
HAL Id: tel-02502941
https://theses.hal.science/tel-02502941

Submitted on 9 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and flexible predictive control of buildings
space-heating demand in district heating systems

Nadine Aoun

To cite this version:
Nadine Aoun. Modeling and flexible predictive control of buildings space-heating demand in dis-
trict heating systems. Automatic. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLC104�. �tel-02502941�

https://theses.hal.science/tel-02502941
https://hal.archives-ouvertes.fr


 

       

N
N

T
 :

 2
0

1
9

S
A

C
L

C
1

0
4
 Modelling and flexible predictive control 

of buildings space-heating demand in 
district heating systems  

 
 

Thèse de doctorat de l'Université Paris-Saclay 
préparée à CentraleSupélec 

 
 

École doctorale n°580 Sciences et Technologies de l'Information et de 
la Communication (STIC) 

Spécialité de doctorat: Automatique 

 
 

Thèse présentée et soutenue publiquement à Gif-sur-Yvette, le 2 Décembre 2019, par 

 

 Nadine Aoun  
 
Composition du Jury : 
 

Monsieur Bruno Lacarrière 
Professeur, IMT Atlantique 

Rapporteur 

Monsieur Stéphane Ploix 
Professeur, Université Grenoble-Alpes 

Rapporteur 

Monsieur Khalil El Khoury 
Professeur, Université Libanaise 

Président du jury 

Monsieur Etienne Wurtz 
Directeur de recherche, CNRS CEA-INES 

Examinateur 

Monsieur Marc Petit 
Professeur, CentraleSupélec 

Examinateur 

Madame Sihem Guernouti 
Chargée de recherche, Cerema 

Examinatrice 

Monsieur Vittorio Verda 
Professeur, Politecnico di Torino 

Examinateur 

Monsieur Guillaume Sandou 
Professeur, CentraleSupélec 

Directeur de thèse 

Monsieur David Canal 
Ingénieur de recherche, ADEME 

Invité 

Monsieur Roland Bavière 
Ingénieur de recherche, CEA 

Co-Directeur de thèse 

Monsieur Mathieu Vallée 
Ingénieur de recherche, CEA 

Co-Directeur de thèse 

N
N

T
 :
 2

0
1

7
S

A
C

L
E

0
3
5
 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I I suffered, 

I I learned, 

I I changed. 

Kahlil Gibran 



 

 

 



Acknowledgments          

 

Acknowledgments 

It is often said that the journey matters more than the destination. If this PhD’s destination is a degree 

with my name on it, its journey is graved with names of people to whom I shall forever be grateful. 

First and foremost, my sincere thanks must go to those who guided me along the path, 3 people that I 

am indebted to: my advisors, Roland BAVIÈRE and Mathieu VALLÉE, for their great ideas and all 

the tools that they have put at my disposal to achieve this work, and my PhD director, Guillaume 

SANDOU, for his insightful supervision and rational motivation.  

I gratefully acknowledge the funding received towards my PhD from ADEME and CEA. I extend my 

thanks to ADEME referent engineer David CANAL for his engagement and followship. I am thankful 

for the hospitality and invaluable advices of Nathalie DUPASSIEUX, Stéphane COLASSON and 

Cédric PAULUS who received me in their CEA labs (LSED and L2ST). Thanks are also due to my 

CEA bonus host lab (LADIS) whose members welcomed me for short stays at Saclay. 

I sincerely thank all members of the Jury for showing their interest in evaluating my thesis. I would like 

to express my special appreciation to Prof. Bruno LACARRIÈRE and Prof. Stéphane PLOIX for 

reviewing my manuscript. 

I am grateful for the technical support of Aurélie FOUCQUIER, Adrien BRUN and Nicolas 

LAMAISON, for the much-needed mother-like affection of Angela DISDIER and for the 

companionship of Mathilde WIRTZ. I thank my fellow labmates. It has been a great delight being 

among you, if you find your name down below then you have left a beautiful memory in my mind. 

I deeply thank my family for being my driving force to pursue doctoral studies. I dedicate this work to 

my mother Mélanie, to my father Camille, to my brother Michel, to my grand-mother Nadia, and in 

the loving memory of my grand-parents. 

Finally, there are no proper words to convey my gratitude to my fiancé Roland, but here’s a try. 

Throughout these years, you have been my best-friend, my joy, my mentor, my part-time advisor and 

the love of my life. Thank you. 

 
Philippe

Sylvain

Florent

Nicolas

Anne-claire

Michael
Cédric

Nathalie

Stéphane

Pierre

François

Jean-François

Christian

Delphine

ValéryHemant

Estelle

Raf

Fred

Bernard

Joséphine

Angela
Louis

Simon

Romain

FabienHélène

Mimo Mathieu

Franck Hugo

Adrien

Aurélie

Simone

Bruno

Marisnel

Ismaïl

Roman

Benjamin
Bertrand Etienne

Simon

Laurent

Arnaud

Pascal

Vincent

Valérie

Julie

Myrième

Houssame

Marie

Antoine

Roland

Guillaume

Imane

Gabriele

Marin

Anne

Yacine

Giberto

Lauren

Antoine

Anthony

Aglaé

Laurène

Quentin

Coralie

Corentain

Mathilde

Loïc

Gaëlle Gilles

Marie-Pierre

Philémon

Alain
Julie

Stéphanie

Noëlie

Youen

Rémy

Sanae JF

Robin

Sylvain

Tobias



 

 



Résumé substantiel en langue française          

       

I 

 

Résumé substantiel en langue française 

Modélisation et commande prédictive flexible 

de la demande en chauffage des bâtiments 

raccordés à des réseaux de chaleur 

Introduction 

Le chauffage occupe actuellement le premier poste de consommation énergétique dans le secteur 

résidentiel, responsable à lui seul d’un tiers de l’énergie finale consommée en France. Les réseaux de 

chaleur sont des systèmes énergétiques à l’échelle urbaine qui permettent d’assurer ce besoin de 

chauffage de manière collective entre les bâtiments.  

Dans un réseau de chaleur, on distingue trois éléments fondamentaux : tout d’abord, une ou plusieurs 

unités de production de chaleur centralisées pour chauffer de l’eau ; ensuite, un réseau de distribution 

pressurisé pour acheminer l’eau ; et finalement, des points de livraison, également connus sous le nom 

de sous-stations, pour transférer la chaleur portée par l’eau du réseau aux systèmes de chauffage internes 

aux bâtiments.  

Dans les zones urbaines denses, ce système de chauffage collectif s’annonce plus efficace qu’un mode 

de chauffage employant plusieurs chaudières décentralisées. D’autre part, une caractéristique importante 

d’un réseau de chaleur réside dans sa capacité à intégrer et à mobiliser les énergies renouvelables et de 

récupération qui assurent plus de 50% de l’énergie fournie par les réseaux de chaleur en France, en 2016 

[FEDENE, 2017], et pourront potentiellement assurer, en 2060, 100% de l’énergie circulée dans les 

réseaux de chaleur les plus développés au Danemark [Lund et al., 2018a]. 

Toutefois, des activités de recherche seront nécessaires pour aboutir à de tels objectifs. Nous nous 

positionnons autour de l’axe de recherche et développement des outils de pilotage qui visent à optimiser 

l’opération des réseaux de chaleur. L’optimisation opérationnelle peut intervenir au niveau de la 

production, la distribution et la demande. Dans cette thèse, nous nous focalisons sur la gestion optimale 

de la demande en chauffage du bâtiment qui prend place au niveau de sa sous-station. 
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La demande en chauffage des bâtiments est influencée par plusieurs facteurs ; la température extérieure 

étant le facteur le plus impactant. A partir de ce constat, le mode de gestion classique de la demande 

dans les réseaux de chaleur, couramment appelé régulation par loi d’eau, se base sur des courbes de 

chauffe statiques qui déterminent la température de l’eau alimentant le circuit de chauffage interne au 

bâtiment en fonction des variations de la température extérieure : quand cette dernière chute, la 

température de chauffage est élevée, permettant ainsi au bâtiment de puiser plus de puissance du réseau. 

La régulation par loi d’eau présente des atouts en termes de simplicité et de robustesse dans la 

satisfaction de la demande [Ionesi et al., 2015]. Pourtant, ce mode de gestion manque de flexibilité.  

La flexibilité de la demande est un élément-clef valorisé par les stratégies de gestion optimale. Elle 

émerge dès lors qu’on prend en compte d’autres facteurs qui agissent sur la demande en chauffage. 

L’inertie thermique du bâtiment décale sa demande par rapport aux variations de la température 

extérieure ; plusieurs études ont démontré l’intérêt de l’exploitation de cette inertie pour le stockage et 

le déstockage de l’énergie dans l’objectif de réduire les coûts de chauffage [Reynders, 2015a; Le Dréau 

et Heiselberg, 2016a]. Les sources de chaleur passive, c.-à-d. l’ensoleillement et les apports internes dus 

au comportement des occupants, peuvent couvrir jusqu’à 20% de la demande des bâtiments basse 

consommation [Foteinaki et al., 2018a; Touria et al., 2015], donc leur anticipation présente un potentiel 

de réduction de la consommation en chauffage. Le prix variable de l’énergie, initialement apparu dans 

les réseaux intelligents électriques pour inciter les consommateurs à adapter leurs habitudes de 

consommation afin de réaliser des économies énergétiques, entre en jeu dans les stratégies de gestion 

avancées des réseaux de chaleur envisageant la modulation de la demande en chauffage. La modulation 

automatisée de la demande est l’action de contrôle permettant à l’opérateur du réseau d’adapter les 

courbes de charge des bâtiments, dans le cadre d’une optimisation opérationnelle, à condition de bien 

veiller sur le confort thermique des usagers [Robillart, 2015a; Hu et al., 2019a]. 

Une stratégie de gestion optimale de la demande des bâtiments raccordés à des réseaux de chaleur 

valorise la flexibilité de la demande par des actions de modulation en tenant compte de certains ou tous 

les facteurs suivants : la température extérieure, l’inertie thermique du bâtiment, l’ensoleillement, le 

comportement des occupants et le prix de l’énergie. Ses apports économiques et environnementaux à 

l’échelle d’un réseau de chaleur sont prometteurs selon plusieurs études théoriques [Kärkkäinen et al., 

2003; Wernstedt et al., 2007]. Cependant, son implémentation n’est pas aussi simple qu’une loi d’eau ; 

elle requiert tout d’abord un modèle thermique du bâtiment qui permet la prédiction des éventuelles 

conséquences de la modulation sur les conditions de confort thermique dans le bâtiment, et ensuite, en 

se basant sur ce modèle, une loi de commande prédictive doit être conçue pour calculer la trajectoire 

optimale de la température de chauffage en fonction des prévisions relatives aux facteurs impactant la 

demande.   
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En pratique, les méthodologies proposées dans la littérature pour les deux étapes de modélisation et de 

conception du contrôleur prédictif sont difficilement applicables à grande échelle pour la gestion de la 

demande dans les réseaux de chaleur. Pour ce qui est de la modélisation du bâtiment, les modèles 

proposés dans la littérature ne sont souvent pas identifiables avec le peu de données disponibles à grande 

échelle pour l’opérateur du réseau de chaleur, et quand ils le sont, ils ne représentent pas proprement 

l’inertie du système. Par conséquent, le contrôle basé sur de tels modèles ne sera pas pertinent. 

L’objectif de cette thèse est de proposer une méthodologie de modélisation de bâtiment et une stratégie 

de commande optimale prédictive de la demande en chauffage basée sur le modèle obtenu en ne 

s’appuyant que sur des données et moyens de contrôle disponibles et facilement accessibles en sous-

station, tout en exploitant l’inertie thermique du système composé du bâtiment avec son circuit de 

chauffage. L’avantage principal de ce travail par rapport à la littérature sera la possibilité d’implémenter 

la gestion optimale de la demande à grande échelle dans les réseaux de chaleur. 

Ces travaux sont menés et démontrés par simulation numérique. De ce fait, nous commençons par 

développer des simulateurs thermiques dynamiques de bâtiments résidentiels représentatifs du parc 

immobilier français qui constitueront notre environnement de recherche virtuel. Ensuite, une 

méthodologie de développement d’un modèle d’ordre réduit de bâtiment est proposée. Elle commence 

par la définition d’une structure convenable à notre application de contrôle et se poursuit par une 

approche d’identification paramétrique qui se sert strictement des données disponibles en sous-station. 

Enfin, un contrôleur flexible et prédictif est conçu pour calculer la trajectoire optimale de la température 

de chauffage en permettant un compromis entre coûts de chauffage et confort thermique des usagers. 

Les grandes lignes des méthodologies employées à chaque étape ainsi que les importants résultats 

obtenus sont présentés dans la suite de ce résumé.  

Modélisation thermique et simulation dynamique de bâtiments 

résidentiels multizones 

Choix de l’outil de simulation 

Parmi les plusieurs outils de simulation numérique dédié à la thermique du bâtiment, nous avons choisi 

un outil qui remplit les conditions suivantes : 

▪ Une modélisation par approche nodale, où les volumes de contrôle sont de la taille d’une zone 

thermique supposée à température uniforme, sans rentrer dans la modélisation détaillée du flux 

d’air ou des champs de température à l’intérieur de la zone. Cette condition élimine les outils 

de simulation CFD. 
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▪ Une modélisation dynamique où un système d’équations différentielles est résolu à des pas de 

temps variables ou fixes, et multi-physique où des phénomènes appartenant à divers domaines 

peuvent être modélisés ; notamment des phénomènes thermiques, hydrauliques et 

d’asservissement. 

▪ La possibilité de traiter les échelles de temps suivantes : 

◽ Observation des dynamiques à l’échelle d’une minute ; 

◽ Actions de contrôle au niveau de la sous-station à des pas de temps de 15 minutes ; 

◽ Horizon de prédiction relatif à la commande prédictive de l’ordre de 24 heures ; 

◽ Simulations sur 2 semaines ; 

◽ Temps de simulation sur 2 semaines entre 5 à 10 minutes. 

▪ Une bonne documentation des modèles trouvés pour les outils commerciaux ou développés au 

sein des laboratoires de recherche externes ce qui facilitera leur utilisation, ainsi que la 

possibilité d’accéder aux codes pour modifier ou compléter les modèles selon notre besoin. 

▪ La compatibilité avec d’autres outils qui feront partie de la chaine d’exécution dans la 

commande prédictive via le standard FMI. 

Parmi plusieurs outils candidats comme SIMBAD – Matlab, COMFIE – PLEAIDES, EnergyPlus, 

TRNSYS, nous avons choisi de travailler en langage Modelica dans l’environnement Dymola qui 

satisfait toutes les conditions requises. Notre simulateur sera basé sur des modèles validés des librairies 

Buildings développée au laboratoire LBNL de l’Université de Californie [Wetter et al., 2011a] et 

DistrictHeating développée au sein de notre laboratoire LSED du CEA [Giraud et al., 2015a]. 

Composition du simulateur 

Comme mentionné précédemment, nous employons la modélisation par approche nodale. De ce fait, le 

composant de base dans le simulateur du bâtiment est un modèle de zone thermique équivalente à une 

ou plusieurs pièces. Il s’agit d’un volume de contrôle rempli d’air homogène, à température uniforme, 

qui échange avec son environnement via des connections appelés ports thermiques en langage Modelica.  

Une zone thermique est connectée à, et échange avec, une enveloppe de bâtiment, composée de parois 

opaques et vitrées multicouches. Les phénomènes de transfert thermique modélisés dans ces parois sont 

la conduction thermique monodirectionnelle dans les couches discrétisées, la convection naturelle des 

deux côtés intérieur et extérieur de la paroi, et la transmittance du flux radiatif solaire à travers les vitres. 

Un modèle de distribution et de réflexion du flux solaire suppose que la totalité du flux transmis par les 

vitres est reçu par le sol où une partie sera absorbée et le reste sera reflété vers les autres surfaces. Ensuite 

un échange radiatif infrarouge prend place entre toutes les surfaces internes. 
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Nous avons constaté d’après l’étude bibliographique que la masse interne dans les bâtiments, constituée 

principalement par le mobilier et les partitions internes, a un impact non négligeable sur la ralentissement 

des dynamiques de la température interne [Johra et Heiselberg, 2017a; Antonopoulos et Koronaki, 

2000a; Al-Sanea et al., 2012a]. Afin d’intégrer cet effet au simulateur, nous représentons la masse 

interne par des parois supplémentaires en bois, métal, céramique et matériau léger avec des proportions 

suggérées dans la littérature. 

La ventilation est modélisée en tant que pertes thermiques vers l’extérieur à un taux constant 

représentatif du taux de renouvellement d’air dans les bâtiments. 

Un modèle détaillé d’un système de chauffage hydraulique est connecté à la zone thermique. Il est 

composé d’un robinet thermostatique dont la fonction est de réguler la température de la zone à une 

température de consigne donnée par contrôle du débit de l’eau de chauffage traversant un émetteur de 

chaleur de type radiateur et acheminée dans un circuit de tuyauterie avec une ligne d’aller et une ligne 

de retour. Ce circuit de chauffage est alimenté par une sous-station de réseau de chaleur où la gestion de 

la demande par contrôle de la température de chauffage prend place. 

Une deuxième source de chaleur qui vient s’injecter dans la zone thermique provient d’un modèle 

stochastique des apports internes. Ce modèle est basé sur des données statistiques de l’occupation de 

différentes pièces dans un bâtiment, à partir desquelles des profils d’usage des appareils électriques et 

de l’eau chaude sanitaire sont générés. Ses profils sont ensuite convertis en chaleur dissipée dans les 

zones équivalentes. Cette modélisation est issue des travaux de la littérature [Richardson et al., 2008a,  

2010a; Jordan et Vajen, 2005]. 

Enfin, les conditions aux limites de la zone thermique telle la température extérieure, l’ensoleillement, 

la vitesse de l’air, etc., sont transmises à travers un lecteur de fichier météo. 

Nous avons choisi d’assembler quatre zones thermiques, équivalentes d’une zone de jour, une zone de 

nuit, une cuisine et une salle de bain, pour composer un étage. Plusieurs étages pourront ensuite être 

empilés pour simuler un bâtiment multizone et multiétage. 

Introduction des cas d’étude 

Une fois le simulateur de bâtiment générique développé, trois cas d’étude spécifiques sont introduits de 

manière à représenter trois classes énergétiques différentes : 

▪ Bâtiment 1915 représentant des bâtiments anciens haute consommation énergétique ; 

▪ Bâtiment 1975 représentant des bâtiments moyenne consommation ; 

▪ Bâtiment 2012 représentant des bâtiments basse consommation, de type RT2012. 
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Ces trois cas d’étude partagent les mêmes caractéristiques géométriques – celles d’un bâtiment 

résidentiel nommé Le Salammbô – en termes d’orientation, surface au sol, surfaces des façades, surfaces 

vitrées, fractions des surfaces équivalentes, etc. Le Salammbô est situé à Grenoble et raccordé à une 

boucle basse pression du réseau de chaleur du quartier Zac Flaubert. Il pourra potentiellement jouer le 

rôle de démonstrateur expérimental des stratégies de gestion avancées de la demande. 

Ce qui différencie les cas d’étude et les répartit sur des classes énergétiques différentes, ce sont leurs 

matériaux de construction et les caractéristiques relatives à leurs systèmes de chauffage et de ventilation. 

Pour les matériaux de construction, nous nous sommes référés à une étude statistique appelée TABULA 

[FR_TABULA, 2015a] effectuée sur le parc immobilier français qui fournit un exemple-type de la 

construction des bâtiments par année de construction. Bâtiment 1915 est construit en pierre massive, 

sans isolation thermique avec des fenêtres simple vitrage. Bâtiment 1975 est construit en parpaing avec 

4 cm d’isolation par l’extérieur et des fenêtres double vitrage à air. Bâtiment 2012 est construit en béton 

avec 16 cm d’isolation par l’extérieur et des fenêtres double vitrage à argon. En ce qui concerne le 

modèle du système de ventilation, nous avons fixé des taux de renouvellement d’air constants distincts 

par bâtiment, de 0.5 Vol/h, 0.4 Vol/h et 0.3 Vol/h pour les Bâtiments 1915, 1975 et 2012, respectivement. 

Par conséquence des matériaux de construction et des taux de renouvellement d’air, les besoins en 

chauffage des cas d’étude sont différents et ainsi la puissance de dimensionnement de leurs sous-

stations. Donc nous avons calculé ces puissances et nous avons trouvé 114 W/m2, 60 W/m2 et 28 W/m2 

pour les Bâtiments 1915, 1975 et 2012, respectivement. Finalement, nous avons défini des courbes de 

chauffe statiques pour chacun des cas d’étude qui seront utilisées ultérieurement pour comparaison entre 

une loi de commande prédictive optimale et une gestion classique par loi d’eau.  

Modélisation d’ordre réduit du bâtiment 

Définition du modèle recherché 

Une fois l’environnement de simulation développé, nous rentrons dans l’étape la plus cruciale pour la 

mise en place de la stratégie de commande prédictive : la modélisation du bâtiment. Nous commençons 

par définir le modèle recherché. Il s’agit d’un ensemble d’équations différentielles et algébriques 

paramétrisées qui, par résolution dynamique dans le temps, permettront de calculer à tout instant les 

sorties observables et les états cachés du système en fonction de ses entrées contrôlables et non 

contrôlables. Dans le cas d’un bâtiment équipé d’un système de chauffage hydraulique, raccordé à un 

réseau de chaleur et contrôlé au niveau de sa sous-station, les entrées non contrôlables du point de vue 

de l’opérateur du réseau sont la température extérieure et le flux d’ensoleillement, ainsi que la 

température de consigne de l’air interne, qui est contrôlée par les occupants. La seule entrée contrôlable 

en sous-station est la température de départ du circuit de chauffage. Les observations récupérées en sous-
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station sont la température de retour du circuit de chauffage, le débit d’eau y circulant et la puissance 

puisée du réseau. Le principal état caché qui doit être prédit par le modèle est la température moyenne 

d’air interne. 

Le processus de développement du modèle commence par la définition de sa structure, c.-à-d. le nombre 

et la forme de ses équations ; ceci peut être accompli en se basant sur des connaissances physiques dans 

une approche appelée modélisation de type boite grise. Ensuite, le processus se poursuit par 

l’identification des paramètres ; ceci peut être traité en tant que problème d’optimisation dont l’objectif 

est de trouver l’ensemble de paramètres qui minimise l’erreur entre un historique de sorties du système 

et les sorties du modèle soumis à un même jeu d’entrées.  

Le modèle ainsi développé doit satisfaire trois critères essentiels. Tout d’abord, il doit être précis en 

termes de prédiction de la température interne moyenne du bâtiment. Cette précision est atteinte, à la 

fois, grâce à une structure qui tient compte des éléments les plus influençant sur les dynamiques 

thermiques du bâtiment, et grâce à un algorithme d’identification paramétrique robuste. Ensuite, 

afin d’assurer son intégration dans un problème d’optimisation en ligne lors de la commande prédictive 

optimale, il est crucial que le modèle soit numériquement efficace. A cet effet, les modèles d’ordre-

réduit à structure linéaire sont privilégiés. Finalement, le modèle doit être identifié en ne se servant que 

des sorties observables au niveau de la sous-station, notamment en s’abstenant d’utiliser des mesures de 

température interne qui est considérée comme un état caché dans cette thèse, contrairement aux travaux 

de modélisation similaires trouvés dans la littérature. 

Méthodologie de modélisation 

Structure 

La famille de modèles qui nous intéresse est à structure interprétable physiquement (boite grise), souvent 

représentée graphiquement par analogie thermique-électrique sous forme de circuit électrique.  

La structure la plus simple correspond à un modèle de 1er ordre où tous les éléments du bâtiment sont 

agrégés dans un seul nœud de température en échange avec l’extérieur. Or, cette structure ne permet pas 

de distinguer les dynamiques lentes des éléments à forte capacité thermique des dynamiques rapides de 

l’air. De ce fait, elle est déconseillée pour des applications de contrôle qui visent à exploiter la capacité 

de stockage thermique dans la masse du bâtiment [Reynders et al., 2013a; Vivian et al., 2017a]. Pour 

de telles applications, il est souvent recommandé d’employer un modèle du 2nd ordre avec un nœud de 

température qui représente l’air interne et un autre pour l’enveloppe extérieure. Des échanges thermiques 

entre ces nœuds, et avec l’extérieur, sont modélisés par des coefficients d’échange constants [Berthou 

et al., 2014a; Reynders et al., 2014a]. Nous adoptons cette structure de base et nous l’enrichissons d’un 

3ème nœud de température pour représenter la masse interne dont les dynamiques sont plus lentes que 
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celles de l’air et qui, d’après une étude préliminaire effectuée sur le simulateur, influe considérablement 

sur la capacité de stockage thermique court-terme dans le bâtiment et augmente la flexibilité de sa 

demande. Pour prendre en compte l’effet de l’ensoleillement, nous modélisons les apports solaires par 

un modèle linéaire qui multiplie le flux d’irradiation solaire par un coefficient constant et l’injecte dans 

chacun des trois nœuds.  

Jusqu’à présent la structure ressemble à certains modèles trouvés dans la littérature [Leśko et al., 2018]. 

Mais pour notre application dans le cadre des réseaux de chaleur, il est nécessaire de faire apparaitre la 

température de chauffage dans le modèle comme étant la variable de contrôle de la demande. Nous 

complétons alors le modèle du bâtiment par un modèle du système de chauffage. Ceci est rarement 

présenté dans la littérature. Dans une première tentative, nous commençons par ajouter un nœud de 

température qui représente le système de chauffage et qui échange de la chaleur par un coefficient 

constant avec l’air. Ce nœud est alimenté d’un flux de chaleur de la sous-station dont la valeur est 

proportionnelle à l’écart entre la température au nœud de chauffage et la température de consigne 

contrôlée en sous-station ; bien sûr ce flux sera borné entre zéro et la valeur maximale de 

dimensionnement. L’avantage de cette structure est qu’elle soit linéaire et donc numériquement efficace 

pour le contrôle. Cependant, en essayant de faire des identifications paramétriques, nous obtenons des 

modèles qui prédisent bien la sortie, la puissance demandée en sous-station, mais qui entrainent de larges 

erreurs sur la prédiction de la température de l’air. Pour remédier, nous introduisons deux nœuds de 

température dans le modèle du système de chauffage. Un premier nœud qui reçoit le flux de la sous-

station comme précédemment décrit, et un deuxième qui représente les émetteurs à l’intérieur du 

bâtiment et qui échange avec l’air. Ensuite nous faisons apparaitre une nouvelle variable mesurable en 

sous-station qui est le débit d’eau circulant dans le circuit de chauffage. Ce débit est proportionnel à 

l’écart entre la température de l’air et la température de consigne contrôlée par les occupants. Il régit le 

flux de chaleur entre le nœud du circuit de chauffage en sous-station et les émetteurs. De cette manière, 

la structure intègre un modèle représentatif de l’opération des robinets thermostatiques et fournit une 

information directe en sous-station sur l’écart entre la température de l’air et sa température de consigne 

à travers la sortie débit. Elle devrait être plus précise dans la prédiction de la température de l’air, mais 

elle est non-linéaire puisque le flux entre les deux nœuds du système de chauffage est un produit de deux 

variables, le débit et l’écart de température entre les émetteurs et la sous-station. Cette non-linéarité sera 

traitée ultérieurement dans ls formulation du problème d’optimisation. 

La structure finale ainsi obtenue est exprimée par 7 équations (Eq. 2.39 à Eq. 2.45) dans lesquelles 

figurent 3 entrées non-contrôlables : la température extérieure, le flux d’irradiation solaire et la 

température de consigne de l’air. On récupère 2 sorties observables en sous-station : la puissance et le 

débit de chauffage. Il y a 5 états cachés étant les températures au niveau des nœuds, et 16 paramètres à 

identifier. 
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𝐶𝑎𝑖𝑟 ∙
𝑑𝑇𝑎𝑖𝑟
𝑑𝑡

= 𝑈[𝑎𝑖𝑟−𝑒𝑥𝑡] ∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑎𝑖𝑟) + 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣] ∙ (𝑇𝑒𝑛𝑣 − 𝑇𝑎𝑖𝑟) + 𝑈[𝑎𝑖𝑟−𝑚𝑎𝑠𝑠]

∙ (𝑇𝑚𝑎𝑠𝑠 − 𝑇𝑎𝑖𝑟) + 𝑈[𝑎𝑖𝑟−𝑒𝑚] ∙ (𝑇𝑒𝑚 − 𝑇𝑎𝑖𝑟) + 𝑘𝑎𝑖𝑟
𝑠 ∙ 𝜙𝑠𝑜𝑙 

Eq. (1) 

𝐶𝑒𝑛𝑣 ∙
𝑑𝑇𝑒𝑛𝑣
𝑑𝑡

= 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡] ∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑒𝑛𝑣) + 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣] ∙ (𝑇𝑎𝑖𝑟 − 𝑇𝑒𝑛𝑣) + 𝑘𝑒𝑛𝑣
𝑠 ∙ 𝜙𝑠𝑜𝑙 Eq. (2) 

𝐶𝑚𝑎𝑠𝑠 ∙
𝑑𝑇𝑚𝑎𝑠𝑠
𝑑𝑡

= 𝑈[𝑎𝑖𝑟−𝑚𝑎𝑠𝑠] ∙ (𝑇𝑎𝑖𝑟 − 𝑇𝑚𝑎𝑠𝑠) + 𝑘𝑚𝑎𝑠𝑠
𝑠 ∙ 𝜙𝑠𝑜𝑙 Eq. (3) 

𝐶𝑒𝑚 ∙
𝑑𝑇𝑒𝑚
𝑑𝑡

= 𝑈[𝑎𝑖𝑟−𝑒𝑚] ∙ (𝑇𝑎𝑖𝑟 − 𝑇𝑒𝑚) + 𝑚̇𝑆𝑆𝑇 ∙ 𝑐𝑝 ∙ (𝑇𝑐𝑖𝑟 − 𝑇𝑒𝑚) Eq. (4) 

𝐶𝑐𝑖𝑟 ∙
𝑑𝑇𝑐𝑖𝑟
𝑑𝑡

= 𝜂𝑙 ∙ 𝛷𝑆𝑆𝑇 + 𝑚̇𝑆𝑆𝑇 ∙ 𝑐𝑝 ∙ (𝑇𝑒𝑚 − 𝑇𝑐𝑖𝑟) Eq. (5) 

𝛷𝑆𝑆𝑇 = 𝛷𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ ⟦𝐺𝑐𝑖𝑟

𝑝
∙ (𝑇𝑐𝑖𝑟

𝑠𝑒𝑡 − 𝑇𝑐𝑖𝑟)⟧0
1
 Eq. (6) 

𝑚̇𝑆𝑆𝑇 = 𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ ⟦𝐺𝑎𝑖𝑟

𝑝
∙ (𝑇𝑎𝑖𝑟

𝑠𝑒𝑡 − 𝑇𝑎𝑖𝑟)⟧0
1
 Eq. (7) 

Identification paramétrique 

L’identification paramétrique revient à résoudre un problème d’optimisation dont l’objectif est de 

trouver l’ensemble des 16 paramètres du modèle qui minimisent une fonction d’erreur sur les sorties 

entre le modèle d’ordre réduit et un historique de données généré par le simulateur. Nous formulons la 

fonction objectif (Eq. (8)) sous la somme des erreurs quadratiques normalisées sur les deux sorties du 

modèle, la puissance et le débit en sous-station, cumulées sur une période d’identification de deux 

semaines avec un pas de discrétisation de cinq minutes. Afin de garantir une minimisation cohérente des 

erreurs sur les deux sorties à la fois, nous introduisons des poids sur les deux termes de la fonction 

objectif. Les paramètres sont contraints dans une plage physiquement plausible. 

𝑓𝑜𝑏𝑗 =
1

∆𝑡𝑟
∙ ∫ [

1

3
∙ (
𝑄𝑆𝑆𝑇
𝐻𝑂𝑀 − 𝑄𝑆𝑆𝑇

𝑅𝑂𝑀

𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 )

2

+
2

3
∙ (
𝑚̇𝑆𝑆𝑇
𝐻𝑂𝑀 − 𝑚̇𝑆𝑆𝑇

𝑅𝑂𝑀

𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥 )

2

] 𝑑𝑡

∆𝑡𝑟

0

 Eq. (8) 

Afin de mener cette approche d’identification, nous considérons tout d’abord un jeu de données d’entrée 

sur deux semaines pendant lesquelles le simulateur est contrôlé par une loi d’eau avec un réduit de nuit 

qui sert à stimuler les dynamiques du circuit de chauffage et améliorer l’identifiabilité de ses paramètres. 

Le modèle d’ordre réduit sera soumis à ces mêmes entrées afin de calculer ses sorties qui seront 

comparées aux sorties du simulateur pour évaluer la fonction objectif. Les paramètres du modèle sont 

dictés par un algorithme d’optimisation métaheuristique hybride PSO-HJ convenable à ce type de 

fonction objectif non-linéaire, présentant plusieurs minima locaux et relativement rapide à calculer. 

Après plusieurs itérations, l’algorithme converge vers un ensemble de paramètres qui minimise l’erreur.  

Nous définissons trois critères de performance du modèle ainsi identifié. Tout d’abord nous évaluons 

un indicateur de correspondance sur les sorties (Eq. (9)) pendant la phase d’identification et pendant une 

deuxième phase, également de deux semaines, de validation. Ensuite, nous étudions l’erreur sur la 

température de l’air interne (Eq. (10)) en terme de moyenne et écarts maximaux, sur les deux phases 

d’identification et de validation. Toutefois, comme nous le montrons dans les applications suivantes, de 
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bons indicateurs de correspondance sur les sorties et une faible erreur sur la température de l’air pourront 

être assurés par plusieurs ensembles de paramètres. Donc, pour obtenir l’ensemble le plus pertinent, il 

est nécessaire d’effectuer le processus d’identification plusieurs fois et retenir les résultats qui 

montreront une meilleure pertinence physique du coefficient de pertes global du bâtiment, jugée par un 

indice de correspondance (Eq. (13)) entre une valeur estimée à partir des données de dimensionnement 

(Eq. (11)) et une valeur calculée à partir des paramètres identifiés (Eq. (12)). 

𝜑𝑥 = (1− √(
𝑥𝐻𝑂𝑀 − 𝑥𝑅𝑂𝑀

𝑥𝑚𝑎𝑥 − 𝑥̅
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

) × 100 Eq. (9) 

𝜀𝑇𝑎𝑖𝑟 = 𝑇𝑎𝑖𝑟
𝑅𝑂𝑀 − 𝑇𝑎𝑖𝑟

𝐻𝑂𝑀 Eq. (10) 

𝑈𝑏𝑢𝑖𝑙𝑑
𝑠𝑖𝑧𝑖𝑛𝑔

=
𝑄𝑆𝑆𝑇
𝑚𝑎𝑥

𝑇𝑎𝑖𝑟
𝑠𝑖𝑧𝑖𝑛𝑔

− 𝑇𝑒𝑥𝑡
𝑠𝑖𝑧𝑖𝑛𝑔,𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒

 Eq. (11) 

𝑈𝑏𝑢𝑖𝑙𝑑
𝑖𝑑𝑒𝑛𝑡 =

𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣] ∙ 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡] + 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡] ∙ 𝑈[𝑎𝑖𝑟−𝑒𝑥𝑡] + 𝑈[𝑎𝑖𝑟−𝑒𝑥𝑡] ∙ 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣]

𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣] +𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡]
 Eq. (12) 

𝜖𝑈𝑏𝑢𝑖𝑙𝑑 =
𝑈𝑏𝑢𝑖𝑙𝑑
𝑖𝑑𝑒𝑛𝑡 − 𝑈𝑏𝑢𝑖𝑙𝑑

𝑠𝑖𝑧𝑖𝑛𝑔

𝑈𝑏𝑢𝑖𝑙𝑑
𝑠𝑖𝑧𝑖𝑛𝑔

× 100 Eq. (13) 

Applications 

Tests analytiques 

Dans un premier temps, nous appliquons la stratégie d’identification sur un historique de données 

synthétiques généré à partir d’un modèle d’ordre réduit, l’objectif étant de vérifier si l’approche 

d’identification est capable de retrouver l’ensemble de paramètres connus à priori.  

Deux tests sont menés. Dans le premier test, nous identifions les paramètres 1 par 1. Le processus 

d’identification est alors lancé 16 fois ; à chaque fois, 15 paramètres sont fixés à leurs bonnes valeurs et 

l’algorithme recherche la valeur optimale du 16ème paramètre. Les résultats montrent que certains 

paramètres sont precisement identifiés, alors que d’autres sont difficilement identifiables parce qu’ils 

impactent très légèrement la fonction objective.  
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Dans le deuxième test, nous identifions les 16 paramètres simultanément et nous lançons le processus 

d’identification 9 fois avec une initialisation de recherche différente à chaque essai. Les résultats 

rejoignent ceux du premier test. Certains paramètres sont bien identifiés indépendamment de 

l’initialisation, et d’autres prennent des valeurs différentes à chaque essai.  

Nous concluons alors que le problème d’identification paramétrique est mal-posé, c.-à-d. que plusieurs 

solutions au problème d’optimisation peuvent coexister (fonction objectif à plusieurs minima locaux) et 

l’algorithme d’identification ne pourrait pas discerner le meilleur ensemble de paramètres à retenir. Ceci 

peut être dû à plusieurs causes :  

▪ La structure du modèle est trop complexe ; 

▪ Le scenario de génération de données d’identification ne capte pas toutes les dynamiques du 

système ; 

▪ L’algorithme d’optimisation n’explore pas l’espace de recherche rigoureusement.  

Pour s’affranchir de ce problème, nous proposons de lancer l’algorithme d’identification plusieurs fois 

et de retenir l’ensemble de paramètres le plus pertinent d’après le critère de pertinence physique présenté 

précédemment.   

Application sur les cas d’étude 

Nous appliquons maintenant l’approche d’identification sur des données générées par les simulateurs.  

Les résultats concernant les critères de performance montrent tout d’abord une correspondance à plus 

de 90% entre le simulateur détaillé et le modèle d’ordre réduit pour les deux sorties, cela étant valable 

pour les trois cas d’étude pendant la phase d’identification. Cette correspondance se dégrade peu et reste 

au-delà de 85% en phase de validation (Figure 1). 

 

Figure 1 Résultats des indices de correspondance sur les sorties (Eq. (9)) suite à l’identification 

paramétrique des modèles des 3 cas d’étude 

Bâtiment 
1915

Bâtiment 
1975

Bâtiment 
2012

Phase d’identification

Phase de validation
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En ce qui concerne l’erreur sur la température interne, les valeurs moyennes trouvées pendant les phases 

d’identification et de validation sont de moins de 0.1°C, avec des erreurs maximales autour de 0.5°C, 

en valeurs absolues (Figure 2). 

 

Figure 2 Résultats des moyennes et des écart maximaux de l’erreur sur la température de l’air interne 

moyenne (Eq. (10)) suite à l’identification paramétrique des modèles des 3 cas d’étude 

En examinant les réponses temporelles (Figure 3), nous vérifions la bonne ressemblance sur les sorties 

des trois cas d’étude et nous remarquons que les erreurs les plus importants sur la température interne 

se produisent dans le Bâtiment 2012 pendant les périodes de nuit. Nous interprétons alors que pour ce 

type de bâtiments fortement sensibles aux apports internes, qui d’ailleurs ne sont pas pris en compte 

dans le modèle d’ordre réduit, les paramètres identifiés pourront être biaisés de manière à compenser 

l’effet des apports internes pendant le jour, ce qui engendre plus d’erreur en absence de ces apports. 

 

Figure 3 Comparaisons entre les données du simulateur (courbes en bleu) et les prédictions du modèle 

réduit (courbes en rouge) suite à l’identification paramétrique des modèles des 3 cas d’étude 
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Finalement, le critère de pertinence physique est évalué. Les ensembles de paramètres retenus assurent 

des erreurs minimes entre la valeur du coefficient de pertes global estimée 𝑈𝑏𝑢𝑖𝑙𝑑
𝑠𝑖𝑧𝑖𝑛𝑔

 (Eq. (11)) et la valeur 

obtenue par identification paramétrique 𝑈𝑏𝑢𝑖𝑙𝑑
𝑖𝑑𝑒𝑛𝑡 (Eq. (12)), pour les 3 cas d’étude (Figure 4). L’erreur la 

plus importante qui atteint 10% a été obtenue pour le Bâtiment 2012. Ceci est aussi interprété en lien 

avec la sensibilité de ce bâtiment aux apports internes.  

 

Figure 4 Vérification de la pertinence physique des coefficients de pertes globales suite à 

l’identification paramétrique des modèles des 3 cas d’étude 

Nous concluons finalement que les modèles ainsi obtenus sont de précision suffisante pour notre 

application de commande prédictive. 

Commande prédictive flexible de la demande en chauffage des 

bâtiments 

Schéma de la commande prédictive 

Rappelons tout d’abord que l’avantage essentiel de la commande prédictive par rapport à la régulation 

classique par loi d’eau est la possibilité de moduler la température de l’air interne dans le bâtiment, tout 

en veillant à ce qu’elle reste comprise dans la zone du confort thermique.  

Afin d’effectuer cette modulation de manière optimale, la commande prédictive anticipe les facteurs 

impactant la demande en chauffage sur un horizon de prédiction, et emploie un contrôleur optimal qui, 

en se basant sur le modèle d’ordre réduit, prédit l’évolution de ses états et calcule la trajectoire optimale 

de la variable de contrôle (température de chauffage). L’optimalité est définie au sens d’un compromis 

entre coûts de l’énergie et confort thermique. Le contrôleur applique la consigne optimale au simulateur 

et remet à jour ses états par un observateur d’états. L’horizon de prédiction sera alors décalé d’un pas 

selon le principe de l’horizon fuyant. Ces étapes sont représentées dans Figure 5. 

Nous avons implémenté la commande prédictive dans une plateforme appelée PEGASE qui permet la 

cosimulation des différents modules compatibles. La brique principale étant le contrôleur, nous allons 

détailler sa conception dans le paragraphe suivant.  

Bâtiment 
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Bâtiment 
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Bâtiment 
2012
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Figure 5 Schéma de la commande prédictive montrant les principales briques implémentées dans 

l’outil de cosimulation PEGASE 

Conception du contrôleur flexible 

La conception du contrôleur revient à formuler un problème d’optimisation dont la fonction objectif 

(Eq. (14)) comprend plusieurs termes à minimiser de façon à ce que la résolution du problème mène au 

compromis optimal entre eux. 

Le premier terme de la fonction objectif représente la consommation énergétique pour le chauffage du 

bâtiment dont le coût est calculé par intégration du produit de l’énergie consommée par le prix de 

l’énergie sur l’horizon de prédiction. 

Le deuxième et le troisième terme pénalisent l’inconfort thermique qui se produit lorsque la température 

de l’air s’écarte de la température de consigne à laquelle on soustrait un seuil de flexibilité contrôlable 

en sous-station par l’opérateur du réseau. Lorsque cet écart est d’une valeur positive, une sur-chauffe 

sera pénalisée et dans le cas contraire, une sous-chauffe sera pénalisée. Pour chacun de ces deux cas un 

coefficient de pénalisation distinct est affecté. 

Le quatrième terme de la fonction objectif pénalise les pertes dans le circuit de chauffage. Physiquement, 

ces pertes augmentent avec l’augmentation de l’écart entre la température de chauffage et la température 

ambiante. Toutefois, du fait que cette physique n’a pas été représentée dans la structure du modèle réduit, 

le contrôleur ne discriminera pas un chauffage à haute température sans l’ajout de ce dernier terme. 

Décalage
d’un pas dans l’horizon de prédiction

Mise-à-jour
des états du modèle de prédiction

Application
de la sortie du contrôleur au simulateur 

Calcul du compromis optimal
entre
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▪ Coûts de chauffage
▪ Confort thermique

Anticipation
des facteurs qui influencent la demande

PEGASE
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𝑓𝑜𝑏𝑗
𝑀𝑃𝐶 = ∑

(

 
 

𝑝𝑒𝑛𝑒𝑟𝑔𝑦[𝑛] ∙ 𝑄𝑆𝑆𝑇[𝑛] ∙ ∆𝑡𝑀𝑃𝐶
+𝑝𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑇𝑎𝑖𝑟

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑡𝑀𝑃𝐶
+𝑝𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑇𝑎𝑖𝑟

𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑡𝑀𝑃𝐶
+𝑝𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] ∙ ∆𝑇𝑐𝑖𝑟

𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] ∙ ∆𝑡𝑀𝑃𝐶 )

 
 

𝑁𝑀𝑃𝐶

𝑛=1

 Eq. (14) 

L’ensemble des contraintes est constitué principalement des équations discrétisées du modèle d’ordre 

réduit (Eq. (15) à Eq. (21)). Les trois premières équations sont linéaires. Un terme bilinéaire apparait 

dans Eq. (18) et Eq. (19), et requiert une linéarisation que nous avons réalisée en utilisant la méthode de 

relaxation par enveloppes de McCormick [McCormick, 1976]. Des saturations apparaissent dans les 

deux dernières équations. Nous les avons traitées par une méthode de linéarisation par morceaux. Ces 

linéarisations introduisent des variables binaires au problème d’optimisation. Par conséquent, la 

formulation obtenue est linéaire-mixte. Le problème est résolu par le solveur adéquat de l’outil 

commercial CPLEX.  

𝑪𝒂 𝒓 ∙
𝑻𝒂 𝒓[ ]−𝑻𝒂 𝒓[ −𝟏]

∆ 
=  [𝒂 𝒓− 𝒙 ] ∙ (𝑻 𝒙 [ ] − 𝑻𝒂 𝒓[ ]) +  [𝒂 𝒓−  𝒗] ∙

(𝑻  𝒗[ ] − 𝑻𝒂 𝒓[ ]) +  [𝒂 𝒓−𝒎𝒂  ] ∙ (𝑻𝒎𝒂  [ ] − 𝑻𝒂 𝒓[ ]) +  [𝒂 𝒓− 𝒎] ∙

(𝑻 𝒎[ ] − 𝑻𝒂 𝒓[ ]) + 𝒌𝒂 𝒓
 ∙ 𝑰 𝒐 [ ]   

Eq. (15) 

𝑪  𝒗 ∙
𝑻  𝒗[ ]−𝑻  𝒗[ −𝟏]

∆ 
=  [  𝒗− 𝒙 ] ∙ (𝑻 𝒙 [ ] − 𝑻  𝒗[ ]) +  [𝒂 𝒓−  𝒗] ∙

(𝑻𝒂 𝒓[ ] − 𝑻  𝒗[ ]) + 𝒌  𝒗
 ∙ 𝑰 𝒐 [ ]  

Eq. (16) 

𝑪𝒎𝒂  ∙
𝑻𝒎𝒂  [ ]−𝑻𝒎𝒂  [ −𝟏]

∆ 
=  [𝒂 𝒓−𝒎𝒂  ] ∙ (𝑻𝒂 𝒓[ ] − 𝑻𝒎𝒂  [ ]) + 𝒌𝒎𝒂  

 ∙ 𝑰 𝒐 [ ]  
Eq. (17) 

𝑪 𝒎 ∙
𝑻 𝒎[ ]−𝑻 𝒎[ −𝟏]

∆ 
=  [𝒂 𝒓− 𝒎] ∙ (𝑻𝒂 𝒓[ ] − 𝑻 𝒎[ ]) + 𝒎̇𝑺𝑺𝑻[ ] ∙ 𝒄𝒘𝒂 ∙

(𝑻𝒄 𝒓[ ] − 𝑻 𝒎[ ])  

Eq. (18) 

𝑪𝒄 𝒓 ∙
𝑻𝒄 𝒓[ ]−𝑻𝒄 𝒓[ −𝟏]

∆ 
= 𝜼 ∙ 𝑸𝑺𝑺𝑻[ ] − 𝒎̇𝑺𝑺𝑻[ ] ∙ 𝒄𝒘𝒂 ∙ (𝑻𝒄 𝒓[ ] − 𝑻 𝒎[ ])  

Eq. (19) 

𝑸𝑺𝑺𝑻[ ] = 𝑸𝑺𝑺𝑻
𝒎𝒂𝒙 ∙ ⟦𝑮𝒄 𝒓

𝒑
∙ (𝑻𝒄 𝒓

   [ ] − 𝑻𝒄 𝒓[ ])⟧𝟎
𝟏
   Eq. (20) 

𝒎̇𝑺𝑺𝑻[ ] = 𝒎̇𝑺𝑺𝑻
𝒎𝒂𝒙 ∙ ⟦𝑮𝒂 𝒓

𝒑
∙ (𝑻𝒂 𝒓

   [ ] − 𝑻𝒂 𝒓[ ])⟧𝟎
𝟏
  Eq. (21) 
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Application 

Nous appliquons la commande prédictive sur les 3 cas d’étude en considérant 3 scenarios : 

▪ Un 1er scenario avec un prix d’achat de l’énergie fixe et un niveau de modulation de la 

température interne fixe et limitée à 0.5°C ; 

▪ Un 2ème scenario avec un prix d’achat de l’énergie fixe et un niveau de modulation de la 

température interne limitée égal à 0.5°C pendant la journée et 2°C pendant les heures de nuit ; 

▪ Un 3ème  scenario avec un prix d’achat de l’énergie 10 fois plus élevée en début de matinée que 

le reste du jour et un niveau de modulation de la température interne limitée égal à 0.5°C pendant 

la journée et 2°C pendant les heures de nuit. 

