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Abstract

Information incompleteness is a major data quality issue which is amplified by the

increasing amount of data collected from unreliable sources. Assessing the completeness

of data is crucial for determining the quality of the data itself, but also for verifying the

validity of query answers over incomplete data. While there exists an important amount

of work on modeling data completeness, deriving this completeness information has not

received much attention. In this work, we tackle the issue of extracting and reasoning

about complete and missing information under relative information completeness setting.

Under this setting, the completeness of a dataset is assessed with respect to a complete

reference dataset. Few works have been dedicated to representing data completeness under

this setting, and we advance the field by proposing two contributions: a pattern model for

providing minimal covers summarizing the extent of complete and missing data partitions

and a pattern algebra for deriving minimal pattern covers for query answers to analyze

their validity.

The completeness pattern framework presents an intriguing opportunity to achieve

many applications, particularly those aiming at improving the quality of tasks impacted

by missing data. In our work, we address the problem of repairing query results obtained

from incomplete data. Data imputation is a well-known technique for repairing missing

data values but can incur a prohibitive cost when applied to large data sets. Query-driven

imputation offers a better alternative as it allows for fixing only the data that is relevant

for a query. We adopt a rule-based query rewriting technique for imputing the answers of

analytic queries that are missing or suffer from incorrectness due to data incompleteness.

We present a novel query rewriting mechanism that is guided by the completeness pattern

model and algebra. Our solution strives to infer the broadest possible set of missing answers

while improving the precision of incorrect ones.

In the last contribution, we investigate the generalization of our pattern model for

summarizing any data fragments. The generalized pattern model can be used to produce

pattern summaries of data fragments over any subset of attributes and these summaries

can be queried to analyze and compare data fragments in a synthetic and flexible way.

Keywords: Relative Information, Completeness Assessment, Pattern model, Pattern Algebra,

Imputation, Summarization

v





Résumé
L’incomplétude des données est un problème majeur de qualité qui s’amplifie par la quantité

croissante de données collectées par des sources peu fiables. L’évaluation de l’exhaustivité des

données est cruciale pour déterminer leur qualité mais aussi la validité des réponses de requêtes

qui en découlent. Dans le contexte de l’information relative, la complétude d’une base de données

est évaluée en comparaison à une base référence. Nous apportons deux principales contributions

à ce domaine: un modèle de motifs produisant des couvertures minimales résumant l’étendue

des partitions de données complètes et manquantes, ainsi qu’une algèbre de motifs permettant de

dériver des couvertures minimales pour l’analyse de la validité des réponses des requêtes.

Ce modèle de motifs offre une opportunité intéressante pour réaliser de nombreuses applications,

en particulier celles visant à améliorer la qualité des tâches affectées par les données manquantes.

Nous adoptons une technique de réécriture de requêtes à base de règles pour imputer les réponses

des requêtes d’agrégation manquantes ou présentant des valeurs incorrectes.

Nous étudions également la généralisation de notre modèle de motifs pour effectuer la synthèse

des fragments de données. Les résumés peuvent être interrogés pour analyser et comparer les

fragments de données de manière synthétique et flexible.

Mots Clés: Information Relative, Complétude de données, Modèle de motifs, Algèbre de motifs,

Imputation, Synthétisation
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„If we knew what it was we were doing it would not be

called research, would it?

— Albert Einstein

Nobel Prize in Physics
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1.1 General Context and Motivation

"The world’s most valuable resource is no longer oil, but data." This statement from The

Economist [Eco] fully demonstrates the importance of data in our society. Social web-applications

and connected objects have changed our daily life and the fourth industrial revolution is transform-

ing static production processes into dynamic and data-driven manufacturing workflows. Millions of

users order food on the internet, do shopping on Amazon, ask Google to find an Italian restaurant

near their place, and exchange messages on Facebook. Objects become smart, houses self-regulate

their energy consumption, cars self-drive, and soon robots will make a medical diagnosis. Modern

airplanes, like the ”A380”, are equipped with 25 000 sensors and generate almost 2.5TB of data per

day [Man] for ensuring the aircraft maintenance.

This data revolution is supported by technological advances, new algorithms, and abundant data

storage capabilities which enable the creation of new services, tools, and industries producing

and consuming huge amounts of data. One major challenge in this context is to maximize the

quality of the data. For example, IBM indicates that the loss of 3.1 trillion dollars per year in

the USA [Har] can be mainly attributed to inaccurate, outdated, or incomplete data that do not

fit specific task requirements. The report argues that data quality is one of the most significant

obstacles for the development of a company, coming before material tools or human expertise.

Despite the abundance of produced data, "missing data" is a frequent quality issue [Her+07],

which emanates from multiple reasons: physical anomalies, database design, human errors, lack of

sources, or privacy rules. Incomplete data problems generate several interesting research challenges

concerning the representation and processing of missing information. Whereas many data models

have been developed for representing any kind of complex data, the exact representation of missing

information within these models is in general difficult. A first solution is to introduce placeholders to

indicate missing information that should be filled in. This kind of placeholder has been introduced

in the relational data model by E.F. Codd [Cod79] in the form of a "missing information" symbol

null. Codd’s null-"values" represent missing or unknown attribute values and remain the most

frequently used representation for missing information in databases. A significant drawback of this

solution is the difficulty to agree on a unique meaning of the null symbol and its query semantics.

For example, simple filtering conditions like A = 3 cannot be evaluated to true or false if A is a

null value (unknown). Another problem concerns aggregation functions, which produce incorrect

results with null values. These limitations led to the development of "stronger" representation

systems for describing missing data more precisely and better understanding their influence on

query results. For example, c-tables [Imi+88a] use "marked" nulls to describe missing values, which

can be shared by different tuples attributes. The completeness assessment under this setting does

not cover missing data tuples, which are considered as false (Closed World Assumption). The
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Open World Assumption is a paradigm that supposes and accepts the existence of additional data

tuples not included in the database (missing tuples), but only a few queries find complete answers

due to the absence of knowledge about what is missing. A middle-ground assumption was first

introduced in [Mot89] to provide a better theoretical foundation for describing missing tuples.

The proposed model assumes the existence of a virtual database with a complete set of tuples,

which can be compared against the available, incomplete database. Under this setting, known

as the Partially Closed World Assumption, a high number of representation systems have been

proposed to model data incompleteness. The concept of relative completeness has been proposed

[Fan+10a]. Instead of a virtual reference database, relative completeness is defined with respect to

a materialized reference dataset which allows for a more effective and precise quality assessment

process [Fan15].

In this thesis, we adopt the relative completeness approach to address several challenges concern-

ing the representation of incomplete information for annotating and repairing query answers. We

introduce these challenges in the following section through a concrete application scenario.

1.2 EBITA and Smart Campus

This thesis has been financed by the EBITA project (2016-2018), a French-German research

project, associating Sorbonne University to the german Fraunhofer Institute [Ebi]. EBITA was a

two-year project which strived to explore database and machine learning research opportunities in

various Smart IoT application domains like mobility, environment, energy consumption.

One use case of the project was a Smart Campus scenario for the Jussieu site of Sorbonne

University. The Jussieu campus is equipped with a sensor network that measures multiple energy

and environment indicators: temperature, pressure, electricity consumption (lighting, heating,

power-supply), water consumption. These sensors continuously produce several measurements per

hour, and a database is daily updated with the most recent values. The Jussieu campus counts 96

buildings, and sensors are variably distributed across these buildings. As part of the project, we had

access to the data produced by 5,000 sensors, located in the buildings highlighted on the campus

map (Figure 1.1). As it is shown in the map, buildings are situated between numbered towers and

each building is identified by the numbers of the two towers it connects. For example, building

1323 connects tower 13 with tower 23.

Multiple other data sources on room occupation, meeting rooms planning, localities areas etc.

have also been gathered for enriching the raw sensor data. Table 1.1 shows some general statistics

about the campus locations and sensors.
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Fig. 1.1.: Campus map coverage by sensors

Within the Smart Campus scenario, the EBITA project aimed to develop a decision-aid application

that integrates different available data sources to fulfill the following tasks:

• Creation of analysis reports on the sensor network.

• Spatial and temporal visualization of statistical indicators and their financial and environ-

mental cost.

• Identification of location-based resource consumption profiles to build targeted energy

reduction strategies.

• Analyzing and explaining resource consumption variations using contextual metadata like

campus events, meteorological data, room occupation etc.

The short-term goal was to develop a decision support system for managers responsible for

establishing energy optimization strategies. In a longer term, the application was planned to

evolve towards a full Smart Campus system including automating energy optimization strategies by

extending the existing sensor network with actuator network. A screen-shot of a web application

we developed as a first milestone of the system is illustrated in Figure 1.2.

First experiments on real sensor data allowed us to identify various data quality problems and

their significant impact on the Smart Campus analysis tasks. Indeed, our experiments confirmed

that raw sensor data suffers from multiple quality problems as syntactic errors, schema encoding

issues, missing or outlier data. Missing data was a particular problem for the generation of analytic

reports with aggregate queries. Aggregated results were incorrect, and few reliable decisions could
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Location Type Number of units

Buildings 96
Floors 635
Rooms 10 755

Location statistics

Room Occupation Number of units

Administration 3562
Researcher office 1053

Teaching 615
Meeting 221

Major rooms occupation activities

Sensor type Number Number of measures (year 2015)

Temperature 665 8 798 715
Electrical counter 456 4 035 398

water 118 707 715
pressure 48 70 465

Some Sensors types numbers and measures size

Tab. 1.1.: Jussieu campus data general statistics

Fig. 1.2.: An overview of the smart campus user interface

be made. Starting from these general observations, the following section introduces the scientific

challenges and our contributions through a simple practical usage scenario.

1.3 Challenges by Example

In this section, we introduce the research problems and our contributions using a example

scenario inspired by the Smart Campus scenario. Anna is a data analyst at the university in charge

of resource consumption monitoring. Her tasks are to interpret sensor data series, identify trends

and particular events, and create analytic reports. She regularly acquires data from the sensor

network and other related sources to maintain a database system feeding reporting services. The

quality of data is a central concern in data analysis, and Anna wants to associate data quality metrics
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to her reports, to avoid wrong interpretations. She wants to take advantage of the multiple available

data sources to annotate sensor measures with completeness and missing data information.

1.3.1 Challenge #1: Complete and Missing Data Representation

In order to identify missing sensor data fragments, Anna thinks about formulating queries

comparing available sensor measures with external reference datasets like maps and calendars.

Anna repeats this operation manually for various locations, time intervals, energy types, etc.,

to generate various reports and visualizations. The first problem that arises then is to build

synthetic and useful descriptions of complete and missing data extents. These descriptions should

be rich enough to accomplish complex quality analysis and compact enough to achieve a fast

and straightforward interpretation. Given a data table Elec that contains all Electricity measures

for the floor 5 in the building 2526, we illustrate in Tables 1.2 and 1.3 an overview of possible

representation summarizing respectively all available and missing measures fragments. Table 1.2

Building Floor Room Day

2526 5 1 ∗
2526 5 3 Monday
2526 5 3 Tuesday
2526 5 3 Thursday
2526 5 3 Friday
2526 5 4 ∗
2526 5 5 ∗

Tab. 1.2.: Available data for building 2526

describes all measures that are available in Elec with respect to some reference map and calendar.

Each tuple or pattern characterizes a complete data fragment. For example, the data table contains

the all measures regarding room 1. For the 3rd room, this is only true for Monday, Tuesday, Thursday

and Friday.

Building Floor Room Day

2526 5 2 ∗
2526 5 3 Wednesday

Tab. 1.3.: Missing data for building 2526

Table 1.3 represents the "complement" of Table 1.2 and summarizes the missing data extents. For

example, we can see that that measure is recorded for room 2.
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1.3.2 Challenge #2: Query Result Annotation

Anna now wants to understand how the missing data impacts the result of certain queries. Take

the example of the previously described Elec table. The corresponding time series is illustrated in

Figure 1.3. Anna observes significant consumption variations between different rooms and defines

the following query that normalizes the electricity consumption with respect to the room surface

(table Area in Figure 1.4):

SELECT Building B,Floor F, Room R, Day D, KwH/area

FROM Elec E JOIN Area A

ON E.B=A.B and E.F=A.F and E.R=A.R

Listing 1.1: Query Qnorm

Fig. 1.3.: Electricity consumption evolution: raw time series

Building Floor Room m2

2526 5 1 15
2526 5 2 10
2526 5 4 15
2526 5 5 20

Area Table

Fig. 1.4.: Area table and normalized electricity consumption times series

The right figure in Figure 1.4 represents the new normalized time series. Observe that the two

tables join on locality attributes (building, floor, room). If a room does not occur in table Elec or
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Building Floor Room Day

2526 5 5 ∗
2526 5 4 ∗
2526 5 1 ∗

Building Floor Room Day

2526 5 2 ∗
2526 5 3 ∗

Tab. 1.4.: Complete and missing data representations for Qnorm result

Area, the query obviously cannot compute its normalized consumption value. Based on the extent

of complete and missing partitions in both tables, we can derive the complete and missing patterns

as illustrated in Table 1.4. For example, we can see that the generated result is complete for rooms

1, 4, and 5 of floor 5 and misses all measures of room 2 and 3.

Anna can generate such annotations for analyzing the other query results combining sensor data

with room occupation data, event planning information, etc. One issue in this use case is to define

an efficient solution which allows annotating query results in an interactive setting.

1.3.3 Challenge #3: Aggregate Queries Correctness

Aggregate queries are frequently used in sensor networks to generate reports, which aggregate

measures at different granularity levels. Missing data in raw tables lead to incorrect query results.

Indeed, some results might be missing for empty partitions, but an incomplete data table might also

produce incorrect results for partially complete partitions. Similarly to the previous join queries,

Anna expects to obtain annotations for missing and incorrect results. Take the example of the

following query, which returns the total electricity consumption amount for each room:

SELECT Building B,Floor F, Room R, Sum(KwH)

FROM Elec E

GROUP BY Building , Floor , Room

Listing 1.2: Query Qagg

Figure 1.5 shows a primary bar graph representing the annotated result of the query Qagg: the

result of rooms 1, 4 and 5 are correct, the result of room 2 is missing and the result of room three is

incorrect.

Table 1.5 shows the complete and missing data annotation for the query Qagg result. We can see

that room 2 only appears in the missing partition pattern table, whereas room 3 appears in both

tables. The patterns that belongs to both, the complete and missing pattern tables, correspond to

partially complete partitions and lead to incorrect aggregated results.
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Fig. 1.5.: Annotated total electricity consumption per room

Building Floor Room

2526 5 1
2526 5 3
2526 5 4
2526 5 5

Building Floor Room

2526 5 2
2526 5 3

Tab. 1.5.: Complete and missing data representations for the query Qagg result
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1.3.4 Challenge #4: Aggregate Query Imputation

During the years, Anna has obtained substantial knowledge and expertise about the resource

consumption on the campus. She also has access to various metadata tables, allowing for a better

understanding of consumption patterns and trends. She wants to use this knowledge to repair her

aggregated results and to provide correct visualizations.

Expert rules are a well-known technique for data imputation that joins human domain expertise

and an automatic repairing procedure. Consider again query Qagg in Listing 1.2. Anna estimates

from historical time series that room 3 has a median consumption profile compared to other rooms

in the floor and that Room 2 in building 2526 is a file storage room as the same room of the building

2600 with similar electricity consumption profiles. Anna formulates these two observations by two

imputation rules as shown in Table 1.6. Rule r1 simply copies the value of room 2 in building 2600

to estimate the value of room 2 in building 2526. Rule r2 estimates the value of room 3 in any

building and floor (b, f and r are variables) by the average correct values of the other rooms in the

same building and floor.

Imputation Rule

r1 (Building: 2526, Floor: 5, Room: 2), kWh ← (Building: 2600, Floor: 5, Room: 2), kWh
r2 (Building: b, Floor: f, Room: 3), kWh ← (Building: b, Floor: f, Room: r), Avg(kWh)

Tab. 1.6.: Imputation rules examples

By using the solution of Challenge 3, it is possible to build an inference mechanism which

identifies all incorrect and missing query results, chooses the minimal set of rules that can be

applied to repair these results and instantiates these rules by applying them to maximal set of

correct answers. For example, the system will automatically apply rule r1 to repair the missing

answer of room 2 and rule r3 to repair room 3 for producing the repaired query result shown in

Figure 1.6.

Aggregate queries may apply to large datasets, and their results are considerably reduced

compared to the initial data tables size. Repairing missing data measures observed in raw sensing

output can become expensive, and covers data tuples not required for reporting queries. A query-

driven strategy intends to correct query results by estimating their results using expert rules. We

tackle the problem of extending the representation system for allowing the expression of cleaning

tools as the imputation rules previously described. This approach should operate at the query

answer level, for a query-driven repair.
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Fig. 1.6.: Repaired aggregate query Qagg results

1.3.5 Challenge #5: Data Fragments Summarization

An important task of a Smart Campus system consists in establishing an resource consumption

profiles for analyzing and deploying more targeted energy optimization strategies. Analogously to

complete and missing data summarization, Anna wants to take advantage of the representation

system to describe energy profiles in a compact way. For this purpose, she integrates metadata about

factors that might impact energy consumption: geographic sector, rooms activity, area, equipment

types, etc. For example, Anna might create locality-centric profiles by fixing a consumption threshold

for separating locations with high from locations with low consumption. Two summaries for these

two profiles are illustrated in Table 1.7.

Sector Building Floor Room Occupation Area

North-West ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ Server ∗
∗ ∗ ∗ ∗ TP classroom ∗

High consumption profile summary

Sector Building Floor Room Occupation Area

∗ 3242 ∗ ∗ ∗ ∗
South ∗ JU ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 6

Low consumption profile summary

Tab. 1.7.: Building energy profiles summaries
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Summaries exhaustively characterize their data fragments and might serve for various tasks. A

summary might first have an explanatory use since it allows, for example, establishing the reasons

underlying high consumption profiles. For example, Table 1.7 shows that all Server and TP class

rooms have a high energy consumption. Summaries also can help in deploying predictive models

by identifying particular factors for monitoring like Occupation in the previous example.

1.4 Thesis Contributions

In this section, we summarize our scientific contribution for solving the challenges presented in

Section 1.3.

Contribution 1: Pattern-Based Model for Completeness Representation: Our first contribu-

tion is a pattern-based model for representing complete and empty data partitions. Our

model follows the Partially Closed World Assumption applying the relative information com-

pleteness approach, which assumes the existence of materialized reference datasets. Our

model introduces pattern tables as shown in Section 1.3 for precisely summarizing available

and missing data partitions. Compared to other approaches, the existence of materialized

reference datasets increases expressiveness and gives us the possibility to describe more

precisely the quality issues generated by missing data for producing query results.

Contribution 2: Pattern Algebra: As a part of the pattern representation framework we extend

the relational algebra, with two operators folding and unfolding for generating and trans-

forming pattern tables. These two operators are central to our model since they provide the

"procedural" semantics for implementing our pattern model. In particular, folding allows

to generate minimal pattern covers for complete data fragments and unfolding transforms

patterns back to raw data tuples. Based on this extended relational algebra, we can express

complex pattern queries generating pattern tables for analyzing data completeness and

annotating query results. We prove the correctness and soundness of the pattern algebra

and show how pattern queries can be optimized and translated into standard SQL queries.

The performance of the obtained framework is experimentally evaluated over real-world and

synthetic datasets.

Contribution 3: Folding Algorithms: We propose two algorithms for implementing the folding

operator defined in our algebra. The first algorithm efficiently computes minimal pattern

covers for data tables. The second algorithm directly operates on pattern tables to create min-

imal sets. We prove the correctness of both proposed algorithms and check their effectiveness

and efficiency through experiments on real-world and synthetic datasets.
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Contribution 4: Rule-Based Query Result Imputation: We propose an imputation rule model

that aims at repairing aggregate query results. The imputation rules leverage our pattern

model to achieve query-driven data imputation for aggregate queries. Most of the existing

data imputation models operate at the raw data level and do not consider queries for refining

the imputation process. We take advantage of the pattern representation model to achieve a

complete imputation process, starting with identifying correct, incorrect, and missing query

results. Imputation rules are transformed into imputation pattern algebra expressions and

translated into optimized SQL queries.

Contribution 5: Fragment Summarization and Reasoning: Finally, we show how we can gen-

eralize our completeness pattern model for data summarization. We extend the pattern model

to characterize any data fragments. We also introduce a general framework for explaining

and comparing fragments using pattern-based fragment summaries.

Publications Our contribution on query-driven answer imputation for aggregate queries will be

published in [Han+19c] and our work on exploring and comparing table fragments with fragment

summaries is published in[Han+19b]. The work on explaining query answer completeness and

correctness with partition patterns will appear in [Han+19a].

1.5 Thesis Outline
The thesis is organized into three parts, each part tackling a subset of the challenges described in

Section 1.3:

Part I covers contributions 1, 2, and 3 on relative information completeness representation. The

first Chapter 2 surveys the state of the art on data quality and on incomplete data representa-

tion models. The remaining chapters summarize our contributions on the pattern model and

algebra (Chapter 3) and its implementation and experimental evaluation (Chapter 4).

Part II covers contribution 4 on aggregate query results imputation. We first survey the state-of-

the-art on data imputation techniques in Chapter 5. We then formally define our rule-based

imputation mechanism to address the problem of repairing analytic query results over

incomplete data (Chapter 6).

Part III presents contribution 5; a generalization of the pattern model for reasoning on data

fragments.

Part IV presents conclusion and future work.
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2Data Completeness Representation
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nor easy.
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2.1 Introduction

The problem of data incompleteness in databases has been addressed from different perspectives.

Several theoretical models have tried to define representation systems with strong expressivity

compared to the commonly used Null values. In this thesis, we are interested in approaches that

extend the relational model for assessing the completeness of data tables and query results. This

chapter is state of the art for the first part of this manuscript, that introduces general quality and

completeness concepts, and surveys existing systems with the following structure:

• Section 2.2 gives a general introduction of data quality issues in databases. We review the

major taxonomies proposed in the literature and quality dimensions definitions.

• Section 2.3 discusses categories of existing contributions treating data incompleteness, fol-

lowing their purpose: missing data identification, query result assessment, and explanation,

repair techniques (Subsection 2.3). We mainly focus on completeness representation systems

that allow providing an assessment tool using annotations. The most related works to our

research problem are discussed in Subsection2.4.2.

• As a Summary, we draw in Section 2.5 the positioning of our research work compared to the

discussed models.

2.2 Data Quality

There is a general agreement for defining the quality of data from the user perspective. In all

data-centric applications, regardless of their context, we only talk about poor data quality if data do

not meet user expectations, for achieving her tasks. The exact semantic of "fitness of use" formulated

in [Wan+96b], was adopted in major data quality research works [SC12; Dem82; Gar88; Jur03;

Hua+98; Fan+12].

The user-centric vision of quality explains the challenge of studies aiming at quality improvement.

In the last decade, quality issues concern is increasing since data is no longer collected for a particular

use case. Big data is constantly generated in huge volumes and stored without considering what

possible use could be achieved. This setting reduces the adequacy between what an end user gets,

and the data she can exploit because data have not necessarily been collected and structured for

her needs.
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2.2.1 Taxonomies of Data Quality Problems

Assessing the quality of data is a critical task that does not accept making assumptions about a

data collection state. It requires identifying a set of problems that determine non-adequacy factors

with user metrics for quality. Quality assessment and improvement processes efficiency depends

entirely on the exactness and the completeness of the problem identification step. Different data

quality taxonomies have been defined in the literature, to cover the variety of data natures, contexts,

and sizes. Some taxonomies enumerate common data anomalies for a generic assessment process,

and others design fine-grained classifications focusing on a particular domain.

In a recent survey [Gsc+12], authors established a listing of the most popular taxonomies, each

considering a particular aspect for anomalies classification. The need for building targeted data

cleaning approaches motivates establishing taxonomies that produce anomalies classifications.

Given that most existing taxonomies cover structured data anomalies, we enrich the survey with

recent advances regarding unstructured data quality problems. We provide in the following

paragraphs a simplified summary for data quality taxonomies, according to their underlying

classification perspective.

Data granularity Structured data are usually stored in multi-level entities(relations, objects,

dimensions, graphs). Let us take the case of the relational model, where data are organized in rows

of many attributes values. Anomalies may occur at different granularity levels. Tuple duplicates,

wrong attribute values, or referential constraint violation are examples of quality issues at different

levels, resulting in variable assessment and cleaning approaches. A set of quality studies follow this

classification in their quality assessment approach [Oli+05; Woo+14; Bar+05]. The contribution

of Oliveria et al. [Oli+05] uses the same separation at a fine-grained level providing a listing of 33

anomalies. The latter multi-level classifications consider variations in a single data source. With

data integration systems, the variability issue grows toward wider anomalies extent. Data can

emanate from multiple sources, with heterogeneous local structures, entailing additional quality

irregularities. All structural conflicts that may occur locally spread exponentially with distinct

sources crossing: naming conflicts, domains adequacy, format misspellings, or duplicates. In

[Rah+00], the author suggests a taxonomy of problems sorted following single or multiple sources.

Many other works fall in the same classification schema.

Data semantics The taxonomy built in [Mü+05] examines data quality problems by distinguish-

ing syntactic anomalies that impact entities representation ( misspellings, wrong schema attributes)

from semantic problems which deteriorate data interpretation (wrong values, misfielded values,

contradictions or out of range values). The motivation of such classification is providing cleaning

strategies with guidance to separate syntax checking operations from repairing tasks requiring
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external knowledge for fixing values’ errors. Also, coverage anomalies are listed in a third category

to indicate that some mandatory data are missing: attribute values or tuples. Missing attributes in

the schema are also considered in this category.

Data representation level Barateiro and al. [Bar+05] address the quality problem by detecting

schema issues aside from the instance. Authors argue that common schema anomalies, as attributes

naming or integrity constraints definition, could be avoided by the database management system

RDBMS tools. This option may not completely eliminate schema level problems, but the remaining

part could be fixed by schema design enhancements which do not require the same workload as for

instance anomalies, where the required cleaning cost depends on the values variability factor. For

example, an error on an attribute type could be rectified in the design stage, and it will be valid

for the entire column. On the other hand, if a misspelling error is frequent in an instance, it is

necessary to apply a case-by-case treatment, given the variability of values.

Data structure Unstructured data comprise multiple types of formats as audio files, video, image,

or unstructured text. They come from multiple human or machine producing operations, such as

medical imagery, social networks posting, or sensor outputs. Unstructured data are nowadays the

main material for machine learning tasks, and anomalies are much more hard to identify. The

diversity of formats entails the absence of quality assessment standard. Indeed, research in the

area remains insufficient, compared to quality assessment needs in data pre-processing tasks, or the

well-established taxonomies covering structured data.

Recently, efforts have been paid to propose quality problems identification methods for unstruc-

tured data [Bat+16; Son04; Imm+15; Tod+15; Kie16; Tal+18], providing first, an updated

definition for Data quality. Since unstructured data are commonly consumed by machine users, the

"fitness of use" concept is extended to include data compliance to operating programs requirements

such as learning techniques. Quality problems, in this sense, are defined as complex data variations

preventing exploration techniques from valuable knowledge extraction. In speech recognition, noise

deteriorates the meaning of the extracted text message, image processing requires a minimum pixels

resolution for efficient interpretation, and video annotation needs some metadata as environment

localization to produce meaningful comments. Furthermore, metadata are useful, in general, for

any unstructured data format, serving as a support to understand basic features that a structure

would have offered.

We summarise reviewed taxonomy features in Figure 2.1. For a data quality study, adopting a

single taxonomy as a baseline may not be the best option. A better alternative should consider data

nature and tasks requirements to identify which classification (or set of classifications ) fits the most

the expressed needs. A good track for data quality designers is to recognize the task context, in

order to formulate targetted methodologies that answer user expectations.
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Fig. 2.1.: Some Data quality problems taxonomies

Context-Dependent problems As various as they are, DQ problems taxonomies agree for iden-

tifying a data anomaly as a problem to fix. This no longer holds true, in some specific contexts,

where a variation in data, yet known to be valid, arises as a problem in particular cases such as

country legislation or corporate business rules.

Take the example of missing data; we can not determine if a dataset is complete without referring

to a context reference provided by the user. The study in [Ge+07] reviews the classification of DQ

problems by splitting anomalies into two categories: those evolving with a context and context-

free issues. The first might be detected independently from any awareness of usage purposes, as

duplication or syntax errors. In contrast, issues that fall within the scope of context-knowledge, are

identified aside, such as business domain constraints.

Context-dependent problems are anomalies that break previously defined "standards" for quality

problems. Furthermore, coping with context requires particular attention to develop basic tax-

onomies toward more flexible classifications, including the use-case settings. The following example

illustrates a context-dependent use case.

Example 2.1. In 2018, the European Union voted a reform called General Data Protection Regulation.

This law aims to apply some standards and constraints on personal data collected by websites and

Internet applications, for heightened privacy aims. Websites could not share personal data for advertising

purposes without adding constraints on personal identity or asking for user permission. In order to

include this new reform to their data protection policy, data-centric applications have updated their
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database design constraints to fit the European context. A part of the data collection process remains

unchanged outside Europe, being valid in these zones.

The diversity of designed DQ approaches and methodologies can be explained by the complexity

of the quality concept. We can understand from the definition "fitness for use" that quality is a

relative notion, which is comforted by the heterogeneity of taxonomies listing quality issues.The

following section explains how problems are reduced into grouped dimensions.

