the information regard-
ing an obstacle future behavior. This makes it possible to deform the space-time curve
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Figure 3-4: Treating the person as either a moving obstacles or as an agent results different
joint trajectories. The joint trajectory in blue represents avoidance treating the other as a
moving obstacle. In practice, people collaborate during collision avoidance which might
yield the joint trajectory in red.

in response to dynamic obstacles as well as other constraints such as feasibility and con-
nectivity. This approach, however, does not account for the collaborative nature of human
behavior and instead treats people as moving obstacles.

Treating people as moving obstacles, a non-HRM approach, in sufficiently complex
scenarios, would cause the “freezing robot” (Trautman and Krause, 2010). This situation
arises when the robot motion planner eventually decides that all forward paths are unsafe
and the robot either halts or engages in convoluted avoidance maneuvers.

People however are benevolent agents capable of self-propelled motion. In the context
of HRM people can be treated as potentially cooperative agents when involved in tasks that
have shared goals with a robot. In Fig. 3-4, we present a hypothetical situation in which
a robot treats a person as just a moving obstacle and another situation where the person
proactively contributes to collision avoidance.

In this section we explore two main directions in which HRM can account for people
during motion planning as more than moving obstacles during collision avoidance. The
first approach balances, during robot motion planning, the amount of contributions for the
robot to avoid collision with respect to contributions of other people in the environment. In
the second approach, people’s behaviors are learned or inferred from data and replicated.

3.3.1 Accounting for the reaction of people to a robot motion

Encoding the usual reaction of a person to a given robot motion allows one to minimize
discomfort for people during collision avoidance. To that effect, many human-like models
have been utilized to allow a robot to replicate or at least account for a person’s behavior.

In Cosgun et al. (2016), a robot is able to predict how standing people that are inad-
vertently blocking its way will react to its motion, that is, in which manner they will allow
the robot to pass and how much discomfort this would cause. This allows a robot to pass
through regions that would have been hard or impossible otherwise. This is done through
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the use of the Social Force Model (SFM), presented in Helbing and Molnár (1995), to
calculate people’s reaction (as a group or individual) to a particular robot plan.

For situations where people are already in motion, in Shiomi et al. (2014) a robot navi-
gated inside a shopping mall using an approach based on Social Force Model with explicit
Collision Prediction (SFM-CP), a version of SFM tuned with empirical data from human
motion (Zanlungo et al., 2011). The main contributions of Shiomi et al. (2014) were two ex-
periments to evaluate their SFM-CP based robot control approach. In the first experiment,
people were put in a future head-on collision scenario with a robot in order to qualitatively
assess a person’s comfort during the interaction in relation to another standard approach
in the literature. In their second experiment, a robot, also using their approach based on
SFM-CP, navigated in a shopping mall and its trajectory and distance to other people where
judged by two people with regards to safety. Finally, they found their approach avoided un-
safe situations better than other navigation methods such as Dynamic Window approach
(Seder and Petrovic, 2007).

To better quantify the amount of change in a person’s motion caused by the robot, in
Ferrer and Sanfeliu (2014b) a discomfort-like measure was used as an additional cost for
each candidate trajectory to the robot’s goal. The discomfort is based on the potential reac-
tion of a person to a given robot trajectory and its cost was calculated using the Extended
Social Force Model (ESFM) which is described in Ferrer et al. (2013b). Given this poten-
tial reaction from each person near the robot, their discomfort-like measure was associated
to each potential candidate trajectory during trajectory planning. Such formulation allows
one to give precedence to trajectories that have smaller impact on the motion plan of nearby
people.

3.3.2 Robot-person collaboration with joint trajectories

Instead of planning a robot motion that attempts to minimize the overall impact in a per-
son’s predicted motion, many approaches instead attempt to replicate joint behavior be-
tween people when avoiding collision with each other.

During collision avoidance each person does not necessarily attempt to solve the colli-
sion avoidance problem by themselves. Each person in the environment account for what is
called joint collision avoidance (Trautman and Krause, 2010). In order to explicitly repli-
cate such human behavior, Kuderer et al. (2013) tele-operates a robot in the presence of
humans in order to learn a model of its own navigation behavior and also the behavior of
pedestrians and of their cooperative interactions.

A similar approach was done in Kretzschmar et al. (2014), where a number of features
such as time, acceleration, velocity and distance are used to learn probability distribution
of possible joint trajectories between people during collision avoidance. In practice, to find
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actual joint trajectories for a given situation, a gradient based optimization named Resilient
Propagation (RPROP) (see Riedmiller and Braun (1993)) was used. In Kretzschmar et al.
(2016b), an extended version of their work also explicitly accounted for: distance to static
obstacles, group behavior and clearance to other agents.

3.3.3 Following flow of people to avoid collision situations

The approaches detailed in Sec. 3.3.1 and 3.3.2 and attempt to avoid immediate collisions
while also accounting for reaction of people to a given motion plan. Although this may
efficiently avoid a immediate collision situation, a human motion planner should also move
in a way that causes future collision situations to be less likely to occur. Henry et al. (2010)
describe an approach where the robot is allowed to follow groups of people that are going
into a similar direction as the desired direction of the robot, thus avoiding collisions. The
behavior of nearby groups of people were represented using their density and velocity.
Based on this representation, an inverse reinforcement learning approach (Ng and Russell,
2000) was used to learn cost weights for observable positions based on density and velocity
of people in that area with respect to the robot’s goal direction. Finally, to calculate the
trajectory that best respects the flow of people an A? search (Hart et al., 1968) was used on
the weighted map.

In a similar direction, in Kim and Pineau (2015), an inverse reinforcement learning
approach was used to effectively follow the flow of people. In their use case, an autonomous
wheelchair navigation strategy was develop by extracting features from a virtual grid in
front of the robot, for each position in the grid the extracted features were: density, speed,
direction and distance from the cell to the goal. These features were then used to learn
using inverse reinforcement the weights for a cost function that best represent the behavior
seen during demonstration from people.

3.4 Discussion

The breadth of subjects that were already explored within the state-of-the-art of HRM is
significant. Among these subjects, our work falls within the scope of human-aware col-
lision avoidance, where our major contribution lies in examining the problem in terms of
distribution of motion adaptations between agents during collision avoidance.

In Olivier et al. (2013), it was shown that people mutually solved the collision avoid-
ance task but their contribution is not symmetric. In particular, in an orthogonal crossing
situation, a person who will arrive second at the crossing contributes more than the other to
avoid the collision in terms of motion adaptation. Therefore, attempting to use human-like
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models such as SFM, ESFM and SFM-CP to minimize the impact of the candidate robot
motion in a person may lead to a robot behavior that is not human-like. Similarly, our
intention is also not to directly encode joint trajectories using features such as position and
distance between agents. Instead our works captures the expected collaboration in terms
of distribution of motion adaptations between agents. Our hypothesis is that a robot that
respects what we call “effort distribution” would behave in a human-like manner during
collision avoidance.

Although this chapter provided an overview of where our approach lies within the do-
main of HRM, a more in-depth comparison of our approach with respect to related works
is still necessary. In Chapter 4, we present several methods dealing with collaborative
collision avoidance while detailing their advantages and limitations.
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Chapter 4

Collaboration during collision avoidance

Contents
4.1 Collision avoidance collaboration in reactive agents . . . . . . . . . 52

4.1.1 Synthetic vision navigation . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Velocity obstacles and related methods . . . . . . . . . . . . . 53

4.1.3 Social Force Model and related methods . . . . . . . . . . . . . 54

4.2 Planning trajectories for collaborative collision avoidance . . . . . . 55

4.2.1 Learning joint trajectories between agents . . . . . . . . . . . . 55

4.2.2 Kinodynamic planning of trajectories . . . . . . . . . . . . . . 56

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

This chapter surveys existing approaches that deal with the problem of collaboration
between agents during collision avoidance. Although some of these works are not neces-
sarily applied in the domain of Human Robot Motion (HRM), several concepts, common
among these works, can serve as a baseline for comparison with our contributions.

Collaboration during collision avoidance is defined in this work in terms of comple-
mentary motion adaptations with the shared purpose of avoiding future collision between
agents. Given this definition, approaches that tackle such problem must define the manner
in which this collaboration takes places. Moreover, in order to better highlight their collab-
oration strategy, whenever feasible, their collision avoidance models and the assumptions
made in their collaboration strategy are presented in greater detail.
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4.1 Collision avoidance collaboration in reactive agents

Reactive approaches can provide a simple solution for collision avoidance behavior. With
such approaches, an agent takes collision avoidance decisions based on the current state
of both agent and obstacles (moving or static). In this section we review work on reactive
approaches with a focus on their collaboration strategy during collision avoidance.

4.1.1 Synthetic vision navigation

Bottom-up approaches for human-like navigation are based on a set of basic properties that
generate complex agent behavior. In this context, synthetic vision approaches attempt to
simulate key concepts related to vision of people in order to engender realistic navigation
behavior. Several approaches simulate key concepts related to perception of obstacles by
people in order to avoid collisions. For instance, in Kuffner and Latombe (1999) an agent
simulates the visual perception of a person in order to navigate in the environment with
multiple obstacles. Another approach, presented in Dutra et al. (2017), used a cost function
to evaluate the situation of an agent with respect to their target and also its risk of collision.
Their method is able to not only avoid collision situations but also minimize the chances of
future collision.

In Ondrej et al. (2010), such concept of synthetic vision was used to replicate the man-
ner in which people use their visual system within a crowd. Using their approach for
navigation, simulated people were able to move in crowds while avoiding collision with an
unbounded number of other agents while using just three variables to describe each other
agent. This was motivated by a previous study showing that these variables were sufficient
to explain much of the collision avoidance decisions of a person, these variables are the
bearing angle and its derivative and time to interaction (Cutting et al., 1995).

Given this background, let αi, α̇i, ttii denote, respectively, the bearing angle, the deriva-
tive of the bearing angle and the time to interaction of one agent with respect to another
agent i. In Ondrej et al. (2010), an agent determines a collision risk with another agent i
using

τ1(ttc) =





τ1−(tti) = a−b · tti−c if α̇i < 0 ,

τ1+(tti) = a+b · tti−c otherwise .
(4.1)

where the parameters a = 0, b = 0.6 and c = 1.5 where manually defined based on their
experimental data. Using this formulation, an agent perceived a risk of collision with pi

whenever ttii > 0 and α̇i < τ1(ttii). In practice, this means that a α̇i ≈ 0 causes collision
avoidance to happen even if time to interaction is above eight seconds. Conversely, a
sufficiently high value of |α̇i| would cause collision avoidance only in case time to collision
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is near to zero.
Given sufficient risk of collision, their collision avoidance motion for pi depends on the

values of ttii and α̇i. The heading change can be calculated1 as

∆θ̇ =





α̇i − τ1+(ttii) if α̇i < 0 ,

α̇i + τ1−(ttii) otherwise .
(4.2)

where ∆θ̇ denotes the necessary change in the current heading. Based on this equation, the
role of an agent during collision avoidance is strictly based on the sign of α̇i. Moreover,
for the case with two agents, the change in heading depends on ttii and α̇i which are the
same for both the agent crossing in front and the agent crossing behind. This means that,
in absence of other obstacles or angular constraints, the heading adaptations done by the
agents are of equal amount. A similar logic can be used for speed adaptations.

4.1.2 Velocity obstacles and related methods

The concept of Velocity Obstacles (VO) was introduced in Fiorini and Shiller (1998). The
VO represent a set of velocities from one agent that would result in collision with an obsta-
cle moving at a certain velocity.

A natural extension of the VO method for a case with two autonomous agents was done
in Van den Berg et al. (2008) and named Reciprocal Velocity Obstacles (RVO). This method
can avoid collision as long as both agents chose velocities outside the RVO induced by the
other agent. However, it was found that under certain conditions RVO could not guarantee
collision avoidance (van den Berg et al., 2011). To overcome this limitation the concept of
Optimal Reciprocal Collision Avoidance (ORCA), also called RVO 2, was introduced in
van den Berg et al. (2011).

To avoid a collision both ORCA and RVO follow a similar principle, they calculate the
change in relative velocity between two agents that avoids a collision and distribute this
change in velocity among them. More specifically, consider a situation where two agents
q and p, with desired velocities ~vdes

q and ~vdes
p need to avoid a collision with each other. In

this case, RVO finds the smallest change in the relative velocity (~vdes
q −~vdes

p ) that avoids a
collision between them (van den Berg et al., 2011), this is given by~u as

~u = (argmin
~v∈∂VOτ

q|p

‖~v− (~vdes
q −~vdes

p )‖)− (~vdes
q −~vdes

p ) (4.3)

where ∂VOτ

q|p is the set of changes in relative velocity that are in the threshold between

1The equations to deal with multiple agents were not included in order to simplify demonstration.
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collision and no collision - the minimum change in relative velocity that avoids a collision.
The change in relative velocity is divided equally between the two agents (van den Berg
et al., 2011), that is, each agent will change its velocity by 1

2~u.
A recent work has shown a non-trivial change in collision avoidance behavior of agents

when using non-equal distribution of the change in relative velocity between agents (Rako-
toarivelo et al., 2019). Although interesting changes in collision avoidance behavior were
shown, no particular strategy to choose a particular distribution of change in relative veloc-
ity was presented.

Finally, in ORCA and RVO the crossing order decision is based on a similar concept
as the derivative of bearing angle. However, in case of ambiguity the algorithm will bias
the decision towards a particular side. In other words, in case the derivative of the bearing
angle between two agents is zero the algorithm establishes a convention so that agents
always choose different crossing orders.

4.1.3 Social Force Model and related methods

The concept of social forces can be summarized as representing internal motivations of
pedestrians through the use of attractive and repulsive forces to elements in the environment
(Helbing and Molnár, 1995). In the Social Force Model (SFM), introduced in Helbing
and Molnár (1995), the forces that affect a given agent can be partitioned in four distinct
categories:

1. a force attracting the agent towards his goal;

2. a repulsive force to keep agents away from static obstacles and walls;

3. another force to attract an agent to certain people e.g. friends;

4. finally, a repulsive force that attempts to maintain distance to other pedestrians.

Our interest lies on the force that attempts to maintain a certain distance to pedestrians
which also encodes collision avoidance behavior. Based on this force, the movement of
an agent is realized by following the negative gradient of the combination of attractive and
repulsive potentials.

Even though SFM has been extensively used to simulate crowds, in Steffen (2010), it
was empirically demonstrated that distance-based repulsive forces are incapable of describ-
ing individual pedestrian behavior. For instance, during simulated experiments with SFM
in single lane head-on collision scenarios between two people, SFM was unable to mod-
ulate an agent’s speed to avoid collision without oscillations in speed. Although adding
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foresight to agents in this scenario alleviated the oscillations in some scenarios, more com-
plicated situations once again caused unrealistic oscillations in speed and heading.