Le but de ces essais est de vérifier la réactivité du contrôleur vis-à-vis des sollicitations, de comparer la 

commande prédictive à la régulation classique par loi d’eau en observant l’exploitation de l’inertie 

thermique du bâtiment traduite dans les actions de contrôle prédictif en sous-station et de s’assurer du 

respect des conditions de confort thermique aux usagers.  

L’essentiel des observations peut être déduit des graphes de la Figure 6 : 

▪ Nous observons l'anticipation du gain solaire par le contrôleur prédictif, ce qui réduit la 

température de chauffage avant le pic d'irradiation solaire. Lorsque la température de chauffage 

est réduite, l’air interne se refroidit, ce qui déclenche l’ouverture du robinet thermostatique, 

augmentant ainsi le débit massique de l'eau de chauffage à travers la sous-station. Avec la 

commande prédictive, nous avons donc pu manipuler la température intérieure tout en veillant 

au confort thermique. Cela n'est pas possible dans le cas d’une régulation par loi d’eau en se 

basant uniquement sur une courbe de chauffe standard.  

▪ Pendant le délestage de nuit, la commande prédictive prend compte de l’inertie thermique du 

bâtiment. On distingue 3 phases de cette prise en compte dans le graphique de la température 

de chauffage du Bâtiment 2012 ci-dessous. Dans une 1ère phase, le contrôleur diminue la 

température de chauffage pour arrêter complètement la puissance injectée en sous-station avant 

le début du délestage. La 2ème phase démarre immédiatement après avoir atteint un débit de 

chauffage maximal. Ainsi, le système de chauffage fonctionne à débit maximal constant en re-

augmentant lentement la température de chauffage au fil du temps. La 3ème phase débute avant 

la fin du délestage nocturne. Encore une fois, le moment de retour au mode de fonctionnement 

normal est décidé en fonction de l’inertie du bâtiment. Cependant, la régulation par loi d’eau 

suit strictement l'impulsion préprogrammée du délestage sans tenir compte des retards dus à 

l'inertie thermique.  
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▪ En examinant les résultats du 3ème scenario appliqué au Bâtiment 1915, on constate que le 

contrôleur prédictif diminue la consommation du bâtiment pendant les périodes à prix d'énergie 

élevé en réglant la température de chauffage à sa limite inférieure. Afin de limiter l’inconfort 

qui en résulte, le contrôleur prédictif stocke de la chaleur dans la masse thermique du bâtiment 

juste avant ces périodes. La chaleur stockée sera ensuite évacuée pendant les périodes à prix 

d'énergie élevé. 

 

Figure 6 Exemple des résultats du contrôle : comparaison entre la commande par loi d’eau et la 

commande prédictive sous le 2ème  scenario pour le Bâtiment 2012 et sous le 3ème  scenario pour le 

Bâtiment 1915 

Nous concluons finalement que la commande prédictive présente un potentiel de modulation de la 

demande qui pourra être exploité pour déplacer les pics de consommation et effacer les charges dans le 

but de minimiser le recours aux générateurs d’appoint à grande échelle. 

Conclusion 

Dans le cadre de l'optimisation opérationnelle des réseaux de chaleur, les recherches menées dans cette 

thèse visent à développer et à démontrer numériquement une stratégie de contrôle avancé de la demande 

en chauffage des bâtiments, réalisable pratiquement à l'échelle d’un réseau de chaleur. 

L'une des principales motivations de cette recherche est le fait que l'inertie thermique des bâtiments rend 

leur demande en chauffage intrinsèquement flexible. Toutefois cette flexibilité n'est pas pleinement (ou 

du tout) exploitée dans les pratiques de contrôle actuelles. Actuellement dans les réseaux de chaleur, la 

demande en chauffage est partiellement contrôlée en sous-station par une loi d’eau : un réglage statique 

de la température de l'eau d'alimentation du système de chauffage interne du bâtiment (souvent des 

radiateurs ou des dalles chauffantes) en fonction de la température extérieure. Cette stratégie de contrôle 
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conventionnelle néglige l'inertie thermique du bâtiment et vise à répondre à tout prix à la demande de 

manière plutôt stricte. Son remplacement par une stratégie de contrôle intelligente et flexible est 

essentiel pour l'optimisation opérationnelle des réseaux de chaleur car il permet une gestion efficace des 

sources de chaleur, l'intégration de l'énergie renouvelable intermittente et la réduction des coûts globaux 

économiques et environnementaux. 

Dans cette thèse, nous proposons la commande prédictive comme une alternative à la régulation par loi 

d’eau. La principale contribution est le développement d'une stratégie de contrôle de la demande en 

chauffage complète et cohérente. Elle commence par l'étape la plus cruciale de modélisation d’ordre 

réduit du bâtiment suivie par la conception et la mise en œuvre de la loi de commande, le tout en 

respectant les défis pratiques de la disponibilité des données et de la contrôlabilité du système depuis la 

sous-station. 

L'étude est réalisée par simulation numérique. Nous avons donc commencé par développer un 

simulateur thermique dynamique d'un bâtiment résidentiel connecté à une sous-station d’un réseau de 

chaleur dans l'environnement Modelica / Dymola. Le simulateur permet la représentation de bâtiments 

multi-zones et multi-étages basée sur une approche nodale. Il sera paramétré pour représenter 3 cas 

d’étude de bâtiments résidentiels appartenant à des classes énergétiques variées : basse, moyenne et 

haute consommation, qui constitueront l’environnement de recherche virtuel de ces travaux. 

La commande prédictive nécessite un modèle d’ordre réduit du bâtiment, capable de prédire les 

dynamiques thermiques du système à court terme. Le développement de ce modèle s’effectue en deux 

étapes. Premièrement, nous définissons la structure du modèle en se basant sur des connaissances 

physiques, ensuite nous mettrons en place une stratégie d’identification paramétrique en se servant d’un 

historique de données généré par le simulateur. Des études préliminaires nous ont conduit à opter pour 

un modèle de bâtiment linéaire du 3ème ordre couplé à un modèle non linéaire du système de chauffage. 

L'identification des paramètres s'appuie sur des mesures couramment trouvées en sous-station : la 

puissance et le débit massique de l'eau de chauffage. La recherche de l'ensemble optimal de paramètres 

qui minimise l'erreur entre les prédictions du modèle et l’historique du simulateur est effectuée par un 

algorithme hybride d'optimisation méta-heuristique (PSO-HJ). Des limitations de cette approche ont été 

identifiées à partir de tests analytiques. Elles se résument par une faible identifiabilité de certains 

paramètres, ce qui nécessite l’engagement de l’interprétation physique dans l’approche d’identification. 

Pour les applications sur les 3 cas d’étude, des résultats satisfaisants basés sur l'évaluation des critères 

de performance ont finalement été obtenus.  

Une fois le modèle de bâtiment développé, la commande prédictive est mise en œuvre par la conception 

d’un contrôleur optimal. Dans cette thèse, le contrôleur est élaboré par programmation linéaire mixte. Il 

s’agit d’un problème d’optimisation dont la fonction objectif (à minimiser) est principalement composée 
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d'un terme qui pénalise les coûts de chauffage dépendant du prix d'achat de l'énergie, et des termes 

affectés par des paramètres de réglage qui pénalisent l'inconfort thermique, caractérisé par une déviation 

de la température intérieure par rapport à un point cible défini au sous-station. Ainsi, le contrôleur permet 

de calculer un compromis optimal entre les coûts de chauffage et l’inconfort thermique. La relation 

physique entre les variables du système est fournie par les équations linéarisées du modèle d’ordre réduit 

constituant les principales contraintes du problème. Contrairement à la régulation par loi d’eau qui 

détermine la température de l'eau de chauffage uniquement en fonction de la température extérieure, la 

commande optimale prédictive trouve des trajectoires optimales de cette variable de contrôle sur un 

horizon fuyant et tenant compte de l'inertie thermique du système. Ainsi, la commande prédictive 

proposée permet une exploitation responsable de la flexibilité de la demande. La mise en œuvre de la 

stratégie de contrôle est réalisée à l'aide de la plate-forme de cosimulation PEGASE. La démonstration 

sur les 3 cas d’étude basée sur leurs modèles identifiés a montré une exploitation correcte de leur inertie 

thermique lors des essais de délestage et de sensibilité aux variations des coûts de l’énergie. 

Les travaux de recherche présentés dans cette thèse ont été réalisés par simulation numérique et à 

l'échelle du bâtiment. Nous distinguons 3 axes de recherche en perspectives. Tout d’abord, une 

application expérimentale s’avère nécessaire pour la validation des résultats. De nouveaux défis 

pourront être rencontrés à ce stade, en termes de quantification des incertitudes que ce soit au niveau 

des données utilisées dans l’identification paramétrique ou au niveau de la prédiction météorologique 

lors de la commande. Dans une deuxième perspective, il sera intéressant de passer à l’échelle ; tout 

d’abords par la commande distribuée d’un parc de bâtiment et ensuite par la commande optimale couplée 

de la production, la distribution et la demande à l’échelle d’un réseau de chaleur. Finalement, une étude 

techno-économique sera sans-doute intéressante pour évaluer les apports et les conséquences 

économiques et environnementales de la commande prédictive à grande échelle. 



Acronyms and notations          

       

XX 

 

Acronyms and notations 

Acronym Definition 

BL Bi-Linear 

BTS Building Thermal Simulator 

DH District Heating 

DHS District Heating System 

DHW Domestic Hot Water 

DMPC Distributed Model Predictive Control 

DSM Demand-Side Management 

ED Electric Device 

HJ Hooke-Jeeves 

HOM Higher-Order Model 

HVAC Heating, Ventilation and Air Conditioning 

IG Internal Gain 

LP Linear Programming 

MILP Mixed-Integer Linear Programming 

MIP Mixed-Integer Programming 

MPC Model Predictive Control 

MSE Mean-Square Error 

NLP Non-Linear Programming 

PSO Particle Swarm Optimization 

PWL Piece-Wise Linear 

RC Resistance-Capacitance 

RMSE Root Mean-Square Error 

ROM Reduced-Order Model 

SG Smart Grid 

SH Space-Heating 

SMPC Stochastic Model Predictive Control 

SSE Sum-Squared Error 

TRV Thermostatic Radiator Valve 

WCC Weather Compensation Control 
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Notations introduced in Chapter 1 

Latin letter Unit Definition 
𝑐⋯ [𝐽 𝑘𝑔 ∙ 𝐾⁄ ] Specific thermal capacity 

𝑒𝑙𝑎𝑦 [𝑚] Thickness of a construction element layer 

𝑓𝑟 [−] 
Fraction of the radiative to the total heat emitted by a 

radiator 

ℎ𝑐𝑜𝑛𝑣
𝑒𝑥𝑡  [𝑊/𝑚2 ∙ 𝐾] 

Surface heat convection coefficient between the external 

surfaces and the outdoor environment 

ℎ𝑐𝑜𝑛𝑣
𝑖𝑛𝑡  [𝑊/𝑚2 ∙ 𝐾] 

Surface heat convection coefficient between the thermal 

zone air and the internal surfaces 

ℎ𝑓𝑙𝑜 [𝑚] Storey height 

𝑘⋯ [𝑊/𝑚 ∙ 𝐾] Thermal conductivity 

𝑚⋯ [𝑘𝑔 𝑚2⁄ ] Mass per unit floor area 

𝑚̇⋯ [𝑘𝑔 𝑠⁄ ] SH water mass flowrate 

𝑛𝑟𝑎𝑑 [−] Radiator exponent of heat transfer 

𝑛𝑣𝑒𝑛𝑡 [1 ℎ𝑟⁄ ] Number of air changes per hour for a thermal zone 

𝑣𝑚𝑖𝑥 [𝑚 𝑠⁄ ] Mixing air velocity through the door opening 

𝐶𝑇𝑅𝑉 [−] TRV flow coefficient  

𝐷𝑏𝑢𝑙𝑏 [𝑚] Diameter of the cylindrical TRV bulb 

𝐼𝑠𝑜𝑙
𝑑𝑖𝑟 [𝑊/𝑚2] Direct normal solar irradiation 

𝐼𝑠𝑜𝑙
𝑔𝑙𝑜

 [𝑊/𝑚2] Global horizontal solar irradiation 

𝐼𝑠𝑜𝑙
𝑑𝑖𝑓

 [𝑊/𝑚2] Diffuse horizontal solar irradiation 

𝐽𝑖𝑛 [𝑊] Incoming solar radiosiy through a window 

𝑁𝑑𝑖𝑟 [−] Number of direct heat flows injected into a thermal zone 

𝑁𝑓𝑙𝑜 [−] Number of floors in the BTS 

𝑁𝑖𝑛𝑡 𝑠𝑢𝑟𝑓 [−] 
Number of internal surfaces in contact with the thermal 

zone air 

𝑁𝑛𝑒𝑖𝑔ℎ [−] Number of neighbouring nodes to a thermal zone 

𝑁𝑟𝑎𝑑 [−] Number of discretised volumes in the radiator model 

𝑁𝑟𝑎𝑑 𝑠𝑜𝑢𝑟 [−] Number of radiant sources in a thermal zone 

𝑁𝑠𝑡𝑎 [−] 
Number of discretized states for a construction element 

layer  

𝑁𝑠𝑡𝑎
𝑟𝑒𝑓

 [−] Normalizing number of discretization states 

𝑁𝑤𝑖𝑛 [−] Number of windows for a thermal zone 

𝑁𝑧𝑜𝑛𝑒𝑠 [−] Number of thermal zones in the BTS 

𝑄𝑐𝑜𝑛𝑣
𝑒𝑥𝑡  [𝑊] 

Convective heat exchange between an envelope element 

and the outdoor environment 

𝑄𝑐𝑜𝑛𝑣
𝑖𝑛𝑡  [𝑊] 

Convective heat exchange between an envelope element 

and the thermal zone 

𝑄𝑑𝑖𝑟 [𝑊] Direct heat flows injected into a thermal zone 

𝑄𝑒𝑛𝑣
𝑔𝑙𝑎

 [𝑊] 
Total heat loss through the building envelope glazing 

systems 
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𝑄𝑒𝑛𝑣
𝑜𝑝𝑎

 [𝑊] 
Total heat loss through the building envelope opaque 

constructions 

𝑄𝑑𝑜𝑜𝑟  𝑜𝑝𝑒𝑛 [𝑊] Heat exchange due to door opening 

𝑄𝑟𝑎𝑑 𝑠𝑜𝑢𝑟 [𝑊] Radiative heat emitted by a radiant source 

𝑄𝑟𝑎𝑑 𝑠𝑜𝑢𝑟
𝑖𝑛𝑡 𝑠𝑢𝑟𝑓

 [𝑊] 
Radiative heat received by an internal surface from a 

radiant source 

𝑄𝑟𝑎𝑑
𝑙𝑤  [𝑊] Long wave radiant heat emitted by a surface  

𝑄𝑟𝑎𝑑
𝑐𝑜𝑛𝑣 [𝑊] Convective heat emitted by a radiator 

𝑄𝑟𝑎𝑑
𝑟𝑎𝑑 [𝑊] Radiative heat emitted by a radiator 

𝑄𝑟𝑎𝑑
𝑡𝑜𝑡  [𝑊] Total heat emitted by a radiator 

𝑄𝑠𝑜𝑙 [𝑊] Total solar irradiation received by a thermal zone 

𝑄𝑠𝑜𝑙
𝑎𝑙𝑙 𝑛𝑜𝑛−𝑓𝑙𝑜

 [𝑊] 
Diffused irradiation reflected by the floor surface to all 

non-floor surfaces in a thermal zone 

𝑄𝑠𝑜𝑙
𝑓𝑙𝑜

 [𝑊] 
Solar irradiation absorbed and transmitted by the floor 

surface in a thermal zone 

𝑄𝑡ℎ𝑒𝑟𝑚
𝐷𝐻𝑊  [𝑊] Internal heat gain due to DHW usage 

𝑄𝑡ℎ𝑒𝑟𝑚
𝐸𝐷  [𝑊] Internal heat gain due to ED 

𝑄𝑒𝑙𝑒𝑐
𝐸𝐷  [𝑊] ED electric power 

𝑄𝑡ℎ𝑒𝑟𝑚
𝑜𝑐𝑐  [𝑊] Internal heat gain due to occupancy 

𝑄𝑣𝑒𝑛𝑡 [𝑊] Heat exchange due to ventilation 

𝑄𝐼𝐺 [𝑊] Total internal heat gain 

𝑄𝑆𝑆𝑇 [𝑊] SH power at the substation 

𝑆𝑏𝑢𝑙𝑏 [𝑚2] Surface area of the cylindrical TRV bulb 

𝑆𝑒𝑥𝑡 𝑠𝑢𝑟𝑓 [𝑚2] Surface area of an external surface 

𝑆𝑑𝑜𝑜𝑟 [𝑚2] Surface area of an open door between two thermal zones 

𝑆𝑖𝑛𝑡 𝑠𝑢𝑟𝑓 [𝑚²] Surface area of an internal surface 

𝑆𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 [𝑚2] Surface area (per side) of an internal mass equivalent slab 

𝑆𝑓𝑙𝑜 [𝑚2] Floor surface area 

𝑆𝑛𝑜𝑛−𝑓𝑙𝑜 [𝑚2] Surface area of a non-floor internal facing surface 

𝑆𝑠𝑢𝑟𝑓 [𝑚2] Surface area in the long wave irradiation balance 

𝑆𝑧𝑜𝑛𝑒 [𝑚2] Floor surface area of a thermal zone 

𝑆𝐺𝑤𝑎𝑡𝑒𝑟 [−] Specific gravity of water 

𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒 [𝐾] Homogeneous temperature of the thermal zone air 

𝑇𝑎𝑚𝑏 [𝐾] Ambient temperature surrounding the heating circuit 

𝑇𝑒𝑥𝑡 𝑠𝑢𝑟𝑓 [𝐾] Temperature of an external surface 

𝑇𝑖𝑛𝑡 𝑠𝑢𝑟𝑓 [𝐾] Temperature of an internal surface 

𝑇𝑛𝑒𝑖𝑔ℎ [𝐾] Temperature at a thermal zone neighbouring node 

𝑇𝑛𝑒𝑖𝑔ℎ  𝑧𝑜𝑛𝑒
𝑎𝑖𝑟  [𝐾] 

Temperature of a neighbouring thermal zone separated by 

a door 

𝑇𝑜𝑝𝑒𝑟
𝑧𝑜𝑛𝑒 [𝐾] Thermal zone operative temperature 

𝑇𝑟𝑎𝑑 [𝐾] Temperature at a volume in the radiator model 

𝑇𝑟𝑎𝑑
𝑧𝑜𝑛𝑒 [𝐾] Thermal zone radiative temperature 

𝑇𝑠𝑢𝑟𝑓 [𝐾] Surface temperature in the long wave irradiation balance 

𝑇𝐷𝐻𝑊 [𝐾] DHW temperature 
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𝑇𝑆𝑆𝑇
𝑟𝑒𝑡 [𝐾] 

Secondary return water temperature measured at the 

substation 

𝑇𝑆𝑆𝑇
𝑠𝑢𝑝

 [𝐾] 
Secondary supply water temperature delivered at the 

substation 

𝑇𝑆𝑆𝑇
𝐻𝐶𝑚𝑎𝑥 [𝐾] Maximum temperature of a heating curve 

𝑇𝑆𝑆𝑇
𝐻𝐶𝑚𝑖𝑛 [𝐾] Minimum temperature of a heating curve 

𝑇𝑆𝑆𝑇
𝑛𝑜𝑚 [𝐾] Nominal supply water temperature at the substation 

𝑇𝑎𝑖𝑟
𝑠𝑒𝑡𝑛𝑜𝑚 [𝐾] Nominal air set point temperature 

𝑈𝑛𝑒𝑖𝑔ℎ [𝑊/𝐾] 
Heat transfer coefficient between a thermal zone and a 

neighbouring node 

𝑈𝐴𝑟𝑎𝑑 [𝑊 𝐾⁄ ] Radiator coefficient of heat exchange 

𝑉𝐷𝐻𝑊 [𝑚3] DHW volume during one usage 

𝑉𝑧𝑜𝑛𝑒 [𝑚3] Internal volume of a thermal zone 

Greek letter Unit Definition 
𝛼⋯ [−] Solar absorptivity 

𝛼𝑧𝑜𝑛𝑒
𝑠𝑢𝑟𝑓

 [−] 
Fraction surface area of a thermal zone to the total floor 

area 

𝛼𝑇𝑅𝑉 [%] Opening percentage of the TRV bulb 

𝜀𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 [𝑚] Thickness of an internal mass equivalent slab 

𝜀𝑠𝑢𝑟𝑓 [−] Surface  emissivity in the long wave irradiation balance 

𝜀𝑆𝑆𝑇
𝑙𝑜𝑠𝑠𝑒𝑠 [−] Thermal losses coefficient in the substation 

𝜂𝐼𝐺 [−] Efficiency conversion into internal gain 

𝜃𝑏𝑢𝑖𝑙𝑑 [𝑟𝑎𝑑] Building orientation angle from the North 

𝜅𝐼𝐺 [−] Internal gain staggering coefficient 

𝜌⋯ [𝑘𝑔 𝑚3⁄ ] Density 

𝜎 [𝑊 𝑚2 ∙ 𝐾4⁄ ] Stephan-Boltzmann constant 

𝜏𝑓𝑙𝑜 [−] Solar transmissivity of the floor surface 

∆𝑡𝐷𝐻𝑊 [𝑠] Duration of a DHW usage 

∆𝑃𝑇𝑅𝑉 [𝑃𝑎] Differential pressure between the TRV inlet and outlet 

∆𝑇𝑇𝑅𝑉
𝑚𝑎𝑥 [𝐾] 

Maximum temperature difference from the set point 

temperature before the TRV fully opens 

   

Notations introduced in Chapter 2 

Latin letter Unit Definition 
𝑓𝑜𝑏𝑗 [−] Objective function for the ROM parameters identification 

𝑘⋯
𝑠  [𝑚2] Solar aperture surface area 

𝑙𝑐𝑜𝑔
𝑃𝑆𝑂 [−] Cognitive learning factor 

𝑙𝑠𝑜𝑐
𝑃𝑆𝑂 [−] Social learning factor 

𝑞𝑇𝑎𝑖𝑟  [−] 
Normalized quadratic error integral on the indoor air 

temperature 

𝑟𝐻𝐽 [−] Mesh size divider in the HJ algorithm 

𝑠𝐻𝐽 [−] Step size in the HJ algorithm 



Acronyms and notations          

       

XXIV 

 

𝑠𝑝
𝑃𝑆𝑂 [−] Particle step size in the PSO algorithm 

𝑡𝐻𝐽 [−] Mesh size exponent increment in the HJ algorithm 

𝑤𝑃𝑆𝑂 [−] Step-size weight in the PSO algorithm 

𝐶⋯ [𝐽 𝐾⁄ ] Thermal capacitance 

𝐺⋯
𝑝 [𝐾] Proportional gain for temperature regulation 

𝐼𝑠𝑜𝑙 [𝑊 𝑚2⁄ ] Global horizontal solar irradiation in the ROM 

𝑁𝑟𝑒𝑑
𝐻𝐽

 [−] 
Maximum number of mesh size reductions in the HJ 

algorithm 

𝑁𝑔𝑒𝑛
𝑃𝑆𝑂 [−] Number of generations 

𝑁𝑝𝑎𝑟
𝑃𝑆𝑂 [−] Number of particles 

𝑇⋯ [𝐾] Temperature in the ROM 

𝑇𝑎𝑖𝑟
𝐻𝑂𝑀 [𝐾] HOM mean indoor air temperature 

𝑇𝑜𝑝𝑒𝑟
𝐻𝑂𝑀 [𝐾] HOM mean operative temperature 

𝑇𝑟𝑎𝑑
𝐻𝑂𝑀 [𝐾] HOM mean radiative temperature 

𝑈[𝑎−𝑏] [𝑊 𝐾⁄ ] 
Heat transfer coefficient between temperature nodes 𝑎 and 

𝑏 in the ROM 

𝑈𝑏𝑢𝑖𝑙𝑑
𝑖𝑑𝑒𝑛𝑡 [𝑊 𝐾⁄ ] 

Building equivalent heat loss coefficient computed from 

its ROM identified parameters 

𝑈𝑏𝑢𝑖𝑙𝑑
𝑠𝑖𝑧𝑖𝑛𝑔

 [𝑊 𝐾⁄ ] 
Building equivalent heat loss coefficient estimated from 

its sizing conditions 

Greek letter Unit Definition 
𝜀𝑇𝑎𝑖𝑟  [°𝐶] Arithmetic mean error on the indoor air temperature 

𝜂𝑐𝑖𝑟 [−] Heat transfer efficiency in the SH circuit 

𝜑𝑥 [%] Fit on an output 𝑥 

𝜃 [−] Set of normalized parameters for the ROM 

𝜃𝑜𝑝𝑡 [−] Optimal set of normalized parameters for the ROM 

𝜃𝑜𝑝𝑡
𝑡ℎ𝑒𝑜 [−] 

Theoretical set of normalized optimal parameters for the 

ROM 

𝜃𝑏
𝐻𝐽

 [−] Base search point 

𝜃𝑝
𝐻𝐽

 [−] Pattern search point 

𝜃𝑝
𝑃𝑆𝑂 [−] 

Particle position defined by its set of normalized 

parameters 

𝜃𝑝,𝑜𝑝𝑡
𝑃𝑆𝑂  [−] 

Optimal set of normalized parameters found by a particle 

𝑝 

𝜃𝑛,𝑜𝑝𝑡
𝑃𝑆𝑂  [−] 

Optimal set of normalized parameters in a neighbourhood 

𝑛 

𝜃𝑜𝑝𝑡
𝑃𝑆𝑂 [−] 

Optimal set of normalized parameter found by the PSO 

algorithm 

𝜌𝑐𝑜𝑔
𝑃𝑆𝑂 [−] Cognitive random variable 

𝜌𝑠𝑜𝑐
𝑃𝑆𝑂 [−] Social random variable 

𝜏−1 [𝑠] Building SH demand flexibility index 

𝜏𝑏𝑢𝑖𝑙𝑑 [𝑠] Building time constant 

𝜖𝑈𝑏𝑢𝑖𝑙𝑑 [%] Relative error between 𝑈𝑒𝑞
𝑠𝑖𝑧𝑖𝑛𝑔

 and 𝑈𝑒𝑞
𝑖𝑑𝑒𝑛𝑡 

∆𝑏
𝐻𝐽

 [−] Mesh size in the HJ algorithm 
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∆𝑡𝑟 [𝑠] Training interval for parameters identification 

𝜇 [−] Arithmetic mean 

𝜎 [−] Standard deviation 

   

Notations introduced in Chapter 3 

Latin letter Unit Definition 
𝑐⋯ [€] Cost term in the MILP objective function 

𝑓𝑜𝑏𝑗
𝑀𝑃𝐶 [€] Objective function for the MPC problem 

𝑝𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 [€ (𝐾 ∙ 𝑠)⁄ ] Discomfort price 

𝑝𝑒𝑛𝑒𝑟𝑔𝑦 [€ 𝐽⁄ ] Energy price 

𝑝𝑙𝑜𝑠𝑠𝑒𝑠 [€ (𝐾 ∙ 𝑠)⁄ ] Thermal losses price 

𝑝𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 [€ (𝐾 ∙ 𝑠)⁄ ] Over-heat price 

𝑝𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 [€ (𝐾 ∙ 𝑠)⁄ ] Under-heat price 

𝐻𝑀𝑃𝐶 [𝑠] MPC prediction horizon 

𝑁𝑀𝑃𝐶 [−] Number of sampling instances in 𝐻𝑀𝑃𝐶  

Greek letter Unit Definition 
𝛼, 𝛿, 𝜔, 𝜑, 𝜌  [−] Intermediate variables introduced in the MILP problem 

𝜀𝑐𝑜𝑚𝑓 [𝐾] Comfort threshold 

𝜆⋯ [1 𝐾⁄ ] Price correlation coefficient 

∆𝑡𝑀𝑃𝐶 [𝑠] MPC sampling time 

∆𝑇⋯
⋯ [𝐾] Temperature difference 
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Superscript Definition 

⋯𝑎𝑛𝑎 Relative to the analytical testing 

⋯𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 Relative to thermal discomfort 

⋯𝑖𝑛𝑖 Initial value 

⋯𝑙𝑜𝑠𝑠𝑒𝑠 Relative to thermal losses in the SH circuit 

⋯𝑚𝑎𝑥 Maximum threshold 

⋯𝑚𝑖𝑛 Minimum threshold 

⋯𝑛𝑜𝑚 Nominal value 

⋯𝑠𝑒𝑡 Set-point 

⋯𝑡𝑎𝑟𝑔𝑒𝑡 Relative to the MPC controller target indoor temperature 

⋯𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 Relative to over-heating 

⋯𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 Relative to under-heating 

⋯𝐻𝐽 Relative to the HJ algorithm 

⋯𝐻𝑂𝑀 Computed by the higher-order model 

⋯𝑃𝑆𝑂 Relative to the PSO algorithm 

⋯𝑅𝑂𝑀 Computed by the reduced-order model 

⋯𝑆𝐻 Relative to SH 

Subscript Definition 

⋯𝑎𝑖𝑟 Relative to the building internal air 

⋯𝑏𝑢𝑖𝑙𝑑 Relative to the building as a whole 

⋯𝑐𝑖𝑟 Relative to the SH circuit 

⋯𝑒𝑚 Relative to the SH emitters 

⋯𝑒𝑛𝑣 Relative to the building envelope 

⋯𝑒𝑥𝑡 Relative to the building external environment 

⋯𝑓𝑙𝑜 Relative to a floor surface in the BTS 

⋯ℎ𝑒𝑎𝑡𝑒𝑟 Relative to the heater 

⋯𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 Relative to the material of an internal mass equivalent slab 

⋯𝑖𝑛𝑡 𝑠𝑢𝑟𝑓 Relative to an internal facing surface in the BTS 

⋯𝑚𝑎𝑠𝑠 Relative to the building internal mass 

⋯𝑚𝑎𝑡 Relative to the material of a construction element 

⋯𝑛𝑜𝑛 𝑓𝑙𝑜 Relative to a non-floor surface in the BTS 

⋯𝑤𝑎𝑡 Relative to the SH water 

⋯𝑧𝑜𝑛𝑒 Relative to an equivalent thermal zone in the BTS 

⋯𝑏𝑢𝑙𝑏 Relative to the TRV bulb 

⋯𝐵𝐿 Relative to the bilinear term in the MILP problem 

⋯𝑃𝑊𝐿 Relative to the piecewise linear terms in the MILP problem 

⋯𝑇𝑅𝑉 Relative to the TRV 
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Dimensionless number Expression 

Nusselt Number 𝑁𝑢 =
𝑙 ∙ℎ

𝑘 
  

𝑙: Characteristic length [𝑚] 
ℎ: Convective heat transfer coefficient  [𝑊/𝑚2 ∙ 𝐾] 
𝑘: Thermal conductivity [𝑊/𝑚 ∙ 𝐾] 

  

Rayleigh Number 𝑅𝑎 =
𝑔∙𝛽∙Δ𝑇 ∙𝑙3

𝛼∙𝜈
  

𝑔: Gravitational acceleration [𝑚 𝑠2⁄ ] 
𝛽: Coefficient of linear thermal expansion  [1/𝐾] 
Δ𝑇: Temperature difference [𝐾] 
𝑙: Characteristic length [𝑚] 
𝛼: Thermal diffusivity [𝑚2/𝑠] 
𝜈: Kinematic viscosity [𝑚2/𝑠] 
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Introduction 

Background of district heating systems 

In dense urban areas, thermal energy demand for Space-Heating (SH), Domestic Hot Water (DHW) 

preparation and some industrial processes may be supplied to consumers collectively through a closed 

network of centrally-produced heat carrier. This heating mode is known as District Heating (DH). The 

centralized heat generation sources of various types, the distribution network and the heat delivery 

points, also called substations, constitute the main elements of a District Heating System (DHS), 

beautifully illustrated in Figure 1.1. 

 

Figure 1.1 Drawing of a DHS by Pierre Merchie form the reference book District Heating and 

Cooling by Swend Frederiksen and Sven Werner [Frederiksen et Werner, 2013] 

DH has its roots way back in the 14th century; the first known DHS was established in the French village 

of Chaudes-Aigues, where 80°C water produced by geothermal heat is circulated in wooden pipes to 

serve about 30 houses [Mazhar et al., 2018]. Nowadays, 5 generations of DHSs are formally identified. 
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1st generation DHSs were installed from the 1880s to the 1930s. They were first introduced in the USA, 

and their technology was then brought to Europe. They operate on steam as the heat carrier, distributed 

in concrete ducts. They are the least efficient among all generations, since steam entails substantial heat 

losses and maintenance costs, and the most dangerous with a record of severe steam pipes explosions. 

Paris and New York have ones of only few left 1st generation DHSs [Lund et al., 2014; Werner, 2017b].  

2nd generation DHSs, installed between the 1930s and the 1970s, began using pressurized hot water as 

the heat carrier circulated in pipes embedded inside concrete ducts, with supply temperatures over 

100°C. This generation introduced co-generation in combined heat and power plants as a heat source to 

the network, and consequently allowed considerable primary energy savings. Most DHSs in Eastern 

Europe are based on this technology [Paiho et Reda, 2016; Lund et al., 2014].  

3rd generation DHSs appeared in the 1970s and dominated most extensions made on existing networks 

in the 1980s and beyond. They are characterized by temperature levels lower than 100°C circulated in 

pre-insulated pipes directly buried in the ground. They favour local heat sources such as coal, biomass 

and waste heat, and integrate renewable solar and geothermal power. Their technology originates from 

Scandinavian countries and used in many countries in replacement of the 2nd generation [Werner, 2017a; 

Lund et al., 2014].  

4th generation is a new concept that portrays DHSs as major elements in the future of sustainable and 

increasingly efficient energy systems. Improvements with respect to its antecedents encompass: 

▪ Reforming metering and pricing policies; 

▪ Enhancing the layout so as to reduce losses in the network; 

▪ Lowering supply temperatures below 70°C; 

▪ Reinforcing intermittent renewable energy (solar and geothermal) and low-temperature waste 

heat penetration; 

▪ Installing seasonal thermal energy storage; 

▪ Introducing large-scale heat pumps in combined heat and power plants; 

▪ Establishing synergies between various energy systems typically electrical, thermal and gas; 

▪ Developing advanced control strategies to optimally manage all the components in the system.  

4th generation DHSs have been initiated at small scales as demonstrators in pilot projects. Denmark is 

the leading country promoting their role in achieving 100% renewable energy systems [Münster et al., 

2012; Werner et al., 2014; Lund et al., 2010,  2018b,  2014]. 
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5th generation DHS is an emerging technology suggesting distributing the heat carrier at near ground 

temperatures, and equipping buildings with heat pumps to extract/reject heat from/into the network. 

Thus, we rather talk about district heating and cooling systems, where heat wasted by consumers 

requiring cooling is recovered by those demanding heating within the same loop. Advantages include 

minimal losses in the network, light and less expensive pipelines, exploitation of very low temperature 

heat sources and potential decarbonisation of both heating and cooling sectors. Conceptual studies have 

investigated the use of CO2, with special pressure control, as the heat carrier for more compactness. In 

real applications, Switzerland, the Netherlands and Germany are dominating this technology [Buffa et 

al., 2019; Von Rhein et al., 2019; Henchoz et al., 2015; Verhoeven et al., 2014]. 

Buildings space-heating demand control 

The previous section introduced DHSs and gave insights into their role and their evolution. In this 

section, we focus on the operation of a particular component, the DH substation (Figure 1.2 ).  

 

Figure 1.2 Schematic diagram of a DHS substation and an internal SH system 
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The substation is the interface between the DH network and the building internal heating systems, e.g. 

radiators, floor heating, DHW taps. Inside the substation, there are heat exchangers that ensure heat 

transfer from the network (primary side) to the building (secondary side), control valves to control the 

amount of heat being transferred and metering devices to take measurements mainly for billing purposes.  

In this thesis, we consider heat supply, control and measurements at the substation for SH usage only. 

SH supply to a building equipped with a properly sized heating system of constant efficiency depends 

on two quantities: the heating water mass flowrate in the secondary circuit and its supply temperature.  

Usually, secondary mass flowrate results from the mechanical action of thermostatic valves installed 

inside the building at the heat emitters level. This regulation is directly linked to the temperature 

difference between the indoor air and its set-point defined by the consumer; for instance, when the 

temperature difference to the set-point decreases, the thermostatic valves gradually close and the 

secondary water flowrate automatically reduces. At the substation, there is no direct control over the 

secondary SH water flowrate.  

On the other hand, the secondary supply water temperature can be controlled from the substation to a 

specific set-point value by means of a PID controller that regulates the primary water flowrate. To define 

the set-point value, a SH controller is installed at the substation and a conventional control technique is 

widely used. It fundamentally presumes that SH demand is majorly influenced by the outdoor 

temperature; as the outdoor temperature drops, SH demand increases, whereof secondary supply water 

temperature should be raised. Hence, the technique uses outdoor temperature measurements from a 

sensor installed outside the building, and relies on a so-called heating curve that determines the 

secondary supply water temperature inversely-proportional to the outdoor temperature variations. This 

control scheme is known as the Weather Compensation Control (WCC) [Frederiksen et Werner, 2013]. 

Main problematic 

WCC has been broadly implemented in DHSs. Nowadays, DH substation manufacturers have mastered 

the heating curve tuning approaches depending on the building environment, energy class and consumer 

preferences. Thus, WCC is considered as a robust SH control strategy, reliable in fulfilling the demand. 

However, buildings have intrinsic, and often non-negligible, thermal inertia: a property that describes 

the degree of slowness of a system’s thermal dynamics. Therefore, SH is not instantly dependent on the 

outdoor temperature, and indoor temperature is not immediately impacted by the SH water temperature. 

Thanks to their thermal inertia, buildings allow some flexibility margin in regard to their SH demand. 

In this context, flexibility is the permission to adjust SH demand in benefit of the DHS as a whole, 

without threatening consumers’ thermal comfort. Flexibility is particularity valuable in above 3rd 
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generation DHSs because it allows better management of heat sources by avoiding peak-load generation 

and conveniently shifting demand to periods when cheap and sustainable intermittent power is available.  

WCC does not consider buildings thermal inertia, consequently it does not allow proper exploitation of 

SH demand flexibility, hence the need for an advanced alternative control strategy to comply with the 

global evolution of DHSs. 

Thesis objectives 

The aim of this thesis is to propose an intelligent control strategy that allows exploitation of SH demand 

flexibility in DHSs by optimal modulation of buildings indoor temperature, with the same control 

actuators available in conventional DH substations. 

Model Predictive Control (MPC) is a promising approach to complete this task, as demonstrated in the 

context of electric heating [Halvgaard, 2014]. MPC consists of anticipating future conditions acting on 

the system, planning an optimal sequence of control actions over a future horizon in view of the 

anticipations whilst respecting a set of constraints on the system’s states. MPC is based on a model of 

the system that predicts its dynamics under future conditions and control actions. At regular time steps, 

the controller applies the first solution of the sequence, shifts the horizon and restarts the process of 

anticipation and optimal planning [Rossiter, 2003]. 

The basic step towards implementation of MPC for SH demand management consists of deriving a 

simplified model of the building. This constitutes a challenging objective of this thesis, because we 

intend to develop an accurate model taking good account of the system thermal inertia while restricting 

available information to strictly non-intrusive data easily accessible at a DHS scale. Besides technical 

difficulties and additional expenses of installing data loggers inside dwellings, this restriction is made 

to avoid possible infringement of consumers’ privacy, according to the European regulations Règlement 

Général sur la Protection des Données (RGPD), currently applicable in France [Lerouge, 2019].  

Once the model is developed, the following objective is to design an optimal controller for the SH water 

supply temperature and implement MPC. The controller should be able to track variations of the indoor 

temperature by integrating the simplified building model, and most importantly, it should allow flexible 

control by reasonably trading consumer’s thermal comfort for energy savings at a higher level. 

Demonstration and assessment of building simplified modelling and MPC implementation are 

performed on three buildings of different energy classes by numerical simulation means. Hence, the 

starting-point objective consists of developing a generic thermal dynamic simulator of a building 

connected to a DH substation, well-representative of thermal phenomena with considerable impact on 

SH demand. 
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Structure of the dissertation 

The core of the dissertation is presented in 3 chapters. Chapter 1 covers the development of the building 

simulator which constitutes the virtual experimental environment used to carry out the rest of the work. 

Chapter 2 addresses the thesis crucial problematic of developing a simplified yet representative building 

thermal model, suitable for the intended control strategy, using only data available at substation level. 

Chapter 3 proceeds with the design of a flexible control approach that allows DHS operators to optimally 

modulate buildings SH demand, without jeopardizing consumers comfort.  

Each chapter starts with a short synopsis giving the reader a general idea of the central research question 

of the chapter and the main findings. The first paragraph introduces the chapter followed by a literature 

review. The third paragraph describes the work methodology followed by applications and assessments 

of the outcomes. The fifth paragraph concludes the chapter.  

At the end, a general conclusion summarizes the work methodology and contributions of this thesis and 

gives outlooks for future research. 

Thesis framework 

This work is accomplished in collaboration with 3 parties: 

▪ Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), 

▪ Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEME), 

▪ Laboratoire des Signaux et Systèmes (L2S) – a joint research unit of the Centre National de la 

Recherche Scientifique (CNRS), CentraleSupélec and Université Paris-Sud. 

This PhD thesis is jointly funded by CEA and ADEME within its program Thèses1.  

The host laboratory is Laboratoire des Systèmes Énergétiques et Démonstrateurs territoriaux (LSED) 

of CEA, partly located at Institut National de l’Énergie Solaire (INES). 

Publications 

▪ Nadine Aoun, Roland Bavière, Mathieu Vallée, Antoine Aurousseau, Guillaume Sandou 

Modelling and flexible predictive control of buildings space-heating demand in district 

heating systems 

In Energy, 2019, Volume 188 

                                                      
1https://www.ademe.fr/recherche-innovation/financer-theses-recherche-linnovation/faire-these-

lademe/programme-theses 

https://www.ademe.fr/recherche-innovation/financer-theses-recherche-linnovation/faire-these-lademe/programme-theses
https://www.ademe.fr/recherche-innovation/financer-theses-recherche-linnovation/faire-these-lademe/programme-theses
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https://doi.org/10.1016/j.energy.2019.116042 

▪ Nadine Aoun, Roland Bavière, Mathieu Vallée, Guillaume Sandou 

Development and assessment of a reduced-order building model designed for model 

predictive control of space-heating demand in district heating systems 

In 32nd International Conference on Efficiency, Cost, Optimization, Simulation and 

Environmental Impact of Energy Systems, Wroclaw, Poland, June 23-28, 2019 

http://www.s-conferences.eu/FTP/ECOS-files/ECOS2019_proceedings_v2.pdf 

▪ Nadine Aoun, Roland Bavière, Mathieu Vallée, Adrien Brun, Guillaume Sandou 

Dynamic simulation of residential buildings supporting the development of flexible control 

in district heating systems 

In 13th International Modelica Conference, Regensburg, Germany, March 4-6, 2019 

https://hal-centralesupelec.archives-ouvertes.fr/hal-02068479/file/Paper_Modelica.pdf 

 

https://doi.org/10.1016/j.energy.2019.116042
http://www.s-conferences.eu/FTP/ECOS-files/ECOS2019_proceedings_v2.pdf
https://hal-centralesupelec.archives-ouvertes.fr/hal-02068479/file/Paper_Modelica.pdf


Chapter 1         Thermal modelling and dynamic simulation of multi-zones residential buildings 

       

8 

 

Chapter 1 

Thermal modelling and dynamic 

simulation of multi-zones residential 

buildings 

Synopsis 

This chapter sets-up the research experimental environment for buildings reduced-order modelling and 

SH control presented in the following chapters. First, we clarify the requirements on the multi-zones 

building thermal model. These requirements lead us to adopt Modelica/Dymola as simulation 

framework. Nevertheless, other potential tools frequently encountered in the literature are reviewed 

here. Detailed description of the modelled phenomena in the building thermal dynamic simulation is 

presented. At last, 3 case study building simulators obtained after parametrization of the generic model 

are introduced to be used throughout the applications in this thesis.  

1.1 Definition of and requirements on the building simulator 

In this work, we call Building Thermal Simulator (BTS) the detailed thermal model representative of a 

typical (not specific) residential building with its SH system supplied by a DHS substation that can be 

dynamically simulated over time and serves as digital experimental environment for the entire study.  

The role of the BTS is to replace a real building for the study of model-based SH control strategies: it 

generates data to tune the model parameters and it is later used to demonstrate the SH control strategy. 

Moreover, the BTS computes signals that are not measurable in real-life, for instance the indoor air 

temperature, which is assumed to be unavailable throughout this thesis. Access to such signals is 

essential during preliminary studies to earn a better understanding of the building system thermal 
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behaviour and during control applications to assess its impact on the consumers’ thermal comfort. 

Additionally, the BTS offers the possibility of easily changing parameters, conducting sensitivity 

analyses and validating the research outcome on not only one, but multiple case-studies. 

The requirements on the BTS are mainly: 

▪ Good representability of the buildings short-term thermal dynamics; 

▪ Multi-physics system simulation, i.e. coupled simulation of simultaneously occurring 

phenomena from different fields, specifically thermal, hydraulics and control; 

▪ Resolution at a time step in the order of minutes or less; 

▪ Practical parametrization to generate multiple case-studies from a generic model; 

▪ Compatibility with other software used in the rest of the work. 

There exist several building thermal dynamic simulation tools. The next section reviews 5 propitious 

options and reveals the selected one in this work. 

1.2 Literature review 

1.2.1 Buildings dynamic energy simulation tools 

1.2.1.1 SIMBAD 

SIMBAD (SIMulator of Building And Devices) is a Matlab/Simulink toolbox developed by CSTB2 and 

dedicated for buildings thermal dynamic simulation. 