2.2.2 Data Quality Dimensions

The motivation of quality dimensions is grouping similar quality criteria that translate user

expectations, to ease the quality assessment process. Quality metrics are consequently assigned to

the defined dimensions. As we saw in the previous section, there exists a large number of problems

regarding data quality, and mapping these issues into a quality dimension is a necessary step, to

ensure effective evaluation and improvement process.

A data quality dimension is a set of DQ attributes, and every single one is the representation of

an issue [Wan+96b]. Grouping attributes into dimensions is a step that precedes data analysis to

discover measurable criteria to maintain during the task.

There exists a diversity of dimensions that could be explained with context or domain specifi-

cations, data nature, and user expectations for target quality criterion. Besides, Batini [Bat+09]

observes that there is no general agreement on dimension semantic: each research work tackles

DQ problems from its perspective, and associates subsequently a different definition for a given

dimension. The author enumerates six major DQ dimension classifications proposed in the following

works [Wan+96a; Wan+96b; Red96; Bov+03; Nau03] , and establishes on this basis a common

dimensions core, that occurs in the succeeding quality studies.

Example 2.2. In order to illustrate the concept of quality dimensions, we consider the example of a

data table representing the number of tourists in points of interest for different cities. The data table is

represented in the Figure 2.2, which identifies anomalies occurring in the data table and link them to

dimensions.

The dimensions core identified in [Bat+09] is composed of four dimensions: Completeness,

Accuracy, Consistency, and Timeliness and. The following paragraphs provide a general overview of

each.

22 Chapter 2 Data Completeness Representation



Fig. 2.2.: Tourists dataset quality dimensions illustration

Completeness Completeness is defined as the degree to which a collection of data corresponds

to the real world it describes[Bat+09]. In another user-centric definition, [Wan+96b] explains that

the completeness of a dataset represents The extent to which data are of sufficient breadth, depth,

and scope for the task at hand. This dimension is related in relational databases to the notion of

coverage, and this includes three levels:

• Schema: does the schema capture all the concepts and attributes of the real world? In the

tourist Example 2.2, we need to identify the type of points of interest (museum, library, public

building), but the relation schema does not include such an attribute.

• Value: are all the required values describing tuples available? The problem of missing values

or null value is very well studied in the literature. A missing value may be non-existing,

existing but unrecorded, or with possible existence. In the Example2.2, the height of the

monument "Colosseum" is not indicated; this value is missing but exists in the real world.

• Tuple: does the database include the entire population? Missing tuples is also a traditional

problem in DQ research. The number of persons that have visited the Statue of Liberty for

the year 2017 is unknown. The entire tuple is not included in the data table.

Data completeness is the center of interest in our research work, and we dedicate the next

Section 2.3 to data completeness studies.

Accuracy According to [Red96], accuracy is a measure of proximity of a data value v, to some

other value v′ that is considered correct . Accuracy is a dimension concerned with the correctness of

values. Data values are of poor quality if they present syntactic or semantic errors.
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• Syntax: the value v is incorrect if it does not belong to its corresponding domain. Misspelling

errors, for example, bring up new values not included in the domain but approximating

existing ones. Observe in Figure 2.2 that the State of Liberty is not a monument in New York.

• Semantics: The value v is not correct if it does not match the description of the object it

describes. The value 90 m belongs to Dom(Height), but it is the wrong value for Statue of

Liberty.

As indicated in [Bat+09], the majority of DQ research focuses on the syntactic aspect of the

accuracy, to which a quality metric can be naturally associated. Indeed, we can check that a value v

is external to the domain, but it is more difficult to check what exact height is the Statue of liberty.

That checking requires referring to an external knowledge source.

Consistency A dataset is considered consistent if its values respect a set of semantic constraints

[Goa+07]. In relational databases, semantic constraints take the form of integrity constraints,

which can be either intra-relational or inter-relational [Abi+95]. Intra-relational constraints allow

defining a set of accepted values for an attribute, sometimes restricted by other attributes values, in

the same relation. Observe that the value 19.1m as tourists number for the Eiffel tower in the year

2016, presents a violation of the integrity constraint which limits the maximum number of visitors

to 10 m up to 2018. The inter-relational integrity constraints, allow the same kind of restrictions

involving attributes from multiple relations.

Timeliness Time dimensions are an important aspect of data quality given the high update rate

and a large amount of information produced continuously. They include multiple dimensions, and

the most used are timeliness, currency, and volatility, which definitions differ and overlap according

to research works. For [Wan+96b], timeliness captures the age of data, and it identifies if data are

outdated for exploitation. In [Bat+09], it expresses how current data are for the task at hand.

2.3 Data Completeness Overview

Given the impact of data completeness on the accuracy and reliability of the analysis, contributions

regarding data completeness have a long history. The first interest could be traced back to statistics,

where mathematical models were proposed to study the distributions of variables and detect

phenomena related to missing data [Afi+66]. In databases, an early representation that extended

the relational model for identifying missing values is Null values. It has been quickly shown that

this system has not enough expressiveness for addressing the missing data representation problem

[Gra77]. In this section, we describe different steps in data completeness studies.
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Tackling data completeness is not a single step operation. It requires a pipeline of tasks that

allow understanding underlying features, before providing an efficient solution. We retrieve in

the literature three main categories of research studies for data completeness: 1- Representation

systems( or models), that achieve missing data identification and modeling, 2- Explanatory studies,

using correlation-based techniques for detecting the missingness origin and behavior and 3- Cleaning

strategies, mostly data enrichment models (figure 2.3).

Fig. 2.3.: Data completeness study tasks

(i)-Data Representation The scope of the first part of this thesis extends to completeness rep-

resentation models. The next Section 2.4 will be dedicated to surveying major advances in the

field.

(ii)-Data explanation Missing data occur under various circumstances. Explaining the missing

data problem require identifying the origin of incompleteness. Physical anomalies impacting data

collection tools, human omitting some values, or data integration system errors are few examples

illustrating a possible explanation for incompleteness. Understanding the reasons behind this issue

allows providing more efficient cleaning strategies, but also learning about data acquirement and

storage methodology, for future enhancements.

Missing data can appear in a population in different forms. According to data missingness

mechanisms proposed by [RUB76], we distinguish three missing data types:

- Missing completely at random: the fact that a data value is missing cannot be explained by its

real value, nor by study variables. Missing data are distributed independently of any study

variables value. If a temperature value is missing in a sensor output record, and no other

values are missing in the same geographical and time locations, the dataset attributes cannot

explain the absence of this value, since no correlation could be established.
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- Missing at random: the missing data is not related to its real value range, but can be explained

by some other study variables values. If a sensor fails, temperature values for the spatial

locality it covers, during its failure time window are missing. There exists a correlation

between time and geographical attributes explaining the missingness.

- Missing not at random: there exists a logical rule delimiting the scope of missing values,

allowing for identification. If sensors stop recording temperature value each time it exceeds

30 deg, we can expect that no value of this range is indicated in the dataset. The number of

missing data depends on the probability distribution of the temperature variable values.

(iii)-Data cleaning Data cleaning aims to improve the quality of data by removing identified

anomalies [Rah+00]. One approach for data completeness cleaning is setting default values for

attributes if no value is recorded (0 for example). Another simplification approach for the missing

data problem prevents task quality issues by directly ignoring any tuple having missing values.

Removing imperfect data tuples from a task domain induces severe quality problems, by introducing

significant bias due to data distribution distortion, and false data values categories representation

rates.

An alternative approach has been proposed with data integration systems. It consists of finding

available data sources that complete the missing required values. Data integration uses mainly

source crossing, but finding accurate complementary sources remains expensive and complicated.

Besides, data integration may increase the incompleteness problem in some settings [Lem04].

The most used approach for data enrichment is data imputation, which consists of computing

and assigning a value to each missing field, exploiting several inference mechanisms: statistics

correlation, human surveys, logical rules or machine learning. Data imputation for incomplete data

represents the scope of the second part of this thesis manuscript. A state-of-the-art chapter will

examine in more details imputation techniques (Chapter 5).

2.4 Data Completeness Representation Models
The interest in representing missing information in databases is as old as the domain itself. The

belief that a database contains a complete representation of the world it observes has early intrigued

researchers. Data may be missing in two ways: attribute values could be missing, or entire tuples

are missing from the database.

The first contribution in missing values representation is the Null values formalized by Imielenski

and Lipski [Imi+88b]. Widely used since, this unnormalized value indicates the absence of a value

for an attribute and allows consequently computing query answers without ignoring incomplete
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tuples, and avoiding considering the default 0 which could distort data distribution and false results

(aggregations for example). Many works followed, adopting this representation system to build

query evaluation systems [Cod79; Imi+84], or quality assessment metrics [Rei86]. Additional

missing values were proposed stating the weakness of the Null values representation system. We

discuss these ideas in the next subsection.

The assumption that a database includes every observed fact from the real world and can only

miss attribute values is known as the Closed World Assumption. In other terms, with CWA, "what is

not known to be true must be false". If we search in an airline company database for a flight linking

Paris to New York, we should expect to find all flights ensured by this company. The price of a flight,

its duration, or other attribute values could be missing, but all flights are indicated.

It turns out that in practice the CWA is rarely checked [Mot89]. In many cases, the database

does not represent the whole information but includes only a subset of tuples. In contrast to CWA,

this assumption is called Open World Assumption shortened OWA. Suppose we took a flight to

New York, and at landing, we want to book a hotel. It is hard to find a database that includes all

hotels in New York and its area. It is more practical to accept that a database may miss additional

records. However, under this setting, any study becomes much more complicated to conduct

considering missing tuples. Indeed, no precise characterization of the real world can state what is

complete or missing in the available database, since we ignore the extent of what is outside. Works

such as possible worlds theory [Abi+87] try to encounter this lack of knowledge about the ideal

representation.

In the next sections, we review in more depth representation models for studying missing

values 2.4.1 and missing tuples2.4.2.

2.4.1 Missing Values Representation

The missing values representation in databases motivated a high number of research contributions.

It has been the first exploration track for extending the relational model designed by Codd [Cod70],

for increasing the data model expressiveness. The null value representation system suffers from

several limits [Mey98]. Null values do not allow expressing constraints on missing data, or

equality/inequality between multiple null values semantic.

The earliest work considering extending Codd’s model was a Codd himself proposal [Cod79]. He

suggests using a special symbol ’@’ for characterizing any field with unknown value, creating the

Codd tables. The semantic of a Codd table could be interpreted as a database of multiple instances

of the same relation, each obtained by replacing ’@’ by any value of the corresponding attribute

domain. Ilmienski and Lipski [Imi+84] show that such a system does not allow expressing join
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queries1. Codd tables associate for a ’@’ symbol occurrence a single interpretation. All variables

are distinct, and a variable cannot be indicated for different fields with the same value in one

instance, which partially explains the expressiveness limitation. Codd tables are usually related

to the semantic of Null values usage in SQL. V -tables overcome the repetition issue stated in

Codd-tables, which allow for expressing join queries. Indeed, if two attribute values are marked as

missing but with equality, this allows for evaluating the join on this attribute. This extension still

does not strongly cover the SPJ fragment of the relational algebra following Ilmienski’s criteria.

Ilmienski addresses Codd’s and v-tables representation issues by proposing a new system that

supports defining constraints over missing values representations: C-tables. He demonstrates that

this system is a strong system for SPJUDR queries (Select-Project-Join-Union-Difference-Rename

fragment of the relational Algebra). The C-tables include a condition column that expresses the

condition on the tuple with a marked null value. This extension offers the possibility to evaluate

fully join queries.

We refer to [Mey98] that establishes a comparative table assessing the expressive power of

different representation systems extending the relational model, following the study in [Imi+84].

Table 2.1 summarizes a comparison between these systems representation expressiveness. As

explained earlier, c-tables achieve the largest extension for the relational model.

Model Strong representation Weak representation

Codd Tables PR PSR
ν-tables PUR PS+UJR
c-tables PSUJRD PSUJRD

Tab. 2.1.: Strong and weak representation systems extending the relational model

Example 2.3. Observe in Table 2.2, three different representations for a sensor measure data table

with missing values.

Room Day Value

R1 Mon 15
R1 @ 36
R2 @ 29
R3 Wed 17
R3 @ 17

Codd-table

Room Day Value

R1 Mon 15
R1 x 36
R2 y 29
R3 Wed 17
R3 x 17

v-table

Room Day Value Condition

R1 Mon 15
R1 x 36 x 6= Mon
R2 y 29 y 6= x ∧ y 6= Tue
R3 Wed 17
R3 x 17 x 6= Wed

c-table

Tab. 2.2.: Different representations for the measure table with missing values

For each table, the possible worlds are table instances obtained by replacing all variables by the one

value from the corresponding attribute domain(Day in the example). For ν-tables, the same instance

1Detailed explanations of weak/strong representation systems could be found in [Mey98]
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have the same valuation for the same variable in all its occurences. In c-tables, the condition must be

satisfied by variables valuations to belong to an instance.

2.4.2 Missing Tuples Representation

Adopting a common assumption (CWA/OWA) to study the completeness of a database suggests

that all database parts are equal regarding completeness which do not hold true [Den+16]. Some

parts of a database may have complete tuples but possibly miss some values and other parts missing

entire tuples to provide complete information. Recall the tourist dataset Example 2.2, listing the

number of point of interest visitors, all tuples of the data table regarding "City = Rome" are complete

for the attribute number of tourists, which is not the case for New York City.

In practice, under the Closed World Assumption, too many constraints impact negatively queries

evaluation. Ignoring systematically all records that do not appear in the database considering them

as not true, impacts the reliability of queries answers. In the other hand, under OWA few queries

could be answered with certainty [Fan+10b] because we do not know if what was returned is false

and nothing could be stated as complete for sure. The complexity of query answering and the poor

semantic of their results motivated many proposals to find a middle ground assumption, allowing

for accepting the existence of complete database parts, providing complete answers and other parts

partially complete, which may lead to incorrect results. The Partially-Closed World Assumption first

discussed by [Mot89] corresponds to cases where only a subset of the database represents exactly a

complete set of tuples.

The partially-Closed World Assumption is applied in the literature with two distinct settings. First,

the earliest studies since Motro [Mot89] consider an ideal virtual database holding the full descrip-

tion of the real world (all tuples). In order to identify how the available database covers the ideal

database, the proposed approaches use annotation models to translate completeness dependencies,

such as patterns [Raz+15], completeness statements [Mot89; Lev96] and m-tables annotations

[Sun+17]. These systems require manually annotating data with completeness constraints, limiting

guarantees for exhaustive data coverage, with the absence of an ideal database. In another hand,

relative information completeness deals with incomplete databases in the presence of a materialized

ideal database (master data) [Fan+10a]. This setting makes a complete comparison between the

two databases possible and allows querying exhaustive annotation sets. Little attention has been

paid to relative completeness studies. Our representation model deals with the relative information

completeness, under the "partially-Closed World Assumption," and this section surveys similar

representation and discusses the major contributions.

We consider the following use case as a running example to showcase some state-of-the-art

models.
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Example 2.4 (Sensor networks). Let us consider a running example of a sensor network measuring

electrical consumption. The Table 2.3 describes the network recording activity for three rooms.

Floor Room Week Day KwH

F1 R1 w1 Mon 10
F1 R1 w1 Tue 12
F1 R1 w2 Mon 9
F1 R2 w1 Mon 15
F1 R2 w1 Tue 17
F2 R1 w1 Mon 11
F2 R1 w1 Tue 13
F2 R1 w2 Mon 8
F2 R1 w2 Tue 9

Tab. 2.3.: Electrical consumption measures M

Query Completeness Statements

To the best of our knowledge, Motro [Mot89] is the first to formalize the concept of partially

complete and correct databases. He considers the problem of identifying whether a query answer

has integrity or not, which is satisfied if the an answer contains the whole truth (completeness)

and nothing but the truth (validity). In order to represent partial completeness, Motro assumes a

hypothetical virtual database Dc that represents faithfully all facts that belong to the real world.

Any other databases D contains a partial set of real-world data and is defined as a view over Dc. A

partially complete database might also contain other data from outside the real world (invalid).

The virtual database Dc cannot be accessed to check whether data are complete (valid) or not.

To ensure a basic assessment of data integrity, data in relations are annotated to separate the

complete and valid data ( hypothetically included in Dc) from others. The model involves a set

of meta-relations that summarize the extent of ideal data, each meta-relation storing meta-tuples

describing the integrity of a single data table.

Assessing the query completeness is considered as a decision problem. A query Q answer is

complete if a possible rewriting using only complete data is possible for Q. This rewriting is

performed using meta-tuples views. The author formalizes a mechanism extending the relational

algebra operators, with additional operations that manipulate meta tuples, and allow subsequently

rewriting the initial queries on database relations, using views over meta relations. These operations

constitute a core of the cartesian product, selection, and projection {σ, π,×}. Let us consider a query

Q over a relation R. A new query Q′ is derived using the new operations, over R′ (R meta-relation),
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and produces a set of meta-tuples. If such a rewriting is possible, then the query Q answer A is

complete and has a set of meta tuples A′ produced by Q′.

Example 2.5 (Completeness statements). Let Dc be the virtual complete database, for our running

example. We associate completeness ci and validity constraints vj to the relation M ( see Table 2.3),

from the available database. Table 2.4 illustrates the meta-relation M ′ that lists completeness and

validity constraints.

Floor Room Week Day KwH condition predicate

c1 f2 * * * *
c2 * * w1 * *
c3 * * * * x1 x1 > 13

Completeness constraints

Floor Room Week Day KwH condition predicate

v1 F2 * * * x2 x2 > 9
Validity constraints

Tab. 2.4.: Meta-relation M ′: completeness and validity constraints

Consider the following selection queries:

Q1 : σfloor=f2M , Q2 : σday=MondayM

To decide whether Q is complete (and valid), we try to retrieve a query rewriting using only views

expressed by {c1, c2, c3}(v1). Observe that we can assess the integrity of Q1, since a rewriting using the

view c1 (and v1) is possible. This is not the case for Q2 whereas a rewriting using c1andc2 does not

cover all the query answer, and no validity view is available for the filtering condition.

Discussion Motro uses the concept of a virtual database to represent the real world that he

cannot access. However, the evaluation of basic data integrity undeniably involves a reference

to ask. The model overcomes this problem by including meta-relation (annotation provided with

the data) that describe the extent of completeness and validity. The viability of the entire system

depends on the existence of these annotations.

The dynamic system for assessing query integrity is based on a set of operators defined over the

meta tuples. This allows querying the meta relations to generate the integrity constraints of the

query results. Calculated sets are correct, but does not necessarily cover all complete data in the

answer. This is mostly due to some operations where meta-tuples can disappear during the process

(Projecting out an attribute discards some meta-relations specifying this attribute)

Another important property relates to the soundness of complete answers. Indeed, the rewriting

using views provides correct results: If a query can be rewritten using views, its answer is complete.
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Queries for whom no possible rewriting is possible can be complete or not. Since only a subset of

queries with complete answers can be identified, the decision mechanism produces sound set but

not complete.

Local Completeness Statement

In this same setting as for Motro, Levy [Lev96] investigates the problem of deciding query answer

completeness, but with a different technique. His approach uses the query-independent from

updates mechanism [Elk90]. A query is independent of updates if its answer does not change with

the database update. The fact that no insertion affects some query Q result means that the query

asks already for exclusively complete parts in the database, producing a complete answer. In order

to formalize this intuition, Levy introduces the Local completeness statements as constraints on tuples

in a relation that are guaranteed to belong to a known complete relation. The tuples satisfying the

constraints in a relation are complete.

The query update independence is defined for two types of updates, insertions IN+ and deletions

IN−, with respect to a set of constraints. The author shows that assessing the query answer

completeness is equivalent to determining its independence from insertion updates IN+. An

algorithm decide-completeness resolves this problem and theoretical results establish decidability, in

specific settings. Results extend naturally to cover the query answer correctness, using the same

formalization as for local correctness.

Discussion The approach presented by [Lev96] reuses an interesting paradigm ”Query Indepen-

dent of Updates” QIU, adapted to completeness assessment. It improves the decision algorithm for

this problem, to polynomial time. The paper suggests deciding completeness in case of deletion

updates. No formalization was introduced, but the author seems confident about the easiness of

extending his framework to support this case, using Query independent from deletion updates. An

efficient algorithm is explained for deciding query completeness based on query independence from

insertion updates. However, it puts some restrictions on queries for which a decision can be issued

(ex, only constraints involving comparison predicates)

The local completeness statements proposed do not cover all possible constraints that may

describe relation completeness, and this limits the scope of possible specifications. Also recall that

as for Motro [Mot89], constraints must come with data.
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Completeness Patterns

Razniewski et al. work in [Raz+11; Raz+15] under the partial completeness assumption as defined

by [Mot89]. They consider the existence of an ideal virtual database representing the real world.

However, they do not consider the validity dimension ( data included in the available database but

not in the real world). In order to represent the extent of completeness for a database relation, the

author provides a very similar syntactic form of Motro’s C-completeness statements under the name

completeness pattern. Patterns take Levy’s work semantic to describe at the relation granularity,

complete parts of data. Each relation owns a completeness pattern table.

A pattern tuple encodes a selection on a relation, producing a complete set (exactly the same set

that would the ideal database relation return). In order to provide query answers with patterns

describing their completeness, a pattern algebra is defined to allow patterns manipulation and

inference. Algebra operators are similar to Motro operations on completeness statements: selection

(with constant and attribute equality), projection, and joins (equi-join).

The pattern algebra is used to create queries over patterns, producing pattern sets that identify the

data query answer completeness extent. Theoretical proofs about the soundness and computational

completeness of the algebra are provided. The paper presents experiments results over real and

synthetic data, showing how compact are pattern sets compared to their respective data sets.

Discussion Completeness patterns represent a very intuitive formalism for capturing complete-

ness, associated with a strong theoretical framework that ensures the dynamicity of the process,

allowing to compute completeness annotations for query answers. The Algebra is sound and

complete, and allow computations in reasonable times.

Similar to ([Mot89; Lev96]), Razniewski’s work assumes the existence of relations annotations as

patterns. No automatic derivation process has been proposed. The fact that a set of patterns exist

means that covered tuples are complete, but other tuples may miss, and the model cannot assess

that the computed set corresponds to full completeness, which prevents from deciding whether a

query answer is complete or not.

Anomalies Propagation Models

In a research paper entitled Partial results in database systems [Lan+14], authors address the

problem of labeling query results by identifying how missing data lead to wrong or missing query

results. The study illustrates incomplete data case with access anomalies while integrating several
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databases. A first contribution is a taxonomy of anomalies that may occur in a query result; a query

is performed over an incomplete database. Anomalies are classified according to two dimensions:

• Cardinality: corresponds to completeness. When data are not accessible in a database or

simply missing, they lead to two types of anomalies in query results. Either the result suffers

from missing tuples or phantom tuples. If the first anomaly is natural to understand, phantom

tuples can be generated for example, when an aggregation tuple satisfies the query condition

and appears in the result, while it should not with a complete input set. An indeterminate

state indicates that the result may include extra tuples or miss required tuples.

• Credibility: corresponds to correctness anomalies which are related to aggregation queries.

If aggregation has been computed over a complete input set, the aggregation tuple in the

query result is credible. If data miss in the input set, aggregation produces a potentially

non-credible result.

In order to produce meaningful semantics for a query result, we need to have a minimum of

knowledge about the failure that has created the incompleteness of data, and also know how

the query operates. This is necessary to trace the origin and transformation of the anomaly.

Consequently, we need to create as many analysis models as possible to fit with the detail level

of the anomaly identification and observe as the query is executed how it impacts its final result.

Authors propose four analysis models with different granularity:

• Query: the query is treated as a black box, and no detail is available about the level of the

anomaly in input data. The result is only known to be indeterminate.

• Operator: at this analysis level, we deal with the query execution plan, operator by operator.

We can determine the semantic of the anomaly at the input of each operator, and we know

how each one affects the quality of data it outputs.

• Column: to observe how data integrity evolves through the execution plan, the operator

model treats data as a single bloc, while a more detailed like column level anomalies can

sometimes be relevant to identify more specific anomalies such as those directly affected (or

created) by a projection.

• Partition: represents the finest model proposed. It is based on a horizontal partitioning of

data, where a set of tuples create a partition, and anomalies are observed at this level.

The choice of a plan depends on the granularity of acquired anomalies, and the cost one is willing to

pay to get this analysis. A trade-off between the precision of explanation and the cost of generating

these labels has to be found.
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The authors then carry out a study of the behavior of each operator of the relational algebra in

the face of the anomalies he receives as input. Thus for each of the unary operators (select, project,

extended project and aggregate) and binary operators (Cartesian product, union and set difference),

the author explains how an anomaly is kept, removed or transformed. A query on a database can

lead to different execution plans, with the guarantee of producing the same result. The models of

annotations of the results of the request, progress operators by operators and are thus susceptible

to semantics variable according to the scheduling of the operators in the execution plan. The paper

provides a discussion of the equivalence of operator scheduling in terms of calculated semantics.

All pairs of operators are not described, but for the relevant reordering, the system seems resistant

to scheduling variability;

In a more recent work [Lan+15], the author defines a generic cost model for query evaluation,

which associates the cost of the plan with that of the data retriever. The partial result penalty

model relies on the user to translate its preferences for query result annotation, into penalties to be

incorporated into the cost model. The user can thus choose which anomalies he tolerates to appear

in the query result and associates them a cost. This approach joins the concept of data quality

guided by user satisfaction.

Discussion The partial result concept introduced offers an extension for the true default result

that allows a better understanding of anomalies generated with a query over an incomplete

database. Despite a well-illustrated discussion of how relational algebra operators propagate

anomalies, no complete deterministic approach has been proposed for automatic label generation.

The indeterminate state remains omnipresent in many cases, which represents a completeness issue

for query answer labeling. The work considers the partial world assumption without any reference,

and propose a scenario to simulate incomplete information generation as access failures to some

database parts. In practice, to adapt the model usage, we need to provide some prior knowledge

about the completeness of raw data in other contexts that the one mentioned by authors.

M-tables

In [Sun+17], authors present a new representation system for incomplete databases, largely in-

spired by the conditional tables of [Imi+84]. It allows representing both missing values and missing

tuples whether their cardinality is known or not. The first element of this generic representation

system is a symbol m which is used to represent any missing value, with as a distinction, the

possibility of representing any value of the domain or even several values. An extended tuple in

this system t̂ is a classical tuple that can take m as a value for an attribute whose value is initially

missing.
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Since this specific symbol m can be associated with several attributes in the same extended tuple,

it is necessary to distinguish its range using constraints. Constraints encode prior knowledge about

the range of possible values in the ideal database. An annotation system on the extended tables is

proposed to overcome this problem, by translating the constraints on the domains of m but also

the inter-attribute and inter-table constraints. Annotation of the extended relation goes through a

schema that specifies which attributes are affected by the uncertainty or incompetence. On this

new schema, one defines polynomials, with variables representing the attributes concerned, and

constraints on the values of its attributes which can if possible delimit the possible tuples. Some

tuples are designated by the polynomial (1). Each monome represents an attribute or several

and its coefficient the degree of the multiplicity of this one. Constraints take the form of classical

comparison predicates (<,>, =,..).

From the basic annotations of missing tables, we can derive the same type of annotation to

characterize the completeness of query results. Each operator applying to the extended tuple also

applies to its annotation, by performing a specific transformation to its semantics. Accepted queries

limit to the positive fragment of the relational algebra RA+ (selection, projection, join, union)

A simple labeling algorithm allows automatic generation of two types of labels, certain and

possible, for a straightforward interpretation of the query results computed annotations. The

paper also presents theoretical results and proofs for the model expressiveness and completeness,

compared to the traditional c-tables.

Discussion In this work, a new representation model for capturing missing data and values is in-

troduced. It is widely inspired by the conditional tables formalism but offers a better expressiveness.

The model is theoretically well defined, and satisfies the properties of completeness and closure

for bag and set semantics. Query results can have their own annotations, but this only covers

positive queries. Queries with negation or aggregation queries, for example, cannot be annotated.

It is also important to understand that no exhaustive knowledge could be guaranteed with initial

annotations, due to the absence of a reference and this makes the completeness of the derived

annotations dependent on the completeness of the primary set.

Relative Information Completeness

The relative information completeness studies consider the existence of master data[Los10; Fan+10a;

Fan+12; Den+16]. In addition to the potentially incomplete database, subject of study D, a master

database containing only complete data tables is available Dm. In this setting, both databases

are materialized. In [Fan+10a] a set of containment constraints describe the extent to which

D includes complete data from Dm. However, all data in D does not necessarily satisfy these
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constraints. Authors have a particular perspective of this setting: the part of D satisfying constraints

are considered to be a closed world, and the other part with no inclusion constraints regarding

master data to be open world (and not necessarily incomplete).

Both queries Q and containment constraints can be expressed in the different query languages

considered in the model: Conjunctive queries, union of conjunctive queries, positive existential FO

queries, first-order logic queries, and datalog queries. We refer to Lc as the chosen language for

constrainsts V and LQ for queries expression language.

Given a master data Dm, a database D, and a set of containment constraints V , the paper deals

with two completeness decision problems for the query Q:

• RCDP (LQ,LC): checks whether the database D is complete for the query Q under (Dm,V ).

• RCQP (LQ,LC): Decide if a database D exists w.r.t (Dm,V ), and complete for Q.

In a more recent work, [Den+16], authors extend their model to accept the presence of missing

values, as one aspect of database incompleteness. A study of the complexity of both models was

discussed in [Cao+14].

