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Résumé en francais

1 Introduction

La consommation sans cesse croissance d’énergie et les effets délétéres dus aux rejets de
substances polluantes ou a effet de serre dans I’environnement ainsi qu’a ’exploitation
de ressources non renouvelables, impose de rechercher des solutions techniques plus
durables. Les centrales solaires et particulierement les centrales thermodynamiques a
tour peuvent contribuer a relever ce défi. Dans ce type de centrale, un champ de mi-
roirs, nommés héliostats, concentre le rayonnement solaire sur un récepteur placé au
sommet d’une tour. Un fluide caloporteur y est porté a haute température avant d’ali-
menter une turbine afin de produire de 1’électricité. Ces centrales offrent en particulier
l'avantage d’étre connectables a un systéme de stockage [218] permettant de faire face
a la variabilité de la ressource solaire (nuits et passages nuageux) afin de maintenir
une production constante d’électricité et mieux s’intégrer au réseau de distribution
électrique existant. Afin d’assurer leur développement sur un marché concurrentiel, il
est nécessaire d’ameéliorer leur efficacité et de réduire leur cott (mesuré par le coiit
actualisé de 1'électricité produite ou LCOE [214] [169]).

Un moyen d’accroitre le rendement consiste & augmenter la température du fluide
de travail en entrée du cycle thermodynamique (c’est-a-dire en sortie du récepteur so-
laire), l'efficacité théorique étant normalement améliorée car le rendement de Carnot
augmente. Il est toutefois nécessaire de veiller a plusieurs contraintes. Premiérement,
le fluide de transfert doit pouvoir supporter de hautes températures (de I'ordre de
1000 °C), ce qui n’est pas le cas de la technologie actuellement la plus répandue qui
utilise des sels fondus [140]. De nombreuses recherches portent aujourd’hui sur 1'uti-
lisation de fluides solaires adaptés, comme les lits fluidisés ou les suspensions denses
de particules solides [81] ainsi que sur 'emploi de gaz, dont 'air [91] qui constitue
une ressource abondante et non polluante pouvant accepter des températures élevées.
Deuxiémement, les parois constituant le récepteur doivent pouvoir résister aux hautes
températures exigées sans vieillissement accéléré du fait des contraintes chimiques et
thermomécaniques générées [162]. Enfin, la course aux hautes températures trouve une
limite dans les pertes par rayonnement thermique qui augmentent rapidement avec la
température de surface et impliquent un point de fonctionnement au-dela duquel un
accroissement de température de paroi aboutit a une dégradation du rendement du
récepteur [130]. Un autre domaine d’application de I’énergie solaire concentrée est la
chaleur de procédé : dans le cas des systémes réactifs, il s’agit de thermochimie solaire
et il est question de récepteurs-réacteurs solaires si le récepteur est le siege de la ré-
action chimique. Dans ce type d’applications, la problématique de I'optimisation des
transferts de chaleur est similaire & celle des récepteurs mettant en oeuvre un fluide
non réactif. Par contre, d’autres contraintes apparaissent telles que les transferts de
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matiére et la cinétique chimique.

Améliorer la performance des récepteurs solaires consiste en particulier & intensifier
les échanges thermiques tout en évitant une trop grande chute de pression qui corres-
pond a une perte parasite d’énergie. Or, 'amélioration du premier critére s’accompagne
généralement d’'une dégradation du second. Pour rechercher le meilleur compromis entre
ces deux effets opposés, une fagon de procéder consiste a utiliser une mesure commune
regroupant toutes les puissances utiles perdues au sein du canal d’écoulement : la puis-
sance entropique générée permet de réaliser cette agrégation et est le fondement des
méthodes de minimisation de la génération d’entropie (EGM) [26]. Ainsi, le présent tra-
vail de thése se concentre sur I'estimation, 'analyse et la minimisation de la puissance
entropique générée dans 1’écoulement, en prenant en compte deux caractéristiques es-
sentielles des récepteurs solaires : l'existence de gradients thermiques (pouvant étre
élevés) et la présence de conditions aux limites thermiques asymétriques (puisqu’un
coté du récepteur est éclairé par le rayonnement solaire concentré et 'autre pas).

La physique des écoulements fluides dans les récepteurs solaires réels est complexe,
du fait de leurs géométries, des caractéristiques thermiques qui viennent d’étre citées,
mais également du fait que les écoulements sont turbulents [8] [9] [230] [211] [68] [69].
Trois approches différentes sont décrites dans la suite de ce document, apportant cha-
cune un éclairage complémentaire a la compréhension des taux de génération d’entropie
dans les écoulements anisothermes soumis & des conditions aux limites asymétriques
et portant chacune des simplifications par rapport aux récepteurs réels. Dans la pre-
miére approche, publiée dans le Journal of Thermophysics and Heat Transfer [12], la
couche limite laminaire externe d'un fluide s’écoulant au-dessus d’une plaque plane
chauffante est utilisée comme plateforme d’essais pour étudier I'influence de plusieurs
paramétres sur les taux de génération d’entropie locaux et intégrés. L’effet du type de
condition aux limites thermiques (température imposée vs densité de flux de chaleur
imposée) et de son intensité (écart de température paroi / fluide) sont étudiés. Dans
la seconde approche, qui a fait 'objet d’'une communication & l'International Heat
Transfer Conference IHT'C16 [10], un écoulement en canal plan, chauffé sur une partie
d’une de ses parois, fait I'objet d’une optimisation variationnelle visant a trouver des
champs de vitesse minimisant une fonctionnelle objectif directement liée & la puissance
entropique générée dans le canal. Les champs de vitesse et de température résultants
sont étudiés, 'amélioration en terme de génération d’entropie économisée est évaluée
et 'influence des conditions aux limites est décrite. La méme approche d’optimisation
est applicable & d’autres processus d’advection-diffusion comme la diffusion massique
d’une espéce minoritaire dans un écoulement convectif : une comparaison est faite avec
les résultats qualitatifs obtenus dans le cas du transfert de chaleur. Le troisiéme axe
d’analyse consiste a étudier 1’écoulement turbulent quasi-compressible en canal plan
d’un gaz dont les propriétés physiques dépendent de la température. Les parois sont a
des températures différentes avec un ratio de 2. Les statistiques de I’écoulement sont
décrites et I'influence du type de condition aux limites thermique est étudiée, ce qui a
donné lieu & une publication dans I'International Journal of Heat and Fluid Flow [11].
La puissance entropique générée localement est ensuite analysée en termes moyens et
fluctuants. L’effet du ratio de température entre les deux parois, du type de conditions
aux limites thermiques et du nombre de Reynolds de friction moyen est décrit. Ainsi,
plusieurs explorations et cartographies de la génération d’entropie sont effectuées : elles
sont présentées successivement dans la suite de ce résumé.
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2 Puissance entropique générée dans une couche li-
mite laminaire
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FIGURE 1 : Couche limite au dessus d’'une plaque plane

On considére ’écoulement bidimensionnel stationnaire d’un fluide Newtonien in-
compressible et & propriétés constantes au-dessus d’une plaque plane semi-infinie. Le
fluide arrive avec une vitesse et une température constantes et uniformes et est a la
fois chauffé et cisaillé par la plaque (figure 1). Les échanges radiatifs, les effets de la
gravité et les échauffements visqueux sont négligés. Dans le cadre de ces hypothéses,
un raisonnement sur les ordres de grandeurs des différents termes permet de simplifier
les équations des Navier-Stokes dans la couche limite laminaire [208] et d’exprimer la
conservation de la masse, de la quantité de mouvement et de ’énergie sous la forme
suivante :

ou Ov
%4—@:0 (1)
ou  Ou og
u%+v@:1/@g (2)
ug+va—T:ozﬂ (3)

Dans ces équations, x et y sont 'abscisse et 'ordonnée, respectivement et u(x,y)
et v(x,y) les composantes longitudinale et normale & la paroi de la vitesse, p est la
masse volumique du fluide, v sa viscosité cinématique, T'(z,y) sa température et «
sa diffusivité thermique. A ces trois équations, il convient d’adjoindre les conditions
aux limites suivantes pour la vitesse (Eq. 4) et pour la température, cette derniére
dépendant du type de condition aux limites thermique : (Eq. 5) pour une plaque a
température fixée (isotherme) et (Eq. 6) dans le cas ou la densité de flux thermique y
est imposée (isofux) :

u(z,0) =0, v(z,0) =0, lim u(x,y) =Usx (4)

Yy—00

T(x,0) =T,, lim T(z,y) =T (5)
y—00
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kL — g tim T y) = T (6)
ay =0 Yy—00

ou Uy et T, sont respectivement la vitesse et la température du fluide en entrée et
dans I’écoulement libre. T, et ¢” sont respectivement la température et la densité de
flux thermique a la paroi. La solution de similarité (des profils u(y) et T'(y) au long de
la plaque) consiste a introduire plusieurs variables adimensionnelles [116] : 'ordonnée
n, la fonction f (liée a la fonction courant ¥) et I’écart de température avec la paroi 6 :

n=y [i—? (7)

¥ = Usrzf(n) (8)
u=0p/dy, v=—0/0x (9)
o) = 7" (10

Ce changement de variables permet d’aboutir & des équations différentielles ordi-
naires, plus faciles a résoudre numériquement, portant sur la vitesse (Eq. 11, qui est
I'équation de Blasius [37] [170]) et la température (Eq. 12 pour une plaque isotherme
et Eq. 13 pour une plaque isoflux) ainsi qu’aux conditions aux limites associées (Eqs.
14 et 15) :

P S ff =0 (1)

o + %Prfe/ 0 (12)

0 + %Prfé)’ + %Prf/(l —6)=0 (13)
F0) =0, (0) =0, lim fn) =1 (14)
9(0) = 0, Tim 0(y) =1 (15)

La puissance entropique générée localement (en W.K ~1.m™3) s’exprime de la fagon
suivante [26], ou ¢ est le terme de dissipation visqueuse dans 1'équation de I’énergie
(également nommé : fonction de dissipation visqueuse) explicité ci-dessous pour un
écoulement incompressible bidimensionnel :

S///

gen — T2

o "
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o (3) G ] (G5 "

Dans le cas d’une plaque isotherme et en retenant de la fonction de dissipation
visqueuse uniquement le terme majoritaire (Ou/dy)?, 1'équation 16 exprimée a I'aide
des fonctions f et 6 permet d’obtenir la puissance entropique générée localement sous
forme adimensionnelle S5 (Eq. 18), 'adimensionnalisation étant faite par référence a
la quantité kUZ/v?. Elle dépend du nombre de Reynolds local Re, = Uyx/v, du
nombre de Prandtl Pr = v/a, du nombre d’Eckert Ec = U2 /(C,(T,, — Tw,)) ainsi que
du rapport thermique adimensionnel 7 = T,,/(T,, — Tx,) et elle est la somme de trois
contributions correspondant respectivement a la génération d’entropie par conduction
horizontale de la chaleur, par conduction verticale de la chaleur et enfin par frottement
visqueux, identifiées respectivement par les indices (.)en, (.)ev €t ()7 (Egs. 19).

0" n? PrEc )
— 1 = " 1
%= R tr =0 <4Rex + ) T R0y (18)
0" n? 0" PrEc )
= _ - - - " 1
st = R (=0 <4Rex)’ Sse0 = por=ap M T Rar—0)! (19)

Par intégration a abscisse fixée, on obtient la puissance entropique surfacique gé-
nérée S (Eq. 20) et une seconde intégration, entre deux positions le long de la plaque
(identifiées par leurs nombre de Reynolds locaux Re, et Rey), aboutit a la puissance
entropique totale générée entre ces deux positions (Eq. 21). Les fonctions (2 sont des
intégrales sur le domaine de variation de la variable 77 et ne dépendent que de 7 et des
fonctions f, 0 et leurs dérivées.

Qch -1
= ? PrEc 2 o2 2
S (43633 + 2., + PrEc f) Re (20)
S1 = 2(Rea® — Re, )12
- = €a - (& c
1 9 b h (21)

ISENTES

+2(Re? — Rel)(Qu + PrEcs2;)

Dans le cas d’une plaque soumise a une densité de flux thermique uniforme et
constante (cas isoflux), la puissance entropique adimensionnelle générée localement
s’écrit de la fagon suivante :

0 nd —0+1\° 1 PrEc
_ 1 "2 29
5s Re, (T — 0)? (( o > 4Re, * ) * Re, (T — O)f (22)

La puissance entropique surfacique répond a la méme forme mathématique que dans
le cas isotherme (Eq. 20), sachant que la fonction 0 y est différente et que le parameétre
7 ainsi que le nombre d’Eckert et les fonctions {2 dépendent désormais de la distance
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au bord d’attaque. La puissance entropique totale entre deux positions Re, et Re;, est
obtenue par intégration numérique.

Afin de comparer les simulations & température de paroi imposée avec celles & den-
sité de flux fixée, un point de référence commun a toutes le simulation a été choisi et
correspond a Reg .y = 1000. A ce point, la température est la méme pour toutes les
simulations qui partagent par ailleurs la méme vitesse de I’écoulement libre Uy, et le
méme nombre de Prandtl Pr = 1. Les équations de la couche limite laminaire ont été
résolues numériquement via un schéma Runge-Kutta du quatriéme ordre [121] et les
fonctions f et 6 ont été validées par rapport a la littérature [87] [53] [54]. Pour une large
plage de valeurs du parameétre 7 = T,,/(T,, — Tw) au point de référence (7,.f) et pour
les deux types de conditions aux limites thermiques, les puissances entropiques géné-
rées localement en fonction de 77 ont été calculées, ainsi que I’évolution des puissances
surfaciques en fonction de la position de long de la paroi. Enfin, le comportement de la
puissance entropique totale est étudié dans le cas oti on impose la puissance thermique
échangée entre le fluide entrant et la plaque.

1.8¢-06
1.6e-06 T
1.4e-06 |

3.0e-06

S5 . . . .
Sich

S3,cv ]
o 33

@ S;-isothermal case

25006 |

1.2e06 | 2.0e-06 T,
1.0e-06 |
1.5¢-06 |
8.0e-07 |
6.0e-07 1.0e-06
4.0e-07 |
5.0e-07 |
2.0e-07 |
0.0e+00 0.0e+00 ‘ :
0 1 2 3 4 5 6 0 1 2 3 4 5 6
n n
(a) Isothermal : 7.5 = 10, Re, = 1000 (b) Isoflux : Ty =10, Re, = 1000

FIGURE 2 : Puissance entropique adimensionnelle générée localement (S3). Plaque iso-
therme (&4 gauche) et isoflux (& droite). La courbe de S3 pour le cas isotherme est
également affichée pour servir de comparaison sur le graphique du cas isoflux (ligne
noire en traits pleins).

La puissance entropique adimensionnelle générée localement en chaque point de la
couche limite (S3) présente un profil en fonction de la distance adimensionnée a la paroi
(n) qui dépend du type de condition aux limites thermiques (isotherme ou isoflux), du
paramétre 7 et de la distance au bord d’attaque (exprimée sous forme adimensionnelle
par Re,). Il en est de méme de la composition de cette puissance, c’est a dire des parts
relatives correspondant aux conductions verticales et horizontales de la chaleur et a la
part visqueuse. La part liée a la conduction horizontale (ainsi que les parts des termes
qui ont été négligés dans la fonction de dissipation visqueuse) ne devient significative
que prés du bord d’attaque (par exemple pour Re, = 10). Un exemple de comparaison
isotherme / isoflux est présenté dans la figure 2, au point de référence Re, = 1000 et
pour un écart de température entre la plaque et I’écoulement libre égal a un dixieme
de la température de paroi, toujours au point de référence. La puissance entropique
générée est strictement positive a la paroi et peut présenter un maximum local, avant
de décroitre vers zéro en atteignant I’écoulement libre isentropique. La position de ce
maximum local dépend du type de condition aux limites thermiques (isotherme vs
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isoflux) mais également de la valeur de 7 au point de référence : il trouve sa source
dans la compétition entre les évolutions de la température et de son gradient vertical
en proche paroi. Les comparaisons entre les simulations a plaque isotherme et isoflux
ont été effectuées en modifiant la valeur de 7 au point de référence et en se déplacant
le long de la plaque : elles sont détaillées en section 2.5 du manuscrit de thése.

1e-03

‘ m———
le-04 W ]
le-05
le-06 §

le-10 1e-07
3 1e-08
le-12 | S2ch
e o 1e09 | Sy —o—
So Sa e
le-14 | 4 y
Slope e e le-10 + S2 o —
SlopeR® s Sz,f
le-16 L L . le-11 ‘ ‘
le+02 1e+03 le+04 le+05 1e+06 le+02 le+03 le+04 le+05 le+06
Re Re

X X

(a) Isothermal : Tpef = 10 (b) Isoflux : Trey =10
FIGURE 3 : Plaque isotherme (& gauche) et isoflux (& droite) : puissance entropique
surfacique adimensionnelle pour 7,.; = 10 et Re, de 100 a 1000000

La puissance entropique surfacique adimensionnelle S5 dépend également de la va-
leur de 7 choisie au point de référence et de la position le long de la paroi. Pour une
plaque isotherme, Sy décroit quand le nombre de Reynolds local augmente (figure 3(a)).
Dans le cas d'une plaque a densité de flux thermique imposée, S5 est le résultat de la
concurrence entre deux causes lorsque 1’on s’éloigne du bord d’attaque : I'augmentation
de l'écart de température relatif (7(x) diminue) d’une part, et 'épaississement de la
couche limite thermique, d’autre part. La courbe résultante présente en particulier un
minimum dont la position dépend de la valeur de 7 au point de référence (figure 3(b)).

La puissance entropique adimensionnelle totale générée entre deux positions fixées
le long de la paroi (57) est une fonction décroissante de 7,.¢. Par contre, si on impose
une puissance thermique échangée par unité de largeur de plaque ¢’ (notée ¢; sous
forme adimensionnelle - cf. Eq. 23) entre la plaque et le fluide (& partir d’une position
donnée exprimée par son nombre de Reynolds local Re,), S; présente un minimum (cf.
figure 4) pour une valeur optimale 7,,; qui dépend du type de condition aux limites
thermiques. Dans le cas isoflux, il est possible de s’éloigner de fagon significative de
Topt (par exemple, en autorisant des écarts de températures relatifs plus élevés), sans
modifier sensiblement la puissance entropique générée. Lorsque le point de fonctionne-
ment est & 7,.y trés petit et aux alentours de 2 par exemple (c’est le cas des récepteurs
solaires dans lesquels les gradients de température sont élevés), réduire Iécart relatif
de température peut apporter une réduction significative de la puissance entropique
générée. Dans le cas d’une plaque isotherme, la valeur de 7, est indépendante du point
de départ de l'intervalle d’intégration (Re,) et de la puissance fixe échangée (q;). Par
contre, dans le cas isoflux, 7,,; est une fonction croissante de ces deux grandeurs.

_ T
kTw,ref

T (23)
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FIGURE 4 : Puissance entropique totale générée a partir de Re, = 1000 avec ¢; = 26.67
(Tres allant de 5 & 190.)

En complément des travaux présentés ci-dessus, le développement d’une couche li-
mite laminaire pour un fluide rencontrant une plaque chauffante est simulé avec le
logiciel Fluent et la puissance entropique générée est calculée. Deux buts sont pour-
suivis : le premier est de vérifier qu’il peut y avoir un sens a négliger la fonction de
dissipation visqueuse dans I’équation de I’énergie tout en la prenant en compte dans le
calcul de 'entropie générée. Le second est de comparer les ordres de grandeurs obtenus
en résolvant les équations de Navier-Stokes incompressibles avec ceux tirés des équa-
tions de la couche limite laminaire résolues par la méthode de similarité et 1’équation
de Blasius.

Une analyse théorique, fondée sur les équations adimensionnées (I’équation de I’éner-
gie dans la couche limite laminaire et la formule de calcul de la puissance entropique
générée), tend a démontrer que si le nombre de Brinkman Br = PrEc est trés pe-
tit devant 1'unité, la fonction de dissipation visqueuse est négligeable devant le terme
conductif dans I’équation de I’énergie. Par contre, pour pouvoir négliger le terme vis-
queux dans le calcul de la puissance entropique générée, il faut que Br.7 soit petit.
Deux simulations ont été effectuées dans une situation ot Br = 0.01 et Br.7 = 1, I'une
en résolvant ’équation de I’énergie en prenant en compte 1’échauffement visqueux et
I’autre en négligeant cette contribution. L’analyse de ces deux simulations montre que
les profils de températures obtenus sont quasiment identiques et que la fonction de dis-
sipation visqueuse peut effectivement étre négligée dans I’équation de I’énergie pour un
nombre de Brinkman petit. Par ailleurs, la part liée au frottement visqueux n’est pas
négligeable dans le calcul de la puissance entropique générée (elle est du méme ordre
de grandeur que la part liée a la conduction de la chaleur) car le produit Br.m = 1
n’est pas négligeable devant l'unité.

Dans les deux simulations décrites ci-dessus, l'erreur sur le bilan d’entropie est
inférieure & 1% du flux net d’entropie (que ce soit par transfert convectif de matiére ou
par conduction de la chaleur depuis les parois). Toutefois, dans la situation étudiée o
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I'entropie générée est petite par rapport aux flux d’entropie (conductifs ou convectifs),
I’ordre de grandeur de la puissance entropique générée est le méme que celui de I'erreur
numérique constatée sur le bilan d’entropie. Afin de s’assurer que cette erreur n’est pas
concentrée sur le calcul de la puissance entropique générée, une analyse a été effectuée
en calculant quatre écoulements : deux & flux imposés et deux & températures imposées,
avec pour chaque cas les valeurs 7.y = 2 et 7.y = 100. Les résultats obtenus sont
proches de ceux fondés sur ’équation de Blasius. Les écarts sont plus prononcés, tout
en conservant les ordres de grandeurs, pour la puissance entropique d’origine visqueuse,
du fait de la solution différente et plus réaliste obtenue en résolvant directement les
équations de Navier-Stokes pour le champ de vitesse longitudinal [60]. En synthése,
les puissances entropiques calculées sont cohérentes avec celles obtenues précédemment
dans le cadre simplifié de la méthode de similarité et des approximations de la couche
limite laminaire.

3 Optimisation variationnelle d’un écoulement interne

Dans cette section, on considére & nouveau un écoulement bidimensionnel stationnaire
d’un fluide Newtonien incompressible a propriétés constantes, cette fois a I'intérieur
d’un canal plan (figure 5) dont un tiers d’une paroi transfére au fluide une densité de
flux thermique uniforme et constante (les autres parois étant adiabatiques). Comme
précédemment, les effets de la gravité sont négligés et il en est de méme des échanges
radiatifs et de 1’échauffement visqueux. Le fluide entre dans le canal & vitesse et a
température uniforme et constante. La pression relative en sortie est fixée & zéro.

e 30mm .. -
R 4
V;n —_— F :
— V4 '5 mm
—_— ]
I =% H
O X < * >
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FIGURE 5 : Caractéristiques du domaine.

Les équations de I’écoulement sont indiquées ci-dessous et la puissance entropique
locale générée est calculée comme précédemment (Egs. 16 et 17).

V.V =0 (24)
pV.NV = VP + uV?V + F (25)
koo
V.VT = —V°T (26)
pCyp

Dans ces équations, V' est le vecteur vitesse, P la pression, T" la température, p la
masse volumique du fluide, p sa viscosité dynamique, k sa conductivité thermique et
C, sa capacité calorifique a pression constante. F' est un champ de force volumique qui
est utilisé dans le processus d’optimisation décrit ci-apres.
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On se place dans le cas ou le nombre de Bejan (Eq. 27) est proche de 'unité, c’est
a dire que la puissance entropique générée par dissipation visqueuse est petite devant
celle qui est générée du fait des transferts de chaleur a travers les différences finies de
température.

S en,c .
Be = —%"— (\). : transfert de chaleur (.); : : frottement visqueux  (27)

: : ,
Sgenc + Sgen,

On cherche a minimiser la puissance entropique générée par ce terme majoritaire
tout en prenant en compte la dissipation visqueuse a travers un facteur pondérateur,
nommé Wy permettant de donner un poids relatif plus ou moins important a la chute de
pression dans la procédure d’optimisation [141] [108]. La fonctionnelle objectif est une
combinaison linéaire de la puissance entropique générée par conduction de la chaleur,
d’une part, et de la fonction de dissipation visqueuse, d’autre part :

J = / / /Q (%(VT)Q + W¢¢) AR (28)

La conservation de la masse et de ’énergie sont prises en compte en utilisant deux
multiplicateurs de Lagrange (respectivement A; et Ay qui sont des fonctions de la po-
sition dans le canal) et le critére Lagrangien & minimiser est :

J* = ///Q {%(VT)Q + Wepd

+y {iVQT — V.VT} + Alv.V}.dQ
pCyp

(29)

L’expression du champ de force volumique est obtenue en annulant la premiére
variation de J* par rapport aux composantes u et v de la vitesse et en prenant en
compte I’équation de conservation de la quantité de mouvement :

A2
F = VT + pV.VV 30
Mg p (30)
Annuler la premiére variation de J* par rapport a la température permet d’aboutir
a une équation de type transport pour le second multiplicateur de Lagrange Ao, qui est
nécessaire au calcul de la force volumique :

—k 2%kp, (VT

Les conditions aux limites applicables a I’'équation 31 dépendent de celles de la
température : si cette derniére est imposée, ’équation 32 s’applique. Si la densité de
flux thermique est imposée, c’est I’équation 33 qui doit étre appliquée (0/0n étant la
dérivée normale au bord du domaine) :

Ao =0 (32)

(33)
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Une quarantaine de simulations ont été effectuées avec de l'air entrant a T;, =
300 K, en imposant une densité de flux thermique de 1000 W.m~2 & la plaque chauffante
et pour trois valeurs du nombre de Reynolds (Re = 20, Re = 30 et Re = 320). Le champ
de force F' est appliqué dans le tiers central du canal (au-dessus de la zone chauffée).
Le facteur pondérateur Wg couvre un large spectre de valeurs (de Wg =~ 0.54 K “1a
Wy ~ 1.23x10° K~'), de fagon a aborder des situations allant du cas ou la dissipation
visqueuse a un poids relatif significatif dans I'optimisation a des simulations o elle est
a priori négligeable.
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4.0e-03 |
3.5¢-03 |

3.0e-03

. -1
Sgen WK1

2.5e-03

2.0e-03

1.5e-03 |

1.0e-03

le-01  1e+00  le+01  1e+02  1e+03  le+04  1e+05  1e+06
W, K]

FIGURE 6 : Puissance entropique totale générée dans le canal Sgen en fonction de W

La puissance entropique générée dans le canal dépend du nombre de Reynolds et
est une fonction croissante de W (figure 6). Pour de petites valeurs de ce facteur (par
exemple Wg =1 K ~1 a Reynolds 30), le gain relatif peut étre élevé par rapport a une
situation non optimisée (74% de réduction relative de la puissance entropique générée).
Ce gain est obtenu au prix d’un accroissement de la puissance entropique générée par
frottement visqueux, qui reste toutefois plusieurs ordres de grandeur inférieure a la
génération d’entropie liée a la conduction de chaleur (figure 7).

Une irrégularité apparait dans les courbes de génération d’entropie et est matériali-
sée dans la figure 6 par des lignes verticales. Cette irrégularité est également visible pour
la puissance entropique générée par frottement visqueux (figure 7, surtout a Re = 20 et
Re = 30) et une analyse des autres grandeurs dans le canal, comme les vitesse et tem-
pérature maximales ou encore la dissipation visqueuse totale, fait également apparaitre
le méme phénomeéne de rupture.

Cette irrégularité est concomitante & un changement de régime dans 1’écoulement,
correspondant & une transition entre des profils de vitesse (figure 8) allant de peu a trés
perturbés par rapport au cas ol aucune optimisation n’est pratiquée (et aucun champ
de force volumique appliqué). Les champs de vitesse trés perturbés correspondent a
de petites valeurs du facteur de pondération (par exemple, lorsque Wg = 296 K “1a
Reynolds 30) et il en est de méme pour les champs de température et de puissance
entropique générée par conduction de la chaleur ou par frottement visqueux. Pour de
plus grandes valeurs (par exemple Wg = 394 K—'), les champs sont peu perturbés et
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FIGURE 7 : Puissance entropique générée dans le canal du fait des frottements visqueux
Sgen,s en fonction de W

lorsque W est tres grand (par exemple au-dela de 10> K1), les champs de vitesse et
de température tendent vers ceux du cas non-optimisé.

W, = 394 K1

W, = 296 K1

W, = 197 KL

<
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FIGURE 8 : Norme du vecteur vitesse pour Wg = 394 K, 296 K~' et 197 K.
Re = 30.

Les champs de vitesse obtenus par optimisation variationnelle tendent a plaquer
I’écoulement vers la paroi chauffante. Par ailleurs, dés que le facteur de pondération
W devient inférieur a la valeur critique qui déclenche la transition vers les régimes tres
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perturbés, un vortex apparait, collectant le fluide en début de zone chauffée, avant de
I’entrainer vers le centre du canal, de 'accélérer et enfin de le ramener vers le segment
chauffant. Ce champ de vitesse induit un meilleur mélange dans le canal : la température
maximale baisse dans le volume et son écart-type est réduit. Par ailleurs, la température
de la paroi chaude (figure 9) ainsi que le profil de température en sortie du canal
sont homogénéisés. Le fait que la température maximale de la plaque chauffante soit
réduite constitue un avantage pour les récepteurs solaires ot les matériaux constituant
les parois sont soumis a rude épreuve.
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FIGURE 9 : Température maximale de la paroi chauffante [K].

Apres avoir utilisé ’air comme fluide, une centaine de simulations ont été effec-
tuées avec de l'eau (un fluide aux propriétés thermo-physiques trés différentes) et ce
pour deux types de processus d’advection-diffusion différents : en premier lieu, 1'opti-
misation variationnelle a été appliquée au transfert de chaleur, exactement comme cela
vient d’étre décrit dans le cas de l'air (cette fois & Reynolds 10 et 20 et avec une densité
de flux thermique a la paroi chauffante de 15000 W.m™?). Les résultats obtenus sont
qualitativement semblables & ceux présentés précédemment : la puissance entropique
générée décroit quand Wy diminue et les températures sont homogénéisées. Parallele-
ment, la dissipation visqueuse augmente et il existe une valeur critique Wg induisant
un changement de régime entre des champs peu et tres perturbés par rapport a des
situations sans optimisation. Une comparaison & méme nombre de Reynolds montre
que cette valeur critique n’est pas la méme pour les simulations effectuées avec 1'eau
et avec l'air.

L’influence des conditions aux limites a également été investiguée. En particulier,
la densité de flux thermique & la paroi chauffante a une influence sur la puissance
entropique générée (en relation croissante) et sur la valeur critique de W, induisant la
transition entre les régimes peu et trés perturbés : plus la densité de flux de chaleur est
élevée, plus cette valeur critique est élevée. Si on fixe la valeur du facteur pondérateur
W, ainsi que le nombre de Reynolds et que la densité de flux thermique imposée varie,
on constate (figure 10) que la puissance entropique générée (que ce soit par conduction
ou par frottement visqueux) ainsi que les vitesses et températures maximales dans le
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canal sont en relation croissante avec la densité de flux thermique. Par ailleurs il existe
une valeur critique de cette derniére qui induit une transition de régimes peu perturbés
(pour une densité de flux inférieure & la valeur critique) a trés perturbés (dés que la
densité de flux critique est dépassée). Le méme type de comportement est constaté
lorsque c’est la vitesse en entrée du canal que I'on fait varier, en maintenant constante
la densité de flux de chaleur et la valeur de W, : il existe une valeur critique de cette
vitesse d’entrée qui provoque la transition de régime.
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FIGURE 10 : Puissance entropique totale générée Sgen ainsi que sa composante pro-
venant du frottement visqueux Sg., s en fonction de la densité de flux thermique a la
paroi chauffante (Re = 20 et Wg = 1.23 x 10° K1).

A titre de comparaison, la diffusion d’une espéce chimique minoritaire a été étudiée
en conservant I’eau comme fluide majoritaire, la solution étant trés diluée et considérée
comme idéale. Cette fois, le tiers central de la plaque inférieure du canal est le siége
de la production uniforme et constante d’une espéce minoritaire qui diffuse dans le
canal tout en étant entrainée par 1’écoulement. Le scalaire passif étudié n’est plus la
température mais la fraction massique de I’espéce minoritaire. Le systéme différentiel
a résoudre conserve la méme forme pour I'équation de continuité et la conservation
de la quantité de mouvement (Eqgs. 24 et 25). Par contre, 'équation de I’énergie est
remplacée par I’équation de diffusion de 'espéce minoritaire (Eq. 34) qui est similaire
mathématiquement mais s’appuie sur un coefficient de diffusion dont la valeur et le pro-
cessus physique sous-jacent sont différents. Par ailleurs la puissance entropique générée
localement a une forme différente [48]| (Eq. 35) et cela est répercuté sur la fonctionnelle
objectif (Eq. 36) et le critére de Lagrange a minimiser (Eq. 37). Comme précédemment,
I’application du calcul des variations permet d’obtenir ’expression du champ de force
volumique (Eq. 38) ainsi que 'équation de transport du multiplicateur de Lagrange Ao
(Eq. 39) et la condition aux limites correspondante (Eq. 40) pour les bords du domaine
ou une condition de von Neumann est utilisée.

V. .Vw, = DV?u, (34)
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Dans ces équations, w; est la fraction massique de ’espéce minoritaire, D son
coefficient de diffusion dans le solvant, R est la constante (molaire) des gaz parfaits,
M, et M, sont les masses molaires du soluté et du solvant respectivement et ¢ est la
concentration molaire totale en [mol.m ™3|, qui est supposée constante dans la solution
tres diluée.

Les résultats obtenus dans le cas de la diffusion d’une espéce minoritaire sont qua-
litativement similaires & ceux obtenus pour le transfert de chaleur. Ceci est également
vral quant & la dépendance des puissances entropiques générées en fonction de l'in-
tensité de flux appliquée dans la zone d’échange en paroi inférieure (densité de flux
thermique ou densité de flux massique suivant le type de diffusion étudié¢). En particu-
lier, il existe une valeur critique de la densité de flux massique déclenchant le passage
des profils de vitesse et de fraction massique du composé minoritaire de la configuration
peu perturbée a la configuration trés perturbée.