The first form of building simulator provided by SIMBAD was a mono-zone model under the 

Resistance-Capacitance analogy [Husaunndee et al., 1997]. The model is fully described by 3 resistances 

and 2 capacitors. Developing a simulator requires the user to specify the type of lodging (individual 

housing, flat), the size category and the period of construction. The toolbox then assigns typical 

parameters to the model. These typical parameters have been pre-processed through a typological study 

carried-out on 120 residential lodgings representative of the building stock in France.  

The following version of SIMBAD allowed multi-zones building thermal simulation with detailed 

description of the envelope and Heating, Ventilation and Air Conditioning (HVAC) systems [El Khoury 

et al., 2005]. The simulator is structured into Simulink blocks where the physical modelling of the 

thermal phenomena is coded in Matlab and remains inaccessible to the end-user. The blocks are then 

interconnected. The main blocks are: homogenous air zone, multilayer wall, window, infrared heat 

exchange and solar irradiation models. In that version, SIMBDI (Simbad Building Description Interface) 

                                                      
2 CSTB : Centre Scientifique et Technologique du Bâtiment 
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is introduced as user interface. It allows users to draw buildings, floor-by-floor in 2D, providing 

envelope characteristics. The interface then automatically generates a thermal zone per floor. 

The latest version of SIMBAD has been re-written in C++ language for faster simulations and lighter 

memory load [Ansanay-Alex, 2010]. Some models have been added as well, e.g. the air quality model.  

SIMBAD is particularly convenient for applications involving implementation of control strategies 

applied to HVAC, shading or lighting systems through the Simulink graphical interface. Newer version 

of Matlab/Simulink support the Functional Mock-up Interface (FMI) standard3. FMI allows exporting 

models as Functional Mock-up Units (FMUs) which can exchange inputs and outputs during the 

simulation run with other software modules in a co-simulation framework. 

SIMBAD has been adopted as the simulation environment to assess MPC strategies implemented in the 

PhD theses of [Morosan, 2011] and [Lamoudi, 2012]. 

1.2.1.2 TRNSYS 

TRNSYS (TRaNsient SYStem simulation tool) is a commercial simulation software internationally 

developed by collaborations between the TESS4 and the University of Wisconsin – Solar Energy 

Laboratory (United States), CSTB (France) and TRANSSOLAR Energietechnik (Germany). 

TRNSYS has a modular structure, i.e. complex models are implemented in a component-based 

approach. An extensive library of components currently exists. Most of these components (also known 

as Types) are written in Fortran. Users may extend existing models or develop ones of their own. Once 

models are assembled in the Simulation Studio visual interface, an executable file may be called to run 

the simulation engine (or Kernel). The simulation engine reads and processes input files, iteratively 

solves the system of algebraic and differential equations and delivers output files. Upon the executable 

call, an online plotter allows visualization of variables evolution. Fixed integration time step is set by 

the user, it may be less than a minute, however it should be 1/n of an hour where n is an integer.  

TRNSYS has a detailed multi-zones building thermal simulator (called Type 56). TRNSYS3D, a plugin 

for SketchUp, allows users to draw the building geometry in 3D. Drawings include internal surfaces 

view factors, over-hangs and side fins whose shading effects are taken into account in the radiation 

distribution and exchange model. Geometry parameters are then imported into the TRNSYS Building 

environment – TRNBuild where all non-geometry data is to be set, such as construction material 

properties, HVAC systems control settings or internal heat gain profiles.  

                                                      
3 https://fmi-standard.org/docs/3.0-dev/ 
4 TESS : Thermal Energy System Specialists 

https://fmi-standard.org/docs/3.0-dev/
https://fmi-standard.org/docs/3.0-dev/
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Here are some noteworthy features of building modelling in TRNSYS. Solar irradiation balance is 

carefully modelled: view factors for long wave radiant exchange between internal surfaces are precisely 

calculated given detailed geometric information. Stratification is taken into account by addition of 

multiple air nodes. Convective heat transfer between zones is modelled. Effect of thermal bridges is 

considered in an external wall type. A radiator model with a thermostatic valve may be connected to 

each zone in the simulator. An integrated model for thermo-active walls can be used for heating/cooling 

floors/ceiling. Particular attention is given to the ground-coupled heat transfer via a slab model with 3D 

finite difference soil field. Moisture balance is computed for every zone and may be used in some HVAC 

humidity control units. A thermal comfort model includes clothing factor, metabolic rate, external work 

and relative air velocity. No influence of humidity, direct or diffuse solar irradiation are considered. 

Furnishing elements are not represented in separate nodes from the air zone, albeit their heat capacity 

should be taken into account by the user to correct the heat capacity of the zone air volume [Duffy et 

al., 2009; Energietechnik GmbH, 2010]. 

As for interoperability, TRNSYS models can be exported as FMUs via the TRNSYS FMU Export 

Utility. It can therefore co-simulate with models developed in other software. Furthermore, TRNSYS 

and Matlab/Simulink are mutually compatible: a TRNSYS component can be exported into a Simulink 

project and a Simulink subsystem can be transformed into a TRNSYS component.  

TRNSYS is used in the work of [Braun, 1990] to simulate a building with its HVAC system. Inverse 

modelling using this simulator is then applied to infer a simplified model of the system, which is later 

used in operational optimization to control the building set-point temperature using its thermal inertia 

to reduce operating costs. Also, TRNSYS detailed building thermal simulation was coupled to Matlab 

strong HVAC control mechanisms for load shifting MPC applications in [Alibabaei et al., 2016]. 

1.2.1.3 EnergyPlus 

EnergyPlus is a modular simulation engine developed by the US Department of Energy upon an 

initiative to combine 2 hourly building energy simulation programs: BLAST and DOE-2.  

EnergyPlus is written in Fortran. It is only a simulation engine; several Graphical User Interface (GUI) 

have been developed to wrap around EnergyPlus, the most popular of which are DesignBuilder and 

OpenStudio. Through these GUIs, users sketch-up the 3D building geometry of multi-zones buildings 

(similarly to TRNSYS) and add HVAC systems. The simulation engine then employs a zone heat 

balance method that includes surface heat balance and air heat balance to compute building thermal 

load. EnergyPlus allows variable time step between 1 minute and 1 hour. 

Some particular features of EnergyPlus thermal modelling include the option to choose from different 

solution algorithms; for instance, for heat conduction a transfer function and a finite difference 
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algorithms exist and are user-specified. Internal mass may be modelled as multi-layer internal walls, 

with separate thermal capacitance from the zone air volume. They interact with the zone heat balance 

on one side and are adiabatic on the other. They do not receive direct solar irradiation but participate in 

the long wave radiative exchange with all other internal surfaces. EnergyPlus has an anisotropic sky 

model, so sky radiance is calculated as a function of the sun position for accurate diffuse of solar 

irradiation on tilted surfaces. Simulators may have controllable blinds glazing systems. A model 

computes interior daylight illuminance from windows, which allows dimming control actions. 

EnergyPlus also has a thermal comfort model based on the inside dry bulb temperature, occupants 

activity, air humidity and radiation [Crawley et al., 2001]. Besides its user friendly interface, these 

features made EnergyPlus quite popular among engineers for buildings thermal load calculations. 

Co-simulation with EnergyPlus is possible. Simulators may be exported as FMUs via the 

EnergyPlusToFMU Python package. Alternatively, EnergyPlus may be linked and exchange data during 

the time integration with software which particularly do not support the FMI standard, via the Building 

Controls Virtual Test Bed (BCVTB) [Wetter, 2012]. 

EnergyPlus was used in a MPC application that investigates latent heat storage in buildings equipped 

with heat exchangers containing phase-change material in [Gholamibozanjani et al., 2018]. It was also 

used to apply MPC in [Bianchini et al., 2016], relying on a linear reduced-order model identified from 

data generated by a radiant floor heated simulators. EnergyPlus served as well in a study of the effect of 

internal mass on buildings peak loads in [Raftery et al., 2014]. 

1.2.1.4 COMFIE – Pleiades 

COMFIE (Calcul d’Ouvrages Multizones Fixé à une Interface Experte), is a thermal dynamic simulation 

engine developed at CES5 – Mines ParisTech. Pleiades is a software developed by IZUBA Energies that 

uses COMFIE. 

Pleaides has an interface (Alcyone in earlier versions) that allows users to sketch a building in 3D, split 

it into several zones, define its envelope properties by choosing construction materials from component 

libraries, expose it to boundary conditions through a weather file and specify heating and cooling set-

point temperatures per zone as well as infiltration rates and mechanical ventilation scenarios, optionally 

with bypass. Given these data, objects are created and inter-connected via pointers. 

The simulation engine is written in Pascal programming language under the Delphi environment. It 

performs spatial discretization of partial derivative equations using the finite difference method. 

COMFIE has the particularity of using modal analysis for the linear part of the system and adopts a 

                                                      
5 CES: Centre Efficacité énergétique des Systèmes 
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model order reduction technique to eliminate fast modes [Peuportier et Blanc, 1991]. This feature yields 

relatively fast simulations without greatly compromising accuracy when used for hourly or annual 

heating load calculations. However, COMFIE – Pleaides is not recommended for finer time steps 

[Salomon et al., 2005] 

Thermal phenomena modelled in COMFIE – Pleaides include natural convection and mono-directional 

heat conduction. Solar irradiation penetrating through windows is assumed only diffused, without a 

direct component since the simulator does not consider internal geometric details to properly distribute 

direct radiation. Diffuse radiation is distributed among internal surfaces weighted by their surface area. 

No long-wave radiant exchange between surfaces is mentioned. No mass or enthalpy balance is 

computed. A stochastic occupant behaviour model is developed in a bottom-up approach based on 

French statistical data. This model generates scenarios of occupants presence in the simulator zones, 

internal heat gain due to electric appliances and lighting, and windows opening [Vorger et al., 2014]. 

This particular model allows design optimization through uncertainty quantification and sensitivity 

analysis in the Pleaides AMAPOLA module. Furthermore, dedicated modules for life-cycle analysis at 

building and neighbourhood scales, namely ACV Equer and Énergie-Carbone, are available in Pleaides.  

COMFIE models are delivered as black-boxes, therefore accessibility to the core of the software is not 

possible which consequently prevents any user extension or module development. Since heating systems 

are modelled in a rather simplistic way as predefined scenarios of maximum power and set-point 

temperatures, COMFIE – Pleiades is rarely used on its own for operational control applications. In 

[Gaaloul et al., 2011], a COMFIE – Pleiades simulator was coupled to a convective heating system 

model in Matlab/Simulink. It was also coupled to Matlab/Simulink in [PAPAS et al., 2016] within a 

project called ADREAM for buildings energy consumption optimization. In the thesis of [Robillart, 

2015b] COMFIE – Pleiades was adopted as the simulation environment in the development of advanced 

control for peak shaving in energy efficient buildings. 

1.2.1.5 Modelica libraries 

Modelica is a programming language, not specifically made for building thermal dynamic simulation as 

other tools reviewed so far, and there exists a number of Modelica libraries dedicated for building 

systems simulation. This section introduces the language and the main libraries of this field. 

Modelica is an essentially acausal equation-based, object-oriented programming language which 

supports class inheritance, hierarchical structuring and model reuse. Modelica suggests breaking down 

the global system into smaller components (or objects). Each component is individually modelled and 

may have some or all of the following:  
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▪ A system of differential algebraic equations (algebraic relations and differential equations with 

time derivatives); 

▪ Parameters used in the equations. By definition, parameters are constants, i.e. their values set at 

initialization, cannot be changed in the course of a simulation run; 

▪ States which are unknown variables calculated by solving the system of equations; 

▪ Inputs to the system of equations which may be variable during a simulation run; 

▪ Outputs from the component (states or inputs) that might serve as inputs to other components. 

Components may then be connected in a script or a graphical editor via ports – which themselves are 

Modelica components for signal transmission or conservation – so as to assemble the global system. 

This assembly may be viewed as gathering all the sub-equation-systems into a larger one. A compiler 

translates the Modelica code into a causal C code to be solved by a proper solver. Variable time steps in 

the order of seconds may be specified depending on the chosen solver. A concise presentation of the 

Modelica language principles and semantics is given in [Fritzson et Engelson, 1998]. 

Modelica is quite appealing for several reasons. Non-causality is a major advantage. For a particular 

component, if the user does not specify a variable as input or output at the model development stage, 

the compiler will automatically determine its nature on the basis of computationally efficient solution 

sequence. Not only does this simplify programming efforts, it also increases reusability of developed 

components. Furthermore, Modelica is a multi-physics modelling language. Modelica is a non-

proprietary language developed and promoted by the Modelica Association6 and several commercial 

and open source compilers are available on the market like SimulationX, OpenModelica, JModelica, 

LMS Imagine.Lab AMEsim, MapleSim, MathModelica, and Dymola. As for components libraries, the 

Modelica Association maintains standard conforming libraries, some users share versions of their own 

libraries and there are also commercial libraries.  

A number of open-source libraries dedicated for building systems simulation have been developed by 

research teams, validated and shared to be readily used by others: 

▪ BuildSysPro developed by EDF for buildings, districts and energy systems modelling [Plessis 

et al., 2014]; 

▪ IDEAS (Integrated District Energy Assessment Simulations) developed at KU Leuven 

simulation of thermal, hydronic and electrical processes at urban scale [Jorissen et al., 2018]; 

▪ BuildingSystems developed at UdK Berlin for building and plan energy simulation [Nytsch-

Geusen, 2019]; 

▪ AixLib developed at RWTH Aachen University for building performance simulations [Müller 

et al., 2016]; 

                                                      
6 https://www.modelica.org  

https://www.modelica.org/
https://www.modelica.org/
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▪ Buildings developed at the Lawrence Berkeley National Laboratory (LBNL) of the University 

of California for building energy and control systems simulation [Wetter et al., 2014].  

These libraries include models of thermal zones, walls, windows, heating systems, control systems and 

weather file readers. We do not intend to investigate each library individually since this would be an 

overwhelming task. However, our interest is on one particular library, Buildings, renowned for being 

comprehensive, very well documented and for the excellent reactivity and assistance from its 

developers. However, a multi-zones simulator is not readily delivered in Buildings, as opposed to 

TRNSYS or EnergyPlus where simple sketch-ups allow automatic generation and connection of several 

zones. Nevertheless, homogeneous thermal zones of Buildings can be inter-connected using appropriate 

ports to assemble a multi-zones building model. In order to achieve the desired BTS, the building model 

should integrate a SH system with a heating circuit connected to a DHS substation. Our laboratory has 

pre-developed and validated its in-house Modelica Library called DistrictHeating with the necessary 

components (dual-pipes, heat exchangers, substations) [Giraud et al., 2015b]. 

All Modelica models can be encapsulated in FMUs for co-simulation. Furthermore, a Python package – 

buildingspy7 – by Buildings library developers is available for pre and post-processing. It is useful in 

parametric studies to automatically edit parameters and run a series of Modelica simulations. Moreover, 

Buildings includes a package with blocks and functions that embed Python in Modelica. So for instance 

a Modelica model can exchange data with Python, call a Python function or be part of a hardware-in-

the-loop simulation in which Python communicates with the hardware. 

With all the available libraries and associated tools, Modelica is earning greater attention in the literature 

of building energy simulation. BuildSysPro was used in the thesis of [Blervaque, 2014] to simulate a 

low-consumption building with floor heating coupled to a heat pump with the aim of comparing different 

modelling aspects, e.g. time steps, heat emitters and control regulations. IDEAS was used in [Reynders, 

2015b] to investigate short-term heat storage in residential buildings for active demand-response. 

1.2.2 Selected simulation tool 

All the above presented simulation tools can be potentially used in our application. Indeed, their building 

models are validated under the BESTEST validation standard. BESTEST is developed by the National 

Renewable Energy Laboratory on behalf of the International Energy Agency and consists of a series of 

benchmark comparative analytical and empirical tests to validate individual components and the overall 

building energy model accuracy [Judkoff et Neymark, 1995]. Most of these tools allow multi-physics 

simulation, with different degrees of difficulty. However, not all of them are well-documented for 

                                                      
7 https://simulationresearch.lbl.gov/modelica/buildingspy 

https://simulationresearch.lbl.gov/modelica/buildingspy
https://simulationresearch.lbl.gov/modelica/buildingspy
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external uses, particularly those developed in academic laboratories. On the other hand, commercial 

tools do not allow direct accessibility to the codes for eventual modifications.  

The selected tool for this work is Modelica language. This choice is justified by the open-source 

availability of the necessary components for the building structure and heat emitters models in Buildings 

library, and components for the heating circuit and DHS substation models in our in-house 

DistrictHeating library. The used compiler is Dymola and the selected solver is Radau IIa for its 

advantageous simulation speed and accuracy [Liu et al., 2010]. Conveniently, the Modelica/Dymola 

environment allows multi-physics simulations, time step resolutions in the order of seconds, possibility 

to access, modify and add components to the libraries and it supports co-simulation by encapsulating 

models into FMUs. Therefore, it is adopted throughout this thesis. 

1.3 Detailed description of the modelled elements 

This section presents the main component models and their assembly into a BTS. 

1.3.1 Homogeneous thermal zones 

The fundamental elements of the BTS are thermal zones. A thermal zone is a volume of perfectly mixed 

air – therefore having a uniform temperature. This control volume is surrounded by construction 

elements, such as internal or external walls, and exchanges heat with their internal surfaces through 

thermal convection. It can also exchange heat with neighbouring environments or directly with a heat 

source or sink. An energy balance may then be established for this control volume as in Eq. 1.1.  

𝐶𝑧𝑜𝑛𝑒 ∙
𝑑𝑇𝑎𝑖𝑟

𝑧𝑜𝑛𝑒

𝑑𝑡
= ∑ ℎ𝑐𝑜𝑛𝑣

𝑖𝑛𝑡 ∙ 𝑆𝑖𝑛𝑡  𝑠𝑢𝑟𝑓
𝑖 ∙ (𝑇𝑖𝑛𝑡  𝑠𝑢𝑟𝑓

𝑖 − 𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒)

𝑁𝑖𝑛𝑡  𝑠𝑢𝑟𝑓

𝑖=1

+ ∑ 𝑈𝑛𝑒𝑖𝑔ℎ
𝑗

∙ (𝑇𝑛𝑒𝑖𝑔ℎ
𝑗

− 𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒)

𝑁𝑛𝑒𝑖𝑔ℎ

𝑗=1

+ ∑ 𝑄𝑑𝑖𝑟
𝑘

𝑁𝑑𝑖𝑟

𝑘=1

 

Eq. 1.1 

𝐶𝑧𝑜𝑛𝑒 is the thermal capacitance of the air volume in the thermal zone and 𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒 is its temperature 

assumed to be uniform. The zone has 𝑁𝑖𝑛𝑡  𝑠𝑢𝑟𝑓 interior-facing surfaces that could be elements of the 

envelope of internal partition walls and furniture. 𝑇𝑖𝑛𝑡  𝑠𝑢𝑟𝑓 is the temperature of an interior-facing 

surface and 𝑆𝑖𝑛𝑡  𝑠𝑢𝑟𝑓 its surface area, ℎ𝑐𝑜𝑛𝑣
𝑖𝑛𝑡  is a constant internal heat convection coefficient between 

the zone and the surrounding interior surfaces. A typical value is 3 W/m2.K. The zone might have 𝑁𝑛𝑒𝑖𝑔ℎ 

neighbouring environments (e.g. adjacent thermal zones). The second summation in the right hand side 

of Eq. 1.1 is used to represent simplified heat exchange between the zone and a neighbouring 
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environment at temperature 𝑇𝑛𝑒𝑖𝑔ℎ using an equivalent heat transfer coefficient 𝑈𝑛𝑒𝑖𝑔ℎ; ventilation and 

door opening are modelled using this formula (§ 1.3.4). The last term in the right hand side of Eq. 1.1,  

∑𝑄𝑑𝑖𝑟 is the algebraic summation of 𝑁𝑑𝑖𝑟 direct heat flows from heat sources and sinks independent 

form 𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒, e.g. internal heat gains (§ 1.3.7). 

Besides the 𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒, a zone thermal state is described by 2 other temperatures: 

▪ 𝑇𝑧𝑜𝑛𝑒
𝑟𝑎𝑑.  is the zone radiative temperature; it is the mean temperature of a surface facing the internal 

of the zone calculated according to Eq. 1.2: 

𝑇𝑟𝑎𝑑
𝑧𝑜𝑛𝑒 =

∑ (𝑇𝑖𝑛𝑡  𝑠𝑢𝑟𝑓
𝑖 ∙ 𝑆𝑖𝑛𝑡  𝑠𝑢𝑟𝑓

𝑖 )
𝑁𝑖𝑛𝑡  𝑠𝑢𝑟𝑓
𝑖=1

∑ 𝑆𝑖𝑛𝑡  𝑠𝑢𝑟𝑓
𝑖𝑁𝑖𝑛𝑡  𝑠𝑢𝑟𝑓

𝑖=1

 Eq. 1.2 

▪ 𝑇𝑧𝑜𝑛𝑒
𝑜𝑝𝑒𝑟.

 is the zone operative temperature; it is the mean temperature perceived by a human being 

inside the zone. According to [Auliciems et al., 1997], when air flow velocity is less than 0.2 

m/s, the operative temperature can be approximated by the average of the air and radiative 

temperature (Eq. 1.3): 

𝑇𝑜𝑝𝑒𝑟
𝑧𝑜𝑛𝑒 =

𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒 + 𝑇𝑟𝑎𝑑

𝑧𝑜𝑛𝑒

2
 Eq. 1.3 

The component that models a homogenous thermal zone and computes its heat balance is called 

MixedAir from Buildings Library. In fact MixedAir also models mass exchange with a ventilation system 

or from water condensation due to latent internal gain. A mass balance can then be established for the 

control volume. However, in our BTS ventilation is modelled in a rather simplified way (§ 1.3.4) and 

no latent heat is added, therefore the mass balance is invariant. 

 

1.3.2 Envelope elements 

The building envelope is made up of opaque constructions (walls, floor, ceiling) and glazing systems. 

An opaque construction is a multi-layers wall. A glazing system is a succession of glass panes and gas-

filled gaps with a frame embedded inside an opaque construction. 

1.3.2.1 Thermal convection 
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Opaque constructions and glass panes of the glazing systems are subject to thermal convection on their 

extreme layers. Their innermost layer exchanges heat of intensity 𝑄𝑐𝑜𝑛𝑣
𝑖𝑛𝑡  with MixedAir (Eq. 1.4). 

Similarly, their outer-most layer exchanges heat of intensity 𝑄𝑐𝑜𝑛𝑣
𝑒𝑥𝑡  with the outdoor environment of 

temperature 𝑇𝑒𝑥𝑡 assuming the constant external heat convection coefficient ℎ𝑐𝑜𝑛𝑣
𝑒𝑥𝑡  (Eq. 1.5). A typical 

value is 10 W/m2.K. 𝑆𝑒𝑥𝑡 𝑠𝑢𝑟𝑓 is the external surface of the construction, equal to 𝑆𝑖𝑛𝑡 𝑠𝑢𝑟𝑓 . 

𝑄𝑐𝑜𝑛𝑣
𝑖𝑛𝑡 = ℎ𝑐𝑜𝑛𝑣

𝑖𝑛𝑡 ∙ 𝑆𝑖𝑛𝑡 𝑠𝑢𝑟𝑓 ∙ (𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒 − 𝑇𝑖𝑛𝑡 𝑠𝑢𝑟𝑓) Eq. 1.4 

𝑄𝑐𝑜𝑛𝑣
𝑒𝑥𝑡 = ℎ𝑐𝑜𝑛𝑣

𝑒𝑥𝑡 ∙ 𝑆𝑒𝑥𝑡 𝑠𝑢𝑟𝑓 ∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑒𝑥𝑡 𝑠𝑢𝑟𝑓) Eq. 1.5 

Inside a gas layer of the glazing system, convective heat exchange is modelled. A correlation for 

convection inside cavities is used, therefore the intensity of the heat exchange depends on the Nusselt 

and Rayleigh numbers calculated as a function of the tilt of the window, the thickness of the gas gap and 

its thermal properties. No heat storage is considered inside the gas layers. 

1.3.2.2 Thermal conduction 

One-directional (1-D) heat conduction is assumed through layers of the opaque constructions and glass 

layers of the glazing systems. In each layer, the 1-D version of the Fourier equation (Eq. 1.6) is solved 

using the finite volume method, where 𝜌𝑚𝑎𝑡, 𝑐𝑚𝑎𝑡 and 𝑘𝑚𝑎𝑡 are respectively the density, thermal 

capacity and thermal conductivity of the layer material, 𝑥 is the surface normal axis along which heat 

conduction is assumed, 𝑡 designates time and 𝑇 temperature. 

𝜌𝑚𝑎𝑡 ∙ 𝑐𝑚𝑎𝑡 ∙
𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
= 𝑘𝑚𝑎𝑡 ∙

𝜕²𝑇(𝑥, 𝑡)

𝜕𝑥²
 Eq. 1.6 

Each material layer is discretized into 𝑁𝑠𝑡𝑎 volumes given by Eq. 1.7. 𝑁𝑠𝑡𝑎 is proportional to the layer 

thickness 𝑒𝑙𝑎𝑦 and inversely proportional to the square root of the material thermal diffusivity 

√
𝑘𝑚𝑎𝑡

𝜌𝑚𝑎𝑡∙𝑐𝑚𝑎𝑡
. 𝑁𝑠𝑡𝑎

𝑟𝑒𝑓
 is a normalizing number of states that corresponds to discretizing a 20 cm layer of 

concrete into 3 finite volumes: 

𝑁𝑠𝑡𝑎 = 𝑁𝑠𝑡𝑎
𝑟𝑒𝑓

∙
𝑒𝑙𝑎𝑦

√
𝑘𝑚𝑎𝑡

𝜌𝑚𝑎𝑡 ∙ 𝑐𝑚𝑎𝑡

 
Eq. 1.7 
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Details of the finite volume method applied to 1-D heat conduction are not given here for succinctness. 

A rather simplified thermal conduction is modelled through the glazing system frame. This heat transfer 

can be seen as thermal conductance between the thermal zone and the outdoors and it is one of the terms 

in the second summation in Eq. 1.1, where the neighbour is the external environment at temperature 

𝑇𝑛𝑒𝑖𝑔ℎ = 𝑇𝑒𝑥𝑡 and the heat conductance coefficient is a property of the frame 𝑈𝑛𝑒𝑖𝑔ℎ = 𝑈𝑓𝑟𝑎. 

1.3.2.3 Thermal radiation 

A thermal zone receives direct and diffuse solar irradiation (direct normal 𝐼𝑠𝑜𝑙
𝑑𝑖𝑟, global horizontal 𝐼𝑠𝑜𝑙

𝑔𝑙𝑜
 

and diffuse horizontal 𝐼𝑠𝑜𝑙
𝑑𝑖𝑓

) through its windows and elements of its envelope exchange heat in between 

each other through infrared radiation. In MixedAir. Direct solar irradiation is transmitted through the 

glass panes of the glazing systems; its total intensity 𝑄𝑠𝑜𝑙  is given by Eq. 1.8 with 𝑁𝑤𝑖𝑛 the number of 

windows in a thermal zone and 𝐽𝑖𝑛 the incoming solar radiosity through each window depending on its 

surface area, tilt and orientation. 

𝑄𝑠𝑜𝑙 = ∑ 𝐽𝑖𝑛
𝑖

𝑁𝑤𝑖𝑛

𝑖=1

 Eq. 1.8 

𝑄𝑠𝑜𝑙 is assumed to first strike the floor where part of it is absorbed and transmitted (𝑄𝑠𝑜𝑙
𝑓𝑙𝑜

 in Eq. 1.9); the 

rest is diffusely reflected (𝑄𝑠𝑜𝑙
𝑎𝑙𝑙 𝑛𝑜𝑛−𝑓𝑙𝑜

 in Eq. 1.10) to all 𝑁𝑛𝑜𝑛−𝑓𝑙𝑜 non-floor interior-facing surfaces, 

including those of the building envelope (walls, ceiling, windows) and those representing internal mass 

(§ 1.3.3). 𝛼𝑓𝑙𝑜 and 𝜏𝑓𝑙𝑜 are absorptivity and transmissivity of the floor inner surface, respectively. 

𝑄𝑠𝑜𝑙
𝑓𝑙𝑜
= 𝑄𝑠𝑜𝑙 ∙ (𝛼𝑓𝑙𝑜 + 𝜏𝑓𝑙𝑜) Eq. 1.9 

𝑄𝑠𝑜𝑙
𝑎𝑙𝑙 𝑛𝑜𝑛−𝑓𝑙𝑜

= 1 − 𝑄𝑠𝑜𝑙
𝑓𝑙𝑜

 Eq. 1.10 

So diffuse solar irradiation is distributed among all non-floor surfaces weighted by their surface areas 

(Eq. 1.11, 𝑄𝑠𝑜𝑙
𝑛𝑜𝑛−𝑓𝑙𝑜

 is the fraction received by an individual surface, 𝑆𝑛𝑜𝑛−𝑓𝑙𝑜 its surface area, 𝛼𝑛𝑜𝑛−𝑓𝑙𝑜 

its absorptivity and 𝜏𝑛𝑜𝑛−𝑓𝑙𝑜 its transmissivity). 
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𝑄𝑠𝑜𝑙
𝑛𝑜𝑛−𝑓𝑙𝑜

= 𝑄𝑠𝑜𝑙
𝑎𝑙𝑙 𝑛𝑜𝑛−𝑓𝑙𝑜

∙
𝑆𝑛𝑜𝑛−𝑓𝑙𝑜 ∙ (𝛼𝑛𝑜𝑛−𝑓𝑙𝑜 + 𝜏𝑛𝑜𝑛−𝑓𝑙𝑜)

∑ 𝑆𝑛𝑜𝑛−𝑓𝑙𝑜
𝑘 ∙ (𝛼𝑛𝑜𝑛−𝑓𝑙𝑜

𝑘 + 𝜏𝑛𝑜𝑛−𝑓𝑙𝑜
𝑘 )

𝑁𝑛𝑜𝑛−𝑓𝑙𝑜
𝑘=1

 Eq. 1.11 

If additionally the thermal zone receives radiative heat from a radiator or radiating internal gain sources, 

then the sum of this radiative heat is distributed among all interior-facing surfaces weighted by the 

surface areas and absorptivity. In Eq. 1.12, 𝑄𝑟𝑎𝑑 𝑠𝑜𝑢𝑟
𝑖𝑛𝑡 𝑠𝑢𝑟𝑓

 is the fraction received by an internal surface, 

𝑁𝑟𝑎𝑑 𝑠𝑜𝑢𝑟 is the number of internal radiative sources and 𝑄𝑟𝑎𝑑 𝑠𝑜𝑢𝑟 is the radiative heat injected by each. 

𝑄𝑟𝑎𝑑 𝑠𝑜𝑢𝑟
𝑖𝑛𝑡 𝑠𝑢𝑟𝑓

= ∑ 𝑄𝑟𝑎𝑑 𝑠𝑜𝑢𝑟
𝑖

𝑁𝑟𝑎𝑑 𝑠𝑜𝑢𝑟

𝑖=1

∙
𝑆𝑖𝑛𝑡 𝑠𝑢𝑟𝑓 ∙ 𝛼𝑖𝑛𝑡 𝑠𝑢𝑟𝑓

∑ 𝑆𝑖𝑛𝑡 𝑠𝑢𝑟𝑓
𝑘 ∙ 𝛼𝑖𝑛𝑡 𝑠𝑢𝑟𝑓

𝑘𝑁𝑖𝑛𝑡 𝑠𝑢𝑟𝑓
𝑘=1

 Eq. 1.12 

Long wave infrared radiant exchange takes place between the sky and all exterior facing opaque surfaces 

and in-between interior-facing opaque surfaces. The Stephan-Boltzmann law (Eq. 1.13) is used to 

calculate the power 𝑄𝑟𝑎𝑑
𝑙𝑤  radiated from a surface of area 𝑆𝑠𝑢𝑟𝑓, emissivity 𝜀𝑠𝑢𝑟𝑓, and at temperature 

𝑇𝑠𝑢𝑟𝑓 using the Stephan-Boltzmann constant 𝜎. This equation may optionally be linearized in MixedAir. 

The incoming radiation from a surface to another is calculated using a view factor that is approximated 

to the surface fraction area, not considering any coordinate system. 𝑄𝑟𝑎𝑑
𝑙𝑤  calculation involves writing 

all equations for all internal surfaces and establishing a heat balance such that the total exchanged 

radiation sums to zero. Details of these calculations are well explained in [Wetter et al., 2011b]. 

𝑄𝑟𝑎𝑑
𝑙𝑤 = 𝜎 ∙ 𝑆𝑠𝑢𝑟𝑓 ∙ 𝜀𝑠𝑢𝑟𝑓 ∙ 𝑇𝑠𝑢𝑟𝑓

4  Eq. 1.13 

1.3.3 Internal mass 

Furnishing elements and light partition walls are modelled as mono-layer vertical slabs. Just as for 

opaque construction envelope elements, 1-D heat conduction is modelled through the internal mass 

layer. Unlike the envelope walls, both surfaces of a furniture-equivalent slab exchange heat with the 

thermal zone air via thermal convection. They also receive diffuse radiation and participate in the 

infrared heat exchange with the other internal surfaces.  

The properties of the internal mass material figure in Table 1.1. We referred to [Johra et Heiselberg, 

2017b], a survey on the internal mass and its equivalent heat capacity found in residential and single 

office buildings in Denmark, to set material properties, mass and dimensions of furniture equivalent 

slabs. The amount of internal mass added inside a zone is defined in mass per zone floor area using the 
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parameter 𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 of Table 1.1. The thickness of the equivalent slab stays invariant, its surface area 

𝑆𝑖𝑛𝑡  𝑠𝑙𝑎𝑏 is calculated using Eq. 1.14 where 𝑆𝑧𝑜𝑛𝑒 is the surface area of the thermal zone. Therefore, by 

increasing 𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏, we increase the thermal capacity and consequently the short-term heat storage 

inside the zones, and also we increase heat exchange with the zone air and envelope elements. 

𝑆𝑖𝑛𝑡  𝑠𝑙𝑎𝑏 = 𝑆𝑧𝑜𝑛𝑒 ∙
𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏

𝜌𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 ∙ 𝜀𝑖𝑛𝑡 𝑠𝑙𝑎𝑏
 Eq. 1.14 

Table 1.1 Properties of the internal mass equivalent slabs: thermal conductivity (𝑘𝑖𝑛𝑡 𝑠𝑙𝑎𝑏), specific 

thermal capacity (𝑐𝑖𝑛𝑡 𝑠𝑙𝑎𝑏), density (𝜌𝑖𝑛𝑡 𝑠𝑙𝑎𝑏), thickness (𝜀𝑖𝑛𝑡 𝑠𝑙𝑎𝑏) and mass per floor area (𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏) 

Material 

𝐤𝐢𝐧𝐭 𝐬𝐥𝐚𝐛 

(𝐖 𝐦 ∙ 𝐊⁄ ) 

𝐜𝐢𝐧𝐭 𝐬𝐥𝐚𝐛 

(𝐉 𝐤𝐠 ∙ 𝐊⁄ ) 

𝛒𝐢𝐧𝐭 𝐬𝐥𝐚𝐛 

(𝐤𝐠 𝐦𝟑⁄ ) 

𝛆      𝒂  

(𝐦𝐦) 

𝐦𝐢𝐧𝐭 𝐬𝐥𝐚𝐛 

(𝐤𝐠 𝐦𝟐⁄ ) 

Metal 60 450 8000 3 25 

Wood / Plastic 0.2 1400 800 18 25 

Ceramic / Glass 1.25 950 2000 10 5 

Light material 0.03 1400 80 120 15 

Light partition walls 0.015 1150 384 100 25 

 

1.3.4 Ventilation and door opening 

Heat loss due to ventilation is one of those terms represented by the second summation in Eq. 1.1, with 

𝑇𝑛𝑒𝑖𝑔ℎ = 𝑇𝑒𝑥𝑡 and 𝑈𝑛𝑒𝑖𝑔ℎ = 𝜌𝑎𝑖𝑟 ∙ 𝑐𝑎𝑖𝑟 ∙ 𝑉𝑧𝑜𝑛𝑒 ∙ 𝑛𝑣𝑒𝑛𝑡, 𝜌𝑎𝑖𝑟 being the air density, 𝑐𝑎𝑖𝑟 its thermal 

capacity, 𝑉𝑧𝑜𝑛𝑒 the volume of the thermal zone and 𝑛𝑣𝑒𝑛𝑡 the number of volume changes per hour. Thus, 

heat loss due to ventilation is as given by Eq. 1.15. In reality 𝑛𝑣𝑒𝑛𝑡 is often variable and should be 

stochastically modelled depending on tenant’s behaviour. However in our work we assume a constant 

value recommended under European standards. Typical values for 𝑛𝑣𝑒𝑛𝑡 range between 0.2 and 0.6 

volume changes per hour [ASHRAE Standard: Ventilation for Acceptable Indoor Air Quality, 1989]. 

𝑄𝑣𝑒𝑛𝑡 = 𝜌𝑎𝑖𝑟 ∙ 𝑐𝑎𝑖𝑟 ∙ 𝑉𝑧𝑜𝑛𝑒 ∙
𝑛𝑣𝑒𝑛𝑡
3600

∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒) Eq. 1.15 

Similarity, heat exchange due to door opening between neighbour zones is modelled using Eq. 1.16, 

where 𝑆𝑑𝑜𝑜𝑟 is the open area separating the two adjacent zones, 𝑣𝑚𝑖𝑥 is an equivalent mixing air velocity 

through the door opening. The default value for 𝑣𝑚𝑖𝑥 is  0.13 𝑚/𝑠 [Van Schijndel et al., 2003]. This 

model has been introduced into the BTS as a means to homogenize temperatures of the zones if needed. 
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𝑄𝑑𝑜𝑜𝑟  𝑜𝑝𝑒𝑛 = 𝜌𝑎𝑖𝑟 ∙ 𝑐𝑎𝑖𝑟 ∙ 𝑆𝑑𝑜𝑜𝑟 ∙ 𝑣𝑚𝑖𝑥 ∙ (𝑇𝑛𝑒𝑖𝑔ℎ  𝑧𝑜𝑛𝑒
𝑎𝑖𝑟 − 𝑇𝑎𝑖𝑟

𝑧𝑜𝑛𝑒) Eq. 1.16 

1.3.5 Assembly into a multi-zones, multi-storeys building simulator 

The BTS is assumed to have a rectangular footprint. Its length and width are parameters set by the user, 

along with the height of a storey and the building orientation. Note that the orientation angle (𝜃𝑏𝑢𝑖𝑙𝑑 in 

Figure 1.3) is a parameter used in the solar irradiation model. A floor in the BTS is discretized into 4 

equivalent thermal zones: a Night zone, a Kitchen, a Day zone and a Bathroom as shown in Figure 1.3. 

Accordingly, if the real building has a floor with multiple apartments, rooms of the apartments are 

aggregated into the 4 equivalent thermal zones in the BTS. The user only needs to define the fraction 

surface area of each zone with respect to the total footprint surface area; this quantity is denoted 𝛼𝑧𝑜𝑛𝑒
𝑠𝑢𝑟𝑓

. 

User should also specify the construction materials and the fraction of glazed surface per facade (to the 

North, West, South and East). The Modelica code will automatically instantiate 4 MixedAir components 

with the corresponding volumes, as well as all the envelope elements surrounding each of them and the 

interior walls separating them from each other. The zones will then be connected in between each other 

through the appropriate connection code. 

 

Figure 1.3 Schematic of the floor discretization into 4 thermal zones 

To build-up a multi-storey building, the user should specify the number of floors 𝑁𝑓𝑙𝑜 and the code 

automatically generates 1 floor with particular material for the ground (this is the ground floor), 𝑁𝑓𝑙𝑜 −

2 floors with particular material for the floor and ceiling (these are the intermediate floors) and 1 floor 

with particular material for the roof (this is the top floor) as depicted in Figure 1.4. Hence the floors 

have slight differences in the envelope construction material, however they are identical in terms of 

geometry and internal composition and discretization. Yet another distinction is that each floor receives 

a different internal gain signal because the internal gain model (of § 1.3.7) generates data specifically 

tailored to a building called Le Salammbô (will be introduced in § 1.4) and this later has different types 

of apartments per floor, yielding different internal heat gains. The instantiated floors are then connected 
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in between each other and conductive heat exchange takes place through the common intermediate 

ceiling between two consecutive floors. 

 

Figure 1.4 Schematic of the floors assembly into a multi-storeys BTS 

1.3.6 Space-heating system  

A SH system in the BTS is a component connected to each zone and fulfils its demand by maintaining 

its air temperature as close as possible to its set-point temperature. We consider 2 SH system models 

presented in this section. Either one can be connected to the assembled building model, given a dynamic 

set point temperature per zone. 

1.3.6.1 Space-heating system with zero thermal inertia 

The simplest SH system model assumes that the air temperature in a thermal zone – 𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒 of Eq. 1.1 – 

should equal the given set-point temperature at all times. Therefore, it provides the deficit heat if the air 

temperature is below the set-point or takes away the excess heat in case the air temperature is above the 

set-point. The model also features a thermal switch, which is a variable thermal resistance between the 

heat source and the thermal zone. During a simulation run, the variable resistance may be set to epsilon 

to switch on the heating or it may be set to infinity to switch off the heating.  

We refer to such a model as a SH system with zero thermal inertia. Neither the SH system thermal 

inertia, nor the regulation time delays are considered. Yet, this model is useful to size SH power under 

steady-state conditions (§ 1.4.3), and to assess the influence of the SH system thermal inertia (§ 2.3.1). 

1.3.6.2 Hydronic space-heating system served by a DHS substation 

The second SH model is meant to account for the thermal inertia of the heating circuit, and to feature 

realistic control variables involved in SH demand in DHSs. Components-wise, this system is composed 

of hydronic radiators injecting convective and radiant heat into the thermal zones, equipped with a 
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thermostatic valve, fed by an insulated dual-pipe distribution network and powered by a DHS substation. 

Models of the detailed SH system are described hereafter. 

1.3.6.2.1 Substation 

In DHSs, heat delivery from the primary network to the building heating circuit takes place at the 

substation usually placed in the building basement. Referring to Figure 1.5, the main components 

concerning SH demand supply typically found in a substation are: 

▪ A heat exchanger; 

▪ A control valve to regulate the heating water mass flowrate at the primary side; 

▪ A PID controller acting on the control valve to regulate the secondary supply water temperature 

to a specific set point temperature provided by a heating curve or other advanced strategy; 

▪ A circulator pump to balance the heating circuit at the secondary side; 

▪ Some metering devices such as the supply water temperature sensor, return water temperature 

sensor, flowmeter and heat meter to measure energy consumption and allocate costs. 

 

Figure 1.5 Simplified schematic of the main components found in a DHS substation 

Since this thesis particularly focuses on the demand side management, modelling of the heat exchange 

between the primary and the secondary sides is beyond our scope. Our modelling (and later control) 

simply assumes that a certain amount of heat 𝑄𝑆𝑆𝑇 needs to be delivered at the substation to the building, 

regardless of its origin. Thus, the only variables in the substation model are the secondary supply (𝑇𝑆𝑆𝑇
𝑠𝑢𝑝

) 

and return (𝑇𝑆𝑆𝑇
𝑟𝑒𝑡) water temperatures, the secondary water mass flowrate (𝑚̇𝑆𝑆𝑇) and the SH power 

(𝑄𝑆𝑆𝑇); while variables related to the primary side are omitted. 
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The substation model used in this work is found in the DistrictHeating library and described in [Giraud 

et al., 2015b]. We recall the main assumptions: 

▪ 𝑇𝑆𝑆𝑇
𝑠𝑢𝑝

= 𝑇𝑆𝑆𝑇
𝑠𝑒𝑡; in fact, the PID dynamics can be ignored with respect to other slower dynamics 

in the system, thus during regimes where the substation fulfils the SH demand, the secondary 

supply water temperature is assumed to perfectly match its set-point; 

▪ 𝑇𝑆𝑆𝑇
𝑟𝑒𝑡 and 𝑚̇𝑆𝑆𝑇 are inputs to the substation model from the dual-pipe and the thermostatic 

radiator valve models presented hereafter; 

▪ Heat losses in the substation are proportional to the temperature difference between 𝑇𝑆𝑆𝑇
𝑠𝑢𝑝

 and 

the ambient temperature 𝑇𝑎𝑚𝑏, assumed constant and equal to 20°C. 𝜀𝑆𝑆𝑇
𝑙𝑜𝑠𝑠𝑒𝑠 is the corresponding 

heat loss coefficient. 

The remaining variable 𝑄𝑆𝑆𝑇 is computed by establishing a heat balance for the SH water control volume 

and it is constrained by the substation sizing power 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥. It expression is given in Eq. 1.17: 

𝑄𝑆𝑆𝑇 = 𝑚𝑖𝑛(𝑚̇𝑆𝑆𝑇 ∙ 𝑐𝑤𝑎𝑡 ∙ (𝑇𝑆𝑆𝑇
𝑠𝑢𝑝

− 𝑇𝑆𝑆𝑇
𝑟𝑒𝑡) + 𝜀𝑆𝑆𝑇

𝑙𝑜𝑠𝑠𝑒𝑠  ∙ (𝑇𝑆𝑆𝑇
𝑠𝑢𝑝

− 𝑇𝑎𝑚𝑏), 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥) Eq. 1.17 

1.3.6.2.2 Dual-piping network 

A pipe model is also taken from the DistrictHeating library. The modelling approach, thoroughly 

described and experimentally validated in [Giraud et al., 2015b] relies on the node method. The model 

considers a metal pipe surrounded by an insulation layer. It computes the heat propagation along the 

pipeline and accounts for the hydraulic head losses, heat losses to the surroundings and transportation 

time delays. 

By associating a pair of pre-insulated pipes, one for supply (hot) and one for return (cold), a model of a 

dual-pipe is obtained. Note that heat exchange between the supply and return lines is neglected.  

To model a heating system circuit, copper dual-pipes are used considering the configuration of Figure 

1.6. Large dual-pipes are 26 cm in nominal diameter and their length is equal to the height of a storey. 

Small ones are 16 cm in diameter and their length is equal to half the diagonal of the rectangular floor 

footprint. The first large diameter dual-pipe model is connected to the substation at its inlet and to 4 

small diameter dual-pipes which will then be connected to the radiators inside the thermal zones at the 

first floor. Its outlet is also connected to the inlet of the second large diameter dual-pipe model, which 

will feed the second floor, and so on. At both ends of a connection (dashed line in Figure 1.6), pressure 

is conserved and mass flowrate algebraically sums to zero. 
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Figure 1.6 Configuration of the SH network 

1.3.6.2.3 Radiators 

The RadiatorEN442_2 model from Buildings library is used to model a radiator inside each zone. It is 

connected at one end to the supply pipe outlet of a dual-pipe model, and at the other end to the return 

pipe inlet. Given water temperature, pressure and mass flow rate, the model injects heat inside the zone. 

The model implements the finite volume method, therefore a radiator is discretised into a series of 𝑁𝑟𝑎𝑑 

volumes of fluid. For each, thermal capacity of the metallic part is lumped to that of the water volume 

to take into account the thermal inertia of the emitter. About each volume, a heat balance is evaluated 

to compute radiative heat (𝑄𝑟𝑎𝑑
𝑟𝑎𝑑) and convective heat (𝑄𝑟𝑎𝑑

𝑐𝑜𝑛𝑣) delivered to the thermal zone according 

to Eq. 1.18 and Eq. 1.19 respectively. 𝑄𝑟𝑎𝑑
𝑐𝑜𝑛𝑣 is added to the heat balance of the thermal zone as a direct 

heat (Eq. 1.1) whereas 𝑄𝑟𝑎𝑑
𝑟𝑎𝑑 is distributed as diffuse radiation (Eq. 1.12). To favour numerical efficiency, 

we limit the discretization level to 3 fluid control volumes (𝑁𝑟𝑎𝑑  = 3). 