Discussion Works on relative information completeness exploit the presence of master data

to describe the completeness of databases. This assumption allows an interesting representation

system, with decision tasks that can be extended to multi-instances, for one master database. Yet,

the model suffers from its own setting: the non-completeness of containment constraints restrict

query answer completeness assessment possibilities. We can only infer knowledge about the part of

the database covered by containment constraints. The process is not complete,the non-existence of

a rewriting does not mean that the query answer is necessarily incomplete.

The presence of an ideal database could introduce many possibilities for representing and

manipulating missing data, which is unfortunately not taken into consideration is this model

[Fan+10a], nor in its extension [Fan15]. A powerful component of this framework remains the

study of the decision problem complexity, considering different languages in which queries and

constraints can be expressed. [Den+16]

2.4 Data Completeness Representation Models 37



2.5 Summary

Data quality represents the extent to which data fit user requirements for achieving her tasks.

We surveyed in this chapter, data quality studies contributions listing data quality problems and

dimensions. We proposed a common taxonomy that integrates state-of-the-art representations,

following data structure, granularity, semantics, and context. Since we focus on the completeness

dimension study, we put considerable effort into gathering and summarizing contributions advancing

the completeness study field.

Working under the Closed World Assumption for completeness study does not fit our problem

requirements. The assumption that only values can be missing is both restrictive and oversimplified.

In another hand, under the Open World Assumption, no information extracted from an available

database can be trusted to be complete. A similar setting complicates every descriptive study and

makes all queries results obtained from the database, of indeterminate quality.

The partially-Closed World Assumption is a middle ground setting, where parts of the database

can be assessed as complete and queried safely while remaining parts are under the Open World

Assumption. Many representation models have been proposed under this setting, that corresponds

to the assumption we adopt. We discussed six major contributions, tackling similar problems as

those we address (Chapter 1), with similar study purposes. We summarize these representation

models in a comparative Table 2.5. We establish this comparison according to four criteria:

• How the primary knowledge about data completeness is extracted/generated? We check

whether Annotations are injected manually or generated automatically.

• Which formalism is used for inferring knowledge about the query answer quality (complete-

ness and derived dimensions)?

• What is the result associated with a query answer? a yes or no answer or a more low

granularity label?

• What guarantees should the user expect while implementing the model? Soundness, com-

pleteness, or both?

Most of these works run the study with the assumption that the ideal database is virtual and

proceed with an annotation process that is often manual to describe the extent of complete data or

what coverage guarantee available data regarding the reference [Mot89; Lev96; Raz+15]. The

absence of a materialized reference does not only costs an extensive effort for creating completeness

annotations but also prevents from describing the extent of missing data. Except for [Sun+17],
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Reference Model Annotations Formalism Result Guarantees

[Mot89] Completeness Query rewriting Decision task sound
statements Using views Yes/No

[Lev96] Local Query Independent Decision task sound
statements from updates Yes/No

[Lan+14] physical operations Labels:complete sound
anomalies logs models ,correct, phantom and complete

[Raz+15] completeness pattern Pattern sound
patterns algebra sets and complete

[Sun+17] m-annotations m-operators polynome sound
annotations

[Fan+10a] containment Query decision sound
constrainsts rewriting task

Tab. 2.5.: Comparative table for missing data representation models

no contribution has considered annotating query results with missing data. Besides, completeness

annotations such as patterns in [Raz+15] are not guaranteed to be complete.

Regardless of the missing data origin (sensor failure, storage system access), relative information

completeness proposes to study data completeness against a materialized database. [Fan+10a]

argue that such knowledge guarantees the exhaustivity of completeness annotations. We distinguish

two types of results regarding query results annotations:

- Decision task: aims to provide a Boolean answer to this question: Does the query result

returned match exactly the complete answer that the reference would return? for many

applications, this information is sufficient for assessing the task quality [Mot89; Lev96].

- Local descriptions: Other works [Raz+15; Lan+14] target a more detailed explanation. For

incomplete query answers, they provide more information by identifying complete answers

from those impacted by missing data. This takes the shape of different annotations forms:

incorrect incomplete labels in [Lan+14], completeness patterns in [Raz+15]. Even if more

complex to derive, these models do not necessarily ensure the underlying decision task: we

know what parts are complete but not always if these parts constitute a global complete

query answer.
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„Have no fear of perfection; you will never reach it.

— Marie Sklodowska-Curie
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3.1 Introduction

In this chapter, we describe two major contributions:

1. The pattern-based model for representing the relative information completeness. This model

is defined over constrained tables, and pattern sets identify the extent of complete and

missing parts of the incomplete table.

2. The pattern algebra that allows defining pattern queries over complete and missing pattern

tables. We prove that this algebra is sound and complete regarding the SPJUD fragment of

the relational algebra.

This chapter is organized as follows. Section 3.2 introduces constrained tables as a means to

represent relative information data. Section3.3 presents partition patterns and minimal covers

which are used for describing complete and missing data table partitions. Section 3.4 presents the

pattern algebra which revisits the standard relation algebra and introduces two new operators, fold

and unfold, for mapping standard relational tables to patterns tables. Rewriting rules allowing for

optimized pattern queries are also studied in section. Section 3.5 illustrates how pattern queries can

be implemented with SQL queries. Section 3.6 deals with the setting where a reference is expressed

as a cross-product of independent tables and sketches some query optimization opportunities. A

summary of the chapter is provided in Section 3.7.

3.2 Relative Information Model

Our contribution falls within the setting of relative information completeness which is a particular

setting of the ”Partially-Closed World Assumption” (see Chapter 2) in which the ideal database is

no longer virtual but materialized. We start by defining the notion of Constrained Tables which is

essential in this chapter.

3.2.1 Constrained Tables

The main extension that distinguishes our data model compared to the relational model is the

possibility to define reference tables for representing completeness constraints over data tables.

Definition 3.1 (Reference and Constrained Tables). Let D and R be two relational tables and A the

set of attributes of R. If A is a key in table D, table R is called a reference table for data table D and

the pair T = (D,R) is called a constrained table.
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In the sequel, given a table T , we denote with Atts(T ) the set of attributes of T .

A reference is either readily available or may be obtained by querying an existing database. For

example, when studying the spatio-temporal completeness of some data, the reference is the spatial

and temporal coverage of data, as illustrated in the following examples. One may define different

references based on the purpose of the analysis that is carried out while respecting the condition

that the schema of the reference table must coincide with the schema of the data table restricted to

its primary key attributes.

Example 3.1 (Constrained tables). Consider Table 3.1 which presents several data tables with spatial

or temporal attributes, and a data table Measures, whose completeness is to be analyzed w.r.t. to

different possible references. The primary key of Measures is {Floor,Room,Week,Day,KWH}.

Consider the following candidate reference tables for the Measures defined as follows:

• R1 = Map × Weeks × Days, which contains all combination of localities and days,

• R2 = ΠFloor,Room Meeting × Weeks × Days, restricts to room R1 in both floors

• R3 = ΠFloor,Room Sensor, considers an external table defining spatial locations of sensors.

Only R1 and R2 whose schema is {Floor, Room, Week, Day} can be considered as a reference for

Measures whileR3 which does not contain the temporal attributes Week and Day can not be a reference

for this table. However,R3 can serve a reference for πWeek,DayMeasures = {(F1, R1), (F1, R2), (F2, R1)}

since Atts(R3) = {Week,Day}.

Incompleteness may come in different flavors: missing tuples or missing values. Under some

restrictions, the notion of constrained tables defined above can be adapted to the case of missing

values. Precisely, when in a constrained table T = (D,R), πAtts(R)D is a key for D, one can extend

D with all tuples from R−D while assigning Null to the Atts(D)−Atts(R) .

Any data table M with a set of key attributes A and other attributes accepting null values, could

be transformed into a constrained data table. The table M could be split into a reference R= πAM ,

and a table D= σ∧a∈(B−A)a6=NullM .

Example 3.2 (Misssing Values). Observe the Table 3.2. In the data table M , all spatial and temporal

attributes values are indicated and the unrecorded measures are indicated as Null values for the KWH

attribute. M can be transformed into a constrained table T = (Measures,R) with:

• Reference attributes A= { Floor, Room, Week, Day} ,

• Data table Measures = σKwh 6=nullM ,
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Floor Room

F1 R1
F1 R2
F1 R3
F2 R1
F2 R2

Map

Week

W1
W2

Weeks

Day

Mon
Tue
Wed
Thu
Fri

Days

Floor Room area

F1 R1 23
F2 R1 19

Meeting

Floor Room Sensor

F1 R1 s165
F2 R1 s196
F3 R1 s318

Sensor

Floor Room Week Day KwH

F1 R1 W1 Mon 10
F1 R1 W1 Tue 12
F1 R1 W2 Mon 9
F1 R2 W1 Mon 15
F1 R2 W1 Tue 17
F2 R1 W1 Mon 11
F2 R1 W1 Tue 13
F2 R1 W2 Mon 8
F2 R1 W2 Tue 9

Measures

Tab. 3.1.: A data table and its candidate reference tables

• Reference table R = ΠAM .

3.2.2 Assessing Data Completeness

The notion of constrained tables provides the means for assessing completeness of data in a

rather intuitive way as presented below.

Definition 3.2 (Table Completeness). A constrained table T = (D,R) with reference attributes A is

complete iff R ⊆ πA(D).

Proposition 3.2.1. (Transitivity) Completeness is transitive: if R′ ⊆ R and T = (D,R) is complete,

then the constrained table T ′ = (D,R′). The same holds for any D′ such that D ⊆ D′.

Example 3.3 (Table Completeness). Observe data and reference tables in Table 3.1. The Table 3.3

depicts the complete and incomplete constrained tables among candidates.

3.3 The Pattern Model
The completeness representation system we define aims to provide a compact representation for

complete and missing partitions in a data table, where a data partition is a table fragment obtained
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Floor Room Week Day KwH

F1 R1 W1 Mon 10
F1 R1 W1 Tue 12
F1 R1 W2 Mon 9
F1 R1 W2 Tue Null
F1 R2 W1 Mon 15
F1 R2 W1 Tue 17
F1 R2 W2 Mon Null
F1 R2 W2 Tue Null
F2 R1 W1 Mon 11
F2 R1 W1 Tue 13
F2 R1 W2 Mon 8
F2 R1 W2 Tue 9

M

Floor Room Week Day KwH

F1 R1 W1 Mon 10
F1 R1 W1 Tue 12
F1 R1 W2 Mon 9
F1 R2 W1 Mon 15
F1 R2 W1 Tue 17
F2 R1 W1 Mon 11
F2 R1 W1 Tue 13
F2 R1 W2 Mon 8
F2 R1 W2 Tue 9

Measures

Tab. 3.2.: Transforming a table M with Null values into an equivalent constrained table.

Incomplete Complete

(Measures,R1) (Measure,σweek=W 1R2)
(Measures,R2) (ΠF loor,Room,KwH Measure, σF loor=F 1∨F loor=F 2R3)

Tab. 3.3.: Example of complete and incomplete constrained tables

by a select-query. In this section, we introduce the pattern model we propose for completeness

representation.

3.3.1 Partition Patterns

Definition 3.3 (Partition Pattern). Let A = {a1, a2, ..., an} be a set of reference attributes where the

domain of each attribute is extended by a distinguished value ∗called wildcard. A (partition) pattern

p = [a1 : v1, a2 : v2, ..., an : vn] over A is a tuple which assigns to each reference attribute ai ∈ A a

value vi ∈ dom(ai) ∪ {∗} in the extended domain of ai.

A set of partition patterns P (A) = {p1, p2, . . . , pk} over a set of reference attributes A is called a

pattern table.

In the following we will denote by [∗] the wildcard pattern p= [a1:∗,..., an:∗] where all attributes

ai are assigned to wildcards. Any data tuple can also be considered as a pattern, without any

wildcards. A pattern table might include only data tuples and a data table is also considered a

pattern table.

Example 3.4 (Pattern Tables). Recall the reference table R1 from Example 3.1. The reference

attributes have the following domains: Dom(Floor)={ F1, F2}, Dom(Room)={ R1,R2},Dom(Week)
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= {W1,W2 }, and Dom(Day)={Mon, Tue, Wed, Thu, Fri }. Based on these domains, we can represent

multiple pattern tables with variable sizes, Table 3.4 illustrates one example.

Floor Room Week Day

F1 ∗ ∗ ∗
F2 ∗ ∗ ∗
∗ R1 ∗ ∗
∗ R2 ∗ ∗
∗ ∗ W1 ∗
∗ ∗ W2 ∗
∗ ∗ ∗ Mon

F1 ∗ ∗ Tue
F2 ∗ W1 ∗
F1 R1 W2 Mon

Tab. 3.4.: A pattern table example

The following definition introduces the syntactic relationships between partition patterns: gener-

alization and specialization.

Definition 3.4 (Pattern Generalization and Specialization). A pattern tuple p1 generalizes a pattern

tuple p2 if p1 can be obtained from p2 by replacing zero or more constants by wildcards. Inversely, p1

specializes p2 if p1 can be obtained from p2 by replacing zero or more wildcards by constants.

According to this definition, we deduce the following properties:

• Reflexivity: p generalizes and specializes p.

• Transitivity: if p1 specializes p2 and p2 specializes p3, then p1 specializes p3 (the same for

generalization).

Example 3.5 (Pattern generalization). Let us consider the following patterns: p1 = [F1,∗,∗,∗], p2 =

[F1,R1,∗,∗] , p3 = [F1,R1,W1,∗]. We can easily check that p2 and p3 are two specializations of p1,

since they can be obtained by replacing the wildcard for attributes Room and (Room,Week) respectively,

by constants. This naturally implies that p1 is a generalization of p2 and p3.

3.3.2 Pattern Semantics

Patterns are syntactic representations that take their semantic when associated with a constrained

table. We explain in the following definitions the pattern instance in a data table, and how a

constrained table satisfies a pattern tuple.
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Definition 3.5 (Pattern Instance). The instance I(p, S) of a pattern p in some table S is the subset of

tuples t ∈ S which are specializations of p.

The instance I(p, S) of a pattern p = [a1 : v1, a2 : v2, ..., an : vn] in some table S can be computed

by a relational selection I(p, S) = σcond(p)(S) with filtering condition cond(p) =
∧
p.ai 6=∗(ai = p.ai).

It is then easy to show the following properties of I for all patterns p and tables S and S′:

• I([∗], S) = S since the filtering condition is empty and no selection is applied;

• I(p, I(p, S)) = I(p, S) thanks to the idempotence of σ;

• S ⊆ S′ ⇒ I(p, S) ⊆ I(p, S′) thanks to the monotonicity of σ.

The notion of instance can naturally be extended from pattern tuples to pattern tables P and

constrained tables T = (D,R): I(P, S) =
⋃
p∈P I(p, S) and I(p, T ) = (I(p,D), I(p,R)).

Definition 3.6 (Pattern Satisfaction). A constrained table T = (D,R) over a set of reference attributes

A satisfies a completeness pattern p, denoted T |= p, iff I(p,R) ⊆ I(p,D). A constrained table T

satisfies a completeness pattern table P if T satisfies all patterns in P : T |= P ≡ ∀p ∈ P : T |= p.

This definition corresponds to a completness pattern satisfaction, this term shortcuts the "complete

partition" pattern. In Section 3.3.3, we explain how a constrained table satisfies a "missing partition"

pattern or a missing pattern.

The following proposition provides an equivalent definition for the complete table Defini-

tion 3.2.

Proposition 3.3.1. A constrained table is complete if it satisfies wildcard pattern.

Example 3.6 (Pattern Instance, Pattern Satisfaction). Consider the constrained table T = (Measures,R)

presented in Table 3.5, where R = Map×Weeks×Days. The table Measures is incomplete w.r.t.

R whereas the partition σfloor=′F2′Measures is complete w.r.t. R since

σFloor=′F2′R = σFloor=′F2′(πFloor,Room,Week,DayMeasures)

Therefore, T satisfies the pattern [F2,∗,∗,∗].

The semantic counterpart of the (purely syntactic) notion of generalization/specialization is

pattern subsumption which is defined as follows.

Definition 3.7 (Pattern Subsumption). A pattern p2 subsumes a pattern p1, denoted p1 v p2, iff

for all constrained tables T : T |= p2 ⇒ T |= p1. Two patterns are equivalent, denoted p1 ≡ p2, iff

p2vp1 ∧ p1vp2.
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Floor Room Week Day KwH

F1 R1 W1 Mon 10
F1 R1 W1 Tue 12
F1 R1 W2 Mon 9
F1 R2 W1 Mon 15
F1 R2 W1 Tue 17
F2 R1 W1 Mon 11
F2 R1 W1 Tue 13
F2 R1 W2 Mon 8
F2 R1 W2 Tue 9

Measures

Floor Room

F1 R1
F1 R2
F2 R1

Map

Week

W1
W2

Weeks

Day

Mon
Tue

Days

Tab. 3.5.: A constrained table.

According to this definition, the wildcard pattern [∗] subsumes all other patterns since its instance

is the full data table.

The following proposition links between the notion of subsumption and that of instance.

Proposition 3.3.2 (Subsumption and Instance). There exist a relationship between pattern subsump-

tion and patterns instances: p1 v p2 ⇒ ∀S : I(p1, S) ⊆ I(p2, S)

Proof: We show that if there exists a table S where I(p1, S) 6⊆ I(p2, S), then p1 6v p2. For

showing p1 6v p2, we define a constrained table T = (D,R) such that I(p2, R) ⊆ I(p2, D) and

I(p1, R) 6⊆ I(p1, D). Let R = S and D = I(p2, R). Then, I(p2, D) = I(p2, I(p2, R)) = I(p2, R) (by

idempotency).

Now we have to show that I(p1, R) 6⊆ I(p1, D). Based on the initial assumption I(p1, S) 6⊆ I(p2, S)

and S = R we conclude I(p1, R) 6⊆ I(p2, R) and it is sufficient to show that I(p1, D) ⊆ I(p2, R):

I(p1, D) = I(p1, I(p2, R)) ⊆ I(p2, R) = I(p2, R). �

The following proposition states the relationship between the syntactic notion of specialization

and the semantic notion of subsumption.

Proposition 3.3.3. If p1 is a specialization of p2 then p1 v p2.

Proof: We show that if p1 is a specialization of p2, then p1 v p2. If p1 is a specialization of

p2, then for all S, I(p1, S) = I(p1, I(p2, S)) (then the filtering condition of p1 is subsumed by

the filtering condition of p2). Then, if I(p2, R) ⊆ I(p2, D) we know by monotonicity of I that

I(p1, I(p2, R)) ⊆ I(p1, I(p2, D)) which is equivalent to I(p1, R) ⊆ I(p1, D). �

Observe that the converse does not hold: pattern subsumption does always entail pattern

specialization.

48 Chapter 3 Pattern Model and Algebra



Definition 3.8 (Pattern Table Equivalence). Two pattern tables P1 and P2 are equivalent with respect

to a reference table R, denoted P1 ≡R P2, iff I(P1, R) = I(P2, R).

Observe that there might be several equivalent pattern tables for a given reference table R. For

example, if R contains only one tuple t, then all non-empty pattern tables containing t and/or

generalizations of t are equivalent w.r.t. R.

Example 3.7 (Patterns Subsumption and Equivalence). Consider the following set of patterns, w.r.t

the constrained table T=(Measures,R1): p1 = [F2,∗,∗,∗], p2 = [F2,R1,∗,∗]. Observe that:

• p1 subsumes p2 (and p1 is a generalization of p2)

• p1 ≡R1 p2 whereas p1 and p2 are not equivalent in general. For instance, equivalence does not

hold for R2.

Pattern Lattice The subsumption relationship is a partial order since it is reflexive and transitive.

The induced semi-lattice provides a convenient graphical tool for analyzing pattern tables as

illustrated in the following example.

Example 3.8 (Pattern lattice). Consider the pattern table and its corresponding semi-lattice presented

in Figure 3.1. An arrow linking a pattern p1 to another pattern p2 denotes that p1 subsumes p2. The

top of the lattice contains the wildcard pattern while the leaves the most specific patterns.

Fig. 3.1.: Pattern lattice

3.3.3 Pattern Covers

Given a constrained table T , T satisfies a pattern table P , means that P describes the completeness

of some partitions in D, w.r.t R. The following definitions introduce particular pattern tables

regarding T .
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Definition 3.9 (Cover). A pattern table P covers a constrained table T iff for all patterns p satisfied

by T there exists a pattern p′ ∈ P subsuming p: ∀p : T |= p⇒ ∃p′ ∈ P : p v p′.

Observe that a pattern table P covering a constrained table T is not necessarily satisfied by T . In

particular, any pattern table containing the universal pattern covers all constrained tables T (over

the same set of reference attributes).

Any covering pattern table P for a constrained table T , contains at least all patterns satisfied by

T (or their generalization). However, it may also includes other patterns that are not satisfied by T .

We see with the following definition, the strict cover pattern table, that restricts P to only patterns

satisfied by T .

Definition 3.10 (Strict Cover). A pattern table P strictly covers a constrained table T iff P covers T

and P |= T .

It is simple to show that if P strictly covers constrained table T = (D,R) and P ′ is equivalent to

P w.r.t. R, then P ′ also strictly covers T .

Definition 3.11 (Reduced Pattern Table). A pattern table P is reduced if there exists no pair of

distinct patterns p ∈ P and p′ ∈ P such that p is a generalization of p′.

Proposition 3.3.4 (minimal cover). For each constrained table T , there exists a unique reduced strict

cover P∗(T ) called the minimal cover of T .

Proof: By contradiction using the notion of cover and subsumption. Suppose that there exist two

minimal strict covers P∗(T )1 and P∗(T )2. Then there exists a pattern p1 ∈ P∗(T )1 − P∗(T )2 and a

pattern p2 ∈ P∗(T )2 − P∗(T )1 such that p1 v p2 (otherwise P∗(T )2 would not be a cover). Since

p1 6= p2 and by Proposition 3.3.3, we can conclude that p1 @ p2. By Definition 3.9 there must exist

a third pattern p′1 ∈ P∗(T )1 such that p2 v p′1 (otherwise P∗(T )1 would not be a cover). Then, we

obtain p1 @ p2 v p′1 where p1 and p′1 are two distinct patterns in P∗(T )1 and p′1 subsumes p1. This

is in contradiction with the claim that P∗(T )1 is a minimal cover. �

Example 3.9 (Pattern Covers). Consider the constrained table in Table 3.5. Then, Pstrict is a strict

cover for T while P∗(T ) is the minimum strict cover for T .

Missing Partitions Patterns One interesting application of our model is the ability to capture

partitions of missing data. This is allowed by the use of a reference which upper bounds the data

in a given table. Interestingly, the notion of satisfaction can be generalized to the case of missing

partitions by considering the complement of data w.r.t. the reference.
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Floor Room Week Day

F2 R1 ∗ ∗
F2 R2 ∗ ∗
∗ ∗ W1 Mon
∗ ∗ W1 Tue
Pattern strict cover Pstrict

Floor Room Week Day

F2 ∗ ∗ ∗
∗ ∗ W1 ∗

Pattern minimal cover P∗(T )

Tab. 3.6.: Constrained table T cover, strict cover and minimal cover pattern tables

Definition 3.12 (Missing Patterns Satisfaction). Let T = (D,R) be a constrained table. A satisfies a

missing pattern pm, denoted T |=m pm, iff I(pm, R) ⊆ I(pm, R −D). This entails I(pm, D) = ∅. A

constrained table T satisfies a missing pattern table Pm if T satisfies all patterns in Pm: T |=m Pm ≡

∀pm ∈ Pm : T |=m pm.

Based on this definition, all results and properties introduced for completeness patterns can be

naturally generalized to missing patterns. For instance, each constrained table has a unique missing

partition pattern minimal cover.

Example 3.10 (Missing Partition Patterns Minimal Covers). The minimal cover for the missing

partition patterns of the constrained table of Example 3.6 is given as follows.

Floor Room Week Day

F1 R1 W2 Tue
F1 R2 W2 ∗

P ∗mT

3.4 The Pattern Algebra
The standard relational algebra is not sufficient for querying pattern tables due to the semantics

of the wildcard ∗. The following example motivates the need for extending the relational algebra

with specific operators taking into consideration the semantics of patterns.

Example 3.11 (Querying Pattern Tables). Consider the pattern table P from which we want to

retrieve all patterns referring to week W1. The naive solution is to select the patterns in P based on an

equality condition such as σWeek=′W1′P . However, such an expression would fail to return patterns

where the fact Week=’W1’ is implicit, like p0. Indeed, the standard relational semantics relies on an

exact matching of the constants and has no interpretation of the wildcard.

To define the pattern algebra, we introduce two operators that bridge the gap between pattern

tables and data tables:
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Floor Room Week Day

p0 F2 ∗ ∗ ∗
p1 ∗ ∗ W1 ∗
p2 F1 R1 W2 ∗

Pattern table P

Floor Room Week Day

p1 ∗ ∗ W1 ∗
Q0(P )

• A folding operator, denoted with ., which, when applied on a constrained table T , returns its

minimal cover ;

• An unfolding operator, denoted with /, which, when applied on a pattern table P , returns the

constrained table satisfying the P .

The table folding and unfolding operators rely on attribute folding and unfolding operators,

respectively.

Definition 3.13 (Attribute unfolding /A). Let P be a pattern and a reference R. The unfolding of P

w.r.t. R, denoted with /A(P,R), generates an equivalent pattern table P ′ where all values of attributes

ai ∈ A are constant values.

The unfolding /A(P,R) of a pattern table P on some attribute set A w.r.t. its reference table R

can be defined by the following relational algebra expression:

/A (P,R) = πR.A,P.¬A(P onθ/ R) (3.1)

where θ/ =
∧
aj∈A(P.aj = ∗ ∨ P.aj = R.aj) for all attributes in A and πR.A,P.¬A denotes the

projection on attributes A of R and on all attributes of P except A.

Intuitively, unfolding a pattern table P over all its attributes generates a data table D satisfying

P .

Example 3.12 (Unfolding patterns). Consider the pattern table P in Table 3.7 and the reference table

of Example 3.2. Unfolding P on Floor expands the first pattern of P , [∗,∗,W1,∗], into two patterns

[F1,∗,W1,∗] and [F2,∗,W1,∗] ; the two remaining patterns are not modified since Floor is already a

constant.

Unfolding a minimal pattern table does not preserve minimality as one can observe from the

previous example where [F2,∗,W1,∗] is subsumed by [F2,∗,∗,∗].
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Floor Room Week Day

∗ ∗ W1 ∗
F2 ∗ ∗ ∗
F1 R1 ∗ Mon

P

Floor Room Week Day

F1 ∗ W1 ∗
F2 ∗ W1 ∗
F2 ∗ ∗ ∗
F1 R1 ∗ Mon

/{F loor}(P,R)

Tab. 3.7.: A pattern table and the result of its unfolding

Operator fold .ai is the inverse operator of /ai and generalizes, when possible, all subsets S of

patterns p ∈ S which are equal for all attributes except for attribute ai into a single pattern pai:∗

with a wildcard value for attribute ai =∗:

Definition 3.14 (Attribute folding .ai). The fold operator .ai(P,R) generates for a given pattern

table P and reference table R an equivalent pattern table P ′ ≡R P where there exists no pattern

pai:∗ and subset S ⊆ P ′ of specializations p of pai:∗ where pai:∗ = ∗ and pai:∗ is equivalent to S:

6 ∃pai:∗, S ⊆ P ′ : pai:∗ = ∗ ∧ {pai:∗} ≡R S.

To compute .A(P,R) we need to compute the set of all reference tuples missing in D

M = R− I(P,R) = R−D

Then, let pai:∗ denote the pattern obtained from p by replacing the constant value vi of attribute

ai in p by a wildcard ∗. The semi-join expression G(ai) = σai 6=∗(P )nθ.M where θ. =
∧
i 6=j(P.aj =

∗ ∨ P.aj = M.aj) returns all patterns p in P which cannot be generalized on ai: condition θ. is true

for all patterns p ∈ P where the pai:∗ is incomplete (its instance in M is not empty).

Then G(ai) = σai 6=∗(P )−G(ai) returns the set of patterns p where pai:∗ is complete and we can

define the folding operator as follows:

. ai(P,R) = σai=∗(P ) ∪G(ai) ∪ {[ai : ∗]} × π¬ai(G(ai))

Observe that if there is no pattern p ∈ P where ai has a constant value, then G(ai) and G(ai) are

empty and .ai(P,R) = P .

Example 3.13. Consider the pattern table P ′ below.

Observe that:

- σro=∗(P ′) ={ [F2,∗,∗,∗]},

- G(ro) ={ [F1,R1,∗,Mon]} and
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Floor Room Week Day

F2 ∗ ∗ ∗
F1 R1 ∗ Mon
∗ R1 W1 ∗
∗ R2 W1 ∗

- G(ro) ={[∗,R1,W1,∗], [∗,R2,W1,∗]} and thus {[ai : ∗]} × π¬ai(G(ai)) = {[∗, ∗,W1, ∗]}.

Therefore, .ro(P ′, R) returns E.

As for unfold, the fold operation is associative and can be generalized on a set of attributes

A = {a1, a2, ..., an}:

.A(P,R) =

 P for A = ∅⋃
ai∈Ah(.ai(.A−ai(P,R), R)) otherwise

(3.2)

In the following, /(P,R) (unfold all) and .(P,R) (fold all) will denote the unfold and fold operations

over all reference attributes in P (and R). Using this extended relational algebra RAext, we can now

define a pattern algebra RApatt which contains for each data table operator op ∈= {σ, π,on,∪,∩,−}

its pattern-table counterpart ôp ∈ {σ̂, π̂, ôn, ∪̂, ∩̂, −̂}.