Ainsi, le comportement des grandeurs physiques dans 1’écoulement est qualitative-
ment semblable pour des fluides différents, des processus de diffusion différents (mais
partageant des modéles mathématiques proches) et des conditions aux limites diffé-
rentes (densités de flux, nombres de Reynolds). Il en est de méme quant a l'existence
de régimes d’écoulement plus ou moins perturbés et d’une valeur critique du facteur
pondérateur de la dissipation visqueuse dans la fonctionnelle objectif. Cette valeur cri-
tique a fait 'objet de tests visant & vérifier sa stabilité au maillage (des maillages deux
et trois fois plus fins ont été utilisés) ainsi que sa dépendance éventuelle aux condi-
tions initiales : ’existence de cette valeur critique est confirmée ainsi que son ordre de
grandeur qui semble par ailleurs relié a un passage d’'une optimisation centrée sur la
dissipation visqueuse (profils peu perturbés) a une optimisation centrée sur la puissance
entropique générée par la conduction de la chaleur (profils trés perturbés).
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4 Puissance entropique générée dans un écoulement
turbulent

On s’intéresse maintenant & un écoulement tridimensionnel en canal plan bi-périodique
sur les directions longitudinale et transversale (figure 11), turbulent et statistiquement
établi et stationnaire, pour un fluide dont les propriétés physiques (la masse volumique,
la viscosité et la conductivité thermique) dépendent de la température qui agit désor-
mais en scalaire actif et assure une connexion entre les équations de la quantité de
mouvement et celle de I’énergie. Les plaques bordant le canal sont & des températures
différentes avec un ratio mur chaud vs mur froid 75/T; = 2 et le nombre de Reynolds
de frottement moyen entre la paroi chaude et la paroi froide est Re,,, = 180. Le fluide
est considéré comme un gaz parfait et 'approximation & bas nombre de Mach (approxi-
mation quasi-compressible) est utilisée [190] car elle correspond aux écoulements dans
les récepteurs solaires ou les vitesses du fluide sont petites par rapport & la vitesse du
son.

Hot pl
Tz > T1 ot plate
T
R
2h
Cold plate
y T1 L,
IL: L,

FIGURE 11 : Canal plan bi-périodique : les axes x et z sont des directions d’homogénéité

Sous ces hypothéses, les équations gouvernant I’écoulement sont les suivantes :

dp  0(pU;)

s = 41

ot oe, (41)
ot ox; Ox;

(42)

O (, U] 20 ( o
Ox; a Or;  Ox; 3 0x; M@xk

or _OT\ 0P, 9 [ OT
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OP,,
axi

Dans ce systéme d’équations, les indices 7 et j obéissent a la convention de som-
mation d’Einstein et p est la masse volumique du fluide, U; sont les composantes de
sa vitesse, p est sa viscosité dynamique, C), = 1005 J.kg 'K ~! sa capacité calorifique
a pression constante, k sa conductivité thermique et T' sa température. z; sont les co-
ordonnées cartésiennes et t est le temps. La pression est décomposée en deux termes :
P = Py, + Py, ot Py, rend compte des variations de pression dues a la vitesse et Py,
est une pression uniforme reliée a la masse volumique et a la température via I’équation
d’état du fluide (on r = 287 Jkg 'K~ est la constante spécifique de Dair) :

~0 (44)

Py, = prT (45)

La viscosité dynamique dépend de la température suivant la loi de Sutherland [221]
et la conductivité thermique également car elle est dérivée de la viscosité en retenant
un nombre de Prandtl constant Pr = 0.76 :

1.5

=1.461 x 1076 ——
H T T

(46)

nC

Des simulations numériques directes de référence ont été effectuées pour deux types
de conditions aux limites thermiques : dans un premier temps une simulation a tempé-
ratures imposées aux parois a été réalisée et les densités de flux thermiques obtenues
aux parois ont été constatées. Ces densités ont ensuite été utilisées pour réaliser une
simulation & densité de flux imposée aux parois afin de disposer de simulations com-
parables. La comparaison des statistiques de la turbulence pour ces deux simulations
montre que les profils de vitesse longitudinale et normale aux parois, ainsi que les
écarts-types des fluctuations des vitesses sont quasiment identiques et ne sont donc pas
réellement influencées par le type de condition aux limites. Il en est de méme pour la
corrélation des fluctuations des vitesses longitudinales et normales aux parois. Le profil
de la température est également tres proche. D’autres statistiques sont plus impactées
et en particulier les fluctuations de la température (figure 12) dont 1'écart-type présente
un profil différent suivant le type de conditions aux limites thermiques : & densités de
flux imposées la variance de la température n’est plus nulle aux parois et sa valeur
dimensionnelle est plus élevée du coté chaud du canal (en termes adimensionnés par
la température de frottement, c’est a la paroi froide que les fluctuations sont les plus
importantes).

Les deux simulations de référence ont été poursuivies, aprés une modification du
code de thermo-hydraulique afin de calculer et de moyenner des grandeurs addition-
nelles comme la puissance entropique générée localement en tout point du canal, dont
I’expression est la suivante :

S k or 2 or 2 2
Sgen = 72 | (57) +(@) +() |+ 5 (48)
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FIGURE 12 : Ecart-type des fluctuations de la température (adimensionnées par la
température de frottement 7) en fonction de la distance addimentionnelle & la paroi
la plus proche y™ = (y/h)Re..
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Sauf mention du contraire, la suite de cet exposé concerne la simulation a tempé-
ratures imposées aux parois avec un ratio de température pariétal T /7 = 2 et un
nombre de Reynolds de frottement moyen Re.,, = 180. D’autres configurations ont
été étudiées et seront décrites plus loin. Les moyennes statistiques, notées < . >, sont
effectuées sur des plans horizontaux (zz) et dans le temps.

La moyenne de la puissance entropique générée localement en fonction de la distance
au mur froid (Figure 13) est essentiellement concentrée prés des parois qui sont le lieu
des irréversibilités les plus fortes, et principalement dans la sous-couche visqueuse, cor-
respondant & une distance adimensionnelle & la paroi la plus proche y* = (y/h)Re, <5,
ol Re, est le nombre de Reynolds de frottement de la paroi considérée. Le profil est
asymétrique, la puissance entropique générée présentant des valeurs plus faible du coté
chaud du canal ainsi qu'un maximum situé a y* = 3.4 qui correspond au point de
début de séparation du profil de la vitesse moyenne avec la loi de paroi < U >1= y*.

L’analyse de la composition de la puissance entropique générée totale Sgen (WK™
montre que cette derniére est essentiellement constituée de la part correspondant a la
conduction de la chaleur, la part visqueuse étant négligeable pour le ratio de tempéra-
ture et le nombre de Reynolds étudiés. La part conductive provient pour environ 80%
de la conduction verticale de la chaleur, les gradients de température horizontaux et
transversaux intervenant du fait de leurs fluctuations turbulentes uniquement. Le terme
majoritaire, 1ié au gradient vertical de la température, fait ’objet d’une décomposition
en approximations successives (figure 14) afin de déterminer dans quelle mesure les
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FIGURE 13 : Moyenne de la puissance entropique générée localement.
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FIGURE 14 : Approximations successives la puissance entropique générée localement.

Le terme noté Sg;, ., correspond a la part provenant de la conduction verticale de la
chaleur.

champs moyens (de température, en particulier) peuvent étre utilisés dans le calcul
de 'entropie générée. Alors que la température et la conductivité thermique moyenne
peuvent étre employées sans encombre dans le terme k/T7?, le gradient de la tempé-
rature ne peut pas étre estimé a l’aide de la température moyenne sans commettre
une erreur importante. L’écart-type des fluctuations turbulentes de ce gradient est si-
gnificatif et contribue a un écart-type de la puissance entropique générée localement
(comprenant tous les termes conductifs et visqueux, moyens et turbulents) qui est du
méme ordre de grandeur que sa moyenne.

L’analyse de la puissance entropique moyenne générée localement du fait de la
conduction verticale de la chaleur (qui est le terme majoritaire comme indiqué précé-
demment) en fonction de la distance adimensionnée a la paroi la plus proche (y*) peut
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FIGURE 15 : Decomposition de la puissance entropique locale due a la conduction
verticale de la chaleur (cf. Egs. 50 and 51)

étre effectuée en distinguant la contribution provenant du champ moyen de tempé-
11 : ; ; 11

rature S, . mpan de celle qui provient des fluctuations turbulentes Sgg, .7 procr

(embarquant les effets liés aux variances et corrélations de ces fluctuations), comme

indiqué dans les équations 50 :

o <k:>(d<T>>2
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<T>2 dy (50)
111 . 111 I
gen,c,Ty,FLUCT =< gen,c,Ty > = gen,c,Ty, MEAN
) < S/// >
" + gen,c
< SN o> (51)

T < gl >? /(< ky >< Ty, >2)

Les puissances entropiques adimensionnelles (normalisées a partir des lois de parois
pour les champs moyens tel qu’indiqué dans I’équation 51) sont présentées a la figure 15.
Les frontiéres des différentes sous-couches de I’écoulement turbulent ont une incidence
sur les profils correspondants. La concentration des puissances entropiques générées
y est apparente dans la sous-couche visqueuse. La part liée au champ moyen de la
température (figure 15(a)) chute fortement dans les zones buffer et logarithmiques,
puis cette contribution passe par un minimum local avant de remonter 1égérement au
centre du canal, les profils y présentant une asymétrie entre le coté chaud et le coté
froid. En effet, 'asymétrie des conditions aux limites thermiques influence la position
de la fin de la zone logarithmique qui est située aux alentours de y* = 70 du coté
chaud et y™ = 150 du coté froid. Aux parois, la part liée aux fluctuations (figure
15(b)) équivaut a environ 20% de la puissance entropique générée localement due a la
conduction verticale de la chaleur. Elle présente une asymétrie plus prononcée entre le
coté chaud et le coté froid dans lequel une oscillation apparait a I'intérieur de la zone
buffer. Ce phénomeéne d’oscillation a également été observé dans la littérature [125] [126]
sur la base de simulations d’écoulements incompressibles, en chauffage symétrique et
pour lesquelles la température est un scalaire passif.

Modifier le ratio de température entre la paroi chaude et la paroi froide, tout en
maintenant constant le nombre de Reynolds de frottement moyen influence les puis-
sances entropiques générées (figure 16) : un accroissement de ce rapport induit un
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FIGURE 16 : Moyenne de la puissance entropique générée localement pour plusieurs
ratios de températures T /77 entre le mur chaud et le mur froid (Re,,, = 180).

accroissement de ces derniéres ainsi qu’une asymeétrie plus prononcée entre le coté
chaud et le coté froid. A partir de ratios mur chaud / mur froid relativement modestes
(Ty/Ty > 1.005) les puissances entropiques générées dans une large zone centrale du
canal conservent un ordre de grandeur relativement stable. Si 1’on fait varier le nombre
de Reynolds de frottement moyen (entre 150 et 210) en maintenant constant le ratio
de température entre le mur chaud et le mur froid, les puissances entropiques générées
aux parois augmentent approximativement en proportion des nombres de Reynolds au
carré et en accord avec l'influence du composant majeur (la conduction verticale de la
chaleur) et des lois de parois.

Les champs instantanés de puissance entropique générée localement (présentés a
la paroi froide dans la figure 17) font apparaitre des structures de forme allongée
dans le sens de 1’écoulement. Ces structures sont d’une taille moyenne plus impor-
tante a la paroi chaude. La variabilité spatiale du champ de puissance entropique
générée est apparente : sa valeur occupe a la paroi froide un intervalle allant de
200 W.K~tm=3 a 12000 W.K~1.m=3 a l'instant de prise d’image, pour une moyenne
d’environ 1620 W.K~t.m=3

5 Conclusion et perspectives

Dans ce travail de thése, trois configurations d’écoulement ont fait I'objet d’une étude
du champ de puissance entropique générée, toutes en considérant des convections for-
cées en présence de gradients de température et de conditions aux limites thermiques
asymétriques. En premier lieu, la puissance entropique générée dans la couche limite
laminaire d’un fluide rencontrant une plaque qui va le cisailler et le chauffer a été effec-
tuée en termes locaux, surfaciques et intégrés entre deux positions le long de la plaque.
L’influence du type de conditions aux limites thermiques (température imposée vs den-
sité de flux de chaleur imposée) a été étudiée. De méme, la dépendance des puissances
entropiques générées locales et totales ainsi que leurs compositions ont été examinées,
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FIGURE 17 : valeur instantanée de la puissance entropique générée localement au mur
froid W.K~t.m=3.

en fonction du nombre de Reynolds local et du ratio thermique adimensionnel 7 égal
au rapport de la température de la paroi a I’écart de température entre cette derniére
et le fluide entrant. Lorsque la puissance thermique échangée entre la plaque et le fluide
est fixée (& partir d'une distance donnée au bord d’attaque), la puissance entropique
totale présente un minimum pour une valeur optimale du facteur thermique 7,,. La
position de cet optimum n’est pas la méme suivant que la plaque est & température
ou & densité de flux thermique imposée. Dans ce dernier cas, 'optimum dépend égale-
ment de la puissance thermique échangée et du point de départ de I'intégration de la
puissance entropique le long de la paroi. Lorsque 1’écart de température paroi/fluide
est important relativement a la température de la plaque (une situation présente dans
les récepteurs solaires), réduire cet écart peut apporter une diminution significative de
la puissance entropique générée.

Dans une seconde étude, le calcul des variations a été appliqué a un écoulement in-
terne en canal plan dont un tiers d’une des parois chauffe le fluide avec une densité de
flux thermique uniforme et constante. Le but est de trouver des champs de vitesse mi-
nimisant la puissance entropique générée par conduction de la chaleur (trés largement
majoritaire dans les cas de figure étudiés) tout en prenant en compte la dissipation
visqueuse totale via un facteur pondérateur nommé Weg. Les champs de vitesse, de
température et de puissance entropique générée par conduction et par frottement vis-
queux ont été étudiés. Plusieurs nombres de Reynolds ont été utilisés et 'influence de
la densité de flux thermique imposée a la paroi a également été analysée. Les champs
de vitesse obtenus par optimisation variationnelle conduisent & une puissance entro-
pique générée totale inférieure aux cas non optimisés et ce d’autant plus que Wy est
petit. La température est également plus homogéne dans le volume de 1’écoulement,
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sur la plaque chauffante et en sortie du canal. La température maximale de la plaque
chaude est abaissée, ce qui constitue un avantage dans le cas des récepteurs solaires
pour lesquels les hautes températures et leurs variations induisent des contraintes ther-
momeécaniques et chimiques pouvant endommager les matériaux constituant les parois.
Il existe une valeur critique du facteur de pondération Wy déclenchant la transition
depuis des profils de vitesse et de température peu perturbés par rapport a une situa-
tion sans optimisation vers des champs trés perturbés et la présence de vortex. Les
résultats décrits brievement ci-dessus sont qualitativement communs pour différents
fluides, différents nombre de Reynolds et conditions aux limites & la paroi d’échange, et
d’autres processus d’advection-diffusion, comme la diffusion d’une espéce chimique mi-
noritaire depuis le tiers inférieur du canal, la fraction massique de cette espéce devenant
le scalaire transporté au lieu de la température.

Dans la troisiéme étude, des simulations numériques directes d’un écoulement quasi-
compressible turbulent et établi en moyenne ont été effectuées pour un fluide dont les
propriétés dépendent de la température, dans un canal plan bi-périodique. Le ratio de
températures entre la paroi chaude et la paroi froide est T5/7; = 2 et le nombre de
Reynolds de friction moyen Re,,, = 180. L’étude de I'influence du type de condition
aux limites thermique (températures vs densité de flux thermique imposée aux parois)
sur les statistiques de 1’écoulement démontre que les fluctuations de la température
présentent un profil différent : elles sont non nulles aux parois lorsque la densité de flux
est imposée et plus élevées du coté chaud. La puissance entropique générée localement
est essentiellement concentrée prés des parois et son profil est asymétrique, le coté froid
étant le siége de plus d’irréversibilités. Par ailleurs les transitions entre sous-couches
turbulentes (visqueuse, buffer, logarithmique et externe) se reflétent dans le profil de
la puissance entropique générée provenant du champ moyen de la température ainsi
que sur celui de la part provenant des fluctuations turbulentes. L’étude des différentes
approximations de la puissance entropique générée montre que les fluctuations du gra-
dient de la température ne peuvent pas étre négligées, 'écart-type relatif en étant
élevé. Augmenter le ratio de températures entre le mur chaud et le mur froid contribue
a accroitre la puissance entropique générée mais également ’asymétrie de son profil.
L’accroissement du nombre de Reynolds de frottement moyen a également pour effet
d’augmenter les puissances entropiques générées aux parois.

Chacun des trois volets qui viennent d’étre résumés peut bénéficier de travaux com-
plémentaires. La compressibilité et la thermo-dépendance du fluide pourraient ainsi étre
prises en compte dans le modéle de la couche limite laminaire ou encore dans la pro-
cédure d’optimisation variationnelle afin d’en analyser I'effet en comparant les champs
obtenus. La valeur critique du coefficient de pondération Wg peut également bénéficier
de travaux complémentaires (mathématiques par exemple). Il existe probablement un
potentiel d’amélioration des récepteurs solaires, lié a la réduction de la puissance entro-
pique qui y est générée via une meilleure homogénéisation du champ de température,
en s’inspirant des champs de vitesse proposés par I'optimisation variationnelle : il serait
ainsi intéressant d’utiliser les simulations numériques directes d’écoulements turbulents
s’approchant de ces champs de vitesses tout en conservant les caractéristiques parti-
culiéres aux récepteurs solaires (forte anisothermie et température agissant en scalaire
actif du fait de la thermo-dépendance du fluide, asymétrie des conditions aux limites
thermiques et quasi-compressibilité de 1’écoulement).
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General introduction

This thesis work is part of research aimed at improving the performance of concentrated
solar power plant receivers in which fluid flows are submitted to large temperature
gradients and asymmetric thermal boundary conditions. The context and the aims of
the study are described in chapter 1 along with the general governing equations of the
analyzed flows.

One way to address the improvement of solar receivers consists in analyzing the
useful power lost due to thermal and viscous irreversibility by studying the entropy
generation rate within the flow. Three different approaches are adopted and presented
in the following chapters.

In chapter 2, a detailed study of the entropy generation rates and their minimization
in the laminar boundary layer of a heated and sheared fluid is described. The effect
of the thermal boundary condition type (fixed temperature vs fixed heat flux density
at the plate) on the local and integrated entropy generation rates is analyzed along
with the influence of the relative temperature gap between the heated plate and the
incoming fluid.

In chapter 3, a flat plate channel flow is considered, the fluid being heated from
a part of one of the plates with a constant and uniform heat flux density. Velocity
field patterns are found by using the calculus of variations to minimize an objective
functional directly related to the entropy generation rate in the channel. The resulting
velocity, temperature and entropy generation rate fields are discussed along with the
influence of the boundary conditions.

Chapter 4 is dedicated to the study of flow statistics and entropy generation rates
in a turbulent quasi-compressible flat-plate channel flow at mean friction Reynolds
number 180 submitted to a hot to cold wall temperature ratio 75/7) = 2 . The fluid
viscosity and thermal conductivity vary with the temperature. The influence of the
thermal boundary condition type is analyzed. The statistics of the mean and turbulent
entropy generation rates are presented along with the influence of the mean friction
Reynolds number and the wall temperature ratio.

These four chapters are followed by a nomenclature, the list of figures and tables
and the bibliography.
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Chapter 1

Context and objectives

This study originated in the search for the optimization of new-generation concentrat-
ing solar power plant receivers in order to contribute to more sustainable solutions to
the energy challenge facing humanity. This context, as well as the general objectives
pursued in this study, are detailed below. The general equations governing the flow of
the fluids studied are described: they will then be adapted according to the particular
situations analyzed.

1.1 Context

Research in the field of energy production is immediately placed in a global context: a
brief overview of global energy production and consumption is presented below, with
an emphasis on renewable energies and more particularly on solar energy with a focus
on concentrated solar power plants and their receivers.

1.1.1 Energy consumption and renewable energies

Worldwide energy consumption by humanity is constantly increasing. In 2018, the
growth in this demand was 2.3% and mainly concerns primary fossil energies (gas, oil
and coal), which represent about 70% and contributed to an increase in CO, emissions
of 1.7% over the same year 2018 [103]. Beyond their direct impact on the emission of
greenhouse gases that contribute to the increase in the global temperature [105], fossil
fuels, which are still used massively for energy production {192, 234|, are non-renewable
resources. The same applies to uranium used by the conventional nuclear industry [235]
(the contribution of fast breeder reactors to energy sustainability being a subject of
debate).

To meet this energy challenge, one of the strategic axis is to develop the use of
renewable energy sources, including biomass, solar energy, wind energy, geothermal
energy, hydro-power and ocean energy, that may at least partially supplement or replace
conventional fossil fuels for electricity production, heating or the production of energy
carriers for use in transport. Renewable energy sources can contribute to the mitigation
of human driven climate change [71]|. They also make it possible to diversify the energy
mix and cushion the impact of shocks on conventional fuel markets (which was the case
during the 1973 oil crisis, for example), but are therefore also sensitive to market prices
for fossil resources [224] (in terms of competitiveness and investment profitability or
risk). Renewable energies also have the advantage of being able to be used locally and

3



4 Context and objectives

at varying scales [151]. Like any energy source, renewable energies have advantages but
also disadvantages and another strategic approach to meeting the energy challenge is to
reduce energy consumption, for example by using better building design and insulation
techniques, more efficient appliances, by developing car-sharing and individual and
collective resource-saving attitudes and by improving the efficiency of energy source
collection, transformation and distribution.

Renewable energies are growing: in 2016, the share of renewable energies in to-
tal final energy consumption is 18.2% (10.4% when excluding the traditional use of
biomass), growing by +2.3% over the period from 2005 to 2015 mainly in the power
sector (renewable heating or cooling and biofuels grow slowly) [203]. In the European
Union, the share of renewable sources was 17.5% of the gross final energy consumption
in 2017, compared to 8.5% in 2004 [75] and to be linked to the 20% target set by the
EU for 2020. However, there are many barriers and challenges to the development
of renewable energies. For example, the intermittent nature of the resource (such as
sunshine or wind) may cause a variability of power generation that leads to a difficulty
for interconnection with existing electricity grids: this issue can be taken into account,
for example, by improving forecasts or by setting up energy storage systems [61] that
will smooth production but involve more complexity and additional cost.

Costs are indeed a challenge for relatively new technologies (in their modern form,
as renewable energies have long been used by traditional societies). For an investor to
get a decent return on investment or payback time, the price at which energy will be
sold should follow stable regulations. The primary resource, like sun radiation or wind
energy may be free, but upfront capital investment required to set up a production
unit can be high (although there is a decreasing trend for some onshore wind or solar
PV plants for example) and may require specific financing solutions: in 2018, overnight
capital cost for building a conventional gas/oil combined cycle power plant was esti-
mated a little lower than 1000 $/kW while it was around 1600 $/kW for an inland
wind power plant and, 2000 $/kW for a tracking PV solar power plant and 4300 $/kW
for a solar thermal power plant [72].

Since the different energy production technologies are in competition, production
costs are an essential determinant of market share increase and profitability. Initial
capital cost expenditure must be supplemented by operating, maintenance and fuel
costs to compare the total cost of a power plant along its lifetime. The Levelized Cost
of Electricity (LCOE in Eq. 1.1) allows this comparison and also takes into account
present value incomes and costs via a discount rate [214]. Several recent studies note
that renewable energies can be competitive with conventional sources: this is the case
for utility-scale onshore wind energy and solar PV in some scenarios [138, 104, which
proves that renewable energy sector is gaining maturity.

t=n
Li+OM+Fy

(I+7dise)t

LOCOE=%2L (1.1)

t=n

E
2 Trany

In the above equation, the following costs are taken into account over the expected

lifetime of the plant for each year ¢: Investment [, (initial and on going), operation &

maintenance OM; and fuel F; expenditures are included and are expressed in monetary

units (e. g. USD). E} is the electrical power generated at the output of the plant for
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each year t (in kWh or MWh). All amounts are discounted (r4s. being the discount
rate).

In the USA context, recent estimates for the LCOE of solar thermal power plant
with thermal energy storage (CSP-TES) using a molten-salt power tower system are
approximately $0.10/kW h. This cost is for projects that are expected to come online
in 2020, which represents a reduction of LCOE by half since 2010 when the LCOE for
CSP-TES was around $0.21/kWh [158]. Moreover, power purchase agreements (PPAs)
in late 2017 for two international power tower systems that were designed to primarily
provide peaking services approached the cost target of $0.06/kW h for 2020 [78]. This
reduction and the US-DOE SunShot program target is illustrated in Fig. 1.1.

Concentrating Solar Power Progress and Goals

FEAKER BASELOAD
e

10.4¢

: 0.3
- 14
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(Mo storage)

Figure 1.1: Cost reduction of solar thermal electricity [169]

The current decrease of renewable energy costs is driven by several causes among
which technological improvements: in the case of CSP power, there is considerable
scope for improvement in the search for more technically and economically efficient
solutions. The present work is modestly part of this framework.

1.1.2 Concentrated solar plants and solar receivers

There are now two main technologies used to transform the radiation received from
the sun into electricity: the direct way is to use the photovoltaic properties of semi-
conductor materials and will not be developed later in this presentation. The second
technology, that of concentrated solar power plants (CSP), consists in using a field of
mirrors judiciously arranged to collect solar radiation over a large area and concentrate
it towards a receiver with a much smaller surface area (depending on the geometry of
the mirrors [159], the concentration ratio ranges from approximatively 30 in linear Fres-
nel collectors [117] to around 10000 [150] for solar furnaces or parabolic dishes). The
focused solar power is then absorbed by the receiver and transferred to a working fluid
(HTF: Heat Transfer Fluid) that will be used directly (in the case of water/steam for
example) or via an exchanger (in the case of molten salts for example) in order to feed
a thermodynamic cycle that will supply a turbine connected to a generator, the latter
finally delivering electricity from the power plant. In order to cope with the intermit-
tent nature of the solar resource, a thermal energy storage system is often interposed
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between the solar field (essentially comprising the optical concentration devices and
the receiver) and the thermodynamic cycle [218]. The possibility of easily storing heat
and using this tank when solar radiation is low or absent (at night or during cloudy
periods) is one of the advantages of solar thermal power plants. Another method of
smoothing power generation and fitting electricity supply to the demand is to add a
backup system using a fossil fuel that is activated when it is necessary to supplement
the solar energy power (in hybrid solar gas-turbine power plants for example [232, 156]).

Combustion
chamber

i
v\ Solar receiver

Steam cycle

Figure 1.3: PEGASE Project [133]

There are different types of concentrated solar power plants that differ according to
the geometry of the solar field, the type of heat transfer fluid, the type of thermody-
namic cycle, etc. With regard to the geometry of the solar field, four main technologies
are used [245]: the most widespread, called Parabolic Trough, consists of alignments
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of parabolic trough mirrors that concentrate solar radiation towards linear absorber
tubes in which the thermal transfer fluid flows.

Then comes the Solar Power Towers technology which is based on a field of steerable
mirrors, called heliostats, that reflect the sun’s rays towards the top of a tower in which
a central receiver is located, where the exchange with the heat transfer fluid takes place.
An example of such a configuration, intended in particular for the research work of the
PROMES - CNRS UPR 8521 laboratory, such as the PEGASE project, is the THEMIS
solar power plant located in Targasonne in the Catalan Pyrenees in France (Fig. 1.2):
a typical research configuration consists of a solar field of about 100 heliostats covering
an area of about 50m? that track the sun and concentrate the solar radiation towards a
receiver located at a height of about 100 meters [88]. In the PEGASE project (Fig. 1.3),
pressurized air is incoming at 350 °C and is brought to 750 °C and then additional
heat is provided by combustion to supply a gas turbine at the set temperature of
about 1000 °C regardless of sunlight. The gas thermodynamic cycle (Brayton type) is
combined with a steam cycle (Rankine type) to take advantage of the temperature at
the turbine outlet and improve the overall efficiency of the installation. The PEGASE
project has been launched more than ten years ago. In 2019, it is developed in the form
of two options funded by EC H2020 program. The POLYPHEM project that proposes
a technology consisting in a solar-driven micro gas turbine (40 kW,;) as top cycle and
an Organic Rankine Cycle (20 kW;) as bottom cycle. A 2 MW h thermal storage being
integrated between the two cycles. The Next-CSP project that aims to develop and
integrate of a new technology based on the use of high temperature (800 °C) particles as
heat transfer fluid and storage medium. The project will demonstrate the technology
at a significant size (3 MWy, solar receiver and 1.2 MW, gas turbine).

In addition to the Parabolic Trough and Solar Tower technologies, there are also
two much less common geometries: Fresnel linear reflectors, consisting of long rows of
flat (or slightly curved) reflective strips that approximate a parabolic trough mirror
and reflect solar radiation to a linear receiver. Finally, the so-called Parabolic Dish
geometry consists of a parabolic mirror that concentrates the collected solar power
towards a focal point where a Stirling engine can be placed, for example.

Several types of heat transfer fluids and working fluids are used in concentrated
solar power plants. In some configurations, the same fluid is used in the solar receiver
(HTF) and in the thermodynamic cycle (Working Fluid): this is the case for air for
example or in systems with direct steam generation (DSG). In other cases, the heat
transfer fluid flows in a primary circuit and an exchanger ensures the transfer of heat to
the working fluid of the secondary circuit, which is generally using steam. The thermal
transfer fluid can also be used in the thermal storage facilities (like large insulated
tanks).

The two main transfer fluids are thermal oils (which are by far the majority choice
for parabolic trough power plants) and molten salts (NaNO, and KNO,) widely used in
tower power plants. Among the qualities required for HTF are: low cost, high thermal
conductivity, low viscosity, low corrosive effect on walls, low degree of degradation at
high temperature, high heating capacity (for thermal storage purposes), high level of
safety for the environment and the teams working in the plant. The thermal transfer
fluid determines the minimum and maximum working temperatures [140]: thermal oils
must not exceed approximately 400 °C. As for molten salts, their maximum working
temperature depends on their composition and is between 400 °C and 600 °C approx-
imately. Molten salts also have a minimum temperature below which they solidify
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(Solar Salt melting point is 220 °C [236]) and are therefore no longer usable. However,
the efficiency of the thermodynamic cycle will depend in particular on the high tem-
perature of the working fluid and thermal transfer fluids are therefore studied to reach
high temperatures. This is the case for molten metals, for example, but they present an
explosion risk. Another track that is the subject of intensive research concerns dense
suspensions of particles and circulating fluidized beds [81]. Finally, the use of air [91]
an abundant and free resource, non-polluting and without safety risk (except for the
management of high pressures) that can be used as HTF and Working Fluid in a gas
turbine, allows temperatures above 1000 °C to be reached. Another option to achieve
these high temperatures is to use Helium or supercritical CO,, [56, 98]. The overall
efficiency of a solar power plant depends synthetically on the optical efficiency of the
radiation collection and concentration system 7.4, the efficiency of the solar receiver
Nrec (transformation of radiation to latent and/or sensitive heat) and the efficiency of
the thermodynamic cycle(s) and more generally of the power block 7,,. The type of
cycle used depends in particular on the geometry of the solar field and the thermal
transfer and working fluids because these elements determine in particular the operat-
ing temperatures of the cycle and the theoretical Carnot efficiency 7. (of course, the
actual efficiency of operating cycles is lower). For example, the Parabolic Dish ge-
ometry allows to reach high solar concentration and receiver temperature at the focal
point and the use of a sterling cycle (in a Stirling engine) is indicated [193]. The two
basic thermodynamic cycles commonly used are of the Rankine or Brayton type. In
the Rankine cycle, a liquid is pressurized, heated and vaporized before expanding in
a turbine to produce mechanical work that is immediately transformed into electricity
and then, the fluid is cooled before starting the next cycle. In the Brayton cycle, sim-
ilar steps are followed but without phase change (the fluid remains in a gaseous state
throughout the cycle) and at higher temperatures. Sub-critical Rankine cycles, which
are very widespread, reach yields of around 37%-42% |[67]. In order to increase this
efficiency, several paths are followed aiming at efficiencies of around 50%, for example:
the use of super-critical Brayton (s-CO,) or Brayton-type cycles with Helium as well as
the use of several heating phases. Another approach is to combine a high temperature
cycle with one or more low temperature cycles, the latter using in particular ORC
(Organic Rankine Cycle) cycles.

In addition to the influence of the compound yield 7.onrec On the profitability of a
concentrated solar power plant, the solar field represents a majority share of the initial
capital investment (e.g. 35% to 49% for parabolic trough plants, including about 7%
for the receiver, and just under 50% for tower plants, including about 15% for the
receiver [106]). Each segment of the power plant deserves to be optimized and, as the
orders of magnitude just mentioned show, the solar receiver plays a key role in this
optimization process, particularly in tower power plants.

Areas for improvement of power tower receivers include: research into surface coat-
ings and selective materials (with good absorptivity in the solar spectrum but also low
emissivity in the infrared to limit radiation loss), definition of configurations limiting
convection losses to the environment, research into materials capable of withstanding
high temperatures under high flux concentrations (e.g. more than 650 °C under 1000
suns) and optimization of exchanges with the transfer fluid. Among the most impor-
tant potential for cost reduction and improvement of the LCOE is the focus on defining
receivers that can be operated sustainably at high temperatures [127].

Indeed, a high surface temperature for the receiver theoretically provides a higher
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temperature working fluid at the inlet of the thermodynamic cycle, which will therefore
have a higher efficiency. However, there are two main limiting factors to the race
to high temperatures: the first concerns degradations that reduce the service life or
performance of receiving surfaces due to thermo-mechanical constraints imposed on
materials (especially since the intensity of concentrated solar flux can change rapidly
when a cloud passes, for example) and due to chemical transformations such as surface
oxidation. This is why the behavior of these materials is studied at high temperatures
and why research is being conducted on compositions and surface treatments that
are resistant over time. It is also interesting to look for ways to reduce the surface
temperature (and equalize it as much as possible, while keeping the total heat transfer
constant).

The second limiting factor comes from the following fact: the increase in surface
temperature (useful to improve the thermodynamic efficiency of the downstream cycle
mn) also increases losses to the environment, particularly due to radiative transfers.
The combined efficiency, taking into account the radiative efficiency of the receiver and
that of a downstream Carnot cycle, results in a dependence on the efficiency of the CSP
power plant 7., in bell form (Fig. 1.4) and indicates an optimal surface temperature
for a given concentration factor [130].
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Figure 1.4: Influence of concentration ratio (CR) and the receiver surface temperature
on the theoretical performance of a CSP plant

There are a wide variety of receiver technologies available to equip solar tower power
plants (also known as CRS: Central Receiver Systems): they differ according to the
type of thermal transfer fluid to be heated (liquid, water/steam, gas, solid particles)
but also according to the flow geometry (external vs cavity and volumetric vs surface
receivers).

In the external receiver configuration (this is case, for example, in the Gemasolar
Thermosolar Plant, located in Spain and pictured in Fig. 1.5), the absorbing surfaces
are openly exposed on the external surface (which facilitates irradiation by a solar field
surrounding the solar tower) while in the case of cavity receivers, the tubes or heat
exchange surfaces line the bottom of a cavity. This latter configuration imposes a polar
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solar field (favorably oriented to target the entrance of the cavity) but limits radiative
and convective losses in the environment, which is an advantage for high temperature
receivers.

Figure 1.5: Gemasolar Thermosolar Plant [226]

Solar surface receivers (often tubular) consist of channels that carry the transfer
fluid and which outer surface is irradiated by the concentrated solar flux (one illus-
trating example is provided in Fig. 1.6, which describes the architecture of the solar
receiver of the Solar One power plant, now closed but whose principle - external cylin-
drical tubular geometry - has been used for the following generations of power plants
like the Gemasolar Thermosolar plant already mentioned). These walls absorb some of
this radiation (the losses concern the radiative emission of the surface and the convec-
tion loss with the surrounding air) and transmit it by conduction to the fluid flowing
through the channels. Tubular receivers are used in molten-salt and water/team power
plants and are also designed for gas flow (air, s-CO,). Volumetric receivers have a
different exchange mode, mainly adapted to gases: they are made of porous materials
(metallic, ceramic or silicon carbide) that are heated by the concentrated solar flux
and the transfer fluid flows through this porous structure [13].