𝑄𝑟𝑎𝑑
𝑟𝑎𝑑 = 𝑓𝑟 ∙

𝑈𝐴𝑟𝑎𝑑
𝑁𝑟𝑎𝑑

∙ |𝑇𝑟𝑎𝑑 − 𝑇𝑟𝑎𝑑
𝑧𝑜𝑛𝑒|𝑛𝑟𝑎𝑑 Eq. 1.18 

𝑄𝑟𝑎𝑑
𝑐𝑜𝑛𝑣 = (1 − 𝑓𝑟) ∙

𝑈𝐴𝑟𝑎𝑑
𝑁𝑟𝑎𝑑

∙ |𝑇𝑟𝑎𝑑 − 𝑇𝑎𝑖𝑟
𝑧𝑜𝑛𝑒|𝑛𝑟𝑎𝑑 Eq. 1.19 

𝑓𝑟 is the fraction of radiative heat from the total heat delivered by the radiator and 𝑛𝑟𝑎𝑑 is an exponent 

of heat transfer. We stick to default values in Buildings: 𝑓𝑟 = 0.35 and 𝑛𝑟𝑎𝑑 = 1.24. 𝑈𝐴𝑟𝑎𝑑 is the 

coefficient of heat exchange calculated from the radiator sizing values according to Eq. 1.20. 
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𝑈𝐴𝑟𝑎𝑑 =
𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 𝑁𝑓𝑙𝑜 𝛼𝑧𝑜𝑛𝑒

𝑠𝑢𝑟𝑓
𝑁𝑟𝑎𝑑⁄⁄⁄

𝑇𝑆𝑆𝑇
𝑛𝑜𝑚 − 𝑇𝑎𝑖𝑟

𝑠𝑒𝑡𝑛𝑜𝑚
 Eq. 1.20 

𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 is the sizing (maximum) power of the building substation. This sizing power is equally divided 

into the 𝑁𝑓𝑙𝑜 floors, then divided among the 4 zones weighted by the fraction surface area  𝛼𝑧𝑜𝑛𝑒
𝑠𝑢𝑟𝑓

 and 

again equally divided between the finite volumes. Hence, the numerator of Eq. 1.20 gives the sizing 

power for each element in a radiator. It is divided by the difference between the nominal supply water 

temperature at the substation 𝑇𝑆𝑆𝑇
𝑛𝑜𝑚 (set to the maximum supply temperature given a heating curve 

𝑇𝑆𝑆𝑇
𝑛𝑜𝑚 = 𝑇𝑆𝑆𝑇

𝐻𝐶𝑚𝑎𝑥) and the air set point temperature 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡𝑛𝑜𝑚 to compute 𝑈𝐴𝑟𝑎𝑑. 

Similarly to 1-D heat conduction, details of the finite volume method applied to heat transfer between 

the mixing volumes are not expanded in this manuscript. The total heat 𝑄𝑟𝑎𝑑
𝑡𝑜𝑡  emitted by a radiator is 

given in Eq. 1.21. 

𝑄𝑟𝑎𝑑
𝑡𝑜𝑡 = ∑ 𝑄𝑟𝑎𝑑

𝑐𝑜𝑛𝑣𝑖 + 𝑄𝑟𝑎𝑑
𝑟𝑎𝑑𝑖

𝑁𝑟𝑎𝑑

𝑖=1

 Eq. 1.21 

1.3.6.2.4 Thermostatic radiator valves 

The mass flowrate input to the radiator is controlled by a Thermostatic Radiator Valve (TRV) model.  

We developed a model of this component to fulfil requirements of the European standard NF EN 215 in 

terms of the TRV time-response. Therefore, a careful modelling of the sensing bulb is carried out. It is 

represented by a thermal mass of heat capacity 𝐶𝑏𝑢𝑙𝑏 and temperature 𝑇𝑏𝑢𝑙𝑏. As formulated in Eq. 1.22, 

the bulb exchanges heat with the zone air by natural convection. The heat exchange coefficient is 

calculated using the variable Nusselt number 𝑁𝑢𝑏𝑢𝑙𝑏 of Eq. 1.23, which itself depends on the Rayleigh 

number of Eq. 1.24 according to a standard correlation valid for natural convection flows around a 

vertical cylinder [Kang et al., 2014].  

𝐶𝑏𝑢𝑙𝑏 ∙
𝑑𝑇𝑏𝑢𝑙𝑏
𝑑𝑡

=
𝑁𝑢𝑏𝑢𝑙𝑏 ∙ 𝑘𝑏𝑢𝑙𝑏

𝐷𝑏𝑢𝑙𝑏
∙ 𝑆𝑏𝑢𝑙𝑏 ∙ (𝑇𝑎𝑖𝑟

𝑧𝑜𝑛𝑒 − 𝑇𝑏𝑢𝑙𝑏) Eq. 1.22 

𝑁𝑢𝑏𝑢𝑙𝑏 = 0.67 ∙ 𝑅𝑎𝑏𝑢𝑙𝑏
1/4 Eq. 1.23 
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𝑅𝑎𝑏𝑢𝑙𝑏 =
𝑔 ∙ 𝛽𝑎𝑖𝑟 ∙ (𝑇𝑏𝑢𝑙𝑏 − 𝑇𝑎𝑖𝑟

𝑧𝑜𝑛𝑒) ∙ 𝐷𝑏𝑢𝑙𝑏
3

𝛼𝑎𝑖𝑟 ∙ 𝜈𝑎𝑖𝑟
 Eq. 1.24 

𝑘𝑏𝑢𝑙𝑏 is the thermal conductivity of the bulb material, 𝐷𝑏𝑢𝑙𝑏 is its diameter and 𝑆𝑏𝑢𝑙𝑏 its surface area 

assuming a cylindrical shape (1.5 cm in diameter and 1 cm in length). In most practical situations, this 

leads to an equivalent thermal time constant of approximately 10 minutes.  

𝑔 = 9.8𝑚 𝑠2⁄  is the gravitational acceleration, 𝛽𝑎𝑖𝑟 = 3.43 × 10
−3 1 𝐾⁄  is the coefficient of linear 

thermal expansion of air, 𝛼𝑎𝑖𝑟 = 2.12 × 10
−5𝑚2 𝑠⁄  is the thermal diffusivity of air and 𝜈𝑎𝑖𝑟 =

15.11 × 10−6𝑚2 𝑠⁄  is the kinematic viscosity of air. 

𝑇𝑏𝑢𝑙𝑏 is then compared with the air set-point temperature (𝑇𝑎𝑖𝑟
𝑠𝑒𝑡) to regulate the valve opening 𝛼𝑇𝑅𝑉 =

𝑜𝑝𝑒𝑛 𝑇𝑅𝑉 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑇𝑅𝑉 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛
× 100, assuming the linear opening law given in Eq. 1.258 and plotted in Figure 

1.7. ∆𝑇𝑇𝑅𝑉
𝑚𝑎𝑥 is the maximum temperature difference between 𝑇𝑏𝑢𝑙𝑏 and 𝑇𝑎𝑖𝑟

𝑠𝑒𝑡 above which the valve is 

fully open. Typically, ∆𝑇𝑇𝑅𝑉
𝑚𝑎𝑥 = 2°C. 

𝛼𝑇𝑅𝑉 = [
100

∆𝑇𝑇𝑅𝑉
𝑚𝑎𝑥 ∙ (𝑇𝑎𝑖𝑟

𝑠𝑒𝑡 − 𝑇𝑏𝑢𝑙𝑏)]
0

100

 Eq. 1.25 

 

Figure 1.7 TRV opening law: The valve is fully closed when 𝑇𝑏𝑢𝑙𝑏 is greater than 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 (dead zone), 

fully open when 𝑇𝑏𝑢𝑙𝑏 drops ∆𝑇𝑇𝑅𝑉
𝑚𝑎𝑥 below 𝑇𝑎𝑖𝑟

𝑠𝑒𝑡 (saturation), and opens proportionally to the 

temperature difference between the two extreme positions. 

                                                      

8 The notation 𝑦 = [𝑥]𝑎
𝑏  means: 𝑦 = {

𝑥 𝑖𝑓 𝑎 < 𝑥 < 𝑏
𝑎 𝑖𝑓 𝑥 ≤ 𝑎

𝑏 𝑖𝑓 𝑥 ≥ 𝑏
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The valve flow coefficient (or flow-capacity) 𝐶𝑇𝑅𝑉 given in Eq. 1.26 is a measure of the valve efficiency 

at allowing fluid flow. It relates the mass flowrate across the valve (𝑚̇) to the pressure drop between its 

inlet and outlet (∆𝑃𝑇𝑅𝑉) (𝑆𝐺𝑤𝑎𝑡𝑒𝑟 is the specific gravity of water in a TRV and equals 1). 

𝐶𝑇𝑅𝑉 = 𝑚̇𝑇𝑅𝑉 ∙ √
𝑆𝐺𝑤𝑎𝑡𝑒𝑟
∆𝑃𝑇𝑅𝑉

 Eq. 1.26 

Our model relies on the assumption of linear valve characteristic. This means that 𝐶𝑇𝑅𝑉 varies linearly 

with the valve opening position 𝛼𝑇𝑅𝑉 as depicted in Figure 1.8.  

At full opening, 𝐶𝑇𝑅𝑉 = 𝐶𝑇𝑅𝑉
𝑛𝑜𝑚 = 𝑚̇𝑇𝑅𝑉

𝑛𝑜𝑚 ∙ √
𝑆𝐺𝑤𝑎𝑡𝑒𝑟

∆𝑃𝑇𝑅𝑉
𝑛𝑜𝑚  where 𝑚̇𝑛𝑜𝑚 is the nominal mass flowrate across the 

fully open valve under the nominal differential pressure ∆𝑃𝑇𝑅𝑉
𝑛𝑜𝑚. Hence, 𝑚̇𝑇𝑅𝑉 ∙ √

𝑆𝐺𝑤𝑎𝑡𝑒𝑟

∆𝑃𝑇𝑅𝑉
= 𝑚̇𝑇𝑅𝑉

𝑛𝑜𝑚 ∙

√
𝑆𝐺𝑤𝑎𝑡𝑒𝑟

∆𝑃𝑇𝑅𝑉
𝑛𝑜𝑚 ∙ 𝛼𝑇𝑅𝑉  which allows us to derive 𝑚̇ according to Eq. 1.27. The nominal values are parameters 

set by the user, whereas ∆𝑃𝑇𝑅𝑉 is an input to the TRV model obtained from the pressure drop in the 

dual-pipe model. Note that this pressure drop itself is affected by the mass flowrate inside the pipes. 

𝑚̇𝑇𝑅𝑉 = 𝑚̇𝑇𝑅𝑉
𝑛𝑜𝑚 ∙ √

∆𝑃𝑇𝑅𝑉
∆𝑃𝑇𝑅𝑉

𝑛𝑜𝑚 ∙ 𝛼𝑇𝑅𝑉 Eq. 1.27 

 

Figure 1.8 Linear valve characteristic: 𝐶𝑇𝑅𝑉 is directly proportional to 𝛼𝑇𝑅𝑉 and its maximal value is 

reached under nominal conditions when the valve is fully open. 

1.3.7 Internal heat gain 

Besides the heating system, a building receives passive heat (other than solar irradiation) from internal 

heat gain sources. Internal heat gain is particularly influential on well-insulated, low energy 
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consumption buildings as it may provide up to 20% of the SH load [Firląg et Zawada, 2013]. We 

developed a stochastic model to take into account such effects. 

The internal gain (IG) model is prepared separately under csv file format, in a floor-by-floor approach. 

The signal is then injected into the thermal zones of the assembled BTS. The modelling approach 

considers that a floor represents a certain number of apartments having a specific number of residents. 

These numbers are set by the modeller. A building having different types of apartments per floor will 

eventually have different IG per floor as mentioned in 1.3.7.  

The modelling technique starts by stochastically generating an occupancy profile for each equivalent 

thermal zone in the floor with time steps of 10 minutes. Based on this occupancy profile, signals of IG 

dissipated by 3 sources are modelled: 

▪ Internal heat gain due to occupants’ activity; 

▪ Internal heat gain due to domestic hot water usage; 

▪ Internal heat gain due to electric devices. 

Here is a brief description of the stochastic modelling of signals contributing to the internal heat gain. 

Occupancy profile generation 

In order to generate this profile, surveyed time-use data describing the activity of residents in the UK 

during weekdays and weekends over the year of 2000 is used (with the lack of similar data in France). 

Then a first-order Markov chain technique is applied to generate synthetic data that has the same overall 

statistics as the original surveyed data. This technique, presented in [Richardson et al., 2008b], considers 

that a resident living in an apartment can either be present or not at different times during the day, and 

furthermore, if he is present, he might be active or not (e.g. sleeping). The transition from one state to 

another is described in transaction probability matrices derived from the survey, as the one illustrated in 

Figure 1.9. It results at generating an occupancy profile in terms of presence and activity status of the 

residents discerning weekdays from weekends at a 10 minutes resolution.   

 

Figure 1.9 Example of a transaction probability matrix: Let an apartment have 2 residents; if only one 

resident is present at 8:00, the probability of him being still present alone at 8:10 is 0.836, the probability 

of him leaving the apartment is 0.068 and that of the other resident joining him is 0.097. 
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Internal heat gain due to occupants’ activity 

Given the occupancy profile for a floor, occupants are distributed over the 4 zones. We assume: 

▪ All inactive occupants are systematically present in the night zone; 

▪ All active occupants are present in the day zone except during the periods between 12:00 and 

14:00 (lunch time) or between 18:00 and 20:00 (dinner time); 

▪ All active occupants are present in the kitchen during lunch time and dinner time; 

▪ No IG due to occupant’s activity is dissipated in the bathroom. 

Referring to [Arrêté du 30 avril 2013 relatif à des méthodes de calcul des caractéristiques thermiques et 

exigences de performance énergétique des bâtiments nouveaux, 2013], we assign 90 W of internal heat 

gain dissipated by an active occupant and 63 W by an inactive occupant. Simple multiplication yields 

the IG profile due to occupants’ activity inside each zone denoted 𝑄𝑡ℎ𝑒𝑟𝑚
𝑜𝑐𝑐 . 

Internal heat gain due to domestic hot water usage 

IG due to Domestic Hot Water (DHW) requires first generating a stochastic profile of DHW usage. This 

profile is indeed related to the occupant’s activities profile modelled beforehand. DHW usage may then 

be converted in terms of dissipated thermal heat. 

Again we based our model on works found in the literature [Jordan et Vajen, 2001], where the following 

four types of DHW loads are defined: 

▪ Short load (e.g. hand washing); 

▪ Medium load (e.g. dish washing); 

▪ Shower; 

▪ Bath. 

For each type, statistical data is given in Table 1.2. It covers the daily number of usage per resident, its 

time duration (∆𝑡) and the volume (𝑉) of DHW used during 1 usage. For a given number of residents, 

we perform a first sampling to generate a profile for the number of daily DHW usages per floor for each 

type. For the sampling we assume normal probability distributions for all types except for Bath to which 

we assign a Bernoulli distribution. We set means 𝜇 calculated from the values of Table 1.2 and standard 

variation 𝜎 = 0.25 ∙ 𝜇.  

Having the number of daily DHW usages for each type, we proceed to a second sampling to distribute 

these usages over the periods of the day. Again, probabilistic distribution are assigned to each type as 

indicated in [Jordan et Vajen, 2001]. A uniform distribution is assigned for short and medium loads in 

the kitchen between 5:00 and 23:00. In the bathroom, showers have 2 probability peaks per day, one at 
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7:00 and another at 19:00 whereas baths have 1 probability peak at 20:00. We combine these 

probabilities with the occupancy probability. This gives us the cumulative frequencies. An example of 

the cumulative frequency for the event is plotted in Figure 1.10. To generate the final DHW usage 

profile, we apply the inverse transform method as described in [Jordan et Vajen, 2001] 

A numeric example might help understanding this model. Suppose a floor has 5 occupants. We already 

know for every 10 minutes the number of active and inactive occupants. Suppose we are interested in 

determining the instants when a Shower usage happened. The daily average number of showers 

according to Table 1.2 is 5. We perform the first sampling and get the actual number of showers taken 

on that day equal to 3 (rounded to the closest integer). We perform the second sampling to determine 

the 3 time periods when a usage occurred. We randomly get 0.25, 0.5 and 0.75. Using the cumulative 

frequency graph of Figure 1.10, we spot the sampled time instants 6:50, 7:50 and 17:50. We make sure 

that the obtained values are realistically coherent with other usages, for instance a Shower and a Bath 

do not coincide. This finally gives the profile of Shower taken at a 10 minutes resolution in a day.  

 

Figure 1.10 Illustration of the inverse transform method used to determine the time instants of DHW 

usage of type Shower 

Given the time instants of the day when a usage is turned on 𝑝𝑂𝑁
𝐷𝐻𝑊, DHW usage may be converted into 

thermal energy dissipation using Eq. 1.28. In the calculations, we consider the duration and the DHW 

volume for every usage of Table 1.2 and we assume cold water for short and medium loads at 𝑇𝐷𝐻𝑊 = 

15°C and hot water for showers and baths at 𝑇𝐷𝐻𝑊 = 40°C (𝜌𝑤𝑎𝑡 and 𝑐𝑤𝑎𝑡 being respectively the density 

and specific thermal capacity of water) and an ambient air temperature at constant value 𝑇𝑎𝑚𝑏 = 20°C. 

This formula takes into account the thermal inertia of DHW via a staggering coefficient 𝜅𝐼𝐺 and the 

efficiency of the conversion via the coefficient 𝜂𝐼𝐺 given in Table 1.2. Considering internal heat gain is 

constant per 10 minutes, we generate the corresponding power profile.  
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∑ 𝑄𝑡ℎ𝑒𝑟𝑚
𝐷𝐻𝑊 (𝑝)

𝑝𝑂𝑁
𝐷𝐻𝑊+𝜅𝐼𝐺∙∆𝑡𝐷𝐻𝑊

𝑝=𝑝𝑂𝑁
𝐷𝐻𝑊

= 𝜂𝐼𝐺 ∙ ∑
𝑉𝐷𝐻𝑊
∆𝑡𝐷𝐻𝑊

∙ 𝜌𝑤𝑎𝑡 ∙ 𝑐𝑤𝑎𝑡 ∙ (𝑇𝐷𝐻𝑊(𝑝) − 𝑇𝑎𝑚𝑏)

𝑝𝑂𝑁
𝐷𝐻𝑊+∆𝑡𝐷𝐻𝑊

𝑝=𝑝𝑂𝑁
𝐷𝐻𝑊

 

Eq. 1.28 

Table 1.2 Characteristics of DHW usages: 𝜇𝐷𝐻𝑊 is the mean number of usages per occupant per day, 

𝑉𝐷𝐻𝑊 is the water volume per usage, ∆𝑡𝐷𝐻𝑊 is the time duration of one usage, 𝜅𝐼𝐺 is the staggering 

coefficient and 𝜂𝐼𝐺 is the efficiency of the conversion into internal heat gain. 

Thermal 

zone 

DHW usage 

type 

𝝁  𝑾 

(usage/occupant/day) 

𝑽  𝑾 

(l) 

∆   𝑾 

(s) 

𝑻  𝑾 

(K) 

𝜿𝑰𝑮 

(-) 

𝜼𝑰𝑮 

(-) 

Kitchen 
Short load 9 1 10 288.15 1 0.2 

Medium load 4 6 60 288.15 1 0.5 

Bathroom 
Shower 1 40 300 313.15 1 0.5 

Bath 0.047 140 600 313.15 3 0.7 

Internal heat gain due to electric devices 

IG due to electric devices (EDs)  is based on a bottom-up model of ED usage from the literature 

[Richardson et al., 2010b], obtained from surveyed data in the UK. The model generates electric power 

consumption profiles based on the presence of active occupants in a zone at a 10 minutes step 

considering the following aspects for each device: 

▪ Average number of functioning cycle per year; 

▪ Time duration of each functioning cycle; 

▪ Waiting time before starting-up a new cycle; 

▪ Mean power consumption during a functioning cycle; 

▪ Mean power consumption when on stand-by mode. 

From the obtained electric power usage profile, we can generate the profile of thermal IG dissipated 

from an electrical device while accounting for its thermal inertia, similarly to DHW. Consider Eq. 1.29, 

a device that has been turned on at instant 𝑝𝑂𝑁
𝐸𝐷 and off at instant 𝑝𝑂𝐹𝐹

𝐸𝐷 , consumes  

𝑄𝑒𝑙𝑒𝑐
𝐸𝐷  of electric power and dissipates 𝑄𝑡ℎ𝑒𝑟𝑚

𝐸𝐷  of internal heat gain during the corresponding period 𝑝. It 

is characterized by a staggering coefficient 𝜅𝐼𝐺 and a conversion factor between electrical and thermal 

power 𝜂𝐼𝐺. Values for 𝜅𝐼𝐺 and 𝜂𝐼𝐺 for common devices are listed in Table 1.3. 
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∑ 𝑄𝑡ℎ𝑒𝑟𝑚
𝐸𝐷 (𝑝)

𝑝𝑂𝑁
𝐸𝐷+𝜅𝐼𝐺∙(𝑝𝑂𝐹𝐹

𝐸𝐷 −𝑝𝑂𝑁
𝐸𝐷)

𝑝=𝑝𝑂𝑁
𝐸𝐷

= 𝜂𝐼𝐺 ∙ ∑ 𝑄𝑒𝑙𝑒𝑐
𝐸𝐷 (𝑝)

𝑝𝑂𝐹𝐹
𝐸𝐷

𝑝=𝑝𝑂𝑁
𝐸𝐷

 Eq. 1.29 

For the distribution of EDs between the thermal zones of a floor, we assume: 

▪ No EDs are present in the night zone; 

▪ A computer, a TV, a vacuum cleaner and a clothes iron are present in the day zone; 

▪ A refrigerator, a freezer, a cooking plate, an oven, a microwave and water boiler are present in 

the kitchen; 

▪ Only a clothes dryer is present in the bathroom. 

Table 1.3 Characteristics of EDs used in the thermal IG dissipation model 

Thermal zone ED 𝜿𝑰𝑮 (-) 𝜼𝑰𝑮 (-) 

Day zone 

Computer 1 0.7 

TV 1 0.7 

Vacuum cleaner 1 0.7 

Clothes iron 2 0.7 

Kitchen 

Refrigerator 1 1 

Freezer 1 1 

Cooking plate 2 1 

Over 2 1 

Microwave 2 1 

Water boiler 2 1 

Bathroom Clothes dryer 1.5 0.5 

 

Aggregation and injection of internal heat gain 

Once internal heat gains from all 3 sources are generated (𝑄𝑡ℎ𝑒𝑟𝑚
𝑜𝑐𝑐 , 𝑄𝑡ℎ𝑒𝑟𝑚

𝐷𝐻𝑊 , 𝑄𝑡ℎ𝑒𝑟𝑚
𝐸𝐷 ), we inject their sum 

denoted 𝑄𝐼𝐺 into the thermal zone. Half of it is assumed to be convective and therefore it is directly 

added to the heat balance of a thermal zone (Eq. 1.1); the other half is radiative and MixedAir integrates 

it into the radiative exchange between the internal surfaces as described in § 1.3.2. MixedAir can also 

handle latent heat gain and integrate it into a mass balance, yet it is not used in our work for 

simplification. An example 𝑄𝐼𝐺 over one day is shown in Figure 1.11. 
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Figure 1.11 Example result of an internal heat gain signal over 1 weekday in the 4 zones of a floor 

1.3.8 Boundary conditions 

The BTS is exposed to boundary conditions (external temperature, solar irradiation, wind speed, etc.…) 

using a specific component from Buildings Library that reads weather data files. The user can either 

create customized weather data or use data files for a Typical Meteorological Year (TMY).  

1.4 Case study BTSs 

Throughout the rest of the thesis, we consider 3 case study BTSs. They are chosen to be representative 

of the French buildings stock, which allows comparative results analysis. The multiple case study is also 

important to support the robustness of the proposed methodologies. 

Instantiation of building case-studies requires setting the envelope parameters: geometry and 

construction material. It also involves specifying certain characteristics of the SH systems. 

1.4.1 Envelope geometry – common to all study case BTSs 

As for the footprint, internal decomposition and facades dimensions, we based our BTSs on a building 

named Le Salammbô (Figure 1.12). It is located in the Zac Flaubert neighbourhood of Grenoble, 

composed of 37 residential lodgings on 8 floors and connected to a DHS branch that serves as a 

demonstrator of advanced control strategies in the City-zen9 project. Potentially, the control strategy 

designed in this thesis could be applied in real-life on Le Salammbô. The actual building, inaugurated 

in 2018, is certified RT2012 -20%, i.e. it fulfils the requirements of the latest thermal regulation RT2012, 

and consumes 20% less than the standard maximum threshold of 50 kWh/m²/year in primary energy. 

                                                      
9 http://www.cityzen-smartcity.eu/fr/grenoble/ 

http://www.cityzen-smartcity.eu/fr/grenoble/
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Figure 1.12 Photograph of Le Salammbô – Grenoble, 2018  

Photo credit: http://www.gre-mag.fr 

Figure 1.12 shows 8 stories with some balconies and terraced areas. However, the BTSs have only one 

floor to save on computation times. As described in § 1.3.5, floors have a rectangular footprint with one 

equivalent square shaped window per façade, without balconies nor terraced areas. 

Geometric parameters of the BTS floor are given in Table 1.4. The building orientation 𝜃𝑏𝑢𝑖𝑙𝑑, storey 

height ℎ𝑓𝑙𝑜 and total floor area 𝑆𝑓𝑙𝑜 are those of Le Salammbô. The zones percentage areas to the total 

floor area 𝛼𝑧𝑜𝑛𝑒
𝑠𝑢𝑟𝑓

 are average values on the 8 stories. Floor surface area and zone volume may then be 

simply calculated according to Eq. 1.30 and Eq. 1.31. 

𝑆𝑧𝑜𝑛𝑒 = 𝑆𝑓𝑙𝑜 ∙ 𝛼𝑧𝑜𝑛𝑒
𝑠𝑢𝑟𝑓

 Eq. 1.30 

𝑉𝑧𝑜𝑛𝑒 = 𝑆𝑧𝑜𝑛𝑒 ∙ ℎ𝑓𝑙𝑜 Eq. 1.31 

Similarly, average areas of opaque and glazed surfaces of the 4 Salammbô facades are given in Table 

1.5. Parameters shown in these 2 tables are common to all 3 study-case BTSs. 

Table 1.4 Geometric parameters of one floor 

𝑵𝒇 𝒐 
        

(rad) 

 𝒇 𝒐 

(m) 
𝑺𝒇 𝒐 (m²) 

𝜶 𝒐  
  𝒓𝒇

 (-) 

Night 

zone 
Kitchen 

Day 

zone 
Bathroom 

1 π/2 2.5 

306 

(10.85m x 

28.21m) 

0.35 0.15 0.4 0.1 
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Table 1.5 Geometric parameters of the facades 

 East facade South facade West facade North facade 

Opaque areas (m²) 54.30 17.09 45.84 23.60 

Glazed areas (m²) 16.22 10.04 24.68 3.53 

 

Important remark 

Note that unless otherwise indicated, all BTSs have the default amount of internal mass given in Table 

1.1. They all receive the same IG signal described in § 1.3.7. 

Also note that since Le Salammbô is located in Grenoble, throughout the dynamic simulation runs, the 

BTSs are exposed to the TMY weather file of the city of Grenoble. Whenever a steady-state condition 

is required, the default value of the external temperature is fixed to 𝑇𝑒𝑥𝑡
𝑠𝑖𝑧𝑖𝑛𝑔,𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒

= -11°C which is 

the extreme temperature used for sizing of heating systems in Grenoble. 

1.4.2 Envelope construction materials – specific per case study BTS 

The 3 case study BTSs belong to 3 different energy consumption classes. The properties of their 

envelope construction materials are the main factor contributing to this distinction. We referred to 

TABULA [FR_TABULA, 2015b] in the choice and parameterization of these case study buildings. 

TABULA is a European project to create a harmonized structure for residential buildings typologies. 

One main use of TABULA’s outcome is recommending strategic refurbishment of the building stock 

per building type, climatic zone and economic policies for the European Union member countries. 

Meanwhile, TABULA has been used in other works as a reference for typical buildings characteristic 

[Reynders, 2015b].  

TABULA classifies the residential buildings into 4 categories (see column headings in Table 1.6) and 

encompasses 10 construction periods (see row headings in Table 1.6). It gives typical data for an 

example building from each category per construction period. Table 1.6 shows the distribution of living 

space in the French residential stock. 
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Table 1.6 Percentage of living space for each group of buildings in the total French residential stock, 

post-processed from [FR_TABULA, 2015b] 

 

Single-family 

house 

Terraced 

house 

Multi-family 

house 

Apartment 

building 

Before 1915 9.23% 2.76% 2.49% 1.42% 

1915 - 1944 4.79% 1.35% 1.19% 0.90% 

1945 - 1967 4.99% 1.33% 2.20% 4.36% 

1968 - 1974 4.58% 1.15% 1.11% 4.03% 

1975 - 1981 5.99% 1.40% 0.55% 2.51% 

1982 - 1989 6.06% 1.33% 0.63% 1.43% 

1990 - 2000 7.45% 1.39% 0.99% 2.82% 

2001 - 2005 4.65% 0.88% 0.55% 1.40% 

2006 - 2012 5.64% 1.21% 0.93% 2.27% 

After 2012 1.01% 0.24% 0.23% 0.55% 

 

From the Multi-family house category, we selected the two extremes and one intermediate case listed 

below. Despite the fact that Single-family houses occupy the highest portions of residential living space, 

buildings connected to DHSs mostly fall in the Multi-family house category. The choice of the 1975 – 

1981 construction period as intermediate case study was motivated by the event taking place in 1974 

following the oil crisis, when the first thermal regulation (RT 1974) was introduced in France. The 

standard aimed at reducing the energy consumption in buildings by 25%. In order to achieve this 

objective, the RT 1974 imposed all building envelopes to have insulation layers and heating emitters to 

have temperature regulators. A transition has consequently been made in the 1974 – 1981 period. 

Therefore we consider the following case study buildings, whose envelop compositions are described 

layer-by-layer in Table 1.7: 

▪ A Multi-family house from the Before 1915 construction period, called the 1915 Building; 

▪ A Multi-family house from the 1975 – 1981 construction period, called the 1975 Building; 

▪ A Multi-family house from the After 2012 construction period, called the 2012 Building. 
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Table 1.7 Envelop composition (form outer to inner layer) of the case study BTSs 

 1915 Building 1975 Building 2012 Building 

Roof 

1 cm tiles 10 cm mineral wool 16 cm polyurethane 

2 cm wood 

20 cm roofing concrete 20 cm roofing concrete 2 cm glass wool 

13 cm plaster 

Ground 

20 reinforced concrete 
2 cm expanded 

polystyrene 

16 cm extruded 

polystyrene 

6 cm concrete 
15 cm reinforced 

concrete 

20 cm reinforced 

concrete 

Opaque facade 

40 cm stone 1.3 cm plaster 1.5 cm cement mortar 

2 cm lime plaster 

4 cm expanded 

polystyrene 

16 cm expanded 

polystyrene 

20 cm cinderblock 18 cm concrete 

Glazing system 0.4 cm glass 

0.4 cm glass 0.4 cm glass 

0.6 cm air 1.6 cm argon 

0.4 cm glass 0.4 cm glass 

Ceiling between 

intermediate 

floors 

20 cm reinforced 

concrete 

20 cm reinforced 

concrete 

20 cm reinforced 

concrete 

16 cm glass wool 16 cm glass wool 16 cm glass wool 

5 cm concrete 5 cm concrete 5 cm concrete 

 

1.4.3 Ventilation and SH characteristics – specific per case study BTS 

For ventilation, we need to set the number of air volume changes per hour, 𝑛 of Eq. 1.15. Theoretically, 

the air renewal rate should depend on the type of the zone, the number of its occupants and their activities 

[Arrêté du 24 Mars 1982 modifié le 28 Octobre 1983 relatif à l’aération des logements, 1983]. However, 

for the sake of simplicity, we assume a constant and equal 𝑛𝑣𝑒𝑛𝑡 in all zones in a BTS, and different 

number for each case study. This distinction is made because, according to the standards, newer 

buildings should have lower air renewal rates so as to reduce their energy consumption (the RT2012 

recommends rates as low as 0.2 Vol/hr). Additionally, we consider that this model also accounts for 

infiltrations, thus old buildings are less airtight and should have higher losses due to infiltration, hence 

higher 𝑛𝑣𝑒𝑛𝑡. The assigned average values shown in Table 1.8 are from the literature [Holøs et al., 2018]. 

The distinctive envelope properties and air renewal rates cause the BTSs to have different energy needs. 

Naturally, they have different SH sizing powers. The SH system with zero thermal inertia of § 1.3.6.1 

is used to find the sizing power (Q𝑆𝑆𝑇
𝑚𝑎𝑥 in Eq. 1.20) under the following steady-state conditions: 
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▪ Indoor air set-point temperature is set to its nominal value 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 = 20°C; 

▪ External temperature is set to 𝑇𝑒𝑥𝑡
𝑠𝑖𝑧𝑖𝑛𝑔,𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒

= -11°C; 

▪ Direct and diffuse solar irradiations are set to 0 W/m²; 

▪ Internal heat gain is deactivated. 

Results of Q𝑆𝑆𝑇
𝑚𝑎𝑥 are given in Table 1.8. 

Besides the sizing power, the SH system operates using different heating curves shown in Figure 1.13, 

under the same differential pressure of 1.5 bar. Older buildings usually require high heating 

temperatures, as opposed to newer buildings. The maximum and minimum heating temperature reported 

in Table 1.8 are set based on common practices and in such a way to ensure stable mass flow rates in 

the heating systems for each case. The maximum temperature 𝑇𝑆𝑆𝑇
𝐻𝐶𝑚𝑎𝑥 is reached when the external 

temperature drops below -11°C, whereas the minimum temperature 𝑇𝑆𝑆𝑇
𝐻𝐶𝑚𝑖𝑛 is used when the external 

temperature exceeds 15°C and during night-time set-backs. 

 

Figure 1.13 Heating curves defining secondary water supply temperature at the substation 𝑇𝑆𝑆𝑇
𝑠𝑢𝑝

 function 

of the external temperature 𝑇𝑒𝑥𝑡, used in conventional SH WCC of the 3 case study BTSs 

Table 1.8 Heating and ventilation characteristics of the case study BTSs 

 1915 Building 1975 Building 2012 Building 

 𝒗    (1/hr) 0.5 0.4 0.3 

𝑸𝑺𝑺𝑻
𝒎𝒂𝒙 (kW) 35 18.5 8.6 

𝑻𝑺𝑺𝑻
 𝑪 𝒎𝒂𝒙 (°C) 100 80 60 

𝑻𝑺𝑺𝑻
 𝑪 𝒎    (°C) 75 55 35 
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1.4.4 Typical simulation scenario 

We present typical simulation runs of the BTSs to verify the energy balance conservation in the model 

and to point the main energetic differences between the 3 case studies. During these simulations, the SH 

controller sets the secondary supply water temperature 𝑇𝑆𝑆𝑇
𝑠𝑢𝑝

: 

▪ Using the heating curves of Figure 1.13 during the day; 

▪ To the lower bound of the heating curves from mid-night until 6:00 am, as night-time set-back.  

In Table 1.9, energy losses and gains that can be easily calculated by time integration of heat flows are 

reported. Note that energy loss through the opaque envelope encompasses losses through all opaque 

facades, the roof and the floor. Energy loss through glazing systems accounts for infiltrations through 

the frame as well as losses through the glass layers. The values show the difference in terms of energy 

consumption between the 3 case study BTSs. However, they all receive the same internal heat gain 

signal; therefore, the contributions of internal gain are not equivalent. Over the simulated day, internal 

heat gain covered about 40% of the 2012 Building SH demand, whereas it only contributed to roughly 

10% of the 1915 Building SH demand.  

Table 1.9 shows that the sum of energy losses is slightly greater than energy supply. Assuming that the 

energy balance of the system should be conserved during the one-day cycle (indoor air temperature at 

the beginning and at the end of the day should be almost the same), we interpret the difference between 

losses and supply to be due to the contribution of solar heat gain which is not straightforward to compute.   

Time series simulation results are shown in Figure 1.14, Figure 1.15 and Figure 1.16. They graphically 

depict the particular sensitivity of the 2012 Building toward internal and solar heat gain. 

In the figures, 𝑄𝑒𝑛𝑣
𝑜𝑝𝑎

 denotes heat loss through the opaque envelope and 𝑄𝑒𝑛𝑣
𝑔𝑙𝑎

 denotes heat loss through 

the glazing systems. 𝐼𝑠𝑜𝑙
𝑑𝑖𝑟, 𝐼𝑠𝑜𝑙

𝑔𝑙𝑜
 and 𝐼𝑠𝑜𝑙

𝑑𝑖𝑓
 are respectively the solar direct normal, global horizontal and 

diffuse horizontal irradiations used the BTS radiation model.  𝑄𝑟𝑎𝑑
𝑡𝑜𝑡  is the total heat emitted from all 4 

radiators in the BTS and 𝑄𝑆𝑆𝑇 is the power supplied from the DHS substation.  
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Table 1.9 Energetic assessment of thermal losses, internal gain and SH, unit (𝒌𝑾 /𝒎𝟐/ 𝒂 ) 

BTS 

Energy 

loss 

through 

the opaque 

envelope 

Energy 

loss 

through 

the glazing 

systems 

Energy 

loss 

through 

ventilation 

Energy 

supply 

through 

internal 

heat gain 

Energy 

supply 

through 

the 

radiators 

Energy 

supply – 

Energy 

losses 

1915 

Building 
1.18 0.34 0.17 0.15 1.52 -0.03 

1975 

Building 
0.53 0.20 0.14 0.15 0.70 -0.02 

2012 

Building 
0.13 0.16 0.10 0.15 0.22 -0.03 

 

Figure 1.14 Simulation results from the 1915 Building  
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Figure 1.15 Simulation results from the 1975 Building 
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Figure 1.16 Simulation results from the 2012 Building  
Note the peak in losses through opaque envelope elements (top row, second column) which counterintuitively coincides with 

the solar radiation peak. We explain this peak is due to the increase in floor temperature, being directly struck by the solar rays, 

in thermal exchange with a surface at a fixed temperature (10°C). This is remarkably visible in the 2012 Building since this 

low-consumption building has particularly low losses through other envelope elements. 

1.5 Conclusion 

This chapter described the development of BTSs. We followed the object-oriented principle of Modelica 

in the description of the BTS components and we detailed the physical thermal phenomena and 

mathematical models considered in each. Three case study BTSs have been introduced to represent 

different energy classes found in the French building stock and parameterized based on thermal 

regulations applied in France. A typical simulation scenario is presented to illustrate the differences 

between the case studies and to assess the heat balance conservation in the model. These BTSs will 

constitute our virtual experimental environment for the rest of the thesis. 
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Chapter 2 

Reduced-order building modelling 

Synopsis 

After setting up the simulation environment, the objective of this chapter is to infer a simplified reduced-

order thermal building model from data generated by the BTS, to be later used in the MPC application. 

The model should fulfil several requirements: it should be accurate, identifiable from a limited set of 

available data at a DHS scale and computationally efficient for the intended optimization problem. A 

literature review concludes that such a model is yet to be proposed and it would constitute a contribution 

of this thesis. We develop a suitable modelling approach, then apply and assess its outcome on analytical 

cases. Some limitations are identified; we propose some adjustments and carry-on application on the 

three case study BTSs introduced in the previous chapter. Final results show that the obtained models 

are accurate enough to be used in MPC. 

2.1 Definition and requirements on the reduced-order model 

A Reduced-Order Model (ROM) is a simplification of a complex Higher-Order Model (HOM) that 

preserves dominant dynamics of the system with a relatively small number of equations for the purpose 

of reducing computational times and data storage capacity [Antoulas et al., 2000].  

In this thesis, we call ROM (of a building system) the set of mathematical equations describing the 

system thermal dynamics. As any model, the ROM is driven by input signals, some of them are 

controllable by the DHS operator while others are disturbances. It has state variables: some of them are 

measurable at the DHS substation and therefore constitute the outputs or observations; others are hidden 

states. It has time-invariant parameters that require identification based on historical observations 

generated by the BTS regarded as the corresponding HOM. In our case, we consider ROMs that keep 

some physical interpretation. Hence, the process of developing a ROM starts by defining its structure, 

i.e. the underlying equations, inputs, outputs and hidden states, followed by a parametric identification. 
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The role of the ROM is to predict the thermal behaviour of the building so that its controllable input 

may be optimized over a prediction horizon in a MPC framework to achieve some control objectives 

that will be given in the following chapter. It shall fulfil certain requirements explained hereafter. 

2.1.1 Accuracy 

In MPC, an inaccurate model causes the controller to drive the system on sub-optimal trajectories. For 

instance, in our application, a sub-optimal trajectory implies thermal discomfort and/or extra energy 

costs for SH which defeats the purpose of MPC. Whereof, it is patently crucial to carefully derive an 

accurate ROM [Prívara et al., 2013a]. This requires a ROM structure well-representative of the most 

influential dynamics in the building system, paired with a robust parametric identification strategy 

[Blum et al., 2019]. According to [Stigter et Beck, 1994], uncertainty over the model structure is a 

relevant source of discrepancies, whereas parametric uncertainty often has only marginal contributions. 

2.1.2 Identifiability 

The ROM structure should be well-designed so that all parameters are identifiable using the available 

observations during usual operation modes. Over-parametrization given few observation signals results 

in poorly identifiable parameters, i.e. different sets of parameters can produce almost the same results 

[Brun et al., 2001]. In this thesis, we assume that available observations are solely measurements found 

at the substation. Beyond the substation is a black-box from the DHS operator perspective. Thus, 

geometric description of the building, construction material, year of construction and internal 

measurements are all to be considered as unavailable in this study. Moreover, the identification should 

be processed from real-life scenarios, non-intrusive to the inhabitants. In this regard, admissible 

scenarios to gather observations shall not entail immoderately prolonged power cut-offs. 

2.1.3 Computational efficiency 

In MPC, the controller solves an optimization problem over a prediction horizon, i.e. it shall compute 

optimal values for all decision variables (controllable inputs) at all sampling times of the horizon. This 

needs to be executed within few minutes. Usually linear models are well handled and efficient solvers 

promote their incorporation in MPC. However, since most real-life systems feature nonlinear dynamics 

at some point, one may intuitively attempt to model these non-linearities so as to obtain a rather accurate 

model. Non-linear ROM can be linearized for control implementation; nevertheless, when their 

linearization entails insertion of additional variables, they quickly become prohibitive in computational 

efficiency. The solver will then fail at finding the optimal solution within the given time step. Therefore, 

it is recommended for MPC to avoid strongly nonlinear models and find alternative linear, or at most 

bilinear, representations of the system dynamics [Lehmann et al., 2013a].  
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2.2 Literature review 

Building modelling is an extensively researched topic. Based on the model requirements specific to our 

application, a narrowed-down literature review is presented hereafter. 

2.2.1 ROM structures 

Often in the literature, building energy models are classified into 3 categories [Foucquier et al., 2013; 

Harish et Kumar, 2016; Li et Wen, 2014; Kramer et al., 2012]: 

▪ White-box models; 

▪ Black-box models; 

▪ Grey-box models. 

White-box models are developed in a forward approach which essentially involves modelling the 

building components using physical equations and setting all parameters from given physical 

characteristics. White-box models are rather HOMs. The BTS presented in Chapter 1 is such an example. 

Therefore, no further expatiation on white-box models is given in this section. 

Black-box models may developed by machine learning approaches which inspect historical data to learn 

relationships between inputs and outputs. Popular approaches for black-box modelling include Box-

Jenkins derivatives for linear models [Ríos-Moreno et al., 2007; Rabl, 1988] and artificial neural 

networks for non-linear models [Huang et al., 2015]. Black-box models are fast and parsimonious 

ROMs; however they only link outputs to inputs; hidden states of the system cannot be reconstructed 

because the obtained model parameters are not physically interpretable. In our problem, the indoor 

temperature is a hidden state that needs to be reconstructed through the ROM in order to assess and 

modulate thermal comfort during MPC. Therefore black-box models cannot be used for our application. 

Grey-box models are semi-physical: equations of the model are formulated based on physical laws, thus 

its parameters have physical significance, however they are virtual (or equivalent). In grey-box building 

modelling, several elements of the building model are lumped (or aggregated) into a single node and 

therefore have a uniform temperature and equivalent physical properties. A thermal capacitance is 

associated to a temperature node, whereof the grey-box model is sometimes called lumped-capacitance 

model. Thermal/electrical analogy arises when establishing the heat balance for each node, whereof a 

lumped-capacitance model is commonly represented with an electric circuit schema and called RC / 

RxCy (Resistance-Capacitance) model. Similarities in the thermal/analogy are stated in Table 2.10.   

 

 



Chapter 2         Reduced-order building modelling 

       

48 

 

Table 2.10 Analogy chart between thermal RC building models and electric circuits 

RC building model Electric circuit 

Node of lumped elements Electric potential terminal 

Temperature Electric potential 

Heat flow Current 

Imposed temperature Voltage source 

Imposed heat flow Current source 

Thermal resistance Resistor 

Thermal capacitance Capacitor 

 

Moreover, a linear RC model has thermal resistances and capacitances that do not vary with the imposed 

temperatures or heat flows. A time-invariant RC model has resistances and capacitances that do not vary 

with time.  

RC models have a limited number of equations. Imposed heat flows and temperatures constitute their 

inputs. Depending on the available observations, temperatures at the nodes and heat flows between 

nodes constitute their outputs. Thus, they are ROMs whose parameters can be identified from HOMs. 

Furthermore, their physical parameters can be used to reconstruct hidden states. Therefore they seem 

convenient for our application.  

The number of thermal capacitances in an RC model determines the ROM order. The order, the layout 

of the nodes and connections between them, together with the specification of inputs / outputs determine 

the ROM structure. Numerous structures can be found in the literature.  

Important remark 

Note that in the sequel, thermal resistance (𝑅) will only appear in its inverse form (1 𝑅⁄ ), hence we 

introduce the global heat transfer coefficient 𝑈 = 1 𝑅⁄  (expressed in 𝑊 𝐾⁄ ), for sake of simplicity. 

2.2.1.1 First order models 

First order models have 1 thermal capacitance 𝐶𝑏𝑢𝑖𝑙𝑑. All building elements are lumped into one node 

and have uniform temperature 𝑇𝑏𝑢𝑖𝑙𝑑. Establishing the heat balance for the single node yields Eq. 2.32.  

𝐶𝑏𝑢𝑖𝑙𝑑 ∙
𝑑𝑇𝑏𝑢𝑖𝑙𝑑
𝑑𝑡

= 𝑈𝑏𝑢𝑖𝑙𝑑 ∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑏𝑢𝑖𝑙𝑑) + 𝑄ℎ𝑒𝑎𝑡𝑒𝑟 + {𝑒𝑥𝑡𝑟𝑎 𝑡𝑒𝑟𝑚𝑠} Eq. 2.32 
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The building mainly loses heat to the external environment at temperature 𝑇𝑒𝑥𝑡 and receives heat from 

a heating system 𝑄ℎ𝑒𝑎𝑡𝑒𝑟. Sophisticated models include extra terms to account for solar gain, internal 

heat gain or other factors. First order models may also have massless nodes that exchange heat with the 

node to which 𝐶𝑏𝑢𝑖𝑙𝑑 is associated, however temperatures of massless nodes must be inputs to the model. 