3.4.1 Pattern Operators

Let T = (D,R) be a constrained table and Q be a relational query we would like to evaluate on

T . To compute the minimal cover P∗(T ′) of the result T ′ = Q(T ), one can either evaluate Q over T

then apply . over T ′ or adopt an alternative solution by rewriting Q(D) into a new query Q̂ and

evaluate directly on a minimal cover P∗(T ) to produce P∗(T ′) (see blue solid line in Figure 3.2).

To do so, one needs to introduce set of pattern operators.

T = (D,R) T ′ = (D′, R′)

P ∗(T ) P ∗(T ′)

Q

.

Q̂

.

Fig. 3.2.: Pattern queries commutativity diagram

As mentioned in the previous section, we use the extended algebra RAext = RA∪{., /} to define

a new pattern algebra RApatt over pattern tables.

Definition 3.15 (Pattern Algebra operators). Let P and P ′ be two minimal covers of constrained

tables T = (D,R) and T ′ = (D′, R′). Then we define the following pattern algebra RApatt = {σ̂, π̂,
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ôn, ∪̂, ∩̂, } where each operator ôp is defined by using its relational counterpart op and operators .

and /:

ôp (P ) = . ( op (/(P,R)), op (R)) (3.3)

P ôpP ′ = . (/(P,R) op / (P ′, R′), R opR′) (3.4)

Observe that the previous definition does not include set difference. Instead, we introduce

a complement operator P which generates the ”complement” of a partition table P . Using this

operator and intersection we define pattern difference as follows:

P = . (R− /(P,R), R) (3.5)

P −̂P ′ =P ∩̂P ′ (3.6)

Theorem 3.4.1. RApatt is sound and complete: for all relational operators op ∈ {σ, π,on,∪,∩},

constrained tables T = (D,R) and T ′ = (D′, R′) with covers P and P ′ respectively, the following

equations are true:

ôp (P ) = . ( op (D), op (R)) (3.7)

P ôpP ′ = . (DopD′, R opR′) (3.8)

Proof: We show that for all relational operators op ∈ {σ, π,on,∪,∩, }, constrained tables T =

(D,R) and T ′ = (D′, R′) with covers P and P ′ respectively, equations 3.9 and 3.10 are true:

ôp (P ) = . ( op (D), op (R)) (3.9)

P ôpP ′ = . (DopD′, R opR′) (3.10)

For proving soundness and completeness we use the two equalities P = .(D,R) and D = /(P,R)

Soundness:

ôp (P ) = . ( op (/(P,R)), op (R)) = .( op (D), op (R))

P ôpP ′ = . (/(P,R) op / (P ′, R′), R opR′)

= . (DopD′, R opR′)

The first equality in both equations is obtained by definitions 3.3 and 3.4, respectively.
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Completeness:

.( op (D), op (R)) = . ( op (/(P,R)), op (R)) = ôp (P ) (3.11)

.(DopD′, R opR′) = . (/(P,R) op / (P ′, R′), R opR′) (3.12)

=P ôpP ′ (3.13)

The last equality in both equations is obtained by definitions 3.3 and 3.4, respectively.

�

3.4.2 Rewriting Rules and Optimization

The standard semantics of pattern operators uses a unfolding step before applying the equivalent

relational operator. In general, it is possible to avoid this step or to restrict it on the subset of

attributes expressed in the pattern operator. We introduce, for each operator, the possible logical

optimization which avoids unfolding on unnecessary attributes. This logical optimization is of

course guided by the semantics of the pattern operator, as we will show.

Unary operators:

• Selection σ̂: Let θσ be the filtering condition and Aσ = {ai, ..., ak} be the set of attributes

used in the filtering condition.

σ̂θσ (P,R) =(σθσ (/(P,R)), σθσ (R)) (3.14)

=(σθσ (/Aσ (P,R)), σθσ (R)) (3.15)

=(πR.Aσ,P.¬Aσ (P onθ/ (σθσ (R))), σθσ (R)) (3.16)

Observe that selection needs an unfold on all filtering attributes Aσ and the filtering condition

θσ can be pushed inside the unfold operation. If the condition is a conjunction of equality

predicates ai = ci, all pattern attributes ai ∈ Aσ can be replaced by ai : ∗ and join can be

replaced by semi-join:

σ̂θσ (P,R) =({[Aσ : ∗]} × (πP.¬Aσ (P nθ/ (σθσ (R))), σθσ (R))) (3.17)

The pattern selection does not preserve the pattern table minimality, a folding operation may

be required to recover a minimality.
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• Projection π̂: Let Aπ denote the removed attributes.

π̂¬Aπ (P,R) =(π¬AπP, π¬Aπ (R)) (3.18)

Projection does not require any a-priori unfolding phase, but, as we will explain, this may

lead to ambiguity when removing attributes whose values are constant.

Differently for pattern selection, pattern projection preserves minimality.

Binary operators: As for unary operators, the goal for binary operations is to avoid the genera-

tion of large intermediate tables through unfolding. As in the relational setting, one solution is to

push selections into binary operations. The definitions are as follows:

• Cartesian product ×̂ is only defined if A1 and A2 are disjoint. Then, R1 is by definition

disjoint from R1 and it is not necessary to do a fold and unfold.

(P1, R1)×̂(P2, R2) = (P1 × P2, R1 ×R2) (3.19)

If both arguments are minimal covers, the result is already a minimal cover.

• Natural join ôn only requires unfold over the shared (joining) attributes:

Let Aon = A1 ∩A2 = {a1, ..., ak} be the set of join attributes:

(P1, R1)ôn(P2, R2) = (/Aon(P1, R1) on /Aon(P2, R2), R1 on R2) (3.20)

Observe that join can be implemented as a composition of Cartesian product, selection and

projection.

• Union ∪̂ is only defined over two dimension tables sharing the same set of attributes A:

(P1, R1)∪̂(P2, R2) = (P1 ∪ P2, R1 ∪R2) (3.21)

We can also show that union doesn’t require unfold if R1 = R2 = R. Observe that this

definition of union is an opportunity to combine pattern covers generated independently for

different data set fragments over the same reference.
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• Intersection ∩̂ is only defined over two dimension tables sharing the same set of attributes A

and requires unfold even if R1 = R2:

(P1, R1)∩̂(P2, R2) = (/(P1, R1) ∩ /(P2, R2), R1 ∪R2) (3.22)

Observe that the reference of intersection (and the following operators) is the union of the

argument reference tables.

• Set difference −̂ is only defined over two dimension tables sharing the same set of attributes

A and requires unfold even if R1 = R2:

P = . (R− /(P,R), R) (3.23)

P −̂P ′ =P ∩̂P ′ (3.24)

3.4.3 Safe Projection

The standard semantics of projection may yield patterns that do not capture complete partitions.

This occurs when the projected-out attributes contain constant values. To avoid this situation, we

need to perform selection for filtering all patterns that, when projected, may describe incomplete

partitions.

Example 3.14. To illustrate the potential problem of projection, consider the pattern table P with a

reference R, and the query Q1 = π̂Floor,Room(P,R). Evaluating Q1 with the standard semantics yields

the patterns [F1,R1], [F1,R2] and [F2,R1]. Only [F1,R1] was obtained from a pattern describing a

complete partition whereas the two others were obtained from patterns which are not complete w.r.t the

Week and Day attributes.

Floor Room Week Day

p1 F1 R1 ∗ ∗
p2 F1 R2 W1 ∗
p3 F1 R2 W2 Tue
p4 F2 R1 W2 ∗

P

Floor Room Week Day

t1 F1 R1 W1 Mon
t2 F1 R1 W1 Tue
t3 F1 R1 W2 Mon
t4 F1 R1 W2 Tue
t5 F1 R2 W1 Mon
t6 F1 R2 W1 Tue
t7 F1 R2 W2 Mon
t8 F1 R2 W2 Tue
t9 F2 R1 W1 Mon
t10 F2 R1 W1 Tue
t11 F2 R1 W2 Mon
t12 F2 R1 W2 Tue

R
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In the case of projection, Q̂2 simply remove attributes Week and Day. The result interpretation could

be misleading, since no filtering were applied to keep only complete partitions regarding Week and Day.

Indeed, the presence of [F2,R1] in the result may indicate that this partition is complete, which is not

the case because only W2 measures are available.

To address this problem, we define a specific operator called safe projection which filters all

complete partitions before projection. Let Aπ denote the attributes removed by some projection.

Then θπ =
∧
ai∈Aπ (ai = ∗) filters all patterns which are incomplete for attributes Aπ. The safe

projection operator π̂∗ first folds all patterns over the attributes which are projected out and filters

all incomplete dimensions before projection. This guarantees that the result only contains patterns

corresponding to partitions which were complete w.r.t. the removed attributes:

π̂∗¬Aπ (P,R) =(π¬Aπ (σθπ (.Aπ (P,R))), π¬Aπ (R)) (3.25)

Observe also that if P is already a minimal cover, projection produces a minimal cover without

requiring a final fold operation.

3.5 Pattern Queries

The pattern algebra is defined to allow querying pattern tables, to understand the extent of

completeness and missing information in a data table.Given a constrained table T=(D,R), pattern

queries allow checking the completeness and emptiness of data partition with respect to the

reference, using only the pattern minimal cover P∗(T ), and its complement (P̄∗(T )). Considering

a relational query Q over the data table D, it is possible to check the complete and missing

informations in the result Q(D), by using a pattern query expressed in the relational algebra.

Proposition 3.5.1 (Pattern Query). Given a constrained table T=(D,R), the minimal pattern cover

P∗(T ) and a relational query Q, there exists a pattern query Q̂ defined with the pattern algebra, such

as Q̂(P∗(T )) produces the minimal cover of the query result Q(D) with respect to a complete answer

Q(R).

Q̂(P∗(T )) = P∗(Q(D), Q(R)) (3.26)

Example 3.15. In addition to the constrained table T = (Measures,R) in Example 3.2, consider the

table T ′ = (area, πFloor,RoomR), and its minimal cover P∗(T ′), in Table 3.8.

The following query retrieves the daily electrical consumption by square meter.
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Floor Room Area

F1 R1 14
F1 R2 9

Area

Floor Room

F1 R1
F1 R2
F2 R1

R′

Floor Room

F1 ∗
P∗(T ′)

Floor Room

F2 ∗
P̄∗(T ′)

Tab. 3.8.: The Area constrained table (Area,R′) and its minimal cover P∗(Area,R′)

SELECT Floor ,Room ,Week ,Day , Kwh/area

FROM Measures m JOIN Area a

ON m.F loor = a.Floor and m.Room = a.Room

The Table 3.9 shows the query result Q(Measures,Area). The following pattern queries compute

pattern minimal covers for respectively complete and missing partition patterns in the query answer

Q(Measures,Area) :

P(Q(Measures,Area), Q(R,R′)) = (/F loor,Room(P∗(T ), R) on /F loor,Room(P∗(T ′), R′), R on R′)

P̄((Q(Measures,Area), Q(R,R′))) = (/F loor,Room(P̄∗(T ), R) on /F loor,Room(P̄∗(T ′), R′), R on R′)

Floor Room Week day Kwh/m

F1 R1 W1 Mon 0.7
F1 R1 W1 Tue 0.9
F1 R1 W2 Mon 0.6
F1 R2 W1 Mon 1.7
F1 R2 W1 Tue 1.9

Query result Q(Measures,Area)
Floor Room Week Day

F1 R1 w1 ∗
F1 R2 w1 Mon
F1 R1 W2 ∗

Complete P(Q(Measures,Area), Q(R,R′))
Floor Room Week Day

F2 R1 ∗ ∗
F1 R2 w2 ∗
F1 R1 w2 Tue

missing P̄((Q(Measures,Area), Q(R,R′)))

Tab. 3.9.: The query result and its pattern tables

Observe that the pattern tables are not minimal covers, since the folding all operator can not be

expressed in the relational algebra. Furthermore, we showed that a final folding operation is enough
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for computing the minimal cover. In next chapter, we perform experiments to study the efficiency of this

option.

3.6 Independent References
Fold (.) and unfold (/) comprise costly joins with reference tables. In many real world settings,

reference tables R = R1 × R2 × ... × Rn are defined by the Cartesian product of independent

reference tables Ri corresponding to spatial, temporal and other dimensions. These reference tables

Ri are obviously much smaller than the generated reference table R and introduce optimization

opportunities for reducing unfolding/folding costs.

Definition 3.16 (Pattern Unfold /A). Let P be a pattern table with a reference table R = R1 ×R2 ×

...×Rn. The unfolding of a pattern table P on some attribute set A = A1 ∪A2 ∪ ...∪Ak where Ai are

non-empty subsets of attributes of sub-table Ri (wlg. unfolding is done over the first k reference tables

Ri) is defined as follows:

/A(P,R) = πRi.Ai,P.¬A(P onθ1
/
R1 onθ2

/
R2 onθ3

/
... onθk/ Rk)) (3.27)

where θi/ =
∧
aj∈Ai(P.aj = ∗ ∨ P.aj = Ri.aj) and πRi.Ai,P.¬A denotes the projection on attributes Ai

of Ri and on all attributes of P except A.

Observe that /A only joins with reference tables Ri which contain at least one attribute a ∈ A.

Definition 3.17 (Pattern Fold .ai). The folding of a pattern table P on some attribute ai of a reference

table Rj is defined as in definition 3.14, except that the missing tuples can directly be computed from

the reference table Rj without considering the other tables: M = Rj − πAj (D).

Then, similarly to unfold, the fold operator .A only needs to access reference tables Rj which

contain at least one attribute ai ∈ A.

Definition 3.18 (Pattern Operators Optimization). If all attribute domains are independent and the

input pattern tables are minimal covers, selection with equality, projection and Cartesian product can

be expressed using the relational algebra (without /) and generate minimal covers.

3.6 Independent References 61



3.7 Summary
In this chapter, we described a completeness approach under the partially closed world assump-

tion. The following contributions have been made:

• We formalized a partition pattern model for creating data tables completeness annotations.

The theoretical foundations guarantee the completeness of the pattern table (exhaustive set),

and we prove the existence and unicity of a pattern minimal cover for each constrained data

table. Pattern subsumption property defines a partial order on pattern sets, allowing for a

lattice representation.

• The partition pattern model is used to create two types of annotations: complete partitions

and missing partitions. All properties apply to both types, and each constrained table has

strictly one completeness pattern minimal cover and one missing partitions patterns minimal

cover (complement).

• We extended the relational algebra with two special operators. Fold data ., that allows

folding a data table, following a set of attributes, into a pattern table. Folding on all reference

attributes returns the pattern minimal cover. Unfold pattern /, unfolds a pattern table

following a set of attributes. Unfolding on all reference attributes returns the pattern table

data instance.

• Using the extended relational algebra, we defined a pattern algebra P.A={σ̂,π̂, ôn, ∪̂, −̂},

that defines pattern queries over pattern tables. We prove the completeness and soundness

of this Algebra regarding the SPJUD fragment of the relational algebra. For each relational

query over a constrained data table, a corresponding pattern query allows computing the

minimal pattern cover for the query result. The query result is annotated with completeness

and missing partition patterns, independently from the relational query evaluation since the

pattern query derives the result pattern data table minimal cover.

• Based on relational algebra rewriting rules and pattern properties, we formalized optimization

definitions for pattern operators. An additional optimization was introduced with the

independent reference case.

Recall the comparative table from the summary Section 2.5 of the state-of-the-art Chapter 2.

Table 3.10 adds a line for our contribution.
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4Pattern Algebra Implementation and
Experiments

„Nothing in life is to be feared, it is only to be understood.

— Marie Skłodowska-Curie

Nobel Prizes in Physics and Chemistry
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4.1 Introduction

In the previous chapter, we introduced the notions of constrained tables T and minimal pattern

covers P∗(T ) for describing complete and missing partitions within dome data table w.r.t. some

reference table. We proposed a pattern algebra over pattern covers to derive query results complete-

ness annotations. The pattern algebra can be expressed in relational algebra except for the folding

operator . that implies a recursive table browsing. In this section, we describe an implementation

of the pattern algebra in SQL. This implementation comprises two steps:

1. Translating query expressions based on the pattern algebra fragment R.A.+ / (without .)

into SQL queries. Remind that the results of these SQL pattern queries might not be minimal

since no folding is applied.

2. Defining two algorithms for implementing the fold operator: a fold data algorithm that folds

constrained data tables into minimal pattern covers; and a fold pattern algorithm that reduces

pattern tables (such as SQL pattern query results) into minimal pattern tables.

We evaluate our implementation over the sensor network dataset of our campus Jussieu (to the

Introduction Chapter 1). Experiments show the effectiveness and the efficiency of algorithms and

pattern algebra queries, for describing the data tables and query results completeness.

This chapter is organized as follows. Section 4.2 shows, through examples, how pattern queries

are translated into SQL. Section 4.3 presents the Algorithm FoldDataimplementing the fold

operator applied on data tables. In Section 4.4, the second Algorithm FoldPatternsallows for

folding pattern tables (as pattern query results) into minimal pattern tables without a preliminary

unfolding step. Section 4.5 summarizes the experiments on our Campus Sensor data set. Finally, a

chapter summary is given in Section 4.6.

4.2 Translating Pattern Algebra Expression into SQL

The pattern algebra computes pattern covers of query results without completely evaluating these

queries on the data and their reference tables. All pattern algebra operators except the folding

operator can be expressed in the relational algebra (Section 3.5 of Chapter 3). We have also shown

that all pattern query expressions can be rewritten into an equivalent expression with a single

final folding step to produce a minimal cover result1 We therefore can apply the same rules for

1Note that the special operator safe projection π̂∗ is an exception to this rule since it requires as input a
minimal cover to ensure the presence of all generalizations. We have shown in Section 3.4.3 that one
solution to this restriction is to implement safe projection by a join query over a pattern table and its
complement.
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translating pattern algebra expressions into SQL as defined for the relational algebra. The following

examples illustrates some examples for this translation.

Example 4.1. Consider the constrained data table T=(D,R) and its minimal pattern cover P∗(T ),

shown in Table 4.1.

Floor Room Week Day kwH

F1 R1 W1 Mon 10
F1 R1 W1 Tue 12
F1 R1 W2 Mon 9
F1 R2 W1 Mon 15
F1 R2 W1 Tue 17
F2 R1 W1 Mon 11
F2 R1 W1 Tue 13
F2 R1 W2 Mon 8
F2 R1 W2 Tue 9

Data table D

Floor Room Week Day

F1 R1 W1 Mon
F1 R1 W1 Tue
F1 R1 W2 Mon
F1 R1 W2 Tue
F1 R2 W1 Mon
F1 R2 W1 Tue
F1 R2 W2 Mon
F1 R2 W2 Tue
F2 R1 W1 Mon
F2 R1 W1 Tue
F2 R1 W2 Mon
F2 R1 W2 Tue

Reference table R

Floor Room Week Day

F2 ∗ ∗ ∗
∗ ∗ W1 ∗
∗ R1 ∗ Mon

Minimal pattern cover P∗(T )

Tab. 4.1.: A constrained data table T and its minimal pattern cover P∗(T )

Consider the following pattern query Q̂1 that filters patterns of floor F1, and aggregates on Day

attribute(groups on Floor, Room, Week):

Q̂1 = π̂Floor,Room,Week(σ̂Floor=F1(P,R)) (4.1)

This pattern query implies two steps: a selection that restricts pattern tuples to those covering

Floor =′ F1′, and a projection that removes attribute Day. The reference R is the Cartesian product

of two independent reference tables R = RS ×RT , which enables additional optimizations as described

in Section 3.6. We first translate the PA expression Q̂1 into an equivalent Relational Algebra (RA)

expression Q1 as an intermediate step before translating into SQL. We replace the pattern selection by

its RA definition, using the spatial reference only, and then apply the pattern projection as a relational

projection:

Q1 = πRS .F loor,P.Room,P.Week(P oncond σfloor=F1(RS))) (4.2)

where cond = (RS .F loor = P.F loor ∨ P.F loor = ∗) ∧ (RS .Room = P.Room ∨ P.Room = ∗).

The relational algebra query Q1 can then directly be translated into the following SQL query:

SELECT '*', P.Room , P.Week

FROM P p JOIN RS r

ON (p.Floor=r.Floor OR p.Floor= '*') AND (p.Room=r.Room OR p.Room= '*')

4.2 Translating Pattern Algebra Expression into SQL 67



WHERE r.Floor = F1

Listing 4.1: SQL Query for Q1

The query result is shown in table 6.2.

Floor Room Week

∗ ∗ W1
∗ R1 ∗

Tab. 4.2.: Result of Query Q̂1

Example 4.2 (the minimal cover problem). Suppose that we modify the query Q1 from the previous

example, by replacing the selection filtering condition by (Floor = F2):

Q2 = π̂Floor,Room,Week(σ̂Floor=F2(P,R)) (4.3)

The translation of this pattern query is analogous to the previous translation, and the result is shown

in Table 4.3.

Floor Room Week

∗ ∗ ∗
∗ ∗ W1
∗ R1 ∗

Tab. 4.3.: Result of Query Q̂2

Notice that the result of the query Q̂2 is not minimal. The first pattern (∗,∗,∗) tuple means that

the query result is complete and suffices for describing the completeness. The remaining pattern

tuples are subsumed by the wildcard pattern and need to be removed from the result. This task

should be achieved by the fold operator . which is not implemented in SQL. In the following,

algorithms implementing this operator will be proposed.

4.3 Folding Data

The folding data algorithm to implements the fold operator .A presented in Section 3.3 (Chap-

ter 3). Given a constrained table T = (D,R), folding .A(T ) a strict cover P∗(T ) according to the

set of reference attributes A. In case A represents the entire set of attributes in T , the folding

algorithm produces the minimal cover of T .
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The intuition behind the algorithm FoldData is to systematically check the completeness of data

partitions, starting by the most “tuple-covering” partition. Each data partition corresponds to a

candidate pattern, which is only satisfied if I(p,R) ⊆ I(p,D). The FoldDataalgorithm browses

the pattern subsumption lattice LD generated by the active attribute domains in the data table

D. It starts from the wildcard pattern [∗] (level 0) and explores top-down and breadth-first the

lattice. Each level l corresponds to all candidate patterns p with l constants (remaining attributes

being valued as wildcards ∗). The candidate patterns are then subject of completeness satisfaction

checking, to decide whether it belongs to the pattern cover P∗(T ) or not.

Satisfaction check: For simplifying completeness checking procedure, we assume that the data

table D contains exclusively tuples from the reference table R, i.e. D ⊆ R. In this case, a data table

satisfies a pattern p iff I(p,D) = I(p,R) and the algorithm FoldData can check pattern satsifaction

by comparin the cardinality of I(p) in D and R.

Search Space Pruning: If a pattern p is satisfied at some level l, all its specializations p′ are

also satisfied, but not required to appear in the resulting pattern table. To optimize browsing, the

algorithm automatically prunes the complete partition (I(p,D)) after p is generated, preventing

additional unnecessary checking, in next levels l′ > l.

Algorithm FoldData uses the following functions:

• powerSet(A,N) produces all subsets of A of cardinality N .

• patterns(A,D) produces for a set of attributes A, all patterns πA(D)× {[∗]}

• checkComp(p,D,R) checks if I(p,D) = I(p,R) (True if |I(p,D)| = |I(p,R)|).

• prune(P,D) deletes from D all tuples satisfied by patterns p ∈ P .

Observe that operations checkComp and patterns can be implemented by standard SQL queries. In

particular, patterns is a simple projection on D and checkComp can be implemented by comparing

the result of two count-queries on D and R (we suppose that D ⊆ R).

The exploration strategy is as follows: the algorithm starts by checking the universal pattern

(level 0). If this pattern is satisfied, it stops (all tuples in D are pruned). Otherwise it checks all

patterns generated by one attribute (level 1). After finishing this level, the algorithm can again

safely delete all tuples in D which are subsumed by the found patterns and proceed to the next

level until D is empty.

As one can observe, this process is guided by the schema of the reference (line 2) and follows

a breadth-first traversal of the lattice in increasing the size of the subsets of attributes (line 3).
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At each iteration (lattice depth), a set of pattern candidates are derived: first relevant tuples are

retrieved from R (line 4), then extended with the necessary ∗to obtain valid patterns (line 5). Each

pattern is then verified (line 6) and added to the current list (line 7), in case it is satisfied. At the

time, this same pattern is marked in the to-be-excluded set so that subsequent explorations do not

derive patterns that are subsumed by it (line 8). This pruning is ensured by passing to the next

exploration phase an updated reference where all all tuples which have already generated patterns

are removed (line 12), guaranteeing minimality of the derived pattern-set.

Algorithm 1: Algorithm FoldData

Data: constrained table T = (D,R), attribute set A
Result: minimal cover P∗(T )

1 P := ∅ ;
2 for level := 0 to |A| do
3 X := ∅ ;
4 for B ∈ powerSet(A, level) do
5 for p ∈ patterns(B,D) do
6 if checkComp(p,D,R) then
7 P := P ∪ {p} ; X := X ∪ {p} ;
8 end
9 end

10 end
11 prune(X , D) ;
12 end
13 return P

Example 4.3 (Fold Data running steps). Recall the constrained table in the Example 4.1. Let us

explain how the minimal cover P∗(T ) is obtained using the FoldData algorithm (table 4.4).

At level 0, only the wildcard pattern in examined. This pattern is not satisfied, because the primary

data partition, does not contain all referenced spatio-temporal locations. At level 1, we generate

attributes combinations of length 1, which gives B = {{Floor}, {Room}, {Week}, {Day}}. This step

requires checking as much candidate pattern as the total size of their respective active domains in

the data table. Data partitions satisfy two patterns [F2, ∗, ∗, ∗] and [∗, ∗,W1, ∗]. After this complete-

ness checking, the algorithms prunes all data partitions that are assessed to be complete (all data

tuples satisfying Floor =′ F2′orWeek =′ W2′). At level 2, all attributes combinations of length

2 are checked: B = {{Floor,Room}, {Floor,Week}, {Floor,Day}, {Room,Week}, {Room,Day},

{Week,Day}} for the remaining tuple. Only values of the data table active domain are used to create

candidate patterns and among the 6 candidate patterns, only pattern [∗, R1, ∗,Mon] is satisfied. Notice

that the pruning steps are performed on the data table and the reference table, because there is no need

to keep reference tuples that have already been matched with complete data partitions. The algorithm

stops once the data table is empty.
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Level 0

Floor Room Week Day KwH

F1 R1 W1 Mon 10
F1 R1 W1 Tue 12
F1 R1 W2 Mon 9
F1 R2 W1 Mon 15
F1 R2 W1 Tue 17
F2 R1 W1 Mon 11
F2 R1 W1 Tue 13
F2 R1 W2 Mon 8
F2 R1 W2 Tue 9

Floor Room Week Day

F1 R1 W1 Mon
F1 R1 W1 Tue
F1 R1 W2 Mon
F1 R1 W2 Tue
F1 R2 W1 Mon
F1 R2 W1 Tue
F1 R2 W2 Mon
F1 R2 W2 Tue
F2 R1 W1 Mon
F2 R1 W1 Tue
F2 R1 W2 Mon
F2 R1 W2 Tue

∗ ∗ ∗ ∗

Level 1

Floor Room Week Day KwH

F1 R1 W1 Mon 10
F1 R1 W1 Tue 12
F1 R1 W2 Mon 9
F1 R2 W1 Mon 15
F1 R2 W1 Tue 17
F2 R1 W1 Mon 11
F2 R1 W1 Tue 13
F2 R1 W2 Mon 8
F2 R1 W2 Tue 9

Floor Room Week Day

F1 R1 W1 Mon
F1 R1 W1 Tue
F1 R1 W2 Mon
F1 R1 W2 Tue
F1 R2 W1 Mon
F1 R2 W1 Tue
F1 R2 W2 Mon
F1 R2 W2 Tue
F2 R1 W1 Mon
F2 R1 W1 Tue
F2 R1 W2 Mon
F2 R1 W2 Tue

F1 ∗ ∗ ∗
F2 ∗ ∗ ∗
∗ R1 ∗ ∗
∗ R2 ∗ ∗
∗ ∗ W1 ∗
∗ ∗ W2 ∗
∗ ∗ ∗ Mon
∗ ∗ ∗ Tue

Level 2

Floor Room Week Day KwH

F1 R1 W2 Mon 9

Floor Room Week Day

F1 R1 W2 Mon
F1 R1 W2 Tue
F1 R2 W2 Mon
F1 R2 W2 Tue

F1 R1 ∗ ∗
F1 ∗ W2 ∗
F1 ∗ ∗ Mon
∗ R1 W2 ∗
∗ R1 ∗ Mon
∗ ∗ W2 Mon

Level 3 Floor Room Week Day KwH

Floor Room Week Day

F1 R1 W2 Tue
F1 R2 W2 Mon
F1 R2 W2 Tue

Tab. 4.4.: Example: Folding data algorithm running steps
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Complexity Analysis In the worst case, FoldData explores (almost) the whole pattern lattice

LD that is generated by all attribute/value combinations in the fragment. The number of patterns

size(LD) of LD depends on the active attribute domains in the fragment D and the number of

attributes n = |A|: size(LD) =
∑n
i=1(Cni ) ∗ Di where Di is the maximum size of the Cartesian

product of the active domain of i attributes in the data table. The size of the source table influences

the cost of checking pattern satisfaction. We also can estimate an upper bound for the fragment

summary size as follows. Each tuple in the fragment generates between 0 (for tuples that are

subsumed by patterns generated by other tuples) and k patterns, where k is the number of identifiers

of the tuple in the source (reference) table. In the worst case, the size of the generated summary

is max1≤i≤nC
n
i ' Cnn/2 times the size of the fragment where n = |A| is the number of attributes

in |A|. Such a worst case scenario corresponds to the particular case of random missing data with

highly correlated attribute values and no pruning opportunities. If all attributes are necessary to

identify any tuple in the source table (independent attribute domains), the fragment summary

cannot get bigger than the fragment. As we show in our experiments, real-world data generally

follows more regular incompleteness schemes, which increase the compression rate and folding

performance.