Finally, particle-based receivers are a special class and are the subject of intensive
research [99]: a falling curtain of particles can be directly irradiated (free-falling particle
receivers) or subjected to a more complex fall trajectory by adding obstacles that will
slow them down and increase their residence time in the exposed area. Particles can
also descend while rotating in a drum (rotating kiln). Finally, fluidized particles can
be directly irradiated while circulating in a tube or circulate around a network of
irradiated tubes and thus be heated indirectly [99].

The previous review is related to power production using solar concentrating sys-
tems. Let us notice that this technology produces primarily heat at various temperature
ranges. Consequently, this heat can be used to drive chemical reactions. If the chemical
reaction occurs in the solar receiver, it is also a chemical reactor (SOLPART H2020
project). Therefore, the theoretical work proposed in the next sections can be extended
to solar receivers-reactors provided some additional efforts to account for the chemical
kinetics.
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Figure 1.6: Solar One central receiver [219]
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1.2 General objectives

For the reasons given in chapter 1.1.2, we are particularly interested in this thesis work
in the tower power plants using air as a thermal transfer fluid and with a central surface
receptor (whether external or in a cavity). To simplify, it is considered that the fluid
flows between two parallel flat plates at different temperatures, one of which having its
outer surface exposed to concentrated solar radiation. Some of the power received by
radiation is transmitted to the fluid leaving the channel at a higher temperature but
also at a lower pressure due to viscous friction within the channel.

To optimize this exchanger, it is desirable to intensify the heat exchange between the
fluid and the wall without increasing the pressure drop between the inlet and outlet of
the channel, because this corresponds to parasitic energy consumption. For example,
let us suppose that fins are inserted inside the channel: the heat exchange surface
will be extended and will promote heat exchange, but the pressure drop will also be
increased due to a larger friction surface and the presence of flow obstacles. Thus,
one of the optimization criteria will be improved (heat exchange) while the other will
be degraded (pressure drop). One way to address this dilemma and to rationalize the
trade-off between these two opposing effects, is to use a common unit of measurement
to assess lost available power related to the different irreversible phenomena occurring
within the flow. This common unit can be the entropy generated within the channel,
as demonstrated by the research works using the Entropy Generation Minimization
(EGM) method [26]. This is why the general framework of our work consists in better
estimating, understanding and minimizing the entropy generation rate, also named
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generated entropic power (in [W.K~1]).

The relationship between the entropy generation rate and the lost available power
can be illustrated by Gouy-Stodola’s theorem [93, 94, 95| as follows: suppose that an
open thermodynamic system X (Fig. 1.7) exchanges heat, work and matter with the
environment. To simplify the point, it is assumed that heat exchanges occur with only
one reservoir at room temperature T,,,p. The first and second law of thermodynamics
for this open system write (using the total enthalpy function h'):

dE
E = Q+ W+ S tiinhty, — > titouhly [W] (1.2)
inlet outlet
ports ports
t 1 2
h :h+§V + gz (1.3)
min
[
v
Q S ES - W
|l|
Mout

Figure 1.7: Open system X' to illustrate the Gouy-Stodola theorem

dSy Z :
d — 4+ E mmsm - moutsout + Sgen [WK_I] (14)
amb inlet outlet
ports ports
Syen =0 (1.5)

One can deduce from the above equations that the maximum power that can be
obtained from this system, is reached when Sgen = 0. Let us suppose that the system
Y produces work (W is negative) and let us define W+ = —W this power accounted
positively. The maximum deliverable power is (by eliminating () between equations
1.2 and 1.4):

d(Ex — TumpSy)

i+ 2 : : t 2 :

Wmax — mln(hzn ambsm mout out ambsout) dt (16)
inlet outlet
ports ports

~ The power lost due to irreversibilities is the difference between the maximum power
W nax apd the actual power delivered by the system Wactual (the opposite of the negative
value W):
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inlet outlet
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According to Eq. (1.4), the quantity in brackets in Eq. (1.7) is equal to the entropy
generation rate, therefore:

W/fgst = Tambsgen > 0 (18)

Thus, the lost available power is equal to T}, multiplied by the entropy generation
rate in the system Y. This magnitude is always positive. If the system receives work,
I/Vlj)'st represents the amount of additional power that actually had to be done on the
system compared to the lower value that would correspond to a reversible exchange.
An accounting of the maximum useful power that can be obtained from a system as
well as the available power lost during thermodynamic transformations can also be sys-
tematically developed using the notion of exergy, which expression hfn Jout TambSinfout
appears in Eq.1.6 (the rate of exergy destruction being proportional to the rate of
entropy generation). Comparing reversible and irreversible processes can be complex,
especially in an unsteady and non-cyclical situation. In the above discussion, it is as-
sumed that the processes to be compared differ only in their levels of irreversibility and
in the values of the thermal power () exchanged with the surrounding environment and
the power produced W+, all other things being equal. Real-life situations can be more
complex. For example, several thermal reservoirs may be in contact with the system
and the trajectories followed by E'y> and Sy» may be different over time. Similarly, the
outgoing flows may differ between the two processes being compared. Nevertheless,
entropic (and exergetic) analysis remains applicable to these more complex situations
as described in [38].

The calculation of the entropy generation rate within a flow can be carried out ac-
cording to two different approaches: first, the locally generated entropic power can be
calculated at each point of the studied volume (in [W.K~'.m™3]) and then an integra-
tion can be performed to calculate the total generated entropic power. This approach
enables to map the entropy generation and identify the channel regions corresponding
to the most important productions. It also makes it possible to analyze the distribu-
tion of entropy generation according to its composition (for example: its share linked
to thermal transfer and its share linked to viscous friction). The second approach con-
sists in starting from an entropy balance by considering the flows and quantities at the
boundaries of the domain (for example, the heat flux density and the temperature)
and the evolution of the total entropy over time (if the flow is not steady) in order to
deduce the total entropy generation rate. This approach is often based on correlations
because the values of temperature and velocity gradients at the walls, for example,
depend on the nature of the flow.

Once the total entropy generation rate is known, it is useful to examine its depen-
dence on various flow parameters, which may be geometric (e.g. the diameter of a
tube or the shape of its cross-section), dynamic (e.g. Reynolds number), thermal (e.g.
the temperature difference between the hot plate and the cold plate). In addition, by
adding energy constraints (e.g. the total thermal power exchanged), optimal parameter
values can be sought (i.e., minimizing the total entropy generation rate).
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The aims of the present study are: to calculate the locally generated entropic power
field, to analyze its distribution in the flow space and its composition, to study how it
is influenced by boundary conditions (especially thermal) and to investigate how the
total entropy generation rate can be minimized.

However, the complexity of the flows encountered in solar receivers requires that
the difficulty be split, even if one adopts a simplified geometry. In an airborne surface
receiver, the flow is generally turbulent, compressible, subject to high thermal gradients
and asymmetric boundary conditions, and the fluid is thermo-dependent |8, 9, 29, 211,
63, 68, 69]. That is why three situations have been studied in this thesis work: each of
them sheds a different light on the problem of entropy production in a non-isothermal
flow subjected to asymmetric thermal boundary limits, while also embedding its own
simplifications in relation to reality.

In the first configuration, developed in chapter 2 the laminar boundary layer is used
as a sandbox to study the influence of the thermal boundary conditions by allowing easy
variation of the parameters in the context of a simplified low model that can be used
as a reference when dealing with more realistic flows. This work has been published
in the Journal of Thermophysics and Heat Transfer [12] and much of the content has
been included in the present thesis, with some additional details on the derivation of
the boundary layer equations and on a discussion on the order of magnitude of the
viscous dissipation function.

In chapter 3 a variational optimization is performed for an internal flow in a channel
in which part of one of the two walls is heated with an imposed heat flow density. The
objective here is to examine a method whose field of application is much broader than
the optimization of solar receivers.

Finally, in chapter 4, the analysis of a turbulent quasi-compressible flow in a bi-
periodic plane channel for a thermo-dependent fluid is performed, in order, on the one
hand, to know the influence of the thermal boundary condition (fixed wall temperatures
vs fixed wall heat flux densities), which has been published in the Journal of Heat and
Fluid Flow [11] and, on the other hand, to lay the foundations for a statistical analysis
of the entropy generation rate in a thermally asymmetric flow.

1.3 General governing equations

The general equations that will serve as a basis for the models presented below are
explained. First of all, the Navier-Stokes equation system is the basis for the numerical
calculation of flows. In addition, the general equation of the local entropy generation
rate at a flow point is also described.

1.3.1 The Navier-Stokes equations

Let us consider the flow of a homogeneous single-phase and non-reactive fluid without
any volumetric energy source (corresponding, for example, to the direct absorption of
radiation by the fluid) and within the framework of classical mechanics (macroscopic
and non-relativist). The local equations of a the flow are recalled below. They are
expressed in Cartesian coordinates in a Galilean reference frame and use the Einstein
convention for repeated indexes. These equations can be obtained either by consider-
ing a small fluid parcel (material domain or material region) in motion and by using
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material or substantial derivatives and the Leibnitz-Reynolds transport theorem [189],
or by considering a small fixed control volume and by applying integral balances (i.e:
the variation of an additive quantity in a control volume comes from the input and
output flows as well as from possible source terms) [27].
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In this set of equations, x; are the Cartesian coordinates (i € {1,2,3}) of the point
where all quantities are evaluated at the time ¢: u; are the components of the velocity,
p is the density, f; are the components of the specific volume force (in Nkg™!), oy;
are the components of the stress tensor, ey is the specific total energy (in Jkg™!) and
¢; are the components of the heat flux vector. The specific mechanical energy here is
the sum of the specific internal energy and the specific kinetic energy (the potential
energy from conservative forces is treated as mechanical powers in the term pu; f;). The
stress tensor can be broken down into two parts: a spherical part showing the local
thermodynamic pressure P and a part related to the stresses from the fluid movement,
called the viscous stress tensor 7;; (d;; being the Kronecker delta):

045 = —Péij + Tij (112)

These equations are already very general and correspond to the conservation of mass
(eq. 1.9), the conservation of momentum or the fundamental equation of dynamics (eq.
1.10) and the first principle of thermodynamics (eq. 1.11). However, they are based
on the continuous medium assumption described below. In addition, it is possible
to reduce the number of fundamental principles used to deduce equations 1.9 to 1.11
because the conservation of mass as well as that of momentum can be derived from the
first principle of thermodynamics by imposing the Galilean invariance as described in
[114].

Although a fluid may appear as a continuous medium from a macroscopic point
of view, it is actually composed of atoms and molecules in endless relative motion. A
first way to study the motion of a fluid can be to use the equations of motion of each
individual atom or molecule (e. g. in the molecular dynamics approach) and then to
use statistical methods to obtain information on the macroscopic behavior of the fluid
(kinetic and statistical fluid theory). However, it is often not necessary to go to the
molecular scale to obtain useful information because there is a general interest in the
movement of parts of the fluid domain (named fluid parcels) that are small compared
to the dimensions of the equipment (flow channel, turbine blades, etc.) but which
are already composed of a very large number of molecules. This is why the so-called
continuous medium approach (the continuum hypothesis) is commonly adopted and
it is considered that all useful quantities (density, velocity, temperature, etc.) can be
assigned to each point of the fluid domain and derived in order to calculate gradients,
divergences, curl, for example (except at possible discontinuity points, as in shock
waves or liquid free surface, for example). There is a criterion, the number of Knudsen
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(Kn), to determine whether the continuous medium mechanics approach is valid or
whether it should be preferred to the statistical mechanics approach. This is the ratio
(Eq. 1.13) between a length Ly characteristic at the molecular scale (e. g. the
average free path of the molecules composing the fluid) and a flow characteristic length
Liacro (6. g. the height of the channel). When Kn < 1073, the assumption of the
continuous medium can be used [84].

Lmicro
Kn = (1.13)

Lmacro

For example, an air flow in a channel of height 5 x 10~3m under a pressure of 1 atm
at the temperature of 300 K corresponds to a Knudsen number of ~ 1.3 x 107°. In the
situations that will be mentioned later, the number of Knudsen will be small enough
for the continuum hypothesis to be applied.

The second hypothesis that will be used hereafter is that of local thermodynamic
equilibrium (in particular in order to apply the equations of state of fluids or Fourier’s
law): fluid flow processes are generally out-of-equilibrium situations and the thermo-
dynamics of irreversible processes should a priori be applied to them. However, it is
possible to apply classical thermodynamics (which is concerned with balanced systems
or processes approximated by a succession of equilibrium situations) provided that cer-
tain constraints are respected. For this purpose, it is necessary that, at the scale of the
fluid parcel, a thermodynamic equilibrium be established, making it possible to give at
each instant (in the macroscopic sense) a value to the thermodynamic quantities char-
acterizing this small system (such as its temperature, for example). This requires that
the characteristic duration of the flow at the macroscopic scale 74000 is much greater
than the characteristic duration at the microscopic scale Tiicro (equilibrium relaxation
time) and therefore the ratio ZZ;—’;Z can be used as a criterion, transposing the number
of Knudsen to a characteristic time ratio and similar to the Deborah number: when
this ratio is well below 1, changes at the macroscopic level are slow enough for the
fluid parcel to relax to a state of thermodynamic equilibrium in a rapid time compared
to the macroscopic duration scale. In the rest of this presentation it is considered,
as is usually done, that the hypothesis of local thermodynamic equilibrium applies
(especially since there is no involvement of any chemical reaction, rarefied gas, shock
phenomenon or viscoelastic environment [215]).

From the general equations 1.9 to 1.11, it is possible to deduce other useful equa-
tions: multiplying by u; the equation 1.10 leads to equation 1.14 showing the specific
kinetic energy (per unit mass) ex = %uluZ This equation expresses the kinetic energy
theorem and its RHS can be developed to make terms corresponding to the volume pow-
ers due to external forces (volume, surface pressure-related, surface viscosity-related)
and internal forces (pressure-related and viscosity-related) more clearly visible as in
Eq. 1.15.
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From Equations 1.11 and 1.14 one can derive by difference the equation of the
specific internal energy e;:
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Using the relationship h = ey + % and Equation 1.16 leads to the equation of the
specific enthalpy:
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In the three previous equations, relating to energy, a term appears that will be
important for subsequent discussions on entropy production: the viscous dissipation
function @:

Oui
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J

o (1.18)
The examination of Equations 1.9 to 1.11 leads to the conclusion that 5 equations
are available (Equation 1.10 corresponds in fact to three equations relating to projec-
tions on the axes of the Cartesian reference frame) for a total of 14 unknown scalars
(density, the three components of the velocity, the six components of the viscous stress
tensor - which is symmetrical, the specific total energy and the three components of
the heat flux density vector). It is therefore necessary to add several equations to close
the differential system. These supernumerary relationships involve setting assumptions
about fluid behavior and therefore choosing a model. There are several of them and the
next development is the one that will be useful to us later: the Navier-Stokes model.
In this model, the fluid is considered as Newtonian: the fluid is isotropic (has no pre-
ferred direction) and the tensor of viscous stresses depends linearly on the components
of the strain rate tensor (defined in Eq. 1.19), which is a generalization of the behavior
expressed by Newton in his book Philosophiae Naturalis Principia Mathematica [178|.

1(816,- Lo
2 al’j 8.1‘1

Sij = ) (1.19)

This linear relationship (eq. 1.20) shows two quantities p and g/, called dynamic
viscosity and second coefficient of viscosity respectively, that characterize the behavior
of the fluid when it is subjected to deformation stresses.

Tij = M(?Z; + g:) + M'%Z% = 2uSij + p' tr(Sk)di; (1.20)

Then the Stokes hypothesis (Eq. 1.21) is used to link the dynamic viscosity to
the second viscosity coefficient to ensure that the tensor trace of the viscous stresses
vanishes (the bulk viscosity is then also zero). This hypothesis is generally accepted but
it should be known that it is the subject of debate and research and is not necessarily
perfectly verified (for dense or polyatomic fluids for example).

, 2

- _= 1.21
I S (1.21)

Taking into account Equations 1.20 and 1.21, the equation of the conservation of
momentum 1.10 becomes:
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In the present thesis work, we will not deal with heat exchanges by radiation.
Similarly, the fluid is considered non-reactive (whether from a chemical or nuclear
perspective) and single-phase. Thus, the energy equation does not contain additional
source terms that would account for heat released or absorbed by a chemical or nu-
clear reaction, nor does it contain terms that represent the absorption by the fluid of
radiation that would pass through it. The only mode of heat exchange considered is
heat conduction, for which the phenomenological law used is Fourier’s law, considering
a scalar (isotropic) thermal conductivity k:

aor
ox;

From Gibbs’ phase rule, the specific enthalpy depends on two independent intensive
variables h(P,T) and its variation can be written as follows, by introducing the specific

4 = —k (1.23)

heat capacity at constant pressure C}, and § = —%% the (volumetric) coefficient of
thermal expansion:
oh oh 1-6T
dh = ——dT + ——dP = CpdT + b dP (1.24)

or oP

By using the relationships 1.24 and 1.23 and considering as will be done later that
C) is practically constant over the considered temperature range, one obtains from
Equation 1.17 the following relationship, concerning the temperature in the flow:

ApC,T)  OpCpTuy) P 8P Ou; o, or
= pT i —(k— 1.25
ot oan, PTG twg ) g, g ke (1.25)
In addition, the viscous dissipation function becomes:
2 Oug .,
b= 7—”6 =218 Sij — = (&Ek) (1.26)

This expression, when developed according to the components of the velocity vector
and the position vector (u = uy, v = ug, W = us; T = x1, y = Ta, 2 = x1) results in:

0 = 2| G+ (G + (G| 4 G G+ (G S (5L + 5
28u ov (‘91112
1.27

Equations 1.9, 1.22 and 1.25 correspond to 5 scalar equations and involve 9 unknown
scalars (density, the three components of the velocity, pressure, temperature, dynamic
viscosity, thermal conductivity and the compressibility coefficient 3 as C), is considered
as a constant). In order to close this system of equations, 4 additional equations are

required: the equation of state of the fluid p = p(P,T'), the equation 8 = _%%’ which
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allows to derive 8 and the equations relating k£ and u to the temperature (and possibly
to the pressure, for liquids in particular [209]).

In the rest of this presentation we will start from Equations 1.9, 1.22 and 1.25 by
specializing them according to the situation: in some specific cases the fluid will be
considered incompressible (p will be invariable) or its dynamic viscosity or thermal
conductivity will be constant and these symbols can if necessary be taken out from the
derivatives in Equations 1.22 and 1.25. The fluid will sometimes be considered to be a
perfect gas with 5 = 1/T.

To conclude this chapter, it is important to note that the equations governing fluid
flows can be formulated in different ways: they have been presented in indexed form
but they can also be expressed using differential operators or tensor operations (whose
notation may however vary according to the authors). The terms in divergence form
have also been revealed as much as possible, because this facilitates the application
of Stokes or Green-Ostrogradski type theorems when switching to volume integrals.
Finally, the usual partial derivatives are used and not the material substantial derivative
(which can also be noted differently depending on the authors). Subsequently, these
condensed forms will sometimes be used (especially the V operator) in order to lighten
some formulas.

1.3.2 The entropy production rate equation

Intensive use will be made of the following expression of the local entropy generation
rate (for a homogeneous, non-reactive and electrically non-conductive fluid):

o k s, @ kK OTIT p 2 Oug

Sgen = g (VI)" + 5 = T2 90, 02, 7 (25554 §(é?_m) )

This expression is obtained by combining the first and second principles of ther-
modynamics: starting from Equation 1.17 derived from the first principle, and taking
into account the thermodynamic relationship dh = T'ds + (1/p)dP and Fourier’s law,

one obtains a transport equation for the specific entropy s:

(1.28)

dps) Opsu;) @ 1 0 , 0T
=4 —-——(k— 1.29
In addition, the application of the second principle to a fluid moving parcel (closed
system) or to a small fixed control volume (open system) leads to Eq. 1.30. Finally,

the combination of the Equations 1.29 and 1.30 leads to Equation 1.28

8(p$) + a(psuj) _ S;/én + i(ﬁg)
ot a.ilﬁj 8$j T@xj
In order to demonstrate Eq. 1.30, let us consider a small fixed open rectangular

parallelepiped control volume CV with dimensions dz, dy and dz (Fig. 1.8). The
second principle of thermodynamics writes:

. _ds . .
Sgen = djv - Z % - ( Z MinSin — Z moutsout) 2 0 (131)

inlet outlet
ports ports

(1.30)

The total entropy generation rate in CV can be expressed as a function of its density
per unit volume:
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Figure 1.8: Elementary control volume CV to illustrate Eq. 1.30 demonstration

Sgen = S;’éndxdydz (1.32)

Similarly, the rate of variation of the total CV entropy over time writes:

dScv  O(ps)
= 1.
7 pn dxdydz (1.33)

In addition, the second RHS term in Eq. 1.31 corresponds to the net output entropy
flux related to heat transfers through the elementary surfaces dxdy, dedz and dydz.
which can be expressed in the first order as follows (q1, g2 and g3 being the components
of the heat flow rate vector in [W]):

9. (4 (e (B
—Z%z( g;>dx)dydz+( g;)dy)dxdw( gT)

z

dz> dxdy (1.34)

Similarly, the combination of the third and fourth RHS terms in Equation 1.31
expresses the net entropy flux due to the material flows passing through these same
elementary surfaces (where uy, up and ug being the components of the velocity vector):

| L (psu) O psuz) A psus)
_(Z MinSin— Z moutsout) ~ (le') dde‘l— (a—ydy dedZ+ sz d:):dy

inlet outlet
ports ports

(1.35)

By injecting Eqgs. 1.32 to 1.35 into Equation 1.31 and then dividing by the elemen-

tary volume dxdydz and replacing the heat flows with their expression derived from
Fourier’s law, one obtains the desired Equation 1.30.

The locally generated entropic power in Equation 1.28 is the sum of two terms: the

first one is related to the temperature gradient and expresses the generation of entropy

corresponding to heat transfer across finite temperate differences in the three Cartesian
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directions (longitudinal, normal and transversal). The second term is a function of the
different components of the tensorial gradient of the velocity vector and accounts for
the viscous dissipation phenomena within the flow.

In more general situations, where other irreversible phenomena may occur (such as
chemical reactions, for example), additional terms should be added in Eq. 1.28. This
will be done in Chapter 3 when mass diffusion in a fluid composed of two chemical
species is studied.
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Chapter 2

Entropy production rates in the
laminar boundary layer

2.1 Introduction

As announced in Chapter 1.2, this study is part of the thermodynamic optimization of
heat exchangers and in particular of surface solar receivers in concentrated solar power
systems in which a high flux solar beam heats a wall that transfers the absorbed power
to a heat transfer fluid. However, this work has a fundamental aspect and its scope of
application is broader: the objective is to conduct a detailed analysis of the entropic
power generated in a laminar boundary layer with a focus on the influence of the
thermal boundary condition type and intensity. The results can be used as a reference
model when dealing with non-isothermal flows in heat exchangers for example, or in
areas where the boundary layer control is essential, such as aeronautics. The entropy
generation (time) rate is calculated and analyzed in order to set a detailed reference
in a simplified model while taking into account heat flux density boundary conditions
(in addition to fixed temperature boundaries) and a wide range of thermal gaps (up to
Thot /Teota = 2) in order to address solar receivers.

Flat plate boundary layer is a reference model for sheared convective flow with
active research in a broad variety of academic and application domains like, to name
but a few: mixed convection over a permeable plate [153], hypersonic flows and viscous
heating [146] or flow control [233|, with studies both theoretical and numerical [43] [238]
or experimental [213] [19]. Boundary layer analysis and control is an essential field in
aeronautics [18, 92, 167, 188, 204, 240|, with a view, for example, to delay or prevent
its separation [83, 160, 161] and to improve lift [59]. The laminar boundary layer is also
being investigated and many studies are analyzing ways to delay the transition from
laminar to turbulent regimes in order to reduce drag forces [22, 52, 77, 113, 176, 225|.
Heat exchange between the fluid and the aircraft is also an area of interest [239] whether
it concerns aerodynamic heating (in supersonic/hypersonic flight [177] or for reentry
vehicles [145]), lift and drag improvements [124, 152| or heating parts of the aircraft
to prevent the formation of ice [62]. The boundary layer model allows to deal with
different thermal boundary conditions like isothermal or isoflux plates and in simplified
reference cases like steady-state two-dimensional incompressible flow of a fluid with
constant properties, semi-analytical computations can be readily performed. For all
these reasons, the boundary layer model is helpful in analyzing the impact of changing
parameters without requiring expensive computation resources. In this study this

23
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model has been used as a sandbox to analyze entropy generation and minimization in
forced convective flows.

The analysis of the entropy generation field and the reduction of entropy generation
or exergy destruction [173, 174, 26| are valuable tools used to optimize systems [4, 28,
25,79, 196, 55|. Entropy generation minimization [24] can help in optimizing convective
heat exchange and in suggesting optimal design set-up [23] [24] [107] [141]. However,
actual exchangers may not be able to work at the theoretical optimal point for technical
or economic reasons. In solar receivers of concentrated solar power plants (CSP), the
ratio between hot and cold wall temperatures can be around 2 or more, leading to high
entropy generation rates. It is therefore useful to understand where the highest rates
are located and what are the factors influencing entropy generation in order to assess
how a better design reducing entropy can improve the receiver efficiency, even if it is
merely located a little closer to the optimum value of design parameters (like shape
or thermal settings). Moreover, in solar receivers, three-dimensional turbulent quasi-
compressible flows of thermo-dependent fluids occur with high temperature gradients
and asymmetrical thermal boundary conditions [8] [9] [29] [211] [63] [68] [69] and require
significant computing resources for a single simulation [230]. It is useful to adopt a step-
by-step approach to this complexity when dealing with the entropy generation analysis
and minimization in order to be able to discriminate the effects of each characteristic
of the flow and to vary freely the key parameters (in particular: the temperature gap
between the hot and the cold plate) and over a wide range of values. For all the above
reasons, the boundary layer model has been used in the simplified case of a laminar and
incompressible flow over a flat plate in order to calculate and analyze the local entropy
generation rate and its composition at any point in the flow and the total entropy
generation rate between two positions along the plate. If the thermal power exchanged
between the heating plate and the fluid is fixed, there is a minimum of the total entropy
generation rate for an optimal set of control variable values (see for example [23] when
considering the entire length of the plate). Varying the thermal boundary condition
type has a major influence on the position of this optimum.

In the present study we consider the total entropy generation rate over a length
interval along the plate and analyze how this optimum depends on the total heat power
transferred and on the distance of the exchange section from the leading edge. While
performing this study, we took care of the following points. Firstly, the temperature
gap is not neglected when compared to the plate temperature. This allows to set a
reference for high temperature gap flows in a simplified model. Secondly, the behavior
of the solution of the model has also been studied near the leading edge in order to
know its asymptotic trend and because some contributions to the entropy generation
rate grow to infinity when reaching the leading edge. Thirdly, all contributors in heat
transfer and viscous friction entropy generation have been considered at first, in order
to determine which of them are negligible.

2.2 The boundary layer flow governing equations

The laminar boundary layer equations are a useful simplification of the general flow
equations of a fluid (see Chapter 1.3). They have their origin in the pioneering work
carried out by Ludwig Prandtl [195] at the beginning of the 20th century. The deriva-
tion of these equations is presented in the following sections.
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2.2.1 From the Navier-Stokes to the boundary layer equations

We consider the steady two-dimensional laminar flow of an incompressible fluid (p is
uniform and constant and § = 0) with constant properties (C,, p, k are uniform and
constant) over a semi-infinite flat plate. We assume there is no volume force or heat
source and no radiative thermal transfer. Viscous heating is also neglected (see section
2.6 for a discussion on this topic). The fluid arrives at a fixed temperature T, and
velocity Uy and is both sheared and heated by the plate. Since the velocity is zero in
contact with the wall (no-slip condition), friction forces slow the flow in a thin area near
the plate called the boundary layer (Fig. 2.1). The longitudinal velocity, being zero
at the wall, increases with the value of the ordinate by approaching the inlet velocity
Us but there is no clear separation between the boundary layer zone and the free flow
zone and the thickness of the (dynamic) boundary layer is conventionally defined by
ordinate 0 where u = 0.99U,. It is also near the wall that the strongest temperature
gradients are located, which makes it possible to define a thermal boundary layer and
its corresponding thickness o7 for which the temperature difference with respect to the
wall is 99% of the total temperature difference between the wall and the free flow.

— —
— — —

Figure 2.1: Boundary layer over a flat plate

Taking into account the key assumptions mentioned above (incompressibility, con-
stant properties, etc.), it is first possible to simplify the equation Egs. 1.9, 1.22 and
1.25, which become:

%Jr%:O (2.1)

u%—kv% = —%g—];—l—u(%%—%) (2.2)
u%—kv% :_%85_1;+V(%+g2_;2)) (2.3)
u% - v% = a(% + %) (2.4)

In the above equations, the common notation for two-dimensional flows is used,
where u(z,y) represents the longitudinal component of the velocity (parallel to the
plate and the x axis, the abscissa being counted from the leading edge of the plate)
and v(x,y) is its normal component to the plate, the ordinates being counted from the
plate (thus u = uy, v = ug, * = x1, y = x2). T(x,y) is the temperature of the fluid. In
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addition, v = u/p is the kinematic viscosity of the fluid and o = k/(pC)) is its thermal
diffusivity.

The system of equations 2.1 to 2.4 may be simpler than the general system presented
in Chapter 1.3.1, but it remains a daunting task to solve. Ludwig Prandtl’s contribution
was a major step towards further simplifying the equations governing the flow by taking
into account the specificities of the boundary layer and by analyzing the orders of
magnitude of the different terms in the above equations. The keystone of this reasoning
is that the thickness of the boundary layer ¢ is small compared to the characteristic
length of the flow L (such as the plate length considered) and this is all the more true
as the Reynolds number Re = U, L/v is high.

In order to conduct this reasoning on the orders of magnitude of the different
terms, the first step consists in making these equations dimensionless. The following
dimensionless quantities are defined (7, being the temperature of the plate):

,yng oo U UX:L,PX:P w Ly=T

L’ Us’ Use pUZ ~ T Ty —Tw
Injecting Eqgs. 2.5 into Egs. 2.1 to 2.4 leads to the following dimensionless equations
(where Pr = v/« is the Prandtl number):

(2.5)

Tr =

o o, o

uX ZZ: “’ngu: _ —g];: n %(aii; n a(?;i;) (2.7)

e e =~ o R o =

”(Z * ”gz - RelPr(ﬁa(zxj;;Q * aéfyj;;) (29)

In the boundary layer, the order of magnitude (OM) of u*, ™ and a“i is 1, while

the OM of y* is * = ¢/L. From the continuity equation 2.6, it follows th:;t the OM of
v is 0%. As 0* < 1, the OM of the normal component of the velocity is small when
compared to the OM of the longitudinal velocity.

In addition, the OM of £ is 1 while the OM of 2% is 1/(5%)? which is thus

the majority in the viscous term of Eq. 2.7 and % will now be neglected. In the

boundary layer, the viscous and inertial effects are in competition and are of the same
order of magnitude: for this to be reflected in Eq. 2.7, it is necessary that the OM
of 7= be (6%)? (because the inertial terms in the LHS of this equation are of order of
magnitude 1). Therefore, the order of magnitude of 6% is .

VRe
In Eq. 2.8, the terms in the LHS as well as the viscous terms are of order of

magnitude 6*. This implies that the OM of %yL: is also 6*, which means that the

pressure depends practically only on z and % ~ B

At this point of the reasoning, it is possible to rewrite Eqgs. 2.7 to 2.8 into dimen-
sional quantities while eliminating the terms that are neglected for the reasons just
given:
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ou ou 1dP Pu
— + Vv =———+ Vv 2.10
Yor Y oy p dz g oy? (2.10)
For the sake of simplicity, let us consider a flow without free stream pressure gradi-
ent. P depends only on z an % vanishes in the free stream area and in the boundary

layer. Thus Eq. 2.10 finally takes the form:

ou ou Pu
U— +Vv— =vV—s 2.11
ox oy 0y? (2.11)
It is now necessary to conduct the same type of order of magnitude analysis for the
temperature equation (Eq. 2.9). The OM of T is 1. For temperature derivatives, it
must be taken into account that T goes from 0 to almost 1 over the thickness of the

thermal boundary layer 67 = %T, which may be different from the dynamic boundary

layer thickness 6*. In the viscous term of Eq. 2.9, the OM of % and % are

1 and ( 5i)2 respectively, which means that the latter term is largely predominant and
T
will be the only one retained. Once switched back to dimensioned magnitudes and

taking into account the simplification just given, Eq. 2.9 becomes:

U— +v— =a—— (2.12)

To conclude, in the boundary layer created just above the plate and when no pres-
sure gradient exists in the free-stream area of the flow, a reasoning on the orders of
magnitudes leads to a simplified form of the Navier-Stokes equations which now read
[208]:

ou Ov
5 + 7 =0 (2.13)
o Ou P
u—ax + v—ay = V—&;; (2.14)
ar ar o>PT
u_é)x + U—ay = a—ayz (2.15)

with the following boundary conditions for the velocity:
u(z,0) =0, v(z,0) =0, lim u(x,y) =Usx (2.16)
Yy—00

For the temperature, two boundary conditions will be analyzed hereafter: the
isothermal plate in Eq. 2.17 (if the temperature of the plate is fixed at a constant
and uniform value T,) and the isoflux plate in Eq. 2.18 (if the heat flux density at the
plate is fixed at a constant and uniform value ¢").

T(x,0) =Ty, lim T(x,y) =T (2.17)
Y—00
or
—k— =4", lim T(z,y) = T (2.18)
ay y=0 y—00
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2.2.2 The similarity equations of the boundary layer

In order to solve the above equations, the similarity of longitudinal velocity (x-component)
and temperature profiles along the plate is assumed [116]. The dimensionless 1 vari-
able is defined in Eq. 2.19 and combines x and y coordinates. Two dimensionless
functions of 7 are also introduced in Eqs. 2.20 and 2.22. The f(n) function is linked
to the stream function v (see Egs. 2.21) and the 0(n) function defines a dimensionless
temperature gap between the fluid temperature 7" and the plate temperature T, at the
same x position along the plate.

Uso

p— —_— 2-1
n=y\/ - (2.19)

v =+Usvzf(n) (2.20)

u=/dy, v=—-/0x (2.21)
0(n) = % (2.22)

By definition of the stream function 1, the continuity equation (Eq. 2.13) is au-
tomatically verified. Injecting Eqs. 2.19 to 2.21 into Eq. 2.14 leads to the Blasius
equation [37, 170] for the f function, where the (.)" superscript stands for the succes-
sive derivatives of any function with respect to variable 7:

f//l + %ff// — 0 (223)

The boundary conditions in Eqgs. 2.16 become:

£(0) =0, £/(0) =0, lim f() =1 (2.24)

Solving Eqs. 2.23 and 2.24 allows to find f, then 1 and finally v and v. The values
of f have been tabulated in the scientific literature and are independent on the type
of thermal boundary condition applied at the plate, because in the case of a fluid with
constant properties (p and p, in particular), the dynamical and thermal equations are
independent. The corresponding equation for the dimensionless temperature 6 depends
on the thermal boundary condition type and the isothermal and isoflux plate cases are
presented separately in the sections below.