2.2.1.1.1 Static energy signature models 

Static energy signature models are 1st order models that assume a constant value over time for 𝑇𝑏𝑢𝑖𝑙𝑑. 

This is formulated in Eq. 2.33: 

𝐶𝑏𝑢𝑖𝑙𝑑 ∙
𝑑𝑇𝑏𝑢𝑖𝑙𝑑
𝑑𝑡⏟    
=0

= 𝑈𝑏𝑢𝑖𝑙𝑑 ∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑏𝑢𝑖𝑙𝑑) + 𝑄ℎ𝑒𝑎𝑡𝑒𝑟 + {𝑒𝑥𝑡𝑟𝑎 𝑡𝑒𝑟𝑚𝑠} = 0 Eq. 2.33 

These models are valid on relatively long time steps of at least a day where the actual mean temperature 

of the building is quasi constant and equal to the assumed 𝑇𝑏𝑢𝑖𝑙𝑑. They are mainly used to linearly 

correlate the average heating load 𝑄ℎ𝑒𝑎𝑡𝑒𝑟 to the average external temperature 𝑇𝑒𝑥𝑡 (and other factors in 

case of extra terms). The result is a linear plot (𝑄ℎ𝑒𝑎𝑡𝑒𝑟 𝑣𝑠 𝑇𝑒𝑥𝑡) called the energy signature of the 

building, hence the name. 

Static energy signature models are the simplest models to develop at a city scale since they do not require 

measurements of internal temperature [Rabl et Rialhe, 1992; Mutani et al., 2017; Fels, 1986].  

However, since the effect of the building thermal capacitance 𝐶𝑏𝑢𝑖𝑙𝑑 is cancelled out, these models do 

not reflect any thermal inertia of the system. For optimal control strategies which principally aim at 

exploiting thermal inertia to reduce heating costs by modulating 𝑇𝑏𝑢𝑖𝑙𝑑 over short time steps, static 

energy signature models would not be suitable. 

2.2.1.1.2 Dynamic first order models 

Dynamic 1st order models have the structure formulated in Eq. 2.32 with variable 𝑇𝑏𝑢𝑖𝑙𝑑.  

They are often used at city-scale for their computational efficiency and because identification of their 

few parameters requires only little data. They were investigated and used in [Elci et al., 2018; Lin et al., 

2012; Guelpa et Verda, 2016; Muthalib et Nwankpa, 2014; Park et al., 2011]. 

When assimilating a building to a 1st order system, it is assumed to have a single time constant 𝜏𝑏𝑢𝑖𝑙𝑑 

calculated as in Eq. 2.34. 
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𝜏𝑏𝑢𝑖𝑙𝑑 =
𝐶𝑏𝑢𝑖𝑙𝑑
𝑈𝑏𝑢𝑖𝑙𝑑

 Eq. 2.34 

This is only valid for buildings with light and poorly insulated envelopes. In fact, buildings are complex 

systems with multiple time constants of different magnitudes. In case of a heavy and well-insulated 

building, envelope elements such as external walls have a large time constant, while indoor air has low 

thermal capacity thus a much shorter time constant. Therefore, 2 dynamics are present. When 

aggregating indoor air and envelope elements into one node, they are both allocated the same dynamics 

expressed by the variations of 𝑇𝑏𝑢𝑖𝑙𝑑. 𝑇𝑏𝑢𝑖𝑙𝑑 is then a fictive in-between temperature that cannot be used 

to modulate indoor temperature, neither does it reflect the slow dynamics due to the thermal inertia of 

structure elements. Hence, a 1st order ROM structure is not recommended for optimal control 

applications [Reynders et al., 2013b; Vivian et al., 2017b]. 

2.2.1.2 Second order models 

Second order models have 2 thermal capacitances, usually one representing the external envelope and 

another for the internal environment: internal mass and indoor air aggregated at a common temperature 

node (Figure 2.17 (a)) or internal mass and massless indoor air at separate nodes (Figure 2.17 (b)).  

 

Figure 2.17 Example of 2nd order ROM structure in [Harb et al., 2016] 

(a) 1 indoor temperature node representing both indoor air and internal mass 

(b) 2 indoor temperature nodes, one for the massless indoor air and another for internal mass 

Structure in (b) was found more accurate than that in (a). 

The model then consists of 2 heat balance differential equations for each node exchanging heat in 

between each other and with the external environment. 

(a) (b)
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The 2nd order ROM structure is often found to be more accurate than the 1st order in comparative studies, 

especially short time steps predictions, while retaining the main advantages of simplicity, identifiability 

and computational efficiency [Berthou et al., 2014b; Reynders et al., 2014b; Ferracuti et al., 2017]. 

However, for buildings with heavy internal mass (furniture and partition walls), when aggregating the 

indoor air with internal mass as in Figure 2.17 (a) the model falls into the same limitations of the 1st 

order. Hence, a structure with separate node for indoor air, whether with a thermal capacitance or not, 

seems more persuasive. 

2.2.1.3 Third order models 

Third order models have 3 thermal capacitances: one for the external envelope, another for internal mass 

and a third for indoor air. Examples of equivalent RC networks are the one similar to Figure 2.17 (b) 

with an additional capacitance to the air node and the one in Figure 2.18.  

 

Figure 2.18 Example of 3rd order ROM structure with 𝑇𝑎𝑖𝑟 the temperature at the air node, 𝑇𝑒𝑛𝑣 at the 

envelope node and 𝑇𝑚𝑎𝑠𝑠 at the internal mass node, studied in [Reynders et al., 2013b] and found to 

outperform a 1st and a 2nd order models 

The model consists of 3 differential equations establishing heat balances for the nodes. 

Within the same order, different structures are possible depending on how solar heat gain, internal gain 

and connections between nodes are modelled. For instance in Figure 2.17 (b), solar heat gain is modelled 

as direct heat flux injected into the air and the internal mass nodes and its effect on the envelope is 

account for by correcting the external temperature (𝑇𝑒𝑥𝑡 = 𝑇𝑎 in Figure 2.17 (b) is substituted with 

𝑇𝑎,𝑒𝑞 = 𝑇𝑒𝑥𝑡 + 𝛼 ∙ 𝐼𝑠𝑜𝑙 with 𝐼𝑠𝑜𝑙 the solar irradiation and 𝛼 a constant parameter). Whereas in Figure 

2.18, solar gain is simply injected as direct flux into the air node. On the other hand, internal heat gain 

is represented in Figure 2.18 but not in Figure 2.17 (b), and heating power is injected into the air and the 

internal mass node in Figure 2.17 (b) but only in the air node in Figure 2.18. A variety of other 3rd order 

ROM structures are found in the literature [Berthou et al., 2014b; Lauster et al., 2014]. 

𝑇𝑒𝑛𝑣

𝑇𝑚𝑎𝑠𝑠

𝑇𝑒𝑥𝑡

𝑇𝑒𝑥𝑡

𝑇𝑎𝑖𝑟
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2.2.1.4 Structures with combinations of 1st and 2nd order ROMs 

Some structures are of intermediate elaboration between a 3rd order ROM and a white-box HOM. 

Typically in these models, the centre node represents indoor air. Other constructions such as ceiling, 

floor, external walls, windows and internal partition walls are each modelled with an equivalent 1st or 

2nd order RC network. An example is shown in Figure 2.19. 

 

Figure 2.19 Example of a structure combining RC networks for constructions elements with a 1st order 

ROM in [Gouda et al., 2000] 

Accuracy of models in this category is allegedly high, if all parameters are precisely identified [Lehmann 

et al., 2013b; Xu et Wang, 2008; Hudson et Underwood, 1999; Gouda et al., 2000]. Since the number 

of parameters escalates, identification requires more observations such as surface temperature 

measurements at various nodes. With observations limited to few signals at the DHS substation, these 

models are not identifiable and therefore are not feasible in our work. 

2.2.1.5 Structures with a heating system model 

Some works intend to represent the thermal inertia and control settings of the heating system within the 

ROM structure instead of simply injecting a direct heat flux into the nodes. The model than features a 

temperature node for the heat emitter, an associated thermal capacitance and heat transfer coefficient. 

Depending on the considered heating system and level of complexity, its model might be linear [Harb 

et al., 2016; Bacher et Madsen, 2011] or non-linear [Gouda et al., 2000; Saurav et Chandan, 2017]. 

Figure 2.20 depicts an example of a structure featuring a thermal capacitance 𝐶𝑝𝑝 for pipes plan 

embedded in a floor which itself is represented with a 1st order model with thermal capacitance 𝐶𝑓𝑙. 
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Figure 2.20 Example of a ROM structure with a heating system in [Hu et al., 2019b]  

Exploiting the thermal inertia of heating systems is beneficial in control strategies and MPC for instance, 

particularly in case of floor-heating or long heating circuits operating at high temperatures in DHS. 

Therefore we ought to consider integrating the heating system within our proposed structure. 

2.2.2 Parametric identification 

Once the ROM structure is defined, the remaining task is to identify values for its parameters from 

historical data. In this thesis, we only consider time-invariant RC models, i.e. with constant parameters 

that need to be identified once and for all.  

In the literature, parameters identification approaches are classified under 3 categories: estimation based 

on physical interpretations, deterministic optimization and probabilistic inference [Fabrizio et Monetti, 

2015; Fernández et al., 2018; Kim et Park, 2016; Reddy, 2006]. 

2.2.2.1 Estimation based on physical interpretations 

This approach does not require any automated algorithm. It simply relies on the modellers’ own 

experience, knowledge about the system and some physical interpretations of the observations. 

For instance in [Guelpa et Verda, 2016], the authors identified the 2 parameters (𝐶𝑏𝑢𝑖𝑙𝑑 and 𝑈𝑏𝑢𝑖𝑙𝑑) of 

the 1st order ROM (Eq. 2.32 with no extra terms) by interpreting the SH power and return temperature 

measurements at the substation of a building connected to a DHS. The parameters are identified 

separately: first, the authors observed that the building indoor temperature 𝑇𝑏𝑢𝑖𝑙𝑑 undergoes very little 

variations in the afternoons, therefore it may be considered constant. By collecting time-series data of 



Chapter 2         Reduced-order building modelling 

       

54 

 

the external temperature 𝑇𝑒𝑥𝑡 and the heating power 𝑄ℎ𝑒𝑎𝑡𝑒𝑟 during these periods, they estimated 𝑈𝑏𝑢𝑖𝑙𝑑 

by least-squares fitting. Then, they assumed that after shutting-down 𝑄ℎ𝑒𝑎𝑡𝑒𝑟, 𝑇𝑏𝑢𝑖𝑙𝑑 undergoes transient 

dynamics similar to those of the heating water return temperature. By analysing the water temperature 

dynamics, they estimated the building time constant 𝜏𝑏𝑢𝑖𝑙𝑑 (Eq. 2.34) and compute 𝐶𝑏𝑢𝑖𝑙𝑑.  

Estimation approaches can be used for models with a small number of parameters, therefore they are 

limited to 1st order ROMs.  

2.2.2.2 Deterministic optimization  

Parameters identification can be expressed as an optimization problem where the objective is to 

maximize the resemblance between the ROM and the HOM outputs. Mathematically, this is equivalent 

to a minimization problem of the error between the ROM and the HOM outputs.  

Depending on the model states that are considered as outputs (observations), an objective function is 

formulated. In the vast majority of works, the objective function is the Root Mean-Square Error 

(RMSE10), or the Mean-Square Error (MSE11) or the Sum-Squared Error (SSE12) of the indoor air 

temperature [Penman, 1990; Dewson et al., 1993; Harb et al., 2016; Andrade-Cabrera et al., 2017; Hu 

et al., 2016; Viot et al., 2015; Le Mounier et al., 2014]. [Berthou et al., 2014b] formulated the objective 

function as the summation of the SSE of the heating power and the indoor air temperature. [Prívara et 

al., 2013b] used the summation of the MSE on the heating water return temperature and the indoor air 

temperature. [Kramer et al., 2013b] used RMSE on indoor air temperature and relative humidity to 

identify parameters of a hydrothermal ROM. [Wang et Xu, 2006] relied solely on the RMSE of the 

cooling/heating load to identify a 2nd order model. 

There exist various methods to solve the optimization problem, i.e. to find the set of ROM parameters 

that minimizes the objective function. When the ROM structure is linear, gradient-based algorithms are 

often employed, such as the interior point algorithm usually implemented with inequality constraints to 

limit the search space within physically plausible range [Harb et al., 2016; Berthou et al., 2014b; Viot 

et al., 2015; Le Mounier et al., 2014; McKinley et Alleyne, 2008]. For non-linear problems, an algorithm 

based on the solution of the Kuhn–Tucker equations is used in [Gouda et al., 2002] and other gradient-

free algorithms are more commonly employed. For instance, genetic algorithms [Wang et Xu, 2006; 

Kramer et al., 2013a] and evolutionary particle swarm optimization [Andrade-Cabrera et al., 2017]. 

                                                      

10 𝑅𝑀𝑆𝐸(𝑥) = √∑ (𝑥 − 𝑥̂)2 𝑁𝑜𝑏𝑠⁄𝑁𝑜𝑏𝑠
 

11 𝑀𝑆𝐸(𝑥) = ∑ (𝑥 − 𝑥̂)2 𝑁𝑜𝑏𝑠⁄𝑁𝑜𝑏𝑠
 

12 𝑆𝑆𝐸(𝑥) = ∑ (𝑥 − 𝑥̂)2𝑁𝑜𝑏𝑠
 

𝑁𝑜𝑏𝑠 is the number of observation points, 𝑥 is the HOM output and 𝑥̂ is the ROM output 



Chapter 2         Reduced-order building modelling 

       

55 

 

2.2.2.3 Probabilistic inference 

Another approach for parametric identification is the probabilistic Bayesian inference based on Bayes’ 

theorem stated in Eq. 2.35 where 𝜃  denotes the unknown set of parameters and 𝑌 is the set of historical 

observations. Given prior believes about the probability density functions of 𝜃 (denoted 𝑃(𝜃)) and the 

likelihood of the observations 𝑃(𝑌|𝜃), Bayes’ theorem yields posterior distributions of 𝜃 (denoted 

𝑃(𝜃|𝑌)), read  the probability of 𝜃 given 𝑌. 

𝑃(𝜃|𝑌) ∝ 𝑃(𝑌|𝜃) ∙ 𝑃(𝜃) Eq. 2.35 

The identification process requires sampling of values for 𝜃 such that the probabilistic properties of the 

prior probability density functions are preserved. This can be achieved via stochastic Markov chain 

Monte Carlo simulations. The sampling number grows exponentially with the number of parameters to 

be identified and can quickly become computationally intensive. This constitute the main drawback of 

the technique. On the other hand, probabilistic Bayesian inference offers several advantages over 

deterministic optimization. It systematically incorporates prior physical knowledge about the system 

(𝑃(𝜃)) in the calculation of 𝑃(𝜃|𝑌). Then, uncertainties on the observations due to measurement errors 

or unmeasured disturbances such as internal heat gain may be accounted for. And finally, instead of 

punctual identification of a parameter, it provides richer information about its probability distribution. 

Identifiability at DHS depends on the available observations, therefore both deterministic and 

probabilistic identification approaches are equally feasible. 

Bayesian inference for a 2nd order building ROM identification was demonstrated in the works of 

[Zayane, 2011] and it was found better suited for this particular problem compared to a classical 

optimization approach.  

2.2.3 Conclusion 

We conclude that a grey-box model of at least 2nd order with a representation of the heating system is 

the most propitious candidate as ROM structure for our application. While such structure does not form 

a novelty to the research field by itself, a non-intrusive parametric identification approach of such 

structure relying solely on measurements available at a DHS substation, to our knowledge, has not been 

investigated yet. Therefore, we aim at filling-in this gap by proposing and assessing a model structure 

and parametric identification strategy intending to fulfil all requirements discussed in § 2.1. 
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2.3 Methodology 

This section presents our ROM development. First, a preliminary study is carried-out for a better 

understanding of the building thermal dynamics. In light of this study, a ROM structure is proposed, 

then a parametric identification strategy. The methodology is applied on analytical case studies, then on 

the 3 case study BTSs introduced in the previous chapter of this manuscript. As a result, 3 ROMs are 

identified and assessed, the limitations of the approach being highlighted. 

2.3.1 Preliminary study 

2.3.1.1 Space-heating demand flexibility and purpose of the study 

SH demand flexibility is the “ability to adapt the [building] energy profile without jeopardizing 

technical and comfort constraints”, as defined in [Reynders et al., 2018]. This ability is key for SH 

demand side management and it is inherently offered by buildings thermal inertia. 

Thermal inertia is the “degree of slowness with which the temperature of a body approaches that of its 

surroundings and which is dependent upon its absorptivity, its specific heat, its thermal conductivity, its 

dimensions, and other factors”13.  

Buildings are composed of many elements, each having its own thermal inertia. The purpose of this 

preliminary study is to quantify the impact of thermal inertia of selected elements in a building on its 

SH demand flexibility.  

Here we investigate elements that have been pointed-out in the literature for being impactful on heat 

demand flexibility: 

▪ Buildings envelope insulation level and air-tightness: These factors seem to have the greatest 

impact on demand flexibility [Le Dréau et Heiselberg, 2016b; Foteinaki et al., 2018b; Johra et 

al., 2019]. Well-insulated buildings with low infiltration and air renewal rates preserve their 

indoor climate longer than those on the other end of the spectrum; therefore they have higher 

thermal inertia and provide more heat demand flexibility. 

In this study we consider the 3 BTSs described in § 1.4 as different classes of insulation level 

and air-tightness: 

▫ 1915 Building, uninsulated with a high infiltration and air renewal rate; 

▫ 1975 Building, poorly insulated with moderate infiltration and air renewal rate; 

▫ 2012 Building, well-insulated with low infiltration and air renewal rate. 

                                                      
13 https://www.merriam-webster.com/dictionary/thermal%20inertia 

https://www.merriam-webster.com/dictionary/thermal%20inertia
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▪ Thermal mass: Buildings thermal mass or equivalent thermal capacitance is a property that 

measures the thermal energy storage capacity within the building envelope, internal partitions 

and furniture. Thermal mass is the second most influential factor on demand flexibility  [Johra 

et al., 2019; Johra et Heiselberg, 2017b; Antonopoulos et Koronaki, 2000b; Arteconi et al., 

2019]. 

In this study we consider 3 levels of building thermal mass by changing the parameter for 

internal mass density in the BTS (𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 in Eq. 1.14): 

▫ Empty thermal zones with no internal mass, ∑𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 = 0  𝑘𝑔/𝑚
2; 

▫ Light thermal mass, 𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 = 1 2⁄  values listed in Table 1.1, ∑𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 =

47.5 𝑘𝑔/𝑚2; 

▫ Heavy thermal mass, 𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 = values listed in Table 1.1, ∑𝑚𝑖𝑛𝑡 𝑠𝑙𝑎𝑏 = 95 𝑘𝑔/𝑚
2. 

▪ Heating system: Fewer studies assessed the effect of heating systems on heat demand flexibility 

[Le Dréau et Heiselberg, 2016b; Arteconi et al., 2019]. Hydronic heating systems and, even 

more so, those embedded in concrete slabs (floor heating) have high thermal inertia, and their 

control is thus more flexible. 

In this study we consider 3 heating systems of different thermal inertia: 

▫ 0 Inertia heating system is the SH system with ideal temperature regulation described 

in § 2.3.6; 

▫ 50°C Radiators is the hydronic SH system served by a DHS substation described in § 

2.3.7 and operating with a constant supply temperature of 50°C at the sizing external 

temperature; 

▫ 70°C Radiators is the same system as 50°C Radiators but operating with a constant 

supply temperature of 70°C at the sizing external temperature. 

There is no universal measure of SH demand flexibility, but numerous quantification methods have been 

suggested in the literature and reviewed in [Reynders et al., 2018]. In our study, we suggest an 

experimental protocol together with a flexibility indicator to allow quantitative comparison between 

different cases. 

2.3.1.2 Experimental simulation protocol and flexibility index 

First, we define 3 mean temperatures in the BTS, referred to as the HOM, where 𝑁𝑧𝑜𝑛𝑒𝑠 the number of 

equivalent thermal zones: 
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▪ The HOM mean air temperature 𝑇𝑎𝑖𝑟
𝐻𝑂𝑀: 

𝑇𝑎𝑖𝑟
𝐻𝑂𝑀 =

∑ (𝑆𝑧𝑜𝑛𝑒
𝑖 ∗ 𝑇𝑎𝑖𝑟

𝑧𝑜𝑛𝑒𝑖)
𝑁𝑧𝑜𝑛𝑒𝑠
𝑖=1

∑ 𝑆𝑧𝑜𝑛𝑒
𝑖𝑁𝑧𝑜𝑛𝑒𝑠

𝑖=1

 Eq. 2.36 

▪ The HOM mean radiative temperature 𝑇𝑟𝑎𝑑
𝐻𝑂𝑀: 

𝑇𝑟𝑎𝑑
𝐻𝑂𝑀 =

∑ ∑ (𝑇𝑖𝑛𝑡  𝑠𝑢𝑟𝑓
𝑖,𝑗

∙ 𝑆𝑖𝑛𝑡  𝑠𝑢𝑟𝑓
𝑖 )

𝑁𝑖𝑛𝑡  𝑠𝑢𝑟𝑓
𝑖=1

𝑁𝑧𝑜𝑛𝑒𝑠
𝑗=1

∑ ∑ 𝑆𝑖𝑛𝑡  𝑠𝑢𝑟𝑓
𝑖,𝑗𝑁𝑖𝑛𝑡  𝑠𝑢𝑟𝑓

𝑖=1
𝑁𝑧𝑜𝑛𝑒𝑠
𝑗=1

 Eq. 2.37 

▪ The HOM mean operative temperature 𝑇𝑜𝑝𝑒𝑟
𝐻𝑂𝑀: 

𝑇𝑜𝑝𝑒𝑟
𝐻𝑂𝑀 =

𝑇𝑎𝑖𝑟
𝐻𝑂𝑀 + 𝑇𝑟𝑎𝑑

𝐻𝑂𝑀

2
 Eq. 2.38 

The experimental protocol consists in maintaining the HOM under constant thermal conditions:  

▪ Constant external temperature, here we set 𝑇𝑒𝑥𝑡 = 𝑇𝑒𝑥𝑡
𝑠𝑖𝑧𝑖𝑛𝑔,𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒

= −11°𝐶; 

▪ Constant internal air temperature, here we aim at maintaining 𝑇𝑎𝑖𝑟
𝐻𝑂𝑀 close to 19°C. To ensure 

this condition for different heating systems, we set 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 = 19°𝐶 in case of a 0 Inertia heating 

system and 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 = 20°𝐶 in case of a Radiators heating system. In fact a TRV acts like a 

proportional controller, in steady-state conditions, if 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 = 20°𝐶, 𝑇𝑎𝑖𝑟

𝐻𝑂𝑀 will be less than 20°𝐶, 

somewhere around 19°𝐶,  to allow a constant and stable water mass flow rate through the TRV; 

▪ No solar gain; 

▪ No internal heat gain. 

Then the heating power is cut-off from its source and the system free response is observed. For study-

cases with 0 Inertia heating system (Figure 2.21 (a)), the heating power is directly cut-off at the zones 

air node via the thermal switch, whereas in case of a Radiators heating system (Figure 2.21 (b)), it is 

shut-down at the substation level by limiting the delivered SH power 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 to 0 W. Note that the upper 

plots of Figure 2.21 show the variations of the heat injected into the air zone, not the one delivered at 

the substation. All three mean temperatures are monitored and the time delays for a 1°𝐶 drop in each of 

these temperatures are registered. 
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Figure 2.21 2012 Building with Light internal mass thermal response following the SH power cut-off: 

(a) case of 0 Inertia heating system, (b) case of 70°C Radiators heating system 

The time delay for 1°𝐶 drop in 𝑇𝑜𝑝𝑒𝑟
𝐻𝑂𝑀, denoted 𝜏−1, is the building SH demand flexibility index: a larger 

𝜏−1 means that the heating power may be shut-down for a longer period before 1°𝐶 drop is perceived 

by the consumers, which implies larger flexibility. 

2.3.1.3 Results and conclusions 

Before discussing heat demand flexibility, looking at Figure 2.21, three observations can be noted 

regarding buildings thermal dynamics: 

▪ Within the few minutes following the power cut-off, the air temperature (𝑇𝑎𝑖𝑟
𝐻𝑂𝑀) drop is 

remarkably sharper than the surface temperature (𝑇𝑟𝑎𝑑
𝐻𝑂𝑀) drop. This is due to the relatively low 

thermal inertia of internal air compared to that of the envelope and the internal constructions. 

Whereof we infer that a ROM of at least second order is required to distinguish these two 

dissimilar dynamics. This conclusion is coherent with others findings in the literature (e.g. 

[Vivian et al., 2017b]). 

▪ After a few minutes, the surface temperature crosses over the air temperature. Heat transfer is 

now reversed, given-off by the walls surfaces to heat-up the internal air. This phenomena is 

sometimes called activation of building thermal mass short-term heat storage [Wolisz et al., 

2015; Le Dréau et Heiselberg, 2016b; Olsthoorn et al., 2017]. Notice how air temperature drop 

gets smoother from this point forward. The drop velocity of air, surface and their average 

perceived temperature becomes uniform and only on the long run the building system seems to 

behave as a first-order system.  

▪ When comparing 0 Inertia to Radiators heating systems, we observe that the heating power 

from the latter decreases gradually after the cut-time, owing to the thermal inertia of the heating 

system itself (piping and heating water). This leads to overall slower temperature drops. 
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Results of 𝜏−1 for all 27 studied cases (3 building envelopes x 3 thermal mass levels x 3 heating systems) 

are displayed in Figure 2.22. 

 

Figure 2.22 SH demand flexibility index 𝜏−1 

Conclusions with respect to 𝜏−1: 

▪ In a well-insulated building (2012) with heavy internal mass, a 0 Inertia heating system yielded 

longer 𝜏−1 than Radiators heating systems in equivalent empty building. This conclusion is not 

valid for the 2 other building classes (1975 and 1915). Therefore, we conclude that internal mass 

is particularly influential on short-term thermal dynamics in buildings with high thermal 

insulation and air-tightness. Buildings SH demand estimations ignoring internal mass may 

induce large discrepancies, as reported in the literature, e.g. in [Al-Sanea et al., 2012b; Johra et 

al., 2019; Le Dréau et Heiselberg, 2016b; Reynders et al., 2013c; Malisani et al., 2011]. 

▪ On average, buildings with 70°𝐶 Radiators had 35% longer 𝜏−1 than those with 50°𝐶 

Radiators. The lower the insulation level, and the lower the thermal mass level, the higher is the 

sensitivity towards heating water temperatures. 

▪ Recall that 𝜏−1 gives an order of magnitude of how long the heating system could be set-back 

before the 1°𝐶 drop is perceived by a consumer from a control point of view, in sizing conditions 

(i.e. 𝑇𝑒𝑥𝑡 = 𝑇𝑒𝑥𝑡
𝑠𝑖𝑧𝑖𝑛𝑔,𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒

= −11°𝐶). Interestingly, according to our BTS, average values of 

these 𝜏−1 are: 

▫ More than an hour for the 2012 Building; 

▫ 20 minutes for the 1975 Building; 

▫ 15 minutes for the 1915 Building. 

𝜏−1 only reveals the flexibility potential from the users thermal comfort point of view. To evaluate 

flexibility income on the network, all cases are simulated again and the amount of energy that would 

have been consumed during 𝜏−1 but without the power cut-off is computed. This gives the energy 

savings per floor area (in Wh/m²) made during 𝜏−1 shown in Figure 2.23. 
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Figure 2.23 Energy savings made during the 1°C drop delays in perceived temperature (Wh/m²) 

We may finally conclude that despite the fact that buildings from different energy classes have very 

different SH demand flexibilities, their energy savings potentials are quite comparable.  

2.3.2 ROM structure 

Based on the preliminary study and pursuant to the literature review, we conclude that at least a 2nd order 

model is necessary to capture the thermal dynamics in a building system. Furthermore, thermal inertia 

of the internal mass and the heating circuit are non-negligible for short-term predictions. We would like 

to represent these dynamics in the proposed ROM structure and attempt to identify their corresponding 

parameters. Thus, the resulting ROM is a conjunction of a linear 3rd order building model coupled to a 

non-linear heating system model. The full modelling differential-algebraic system of equations is shown 

below (Eq. 2.39 – Eq. 2.45). Its time invariant parameters are marked with an asterisk (*) and correspond 

to unknown parameters that need to be identified. 

𝐶𝑎𝑖𝑟
∗ ∙
𝑑𝑇𝑎𝑖𝑟
𝑑𝑡

= 𝑈[𝑎𝑖𝑟−𝑒𝑥𝑡]
∗ ∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑎𝑖𝑟) + 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣]

∗ ∙ (𝑇𝑒𝑛𝑣 − 𝑇𝑎𝑖𝑟) + 𝑈[𝑎𝑖𝑟−𝑚𝑎𝑠𝑠]
∗

∙ (𝑇𝑚𝑎𝑠𝑠 − 𝑇𝑎𝑖𝑟) + 𝑈[𝑎𝑖𝑟−𝑒𝑚]
∗ ∙ (𝑇𝑒𝑚 − 𝑇𝑎𝑖𝑟) + 𝑘𝑎𝑖𝑟

𝑠 ∗
∙ 𝐼𝑠𝑜𝑙 

Eq. 2.39 

𝐶𝑒𝑛𝑣
∗ ∙
𝑑𝑇𝑒𝑛𝑣
𝑑𝑡

= 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡]
∗ ∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑒𝑛𝑣) + 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣]

∗ ∙ (𝑇𝑎𝑖𝑟 − 𝑇𝑒𝑛𝑣) + 𝑘𝑒𝑛𝑣
𝑠 ∗ ∙ 𝐼𝑠𝑜𝑙 Eq. 2.40 

𝐶𝑚𝑎𝑠𝑠
∗ ∙
𝑑𝑇𝑚𝑎𝑠𝑠
𝑑𝑡

= 𝑈[𝑎𝑖𝑟−𝑚𝑎𝑠𝑠]
∗ ∙ (𝑇𝑎𝑖𝑟 − 𝑇𝑚𝑎𝑠𝑠) + 𝑘𝑚𝑎𝑠𝑠

𝑠 ∗ ∙ 𝐼𝑠𝑜𝑙 Eq. 2.41 

𝐶𝑒𝑚
∗ ∙
𝑑𝑇𝑒𝑚
𝑑𝑡

= 𝑈[𝑎𝑖𝑟−𝑒𝑚]
∗ ∙ (𝑇𝑎𝑖𝑟 − 𝑇𝑒𝑚) + 𝑚̇𝑆𝑆𝑇 ∙ cwat ∙ (𝑇𝑐𝑖𝑟 − 𝑇𝑒𝑚) Eq. 2.42 

𝐶𝑐𝑖𝑟
∗ ∙
𝑑𝑇𝑐𝑖𝑟
𝑑𝑡

= 𝜂𝑐𝑖𝑟
∗ ∙ 𝑄𝑆𝑆𝑇 + 𝑚̇𝑆𝑆𝑇 ∙ cwat ∙ (𝑇𝑒𝑚 − 𝑇𝑐𝑖𝑟) Eq. 2.43 

𝑄𝑆𝑆𝑇 = 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ ⟦𝐺𝑐𝑖𝑟

𝑝 ∗
∙ (𝑇𝑐𝑖𝑟

𝑠𝑒𝑡 − 𝑇𝑐𝑖𝑟)⟧0
1
 Eq. 2.44 

𝑚̇𝑆𝑆𝑇 = 𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ ⟦𝐺𝑎𝑖𝑟

𝑝 ∗
∙ (𝑇𝑎𝑖𝑟

𝑠𝑒𝑡 − 𝑇𝑎𝑖𝑟)⟧0
1
 Eq. 2.45 

With the notation 𝑦 = ⟦𝑥⟧𝑎
𝑏 ⟹ {

𝑦 = 𝑥 𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏
𝑦 = 𝑎 𝑖𝑓 𝑥 < 𝑎
𝑦 = 𝑏 𝑖𝑓 𝑥 > 𝑏
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As can be derived from the equations, the model has 5 lumped nodes each having a homogeneous mean 

temperature and an associated thermal capacitance. They represent:  

▪ Indoor air of temperature 𝑇𝑎𝑖𝑟 and thermal capacitance 𝐶𝑎𝑖𝑟
∗; 

▪ Envelope of temperature 𝑇𝑒𝑛𝑣 and thermal capacitance 𝐶𝑒𝑛𝑣
∗; 

▪ Internal mass of temperature 𝑇𝑚𝑎𝑠𝑠 and thermal capacitance 𝐶𝑚𝑎𝑠𝑠
∗; 

▪ Heat emitters of temperature 𝑇𝑒𝑚 and thermal capacitance 𝐶𝑒𝑚
∗; 

▪ Heating circuit of temperature 𝑇𝑐𝑖𝑟 and thermal capacitance 𝐶𝑐𝑖𝑟
∗. 

A power balance is established for each of these 5 nodes (Eq. 2.39 – Eq. 2.43).  

The following heat exchange phenomena are modelled through heat transfer coefficients: 

▪ The air node exchanges heat directly with the external environment of temperature 𝑇𝑒𝑥𝑡 due to 

ventilation through the heat transfer coefficient 𝑈[𝑎𝑖𝑟−𝑒𝑥𝑡]
∗; 

▪ The air node and the envelope node exchange heat through 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣]
∗; 

▪ The air node and the internal mass node exchange heat through 𝑈[𝑎𝑖𝑟−𝑚𝑎𝑠𝑠]
∗; 

▪ The air node and the heat emitters exchange heat through 𝑈[𝑎𝑖𝑟−𝑒𝑚]
∗; 

▪ The envelope node exchanges heat with the external environment through 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡]
∗. 

Solar heat gain is linearly modelled as the product of the global horizontal solar irradiation 𝐼𝑠𝑜𝑙 by a 

fixed solar aperture surface area. It is injected into the first 3 nodes: 

▪ The air node receives solar heat gain through the solar aperture 𝑘𝑎𝑖𝑟
𝑠 ∗

; 

▪ The envelope node receives solar heat gain through the solar aperture 𝑘𝑒𝑛𝑣
𝑠 ∗

; 

▪ The internal mass node receives solar heat gain through the solar aperture 𝑘𝑚𝑎𝑠𝑠
𝑠 ∗

.  

The linear 3rd order building model is represented under the thermal-electrical analogy in Figure 2.24. 

 

Figure 2.24 RC representation of the building model structure 
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The first non-linearity appears in the heating system model (Eq. 2.42 and Eq. 2.43) as the bilinear term 

between the heating water mass flow rate 𝑚̇ and the temperature difference (𝑇𝑐𝑖𝑟 − 𝑇𝑒𝑚), cwat being 

the constant specific thermal capacity of water. This term represents the heat flow from the heating 

circuit into the emitters. To take into account transmission losses in the heating circuit, we introduced 

an efficiency coefficient denoted 𝜂𝑐𝑖𝑟
∗ in Eq. 2.43. 

The system model operates in a closed loop by regulating the heating circuit temperature and internal 

air temperature. In fact, 𝑇𝑐𝑖𝑟 is regulated to a set point temperature 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 controlled at the substation level 

by the DHS operator. The substation heating power 𝑄𝑆𝑆𝑇 may then be derived by Eq. 2.44 using a 

proportional gain 𝐺𝑐𝑖𝑟
𝑝 ∗

 and bounded by the maximum sizing power of the substation Q𝑆𝑆𝑇
𝑚𝑎𝑥. This double-

ended saturation expression is a second non-linearity in the SH system model. 

Whereas, 𝑇𝑎𝑖𝑟 is regulated to a set point temperature 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 controlled by the building residents acting on 

their TRVs. Similarly to Eq. 2.44, Eq. 2.45 is a bounded formulation of the heating water mass flow rate 

at the substation 𝑚̇𝑆𝑆𝑇 which is assumed to vary linearly to 𝑇𝑎𝑖𝑟 using a proportional gain 𝐺𝑎𝑖𝑟
𝑝 ∗

. When 

the temperature difference reaches a given threshold, all TRVs are fully open and 𝑚̇𝑆𝑆𝑇 is saturated to 

its nominal value 𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥. Note that Q𝑆𝑆𝑇

𝑚𝑎𝑥 and 𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥 are parameters known beforehand and need not be 

identified. Indeed, Q𝑆𝑆𝑇 and 𝑚̇𝑆𝑆𝑇 are the ROM outputs, both being non-intrusively observable and 

measurable at the substation. Moreover, when unsaturated, Eq. 2.45 may be used to observe 𝑇𝑎𝑖𝑟 and 

therefore this key equation dispenses with using intrusive indoor temperature. 

Overall, the ROM has: 

▪ 3 uncontrollable inputs or disturbances (𝑇𝑒𝑥𝑡, 𝐼𝑠𝑜𝑙  and 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡); 

▪ 1 controllable input (𝑇𝑐𝑖𝑟
𝑠𝑒𝑡); 

▪ 2 outputs (𝑄𝑆𝑆𝑇 and 𝑚̇𝑆𝑆𝑇); 

▪ 5 hidden states (𝑇𝑎𝑖𝑟 , 𝑇𝑒𝑛𝑣 , 𝑇𝑚𝑎𝑠𝑠 𝑇𝑒𝑚 and 𝑇𝑐𝑖𝑟); 

▪ 16 parameters to be identified. 

2.3.3 Parametric identification 

After defining the ROM structure, the remaining unknowns in the ROM development problem are 

numerical values for its 16 constant parameters. Parametric identification by optimization based on 

historical input/output data is the approach used in this thesis. 

2.3.3.1 Data generation 

The proposed parametric identification approach uses input and output signals to calibrate the ROM 

parameters given its predefined structure. Input and output signals generation, or data generation for 
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short, is done by simulating the HOM over a training period of 3 weeks at a time step of 5 minutes for 

parameters identification, and other 3 weeks to assess the model prediction ability. 

Generated datasets should be rich in information, i.e. the input signals must cover a large spectrum so 

as to well excite the system modes. Yet on the other hand, for a methodology to be applicable in real-

life, data generation should be done during regular operation days where occupants are present inside 

the building. Therefore we specified the HOM inputs as follows: 

▪ 𝑇𝑒𝑥𝑡 and 𝐼𝑠𝑜𝑙 are taken from the TMY weather file of the city of Grenoble as mentioned in § 

2.5.1. Based on this TMY, we chose a training period with significant temperature variations, 

which happen to be from December 10th to the 31st. 

▪ 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 in all zones of the building is constant and equal to 20°C. 

▪ 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 is set using a heating curve during the day and is restrained to a minimum value from 

midnight until 6:00 pm as a form of power set-back. This operation mode is still acceptable in 

terms of thermal comfort and it stimulates the thermal dynamics of the heating circuit, therefore 

it enhances the identifiability of its associated parameters. For the applications of § 2.4, the 

heating curves of Figure 1.13 are adopted, each for its corresponding case study, and the 

asymptotic minimum value is set during the night-time set-back. 

The assumption of perfectly controlled and fixed indoor set-point temperature 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 is indeed strong; in 

real-life, it is controlled by the building residents therefore it is unknown or may be variant. However, 

it is assumed that the stochastic internal gain signal added to the BTS (§ 1.3.7) aggregates all the 

uncertainties of the system, so there is no need to add noise to 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡. 

Another dataset is generated under the same conditions from January 4th to the 25th for a validation test. 

2.3.3.2 Parameters optimization 

The concrete step of identifying the ROM parameters consists of iteratively trying a combination of 

parameters and assessing its results until finding the optimal set that minimizes the error between the 

ROM and the HOM outputs. To achieve this goal, we first define the objective function to be minimized, 

then we introduce the search algorithm and finally the model performance criteria. 

2.3.3.2.1 Objective function 

Let 𝜃 ∈ ℝ16 the set of 16 ROM parameters, normalized with respect to reference values (to keep a 

homogenous order of magnitude). 𝜃𝑜𝑝𝑡 is the set of optimal 𝜃: 𝜃𝑜𝑝𝑡 minimizes the weighted summation 

of the normalized quadratic outputs errors integral between the ROM and the HOM over the training 
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interval. This is formulated in Eq. 2.46 and Eq. 2.47 where 𝑓𝑜𝑏𝑗 denotes the objective function and ∆𝑡𝑟 

the training interval in seconds. 

To break down the formula, a quadratic error on an output 𝑋 is (𝑋𝐻𝑂𝑀 − 𝑋𝑅𝑂𝑀)2 where 𝑋𝐻𝑂𝑀 is the 

HOM output and 𝑋𝑅𝑂𝑀 is the ROM output. Recall there are 2 outputs available at the substation: the 

SH power 𝑄𝑆𝑆𝑇 and the heating water mass flow rate 𝑚̇𝑆𝑆𝑇. The quadratic error on each output is 

normalized by the squared maximum value of that output 𝑋𝑚𝑎𝑥2. This is essential because 𝑄𝑆𝑆𝑇 is in 

the orders of 103𝑊, whereas 𝑚̇𝑆𝑆𝑇 is around 10−1 𝑘𝑔 𝑠⁄ . Through normalization, we seek consistent 

minimization of both errors. To further enhance the results quality, we add degrees of freedom to 𝑓𝑜𝑏𝑗 

by affecting a weight for each error term. Weight values of 1/3 for 𝑄𝑆𝑆𝑇 and 2/3 for 𝑚̇𝑆𝑆𝑇 were 

estimated by trial and error. 

𝑓𝑜𝑏𝑗 =
1

∆𝑡𝑟
∙ ∫ [

1

3
∙ (
Q𝑆𝑆𝑇
𝐻𝑂𝑀 − Q𝑆𝑆𝑇

𝑅𝑂𝑀

Q𝑆𝑆𝑇
𝑚𝑎𝑥 )

2

+
2

3
∙ (
𝑚̇𝑆𝑆𝑇
𝐻𝑂𝑀 − 𝑚̇𝑆𝑆𝑇

𝑅𝑂𝑀

𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥 )

2

] 𝑑𝑡

∆𝑡𝑟

0

 Eq. 2.46 

𝜃𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓𝑜𝑏𝑗) Eq. 2.47 

2.3.3.2.2 Search algorithm 

The search algorithm for 𝜃𝑜𝑝𝑡 starts with a Particle Swarm Optimization (PSO), a stochastic technique 

known for its efficiency in inspecting large search areas, then the solution is refined with a deterministic 

Hooke-Jeeves (HJ) pattern search. 

PSO was introduced by [Kennedy et Eberhart, 1995] as an optimization concept for non-linear functions. 

Its algorithm is inspired from observations made on large groups of organisms in synchronous 

movement such as bird flocks or fish schools. Through these observations, it is assumed that in a group, 

individuals keep a distance between them and share information for the sake of an evolutionary goal. 

Take the example of a flock of birds searching an area for a single piece of food. All birds randomly 

start the search. They do not know the exact location of the food, yet they have instinctive ability to 

assess how far it is at each search iteration, and they socially communicate this information. Then 

naturally, the best strategy to find the food is to follow the bird which is closest to the goal. 

In PSO, a particle is a searching agent. Its position is spotted by a potential set of parameters 𝜃𝑝
𝑃𝑆𝑂 and 

it moves at a step size 𝑠𝑝
𝑃𝑆𝑂. At initialization, the algorithm launches 𝑁𝑝𝑎𝑟

𝑃𝑆𝑂 particles and randomly places 

them in the search space. Each particle iteratively evaluates the objective function (Eq. 2.46) using its 
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affected parameters, and updates its position and step size. The number of iterations, also called 

generations, is denoted 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂. 

The position and step size update follows specific rules. At every generation, each particle keeps in 

memory its best found position thus far, denoted 𝜃𝑝,𝑜𝑝𝑡
𝑃𝑆𝑂 . Besides, the algorithm identifies the best 

position found in the particles neighbourhood thus far, denoted 𝜃𝑛,𝑜𝑝𝑡
𝑃𝑆𝑂 . There are several definitions for 

neighbourhood; it could be the entire group of particles (the swarm), as it may be a small group of 

particles with indices-dependant relationships. Using  𝜃𝑝,𝑜𝑝𝑡
𝑃𝑆𝑂  and 𝜃𝑛,𝑜𝑝𝑡

𝑃𝑆𝑂 , the particle’s step size and 

position are updated at every generation of index 𝑘 according to Eq. 2.48 and Eq. 2.49 respectively: 

𝑠𝑝
𝑃𝑆𝑂[𝑘 + 1] = 𝑤𝑃𝑆𝑂 ∙ 𝑠𝑝

𝑃𝑆𝑂[𝑘] + 𝑙𝑐𝑜𝑔
𝑃𝑆𝑂 ∙ 𝜌𝑐𝑜𝑔

𝑃𝑆𝑂[𝑘] ∙ (𝜃𝑝,𝑜𝑝𝑡
𝑃𝑆𝑂 [𝑘] − 𝜃𝑝

𝑃𝑆𝑂[𝑘]) + 𝑙𝑠𝑜𝑐
𝑃𝑆𝑂

∙ 𝜌𝑠𝑜𝑐
𝑃𝑆𝑂[𝑘] ∙ (𝜃𝑛,𝑜𝑝𝑡

𝑃𝑆𝑂 [𝑘] − 𝜃𝑝
𝑃𝑆𝑂[𝑘]) 

Eq. 2.48 

𝜃𝑝
𝑃𝑆𝑂[𝑘 + 1] = 𝜃𝑝

𝑃𝑆𝑂[𝑘] + 𝑠𝑝
𝑃𝑆𝑂[𝑘 + 1] Eq. 2.49 

𝑤𝑃𝑆𝑂 is called inertia weight. It is introduced in [Shi et Eberhart, 1998] to reduce the step size 𝑠𝑝
𝑃𝑆𝑂 of 

the particles as they proceed from a generation to another which is proven to enhance the search. Its 

value is calculated at each generation of index 𝑘 as given in Eq. 2.50, where 𝑤𝑃𝑆𝑂[0] and 𝑤𝑃𝑆𝑂[𝑁𝑔𝑒𝑛
𝑃𝑆𝑂] 

predefined typically with 𝑤𝑃𝑆𝑂[𝑁𝑔𝑒𝑛
𝑃𝑆𝑂] < 𝑤𝑃𝑆𝑂[0]. 

𝑤𝑃𝑆𝑂[𝑘] = 𝑤𝑃𝑆𝑂[0] −
𝑘

𝑁𝑔𝑒𝑛
𝑃𝑆𝑂 ∗ (𝑤

𝑃𝑆𝑂[0] − 𝑤𝑃𝑆𝑂[𝑁𝑔𝑒𝑛
𝑃𝑆𝑂]) Eq. 2.50 

𝑙𝑐𝑜𝑔
𝑃𝑆𝑂 and 𝑙𝑠𝑜𝑐

𝑃𝑆𝑂 are called learning factors and are positive real fixed values. 𝑙𝑐𝑜𝑔
𝑃𝑆𝑂 takes into account the 

particle’s own experience, thus it is called cognitive learning factor, while 𝑙𝑠𝑜𝑐
𝑃𝑆𝑂 is associated with the 

social interaction between particles, hence it is called social learning factor. 