Although newer approaches have been developed to tackle the aforementioned issue,
such as Moussaïd et al. (2009), Zanlungo et al. (2011) and Ferrer et al. (2013b), recent
works have found that the SFM still has shortcomings when dealing with pedestrians in
low-density scenarios (Kretzschmar et al., 2016b).

4.2 Planning trajectories for collaborative collision avoid-
ance

Instead of reasoning in a reactive manner about the motion of nearby people, one can plan
over whole trajectories. Planning whole trajectories can allow one to produce plans that are
based on the current and future state of agents and obstacles.

4.2.1 Learning joint trajectories between agents

In order to predict future interaction with pedestrians and also to allow navigation that is
comfortable for them, Kuderer et al. (2012) proposed to learn, from experiments between
people in collision avoidance situations, the cooperative collision avoidance behavior be-
tween agents using a probability distribution over joint trajectories.

The concept of joint trajectories can be summarized in two steps. First a trajectory jp

from an agent p is defined as a continuous function

t ↦→ jp(t) ∈ 𝒥 (4.4)

where this function maps every time t to a configuration j ∈ 𝒥 . Secondly, the joint trajec-
tory ~q, represented as the Cartesian product of the trajectories of N agents, is then defined
as:

~q(t) = j1(t)×·· ·× jN(t) ∈ 𝒥 N (4.5)

In Kuderer et al. (2012), the space of joint trajectories 𝒥 N is partitioned into all correct
combinations homotopy class decisions2 for N agents. For instance, considering two agents
there would be two partitions of 𝒥 N . These two partitions represent agents crossing each
other on the right side or in the left side.

Based on this concept, in Kuderer et al. (2012) the behavior of agents over each correct
combination of homotopy class decision was reproduced using features to encode a prob-

2Homotopy class decisions are referred as topological variants in Kuderer et al. (2012).

55



ability distribution over joint trajectories, this behavior was learned through experiments
with people in collision avoidance situations. Each unique combination of homotopy class
decisions between agents is associated with a probability of occurrence. This means that a
robot could always choose the most probable homotopy class decisions when planning its
collision avoidance motion.

Several works proposed improvements to this approach. For example, in order to ac-
count for the fact that people can react differently to robots, in Kuderer et al. (2013), instead
of learning from experiments with people, a tele-operated robot was used to learn the prob-
ability distributions over joint trajectories. Another improvement, proposed in Kretzschmar
et al. (2016a), encoded feature expectations using Hybrid Monte Carlo (Duane et al., 1987)
sampling in order to reduce the impact from samples of improbable homotopy classes.

Although their approach and the aforementioned improvements were shown to repro-
duce trajectories generated by their experimental data, they did not mitigate the negative
impact of situations in which the probability for two different combinations of homotopy
class decisions were similar. This would mean that people and robot could attempt to solve
future collision by incorrectly choosing the same crossing order - a decision detrimental to
collision avoidance.

4.2.2 Kinodynamic planning of trajectories

The term kinodynamic was defined in LaValle and Kuffner Jr (2001) as a “feasible open-
loop trajectory that satisfies both global obstacle constraints and local differential con-
straints”. This concept was applied in Ferrer and Sanfeliu (2014b) to allow a robot to plan
feasible trajectories towards a goal that also account for the potential reaction it causes from
a person.

Given that the robot plans over whole trajectories, it is necessary to estimate the goal
and motion of people. To that end, a combination of approaches were integrated into the
kinodynamic planner (Ferrer and Sanfeliu, 2014b). For instance, the goal of nearby people
was calculated based on a Bayesian approach described in Ferrer and Sanfeliu (2014c).
Moreover a module based on SFM and presented in Ferrer and Sanfeliu (2014a) was used
to estimate the next state of a person given a robot action.

Given the robot action and the impact it causes in a person over multiple time steps, a
measure called social work, that was presented in Ferrer et al. (2013a), was used to calculate
the impact of the robot trajectory in a person’s motion. This measure was defined as

Wr(t,ζ ) =Wr(t,ζ )+ ∑
p∈P

Wp,r(t,0) (4.6)
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where ζ represents learned weights of the system, Wr(t,ζ ) is the total work done by the
robot while Wp,r(t,ζ ) represents the work done by a person p ∈ P given the the chosen
motion for the robot.

Based on this measure, their approach then attempts to minimize the work done by both
the robot and the person when planning a partial trajectory towards the robot’s goal

Regardless of the previously discussed shortcomings in reproducing the reaction of
people in low density scenarios using SFM in Sec. 4.1.3, our assumption is that minimizing
discomfort-like measures without accounting for people expectations can generate motions
that are not human-like. In that sense, in our approach collision avoidance motions respect
the expected distribution of motion adaptations instead of attempting to minimize a cost
such as the social work.

4.3 Discussion

In this section we reviewed works that share a common challenge: collaboration between
agents during collision avoidance. These approaches have directly or indirectly accounted
for other agents as more than moving obstacles.

Among these reviewed approaches, as shown in Table 4.1, only one other human-like
approach attempted to replicate the manner in which people mutually share motion adapta-
tions to avoid collision. In most approaches, in the absence of other obstacles, the amount
of motion adaptations between two agents to avoid collision is similar. The exception is
Kuderer et al. (2012), where this asymmetric behavior can be encoded within their proba-
bility distribution over joint trajectories given sufficient data.

In the context of collaborative collision avoidance, to our knowledge, our approach
is the first one that explicitly accounts for (near) symmetry scenarios in which there is a
non-trivial chance of person and robot choosing the same crossing order (opposite homo-
topy class decisions). To tackle this problem, our collision avoidance approach mitigates
the chance of remaining in an ambiguous situation in the next decision step in case both
agents choose the same crossing order. Even though in Kuderer et al. (2012) the probabil-
ity of each combination of homotopy class decisions occurring is calculated, their approach
only accounts for correct homotopy class combinations i.e. agents are always assumed to
correctly choose the same homotopy class.

In chapters 5 and 6 our solution to the aforementioned limitations of current approaches
are presented in details.
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Approach Non-human
agents

HA HL Human Effort
Distribution

Symmetry
Mitigation

Ondrej et al. 2010 ∙
van den Berg et al. 2011 ∙
Helbing and Molnár 1995 ∙
Kuderer et al. 2012 ∙ ∙
Ferrer and Sanfeliu 2014b ∙
Our approach ∙ ∙ ∙

Table 4.1: Comparison between different capabilities in terms of collaboration during colli-
sion avoidance in the case of low density situations involving people. In this table Human-
Aware (HA) indicates that the robot treats people as more than moving obstacles but does
not attempt to explicitly imitate characteristics of human collision avoidance. Conversely,
Human-like (HL) techniques attempt to replicate certain characteristics of human behavior
during collaborative collision avoidance. Finally, (near) symmetry mitigation indicates that
the robot accounts for and mitigates the chance that both agents will attempt to incorrectly
cross each other on different sides.
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Chapter 5

Distribution of effort during collision
avoidance
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This chapter describes our model for the way people collaborate to avoid a possible
collision. Our focus is on dyadic collision avoidance where both agents are involved in
goal directed locomotion. In this sense, we do not account for other human tasks during
locomotion, such as: wandering (Lai and Arthur, 2003) and following other people (Hay,
1977).

Earlier work on this subject was presented in publications: Silva and Fraichard (2017)
and Silva et al. (2018); this chapter presents only the most recent version or our approach,
as described in Silva et al. (2018). This most recent version of our model is a strict im-
provement over our previous work, which is shown as originally published in Annex I.

5.1 Overview of the problem

A robot that is attempting to avoid potential collisions with people needs to account for their
expectations when planning its avoidance motion. As discussed in Sec. 2.2.1, the initial
conditions before collision avoidance usually allow people to determine whether there is a
collision risk and and when required, how to avoid such collision.

Depending on situational factors that are usually able to describe a given collision sit-
uation, the distribution of motion adaptations between the person crossing in front and the
person crossing behind (see Sec. 2.2) will not be necessarily equal. This was confirmed in
Olivier et al. (2013), where dyadic collision avoidance experiments observed that the reac-
tions to avoid collision are not symmetric and depend on crossing order. More specifically,
the person crossing behind, as an overall, was responsible for around 60% of the motion
adaptations to avoid collision while the person crossing in front was responsible for 40%.
Their experiments assumed orthogonal collision avoidance scenarios, that is, crossing an-
gles near 90°.

Our work intends to improve upon the results above in two main ways. Our first ob-
jective is to generalize the conclusions to other crossing angles and also to predict, given a
set of situational factors as input, the approximate distribution of effort for each particular
situation (instead of on the average). Approximating effort distribution for each particular
situation would allow one to replicate expectations of people during collision avoidance.
As a consequence, this would potentially reduce the cognitive effort for people in the envi-
ronment as people could act as they would with another person (Carton et al., 2016).

Our initial implementation of this model, presented in Silva and Fraichard (2017), at-
tempted to directly use the grand average value obtained in Olivier et al. (2013) to distribute
effort. However, several situations were not properly accounted for with our original ap-
proach, specifically:

1. Our collision avoidance approach, presented in Silva and Fraichard (2017), was
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based on a study focused on situations with 90° crossing angle. Generalizing these
conclusions for additional crossing angles could result in a difference in behaviour.

2. People coming from the edge of the field of view may be less responsible for colli-
sion avoidance than otherwise. This can be a consequence of many factors, such as
visibility concerns or even the shape of one’s personal space.

3. The impact of situational factors such as speed and time to collision could affect
the distribution of motion adaptations. For instance, smaller time to collision can be
perceived as having a higher collision risk for a given role.

Thus, an approach to model distribution of motion adaptations between people should
satisfactorily solve this limitation and provide more natural collision avoidance motions in
relation to our previous approach. To that end, a dataset of human behavior during collision
avoidance was used in our work and is described in the following section.

5.2 Dataset of collision avoidance between people

We have been aided in our work on dyadic collision avoidance by a a cooperation with
the laboratory Mouvement, Sport, Santé (M2S). In this cooperation, the researchers in the
laboratory M2S designed and executed an experiment involving interactions between two
people having crossing trajectories. Participants volunteered to perform the experiment and
the study conforms to the declaration of Helsinki (WMA, 2019).

The experiments were composed of over 450 runs divided near equally into five differ-
ent crossing angles: 30°, 60°, 90°, 120°and 150°. The area designed for the experiment is
equal to a square with length of 12 m. As can be seen in Fig. 5-1a, there are occluding
walls each with three meters in length at the middle of each square side that are oriented
towards its center. The walls are meant to separate participants in such way that they are
not able to see all other participants at the starting point. This allowed the participants to
reach a stable speed before the start of the interaction. As a consequence, one can measure
motion adaptations solely caused by the interaction with another participant.

Participants were told to reach the opposite side of the experiment area while walking
and avoiding any collision and were informed that they will interact with another person.
Tracking the movement of people as they walk within the area of study was done with
infrared cameras from Oxford Metrics (VOW, 2019). The positions of people are obtained
with reflective markers, shown in Fig. 5-1b, placed on standardized anatomical landmarks
in their bodies, e.g. shoulders, arms and head. These markers are then recognized by the
infrared cameras and each person position can then be reconstructed in 3D at a frequency
of 120 times per second as shown in Fig. 5-1c.
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(a) Layout of the experi-
mental area

(b) Position of people tracked as they
move in experimental area

(c) Reconstruct
people using their
markers

Figure 5-1: People collision avoidance behavior being tracked in a square area with twelve
meters in length and subsequently reconstructed into precise positions over time. The red
circle has six meters of diameter and represents the zone of observation where collision
avoidance analysis is made. The circle is virtual. This particular future collision has a
150° crossing angle.

The analysis of participants’ behavior was made within what we call the “observation
zone”, depicted in Fig. 5-1a, this zone is defined as a circular region with three meters ra-
dius in the center of the square. Within this zone participants are able to see each other and
interact to avoid collision. This region was designed in such a way as to provide sufficient
space so that subjects can adapt their speed and orientation during collision avoidance.

Each run of a collision avoidance scenario involves four participants, however only
two at a time will ever enter the observation zone at each run. This is necessary as in
some crossing scenarios a person may see another one as soon as they are into their initial
positions, as such, it is necessary to add some uncertainty to avoid possibly altering their
behavior. The non-participants, as can be see in Fig. 5-1, will not enter the observation
zone and thus do not participate in the collision avoidance. The synchronization of the
participants initial position and start time is done automatically in order to allow for several
different collision avoidance situations.

After the experiments, our task was reconstructing a cloud of points into precise human
positions over time so that the motion capture data could be used. After precise position
reconstruction, several filters were used into the data to remove tests with excessive noise
and without collision avoidance behavior, after which a total of 202 runs remained for
analysis. A complete list of the types of error and their respective amounts in the dataset is
shown in Table 5.1.

Among the errors, reconstruction of people and their position was the most frequent
problem and happened roughly twice as often during the afternoon than in the morning. We
assume this is due to differences in illumination but no rigorous evaluation of the source
of reconstruction errors was made. Additionally, situations with no risk of collision were
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Order Type of Error Number of cases

1 Unable to reconstruct person from marker data 99 cases
2 Person reconstructed but already in zone of observation 44 cases
3 No risk of collision between participants 31 cases
4 Trials with trivial motion adaptation 74 cases

Error total 248/450 cases

Table 5.1: Distribution of type of errors from the reconstructed positions of people from the
dataset. Error check was done in order, failing in the first step means the second step is not
evaluated. The variables ti and t f represent, respectively, the start and end of the collision
avoidance in a specific scenario.

filtered using the concept of MPD (see Chapter 2) to evaluate whether at start of the inter-
action between agents MPD(ti) ≥ 1 m. Moreover, to filter out situations with only a trivial
amount of motion adaptations between the start and end of the interaction we evaluate
whether the relation MPD(t f ) - MPD(ti) < 0.1 m is true.

Based on this data, our first step is to define a cost to represent the motion adaptations
done by each person. Based on this cost we would then be able to show that there is a
statistically significant difference in distribution of motion adaptations between roles in a
given collision avoidance situation.

5.3 Collision avoidance cost function

Our goal is to use the resulting dataset of the trajectory of crossing people in order to model
how people distribute their motions to avoid collision. A trajectory is defined as

πp =
{
~pp(0),~pp(1), · · · ,~pp(t), · · · ,~pp(n)

}
(5.1)

where ~pp(t) = (xp(t),yp(t)) ∈ R×R represents the position of agent p at time t while n
represents the total number of time steps to the goal.

In this section, our goal is to define, for a given pair of trajectories πp and πr repre-
senting the motion of agents p and r involved in a collision avoidance, the cost of each
trajectory and the manner to calculate distribution of said cost among agents.