Isothermal plate

When the temperature of the plate is set at a fixed value T, injecting Eqs. 2.19 to
2.22 into Eq. 2.15 gives the following equation for 6(n), Pr = v/a being the Prandtl
number:

1
0"+ 5Prfe =0 (2.25)

The boundary conditions also become:

0(0) =0, lim 6(n) = 1 (2.26)

n—0o0
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As f is found by Eqs. 2.23 and 2.24, 6 is found using Eqgs. 2.25 and 2.26 and finally,
the temperature is derived by using Eq. 2.22.

Isoflux plate

When the heat density flux is set to a fixed uniform and constant value at the plate,
the similarity of temperature profiles along the plate implies a Rel/? dependence of the
temperature gap between the plate and the free stream. Indeed, the heat flux density is
given by Eq. 2.27 and is constant along the plate only if the temperature gap T\, — T
is proportional to the square root of the abscissa as in Eq. 2.28.

ar U\ 2
" = k(T, — T-)0'(0) [ == 2.27
q ol ( )0'( )(m) (2.27)
AT =T, — Ty, = Na2 (2.28)

Using Eqgs. 2.22 and 2.28 allows to express T as a function of 6, z, N, and T, the
two latter being constant when x or y varies. Eqs. 2.19 to 2.22 are then injected into
Eq. (2.15), which provides the following ordinary differential equation for 6(n) (Eq.
2.29) that includes an additional term when compared to the isothermal case (Eq.
2.25). An alternative approach is provided in [27] by defining a different 6 function
and deriving a differential equation that is consistent with Eq. 2.29.

0" + %Prfﬁ/ + %Prf/(l —0)=0 (2.29)

In addition, the boundary conditions in Eqgs. 2.26 are still true and can be used in
order to find 6(n).

2.3 The entropy generation rate equations

The local entropy generation rate by unit of volume at any point in the flow is given
by [26]:

 K(VTP?

St = S+ 2 (2.30)
¢ is the viscous dissipation term in the equation of energy and is given by the

following expression for a two-dimensional incompressible flow:

G @G e

2.3.1 Entropy production rate equations for an isothermal plate

Injecting f and @ functions into Eq. 2.30 and keeping in the value of ¢ the main term
(Ou/0y)? only, leads to Eq. 2.32. The further multiplication by the dimensionless factor
v?/(kUZ)) provides the expression of the dimensionless local entropy generation rate at
any point in the flow in Eq. 2.33.
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. k0/2 U n2 MUs
mo_ sl 1 00 112 2.392
e (r—0)2 vx (4Rex i > N AT(1 — Q)vx (2:32)
6" n* PrEc
_ 1 "2 2.
53 Re, (1 —0)? (4Re$ * ) * Re, (T — H)f (2:33)
In this formula, Re, = Usx/v is the local (or longitudinal) Reynolds number,

Ec=UZ%/(C,AT) is the Eckert number and 7 = T,/ AT > 1 is a dimensionless thermal
parameter accounting for the relative importance of the temperature gap between the
fluid and the plate (AT = T,, — Tw) in relation to the temperature of the plate.

S3 is a sum of three terms, accounting successively and respectively for the entropy
generation rate by horizontal heat conduction Ss.,, by vertical heat conduction S3 ¢,
and by viscous friction Ss ¢:

9/2 772
oh = 2.34
Ssch Re$(7—9)2(4Rew) (2.34)
0/2
T S T o 2.
S = R ) (2:35)
PrEc .
- 2.
950 = Rentr—0)) (2.36)

Integrating S;’én along the vertical direction from the plate (y = 0) to the free

stream area (y — o0) gives the entropy generation rate by unit of plate surface S;’en

[(W.K~'m™2] (Eq. 2.37) and its dimensionless value (Eq. 2.38) with the v/(kUs)
factor.

: kao Qch -1
V= 20, + PrEc 2 z’ 2.
Sgen ” (4R€z + + PrEc f) Re (2.37)
Qch —%
SQ = ARe -+ Qc'u + PrEc Qf Reg; (238)

The (2ch, (2., and 2f terms depend on the 7 parameter and result from the inte-
gration of functions of 7:

Qo = /0 (Tei";)an (2.39)
o) 9/2

Oy = /O o (2.40)
o] f/12

Qf:/o T (2.41)

Finally, the integration of Sgen between two longitudinal positions a and b along the
plate leads to the entropy generation rate by unit of transversal length S ten WK tm™1]
(Eq. 2.42) for the boundary layer between these two abscissa (accounted by their
related local Reynolds numbers Re, and Rep). Its dimensionless counterpart S is
derived by dividing S;en by the thermal conductivity k& (Eq. 2.43).
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8= "(Res” — Re, *)

[N

"2 (2.42)
+2k(Re — Red)(£2ey + PrEc{2y)

1 _1
— Rea — Re, 2)12.
5! b e (2.43)

+2(Re? — Red)(Qu + PrEcs2y)

S =

Like S5 or S5, 57 is the sum of three terms accounting for the horizontal conduction
_1 1 1
of heat Sy, = %(Rea > — Re, *){2, the vertical conduction of heat Si ., = 2(Re] —

1 1 1
Reg) (2., and the viscous friction Si y = 2(Re; — Reg )PrEc(2;.

Equations 2.33, 2.38 and 2.43 allow to analyze the behavior and the composition
of the entropy generation rate as a function of dynamical and thermal variables.

2.3.2 Entropy production rate equations for an isoflux plate

For an isoflux plate Eq. 2.30 leads to the following expressions of the entropy generation
rate by unit of volume and of its dimensionless form:

o _ K0P U ((n0'—0+1 21 o
e (r—0)2 vx 7 4Re,

(2.44)
+ IUUgo "2
AT (Tt — O)vx
02 ng —6+1\> 1
() )
+ rLc f//2
Reg (1 —0)

As for the isothermal plate, integrating along the vertical line gives the entropy
generation rates by unit of plate surface.

- kUso ( £2en
Sgen = — (4Rex + 2 + PrEc Qf) Rey? (2.46)
Qen,
52 = <4R cv )R@x (247)
(' — 0+ 1
en = — 24
e 249
00 ]
2o = —d 2.4
| 249

"2
Qf_/ / il (2.50)
0
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Although Egs. 2.46, 2.47, 2.49 and 2.50 have an identical form than the corre-
sponding equations already given for the isothermal plate, it must be kept in mind the
following key differences: first, the 6 functions are different. Secondly, (2cx, 2., 2
now depend on x because 7 is now a function of the longitudinal position. Thirdly, the
Eckert number Ec also depends on .

The entropy generation rate per unit of transversal length is then integrated nu-
merically:

b
S e = / Sy nd (2.51)
Sv/
Sy = % (2.52)

2.3.3 Marginal viscous entropy production rates

Up to now, marginal terms in the viscous dissipation term ¢ have not been taken into
account. To the best of our knowledge, these terms have not been described before. In
addition to S3 ¢ in Eq. 2.36, the following contributors to the entropy generation by
viscous friction are:

PrEc /)
S3,f,ma'r‘g1 = Re%(T — 0) 772f 2 (253)
PrEc
i marg = —e (2P 2 2.54
PTEC 1/ 2 rll /
margs = — - 2

~ - : 20 [( Ou\2 Ov\2 Ov\2
These dimensionless terms correspond respectively to [(E) + (gz) I, %(E) ;
and ZT” (%%) The total contribution of viscous friction to the local entropy generation

rate is then:

SS,f—total = S3,f + SS,f,margl + SS,f,margZ + S37f,ma7“g3 (256>

The form of equations 2.53 to 2.56 is the same whether the plate is kept at a fixed
temperature or at a fixed heat flux density.

2.4 Physical and numerical model

In order to solve Eqgs. 2.23 and 2.25 or 2.29, a 4" order Runge-Kutta scheme has been
applied [121]. Values of 7 in the range [0;10] have been discretized with 1000 nodes and
n = oo has been replaced by n = 10 in the boundary conditions at infinity [16]. The
function f(n) and its first and second derivatives (Fig. 2.2) have been checked against
tabulated values available in the literature [87, 116, 110]. The value of #'(0) has also
been checked against Churchill and Ozoe correlations [53, 54| for values of Pr number
between 0.1 and 10 and are also in excellent agreement (Fig. 2.3). We have applied the
laminar boundary layer model solved by adopting the similarity approach when Pr = 1:
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the corresponding local friction coefficient Cy, = 2f”(0)Res /2 Jeads to a total drag
coefficient (Blasius drag law) valid for laminar flows [208]. The local Nusselt number
Nu=10 (O)Re,lv/ ? is in accordance with the literature [53, 54]. Numerical integration of
2in Eqs. 2.39, 2.40, 2.41, 2.48, 2.49, 2.50, and S in Eq. 2.51 have been performed by
using the Simpson’s rule.
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Figure 2.2: Functions f, f” and {” cross-checked with Ganapol [87]
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Figure 2.3: ¢'(0) cross-checked with Churchill and Ozoe [53, 54|

For all simulations, Pr = 1. In order to be able to compare isothermal and isoflux
simulations, with different values of the thermal ratio 7, a fixed reference position
along the plate is set once for all and named z,.s. At this reference position Re,.; =
Re(zrer) = 1000 and the plate temperature is set to Tyref = Tw(Trer) = 1000K.
For each simulation a value of 7,.f = T(2,cr) is set at the reference position and the
corresponding values of AT}y = AT (2ye) and Ecyef = Ec(xres) are then known. In
order to keep Uy to the same value for all simulations while 7,.f is changed, the ratio
Ecyrer = U%/(CoTwres) = Ecres/Tres is set to the fixed value 0.005 (e.g.: if 7yef = 2,
Ecrey = 0.01 at the reference position Re,.; = 1000) . For an isothermal plate, T, T,
AT, and Ec are constant along the plate. For an isoflux plate they depend on Re, and
obey the following equations:

T’LU re R x
Tw(Rey) = T—ff (Tref -1+ Ree f) (2.57)
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Tw,re f Re,

AT (Re,) = 2.58
(Rex) o\ Teres (2.58)
Reref
E r) — E w,refTre 2.5
c(Rex) = EcurefTres Re. (2.59)

R re
T(Res) = 1+ (Tres — 1)y /% (2.60)
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Figure 2.4: Variation of 7 as a function of Re,

When going further from the leading edge, the wall temperature and the tempera-
ture gap increase while there is a decrease of the Fc¢ number and of 7 (see Fig. 2.4),
the latter approaching 1 when Re, approaches infinity

2.5 Results
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Figure 2.5: 6 and €' functions for an isothermal and an isoflux plate

The functions 6(n) in the isothermal and isoflux cases are derived from different
differential equations (Egs. 2.25 and 2.29 respectively) that lead to distinct solutions
(Fig. 2.5) and different values of ¢'(0) in particular: at a given position along the plate
and with the same temperature gap, the temperature gradient is higher at the plate
in the isoflux case. The thermal boundary layer thickness is also smaller in the isoflux
case (even if Pr =1).
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Figure 2.6: Local entropy generation rate. Isothermal (left) and Isoflux (right). The
isothermal curve Ss is also plotted as a reference on the corresponding isoflux chart
(black plain line).

2.5.1 Local entropy production rates

The dimensionless local entropy generation rate S3 depends on the thermal ratio 7.y,
on the local Reynolds number Re, and on the type of thermal boundary condition, as
shown in Figs. 2.6. The entropy generation rate at the plate is strictly positive because
of the non-zero local temperature gradient. It increases to a local maximum and then
decreases and vanishes when reaching the isentropic free stream. The temperature
gradient reaches its maximum at the plate and then decreases when 7 increases. The
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presence of a maximum in entropy generation rate above the plate comes from the
rate of decrease of the square of temperature: near the plate, the temperature (T =
Tw — OAT) decreases rapidly while its gradient has a small negative slope (see Fig.
2.5) and this contributes to an increase of the entropy generation rate. Further from
the plate, the rate of decrease of the gradient becomes higher than the one of the
temperature and the entropy generation rate decreases. As will be shown hereafter, the
location of the maximum of S3 depends on the value of ;.. Local entropy generation
rate profiles as a function of the dimensionless distance from the wall can be compared
with those presented by several authors who studied the boundary layer in different
configurations and show a similarity of form [210, 206]. This is the case, in particular,
about the existence of a local maximum of entropy generation rate by unit of volume,
whose distance from the wall depends on the boundary conditions [155, 74|. A check
has been made with [155]: The equations of the dimensionless entropy generation
rate are equivalent and the position of the maximum on local entropy generation are
compatible.

At a given position along the plate, increasing 7,.¢, which means decreasing the
relative importance of the temperature gap, leads to a decrease of S35 whatever the
boundary condition type (Fig. 2.6(c) vs Fig. 2.6(a) and Fig. 2.6(d) vs Fig. 2.6(b)).
Greater values of 7, also bring the local maximum of Ss(n) closer to the plate: for
high values of 7.y and not too close to the leading edge (where horizontal conduction
and usually marginal viscous terms are no longer negligible), the main contribution
to the entropy generation rate comes from the main viscous friction component Ss f
which is strictly decreasing and has its maximum located at the plate.

If 7, is fixed and the position along the plate varies, an increase of Re, corresponds
to a decrease of the local entropy generation rate (Fig. 2.6(e) vs Fig. 2.6(c) and Fig.
2.6(f) vs Fig. 2.6(d)).

For a given 7. and a given position along the plate, S3 depends on the boundary
condition type. In the case of an isoflux plate, the position of the local maximum of
S3(n) is closer to the wall and it is the same for the vanishing point as the thermal
boundary layer thickness is smaller for the isoflux case (compare left vs right columns in
Figs. 2.6). Far from the leading edge and near the plate Ss is greater in the isoflux case.
The crossing point value of n where Ss is the same whatever the boundary condition
type increases when Re, increases.

The composition of S3 also depends on 7,.f and Re,. The relative importance of
the viscous part is greater when 7,.; increases and the proportion increase depends on
the boundary condition type (Fig. 2.6(c) vs Fig. 2.6(a) and Fig. 2.6(d) vs Fig. 2.6(b)).

The influence of Re, on the relative values of the components of the local entropy
generation rate also depends on the boundary condition type. For an isothermal plate,
the main effect appears when getting closer to the leading edge where the horizontal
conduction part becomes no longer negligible and puts the local maximum a bit further
from the wall as shown in Fig. 2.7(a). Moreover, the additional terms (see Eqgs. 2.53,
2.54, and 2.55) contributing to the viscous friction entropy generation rate are no longer
negligible: this can be seen in the same figure where the total viscous friction effect
S3 t—totar 1S shown along with the usual computation Ss; that neglects the otherwise
marginal terms.

For an isoflux plate, the major effect of increasing Re, is the decrease of the relative
contribution of the viscous component. This effect appears all the more near the edge
as the parameter 7.y is smaller. Close to the leading edge, marginal contributors to



2.5. Results 37
1.8e-04 T . 7.0e-05 T .
ped2%%%ag s3,tota] —e dec S3 total —e
1.6e-04 o S3’Ch 6.0e-05 S3,ch
N S
1.2e-04 - S;,?tutal 1 >< 4.0e-05 S3frotal
| 4 JI,marg
1.0e-04 3 marg? I 3.06-05

8.0e-05 3,f,marg3 R 5 0605

6.0e-05 i .Oe-

4.0e-05 1.0e-05

2.0e-05 0.0e+00

0.0e+00 see X009 -1.0e-05

-2.0e-05 -2.0e-05 . . .

! 2 X 4 3 0 3 4 5 6
n

(a) Isothermal :

6.0e-05

Tref = 10, Re, =10

n
(b) Isoflux: Trey =10, Re; =10

6.0e-05

JerRRaeN, S3 total —o— Ge0e000000, S35 total —e—
5.0e-05 | 3.ch 5.0e-05 3.ch
s3,cv = SS,cv —a
4.0e-05 S3¢ 4.0e-05 Syf
S3,f—total """""" S3,f—tnt.11 ———————————
3.0e-05 - S3fmargl 7 e 3.0e-05 - 3tmargl o
3.f,marg2 TR 3fmarg2 Heooe
2.0e-05 3fmargd TR 2.0e-05 3fmarg3 TR
1.0e-05 1.0e-05
0).0e+0() semesigistoRRRRRRmpsRRRRRRII A T N 0.0e+00 s RN ORIIIRRICOR
-1.0e-05 -1.0e-05
-2.0e-05 : : : : : -2.0e-05 : : :
0 1 2 3 4 5 6 0 1 2 3 4 5 6
n n
(c) Isothermal : T,y =100, Re, = 10 (d) Isoflux : 7y =100, Re, =10

Figure 2.7: Local entropy generation rate. Isothermal (left) and Isoflux (right), showing
all marginal viscous friction contributors.

viscous friction entropy generation become visible (Fig. 2.7(b)) as in the isothermal
case. However, for an isoflux plate, the horizontal conduction term stays negligible
even for low values of Re,.

The marginal viscous friction terms (Figs. 2.7) become visible near the leading
edge: they contribute positively (55 fmargt and Ss fmarg2) or negatively (S5 fmargs,
because the wall normal component of the velocity decreases with the abscissa for a
fixed ordinate) to the entropy generation rate, the sum of all the contributors to the
viscous friction entropy generation rate (marginal or not) being positive. As can be
seen in Figs. 2.7(b), 2.7(c), and 2.7(d), S5, fmarg2 can be non zero when moving far from
the plate and reaching the free stream zone. This term is related to the longitudinal
derivative of the vertical velocity component (Eq. 2.54): the Blasius boundary layer
model leads to a non-zero vertical component of the velocity in the free stream area
[208] and to a non zero longitudinal derivative of this component. S3 fmarg2 reaches an
asymptotic value when 17 — oo that goes closer to zero when Re, is increased.

2.5.2 Surface entropy production rates

The dimensionless surface entropy generation rate Sy depends on 7. and on the po-
sition along the plate. For a given Re, and whatever the thermal boundary condition
type, increasing 7,.s leads to a decrease of Ss.
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Figure 2.9: Isoflux plate surface entropy generation rates for two values of 7.y and Re,
from 100 to 1000000

For an isothermal plate and a given 7,.f, going further from the leading edge, i.e.
increasing Re,, leads to lower surface entropy generation rates as exhibited in Figs.
2.8(a) and 2.8(b) (the behavior of Sy is shown for values up to Re, = 10°, i.e. above
the usual critical Reynolds number around 5 x 10°, in order to reveal asymptotic
trends. Moreover, critical Reynolds up to 3 x 105 can be observed [244]). Indeed, all {2
integrals (Eqs. 2.39, 2.40 and 2.41) stay constant and neither 7 nor Pr or F¢ number
vary along the wall. Thus, the horizontal conduction part of the entropy generation
is inversely proportional to (Re,)*? and the vertical conduction like the friction parts
are inversely proportional to (Re,)/?. The boundary layer thickness increases while
the temperature gap stays constant when moving further from the leading edge. This
causes the entropy generation rate coming from the vertical conduction to be smaller. A
similar reasoning explains the decrease of the major contributor to the viscous friction
entropy generation rate (S5 r) as the dynamic boundary layer thickness increases for a
constant longitudinal speed gap between the plate and the free stream flow. In fact,
all terms, including marginal ones are decreasing, some at high rates (like Ss f.marg2)-

For an isoflux plate, the dependence of S3 on Re, is more complex and is the result
of the competition of two opposite causes. As shown in Fig. 2.9(a) and 2.9(b), near
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the leading edge, S2 is a decreasing function of Re, and reaches a local minimum
(around Re, = 400 for 7,.; = 10 and around Re, = 11500 for 7,.; = 50). Then,
So increases with the distance from the leading edge and reaches a local maximum
(around Re, = 640000 for 7.y = 10), after which it starts decreasing again. The
position of the local maximum and minimum are all the more distant from the leading
edge so as T,y is high. Increasing Re, leads to two opposite effects: on the one hand,
7 decreases (see Eq. 2.60) and corresponds to higher temperature gaps, pushing up
entropy generation rates coming from the vertical conduction of heat. On the other
hand, the boundary layer thickness increases when Re, is higher and this contributes
to a reduction of the entropy generation rate. The actual trend thus depends on the
combination of these two effects. Far from the leading edge (when Re, Z 640000 if
Tref = 10, for example), the major contributor to the surface entropy generation rate
comes from the vertical conduction of heat and the decrease of Sa2(Re,) is mainly due
to the boundary layer increase while 7(Re;) is quite flat (Eq. 2.60). For intermediate
Re,, the vertical conduction component is still the main contributor but it is increasing
with Re, because 7(Re;) is now decreasing quickly with the abscissa (the relative value
of the temperature gap in relation to the wall temperature is growing fast). Near the
leading edge (when Re, é 400 if 7,y = 10, for example), the main contributor to the
surface entropy generation rate is the viscous friction term which is decreasing with
Re, and causes the surface entropy generation rate to decrease alongside.

2.5.3 Total entropy production rates

The dimensionless total entropy generation rate between two positions Re, and Rey,
along the plate is a strictly decreasing function of 7,.;. For an isoflux plate (Fig. 2.10),
the abscissa of the crossing point of the viscous and the conduction parts is increasing
when the integration interval [Re,; Rep| is located further from the leading edge. This
can occur because Re, is greater with the same interval length (Fig. 2.10(b) vs 2.10(a))
or because the length of the interval is greater with the same starting Re, (Fig. 2.10(c)
vs 2.10(a)).

When the total thermal power (¢; in dimensionless form: see Eq. 2.61) exchanged
between the plate and the fluid, starting from a given position Re,, is fixed, the dimen-
sionless total entropy generation rate S; exhibits a minimum of entropy generation for
an optimum value of 7.y named 7, (Fig. 2.11).

_
B kTw,Tef

For high values of 7., the main contribution to the entropy generation comes
from the viscous friction. The temperature gap between the plate and the fluid is
small alongside and to keep the fixed thermal power, the exchange length must be
increased. These two factors combine to produce high entropy generation rates. On
the other hand, when 7.y is small, the major contributor is the thermal conduction
that occurs across high temperature gaps and this leads also to high entropy generation
rates. These two opposite trends lead to an intermediate value of 7. where they are
balanced (the sum of their derivatives with respect to .. is zero) and where the
entropy generation rate is minimum.

The total entropy generation rates between two longitudinal positions along the
plate when the exchanged heat power is fixed can be compared with a reference model

@ (2.61)



40 Laminar boundary layer

le+02 T T T le+02

S; —o—
le+01 | S e 4 le+01 f,

Sy —a
1le+00 X‘a&’“ gheY 1 1e+00 | &,

Lt o
le-01 F 3 le-01 ¢
le-02 | esasa, 1 le-02 |
1e-03 1le-03 K

n
le-04 | o ] le-04 | ©
le-05 ] le-05
1e-06 F 3 1e-06 ¢
1le-07 . . . 1e-07 . . . .
0 20 40 60 80 100 0 20 40 60 80 100

Tref Tref

(a) Re, = 1000, Rep = 2000 (b) Re, = 3000, Re, = 4000

le+02
le+01 F
le+00 |
le-01 F
le-02 ¢
1e-03 F
le-04
le-05
1e-06 F
le-07

0 20 40 60 80 100
Tref

(¢) Req = 1000, Re, = 4000

Figure 2.10: Isoflux plate total entropy generation rate between two positions Re, and
Reb

that adopts useful simplifications 23], namely that the generation of entropy by hor-
izontal conduction is neglected and the temperature difference between the fluid and
the plate is considered small enough to be neglected in comparison to the temperature
(Fig. 2.12). For large values of 7 (above ~ 15), there is a convergence with the simpli-
fied model. The gap is growing rapidly for very small values (below a 5), but in this
case, the thermo-dependence of the fluid should normally be taken into consideration in
the two compared models. In the intermediate range of 7 values, the model presented
in this study, which does not neglect AT in front of T', would be more appropriate.

The optimal value of 7.y depends on the thermal boundary condition type. As
an example, when ¢; = 26.67 and Re, = 1000, the optimum value of 7,y is around
15 for an isothermal plate and about 132 for an isoflux plate. This demonstrates that
the boundary condition type has a major influence on the behavior of Si(7..f) when
an energetic constraint is set. Moreover, in the isothermal case, stepping further from
the optimum value has a significant influence on the generated entropy because of the
relatively small radius of curvature of the curve at this point (see Fig. 2.11 around
Tref = 15). In the isoflux case, Si(7ref) is almost flat in a large interval centered on
the optimal value of 7 and operating values of 7,.; can be distant from the optimum
value without increasing the total entropy generation rate in a major proportion (see
Fig. 2.11 in the interval 7,y = 90 to 200, where S; defers from the optimum value by
no more than 2%). Whatever the boundary condition type, the negative slope of the
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Figure 2.12: Isothermal plate (Re, = 1000, ¢ = 26.67, 2 < 7,y < 30): Comparison
with a model where AT << T,

total entropy generation rate is rather steep for low values of 7,.; (see Fig. 2.11 for
Tref ~ 10) and this could have a major effect for highly non-isothermal applications,
like receivers of concentrated solar power plants: moving to bigger values of 7,.y can
reduce the total entropy generation rate significantly. Nevertheless, it must be kept in
mind that this is observed in the case of a simplified model that is used as a reference
and has to be confirmed for a thermo-dependent fluid.

Another major difference comes from the thermal boundary condition type : for
an isothermal plate, the optimum value of 7. appears to be independent on the
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integration starting point Re, and on the exchanged thermal power ¢;. For an isoflux
plate, T, increases when ¢ increases (Fig. 2.13) and the larger the thermal power to
evacuate between the plate and the fluid, the lesser the optimal relative temperature
gap at the reference point must be. In the isoflux plate case 7,y is also an increasing
function of Re, (Fig. 2.14).
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2.6 The relative importance of the viscous dissipation
function

Until now, the viscous dissipation function ¢ has been neglected in the energy equation.
It is legitimate to ask whether this is justified and what impact the absence of this term
may have on the solution temperature field. It is also useful to justify why @ could
be neglected in the energy equation while keeping it for the calculation of the entropy
generation rate. The purpose of this chapter is to provide some answers to these
questions.

Let us consider the case of the steady two-dimensional flow in a laminar boundary
layer over an isothermal flat plate, for an incompressible fluid with constant properties
and without pressure gradient in the free flow (Us is constant in the free flow). With
this set of assumptions, the boundary layer energy equation writes (the viscous dissi-
pation term is not neglected and is considered for its majority part in the boundary
layer):

or  or PT u

pCp(um-+ Ua—y) = k’@ + M(ay

The dimensionless quantities are defined in Eqs. 2.63 [208], which leads to the
dimensionless equation in Eq. 2.64:

)2 (2.62)

. T Ly y U « v o Tw—T
x 7Y L\/Re, u T UOO\/Re, T T (2.63)
X@TX+ L or* 1 0T~ +E(8ux)2 (2.64)
u v = —— c :
o> oy  Pro(yx)? Oy>
The ratio between the viscous and conductive terms in Eq. 2.64 is:

(G

PrEc agT (2.65)
J(y*)?

For a fluid like air, which Prandtl number is not far from 1, the order of magnitude
of the ratio in Eq. 2.65 is PrEc as within the boundary layer, each of the terms in the
fraction has an order of magnitude &~ 1. Thus the viscous and conductive terms in the
equation of the energy are in a ratio equal to the Brinkman number Br:

nUs,
kAT
In an air solar receiver case with AT = 500K, Pr = 0.7, Uy, = 40 m.s !, C, =
1005 J.K~'.kg~!, the Brinkman number is around 2 x 1072 < 1 and it is possible
to neglect the viscous dissipation term when solving the temperature equation. This
would not be the case for high Mach flows or very viscous fluids, for example [36].

Br = PrEc=

(2.66)

Let us now examine the entropy generation rate:

LU _k(VT)Z ¢~ k 8T2 H Ou 2
Sgen_T_FfNﬁ(ay) +T(a_y)

(2.67)
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By multiplying this expression by % in order to use a dimensionless form of the

entropy generation rate (Ss) and replacing T, u and y by their expressions as functions
of T, u* and y*, one gets the following expression for the dimensionless entropy
generation rate (where 7 =T, /(T — T)):

1 or*

B ( PrEc ou*
~ Re(t — T%)2" 0y~

Re(T — TX)(ayX

This dimensionless entropy generation rate includes two terms, one viscous and the
other conductive, their ratio being:

Ss )%+ )2 (2.68)

Ou> 2
)
O~
Dy

The order of magnitude of this ratio is PrEc(t — T*). Thus the viscous and
conductive terms in the equation of the entropy generation rate are in a ratio equal to
the Br(t —T>). If 7 > 1, this order of magnitude becomes PrFEc x 7 which can be
very different from the ratio found for the energy terms.

In the case of flows for which 7 > 1 and Br < 1, one could encounter situations
where the viscous dissipation term could be neglected in the equation of energy but
not in the calculation of the generated entropic power.

PrEc(t — TX)( (2.69)
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Figure 2.15: Simulationl and Simulation2 boundary conditions

In order to study this case more closely, two boundary layer simulations were per-
formed by solving the incompressible Navier-Stokes equations with the ANSYS Fluent
software, in a 5 mm long x 2 mm high domain, containing 500 x 200 mesh cells and with
the following conditions (Fig. 2.15): Uy, = 10.02497 m.s™ !, To, = 990 K, T,, = 1000 K,
Cp=1005 JK kg7, k=15x102 W.m L. K~! u = 1.4925x107° Pa.s. Therefore,
the Brinkman number is Br = 0.01 and its product by 7 is Br.7 = 1. Under these
conditions, it is expected that the orders of magnitude of the viscous and conductive
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components in the entropy generation rate are identical and that, in addition, the vis-
cous dissipation term in the energy equation is negligible (around 1% of the conductive
term).

In the first simulation (Simulationl), the energy equation is solved without taking
into account @. In the second (Simulation2), the viscous dissipation term is kept in
the energy equation. The comparison between these two simulations addresses the
temperature field, the entropy generation rates and the energy and entropy balances
(carried out in a control volume limited below by the plate, above by a border located
"far" from the boundary layer, at the entrance by the plane Re, = 1000 and at the exit
by the plane Re, = 2000). The values are expressed with a number of decimal places
allowing to show the differences between two executions of the code with different
settings: this does not mean that the real accuracy of the simulation is of this order of
magnitude.

Table 2.1: Entropy generation rate by unit of transversal length [W.K~1.m™!]

S S

gen,c gen, f

Simulation 1 1.1115 x 10™® 1.546457 x 10~°
Simulation 2 1.1139 x 107° 1.546460 x 105

The entropy generation rates are presented in Table 2.1 and are very close between
the two simulations (the relative difference being slightly more pronounced in relative
terms for the entropy generation by conduction, i.e.: 0.22% for Simulation2 compared
to Simulationl).

In addition, the ratio between the entropy generation rate by viscous friction Sgem f
and the one generated by conduction S'gew is 1.39. The entropic power created by
viscous effect is not negligible at all in these cases. The dimensionless parameter
Br.r = 1 predicts that the orders of magnitude of the entropy generation rates cre-
ated by conduction and by viscous friction are the same and this is indeed the case
(107> W.K~t.m™1).

The temperature profiles as a function of the distance to the wall, taken at the
abscissa Re, = 1000, Re, = 2000 and at the output (Re, = 2949) (Fig. 2.16) indicate
that the temperature fields are almost identical between the two simulations. The
temperature difference between the two simulations is also shown and does not exceed
0.014 K (Fig. 2.17). Thus, neglecting the viscous dissipation term when solving the
energy equation has a negligible impact on the resulting temperature field.

The mass balance between Re, = 1000 and Re, = 2000 does not show any discrep-
ancy (incoming and outgoing mass flow rates are equal up to the 9th decimal and are
about 0.0176 kg.s~! for both simulations). The momentum balances show a relative
deviation of 0.65% (for the longitudinal projection) and 0.66% (for the normal projec-
tion to the wall). The absolute deviation is the gap between the net flux of momentum
(outgoing minus incoming) on the one hand, and the sum of the pressure and viscous
forces acting on the fluid, on the other hand. The relative deviation is to relate this
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Figure 2.16: Temperature as a function of the distance to the wall
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Figure 2.17: Temperature gap between Simulationl and Simulation2 as a function of
the distance to the wall

absolute gap to the net flux of momentum. If the absolute deviation on the longitudinal
projection of the momentum balance is related to the incoming momentum flux, for
example, the relative deviation is only 0.01%.

The internal energy balance in the control volume is presented in Table 2.2: It
can be seen that the relative error in the internal energy balance is less than 1% and
is of similar importance for both simulations. If the absolute deviation is related to
the incoming flux, the relative deviation is less than 10~* %. The absolute error is
about 9 x 1072 W.m ™1, a value that is of the same order of magnitude as the viscous
dissipation term (about 1.5 x 1072 W.m™!). Simulationl is solved by neglecting the
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viscous dissipation term in the energy equation and it is also possible to compute
the balance deviation without this term by performing the A-B difference in table
2.2 (although the velocity field actually calculated results in a non-zero value of this
dissipation). The absolute error is then higher but keeps the same order of magnitude
(1072 W.m™1). In addition, the ratio between viscous and conductive heating is about
0.011, in good agreement with the value predicted by the Brinkman number (1072).

Table 2.2: Internal energy balance by unit of transversal length [IW.m™1]

Simulation 1 Simulation 2

(A) Net convective flux (out - in) 1.43 1.426
(B) Net conductive flux (out - in) 1.40576 1.40144
(C) Viscous dissipation 0.01541 0.01541
Absolute deviation (A-B-C) 0.00884 0.00915
Relative deviation (A-B-C)/A 0.62% 0.64%
Viscous/conduction ratio (C/B) 0.01096 0.01099

It is also interesting to examine the deviation found in the equation actually solved
by Fluent (Eq. 2.70): the absolute deviation is still around 1072 W.m ™! and the relative
deviation around 1% (less than 10™* % if related to the incoming convective flux of
total energy).

2
V.(V(per + P)) =V.(KNT +7.V), ey =h — % + % (2.70)

The entropy balance in the control volume is presented in Table 2.3: the relative
deviation in the entropy balance is also less than 1% (and less than 10™* % if related
to the incoming convective flux of entropy). The creation of entropy is about 2% of
the net conductive flux or the net convective flux.