𝜌𝑐𝑜𝑔
𝑃𝑆𝑂 and 𝜌𝑠𝑜𝑐

𝑃𝑆𝑂 are uniformly distributed random variables between 0 and 1. They reveal the stochastic 

character of the algorithm introduced to enhance the search space exploration.  

The iterations stop after reaching the specified number of generations 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂, i.e. the objective function 

has been evaluated 𝑁𝑝𝑎𝑟
𝑃𝑆𝑂 ×𝑁𝑔𝑒𝑛

𝑃𝑆𝑂 times and the best found position is reported as 𝜃𝑜𝑝𝑡
𝑃𝑆𝑂. 

HJ is a structured search method introduced by [Hooke et Jeeves, 1961]. Its algorithm consists in 2 parts: 

a sequence of exploratory moves around a base point and a pattern move. 
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Given an initial base point of associated parameters set 𝜃𝑏
𝐻𝐽

, exploratory moves consist in incrementing 

each parameter in turn by a step 𝑠𝑏
𝐻𝐽

 in the positive direction then – only if the objective function is not 

reduced – in the negative direction. If any of these 2 moves is successful, i.e. the objective function is 

reduced, the resulting value of the corresponding parameter is retained. After checking all parameters, 

a new base point 𝜃𝑏+1
𝐻𝐽

 is reached. If 𝜃𝑏+1
𝐻𝐽 ≠ 𝜃𝑏

𝐻𝐽
, a pattern move from 𝜃𝑏

𝐻𝐽
 is made. 

A pattern move is an attempt to accelerate the search considering that the direction towards the optimum 

is likely to be 𝜃𝑏+1
𝐻𝐽

− 𝜃𝑏
𝐻𝐽

. Therefore a new sequence of exploratory moves is performed about the 

pattern point 𝜃𝑝
𝐻𝐽

 given in Eq. 2.51. ∆𝑏
𝐻𝐽

 is the mesh size whose value is gradually reduced through the 

iterations according to Eq. 2.52 where 𝑟𝐻𝐽 is a fixed parameter called the mesh size divider. If a better 

point than 𝜃𝑏+1
𝐻𝐽

 is found then a new base point 𝜃𝑏+2
𝐻𝐽

 is reached and another pattern move is made towards 

𝜃𝑝+1
𝐻𝐽

. Elsewise the guessed direction is adjudicated wrong and the pattern move has failed, so we restart 

with exploratory moves about 𝜃𝑏+1
𝐻𝐽

 but this time with an incremented value for 𝑠𝑏+1
𝐻𝐽

 according to Eq. 

2.53 where 𝑡𝐻𝐽 is a parameter called the mesh size exponent increment. The search stops after a 

maximum number of mesh size reductions 𝑁𝑟𝑒𝑑
𝐻𝐽

 is reached. 

𝜃𝑝
𝐻𝐽
= 𝜃𝑏

𝐻𝐽
+ ∆𝑏

𝐻𝐽
∙ (𝜃𝑏+1

𝐻𝐽
− 𝜃𝑏

𝐻𝐽
) Eq. 2.51 

∆𝑏
𝐻𝐽=

1

𝑟𝐻𝐽
𝑠𝑏
𝐻𝐽  Eq. 2.52 

𝑠𝑏+1
𝐻𝐽 = 𝑠𝑏

𝐻𝐽 + 𝑡𝐻𝐽 Eq. 2.53 

In the hybrid PSO-HJ search algorithm, HJ search is initialized with 𝜃𝑜𝑝𝑡
𝑃𝑆𝑂 and its final result is reported 

as the set of optimal identified parameters 𝜃𝑜𝑝𝑡 (without guarantees of an absolute global optimum). 

The choice of this particular search algorithm is justified by the shape and computation times of the 

objective function (Eq. 2.46). In fact, 𝑓𝑜𝑏𝑗 is non-linear with multiple local minima, hence a stochastic 

(in all directions) search is necessary; and it has reasonable computation times, thus an intensive 

(numerous iterations) search is feasible. PSO sweeps-over the search space and it is most likely to 

converge towards an acceptable minimum with no guarantees of global optimality, not even locally. 

This is where HJ steps-in to closely inspect the area around the found minimum. HJ, as all pattern-search 

algorithms, is quite sensitive to initialization. Yet this is not limiting, assuming that its initial point given 

by PSO is rather a good starting point. 
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The implementation of the search technique is done using the open-source software package GenOpt 

(Generic Optimization Program) [Wetter, 2016]. GenOpt is an optimization software conceived to solve 

optimization problems with computationally expensive objective functions assessed by an external 

simulation tool such as Dymola. Within GenOpt, several search algorithms are provided, among which 

the hybrid PSO-HJ algorithm. Fixed parameters for the PSO-HJ algorithm are given in Table 2.11. 

Table 2.11 PSO-HJ algorithm parameters 

Algorithm parameter Setting value 

𝑵𝒑𝒂𝒓
 𝑺𝑶 150 

𝑵   
 𝑺𝑶 150 

𝒘 𝑺𝑶[𝟎] 1.2 

𝒘 𝑺𝑶[𝑵   
 𝑺𝑶] 0 

 𝒄𝒐 
 𝑺𝑶 2.8 

  𝒐𝒄
 𝑺𝑶 1.3 

 𝒑
 𝑺𝑶[𝟎] 0.01 

𝒓 𝑱 3 

   1 

𝑵𝒓  
 𝑱

 4 

Practically, historical data generated as described in § 2.3.3.1 are saved to a text file. The ROM is coded 

in a Dymola model which reads input signals from the text file, computes the ROM outputs and returns 

the value of the objective function (Eq. 2.46) to GenOpt. GenOpt then updates and returns the parameters 

to the ROM, and so on until reaching 𝜃𝑜𝑝𝑡. 

2.3.3.3 Performance criteria 

At the end of the parametric identification, some performance criteria are evaluated to decide whether 

to accept or reject 𝜃𝑜𝑝𝑡. These criteria should reflect 3 aspects of the model: 

▪ Ability to forecast the thermal behaviour of the building under the validation dataset (different 

than the identification dataset), otherwise overfitting has occurred during identification. 

▪ Ability to reproduce hidden states that were not used during the identification (indoor 

temperature), as well as the outputs. 

▪ Physical plausibility of some identified parameters. 

For an output 𝑥, we define the fit function 𝜑𝑥 in Eq. 2.54, inspired from [Berthou et al., 2014b], with 

little modifications, and evaluate its value over the training and the validation periods. A higher and 

consistent fit between training and validation gives more confidence in 𝜃𝑜𝑝𝑡. 
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𝜑𝑥 = (1 − √(
𝑥𝐻𝑂𝑀 − 𝑥𝑅𝑂𝑀

𝑥𝑚𝑎𝑥 − 𝑥̅
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

) × 100 Eq. 2.54 

For hidden states, the main concern is on the indoor air temperature; we inspect the mean and standard 

deviation of the error 𝜀𝑇𝑎𝑖𝑟  in Eq. 2.55, and its range [𝜀𝑇𝑎𝑖𝑟
𝑚𝑖𝑛 , 𝜀𝑇𝑎𝑖𝑟

𝑚𝑎𝑥] during training and validation phases. 

𝜀𝑇𝑎𝑖𝑟 = 𝑇𝑎𝑖𝑟
𝑅𝑂𝑀 − 𝑇𝑎𝑖𝑟

𝐻𝑂𝑀 Eq. 2.55 

For physical plausibility, we compare the building equivalent heat loss coefficient 𝑈𝑏𝑢𝑖𝑙𝑑
𝑠𝑖𝑧𝑖𝑛𝑔

 estimated 

using sizing conditions by Eq. 2.56 to the equivalent heat loss coefficient 𝑈𝑏𝑢𝑖𝑙𝑑
𝑖𝑑𝑒𝑛𝑡 computed using 

identified parameters by Eq. 2.57. 𝑈𝑏𝑢𝑖𝑙𝑑
𝑖𝑑𝑒𝑛𝑡 is derived from the ROM analogical electric circuit (Figure 

2.24) as the inverse of the equivalent resistance between nodes 𝑇𝑒𝑥𝑡 and 𝑇𝑎𝑖𝑟 assuming steady-state 

(eliminating 𝐶𝑒𝑛𝑣 and 𝐶𝑎𝑖𝑟) and no solar heat gain (eliminating 𝑘𝑒𝑛𝑣
𝑠 ). The smaller the relative error 

between them 𝜖𝑈𝑏𝑢𝑖𝑙𝑑 given in Eq. 2.58, the better the physical plausibility of the identified parameters.  

𝑈𝑏𝑢𝑖𝑙𝑑
𝑠𝑖𝑧𝑖𝑛𝑔

=
𝑄𝑆𝑆𝑇
𝑚𝑎𝑥

𝑇𝑎𝑖𝑟
𝑠𝑖𝑧𝑖𝑛𝑔

− 𝑇𝑒𝑥𝑡
𝑠𝑖𝑧𝑖𝑛𝑔,𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒

 Eq. 2.56 

𝑈𝑏𝑢𝑖𝑙𝑑
𝑖𝑑𝑒𝑛𝑡 =

𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣] ∙ 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡] + 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡] ∙ 𝑈[𝑎𝑖𝑟−𝑒𝑥𝑡] + 𝑈[𝑎𝑖𝑟−𝑒𝑥𝑡] ∙ 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣]

𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣] + 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡]
 Eq. 2.57 

𝜖𝑈𝑏𝑢𝑖𝑙𝑑 =
𝑈𝑏𝑢𝑖𝑙𝑑
𝑖𝑑𝑒𝑛𝑡 −𝑈𝑏𝑢𝑖𝑙𝑑

𝑠𝑖𝑧𝑖𝑛𝑔

𝑈𝑏𝑢𝑖𝑙𝑑
𝑠𝑖𝑧𝑖𝑛𝑔

× 100 Eq. 2.58 

2.4 Application 

2.4.1 Analytical testing 

Analytical testing aims at assessing the proposed parameters optimization technique in finding a 

beforehand known set of parameters. For this end, we define an analytical parameters set (Table 2.12), 

and we generate a noise-free analytical dataset denoted with a superscript …𝑎𝑛𝑎.  
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Table 2.12 Parameters used to generate analytical data 

ROM parameter Analytical value (⋯𝒂 𝒂) 

𝑪𝒂 𝒓 2.5E+07 [𝐽 𝐾⁄ ] 

𝑪  𝒗 2E+08 [𝐽 𝐾⁄ ] 

𝑪𝒎𝒂   1.5E+08 [𝐽 𝐾⁄ ] 

𝑪𝒄 𝒓 1E+05 [𝐽 𝐾⁄ ] 

𝑪 𝒎 2E+03 [𝐽 𝐾⁄ ] 

 [𝒂 𝒓− 𝒙 ] 252.83 [𝑊 𝐾⁄ ] 

 [𝒂 𝒓−  𝒗] 25 [𝑊 𝐾⁄ ] 

 [  𝒗− 𝒙 ] 1500 [𝑊 𝐾⁄ ] 

 [𝒂 𝒓−𝒎𝒂  ] 3000 [𝑊 𝐾⁄ ] 

 [𝒂 𝒓− 𝒎] 350 [𝑊 𝐾⁄ ] 

𝒌𝒂 𝒓
  15 [𝑚2] 

𝒌  𝒗
  15 [𝑚2] 

𝒌𝒎𝒂  
  5 [𝑚2] 

𝜼  0.95 [−] 

𝑮𝒄 𝒓
𝒑

 0.3 [1 𝐾⁄ ] 

𝑮𝒂 𝒓
𝒑

 0.5 [1 𝐾⁄ ] 

𝑸𝑺𝑺𝑻
𝒎𝒂𝒙 8600 [W] 

𝒎̇𝑺𝑺𝑻
𝒎𝒂𝒙 0.137 [kg 𝑠⁄ ] 

In this analytical testing, 𝜃 is normalized with respect to the known set of parameters. Consequently, the 

theoretically optimal set of parameters to be found by the search algorithm should be 𝜃𝑜𝑝𝑡
𝑡ℎ𝑒𝑜 = {1}. 

During the search, the value of the objective function is computed according to Eq. 2.59. For further 

analyses, we compute the normalized quadratic error integral on the indoor temperature 𝑞𝑇𝑎𝑖𝑟
𝑎𝑛𝑎 according 

to Eq. 2.60. 

𝑓𝑜𝑏𝑗
𝑎𝑛𝑎(𝜃) =

1

∆𝑡𝑟
∙ ∫ [

1

3
∙ (
Q𝑆𝑆𝑇
𝑎𝑛𝑎 − Q𝑆𝑆𝑇

𝑅𝑂𝑀

Q𝑆𝑆𝑇
𝑚𝑎𝑥 )

2

+
2

3
∙ (
𝑚̇𝑆𝑆𝑇
𝑎𝑛𝑎 − 𝑚̇𝑆𝑆𝑇

𝑅𝑂𝑀

𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥 )

2

]𝑑𝑡

∆𝑡𝑟

0

 Eq. 2.59 

𝑞𝑇𝑎𝑖𝑟
𝑎𝑛𝑎(𝜃) =

1

∆𝑡𝑟
∙ ∫ (

𝑇𝑎𝑖𝑟
𝑎𝑛𝑎 − 𝑇𝑎𝑖𝑟

𝑅𝑂𝑀

𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 )

2

𝑑𝑡

∆𝑡𝑟

0

 Eq. 2.60 

Upon re-simulating the ROM with 𝜃𝑜𝑝𝑡
𝑡ℎ𝑒𝑜, we found the values listed in Table 2.13. Note that the 

objective function is not exactly equal to zero as it should have been, nor are the quadratic errors. The 

reason for this is small numeric discrepancies produced while interpolating the analytical data from the 

text file.  
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Table 2.13 Objective function and error values corresponding to the theoretically optimal set of 

parameters found using the analytical dataset 

 𝒐𝒑 
   𝒐 𝒇𝒐 𝒋

𝒂 𝒂( 𝒐𝒑 
   𝒐) 𝒒𝑻𝒂 𝒓

𝒂 𝒂( 𝒐𝒑 
   𝒐) 

{1} 1.06E-04 3.03E-10 

 

The analytical dataset is then used to: 

▪ Identify each parameter separately, given all other parameters (§ 2.4.1.1) 

▪ Identify all 16 parameters at once (§ 2.4.1.2) 

2.4.1.1 Individual parameter identification from analytical data 

In this test, 16 algorithm runs are launched. At each run, in turn, a parameter 𝜃[𝑖] is initialized to 𝜃[𝑖]𝑖𝑛𝑖 

(chosen to 0.75) and the algorithm searches for its optimal value 𝜃[𝑖]𝑜𝑝𝑡 that minimizes Eq. 2.59 while 

all other parameters 𝜃[𝑗] ∀ 𝑗 ≠ 𝑖 are fixed to 1. The search space is delimited between 1/3 and 3 for all 

parameters except for the efficiency parameter 𝜂𝑐𝑖𝑟 which is restrained such that it does not exceed 1. 

This test aims at: 

▪ Assessing the algorithm ability in converging towards an optimum at least as good as 𝜃[𝑖]𝑜𝑝𝑡. 

This should be an easy task given than the algorithm only searches in one direction for a single 

parameter value. 

▪ Finding out whether the found optimum is equal to 𝜃[𝑖]𝑜𝑝𝑡 = 1 ∀ 𝑖 (theoretical optimum).  

▪ Understanding the shape of the objective function along each direction. As the algorithm 

searches for the optimum, the tested points are registered together with their corresponding 

objective function value. Thus a sensitivity analysis of Eq. 2.59 towards the variations of each 

parameter separately can be carried out. 

Results are plotted in Figure 2.25. The following observations are made: 

▪ The algorithm finds a point with an objective function equal or less than 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎(𝜃𝑜𝑝𝑡

𝑡ℎ𝑒𝑜) (Table 

2.13) ∀ 𝑖. 

▪ The optimum is not always 1; the algorithm did not converge to 1 for 𝐶𝑒𝑛𝑣, 𝐶𝑐𝑖𝑟, 𝑘𝑒𝑛𝑣
𝑠 , and 𝐺𝑐𝑖𝑟

𝑝
 

(legend in red). We interpret from the corresponding plots that 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎 is relatively flat around 1. 

With the small numerical discrepancies due to the interpolation of the data evoked earlier, other 
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points (different than 1) were found to further minimize 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎. This result emphasizes the non-

convex shape of 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎 in the directions of these parameters. 

▪ 𝐶𝑒𝑛𝑣, 𝐶𝑒𝑚, 𝑈𝑒𝑛𝑣
𝑒𝑥𝑡  and 𝑘𝑒𝑛𝑣

𝑠  have very little impact on 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎. Roughly speaking, any value for these 

parameters would yield the same value of 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎. Therefore they are hardly identifiable with the 

proposed dataset generation conditions and available measurements. 3 of these parameters are 

relative to the envelope which is characterized by a slow time constant and 1 of them is relative 

to the heating system emitters characterized by a fast time constant. On the other hand, 

𝑈𝑎𝑖𝑟
𝑒𝑥𝑡, 𝑈𝑎𝑖𝑟

𝑒𝑚, 𝑈𝑎𝑖𝑟
𝑒𝑛𝑣, 𝑘𝑎𝑖𝑟

𝑠  and 𝐺𝑎𝑖𝑟
𝑝

 have the highest impact on 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎. All of them are relative to the 

indoor air node. Parameters relative to the internal mass and the heating circuit are fairly 

impactful on 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎. 

 

Figure 2.25 Objective function versus individual parameter variations for all 16 ROM parameters using 

the analytical dataset 

2.4.1.2 Full parameters set identification from analytical data 
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In this test, the algorithm searches for all 16 parameters at each run. 9 runs are lunched, each with a 

distinct randomly generated set of initial points. Similarly to the previous test, the search space is 

delimited between 1/3 and 3 for all parameters except for 𝜂𝑐𝑖𝑟. 

This test aims at: 

▪ Examining whether the found optimum 𝜃𝑜𝑝𝑡 is close to 𝜃𝑜𝑝𝑡
𝑡ℎ𝑒𝑜.  

▪ Assessing the algorithm convergence ability from different initial points.  

▪ Inspecting whether a minimization in the objective function 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎 (errors on observations at the 

substation) systematically yields minimization in the unobserved indoor temperature error 𝑞𝑇𝑎𝑖𝑟
𝑎𝑛𝑎. 

Values of the initial and optimal parameters sets (𝜃𝑖𝑛𝑖 and 𝜃𝑜𝑝𝑡) are reported in Table 2.14 and results 

of the optimal value identified for each parameter per run are plotted in Figure 2.26.
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Table 2.14 Numerical values of initial (randomly generated) and optimal (found by the PSO-HJ algorithm) in the analytical test 

  

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

      𝒐𝒑        𝒐𝒑        𝒐𝒑        𝒐𝒑        𝒐𝒑        𝒐𝒑        𝒐𝒑        𝒐𝒑        𝒐𝒑  

𝑪𝒂 𝒓 𝑪𝒂 𝒓
𝒂 𝒂⁄  2.95 1.56 1.40 1.36 1.15 1.21 1.05 1.11 0.40 1.18 2.65 1.42 0.85 1.43 2.25 0.93 1.35 1.36 

𝑪  𝒗 𝑪  𝒗
𝒂 𝒂⁄  1.50 1.19 1.10 1.38 0.30 0.98 1.35 2.11 1.15 2.48 2.90 0.82 1.80 1.30 1.05 2.42 1.65 1.64 

𝑪𝒎𝒂  𝑪𝒎𝒂  
𝒂 𝒂⁄  1.85 1.70 2.60 1.44 0.90 1.27 2.40 1.08 2.10 0.92 2.30 1.39 2.90 1.54 2.50 0.92 0.95 1.24 

𝑪𝒄 𝒓 𝑪𝒄 𝒓
𝒂 𝒂⁄  2.55 0.34 0.45 0.92 1.15 0.39 1.30 0.35 1.65 0.74 1.60 0.30 1.45 0.39 2.80 0.90 2.30 1.20 

𝑪 𝒎 𝑪 𝒎
𝒂 𝒂⁄  1.90 2.18 2.50 0.88 0.85 2.13 2.45 1.68 2.60 2.53 0.55 2.73 2.95 0.69 0.45 1.79 1.35 1.25 

 [𝒂 𝒓− 𝒙 ]  [𝒂 𝒓− 𝒙 ]
𝒂 𝒂⁄  0.35 1.11 1.40 1.05 1.00 1.01 2.90 1.01 1.30 0.98 1.50 1.00 2.45 1.16 2.40 0.99 1.05 1.02 

 [𝒂 𝒓−  𝒗]  [𝒂 𝒓−  𝒗]
𝒂 𝒂⁄  0.80 0.99 0.75 1.15 2.60 1.55 0.65 1.17 2.90 2.26 0.70 1.14 0.45 0.51 0.30 1.19 1.10 1.23 

 [  𝒗− 𝒙 ]  [  𝒗− 𝒙 ]
𝒂 𝒂⁄  1.50 1.53 2.90 2.27 2.60 2.09 2.85 2.64 1.95 2.79 1.80 1.04 2.95 1.17 2.65 2.34 1.85 1.91 

 [𝒂 𝒓−𝒎𝒂  ]  [𝒂 𝒓−𝒎𝒂  ]
𝒂 𝒂⁄  2.45 1.54 1.75 1.39 1.80 1.11 0.65 1.05 2.30 1.20 1.50 1.40 1.25 1.48 1.45 0.92 1.10 1.27 

 [𝒂 𝒓− 𝒎]  [𝒂 𝒓− 𝒎]
𝒂 𝒂⁄  1.30 1.22 2.30 1.24 2.35 1.15 0.95 1.08 0.90 1.23 1.50 1.07 2.90 1.21 0.45 1.05 0.90 1.21 

𝒌𝒂 𝒓
 𝒌𝒂 𝒓

 ,𝒂 𝒂⁄  2.95 1.06 0.50 1.05 2.10 1.03 2.20 1.03 2.50 1.14 1.50 1.04 1.70 1.14 1.00 0.97 0.75 1.06 

𝒌  𝒗
 𝒌  𝒗

 ,𝒂 𝒂⁄  2.45 2.47 2.70 0.88 1.80 2.81 0.40 2.20 2.40 0.68 0.95 2.22 2.05 2.46 0.85 3.00 2.55 1.34 

𝒌𝒎𝒂  
 𝒌𝒎𝒂  

 ,𝒂 𝒂⁄  1.85 1.81 2.90 1.48 0.60 1.34 2.95 1.04 0.70 1.04 1.60 0.93 1.30 1.52 0.40 1.14 1.15 0.99 

𝜼𝒄 𝒓 𝜼𝒄 𝒓
𝒂 𝒂⁄  0.60 1.10 0.80 1.07 0.75 1.06 0.65 1.03 1.00 1.10 0.40 1.03 0.35 1.10 0.45 1.00 0.85 1.06 

𝑮𝒄 𝒓
𝒑

𝑮𝒄 𝒓
𝒑,𝒂 𝒂

⁄  1.00 1.34 0.75 0.75 0.95 0.93 0.85 0.93 1.05 1.13 1.20 1.26 0.80 1.22 1.10 0.75 0.90 0.75 

𝑮𝒂 𝒓
𝒑

𝑮𝒂 𝒓
𝒑,𝒂 𝒂

⁄  0.90 1.43 0.95 1.31 1.05 1.12 1.10 1.05 0.35 1.10 1.35 1.36 1.40 1.26 0.55 0.95 1.20 1.24 
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Figure 2.26 Optimal parameter sets identified at the end of 9 test runs from the analytical dataset 

Figure 2.26 and Table 2.14 shows that: 

▪ None of the runs has exactly converged to 𝜃𝑜𝑝𝑡
𝑡ℎ𝑒𝑜. At each run, a different 𝜃𝑜𝑝𝑡 is found. 

However, it is unclear whether the search initialization or the stochastic nature of the PSO is 

more responsible for that difference.  

▪ Some parameters that were found well identifiable in § 2.4.1.1 are identified within a 15% error 

range from 𝜃𝑜𝑝𝑡
𝑡ℎ𝑒𝑜, namely 𝑈𝑎𝑖𝑟

𝑒𝑥𝑡, 𝑈𝑎𝑖𝑟
𝑒𝑚, 𝑘𝑎𝑖𝑟

𝑠  and 𝜂𝑐𝑖𝑟. 

Results concerning the objective function minimization are plotted in Figure 2.27. Per run, the scatter 

visualizes, for all tested search points (𝜃), the value of 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎(𝜃) (Eq. 2.59) in ordinate and the 

corresponding value of 𝑞𝑇𝑎𝑖𝑟
𝑎𝑛𝑎(𝜃) (Eq. 2.60) in abscissa. A subplot also spots the coordinates (𝑓𝑜𝑏𝑗

𝑎𝑛𝑎, 𝑞𝑇𝑎𝑖𝑟
𝑎𝑛𝑎) 

of the initial search point 𝜃𝑖𝑛𝑖 in a red x, those of the found optimum 𝜃𝑜𝑝𝑡 in a green arrow head and 

those of the theoretical optimum 𝜃𝑜𝑝𝑡
𝑡ℎ𝑒𝑜 in an orange diamond. Bear in mind that these plots do not give 

information about the tested 𝜃 (a part from 𝜃𝑖𝑛𝑖 and 𝜃𝑜𝑝𝑡), i.e. 2 nearby points on the scatter do not 

necessary correspond to 2 closely related 𝜃.  
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Figure 2.27 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎  𝑣𝑠 𝑞𝑇𝑎𝑖𝑟

𝑎𝑛𝑎 for all search points 𝜃 (≈ 25K 𝜃 /run); Run 4 has the overall best solution 

The following observations are made: 

▪ For all runs, the algorithm has substantially reduced 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎 to a value as low as 𝑓𝑜𝑏𝑗

𝑎𝑛𝑎(𝜃𝑜𝑝𝑡
𝑡ℎ𝑒𝑜). 

This proves that the algorithm has quite good searching ability, regardless of the initial point. 

▪ Nonetheless, the found optima, at different runs, do not all equivalently approach 𝑞𝑇𝑎𝑖𝑟
𝑎𝑛𝑎(𝜃𝑜𝑝𝑡

𝑡ℎ𝑒𝑜). 

One may imagine multiple valleys in the objective function surface (local minima) with points 

at roughly equal levels to 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎(𝜃𝑜𝑝𝑡

𝑡ℎ𝑒𝑜) that seem to attract the search particles, yet they do not 

all allow the ROM to well-predict the hidden state 𝑇𝑎𝑖𝑟.  

▪ Therefore we conclude that, due to the objective function shape at close levels to 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎(𝜃𝑜𝑝𝑡

𝑡ℎ𝑒𝑜), 

a minimization in 𝑓𝑜𝑏𝑗
𝑎𝑛𝑎(𝜃) does not systematically yield a minimization in 𝑞𝑇𝑎𝑖𝑟

𝑎𝑛𝑎(𝜃). 

Figure 2.28 shows the performance of the identified parameters in 3 sample runs. The graphs illustrate 

how 3 different sets of parameters yield similar predictions of 𝑄𝑆𝑆𝑇, quasi-identical predictions of 𝑚̇𝑆𝑆𝑇 

and slightly different predictions of 𝑇𝑎𝑖𝑟.  
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Also, the top graphs show that the largest errors on 𝑄𝑆𝑆𝑇 occur at the transitions to/from the night-time 

set-back. At these particular moments, the thermal inertia of the heating system, represented in the ROM 

by parameters 𝐶𝑐𝑖𝑟 and 𝐶𝑒𝑚 with 𝐶𝑐𝑖𝑟 being dominant in magnitude (Table 2.12), plays its major role. 

A fault identification of 𝐶𝑐𝑖𝑟 in particular is responsible for the large momentary errors. According to 

Table 2.14, Run 9 has the best identified 𝐶𝑐𝑖𝑟, explaining why it best predicts 𝑄𝑆𝑆𝑇. 

 

Figure 2.28 Comparison between analytical data and the corresponding ROM predictions for sample 

runs 3, 4 (best found solution) and 9 

2.4.1.3 Limitations and adjustments 

Analytical testing has revealed important limitations for the proposed ROM identification approach: 

▪ Some parameters have mediocre influence on the objective function; therefore they are poorly 

identifiable. 

▪ The problem is ill-posed, i.e. the observations can be fitted by different sets of parameters which 

do not all guarantee reliable prediction of hidden states, specifically the indoor air temperature.  

▪ Correlation between parameters may exist, however this was not investigated in this study. 

Some adjustments ought to be made. One may consider modifying the objective function. The change 

can be brought at different levels: adjusting the ROM structure, integrating more observations or simply 

changing the weights in Eq. 2.46. At this point, we do not intend to test another structure and we stick 

to the assumption that no other measurements are available. We tried different combinations of weighing 

factors but this did not help overcoming the problem. 
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On the bright side, since the ROM is semi-physical, prior physical knowledge could be used to assist 

the search algorithm. Concretely, the search space should be delimited within a tight physically plausible 

region. Multiple runs with different initializations should be performed. The choice of the retained set 

of parameters should be made based on the assessment of a physical indicator, such as 𝜖𝑈𝑏𝑢𝑖𝑙𝑑 proposed 

in § 2.3.3.3. With no further modifications in the model structure or the identification approach, physical 

interpretation seems the only guide to discern the correct 𝜃𝑜𝑝𝑡 among several local optima. 

2.4.2 ROM identification for the building simulators 

In this section, we intend to identify parameters for the 3 case study buildings introduced in § 1.4. 

Identification datasets are generated using the BTSs as described in § 2.3.3.1. Unlike analytical testing, 

datasets generated from the BTSs are noisy and theoretically optimal parameters to fit the measurements 

are not known beforehand.  

Following conclusions of § 2.4.1.3, we rely on some physical knowledge to initialize the search 

algorithm. The search is normalized with respect to the chosen initial values and delimited between 1/3 

and 3. Multiple initializations are performed, performance criteria of § 2.3.3.3 are evaluated at the end 

of each and the overall best point is retained. 

2.4.2.1 Identification results 

Final identified parameters are shown in Table 2.15, together with the value of the objective function at 

the optimal point 𝑓𝑜𝑏𝑗(𝜃𝑜𝑝𝑡) (Eq. 2.46) and the normalized quadratic error integral on the indoor 

temperature at the optimal point given in Eq. 2.61. 

𝑞𝑇𝑎𝑖𝑟(𝜃) =
1

∆𝑡𝑟
∙ ∫ (

𝑇𝑎𝑖𝑟
𝐻𝑂𝑀 − 𝑇𝑎𝑖𝑟

𝑅𝑂𝑀

𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 )

2

𝑑𝑡

∆𝑡𝑟

0

 Eq. 2.61 

The algorithm converges to the identified parameters after about 25k simulations, taking around 25 

minutes on a 2-processors, of 18 cores each, machine. Note that 𝑓𝑜𝑏𝑗(𝜃𝑜𝑝𝑡) for the 2012 building is the 

highest among the others. This is due to the sensitivity of this building class to internal heat gain 

accounting for about 20% of its SH sizing power (Figure 2.29), which is not modelled in the ROM 

equations (Eq. 2.39 to Eq. 2.45). To compensate the effect of internal gain, the search algorithm might 

find biased parameters: over-estimated solar gain coefficients and under-estimated heat loss coefficients. 

This eventually leads to larger errors. 

 



Chapter 2         Reduced-order building modelling 

       

79 

 

Table 2.15 Identified parameters, minimal objective function value and corresponding error on the 

indoor temperature for the 3 case study buildings 

Identification results 1915 Building 1975 Building 2012 Building 

𝑪𝒂 𝒓 [𝐽 𝐾⁄ ] 1.76E+07 3.45E+07 2.58E+07 

𝑪  𝒗 [𝐽 𝐾⁄ ] 2.08E+09 3.50E+08 1.78E+08 

𝑪𝒎𝒂   [𝐽 𝐾⁄ ] 1.20E+07 4.62E+05 1.68E+08 

𝑪𝒄 𝒓 [𝐽 𝐾⁄ ] 2.73E+05 2.52E+05 2.72E+05 

𝑪 𝒎 [𝐽 𝐾⁄ ] 6.30E+02 1.41E+03 6.90E+03 

 [𝒂 𝒓− 𝒙 ] [𝑊 𝐾⁄ ] 560.25 372.75 225 

 [𝒂 𝒓−  𝒗] [𝑊 𝐾⁄ ] 1114.5 379.73 24.24 

 [  𝒗− 𝒙 ] [𝑊 𝐾⁄ ] 1289.63 450 1840 

 [𝒂 𝒓−𝒎𝒂  ] [𝑊 𝐾⁄ ] 3360 1760 3060 

 [𝒂 𝒓− 𝒎] [𝑊 𝐾⁄ ] 460 435 380 

𝒌𝒂 𝒓
  [𝑚2] 12.75 7.15 13.05 

𝒌  𝒗
  [𝑚2] 2.1 1.96 15.3 

𝒌𝒎𝒂  
  [𝑚2] 3.15 0.9 5.1 

𝜼  [−] 0.84 0.96 0.95 

𝑮𝒄 𝒓
𝒑

 [1 𝐾⁄ ] 0.34 0.85 0.32 

𝑮𝒂 𝒓
𝒑

 [1 𝐾⁄ ] 0.46 0.53 0.5 

𝒇𝒐 𝒋( 𝒐𝒑 ) [−] 6.15E-04 1.26E-03 1.55E-03 

𝒒𝑻𝒂 𝒓( 𝒐𝒑 ) [−] 3.46E-08 7.78E-08 9.94E-08 

 

 

Figure 2.29 Proportions of the internal heat gain (noise) compared to the substation SH power 

(observation) for the 3 case study buildings showing that the 2012 Building is the most sensitive to 

internal gain 

2.4.2.2 Performance criteria for the 3 case study buildings 

Results of the fit criterion (Eq. 2.54) on the model outputs 𝑄𝑆𝑆𝑇 and 𝑚̇𝑆𝑆𝑇 are listed in Table 2.16. The 

deterioration in the fit between identification and validation phases for all buildings is less than 5%.  
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Table 2.16 Results of the output fit assessment criterion 

Fit (%) Phase 1915 Building 1975 Building 2012 Building 

𝝋𝑸𝑺𝑺𝑻 
Identification 93.78 92.68 94.46 

Validation 90.02 89.69 89.79 

𝝋𝒎̇𝑺𝑺𝑻
 

Identification 95.80 94.98 91.55 

Validation 90.73 91.62 84.58 

 

Results of the indoor air temperature error (Eq. 2.55) are shown in Table 2.17. The obtained mean 𝜇 and 

standard deviation 𝜎 of  𝜀𝑇𝑎𝑖𝑟  imply very good predictive ability during the identification and validation 

phases. Furthermore, the errors range between -0.32°C and 0.28°C during identification, and between -

-0.51 and 0.59 during validation. These tight error ranges are quite satisfactory considering the fact that 

the identification approach did not rely on any internal temperature measures. 

Table 2.17 Results of the indoor air temperature assessment criterion 

 Phase 1915 Building 1975 Building 2012 Building 

𝝁(𝜺𝑻𝒂 𝒓) [°𝐶] 
Identification 0.04 -0.05 0.02 

Validation  0.09 -0.01 -0.03 

𝝈(𝜺𝑻𝒂 𝒓) [°𝐶] 
Identification 0.05 0.08 0.09 

Validation  0.1 0.11 0.16 

[𝜺𝑻𝒂 𝒓
𝒎  , 𝜺𝑻𝒂 𝒓

𝒎𝒂𝒙]  [°𝐶] 
Identification [-0.27, 0.16] [-0.30, 0.28] [-0.32, 0.28] 

Validation [-0.51, 0.23] [-0.46, 0.34] [-0.34, 0.59] 

 

A close-up on 2 days in Figure 2.30 allows visual comparison between the HOMs reference data and 

the ROMs predictions. We note that air temperature trajectories of the 2012 Building (most sensitive to 

internal heat gain) show that the largest discrepancies between the HOM and the ROM occur during 

night-time when the internal gain magnitude is very low. This observation supports the doubt that biased 

parameters might have been identified to compensate the influence of internal gain whenever it is present 

(day time), eventually leading to larger errors whenever it is not (night time). 
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Figure 2.30 Comparison between the HOMs data and the corresponding ROMs predictions for the 3 

case study buildings 

Finally, results of the building equivalent heat loss coefficient are given in Table 2.18. They show overall 

good consistency between 𝑈𝑏𝑢𝑖𝑙𝑑
𝑒𝑠𝑡𝑖𝑚 (Eq. 2.56) and 𝑈𝑏𝑢𝑖𝑙𝑑

𝑖𝑑𝑒𝑛𝑡 (Eq. 2.57). Again, the largest relative error 

𝜖𝑈𝑏𝑢𝑖𝑙𝑑 (Eq. 2.58) was found for the 2012 Building. It is indeed underestimated in the identification, 

which compensates the effect of internal gain. 

Table 2.18 Results of the building equivalent heat loss coefficient physical plausibility 

 1915 Building 1975 Building 2012 Building 

      
      

 [𝑊/𝐾] 1129.03 596.77 277.42 

      
      [𝑊/𝐾] 1158.09 578.69 248.92 

𝝐       [%] 2.57 -3.03 -10.27 

 

Performance criteria reassure that all 3 identified ROMs have high prediction ability [Aoun et al., 2019]. 

Thus they will be used in the MPC application of the next chapter. 
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2.5 Conclusion 

Developing a building model for model-based control is a crucial and time-consuming step. Moreover, 

limited data availability at a city or a DHS scale further restrict the potential approaches.  

In this chapter, the goal is to establish a methodology to infer an accurate, identifiable from 

measurements available at the DHS substation and computationally efficient reduced-order building 

model from data generated by the BTSs. To this end, 2 complementary tasks are accomplished: firstly, 

designing a convenient model structure and secondly, identifying unknown parametric.   

A literature review inspected building model structures and identification techniques. It was found that 

physically interpretable grey-box models of at least 2nd order and preferably considering thermal inertia 

of the heating system are well-suited for our application. However, development of a ROM of an order 

greater than 1 and not relying on indoor measurements has not been proposed in the literature.  

The BTS comes in handy to perform a parametric study, which seemed necessary for a better 

understanding of buildings thermal dynamics. SH demand flexibility of buildings from different energy 

classes, having different levels of internal mass and equipped with different heating systems is assessed. 

It was found that thermal inertia of internal mass and radiators-heating systems, in particular those 

operating at high temperatures, considerably increases demand flexibility, especially in well-insulated 

buildings. Therefore, a model structure accounting for the effect of these elements is designed. The 

model has 16 parameters to be identified. An identification strategy is proposed. It strictly uses 

observations found at the substation: SH power and heating circuit mass flow rate non-intrusively 

generated under quasi normal operation conditions for the consumer. The identification consists in 

searching for an optimal set of 16 parameters that minimizes the output error between the reduced order 

model and the data generated by the BTS. A hybrid PSO-HJ search algorithm is employed for this task 

and performance criteria are defined to assess the search result. 

Before applying the proposed strategy on actual data generated by the complex BTSs, synthetic data 

was used for analytical testing. Through the tests, limitations of the methodology are uncovered: some 

parameters are poorly-identifiable and the risks for the algorithm to find an incorrect optimal set of 

parameters are high. In order to discern the correct set, physical knowledge of the system should be 

engaged. With these conclusions, we carried on parameters identification to infer ROMs for our 3 case 

study buildings. Performance assessments of the found results turned-out fairly satisfactory and the 

ROMs are deemed propitious for MPC.  

In the next chapter, a control problem for optimal SH management from the DHS substation will be 

formulated based on the identified ROM. 
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Chapter 3  

Flexible model predictive control of 

buildings space-heating demand 

Synopsis 

In this chapter, we design and demonstrate flexible control of buildings SH demand in DHSs by MPC. 

After introducing MPC, we review relevant works in the literature and conclude that a realistic and 

practical MPC implementation within a DHS context has not yet been proposed. We design an optimal 

controller and introduce its flexibility aspect via a mathematical formulation allowing it to modulate 

building SH demand, within the thermal comfort zone, based on the identified ROM. Finally we 

demonstrate the proposed MPC on the BTSs and envision its potential contributions at a DHS scale. 

3.1 Introduction to model predictive control 

Model predictive control is an approach to control design. It does not imply a specific control law or 

algorithm; it rather describes a strategy primary based on anticipation and calculation of consequences. 

On another note, optimal control involves mathematical formulation of a problem and its resolution for 

the best solution. One possible framework to implement optimal control is within the MPC approach.  

In this section, we intend to clarify key concepts of MPC and introduce optimal control formulation.  

3.1.1 Key concepts of MPC 

MPC has its origins in human behaviour. An everyday life activity where humans intuitively approach 

with MPC is when controlling a car, i.e. driving. To ease explanation, key concepts of MPC presented 

hereafter are illustrated with the car driving example. 
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3.1.1.1 Predictions 

While driving a car, a driver looks ahead to anticipate future obstacles. The horizon over which he 

should be looking must be sufficiently far, otherwise obstacles may not be avoided. 

MPC relies on predictions (or anticipations, forecasts) of signals that act on the system over a future 

horizon. Based on these predictions, an implemented controller takes control actions. The length of the 

prediction horizon depends on the system dynamics; it is chosen large enough to allow actions to take 

effect within the desired time, but not too large, otherwise calculations may become tedious and useless. 

3.1.1.2 Receding horizon 

As the car moves forward, the driver takes control actions, his anticipations are refreshed and his 

horizon shifts along. 

In MPC, as time flows, the controller makes decisions and is continually provided with updated 

predictions. The prediction horizon is always relative to the current point in time and of constant length; 

therefore as time flows, the horizon recedes. The period at which a decision is made and the horizon is 

shifted is called the sampling time. This is called the receding horizon principle.  

3.1.1.3 Model 

Approaching an obstacle, a driver estimates the distance and the time needed to avoid a crash. Then, 

owing to his experience, he decides to push the brake pedal at the instant which he expects to be the 

most convenient.  

Besides predictions, MPC relies on automated estimation of the system behaviour over the prediction 

horizon. This automation is done though mathematical models. Controllers given good models (well-

experienced drivers) are more likely to make better decisions. 

3.1.1.4 Feedback 

When the car hits the rumble strips on the edge of the road, the driver receives a tactile vibration as an 

alert to correct its position. 

When controlling a system, some states might be continually measured. Feedback is introduced to the 

control loop when these measurements are considered in new decision making and used to update the 

model estimations. MPC may incorporate feedback. 
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3.1.1.5 Multi-variables handling 

Driving a car requires the driver to control both the steering wheel and the throttle simultaneously; 

consequently the car moves along a certain direction at a certain speed. 

MPC can be used to handle multi-input multi-output systems by automatically taking account of the 

interactions between all inputs and outputs through the mathematical model. 

3.1.1.6 Constraints handling 

A driver controlling the speed of his vehicle should respect speed limits. 

One major advantage of a MPC controller is that it attempts to make decisions that strictly satisfy a set 

of constraints. Other control strategies, typically using PID regulators, would allow some violation of 

the limits (e.g. over-shoot) and correct the decision afterwards.  

3.1.1.7 Performance criterion 

Multiple itineraries may be suggested to reach a destination. Some drivers prefer short routes, others 

value light traffic or cheap tolls, and often times trade-offs must be made. Therefore, a driver defines a 

criterion and accordingly chooses the itinerary that best suits its. 

In MPC, it is essential to define a performance criterion, i.e. a numerical indicator of what best means. 

Thus the controller may compute and compare the performance criterion of potential solutions and 

accordingly identify the best one. Flexibility may be introduced to the control through a performance 

criterion defined as a trade-off between 2 or more contradictory objectives. 

3.1.2 Optimal control  

As mentioned, MPC employs a controller that makes decisions over a finite horizon based on 

predictions, relying on a mathematical model, subject to some constrains and aiming at finding the best 

solution according to a performance criterion. This describes a constrained optimal controller.  

An optimal controller is configured by formulating an optimization problem and selecting an adequate 

algorithm to solve for its solution.  

The general discrete form (implicit 1st order Euler scheme) of a constrained optimization problem over 

a prediction horizon is given in Eq. 3.62: 𝐻𝑀𝑃𝐶 denotes the prediction horizon, ∆𝑡𝑀𝑃𝐶 the sampling time 

and 𝑁𝑀𝑃𝐶 the number of instants (Eq. 3.63);  𝑥 is the model states vector and 𝑢 is the model inputs 

vector composed of controllable inputs (constant over ∆𝑡𝑀𝑃𝐶) and predicted uncontrollable disturbances. 
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Eq. 3.62(a) is the objective function (or cost function), where 𝑙 is a function closely related to the 

performance criterion. 𝑓 in Eq. 3.62(b) is a vector of equality constraints dictating the system dynamics 

according to its mathematical model. 𝑔 in Eq. 3.62(c) and ℎ in Eq. 3.62(d) are vectors of inequality 

constraints on the system states and controllable inputs, respectively, which prohibit undesired solutions 

and violation of technical limitations. 𝐺 and 𝐻 are vectors of bounding parameters. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:     

𝑓𝑜𝑏𝑗
𝑀𝑃𝐶 = ∑ 𝑙(𝑥[𝑛], 𝑢[𝑛])

𝑁𝑀𝑃𝐶

𝑛=1

 Eq. 3.62(a) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑛):  
  

𝑥[𝑛] = 𝑓(𝑥[𝑛 − 1], 𝑢[𝑛]) Eq. 3.62(b) 

𝑔(𝑥[𝑛]) ≤ 𝐺 Eq. 3.62(c) 

ℎ(𝑢[𝑛]) ≤ 𝐻 Eq. 3.62(d) 

 

𝑁𝑀𝑃𝐶 = 𝐻𝑀𝑃𝐶 ∆𝑡𝑀𝑃𝐶⁄  Eq. 3.63 

Optimal control problems are categorized depending on the nature of 𝑙, 𝑓, 𝑔, ℎ, 𝑥 and 𝑢. Per category, 

specific methods and algorithms have been developed to solve the problem. Below, we cite the general 

categories and some of their proposed resolution methods: 

▪ Linear programming: If 𝑙, 𝑓, 𝑔 and ℎ are all linear and all variables in 𝑥 and 𝑢 are continuous, 

then the problem in discrete time is referred to as Linear Programming (LP). Standard 

algorithms to solve LP problems are the Simplex algorithm [Kalai, 1997], the Ellipsoid 

algorithm [Grötschel et al., 1981] and Karmarkar’s algorithm [Karmarkar, 1984]. 

▪ Non-linear programming: If any of 𝑙, 𝑓, 𝑔 or ℎ is non-linear, then the problem is a Non-Linear 

Programming (NLP) problem. One particular problem is when 𝑙 is quadratic while all others are 

linear, then the problem is called Linear Quadratic (LQ) and the solution is provided by a Linear 

Quadratic Regulator (LQR) [Scokaert et Rawlings, 1998]. If 𝑔 and ℎ are eliminated (system 

subject to equality constraints only), the method of Lagrange multipliers can be applied [Rosen, 

1999]. Other methods to solve general forms of NLP problems trading optimality for speed 

involve metaheuristics such as genetic algorithms [Rudolf et Bayrleithner, 1999] and particle 

swarm optimization algorithms [Das et al., 2008]. 

▪ Mixed-integer programming: If 𝑥 or 𝑢 include variables that are restricted to be integers 

(called discrete variables), then we are dealing with a Mixed-Integer Programming (MIP) 

problem. The problem may be solved by branch-and-bound [Land et Doig, 1960] or branch-

and-cut [Padberg et Rinaldi, 1991] algorithms. They consist of solving the basic (LP or NLP) 
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problem ignoring the restriction that some variables are discrete. If the solution happens to 

satisfy the ignored restriction, then the problem is solved. Otherwise, the unsatisfactory solution 

is excluded and the problem is solved again. Commercial MIP solvers such as CPLEX14, 

GUROBI15 and MOSEK16 efficiently accelerate the procedure by several means, for instance 

by parallelism and cutting planes techniques. 