5.3.1 Energy cost computation based on social science studies

The energy expenditure of people per unit distance has been subject of much research
(Zarrugh et al., 1974; Ralston, 1958). Based on these studies, the mean energy cost of a
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trajectory can be derived based on the speed (Zarrugh et al., 1974) of a person at every
instant, and is calculated as

E(πp) =
n

∑
t=1

(
32+0.0050vp(t)2) (5.2)

which represents a quadratic cost function in terms of speed vp(t) =
‖~pp(t)−~pp(t−1)‖

ts at time
t for the trajectory πp where ‖·‖ represents the euclidean norm function and ts the timestep
duration. This quadratic function, with its coefficients defined based on experiments with
people, calculates the average number of calories spent per minute per kilogram for a given
speed.

A person going towards its goal without any obstacle might choose what is defined as
an optimal-speed walk (Zarrugh et al., 1974) which refers to the most energy efficient (in
terms of calories) walking speed for a given person. Empirical evidence found that this
value for an average person is of 80 m/min or 1.33 m/s (Zarrugh et al., 1974). For a robot,
the task of finding the most energy efficiency trajectory of a person to a given goal could
be defined simply as

π
*
π = argmin

πr∈Πr

E(πr) (5.3)

where Πr is the set of admissible trajectories of robot r to its goal - trajectories that are both
safe (collision-free) and appropriate.

People do not always walk at their most energy efficient speed (Basili et al., 2013).
Depending on the situation, a person might favor arriving earlier at the goal even though
this leads to an increase in total energy consumed. In order to address this issue, in the
following section, we define a cost function that is optimal only when people reach their
goal at their desired time while also spending their desired amount of energy. Moreover,
we also determine in which manner a person speed before collision avoidance can be used
to estimate both the desired speed and energy.

5.3.2 Time and energy as trajectory cost

In practice, people do not always walk at a certain speed even if this speed is more energy
efficient, they may increase or decrease their speed to:

• decrease or increase time to arrive at the goal, which changes the energy expenditure,

• and avoid collision, which might increase or decrease energy expenditure and time
to the goal.
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Based on the fact that time to the goal is also an important component in describing the
cost of a trajectory, we define a cost function that accounts for not only energy expenditure
but on a weighted trade-off between energy spent and time elapsed to the goal.

This time and energy trade-off for a person can be represented as a trajectory cost
function Γ : [R2, · · · ,R2]→ R and is defined as

Γ(πp) = E(πp)+ζp(vdes
p ) ·T (πp) (5.4)

where T (πp) is the time required to execute this trajectory and vdes
p is the desired speed

choice for a person in case there were no obstacles to its goal, the desired speed is assumed
to be constant throughout a person’s trajectory. Moreover, ζ : R → R is a function of a
given speed that returns a value which makes a given time energy trade-off optimal only
when the agent p arrives at the goal with the desired energy and time, thus for each vdes

p , its
value can be calculated in a three step process

Γ(πp) =

[
n

∑
t=1

32+0.0050vp(t)2

]
+

[
ζp(vdes

p )
n

∑
t=1

1

]
(5.5)

=
n

∑
t=1

(
32+0.0050vp(t)2 +ζp(vdes

p )
)

(5.6)

Given that the desired speed was assumed to be constant throughout a person’s trajectory
the optimal value of ζ (·) will also be constant, thus let vp(t) = vp for every t where vp can
be any speed reachable for a walking person, thus

Γ(πp)

S(πp)
=

0.0050v2
p +32+ζp(vdes

p )

vp
(5.7)

= 0.0050vp +
32+ζp(vdes

p )

vp
(5.8)

where S(πp) is the length in meters of the trajectory πp. We then derivate Γ(πp)
S(πp)

with respect

to v and then set vp = vdes
p . Equating to zero yields

ζp(vdes
p ) = 0.0050 · (vdes

p )2 −32 (5.9)

In our dataset the actual value of vdes
p is determined based on the speed of p before

collision avoidance starts. As an example, in case p walks towards his goal before collision
avoidance at a speed of vdes

p = 2.0 m/s that would yield ζp(vdes
p ) = 2

3 . Thus, for a given
vdes

p the value of ζ (vdes
p ) that makes this chosen time energy trade-off optimal for Eq. 5.4

can be calculated for any speed. The shape of the time energy trade-off function, given ζ ,
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Figure 5-2: Change in the time energy trade-off function in accordance to change in time-
energy weight ζp(vdes

p ) in case one walks straight to the goal without obstacles. Thus, for
each case the minimal value is reached only when the agent arrives at his goal at the desired
time using the desired amount of energy. Thus, in case a person accelerates, decelerates or
move its heading away from the goal in order to avoid a collision its value will not ever be
minimal.

is showcased in Fig. 5-2.

This formulation represents an effort measure even for cases when the agent arrives
earlier to the goal while using more energy or when it arrives later while using less energy
i.e. the value of Γ(πp) will not be minimum. More clearly, whenever a person moving on
her desired speed towards her goal decides to accelerate, decelerate or change heading in
order to avoid a collision the value of Γ(πp) will invariably increase.

The value ζp(vdes
p ) is of fundamental importance for our formulation given that it de-

fines the willingness of a person to spend energy to reach their goal sooner. For instance,
if ζ is defined as zero, the agent will prefer the most cost-efficient speed. On the other
hand, higher values of ζ (vdes

p ) progressively indicate to the agent that higher energy costs
are worth, up to a point, in order to arrive sooner to his goal.

In the case where dynamic obstacles with potential collision risk are involved, more
specifically people, one can increase or reduce their speed and also change their heading
to avoid a collision. This in turn can change their original balance between the amount of
energy invested and the time to the goal.

Finally, each person has a different trajectory energy cost function and thus a different
ζ (vdes

p ). In the current iteration of our formulation, the most energy-efficient speed is set
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as the grand average of 1.33 m/s (Zarrugh et al., 1974).

5.3.3 From trajectory cost to collision avoidance effort

As we established in Sec. 5.3.2, in our cost function a person that has to avoid a collision
will invariably change its time energy trade-off to non-optimal values. This change is what
we define as collision avoidance effort.

The trajectory of an agent p to its goal in the absence of obstacles is named baseline
trajectory and denoted by πbase

p . The baseline motion can be determined from our dataset by
combining the speed of the person before collision avoidance (desired speed) and their final
position (goal). This baseline allows us to establish a comparison between their desired
motion and their motion given collision avoidance with another person.

The collision avoidance effort can be calculated by comparing the weighted change in
energy and time to collision of the baseline with respect to the actual trajectory. Thus, let
∆E(πp) = E(πp)−E(πbase

p ) and ∆T (πp) = T (πp)−T (πbase
p ) represent, respectively, the

change in energy and time between πp and πbase
p . Thus, we represent collision avoidance

effort as
F(πp) = ∆Γ(πp) = ∆E(πp)+ζ (vdes

p ) ·∆T (πp) (5.10)

The value F(πp) will only be minimal when the person arrives in his/her goal with both the
desired time and energy. In this case, F(πp) will be zero.

Given the aforementioned formulation, the Effort Distribution Coefficient (EDC) of a
given agent p, that is, their contribution to collision avoidance in relation to another agent
r, represented as βp,r, can be directly calculated using

βp,r =
F(πp)

F(πp)+F(πr)
(5.11)

This formulation enables comparison of the proportion of effort p was responsible for in a
given collision scenario when compared to total effort invested by both r and p. Using such
formulation, our next step is then to use it within our dataset to evaluate whether there is a
pattern in the distribution of collision avoidance effort between people and what situational
factors can predict its distribution.

5.4 Collaborative nature of collision avoidance

Given a measure of human effort in terms of energy and time to goal, presented in Sec.
5.3, our objective is to establish a relationship between this cost function and actual human
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(a) Probability of a given crossing order doing
more effort to avoid a collision

(b) Proportion of effort done by the person
crossing in front (EDC) with respect to total ef-
fort.

Figure 5-3: Proportion of effort that was done by the person who crosses in front, that
is βfront,beh, with respect to total effort required to avoid a collision. In situations that
require higher total collision avoidance effort its distribution shifts the majority of the effort
towards the person crossing behind. Boxplots in blue indicate that there is a significant
difference between the contribution of the person crossing in front and the person crossing
behind (p-value<0.05) and in red indicate no significant difference (p-value>0.05). Values
are considered outliers when outside 99.3% coverage.

data. Moreover, based on the relationship found, replicate this distribution of effort using
data from our dataset.

5.4.1 Distribution of collision avoidance effort in people

Our objective can be summarized as estimating, based on our dataset, the collision avoid-
ance effort for both the person crossing in front and behind and, based on this estimation,
allow a robot to replicate effort distribution expectations during collision avoidance.

In order to evaluate whether there is a statistically significant difference in distribution
of collision avoidance effort between the person crossing in front and the person crossing
behind, a paired t-test is used. To that end, the steps taken can be enumerated as

1. Skip trials with any of the errors mentioned in Table 5.1.

2. Partition trials with respect to their total collision avoidance effort. Compare expec-
tations of people regarding effort distribution in scenarios of varying complexity.

3. Compare collision avoidance effort and its distribution between the person crossing
in front and the person crossing behind using a paired t-test for each partition.
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Let πfront and πbeh be, respectively, the trajectories of the person crossing in front and
the person crossing behind within the zone of observation. Our trials are labeled based on
total collision avoidance effort which is represented as F(πfront)+F(πbeh). These trials are
then separated into three partitions based on the total collision avoidance effort:

• Scenarios where considered to require small amount of motion adaptations when
F(πfront)+F(πbeh)< 0.055

• Scenarios with medium amount of motion adaptations when 0.055 ≤ F(πfront) +

F(πbeh)< 0.110

• Finally, harder scenarios with high amount of motion changes whenever F(πfront)+

F(πbeh)≥ 0.110

Our results, shown in Fig. 5-3b, indicate that the person crossing behind contributed
more to collision avoidance task when the total collision avoidance effort in scenarios with
medium or high amount of motion adaptations. There was no significant difference in
scenario with small amount of motion changes. Thus, whenever a relatively small amount
of effort is necessary to avoid a collision the distribution of effort still varies but without
bias towards a particular role.

In short, from this data, one can highlight the following general patterns:

• As the total collision avoidance effort increases, as seen in Fig. 5-3a, the chance that
the person crossing in front would be responsible for most of the effort decreases. In
the scenarios with highest collision avoidance effort the person crossing behind was
responsible for most of the effort in the large majority of scenarios

• In situations with a collision avoidance effort near zero difference in collision avoid-
ance effort invested by people, shown in Fig. 5-3b, is not statistically significant.
This points towards an equal distribution of effort between people in scenarios with
smaller collision avoidance effort.

• Also in Fig. 5-3b, it can be seen that the mean proportion of collision avoidance effort
required for the person crossing behind increased whenever total collision avoidance
effort also increased.

Based on these patterns, our objective is to define what situational factors can be used
to estimate the required amount of collision avoidance effort to prevent future collision.
Based on this prediction we would also be able to calculate the expected distribution of
effort between people. Finally, this expected distribution can then be replicated in a robot.
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5.4.2 Estimating effort distribution with situational factors

The concept of collision avoidance effort allows us to determine effort distribution between
two trajectories of people in a given scenario. Evidently, a robot that intends to replicate
this effort distribution has to do so based solely on the initial configuration of both agents
before collision avoidance starts.

When collision avoidance between agents starts the effort distribution should be esti-
mated and used for the remainder of the collision avoidance, that is, from ti up to t f that
denote, respectively, the start and end of the collision avoidance. To estimate the effort for
each role in a given collision scenario we model it based on four situational factors (see
discussion in Section 2.4 for details) that serve as statistical predictors:

1. Crossing angle, denoted as φ , which is the angle formed by the crossing paths of
both agents, as defined by φ = |π −|θfront −θbeh|| where θfront and θbeh are the global
heading of the person crossing in front and the person crossing behind respectively.

2. Difference in initial speed between the person crossing in front and the person cross-
ing behind, which is given by ∆v =

∣∣~vdes
front −~vdes

beh

∣∣ where ~vdes
front represent the velocity

of the agent crossing in front and~vdes
beh of the agent crossing behind.

3. Deviation from baseline bearing angle, denoted as z=
∣∣αfront,beh

∣∣− φ

2 where αfront,beh,
is the bearing angle from the perspective of the person crossing in front in relation to
the person crossing behind.

4. Time to collision is represented by the time to minimum distance, as shown in Sec.
2.1.1. A collision is considered possible whenever Minimum Predicted Distance
(MPD) is less than one meter.

Our objective is to associate these four situational factors, most of which are shown in
Fig 5-4, with an estimation of collision avoidance effort for each role. To produce such
estimation a Generalized Linear Model (GLM) was chosen, which is described in detail
in Appendix B. The GLM was chosen, instead of a linear regression, as it allows for con-
stant change in predictors (situational factors) to be able to cause non-constant change in
response. This is important as the increase in total collision avoidance effort causes a non-
constant increase in the proportion of effort done by the person crossing behind.

Given this choice, a GLM using a Binomial distribution and a logit link function was
used. This combination of distribution and link function has a shape similar to a multi-
dimensional sigmoid.

The four situational factors were fitted to the collision avoidance effort of each role us-
ing GLM with p-value< 0.05. The results obtained for the both roles are valid only within
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Figure 5-4: Collision situation between r and p, where crossing angle φ , bearing angle
αfront,beh and its derivative α̇front,beh are shown. The z is calculated based on bearing and
crossing angle. Arrows indicate a velocity vector.

the region where effort is bigger than 0.035, given that the spread of effort distribution
when absolute collision avoidance effort is small would be too high to allow for reliable
prediction. Thus, let F̂front(φ ,∆v,z, ttc) = g−1(~βfront~X) and F̂beh(φ ,∆v,z, ttc) = g−1(~βbeh~X)

represent, respectively, an estimation of the collision avoidance effort for the agent cross-
ing in front and the agent crossing behind where g−1(·) is the inverse link function, the
explanatory variables are ~X = {1.0,φ ,∆v,z, ttc} and the coefficient values found through
maximum-likelihood are ~βfront = {−4.91735,0.00374,−0.02106,−0.00056,0.07100} for
the person crossing in front while for the person crossing these are ~βbeh = {−3.22311,
0.01466,−0.13971,−0.00301,−0.11598}.

An example of effort difference between both roles can be seen in Fig. 5-5, where the
evaluated model indicates that, in average, the upper bound for effort invested by the person
crossing in front remains nearly constant while for the person crossing behind it increases
unbounded as the collision avoidance problem becomes more difficult.

As stated in Sec. 5.4.1, in cases which require relatively small amounts of total effort
the spread of the effort distribution is high, as such, the effort distribution in these cases is
not consistent with the values predicted by our generalized linear model.

Given this estimation of collision avoidance effort for each agent, a robot can then
replicate effort distribution expectations by approximating the value of EDC, calculated as

βfront,beh ≈ β̂front,beh =
F̂front(φ ,∆v,z, ttc)

F̂front(φ ,∆v,z, ttc)+ F̂beh(φ ,∆v,z, ttc)
(5.12)

Both Reciprocal Velocity Obstacles (RVO) and our model can be applied to multiple people
by considering all possible pairwise combinations of agents. However, as our dataset with
people is restricted to dyadic interaction we omit such experiments due to lack of a baseline.
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(a) Person crossing in front (left) and person crossing behind (right). Crossing angle φ =
60° and ttc = 3 secs.