In order to qualify the numerical convergence, it can be noted that the evolution of
internal energy and entropy fluxes (entering at Re, = 1000 and leaving at Re, = 2000)
as a function of the residue for the energy equation stabilize from 107! (Figs. 2.18 and
2.19). The relative deviation in the internal energy and entropy balances is reduced to
less than 1% also from 107! (Fig. 2.20). Simulations were conducted to a residue of
10716,

Finally, in order to study the influence of the mesh, two additional simulations were
carried out with a mesh twice as fine in the normal direction to the wall. The above
conclusions remain valid and so do the orders of magnitude. The balances are slightly
improved: the momentum balance in the normal direction goes from 0.66% to 0.61%
in relative deviation. The entropy and internal energy balances are also improved: the
relative deviations are 0.60% and 0.55% respectively, instead of the previous 0.67% and
0.62% for Simulationl.
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Table 2.3: Entropy balance by unit of transversal length [W.K~1.m™1]

Simulation 1 Simulation 2

(A) Net convective flux (out - in) 0.00144 0.00144
(B) Net conductive flux (out - in) 0.00141 0.00140
(C) Entropy generation 2.65795 x 107°  2.66038 x 10~°
Absolute deviation (A-B-C) 9.67285 x 1075  8.97109 x 1076
Relative deviation (A-B-C)/A 0.67% 0.62%
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Figure 2.18: Internal energy (convective) fluxes as functions of the energy equation
residual

To summarize, the theoretical analysis (in the particular case of the laminar steady
state boundary layer of an incompressible fluid with constant thermo-physical proper-
ties) indicates that the relative importance of the viscous dissipation function compared
to the conductive term in the heat equation is in the order of the Brinkman number.
Moreover, the relative importance of the entropic power created by viscous effect com-
pared to the production by heat conduction is in the order of the Brinkman number
multiplied by the dimensionless thermal ratio 7 (as long as 7 is well above 1). A pair
of simulations, with Br = 0.01 and Br.7 = 1, one of which taking into account the
viscous dissipation term in the energy equation and the other not, confirm the theoret-
ical analysis: neglecting the viscous dissipation term when solving the energy equation
only modifies the temperature field in an extremely weak way. In addition, the entropy
generation rate due to viscous friction is not negligible (it is even more important than
the heat conduction part), both being of the same order of magnitude.

The total viscous dissipation is about 1% of the internal energy net convective flux
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Figure 2.19: Entropy (convective) fluxes as functions of the energy equation residual
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Figure 2.20: Internal energy and entropy balance relative deviation as functions of the
energy equation residual

and the total generated entropic power is around 2% of the entropy net convective
(or conductive) flux. Although the physical balance errors are relatively small (when
compared to the net fluxes), viscous dissipation and entropy generation are of the same
order of magnitude as the absolute errors in the internal energy and entropy balances
respectively. This observation deserves further analysis because the calculated entropy
generation rate could be of little physical significance due to numerical errors. For
this reason, it is useful to make a comparison with the numerical model based on the
Blasius equation and presented in detail in chapters 2.3 to 2.5.

To carry out this comparison, four simulations are performed by combining two
values of the thermal ratio 7 (7 = 2 or 7 = 100) and the two boundary condition types
(isothermal or isoflux plate). When 7 = 2, the input velocity is set at &~ 71 m.s~! and
the integration is performed between Re, = 10000 and Re, = 20000 and if 7 = 100, the
input velocity is set at ~ 10 m.s~! and the integration is performed between Re, = 1000
and Re,; = 2000. The corresponding entropy generation rates are presented in table
2.4 and compared with the solutions of the boundary layer equations with the Blasius
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equation: they are close and in any case of the same order of magnitude. Therefore,
the deviation observed in the entropy balance is not concentrated in the calculation
of the entropy generation rate but more likely spread over the different terms of this
balance.

Table 2.4: Entropy generation rate by heat conduction and by viscous friction, by unit
of transversal length [W.K~t.m™1]

Boundary condition 7,y Equations S';mc ' en.

Fixed T, 2 Blasius 0.14097 0.00211
Navier-Stokes 0.14772 0.00264

Fixed Ty, 100 Blasius 1.0346 x 10~° 1.0300 x 1075

Navier-Stokes 1.1164 x 10™® 1.5465 x 107°

Fixed ¢” 2 Blasius 0.77142 0.00132
Navier-Stokes 0.77039 0.00167
Fixed ¢" 100 Blasius 1.8955 x 10~®  1.0308 x 1073

Navier-Stokes 1.6939 x 107° 1.5472 x 107°

The relative gap between the Blasius solution and the Navier-Stokes simulation
is more pronounced for the entropy generation rate by viscous friction and is to be
related to the different u(y) profiles of the longitudinal velocity as a function of the
ordinate. These profiles are presented in Fig. 2.21 for the case 7 = 2 at the domain
output (Re, ~ 20850): whereas in Blasius’ solution the longitudinal velocity increases
asymptotically towards Us, the Navier-Stokes solution presents an overshoot close to
the wall, the velocity becoming higher than U, and then decreasing to reach value.
This overshoot accounts for a phenomenon that is not captured by the classical laminar
boundary layer model concerning the displacement thickness of the boundary layer
[60]. In the Navier-Stokes solution, the velocity gradients are stronger and the entropy
generation rates by viscous friction as well.

As for the temperature profiles, whether the thermal boundary condition at the
wall is of the fixed temperature or fixed heat flux density type, the Blasius and Navier-
Stokes solutions provide close results (Figs. 2.22 and 2.23). However, the temperatures
obtained with the Navier-Stokes equations are slightly lower than those of the Blasius
approximation.
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Figure 2.21: Comparison between Blasius and Navier-Stokes longitudinal velocity (7 =
2 and Re, = 20850)
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Figure 2.22: Comparison between Blasius and Navier-Stokes temperature at Re, =
20850 when 7 = 2 and the temperature of the plate is fixed

2.7 Conclusion and perspectives

This study presents the local, surface and total generation rates in the boundary layer
above a flat plate with two different thermal boundary conditions: the isothermal case
when the plate temperature is fixed on the one hand, and the isoflux case when the
plate heat flux density is fixed on the other hand. In addition to the longitudinal
Reynolds number, the Prandtl number and the Eckert number, the entropy genera-
tion rate depends on the ratio, here named 7, between the plate temperature and the
temperature gap between the plate and the free stream flow (considered at a com-
mon reference point for all simulations in the study). This thermal ratio has a direct
influence on the magnitude and on the composition of the entropy generation rates,



52 Laminar boundary layer

3000

2500

2000

T[K]

1500

1000

Blasius
ELUEN T

0.0005 0.001 0.0015 0.002
y [m]

500

Figure 2.23: Comparison between Blasius and Navier-Stokes temperature at Re, =
20850 when 7 = 2 and the heat flux density of the plate is fixed

the effects being different depending on the plate thermal boundary condition type.
When an energetic constraint is applied (by fixing the total thermal power exchanged
between the plate and the fluid), there is an optimum value of 7 for which the total
entropy generation rate is minimum (and this has also been observed for Pr = 0.71, a
value corresponding to air at about 300K’). This optimum value of 7 is independent on
the total heat power exchanged or on the integration starting point along the plate for
an isothermal plate. On the contrary, when the heat flux density is fixed at the plate,
the optimum 7 increases with the integration starting point or the exchanged thermal
power.

For small values of 7 (i.e., if the temperature difference is large when related to
the temperature of the heated plate), a change in the relative temperature gap has
a significant effect on the entropy generation rate. In solar receivers, temperature
gradients are precisely high and this should motivate the search for solutions to better
homogenize the temperature field of the flow. This will be done in Chapter 3 by
applying the calculus of variations to search for velocity fields minimizing the entropy
generation rate (mainly due to heat transfer) in a flat channel.



Chapter 3

Variational optimization of the
internal flow

In this chapter, internal flat-plate channel flows are considered and optimized velocity
and scalar field patterns are found by applying variational optimization technique to
heat or mass transfer enhancement. In section 3.1, the fluid is air and heat transfer
optimization is studied. In section 3.2, the same general optimization approach is
applied to water and two different advection-diffusion processes are examined: heat
transfer on the one hand and mass diffusion on the other hand. Moreover, the influence
of boundary conditions such as the inlet velocity and the heat or mass flux density is
analyzed.

3.1 Convective heat transfer in a gas flow

3.1.1 Introduction

Improving heat transfer in convective flows is a vast and active area of research that
has applications in many industrial fields like nuclear [163| or solar [50] [63] [58] power
plants, process industry [144], chemical engineering [32], air-conditioning or cooling of
electronic systems [142] and automotive [102] or aerospace [220] industries to name
but a few. To enhance heat transfer, many methods have been studied, generally
classified according to whether they are active, passive or using a combination of the
latter. Active methods require external energy supply to maintain the enhancement
mechanism [134]: they can be based upon ultrasound [42], wall morphing [243] [132] and
vibrating walls [64] including piezoelectric fans, impingement jets [172] [187] or sprays
[100] [122], and electric field force on a dielectric fluid [137]|. Heat transfer improvement
passive methods are based upon three main techniques. Inserts can be placed in the
fluid path to extend the exchange surface, redirect the flow, break boundary layers and
promote mixing, swirl, vortexes and turbulence. There is a wide variety of inserts [131]
[148]: twisted tapes, coiled wires, conical rings, helical screws and also fins, baffles or
ribs. Combinations of techniques such as perforated twisted tapes or those with cut
or corrugated edges have also been studied. Another passive method consists in using
coatings or surface roughening [49] [76]. Finally, improving heat transfer can also be
performed by changing the characteristics of the fluid (its heat capacity, viscosity and
thermal conductivity), one active area of research being the use of nanofluids [180, 96,
115] (i.e. a fluid containing nanoparticles, whose sizes are < 100 nm). Nanoparticles
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can be made of a metal (e.g. Au or Cu), a metal oxyde (e.g. TiO,, Fe;O,, CuO,
AlL,O,) or other chemical substances (e.g. SiC, Carbon nanotubes) dispersed in a fluid,
in particular: water, oil, molten salts or ethylene-glycol. The use of nanoparticles can
be combined with passive [2] or active [136] methods and applied for example in the
nuclear [147] or solar industry [30]. Higher size (micro-metric) particle suspensions are
also promising to improve the performance of concentrated solar power plants [143]
[86] [81].

Whatever the method used to increase heat exchange, it is necessary to ensure that
this improvement is not accompanied by the harmful degradation of another perfor-
mance criterion. In particular, one of the challenges in optimizing forced convective
heat transfers is the balance between intensifying thermal exchange while minimizing
or controlling pressure drop increase, both having to be taken into account [17] [51].
One way to address this trade-off consists in minimizing the entropy generation rate,
which includes all the available power lost due to irreversibility in the flow whether it
comes from the viscous friction responsible for the pressure drop or from the conduc-
tion phenomena through finite temperature differences 26| [24] [107]. As total viscous
dissipation is related to the drop in pressure that can be a constrained element in in-
dustrial applications, it is also interesting to seek a minimization of the entropic power
generated while maintaining control of total viscous dissipation [141] [10], which can
be done by using a weighted objective functional.

In this study, we consider situations where the entropy generation rate by heat
transfer is largely dominant when related to the viscous friction generated entropic
power (which corresponds to Be &~ 1, where Be is the thermodynamic Bejan number
[14]). We look for velocity and temperature fields that minimize a functional objective
combining the entropic power generated by the dominant factor (i. e. heat conduction)
on the one hand and the total viscous dissipation on the other hand, the latter being
weighted by a factor that can be freely fixed in order to give more or less weight to
the pressure drop in the optimization process. Several simulations were carried out
for three Reynolds number values, by varying this total viscous dissipation weighting
factor, in order to observe its influence on the entropy generation rates as well as
on key physical variables such as the temperature of the heated wall, the total viscous
dissipation, the maximum temperature and velocity in the channel and the outlet mean
temperature.

3.1.2 The governing equations of the flow

We consider the two-dimensional steady-state incompressible flow of a Newtonian fluid
with constant properties. Viscous heating and gravity are neglected and there is no
source term in the energy equation nor any radiative exchange. Taking into account
these assumptions, the conservation of mass, momentum and energy lead respectively
to the following equations [189]:

V.V =0 (3.1)
pV.VV = -VP +uV?V + F (3.2)
k 2
V.VT = —V°T (3.3)
pCp
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In this set of equations, V is the velocity vector of the fluid, p its density, P its
pressure, p its dynamic viscosity, 1" its temperature, k its thermal conductivity, C), its
thermal capacity at constant pressure and F' is a volume force field that will be used in
the optimization process described below: the volume force is an intermediary allowing
to act on the velocity field in order to optimize the objective functional and the heat
transfer.

3.1.3 The entropy production rate equations

The local entropy generation rate (by unit of volume) can be calculated using the
following expression, where @ is the viscous dissipation function [26]:

So = %(VT)Z - % (3.4)
o - u{z [(%)2 ¥ %)2] -Gt ?)} (3.5)

3.1.4 The variational problem
Objective functionals

Finding a minimum of a linear combination of the following two terms ({2 being the
control volume) results in minimizing the generation of entropy by heat conduction
while taking into account the total viscous dissipation:

J = ///Q <:I%(VT)2 + W@q§> .d§2 (3.6)

In Eq. 3.6, Wg is a weighting factor allowing to control the relative importance
given to the viscous dissipation. Wg can be seen as a weighting factor in a multi-
objective optimization problem. Minimizing the entropy generation rate and the pres-
sure drop, while these two objectives are contradictory, does not lead to a single solu-
tion. The use of a weighting factor allows to find a whole range of optimized trade-offs:
with high values of Wg, the emphasis is on the reduction of pressure drop (and more
precisely of the total viscous dissipation @, which corresponds to the mechanical
power required to maintain the flow). Conversely, small values of W correspond to a
focus on minimizing the entropy generation rate in the channel. Each value of Wg leads
to an optimal velocity field that minimizes differently the two contradictory objectives
pursued since they are assigned different weighting factors.

The constraints expressed by the mass and energy conservation equations (Egs.
3.1 and 3.3) are taken into account through two Lagrange multipliers (respectively A\
and Ay that are functions of the z and y coordinates). This leads to the following
Lagrangian criterion to minimize:

J* = ///Q {%(VT)Q + Wpd

+A2 {iV2T - V.VT] + )qV.V}.dQ
pCyp

(3.7)
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The function to be minimized (the entropy generation rate due to heat transfer
and the viscous dissipation combined linearly in order to cope with a multi-objective
optimization problem) is a functional (a function of functions, which is also non-linear)
and the solution sought is a set of functions of the position (the velocity vector field
and the scalar field) and not a simple number or even a single vector or tensor. These
solution fields must also comply with the conservation equations (also non-linear) and
the boundary conditions. One way to find the minimum of the functional could be to
use iterative search algorithms (starting from an initial possible field and trying to get
closer to the minimum by calculating gradients and penalty functions, for example) or
methods based on meta-heuristics (such as genetic approaches) [199]. This implies to
carry out a potentially high number of resolutions of the fluid flow equations and of
evaluations of the objective functional. On the other hand, the calculus of variations
allows to transform the optimization problem into a system of differential equations
[90] |231] (the Euler-Lagrange equations) and the optimization is therefore carried out
mathematically and not numerically. One single numerical resolution of the resulting
differential equation system is then carried out to find the velocity and scalar fields. In
this method, the standard procedure for taking into account the equality constraints
that must be respected by the solutions (here: the conservation equations) is done
using Lagrange multipliers.

Resulting equations

The expression of the volume force field is obtained by equaling to zero the first varia-
tion of J* with respect to the components v and v of the velocity in order to deduce
the corresponding Euler-Lagrange equations and taking into account the equation of
the conservation of momentum (Eq. 3.2):

A2

F=
2Wg

VT 4 pV.VV (3.8)

Making the first variation of J* with respect to T vanish leads to a transport-like
equation for the A2 Lagrange multiplier:

—k _ 2kp vT

The boundary conditions applicable to equation Eq. 3.9 depend on those concerning
the temperature: if the temperature is imposed on a boundary of the domain, Eq. 3.10
applies and if the heat flux density is imposed, Eq. 3.11 must be taken into account
(where 0/0n is the normal derivative to the boundary):

A2 =0 (3.10)
8)\2 o 2pC’p5'T
T o (8-11)

Finally, the differential equation system to be solved consists in Eqgs. 3.1 to 3.3
(supplemented by boundary conditions for temperature, velocity and/or pressure) and
Egs. 3.8 and 3.9 (supplemented by the boundary conditions in Eqs. 3.10 or 3.11). The
A1 Lagrange multiplier is not necessary but can be computed by:
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VA = —2WgVP (3.12)

The derivation of Egs. 3.8, 3.9 an d 3.12 from the calculus of variations is provided
in Appendix A.

3.1.5 Physical and numerical model

The fluid is dry air, flowing between two transversely infinite flat plates (Fig. 3.1)
that are impermeable and comply with the no-slip boundary condition. The walls are
adiabatic except for the central third of the lower wall which is subjected to a uniform
and constant heat flux density (1000 W.m™2) in order to heat the fluid. The domain
dimensions are 30 mm x 5 mm and a uniform 1200 x 200 mesh is applied. At the
inlet, the velocity and the temperature of the fluid are fixed and at the outlet, the gage
pressure is set to zero.

The ANSYS Fluent 15.0 code is used to solve the flow equations with the SIMPLE
velocity-pressure coupling algorithm. Additional scripts (UDF) have been developed
to solve the additional Ay equation (Eq. 3.9) and to define the F' volume force field
that is applied in the central area of the domain (between z = 10 mm and x = 20 mm)
in order to avoid side effects and to keep simple inlet and outlet boundary conditions.
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Figure 3.1: Domain characteristics.

For pressure and energy, second-order discretization schemes are applied. Momen-
tum is solved with a QUICK scheme and A5 is solved with a first order scheme.

About forty simulations were performed, divided into three groups corresponding
to three Reynolds number (based upon the channel height): Re = 20, Re = 30 and
Re = 320, obtained by varying the inlet velocity Vi,. In each group several values of
the weighting factor Wg were tested, the global span of values ranging from Wg ~
0.54 K~' to Wg ~ 1.23 x 10° K~ so as to provide a wide range of situations from
cases where viscous dissipation is of significant importance in optimizing the objective
functional to cases where its relative weight is a priori negligible. In all simulation the
inlet temperature is set to T3, = 300 K.

3.1.6 Results

Entropy production rates and improvement factors

As shown in Fig. 3.2 (each point corresponding to a different simulation, as is the
case for the following graphs), whatever the value of W, the optimized cases lead to
a reduced total entropy generation rate in the channel, when compared to the case
with no optimization, the relative reduction being quantified by using an improvement
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Figure 3.2: Improvement factor Is (Eq. 3.13) as a function of Wg. Re = 30.

factor Is (Eq. 3.13) that is increasing when Wg decreases. For high values of W
(10> K~! or more), the improvement factor is near zero. For We = 1K -1 Ig is

around 74% when Re = 30.
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Figure 3.3: Total entropy generation rate Sgen as a function of W

The total entropy generation rate increases with Wg (Fig. 3.3). For high values
of Wg, the slope of the curve is small and approaches zero. The slope is higher for
intermediate values of the weighting factor and it flattens when reaching small values
of Wg. An unevenness of the slope also appears (it is embodied by vertical lines
in Fig. 3.3), whose localization depends on the Reynolds number: the higher the
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Reynolds number, the lower the value of W for which this irregularity occurs (around
Wg =325 K~ if Re = 30 and around Wg =5 K~ when Re=320).
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Figure 3.4: Entropy generation rate due to heat conduction Sgen,c as a function of W
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Figure 3.5: Entropy generation rate due to viscous friction Sgen, s as a function of W

The entropy generation rate in the channel is the sum of heat conduction (Sgen,c, in
Fig. 3.4) and viscous friction (Sen, s, in Fig. 3.5) contributors. The order of magnitude
of the heat conduction part is the mW.K~! while the viscous part ranges between
~ 10 nW.K~! and ~ 10 uW.K !, depending on the Reynolds number. Because of the
very small relative importance of the viscous part in comparison to the heat conduction
part, the entropy generation rate by heat conduction is almost equal to the total
entropy generation rate. The entropy generation rate by viscous friction (Fig. 3.5) is
increasing when Wg decreases because the total viscous dissipation @y is increasing

(Fig. 3.6), while the temperature remains in the order of 300 K. This means that
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the improvement observed on heat conduction entropy generation (and on the total
entropy generation rate) is gained at the expense of an increase of the total viscous
dissipation and correlatively of the viscous entropy generation rate, which remains

however relatively small.
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The decreasing behavior of the total entropy generation rate when the total viscous
dissipation increases is even clearer when observing the direct relationship between
these two physical integrals (Fig. 3.7). The viscous related quantities Sgen, ¢ and Dy
in Figs. 3.5, 3.6 and 3.7 exhibit the irregularity already observed in Fig. 3.3, which is
particularly visible when Re = 20 or Re = 30.

The weighted objective functional J is an increasing function of Wg (see Fig. 3.8)
even for high values of the weighting factor. Indeed, when Wg gets high in Eq. 3.6, the
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Figure 3.8: J objective functional as a function of Wg

entropy generation rate by heat conduction (Fig. 3.4) and the total viscous dissipation
(Fig. 3.6) stabilize, while the weighting factor Wg increases.

Flow regimes

Depending on the value of Wy, the velocity and temperature fields exhibit different
profiles [10], being more or less perturbed when compared to the case where no opti-
mization is applied at all.

No optimization case

W = 5914 K1

299 306 314 322 329 336 344 352 359 366 374
T[K?]

Figure 3.9: Temperature field with no optimization and when Wg = 5914 K -1
Re = 30)

For high values of W, for example 5914 K ~1. the temperature and velocity fields
are very similar to the case where no optimization is applied (see figs. 3.9 and 3.10,
where the abscissa at the beginning and end of the heated zone are materialized by two
black vertical lines). Nevertheless, the optimization process has already an influence:
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Figure 3.10: Velocity magnitude field with no optimization and when Wg = 5914 K -1
. Re =30)

when Re = 30, the maximum temperature in the channel without optimization is

373.5 K and 372.2 K when Wg = 5914 K1

W, = 394 K1

W = 296 K1

W = 197 K1

— aamm
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Figure 3.11: Temperature field for Wg = 394 K1, 296 K~' and 197 K~'. Re = 30.

For smaller values of Wg, the influence of the optimization process becomes evi-
dent and the perturbation level (when compared to the case where no optimization is
performed) increases as Wg decreases (see Figs. 3.11 and 3.12): if Wg = 394 K1,
the temperature profile exhibits a squeeze above the heated zone and this phenomenon
becomes more pronounced as Wg decreases. At Wg = 296 K ~1 and even more at
Wg =197 K ~1. a protrusion appears above the beginning of the heated area.
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Figure 3.12: Velocity magnitude field for Wg = 394 K~', 296 K~' and 197 K1
Re = 30.

The velocity magnitude field at Wg = 394 K ! is also stuck towards the bottom
plate and this observation is still valid when decreasing Wg. Moreover, as W gets
smaller, areas of the channel exhibit higher velocities, in particular around the begin-
ning of the heated zone (above a round structure circling an area of small velocities
which looks like a vortex) and in a large central part of the heated segment above the
bottom plate. The transition between the slightly perturbed velocity and tempera-
ture fields (when Wg = 394 K~', for example) and the highly perturbed ones (when
Wg = 296 K~', for example) take place at Wg = 325 K~ and corresponds to the
irregularity previously observed in the entropy generation rate profiles in particular.

The stream function presented in Fig. 3.13 confirms the presence of a vortex (also
found in [141] for a turbulent flow of heated air subject to variational optimization)
in the initial part of the heated segment as soon as Wy is small enough: there is
no apparent vortex when Wg = 1183 K ~1 and a single vortex is clearly visible if
We =197 K —1. for a smaller value like We=1K ~! the main vortex at the heated
zone entry is larger and exhibits a more complex shape. Furthermore, additional
recirculating vortexes appear above the heated zone.

A zoom of the velocity vector above and around the central heated zone of the
channel is presented in Fig. 3.14) along with a schematic representation of the main
flow directions and of the rotational directions of the vortexes (the + sign meaning
that the vortex has a clockwise rotation). The main vortex, located near the entry of
the heated zone, collects a part of the heated fluid and transfers it to the accelerated
area above the vortex. Then, the flow is sticked towards the heated segment of the
bottom plate. As can be seen in Figs. 3.13 and 3.14, when Wg = 197 K~!, the center
of the main vortex is located just after the beginning abscissa of the heated zone.
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Figure 3.13: Stream function [kg.s™!]. Re = 30.
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Figure 3.14: Velocity vector (zoom) with an indication of the main flow directions and
of the rotational direction of vortexes: ” +” means clockwise. Re = 30.

Nevertheless, for low values of W, this center is located before this abscissa (this is
the case when Wg = 1 K~', but also when Wy = 6 K~ for instance). The vertical
extension of the main vortex increases when Wg decreases and so does the barycentric
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position of the accelerated area above the vortex: when Wg =1 K~! (Fig. 3.14), this
high speed area is very close to the top plate of the channel.

W = 197 K
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Figure 3.15: Ay Lagrange multiplier [J.m 3. K 2] field (Re = 30).
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Figure 3.16: Force field F applied above the heated segment area [N.m ™3] (Re = 30).

The Lagrange multiplier Az field is presented in Fig. 3.15 when Wg = 197 K -1
The highest values are concentrated in the first third of the heated area and mainly
close to the plate. This is to be related to the magnitude of the corresponding force
field F' presented in Fig. 3.16. Indeed, high Ay values contribute to the increase of
the first term of the expression defining F' in Eq. 3.8 and this term also involves the
temperature gradient that reaches high values near the heated plate segment. The
main effect of the force field applied in the central third of the channel is to push down
the fluid in the direction of the plate and to the starting point of the heated segment.
Moreover, the force field tends to squeeze the flow and to crutch the thermal boundary
layer above the heated segment of the bottom plate. As can be seen in Figs. 3.12,
3.13, 3.14 and 3.16, there is a strong relationship between the applied force field and
the velocity vector.

The local entropy generation rate fields by heat conduction and by viscous friction
are presented in Figs. 3.17 and 3.18 respectively (the latter using a logarithmic color
scale for the sake of visibility). Significant entropy generation rates by heat conduction
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Figure 3.17: Local entropy generation rate by heat conduction in [W.K~1.m™3] for
Wg = 5913 K=1,1183 K71, 197 K~! and when no optimization is applied.

are located above the heated segment and are mainly due to the vertical conduction
of heat. A convective trail appears at the exit of the heated zone. As Wy decreases,
the region of higher entropy generation rate by heat conduction is flattened and closer
to the bottom plate. For values of Wy small enough to make appear the thermal
protrusion before the beginning of the heating zone, a plume appears in this area (see
figs. 3.11 and 3.17 when W,, = 197 K~!). The behavior of the local entropy generation
rate by viscous friction is more complex (Fig. 3.18). The highest entropy generation
rates by viscous friction are located at the channel inlet wall ordinates y = 0and y = H
because of the discontinuity of the velocity that changes from U;, to zero at the walls.
Just after this entry zone, the main viscous dissipation comes generally from areas
close to the walls, at least when the velocity filed is not too disturbed. Concentrating
mainly to the part of the channel located above the heated segment, the perturbation
of the entropy generation rate field by viscous friction becomes apparent even for high
values of the weighting factor, like Wy = 5913 K~! or W, = 1183 K !: the narrow
longitudinal region of low entropy generation rate located in the center of the channel
is deviated when crossing the entry of the heated zone and even almost broken when
Wy = 1183 K. For lower values (W, = 197K '), the entropy generation rate by
viscous friction (and the viscous dissipation) is more perturbed and higher generation
rates concentrate above the heated segment but also at the top wall around z = 10 mm
and along a closed curve enclosing the main velocity vortex. Indeed, the velocity field
pattern is the main contributor to the complex shape of the entropy generation rate by
viscous friction because the temperature field is simpler and kept in a smaller relative
interval of values.
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Figure 3.18: Local entropy generation rate by viscous friction in [W.K~t.m™3] for
Wg =5913 K1, 1183 K~', 197 K~! and when no optimization is applied. Color scale

is logarithmic.
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Figure 3.19: Average temperature in the Channel [K].

The volume average of the temperature in the channel (Fig. 3.19) is an increasing
function of Wg, while staying in a narrow interval: as an example, when Re = 30,
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the mean temperature is located between 309.8 K and 307.9 K while W decreases
from 5914 K~! to 6 K~'. The maximum temperature inside the channel (Fig. 3.20)
also decreases as Wg gets smaller and it is the same for the standard deviation of
the temperature that drops from 15.54 K to 8.06 K over the same range of Wg, in
accordance with a better thermal mixing due to the applied force field. Higher Reynolds
numbers lead to lower maximal and average temperatures: the total injected thermal
power is a constant and an increase of the inlet velocity leads to a higher exchange
coefficient that induces lower temperature gaps.
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Figure 3.21: Average temperature on the bottom plate [K].

The average temperature of the heated wall is also lower as Wg decreases (Fig.
3.21) and the same behavior can be observed for the maximum temperature at the
same wall (Fig. 3.22): Using the example of simulations where Re = 30, the maximum
temperature of the lower wall is 373.5 K when no optimization is applied. For a high
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Figure 3.23: Temperature along the bottom plate [K].

value of Wg like 5914 K ~1, this temperature is 372.2 K, a value very close to the
non-optimized situation. On the other hand, for a smaller weighting factor, such as
We =074 K —1 the heated plate peak temperature is only 330.1 K, corresponding
to a gain of 42K. The temperature profiles of the bottom plate as a function of the
abscissa are shown in Fig. 3.23 for several values of Wg and demonstrate the narrowing
of the temperature range at the heated plate as Wg decreases. The reduction of the
maximum temperature and the better thermal homogeneity of the heated plate are an
advantage in applications like concentrate solar power where materials are subjected
to high temperature stress that can be the cause of damage or accelerate aging due to
thermo-mechanical [135] [162] or chemical [198] [194] constraints (oxidation for example
[85]).

The average temperature at the outlet of the channel is practically independent on
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the value of Wg (Fig. 3.24). On the other hand, the smaller the value of Wg, the
more homogeneous the temperature at the outlet of the channel as demonstrated in
Fig. 3.25.
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Figure 3.24: Average temperature at outlet [K].
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Figure 3.25: Temperature profile at outlet [K].

The different temperature profiles and fields presented above show that the velocity
field pattern obtained by variational optimization leads to a better homogeneity of
the thermal field, compatible with a reduction in the entropy generation rate in the
channel. This improvement is achieved at the cost of an increase in entropy generation
by viscous dissipation, which is linked to velocity gradients: the maximum velocity
magnitude observed in the channel increases when Wg gets smaller (Fig. 3.26). Its
profile is similar in appearance to that of the total viscous dissipation (Fig. 3.6) or the
rate of entropy generation by viscous dissipation (Fig. 3.5): for large values of W,
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the maximum velocity magnitude is practically stable (and close to that which would
be observed without optimization). From the transition to disturbed flow regimes, the
maximum velocity magnitude in the channel increases rapidly as Wg decreases, the
slope being higher as the Reynolds number gets higher.
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Figure 3.26: Maximum velocity magnitude in the Channel [m.s™1].

3.1.7 Conclusion

In section 3.1, convective heat transfer optimization in a channel flow is addressed using
variational methods applied to an objective functional built as a linear combination of
the entropy generation rate by heat conduction (which is largely dominant in the cases
studied) and the viscous dissipation function, a coefficient that acts as a weighting
factor being assigned to the latter. Optimal velocity field patterns are induced by a
volume force field that is a solution of the variational problem. Several simulations
have been performed, at different Reynolds numbers and for a wide range of weighting
factor values, in order to assess the improvement in terms of entropy reduction. The
resulting velocity, temperature and local entropy generation rate fields are described,
as well as the influence of the viscous dissipation function weighting factor on the flow
and on the key physical quantities like the average and maximum temperatures in the
channel, at the heated plate and at the outlet.

Depending on the value of the weighting factor, the optimized velocity and temper-
ature fields are more or less perturbed by comparison to the case where no optimization
is applied and a critical value of this factor determines the transition from low to high-
disruption solutions. The higher the Reynolds number, the lower the critical value of
the weighting factor. Small values of the weighting factor lead to highly perturbed
velocity patterns exhibiting one or more vortexes and a tightening of the flow closer
to the heated area. The corresponding thermal field is influenced by this mixing and
the temperatures are lower and more homogeneous in the channel, at the heated plate
and at the outlet. This improvement is reflected in the total entropy generation rate
that is significantly reduced (the lower the weighting factor, the lower the entropy gen-
eration rate in the channel). The reduction in entropy generation rate is done at the
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expense of an increase of the total viscous dissipation, the velocity magnitudes being
higher in the channel and the velocity field being more complex. The entropy genera-
tion rate by viscous friction increases alongside but has no effect on the improvement
in total entropy generation rate, due to its small relative order of magnitude. From
the application point of view, it is found that a significant wall temperature reduction
can be obtained, while maintaining the same power transfered to the fluid. This result
shows an increase of heat transfer efficiency at the wall. The optimal suggested velocity
fields provide a target to be approached using, for example, passive physical means like
porous media [141] or modifications of the geometry inside the channel [108]. They also
provide a better understanding of how flow structures are related to the minimums of
entropy generated and the values of the total viscous dissipation.
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3.2 Application to different advection-diffusion situ-
ations

To assess the general interest and investigate the behavior of the variational approach
used above in the case of air flow heat transfer, the same method is applied to different
situations. First, the case of convective heat transfer is performed with a different fluid
(water, whose physical properties are quite distinct from those of air) and the influence
of the boundary conditions is analyzed. Secondly, mass transfer is studied with the
diffusion of a chemical minor species in water and a comparison is done between heat
and mass transfer at the same Reynolds number in order to identify similarities.

3.2.1 Introduction

This study also addresses the application of variational methods to improve transfers
in convective flows, by looking for optimal velocity fields. The main objective is to
apply the method described in section 3.1 to another fluid and to broaden the range of
situations by varying boundary conditions and examining not only the case of thermal
diffusion, but also the case of mass diffusion.

In many industries and engineering applications, it is necessary to optimize heat
or mass transfers in order to improve the technical or economic efficiency of machines,
plants or processes. The intensification of heat transfer is sought in thermal power
plants like concentrated solar [1, 82, 216], nuclear [147] or geothermal [242] ones, but
also in the process, automotive or aerospace industries and for cooling systems. As
detailed in section 3.1.1, heat transfer enhancement is an innovative field of research
[205] using many techniques whether active (requiring an external energy input) such
as the use of oscillating walls, or passive such as the addition of mixing promoters in
the flow channel [63] [58] or the search for optimized transfer fluids. Convective mass
transfer enhancement is also an area of particular interest for chemical processes [44]
and biotechnology [129, 222| that take advantage of passive [5, 3| or active methods
[207, 73]. In both heat transfer and mass diffusion, the use of suspended fine particles
[128] or nanofluids |6, 34] is also being studied to increase exchanges. The intensification
of heat or mass transfers is often produced by the passive promotion or the active
realization of mixing [164] whose performance is dependent on the fluid flow pattern
[241, 7, 175]. Therefore, searching for optimal flow patterns can be useful to improve
heat or mass transfer in convective flows.

One way to address this issue is applying thermodynamic optimization by using
the entropy generation rate as a criterion [23, 171]. In convective flow heat and mass
transfer, the total generated entropic power is generally a sum of several terms. In
the absence of radiative heat transfer [149], chemical reaction [40, 35|, cross effects
such as Dufour or Soret ones [197] and dissipation related to electric or magnetic
fields [39, 154], the entropy generation rate originates from viscous friction, on the
one hand, and from the diffusion of heat or mass through finite temperature or mass
concentration differences, on the other hand. Acting on one of the two terms, for
example by reducing the rate of heat conduction entropy generation, can lead to an
increase in viscous friction entropy generation and it is necessary to seek the right
compromise between two opposing effects. The total generated entropy rate can be
minimized in order to find this optimal trade-off [24, 26, 107]|. It is also possible to
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look for a minimum of entropy generation while fixing a constraint on the total viscous
dissipation in the flow [141, 108], the latter being related to the pressure drop, which
is a quantity to be controlled in industrial applications.