Proposition 4.3.1 (Correctness). Algorithm FoldData generates the unique minimal cover.

Proof: We can show that each level only generates patterns that are not subsumed by the patterns of

the previous levels (minimality), the algorithms stops when all data tuples are subsumed by at least

one generated pattern (cover) and the algorithm does not generate any pattern which does not cover at

least one data tuple (strict cover). �

4.4 Folding Patterns

The minimality property is not preserved after applying pattern algebra operators. Pattern

selection for example, needs to partially unfold minimal pattern covers over the attributes in the

filtering condition. The output of these operators has to be rectified in terms of minimality by

applying a fold operator (see algebra definitions in Section3.3 Chapter 3 for detailed explanations).

To do this, one could use Algorithm FoldData on the data obtained applying a complete unfold.

This unfolding/folding strategy obviously is inefficient, in particular for pattern tables with a high

compactness ratios (|D| ÷ |P | >> 1).

A pattern table P is not a minimal cover for two main reasons:

Cover issue: it might not be a cover, i.e. there might exist a subset of patterns S ⊆ P which could

be merged into a single generalized equivalent pattern p 6∈ P .
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Minimality issue: The pattern table might not be reduced, i.e. contain two patterns p1 and p2

such that one pattern is subsumed by the other. The existence of specializations entails a

redundancy contradicting the minimality.

The Algorithm FoldPatterns deals with these issues in two separate steps. The first merge step

solves the Cover issue by recursively checking for each pattern if it can be replaced by a more general

pattern (see details below). The Minimality issue is solved in a second reduce step.

The merge step (lines 1 to 8 ) proceeds by checking if the instance I(S,R) of a subset S ⊆ P

is equivalent to the instance I(p,R) of a pattern p 6∈ P . The basic idea is to explore the patterns

in P bottom-up starting from the most specialized pattern (at the lowest level) and by recursively

merging sets S of patterns which differ only on the constant of one attribute. As soon as S can be

merged into one pattern p, we add p to P , without deleting S. S can not be deleted at this step,

because some patterns can be used to merge with other patterns outside S.

Regarding the Minimality issue, Algorithm FoldPatterns reduces P by removing all patterns

p1 ∈ P which specialize another pattern p2 ∈ P . These patterns include those which were merged

in the first step. This can be done by a simple auto-join on P (lines 14 to 24). This reduce step

is implemented by the second outer loop in FoldPatterns. Algorithm FoldPatterns uses the

following functions:

• getPatt(P, level) returns all patterns p ∈ P with level constant attributes.

• isGen(p1, p2) checks if p1 is a generalization of p2 (Definition 3.4 in Section 3.2 from

Chapter 3).

• gen(p, a) generalizes pattern p by replacing the constant attribute a by a wildcard.

• getConstAttrs(p) finds all constant attributes of pattern p.

• checkComp(X, p, T,R) checks if the instance of pattern set X in data table T is equal to the

instance of pattern p in R.

• getSimPatt(P, p, a) returns all patterns in P which differ from p by a different constant value

for attribute a.

Example 4.4 (Fold Pattern running steps). Consider the problem of folding the pattern table regarding

the reference table in Table 4.5. This table represents a strict but not minimal cover for our constrained

table T in 4.1 since there exist patterns specializing other patterns in the same table.

We run the Algorithm FoldPatterns on the pattern table P . The Table 4.6 shows step by step the

merge and reduce stages of the algorithm. Merging patterns starts from the lowest granularity:
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Algorithm 2: Algorithm FoldPatterns

Data: pattern table P , reference table R, data table T , attribute set A
Result: minimal cover P∗(I(P,R))

1 for level := |A| to 0 do
2 for p ∈ getPatt(P, level) do
3 for a ∈ getConstAttrs(p) do
4 pai:∗ := gen(p, a)
5 S := getSimPatt(P, p, a)
6 if pai:∗ /∈ P ) then
7 if checkComp(S, pai:∗, T,R) then
8 P := P ∪ {pai:∗}
9 end

10 end
11 end
12 end
13 end
14 for level1 := 0 to |A| do
15 for p1 ∈ getPatt(P, level1) do
16 for level2 := level1 + 1 to |A| do
17 for p2 ∈ getPatt(P, level2) do
18 if isGen(p1, p2) then
19 P := P − {p2}
20 end
21 end
22 end
23 end
24 end
25 return P
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Floor Room Week Day

F2 ∗ ∗ ∗
F2 R1 ∗ ∗
F2 ∗ W1 ∗
F1 R1 W1 ∗
F1 R2 W1 ∗
F1 R1 W2 ∗
F1 R1 W2 Mon

Pattern table P

Floor Room Week Day

F1 R1 W1 Mon
F1 R1 W1 Tue
F1 R1 W2 Mon
F1 R1 W2 Tue
F1 R2 W1 Mon
F1 R2 W1 Tue
F1 R2 W2 Mon
F1 R2 W2 Tue
F2 R1 W1 Mon
F2 R1 W1 Tue
F2 R1 W2 Mon
F2 R1 W2 Tue

Reference table R

Floor Room Week Day

F2 ∗ ∗ ∗
∗ ∗ W1 ∗

F1 R1 W2 ∗
Minimal pattern cover P∗(T )

Tab. 4.5.: Reducing a pattern table into a minimal table

• Merge 1: [F1, R1,W1, ∗] and [F1, R2,W1, ∗] are merged to constitute [F1, ∗,W1, ∗].

• Merge 2: [F1, ∗,W1, ∗] and [F2, ∗,W1, ∗] constitute a full complete partition [∗, ∗,W1, ∗].

• Merge 3: [F2, ∗,W1, ∗] and [F2, ∗,W2, ∗] merge to generate [F2, ∗, ∗, ∗].

Notice that [F2, ∗,W1, ∗] participates in two merging operations, which explains why patterns are not

replaced by their generalization immediatly after merge. Merging patterns creates new generalization

patterns but does not entail the deletion of patterns at their origin. This contributes to the increase of

the number of subsumed patterns, contradicting the propriety of minimality. The second reduce phase

deletes the redundant specializations.

Observe for example in Table 4.6 that the pattern [F2, ∗, ∗, ∗] is a generalization of three other

patterns [F2, R1, ∗, ∗], [F2, ∗, W1, ∗], [F2, ∗, W2, ∗], which leads to three reducing operations.

Analysis: In the worst case, the reduce step generates O(|P |2) generalization tests. Similar to

the top-down algorithm FoldData, the size size(LP ) of the pattern lattice LP explored by the

second steps can be estimated by size(LP ) =
∑n
i=1(Cin) ∗Di where n is the number of attributes,

and Di is the maximum size of the Cartesian product of the active domain of i attributes in the

pattern table. Since the Di over the pattern table P is in general much smaller than Di over

the data set D, computing the minimal cover for P (without unfold) is in general much more

efficient than computing the minimal cover on the data set D. This observation is confirmed by our

experiments.

Proposition 4.4.1. Algorithm FoldPatterns is correct.
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Merge 1

Floor Room Week Day

F2 ∗ ∗ ∗
F2 R1 ∗ ∗
F2 ∗ W1 ∗
F1 R1 W1 ∗
F1 R2 W1 ∗
F1 R1 W2 ∗
F1 R1 W2 Mon

Floor Room Week Day

F2 ∗ ∗ ∗
F2 R1 ∗ ∗
F2 ∗ W1 ∗
F1 R1 W1 ∗
F1 R2 W1 ∗
F1 ∗ W1 ∗
F1 R1 W2 ∗
F1 R1 W2 Mon

Merge 2

Floor Room Week Day

F2 ∗ ∗ ∗
F2 R1 ∗ ∗
F2 ∗ W1 ∗
F1 R1 W1 ∗
F1 R2 W1 ∗
F1 ∗ W1 ∗
F1 R1 W2 ∗
F1 R1 W2 Mon

Floor Room Week Day

F2 ∗ ∗ ∗
F2 R1 ∗ ∗
F2 ∗ W1 ∗
F1 R1 W1 ∗
F1 R2 W1 ∗
F1 ∗ W1 ∗
F1 R1 W2 ∗
F1 R1 ∗ ∗
F1 R1 W2 Mon

Merge 3

Floor Room Week Day

F2 ∗ ∗ ∗
F2 R1 ∗ ∗
F2 ∗ W1 ∗
F1 R1 W1 ∗
F1 R2 W1 ∗
F1 ∗ W1 ∗
F1 R1 W2 ∗
F1 R1 ∗ ∗
F1 R1 W2 Mon

Floor Room Week Day

F2 ∗ ∗ ∗
F2 R1 ∗ ∗
∗ ∗ W1 ∗

F2 ∗ W1 ∗
F1 R1 W1 ∗
F1 R2 W1 ∗
F1 ∗ W1 ∗
F1 R1 W2 ∗
F1 R1 ∗ ∗
F1 R1 W2 Mon

Reduce

Floor Room Week Day

F2 ∗ ∗ ∗
F2 R1 ∗ ∗ x
∗ ∗ W1 ∗

F2 ∗ W1 ∗ x
F1 R1 W1 ∗ x
F1 R2 W1 ∗ x
F1 ∗ W1 ∗ x
F1 R1 W2 ∗ x
F1 R1 ∗ ∗ x
F1 R1 W2 Mon

Floor Room Week Day

F2 ∗ ∗ ∗
F1 ∗ W1 ∗
F1 R1 W2 Mon

Tab. 4.6.: Folding pattern algorithm running steps on table (p,R)
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Proof: We can show that after the reduce step, a pattern p can only be generated if there exists an

attribute a and a subset of patterns S ⊆ P such that p generalizes all patterns in S on attribute a and

S is equivalent to p. Then by following a recursive bottom-up strategy we guarantee that all possible

generalizations are tested. The second reduce step guarentees minimality. �

4.5 Experiments

We created an experimental protocol to evaluate the following features:

• Pattern table compactness (Section 4.5.2).

• Folding algorithms performance (Section 4.5.2 and Section 4.5.4)

• Query result completeness patterns generation performance (Secion 4.5.4).

We ran our experiments on a standard Linux machine equipped with a 2.4 GhZ dual-core

CPU, 8GB of RAM and 350 GB of standard storage. The algorithms are implemented in Python

2.6 whereas data and patterns were managed in PostgreSQL [Sto+86] and accessed using the

psycopg2+ library of Python. For storing and querying data and pattern tables between the database

and our programs rely on the psycopg2 open source library.

4.5.1 Datasets

We use both a real-world and a synthetic dataset. The real-world dataset corresponds to sensor

measurements of different kinds as electricity, heating, or temperature, collected during one year at

our University campus. The Smart Campus scenario was introduced in Introduction Chapter 1. This

dataset features both spatial and temporal incompleteness since not at all parts of the campus are

covered by sensors, and many of the sensors operate erratically. The synthetic dataset is generated

from the real one by introducing more randomness for the purpose of studying the impact of data

distribution on pattern compactness.

We restrict the study to measures pertaining to temperatures collected in 12 out of 96 buildings

and refer to this data with Temp. We build two reference tables with different spatial coverage

and an identical temporal span. The first reference, noted RAll, includes all spatial locations of the

campus regardless of the existence of temperature sensors. The second reference, noted RTemp,

4.5 Experiments 77



restricts on localities equipped with a temperature sensor, that is, localities present in Temp. The

schema of the data and the reference tables together with their sizes are reported in 4.7.

Temp(building, floor, room, year,month, day, hour, value)

Loc(building, floor, room) Cal(year,month, day, hour)

Sch(RAll) = Sch(RTemp) = Sch(Loc) ∪ Sch(Cal)

variant x |Locx| |Calx| |Rx| = |Locx| × |Calx|
all 10,757 8,760 94,231,320

Temp 2,810 8,760 24,615,600

Tab. 4.7.: Size of reference tables Rall and RTemp

Naturally, the choice of the reference dataset has an impact on the pattern derivation performance.

We start by investigating the performance by studying the variation of the compaction ratio when

varying the size of the data and its associated reference. To do so, we build two smaller data tables

by restricting Temp spatially, selecting only the measures of one building, and temporally, by keeping

the measures covering a single month. We refer to the resulting tables with, respectively, T_OneBlg

and T_OneMon. Their cardinalities are reported in Table 4.8 together with their completeness ratio

CR(ds,R) = |ds|/|Rx| regarding their references Rx. We denote by RdsAll and RdsTemp the reference

tables obtained by using the same spatial or temporal restriction as the dataset ds. For example,

R
T _OneBlg
All = σbuilding=′25′(RAll).

dataset ds |ds| CR(ds,Rds
all) CR(ds,Rds

T emp)
Temp 1,321,686 1.4% 5.36%

T_OneBlg 341,640 21.43% 21.43%
T_OneMon 88,536 1.4% 4.23%

Tab. 4.8.: Sizes and completeness ratio

As expected, the closer data is to its reference, the better is the completeness ratio. We observe

that the spatial restriction allows for achieving the highest completeness ratio (21.43%).

4.5.2 Pattern table generation

We perform a preliminary experiment to measure the completeness of different datasets D and

the compactness ratio of the corresponding complete and missing pattern tables P and P . We

define the compactness ratio Γ(P,D) of a completeness pattern table P by the ratio |D|/|P | ∈ [1, D]

where |P | is the size (cardinality) of the pattern table and |D| is the size of the data table. The

completeness Ω(D) of a measure table D with respect to its reference table R is defined by the ratio

|D|/|R| ∈ [0, 1]. In addition to Temp, we consider a subset OneBlg of all measures in building 2232
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and a subset OneMonth of all measures collected during January. The corresponding reference

tables are built by extracting the reference subsets corresponding to the same building and month

respectively.

D Ω(D) |D| |P | Γ(P,D) |P | Γ(P ,R−D)

Temp 5.36% 1,321,686 11,269 117 10,777 2,161
OneBlg 21.43% 341,640 39 8760 55 22,776

OneMonth 4.23% 88,536 119 744 370 5,390

Tab. 4.9.: Patterns tables sizes and compactness ratios

The completeness ratio is significantly higher for building 2232 than for the overall campus

average which can be explained by a better sensor coverage in this building. Completeness is not

uniformly distributed over months of the year, many sensors experience periods of no recording

activity (failure) or are installed after January, leading to a lower monthly completeness rate than for

other months. Observe in Table 4.9 that the completeness ratio and the data size are not sufficient

to explain the compactness ratio since the compactness ratio is governed by the distribution of

missing data over the spatial and temporal localities.

We define two “real” measure datasets Temp_0 (empty temperature table), Temp_50% (con-

taining the first 50% of Temp sorted by time and space), Synthetic_0% (empty table) and two

“synthetic” datasets Synthetic_30% (containing a random 30% sample of the reference table).

Starting from these four datasets with a fixed completeness ratio, we build two series of datasets

obtained by successively inserting and deleting tuples from the dataset. The insertion and deletions

follow two strategies: i) a sequential strategy which selects the (inserted or deleted) tuples using

their spatial and temporal domain order preserving the original data distribution in Temp_0% and

Temp_50%, and ii) a random strategy which randomly picks these tuples for Synthetic_0% and

Synthetic_30%.

Figures 4.1 and 4.2 depict the evolution of compactness w.r.t. completeness for each dataset. In

the synthetic datasets (Figures 4.1), the compactness of a random dataset with 30% completeness

evolves symmetrically in both directions (insertion and deletion): successive insertions/deletions

generate/remove tuples which give rise to new patterns. At some point, these insertions/deletions

will cause the merging of fine-grained patterns to coarser-grained ones increasing the compactness

ratio to achieve maximum compactness at both extremities. In the real datasets, we observe the

same trend with a lower amplitude for a dataset with 50% initial completeness: insertions lead to

faster completion of the partial partitions (thanks to ordering sensitive updates) and thus to the

faster derivation of coarser patterns without deriving all their subsumed patterns.
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Fig. 4.1.: Synthetic datasets: Data missing randomly

Fig. 4.2.: Real datasets: missing data following sensor failures
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Performance In the following experiment we evaluate the performance of algorithm FoldData.

From the original dataset Temp, we derived 30 datasets grouped into three categories, each with

approximately the same completeness rate, but different dataset sizes.

Figure 4.3 shows the running time of FoldData for all datasets according to the number of

generated patterns. Categories are represented by points of different colors (orange = 15%,

violet = 10% and green = 3% completeness rate).

Fig. 4.3.: FoldData performance

Notice that execution time is not impacted by the data completeness but grows exponentially

with the number of generated patterns.

4.5.3 Pattern Query Processing

The following experiment measures the efficiency of processing pattern queries for producing

minimal covers for query results over constrained tables. We compare the pattern-based query

plans (blue solid path in Figure 3.2) using the techniques described in Section 3.4 from Chapter 3

by comparing it with the "naive" strategy of computing the minimal cover from the results of the

query applied to the data and reference tables (red dashed path in Figure 3.2). We tested both

approaches on the queries below and report the result in Table 4.11. The reported execution times

correspond to the queyr answer completeness pattern table generation cost (Fold Answer), and to
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the sum of pattern query evaluation cost and the Fold Pattern cost necessary to produce a minimal

pattern set (Pattern Algebra).

Q1: σb=2223(Temp) Q2: σb=2223∧f=1(Temp)
Q3: σb∈(1213,3334)∧(m∈(11,12)(Temp) Q4: πb,f,r,mσbin(1213,2324)(Temp)
Q5: πf,r,m,d(Temp) Q6: πb,f,r,area,tempTemp onb LocArea

Q7: OneBlg −OneMonth

Tab. 4.10.: Data Queries

Assessing the completeness of queries with the pattern algebra outperforms the naive approach

for all of the tested queries. Queries Q1 and Q2 only refer to the spatial dimension and both

methods (Fold Answer and Pattern Algebra) and can be optimized by exploiting attribute domain

independence as described in Section 3.6. For Q3 the gain is less important since it needs partial

unfolding over both reference tables which incurs in an important overhead for Fold Answer.

Queries Q4 and Q5 need no unfolding which explains the performance gain of the pattern algebra

approach. For Q5, the pattern algebra evaluation is much more efficient because of the compactness

of the pattern covers and the fact that the corresponding pattern query doesn’t need unfolding (no

selection) in contrast with Q4. The performance gain for the last two queries Q6 and Q7 is less

significant since both imply accessing two tables, leading to performing joins between corresponding

pattern tables. Pattern queries are independent of the data size. For Q7 the data size is much larger

than for Q6, but the pattern queries have similar run time since both queries have pattern tables of

similar size.

Complete Missing Execution time (sec)
Query |Answer| |P (Qi)| |Missing| |P (Qi)| Fold Answer Pattern Algebra

Q1 96,360 11 1,103,760 66 7.410 0.091
Q2 8,760 1 191,808 15 0.250 0.002
Q3 16,025 217 584,250 91 156.060 13.700
Q4 144 12 3,228 46 1.700 0.140
Q5 25,342 114 101,678 763 143.920 9.890
Q6 327 11 10,415 578 10.090 8.630
Q7 312,624 39 1,146,288 143 23.520 9.870

Tab. 4.11.: Complete and Missing Query Answer Patterns

4.5.4 Folding pattern query results

The last experiments set aims at digging deeper in the efficiency of pattern queries by analyzing

the overhead of FoldPatterns. In general, FoldPatterns operates on small pattern tables produced

by queries. Nevertheless, it remains important to show that it doesn’t influence the performances
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of the query answer pattern computation. We consider different pattern table sizes with variable

compactness values (see Table 4.9). We measure the FoldPatterns phase execution time while

keeping track of the exact number of merge and reduce operations (see Section 4.4).

We can observe in Table 4.12 that run time grows with the number of patterns to minimize. The

table also shows the number of reduced and the number of merged patterns. As expected, the run

time grows with the number of patterns to minimize and merging patterns is much more expensive

than reducing patterns, due to the cost of querying the reference table.

P. size Pmin.size Compac. time merges /reduces
106 22 20.75% 0.29s 7 m
238 32 13.44% 0.32s 9m+ 79 r
570 30 5.2% 0.38s 45m
992 864 87% 0.47s 6 m + 32 r

10961 3921 35.77% 1.33s 6 m + 7040 r
11285 11178 99.01% 0.35s 107 r
12054 11440 94.90% 6.59s 38 m + 158 r

Tab. 4.12.: Pattern Fold algorithm performances
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4.6 Summary
This chapter describes the implementation of contributions presented in Chapter 3. We show,

by using examples, how pattern queries are translated into SQL. All pattern operators can be

implemented in SQL, except the fold operator which requires recursive scan of data tables. We

proposed a first Algorithm FoldData that implements the fold operator over data tables. We

showed that the pattern table size is bounded by the data table size. We also defined a second

Algorithm FoldPatterns, which implements a variant of the fold operator that can directly be

applied to pattern tables. This algorithm reduces pattern sets by grouping specializations and

eliminating semantically redundant patterns.

We performed a set of experiments on real datasets, recording sensing output activity in the

Smart Campus use case (refer to Chapter 1). The results show the effectiveness of using patterns

for representing the complete and missing partitions for data tables constrained by spatial and

temporal references. The compactness ratio for pattern table is very high for all tested data tables.

We also tested the impact of multiple study features on the compactness of generated pattern tables

and used synthetic datasets to this purpose. We observed that an important factor impacting the

size of pattern tables is the missing data distribution. Random distribution in synthetic datasets

provokes an explosion of the number of patterns (|P | = |D| being the upper bound). In contrast, in

real datasets, where missing data is caused by physical anomalies that do not occur in a random

fashion, the compactness remains high.

Finally, we compared two approaches for computing query result patterns. The first approach

applies FoldData on the query result, whereas the second approach uses pattern queries. Our

results show the efficiency of using the pattern queries compared to folding data results.
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Part II

Incomplete Query
Result Imputation





5Data and query result imputation
techniques

„Research is to see what everybody else has seen, and to

think what nobody else has thought

— Albert szent-Györgyi

Nobel prize in physiology or medicine
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5.1 Introduction

Regardless of the way data is collected, data incompleteness remains an important issue impacting

the quality of data processes and the reliability of most data analysis tasks. Data incompleteness

studies are manifold. We reviewed in a previous Chapter 2, the state-of-the-art contributions

regarding data incompleteness representation. Data imputation consists of enriching incomplete

data sets with new values gathered from multiple sources by applying appropriate estimation

techniques.

Data imputation techniques are in general complex and costly. Applying such techniques equally

to all data to large datasets makes this task sometimes inefficient compared to the expected output.

For example, repairing a whole dataset for improving the quality of some queries over particular data

fragments might not be efficient. Query-driven imputation overcomes this issue by restricting the

cleaning task to data required in the query evaluation. The purpose behind is to limit the reparation

cost by only considering the data necessary for evaluating the query, which is usually smaller

than the entire dataset [Wan+14]. Result estimation approaches use database techniques such as

sampling, query plan optimization, or relational algebra extension for missing data manipulation.

This chapter describes state of the art for the second part of the thesis, covering contributions

around incompleteness improvement in databases. The chapter is organized as follows:

• Section 5.2 discusses general solutions for handling missing data and the various data

cleaning parameters.

• Section 5.3 introduces data imputation and surveys different approaches addressing this

subject and their techniques. We distinguish between approaches requiring a human to

participate in the cleaning task, and those relying on automatic algorithms.

• Section 5.4 describes recent advances in query result estimation for incomplete databases. We

discuss major contributions sharing our perspective for addressing the missing data problem.

• In Section 5.5, we propose a comparative study between the surveyed approaches.

5.2 Handling the Missing Data Problem

Identifying and representing missing data is a preliminary data cleaning task and additional

knowledge about missing data is necessary for elaborating effective and efficient imputation

strategies. In general, three criteria are considered for analyzing data imputation tasks:
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Missing data distribution: In Chapter 2 we saw that ”data missingness” varies between missing

totally at random, missing at random and the missing dependent on the value itself. One

rarely can establish if a dataset includes enough explaining factors (attributes) to understand

the missing data distribution [Gel+06]. Limiting the study to recorded attributes deteriorates

the data correlation discovery process, and automatic learning is considered in many cases to

overcome this limitation.

Data analysis goal: Data quality is a relative concept which depends on the data sets and the

tasks to be achieved. Tasks requirements represent an essential factor for deciding which

behavior to adopt regarding missingness. For example, in electricity consumption monitoring,

it is more relevant to apply an enrichment strategy to complete room locations instead of

completing sensors characteristics. The analysis task requires the availability of spatial and

temporal attributes and does not exploit sensor properties metadata. Any effort put in a

cleaning strategy must fit task specifications for cost optimization reasons.

Incompleteness reasons: Many reasons can lead to missing data [Wan+17]: physical anomalies

in collecting devices (sensors, connected objects), human carelessness during manually filling

data, access failures in data integration process, denormalized database schemas, etc. It is

crucial to understand why a value is represented as missing and what methods were initially

deployed for collecting data to avoid reusing redundant, ineffective tools.

There exists a significant number of research surveys for data cleaning methodologies[Gsc+12;

Hel08; Lak+99]. Most of these works agree that handling missing data issues have been tackled in

two ways, either by discarding incomplete data items (e.g., tuples with null values) or by repairing

them. The following paragraph shortly explains the missing data discarding approach and its

limitation, while the Section 5.3 covers data imputation techniques.

Discarding Missing Values A naive solution for resolving the missing data problem considers

discarding the data tuples with missing values. Excluding missing data corresponds in statistics to

two notable approaches [Lak+99]:

1. complete case analysis that ignores all data entries with missing values, and

2. available case analysis which consists of ignoring all variables (attributes) with a high rate of

missing values.

In addition to the fact that the remaining data set might be considerably reduced, the question of

data representativeness arises. For example, in a sensor network data table, discarding all measure

tuples of a given floor number might produce biased results when aggregating measure values.
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There exists well-documented literature for addressing missing data in the statistical area [Lit88;

Lit+89; Lan+97; Lit+14; RUB76; Roy+04]. Sampling [Ach+99; Con+10] reduces the missing

data ratio by choosing a representative sample of the population. The sampling involves errors and

introduces a bias for queries evaluation, especially if the query is not considered as an input for

sampling [Wan+14].

5.3 Data Imputation

Repairing missing data using data imputation technique consists in replacing missing values

(nulls) with new values by applying an inference model and external reference (knowledge,

heuristics, data). This reference is used

A frequently used approach for data imputation is the single imputation model that substitutes

each missing value with one imputation output. The effectiveness of the repairing process relies

exclusively on the inference quality. Other approaches [Rub04] strive at increasing the reliability

and accuracy of the completion method by applying and aggregating the results of multiple

imputation models. Distinct outputs are ordered following their estimation accuracy or can be

aggregated into a mean estimation. Multiple imputations may guarantee better quality estimations

but are more costly to achieve due to the number of simultaneous imputation models that operate.

Moreover, according to [Fel+76; Lit88], two families of imputation approaches emerge, models

involving human intervention, presented in the following Section 5.3.1, and automatic inference

models that will be surveyed in Section 5.3.2.

5.3.1 Human Based Imputation

In most situations, collecting tools are pointed out as the origin of data incompleteness.Human-

based imputation starts from the assumption that specific data imputation scenarios cannot ex-

clusively rely on automatic imputation tools and request human intervention to address the

incompleteness problem [Fan+10b; Jef+08; All00].

Recent works argue that human intervention is needed beyond quality motivations. It represents

an answer to a feasibility concern: automatic models perform well for missing values with enough

correlation captured in data set but evolve less under the missing tuples setting [Li+16], where

additional data tuples are needed to explain the missing data correlations. Human-based imputation

is a family of techniques where the human is the reference for the inference process. We distinguish

between two inference methods:
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• Direct imputation or Crowdsourcing, where humans directly generate missing tuples and

values manually.

• Indirect imputation, or Rule-Based Imputation, where domain experts encode their knowledge

about existing data correlations in the form of logical rules that support the imputation

inference.

In both cases, the reliability of the process depends entirely and exclusively on the human knowl-

edge and understanding of data characteristics. We explain both approaches in the following

paragraphs.

Crowdsourcing

With the emergence of web-based data services, crowdsourcing has become in the last decade a

strong ally for data collection, cleaning, and quality assessment [Bra08; Chi+16]. Crowdsourcing

platforms like Amazon Mechanical Turk [Amt; Buh+11], Figure Eight [Fig], Gengo [Gen] or

Upwork [Upw] allow a set of individuals (workers) with different expertise levels and various

specializations to perform problem-solving tasks related to producing or cleaning data sets (human

intelligence tasks). They enable tasks assignation and their quality control.

Crowdsourcing implies paying the workers, and its supporters argue that investing in tasks is less

expensive than any similar procedure involving direct employment and more valuable and efficient

than automatic data processing software [Chi+16]. Using crowdsourcing for repairing missing data

can be achieved in two forms [Li+16]:

• Fill tasks: where workers are provided with data sets and asked to fill missing values.