(b) Person crossing in front (left) and person crossing behind (right). Crossing angle φ =
90° and ttc = 3 secs.

(c) Person crossing in front (left) and person crossing behind (right). Crossing angle φ =
120° and ttc = 3 secs.

Figure 5-5: Prediction using GLM for collision avoidance effort for both roles given a range
of values for situational factors and three crossing angles. Effort of the person crossing in
front, denoted as F̂front(φ ,∆v,z, ttc), has an upper bound while it grows unbounded for the
person crossing behind, denoted by F̂beh(φ ,∆v,z, ttc), as total collision avoidance effort
increases. The ∆v is shown in mm/s and z in degrees.

72



Figure 5-6: Pipeline to calculate effort distribution from situational factors that are then
used as input into RVO.

5.5 Simulated experiments

Simulated experiments were performed with two main goals in consideration. The first is
evaluating the impact of shared effort in generated trajectories and the second is to show
whether shared effort during collision avoidance replicates behavior of people.

5.5.1 Navigation approach using custom effort distribution

Determining how change in effort distribution affect generated trajectories requires a nav-
igation approach that can be modified in order to accommodate changing proportions in
effort distribution. Given that the concept of distribution of motion adaptations to guaran-
tee collision avoidance is paramount in RVO, this approach was chosen as the navigation
method. A detailed description of RVO was given in Sec. 4.1.2. In comparison with other
methods, such as Social Force Model (SFM), an advantage of RVO is that the proportion
of effort distribution can be controlled with a single variable. Our objective is then to asso-
ciate the value of this variable with EDC to obtain distribution of motion adaptations that
respect effort distribution given by our method instead of its usual equal share as depicted
in Figure 5-6.

Consider a situation where two agents q and p, with desired velocities vdes
q and vdes

p

will eventually collide in case of no change in their current velocities. For these cases,
RVO finds the smallest change in the relative velocity (vdes

q − vdes
p ) that avoids a collision

between them (van den Berg et al., 2011), this is given by~u as

~u = (argmin
~v∈∂VOτ

q|p

‖~v− (~vdes
q −~vdes

p )‖)− (~vdes
q −~vdes

p ) (5.13)

where ∂VOτ

q|p is the set of changes in relative velocity that are in the threshold between
collision and no collision - the minimum change in relative velocity that avoids a collision.
Commonly, RVO shares the change in relative velocity equally between the two agents
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(van den Berg et al., 2011), that is, 1
2~u for each. However, based on previous works on

human-human interaction, when an agent represents a model of a person’s behavior this
is not always the correct approach. As such, in our work the value of EDC instead of the
standard equal share.

An important issue is the large variance in effort distribution in small collision avoid-
ance effort situations (discussed in Sec. 5.4.1). Given that RVO requires effort to be recip-
rocal, it is not evident how to translate this optional cooperative effort into the model. Thus,
collision avoidance scenarios that require smaller total collision avoidance effort are set to
have equal effort distribution while when total collision avoidance increases the effort dis-
tribution is shifted to the actual model-based effort distribution value. Thus, we represent
the desired behavior as

f (φ ,∆v,z, ttc) =
1

1+ e−γ(F̂front(φ ,∆v,z,ttc)+F̂beh(φ ,∆v,z,ttc)−c)
(5.14)

RVO-EDC(φ ,∆v,z, ttc) = 0.5+(β̂front,beh −0.5) f (φ ,∆v,z, ttc) (5.15)

where c = 0.03 and γ = 260 are defined based on the empirical data as to allow for smooth
transition from equal distribution to using EDC depending on the total collision avoidance
effort.

5.5.2 Effort distribution impact in generated trajectories

Changing the standard distribution of effort in RVO impacts the generated trajectories.
In order to assess such impact this section compares the original trajectories from people
against both the standard RVO and our modified RVO using our effort distribution. As
seen in Sec. 5.5.1, whenever total collision avoidance effort is small our approach simply
replicates standard RVO behavior. As such, this section focuses on situations where total
collision avoidance effort is larger than 0.35 units.

In our tests, shown in Fig. 5-7, in a large majority of the cases examined our approach
allowed the agent crossing in front to the reduce their contribution to avoid collision. This
is important given that, as seen in Section 2.2, a person crossing in front generally accel-
erates and changes heading to avoid collision. Reducing the potential contribution for the
agent crossing in front allows for more human-like trajectories and also behaviors that are
perceived as safer due to more natural accelerations.

A limitation of our current RVO-approach is a consequence of the sometimes hard to
predict behavior of people. In our dataset and as discussed in Sec. 2.2.2, people were
sometimes shown to reverse their crossing order during collision avoidance. As is shown
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Human behavior

Trajectory when no obstacles Crossing in front Crossing behind

RVO (Standard) RVO (Our approach)

(a) Trajectory comparison for 150° crossing angle.
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(b) Comparison of effort distribution.
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(c) Trajectory comparison for 90° crossing angle.
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(d) Comparison of effort distribution.
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(e) Trajectory comparison for 60° crossing angle.
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(f) Comparison of effort distribution.

Figure 5-7: Three distinct scenarios where changes in effort distribution shifts the majority
of effort to avoid collision towards the person crossing behind.

Figure 5-8: Changes in crossing order during collision avoidance can create significant
differences in generated trajectories.
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Total effort E[Vour] E[Vrvo] E[Vrvo] - E[Vour]

F(πp)+F(πr)< 0.055 0.2297 0.2379 0.0083
0.055 ≤ F(πp)+F(πr)< 0.110 0.1990 0.3248 0.1258

F(πp)+F(πr)≥ 0.110 0.1662 0.3749 0.2087

Table 5.2: Expected value of difference in effort distribution of the human trajectories to
both RVO and our approach. The notation E[·] represents the expected value of a given
argument.

in Fig. 5-8, this can cause differences in generated trajectories to reproduce using RVO.

5.5.3 Quantitative evaluation of differences in effort distribution

Although a visual presented of the change in collision avoidance behavior of a select num-
ber of trajectories is important, a more general evaluation of differences effort distribution
is necessary in order to allow for a more general conclusion.

To that end, let Vour =
∣∣∣βfront,beh − β̂front,beh

∣∣∣ denote the absolute difference between

the actual EDC and our predicted EDC while Vrvo =
∣∣βfront,beh − 1

2

∣∣ denotes the absolute
difference between the actual EDC and standard RVO.

In order to evaluate the expected difference in values of Vour and Vour we first sample
80 collision avoidance situations from our dataset. Afterwards, the comparison in terms of
actual and expected effort distribution are then shown in Table 5.2. The results, partitioned
with respect to effort in the same manner as in Fig. 5-3b, show that our approach provides
little improvement with respect to standard RVO whenever total collision avoidance effort
is smaller than 0.055. However, whenever total collision avoidance effort is larger than this
threshold our approach significantly improves replication of effort distribution between
agents during collision avoidance. To further confirm this pattern, we observed that among
the scenarios with the highest amount of total collision avoidance effort and found that, the
difference between predicted and actual effort distribution was lower than five percentage
points in several scenarios.

5.5.4 Experiments in ROS

In order to evaluate collision avoidance behavior with more realistic robot models we repli-
cate some of our experiments using Robot Operating System (ROS) (Quigley et al., 2009)
with a plugin that implements RVO behavior within ROS named “collvoid” (Claes et al.,
2012).

Both agents were chosen to be represented as a PR2 robots (PR2, 2019). Robots share
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(a) Effort shared between agents. Both
change trajectory.

(b) Agent crossing in front does all effort
to avoid collision.

Figure 5-9: Evaluating manually chosen values of effort distribution in ROS.

their position with each other, however, collision avoidance starts only after recognizing
each other using a laser sensor.

Given this robot model our first objective was to evaluate whether their realistic motion
constraints still allowed for asymmetric effort distribution. For that reason, our first exper-
iment relied on manually choosing values for the effort distribution. The results, presented
in Fig. 5-9, shown a significant difference in collision avoidance behavior depending of the
specific effort distribution that was chosen.

The second step of our ROS validation requires establishing a comparison between
predicted effort distribution in our simulated cases with the baseline obtained from the
dataset. Although the smaller frame of the robots required a smaller amount of motion
adaptations in comparison to people, robots were still able to share effort in a manner
similar to what was predicted by our model. In order to better highlight the differences,
situations with higher collision avoidance effort were shown in Fig. 5-10.

As a validation of more extreme cases, situations where one robot is approaching the
other from behind are tested. In these cases and as exemplified in Fig. 5-11, it can be seen
that, even though both robots are made aware of each other, the agent in front does not
share collision avoidance effort with the agents coming from behind due to our model. In
all tested cases the model predicted negligible effort for the agent in front.

5.6 Discussion

People do not always share collision avoidance effort in the same manner, factors such as
time to collision and crossing angle affect the proportion each role (crossing in front or
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(a) Collision avoidance with 90° cross-
ing angle.

(b) Collision avoidance with 120° cross-
ing angle.

Figure 5-10: Comparison between collision avoidance trajectories from actual people and
simulated robots. Human trajectories are in red, simulated trajectories with our method are
in blue.

Figure 5-11: Behavior when crossing angle is 180°. Agent in front is three times slower
and does not contribute in avoiding the collision.
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behind) is responsible for. Due to a greater relative importance of situational factors, as
discussed in Sec. 2.1.3, the impact of personal factors in human behavior, such as with
culture (Chattaraj et al., 2009) and with gender (Van Basten et al., 2009), is not taken into
account.

Based on hundreds of collision avoidance situations between people, we evaluated what
situational factors influence the collision avoidance effort distribution in several distinct
scenarios. From this, a definition of collision avoidance effort was created and also a
model capable of predicting effort distribution. The model shows a clear increase in the
relative proportion of effort for the agent crossing behind as the total collision avoidance
effort increases. The model was tested in simulated experiments and its result reveals a
difference in generated behavior when compared to standard RVO. This difference is more
pronounced when a given collision situation requires higher amounts of collision avoid-
ance effort. The generated motions were also compared with human trajectories in order to
evaluate consistency of the generated motions with actual human data.

It is important to highlight that other factors can influence the manner in which a robot
should share effort to others. For instance, a robot can and should yield to a child, given
that its awareness of social rules and expectations is not certain when it comes to colli-
sion avoidance, even when situational factors would indicate otherwise. Another important
factor is that people do not always respect crossing order. Planning collision avoidance
motions that depend on this premise can ultimately lead to collision when a robot relies
on a person always behaving in a particular manner. In order to account for and allevi-
ate the consequences of a person not respecting crossing order a novel collision avoidance
approach is necessary and is presented in Chapter 6.
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Chapter 6

Human-robot collision avoidance under
near symmetry
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6.1 Ambiguous role during collision avoidance between people . . . . . 82

6.1.1 Representing negative impact in collision avoidance progress . . 82

6.1.2 Phases of collision avoidance with ambiguous role . . . . . . . 83

6.2 Boundary in choice of crossing order . . . . . . . . . . . . . . . . . 84

6.2.1 Formalizing the concept of near-symmetry . . . . . . . . . . . 85

6.2.2 Estimating crossing order uncertainty based on data . . . . . . . 86

6.3 Collision avoidance motion for uncertainty mitigation . . . . . . . . 87

6.3.1 Impact of confidence in determination of crossing order . . . . 88

6.3.2 Obtaining a desired confidence with random uniform sampling 88

6.3.3 Generating collision avoidance motion . . . . . . . . . . . . . . 91

6.4 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 Impact of linear and angular constraints on motion . . . . . . . 94

6.4.2 Collision avoidance trajectories under near symmetry . . . . . . 96

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A robot can plan a collision avoidance motion while seeing the person as a simple
moving obstacle. However, as is seen in the previous chapter, a person usually shares
collision avoidance effort while assuming to be in a particular role (crossing in front or
behind) when avoiding collision. An important research problem arises as a consequence
of such collaboration: is collaboration during collision avoidance always effective?
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Before answering this question, it is important to first define the concept of effective
collaboration. In the context of collision avoidance, in Chapter 4 collaboration during col-
lision avoidance is defined in terms of complementary motion adaptations with the shared
purpose of avoiding future collision between agents. Furthermore, collaboration can be
called effective whenever motion adaptations by all agents are complementary for collision
avoidance. Given this background, effective collaboration can happen whenever agents ei-
ther assume opposite roles (choose the same homotopy class) or when only a single agent
attempts to avoid future collision (the other would behave as a moving obstacle).

In this chapter, we focus specifically on the case where both agents attempt to contribute
to future collision avoidance. This is justified as in the previous chapter it is shown that, in
average, both roles contribute to collision avoidance. Thus we evaluate first whether col-
laboration between agents is always effective and then we define the boundary that predicts
when ineffective collaboration can happen and finally present an approach to mitigate the
potential negative consequences of such event.

6.1 Ambiguous role during collision avoidance between
people

We hypothesize that in some situations people are unable to perceive the correct crossing
order decision, which might lead them both to incorrectly choose the same crossing order
i.e. a decision detrimental to collision avoidance. In this section, we first present a manner
to visualize situations where the temporal progression of collision avoidance is negatively
affected, afterwards we present how this negative impact in collision avoidance progression
can be represented as a new phase during interaction between people.

6.1.1 Representing negative impact in collision avoidance progress

Our first step in order to represent situations where collision avoidance is not done effec-
tively requires visualizing these decisions in our human collision avoidance dataset. Even
though Minimum Predicted Distance (MPD) and Signed Minimum Predicted Distance
(SMPD) can be used to correctly assess collision avoidance progress, it may incorrectly
represent a collision problem as solved in cases where agents choose the same crossing
order. For instance, in a dyadic collision avoidance scenario whenever both agents decided
to stop in order to avoid collision, both the MPD and SMPD would increase to safe val-
ues indicating that collision avoidance is solved. However, in such a situation both agents
still cannot move towards their goal in their original velocity without risking, once again,
collision.
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(a) Reconstruction of human
motion using infrared cam-
eras.

(b) Crossing order mis-
match with person crossing
behind in blue. (c) Non-monotonic MPDH.

Figure 6-1: Human trajectory comparison when crossing order is misjudged.

In order to better visualize situations where people reverse their crossing order or take
actions that have a negative affect on the temporal evolution of the collision avoidance,
we modify our MPD formulation to obtain a monotonically increasing function whenever
collision avoidance is solved effectively, named Minimum Predicted Distance with Goal
Heading (MPDH) and defined as

MPDH(t) =
∞

min
l=t

‖(~pr(t)+~vdes
r (t) · (l − t))− (~pp(t)+~vdes

p (t) · (l − t))‖ (6.1)

where ~vdes
r is the agent r desired walking velocity at this time if there were no obstacles.