In the present study, the calculus of variations is used to minimize a functional
objective constructed as a linear combination of the entropy generation rate main
contributor (which is the heat conduction or the mass diffusion, depending on the
type of advection-diffusion process) on the one hand and the viscous dissipation on
the other hand [47, 46, 109, 10]. A weighting coefficient allowing to give more or less
importance to the viscous dissipation is used during the optimization process. For
each value of this weighting factor, the optimal velocity and temperature fields are
obtained by varying a volume force field source term and the improvement in terms of
generated entropic power is calculated. The method is applied to heat transfer and mass
diffusion cases in order to identify common behaviors or differences and the influence
of the following boundary conditions is analyzed: the inlet velocity, the intensity of the
incoming heat flow or minor chemical species injection and the inlet mass fraction of
the minor species. Depending on the value of the total viscous dissipation weighting
coefficient, two different flow patterns appear and the robustness of the transition
between these two regimes is analyzed.

3.2.2 Governing equations

Two types of advection-diffusion processes in a convective flow are analyzed: heat
transfer on the one hand and mass diffusion of a chemical minor species on the other
hand. The corresponding equations are presented below (the ones concerning heat
transfer are identical to those already indicated in sections 3.1.2 and 3.1.3: they are
recalled here in order to show the similarities and differences between the heat transfer
case on the one hand and the mass diffusion case on the other hand).

We consider the two-dimensional steady-state incompressible forced flow of a New-
tonian fluid with constant properties, the effects of gravity being neglected. The cor-
responding mass and momentum conservation equations are the following:

V.V =0 (3.14)

pV.VV = —VP + V>V + F (3.15)

In this set of equations, V is the velocity vector of the fluid, p its density, P its
pressure, u its dynamic viscosity and F' is a volume force field that will be used in the
optimization process described below.

Depending on the diffusion process, the transported scalar is respectively the tem-
perature (for heat transfer) or the mass fraction of the minor species (for mass transfer).

In the case of heat transfer, viscous heating is neglected and there is no source term
in the energy equation nor any radiative exchange. The energy equation writes:

k
V.VT = —V*T (3.16)
pCp
where 7' is the fluid temperature, k its thermal conductivity and C), its thermal

capacity at constant pressure.
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In the case of mass diffusion, a two species high dilution ideal solution is considered
and the diffusion equation writes:

V.Vw1 = DV2w1 (317)

where w; is the mass fraction of the minor species and D is the diffusion coeffi-
cient. Eqs. 3.16 and 3.17 have similar mathematical form and differ in the diffusivity
coefficient physical meaning and magnitude.

In the case of heat transfer, the local entropy generation rate (by unit of volume) can
be calculated using the following expression, where @ is the viscous dissipation function
[26] and u and v are the longitudinal and normal (to the heated wall) components of
the velocity respectively:

. %(VTY + ; (3.18)
o - u{z[@—;ﬁ)? n %)2] e } (3.19)

In the case of mass diffusion, the expression of the local entropy generation rate is
more complex [48] and takes into account the existence of two species in the fluid:

)=
p°RD b
v — 3.20
M1M2w1(1 —wl) ( wl) + T ( )
In Eq. 3.20, R is the (molar) ideal gas constant, M; and Ms are the molar masses of
the minor species and of the solvent respectively and ¢ is the total molar concentration
in [mol.m ™3], which is assumed to be constant for the high dilution ideal solution.

I
Sgen =

3.2.3 Variational problem

Since the aim is to minimize the entropy generation rate due to the diffusion phe-
nomenon while taking into account the total viscous dissipation, it is reasonable to
consider a linear combination of these two terms, formalized in Eqgs. 3.21 and 3.22
corresponding to the case of heat transfer and mass diffusion respectively ({2 being the

control volume domain):
/// (T2 (VT) —|—Wq5q5) as? (3.21)

/// (MlMgfuf(%f_ w ) (Ver)? +W¢¢) df? (3.22)

In order to take into account the constraints expressed by Eqgs. 3.14 and 3.16 or 3.17,
Lagrange multipliers A; and Ay (depending on the position) are introduced. Finally,
the Lagrangian criteria to minimize are Eq. 3.23 for heat transfer and Eq. 3.24 for

mass diffusion.
*x k T 2 @
= 0 TTQ(V ) + WQ;

VT -V. VT} + M\ V. V} df

(3.23)

k
A
+ QLC
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2RD
J* = ___F 24 Wad
///Q{MlMgwl(l — wl)é(vwl) Ve

(3.24)
—|—>\2 |:DV2’LU1 — VV’LU1:| + )\1VV} ds?

Making the first variation of J* with respect to u and v vanish and taking into
account the momentum conservation equation Eq. 3.2 gives the formula for the volume
force field F' in Eq. 3.25 and Eq. 3.26 for heat transfer and mass diffusion respectively.

A2
F= T+ pV.VV 3.25
2W¢v V.V (3:25)
F— 2 Y + pV.VV (3.26)
oW, TP '

In addition, equaling to zero the first variation of J* with respect to T leads to the
transport equation of the Ao Lagrange multiplier in Eq. 3.27 for the heat transfer case
and in Eq. 3.28 for the mass diffusion case.

—k  2kp_ (VT

V.[pV s — (—pD)VAy] =

Mlele “ ) [V' (wﬁi‘“wl)) + w?iv_w;i)b (8.28)

The boundary conditions to be applied to Eqs. 3.27 or 3.28 depend on those defined
for the transported scalar (the temperature or the mass fraction of the minor species):
if the scalar function is set at a boundary (Dirichlet condition), Eq. 3.29 applies. On
the other hand, if the flux density of the scalar function is set at the boundary (Von
Neumann condition), Eq. 3.30 or Eq. 3.31 are used for heat transfer and mass diffusion
respectively.

Ao =0 (3.29)
8)\2 . 2pC’p8T
Sl (3.30)
8)\2 p2R 2 Gwl (3 31)

on B Mleéwl(l — wl) on

In these equations, 0/0n is the normal derivative to the boundary.

Finally, in the case of heat transfer, for each selected value of the Wg weighting
coefficient, Eqs. 3.14, 3.15, 3.16, 3.25 and 3.27 are solved with the boundary conditions
3.29 or 3.30 complemented by the dynamical and thermal boundary conditions. In the
case of mass diffusion, the solved equations are Eqs. 3.14, 3.15, 3.17, 3.26 and 3.28 and
the boundary conditions are Eqgs. 3.29 or 3.31 complemented by the dynamical and
mass fraction boundary conditions.
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3.2.4 Physical and numerical setup

The fluid is water (a pure substance when the heat transfer case is considered and
a highly dilute solution where water is the solvent when the mass diffusion case is
studied). The domain dimensions are 30 mm x 5 mm and a 1200 x 200 uniform mesh
is used (Fig. 3.27). Mesh independence checks have been performed with 2400 x 400
and 3600 x 600 meshes and are described in section 3.2.7. The top and bottom plates
are impermeable and the no-slip boundary condition is applied. The inlet velocity
Vin is uniform and constant and the gage pressure is set to zero at the outlet. In the
case of heat transfer, the inlet temperature is set to T;, = 300 K and the walls are
adiabatic except for the central third of the lower plate where a uniform and constant
heat flux density ¢” is set to 15000 W.m ™2 unless otherwise indicated. In the case
of mass diffusion, the inlet mass fraction of the minor species is set to a fixed value
w1,in = 0.01 unless otherwise stated and the central third of the lower wall is subjected
to a fixed production rate per unit area of the minor species 1 set to 0.01 kg.m=2.s71
unless otherwise indicated.

The CFD code is ANSYS Fluent 15.0 using the SIMPLE velocity-pressure coupling
algorithm. UDF scripts are used to solve the additional transport equation (3.27 or
3.28) and to define the source terms (in particular the F volume force field that is
applied in the central region of the domain).

|

4
4 — V4 F 'S mm
v

)
=
A
>
v

ml - Mass diffusion area

Figure 3.27: Domain characteristics.

Second-order discretization schemes are used for pressure and energy. Momentum
and Ay equations are solved with a QUICK scheme.

About a hundred simulations were performed to simulate heat transfer or mass
diffusion situations, with different values of the Wg weighting coefficient that spans
across four orders of magnitudes. Moreover, several parameters have been varied in
order to analyze their influence: the inlet velocity, the heat flux density (in the heat
transfer case), the mass flux density and the inlet mass fraction of the minor species
(in the mass diffusion case).
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3.2.5 Heat transfer

In this section, we consider the heat transfer case where the channel is heated from the
central third of its bottom plate with a constant and uniform heat flux density ¢”. The
mass diffusion case will be examined later in section 3.2.6. The study is conducted for
a fluid with thermo-physical properties very different from those of air and allows to
assess the robustness of the behaviors already observed (cf. section 3.2.7, in particular).

No optimization case No optimization case

W = 1.050x10° K Wg = 1.050x10° Kt

Wo = 1.047x105 K1 W, = 1.047x105 K1
. | . |
0.0e+00 1.1e-03 2.3e-03 3.4e-03 4.5e-03 5.5e-03 6.8e-03 7.5e-03 300 304 308 312 316 320 323 326
[V [m.s?] T[KY]
(a) Velocity magnitude. (b) temperature.

Figure 3.28: Velocity magnitude and temperature fields with no optimization and with
slightly and highly perturbed profiles (Re = 20)

Depending on the importance of the weighting factor W, the velocity (Fig. 3.28(a))
and temperature (Fig. 3.28(b)) fields exhibit different shapes corresponding to flow
regimes more or less perturbed when compared to a reference simulation for which
no optimization is activated (i.e. when the applied volume force field F' is zero) [10].
For very large values of Wg (for example, when Wg = 107 K1) these fields are very
close to those obtained without optimization. For smaller Wg values, like Wg =
1.05 % 10> K1, the fields are modified without being disrupted: in particular, the flow
is slightly pressed against the heated area. For even smaller Wg values, for example
Wg = 1.047 x 10° K, the temperature and velocity profiles are clearly perturbed
compared to the situation without optimization: the fluid is still pushed towards the
heated zone but a clockwise vortex also appears (Fig. 3.29) that tends to capture the
heated fluid at the beginning of the heat exchange zone near the lower plate to move
it up in the channel and then accelerate it, before pushing it towards the lower plate.
This velocity field results in a thermal plume shape at the beginning of the heated zone.
The presence of a vortex in the velocity field resulting from variational optimization is
also observed in other physical situations, such as the improvement of chemical reaction
[46] or diffusion [108] processes and the optimization of heat transfer in a turbulent
gas flow [141]. Vortex generation is also a subject of numerical simulation [58] and
experimental [63] work aimed, for example, at associating and optimizing actuators
and riblets to produce vortexes.

The transition from a low to a highly perturbed regime occurs around a critical
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Figure 3.29: Zoom of velocity vector and stream function fields when Wg = 1.047 x
105K ~1. The vertical lines materialize the abscissa = 10 mm and x = 20 mm of the
heated region. Re = 20.

value of W that depends in particular on the Reynolds number. When Re = 10, the
transition takes place around Wg = 2.53 x 10° K~! while for Re = 20 it occurs around
Wg = 1.05 x 10° K~'. As can be seen in Figs. 3.28(a) and 3.28(b), a small change in
the Wg value can lead to a significant change in flow: when Re = 20, reducing Wg by
about 0.3 % is enough to induce the transition. Due to this relatively abrupt change,
the evolution of the key variables in the channel (such as the total entropy generated)
as a function of Wg shows a disruption.

When the optimization is applied (i.e. the force field F' is computed and used in
the momentum equation), the total entropy generated in the channel is smaller than
the case with no optimization (see Fig. 3.30(a) where the two vertical bars materialize
the critical Wg values triggering the transition between the slightly to the highly
perturbed velocity and temperature profiles). The reduction in entropy generated is
all the more important as Wg is small and the gain obtained compared to the case
without optimization can be estimated using an improvement factor I's defined in Eq.
3.13 and presented in Fig. 3.30(b). When Re = 20 and Wg = 2.3x10* K, Is =~ 30%
and the total entropy generation rate in the channel is about 70% of the case with no
optimization. For high values of Wg, decreasing this factor by one order of magnitude
leads to a small (or even zero) marginal gain in entropy rate reduction. On the other
hand, when Wg approaches its critical value and below this point, the slope of the
marginal gain is higher (around 8 mW.K~! by order of magnitude of Wg).
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Figure 3.30: Total entropy generation rate, improvement factor and maximum temper-
ature inside the channel.

As can be seen in Fig. 3.30(c), the maximum temperature inside the channel
significantly decreases as Wg declines and for medium values of Wg the curve slope
increases when the Reynolds number decreases. The velocity fields resulting from the
optimization increase the homogeneity of the temperature field: the standard deviation
of the temperature is reduced from 3.74 K to 3.32 K when Wg changes from 2.09 x
108 K71 t0 1.047 x 10> K~ ! at Re = 20.

The entropy generation rate by viscous friction increases as Wg decreases (Fig.
3.31(a)) and so does the total viscous dissipation @, (Fig. 3.31(b)) and the maximum
velocity within the flow (Fig. 3.31(c)). The order of magnitude of the viscous friction
entropy generation rate Syen s (between 1 nW. K~ and 10 nW.K !, depending on the
Reynolds number) is much lower than that of the heat conduction entropy generation
rate Sgen,c (10 mW.K '), which is by far the main contributor to the total entropy
generation rate Sgen = .gen7c + Sgen, 7- The smaller Wg, the higher the velocities in the
channel, leading to increased velocity gradients, viscous dissipation and generation of
entropy of viscous origin. At the same time, the better thermal mixing obtained with
the optimized velocity fields results in a reduction in entropy generation by thermal
conduction through finite temperature differences. The two components of the entropy
generation rate evolve in opposite directions. However, since heat conduction entropy
generation is the overwhelming majority, decreasing Wg ultimately results in a decrease
in the total entropy generation rate.
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Figure 3.32: Objective functional and relationship between total entropy generation

rate and total viscous dissipation

The objective functional defined in Eq. 3.21 decreases as Wg gets smaller (Fig.

3.32(a)). It is a linear combination of two terms, Sgemc ~ Sgen and @y that evolve in
opposite ways when Wg varies (Fig. 3.32(b)). Taking the case Re = 20 as an example,
when W falls by approximatively four orders of magnitude from 2.1x10® K~! to 2.3 x
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10* K1, the entropy generation rate by heat conduction decreases from 27 mW.K ! to
19 mW.K ! and the total viscous dissipation raises from 1.43 uW to 2.60 uW. Since
the entropy generation by heat conduction and the total dissipation do not change
their order of magnitude, the evolution of Wg has the decisive effect and leads to a
decrease of the objective functional.

The boundary conditions have an effect on the optimized solutions. the influence
of the heat flux density ¢” and of the inlet velocity V;, are discussed below.
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Figure 3.33: Total entropy generation rates for two values of the input heat flux.
Re = 20.
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Figure 3.34: Viscous friction entropy generation rate for two values of the input heat
flux.

The higher the heat flux density, the higher the entropy generation rate by heat
conduction and the higher the total entropy generation rate in the channel (Fig. 3.33).
The critical value of Wg is lower for a reduced heat flux density: when Re = 20,
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Figure 3.35: Maximum velocity magnitude in the channel as a function of Wg for two
values of the input heat flux.

changing the heat flux boundary condition from 15000 W.m=2 to 10000 W.m~2 leads
to a fall of the critical Wg from about 1 x 10° K~ to 4 x 10* K~'. This change in
the critical Wg values directly affects the behavior of the entropy generation rate by
viscous friction (Fig. 3.34) as well as the maximum velocity in the channel (Fig. 3.35):
as long as Wg is large enough, these two quantities are almost independent of the
value of the flow density applied to the heated wall. On the other hand, as soon as W
falls below the highest critical value (here, the one corresponding to 15000 Wm™2),
the curves are dissociated and the rate of generation of viscous entropy is higher in the
case where ¢” = 15000 Wm ™2 compared to that where ¢” = 10000 Wm 2.
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Figure 3.36: Total and viscous entropy generation rates as functions of the heat flux
input from the bottom of the channel (Re = 20 and Wg = 1.23 x 10° K1).

For a fixed Wg value, a reduction in the heat flux density applied to the wall results
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Figure 3.37: Maximum temperature and maximum velocity magnitude in the channel
(Re =20 and Wg =1.23 x 10° K1).

in a reduction in the rate of entropy generation by heat conduction and therefore in the
rate of total entropy generation (Fig. 3.36), the conductive component still remaining
largely dominant in the entropy generation mix when compared to the viscous compo-
nent. Similarly, the maximum temperature reached inside the channel decreases with
the imposed heat flow density (Fig. 3.37). The maximum velocity reached in the chan-
nel as well as the rate of viscous entropy generation also decrease as the imposed heat
flux density is reduced (while keeping Re and W fixed). For high values of ¢”, the flow
regime is of the highly perturbed type when compared to the case without optimiza-
tion, whereas for a small applied heat flux density, the flow regime is of the slightly
or very slightly perturbed type. The transition between the two regimes, visible in
Figs. 3.36 and 3.37 takes place for a critical value ¢ ..., which is about 18000 W.m 2
for Re = 20 and Wg = 1.23 x 10> K~'. Indeed, as observed during the examination
of Figs. 3.33 to 3.35, a reduction in the heat flux density applied to the heated wall
leads to a reduction in the critical value of Wg. As a result, Wg being set to a given
value Wg , (= 1.25 x 10° K1 for example), reducing ¢” from a value corresponding
to a highly perturbed (24000 W.m~?2) regime ends up making ng”mml(q” ), coincide
with W@,o’ which induces the transition to a low perturbed flow regime where viscous
entropy generation rates and maximum velocities are lower and stabler.

If now W is fixed (at 1.23 x 10° K~') and ¢” is also fixed (at 15000 W.m™?) while
varying the inlet velocity V;, between 6 mm.s™ (Re ~ 30) and 1 mm.s™! (Re ~ 5), one
can observe that the entropy generation rate of viscous origin as well as the maximum
speed in the flow decrease with V;,, (Figs. 3.38 and 3.39). A transition also appears very
clearly for a critical value Vj, criticat approximately equal to 3.2 mm.s~! (Re = 15.8)
between highly perturbed flow regimes (when the inlet velocity is lower than Vi, critical)
and slightly perturbed ones. Indeed, as already observed in Fig. 3.30(a), a reduction in
the Reynolds number leads to an increase of the critical Wg. If one sets W to a fixed
value W(D,o and reduces the inlet velocity, there is a point where the increasing critical
weighting parameter W@,cri ricarVin) reaches the value W@p and triggers the transition
from slightly to highly perturbed profiles.
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as functions of V;, (W@ =1.23 x 105 K71).

At fixed W and ¢”, lowering the inlet velocity leads to an increase of the maximum
temperature in the channel (Fig. 3.39). The total entropy generation rate also growths
as Vj, decreases with the exception of a behavior change for very small inlet velocities
(when Vj, < 2 mm.sfl) as exhibited in Fig. 3.38. This non-monotonous behavior
could result from the higher complexity of the optimized velocity field obtained for
very small values of the input velocity: the number of vortexes increases and leads to
increased mixing effects.
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3.2.6 Mass transfer

In this section, we consider the mass transfer case where at the central third of the
bottom plate a minor species diffuses at a constant and uniform mass production time
rate by unit of surface m;. The objective is to verify if the behaviors described in
section 3.2.5 are similar in a different advection-diffusion phenomenon but with close
mathematical model. The comparison between heat and mass transfer simulations is
done at the same Reynolds number Re = 10.

No optimization case

No optimization case

Wg = 1.897x10° K1 W = 1.897x10° K

W = 1. 739x10° K* W, = 1.739x105 K
_
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Figure 3.40: Velocity magnitude and minor species mass fraction fields with no opti-
mization and with slightly and highly perturbed profiles (Re = 10)

First, one finds again the presence of slightly and highly perturbed flow regimes
(Figs 3.40(a) and 3.40(b)) when compared to the non-optimized case, whose shapes
are very similar to that of the velocity and transported scalar profiles of the heat
transfer case (Figs. 3.28(a) and 3.28(b)), the key scalar quantity being here the mass
fraction of the chemical minor species whereas this was previously the temperature.

The evolution of entropy generation and viscous dissipation quantities as a function
of the weighting parameter Wg are presented in Figures 3.41(a) to 3.41(f) by comparing
the case of heat transfer with that of mass diffusion at Re = 10. A decrease in W leads
to a reduction in the total entropy generation rate (Fig. 3.41(a)) and in the objective
functional (Fig. 3.41(b)), unlike the entropy generation rate by viscous dissipation
(Fig. 3.41(c)) and the total viscous dissipation (Fig. 3.41(d)) that increase as Wg
decreases. These behaviors are quite similar to those observed previously in the case of
heat transfer and it is the same for the relationship between the total entropy generation
rate and the total viscous dissipation (Fig. 3.41(e)). The entropic improvement factor
Is defined in Eq. 3.13 becomes higher as Wg gets lower (Fig. 3.41(f)). Whether
it is a heat transfer case or a mass diffusion case, there is a critical Wg value that
triggers the transition from the slightly perturbed regime (when Wg is large) to the
highly perturbed regime (for Wg smaller than W@,mticaz)' The critical value of Wg
is about 2.5 x 10> K~! for the heat transfer case and around 1.8 x 10> K~! for the
mass diffusion case. As a conclusion, without being strictly identical, the optimization
of heat transfer and mass diffusion exhibit very similar behaviors.
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Figure 3.41: Heat vs. mass transfer entropy generation rate and viscous dissipation
quantities (Re = 10)

If the value of Wg is set to 1.67 x 10> K~! at a fixed Reynolds number (Re
10) and the mass production rate at the exchange section of the bottom part of the
channel is varied, the total and viscous entropy generation rates have profiles similar
to those of heat transfer: all entropy generation rates decrease as the input flux density
decreases (Fig. 3.42). In addition, a critical value of 7, exists for which the transition
takes place between the very disturbed flow regime (for large values of 1) and the
slightly disturbed regime (below 711 criticar = 9 X 1073 kg.m=2.571). As 1y gets lower,
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Figure 3.42: Total and viscous entropy generation rates as functions of the diffusion
intensity from the bottom plate (Wg = 1.67 x 10° K—! and Re = 10).

2.20e-01 ‘ ‘ ‘ ; 6.00e-03
Wl,mzlx,vol R z"ﬂ
2.00e-01 7Wl,avg,vol /E'/
VI o 1 5.50e-03
1.80e-01 [ max.vol =
s 1.60e-01 1 5.00e-03
o Pt
@ 1.40e-01 | -
5 120001 | = 145003 g
e e —
S 1.00e-01 | - :
£ Hres - {400e-03
E  800e02 | 2
% =
= 6.00e-02 | 1 3.50e-03
4.00e-02 |-
1 3.00e-03
2.00e-02
0.00e+00 L L L L L L L L 2.50e-03

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022

r;ll [kg.mfz.s’I]
Figure 3.43: Maximum and average mass fraction of the minor species and maximum
velocity as functions of the diffusion intensity from the bottom plate (Wg = 1.67 x
10° K~ and Re = 10).

the maximum and average mass fraction of the minor species decrease as does the
maximum velocity in the channel (3.43), which exhibits the disruption at the critical
value ml,critical-

If now, for a fixed value of the weighting factor (Wg = 1.67x10° K '), the Reynolds
number (Re = 10) and the bottom plate mass flux density are fixed (0.01 kg.m™2.s71),
while varying the minor mass fraction wy ;, at the inlet from 107 to 0.03, all velocity
and mass fraction fields stay in the highly perturbed flow regime and there is no
observed critical value of w; ;, in the tested value range. A decrease in the inlet mass
fraction of the minor species leads to an increase in all entropy generation rates whether
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Figure 3.44: Total and viscous entropy generation rates in the channel as functions the
inlet mass fraction of the minor species (Wg = 1.67 x 10> K~' and Re = 10).
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Figure 3.45: Maximum velocity magnitude in the channel as functions the inlet mass
fraction of the minor species (Wg = 1.67 x 10° K~ and Re = 10).

it comes from mass diffusion or from viscous friction (Fig. 3.44). Correlatively, a lower
value of wy ;, corresponds to a reduction in the maximum and the average mass fraction
of the minor species in the channel and to an increase of the maximum velocity (Fig.
3.45).

3.2.7 Robustness of the flow regime transition

In sections 3.2.5 and 3.2.6, the presence of a regime transition between slightly and
highly perturbed velocity and scalar fields has been pointed out, as the existence of
critical values of the Wg weighting parameter in the functional objective that trigger
this transition. This has been observed for different Reynolds numbers, different values
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of the physical diffusivity coefficients and different boundary conditions. It is also useful
to examine the mesh independence of this regime transition, whether it depends on
initial conditions and what could be its underlying cause.
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Figure 3.46: Total entropy generation rate as a function of Wg, complemented by finer
mesh simulations. Re = 20.

2.6e-02

2.5e-02

2.4e-02

2.3e-02

. -1
Sgen WK1

2.2e-02

2.1e-02 Grid 1200x200 —=—
Grid 2400x400 -—-<-—
Grid 3600x600 ----+---
Grid 1200x200 with smooth Initial Conditions
2.0e-02 S L :

Sed 1e+05 2e+05 3e+05  4e+05 Se+05
W, [K h

Figure 3.47: Total entropy generation rate as a function of Wg - zoom on transition
zone showing the influence of the grid resolution and the initial conditions. Re = 20.

Keeping the same physical domain size, two finer meshes have been tested for the
heat transfer case when Re = 20 and ¢” = 15 kW.m~2: in addition to the base 1200 x
200 mesh, 2400 x 400 and 3600 x 600 meshes have been used and the corresponding
results for the total entropy generation rate as a function of Wy are presented in Fig.
3.46. The Sye, curve has been extended to smaller values of Wg (down to 10° K1)
and the corresponding extended part of the graph is consistent with the above results:
the total entropy generation rate keeps declining as Wg decreases.
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A zoom around the critical Wg value is provided in Fig. 3.47. In the case of finer
grids, the critical W still exists but at a lower value while keeping the same order of
magnitude (=~ 8.5 x 10* K~! in place of ~ 1 x 10°> K~!). Furthermore, tests have been
performed with the 1200 x 200 mesh by approaching the critical value of W step by step
in a smooth manner, each simulation starting from the results of the converged previous
one with a value of Wg slightly lower (while all the simulations presented above are
started from the homogeneous initial conditions where the temperature of the channel
is set to T;, and the longitudinal velocity is set to V;,, the normal velocity being zero
at the initial time of the simulation). The corresponding results are presented in Fig.
3.47: the existence of the critical Wg is still confirmed at a value close to the one
obtained with the finer grids (=~ 8.4 x 10* K~!). So, the existence and the approximate
critical W value are quite robust.

For the high values of W, the product ®Wg is much higher than the diffusion
entropy generation rate (by heat conduction or mass diffusion, depending on the type of
simulation performed) and the second term of the objective functional is predominant.
Conversely, for small values of Wg, the first term of J in Eq. 3.21 or 3.22 is the
majority. In the critical value area of Wg, in which the change in flow regime takes
place, the two terms composing the objective functional have close orders of magnitude:
the difference in orders of magnitude, estimated by Logio(Pw:W e/ ngd), where Sgen,d
is the entropy generation rate by diffusion of heat or mass, lies between 0.37 and 0.85
depending on the Reynolds number and the transfer type. The flow regime transition
could therefore be related to the fact that the optimization program focuses on viscous
dissipation when Wg is large and on entropy generation by heat conduction or mass
diffusion when Wg is small. In the second case, the optimized solution can rely on a
more complex and intense velocity field to produce a thermal mixture, at the expense
of an increase in viscous dissipation which effect on the objective criterion is negligible
due to the small size of the Wg factor. The transition from one regime to another
would then be linked at least in part to the shift from an optimization focused on
viscous dissipation to an optimization focused on entropy generation by diffusion.

3.2.8 Conclusion

In section 3.2, convective flow transfer is submitted to variational methods in order
to find optimized velocity and scalar fields (temperature or mass fraction of a minor
species, depending on the type of diffusion process) that minimize the entropy gen-
eration rate in a channel while keeping control on the total viscous dissipation via a
weighting factor in the objective functional, allowing to give a varying importance to
the viscous dissipation in the optimization process. Heat transfer and mass diffusion
cases are studied and the influence of the weighting factor on the resulting fields and
the key physical quantities is analyzed.

At identical Reynolds number, the optimization of mass diffusion and heat transfer
exhibit similar behaviors. The velocity patterns suggested by the optimization program
lead to a reduced total entropy generation rate in the channel, the relative improvement
being larger as the weighting factor or the Reynolds number are lower. These patterns
can be a reference for the design of enhanced exchangers. Improved scalar homogeneity
(of the temperature or the minor species mass fraction, depending on the type of
transfer) is observed as the scalar maximum value and standard deviation are lower
while the weighting factor is reduced. This enhancement is achieved at the expense of an
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increase in the entropy generation rate by viscous friction, which stays nevertheless at
a negligible level. The maximum velocity and the total viscous dissipation also increase
when the weighting factor decreases. Two main flow regimes are observed, depending
on the level of perturbation of the velocity and scalar fields. In highly perturbed
regimes, a more complex flow is observed with a vortex and a displacement of the flow
towards the diffusion entry area (the heated segment or the mass diffusion entry zone,
depending on the transfer process). The transition from a slightly to a highly perturbed
flow is triggered by a critical value of the weighting factor, the highest perturbation
level corresponding to the lowest weighting factors. This critical value depends on
the Reynolds number, the heat or mass transfer intensity at the exchange plate and
on the inlet velocity. The existence of the transition between two perturbation flow
regimes and the corresponding critical value of the viscous dissipation weighting factor
are confirmed with finer meshes and smoother initial conditions.

3.3 Conclusion and perspectives

In chapter 3, the same general optimization technique is applied to different situations
in order to study its behavior. The variational approach is used for several boundary
conditions (Reynolds numbers and injected flux density intensities), two fluids (with
different properties) and two advection-diffusion processes (with different characteris-
tic diffusion coefficients): the results are qualitatively similar. The optimized velocity
fields lead to a reduction in the total entropy generation rate and their complexity
depends on the viscous dissipation function weighting factor in the objective func-
tional. Moreover, in the convective heat transfer case, the maximum temperature at
the heated wall is reduced and thermal fields are homogenized. This method can be
used as a heuristic to suggest velocity fields for the design of heat exchangers. It now
remains to look for practical ways to generate these fields, by passive (like a modi-
fication of channel shape) and/or active (like a rotating device or a field applied to
sensitive particles) means, while assessing and minimizing any required additional en-
ergy consumption or induced viscous dissipation. Before the flow regime transition,
i.e. as long as the velocity fields are of the slightly disturbed type compared to the
non-optimized case, the practical generation of these velocity fields seems simpler (but
the entropy generation rate reduction is less). In addition, the variational model can
be enhanced by integrating the compressibility and thermo-dependence of the fluid
and different turbulence models could be used to compare the resulting fields with the
laminar cases that have been presented above. Before acting on the velocity fields, it
is useful to know the behavior of the entropy generation rates in a turbulent channel
flow by approaching the operating conditions of the solar receivers (in particular, the
presence of strong thermal gradients with asymmetric boundary conditions). This is
the subject of the next chapter.



Chapter 4

Entropy generation rates in the
turbulent flow

In this chapter, several characteristics of actual solar receivers are taken into account:
a turbulent flow is considered and the properties of the fluid depend on temperature.
In addition, a significant temperature gradient is imposed and thermal boundary con-
ditions are asymmetric. A first published work [11], presented in section 4.1, consists in
producing Direct Numerical Simulations (DNS) for a fully-developed low Mach turbu-
lent flow of an ideal gas with thermo-dependent viscosity and thermal conductivity in
a flat channel at mean friction Reynolds number Re, = 180 submitted to asymmetric
heating with a wall temperature ratio To/T7 = 2. Mean and turbulent statistics of the
flow are presented and compared for two different thermal boundary conditions: fixed
temperatures on the one hand and fixed heat flux densities on the other hand. The in-
fluence of the boundary condition type is studied. Temperature variance is particularly
impacted by this choice and exhibits asymmetric profiles with different behavior de-
pending on the boundary condition. The simulations described in section 4.1 are then
used as a reference and initial conditions, after adaptation of the thermo-hydraulic soft-
ware, to calculate new quantities related to the entropy generation within the channel.
The results are presented in section 4.2. In these two sections, the velocity component
magnitudes are in capital letters for instantaneous quantities, the average of which is
symbolized by the < . > symbol and lowercase letters with a "prime" are used to write
fluctuating quantities. Thus, the Reynolds decomposition of the longitudinal velocity
is written: U =< U > + «'. Similarly, the Reynolds decomposition of the temperature
writes: T =< T > + ¢, where 0’ has been chosen for the fluctuation of the temperature
in order to avoid a confusion with the time.

4.1 Reference simulations and influence of the ther-
mal boundary condition type

4.1.1 Introduction

Since the seminal works of Orzag [182], Kim [123] and Moser [168|, Direct Numerical
Simulations (DNS) have proved to be a reference tool to study wall-bounded turbulent
flows and have lead to numerous publications. Vreman [237] made a comparison of
several of the resulting databases at Re, = 180, a popular turbulent Reynolds number
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(Eq. 4.10), and assessed their accuracy and reproducibility. Among the research works
presenting a thermal analysis and in particular the profiles of temperature fluctua-
tions, some are dealing with incompressible flows and assume the temperature to be
a passive scalar [166], which can be an appropriate approximation when temperature
gradients are small. However, in a large number of industrial applications and thermal
exchangers, the gradient of temperature can be high and temperature dependent ma-
terial properties must be considered. This is the case, for example, in solar receivers
[211] [8] [9] [68] [69] [230], a key device in concentrated solar power plants which is
worth optimizing [63]. The coupling between turbulence and significant thermal fluxes
is studied thoroughly in the case of high-speed compressible flows [217| [57] [101] [165]
[223] [212] but more rarely when the flow is subsonic and the fluid properties vary with
the temperature [179] [230].

Moreover, the type of thermal boundary condition at the walls has an impact on
the turbulent flow and on temperature fluctuations in particular. Many studies impose
constant and uniform wall temperatures. For example, Dhamarathne [65] performed
DNS of an incompressible channel flow with temperature treated as a passive scalar at
Re, = 395 and Pr = 0.71 while setting dimensionless wall temperatures to -1 and 1
respectively. He shows that the temperature fluctuation standard deviation vanishes
at the walls, reaches a local maximum near the wall and then decreases to a local
minimum before growing again up to the central zone of the channel. Staying in the
case of incompressible flow and of passive scalar temperature, other research works deal
with constant and uniform heat flux density at the walls. Different geometries have
been addressed, some by Large Eddy Simulations, among which flows in tubes [186]
[200], in annuli [185] [183], in rotating cylinders [184] [41] and in flat plate channels
[118] [119] [31].

A part of these studies set a strong constraint on temperature fluctuations by
forcing them to be zero at the walls (e.g.: [200], [184]), while other leave temperature
fluctuation free (e.g. [185], [183]).