• Enumerating tasks: where users propose new data entries, disposing of a set of descriptions

restricting the expected data.

We describe two examples of each form.

Filling Missing Values: Park and Widom [Par+14] propose a system for collecting structured

data from the crowd. They provide workers with an incomplete data table and ask them to fill

missing values. A candidate table is generated, where workers observe the current state of the

table, i.e., all previous updates of workers are available, and they can choose either to insert a new

entry or to up-vote an existent record if they agree with. Attributes with null values are subject to

predefined constraints, included in the system and visible for workers. Once all workers update
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the candidate table, the final table is created by keeping complete rows associated with the highest

score obtained among all rows with a similar primary key.

Enumerating Additional Tuples: The interesting part of incompleteness that the previous form

of crowdsourcing cleaning does not address is creating new records that the data table does not

consider at all. In this Open World Assumption setting, workers must enumerate a set of records

with predefined constraints or description. For example, the worker might be asked to list all point

of interests in Europe. A similar system to upvoting can be used for collaboration and quality control.

There remains a limitation: while the filling crowdsourcing can be assessed as complete when all

missing values are informed, it is more challenging to consider an upper bound for enumerating

tasks. Under the Open World Assumption, we do not have any prior knowledge about the full extent

of the expected answer. One track for resolving this problem is proposed in [Tru+13]. The authors

are inspired by the species estimation problem, known in biology, for estimating the unknown size

of the population. They repeat a counting process involving all workers, to achieve this estimation.

However, they point a limitation regarding human behavior that does not include one element in

several enumerations. The work offers an improvement by designing a new estimator that only

considers unique worker answers.

Rule based cleaning and imputation

Crowdsourcing allows humans to be directly involved in the data completion process by informing

new values or records. While this solution generally produces results of high quality, it remains

an expensive means. There exists an alternative way of taking advantage of human knowledge,

without including costly and time-consuming manual effort. Rule-based cleaning relies on experts

for injecting a set of constraints, such as logical rules, as an input for an automatic and declarative

inference process. Indeed, defined logical rules can be reused even when data are updated, without

requiring human intervention, as long as the produced records correspond to the original rules

settings.

Many works are proposing to use a set of rules for data reparation, under different formalisms [Rah+00].

Functional dependencies are used in [Wij05] to define constraints allowing repairing and com-

pleting data tuples without deleting them, through update queries. Fan et al. [Fan+08] extends

functional dependencies by defining Conditional Functional Dependencies (CFD) and explains

how they allow a better data cleaning task. CFD’s imply semantic values binding, giving more

expressiveness to the repairing process than using traditional functional dependencies. Driven by

the repairing cost evaluation and improvement, [Boh+05] deals with functional dependencies

and inclusion dependencies for data cleaning. The authors focus on value modification for cost
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assessment, which differs from other contributions where only tuple update costs are considered.

The experimental study consolidates the effectiveness of a value modification guided data repair.

The common characteristics of rule-based cleaning are its dependency on a particular formalism

for rules language. A notable work [Dal+13] points the lack of expressiveness engendered by

this approach, due to its syntactic and semantic restrictions. The authors argue that adopting a

single formalism for defining logical constraints ignores any rule that constitutes a violation of

these constraints, naturally restricting repairing and completion possibilities. In order to handle the

expressiveness limits, Nadeef is a framework that proposes mixing different formalisms for repairing

rule expression. The rules toolbox goes further by allowing the user that defines these rules to

customize the framework by proposing its proper rule encoding schema.

While previous works exploit user-defined rules for detecting and repairing incorrect or missing

data values, the scope of new entailed values, in general, limited to the incomplete data attributes

active domain. A recent contribution [Fan+10b], considers an additional input than the expert

rule, to overcome this limitation. Master data are used to feed the repairing system with accurate

values each time a tuple matches with a pattern stating its inconsistency. The formalism used for

the system is editing rules, used to indicate what are replacing possibilities from master data to real

incomplete data. The system is enriched with reasoning capabilities over editing rules, increasing

the inference opportunities.

In addition to its high cost, the human intervention for repairing data is not always efficient.

Take the example of time series data sets; it is uncertain that surveyed humans can help to fill

the electrical consumption series. Even experts might fail, without prior automatic processing, in

providing essential rules that capture existing data correlations. If we have several data sources, we

can consider referring to data integration techniques for crossing multiple sources, which increases

the possibilities for finding exact values.

In situations where human intervention does not fix the problem, automatic inference models

based on statistics(or machine learning) are used. We review some significant approaches in this

family in the next section.

5.3.2 Automatic Data Imputation

Statistical Imputation

Statistical imputation consists of attributing to each missing variable value a new value computed

over the variable active domain values. Mean imputation is a widely used method [Lit+89] where

missing values are replaced by the mean values computed over the variable active domain values.
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Other formulas are also used as the most common value or the minimal/maximal observed value.

Such quasi-random imputation approaches are efficient since they consist of setting and applying

formulas for completion regardless of particular data properties. The major disadvantage of this

approach is the distribution bias introduced: if a variable misses many values in many records, all

of them are replaced with the same imputation (mean, max).

To overcome the randomness of the statistical imputation, other contributions propose to take into

account the variable correlations. In this sense, [Buc60] introduced conditional mean imputation.

The Hot deck technique [Gow71] applies a two-stage imputation process. First, a clustering step

based on variable covariance is performed, before applying the imputation formula, with respect

to the formed clusters. This generates a more precise imputation result. For example, instead of

taking the most recurrent value in the dataset for imputation, it replaces missing values by the most

frequent value occurring in their respective clusters.

Learning Model Imputation

The majority of these techniques rely exclusively on data samples. There exist alternatives where

estimation values are extracted from external samples, appreciated for a level of completeness and

accuracy higher than the classical task. Extensive work has been dedicated to applying machine

learning techniques to deal with missing data imputation [Lit+14; VB18; Don+06; Jer+10; Sch97].

Statistical inference achieves missing data imputation by modeling the estimation impact of values

and discovering imputation functions through a learning process. The imputation goal is then to

build a predictive estimator that relies on the observed values of the subject (characteristics) to

predict the missing variable values. Various estimators have been used for imputation. We present

some notable approaches listed in [Jer+10]:

• Regression based imputation requires the use of reference data in addition to the incomplete

dataset in order to build the regression model. It aims at estimating missing values as a

prediction function output. Regression models are multiple, for example, [Rag+01] uses

linear regression based on the Expectation Maximization principle [Dem+77].

• Multilayer Perceptrons (MLP) [Car+83] are artificial neural networks that train data sets to

discover neural weights and can serve for several tasks such as classification or dimensionality

reduction. [SR+11; Jun+04] are a few examples of works that have applied MLP for filling

incomplete data. Their experimental results illustrate the efficiency of this approach, espe-

cially for categorical variables imputation, where other statistical techniques (mean/mode)

fail to achieve good estimations.
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• Nearest neighbors [Dix79] apply similarity measures to perform imputation where the most

similar n objects are retained for estimating missing values. Similarity values are weighted

with the number of missing values to take account of the estimation quality.

Other techniques for multiple data imputation use iterative decision trees [Ssa+08], sequential

regression trees [Bur+10], self organization maps [Koh97], or predictive time series [Dua+07].

BayesDB

Machine learning and statistical models have the advantage of automatic imputation procedures but

require experts to train the framework before use. From a database perspective, BayesDB [May+10;

Yak+11] is the first approach which connects statistical learning models software and databases

by offering non-experts a user inference for running inference models. Inference models can be

monitored using an SQL-like language and do not require users to master the applied learning

models. Additional features allow experts to input domain knowledge information to customize the

models and achieve better estimations. Using machine learning and automatic inference models for

missing data imputation relegates the significant works to statistical models but does not exclude

user participation in the process. The case of BayesDB is not the only case where users can, a work

where the user can set up confidence values for controlling repairing algorithm outputs.

5.3.3 Summary

We reviewed two main approaches dealing with the task of data imputation. The first approach

requires humans to understand data correlations and either repair missing data manually (Crowd-

sourcing) or by defining logical imputation rules. The second family of approaches considers

automatically discovering data correlations in order to infer new values for missing data. We

summarize both families techniques in a taxnomy Figure 5.1.

5.4 Query-driven Imputation
Data imputation strategies as those described in the previous section often are costly and fail to

remain efficient for large datasets. The primary goal of cleaning data is to increase the quality of

some predefined data processing tasks. Query-driven imputation consists of taking account of the

query to improve improving query results over incomplete datasets. The goal is to achieve a targeted

and more efficient imputation process, especially over large datasets. The primary motivation is to

provide estimations for complex queries in a fast way and to avoid to repair the entire dataset. This

is particularly relevant for aggregate queries. Instead of applying imputation to the whole dataset,
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Fig. 5.1.: A taxonomy of data imputation techniques

query-driven imputation approaches aim at selecting a subset of data that deserve imputation for

increasing a targeted quality metric. In this section, we discuss some works directly related to our

work described in Chapter 6 to achieve data imputation at the query answer level.

5.4.1 Approximate Query Processing

Approximate query processing [Bab+03; Gar+01; Cha+01] consists of evaluating queries over

data samples instead of the entire dataset to minimize execution time. Statistics can be used for

query optimization, and for controlling the data flow. A frequent use case consists of computing

summary statistics for online data, restricting data using time windows [Hel+00; Ram+02].

Statistical sampling techniques guarantee representative datasets with limited bias error. However,

these approaches do not consider errors at the data level. In particular, missing or incorrect data

entries are not identified to evaluate their impact on approximate query results.

More recently, SampleClean [Wan+14] integrates sampling with data cleaning to propose an

approach for query result estimation that addresses obvious errors in the data model. Data cleaning

can be achieved with different techniques, as listed in the previous section. Sampleclean proposes

to reduce the imputation costs by concentrating the cleaning process on a representative data

sample. This framework is implemented in two ways. Clean estimation replaces the query result to

be computed over the entire data set, with the result obtained from the cleaned sample, and Error

correction materializes the raw query result but associates a bias observed on the approximate query
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result. In both cases, the approach error is captured by measuring how far the sample represents

the full dataset. The framework is tested by including eventual cleaning errors, where the cleaning

technique does not achieve 100% error elimination.

5.4.2 Dynamic Imputation

The recent work of [Cam+17] tackles the imputation problem from another angle. It incorporates

missing data imputation operations into a query optimization engine. In addition to the core

relational algebra operators, two operators are defined to allow the replacement on the fly of

missing or incorrect values, targeting only data involved in the query evaluation. The Drop operator

deletes any tuple containing null values, while Impute uses statistical inference mechanisms for

replacement values computation. Since the framework is built as a query plane optimizer, the

classical optimization function taking into account evaluation cost is extended to cover quality

requirements. By integrating these parameters, the user can choose her own trade-off between

quality and cost for query evaluation.

5.4.3 Missing Tuples Impact on Query Results

Most works regarding data completeness improvement generally focus on missing values since

their representation is included in usual data models, which is not the case of missing tuples. Under

the Open World Assumption, i.e., without master data, no clue is available about the number of

missing records from an available set of data, nor about their nature. Nevertheless, their impact

on the quality of query results is not marginal. In [Chu+18], a new perspective of missing data is

proposed, introducing the study of the impact of unknown unknowns on query results.
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5.5 Summary
Data incompleteness has a high negative influence on data analysis tasks. The missing data

problem has first been identified and treated by statisticians. Studies on missing data distributions

allowed to perform explanatory tasks and simple formulations have been used to repair incomplete-

ness such as mean or most frequent value imputation. Data imputation recognizes two leading

families of approaches, those involving the human to participate in the data repair process, and

others, where inference algorithms are designed to discover data correlations and generate reliable

estimations of missing values.

• Human-based imputation takes two forms. Crowdsourcing platforms ask workers to manually

repair data by filling missing observations. In the other hand, rule-based techniques rely on

experts to translate their domain knowledge by defining logical rules, which can be used for

automatic repairing, and while running databases updates.

• Automatic imputation regroups all machine learning and basic statistical techniques, where

algorithms attempt to explain missing data distributions and its correlation with available

observations. Learning outputs are used to feed the inference mechanism, for creating new

values.

Most data imputation techniques operate at data level without taking into account the query

semantics. This implies a considerable effort and cost for repairing data tables, regardless of

their future use rate. Query-driven imputation is concerned with estimating the query results

that might be impacted by poor data quality (as missing data). One notable example is dynamic

query imputation [Cam+17], where data imputation is injected into the query evaluation plan as

optimization operators.

We summarize in Table 5.1, research contributions surveyed in this chapter.
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6.1 Introduction
Data incompleteness naturally leads to query results of poor quality, and repairing missing data

is a common data cleaning task. Data imputation designates a family of approaches that aims at

repairing missing data by inferring new values from the available dataset, sometimes with human

intervention. In the previous chapter, we surveyed multiple methods for data imputation and

showed that imputation techniques are generally complex and do not scale up to large datasets.

In particular, global data imputation might become inefficient for repairing task-specific input

datasets.

Query result estimation techniques address the missing data problem at the query result level.

They show that focusing the repairing task on data used for the query evaluation can drastically

reduce cleaning efforts. We consider in this chapter the problem of data imputation for repairing

aggregate query results, obtained from incomplete data. Missing data leads in general to missing

query results, but in the case of aggregate queries, they also create incorrect aggregations.

In the first part of this thesis, we propose a pattern model for describing available and missing

data extents and an algebra allowing to derive annotations for query results. Our motivation for

taking the direction of rule-based imputation is the opportunity of applying this pattern model to

identify missing partitions at different aggregation levels and to integrate this functionality in a

general inference process for generating query-driven imputation strategy.

The chapter is structured as follows:

• Section 6.2 enumerates the challenges and motivates our contributions through an example.

• Section 6.3 extends the pattern data model by introducing imputation rules which can

be applied to repair a large class of aggregate queries, the syntax. We define the precise

semantics of imputation rules and their translation into imputation queries.

• Section 6.4 describes the imputation process that consists of four steps: result annotation,

candidate imputation query generation, imputation strategy selection, and imputation queries

generation.

• Section 6.5 explains how the imputation strategy is implemented using the pattern algebra

defined in Chapter 3.

• Section 6.6 summarizes a set of experiments run over a benchmark dataset. The experiments

evaluate the imputation strategy, and results are provided for each process step.

• Finally, the chapter contributions are summarized in Section 6.7.
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6.2 Motivation
Recall the Smart Campus scenario introduced in Chapter 1. Data table Energy stores daily

electrical consumption for buildings at the room level. It might miss some measures for floors

which are indicated with a null value for the KwH attribute in Table 6.1. As shown in Section 3.2,

we can analyze data table Energy with respect to a reference table R that represents all tuples

on reference attributes A = {Building, F loor,Room,Week,Day}. Suppose that D represents the

subset of tuples in Energy where the KwH attribute is not null. Using the pattern model defined

in Chapter 3, we can run the folding algorithm presented in Chapter 4 to compute complete and

missing minimal covers P∗(D,R), and P̄∗(D,R) for the constrained table (D,R).

Example 6.1. Table 6.1 shows respectively a representation of table Energy (ordered by week and

floor), completeness patterns P∗(D,R), and missing partition patterns P̄∗(D,R). Each floor contains

one room, and the week only counts three days. For example, for week 1, Energy contains all measures

of floor 1, misses one measure for floor 2.

Tab. 6.1.: Energy table and its pattern minimal covers
Data table Energy

B F R W D kWh

25 1 1 1 1 12.3
25 1 1 1 2 10.1
25 1 1 1 3 9.6
25 2 1 1 1 8.3
25 2 1 1 2 6.4
25 2 1 1 3 null
25 3 1 1 1 5.3
25 3 1 1 2 7.2
25 3 1 1 3 6.1
25 1 1 2 1 null
25 1 1 2 2 null
25 1 1 2 3 null
... ... ... ... ... ...

P∗(D,R)
B F R W D

25 1 ∗ 1 ∗
25 2 ∗ 1 1
25 2 ∗ 1 2
25 3 ∗ 1 ∗
25 3 1 2 ∗
25 5 ∗ 1 ∗
26 ∗ ∗ ∗ ∗

P̄∗(D,R)
B F R W D

25 1 ∗ 2 ∗
25 2 ∗ 1 3
25 ∗ ∗ 3 ∗
25 3 1 2 ∗
25 4 ∗ ∗ ∗

Consider the following SQL query Qkwh that computes the total weekly energy consumption for three

floors in building 25:

SELECT Building B, Floor F, Week W, Sum(kWh) as kWh

FROM Energy

WHERE B = 25 and F in (1 ,2 ,3)

GROUP BY B, F, W

Listing 6.1: Aggregate KwH per floor
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The query answer Qkwh(Energy) is illustrated in Table 6.2. Each tuple in the query answer is

obtained by aggregating a partition of the input data and annotated as correct if the partition is

complete, missing if the partition is empty and incorrect if the partition is partially complete.

Tab. 6.2.: The query QKwHanswer
QkW h(Energy)

B F W kWh label

25 1 1 32.0 correct
25 2 1 14.7 incorrect
25 3 1 18.6 correct
25 1 2 null missing
... ... ... ... ...

Query-driven result imputation tries to avoid spending effort in, which is not relevant to a query.

This is especially useful for aggregate queries, where results can be estimated by exploiting available

correct aggregated results. Imputation rules could be expressed at the result level, exploiting the

knowledge about the domain at the aggregation level. For example, an expert could define rules

that estimate the mean temperature at the floor level, without having to estimate each room value,

but by using similar floors values.

We propose a rule-based approach for data imputation, similar to the one defined in [Dal+13].

The main new contribution is the use of patterns for analyzing aggregate queries and choosing

imputation rules to estimate aggregated values for missing or partially complete partitions.

For example, an expert can state by the following imputation rule stating that some missing or

incorrect query result for a given floor can be repaired by the average value of all available and

correct results computed for other floors.

r0 : (B : x, F : _,W : y)←(B : x, F : _,W : y), avg(kWh)

This rule has the following imputation semantics: any missing or incorrect measure for a given

floor in building x and for week y which matches the left-hand side of the rule r0 can be replaced

by the average of all correct results for the same building x during the same week y (partitions

matching the right-hand side of the rule).

The rest of this chapter aims at defining the imputation model for aggregate queries results, for

repairing missing and incorrect results.
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6.3 Imputation Model
In this section, we will introduce the basic definitions for building the imputation process. For

understanding these concepts, we suggest the reader refer to Chapter 3 for all definitions related

to constrained tables, partition patterns, minimal covers, and pattern algebra.

6.3.1 Aggregate Queries and Query Patterns

Our imputation model is defined for a particular sub-class of SQL aggregate queries:

Definition 6.1 (valid aggregate query). Let Q be a valid SQL aggregate query of the form

SELECT S, agg(m) FROM T WHERE P GROUP BY G

such that the WHERE condition P uses only equality predicates with constants.

Without loss of generality, we assume that P is in disjunctive normal form.

Example 6.2 (aggregate query example). Query QkWh can be rewritten by transforming the WHERE

clause into (B = 25 AND F=1) OR (B = 25 AND F=2) OR (B = 25 AND F=3).

Recall from the Chapter 3 that a pattern is a tuple whose attributes can take the wildcard value ∗

for summarizing complete and missing partitions. For defining imputation rules, we generalize this

notion of pattern to that of query pattern, with the possibility to assign variables to attributes.

Definition 6.2 (query pattern). A query pattern is a tuple q = (a1 : x1, ..., an : xn) where for each

attribute ai, its values xi ∈ dom(ai) ∪ V ∪ {∗} is (1) a constant in the domain of attribute ai or (2) a

distinct variable in a set of variables V or (3) the wildcard symbol ∗. We denote by Cp, Vp and Wp the

set of constant, variable and wildcard attributes in p.

Example 6.3. Expression (B : 25, F : x,R : ∗) is a query pattern where x ∈ V is a variable.

We generalize the notion of query patterns to query pattern sets.

Definition 6.3 (query pattern set). Let Q be some valid SQL aggregate query of some table T as

defined in Definition 6.1 and A be a key of the input table T containing all attributes in Q except the

aggregated attribute. We can then define a set of query patterns Q over A which contains a query

pattern qi ∈ Q for each conjunction di in the WHERE clause such that (1) all attributes Aj in di are

represented by the corresponding constants cj in qi, (2) all other attributes in the GROUP BY clause are

distinct variable attributes and (5) all attributes in A and not in Q are wildcard attributes.

6.3 Imputation Model 105



Example 6.4 (query as a query pattern set). For example, suppose that {B,F,R,W,D} is a key of

table Energy (see Section 6.2). Then, the SQL query QkWh generates the query pattern set

Q = {(B : 25, F : 1, R : ∗,W : xw, D : ∗),

(B : 25, F : 2, R : ∗,W : xw, D : ∗),

(B : 25, F : 3, R : ∗,W : ww, D : ∗)}

Observe that all query patterns of a query share the same wildcard attributes (with value ∗), and

if q does not contain any wildcard ∗ attribute, then the corresponding SQL query corresponds to

a simple conjunctive query which returns the measured values of the matching tuples (without

aggregate and group-by clause).

The instance of a query pattern q defines a subset of the partitions generated by the GROUP BY

clause over the tuples filtered by the WHERE clause of the corresponding SQL query. This filtered

partitioning can formally be defined by an equivalence relation over the query input tuples:

Definition 6.4 (pattern tuple equivalence). A tuple t matches a query pattern q, denoted match(t, q),

if t.ai = q.ai for all constant attributes in q. Two tuples t and t′ matching some query pattern q are

equivalent in q, denoted t ≡q t′, if t.aj = t′.aj for all variable attributes aj in q (t and t′ only can

differ for wildcard attributes).

A pattern p defines for each matching tuple t an equivalence class Φq(t) = {t′|t ≡p t′}.

Definition 6.5 (Query pattern instance). The instance of a query pattern q in some table D, denoted

I(D, q), contains all equivalence classes (partitions) of tuples in D.

Example 6.5. For example, the equivalence class Φq(t) of tuple t = (B : 25, F : 1, R : 1,W : 2, D : 3)

defined by pattern q = (B : 25, F : 1, R : ∗,W : xw, D : ∗) contains all tuples of building 25, floor

1 and week 2. The equivalence class Φq(t′) with the same pattern q for tuple t′ = (B : 26, F : 1, R :

1,W : 2, D : 3) is empty. Finally, q′ = (B : 25, F : 1, R : ∗,W : 2, D : ∗) defines a unique equivalence

class of all tuples of floor 1 in building 25 and week 2.

It is easy to see that (1) when p does not contain any wildcard attribute, then I(D, q) = {{t}|t ∈

I(q,D)} contains a singleton for each matching tuple in D, and (2) when q does not contain any

variable, I(q,D) = {Φq} contains a single partition Φq ⊆ D.
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6.3.2 Imputation Rules and Imputation Queries

Imputation rules repair the results of aggregate queries by estimating the aggregated values

of missing partitions and repairing the incorrect aggregations. They are defined using query

patterns characterizing the results that should be repaired and those that could be used for their

reparation.

Definition 6.6 (imputation rule). An imputation rule for some set of reference attributes A and some

measure attribute m is an expression of the form r : qm ← qa, imp with:

(1) qm and qa are query patterns over A without wildcards,

(2) all variables shared by qm and qa are bound to the same attribute in qm and qa and

(3) imputation expression imp is an aggregation function transforming a set of values in the domain

of m into a single value in the domain of m.

In the following, we use the anonymous variable _ for denoting non-shared variables.

Example 6.6. For example, we can define the following imputation rules for missing kWh values:

r1 : (B :x, F : _,W : y)←(B :x, F : _,W : y), (max(kWh) +min(kWh))/2

r2 : (B :x, F : y,W : 3)←(B :x, F : y,W : 2), kWh

r3 : (B : _, F : 4,W :x)←(B : _, F : 4,W :x), avg(kWh)

Imputation rule r1 produces an estimation of the total electricity consumption by week of some floor

in some building using the midrange of all correct consumption values over other floors of the same

building and the same week. Rule r2 takes the correct consumption of a floor in week 2 for estimating

the value of the same floor at week 3 (the aggregation function is the identity). Finally, rule r3 takes

the average of all correct values for floor 4 in all buildings to repair the value of the same floor in some

building for the same week.

Implementing the semantics of an imputation rule is defined with respect to a query Q, a table

M of result tuples to be repaired by the rule and a table AvailableD of all correct values which can

be used for imputation. Table M contains all results generated by incomplete partitions and all

missing results corresponding to empty partitions whereas table AvailableD contains all possible

correct tuples. A formal definition for computing these tables w.r.t. a query pattern will be explained

in the imputation process ( Section 6.4).
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Definition 6.7 (imputation rule semantics). Let M and AvailableD be two tables that contain the

tuples to be repaired and the tuples which can be used for reparation. Then, the semantics of an

imputation rule r : qm ← qa, imp is defined by the following imputation query Q(r) over M and

AvailableD where A contains all attributes in qm and S is the set of variable attributes shared by qm

and qa:

SELECT x.A, imp AS m

FROM M x, AvailableD y

WHERE match(x, qm) AND match(y, qa) AND x.S = y.S

GROUP BY x.A

The previous imputation query joins all tuples x ∈ M matching qm with the set of tuples y in

AvailableD matching qa over the shared attributes S, partitions the obtained table over all rule

attributes and finally applies the imputation expression imp to estimate a value for m.

Example 6.7. The imputation rule r2 from example 6.6 can be rewritten into the following SQL query

:

SELECT x.B, x.F, x.W, y.kWh

FROM M x, AvailableD y

WHERE x.W = 3 AND y.W=2 AND x.B = y.B AND x.F = y.F ;

where AvailableD corresponds to the correct results generated by query QkWh without its filtering

condition.

6.4 Query Imputation Process

Given a data table D, and its related minimal pattern covers P∗(D) and P̄∗(D), an imputation

process is concerned with repairing the result of any aggregate query Q, using a set of imputation

rules R. Our imputation strategy makes the following assumption. Any partition of the query

result that is identified as incorrect or missing has lower quality than the result of the imputation.

Subsequently, incorrect partitions results are replaced by the imputation result. The imputation

process is illustrated in Figure 6.1.

The imputation strategy is decomposed into four steps:

• Step 1 consists in identifying the set of all partition patterns ImputeP (Q) summarizing the

partitions to be repaired and the set of partition patterns AvailableP (Q) of partitions that

can be used for reparation.
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Fig. 6.1.: The imputation process illustration

• Step 2 consists of identifying the set of all rules that can be used for repairing ImputeP (Q)

by using AvailableP (Q). A rule is chosen if and only if it can repair at least one answer tuple

and if there exists at least one correct value that can be used for imputation. The result of

this step is a set of candidate imputations.

• Step 3 consists of creating a sequence of candidate imputations which repair the missing and

incorrect tuples. Observe that several queries might repair a tuple, and we assume that each

imputation query overwrites conflicting repaired tuples generated by the previous queries.

• Step 4 generates the imputation queries following the imputation strategy.

In the rest of this section, we describe step-by-step the query-driven imputation process to

generate efficient imputation strategies using partition patterns and imputation rules.

6.4.1 Step 1: Annotating Query Results

The first step requires identifying partition patterns corresponding to correct, incorrect, and

missing query results. The following definition introduces the matching property between a partition

pattern and a query pattern.

Definition 6.8 (Partial/full match). A query pattern q matches a partition pattern p, denoted by

match(q, p), if for all constant attributes q.ai in q, q.ai = p.ai or p.ai = ∗. If match(q, p), we can

define a mapping ν from the variable attributes ai in q to the attributes in p such that ν(q.ai) = p.ai.

Then, a query pattern q:

1. fully matches partition pattern p, denoted by full(q, p), if ν(q) matches p and
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2. partially matches pattern p, denoted by partial(q, p), otherwise. Partition pattern ν(p) is called

the matching pattern of q for p.

Definition 6.9 (extended query pattern). Let W (Q) be the set of wildcard attributes in the query

patterns Q of some query Q and q be a query pattern over all variable and constant attributes in the

query patterns of Q. Then we denote by q∗ the query pattern where all attributes in W are wildcard

attributes. Pattern q∗ is called the extension of q in Q.

Example 6.8. The extension of query pattern q = (B : 25, F : 2,W : _) is q∗ = (B : 25, F : 2, R : ∗,

W : _, D : ∗) and the extension of tuple t = (B : 25, F : 1,W : 1) in Q is pattern t∗ = (B : 25, F : 1, R : ∗,

W : 1, D : ∗).

Proposition 6.4.1 (patterns classification). Given a query Q over some constrained table T = (D,R)

with complete pattern summary P∗(T ) and missing pattern summary P̄∗(T ). Let Q be the query

pattern set of Q. Then, for any tuple t in the reference table of Q the following conditions hold:

• t is in the result of Q and correct iff t∗ matches a pattern p ∈ full(P∗(T ),Q);

• t is in the result of Q and incorrect iff t∗ matches a pattern p ∈ partial(P̄∗(T ),Q) (or equiva-

lently p ∈ partial(P∗(T ),Q);

• t is missing in the result of Q iff a pattern p ∈ full(P̄∗(T ),Q) matches t∗.

In addition to partition patterns identification, imputation rules need to identify larger partitions

sets in data, not necessary appearing in the query answer. Indeed, the missing partition patterns

need to be repaired by a set of correct available partitions, from the data table. The following

definition introduces these pattern sets.