This formulation considers the minimum distance considering the hypothetical scenario
where the agents have their desired velocity towards the goal. In this sense, it represents
the collision potential in terms of its impact in an agent’s ability to head towards his goal at
his desired speed. This formulation, in contrast with MPD, depends on having the complete
trajectories, as in our case the goal of each agent and their desired speed (before collision
avoidance) can be easily determined. This measure is used to evaluate human trajectories
obtained in our dataset, as can be seen in Fig. 6-1, in order to determine the impact of
crossing order changes in the progress of the collision avoidance.

We can observe that, in Fig. 6-1c, the MPDH is not always monotonically increasing.
In this particular case, as soon as agents are able to perceive the correct crossing order the
MPDH starts to increase monotonically.

6.1.2 Phases of collision avoidance with ambiguous role

Collaboration is not always effective for collision avoidance. In some situations, people
people may assume the same role1. Within the standard social science depiction of the
human collision avoidance process described in Sec. 2.1.2, this would indicate that the

1In terms of homotopy class, as discussed in Sec. 2.3, choosing the same roles means choosing different
homotopy class decisions - an ineffective collaboration choice.
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reaction phase is not always effective. To better characterize this behavior we split the
reaction phase into two phases yielding a total of four phases, defined as

1. Observation implies recognizing the future collision scenario. This definition is
unchanged from Sec. 2.1.2.

2. Negotiation is an optional phase where both agents attempt to avoid collision through
a given set of motions but are not necessarily able to perceive their roles i.e. who
crosses in front and who crosses behind; this in turn causes the collision avoidance to
not progress, even though actions are being taken with that objective. For instance,
when two agents decelerate at the same time attempting to establish the role of an
agent crossing behind.

3. Avoidance is a phase where both agents recognize their roles in the collision avoid-
ance and take definitive action to avoid the collision. Thus, the agents use their
motion more efficiently and more effectively to avoid a collision.

4. Regulation is the phase where the agent maintain a stable MPD until minimum dis-
tance is reached. This definition unchanged is also unchanged from Sec. 2.1.2.

Given these phases, the objective of our approach is to minimize the time spent on the
negotiation phase. Our intention is to minimise the period where the agents are taking in-
effective actions by controlling the manner in which agents avoid collision with each other.
In other words, our approach attempts to reduce the chance that agents find themselves
continuously in a situation where the collaborative crossing order decision is not evident.

6.2 Boundary in choice of crossing order

In collision avoidance situations with ambiguous crossing order our objective is to mini-
mize the time spent in the negotiation phase. To minimize the duration of this phase, one
must consider the situations where people may misjudge their crossing order.

We refer to situations in which crossing order decision of people is consistent over
repeated initial conditions as near-symmetric scenarios. The concept of near-symmetry
is formally defined in the following subsection which allow us to evaluate the boundary
that separates an ambiguous collision avoidance situation from a scenario where a person’s
crossing order is evident.

84



6.2.1 Formalizing the concept of near-symmetry

The concept of homotopy class decision of an agent, described in Sec. 2.3, represents the
side in which agents cross each other. Trajectories within the same homotopy class can be
continuously deformed into each other. In order to avoid a collision effectively agents must
choose to cross each other on the same side.

The concept of crossing order can be used as a basis to predict, at any given time t,
the homotopy class decision of an agent. However, attempting to directly use this informa-
tion to determine collision avoidance motions is insufficient. The reasons for this can be
contextualized given a direct representation of such predictor, presented as

Θ̂r,p(t) =





+π or −π, if α̇r,p(t) = 0

+π, if αr,p(t)≥ 0 and α̇r,p(t)> 0

+π, if αr,p(t)< 0 and α̇r,p(t)> 0

−π, if αr,p(t)≥ 0 and α̇r,p(t)< 0

−π, if αr,p(t)< 0 and α̇r,p(t)< 0

(6.2)

which can then be simplified to

Θ̂r,p(t) =





+π or −π, if α̇r,p(t) = 0

+π, if α̇r,p(t)> 0

−π, if α̇r,p(t)< 0

(6.3)

From this formulation, it is possible to verify that ambiguity can occur in two scenarios:
whenever αr,p(t)≈ 0 and thus α̇

p
r (t)≈ 0, that is, a possible (near) head-on collision, and in

the (near) symmetric cases when αr,p(t) ̸≈ 0 and α̇r,p(t)≈ 0. In both of these scenarios each
person is met with a situation where +π and −π are possible solutions. As a consequence,
in the space of solutions of these ambiguous scenarios, denoted as Θ̂r,p(t)× Θ̂p,r(t) =
{{π,π},{ −π,−π},{π,−π},{ −π,π}}, people may try to pass each other on the same
side or may incorrectly try to pass each other in opposite sides, which will negatively affect
their effort to avoid future collision which may, for instance, decrease their MPD. In both
ambiguity scenarios, the uncertainty over crossing order depends on the value of α̇ , our
objective is to predict the uncertainty associated with this boundary, evaluate the potential
consequences of this uncertainty in generated motions and, finally, minimize the risk of
collision while allowing for effective collaboration.
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Figure 6-2: Reactive collision avoidance approach whenever agents incorrectly choose the
same crossing order. Point in red is the collision in case of no change in trajectory. Collision
point in orange happens if the agents plan collision avoidance only once. Collision in the
blue point when both agents continuously choose to attempt to cross behind. Whenever
agents continuously believe they cross in front they reach a stable forward motion without
ever colliding with each other or reaching their goal.

6.2.2 Estimating crossing order uncertainty based on data

Our approach relies on predicting the behavior of agents when they are avoiding each other
even in the case of ambiguous crossing order. In Fig. 6-2 we depict some possible trajecto-
ries for reactive collision avoidance approaches in case crossing order mismatches happen
continuously. To complement these results, in Sec. 6.4, we compare this result with our
approach.

The derivative of the bearing angle α̇ is a strong predictor of crossing order, as shown
in Cutting et al. (1995). However, the role of each agent in a collision avoidance situation
is not always clear. In this section, our focus is on first establishing a relationship between
α̇ and the certainty in crossing order determination using the dataset presented in Chapter 5
from our collaboration with the laboratory Mouvement, Sport, Santé (M2S). Our objective
is to find what is the chance that in the interval between [ti, t f ] the predicted crossing order
changes, that is, the probability of Θ̂(ti) ̸= Θ̂(t) for some t ∈ [ti, t f ].

The results, fitted to a sigmoid S(z) = 1
1+e−a(z−b) with parameters a = 39.936914 and

b = −0.000037, are shown in Fig. 6-3 and indicate that, at ti, if α̇ approaches zero the
likelihood of the crossing order changing within a given collision situation increases. As
an extra measure of certainty, to guarantee this is not caused by reconstruction error in the
position or heading, we manually evaluated the situations in which crossing order changed
and verified that in most cases collision avoidance actions for agents, in terms of speed and
heading changes or lack thereof, when observed in conjunction, are initially detrimental to
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Figure 6-3: Evaluation avoidance scenarios between people from out dataset, divided into
five partitions. Each partition represents the probability that the predicted homotopy class
does not change at any point in the interval [ti, t f ].

collision avoidance.
This sigmoid is fundamental for our approach, as this allows us to approximate what are

the odds that agents will switch their crossing order from its currently perceived value. This
includes situations where agents perceive crossing order incorrectly or have a particular in-
terest in assuming a particular role. Our objective is then to determine a collision avoidance
approach that accounts for this uncertainty while minimizing the chance of agents contin-
uously choosing the same crossing order.

6.3 Collision avoidance motion for uncertainty mitigation

A collision avoidance approach that is able to deal with near-symmetry scenarios must un-
derstand how to accommodate the main source of uncertainty: the derivative of the bearing
angle. In this sense, our approach attempts control the future value of the derivative of the
bearing angle in such way that

• In the case where both agents initially choose the same crossing order, the derivative
of the bearing angle between the agents in the next decision step will allow them to
correctly assess crossing order;

• the range of motions explored that permit collision avoidance is proportional to the
uncertainty of crossing order. More uncertain situations may require larger heading
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and speed changes.

These requirements would make it possible to minimize the amount of time within the
negotiation phase while minimizing the amount of additional motion adaptations. To that
end, our approach described in this section provides a solution to both of the requirements
listed above while planning collision avoidance robust to near-symmetry in a trivial amount
of computational time.

6.3.1 Impact of confidence in determination of crossing order

In our work, we attempt to establish effective collision avoidance between agents in sym-
metric scenarios in up to n decisions, with agents taking two decisions per second. Effective
collision avoidance means that both agents choose different crossing orders to avoid each
other.

To that end, it is important to calculate the probability of correct collaboration 𝒟 that
would allow for Λ confidence in resolving crossing order after n consecutive attempts. In
our work we define 95% as an acceptable Λ value. To find the value of 𝒟 we equate the
chance of n consecutive failures with 1−Λ, as

1−Λ = [1−𝒟]n (6.4)

which yields

𝒟 = 1− n√1−Λ (6.5)

This means that, at each time step, the agent should attempt to guarantee that the chance of
resolving crossing order is at least 𝒟. As seen in Sec. 6.2.2, crossing order certainty can
be calculated using 𝒮(α̇r,p(t)), as such, at this time step in case 𝒟 ≤ 𝒮(α̇r,p(t)) the optimal
collision avoidance action would generally suffice. However, our approach also anticipates
situations with ambiguous crossing order by controlling the derivative of the bearing angle
in an attempt to guarantee that, in the next time step, the chance of collaboration will be, in
average, enough to achieve the desired confidence over n steps.

6.3.2 Obtaining a desired confidence with random uniform sampling

Consider that the robot r decides to avoid the collision with an agent p by changing its
velocity to~vnew

r , this decision is made based on the current velocity of the other agent, which
we denote as ~vp(t). This motion, in case of no change in the behavior of p, would yield
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α̇new
r,p . Similarly, agent p would use a similar logic to obtain a possibly distinct2 α̇new

p,r . Based
on Eq. 2.2, the combined effect of these individual velocity changes on the instantaneous
value of the derivative of the bearing angle can be calculated using α̇new

r,p + α̇new
p,r .

Whenever agents incorrectly choose the same crossing order α̇new
r,p and α̇new

p,r will have
distinct signs i.e. one will be positive and the other will be negative. Our objective is to
calculate the probability 𝒫 that

∣∣α̇new
r,p + α̇new

p,r
∣∣ in the next decision step will be equal or

larger than a given threshold κ . This would guarantee a certain confidence that even if
agents at first incorrectly choose the same crossing order the crossing order would not
remain ambiguous at the next decision step.

The desired value of 𝒫(z) where z = α̇r,p(t) at current time step can be calculated
by equating the probability of two incorrect collaborations at the current and subsequent
decision step to the current 1−𝒮(α̇r,p(t)) and the subsequent one where

∣∣α̇new
r,p + α̇new

p,r
∣∣ is

not larger than κ , with

𝒫(z) = 1− (1−𝒟) · (1−𝒟)

1−𝒮(z) (6.6)

Our final steps are then to determine the threshold value κ and to determine the manner
in which one can guarantee |α̇new

r,p + α̇new
p,r |≥ κ with average probability 𝒫(z).

To this end, let 𝒳 be a random variable uniformly distributed over the interval [0,ℒ].
From this random variable we select two points 𝒳1 and 𝒳2. The distance between these
points, denoted as Y = |𝒳1 −𝒳2|, has an average value of M = E[Y ] = L

3 (see Appendix C
for details) where E[·] is the expected value. Due to the locally linear shape of its function,
we assume that a sample from Y that is m units away from the mean approximately respects
the equality 𝒫(M) = 𝒫(M−m)+𝒫(M+m)

2 , this would mean that 𝒫(E[Y ]) = E[𝒫(Y )]. This
approximation allows us to establish that with M = κ we can finally determine the value
of κ using the inverse of the sigmoid function (logit) presented in Sec. 6.2.2, denoted as
𝒮−1(w) = b+ 1

a log( w
1−w), as a function of the desired probability of collaboration in the

next time step with κ = 𝒮−1(𝒫(z)).

With these elements we can choose motions that respect the relation |α̇new
r,p + α̇new

p,r |≥ κ

with average probability equal to 𝒫(z) by sampling α̇new
r,p from a uniform distribution with

interval length ℒ= 3κ .

The relationship between n, α̇r,p(t) and ℒ are shown in Fig. 6-4. As n increases the size
of ℒ decreases until it it reaches zero which signifies that the agent is guessing crossing
order based on just its current α̇r,p(t). This means that whenever α̇r,p(t) = 0 both agents
would be choosing crossing order with odds no better than chance unless ℒ> 0.

2Do note that although α̇r,p(t) = α̇p,r(t), the values of α̇new
r,p and α̇new

p,r are not necessarily equal as in this
case we are evaluating the new velocity of one agent against the current velocity of the other agent (and
vice-versa).
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Figure 6-4: Relationship between the current α̇r,p(t), the desired number of decisions n to
start effective collaboration and ℒ.
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(a) Head-on future collision with different initial speed. Crossing order is not defined in these
cases.
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(b) Both attempt to cross in front. Future
collision with 90°crossing angle. Con-
strained by maximum velocity.
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(c) Both attempt to cross behind. Fu-
ture collision with 90°crossing angle. Less
constrained by minimum velocity.

Figure 6-5: Samples of collision avoidance motions with misjudged crossing order. Each
color in a dashed line indicates a specific choice of derivative of bearing angle. Solid red
and black lines indicate, respectively, initial motion and motion with α̇−

r,p.

6.3.3 Generating collision avoidance motion

In the context of dyadic collision avoidance, our premise is that each individual agent will
do its best to avoid future collision while preserving crossing order. The range of actions
an agent can perform is limited by their maximum linear and angular velocity. Considering
these constraints, each individual agent will attempt to minimize the change in their desired
velocity~vdes

r (t) that can avoid the future collision. This is represented as

~v*r = argmin
~v∈ℱ p

r

∥∥∥~v−~vdes
r (t)

∥∥∥ (6.7)

where ℱ p
r is the set of velocities for r where MPD of r with respect to p is larger than

the threshold for collision and also respects crossing order i.e. attempts to guarantee that
Θ̂

p
r (ti) = Θ̂

p
r (t) for all t ∈ [ti, t f ] where ti and t f represent, respectively, the start and end of

the collision avoidance

However, as is shown in Sec. 6.2.2, crossing order can be misjudged which can have a
detrimental impact on collision avoidance. As such, first we define an additional constraint
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Figure 6-6: A comparison between a standard approach and our approach when two virtual
agents attempt to avoid collision with each other in a near-symmetry situation in which one
agent misjudges his crossing order. Let ∆vx and ∆vy be a change in velocity in x and y axis.

on~v based on the α̇new
r,p it would generate, represented as

α̇
new
r,p = R(α̇−

r,p, α̇
+
r,p) (6.8)

where R(α̇−
r,p, α̇

+
r,p) is a uniformly distributed random value in the interval defined by α̇−

r,p

and α̇+
r,p, which represent, respectively, the lower and upper bound in possible values of

the derivative of bearing angle for r with respect to p that can avoid collision in a given
crossing order. To guarantee the desired confidence, it is fundamental that ℒ≤

∣∣α̇+
r,p − α̇−

r,p
∣∣

but it is only necessary to select a subset of the interval
∣∣α̇+

r,p − α̇−
r,p
∣∣ that has ℒ length.