Estimating temperature variance at the walls is necessary when thermal fatigue
and long-term aging of materials are at stake. Several authors compare the influ-
ence of thermal boundary condition type on the flow statistics, by analyzing fluid-solid
conjugation. Flageul et al. [80] compared several thermal boundary condition types
(Dirichlet isothermal, Neumann isoflux, Robin and 3D fluid-solid conjugate heat trans-
fer) and confirmed the strong impact of the boundary condition on turbulent thermal
correlation coefficients and on the variance of temperature. Tiselj et al. [227] [228] [229]
also compared fluid-solid conjugation and idealized thermal boundary conditions and
showed that wall temperature fluctuations depend on the fluid versus wall effusivity
ratio (at the limit, when this ratio tends towards zero, the fluctuations of temperature
are zero at the wall).

Nevertheless, these studies focus on incompressible and passive scalar flows. Re-
cently, Bellec et al. [29] performed a comparison between fixed temperature vs. im-
posed heat flux boundary condition based upon Large Eddy Simulations for a subsonic
turbulent flow in an open channel and a fluid with variable properties. To the best of
our knowledge, there is no Direct Numerical Simulation equivalent comparison for a
fully-developed turbulent low Mach channel flow in the presence of high temperature
gradient from non-symmetric heating with thermo-dependent fluid properties. This is
the scope of the present work. It can be applied, for example, to the solar receivers of
concentrated solar power plants where low Mach flow turbulent temperature fluctua-
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tions contribute to the thermal stress of stretched materials.

4.1.2 The governing equations of the low Mach flow

We focus on low Mach number flows for which the characteristic fluid velocity is small
against the speed of sound. In a (strictly) incompressible flow, the density of each
fluid particle stays unchanged (the material derivative Dp/Dt is zero, which implies
that the velocity vector is divergence free). A particular situation where the flow is
incompressible is when the fluid has a uniform and constant density. In a large number
of flows of practical interest, the density variations of a fluid particle are negligibly
small and the simplified governing equations of the incompressible flow can be applied
without losing excessive precision, one necessary condition being a small Mach number:
Ma << 1 [20]. This is the case in aerodynamics when the Ma < 1/3 criteria is used
[189]. Nevertheless, even if the Mach number is small, significant density variations
can come from high temperature gradients and the incompressible flow model is no
longer suitable. To address this specific situation, a low Mach approximation can be
defined by filtering acoustic waves [190] while keeping density variations due to the
temperature. This low Mach approximation allows better numerical solving efficiency
in comparison with compressible models because the Courant-Friedrichs-Lewy (CFL)
stability conditions on the time step are less severe [179]. In this study we consider
situations where Ma ~ 1072 and a hot to cold wall temperature ratio 75 /11 ~ 2 over
a short distance, leading to corresponding high density variation as the study fluid is
an ideal gas: this makes the low-Mach approximation a reasonable approach. In our
study simulations, the density varies with the temperature and buoyancy forces are
necessarily present, although their effect is not significant. The relative importance of
inertial and buoyancy effects has to be assessed in order to decide whether buoyancy
may be neglected or not. The Richardson number Ri = Gr/Re?, where Gr is the
Grashof number reflects this relative importance [33]. When Ri < 0.1 the flow is
generally considered as being dominated by forced convection [15] [111]. For Ri >
10, natural convection is the main phenomena and the case where 0.1 < Ri < 10
corresponds to mixed convection situations, where natural and forced convection have
to be taken in consideration together. For the simulations presented in our manuscript,
the Richardson number is small (Ri ~ 0.01) and the forced convection flow regime can
be considered [139] [179]. Moreover, the fluid flows between two horizontal plates (Fig.
4.1), the channel height is small and the hot plate is the upper one. For all these
reasons, gravity effects and buoyancy force terms are neglected in the set of governing
equations. We assume there is no heat source in the volume and no radiative thermal
transfer inside the channel. In the case of an ideal gas, this set of hypothesis leads to
a simplified form of the Navier-Stokes equations which now read [190]:
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In this system of equations the subscripts ¢ and j obey the summation convention
and p is the density of the fluid, U; are the components of its velocity, u is its dynamic
viscosity, Cp, = 1005 J.kg~'K ! is its heat capacity, k is its thermal conductivity and
T is its temperature. x; are the Cartesian coordinates and ¢ is the time. Pressure is
composed of two terms: P = Py, + Py, where Py, accounts for the variations of pres-
sure due the velocity and Py, is a uniform pressure related to density and temperature
through the equation of state of the fluid:

Py, = prT (4.5)

where r = 287 J.kg ' K~! is the ideal gas constant.
Moreover, dynamic viscosity depends on the temperature and follows the Suther-
land law, which is valid in the working temperature range of our study [221]:

1.5

T+111

The thermal conductivity is also dependent on the temperature and is derived from
the dynamic viscosity and from the constant Prandtl number Pr = 0.76:

p=1.461x107° (4.6)

_ G
k= (4.7)

4.1.3 Physical and numerical model

The flow occurs between two parallel flat plates and Lx and Lz dimensions are periodic
(Fig. 4.1). The domain lengths are 2rh x 2h x (3)mh where h = 0.014923 m.

The mesh consists of 192 x 190 x 128 cells. It is uniform in the x and z directions.
Mesh size follows a hyperbolic tangential law in the y direction in order to be finer
close to the walls:

Y = h{l + %tanh K —1+ %) artanh(a)} } k€ [l,N] (4.8)

where N is the number of nodes over h (the half-height of the channel) and a is
a mesh dilatation parameter. Mesh sizes in wall units are provided in table 4.1 in
the "Main" domain column. The averaging time (normalized by h/U.,, where U,
is the mean friction velocity Urm = (Urhot + Usrcola)/2), is AtT ~ 322. These mesh
sharpness and integration time are well positioned with regard to simulations that
have shown a good convergence [237], [230]. After At* = 200, heat fluxes at the walls
had stabilized and stayed within a range of +0.1% of their mean values. Moreover
a mesh independence check has been performed with a finer mesh (384 x 266 x 384)
when temperature are imposed at the walls, whose mesh sizes in wall units are given
in table 4.1 in the "Check" domain column. The resulting friction values and wall
heat fluxes are respectively less than 0.6% and 0.4% different from the main mesh
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Figure 4.1: Bi-periodic flat plate channel

case. The comparison of velocity and temperature means and root-mean-square of
velocity fluctuations between the main domain and the check domain exhibits very
similar results (Fig. 4.2). The check domain is also larger than the main one (twice
as long in the flow direction and 1.5 times larger transversely) and the proximity of
the resulting flows (Fig. 4.2) indicates that the study domain is large enough so that
no large scale structures are affecting the results. This confirms the observations of
a previous study [230] also carried out with a 4wh x 2h x 2wh domain size, in which
the two-point streamwise and spanwise velocity and temperature correlations fall near
zero when the midpoints of the longitudinal and transverse dimensions of the domain
are reached respectively.

Table 4.1: Domain characteristics

Main Check

Domain size 2mh x 2h X %ﬂ'h dmh x 2h x 2wh
Number of cells 192 x 190 x 128 384 x 266 x 384

Azt 4.64 4.64
Ayt 0.48 0.25
AYE e 2.95 2.30
Ay;t 0.20 0.10
Azt 4.64 2.32
Att 322 202

The DNS were carried out with the TrioCFD thermo-hydraulic code [45] created at
the French Atomic and Alternative Energies Agency (CEA) and ran on a HPC server
provided by the French National Computing Center for Higher Education (CINES).



98 Entropy generation rates in the turbulent flow

4 0 T
reference domain
check domain ~ +
35
-0.0005 H
3L
-0.001
25
e E
e 2 N 00015 |
=) 2z
v v
1.5
-0.002
1
-0.0025 -
0.5
reference domain
check domain ~ +
0 . - - - -0.003 —— -
0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03
y (m) y (m)
(a) Mean longitudinal velocity (b) Mean wall-normal velocity
0.6 T - T 600 T —
reference domain - Urms reference domain
check domain - Urms @ check domain ~ +
S reference domain - Vrms -=------- 550 -
05 -9 check domain - Vrms O
é reference dofnain - Wrms «--eeee
= check dot 500 b
s 04
g
£ g 450
; 0.3 2
"_g Vo400
o
< 02
2] 350
z
0.1 300
0 . . . . 250 . . . .
0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03
y (m) y (m)
(¢) Root-mean-square of velocity fluctuations (d) Mean temperature

Figure 4.2: Grid and domain volume independence check

Velocity convection and diffusion are handled by a second order centered scheme. It is
the same for temperature diffusion. A third order upstream QUICK scheme (Quadratic
Upstream Interpolation for Convective Kinetics) is used for temperature convection.
Time integration is handled by a third-order Runge-Kutta numerical scheme. As an
order of magnitude in terms of computing time, the "Check" simulation in Table 4.1
corresponds to 277 runs of 24 hours on 128 processors.

A couple of comparable simulations with a wall temperature ratio T5/7; = 2 is
created. First a wall fixed temperature simulation is performed with 77 = 293 K and
T, = 586 K, that leads to steady mean heat flux densities at the walls which value is
about 1708 W/m?. These fluxes are then applied as boundary conditions to the wall
fixed heat flux simulation.

4.1.4 Results

Statistics are computed by averaging results over the two periodic directions and over
time. This averaging is noted by using brackets < . >. The mean friction Reynolds
number is set to Re,,, = 180, where Re,,, is the mean value between the turbulent
Reynolds numbers taken at the cold and the hot walls:

ReTm = (RGT,COld + }%(37',110t)/2 (49)

Each Reynolds number is based on the friction velocity at the corresponding wall:
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Re, = (4.10)

<y >0 < U >

U, =
<pw> Oy

(4.11)

w

Results are normalized using the classical scaling based on the friction velocity and
the friction temperature of the nearest wall:

U- < U > Usims
=TI <U>T= 22 U= (4.12)

Dy T T

O<T>
ky >
|<T>—<Ty>| Tyms < Fw > 75
< T >+: , TT?‘;?’LS = —7 TT = y w (4.13)
T T: < pw > CpU;

Table 4.2: Mean friction variables

Variable Fixed temperature Fixed heat flux

Ur, cold 0.175 0.173
Uz, hot 0.234 0.235
Rer. cold 258 258
Re;. hot 106 106
T, cold 5.4 5.5
T: hot 8.1 8.2

Friction variables are presented in table 4.2. The small differences between fixed
temperature and fixed flux simulation friction quantities are not significant enough,
when put in balance with the variability due to the grid resolution and the convergence
of wall fluxes, to conclude that one of these two simulations is weaker or stronger than
the other. In this study, grid and domain size independence have been assessed. Mesh
resolutions and simulation times have been set in order to be well positioned when
compared to previous studies [230] and the literature [179] [237]. A systematic and
detailed estimation of the uncertainties coming from the discretization of the governing
equations and the statistical sampling of the data, which is an active and challenging
research area [181], has not been performed.

There is a slight relaminarization at the hot wall (suggested by the slight asym-
metry of the profile of the mean longitudinal velocity visible in Fig. 4.2(a), the hot
side exhibiting more parabolicity than the cold side). Nevertheless, turbulence is not
suppressed as the root-mean-squares of all velocity component fluctuations are almost
symmetrical with no serious damping at the hot side (Fig. 4.2(c)). The Uyps lo-
cal maximum at the hot-side of the channel is even greater although slightly further
from the wall. Relaminarization would be significant for higher temperature gradients
[139] and hot to cold wall temperature ratios like 75/77 = 5, for which higher friction
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Reynold number like Re;,, = 395 would be necessary to avoid turbulence suppression
as demonstrated in [211].

As shown in Fig. 4.3(a), the mean longitudinal velocity is almost unaffected by
the boundary condition type. The difference is even smaller for the root-mean-squares
of all velocity components and for the covariance of the longitudinal and the normal
velocities presented in Fig. 4.3(c), 4.3(d), 4.3(e), and 4.3(f) respectively. The relative
gap is greater for the wall-normal velocity, in particular in the central zone of the
channel (fig. 4.3(b)).

The mean wall-normal velocity is different from zero as can be seen in Fig. 4.2(b)
and Fig. 4.3(b), except at the walls where it is forced to zero by the boundary condition.
From the equation of energy (Eq. 4.3), using Egs. 4.4 and 4.5 that formulate the
properties of the pressure P, the following expression can be derived for the divergence
of the velocity field:

Uy 210,00 1 dky
Or; Py Ox;  Ox;’ ~Py dt

(4.14)

In the case of fixed heat flux densities at the walls, averaging and integrating the
above eq. 4.14 leads to the following dependence of the mean wall-normal velocity on

the ordinate y [179):
v—1 or ar
V= N (2
=TT h, (< 3$j> <5Ij>

The mean-normal velocity is directly linked with the conservation of energy and
with the conductive heat flux crossing each horizontal plane in the channel. It is non-
zero except at the walls. The total mean heat flux is constant across the channel and
the vertical convective heat flux due to the average wall-normal velocity balances the
variation of the mean conductive heat flux. When temperatures are fixed at the walls,
eq. 4.15 is still valid when neglecting the term (P}, d;u})/(Pix). The mean wall-normal
velocity is negative and pushes the flow from the hot side towards the cold side of the
channel, which is also the denser area [70].

The dimensionless temperature as defined in eq. 4.13 shows very close profiles,
almost independent on the thermal boundary condition type (Fig. 4.4(a)). The same
stands for the turbulent wall-normal heat flux (Fig. 4.4(d)). A larger gap can be
observed for the turbulent longitudinal heat flux with higher values when the heat
flux is fixed (Fig. 4.4(c)), except in the central zone where the gap vanishes. The
dimensionless coefficients U, T} of the two kinds of boundary conditions are very close
and this gap reflects the real values with a slight attenuation.

The boundary condition type has a major influence on the fluctuations of temper-
ature as shown in Fig. 4.4(b). When the wall temperatures are fixed, the root-mean-
square of temperature fluctuations approaches zero when getting close to the walls.
This is not the case when the heat fluxes are fixed: they are about 2.5 at the hot wall
and slightly below 3.0 at the cold wall. These values are compatible with previous stud-
ies when taking into account that the wall temperature fluctuations increase when the
Reynolds or the Prandtl number increase [185], [80], [227]. The local maximum near
the wall is higher and closer to the wall when the heat flux is fixed. The asymmetry of
the thermal boundary condition leads to the corresponding asymmetric profiles of the
temperature fluctuations. Real T),,s are higher at the hot wall than at the cold one.

wld) (4.15)

wall



4.1. Reference simulations and influence of the thermal boundary condition type 101

25 T T T T
Fixed temperature - cold wall Fixed temperature - cold wall
Fixed heat flux - cold wall ===------ 0.02 Fixed heat flux - cold wall ---==--- 4
U+ =2.85 In(y+) + 5.70 > Fixed temperature - hot wall *
Fixed temperature - hot wall % Fixed heat flux - hot wall
20 Fixed heat flux - hot wall & 1 .
Ut =222 In(y+) +6.17 -~ )
Ut=y+ = 0015 1
15 - 1 6
N +
A A
=] 2>
v v 0.01 b
10 1
st | 0.005 1
0 . . . 0 b
0.1 1 10 100 0.1 1 10 100
y+ y+
(a) Mean longitudinal velocity (b) Mean wall-normal velocity
3.5 T T T 1 T T T
Fixed temperature - cold wall Fixed temperature - cold wall P
Fixed heat flux - cold wall ========- 09 Fixed heat flux - cold wall ====---= £ i
3L Fixed temperature - hot wall -~ %o 1 . Fixed temperature - hot wall * Vi XN
= Y Fixed heat flux - hot wall P N
08 & a7
23T 1 07t 1
0.6 1
s 1
£ E05F —
=} >
L5 ] 04 7
b 03 —
02 r 4
05 | 1
0.1 q
0 . . . 0 b . .
0.1 1 10 100 0.1 1 10 100
y+ y+
(¢) Root-mean-square of longitudinal velocity (d) Root-mean-square of wall-normal velocity
fluctuations fluctuations
1.4 T 1 T
Fixed temperature - hot wall Fixed temperature - cold wall
Fixed heat flux - cold wall =======-- 09 Fixed heat flux - cold wall =w==-= 4
12k Fixed temperature - hot wall * JUp— 1 . Fixed temperature - hot wall * P od 2,
- Fixed heat flux - hot wall g 2 08 Fixed heat flux - hot wall & ’-.‘ |
1r L 07 i 3y 1
¢ 3 + !
A £ \
> 061 / i
+ 0.8 - q Y i )
g o 05t g
E el I
- Z o 04r 1
v
04 1 03 7
02 i
02 F 1
0.1 |
0 . . . 0 b
0.1 1 10 100 0.1 1 10 100
y+ y+
(e) Root-mean-square of transversal velocity fluc- (f) Covariance of longitudinal and normal fluctu-
tuations ations

Figure 4.3: Dynamic statistics

The dimensionless coefficient T} is also higher at the hot wall and the net effect leads to

a lower dimensionless standard deviation of temperature fluctuations at the hot wall.

In the central area of the channel, the temperature fluctuations become independent

on the boundary condition type. Unlike results from symmetric heating [80] or from

a developing flow in an open channel [29], temperature fluctuations do not collapse in

the central area: they keep the same order of magnitude across the section.
<UTl'>-<U><T>

= 4.1
RUT Urms TT"I’)’LS ( 6)
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The correlation coefficients Ryr (eq. 4.16) and Ry (eq. 4.17) combine the behaviors
of the turbulent heat fluxes and the standard deviations of temperature and velocities.
In the central area of the channel Ry approaches zero and is the same whatever
the boundary condition type (Fig. 4.4(e)). Indeed, the longitudinal turbulent heat
flux vanishes near the centerline while the fluctuations of the temperature and the

(4.17)
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longitudinal velocity stay finite. Near the walls, the correlation coefficient is higher
when wall temperatures are fixed and about 0.9 (in good agreement with value cited
by Huang et al. [101]). If the heat flux is imposed, the correlation splits into asymmetric
profiles from the hot and the cold wall respectively. The correlation coefficient is higher
at the hot wall side of the channel: near the walls (for y* < 10), the longitudinal
turbulent heat flux and the U,,,s are almost identical whatever the wall side but the
T,ms are lower at the hot wall and this leads to a greater correlation coefficient.

The correlation coefficient of the temperature and the wall-normal velocity (Fig.
4.4(f)) is lower near the walls when heat fluxes are imposed, because the temperature
is free to fluctuate and leads to higher and non-zero T,,,s while the Vs and the wall-
normal heat fluxes are almost independent on the boundary condition type. In the
central area of the channel, Ry are closer for the two kinds of boundary conditions as
the temperature fluctuations share the same order of magnitude.
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Figure 4.5: Turbulent Prandtl number Pr,
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When the temperature is fixed at the walls, the turbulent Prandtl number (eq.
4.18 and Fig. 4.5) takes values between 0.8 and 1.07 except near the centerline (when
0.95 < y/h < 1.05) and close to the cold wall (when y/h < 0.02). With fixed wall
temperatures, Pr; is about 1.13 at the cold wall and 0.98 at the hot wall. Near the
centerline of the channel, the covariance of the longitudinal and wall-normal velocity
fluctuations < UV > — < U >< V > vanishes. It is the same for the normal derivative
of the mean longitudinal velocity 9 < U > /0y. These two zero points do not coincide
exactly and their dimensionless distance is around 8 x 1073, The Reynolds shear stress
zero point happens before the maximum of < U > and this gap leads to a discontinuity
and a divergent behavior of the turbulent Prandtl number with a vertical asymptote.
This observation is in agreement with a previous study done with a finer grid [230].
The discontinuity point is located slightly after the centerline in the hot side of the
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channel, because of the asymmetry of the boundary conditions. Non-coincidence of
the positions of zero shear stress and maximum mean longitudinal velocity have also
been observed in other cases where boundary conditions are asymmetric: in turbulent
annular concentric pipe flows with asymmetrical curvature effects ([201] [202]) and
in fully-developed asymmetric flow in plane channels with different roughening of the
planes ([97]).

If heat flux is imposed, the turbulent Prandtl number is hardly changed except near
the walls where it vanishes. Both the wall-normal heat flux and the covariance of the
longitudinal and normal velocities approach zero when getting close to the walls, but
the latter vanishes faster and rules the behavior of the turbulent Prandtl number at
the walls.

10000 T T
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Figure 4.6: Ry coefficient (eq. 4.19) with logarithmic y-scale
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Ry = (4.19)

O<T>

Oy

The Ry coefficient [230] is defined in eq. 4.19. For fixed temperature walls, Ry takes
values between 0.95 and 1.13 except in the central area (when 0.73 < y/h < 1.44)
where the normal derivative of the mean longitudinal velocity approaches zero (Fig.
4.6). The assumption Pr; ~ Rio made by Gaviglio [89] is verified with a £15% relative
error with respect to Pry except in the centerline vicinity (when 0.67 < y/h < 1.37)
where Rio growths or decreases faster than Pr;. If heat fluxes are imposed at the walls,
Ry diverges when approaching the cold or the hot wall because U,,,s vanishes while
Tms stays finite.

The Nusselt numbers for the hot and cold walls are presented in Table 4.3, as well as
the values obtained using three correlations (Dittus & Boelter [66] in eq. 4.20, Battista
& Perkins [21] in eq. 4.21 and Jo [112] in eq. 4.22). All computations are based on the
channel height 2h, on the bulk Reynolds number and on the properties of the fluid at
the walls. The temperature of the fluid 7% is taken at the center of the channel.

UT’H’LS
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Table 4.3: Nusselt numbers (L. = 2h)

Cold wall Hot wall

Present stmulations 15 8.5
Dittus — Boelter 31 12
Battista — Perkins 38 15
Jo 28 9
Nu = 0.023Re® pro-4 (4.20)
7N\ 07
Nu = 0.021Re’® pro4 (—”) (4.21)
Ty
Nu = 0.0058 Re®383 pp0-4 (4.22)

The Nusselt number at the hot wall is lower than the one at the cold wall, the ther-
mal conductivity being around 1.6 larger at the hot wall because of its dependency on
the temperature. This is also accounted by the three correlations used as a comparison
in Table 4.3. All correlations provide estimates that are significantly larger than the
simulation results, the gap being more important at the cold wall. Nevertheless, the
aspect ratio of the flat plate bi-periodic channel is very particular and far from the
tubular or square geometries at the origin of the correlations. The correlation devel-
oped in [112]| provides almost exactly the Nusselt value at the hot wall, the gap being
still high at the cold wall, although a bit reduced. It is interesting to notice that this
last correlation has been developed to fit narrow rectangular channels.

4.1.5 Conclusion and perspectives

In this section, we have studied the influence of thermal boundary conditions at the
walls (fixed temperatures versus imposed heat flux) on a fully developed turbulent
channel flow at friction Reynolds number 180 and with a wall temperature ratio of
2. The fluid is an ideal gas and its viscosity and thermal conductivity depend on the
temperature. Results show that the longitudinal velocity and the velocity fluctuations
are little modified. It is the same for the covariance of the longitudinal velocity and the
wall-normal velocity and for the turbulent wall-normal heat flux. Mean temperature
also stays almost unchanged. Whatever the boundary condition type, positions of zero
shear stress and maximum mean longitudinal velocity are non-coincident and slightly
shifted to the hot side of the channel. This leads to a divergent behavior of the turbulent
Prandtl number in the central area of the channel.

Other statistics are more impacted by the thermal boundary condition type. This
impact appears mainly near the walls, the central area of the channel being almost
independent on the boundary condition. The turbulent longitudinal heat flux is higher
when the wall heat flux is fixed. The opposite stands for the related correlation co-
efficient. The correlation coefficient of the temperature and the wall-normal velocity
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is lower when the heat flux is imposed. The turbulent Prandtl number is also lower
and vanishes at the walls when heat fluxes are fixed. The temperature fluctuations
are strongly impacted. They keep the same order of magnitude all across the channel
and do not vanish at the walls when heat fluxes are fixed. Dimensionless temperature
variance is asymmetric and reaches about 2.5 at the hot wall and 3.0 at the cold wall.
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4.2 Analysis of the entropy generation rate in the tur-
bulent flow

4.2.1 Introduction

The reference simulations described in section 4.1 have been continued after a mod-
ification of the thermo-hydraulic calculation code to compute the instantaneous and
average magnitudes of additional quantities such as the entropy generation rate. In
addition, new simulations have been launched to examine the influence of several flow
parameters (such as the mean friction Reynolds number and the hot to cold wall tem-
perature ratio) on the entropy generation rate profiles. The characteristics of these
different simulations are detailed in appendix B. Their progress in terms of dimension-
less averaging simulation time are varied: the reference simulations (7%/77 = 2 and
Rery, = 180 with the "main" mesh resolution defined in table 4.1) have been continued
up to At* > 350 for the base quantities like the velocity components and the temper-
ature and At} ..~ > T4 for the additional ones, like the entropy generation rate.
The new simulations, used for the parametric study (with different friction Reynolds
numbers or temperature ratios), have been calculated on smaller integration times.
Mesh independence has been successfully verified (see section 4.2.8).

The statistics (means, root-mean-squares and correlations) are computed by aver-
aging on horizontal (zz) planes and on time. They are presented as functions of the
height from the bottom wall (y) or the dimensionless distance to the closest wall (y™).
Unless otherwise specified, the default characteristics of the simulations are: a hot to
cold wall temperature ratio 7»/7; = 2, a mean friction Reynolds number Re,,, = 180,
fixed wall temperatures and the "main" mesh definition. The local entropy generation
rates in the flow are computed by applying the usual formulas:

LU _ﬁ a_TQ a_T2 @2 ?
St = 2| G P + G+ (G| + 2 (1.23)
v, v aw

19) 0 0 0 0
o= ul2| Gy + Gor+ Glp| + G+ T+ G+ B+ (G + Gy
20U OV oW,
Sl Tt }
(4.24)

4.2.2 Mean and turbulent entropy production rates

The mean local entropy generation rate < Sggn > as a function of the ordinate y is
presented in Fig. 4.7 when the hot to cold wall fixed temperature ratio is T5/77 = 2
and the mean friction Reynolds number is Re, = 180. The main entropy generation
rates are located in the vicinity of the walls, where the temperature gradients are the
highest and the ratios between the wall entropy generation rates and the one observed
at the center of the channel are about 51 and 8 for the cold and hot walls respectively.
The profile is asymmetrical and the entropy generation rate is higher at the cold wall.
The temperature gradient at the hot wall is smaller than at the cold wall and the

temperature is obviously higher: these two effects contribute to reducing the entropy
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Figure 4.7: Mean local entropy generation rate.

generation rate on the hot side of the channel, although the effect is somewhat offset by
a higher thermal conductivity on the hot side. Finally, the ratio between the entropy
generation rate at the cold wall compared to the hot one is approximatively 6. The
entropy generation rate presents a local maximum near the hot wall whereas this is
not the case for the cold one, where it is only decreasing. On the cold side, the
temperature increases and its gradient drops with the distance to the wall: both effects
contribute to a rapid decrease in the entropy generation rate (again, the increasing
thermal conductivity away from the cold wall only slightly dampens the decrease of
the mean local entropy generation rate without reversing the trend). Near the hot wall,
the temperature gradient is almost constant while the temperature decreases, hence
the increase in the entropy production rate very close to the wall. A little further from
the hot wall, the temperature gradient drops rapidly while the temperature declines at
a slower rate and the combination of these effects results in a decrease in the entropy
generation rate. The position of the maximum entropy production rate at the hot side
of the channel is located at y* = 3.4, i.e. a little below the usual value taken for the
end of the viscous sublayer (y™ &~ 5). Nevertheless, a close look at the < U > (y™)
curves shows that in the case of asymmetrically heated channel, the separation between
the < U >*= y* law and the actual curves occurs a little earlier when compared to
symmetrical heating situations [120], which also start separating from the theoretical
law between y* = 3 and y* = 4. The existence of a local maximum of the entropy
generation rate due to the competition of the decreasing of the temperature and its
vertical gradient had also been found in section 2 in the case of a laminar boundary
layer. Near-wall entropy generation rate local maximums are also reported in [125]
[126] for high Prandtl numbers (Pr = 5).

As previously practiced, the entropy generation rate can be divided into two sub-

parts: the one resulting from heat conduction and that due to viscous friction (Eq.
4.25).
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Table 4.4: Relative importance of heat conduction and viscous friction in the mean
local entropy generation rate [W.K~'.m™3]. Be is the Bejan thermodynamic number.

Cold wall Channel center Hot wall

Heat conduction < Sg’]’én’c > 1623.3 31.6 255.1
Viscous friction < S}, - > 0.84 1.7 x107° 1.79
Ratio < Sy, » >/ < Sgine > 5.2 x 1071 5.3 x107° 7.1 %1073
Be (< Spene >/ < Spen >) 0.999 ~ 1.000 0.993

< 111
Sgen - Sgen,c +

gen7f
111 o k aT 2 aT 2 8T 2
Sgen,c - ﬁ (%) + (a_y) + (g) (425)
I P
gen =

The heat conduction part is by far the largest part in the mean local entropy
generation rate (see Table 4.4), the Bejan number being almost equal to unity: in the
studied configuration where temperature gradients are significant while the Reynolds
number is moderate, the viscous part of the entropy generation rate can be neglected.
The relative importance of the entropy generation rate due to viscous friction is a little
higher at the hot wall: this viscous part has the same order of magnitude on both
walls (around 1 W.K~1.m™3), but the heat conduction entropy generation rate is lower
at the hot wall as explained above. The ratio between the viscous part and the heat
conduction part is about 15 times higher at the hot wall when compared to the cold
wall: this is due in particular to the higher temperature and the lower average square
of the vertical temperature gradient < (97'/dy)? > at the hot side.

The entropy generation rate due to heat conduction consists in three contributors,
depending on the derivative direction of the temperature (Egs. 4.26 and 4.27):

UL LU UL UL
Sgen,c = Pgen,c, Ty + gen,c, Ty + gen,c, T, (426)

)2 I

2
gen,c, T, — ﬁ(%) (427)

. :_( )2 111 T :_(_
gen,c, Ty T2 Or gen,c,ly T2 ay

At the wall vicinities, the main contributor to the mean local heat conduction
entropy generation rate (Fig. 4.8) is the vertical gradient of the temperature (due to
the fixed temperature boundary condition, the  and z derivatives of the temperature
are zero at the walls). In the center of the channel, the orders of magnitudes of the
three direction components are similar and around 10 W.K~1.m=3. Neglecting the
horizontal and transversal heat conduction parts in the entropy generation rate due
to heat conduction leads to about 20% underestimation of the total channel entropy
generation rate in W.K 1.

The composition of the mean local entropy generation rate due to viscous fric-

tion (see Eqs. 4.28 to 4.31) demonstrates that the main contributor is the vertical



110 Entropy generation rates in the turbulent flow

10000

1000

100

0.1

Entropy generation rate by heat conduction [W.K'l.m'B]

.
0.01
¢!
9
0.001 ¢ <Sgen,c,Tx> ° 2
T A
0.0001 Sgener,> y
<Sgen,c,TZ>
16—05 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03
y [m]

Figure 4.8: Mean local entropy generation rate by heat conduction components (Eqs.
4.26 and 4.27).
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Figure 4.9: Mean local entropy generation rate by viscous friction components - Egs.

4.28 and 4.29; e.g. uy+vx stands for < ';’én,ﬁuyﬂz >.

derivative of the velocity longitudinal component (Figs. 4.9 and 4.10). The velocity
divergence term is negligible and would disappear for an incompressible flow. All terms
depending on longitudinal or transversal derivatives vanish at the walls because of the

no-slip boundary condition. After the main term S e, Fauy v, Uhe second contributor is
Sv///

gen, fu.+w,» Which order of magnitude at the walls is nevertheless 102 less.

U _am U U 3117
Sgen,f - Sgenvf:uz + genva”y + genvawz + gen,f,uer’Uz

(4.28)

I LU I
+ gen, fiuz+wy + Sgenyfv'uz""wy + Qenvfauz'i‘vy""wz
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local entropy generation rate - Eqs. 4.30 and 4.31.

Apart from neglecting the smallest contributors in the mean local entropy gener-
ation rate (such as the viscous part and possibly the heat conduction parts in hor-
izontal or transverse directions), another type of simplifying approximation consists
in using the average fields of the quantities involved in the expression of the gener-
ated entropy. This type of simplification is appreciated in practice because it allows
to estimate the entropy generation rates from the fields already calculated (such as
mean velocity or temperature) by post-processing the averages. The effect of progres-
sive simplifications in the expression of the vertical conduction entropy generation rate
< (k/T*)(0T/dy)* > (the majority term in the total entropy generation rate) is pre-
sented in Fig. 4.11. Using the average fields of thermal conductivity and temperature
in the k/T? factor has no visible impact on the rate of entropy generation by vertical
heat conduction. In contrast, the average square of the vertical temperature gradient
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Figure 4.11: Successive approximations of the mean local entropy generation rate Sggn.

cannot be replaced by the square of the average temperature vertical gradient without
making a significant error.

In Table 4.5, the total entropy generation rate in the channel is indicated, along with
the results of the successive approximations: first, the viscous entropy generation is
discarded, which has a negligible effect on the result. Then, the vertical heat conduction
part is kept alone and the entropy production rate is underestimated by about 20%.
Finally, the average fields are used in the calculation, first by using the averages of the
temperature and the thermal conductivity while keeping the < (%—2)2 > term, which

has very little effect, then by neglecting the fluctuations of the latter term and by using
(%)2, which ultimately leads to a global underestimation of the entropy generation

rate by almost 45%.

Table 4.5: Successive approximations of the mean total entropy generation rate in the
channel

WK %

Total entropy generation rate < Sgen > 0.015  100%
Entropy generation rate by heat conduction < Sge. > 0.015  100%
Vertical heat conduction contribution < Sgen,c 1, > 0.012 80%
Mean fields approximation I 552 < (9£)? > 0.012  80%
Mean fields approximation IT %(%)2 0.008  56%

Thus, the average fields are not sufficient to correctly explain the local entropy
generation rate and it is necessary to take into account the correlations and variances
of the quantities from which it derives. This echoes other work that highlights the
essential effect of turbulence on entropy generation rates [4]. The decomposition (Egs.
4.32) of the vertical conduction of heat mean local entropy generation rate S;’émc,Ty into
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its share Sg’énvchyv mEan from the mean fields of temperature and thermal conductivity,

. ~ //I . .
on the one hand, and its share Sg, .1 prucr from fluctuations, on the other hand, is

presented in Fig. 4.12 in dimensional form and in Figs. 4.13 in dimensionless quantities.
The reference magnitude used to normalize the local entropy generation rates due to
the vertical conduction of heat (Eq.4.33) is defined at each wall as a function of the
mean wall heat flow density < ¢ >, the mean wall temperature < T,, > and the
corresponding mean thermal conductivity < k,, >.

2
-  <k> [(d<T>
gen,c, Ty, MEAN <T >2 dy (432)
I I U
gen,c,Ty, FLUCT =< gen,c, Ty > _Sgen,c,Ty,MEAN
) < S/// >
< Spene > (4.33)
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Figure 4.12: Decomposition of the mean local entropy generation rate by vertical heat
conduction (cf. Egs. 4.32).