Definition 6.10 (missing/available pattern sets). Given query Q over some table T = (D,R) with

pattern tables P∗(T ) and P̄∗(T ) and query pattern set Q. We can then define the following sets of

patterns for Q:

• ImputeP (Q) = full(P̄∗(T ),Q) ∪ partial(P̄∗(T ),Q) = full(P̄∗(T ),Q)

• AvailableP (Q) = {p|p ∈ P∗(T ) ∧ ∀A ∈W (Q) : p.A = ∗}

ImputeP (Q) contains all patterns describing incomplete or missing partitions (to be repaired)

in the result of Q whereas AvailableP (Q) describes all complete partitions that can be used for

repairing Q.
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6.4.2 Step 2: Generate Candidate Imputations

Missing and incorrect answers of some aggregate query Q (query pattern set Q) are estimated

by imputation queries. Each imputation query is generated by an imputation rule and repairs

some missing and incorrect tuples. We assume that the complete and missing data partitions are

represented by a complete and missing pattern summary as defined before.

We first define the notion of candidate imputation.

Definition 6.11 (candidate imputation). Let ImputeP (Q) be the imputation pattern set andAvailableP (Q)

the reparation pattern set of Q. A rewriting ω for pm ∈ ImputeP (Q) is an expression ω : pm ←r Pa

where there exists an imputation rule r : qm ← qa, fimp such that the extended query pattern q∗m

matches pm with ν and Pa ⊆ P∗(T ) is a non-empty set of complete patterns in P∗(T ) that are matched

by ν(q∗a).

We say that rule r generates rewriting ω and call ν(q∗m) the imputation pattern of ω and ν(q∗a)

the repair pattern of ω. All rules r where there exists at least one rewriting are called candidate

imputations for Q.

Example 6.9. For example, ω1 : e1 ←r1 {c3, c7} is a candidate imputation for e1 : (25, 1, ∗, 2, ∗)

generated by rule r1 with imputation pattern ν(q∗m) = e1 : (25, 1, ∗, 2, ∗), repair pattern ν(q∗a) =

(25, _, ∗, 2, ∗) and Pa = {c3 : (25, 2, ∗, 2, ∗), c7 : (25, 5, ∗, 2, ∗)}, Similarly, ω2 : e2 ←r2 {c3, c7} is a

candidate imputation for e2 : (25, ∗, ∗, 3, ∗) using rule r2 with imputation pattern ν(q∗m) = e2 : (25,

∗, ∗, 3, ∗), repair pattern ν(q∗m) = (25, ∗, ∗, 2, ∗) and Pa = {c3 : (25, 2, ∗, 2, ∗), c7 : (25, 5, ∗, 2, ∗)} and

Finally, ω3 : e2 ←r3 {c8} is second a candidate imputation for e2 : (25, ∗, ∗, 3, ∗) using rule r3 with

imputation pattern ν(q∗m) = e2 : (25, ∗, ∗, 3, ∗), repair pattern ν(q∗a) = (_, 4, ∗, 2, ∗) and Pa = {c8 : (

26, ∗, ∗, ∗, ∗)}. .

6.4.3 Step 3: Imputation Strategy

The result of step 2 is a set of candidate imputation rules where there exists at least one rewriting.

Given a set of candidate imputations R for some aggregate query Q, the goal is to define an

ordered sequence of candidate imputations for repairing the answer of Q. This sequence is called

an imputation strategy. The goal of a strategy is to solve two kinds of conflicts. First, there might

exist several candidate imputations for the same partition pattern pm ∈ ImputeP (Q) as shown

in the example above for pattern e2. Second, patterns in ImputeP (Q) might not be disjoint and

repair a subset of shared tuples. For example, missing patterns e2 : (25, ∗, ∗, 3, ∗) and e4 : (25, 4,

∗, ∗, ∗) might share the partition (25, 4, 3). A standard way for solving such conflicts is to apply a

multiple-imputation strategy which consists in applying all candidate imputations and combining
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the estimated results through some statistical methods. In this article, we adopt a different strategy

which consists in regrouping all candidate imputations of for each rule and in evaluating these

imputation groups following some order defined over the imputation rules. We can show that this

process is deterministic since each imputation rule repairs any tuple at most once (generates at

most one imputation value).

Imputation rules can be ordered in different ways. For example, one might prefer "specialized"

rules to more "generic" rules where specialization can be expressed by the number of constants in

the and shared variables. For example, rule r3 is then considered more specialized than rule r1 since

it contains more constants whereas rule r2 is more specialized than r3 since it contains more shared

variables (with the same number of constants). Another strategy is to order the rules using some

statistical estimations about data distribution, bias, and completeness or domain-specific expert

knowledge about the system generating the data. For example, if the kWh values for floor 4 are

quite similar overall buildings for a given week, rule rd might be preferable to rule rc. Rule r1 might

be preferred to the other rules if the kWh values do not vary over the floors of the same building.

6.4.4 Step 4: Imputation Query Generation

As shown in Definition 6.7, each candidate imputation r : qm ← qa, fimp generates an imputation

query joining the table M of values to be repaired with the table AvailableD containing all correct

values.

As explained in Section 6.3, table AvailableD is shared by all imputation queries and can be

obtained by removing the filter condition (where clause) of query Q and matching the result with

the pattern table AvailableP (Q) (see Definition 6.10). For performance reasons, we precompute

this table once and store the result, and reuse it for all imputation queries. Table M can be

obtained by matching the result Q with pattern table ImputeP (Q). Each rule r : qm ← qa, fimp

then generates the following imputation query over tables ImputeP (Q), the result table Result of

Q and AvailableD(Q) where S is the set of variable attributes shared by qm and qa and A is the set

of remaining attributes in qm:

SELECT x.A, x.S, fimp AS m

FROM ImputeP (Q) p, Result x, AvailableD y

WHERE match(x,qm) AND match(y,qa) AND x.S=y.S AND match(x,p)

GROUP BY x.A, x.S

In the implementation 6.5, we explain a variant of imputation queries which returns the pattern

cover of partitions to be repaired. This setting is more efficient since partitions covered by the
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same pattern are imputed with the same value. An example of such a rewriting is shown in the

experiments.

6.5 Implementation
In this section, we describe an implementation of the imputation process using the pattern algebra

defined in Section 3.4.

6.5.1 Partition Patterns Classification

The first step of the process corresponds to the classification of partition patterns into {Correct,

Missing, Incorrect} query results. This classification depends on the query. The following definition

shows how pattern queries can be used to achieve this classification.

Definition 6.12 (partition classification). Given a data table D, its minimal pattern covers P∗(T )

and P̄∗(T ) and an aggregate query Q generating partitions over attributes A (GROUP BY attributes),

we can define the following pattern sets using pattern queries:

• Correct results patterns: Corr(Q(D)) = Π̂A(σ̂cond(P∗(T )))−̂Π̂A(σ̂cond(P̄∗(T )))

• Missing results patterns: Miss(Q(D)) = Π̂A(σ̂cond(P̄∗(T )))−̂Π̂A(σ̂cond(P∗(T )))

• Incorrect results patterns: Inc(Q(D)) = Π̂A(σ̂cond(P̄∗(T )))∩̂Π̂A(σ̂cond(P∗(T )))

where cond =
∧
ai=ci∨ai=∗ for each predicate ai = ci in the WHERE condition of Q.

Example 6.10. Consider the query QKwH , and pattern P∗(D), P̄∗(D) tables in Section 6.2. The

following SQL1 queries compute pattern sets that describe correct, incorrect and missing results.

Correct results Corr(Q(D))=

SELECT Building B, Floor F, Week W

FROM P∗(D) C

WHERE (B=25 or B=∗) and (F in (1,2,3,∗))

GROUP BY B,F,W

EXCEPT

SELECT Building , Floor , Week

FROM P̄∗(D) M

WHERE (B=25 or B=∗) and (F in (1,2,3,∗))

GROUP BY B,F,W

1Refer to Chapter4 for pattern queries translation into SQL
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Listing 6.2: SQL query computing correct results

Incorrect results Inc(Q(D))=

SELECT Building B, Floor F, Week W

FROM P̄∗(D) C

WHERE (B=25 or B=∗) and (F in (1,2,3,∗))

GROUP BY B,F,W

EXCEPT

SELECT Building , Floor , Week

FROM P∗(D) M

WHERE (B=25 or B=∗) and (F in (1,2,3,∗))

GROUP BY B,F,W

Listing 6.3: SQL query computing incorrect results

Missing results Miss(Q(D)) =

SELECT Building B, Floor F, Week W

FROM P̄∗(D) C

WHERE (B=25 or B=∗) and (F in (1,2,3,∗))

GROUP BY B,F,W

INTERSECT

SELECT Building , Floor , Week

FROM P∗(D) M

WHERE (B=25 or B=∗) and (F in (1,2,3,∗))

GROUP BY B,F,W

Listing 6.4: SQL query computing missing results

The resulting sets are illustrated in Table 6.3.

Tab. 6.3.: Pattern results classes for query Q result
Corr(Q(D))
B F W

25 1 1
25 2 1
25 2 2

Miss(Q(D))
B F W

25 1 2
25 ∗ 3

Inc(Q(D))
B F W

25 2 1
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The following definition uses the previous classification queries for computing the pattern cover

P (AvailableP (Q)) of available correct resultsAvailableP (Q) and the pattern cover P (ImputeP (Q))

of missing and incorrect results ImputeP (Q) called the imputation sets. We will show in Sec-

tion 6.5.2 how these pattern covers can be used to implement the final imputation step.

Definition 6.13 (Available and toRepair pattern sets). Given a data table D, its minimal pattern

cover P∗(D) and P̄∗(D), and pattern results sets defined in Definition 6.12. Pattern tables covering

ImputeP (Q) and AvailableP (Q) are defined as follows:

Imputation patterns: P (ImputeP (Q)) = Miss(Q(D)) ∪ Inc(Q(D))

Availabble patterns: P (AvailableP (Q)) = πAσ(aj = ∗)P∗(D), with aj /∈ A.

Example 6.11. Table 6.4 shows the pattern covers for ImputeP (Q) and AvailableP (Q) tables.

Tab. 6.4.: Pattern covers for partitions ”to impute” and ”available”

P (ImputeP (Q))
B F W

25 1 2
25 ∗ 3
25 2 1

P (AvailableP (Q))
B F W

25 1 1
25 3 1
25 5 1
26 ∗ ∗

6.5.2 Imputation Query SQL Implementation

The imputation strategy is generated after steps 2 and 3. In step 4, imputation queries join

available correct partitions with empty and incomplete data partitions to impute missing and

incorrect values. The number of such imputation queries corresponds to the number of data

partitions to repair, which might lead to important imputation costs. We take advantage of the

pattern cover, which is in general more compact than the corresponding data tables, and perform

imputation queries directly on pattern sets. By this, instead of using AvailableDand Mdatasets, we

use their respective pattern covers in defined in Definition 6.13. The pattern imputation query is

split into two queries. The first query is performed on the pattern covers and implies joining and

aggregating correct partition. The second query then simply reports the results computed for each

pattern to data partitions without requiring an aggregation. The following example illustrates this

optimization we also use in our experiments.

Example 6.12. Recall the imputation rule r3 from Example 6.6 and two pattern sets P (ImputeP (Q))

and P (AvailableP (Q)) for some query Q. The following query computes a first intermediate "repaired"

pattern set extended with new estimated values for its instances:
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CREATE TABLE repairedPatt as

SELECT r.b, a.f, a.w, avg(a.KwH)

FROM P (ImputeP (Q)) r, P (AvailableP (Q)) a

WHERE (a.b = '∗') AND (a.f = r.f OR r.f = '∗')

AND (a.w = r.w OR r.w = '∗')

GROUP BY r.b, a.f, a.w

Listing 6.5: Repaired Patterns

The following query then joins repairedPatt with the result Result of query Q:

CREATE TABLE repairedResult as

SELECT r.b, r.f, r.w, p.temp

FROM repairedPatt p, Result r

WHERE (r.b = p.b OR p.b = '*') AND (r.f = p.f OR p.f = '*')

AND (r.r = p.r OR p.r = '*') AND (r.d=p.d OR p.d = '*')

Listing 6.6: Repaired Data

6.6 Experiments

In this section, we investigate the effectiveness and efficiency of our pattern-based approach for

repairing analytic query answers. We consider the same dataset as for Chapter 4, to follow the

quality improvement process. The temperature dataset Temp is extracted from the Smart Campus

use case.

In addition to the temperature measures, we consider a second data setOcc(building, floor, room,

occupation, area) that records campus rooms areas and occupations. This dataset is considered to

support the imputation process.

Complete and empty pattern summaries are computed by the pattern generation algorithm

described in Chapter 4. This algorithm produces pattern summaries with respect to the campus

map and the calendar. Data and pattern tables cardinalities are reported in Table 6.5, and we can

see table Temp only covers about 5% of the spatiotemporal reference, whereas table Occ is almost

complete.
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variant x Data Dx Reference Rx Complete Px Missing P̄x

Temp 1,321,686 24,615,600 11,268 10,777
Occ 10,131 10,742 1,109 263

Tab. 6.5.: Data and pattern tables cardinalities

Imputation rules: We designed a set of imputation rules over attributes in Temp and Occ. Rules

have variable schemas, allowing to match with different query patterns. The rules in Table 6.6 are

listed in priority order following implicit (expert) knowledge about campus locations.

Take the example of rules r2 and r3 in Table 6.6. In the same floor, rooms are numbered

sequentially in each floor side, where rooms in one side have odd numbers, and the other rooms

side have even numbers, room 12 is next room 10. The room planning allows defining rules such

as r9 since the occupation of "TP" rooms is nearly the same as for "TD", which allows experts to

assume the correlation between their temperature measures.

building, floor, room:

rule b f r ← b f r agg

r0 3334 xf xr _ xf xr min(temp)
r1 _ xf _ _ xf _ avg(temp)

building, floor, room, month, day:

rule b f r m d ← b f r m d agg

r2 xb xf 10 xm xd xb xf 12 xm xd temp
r3 xb xf 11 xm xd xb xf 13 xm xd temp
r4 xb xf xr 8 _ xb xf xr _ _ max(temp)
r5 xb xf xr xm _ xb xf xr xm _ avg(temp)
r6 _ _ _ xm xd _ _ _ xm xd avg(temp)

building, floor, room, month, occupation:

rule b f r m o ← b f r m o agg

r7 xb xf xr _ ”TD” xb xf _ _ ”TP” avg(temp)
r8 xb xf _ _ ”TD” xb xf _ _ _ avg(temp)

Tab. 6.6.: Imputation rules for temperature measures

Queries: For our experiments, we define a set of aggregate queries over data tables Temp and

TempOcc = Temp ./ Occ (Table 6.7). All queries aggregate temperature measures, along with

various filtering conditions (spatial, temporal, occupation, area).

6.6 Experiments 117



SELECT b, f, r, agg(temp)
FROM temp
WHERE b=3334

GROUP BY b, f, r

Listing 6.7: Query Q1

SELECT b, f, r,m, d, max(temp)
FROM temp
WHERE m in (6 ,7 ,8)

GROUP BY b, f, r, m, d

Listing 6.8: Query Q2

SELECT b, f, r,m, d, avg(temp)
FROM temp
WHERE f in (4 ,5) and r in (10 ,11)

GROUP BY b, f, r, m, d

Listing 6.9: Q3

SELECT b, f, r,m, avg(temp)
FROM tempOcc
WHERE b in (5354 ,5455) and o = ''TD ''

GROUP BY b, f, r, m

Listing 6.10: Query Q4

Tab. 6.7.: List of queries

6.6.1 Query Result Annotation

The query result annotation step consists in classifying each answer tuple as correct, incorrect and

missing. We run an identification algorithm that implements queries as shown in Proposition 6.4.1

in Section 6.5. Table 6.8 classifies result patterns and partitions of each query in Table 6.7 into

missing and correct categories. The answer data partitions are distributed between two classes

|answer| Correct incorrect missing
time (sec)

patts data patts data patts data

Q1 8 0 0 8 8 24 108 1.6× 10−2

Q2 1,012 119 1 012 0 0 132 256,588 10.0× 10−2

Q3 1,602 4 377 7 1,225 116 5,333 2.9× 10−2

Q4 44 19 22 22 22 66 220 4.3× 10−2

Tab. 6.8.: Correct, incorrect, missing patterns, and data

correct and incorrect. Missing data is by definition not part of the query answer since they do not

belong to the data table (when using null values for representing missing information, missing data

would correspond to null values in the result).
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Observe that the number of patterns does not represent the number of corresponding data

partitions. Pattern summarize completeness of data partitions at different sizes ([25,*,*] covers

much more data than [25,1,10] which corresponds to one room partition). More general patterns

belong to a category set, more full they cover data partitions and imputing this single pattern

extends to all subsumed data partitions. The running time is not impacted by the data table size

(Q3 vs. Q4 ).

6.6.2 Query Result Imputation

The imputation strategy algorithm generates an ordered set of imputation queries to apply for

each query "to repair" pattern set. Since all imputation queries share the same pattern summaries,

we precompute the join between both data tables and the corresponding pattern tables and use

the result in the imputation queries. Recall that rules are applied in the inverse order of their

definition order. Take the example of the query Q2. The ordered set of rules to repair the answer is

{r6, r5, r4, r3, r2}.The imputation process described in Section 6.4 is optimized in our experiments.

Two imputation queries are executed. First, table repairedPatt stores an aggregation estimation

obtained by joining the pattern table torepair with data table available. The obtained pattern table

with freshly computed temperature values is then joined with the result table Result to generate the

final table repairedResult. This pre-aggregation at the pattern level improves query performance

since it avoids the redundant aggregation of partitions, which are covered by the same patterns in

the Result:

In Table 6.9, column match patt. records the number of patterns that can be repaired and column

cov. part. shows the number of repaired partitions. The number of imputed partitions (column

imp. part.) depends on the number of available correct partitions matching the rule’s RHS for the

repairing process. The number of remaining patterns (column rem.) corresponds to patterns that

no rule has repaired.

Analysis Observe from the set of rules that only r1 and r0 are applicable for the first query. We

start by applying the rule r1 with less priority, imputing 109 partitions over 136. The rule r0 repairs

fewer tuples since it requires repairing a room with the average observed temperature for the same

room during the year. Many rooms are not equipped with sensors at all, which explains the poor

number of imputation update achieved with this rule. In the end, 27 results remain without any

estimation. We found for example that all missing partitions matching the patterns (3334, JU, ∗),

(3334, SS, ∗) and (3334, SB, ∗) could not be imputed since no temperature measure is available for

these floors in all campus buildings. Note that both applied rules require a completion using the

same floor, but no recording sensor is available for these floors, preventing imputation. All other

queries could be repaired completely by applying all matching imputation rules. These experiments
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Query rule match. patt. cov. part. imp. part. rem. run time (10−3 sec)

Q1
r1 32 136 109

27
2.40

r0 32 136 40 1.58

Q2

r6 132 256,588 256 588

0

27, 910.00
r5 132 256,588 9936 720.00
r4 132 86459 10261 3, 260.00
r3 25 9292 920 1.74
r2 25 10212 920 1.84

Q3

r6 127 6558 6558

0

13, 890.00
r5 127 6558 1084 2, 240.00
r4 25 465 10261 3.70
r3 123 5333 331 1, 590.00
r2 74 1225 342 170.00

Q4
r8 88 242 242

0
4.78

r7 88 242 66 0.15

Tab. 6.9.: Imputation results

demonstrate that the utility of imputation rules depends on the existence of correct answers and

the expert’s knowledge about the sensor network configuration and behavior.
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6.7 Summary
In this chapter, we explored using imputation rules for improving the completeness and the

correctness of aggregate query results. We proposed a new imputation model that extends the

pattern model defined in Part 1 for representing the completeness of data and query answers.

The imputation rules translate expert knowledge at different partition levels, corresponding to

variable aggregation levels. The rules semantic include to aggregate different partitions results,

thanks to an imputation function. We formalized a complete strategy that starts with assessing the

completeness of a query result. The strategy includes four steps: 1-partitions classification { correct,

missing, incorrect}, 2-candidate rules choice, 3- strategy establishment, and 4- imputation queries

generation.

The implementation of the imputation process is ensured by pattern algebra. In the first step,

three pattern queries allow classifying query results as correct, incorrect, or missing partitions. We

proposed an optimized version for applying imputation queries to pattern sets instead of using data

tables. This avoids computing queries with aggregation over large datasets (correct partitions used

for imputation).

We conducted a set of experiments on real datasets and took advantage of our knowledge of

the campus, and the consumption history in localities to propose temperature imputations rules.

The experimental results show that the imputation process was successful at repairing most of the

queries results, in reasonable times, compared to queries running time. Our analysis leads to the

conclusion that the richness of imputation rules and their adequacy with data features, is a strong

condition for achieving a successful imputation.

Multiple imputation rules are applied to the same query result. We chose in this work to assign

the imputation rule result with the highest priority to repair matching partitions. An interesting

alternative could consider the multiple imputation mechanism, that merges many imputation results,

using the mean value, or other weighted formulas. This option could offer a better imputation

quality but implies additional cost.
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7Summarizing and comparing data
fragments using patterns

„Go as far as you can see, and you will see further.

— Zig Zigler

Writer
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7.1 Introduction

The main contribution of this thesis is the pattern model and algebra for representing relative

completeness. Data summarization is a database research approach concerned with producing

compact representations for data tables, for optimizing queries evaluations or performing analysis

tasks.

We explore in this chapter an opportunity to generalize our pattern model for achieving summa-

rization. In the original pattern model, two data fragments are considered, built according to one

attribute value. Data partitions having a null value for this attribute belong to the missing partitions

fragment, whereas partitions with constant values constitute the complete partitions fragment. We

extend this model, to cover more fragment types generated by classifying data parts according

to any filtering conditions. Summarization then aims at providing fragments with exhaustive

pattern descriptions to achieve analysis tasks. Unlike classical summarization contributions, we do

not consider the compactness as a guideline, but we strive to produce complete summaries. The

advantage of accessing complete summaries is the possibility to query summary tables, for analysis,

but also to exploit reasoning rules for explanation and prediction tasks.

This chapter is organized as follows:

• Section 7.2 shows a use case that motivates our research direction;

• Section 7.3 formalizes the data model by generalizing constrained tables to constrained

fragments. We also define how pattern tables can be used as summaries.

• Section 7.4 defines a formal framework for reasoning with fragment summaries.

• Section 7.5 describes experimentation results conducted over a benchmark dataset.

• The contributions are summarized in Section 7.7.

7.2 Motivation

In order to motivate the need for a generalized model, let us consider an example that goes

beyond the sensor network use case. The ADULT dataset is a public dataset 1 with census data about

population income. It counts 32, 561 rows with 14 attributes. We restrict to seven representative

attributes commonly used in other studies. The remaining attributes are correlated with others or

include a high rate of missing values. The considered dataset attributes are one numerical attribute

1https://archive.ics.uci.edu/ml/index.php
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age and seven categorical attributes workclass, education, marital-status, occupation, race, sex and

income { <50k, ≥50k }.

Consider the analysis task that aims to explore the relationship between the income and the other

dataset features. The dataset can be fragmented into two classes. The high-income class refers

to all individuals with an income >= 50k, and the remaining individuals are in the low-income

category. To explain each fragment profile, we think first about computing pattern minimal covers,

in a similar way to completeness summaries study (detailed definitions are provided in Chapters 3

and 4).

However, we face a setting issue. The data table does not fit our model for a constraint violation.

Indeed, in our data model, we require data tables to include a primary key to clearly distinguish the

fragment of tuples with values from the fragment of tuples with null values (no tuple can have both

a constant value and a null value for the same attribute). For the current dataset, two individuals

with the same attribute values may belong to both, the high and the low-income fragment.

To deal with this issue, we consider a third data fragment that groups Non-Distinguishable

individuals. If a data tuple appears in both fragments, it cannot be used to characterize one of the

two main categories (low-income and high-income) and is discarded from both. By eliminating

conflicts, pattern summaries can be created for each fragment. We show in Table 7.1 an illustration

of the resulting summaries, describing the fragments High, Low, and ND generated by the subset of

Male-White-Married individuals.

High age workc education occupation

40-50 ∗ ∗ Armed-Forces
∗ federal-gov doctorate ∗

High income

Low age workc education occupation

< 20 ∗ ∗ ∗
∗ never-worked ∗ ∗
∗ ∗ preschool ∗

Low income

ND age workc education occupation

∗ ∗ masters ∗
> 60 ∗ doctorate ∗

Non Distinguishable

Tab. 7.1.: "Male white married" fragments summaries

We learn from these summaries what follows:
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1. all white married male soldiers between 40 and 50 and all employees of the federal govern-

ment with a Doctorate have a high income,

2. all young white males who are married or have never worked or with a preschool diploma

have a low income and

3. it is not possible to decide for white married males with a Masters, or which are old with a

Doctorate whether they belong to the high or low-income class.

We show in Section 7.4 how this kind of detailed analysis can be done by evaluating simple SQL

queries over pre-computed fragment summaries.

In the next Section 7.3, we define the data fragment model, and generalize the pattern model, by

allowing constrained tables with no primary key, introducing by the same the Non-Distinguishable

fragment.

7.3 Fragment and Summary Model
In this section, we introduce the notion of fragment summary as a comprehensive description of

all complete data categories in a data fragment.

7.3.1 Data Fragments

Definition 7.1 (data fragments). Let D be a relational data table with attributes X and A ⊂ X be a

subset of attributes of F . A fragment F over D is defined as a subset of tuples in D which satisfy a

filtering condition cond projected on A : F = πA(σcond(D). We call F a data fragment, and the couple

(F,D) a constrained fragment.

The complementary fragment F̄ of a fragment F is defined as F̄= πA(σ¬cond(D)). Then, by

definition, F ∪ F̄ = πA(D).

Definition 7.2 (conflict fragments). Let (F,D) and (F ′, D) be two constrained fragments of some

data table D defined over the same set of attributes. The conflict fragment of F and F ′ is the constrained

fragment (R,D) which contains all tuples which appear in F and F ′: R = F ∩ F ′.

Example 7.1 (Adult dataset fragments). Recall the example in Section 7.2. Data table ADULT

has schema: X={age, workclass, maritalStatus education, occupation, sex, race, income }. Let

A = X − {income} and

• FHigh = πA(σincome=′+50′(Adult))
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• FLow = πA(σincome=′−50′(Adult))

Since A is not a key in ADULT , the rest R = FHigh ∩ FLow might not be empty.

7.3.2 Fragment Summaries

We assume for the following that the reader is familiar with the pattern model proposed in

Chapter 3.

Definition 7.3 (Pattern satisfaction). A constrained fragment T = (F,D) over fragment attributes

A satisfies a pattern p if the instance of p in the fragment F is equal to the instance of p in πA(D):

I(p, πA(D)) = I(p, F ). By extension, a constrained fragment T satisfies a pattern table P if T satisfies

all patterns in P .

We also say that a pattern p or a pattern table characterizes the constrained fragment (F,D).

Observe that Definition 7.3 exactly corresponds to Definition 3.6 of pattern satisfaction in

Chapter 3. We apply the notion of minimal pattern cover based on the modified definition of pattern

satisfaction:

Definition 7.4 (Fragment summary). Let T = (F,D) be a constrained fragment of some data table

D. The minimal cover P∗(T ) (Proposition 3.3.4, page 50) of the constrained fragment T ) is called a

fragment summary and noted P∗(T ).

The fragment summary P∗(T ) is not necessarily compact since there might exist a subset of

patterns P ′ ⊂ P∗(T ) where I(P ′, T ) = I(P∗(T ), T ) (all categories described P∗(T ) are "subsumed"

by the patterns in P ′). This makes our summarization model different from other models which try

to maximize the compression ratio whereas our fragment summaries are compact representations

of all characteristic data categories.

By Definition 7.3, a fragment summary might only cover a strict subset of its fragment (F,D), i.e.

I(P∗((F,D)) ⊂ T [A]. This happens when the rest fragment is not empty.

Definition 7.5 (Non-Distinguishable summary). Let T = (F,D) and T ′ = (F ′, D) be two constrained

fragments of some data table D and R = F ∩ F ′ be the conflict fragment. The fragment summary

ND(F, F ′) = P∗(R,D) is called the non-distinguishable (ND) summary of F and F ′.
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7.4 Reasoning with Fragment Summaries

7.4.1 Formal Reasoning Model

Fragment summaries are concise characterizations of data fragments and can be used for ana-

lyzing and comparing data fragments extracted from a given reference data set. By the previous

definition of fragment summary, the following constraints hold for all constrained fragments

T = (F,D) where D 6= ∅:

If p ∈ P∗(T ):

• for p′ = p and any specialization p′ of p, its instance I(p′, F ) in F is complete with respect to

D.

• for any strict generalization p′ of p (p @ p′), its instance I(p′, F ) in F is incomplete with

respect to D.

If p ∈ ND(F, F ′):

• for p′ = p and any specialization p′ of p, its instance I(p, F ) in F and its instance I(p, F ′) in

F ′ are identical (I(p, F ) = I(p, F ′)) and complete with respect to D.

Based on these properties, all patterns in the summary of a fragment T can be classified into:

1. complete (CF ) patterns which completely characterize the fragment,

2. incomplete (I) patterns which have specializations in both fragments summaries, and

3. non_distinguishable (ND(F, F ′)) patterns which characterize tuples in the conflict table of

two fragments F and F ′.