In order to facilitate visualization of the change in collision avoidance motion caused
by constraining the value of α̇new

r,p , examples of possible collision avoidance motions with
several distinct choices of α̇new

r,p , sampled from a discrete subset of values within an in-
terval of size ℒ, are shown in Fig. 6-5. Moreover, the manner in which constraining the
α̇new

r,p allows for more efficient selection of collision avoidance velocities in near symmetry
scenarios is shown in Fig. 6-6.

Based on these components, we use an optimization approach named Sequential Least
Squares Programming (SLSQP), originally presented in Kraft (1988), to generate collision
avoidance velocities that respect crossing order. In our experiments, we have used the
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implementation provided in Kraft (1994), as it can handle any combination of bounds,
equality and inequality constraints.

Given perceived safety and kinematic constraints, it is possible that ℒ≥
∣∣α̇+

r,p − α̇−
r,p
∣∣, in

these cases the agent would still attempt to resolve the collision with reduced confidence.
However, when time to collision is below one timestep with ℒ ≥

∣∣α̇+
r,p − α̇−

r,p
∣∣ the agent

yields as it does not have the required confidence for human-like collaboration. These
situations are more frequent whenever agents are too far away (time to collision above six
seconds) or too close (time to collision below one second).

In situations where crossing order has already a confidence value higher than Λ, which
means that ℒ = 0, it is possible to preserve crossing order even when one agent cannot
contribute to avoid a collision (or its contribution would be insufficient). For instance, as
shown in Fig. 1-1b, in many situations the agent crossing in front is unable to accelerate
further or change heading in a manner that preserves crossing order and they are thus unable
to contribute to collision avoidance. Nonetheless, in scenarios with clear crossing order the
agent crossing in front would be able to rely on the agent crossing behind to avoid collision
even without any cooperation.

In any similar case, it is fundamental that crossing order is unambiguous as other-
wise the agent crossing behind could incorrectly perceive himself as crossing in front. This
would ultimately result in collision if both agents are unable to contribute to collision avoid-
ance while trying to cross in front.

6.4 Experimental validation

Evaluating whether agents can avoid collision in near symmetry scenarios requires analysis
of data from the agents’ motion in situations with ambiguous crossing order. To that end,
several simulated experiments analyzing different aspects of our approach are described in
this section.

In our experiments, a holonomic motion model is chosen for the robot but the change
in heading direction θr between decision steps is bounded as −π

2 < θ̇r <
π

2 (rad/s) during
collision avoidance to allow for more predictable motions. Similarly, the maximum speed
of both agents is set as vmax

r = vmax
p = 1.7 (m/s) and initial speed as sinitial

r = sinitial
p = 1.2

(m/s).

Finally, to avoid sudden turns during collision avoidance, which would negatively affect
motion predictability for people, robot motions are smoothed using cubic splines.
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Crossing
angle

Time to
collision

∣∣α̇r,p(ti)
∣∣ n ℒ

∣∣α̇−
r,p − α̇+

r,p
∣∣

30° 2.89s 1.40° 3 0.06° 3.00°
30° 2.53s 0.47° 3 3.15° 2.50°
30° 2.47s 1.03° 3 1.48° 2.50°
30° 2.11s 0.75° 3 2.38° 3.00°
30° 2.05s 2.22° 3 0.00° 1.25°
30° 1.64s 1.13° 3 1.13° 0.50°

120° 2.58s 1.20° 2 6.95° 7.50°
120° 2.52s 0.77° 2 7.96° 7.25°
120° 2.51s 10.09° 2 0.00° 10.75°
120° 2.17s 9.01° 2 0.00° 11.25°
120° 1.75s 2.65° 2 2.33° 8.00°
120° 1.69s 1.64° 2 5.77° 6.00°

Table 6.1: Evaluation of six random variations of two near symmetrical collision scenarios
with specific crossing orders. Positive results, where the value of

∣∣α̇−
r,p − α̇+

r,p
∣∣ is larger than

ℒ, are marked in bold. As crossing order is chosen randomly it can affect the length of∣∣α̇−
r,p − α̇+

r,p
∣∣ in similar scenarios (crossing behind usually allows for larger interval). In the

case with 120° crossing angle a smaller n is used.

6.4.1 Impact of linear and angular constraints on motion

Although we establish the condition ℒ ≤ [α̇−
r,p, α̇

+
r,p] for Λ confidence in effective collision

avoidance, it is important to evaluate when, in practice, the robot can obtain a reasonable
length of the interval [α̇−

r,p, α̇
+
r,p] when the constraints in both vmax

r and θ̇r are taken into
account.

To that end, several random variations of collision avoidance scenarios are simulated
over two crossing orders. The results, calculated considering Λ = 95% and showcased in
Table 6.1, indicate that, when time to collision is small, the length of the interval [α̇−

r,p, α̇
+
r,p]

also decreases. In these situations, collision avoidance requires sharper changes in speed
and heading, this means that a smaller range of motions that are still able to avoid collision
can be achieved.

In our analysis it is shown that in smaller crossing angles three decisions can be nec-
essary to achieve confidence larger than at least 90%. In contrast, collision scenarios with
crossing angle of 120° allowed us to utilize up to n = 2 while maintaining Λ confidence,
even though the situations for both crossing angles are generated with the same random
process, this indicates that smaller changes in heading and speed generated larger changes
in the derivative of the bearing angle when crossing angle is higher.

Although not directly accounted for in this evaluation, field-of-view consideration, such
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Figure 6-7: Comparison of ideal scenarios where people always respect crossing order to
our approach where ineffective collaboration is possible. Our collision avoidance approach
mitigated the negative consequences of such event. Continuous lines indicate ambiguous
crossing order while dashed gray lines indicate crossing order is no longer ambiguous.

as is done in Ondrej et al. (2010), could reduce the amount of situations with larger crossing
angle (e.g. 150°) where near symmetry mitigation is necessary.
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6.4.2 Collision avoidance trajectories under near symmetry

In order to assess whether generated collision avoidance motions properly mitigate the po-
tential negative impact of ambiguous crossing order, a dozen collision avoidance scenarios
where generated for each of the four tested crossing angles, these are: 0°, 30°, 60° and also
90°.

A comparison baseline with our approach is established using the collision avoidance
behavior of RVO (van den Berg et al., 2011) which has seen extensive use in the literature.
As can be seen in Fig. 6-7, RVO is only able to reproduce collision avoidance motions
where crossing order is respected. Our approach accounts for the possibility that agents
misjudge crossing order in near symmetry scenarios.

The negative impact of ineffective collaboration in both agents ability to head towards
their goal can be visualized with MPDH. In Fig. 6-8, an incorrect choice of crossing order
can cause MPDH to increase less efficiently or even decrease i.e. negatively affecting their
efforts to avoid collision.

In most cases, effective collaboration started after at most three decisions. In under 7%
of the evaluated cases, the near-symmetry situation is not solved and both agents stopped
when time to collision is below one second. Do note, however, that as situations are gener-
ated with some degree of randomness the available time for effective collaboration varied.

6.5 Discussion

Differences in effort distribution can explain one part of people’s collaborative approach
to collision avoidance. Another part is the choice of homotopy class. In this chapter we
have shown how to predict, with sufficient accuracy, the homotopy class decision of an
agent based on one single situational factor: the derivative of bearing angle. Moreover,
based on empirical data, we have also shown how to approximate the uncertainty around
the boundary between one homotopy class decision and the other.

The core concept of our approach to tackle near symmetry scenarios during collision
avoidance is using communication through motion. The agent samples from a uniform
distribution of size ℒ the value α̇new

r,p in relation to the person’s current perceived motion to
have Λ confidence that effective collision avoidance will start in n time steps. In our tests
scenarios, both n = 2 and n = 3 were achievable for a robot. However, depending on the
crossing order and time to collision n = 2 sometimes imposed a confidence smaller than Λ.

Depending on the crossing angle and time to collision, the values required for ℒ may not
be achievable in practice. For instance, whenever the agent and the robot are sufficiently
far away the robot would generate a α̇new

p,r ≈ 0 no matter the choice of motion change.
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Figure 6-8: Several examples of MPDH where agents misjudge crossing order. In the
upper plot, the MPDH increased less efficiently during the period where crossing order is
misjudged, in the lower plot crossing order being misjudged negatively affected MPDH (its
value decreases). Each color represents a distinct collision avoidance situation.

Moreover, a short time to collision (smaller than one second for instance) would impose
limits on the range of motions that can still avoid collision and by consequence limit the
range of derivative of bearing angles that can be explored. Given this situation, we choose
to focus our approach on situations where time to collision is between one and six seconds.

Such mitigation of crossing order mismatch situations is, to our knowledge, novel in
the literature where most standard techniques, such as Reciprocal Velocity Obstacles (RVO)
and Social Force Model (SFM), assume that crossing order determination is always certain.
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Chapter 7

Conclusion

"We believe no statistical model is ever final; it is simply a
placeholder until a better model is found."

— Judith D. Singer and John B. Willett

This work describes our approach to replicate the manner in which people collaborate
to avoid collision while also mitigating potential negative consequences of such collabora-
tion. These results are based on a dataset composed of dyadic collision avoidance situations
between people over several crossing angles. This dataset was obtained in a collaboration
with the laboratory Mouvement, Sport, Santé (M2S) and it is used to find the manner in
which people distribute motion adaptations when avoiding collisions and also to evalu-
ate when people collaborate in an ineffective manner. This chapter summarises our main
contributions, and discusses limitations of our current approach as well as possible future
work.

7.1 Contributions towards human-robot collaboration

In Chapter 5 a model for distribution of effort between a robot and people during collision
avoidance was presented. In order to measure effort and its distribution, a cost function,
named collision avoidance effort, was developed based on a trade-off between energy spent
and time to reach the goal. The distribution of collision avoidance effort between first and
last crosser was found to be consistent under repeated initial conditions. Given this consis-
tency, we used Generalized Linear Model (GLM) to estimate the distribution of collision
avoidance effort between people. In order to validate our approach, a proof of concept was
implemented within Reciprocal Velocity Obstacles (RVO) and compared against standard
RVO and also our dataset.
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Our other contribution was presented in Chapter 6, where a collision avoidance ap-
proach to mitigate the potential negative consequences of collaboration during collision
avoidance was described. State of the art works have always assumed that collaboration
between agents proceeds without error in the choice of crossing order. In our work, we first
developed a metric to confirm that people do not always initially choose distinct crossing
orders. Afterwards, we showed that the uncertainty over crossing order can be estimated
using the derivative of the bearing angle. Using this estimation, an approach to account for
the possibility of both agents choosing the same crossing order and the manner in which
one can plan collision avoidance motions to mitigate the negative consequences of such
event was presented.

7.2 Limitations

Although our simulated experiments are demonstrated with considerable amount of sce-
narios with distinct initial conditions, the lack of validation with a physical robot in a real-
world scenarios is a current limitation of the validation of Chapter 6. Notwithstanding this
shortcoming, a recent work has shown that people do behave more naturally when they
expect the robot to respect human interaction rules (Vassallo et al., 2018).

Another point is that, in Chapter 6, we assumed that people attempt to resolve near-
symmetry situations while sampling their next derivative of the bearing angle using an
uniform distribution. In practice, it would be important to evaluate whether an uniform
distribution is sufficient to represent human behavior in near-symmetric scenarios or not.

Among other areas of improvement in our work, we intend to use optimization tech-
niques other than Sequential Least Squares Programming (SLSQP) to compare potential
differences in generated collision avoidance velocities. Furthermore, we intend to inves-
tigate whether a non-local optimizer would have found better solutions for this particular
problem.

Finally, it is also important to evaluate whether the presence of multiple people affect
the distribution of motion adaptations in a significant way. Given that our dataset was based
in dyadic collision avoidance situations our approach was limited to such cases in order to
allow for proper validation. In that context, situations in which avoiding collision with one
person increases collision risk with another would be of particular interest.

7.3 Perspectives

As our closing remarks we present some perspectives for this work. For short the term:
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• Instead of using the uniform distribution to sample values for the derivative of the
bearing angle, another possible avenue would be to analyze in the data what is the
probability distribution that people use in such situations.

• Generalize the model of collision avoidance under near-symmetry for robot-robot
situations in order to account for crossing order error due noise in the determination
of position, heading and speed of other agents. This would allow robots that cannot
communicate to minimize the time spent in situations of ambiguous crossing order
(negotiation phase).

• An interesting future avenue would be to integrate both the shared effort approach
and the near symmetry mitigation into the same solution.

For the long-term, perspectives are:

• Running experiments involving more people so that one can highlight how people
prioritize effort distribution. In particular, situations where avoiding collision with
one person causes collision risk with another person.

• an interesting direction would be to run experiments in a virtual reality environment
with one autonomous agent and another agent controlled by a person. In this manner,
the risk of physical collision between robot and person would be removed. Moreover,
assessing the impact of personal factors, such as cultural norms (Chattaraj et al.,
2009), can also provide interesting insights.

• Instead of taking reactive decisions, plan over multiple timesteps while accounting
for distribution of effort between multiple people, some of which could have an am-
biguous crossing order. This opens several novel possibilities where an agent might
avoid more efficient collision avoidance motion with one agent in order to avoid en-
tering in an ambiguous crossing order situation with another.
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Appendix A

List of publications

The results described in this thesis have appeared in the following scientific papers

• Human Robot Motion: A shared effort approach (Silva and Fraichard, 2017).
This work also attempted to follow a more human-like distribution of motion adapta-
tions between agents that are avoiding collision with each other. As collision avoid-
ance strategy, Reinforcement Learning was used as a proof of concept. The results
found that, while the run-time performance was acceptable actual human data was
necessary to validate and improve the results.

• Human inspired effort distribution during collision avoidance in human-robot
motion (Silva et al., 2018). This is our first work based on empirical data obtained in
a cooperation with another laboratory. This work establishes the effort distribution
between people based on situational factors that describe a given collision scenario.
The results pointed towards an upper bound in the amount of effort to avoid collision
invested by the person crossing in front while the effort of the person crossing behind
grows unbounded.

• Effective Human-Robot Collaboration in near symmetry collision scenarios in
(Silva et al., 2019). This work focuses on the potential negative side effect of col-
laboration. We examine so-called (near) symmetric scenarios of collision avoidance
where the crossing order decision of each agent is ambiguous. In such scenarios, the
robot and the person may incorrectly choose the same crossing order. Our navigation
approach then understands the underlying causes of this ambiguity and plans colli-
sion avoidance in such a way that even if at first agents choose the same crossing
order, they would be able to perceive the correct crossing order in their next decision
step.