The highest entropy generation rates are located near the walls (Fig. 4.12) and
more precisely in the viscous sublayer (y* < 5), which confirms it is the region where
thermal irreversibilities are the most important. The rates keep the same order of
magnitude in this region (Figs. 4.13). The part coming from mean fields (Fig.4.13(a))
is in good accordance with the TT = Pr.y* law at the walls. It decreases rapidly in
the buffer zone (5 < y* < 30) before reaching a local minimum and rising slightly in
the central zone of the channel, an asymmetry being visible between the hot and cold
sides. Indeed, as can be seen in Fig. 4.3(a), the logarithmic zones end at different
values for the hot side (y* =~ 70) and the cold side (y* &~ 100), which is reflected
in the entropy generation rate profile. The fluctuation part of the entropy generation
rate by vertical conduction of heat (Fig.4.13(b)) equals approximatively 20% of the
mean part at the walls [125] [126] and exhibits changes located at sublayer transitions:
the highest rates concentrate in the viscous sublayer. Then, the behavior changes
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Figure 4.13: Decomposition of the dimensionless mean local entropy generation rate
by vertical heat conduction (cf. Eqgs. 4.32 and 4.33)

according to the side of the channel: on the hot side, the generation rate reaches a
local maximum at y* & 5 and decreases in the buffer and logarithmic zones before
stabilizing. On the cold side, the entropy generation rate decreases over the first third
of the buffer zone, reaches a local minimum in y™ ~ 10 and a local maximum in y* & 30
before decreasing in the logarithmic zone and stabilizing beyond. The presence of an
oscillation in the rate of entropy generation by heat conduction in the area near the wall
(y™ < 30) is also visible in the results presented by [125] [126] and based on simulations
at Pr = 0.71 Re;,, = 395 and Pr = 5 Re,, = 180 [120] [119]. However, this result
is not easy to interpret physically since it takes place within the buffer zone and not
at a sublayer transition or near it: this oscillation will have to be studied further later
because it is numerically sensitive to the calculation methods of the derivatives (in the
buffer zone, the second derivative of the temperature is the highest).

The same kind of decomposition (Eqs. 4.34) between the local entropy generation
rate from mean and fluctuating fields can also be performed for the viscous entropy gen-
eration rate contributor due to the longitudinal velocity gradient vertical component.
The corresponding entropy generation rates are presented in Fig. 4.14 in dimensional
quantities and Figs. 4.15 in dimensionless form, the reference value being defined in as
a function of the wall friction velocity, the wall mean temperature and the wall mean
dynamic and kinematic viscosities (Eq. 4.35).

- <p>(d<U>\’
gen, fuy MEAN <T> dy (434)
117 o I U
gen, fyuy, FLUCT =< gen, f,uy > — gen, fyuy, MEAN
_ < S/// >
< Speng >7 genf (4.35)

T < > Ud)(< vy >2< T,y >)

The part of the mean local viscous entropy generation rate due to the mean longi-
tudinal velocity vertical gradient Sg/, ., ypan (Fig. 4.14) is maximum at the walls.
Its minimum value is located near the center of the channel and slightly on the hot
side: this comes from the asymmetry of the mean longitudinal velocity that reaches

its maximum at this position (see Fig. 4.2(a)). Viscous entropy generation rates from
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Figure 4.14: Decomposition of the mean local viscous entropy generation rate due to
the vertical component of the gradient of the longitudinal velocity (cf. Eqgs. 4.34)
(T/Ty = 2 and Re,, = 180).
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Figure 4.15: Decomposition of the mean local viscous entropy generation due to the
vertical component of the gradient of the longitudinal velocity (cf. Eqs. 4.34)

the mean fields are the highest in the viscous sublayer (Fig. 4.15(a)) and keep the
same order of magnitude in this region. In the buffer and logarithmic zones, the rates
are decreasing. The drop is stronger in the outer zone: unlike rates from heat con-
duction, they collapse in the central channel zone because the average longitudinal
velocity reaches its maximum there (while temperature gradients are strictly positive
in the center of the channel as can be seen is Fig. 4.4(a), which would not be the case
in a symmetrical heating configuration). The fluctuation part of the viscous entropy
generation rate is decreasing in the viscous sublayer: this was not the case for contri-
bution of heat conduction. Turbulent viscous entropy generation rate concentrated in
the viscous sub-layer and maximum at the walls (fig. 4.34(b)) is also attested in other
works [157]. However, at the hot wall the fluctuation part is ten times the mean one,
which may not be physical and needs to be cross-checked (this should not alter the
results on the total entropy generation rate as the viscous contribution is very low).
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4.2.3 Influence of the hot to cold wall temperature ratio
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Figure 4.16: Mean local entropy generation rate for various hot to cold wall temperature
ratios (Reqn, = 180).

The hot to cold wall temperature ratio (Re;, being maintained at 180) has an
influence on the mean local and global entropy generation rates that increase with
T»/Ty (Fig. 4.16). Moreover, the higher the temperature gap, the more asymmetric
the profile of the local entropy generation rate and at the T5/77 = 1 limit, the entropy
generation rates at the walls are equivalent. In the center of the channel, the profile
of the local entropy generation rate is flatter as soon as non isothermal boundary
conditions are fixed and T5/77 > 1.005.

4.2.4 Influence of the mean friction Reynolds number

When the mean friction Reynolds number is increased from 150 to 210 (75/7} being
maintained at 2), the mean local entropy generation rates are raised near the walls (Fig.
4.17). On the one hand, provided that the imposed temperatures are not changed, the
wall rate of entropy generation by viscous friction changes approximately in proportion
to the mean friction Reynolds number at power four. On the other hand, the rate of
entropy generation from heat conduction varies according to the square of the friction
Reynolds number, resulting in an increase of the relative part of entropy generation
from viscous origin in the total entropy generation rate. These evolution ratios are
consistent with those expected from entropy generation rates related to vertical tem-

perature and longitudinal velocity gradients from the mean fields (S gen.e.T, MEAN and

S
Sgen,f,uy,MEAN> :

4.2.5 RMS and correlations

(S0t s :\/< (Sm)2 > — < Si, >2 (4.36)

The root-mean-square of the local entropy generation rate fluctuations (Eq. 4.36)
is presented in Fig. 4.18. Its profile is similar to that of the entropy generation
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Figure 4.17: Mean local entropy generation rate for various mean friction Reynolds
number (T/T) = 2).
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Figure 4.18: Root-mean-square of the local entropy generation rate fluctuations com-
pared to the mean value < S77, >.

rate < S’g’én > itself and the orders of magnitude are close: the statistical dispersion
of the entropy generation rate is not negligible and the relative standard deviation
[S;’én]rms / < S;’én > lies between =~ 0.8 and ~ 2.2, the largest values being located
in the center of the channel. Since temperatures are fixed at the walls (and so is the
thermal conductivity), Tyms is zero and the source of the fluctuations in the entropy
generation rate is to be sought in particular in the fluctuations of the vertical gradient
of the temperature, which effectively presents significant relative values at the walls
(larger at the cold one) and which magnitude is higher than the mean in the central
part of the channel (Fig. 4.19).

The correlation coefficients of the local entropy generation rate with the temper-
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Figure 4.19: Root-mean-square of the temperature gradient vertical component fluc-

tuations compared to the mean value < % >.
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Figure 4.20: Correlations of the local entropy generation rate fluctuations

ature and the longitudinal and normal components of the velocity are presented in
Figs. 4.20. The local entropy generation rate exhibits a high linear correlation to the
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Figure 4.21: Covariances of the local entropy generation rates

temperature near the walls where the correlation coefficient has an absolute value close
to 1 (Fig. 4.20(a)). On the other hand, at the center of the channel, the covariance
of the temperature and the local entropy generation rate is close to zero, for non-zero
values of the standard deviations of these two quantities and the fluctuations of the
temperature and the local entropy generation rate behave almost like linearly uncorre-
lated random variables. On the cold side of the channel, the temperature vs. entropy
generation rate correlation is positive: a positive temperature fluctuation 8’ > 0 leads
to a positive fluctuation of the local entropy generation rate < S;’én > (linked to an
increase of the fluctuation of the vertical gradient of the temperature 00’'/dy). Con-
versely, an equivalent #’ > 0 on the hot side, reduces the temperature gap with the
hot wall and the correlation is there negative. The correlations of the local entropy
generation rate and the longitudinal velocity fluctuations exhibit similar profiles on the
hot and cold sides of the channel and a positive peak value at y™ =~ 5. The correlation
coefficients with the wall-normal velocity have a lower magnitude (less than +0.4) and
are negative near the cold wall and positive near the hot one.

Covariances of the local entropy generation rate with the temperature and the
longitudinal and normal velocity are provided in Figs. 4.21. All covariances are near
zero in a large central region of the channel. They also vanish at the walls, where the
fluctuations of the temperature and the velocity components are set to zero due to the
isothermal and no-slip boundary conditions respectively.
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4.2.6 Influence of the thermal boundary condition type
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Figure 4.22: Mean local entropy generation rate for two types of boundary conditions
(T2/Ty =~ 2 and Re,, = 180).

The type of thermal boundary condition (fixed temperatures vs. fixed heat flux
density at the walls), the hot to cold wall temperature ratio and the mean friction
Reynolds number remaining essentially identical, does not drastically modify the mean
local entropy generation rates (Fig. 4.22), except very close to the walls where it is
about 10% lower when the wall heat flux density is imposed (the total entropy gener-
ation rate within the channel is only reduced by about 2%). In the wall-imposed heat
flux density simulation, the composition of the entropy generation rate is quite similar
to that observed in the wall-imposed temperatures case: the viscous part is negligible
and most of the diffusive part comes from the vertical conduction of heat (the parts
related to longitudinal and transverse conductions representing about 20%). However,
these two latter contributions are no longer zero at the walls since the temperature is
free to fluctuate. In terms of approximations, also neglecting the fluctuations in the
vertical gradient of heat by calculating this entropy generation rate based on average
temperature fields results in an underestimation of the total entropy generation rate
by about 45%.

In the mean local rate of entropy generation by vertical heat conduction within the
channel, the turbulent fluctuation part (corresponding to the decomposition described
in Eq. 4.32) is slightly less important when the heat flux density is imposed (29%
instead of 31%). However, this share is very low in the local rate of entropy generation
at the walls (less than 0.5%) whereas this was not the case at imposed temperatures
(about 13%). There is therefore a differentiated phenomenon linked to the thermal
boundary condition type: indeed, when the heat flux density is imposed at the walls,
only fluctuations in temperature (Fig. 4.4(b)) have an effect on the fluctuations in the
entropy generation rate. However, the standard deviation of the temperature fluctua-
tions at the walls represents only 5.4% and 3.4% of the mean wall temperature (at the
cold and hot wall respectively). On the other hand, if the temperatures are imposed at
the walls, it is the parietal fluctuations of the temperature gradient that play the main
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Figure 4.23: Standard deviation of the local entropy generation rate for two types of
boundary conditions (7T5/77 ~ 2 and Re,, = 180).

role and they can be high as indicated above. In the case of imposed heat flux density,
the standard deviation of the entropy generation rate exhibits a sudden drop in the
near wall area, a phenomenon that is absent in the case of fixed wall temperatures.

4.2.7 Instantaneous local entropy generation rates
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Figure 4.24: Front-face view of the instantaneous local entropy generation rate at (xy)
plane with z = 2, [W.K~1.m™3).
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The instantaneous local entropy generation rates for the fixed wall temperature case
are presented at the cold (Figs. 4.25) and hot (Fig. 4.26) plates with zz plane views
and one-dimensional projection views on = and z axes separately. A front-face view is
also provided (Fig. 4.24), i.e. on the (zy) plane at z = zn.
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Figure 4.25: Instantaneous local entropy generation rate at the cold plate [IW.K ~t.m ™3]

At the top and bottom walls, the local entropy generation rate field exhibits elon-
gated structures in the direction of the flow: the areas of the plates concentrating the
highest levels of local entropy generation rate have a larger length (Figs. 4.25(b) and
4.26(b)) than width (Figs. 4.25(c) and 4.26(c)). The front face view (Fig. 4.24) seems
to show that puffiness appears on the walls and is carried in the direction of the flow as
it leaves the walls. The central area of the channel exhibits filament shaped structures.
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Figure 4.26: Instantaneous local entropy generation rate at the hot plate [IW.K ~t.m ™3]

the range of values of the local entropy generation rate is wider at the cold wall (up
to 12000 W.K~'.m™3) than the hot one (up to 800 W.K~'1.m™3). These pick values
can be compared to the mean local entropy generation rates at the cold and hot walls
(1620 W.K~t.m=3 and 255 W.K~'.m™3 respectively), which is a demonstration of the
high dispersion of the local entropy generation rate that exhibits strong spatial fluctu-
ations. Moreover, a large range of values is densely populated (from 200 W.K ~1.m~3
to 2000 W.K~t.m™3 at the cold wall and from 50 W.K~1.m=3 to 200 W.K~t.m™3 at
the hot wall. This great spatial (and probably temporal) variability encourages the
continuation of simulations in order to improve their convergence and make the results
more robust.
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The instantaneous local entropy generation along the vertical line defined by x =
Tmin and 2 = Zp, is presented in Figs. 4.27. The entropy generation rate is higher at
the walls and presents irregularities along the height of the channel (Fig. 4.27(a)). The
relative importance of spatial fluctuations with respect to the mean value is important
at the center of the channel (Fig. 4.27(b)).

Spatial fluctuations represent a smaller
relative share very close to the walls.
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Figure 4.27: Instantaneous local entropy generation rate at x = Zin and z = 2.

4.2.8 Influence of mesh definition

Simulations with a finer mesh (see description in table 4.1 for the "check" mesh) have
been used as a control tool to check mesh independence. The comparison for the local
entropy generation rate and its root-mean-square (at fixed hot to cold wall temperature
ratio 75 /T = 2 and mean friction Reynolds number Re,,, = 180) are presented in Figs.
4.28 and are in good agreement with the results presented above.
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Figure 4.28: Comparison of local entropy generation rate and its root-mean-square for
two domain definitions (see table 4.1)
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4.2.9 Conclusion

In this section, the local entropy generation rates have been computed for a bi-periodic
flat-plate channel turbulent flow of a fluid with thermo-dependent properties. The
hot to cold wall temperature ratio is 2 and the mean friction Reynolds number is
set to 180. Moreover, these two flow characteristics are varied in order to identify
their influence on the local entropy generation rate profiles. A comparison is also
made between two types of thermal boundary conditions: fixed wall temperatures on
the one hand and fixed heat flux density on the other hand. The mean local entropy
generation rates are mainly located near the walls (particularly in the viscous sublayer)
and exhibit an asymmetric profile, the highest rates being on the cold side. This
confirms the interest of acting in the near wall region by texturing and in particular
on the cold wall. The viscous part is negligible compared to the heat conduction part,
which major contributor is due to the vertical conduction of heat (the longitudinal and
transversal heat conductions, due to fluctuations of the temperature field, still account
for about one fifth of the total conductive entropy generation rate in the channel).
Indeed, turbulent fluctuations are not negligible: their terms (coming from variances
and covariances of fluctuations) induce about 45% of the total entropy generation
rate and the root-mean-square of the local entropy generation rate is of the same
order of magnitude as its mean. Instantaneous local entropy generation rates exhibit
elongated structures in the direction of the flow, their mean size being larger at the
hot wall and future work will focus on the analysis of these structures in relation
to the thermal and dynamic structures of the turbulent flow. Increasing the hot to
cold wall temperature ratio leads to higher entropy generation rates and to a higher
hot to cold wall asymmetry. It will thus be interesting to study, in future work,
configurations corresponding to higher heat flow densities (which also require greater
computing resources). If the Reynolds number is increased, the thermal gap being kept
constant, the entropy generation rates at the walls increase. The boundary condition
type has an influence on the local entropy generation rates at the walls: they are lower
in the case of fixed heat flux compared to the wall fixed temperature case because of
the drop of the vertical temperature gradient fluctuations.
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(zeneral conclusion

The aims of the present study are to compute the local entropy generation rate, to ana-
lyze its distribution in the flow space and its composition, to study how it is influenced
by boundary conditions (in particular the thermal ones) and to search how the total
entropy generation rate can be minimized. Due to the high complexity of actual solar
receivers, the present work has investigated three simplified situations that provide
complementary insights into the entropy generation rates in forced convective flows
submitted to temperature gradients and to asymmetric thermal boundary conditions.

In the first situation, the canonical case of the developing laminar boundary layer
over a heating flat plate is used as a sandbox to study the influence of the thermal
boundary condition type while allowing to vary key parameters. The magnitude and
composition of local and total entropy generation rates in the boundary layer have
been computed and analyzed for two main thermal boundary conditions: isothermal
vs. isoflux plate. In addition to local Reynolds, Prandtl and Eckert numbers, the
entropy generation rates depend on the thermal dimensionless number 7 (defined as
the temperature of the wall divided by the temperature gap between the wall and the
free stream at a reference position). If the total thermal power transferred between the
plate and the fluid is fixed, the total entropy generation rate between two longitudinal
positions along the plate (the starting position being fixed), exhibits a critical value of
7 which minimizes entropy generation. The value of the optimum 7 depends on the
thermal boundary condition. In the isoflux plate case, 7,,+ depends on the total fixed
heat power exchanged and on the starting integration point along the plate. This is not
the case for an isothermal plate where 7, is invariable. In this study, the temperature
gap is not neglected when compared to the wall temperature, horizontal conduction of
heat is not neglected in the calculation of entropy generation rates and the behavior of
the model has also been studied near the leading edge in order to know its asymptotic
trend. For small values of 7 (corresponding to high temperature gaps compared to the
wall temperature) and at a fixed thermal power exchanged between the plate and the
fluid, the total entropy generation rate is sensitive to changes in the value of 7. For solar
receivers, this means that there is a significant potential for gains by better controlling
temperature differences between the walls and the fluid, even if the operating point is
far from optimal.

In a second work, the calculus of variation has been applied to the optimization of
high Bejan number internal convective heat transfer in a flat-plate channel by mini-
mizing a linear combination of the entropy generation rate by heat conduction on the
one hand and the viscous dissipation on the other hand. The central third of one of
the plates is heated with a fixed and uniform heat flux density. Two fluids and several
Reynolds numbers have been taken into account. For each value of the viscous dissi-
pation in the channel, a volume force is computed that leads to optimized velocity and
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temperature fields. The viscous dissipation relative importance in the optimization
process can be adjusted through a weighting factor Wg in the objective functional.
As a general trend in the optimized solutions, lowering this weighting factor leads to
lower entropy generation by heat transfer and to a better homogenization of the tem-
perature field. At the same time, the viscous dissipation, the entropy generated by
viscous friction and the maximum velocity show an increasing trend. All in all, the
total entropy generation rate is reduced and the improvement factor is increased (de-
fined as the relative reduction of the total entropy generation rate with regard to the
reference entropy generation rate when no optimization is applied). There is a critical
value of the weighting factor at which a flow regime transition occurs, making velocity
and temperature fields change from profiles that are slightly different from the non op-
timized case to highly perturbed profiles. This critical value depends on the boundary
conditions, like the inlet velocity or the heat flux density. The optimization approach
allows to suggest velocity fields that reduce the entropy generation rate in the channel,
homogenize the temperature field and reduce the maximum temperature reached by
the heating plate, which is an advantage in solar receivers. The same method can be
applied to other advection-diffusion processes like the diffusion of a minor species in
a convective flow: the comparison shows that mass diffusion and heat diffusion share
the same qualitative behaviors, the actual magnitudes of the physical fields and the
critical values of the Wg weighting coefficient being different.

In the third situation, Direct Numerical Simulations (DNS) have been carried out
for a quasi-compressible flow in a bi-periodic flat-plate channel with a fluid which
properties depend on the temperature at a mean friction Reynolds number Re, = 180
and for a hot to cold wall temperature ratio T2/T7 = 2. The average local entropy
generation rates have been computed and exhibit a visible hot vs. cold wall asymmetry,
the highest entropy generation rates being located at the cold wall, which encourages
us to focus on the latter to implement textures, vortex generators or any other device to
improve heat exchange. However, the hot plate should not be neglected because entropy
generation, although lower, is spread over a greater thickness. The standard deviation
of the local entropy generation rate and its correlations with the temperature and the
longitudinal and normal components of the velocity have also been computed and show
that the turbulent fluctuations of the physical fields (in particular of the temperature
and its vertical gradient) play a significant role in the entropy generation rate. In
the studied configuration, the entropy generation rate due to viscous friction is very
small compared to the heat conduction part: it is therefore quite possible to disturb
the velocity field (by taking inspiration from the results of variational optimization,
for example) in order to improve heat exchange at the cost of an increase in viscous
dissipation. This would reduce temperature differences and improve receiver efficiency
(as suggested by work on the boundary layer). The influence of the mean friction
Reynolds number and of the wall hot to cold temperature ratio have been explored:
both induce an increase of the entropy generation rate, in particular at the walls. The
higher the temperature ratio, the higher the asymmetry of the entropy generation rate
and the need to concentrate on the cold wall. The effect of the thermal boundary
condition type on the flow statistics and on the entropy generation rate has also been
investigated and shows that the entropy generation rate in the case of fixed wall heat
flux is a little lower at the walls when compared to fixed wall temperature plates.
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Appendix A

Derivation of the equations of the
second Lagrange multiplier and the
volume force field

In this appendix, the transport equation for the Ao Lagrange multiplier (Eq. 3.9) and
the volume force field F' (Eq. 3.8) are found by applying the calculus of variations.

The Lagrangian criterion to minimize writes (cf. Eq. 3.7):

k
* _ N 2
J _///Q{T2<VT> L Wy
+X2 LT V.VT] + Alv.V}.dQ = /// F x.df2
pCp 2

In this equation, @ is the dissipation function and A\; and \; are two Lagrangian
multipliers depending on the position. The term to be integrated has been named F'x
and a compact notation is used in the following calculations: the subscript (.) x stands
for the derivative with respect to X and (.) xx stands for the second derivative. So,
F % can be rewritten:

(A1)

k
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Making the first variation of J* with respect to the temperature vanish implies the
following equation:
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~0 (A.3)

Each term of Eq. A.3 writes:
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Injecting the above expressions into Eq. A.3 and taking into account the continuity
equation u, + v, = 0 leads to Eq. A.5 that can be written in the form of a transport
equation for the Ay scalar (Eq. A.6).

2k 2k k
ﬁ(Ti + T?/) - ﬁ(Tm + Tyy) +uda o +0As 4 + oC. (A2 2z + A2 4y) =0 (A5)
P
—k 2k T
P

The same method can be used to find the expression of the volume force field F'
by making the first variation of J* vanish with respect to the longitudinal and wall-
normal components of the velocity (u and v respectively) and by using the continuity
equation, which leads to:

)\QTJZ + M\ a+ QW@M(uJﬂC + uvyy) =0

AT
MLy + Ay + 2Wp (Ve +v,4y) =0 (A1)

These two equations can be cobined into a more compact vector equation (Eq. A.8)
that can be compared with the momentum equation (Eq. A.9), which leads to identifiy
VP (Eq. A.10) and F', the expression searched for the volume force.
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Appendix B

DNS characteristics

The main characteristics of the DNS discussed in section 4.2 are presented in the
following two tables. The names of these simulations are coded as follows: Field1Field2-
Field3-Field4, where the four fields are defined hereunder. As an example, T180-2-main
corresponds to a fixed wall temperature simulation at mean friction Reynolds number
180 with a hot to cold wall temperature ratio of 2 in the "main" volume and mesh
domain. DNS name coding is:

1. Field 1: thermal wall boundary condition type: F=Fixed heat flux density,
T=Fixed temperatures.

2. Field 2: mean friction Reynolds number Re,,.
3. Field 3: hot to cold wall temperature ratio To/T;.

4. Field 4: domain and mesh definition: Main=reference domain, Check—=domain
used for mesh and volume independence tests (see table 4.1).

Mesh definitions are given in wall units by reference to v, /U;, where U; and v, are
the friction velocity and the kinematic viscosity at the wall. For the mesh definition
at the center of the channel and along the longitudinal and transversal axis, the mean
friction velocity and kinematic viscosity are used. Dimensionless averaging times are
given by reference to h/U;, where h is the channel half-height. Two averaging times are
provided: the first one At™ is about the usual quantities like the velocity components
and the temperature and the second one At ... deals with the additional quantities

like the entropy generation rate and other derived magnitudes (its root-mean-square
or its correlations, for example).
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Table B.1: DNS characteristics I: mesh definitions and averaging times in wall units.

A; A;_cold A;center Agj,hot A:_ At+ At;rdditional

T180-2-main 4.64 0.48 2.95 0.20 4.64 400 80
F180-2-main 4.67  0.47 2.97 0.20 4.67 356 74
T180-1-main 5.89  0.33 3.75 0.33 589 261 136
T180-1.001-main 5.89  0.33 3.75 033 5.89 44 44
T180-1.005-main 5.89  0.33 3.75 0.33 589 25 25
T180-1.01-main  5.88  0.34 3.74 0.33 588 49 49
T180-1.5-main 5.37  0.42 3.42 0.25 537 96 90
T180-2.5-main 3.92  0.51 2.50 0.16 3.92 46 44
T180-3-main 3.29  0.53 2.09 0.13 329 26 25
T150-2-main 3.85  0.40 2.45 0.16 3.85 90 68
T210-2-main 5.35  0.55 3.40 023 535 113 89
T'180-2-check 4.64 0.25 2.31 0.10 232 207 3

F180-2-check 4.66  0.25 2.31 0.10 2.33 100 3

Table B.2: DNS characteristics II: friction quantities.

UT,cold [m's_l] T‘r,cold [K] Rer,cold UT,hot [m-s_l] TT,hot [K] ReT,hot

T180-2-main 0.175 0.4 258 0.234 8.1 106
F'180-2-main 0.174 5.4 256 0.235 8.0 108
T180-1-main 0.123 0.0 180 0.123 0.0 180
T180-1.001-main 0.123 0.0 180 0.123 0.0 180
T180-1.005-main 0.123 0.0 180 0.123 0.0 179
T180-1.01-main 0.123 0.0 181 0.123 0.1 178
T180-1.5-main 0.154 3.0 226 0.183 3.7 133
T180-2.5-main 0.187 7.6 276 0.274 12.8 86
T'180-3-main 0.195 9.4 288 0.301 17.6 71
T150-2-main 0.145 5.6 214 0.195 8.3 88
T210-2-main 0.201 5.3 297 0.270 7.9 122
T180-2-check 0.176 5.4 259 0.235 8.1 106

F'180-2-check 0.175 5.4 256 0.236 8.0 107



Nomenclature

Acronyms

CRS
CSP
Y

DNS
DSG
EU

HTF

Central Receiver System

Concentrated (or Concentrating) Solar Power
Control volume

Direct Numerical Simulation

Direct Steam Generation

European Union

Heat Transfer Fluid

LCOE Levelized Cost of Electricity (or of Energy)

LHS
OM
ORC
PV
RHS
USD

Left Hand Side of an equation
Order of Magnitude

Organic Rankine Cycle
Photovoltaic

Right Hand Side of an equation
US dollar

Roman symbols

Total molar concentration (molarity) [mol.m™3]
Molar mass of chemical species number i [kg.mol™!]
Ideal gas constant (molar) [J. K~ .mol™!]
Volume force vector by unit of volume [N.m™3]
Velocity vector [m.s™1]
Mass flow rate [kg.s™1
Heat flow rate (W]
Local entropy generation rate (W.K~t.m™3]
Surface entropy generation rate (W.K~1.m™2]
Total entropy generation rate between two positions along a plate [W.K~t.m™!]
Entropy generation rate (W.K™]
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W Power (W]
W+  Power accounted positively when a system delivers work (W+ = —W) (W]
Be  Bejan thermodynamic number

Br  Brinkman number

Cp,  Thermal capacity at constant pressure (by unit of mass) [Jkg L. K]
D Diffusion coeflicient [m?.s71]
er Specific internal energy [J kg™
ex  Specific kinetic energy [J kg™
em  Specific total energy [J kg™

Ec  Eckert number

Ecy U%/(CpTw)

f Dimensionless Blasius velocity function (Eq. (2.20))

fi ith component of the specific volume force vector [N.kg™!]
g Gravitational acceleration [m.s™?

Gr Grashof number

Channel half-height (in chapter 4) [m]
Specific enthalpy BA
h! Specific total enthalpy [J kg™
I Improvement factor
J, J* Objective criterion and objective functional respectively (W.K™
k Thermal conductivity (W=t K1

Kn  Knudsen number
L, L. Characteristic length [m]
Ma Mach number

Nu  Nusselt number

P Pressure [Pal]
Pyyn  Dynamic pressure (in chapter 4) [Pal]
Py, Thermodynamic pressure (in chapter 4) [Pal)
Pr  Prandtl number

q’ Heat flux density at the plate (W.m™?]
¢ Dimensionless heat flux density at the plate (Eq. (2.61))

i ith component of the heat flux vector (W.m™?]

raisc discount rate
Re  Reynolds number
Re,, Rep, Boundaries of a local Reynold number interval

Re, Local Reynolds number
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Re;,, Mean friction Reynolds number

Ri  Richardson number
s Specific entropy [J.K ' kg™
S1 Dimensionless total entropy generation rate between two positions along the
plate
So Dimensionless surface entropy generation rate
S Dimensionless local entropy generation rate
Si;  Component (i,j) of the strain rate tensor [s71]
T Temperature (K]
t Time [s]
T+  Dimensionless temperature gap to the wall
T,  Wall temperature [K]
Tw  Free stream temperature [K]
U Instantaneous longitudinal velocity (in chapter 4) [m.s™1]
u,v  Longitudinal and normal components of the velocity [m.s™1]
Ui Ith component of the instantaneous velocity vector (in chapter 4) [m.s™1]
u; ith component of the velocity vector [m.s™]
Us,  Free stream longitudinal velocity [m.s™1]
U:rm  Mean friction velocity [[m.s™1]]
V Instantaneous wall-normal velocity (in chapter 4) [m.s™1]
V, |V| Velocity magnitude [m.s™1
W Instantancous transversal velocity (in chapter 4) [m.s™1]
w; Mass fraction of chemical species number i [kg.kg™!]
Wg  Weighting factor in objective criterion or functional (K]
x,y Longitudinal and normal coordinates [m]
T ith component of the position vector [m]
y™  Dimensionless distance from the closest wall in wall units (in chapter 4)
Transversal coordinate; elevation in Eq. 1.3 [m]
Greek symbols
a Thermal diffusivity [m?.s71]
T viscous stress tensor [Pal
I5; volumetric coefficient of thermal expansion (K]
AT Temperature gap (T, — To) [K]
AtT  Dimensionless averaging time
) Dynamic boundary layer thickness [m]
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dr  Thermal boundary layer thickness [m]
dij Kronecker delta

n Dimensionless coordinate (Eq. (2.19))

Ne Carnot efficiency (1 — %)

Neot  Efficiency of solar collectors and concentrators

Nesp  Efficiency of the CSP plant 7esp = NeotMrecpb

npy  Efficiency of the thermodynamic cycle / the power block

Nree  Efficiency of solar receptors

vy Heat capacity ratio

Ai Lagrange coefficient

L Dynamic viscosity [Pa.s]
w Second viscosity coefficient [Pa.s]
v Kinematic viscosity [m?.s71]
o Viscous dissipation function (Eq. (1.18)) [(W.m™3]
P Stream function (Eq. (2.21)) [m?.s71]
p Density [kg.m™3]
b)) A thermodynamic system

oij  Component (i,j) of the stress tensor [Pal]
T Dimensionless thermal parameter (7,,/AT)

7;;  Component (i,j) of the viscous stress tensor [Pal]

7 Dimensionless temperature gap (Eq. (2.22))
7 Fluctuation of the temperature (in chapter 4) [K]

Superscripts

()7 Dimensionless quantity in relation to friction velocity and temperature (in chap-
ter 4)

(.))  Fluctuation of a quantity in the Reynolds decomposition (in chapter 4)
(.))  Superscript related to the derivative with respect to n (in chapter 2)

(.)*  Superscript related to a dimensionless quantity

Subscripts
xx Second order partial derivative with respect variable X (i.e. d%y)
x Partial derivative with respect variable X (i.e. dx)

()

()

(.);  Friction quantity
(\)amp Ambient (e.g. Tump)
()

ch  Subscript related to the horizontal conduction of heat
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(\)eota Subscript related to the channel cold plate
(.)ev  Subscript related to the vertical conduction of heat

(.)e  Subscript related to the conduction of the heat (e.g. Sgen,c . entropy generation
(time) rate by heat conduction)

(.) f.marg Subscript related to marginal viscous friction terms (Egs. (2.53), (2.54) (2.55))

(.)rrucr Part of a quantity coming from the variances and correlations of its compo-
nent turbulent fluctuations

¢ Subscript related to the entropy generation due to viscous friction
7 Subscript related to the main viscous friction term (in chapter 2)
not Subscript related to the channel hot plate

in Entering in a system

lost Lost part of a quantity

Jw  Subscript related to a value at a wall

(
< . > Statistical average over (xz) planes and time
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Thermodynamic optimization of solar receivers: analysis of entropy genera-
tion rates in anisothermal flows subjected to asymmetric thermal boundary
conditions

Abstract This thesis work is part of research aimed at improving the performance of
concentrated solar power plant receivers with large temperature gradients and asym-
metric thermal boundary conditions. It is necessary to analyze the power lost due to
thermal and viscous irreversibility. This is achieved by studying the entropy generation
rate within the flow and by adopting three different axis of analysis that provide com-
plementary insights: (1) the detailed study of the entropy generation rate in a laminar
boundary layer by examining in particular the effect of the thermal boundary condition
type (imposed temperature vs. fixed heat flux density) (2) the use of the calculus of
variations to determine which velocity fields optimize an objective functional related
to the entropy generation rate in a flat plate channel flow, one-third of one of the walls
being at imposed heat flux density (3) the study of the entropy generation rate in a flat
plate channel flow, turbulent, quasi-compressible and for a fluid which thermo-physical
properties depend on temperature.

Keywords Solar receivers, Thermodynamic optimization, Entropy generation rates,
Anisothermal flows, Asymmetric thermal boundary conditions

Optimisation thermodynamique des récepteurs solaires : analyse de la puis-
sance entropique générée dans des écoulements anisothermes soumis a des
conditions aux limites thermiques asymétriques

Résumé Ce travail de thése s’inscrit dans le cadre des recherches visant a améliorer
la performance des récepteurs de centrales solaires & concentration qui présentent des
gradients de température importants et des conditions aux limites thermiques asymé-
triques. Il est nécessaire d’analyser les puissances utiles perdues du fait des irréversibi-
lités thermiques et visqueuses. Ceci est réalisé par I’étude de la puissance entropique
générée au sein de I’écoulement en adoptant trois axes d’analyse différents qui apportent
des éclairages complémentaires : (1) I’étude détaillée de la puissance entropique géné-
rée dans une couche limite laminaire en examinant en particulier 'effet du type de
condition aux limites (température imposée vs densité de flux thermique imposée) (2)
I'utilisation du calcul variationnel afin de déterminer quels champs de vitesse optimisent
une fonctionnelle objectif reliée a la puissance entropique générée dans un écoulement
en canal plan dont le tiers d’une des parois est a densité de flux imposée (3) I'étude de
la puissance entropique générée dans un écoulement en canal plan, turbulent, quasi-
compressible et pour un fluide dont les propriétés thermophysiques dépendent de la
température.

Mots-clés Récepteurs solaires, Optimisation thermodynamique, Puissance entropique
générée, Ecoulements anisothermes, Conditions aux limites thermiques asymétriques
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