The necessity in MPC to solve the optimization problem within the sampling time ∆𝑡𝑀𝑃𝐶 raises the 

requirement of computational efficiency on the controller. In fact, NLP problems are very hard to solve 

efficiently. It is much more convenient to use a model with linear dynamics and formulate a linear 

objective function. Yet, if some non-linear dynamics are inevitably necessary to include in the model, 

the obtained NLP problem may be relaxed into a Mixed-Integer Linear Programming (MILP) problem, 

i.e. a combination of LP and MIP, by appropriate linearization techniques.  

In this chapter, we demonstrate the use of the ROM identified in the previous chapter to formulate a 

MILP problem and elaborate a MPC strategy for buildings SH demand. But first, a concise literature 

review on MPC applications in this field is presented. 

3.2 Literature review 

3.2.1 MPC in smart grids 

MPC was first introduced to optimally control space-heating (and cooling) in electric Smart Grids (SGs). 

As defined in [Momoh, 2009], SG is “the power system that is capable of assessing its health in real-

time, predicting its behavior, anticipatory behavior, adaptation to new environments, handling 

distributed resources, stochastic demand, and optimal response to the smart appliances.” 

The use of MPC was motivated by variable electricity retail prices and the possibility of using thermal 

inertia of the buildings to shift their demand to periods of lower prices, without jeopardizing consumers 

thermal comfort. Load shifting, load shedding and peak shaving are all Demand-Side Management 

(DSM) measures applicable through MPC: they involve manipulation (or modulation) of buildings 

power demand in order to optimize the overall grid performance (operation costs, voltage stability, 

renewable energy penetration rates, etc.). 

Thus, many studies have been conducted to assess the contributions of DSM through MPC in SGs. In 

[Halvgaard et al., 2012], MPC is implemented to manipulate a heat pump in a building equipped with a 

floor heating system. The strategy proved its ability to shift the electrical load to periods with low 

                                                      
14 https://www.ibm.com/analytics/cplex-optimizer 
15 https://www.gurobi.com/ 
16 https://www.mosek.com/ 

https://www.ibm.com/analytics/cplex-optimizer
https://www.gurobi.com/
https://www.mosek.com/
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electricity price characterized by high levels of wind power availability. In [Killian et al., 2018], MPC 

is used to optimally manage  thermal and non-thermal devices of a smart home; it was demonstrated 

that buildings thermal inertia can be efficiently used to store heat and therefore reduce the battery size 

required in such houses. In [Ma et al., 2012], MPC allowed important cost savings by automatically 

triggering pre-cooling and peak-load shaving based on dynamic electricity prices. Similar conclusions 

were reported in a number of other studies, e.g. [Kramer et al., 2016; Chen et al., 2013; Hu et al., 2019b] 

3.2.2 MPC in DHSs 

Promising results in SGs raised interest in investigating MPC for SH demand in buildings served by a 

DHS. Yet the application in contemporary DHSs is more challenging. First, identifying a suitable model 

requires historical data. SGs are rather modern systems, often equipped with smart meters and 

monitoring devices, therefore more data is available resulting in better models. Second, DSM control 

actions can only be applied at the substation level in DHSs. For instance, modulating the air set-point 

temperature inside the building at the radiators level is not possible in a DHS whereas actuators may be 

readily installed in SGs to do so. 

Thus, few studies investigated MPC in DHSs. In [Li et Wang, 2015], a predictive control scheme is 

proposed where building thermal inertia is used to avoid starting up peak heat boilers in a DHS. In the 

MPC proposed in [Verrilli et al., 2016], heat demand is treated as a flexible load with curtailable and 

reschedulable parts. The potential benefits of flexible MPC has been well-noted; however, none of these 

works have used proper building models or applied control as it is feasible in a DHS. 

3.2.3 Real-life implementation 

All studies cited so far were conducted by numerical simulation means. As we come to grips with real-

life implementation of MPC, several practical challenges arise. Beginning with ROM development, in 

real-life, measurements are limited and datasets require filtering prior to the identification process. 

Occupant’s behaviour is uncontrollable and may sometimes put the ROM predictions off-track if it was 

not accounted for during the identification. Moreover, weather forecasts and energy price predictions 

are never perfect.  

In [Liao et Dexter, 2009], MPC is designed and tested on a commercial office building heated with 

radiators equipped with TRVs. It was concluded that the control scheme outperforms conventional 

control. However, it is arguable whether MPC including the identification of the ROM using internal 

temperature measurements would be lucrative on smaller residential buildings. In [Chen, 2002], MPC 

is applied to a test room with floor heating. Results showed that MPC is more beneficial than standard 

on-off and PI controllers. [Prívara et al., 2011] presents a real-life implementation of MPC on a 

university building and concludes on its superiority in reducing peak loads with respect to conventional 
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WCC. Yet again, the authors stressed that the ROM development is the most crucial part of the problem 

and estimated the return time of the investment in MPC to 2 years. [Oldewurtel et al., 2012] presents 

stochastic MPC by simulating uncertain weather forecasts to mimic real-life scenarios. [Zhang et al., 

2013] presents randomized MPC that handles uncertainties due to occupancy and weather forecasts. 

Studies presented in [Liu et al., 2018; Li et al., 2015; Namerikawa et Igari, 2016] investigate the impact 

of solar irradiation uncertainty on MPC applied to buildings with photovoltaic systems.  

So as a conclusion, MPC is deemed promising to tackle buildings SH optimal control. Few studies were 

conducted in a DHS context. Real-life implementation requires consideration of many aspects including 

ROM identification conditions (discussed in § 2.1), control actions feasible at the substation level and 

uncertainty quantification of the predictions.  

3.3 Flexible control problem formulation 

This section describes our MILP formulation of the optimization problem used to design a flexible 

controller based on the identified ROM to be solved within a MPC scheme, assuming perfect weather 

and energy prices predictions. Recall that SH demand flexibility is the ability to modulate the building 

energy profile within its thermal comfort zone.  

3.3.1 Objective function 

The optimization problem has one objective function expressed as the sum of multiple terms to be 

minimized. These terms are measures of SH energy cost, thermal discomfort and thermal losses. 

3.3.1.1 Space-heating cost 

SH naturally has a cost based on the energy purchase price, denoted 𝑝𝑒𝑛𝑒𝑟𝑔𝑦. The DHS energy supplier 

may charge the consumer with variable tariffs that depend on various factors such as heat sources 

availability or demand intensity. Consequently, the cost of SH over 𝐻𝑀𝑃𝐶, 𝑐𝑆𝐻 , is given in Eq. 3.64. 

𝑐𝑆𝐻 = ∑ 𝑝𝑒𝑛𝑒𝑟𝑔𝑦[𝑛] ∙ 𝑄𝑆𝑆𝑇[𝑛]

𝑁𝑀𝑃𝐶

𝑛=1

 Eq. 3.64 

3.3.1.2 Thermal discomfort  

Thermal discomfort is triggered by a deviation of the indoor air temperature 𝑇𝑎𝑖𝑟 from its set-point 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡. 

A penalty for discomfort 𝑝𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 may be associated to the absolute difference between 𝑇𝑎𝑖𝑟 and 

𝑇𝑎𝑖𝑟
𝑠𝑒𝑡, and discomfort cost would be formulated as in Eq. 3.65: 
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𝑐𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = ∑ 𝑝𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡[𝑛] ∙ |𝑇𝑎𝑖𝑟[𝑛] − 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡[𝑛]|

𝑁𝑀𝑃𝐶

𝑛=1

 Eq. 3.65 

We tried a first formulation of the objective function as the sum of the costs in Eq. 3.64 and Eq. 3.65. 

To minimize it, the controller would either drive 𝑇𝑎𝑖𝑟 close to 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 if 𝑝𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 is much more weighing 

than 𝑝𝑒𝑛𝑒𝑟𝑔𝑦, or shut-off Q𝑆𝑆𝑇 otherwise. Finding a well-tuned 𝑝𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 is complicated. 

Instead, we introduce a temperature denoted 𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 which is a linear translation of 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 by a thermal 

comfort threshold 𝜀𝑐𝑜𝑚𝑓 as in Eq. 3.66.  

𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡[𝑛] = 𝑇𝑎𝑖𝑟

𝑠𝑒𝑡[𝑛] − 𝜀𝑐𝑜𝑚𝑓[𝑛] Eq. 3.66 

Now, 𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 replaces 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 in Eq. 3.65. For a reasonable 𝑝𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 with respect to an average 

𝑝𝑒𝑛𝑒𝑟𝑔𝑦, the controller would drive 𝑇𝑎𝑖𝑟 close to 𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

, unless 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 reaches peak values in which 

case Q𝑆𝑆𝑇 is shut-off. Hence, 𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 allows the DHS operator to modulate 𝑇𝑎𝑖𝑟 around specific values 

ruled by 𝜀𝑐𝑜𝑚𝑓. The modulation itself was not possible before introducing 𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 because the operator 

does not have control over 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 (only consumers inside the building can regulate 𝑇𝑎𝑖𝑟

𝑠𝑒𝑡). 

𝜀𝑐𝑜𝑚𝑓 takes positive values because in case of a building with radiators heating system equipped with 

TRVs, we may not regulate 𝑇𝑎𝑖𝑟 above 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡: the TRVs automatically close to prevent over-heating. 

𝜀𝑐𝑜𝑚𝑓 defines the thermal comfort zone which may be variable over time, typically 𝜀𝑐𝑜𝑚𝑓 can be 

increased during night-time. 

Furthermore, we distinguish between discomfort due to over-heating and that due to under-heating. 

Temperature deviation in the former is denoted ∆𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 and takes a positive value (Eq. 3.67), 

whereas in the latter it is denoted ∆𝑇𝑎𝑖𝑟
𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 and takes a negative value (Eq. 3.68). 

∆𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] = ⟦𝑇𝑎𝑖𝑟[𝑛] − 𝑇𝑎𝑖𝑟

𝑡𝑎𝑟𝑔𝑒𝑡[𝑛]⟧
0

∞
 Eq. 3.67 

∆𝑇𝑎𝑖𝑟
𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] = ⟦𝑇𝑎𝑖𝑟[𝑛] − 𝑇𝑎𝑖𝑟

𝑡𝑎𝑟𝑔𝑒𝑡[𝑛]⟧
−∞

0
 Eq. 3.68 

A penalty is associate with each temperature deviation. These penalties are correlated with 𝑐𝑒𝑛𝑒𝑟𝑔𝑦 as 

shown in Eq. 3.69 and Eq. 3.70 through coefficients 𝜆𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 and  𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 (both of positive values). 
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𝑝𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] = 𝜆𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 ∙
1

𝑁𝑀𝑃𝐶
∙ ∑ 𝑝𝑒𝑛𝑒𝑟𝑔𝑦[𝑛 + 𝑖]

𝑁𝑀𝑃𝐶−1

𝑖=0

∙ 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 Eq. 3.69 

𝑝𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] = −𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 ∙
1

𝑁𝑀𝑃𝐶
∙ ∑ 𝑝𝑒𝑛𝑒𝑟𝑔𝑦[𝑛 + 𝑖]

𝑁𝑀𝑃𝐶−1

𝑖=0

∙ 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 Eq. 3.70 

Finally the cost of discomfort over 𝐻𝑀𝑃𝐶, 𝑐𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 , is given in Eq. 3.71. 

𝑐𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = ∑ (𝑝𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] + 𝑝𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑇𝑎𝑖𝑟

𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛])

𝑁𝑀𝑃𝐶

𝑛=1

 Eq. 3.71 

3.3.1.3 Thermal losses in the heating circuit 

In the ROM structure, thermal losses in the heating circuit are simply modelled proportional to the 

substation heating power (Eq. 2.43). This simplification uncouples the thermal losses from the 

temperature of heating circuit water; thus it allows faster resolution of the optimization problem. 

However, it does not reflect the true physics since heating at higher temperatures results in greater 

thermal losses, to be avoided by the controller. Moreover, this formulation leads to control decisions 

with chattering heating temperatures, thus instabilities to be avoided as well. 

To ensure that the controller choses low and stable heating temperatures, we append to the objective 

function a regularization term in the form of a cost for thermal losses in the heating circuit. This is 

formulated by introducing a temperature difference between the heating circuit and its ambient 

environment, assumed at constant temperature 𝑇𝑎𝑚𝑏 = 20°𝐶 in Eq. 3.72. A penalty price 𝑝𝑙𝑜𝑠𝑠𝑒𝑠 is 

assigned to these losses in Eq. 3.73 similarly to the discomfort penalties.  

∆𝑇𝑐𝑖𝑟
𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] = 𝑇𝑐𝑖𝑟[𝑛] − 𝑇𝑎𝑚𝑏 Eq. 3.72 

𝑝𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] = 𝜆𝑙𝑜𝑠𝑠𝑒𝑠 ∙
1

𝑁𝑀𝑃𝐶
∙ ∑ 𝑝𝑒𝑛𝑒𝑟𝑔𝑦[𝑛 + 𝑖]

𝑁𝑀𝑃𝐶−1

𝑖=0

∙ 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 Eq. 3.73 

Hence, the cost of thermal losses in the heating circuit over 𝐻𝑀𝑃𝐶, 𝑐𝑙𝑜𝑠𝑠𝑒𝑠, is given in Eq. 3.74. 
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𝑐𝑙𝑜𝑠𝑠𝑒𝑠 = ∑ 𝑝𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] ∙ ∆𝑇𝑐𝑖𝑟
𝑙𝑜𝑠𝑠𝑒𝑠[𝑛]

𝑁𝑀𝑃𝐶

𝑛=1

 Eq. 3.74 

3.3.1.4 Final form 

The MPC objective function to be minimized over 𝐻𝑀𝑃𝐶 is the sum of all costs (Eq. 3.64, Eq. 3.71 and 

Eq. 3.74). It is expressed in Eq. 3.75. 

𝑓𝑜𝑏𝑗
𝑀𝑃𝐶 = ∑

(

 
 

𝑝𝑒𝑛𝑒𝑟𝑔𝑦[𝑛] ∙ 𝑄𝑆𝑆𝑇[𝑛] ∙ ∆𝑡𝑀𝑃𝐶
+𝑝𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑇𝑎𝑖𝑟

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑡𝑀𝑃𝐶
+𝑝𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑇𝑎𝑖𝑟

𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] ∙ ∆𝑡𝑀𝑃𝐶
+𝑝𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] ∙ ∆𝑇𝑐𝑖𝑟

𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] ∙ ∆𝑡𝑀𝑃𝐶 )

 
 

𝑁𝑀𝑃𝐶

𝑛=1

 Eq. 3.75 

The controller is tuned by means of the costs weights: 𝜆𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡, 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 and 𝜆𝑙𝑜𝑠𝑠𝑒𝑠. The system is 

subject to a set of constraints mainly constituted of the ROM equations which determine its physical 

evolution over 𝐻𝑀𝑃𝐶. MILP formulation of these constraints is expanded in the following section. 

3.3.2 Constraints 

Constraints of the MILP problem consist of the discretized and linearized ROM equations, expressions 

of the new terms introduced in the objective function (∆𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡, ∆𝑇𝑎𝑖𝑟

𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 and ∆𝑇𝑎𝑖𝑟
𝑙𝑜𝑠𝑠𝑒𝑠) and some 

bounding constraints of the model states and inputs.  

3.3.2.1 ROM equations 

3.3.2.1.1 Discretization of the differential equations 

The ROM differential equations are discretized using the backward (implicit) 1st order Euler scheme at 

a fixed time step equal to ∆𝑡𝑀𝑃𝐶 (Eq. 3.76 to Eq. 3.80). These equations are linear equality constraints.  

𝐶𝑎𝑖𝑟 ∙
𝑇𝑎𝑖𝑟[𝑛]−𝑇𝑎𝑖𝑟[𝑛−1]

∆𝑡𝑀𝑃𝐶
= 𝑈[𝑎𝑖𝑟−𝑒𝑥𝑡] ∙ (𝑇𝑒𝑥𝑡[𝑛] − 𝑇𝑎𝑖𝑟[𝑛]) + 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣] ∙ (𝑇𝑒𝑛𝑣[𝑛] −

𝑇𝑎𝑖𝑟[𝑛]) + 𝑈[𝑎𝑖𝑟−𝑚𝑎𝑠𝑠] ∙ (𝑇𝑚𝑎𝑠𝑠[𝑛] − 𝑇𝑎𝑖𝑟[𝑛]) + 𝑈[𝑎𝑖𝑟−𝑒𝑚] ∙ (𝑇𝑒𝑚[𝑛] − 𝑇𝑎𝑖𝑟[𝑛]) + 𝑘𝑎𝑖𝑟
𝑠 ∙

𝐼𝑠𝑜𝑙[𝑛]   

Eq. 3.76 
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𝐶𝑒𝑛𝑣 ∙
𝑇𝑒𝑛𝑣[𝑛]−𝑇𝑒𝑛𝑣[𝑛−1]

∆𝑡𝑀𝑃𝐶
= 𝑈[𝑒𝑛𝑣−𝑒𝑥𝑡] ∙ (𝑇𝑒𝑥𝑡[𝑛] − 𝑇𝑒𝑛𝑣[𝑛]) + 𝑈[𝑎𝑖𝑟−𝑒𝑛𝑣] ∙ (𝑇𝑎𝑖𝑟[𝑛] −

𝑇𝑒𝑛𝑣[𝑛]) + 𝑘𝑒𝑛𝑣
𝑠 ∙ 𝐼𝑠𝑜𝑙[𝑛]   

Eq. 3.77 

𝐶𝑚𝑎𝑠𝑠 ∙
𝑇𝑚𝑎𝑠𝑠[𝑛]−𝑇𝑚𝑎𝑠𝑠[𝑛−1]

∆𝑡𝑀𝑃𝐶
= 𝑈[𝑎𝑖𝑟−𝑚𝑎𝑠𝑠] ∙ (𝑇𝑎𝑖𝑟[𝑛] − 𝑇𝑚𝑎𝑠𝑠[𝑛]) + 𝑘𝑚𝑎𝑠𝑠

𝑠 ∙ 𝐼𝑠𝑜𝑙[𝑛]   Eq. 3.78 

𝐶𝑒𝑚 ∙
𝑇𝑒𝑚[𝑛]−𝑇𝑒𝑚[𝑛−1]

∆𝑡𝑀𝑃𝐶
= 𝑈[𝑎𝑖𝑟−𝑒𝑚] ∙ (𝑇𝑎𝑖𝑟[𝑛] − 𝑇𝑒𝑚[𝑛]) + 𝑄𝐵𝐿[𝑛]  Eq. 3.79 

𝐶𝑐𝑖𝑟 ∙
𝑇𝑐𝑖𝑟[𝑛]−𝑇𝑐𝑖𝑟[𝑛−1]

∆𝑡𝑀𝑃𝐶
= 𝜂𝑙 ∙ 𝑄𝑆𝑆𝑇[𝑛] − 𝑄𝐵𝐿[𝑛]   Eq. 3.80 

Notice that 𝑚̇𝑆𝑆𝑇 ∙ cwat ∙ (𝑇𝑐𝑖𝑟 − 𝑇𝑒𝑚) of Eq. 2.42 and Eq. 2.43 is replaced by a new variable  𝑄𝐵𝐿 

denoting a bilinear term that is separately treated. 

3.3.2.1.2 Linearization of the bilinear term 

For simplicity, we first introduce a new variable ∆𝑇𝐵𝐿 given by Eq. 3.81, where BL denotes Bi-Linear: 

∆𝑇𝐵𝐿[𝑛] = 𝑇𝑐𝑖𝑟[𝑛] − 𝑇𝑒𝑚[𝑛] Eq. 3.81 

𝑄𝐵𝐿[𝑛] = 𝑚̇𝑆𝑆𝑇[𝑛] ∙ cwat ∙ ∆𝑇𝐵𝐿[𝑛] is a bilinear term, i.e. it features a product of 2 variables 𝑚̇𝑆𝑆𝑇[𝑛] 

and ∆𝑇𝐵𝐿[𝑛], both being continuous, and as such, requires linearization.  

Several linearization approaches are suggested in the literature including the classical linearization 

around an operating point thoroughly explained in [Roubal et al., 2009] and the piecewise linear 

formulations reviewed in [Lin et al., 2013]. 

Linearization around an operating point transforms the non-linear problem into a linear one. The 

approach approximates the bilinear term to its gradient at a known (not to be optimized) point. The 

complete formulation is not given here for concision, refer to [Roubal et al., 2009] for details. For a 

linearization throughout 𝐻𝑀𝑃𝐶, the operating point is best chosen to be the previous point to the 

beginning of 𝐻𝑀𝑃𝐶. The linearization is usually acceptable close to that operating point; however, it may 

entail large errors between the exact non-linear system and the thus linearized version as we move away 

from the operating point. Thus, linearization around an operating point was quickly abandoned. 
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Piecewise linear formulations transform the non-linear problem into a mixed-integer linear one. The 

general approach starts by discretizing one of the variables involved in the bilinear term into pieces (or 

intervals) by introducing breakpoints. Binary (0-1) variables are associated to these intervals, such that 

only one of them is equal to 1 (activated) while all others equal 0. Between 2 consecutive breakpoints, 

the exact bilinear term is said to be relaxed. Several relaxation techniques are derived in the literature 

with the aim of formulating the tighter relaxation for better accuracy. The one that worked best for our 

problem is the McCormick relaxation, first introduced in [McCormick, 1976] and used in many works, 

e.g. [Wicaksono et Karimi, 2008]. A brief demonstration of the McCormick relaxation is given in 

Appendix A. The complete formulation is expanded hereafter. 

∆𝑇𝐵𝐿[𝑛] is discretized into a vector of (𝑁𝑑𝑖𝑠𝑐 + 1) uniformly spaced positive values ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘], creating 

𝑁𝑑𝑖𝑠𝑐 equal intervals; ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘] is the discretized value of ∆𝑇𝐵𝐿 at the beginning of interval 𝑘. 

At every time instance of index 𝑛, 𝑁𝑑𝑖𝑠𝑐 binary variables 𝛼𝐵𝐿[𝑛][𝑘] are introduced such as in Eq. 3.82: 

∑ 𝛼𝐵𝐿[𝑛][𝑘]

𝑁𝑑𝑖𝑠𝑐

𝑘=1

= 1 Eq. 3.82 

And, we introduce 𝑁𝑑𝑖𝑠𝑐 continuous variables defined over finite sets: 

▪ 𝛿𝐵𝐿[𝑛][𝑘] ∈ [∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘], ∆𝑇𝐵𝐿

𝑑𝑖𝑠𝑐[𝑘 + 1]] if 𝛼𝐵𝐿[𝑛][𝑘] =1, else 𝛿𝐵𝐿[𝑛][𝑘] = 0 (Eq. 3.83 and Eq. 

3.84) 

▪ 𝜔𝐵𝐿[𝑛][𝑘] ∈ [𝑚̇𝑆𝑆𝑇
𝑚𝑖𝑛 , 𝑚̇𝑆𝑆𝑇

𝑚𝑎𝑥] if 𝛼𝐵𝐿[𝑛][𝑘] =1, else 𝜔𝐵𝐿[𝑛][𝑘] = 0 (Eq. 3.85 and Eq. 3.86): 

𝛿𝐵𝐿[𝑛][𝑘] ≥ ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘] ∙ 𝛼𝐵𝐿[𝑛][𝑘] Eq. 3.83 

𝛿𝐵𝐿[𝑛][𝑘] ≤ ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘 + 1] ∙ 𝛼𝐵𝐿[𝑛][𝑘] Eq. 3.84 

𝜔𝐵𝐿[𝑛][𝑘] ≥ 𝑚̇𝑆𝑆𝑇
𝑚𝑖𝑛 ∙ 𝛼𝐵𝐿[𝑛][𝑘] Eq. 3.85 

𝜔𝐵𝐿[𝑛][𝑘] ≤ 𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ 𝛼𝐵𝐿[𝑛][𝑘] Eq. 3.86 

Hence, 𝛿𝐵𝐿[𝑛][𝑘] and 𝜔𝐵𝐿[𝑛][𝑘] are the local variables inside the discretized interval respectively 

analogue to 𝑥 and 𝑦 in the McCormick formulation of Appendix A. The binary term inside each interval 
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is 𝜑𝐵𝐿[𝑛][𝑘]/cwat = 𝛿𝐵𝐿[𝑛][𝑘] ∙ 𝜔𝐵𝐿[𝑛][𝑘], analogue to 𝑧. The corresponding graphical representation 

of the McCormick envelope is shown in Figure 3.31. 

 

Figure 3.31 McCormick under-estimators (a) and over-estimators (b) for interval of index 𝑘 

The McCormick relaxation is applied through Eq. 3.87 to Eq. 3.90 derived from the general equations 

Eq. App. 3.1 to Eq. App. 3.4 with one difference: the last terms are multiplied by 𝛼𝐵𝐿[𝑛][𝑘] to ensure 

that 𝜑𝐵𝐿[𝑛][𝑘] = 0 if 𝛼𝐵𝐿[𝑛][𝑘] = 0.  

𝜑𝐵𝐿[𝑛][𝑘]

cwat
≥ 𝑚̇𝑆𝑆𝑇

𝑚𝑖𝑛 ∙ 𝛿𝐵𝐿[𝑛][𝑘] + ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘] ∙ 𝜔𝐵𝐿[𝑛][𝑘] − 𝑚̇𝑆𝑆𝑇

𝑚𝑖𝑛 ∙ ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘] ∙ 𝛼𝐵𝐿[𝑛][𝑘]  Eq. 3.87 

𝜑𝐵𝐿[𝑛][𝑘]

cwat
≥ 𝑚̇𝑆𝑆𝑇

𝑚𝑎𝑥 ∙ 𝛿𝐵𝐿[𝑛][𝑘] + ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘 + 1] ∙ 𝜔𝐵𝐿[𝑛][𝑘] − 𝑚̇𝑆𝑆𝑇

𝑚𝑎𝑥 ∙ ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘 + 1] ∙

𝛼𝐵𝐿[𝑛][𝑘]  
Eq. 3.88 

    𝒌

𝒄𝒘𝒂 

    𝒌    𝒌

𝒎̇𝑺𝑺𝑻
𝒎  

𝒎̇𝑺𝑺𝑻
𝒎𝒂𝒙

 𝑻  
   𝒄 𝒌

 𝑻  
   𝒄 𝒌 + 𝟏

(𝒂)

    𝒌

    𝒌

    𝒌

𝒄𝒘𝒂 

 𝑻  
   𝒄 𝒌

 𝑻  
   𝒄 𝒌 + 𝟏

𝒎̇𝑺𝑺𝑻
𝒎  

𝒎̇𝑺𝑺𝑻
𝒎𝒂𝒙

( )
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𝜑𝐵𝐿[𝑛][𝑘]

cwat
≤ 𝑚̇𝑆𝑆𝑇

𝑚𝑖𝑛 ∙ 𝛿𝐵𝐿[𝑛][𝑘] + ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘 + 1] ∙ 𝜔𝐵𝐿[𝑛][𝑘] − 𝑚̇𝑆𝑆𝑇

𝑚𝑖𝑛 ∙ ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘 + 1] ∙

𝛼𝐵𝐿[𝑛][𝑘]  
Eq. 3.89 

𝜑𝐵𝐿[𝑛][𝑘]

cwat
≤ 𝑚̇𝑆𝑆𝑇

𝑚𝑎𝑥 ∙ 𝛿𝐵𝐿[𝑛][𝑘] + ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘] ∙ 𝜔𝐵𝐿[𝑛][𝑘] − 𝑚̇𝑆𝑆𝑇

𝑚𝑎𝑥 ∙ ∆𝑇𝐵𝐿
𝑑𝑖𝑠𝑐[𝑘] ∙ 𝛼𝐵𝐿[𝑛][𝑘]  Eq. 3.90 

Finally, values of ∆𝑇𝐵𝐿[𝑛], 𝑚̇𝑆𝑆𝑇[𝑛] and 𝑄𝐵𝐿[𝑛] are respectively equal to 𝛿𝐵𝐿[𝑛][𝑘], 𝜔𝑁𝐿[𝑛][𝑘] and 

𝜑𝑁𝐿[𝑛][𝑘] in the activated interval 𝑘 (Eq. 3.91, Eq. 3.92 and Eq. 3.93). 

∆𝑇𝐵𝐿[𝑛] = ∑ 𝛿𝐵𝐿[𝑛][𝑘]

𝑁𝑑𝑖𝑠𝑐

𝑘=1

 Eq. 3.91 

𝑚̇𝑆𝑆𝑇[𝑛] = ∑ 𝜔𝑁𝐿[𝑛][𝑘]

𝑁𝑑𝑖𝑠𝑐

𝑘=1

 Eq. 3.92 

𝑄𝐵𝐿[𝑛] = ∑ 𝜑𝑁𝐿[𝑛][𝑘]

𝑁𝑑𝑖𝑠𝑐

𝑘=1

 Eq. 3.93 

3.3.2.1.3 Linearization of the saturated terms 

Besides the bilinear term, Eq. 2.44 and Eq. 2.45 feature saturations. A saturation is another form of non-

linearity characterized by a discontinuity in the function at specific breakpoints. In our case, all 

saturations are piecewise linear, i.e. the function between 2 consecutive breakpoints is readily linear. A 

general method to formulate MILP for discontinuous piecewise linear functions is given in Appendix B 

and applied hereafter. 

Linearization of Eq. 2.44 

First we introduce variables ∆𝑇𝑐𝑖𝑟 and 𝜌𝑄𝑆𝑆𝑇 respectively analogue to 𝑥 and 𝑦 in the general form of 

Appendix B (Eq. 3.94 and Eq. 3.95). 

∆𝑇𝑐𝑖𝑟[𝑛] = 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡[𝑛] − 𝑇𝑐𝑖𝑟[𝑛] Eq. 3.94 
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𝜌𝑄𝑆𝑆𝑇 [𝑛] =
Q𝑆𝑆𝑇[𝑛]

Q𝑆𝑆𝑇
𝑚𝑎𝑥  Eq. 3.95 

Consequently, the saturation function, defined over 3 intervals with 4 breakpoints as depicted in Figure 

3.3217 is linearized by introducing 3 binary variables 𝛼𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][𝑘] and 3 continuous variables 

𝛽𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][𝑘]  where PWL denotes Piece-Wise Linear (𝑛 is the index of the time instance and 𝑘 the 

index of the interval). 

 

Figure 3.32 Plot of Eq. 3.13 showing the breakpoints used in the linearization 

Straightforward application of Eq. App. 3.12 through Eq. App. 3.15 yields Eq. 3.96 through Eq. 3.99: 

∑ 𝛼𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][𝑘]
3
𝑘=1 = 1  Eq. 3.96 

0 ≤ 𝛽𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][𝑘] ≤ 𝛼𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][𝑘]  Eq. 3.97 

∆𝑇𝑐𝑖𝑟[𝑛] = 𝛼𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][1] ∙ ∆𝑇𝑐𝑖𝑟 − 𝛽𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][1] ∙ ∆𝑇𝑐𝑖𝑟 + 𝛽𝑃𝑊𝐿,𝑐𝑖𝑟[𝑖][2] ∙
1

𝐺𝑝
𝑐𝑖𝑟 +

𝛼𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][3] ∙
1

𝐺𝑐𝑖𝑟
𝑝 + 𝛽𝑃𝑊𝐿,𝑐𝑖𝑟[𝑖][3] ∙ (∆𝑇𝑐𝑖𝑟 −

1

𝐺𝑝
𝑐𝑖𝑟)  

Eq. 3.98 

𝜌𝑄𝑆𝑆𝑇[𝑛] = 𝛽𝑃𝑊𝐿,𝑐𝑖𝑟[𝑛][2] + 𝛼𝑃𝑊𝐿,𝑐𝑖𝑟1[𝑛][3]  Eq. 3.99 

                                                      
17 𝑥 and 𝑥 respectively denote the upper and lower bounds of variable 𝑥. 

 

∆𝑻𝒄 𝒓

 𝑸𝑺𝑺𝑻

 𝟏 ∆𝑻𝒄 𝒓, 𝟎  𝟐 𝟎, 𝟎 

 𝟑 𝟏 𝑮𝒄 𝒓
𝒑⁄ , 𝟏 

  ∆𝑻𝒄 𝒓, 𝟏 
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Linearization of Eq. 2.45 

Very similarly, we linearize Eq. 3.14 by Eq. 3.100 to Eq. 3.105: 

∆𝑇𝑎𝑖𝑟[𝑛] = 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡[𝑛] − 𝑇𝑎𝑖𝑟[𝑛] Eq. 3.100 

𝜌𝑚̇𝑆𝑆𝑇 [𝑛] =
𝑚̇𝑆𝑆𝑇[𝑛]

𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥  Eq. 3.101 

∑ 𝛼𝑃𝑊𝐿,𝑎𝑖𝑟[𝑛][𝑘]
3
𝑘=1 = 1  Eq. 3.102 

0 ≤ 𝛽𝑃𝑊𝐿,𝑎𝑖𝑟[𝑛][𝑘] ≤ 𝛼𝑃𝑊𝐿,𝑎𝑖𝑟[𝑛][𝑘]  Eq. 3.103 

∆𝑇𝑎𝑖𝑟[𝑛] = 𝛼𝑃𝑊𝐿,𝑎𝑖𝑟[𝑛][1] ∙ ∆𝑇𝑎𝑖𝑟 − 𝛽𝑃𝑊𝐿,𝑎𝑖𝑟1[𝑛][1] ∙ ∆𝑇𝑎𝑖𝑟 + 𝛽𝑃𝑊𝐿,𝑎𝑖𝑟1[𝑖][2] ∙
1

𝐺𝑝
𝑎𝑖𝑟 +

𝛼𝑃𝑊𝐿,𝑎𝑖𝑟[𝑛][3] ∙
1

𝐺𝑎𝑖𝑟
𝑝 + 𝛽𝑃𝑊𝐿,𝑎𝑖𝑟[𝑖][3] ∙ (∆𝑇𝑎𝑖𝑟 −

1

𝐺𝑝
𝑎𝑖𝑟)  

Eq. 3.104 

𝜌𝑚̇𝑆𝑆𝑇[𝑛] = 𝛽𝑃𝑊𝐿,𝑎𝑖𝑟[𝑛][2] + 𝛼𝑃𝑊𝐿,𝑎𝑖𝑟[𝑛][3]  Eq. 3.105 

3.3.2.2 Terms in the objective function 

∆𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛], ∆𝑇𝑎𝑖𝑟

𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] and ∆𝑇𝑎𝑖𝑟
𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] of the objective function Eq. 3.75 remain to be 

modelled in the MILP. 

∆𝑇𝑎𝑖𝑟
𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] is a linear function of 𝑇𝑐𝑖𝑟[𝑛] (𝑇𝑎𝑚𝑏 is constant); it is quite simply modelled via Eq. 3.106. 

∆𝑇𝑐𝑖𝑟
𝑙𝑜𝑠𝑠𝑒𝑠[𝑛] = 𝑇𝑐𝑖𝑟[𝑛] − 𝑇𝑎𝑚𝑏 Eq. 3.106 

To model ∆𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] and ∆𝑇𝑎𝑖𝑟

𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] of Eq. 3.67 and Eq. 3.68 we first express 𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 of  Eq. 

3.66 in the MILP under Eq. 3.107. ∆𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] and ∆𝑇𝑎𝑖𝑟

𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡[𝑛] are discontinuous functions of 

the variable ∆𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 introduced in Eq. 3.71, defined over 2 intervals. Their plots are shown in Figure 

3.33. Their linearization requires introducing for every time instance 2 additional binary variables 

denoted 𝛼PWL,target[𝑛][𝑘] and 2 continuous variables denoted 𝛽PWL,target[𝑛][𝑘]. Applying the 

linearization method of Appendix B yields Eq. 3.109 to Eq. 3.113. 
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𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡[𝑛] = 𝑇𝑎𝑖𝑟

𝑠𝑒𝑡[𝑛] − 𝜀𝑐𝑜𝑚𝑓[𝑛] Eq. 3.107 

∆𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡[𝑛] = 𝑇𝑎𝑖𝑟[𝑛] − 𝑇𝑎𝑖𝑟

𝑡𝑎𝑟𝑔𝑒𝑡[𝑛] Eq. 3.108 

 

Figure 3.33 Plots of Eq. 3.67 and Eq. 3.68 showing their breakpoints  

∑ 𝛼PWL,target[𝑛][𝑘]
2
𝑘=1 = 1  Eq. 3.109 

0 ≤ 𝛽PWL,target[𝑛][𝑘] ≤ 𝛼PWL,target[𝑛][𝑘]  Eq. 3.110 

∆𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

= 𝛼PWL,target[𝑛][1] ∙ ∆𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

− 𝛽PWL,target[𝑖][1] ∙ ∆𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

+

𝛽PWL,target[𝑖][2] ∙ ∆𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

  

Eq. 3.111 

∆𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 = 𝛽PWL,target[𝑛][2] ∙ ∆𝑇𝑎𝑖𝑟

𝑡𝑎𝑟𝑔𝑒𝑡
  Eq. 3.112 

∆𝑇𝑎𝑖𝑟
𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 = 𝛼PWL,target[𝑛][1] ∙ ∆𝑇𝑎𝑖𝑟

𝑡𝑎𝑟𝑔𝑒𝑡
− 𝛽PWL,target[𝑛][1] ∙ ∆𝑇𝑎𝑖𝑟

𝑡𝑎𝑟𝑔𝑒𝑡
  Eq. 3.113 

∆𝑻𝒂 𝒓
 𝒂𝒓   

∆𝑻𝒂 𝒓
𝒐𝒗 𝒓  𝒂 

∆𝑻𝒂 𝒓
    𝒓  𝒂 

 𝟏
𝒐𝒗 𝒓  𝒂 ∆𝑻𝒂 𝒓

 𝒂𝒓   
, 𝟎 

 𝟐
𝒐𝒗 𝒓,    𝒓  𝒂 𝟎, 𝟎 

 𝟑
𝒐𝒗 𝒓  𝒂 ∆𝑻𝒂 𝒓

 𝒂𝒓   
, ∆𝑻𝒂 𝒓

𝒐𝒗 𝒓  𝒂 

 𝟏
    𝒓  𝒂 ∆𝑻𝒂 𝒓

 𝒂𝒓   
, ∆𝑻𝒂 𝒓

𝒐𝒗 𝒓  𝒂  

 𝟑
    𝒓  𝒂 ∆𝑻𝒂 𝒓

 𝒂𝒓   
, 𝟎 
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3.3.2.3 Bounding constraints 

At last, we bound the ROM states: 𝑇𝑎𝑖𝑟[𝑛], 𝑇𝑒𝑛𝑣[𝑛], 𝑇𝑚𝑎𝑠𝑠[𝑛], 𝑇𝑒𝑚[𝑛] and 𝑇𝑐𝑖𝑟[𝑛] between physically 

acceptable values, and the ROM controllable input 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡[𝑛] within a feasible range. The general form is 

given in Eq. 3.114: 

𝑇𝑥 ≤ 𝑇𝑥[𝑛] ≤ 𝑇𝑥 Eq. 3.114 

3.3.3 MPC implementation 

The MILP problem, under the form of Eq. 3.62, is given in Eq. 3.115: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:   

Eq. 3.115 
 Eq. 3.75 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   

 Eq. 3.76 to Eq. 3.114 

MPC is implemented by resolution of the MILP problem and application of the controller output on the 

BTS (by numerical simulation means), following the receding horizon principle. This section describes 

the resolution and implementation tool. 

3.3.3.1 MILP problem initialization 

The problem resolution requires initialization of the states, i.e. values of 𝑇𝑥[𝑛 − 1] at 𝑛 = 1. Feedback 

may be integrated at this stage by setting 𝑇𝑥[0] as a function of the system inputs and measured outputs.  

Thus a state observer is developed. Classic techniques used for state feedback are the pole placement 

method described in [Savran, 2013] and the extended Kalman filter [Lee et Ricker, 1994]. Nevertheless, 

the observability matrix of the linear state-space system obtained after linearizing the ROM around an 

operation point turned out to be ill-conditioned. Therefore, these common techniques did not work.  

Instead, we rely on the following calculations: 

▪ When 𝑚̇𝑆𝑆𝑇 and 𝑄𝑆𝑆𝑇 are not saturated, 𝑇𝑎𝑖𝑟[0] and 𝑇𝑐𝑖𝑟[0] are obtained by inversing Eq. 2.44 

and Eq. 2.45, respectively using Eq. 3.116 and Eq. 3.117. 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡[0] is the optimal control decision 

found by the controller at the previous iteration and 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡[0] is assumed equal to 20°C.  

𝑇𝑎𝑖𝑟[0] = 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡[0] −

𝑚̇𝑆𝑆𝑇[0]

𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ 𝐺𝑎𝑖𝑟

𝑝  Eq. 3.116 
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𝑇𝑐𝑖𝑟[0] = 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡[0] −

𝑄𝑆𝑆𝑇[0]

𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ 𝐺𝑐𝑖𝑟

𝑝  Eq. 3.117 

▪ The observer simulates the non-linear ROM in parallel to the controller to provide 𝑇𝑒𝑛𝑣[0], 

𝑇𝑚𝑎𝑠𝑠[0] and 𝑇𝑒𝑚[0] at all times, and 𝑇𝑎𝑖𝑟[0] and 𝑇𝑐𝑖𝑟[0] when 𝑚̇𝑆𝑆𝑇 and 𝑄𝑆𝑆𝑇 are saturated.  

Thus, the control loop is closed. 

Important remark 

As previously mentioned, 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 is the indoor air set-point temperature, controlled by the consumers, 

unknown and uncontrollable to the DHS operator. Assuming a constant value of 20°C for 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 

throughout the MPC might be questionable; notwithstanding, it is of common practice in DHSs to 

assume that the building SH demand is not fulfilled when the mass flowrate at the substation is at its 

maximal level, and that the building is over-heated when the mass flowrate decreases to zero, no matter 

the real value of 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡. Accordingly, conventional control actions may be taken. This feedback logic is 

well translated by Eq. 3.118 for the MPC controller.  

3.3.3.2 MILP problem resolution 

The MILP problem variables are listed in Table 3.19. The number of continuous variables is 26 + 3 ∙

𝑁𝑑𝑖𝑠𝑐 and that of discrete binary variables is 8 + 𝑁𝑑𝑖𝑠𝑐, for every sampling time. Hence, these numbers 

are multiplied by 𝑁𝑀𝑃𝐶 to solve one MILP problem over the prediction horizon 𝐻𝑀𝑃𝐶.  
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Table 3.19 List of the MILP variables and their number per sampling time 

MILP continuous 

variable 

Number per sampling 

time 

MILP binary 

variable 

Number per sampling 

time 

𝑇𝑎𝑖𝑟 1 𝛼𝐵𝐿 𝑁𝑑𝑖𝑠𝑐 

𝑇𝑒𝑛𝑣 1 𝛼𝑃𝑊𝐿,𝑐𝑖𝑟 3 

𝑇𝑚𝑎𝑠𝑠 1 𝛼𝑃𝑊𝐿,𝑎𝑖𝑟 3 

𝑇𝑒𝑚 1 𝛼𝑃𝑊𝐿,𝑡𝑎𝑟𝑔𝑒𝑡 2 

𝑇𝑐𝑖𝑟 1   

𝑄𝑆𝑆𝑇 1   

𝑄𝐵𝐿 1   

Δ𝑇𝐵𝐿 1   

𝑚̇𝑆𝑆𝑇 1   

𝛿𝐵𝐿 𝑁𝑑𝑖𝑠𝑐   

𝜔𝐵𝐿 𝑁𝑑𝑖𝑠𝑐   

𝜑𝐵𝐿 𝑁𝑑𝑖𝑠𝑐   

Δ𝑇𝑐𝑖𝑟 1   

𝜌𝑄𝑆𝑆𝑇 1   

𝛽𝑃𝑊𝐿,𝑐𝑖𝑟 3   

Δ𝑇𝑎𝑖𝑟 1   

𝜌𝑚̇𝑆𝑆𝑇 1   

𝛽𝑃𝑊𝐿,𝑎𝑖𝑟 3   

∆𝑇𝑐𝑖𝑟
𝑙𝑜𝑠𝑠𝑒𝑠 1   

𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 1   

Δ𝑇𝑎𝑖𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 1   

Δ𝑇𝑎𝑖𝑟
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 1   

Δ𝑇𝑎𝑖𝑟
𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 1   

𝛽𝑃𝑊𝐿,𝑡𝑎𝑟𝑔𝑒𝑡 2   

𝑻𝒐 𝒂  𝟐𝟔 + 𝟑 ∙ 𝑵   𝒄 𝑻𝒐 𝒂  𝟖 + 𝑵   𝒄 

 

For the resolution, the MILP problem is coded in an IBM ILOG CPLEX project18.  

3.3.3.3 MPC implementation tool 

MPC is implemented in PEGASE, a software package developed by our research team at CEA to design 

and deploy advanced control strategies of complex and multi-domain energy systems [Vallée et al., 

2019]. PEGASE features a co-simulation engine that allows explicit coupling (input – output 

connection) of modules from different languages and running parallel simulations.  

                                                      
18 https://www.ibm.com/analytics/cplex-optimizer 

https://www.ibm.com/analytics/cplex-optimizer
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For our MPC implementation, PEGASE is used as depicted in Figure 3.34: over 𝐻𝑀𝑃𝐶, a pre-defined 

scenario for 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 and 𝜀𝑐𝑜𝑚𝑓 in an Excel file and weather data from an FMU19 are transferred as 

inputs to the MILP problem of the CPLEX project. CPLEX solves the optimization problem over 𝐻𝑀𝑃𝐶 

and passes the optimal command (𝑇𝑐𝑖𝑟
𝑠𝑒𝑡) to the BTS encapsulated in an FMU. The BTS then runs under 

𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 and the same weather conditions used in the optimization (perfect predictions) for the next time 

step Δ𝑡𝑀𝑃𝐶 . A state observer collects the observations at the BTS substation (𝑄𝑆𝑆𝑇 and 𝑚̇𝑆𝑆𝑇) and the 

corresponding input signals (𝑇𝑒𝑥𝑡, 𝐼𝑠𝑜𝑙, 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 and 𝑇𝑐𝑖𝑟

𝑠𝑒𝑡), and returns an estimation of the states (𝑇𝑎𝑖𝑟, 𝑇𝑒𝑛𝑣, 

𝑇𝑚𝑎𝑠𝑠, 𝑇𝑒𝑚 and 𝑇𝑐𝑖𝑟) to initialize the MILP problem. As the first instance of the optimal control is being 

applied to the BTS, the horizon is shifted by one step, predictions are updated and resolution of the new 

optimization problem begins. And so on, the sequence of steps repeats. Other PEGASE modules (not 

shown in Figure 3.34) manage time lags between modules and allow accelerated visualization of results.  

 

Figure 3.34 Schematic of the main modules co-simulated in PEGASE for the MPC implementation. 

Output of the MILP problem solver is in dashed-line to mark the time lag with respect to other signals. 

3.4 Application 

In this section, we apply, assess and compare the proposed MILP-based MPC with conventional WCC 

strategies. We define particular scenarios of 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 and 𝜀𝑐𝑜𝑚𝑓, and carry out the applications on the 

BTSs based on their identified ROMs. 

                                                      
19 https://fmi-standard.org/docs/3.0-dev/ 
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3.4.1 Settings 

Table 3.20 summarizes common parameters set for all applications presented hereafter. Note that these 

parameters are maintained constant throughout the applications. 