103



104



Appendix B

Generalized Linear Model

Linear regression models assume constant variance in their data (Dunn and Smyth, 2018).
In contrast, a Generalized Linear Model (GLM) assume that the response to a set of ex-
planatory variables (or predictors) comes from a distribution other than a normal distribu-
tion. In practice, this allows a GLM to unify various other statistical models such as linear
regression and Poisson regression (Nelder and Wedderburn, 1972).

A GLM is composed of three main components:

• A random component of a model, represented by a probability distribution of the
response variable given the values of the explanatory variables (predictors).

• The explanatory variables (X1,X2, ...,Xk) and their linear combination η = β0 +

β1x1 +β2x2 + · · ·+βkxk.

• A relationship between explanatory variables and the mean response values - a link
function

In GLM each response is assumed to be generated from a distribution of the exponential
dispersion model family (Madsen and Thyregod, 2010). The mean µ of this distribution
depends on the exploratory variables and is calculated as:

µ = g−1(~β~X) (B.1)

where g is the link function and g−1 its inverse. The weights ~β (unknown parameters) are
estimated using maximum likelihood.
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Distribution Canonical link Link function Inverse link function

Normal Identity ~Xβ = µ ~Xβ = µ

Gamma Negative Inverse ~Xβ = µ−1 -(~Xβ )−1 = µ

Inverse Gaussian Inverse Squared ~Xβ = µ−2 (~Xβ )−
1
2 = µ

Poisson Log ~Xβ = ln(µ) exp
(
~X~β
)
= µ

Binomial Logit ~Xβ = ln
(

µ

1−µ

)
1

1+exp(−~Xβ)
= µ

Table B.1: Link functions and their inverse.

B.1 Distributions and Link functions

Distributions from the exponential dispersion model family can be categorized into dis-
crete and continuous. Example of discrete distributions are Poisson and binomial while
continuous examples are normal and gamma distributions.

The relationship between linear combination of the explanatory variables and the mean
of the chosen distribution function is given by the link function. This function g(·) is
monotonic, differentiable and relates the values of µ to the values of the linear predictor η

(Dunn and Smyth, 2018).
For each distribution, a canonical link function is defined based on the exponential of

the density function of the response.
In Table B.1, some of the most common distributions and their canonical link functions

are presented. The choice of distribution and their canonical link function are generally
chosen based on the problem to be modeled. For instance, binomial distributions with
logit link functions are generally used to count positive and negative occurrences of a given
event.

106



Appendix C

Properties of uniform distributions

A symmetric distribution where each event has the same probability is called a uniform or
rectangular distribution.

A uniform distribution can be characterized using two parameters, denoted as a and b
with −∞ < a < b < ∞, representing its minimum and maximum value respectively. An
uniform distribution can be thus abbreviated as

𝒰(a,b) (C.1)

The probability density function of a uniform distribution is given by

f (x) =





1
b−a if a ≤ x ≤ b ,

0 otherwise
(C.2)

and its cumulative distribution function

C(x) =





0 if x< 0 ,
x−a
b−a if a ≤ x ≤ b ,

1 if x> 0

(C.3)

C.1 Distance between sampled elements from uniform dis-
tribution

In Chapter 6, it was necessary to have a certain confidence that the distance between two
points sampled from the same uniform distribution is larger than a given threshold κ . In
order to obtain such confidence, it is necessary to control the interval length of the uniform
distribution. To that end, two strategies were considered:
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1. Guarantee that the average distance between elements is equal to κ . This means
that half the sampled elements will be larger than κ and half will be smaller than
the threshold. A value of κ that respects the desired confidence has to be calculated
based on the average probability.

2. Guarantee that elements will be strictly at least κ units apart with a certain confi-
dence.

In our approach, the interval length for strategy 2 (see C.1.2) proved difficult to respect
given its exponential growth. Ultimately, strategy 1 was chosen and is presented in Sec.
C.1.1.

C.1.1 Average distance between samples

In this section we provide a justification1 of why given two random variables 𝒳1 and 𝒳2 that
are uniformly distributed over the interval [0,ℒ], represented as 𝒰(0,ℒ), have a distance
Y = |X1 −X2| of E[Y ] = ℒ

3 in average.
Suppose that given X1 and X2 we also choose a third random variable 𝒳3, also uniformly

sampled from an interval of length ℒ. The value of 𝒳3 will be between 𝒳1 and 𝒳2, in
average, 1/3 of the time as they are equiprobable. This means that the distance between
𝒳1 and 𝒳2 needs to be, in average, a third of the length of the interval and as such can be
calculated simply as E[Y ] = ℒ

3 . Empirical verification provided provided below.

import matplotlib.pyplot as plt

import numpy as np

import numpy.random as rr

means = []

Ls = np.linspace(0, 100)

for L in Ls:

n = 100000

acc = 0.0

for i in range(n):

v1 = rr.uniform(0.0, L)

v2 = rr.uniform(0.0, L)

acc += np.abs(v1 - v2)

1Empirical validation code is available at https://github.com/jgrimaldo/
demonstrations

108

https://github.com/jgrimaldo/demonstrations
https://github.com/jgrimaldo/demonstrations


mean = acc / n

means.append(mean)

plt.scatter(Ls, means, color=’blue’, alpha=0.5, \

zorder=1, label=’Mean after 100000 trials’)

plt.plot(Ls, Ls/3.0, color=’black’, label=’L/3’)

plt.xlabel("Interval length for uniform distribution")

plt.ylabel("Mean distance Y")

plt.show()

C.1.2 Confidence in distance larger than threshold

In this section we provide geometric proof that, for a random variable 𝒳 that is uniformly
distributed over the interval [0,ℒ], the probability that two points x1 and x2 independently
sampled from this distribution will be at least κ units away from each other can be calcu-
lated using

𝒟 =
(ℒ−κ)2

ℒ2 (C.4)

where ℒ is the length of the interval.

An uniform random distribution over the interval [0,ℒ] can be represented as a line
with a length ℒ where each point is a distinct sample from this distribution. Moreover,
the space defined by two samples from this distribution can be similarly represented as a
square where each side has a length ℒ. Based on this, we are interested in the combined
area of the segment(s) of the square that respect the relation ||x1 − x2||≥ κ .

For easier visualization, we partition the aforementioned square into two right triangles
of equal size using the insight that the distance can be represented as

||x1 − x2||=





x1 − x2, if x1 ≤ x2

x2 − x1 if x2 > x1
(C.5)

Thus, in Fig. C-1, we show that the area of triangle A is calculated as

A =
(ℒ−κ)2

2
(C.6)

accounting for both right triangles (one from each partition) and dividing by the total area
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Figure C-1: Area of interest is the right triangle with two sides of length ℒ−κ

L2 we obtain the probability

P(||x1 − x2||≥ κ) =
2A
ℒ2 =

(ℒ−κ)2

ℒ2 (C.7)
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In the following pages we present our earlier approach towards effort distribution during
collision avoidance. This earlier iteration of our approach was not included in the thesis as it
was strictly improved upon in Silva et al. (2018) which is described in Chapter 5.

118



Human Robot Motion:
A shared effort approach

Grimaldo Silva1 and Thierry Fraichard1

Abstract— The traditional approach to Human Robot Motion
(HRM) has been to treat the person as a moving obstacle,
so that a robot avoids his predicted trajectory. In contrast
with such an approach, recent works have showed benefits of
human-like motion. One such benefit is that human-like motion
was shown to reduce the planning effort for all persons in the
environment, given that they tend to solve collision avoidance
problems in similar ways. The effort required for avoiding a
collision, however, is not shared equally between agents as it
varies depending on factors such as visibility and crossing order.
Thus, this work tackles HRM using the notion of motion effort
and how it should be shared between the robot and the person
in order to avoid collisions. To that end our approach learns
a robot behavior using Reinforcement Learning that enables it
to mutually solve the collision avoidance problem during our
simulated trials.

I. Introduction

Human Robot Motion (HRM) is the study of how a
robot should move among persons. In this context, robot
motion must be safe and appropriate. While safety relates to
guaranteeing collision-free motion [1], the term appropriate
relates to respecting concepts such as social spaces [2],
legibility and perceived safety [3].

Many recent studies have focused on tackling HRM by
teaching a robot human-like behavior, such as in [4] and [5].
The justification for this approach is that it allows a robot to
follow the flow of the persons [4], and also allows for better
behavior legibility to persons around the robot. Legibility is
important because it was shown that humans tend to solve
collision avoidance problems in stereotypical ways under
repeated conditions [6], which implies that a robot behaving
in an uncommon way forces the person to actively plan its
motion instead of relying on already learned stereotypical
collision avoidance motion plans, this means that human-
like motion reduces planning effort for all the persons in
the environment [7]. Furthermore, another argument is that
unexpected motions can be perceived as unsafe by nearby
persons even though in practice they may be collision free
[5].

In order to create human-aware robots capable of navigat-
ing among persons, most current approaches in HRM, such
as [8] and [9], operate in two steps. First the probable future
behavior of the persons is predicted without considering the
robot. Then the future robot motion is computed taking this
prediction into account. As a result, the robot always yields,
that is, it avoids to the best of its ability regions where a

1 Grimaldo Silva jose.jgrimaldo@gmail.com and Thierry
Fraichard thierry.fraichard@inria.fr are with INRIA
Rhone-Alpes and University Grenoble Alpes

person is expected to go through. Collision avoidance among
persons is, however, mutually solved [10]. This means that,
depending on the current disposition of nearby persons, each
person is expected to contribute a certain amount of what
we call effort to avoid a collision. The amount of effort
expected from each person and in which manner this effort is
represented, as speed or path changes for example, depends
on many factors [10], [11], [12], such as: who is first, angle
of approach, speed and visibility.

In order to replicate human collision avoidance behavior,
our approach accounts for two facts: visibility and crossing
order. Its important to note, however, that in situations where
the person is unwilling or unable to follow a stereotypical
motion the robot in our approach will still be able to take full
responsibility for avoiding collisions. An important aspect
is how the effort needs to be shared between persons and
robot. In some situations the person does not expect the
robot to yield, such as when the person is behind the robot
but intending to overtake. Whereas in other cases the person
expects the other agent to give him priority and also to be
responsible for most of the collision avoidance [10], as is
the case when the front of the robot would collide into the
side of a person during perpendicular crossing scenarios.

Predicting human behavior in reaction to a given robot
motion in our approach depends on a human-like model
(HLM), which unlike many works in HRM such as [8] and
[5] does not use the Social Force Model (SFM) which was
introduced in [13]. Instead we rely on a slightly modified
version of Optimal Reciprocal Collision Avoidance (ORCA)
[14], which is also known as RVO 2. This HLM was chosen
as it can be directly modified to accommodate different de-
grees of participation from a particular agent during collision
avoidance and easier integration into the robotic frameworks
we chose.

Based on the persons’ reaction to a given robot motion,
we intend to use this information to avoid collisions with
persons in a human-like way. To that end, our approach relies
on reinforcement learning (RL) [15] to learn such behaviors,
this technique was chosen for its ability to explore the state
space and also to learn behaviors that can be recalled even
in real-time situations [16].

A. Outline of the Paper

This work is divided into six sections. Section II describes
works with related concepts. Afterwards, in Sec. III a formal
description of our approach is presented and also how to
measure the additional effort required for collision avoidance.
This is followed by Sec. IV where this additional effort



measure is used to build a human-like collision avoidance
strategy. Experimental results of our approach are presented
in Sec. V. Finally, a discussion of our results, future works
and final remarks are presented in Sec. VI.

II. Background and Contributions

Initial concepts in HRM focused mainly on allowing
a robot to respect social spaces, which can be defined
in a general sense as regions that for whatever reason a
person considers as belonging to them. Several works attempt
to capture the essence of social spaces, among them we
highlight: a costmap based approach to personal spaces
[17] and an interaction space among groups of people that
was represented using a two-dimensional Gaussian function
around groups of people [18].

There are many other concepts that have an influence in
HRM, such as comfort. Comfort relates to the subjective
feeling of a person that the body is relieved of negative
stimuli [19]. Many factors affect comfort, one such factor is
the visibility which has been tackled in [19] using a multi-
layer costmap that factors the cost of visibility into a costmap
in order to calculate the optimal trajectory of an autonomous
wheelchair. A definition of comfortable motion that is more
related to HRM was made in [5], can be summarized as the
perception of a person being able to walk in their preferred
velocity and if their path felt collision free.

Among the several human-like models (HLM) that can
approximate human behavior in these cases, we highlight
the Extended Social Force Model [13], a method based on
modeling each person as being attracted to their goal (in a
preferred velocity) and being repulsed by other agents and
also static objects in the environment. Another tool used in
simulation of pedestrians, particularly in crowd simulation
[20], [21], is the reciprocal velocity objects (RVO) [14]
which is based on finding velocity choices for agents that
guarantee collision avoidance.

Given one such HLM, its possible to calculate the reaction
of a given person to a robot motion. This contrasts with
many current approaches where the planned human motion
is static [8] or probabilistic [9]. That is, in these works the
robot avoids regions where persons are predicted to go in
order to avoid disrupting their plans.

Another concept, defined in [9], was hindrance. This term
relates to situations where a person natural behavior is
disrupted due to a robot’s proximity. To that end, a human-
like planner using Markov Decision Process associates a
probability for each of the several possible person trajectories
to the goal (a distribution over trajectories), this planner
is trained by observing human trajectories. Based on this
information the robot is able to find a motion to its goal
that reduces potential human hindrance by avoiding high
hindrance regions.

Our approach brings novel contributions in relation to
those works as we focus on learning how to reproduce how
persons share collision avoidance. To this end, it is necessary
to forecast short-term human motion plan in reaction to a

given robot action, which we accomplish with a modified
version of ORCA.

III. Overview of the problem

A robot is tasked with reaching a given goal, in-between
his current and desired positions any number of persons
may cross his path. It is evident that collisions with persons
have to be avoided whenever necessary. However, persons
have certain expectations about how this collision avoidance
should take place. Thus to solve this problem it is important
to model how the collision avoidance effort should be
distributed.

A. Formalization of the problem

Consider that W represents the environment, with W ⊂
R2. This environment is composed of persons, each of these
p ∈ D have a positional properties: qp = (xp, yp, θp) ∈
R2 × S1. Thus we define the state of a given person as
sp = (qp, q̇p), where each person also has a goal, which is
known a priori, gp = (x∗p, y

∗
p , θ
∗
p) ∈ R2 × S1. Additionally,

the robot r is also an agent is this environment and as such
also has positional properties sr and a goal gr.

Although human behavior can be the result of large cog-
nitive effort, recent studies showed that realistic trajectories
can be generated with simple models where an agent solely
avoids local collisions [5]. Thus, our choice to utilize a
reactive HLM to evaluate human reaction to a given robot
motion over n time steps is reasonable.

One possible approach to the robot-person collision avoid-
ance problem can be posed in terms of minimizing additional
human effort. First, let πp,r = {qp(0), . . . , qp(n)} be the
predicted trajectory of person p after interaction with a robot
r trajectory within a prediction window of n time steps
ahead, which represents the necessary number of time steps
for the robot to reach the goal for that given trajectory.
Moreover, consider that the additional effort of a given
trajectory is represented by a function Γ : πp : [0, n] →
R∗ (detailed in Sec. III-B). Finally, consider one possible
formulation to this problem

πr∗ = arg min
πr∈Πr

∑

p∈P
Γ(πp,r) (1)

where Πr is the set of admissible robot motions to the goal,
that is, motions that are safe and also human-like. In this
model the robot avoids causing additional effort to the person
whenever possible, that is, it will minimize the disruption of
the person’s motion plan while still reaching its goal. This
approach is necessary in case the person is unaware of the
robot or either unwilling or incapable of changing his motion
plan. Conversely, in real scenarios, a person does not always
yield. The additional effort required for collision avoidance
is shared between the persons involved. In such context, a
robot that acts unlike other persons can generate scenarios
where, for example, persons are forced to actively think about
the robot motion plan instead of relying on already learned
stereotypical trajectories. As such, to achieve HRM it is also
necessary for the robot to replicate the ability of persons to



share necessary changes in planning between themselves in
a socially aware manner in order to solve collision avoidance
situations in stereotypical situations.

To account for the effort sharing between person and
robot, the problem of collision avoidance is posed as an
optimization problem in this manner

πr∗ = arg min
πr∈Πr

∑

p∈P
|(1− αr,p) · Γ(πp,r)− αr,p · Γ(πr)|

(2)
where αr,p ∈ [0, 1] is the effort distribution coefficient (EDC)
between p and r. This coefficient indicates, at each time step,
what is the relative cost of the robot’s deviation from its
baseline goal in relation to the person, a higher proportion
engenders less deviation, this is detailed in the section IV.

B. Human trajectory cost function

Anticipating the human effort necessary to execute a given
trajectory is a necessary step in order to properly divide effort
between person and robot. Many models exist to measure this
effort. One such function is the path length and also total
time to the goal [22]. Another approach, is given by [23],
which describes the cost of a trajectory as a combination of
weighted acceleration controls.

Our work relies on the concept of understanding how
collision avoidance requires additional effort in relation
to the robot baseline motion. Baseline motion represents
the trajectory that does not account for the presence of
other agents in the environment. The interaction with other
agents, however, requires change in the motion plan. To
measure this change, the first step is calculating the distance
of an agent r to the goal at time t using dt(r, gr) =√

(xr(t)− x∗r)2 + (yr(t)− y∗r )2 where xr(t) and yr(t) are,
respectively, the x and y coordinates of the agent r at time
t. Thus, we can define the change in distance to the goal as
∆dr,g = dt(r, gr)−dt−1(r, gr). In our approach, at each time
step, a baseline change in distance to the goal is estimated,
that is, the agent plans its motion without accounting for
other agents. This baseline change in distance to the goal at
the current time step is represented by ∆Bt(r, g) and can be
understood as the desired progression to the goal.

However, interaction with other agents require additional
effort, which impose changes into the baseline motion of an
agent. Given this concept, we can define the additional effort
of r for a given trajectory as

Γ(πr) =
∑

qr∈πr
max{0,∆dt(r, gr)−∆Bt(r, gr))} (3)

This cost function calculates its result based on the dif-
ference from the baseline motion to the actual motion. In
this formulation, a given motion can only have an equal or
smaller cost than the baseline motion at any time step. This
definition guarantees that Γ : πp : [0, n] → R∗, which is a
property that is important in Sec. IV-B, when using it as part
of a reward function during optimization.

IV. Presentation of the Approach

Given the initial state of the person and the robot (includ-
ing position, goal and velocity), the robot wishes to find a
trajectory πr∗ that shares collision avoidance effort among
them in a similar way as another person would. Thus, in this
section we divide our approach to solve the optimization
problem of shared effort presented in Eq. 1 and Eq. 2 in five
main steps:

1) Receive information from sensors (world model/state)
2) Find ∀p ∈ D the αr,p based on current state
3) Plan collision avoidance actions up to n steps ahead
4) Send planned velocity (action) to wheels
5) Stop if goal reached, go to step 1 otherwise
As the robot receives input from its sensors it builds a

representation of the world including position of the goal,
position and velocity of nearby persons and also his own.
This information can be used to generate what is called a
model of its environment – a world model.

Information about position and velocity of nearby persons
enables the robot to calculate the amount of effort it should
share with each one for human-like collision avoidance. The
effort distribution coefficient (EDC) and the steps necessary
to calculate it are described in details in Sec. IV-A.

Given the world model and the EDC, the motion plans for
future timesteps can be calculated. To that end, RL is used to
learn a motion plan capable of reaching a given goal while
avoiding collision with a nearby person. Our formulation of
this problem as RL problem is described in Sec. IV-B.

Based on this overview of our approach to solve the
shared effort collision avoidance problem, in the upcoming
subsections the aforementioned steps are detailed and some
advantages and limitations of our approach are discussed.

A. Sharing effort

The proportion of effort shared during collision avoidance
between person and a robot varies depending on crossing
order and crossing angle. It is known that the person that
is giving way has to contribute more to the avoidance than
the one passing first [10]. One possible explanation for this
comes from difference in visual stimuli that both agents have,
as the person that gives way can more easily obtain visual
information about the person passing first [10]. In our current
formulation these two factors are taken into account to decide
shared effort: crossing order and visibility.

The point of potential collision, which is the position
where both agents would collide on in case they continue
in their current velocity, forms an angle ζr,p ∈ [0, 2π]
between the current position of the robot r and of person
p. Henceforth, when analyzing angles of crossing scenarios,
the angle that is being referenced is ζr,p. Furthermore, the
angle βr,p is formed from the bearing-angle of r in relation
to the position of p. The derivative of the bearing angle β̇
can be a strong indicator of potential collision and also of
crossing order [24]. These angles are shown in Fig. 1.

Based on results found [10] through analysis of the per-
pendicular crossing scenarios, it was found that the person



Fig. 1: Collision situation between the robot r and a person
p, where the crossing angle ζ, the bearing angle β and its
derivative β̇ are exemplified.

crossing first has a maximum of 40% contribution in collision
avoidance effort, while the one crossing last has a maximum
of 40%. Furthermore, it is intuitive that in most situations
of head-on collision with similar velocities or when both
person and robot see each other but have no clear crossing
order, that the effort is shared equally between participants.
Conversely, in scenarios where one agent is potentially
unaware of the other i.e. the passing agent is coming from
behind; the responsibility shifts to the agent that sees the
other. Recent results also indicate that agents are still able to
avoid collisions even against obstacles in peripheral vision,
[25].

This background allows us to correctly distribute effort
during collision avoidance between a person and a robot.
Thus let αr,p represent the effort sharing coefficient between
r in relation to p, which we define as a proportion that
weights crossing order and visibility into the relative cost
of the robot’s deviation from its baseline motion in relation
to the person. That is, the higher the proportion, the less
deviations from baseline motions of the robot are done in
comparison to the person.

The notion that agents do not react to other agents that
are outside their field of view, which span around 180o (with
both eyes) when looking ahead [26], is translated into our
model as a function vv : R → [0, 1]. This model is used
for the robot in order to find trajectories that respect humans
expectations. Thus, vv is defined as

vv(βr,p) =

{
0 for |βr,p|≥ π

2

1− e−λ1(|βr,p|−π2 ) otherwise
(4)

where λ1 is 15. Based on this model of visibility, the shared
effort coefficient of r in relation to p that also accounts for
the passing order can be defined as

αr,p = (1− vv(βr,p)) +
(

0.5 + f(β̇r,p, βr,p)
)
· vv(βr,p)

(5)

f(β̇r,p, βr,p) = (1− δ(β)) ·
(
A+

K −A
1 + exp(−λ2β̇r,p)

)

(6)

Fig. 2: Shared effort space that defines αp,r, both axis in
degrees. The value of αr,p indicates the relative cost of
the robot’s deviation from its baseline motion in relation
a person’s deviation. In head-on collision, additional effort
shared should be equal as there is no crossing order.

where the constants A, K and λ2 are, respectively, 0.1,
−0.1 and 30. Furthermore, β̇ is the rate of change of β
and δ : R → [0, 1] is a function that resembles a smooth
approximation of the dirac delta distribution that maps β
into 1 − |tanh(λ3β)| in which λ3 = 8 was chosen to
appropriately control the rate of convergence from one to
zero. The dirac-like distribution was used to guarantee that
the effort is always shared evenly during head-on (or near
head-on) collision scenarios. Additionally, a generalized lo-
gistic function represents the boundary between the head-on
collision avoidance case and the perpendicular case (where
there may be an unequal distribution of effort).

The function f , showcased in Fig. 2, is not applied in cases
where there is no chance of collision, as there is no need to
change its motion plan, or in cases where the person does
not see the robot. In the latter case, for example, if a robot is
trying to pass a person from behind it is not appropriate to
expect the person to share effort with the robot as the robot
is outside its field of view. Thus, in both cases the robot is
responsible for the total motion effort.

B. Human-like collision avoidance

To correctly share effort between a person and a robot the
optimization problem defined in Sec. 2 is presented in this
section in a way can be solved using Reinforcement Learning
[15]. The most usual way to represent reinforcement learning
problems is as a Markov Decision Process (MDP) which
defines a tuple containing 〈S,A,R, P 〉 that are, respectively,
the set of possible states S, the set of possible actions A, the
reward function R : S × A × S → R and also a transition
function P : S × A → S. At each discrete time step the
MDP observes the current state z0 ∈ S and selects an action
a0 ∈ A, as a result, it reaches a new state z1 and receives
a reward r1. Given this formulation, the goal of the MDP
is to reach a given terminal state sf with the best expected
reward or maximize the expected reward within a certain
time frame.



A particular robot behavior, that is, a relation between
every state and action is defined as ψ : S → A and
called policy. The goal of a reinforcement learning is thus
to learn a policy ψ∗ that provides better reward than any
other policy. Among available methods of Reinforcement
Learning, TEXPLORE [16] was selected as our choice as it
is robust to noise and able to handle continuous state features.

In order for ψ to make a decision about the future
robot motion, the state zt for the robot is as a tuple
〈βr,g, dr,g, ζr,p, ttc, βr,p, β̇r,p, dr,p〉 that is used a person
where its current motion has risk of collision with the robot,
where ttc represents the number of time steps to collision (up
to n steps ahead) given linear projection of current velocities,
and β̇ is the rate of change of the bearing angle (see Fig. 1).

Using the relative angle and distance to the goal allows
the robot to learn what actions better leads him to the goal.
For instance, in the absence of collision risk, maintaining
the bearing angle of the robot to the goal, βr,g , at near zero
guarantees the reward is maximum. In a similar sense β̇ is
used to allow the agent to measure the risk of collision, the
direction of the collision is given by βr,p and ζr,p. When
collision is detected within the visible range the ttc is set to
the predicted amount of time steps, its value is an arbitrary
maximum distance of collision detection otherwise.

The possible actions are a discretization of the control
space, represented as forward motion and also left and right
motions in 45o angles. The discretization was chosen in such
way to reduce learning times. To avoid sharp turns as a
result of this discretization, the generated trajectories are
smoothed using a B-spline [27]. Given this control space,
each action at in our model can be represented by a control
u(t). Furthermore, the motion u(t) can be seen a trajectory of
two points and one time step, where its cost can be expressed
in terms of Γ, thus for each action at in state zt its reward
is given by

rt+1 = − |(1− αr,p) · Γ(up(t))− αr,p · Γ(ur(t))| (7)

The reward presented in Eq. 7 is used in case the robot
did not reach its goal and there was no collision, in case
otherwise, the reward is set to, respectively twenty and minus
twenty.

V. Results

In this section we evaluate our approach to shared effort in
HRM. The tests were executed inside the ROS framework
and its packages. The persons are simulated as holonomic
agents using ORCA and are able to change their speed,
conversely, the robot has a discretized control space that
is always at maximum speed. In these tests, the time step
between t and t+ 1 of our prediction is equal 0.25 seconds.
The robot motion model used is point mass but restricted to
three acceptable actions, see section IV-B for further details.

A. Trajectories based on crossing order

The trajectories presented were made accounting for dif-
ferent crossing angles and also with different crossing order
expectations in order to evaluate the their feasibility. The goal

(a) Three difference scenarios where β̇ < 0

(b) Three difference scenarios where β̇ > 0

Fig. 3: Crossing angle of 90o, where zero indicates the effort-
aware robot and one the human-like planner

(a) Three difference scenarios where β̇ < 0

(b) Three difference scenarios where β̇ > 0

Fig. 4: Crossing angle of 45o, where zero indicates the effort-
aware robot and one the human-like planner

of the person is a point with a fixed distance away while the
goal of the robot is a random position away and an angle near
the direction of their heading, this allows one to randomize
the crossing order without altering relative velocities. This
is so as the person and the robot have approximately the
same speed, except in scenarios with crossing order of 180o,
depicted in Fig. 5, where the person has a speed 50% larger
than the robot (in order to allow the person to overtake).

It is important to note that there is no perceived order in
crossing scenarios with angles of 0o and 180o, both depicted
in Fig. 5. Whereas in the case of crossing angle 45o (Fig
.4) and 90o (Fig. 3) we showcase the different available
trajectories in the cases where the robot has the crossing
order priority (β̇r,p < 0) and in cases where the person has
the priority (β̇r,p > 0).



(a) Three different scenarios where crossing angle is 0o

(b) Three different scenarios where crossing angle is 180o. The
robot does not yield to the simulated person.

Fig. 5: Cases with no crossing order, where zero indicates
the effort-aware robot and one the human-like planner

VI. Discussion and Conclusion

This work presented an approach to allow a robot to
share the effort required to avoid collision with a person by
learning a policy that encodes stereotypical behaviors from
persons during collision avoidance. The results observed
during experimental evaluation show that the robot is capable
of sharing effort with angles 0o, 45o, 90o and 180o without
simply yielding to the person.

To our knowledge, this is the first work that approxi-
mates the human asymmetrical effort sharing during collision
avoidance in 90o crossing scenarios in different crossing
orders. This can allow a robot to better represent human-like
behavior, this is important as following stereotypical motions
were shown in recent works to reduce planning effort for
persons in the environment.

For the short term, our plan is to train and test the
system with multiple persons participating into the collision
avoidance, where each one has a different velocity. This
allows observation of cases where a particular collision
avoidance approach may by consequence cause additional
effort to somebody else. Moreover, our approach currently
makes a best effort to match the effort expectations solely
based on the current state of the robot, however, adding a
short-term memory of the effort already shared with someone
can help balance the effort over multiple time steps. Our long
term goal is to apply this model into a real robot that has to
avoid collision with multiple persons in a real environment.
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