Table 3.20 Common settings for all applications  

𝑻𝒂 𝒓
    𝝀    𝒓  𝒂  𝝀𝒐𝒗 𝒓  𝒂  𝝀 𝒐      𝑴 𝑪   𝑴 𝑪 𝑵   𝒄 

20 °𝐶 0.5 1 𝐾⁄  0.025 1 𝐾⁄  0.01 1 𝐾⁄  24 ℎ𝑟 15 𝑚𝑖𝑛 1 

 

𝑻𝒂 𝒓
     

For all WCC and MPC applications, the indoor air set-point temperature 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 in all zones of the BTSs 

is set to the default value of 20°C, at all times, and the same value is given to the controller in MPC 

applications.  

𝝀    𝒓  𝒂   

The MPC controller tuning parameter 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 is set based on the following:  

Suppose a period of time Δ𝑡 with constant energy price 𝑝𝑒𝑛𝑒𝑟𝑔𝑦,𝑐𝑠𝑡;  

▪ The maximum cost of SH that could be paid during this Δ𝑡 is 𝑐𝑆𝐻,𝑚𝑎𝑥 = 𝑝𝑒𝑛𝑒𝑟𝑔𝑦,𝑐𝑠𝑡 ∙ 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ Δ𝑡 

(when the heating system is operating at full capacity during Δ𝑡).  

▪ The maximum cost of discomfort due to under-heating that could be paid during the same Δ𝑡 is 

𝑐𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡,𝑚𝑎𝑥 = 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 ∙ 𝑝𝑒𝑛𝑒𝑟𝑔𝑦,𝑐𝑠𝑡 ∙ 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥 ∙ ∆𝑇𝑎𝑖𝑟

𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡,𝑚𝑎𝑥 ∙ Δ𝑡; ∆𝑇𝑎𝑖𝑟
𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡,𝑚𝑎𝑥

 

being the threshold of temperature deviation from comfort. 

𝑐𝑆𝐻,𝑚𝑎𝑥 and 𝑐𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡,𝑚𝑎𝑥 must be tantamount. Mathematically, we set 𝑐𝑆𝐻,𝑚𝑎𝑥 = 𝑐𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡,𝑚𝑎𝑥; 

thus 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 = 1 ∆𝑇𝑎𝑖𝑟
𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡,𝑚𝑎𝑥⁄ . Therefore, a practical manner to set 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 is by defining 

∆𝑇𝑎𝑖𝑟
𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡,𝑚𝑎𝑥

 which makes the controller dependent on the consumer preferences between saving 

on SH costs and trading-off thermal comfort. In our applications, we realistically assumed 

∆𝑇𝑎𝑖𝑟
𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡,𝑚𝑎𝑥 = 2°𝐶, hence the value of 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 in Table 3.20. 
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𝝀𝒐𝒗 𝒓  𝒂   

𝜆𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 may be thought of following the same logic of 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡. However, over-heating is indirectly 

penalized by the MPC controller since it automatically generates SH costs. Nonetheless, it is important 

to give a non-zero value to 𝜆𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 to avoid excessive energy storage plans made by the controller in 

case the ROM inaccurately predicts the consequences on 𝑇𝑎𝑖𝑟. On the other extreme, a large 𝜆𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 

will lead the controller to avoid any energy storage. Thus by trial and error, we adopt a ratio of 20 

between 𝜆𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 and 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡. Hence the value of 𝜆𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 in Table 3.20. 

𝝀 𝒐      

𝜆𝑙𝑜𝑠𝑠𝑒𝑠 is set similarly to 𝜆𝑢𝑛𝑑𝑒𝑟ℎ𝑒𝑎𝑡 by assuming ∆𝑇𝑐𝑖𝑟
𝑙𝑜𝑠𝑠𝑒𝑠,𝑚𝑎𝑥 = 100°𝐶. 

 𝑴 𝑪  

In theory, MPC prediction horizon should be slightly larger than the system open-loop settling time, i.e. 

the time needed to reach a set-point and remain within a narrow error range following a step input 

[Ydstie, 1987]. Indeed, a too short 𝐻𝑀𝑃𝐶 may lead to 2 undesirable consequences; first, higher overall 

costs since some predictions that might substantially affect the system are not considered ahead enough, 

and second, oscillatory command in open-loop because the controller keeps changing its decision after 

every step. The 2012 Building has the longest time constant among all case-studies, with a settling time 

of 19 hours to drop its indoor temperature by 2°C from 20°C to 18°C at an average external temperature 

of 10°C. Thus 𝐻𝑀𝑃𝐶 = 24 ℎ𝑟𝑠 is deemed sufficient for all applications. 

  𝑴 𝑪  

MPC sampling time 𝛥𝑡𝑀𝑃𝐶 is also set relatively to the system dynamics. A long 𝛥𝑡𝑀𝑃𝐶 might lead to 

large discrepancies in the controller states predictions. A short 𝛥𝑡𝑀𝑃𝐶 leads to instabilities in the closed-

loop behaviour and has higher computational costs. We conveniently chose 𝛥𝑡𝑀𝑃𝐶 = 15 𝑚𝑖𝑛. 

𝑵𝑑𝑖𝑠𝑐  

The number of discretized segments in the bilinear term McCormick relaxation has a major impact on 

resolution times. In fact, for decided 𝐻𝑀𝑃𝐶 and 𝛥𝑡𝑀𝑃𝐶, 𝑁𝑑𝑖𝑠𝑐 determines the number of binary variables 

in the MILP problem; binary variables are the most expensive in terms of computation time. On a 2-

processors, of 18 cores each, machine and using CPLEX Optimizer version 12.9, for 𝑁𝑑𝑖𝑠𝑐 > 1 some 

problems – depending on the initial conditions and inputs over 𝐻𝑀𝑃𝐶 –  fail to converge to a feasible 

solution within 𝛥𝑡𝑀𝑃𝐶. Therefore we set 𝑁𝑑𝑖𝑠𝑐 = 1. On average, the obtained resolution time for the 
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MILP problem is 10 seconds. An in-depth analysis of the effect 𝐻𝑀𝑃𝐶, 𝛥𝑡𝑀𝑃𝐶 and 𝑁𝑑𝑖𝑠𝑐 on 

computational times and accuracy is intriguing but was not performed here.  

3.4.2 Space-heating control without night-time setback 

The aim of this first application is to demonstrate how the proposed MPC can shift the indoor air 

temperature regulation from 𝑇𝑎𝑖𝑟
𝑠𝑒𝑡 (set at the TRV level by the consumer) to 𝑇𝑎𝑖𝑟

𝑡𝑎𝑟𝑔𝑒𝑡
 (controlled at the 

substation level by the DHS operator) and reduce 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡. 

We consider the following scenarios: 

WCC 

scenario (1) 

WCC control using a static heating curve (Figure 1.13) to set the water heating 

temperature at the substation 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡, function of the external temperature 𝑇𝑒𝑥𝑡.  

MPC 

Scenario (1) 

MILP-based MPC to optimally plan 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡, given fixed energy purchase price  𝑝𝑒𝑛𝑒𝑟𝑔𝑦 

and fixed thermal comfort flexibility threshold 𝜀𝑐𝑜𝑚𝑓 = 0.5°C , thus the target indoor 

temperature for the controller is 19.5°C. 

Main results of the control applications during 3 days on the 3 case-study BTSs are shown in Figure 

3.35. The top subplot concerns only MPC, since standard WCC is not influenced by energy prices or 

thermal flexibility. Under constant 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 and 𝜀𝑐𝑜𝑚𝑓, the only variable predictions in the MPC horizon 

𝐻𝑀𝑃𝐶 are weather conditions (2nd subplot).  

From the 1915 Building plots, the following observations are made: 

▪ We observe anticipation of solar heat gain by the MPC controller, which reduces 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 prior to 

the solar irradiation peak (3rd subplot) and subsequently avoids overheating the building during 

the solar peak (6th subplot).  

▪ In MPC, as 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 is reduced, the indoor temperature 𝑇𝑎𝑖𝑟 cools-down which triggers the TRVs 

opening position to increase, consequently increasing the heating water mass flow rate across 

the substation. This explains why MPC 𝑚̇𝑆𝑆𝑇 is higher than WCC 𝑚̇𝑆𝑆𝑇. 

▪ MPC 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡is lower than WCC 𝑇𝑐𝑖𝑟

𝑠𝑒𝑡, yet MPC 𝑚̇𝑆𝑆𝑇 is higher than WCC 𝑚̇𝑆𝑆𝑇; ultimately the 

SH power 𝑄𝑆𝑆𝑇 is almost the same between the 2 control strategies for a modulation in the 

indoor temperature of only 0.5°C. 

▪ Through MPC, we were able to manipulate the indoor temperature while watching over thermal 

comfort. This is not possible in WCC control only relying on a standard heating curve. 

Furthermore, implementation of the state observer detects the small increases in 𝑇𝑎𝑖𝑟 in the early 
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mornings due to internal heat gain, and feeds-back these observations to the MPC controller to 

reduce 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡.  

Plots of the 1975 Building and 2012 Building confirm the aforesaid observations. A slight difference in 

the 2012 Building shows that for the pre-defined heating curve, MPC 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 is above WCC 𝑇𝑐𝑖𝑟

𝑠𝑒𝑡 during 

the night, consequently MPC 𝑇𝑎𝑖𝑟 variations are closer to the set-point.  
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Figure 3.35 WCC scenario (1) and MPC Scenario (1) applied to the 3 case study BTSs
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3.4.3 Space-heating control with night-time set-back 

The aim of this application is to demonstrate how MPC exploits building thermal inertia during a 

standard DSM measure. 

We consider the following scenarios: 

WCC 

scenario (2) 

WCC control relying on a static heating curve to set 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 during the day (similar to 

WCC scenario (1)) and systematically sets 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 to its minimum value on the curve 

(Figure 1.13) from 11:00 pm to 6:45 am. 

MPC 

scenario (2) 

MILP-based MPC to optimally plan 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡, given fixed energy purchase price  𝑝𝑒𝑛𝑒𝑟𝑔𝑦 

and variable 𝜀𝑐𝑜𝑚𝑓: 0.5°C during the day and 2°C from 11:00 pm to 6:45 am, so as 

to allow greater 𝑇𝑎𝑖𝑟 modulation during the night. 

Results over 3 application days are shown in Figure 3.36. The top subplot depicts the described 𝜀𝑐𝑜𝑚𝑓 

variations of MPC scenario (2). 

The following observations are made: 

▪ MPC set-back happens in 3 phases. In a 1st phase, the MPC controller decreases 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 to 

completely shut-off 𝑄𝑆𝑆𝑇. Note that 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 reduction debuts before the beginning of the set-back. 

The time lag depends on the building thermal inertia, the largest being that of the 2012 Building. 

Consequently, 𝑇𝑎𝑖𝑟 drops while 𝑚̇𝑆𝑆𝑇 increases to reach its maximum.  

▪ The 2nd phase starts immediately after reaching 𝑚̇𝑆𝑆𝑇
𝑚𝑎𝑥, when heating is resumed by re-rising 

𝑇𝑐𝑖𝑟
𝑠𝑒𝑡. Thus, the heating system is operated at constant maximal flow by slowly increasing the 

heating temperature over time. We note that the 2012 Building, characterized by its high 

flexibility, has a great ratio of 1st to 2nd phase, i.e. it can endure prolonged power shut-offs while 

maintaining decent indoor climate.  

▪ The 3rd phase begins before the end of the night-time set-back. Again, the moment of reverting 

to regular operation mode is decided based on the building dynamics. In the plots, 2012 Building 

has the longest 3rd phase and, for all buildings, the 3rd phase is slightly longer than the 1st.  

▪ Meanwhile, WCC controllers strictly follow the set-back pulse, i.e. there is no consideration of 

time delays due to thermal inertia. The pre-programmed set-back laws seem quite conservative; 

the indoor temperature is barely lowered by 1.5°C in all buildings by the end of the set-back. 

Indeed, the control strategy is not relying on a physical model or monitored dynamics of the 
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building and using off-the-shelf heating curves. Thus, it does not allow the DHS operator to 

make full use of the building demand flexibility. 

▪ After the set-back, peak-loads occur. Since WCC controllers only lowered 𝑇𝑎𝑖𝑟 to small extents, 

they cause lower morning peaks compared to MPC controllers. The duration of the peak 

depends of the building heating needs, not its inertia; the 1915 Building peak-load is the longest 

and reaches 100% of its sizing power, whereas that of the 2012 Building took place in the 3rd 

phase of the set-back and briefly reached 𝑄𝑆𝑆𝑇
𝑚𝑎𝑥.  

On a DHS scale, when night-time set-back is implemented within the demand management strategy, 

simultaneous peak-loads from all connected buildings accumulate resulting in very high power demands 

that often require starting-up expensive and pollutant heat generation units. In an attempt to shift 

individual buildings peak-loads, we test a 5th scenario with variable energy prices. 
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Figure 3.36 WCC scenario (2) and MPC scenario (2) applied to the 3 case study BTSs
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3.4.4 Space-heating control with peak-load shifting 

The aim of this last application is to automate MPC peak-load shifting by raising the penalty over energy 

consumption during specific hours of the day.   

We consider the following scenario: 

MPC 

scenario (3) 

MILP-based MPC to optimally plan 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 with variable energy purchase price  

𝑝𝑒𝑛𝑒𝑟𝑔𝑦 : 10 times higher from 6:00 to 8:00 am, and variable 𝜀𝑐𝑜𝑚𝑓, similar to MPC 

scenario (2). 

Results of MPC scenario (3) are plotted in Figure 3.37, together with those of MPC scenario (2) for 

the reference, with the top subplot showing variations of 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 and 𝜀𝑐𝑜𝑚𝑓 of MPC scenario (3). 

The following observations are made: 

▪ MPC controller diminishes SH consumption during periods of high 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 by setting 𝑇𝑐𝑖𝑟
𝑠𝑒𝑡 to 

its lower bound. 

▪ In order to contain consequent under-heating, the controller stores heat within the building 

thermal mass prior to the high 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 period; in the plots we observe maximal 𝑄𝑆𝑆𝑇 and 

increasing 𝑇𝑎𝑖𝑟. The stored heat is later discharged during the high 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 period.  

▪ Compared to MPC scenario (2), the 2012 and 1975 Buildings underwent equivalent under-

heating; whereas the 1915 Building experienced harsher under-heating during high 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 

periods. This is mainly due to its low short-term thermal storage capacity and high losses. 

Overall, peak-load shifting at building scale may be integrated into the proposed MPC control strategy. 

At a DHS scale, aggregate peak-load shaving may be feasible by assigning different 𝑝𝑒𝑛𝑒𝑟𝑔𝑦 profiles 

per building, thus spreading individual peaks over a larger period of time. Here, we adopted common 

tuning parameters to control 3 buildings of different flexibility levels. Tailored tuning may be necessary 

to avoid severe under-heating of buildings with low demand flexibility.   
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Figure 3.37 MPC scenario (2) and MPC scenario (3) applied to the 3 case study BTSs 
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3.5 Conclusion 

Flexible control of SH demand involves modulating buildings thermal comfort within acceptable limits 

– sometimes not even perceptible by the consumers – with the aim of reducing energy costs and 

enhancing the overall performance of the DHS. Since buildings thermal dynamics are rather slow, 

anticipations of the modulation consequences are necessary in order to avoid undesirable response and 

to allow full exploitation of the system flexibility.   

Model predictive control is a suitable approach to address flexible SH control. MPC relies on input 

predictions acting on the system and embeds an optimal controller hosting a physical model of the 

system to anticipate its dynamics. Mainly, buildings SH consumption costs are influenced by weather 

conditions and energy purchase price, both of which may be forecasted ahead of time. As discussed in 

the previous chapter, building thermal modelling is a mature topic in the scientific community and 

computationally efficient reduced-order building models may be easily integrated in an optimization 

problem to manage SH over a prediction horizon. For these favourable factors, several studies have been 

conducted in the literature to implement and assess MPC within electrical smart-grids. Very few works 

investigated buildings SH demand MPC in DHSs. None of the studies, for our knowledge, have 

implemented MPC based on a ROM identifiable at a DHS scale or have considered control variables 

that are possibly controllable by the DHS operator.  

In this thesis, MPC is carried out on a building served by a DHS by solving MILP optimization problems. 

The objective function is designed to allow trade-off between thermal comfort and energy consumption 

costs. The problem is constrained by the building ROM equations which require linearization of a 

bilinear term and piecewise discontinuous functions.  An optimization problem is launched at every time 

instance of the prediction horizon to schedule the heating water supply temperature over the entire 

horizon; only the solution at the first upcoming step is applied to the system before shifting the horizon 

and solving an updated problem. At every step, a state observer updates the initial conditions of the 

MILP problem using observations made at the substation.  

Application of the proposed MPC is carried out on the BTSs, using the dedicated co-simulation platform 

PEGASE. Different control scenarios are presented to test MPC abilities in modulating the building 

indoor temperature from the DHS substation, taking account of the building thermal inertia when 

performing night-time set-back and automatically shifting the morning peak demand naturally resulting 

from the set-back. MPC is compared to conventional WCC strategies and proved to be efficient in terms 

of exploiting buildings thermal demand flexibility. At a broader scale, we believe that the proposed 

strategy can play an important role in integrating demand-side management to DHSs operational 

optimization. 
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Conclusion 

Contributions 

In the context of DHSs operational optimization, the research led in this dissertation aimed at the 

development and numerical demonstration of an advanced control strategy for buildings SH demand, 

practically implementable at a DHS scale. 

One main motivation for this research is the fact that buildings thermal inertia makes their SH demand 

innately flexible, yet demand flexibility is not fully (or at all) exploited within current control practices 

in DHSs. Currently in DHSs, SH demand is partly controlled at the substation by setting the supply 

water temperature of the building’s internal heating system (often radiators or floor-heating systems). 

This temperature is set by a conventional Weather Compensation Control (WCC) strategy, which 

ignores building thermal inertia and aims at fulfilling SH demand in a rather strict mode at all costs. 

Replacement of WCC by an intelligent and flexible control strategy is key for operational optimization 

of DHSs because it allows efficient management of heat sources, integration of intermittent renewable 

power and reduction in overall economical and environment costs. 

In this thesis, we propose Model Predictive Control (MPC) as an advanced alternative to WCC for SH 

demand control in DHSs. Investigations on MPC in this field have originally started in the context of 

electric Smart Grids (SGs) and revealed a promising potential. For hydronic heating systems, MPC has 

been studied at building scale, assuming generous amounts of information are available and control 

actions at room level are possible. The main contribution of this thesis is the development of a complete 

and coherent MPC strategy, starting from the basic and most crucial step of model derivation followed 

by control law design and implementation, by careful consideration of practical challenges of data 

availability and controllability at DH substation level. 

The study is carried out by numerical simulation means, thus it started by developing a generic thermal 

dynamic simulator of a residential building connected to a DHS in the Modelica/Dymola environment. 

The simulator enables rapid prototyping of multi-zones, multi-stories buildings based on a zonal 

approach. Main components are homogeneous air volumes, envelope elements (opaque constructions 

and glazing systems), internal partition and furniture-equivalent walls, radiators with their thermostatic 

valves, dual-pipe heating circuit and a DH substation. Modelled thermal phenomena include internal 

and external heat convection, mono-directional heat conduction, radiant heat exchange, direct heat loss 

to the outdoor environment due to ventilation and between zones due to door opening, and finally 
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stochastic internal heat gain dissipated due to occupants’ presence, electric appliances and DHW usage. 

The building simulator is parameterized to represent 3 case-study French residential buildings belonging 

to a low, a medium and a high energy consumption class. While most components were found pre-

developed and validated in the Modelica open-source Buildings Library and in-house DistrictHeating 

Library, modelling of the rest of components, assembly into a generic multi-zones multi-stories 

simulator and definition of case-studies constituted the first accomplishment in this thesis. 

MPC starts by deriving a control-oriented Reduced-Order Model (ROM) of the building system. Once 

integrated in the predictive controller, the role of the ROM is to predict short-term thermal dynamics. 

Hence, it is crucial to procure an accurate and computationally efficiently ROM. But foremost, 

development of the ROM should avoid use of hardly-accessible or intrusive data. Under these 

requirements, inverse grey-box modelling is adopted. It is a two-steps process that starts by defining a 

ROM structure based on physical knowledge of the system, followed by parameters identification. 

Preliminary studies lead us to opt for a linear 3rd order building model coupled to a non-linear heating 

system model with close-loop regulation. The ROM accounts for solar heat gain, whereas internal heat 

gain is left-out. Parameters identification relied on measurements commonly found at the substation: SH 

power and water mass flowrate. Search for the optimal set of parameters that minimizes the error 

between ROM predictions and observations made on the simulator is carried-out by a hybrid Particle 

Swarm Optimization (PSO) and Hooke-Jeeves (HJ) algorithm. Critical limitations of this approach were 

identified from analytical tests. For MPC applications, satisfactory results based on assessment of 

performance criteria were finally obtained for the 3 case-study buildings. Indeed, the proposed ROM 

stands-out in a plethora of building models developed in the literature with its structure integrating the 

heating system model, and its parametric identification methodology, which dispenses the need for 

intrusive indoor temperature measurements.  

MPC then requires designing an optimal controller. In this thesis, the controller is elaborated by 

formulation and resolution of a Mixed-Integer Linear Programming (MILP) optimization problem. Its 

objective function (to be minimized) is mainly composed of a term that penalizes SH costs which depend 

upon energy purchase price, and terms affected by tuning parameters that penalize thermal discomfort 

detected by a deviation of the indoor temperature from a target point defined at the substation. Thus, the 

MPC controller allows trading savings on SH costs with thermal comfort. The physical relationship 

between variables of the system is provided via the linearized equations of the ROM constituting the 

main constraints of the MILP problem. In contrast with WCC which determines the SH supply water 

temperature as a function of outdoor temperature solely, MILP-based MPC finds optimal trajectories of 

this control variable over an anticipated receding horizon by involving several factors: energy prices, 

discomfort tuning parameters, target temperature defined at the substation and dynamic response of the 

ROM indoor temperature which reflects the building thermal inertia. Whereof, the proposed MPC 
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allows responsible exploitation of SH demand flexibility. Implementation of MPC is realised using the 

in-house PEGASE platform. Demonstration of MPC on the 3 case-study building simulators based on 

their identified ROMs showed correct capitalizing on their thermal inertia during Demand-Side 

Management (DSM) measures at building scale. Undoubtedly, demand flexibility is much more 

interesting at larger scale, hence further research is needed to effectively take MPC to the DHS level.   

Outlooks 

Identified outlooks for this research include the following: 

1. Real-life application of the proposed ROM identification and implementation of the MPC 

scenario with night-time set-back is to be considered for validation purposes on the 

dedicated demonstrator connected to the DHS of Grenoble, Le Salammbô. 

2. With real-life implementations, new challenges arise: processing data is often required prior 

to model identification and uncertainty quantification in regards to weather predictions is 

necessary. Stochastic Model Predictive Control (SMPC) approaches are potential solutions 

to handle such issues as demonstrated in [Oldewurtel et al., 2010; Zhang et al., 2013]. 

3. Back to numerical simulation, scaling-up to neighbourhood level can be studied via 

Distributed Model Predictive Control (DMPC): each building is operated with a distinct 

energy purchase price signal, such as done in the MPC scenario with night-time set-back 

and peak-load shifting, and a controller at higher level coordinates these signals to evenly 

distribute the global morning load over time. Coordinated price-driven demand response 

control of this type is presented in [Ferrarini et al., 2014; Costanzo et al., 2013]. 

4. Expending the study to encompass other heat-emitters and buildings types. Typically, it 

would be interesting to investigate floor-heating systems characterized by their substantial 

thermal inertia, and non-residential buildings, e.g. schools, office buildings and hospitals, 

since these consumers have different occupancy profiles, hence distinct comfort flexibility 

schedules when controlled at neighbourhood scale. 

5. Furthermore, operational optimization of heat sources in a DHS integrating flexible loads 

and thermal storage capacities in the network would be first of its kind in the scientific 

community. This is possible by coupling SH demand optimization with the optimal control 

strategy of heat production and distribution developed in the course of the PhD thesis of 

Loïc Giraud [Giraud, 2016]. Initially given non-flexible SH demand profiles, these works 

demonstrated the exploitation of the DH distribution network thermal inertia and proposed 

optimal commitment of heat sources with different operation and start-up costs. 
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Appendix A 

McCormick relaxation for MILP of bilinear terms 

In [McCormick, 1976], McCormick stated that the tightest envelope for a non-convex bilinear term, 

defined over a finite set, are 2 convex under-estimators and 2 concave over-estimators.  

Formulation 

Let ℬ(𝑥, 𝑦) = 𝑧 = 𝑥 ∙ 𝑦 a bilinear term where 𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] and 𝑦 ∈ [𝑦𝑙 , 𝑦𝑢].  

Then, the McCormick envelope of ℬ(𝑥, 𝑦) is defined by Eq. App. 3.1 to Eq. App. 3.4:  

𝑧 ≥ 𝑦𝑙 ∙ 𝑥 + 𝑥𝑙 ∙ 𝑦 − 𝑥𝑙 ∙ 𝑦𝑙 Eq. App. 3.1 

𝑧 ≥ 𝑦𝑢 ∙ 𝑥 + 𝑥𝑢 ∙ 𝑦 − 𝑥𝑢 ∙ 𝑦𝑢 Eq. App. 3.2 

𝑧 ≤ 𝑦𝑙 ∙ 𝑥 + 𝑥𝑢 ∙ 𝑦 − 𝑥𝑢 ∙ 𝑦𝑙  Eq. App. 3.3 

𝑧 ≤ 𝑦𝑢𝑥 + 𝑥𝑙 ∙ 𝑦 − 𝑥𝑙 ∙ 𝑦𝑢 Eq. App. 3.4 

Similar statement was later independently proven in [Al-Khayyal et Falk, 1983]. 

Numerical example 

Let ∈ [1,3]; 𝑦 = 𝑒𝑥 ⟹ 𝑦 ∈ [𝑒1, 𝑒3]; ℬ(𝑥, 𝑦) = 𝑧 = 𝑥 ∙ 𝑦 . 

The tightest under-estimators of 𝑧 are plans (𝒫1
𝑢𝑛𝑑𝑒𝑟) and (𝒫2

𝑢𝑛𝑑𝑒𝑟) defined by Eq. App. 3.5 and Eq. 

App. 3.6 respectively: 

(𝒫1
𝑢𝑛𝑑𝑒𝑟): 𝑒1 ∙ 𝑥 + 1 ∙ 𝑦 − 1 ∙ 𝑒1 = 0 Eq. App. 3.5 

(𝒫2
𝑢𝑛𝑑𝑒𝑟): 𝑒3 ∙ 𝑥 + 3 ∙ 𝑦 − 3 ∙ 𝑒3 = 0 Eq. App. 3.6 
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The tightest over-estimators of 𝑧 are plans (𝒫1
𝑜𝑣𝑒𝑟) and (𝒫2

𝑜𝑣𝑒𝑟) defined by Eq. App. 3.7 and Eq. App. 

3.8 respectively: 

(𝒫1
𝑜𝑣𝑒𝑟): 𝑒1 ∙ 𝑥 + 3 ∙ 𝑦 − 3 ∙ 𝑒1 = 0 Eq. App. 3.7 

(𝒫2
𝑜𝑣𝑒𝑟): 𝑒3 ∙ 𝑥 + 1 ∙ 𝑦 − 3 ∙ 𝑒3 = 0 Eq. App. 3.8 

A graphical representation of the ℬ(𝑥, 𝑦) and its McCormick envelope is shown in Figure App. 3.1: 

 

Figure App. 3.1 Graphical representation of the example bilinear term ℬ(𝑥, 𝑦) with its McCormick 

under-estimators (a) and over-estimators (b) 
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Use in linear programming 

For LP, the McCormick relaxation suggests that any occurrence of a bilinear term ℬ(𝑥, 𝑦) be replaced 

by a new variable 𝑧 constrained by the linear McCormick envelope (Eq. App. 3.1 to Eq. App. 3.4).  

Furthermore, one variable of ℬ(𝑥, 𝑦) may be discretized into smaller pieces and the McCormick 

relaxation is applied piecewise after introducing binary variables, which yields a MILP as formulated in 

§ 3.3.2.1.2. 
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Appendix B  

MILP of discontinuous piecewise linear functions 

Let 𝑓(𝑥) = 𝑦 a discontinuous piecewise linear function with 𝑁𝑏𝑟 breakpoints defined over 𝑁𝑏𝑟 − 1 

intervals of a continuous domain 𝒟 as in Eq. App. 3.9: 

𝑓(𝑥) = 𝑦 =

{
  
 

  
 

𝑓1(𝑥) = 𝑎1 ∙ 𝑥 + 𝑏1 𝑖𝑓 𝑥𝑃1 ≤ 𝑥 ≤ 𝑥𝑃2
𝑓2(𝑥) = 𝑎2 ∙ 𝑥 + 𝑏2 𝑖𝑓 𝑥𝑃2 ≤ 𝑥 ≤ 𝑥𝑃3

⋮ ⋮ ⋮
𝑓𝑘(𝑥) = 𝑎𝑘 ∙ 𝑥 + 𝑏𝑘 𝑖𝑓 𝑥𝑃𝑘 ≤ 𝑥 ≤ 𝑥𝑃𝑘+1

⋮ ⋮ ⋮
𝑓𝑁𝑏𝑟−1(𝑥) = 𝑎𝑁𝑏𝑟−1 ∙ 𝑥 + 𝑏𝑁𝑏𝑟−1 𝑖𝑓  𝑥𝑃𝑁𝑏𝑟−1

≤ 𝑥 ≤ 𝑥𝑃𝑁𝑏𝑟

 Eq. App. 3.9 

A generic plot of  𝑓(𝑥) is shown in Figure App. 3.2. 

 

Figure App. 3.2 Generic graphical representation of a discontinuous piecewise linear function 

𝑃𝑘(𝑥𝑃𝑘 , 𝑦𝑃𝑘) and 𝑃𝑘+1(𝑥𝑃𝑘+1 , 𝑦𝑃𝑘+1) are breakpoints at the beginning and end of an interval of index 𝑘. 

We may write 𝑎𝑘 and 𝑏𝑘 in terms of 𝑥𝑃𝑘, 𝑦𝑃𝑘, 𝑥𝑃𝑘+1 and 𝑦𝑃𝑘+1  and substitute them, hence Eq. App. 3.10: 
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𝑓𝑘(𝑥) =
𝑦𝑃𝑘+1 − 𝑦𝑃𝑘
𝑥𝑃𝑘+1 − 𝑥𝑃𝑘

∙ 𝑥 +
𝑥𝑃𝑘+1 ∙ 𝑦𝑃𝑘 − 𝑥𝑃𝑘 ∙ 𝑦𝑃𝑘+1

𝑥𝑃𝑘+1 − 𝑥𝑃𝑘
 Eq. App. 3.10 

𝑓(𝑥) can be expressed in a MILP formulation by introducing 𝑁𝑏𝑟 − 1 binary variables denoted 𝛼𝑃𝑊𝐿[𝑘] 

in Eq. App. 3.11 subject to the constraint of Eq. App. 3.12. Interval of index 𝑘 is said to be activated if 

𝛼𝑃𝑊𝐿[𝑘] = 1; from Eq. App. 3.12 one and only one interval is activated. 

𝑓(𝑥) = ∑ 𝛼𝑃𝑊𝐿[𝑘] ∙ 𝑓𝑘(𝑥)

𝑁𝑏𝑟−1

𝑘=1

 Eq. App. 3.11 

∑ 𝛼𝑃𝑊𝐿[𝑘]

𝑁𝑏𝑟−1

𝑘=1

= 1 Eq. App. 3.12 

If a specific interval of index 𝑎𝑐𝑡 is activated: 𝛼𝑃𝑊𝐿[𝑎𝑐𝑡] = 1 ⟹ 𝑓(𝑥) = 𝑓𝑎𝑐𝑡(𝑥); then 𝑥 must fall in 

this activated interval. This is formulated through Eq. App. 3.13 and Eq. App. 3.14 where 𝛽𝑃𝑊𝐿[𝑘] is a 

continuous variable that determines the position 𝑥 between 𝑥𝑃𝑘 and 𝑥𝑃𝑘+1. 

0 ≤ 𝛽𝑃𝑊𝐿[𝑘] ≤ 𝛼𝑃𝑊𝐿[𝑘] Eq. App. 3.13 

𝑥 = ∑ 𝛼𝑃𝑊𝐿[𝑘] ∙ 𝑥𝑃𝑘 + 𝛽𝑃𝑊𝐿[𝑘] ∙ (𝑥𝑃𝑘+1 − 𝑥𝑃𝑘)

𝑁𝑏𝑟−1

𝑘=1

 Eq. App. 3.14 

Substituting Eq. App. 3.10 and Eq. App. 3.14 in Eq. App. 3.11, we obtain Eq. App. 3.15: 

𝑓(𝑥) = ∑ 𝛼𝑃𝑊𝐿[𝑘] ∙ 𝑦𝑃𝑖 + 𝛽𝑃𝑊𝐿[𝑘] ∙ (𝑦𝑃𝑘+1 − 𝑦𝑃𝑘)

𝑁𝑏𝑟−1

𝑘=1

 Eq. App. 3.15 

Thus, the discontinuous function of Eq. App. 3.9 can be replaced by Eq. App. 3.12 to Eq. App. 3.15. 

This MILP formulation guarantees that for any 𝑥 in 𝒟, 𝑓(𝑥) lays on the correct line of Figure App. 3.2. 
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Résumé : La gestion de la demande en chauffage des 

bâtiments raccordés à des réseaux de chaleur s'effectue 

classiquement au moyen d’une courbe de chauffe : lorsque 

la température extérieure chute, la température de départ de 

l’eau alimentant le circuit de chauffage interne est relevée. 

Ce mode de contrôle, appelé régulation par loi d’eau, 

présente des atouts en termes de simplicité et de robustesse, 

mais ne tient pas compte de l'inertie thermique du bâtiment 

et ne permet donc pas une modulation de sa demande. La 

modulation de la demande en chauffage se définit comme 

l'action de contrôle consistant à modifier de manière 

stratégique les conditions de confort thermique dans le 

cadre d’une optimisation énergétique et/ou économique. Il 

s’agit d’une brique essentielle du contrôle flexible qui 

envisage le déplacement des charges et l’effacement des 

pics pour une meilleure efficacité de production favorisant 

la pénétration des énergies renouvelables et de 

récupération.  

Ces travaux de thèse visent à développer une stratégie de 

contrôle prédictif et flexible de la demande en chauffage, 

applicable à grande échelle dans les réseaux de chaleur.  

Tout d'abord, un simulateur thermique dynamique de 

bâtiment résidentiel, équipé de radiateurs hydrauliques 

connectés à une sous-station de réseau de chaleur, est 

développé. Il permet de définir plusieurs cas d’études de 

bâtiments représentatifs du parc résidentiel français et 

constitue l’environnement expérimental virtuel de nos 

travaux de recherche. Ensuite, une méthodologie 

permettant d’obtenir un modèle orienté-contrôle et d’ordre 

réduit de bâtiment avec son système de chauffage est 

proposée. Elle commence par la définition de la structure 

du modèle en se basant sur des connaissances physiques, 

puis consiste en l'identification des paramètres par 

optimisation méta-heuristique à l'aide des données 

générées par le simulateur. L'approche d'identification 

paramétrique évalue la possibilité de réaliser cette tâche en 

ne s’appuyant que sur des données disponibles au niveau 

de la sous-station, notamment en s’interdisant d’utiliser des 

mesures de température intérieure, données à caractère 

personnel dont l’exploitation en France, conformément au 

Règlement Général sur la Protection des Données (RGPD), 

est soumise à des conditions difficilement réalisables à 

grande échelle. Enfin, la stratégie de contrôle prédictif est 

implémentée. Elle permet la planification de la température 

de départ de l'eau de chauffage en fonction des prévisions 

météorologiques et des prix de l’énergie. Le contrôleur 

flexible s’appuie sur un problème d’optimisation linéaire 

sous contraintes, selon le principe de l’horizon fuyant. Il 

incorpore les équations linéarisées du modèle d’ordre 

réduit et calcule le compromis optimal entre coûts 

énergétiques et inconfort thermique, le degré de flexibilité 

de la demande en chauffage étant défini par l’intermédiaire 

de paramètres de réglage dédiés.

Title : Modelling and flexible predictive control of buildings space-heating demand in district heating systems 
Keywords : District heating systems, Building modelling, Model predictive control, Parametric identification, Thermal 

dynamic simulation, Mixed-integer linear programming 

Abstract : In District Heating Systems (DHSs), buildings 

Space-Heating (SH) demand management conventionally 

relies on a heating curve: when the outdoor temperature 

drops, the internal SH system supply water temperature is 

raised. This control mode, referred to as Weather-

Compensation Control (WCC), offers widely recognized 

assets in terms of simplicity and robustness. However, 

WCC does not account for the building thermal inertia, and 

consequently, it does not allow modulation of its demand. 

SH demand modulation is the control action of strategically 

altering the indoor thermal comfort conditions within an 

energetic and/or economic optimization framework. It is a 

key measure in flexible demand control strategies, which 

seek loads shifting and peaks shaving to allow sustainable 

commitment of energy resources in favour of renewable 

power penetration and waste heat recovery.  

The work presented in this thesis aims at developing a 

flexible Model Predictive Control (MPC) strategy for SH 

demand, applicable at large scale in DHSs.  

Firstly, a thermal dynamic simulator of a residential 

building with a radiator SH circuit connected to a DHS 

substation is developed. It allows the definition of multiple 

case study buildings, well-representative of the french 

residential stock, and constitutes the virtual experimental 

environment for our research. Then, a methodology to 

obtain a control-oriented Reduced-Order Model (ROM) for 

the building and its SH system is proposed. It starts by 

defining the ROM structure based on physical knowledge, 

and proceeds to parameters identification by meta-heuristic 

optimization using data generated by the simulator. The 

parametric identification approach evaluates the possibility 

of carrying out this task by relying solely on data available 

at the substation level, refraining from using indoor 

temperature measurements, personal data whose 

exploitation in France, in accordance with the General Data 

Protection Regulation (GDPR), is subject to conditions that 

are difficult to achieve at large scale. Finally, MPC is 

implemented to schedule the SH supply water temperature 

as function of weather forecasts and energy price 

variations. The flexible controller is designed to solve a 

constrained linear optimization problem according to the 

receding horizon principle. It embeds the linearized ROM 

equations and computes the optimal trade-off between 

energy consumption costs and thermal discomfort, the 

degree of flexibility to modulate SH demand being defined 

through dedicated tuning parameters. 


	f_obj_ident
	phi_sorties
	Resume_Erreur_T_air
	U_bat_sizing
	U_bat_ident
	U_bat_epsilon
	Resume_IndicesCorrespondance
	Resume_IndicesCorrespondance
	Resume_Erreur_T_air_fig
	Resume_Erreur_T_air_fig
	Resume_Reponse_Temporelle
	Resume_Reponse_Temporelle
	Resume_Pertinence_Physique
	Resume_Pertinence_Physique
	Resume_PEGASE
	Resume_PEGASE
	f_obj_MPC
	Eq_ROM_1_MPC
	Eq_ROM_2_MPC
	Eq_ROM_3_MPC
	Eq_ROM_4_MPC
	Eq_ROM_5_MPC
	Eq_ROM_6_MPC
	Eq_ROM_7_MPC
	Resume_Resultat_PEGASE
	Resume_Resultat_PEGASE
	Introduction
	Fig_PierreMerchie
	Fig_SST
	Chapter_1
	Synopsis_Chapter_1
	Tab_STD_review
	Tab_STD_review
	Eq_MixedAir_EnergyBalance
	Eq_MixedAir_RadiativeTemperature
	Eq_MixedAir_OperativeTemperature
	Eq_Q_intconv
	Eq_Q_extconv
	Eq_Fourrier
	Eq_N_sta
	Eq_IncomingSolarRadiosity
	Eq_Floor_abs_trans
	Eq_Floor_ref
	Eq_NonFloor_abs_trans
	Eq_Q_RadSource
	Eq_StephanBoltzmann
	Eq_A_int_slab
	Tab_InternalMass
	Tab_InternalMass
	Eq_Q_vent
	Eq_Q_door_open
	Fig_ZoneAssembly
	Fig_StoreyAssembly
	Fig_SST_components
	Eq_boiler
	Fig_HeatingNetwork
	Eq_Q_rad_rad
	Eq_Q_rad_conv
	Eq_Q_rad_UA
	Eq_Q_rad_tot
	Eq_bulb_balance
	Eq_Nusselt
	Eq_Rayleigh
	Eq_TRV_opening
	Fig_TRV_opening
	Eq_TRV_flowCoef
	Eq_TRV_m_dot
	Fig_TRV_characteristic
	Fig_MarkovChain
	Fig_CumulativeFrequency
	Eq_DHW_InternalGain
	Tab_DomesticHotWater
	Tab_DomesticHotWater
	Eq_InternalGain
	Tab_ElectricDevices
	Tab_ElectricDevices
	Fig_ExampleHeatGain
	Fig_Salammbo
	Eq_A_zone
	Eq_V_zone
	Tab_ZoneArea
	Tab_ZoneArea
	Tab_FacadeArea
	Tab_FacadeArea
	Tab_FacadeArea
	Tab_TABULAstat
	Tab_TABULAstat
	Tab_TABULAstat
	Tab_EnvCompo
	Tab_EnvCompo
	Tab_EnvCompo
	Fig_HeatingCurves
	Tab_HVAC_properties
	Tab_HVAC_properties
	Tab_SimulationEnergies
	Tab_SimulationEnergies
	Tab_SimulationEnergies
	Fig_Simu_1915
	Fig_Simu_1915
	Fig_Simu_1975
	Fig_Simu_2012
	Chapter_2
	Synopsis_Chapter_2
	Tab_Analogy
	Tab_Analogy
	Tab_Analogy
	Eq_1stOrder
	Eq_EnergySignature
	Eq_tau_build
	Fig_Harb
	Fig_Harb
	Fig_Reynders
	Fig_Xu
	Fig_Maomao
	Fig_Maomao
	Eq_Bayes
	Eq_T_air_HOM
	Eq_T_rad_HOM
	Eq_T_oper_HOM
	Fig_ParamStudy_TempDrop
	Fig_Results_TauMinusOne
	Fig_Results_EnergySavings
	Eq_ROM_1
	Eq_ROM_2
	Eq_ROM_3
	Eq_ROM_4
	Eq_ROM_5
	Eq_ROM_6
	Eq_ROM_7
	Fig_ROM
	Fig_ROM
	Eq_ROM_ParamIdent_OF
	Eq_ROM_argmin_F_obj
	Eq_PSO_velocity
	Eq_PSO_position
	Eq_PSO_weight
	Eq_HJ_PatternMove
	Eq_HJ_MeshDivider
	Eq_HJ_StepIncrement
	Tab_PSO_HJ_AlgoParams
	Tab_PSO_HJ_AlgoParams
	Eq_phi_x
	Eq_eps_T_air
	Eq_U_eq_sizing
	Eq_U_eq_ident
	Eq_error_Ueq
	Tab_AnaliticalParams
	Tab_AnaliticalParams
	Tab_AnaliticalParams
	Eq_ANA_f
	Eq_ANA_t
	Tab_Theo_ana
	Tab_Theo_ana
	Tab_Theo_ana
	Fig_CuttingPlans
	Tab_Final_Initial_ParamIdent
	Tab_Final_Initial_ParamIdent
	Fig_Optima
	Fig_Cartography
	Fig_Results_AnalyticalTemporal
	Eq_complex_t
	Tab_CaseStudy_IdentResults
	Tab_CaseStudy_IdentResults
	Tab_CaseStudy_IdentResults
	Fig_InternalGainProp
	Tab_Identification_OutputFit
	Tab_Identification_OutputFit
	Tab_Identification_OutputFit
	Tab_Identification_ErrorT
	Tab_Identification_ErrorT
	Fig_HOM_vs_ROM_Temp
	Tab_result_U_eq
	Tab_result_U_eq
	Chapter_3
	Synopsis_Chapter_3
	Eq_GeneralOptimProb
	Eq_GeneralOptim_obj
	Eq_GeneralOptim_dynamics
	Eq_GeneralOptim_in_states
	Eq_GeneralOptim_in_inputs
	Eq_N_MPC
	Eq_Q_SST_cost
	Eq_false_discomfort
	Eq_T_air_target
	Eq_deltaT_overheat
	Eq_deltaT_underheat
	Eq_overheat_cost
	Eq_underheat_cost
	Eq_discomfort_cost
	Eq_deltaT_losses
	Eq_p_losses_cost
	Eq_losses_cost
	Eq_MPC_ObjectiveFunction
	Eq_ROM_1_disc
	Eq_ROM_1_disc
	Eq_ROM_2_disc
	Eq_ROM_3_disc
	Eq_ROM_4_disc
	Eq_ROM_5_disc
	Eq_deltaT_BL_disc
	Eq_alpha_BL_disc
	Eq_SmalldeltaT_BL_min_disc
	Eq_SmalldeltaT_BL_max_disc
	Eq_Smallm_BL_min_disc
	Eq_Smallm_BL_max_disc
	Fig_McCormickApplication
	Eq_McCormick_1_disc
	Eq_McCormick_1_disc
	Eq_McCormick_2_disc
	Eq_McCormick_2_disc
	Eq_McCormick_3_disc
	Eq_McCormick_4_disc
	Eq_deltaT_BL_lin_disc
	Eq_m_BL_lin_disc
	Eq_Q_BL_lin_disc
	Eq_deltaT_cir
	Eq_rhoQ_SST
	Fig_PWL_cir
	Eq_PWL_cir_alpha
	Eq_PWL_cir_beta
	Eq_PWL_cir_x
	Eq_PWL_cir_y
	Eq_PWL_cir_y
	Eq_deltaT_air
	Eq_rhom_SST
	Eq_PWL_air_alpha
	Eq_PWL_air_beta
	Eq_PWL_air_x
	Eq_PWL_air_y
	Eq_deltaT_losses_disc
	Eq_T_air_target_disc
	Eq_deltaT_air_target_disc
	Fig_PWL_target
	Fig_PWL_target
	Eq_PWL_target_alpha
	Eq_PWL_target_beta
	Eq_PWL_target_x
	Eq_PWL_target_y_over
	Eq_PWL_target_y_under
	Eq_BoundingConstraints
	Eq_ConciseMILP
	Eq_T_air_obs
	Eq_T_cir_obs
	Tab_MILP_variables
	Tab_MILP_variables
	Tab_MILP_variables
	Tab_MILP_variables
	Fig_PEGASE
	Tab_control_parameters
	Tab_control_parameters
	Scenario_1
	Scenario_2
	Fig_WithoutDSM_1915
	Fig_WithoutDSM_1915
	Scenario_3
	Scenario_4
	Fig_WithSetBack_1915
	Fig_WithSetBack_1915
	Scenario_5
	Fig_WithPeakShift_1915
	Fig_WithPeakShift_1915
	Conclusion
	Appendix_A
	Eq_App_OverEstimator1
	Eq_App_OverEstimator2
	Eq_App_UnderEstimator1
	Eq_App_UnderEstimator2
	Eq_App_UnderEstimatorPlan1
	Eq_App_UnderEstimatorPlan1
	Eq_App_UnderEstimatorPlan2
	Eq_App_UnderEstimatorPlan2
	Eq_App_OverEstimatorPlan1
	Eq_App_OverEstimatorPlan2
	Fig_McCormickEnvelope
	Appendix_B
	Eq_App_f_general_PWL
	Fig_PWL
	Eq_App_f_no_a_b_PWL
	Eq_App_f_sum_PWL
	Eq_App_alpha_PWL
	Eq_App_beta_PWL
	Eq_App_x_PWL
	Eq_App_f_final_PWL