Example 7.2. Recall the adult dataset from Section 7.2. Table 7.1 shows subsets from each fragment

summary: "high income" (High), "low income" (Low) and "non distinguishable" (ND). For space reason,

we assume in the following that these tables represent the entire fragment summaries, to allow a clear

representation and fast reasoning. The pattern table in Table 7.2 shows some patterns from the ADULT

dataset and the class of each pattern is defined before. Figure 7.1 is a tree representation of the same

patterns where each node at some level i corresponds to a pattern of length i. Each level i corresponds

to patterns with i constant attributes. The wildcard pattern [∗] is the root (level 0 with no constant

attributes), the first level corresponds to patterns [∗, ∗,masters, ∗], [40− 50, ∗, ∗, ∗], [∗, ∗, doctorate, ∗]

and [< 20, ∗, ∗, ∗] (with one attribute). All patterns in summary P∗(High) are labeled Chigh (in blue)

and all patterns in summary P∗(Low) are labeled Clow (in red). All ancestors of both kinds of patterns
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age workc education occupation

I ∗ ∗ ∗ ∗
Clow < 20 ∗ ∗ ∗

I 40− 50 ∗ ∗ ∗
Clow ∗ ∗ preschool ∗
ND ∗ ∗ masters ∗
I ∗ ∗ doctorate ∗

Clow 40− 50 ∗ preschool ∗
ND > 60 ∗ doctorate ∗
Chigh ∗ federal-gov doctorate ∗
Chigh 40− 50 ∗ ∗ armed-forces
ND 40− 50 never-Worked ∗ armed-forces

Tab. 7.2.: A set of patterns in the adult dataset

Fig. 7.1.: Labeled fragment summary lattice
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nodes are I-patterns. Patterns [∗, ∗,masters, ∗] and [> 60, ∗, doctorate, ∗] are non-distinguishable

(ND) (in yellow). This means that for all categories of people with a Masters degree or with a Doctorate

and older than 60 years, there exist at least one individual with a low income and one individual with

a high income. The pattern [40− 50, never − worked, ∗, armed− forces] is also non-distinguishable

(ND) since it specializes the high income pattern [40− 50, ∗, ∗, armed− forces] and the a low income

pattern [∗, never − worked, ∗, ∗].

7.4.2 Reasoning with Queries

Let RAext = RA ∪ {., /} be the relational algebra extended by two operators . and / where

1. /A(P ) generates for a given pattern table P an equivalent pattern table P ′ where all values

of attributes ai ∈ A are constant values and

2. .A(P ) generates for a given pattern table P an equivalent pattern table where there exists

no pattern p and subset S ⊆ P ′ with more than one pattern which is equivalent to p :

6 ∃p, S ⊆ P ′, |S| > 1 : {p} ≡ S.

Using this extended algebra, we can define queries over fragment summaries. First we can define

two operators .(T ) = .A(T ) and /(P ) = /A(P ) which compute the summary of some fragment T

and the instance of a pattern table P respectively. Unfolding / can directly be translated into the

relational algebra by joining the pattern table with the data table, whereas folding . over a set of

attributes needs recursion which is not expressible in relational algebra (see Section 4.3 in Chapter 4

for implementations of .). Based on this formalization and the equivalence of the relational algebra

and SQL, it is then possible to rewrite any pattern query without folding into a relational SQL query

over summaries and their data tables. We will illustrate this by two examples.

First, selection can be applied for checking if some given pattern p is a specialization/general-

ization of a pattern p′ ∈ P . For example, when considering the summary P in Table 7.2, pattern

[40− 50, ∗, doctorate, armed− forces] is complete in fragment High if the result of following query

over the summary P(High) is not empty:

select * from P (High)

where (age='40 -50 ' or age='*')

and ( education ='Doctorate ' or education ='*')

and ( occupation ='Armed - Forces ' or occupation ='*')

It is easy to see that the result contains pattern [40− 50, ∗, ∗, armed− forces].
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Joining two summaries needs unfolding. Consider two summaries P1(age, workc) and P2(workc, education)

of two fragments F1 and F2 of data table ADULT. The natural join of these two summaries generates

a new summary P (age, workc, education) characterizing the fragment D1 on D2:

select P1.age ,R.workc ,P2. education

from P1 , P2 , Adult

where (P1.age=Adult.age or P1.age =*)

and (P1.workc=Adult.workc or P1.workc =*)

and (P2.workc=Adult.workc or P2.workc =*)

and (P2. education =Adult. education or P2. education =*)

Observe that we have to join both sumaries with the data set on attribute workc to avoid the

generation of complete but empty patterns. It is also easy to see that this table might not be minimal

and has to be re-folded over attribute workc to obtain a minimal summary.

7.5 Experiments

We run a set of experiments on the ADULT dataset to evaluate the effectiveness and the efficiency

of the fragment summary model. The ADULT dataset counts one numerical attribute, age ranging

from 17 to 90, and seven categorical attributes workclass (private, federal-gov...), education (Bach-

elors, Doctorate,...), marital-status (married,divorced..), occupation (tech-support, Sales,...), race

(black,white,...), sex (female,male), income (<50k,≥50k).

The incomeclass summarization considers two fragments High and Low following the income

attribute. We run the pattern generation algorithms described in Chapter 3, first with the numer-

ical age attribute (raw dataset), and a second time by aggregating ages into ten years intervals

]20, 30], ]30, 40], ... (binned dataset). We also vary the number of attributes by creating three datasets,

where D1 is the original dataset including all attributes, D2 removes attributes workclass and race,

and D3 removes the attribute sex from D2. The obtained results are reported in Table 7.3 and

Figures 7.2 and 7.3. We can see that by decreasing the number of attributes, the coverage of the

corresponding summaries decreases, and the size of the rest increases. We also can see that the

size of the summaries (number of patterns) might become higher than the data set it describes. For

example, the summary for High income in D1 is larger than the fragment it describes. This size

is due to the fact that a summary precisely characterizes the fragment with respect to the whole

data set and therefore contains more information about the data fragment than the fragment itself.

The table also shows that reducing the domain of attribute Age by aggregating values (numerical

to categorical) leads to increasing the size of ND, which can be explained by the fine-grained

correlation between the age attribute and the income.
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data set
Age : numerical

High income Low income Not-Distinguishable
Data Patterns Data Patterns Data Patterns

D1 4382 5485 20848 10924 7544 1995
D2 2283 1786 18164 4736 12114 1859
D3 1712 1106 16964 3131 13858 1762

data set
Age : categorical

High income Low income Not-Distinguishable
Data Patterns Data Patterns Data Patterns

D1 1591 1813 15227 4096 15743 1454
D2 394 284 11235 971 20932 736
D3 184 133 9363 493 23014 645

Ag:age, Wo:Workclass, Ed:Education,MS:Marital-status,Oc:Occupation,Ra:Race,Se:Sex

Tab. 7.3.: Income classes summaries with variable attributes sets

Fig. 7.2.: Income classes pattern summaries with variable attributes sets (raw dataset)
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Fig. 7.3.: Income classes pattern summaries with variable attributes sets (binned dataset)
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Figures 7.3 and 7.3 show the distribution of patterns according to their length (number of

constant values in a pattern). For example, in D2 we infer that 74 patterns of length 2, are in

the high-income summary, while 1, 033 belong to the low-income summary. This means that

for data covered by both patterns sets, we can decide about their income by knowing only two

attributes among 7. We also observe the evolution of the size of the pattern set corresponding to

non-distinguishable data (in yellow), increasing with attribute set restriction.

The execution time increases with the number of attributes. The larger the attribute set is,

the more attribute combinations have to be checked during pattern generation. The Table 7.4

summarizes the running times for fragment Low in all data sets.

Data set Number of attributes Running time (s)
D1 7 259.19
D2 5 60.96
D3 4 32.87

Tab. 7.4.: Execution time depending on attributes number

7.6 Related Work

The general shared goal of summarization is to reduce the data size by preserving enough useful

information for a specific goal like supporting approximate query answering [Vog+06]. In general,

we can distinguish between several families of summarization approaches for structured data.

Semantic approaches exploit external semantic knowledge such as fuzzy thesauri and linguistic

variables to generate a concise approximate human-understandable description of a large data-

set [Ras+02; SP+05]. They can also use OLAP hierarchies for guiding the summarization of

multidimensional data based on a class hierarchy [Buc+03; Cuz+08].

Hierarchical summarization is another family that was investigated in [Mah+11] and [SC+09]

and consist in building value lattices to cluster and aggregate table fragments [Mah+11; SC+09].

Statistical summarization is more related to the notion of "summarizability" property [Len+97] and

studies the mathematical properties of aggregation functions to ensure that they yield "correct"

values when applied to partitioned data. Similarly, quotient cubes introduced in [Lak+02] are

concerned with building a lossless summary of hierarchical OLAP tables while preserving the roll-

up/drill-down semantics of the cube. The summary is meant to have an optimal size for evaluating

monotone aggregation functions (COUNT, MIN, MAX, SUM) and locally optimal for non-monotone

functions (AVG).
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Table reduction approaches like Tabsum [Lo+00] allow for compressing tables for the sake of

being displayed on small devices. Compression can be performed on tuples by compressing their

values using interval encoding or on columns by merging them; both numerical and categorical

attributes are addressed. Another family of approaches that build a succinct and lossless represen-

tation of relational data is factorized databases [Olt+16]. The underlying idea is to exploit the

properties of the relational algebra, in particular, distributivity of the Cartesian product over union

to represent the compute query answers in an effective and efficient manner. This representation

opens new opportunities for query optimization of complex join and aggregation queries. A slightly

different notion of summary is introduced in [Mam+13]. It consists in vertically partitioning

an input table into as many tables as there are sub-set of attributes with a strong correlation in

the input table. This approach, however, seems to be very close to the well-known problem of

normalization using approximate functional dependencies.

Our work is more reminiscent to the family of pattern mining approaches [Lee+14; Koo+09;

Che+13] where patterns are used for summarizing data under different perspectives. In [Che+13],

patterns are used for data compressing, and a measure of representativeness is used for selecting

only a subset of patterns based on their coverage of the data. The approach uses the Minimum

Description Length principle for guiding the extraction process and searches for a minimal patterns-

set with maximal informativeness. Differently from [Che+13], our approach is concerned with

extracting an exhaustive set of the most general patterns characterizing a table fragment w.r.t.

the entire data. Doing so allows for reasoning about data fragments using the patterns as will be

described later.

Query evaluation with summaries Summaries are extensively used for optimizing aggregation

queries in statistical databases and OLAP. The main objective here is to generate summaries

which allow to estimate the information loss and generate approximate query answers. Factorized

Databases [Olt+16] are succinct lossless representations of relational data and can be used for

rewriting standard SQL queries of the source data into optimized queries over the factorized

data representation as described in [Olt+16]. As illustrated in the introduction, our fragment

summaries can directly be used for annotating analytic query results with meta-data about the

result completeness and correctness.
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7.7 Summary
In this chapter, we explored the opportunity to generalize our pattern model for data summariza-

tion purposes. We first extended the data model to fit additional fragment types, obtained from

a data table by applying a particular class of queries. The generalization process led to consider

data tables that do not include a primary key, entailing the particular notion of Non-Distinguishable

fragment. This new setting required adapting the pattern model, to propose summaries that respect

minimal covers properties. These sets are by definition reduced pattern sets, covering entirely the

data fragment, without redundancy, and are disjoint.

A formal reasoning framework allows for inferring knowledge about patterns that do not belong

to fragment summaries. Thanks to pattern properties (specialization, generalization), the model

guarantees the completeness of the inference process; we can decide for any pattern tuple whether

it belongs to a particular fragment or the non-distinguishable pattern set.

For our experiment, we use the adult dataset public dataset to evaluate our fragment summaries

model. We executed the fragment summaries computation to three datasets with variable schemas,

to check the variability of summaries according to the number of attributes. We also resized data

categories, by using a dataset with the age attribute within a categorical domain, instead of a

numerical, to show the domain length influence on the non-distinguishable fragment. Varying the

number of attributes showed that 1- the Non-Distinguishable fragment is more significant with

fewer attributes, since fewer features allow to distinguish the income class, 2-the more attributes

we consider, the less a summary is compact, since the tuples redundancy decreases. Experiments

allowed to check the effectiveness of our model, given the semantics of the generated covers that

correspond to our observations, and similar contributions results on this dataset.
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Part IV

Conclusion and
Future Work





8Conclusion and perspectives

„Winning the prize was not half as exciting as doing the

work itself.

— Maria Goeppert Mayer

Nobel prize in Physics
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8.1 General Conclusion

In this thesis, we addressed several problems related to data completeness in a relative information

setting. The first contribution regards the completeness representation, where we proposed a pattern

model for representing the complete and missing partitions in data tables. Compared to other

pattern-based completeness models [Raz+16], our model is based on reference datasets which

enables the automatic derivation of minimal pattern covers for describing complete and missing

data, which is not possible in the Partially Open World Assumption. To support the pattern model,

we extended the relational algebra by defining two new operators that operationally connect data

tables to pattern tables. A fold operator can generate the pattern cover of a data table, and inversely,

the unfold operator returns a pattern table instance. Based on this extended algebra, a pattern

algebra to query pattern tables has been introduced. This algebra is complete and sound regarding

the SPJUD fragment [Abi+95] of the relational algebra. Pattern queries allow computing pattern

minimal covers for assessing the completeness of query results. All pattern algebra operators,

except fold, can be expressed in the relational algebra and we proposed two algorithms that

implement the folding operator. Extensive experiments have been conducted to check the efficiency

of these algorithms and evaluating the cost of applying pattern queries for result annotation. Our

experimental results confirmed the efficiency and effectiveness of our proposed contributions and

confirmed our assumptions about high compactness of pattern tables for real-world datasets.

We dedicated the second part of this manuscript to our contribution to query result imputation.

We defined a query-driven imputation model and strategy for repairing aggregate query results. We

took advantage of the pattern model to define a rule-based imputation model for data partitions.

The imputation rules aim at repairing missing and incorrect results by new values, which at

estimated by aggregating correct aggregated values. We created a complete process that starts by

classifying aggregate results into correct, incorrect, and missing categories using pattern queries.

The imputation process counts four steps and returns a set of SQL imputation queries. A set of

experiments have been performed to check the correctness of our model, and the results show that

rule-based imputation strategies can significantly improve the completeness and the correctness of

aggregate query results.

The final part of this manuscript presents our last contribution, where we explored the possibility

of generalizing the pattern model to summarize and compare any data fragments. The pattern

model is used to define pattern minimal covers for data fragments as summaries. We also defined a

first formal framework for reasoning about fragment summaries.

In the following sections, we present some future research directions for advancing our contribu-

tions.
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8.2 Perspectives on the Completeness Model

This section covers future directions for contributions summarized in Part 1.

8.2.1 User-Friendly Interface

We consider the development of a user interface that implements the pattern model and algebra

for completeness representation. Users can access database tables and create constrained tables

for their completeness studies. The Figure 8.1 illustrates an overview of this interface. Observe

that the user can constitute constrained tables T (D,R) either by browsing database tables or by

creating views. Then, she can run the FoldData Algorithm (refer to Section 4.3 from Chapter 4)

for computing minimal pattern covers of complete and missing partitions. The user can browse the

entire produced pattern tables, or define SQL queries for analyzing the results.

Fig. 8.1.: User interface overview: Data completeness

The second major feature of the user interface is the completeness assessment for query results

(Figure 8.2). The user can express her SQL queries over data tables and visualize the results.

The application should automatically produce the corresponding pattern query that computes the

minimal covers for the query result. Similar to data covers, the user can then browse the provided

pattern tables or ask SQL queries.
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Fig. 8.2.: User interface overview: Query Result completeness

Pattern Query Optimizer The previously described user interface implies the implementation

of an algorithm that automatically derives a pattern query Q̂ for computing the pattern cover of a

data query Q. Currently, for each SQL query defined over constrained tables, a pattern query can be

defined using the pattern algebra as shown in Section 3.5. Pattern queries are related to relational

queries by the following formula:

Q̂(P∗(T )) = .(Q(/(P∗(T )))

We have shown for pattern operators how this formula could be applied along with relational

rewriting rules and pattern fold/unfold operators properties to derive optimized pattern operators

definitions (Section 3.4). The challenge is then to define an optimizer that uses these rules to return

an optimized pattern query for each data query.

Translating Pattern Queries into SQL The optimized pattern query can be translated into SQL,

as shown by the examples in Chapter 4. Since any pattern query (without folding) can be expressed

in the relational algebra, this compilation step could directly apply well-known rules for rewriting

algebraic expressions into SQL. The final folding step can be implemented using the FoldPatterns

algorithm presented in Chapter 4.
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8.2.2 Incremental Minimal Covers

In Chapter 4, we proposed a folding algorithm that implements the fold operator for pattern

minimal cover computation. Given a constrained table T (D,R), the minimal covers P∗(T ) and

P̄∗(T )) strictly cover all complete, respectively missing, data partitions. These pattern minimal

cover lose their coverage property when the constrained table is updated. We can distinguish

between the following cases:

• Updates completing/reducing the data table D over the same reference R: For example, in a

sensor network, we can acquire new data measures for last year records. The temporal and

spatial references remain the same, but the completeness of the covered localities increases.

For insertion, some missing patterns might become complete, and some complete patterns

might be generalized. Symmetrically, for deletion, some complete patterns might become

incomplete or missing, and some missing patterns might be merged int a generalized.

• Updates extending/reducing the reference: If a new sensor is installed in a new locality, the

reference should be extended to this new area and patterns describing spatial completeness

(wildcards for spatial attributes), should be rechecked. In this case, some initially complete

pattern may be split (specialized), or some missing partitions patterns may be generalized

(merged)

• Updates on both data and reference: The previous changes may occur together and trigger

the generalization and specialization of patterns.

The current folding algorithms do not take account of these updates, and pattern tables have to

be recomputed from scratch. This is inefficient, especially when the data and/or reference tables are

often updated. An incremental algorithm could avoid recomputing the entire cover. In all situations,

updates impact only a subset of tables, and some patterns remain valid for the new constrained

table. Only patterns that are no longer satisfied should be fixed, for efficiency.

Query Independence of Updates [Lev+93] is a mechanism that allows deciding if a query is

independent of certain data update, i.e., the result of the query is different before and after the

update. A. Levy et al. [Lev96] uses this approach for assessing query answer completeness. A

challenging direction is to adapt to this problem setting to our updates issue. A pattern can be

considered as a constraint view on a data table and reference table, which remains valid if its

instance is independent of insertion or deletion updates. We can explore this intuition for defining

an algorithm that can decide if a given update impacts a given pattern.
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8.3 Perspectives on Query Result Imputation

This section describes some possible future directions for the contributions of Chapter 6.

8.3.1 Imputation Quality Model

The data imputation strategy defined in Section 6.4 makes the assumption that the imputation

output is always more accurate than the original query result to impute (missing or incorrect). This

assumption is too strong, and an open research direction consists of defining more precise quality

metrics for assessing the accuracy of the estimated imputation values.

The imputation rules are defined to repair missing or incorrect aggregations, using correct

partition results. A possible quality metric quantifies the size of the correct data partitions satisfying

the imputation rule and involved in the imputed value computation. For example, for the electricity

measure table, consider a query that asks for weekly consumption per floor. The rule r : (B : _, F :

f,M : m,W : _)← (B : _, F : f,M : m,W : _), avg(KwH) repairs incorrect results with all correct

results obtained for the same floor and month. We can consider that the estimation accuracy then

depends on the number of available correct estimations.

Given the imputation rule r : qm ← qa, to use over a data table D, with a pattern cover P∗(D).

To repair the query Q answer, a simple quality metric could be defined as a function:

f(r,Q, P ) =
∑

pi∈match(qa)

|I(pi)|

where match(qa) is the set of pattern matching the rule right-hand side. This metric favors

imputation rules that estimate values over more data partitions.

The user asking the query should be informed by the quality of the achieved imputation, and

decide to keep the original result if the proposed improvement is not satisfying.

8.3.2 Imputation Strategy

The current imputation strategy uses a statically defined priority order for choosing conflicting

imputation rules. This setting restricts the process effectiveness.

We started a formalization of more ambitious strategies. Given a set of imputation rules R, we

can consider the following two strategies:
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1- Quality-driven strategy: Considering the previously described quality metrics, each result

partition is assigned with the most accurate imputation rule. The candidate patterns are ordered

following their estimated accuracy.

The current strategy applies rules in descending order, which leads to multiple estimations for the

same data item where old values can be overwritten by new values. Another solution is to detect

application conflicts before applying the rules and generate for each rule an independent pattern

set. Indeed, if the same data partition is covered by two patterns that match two different rules,

only the rule with the highest quality should be allowed to repair this partition. For this, we can

create a graph describing imputation rules dependencies. Each graph node represents the rule’s

left hand-side qm, and each edge represents a conflict between different rules. If two rules repair

the same partition, this partition should be discarded from the imputation query with the lowest

accuracy score.

2- Cost-driven strategy: Similar to the quality metrics, we can define a cost model for the

imputation strategy. Given a set of candidate rules, a possible cost metric quantifies the number of

generated imputation queries. We can adapt the strategy in this sense, by minimizing the number

of imputation queries and prefer rules with the highest coverage. This requires to resolve the

following problem. Consider a set of candidate rules R, and Pm patterns describing partitions to

impute. Given the graph of candidate rewritings (p, r) (p ∈ Pm, r ∈ R), with (p matches qm), find

the smallest subgraph that maximally covers Pm. In other terms, we need to maximize the following

function:

Cost(R,Pm) = α× Coverage(R,Pm)− β × |R|

with coverage a function that returns the number of pattern in Pm matching rules left-hand side,

and α, β weighting parameters.

A possible enhancement considers both, quality and cost metrics, to create a balanced imputation

strategy. In this case, we can associate each candidate strategy with the following score:

SS = γ ×
∑
ri∈RQuality(ri, Q, Pa) + θ × Cost(R,Pm)

where γ and θ are weighting parameters.
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8.3.3 Shared Query Result Imputations

Currently, the imputation strategy only can repair the result of an aggregation query at the same

granularity. For example, it is not possible to use correct or repaired results obtained at the room

level for repairing the aggregated values at the floor level. A challenging research direction is to

rewrite aggregate queries to take advantage of previously repaired results at the same or at other

granularity levels. An interesting first direction would be to study the "query rewriting using views"

approach proposed in [Coh+00] for aggregate queries.
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ARésumé en Français

"La ressource la plus précieuse au monde n’est plus le pétrole, mais les données" [Eco]. Cette

observation démontre pleinement l’importance des données dans nos sociétés actuelles. La pro-

lifération des réseaux sociaux et des objets connectés a transformé nos habitudes quotidiennes, et

révolutionné nos industries. Les usines du futur bannissent de plus en plus les processus de produc-

tion traditionnels en faveur des flux dynamiques basés sur les données. Des millions d’utilisateurs

commandent de la nourriture sur Internet, font leurs courses sur Amazon, interrogent Google pour

trouver un restaurant italien près de chez eux et échangent des messages instantanés sur Face-

book. Les objets deviennent intelligents, les maisons règlent automatiquement leur consommation

énergétique, les voitures deviennent autonomes, et bientôt les machines établiront un diagnostic

médical sans intervention humaine. Les avions modernes, comme l’A380, sont équipés de 25 000

capteurs et génèrent près de 2,5 téraoctets de données par jour [Man] pour assurer la maintenance

de l’avion.

Cette révolution des données s’appuie sur les avancées technologiques, les nouveaux algorithmes

d’apprentissage et les capacités de stockage de données qui permettent la création de nouveaux ser-

vices produisant et consommant d’énormes quantités de données. Un défi majeur dans ce contexte

est de maximiser la qualité des données. Par exemple, IBM indique une perte de 3,1 milliards de

dollars par an aux États-Unis [Har], qui peut être principalement attribuée à des données inexactes,

obsolètes ou incomplètes, ne répondant pas aux exigences des tâches à accomplir. Le rapport

affirme que la qualité des données est l’un des obstacles les plus importants au développement

d’une entreprise, se classant devant les outils matériels ou l’expertise humaine.

En dépit de l’abondance des données produites, les données manquantes constituent un problème

de qualité fréquent [Her+07], qui trouve son origine dans plusieurs causes : des anomalies

physiques, une mauvaise conception de la base de données, des erreurs humaines, un manque

de sources ou la nature des règles de confidentialité appliquées. La problématique des données

incomplètes génère plusieurs défis de recherche intéressants portant sur la représentation et le

traitement des informations manquantes. Alors que de nombreux modèles de données ont été

développés pour représenter tout type de données complexes, la prise en compte des données

manquantes dans ces modèles demeure compliquée. Une première solution consiste à introduire

des symboles réservés pour indiquer des données manquantes nécessitant d’être renseignée. Ce

type de symbole a été introduit dans le modèle de données relationnel par E.F. Codd [Cod70]
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sous la forme d’un symbole d’"information manquante" null. Les valeurs null représentent des

valeurs d’attributs manquantes ou inconnues et restent la représentation la plus fréquemment

utilisée pour les informations manquantes dans les bases de données. Un inconvénient majeur

de cette modélisation est la difficulté de convenir d’une signification unique du symbole null et

de sa sémantique dans les langages de requêtes. Par exemple, des conditions de filtrage simples

telles que A = 3 ne peuvent pas être évaluées comme vraies ou fausses si A accepte les valeurs

null. Un autre problème concerne les fonctions d’agrégation, qui peuvent produire des résultats

incorrects avec la présence des valeurs null. Ces limitations ont conduit à la mise au point de

systèmes de représentation plus puissants permettant de décrire plus précisément les données

manquantes et de mieux comprendre leur influence sur les résultats de la requête. Par exemple,

les c-tables [Imi+88a] utilisent des valeurs null "marquées" qui peuvent être partagées par les

différents n-uplets en indiquant que c’est la même valeur manquante.

La modélisation de la complétude des données avec des valeurs null ne couvre pas les n-uplets

manquantes dans une base de données, qui sont considérés comme faux (hypothèse du monde

fermé). Un modèle plus flexible pour représenter l’information manquante a été introduite pour

la première fois dans [Mot89], offrant une base théorique plus élargie pour la représentation

des n-uplets manquants. Le modèle proposé suppose l’existence d’une base de données virtuelle

avec un ensemble complet de n-uplets, pouvant être comparée à la base de données incomplète

disponible. Dans ce contexte, connu sous le nom d’hypothèse du monde partiellement fermé, un

grand nombre de systèmes de représentation ont été proposés pour modéliser l’incomplétude des

données. Le concept de complétude relative [Fan+10a] exploite l’existence de données de référence

pour l’analyse de la complétude d’une base de données. La complétude relative est définie par

rapport à une base de données de référence matérialisée qui permet d’accomplir une évaluation

plus efficace et plus précise [Fan15].

Dans cette thèse, nous adoptons l’approche de la complétude relative pour relever plusieurs

défis concernant la représentation d’informations incomplètes pour l’annotation et la réparation de

réponses des requêtes. Ce manuscrit présente les contributions en trois parties :

1. La Partie 1 présente les contributions pour la représentation de la complétude de l’information

relative. Elle comporte un chapitre d’état de l’art, ainsi qu’un positionnement relatif à notre

problématique. Un chapitre est dédié à la formalisation du modèle de patterns (motifs) qui

permet une représentation compacte des partitions complètes ou manquantes dans une table

de données comparée à une table de référence. Une algèbre de patterns est définie pour

dériver les informations de complétude des résultats des requêtes directement à partir des

descriptions associées au tables de données. Toutes les définitions et les résultats théoriques

sont détaillés et illustrées par des exemples. Le dernier chapitre de cette partie est consacrée

à l’implantation de l’algèbre de patterns. Deux algorithmes de calcul de couverture minimale
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de patterns sont définis, qui opèrent respectivement sur des tables de données et des tables

de patterns. Le chapitre résume également une série d’expérimentations qui ont été réalisées

pour vérifier la validité et l’efficacité des contributions.

2. La Partie 2 présente les contributions portant sur une extension du modèle de patterns pour

assurer réparation des résultats de requêtes en utilisant des règles d’imputation. Un premier

chapitre est dédié à l’état de l’art sur les techniques d’imputation et le deuxième chapitre

présente le modèle des règles d’imputations. Le modèle d’imputation proposé se focalise sur

la réparation de requêtés d’agrégation, et nous présentons un processus en 4 étapes, ainsi

qu’une partie expérimentale qui démontre la faisabilité de l’approche sur des données réelles.

3. La Partie 3 présente une généralisation du modèle de patterns pour la caractérisation de

fragments de données. La caractérisation des fragments consiste à produire des résumés

compactes pour analyser et comparer des fragments de données. L’objectif est la production

de résumés exhaustifs minimaux à travers les couvertures de patterns, pour permettre de

réaliser de l’inférences sur l’appartenance de données à diverses catégories. Un module de

raisonnement basées sur les requêtes SQL est défini ainsi qu’une série d’expérimentations sur

des données réelles.

Représentation de la complétude de l’information relative

La particularité des modèles de complétude réside dans le fait que tout processus d’évaluation

dépend de l’existence d’une définition de la sémantique de données complètes et manquantes.

L’identification de l’étendue des n-uplets manquants nécessite l’existence de données de référence,

et l’exhaustivité relative de l’information est une configuration particulière de "l’hypothèse du

monde partiellement fermé", qui offre des garanties supplémentaires. En effet, la base de données

de référence (supposée idéale) n’est pas virtuelle mais peut être accessible partiellement ou

entièrement.

Vu que nous développons notre modèle sous cette hypothèse, nous proposons en premier

lieu un modèle de données qui capture l’existence de tables référence en plus des tables de

données classiques. Sous cette configuration, nous étudions la complétude de tables contraintes,

constituées de couples de tables données/références. Sur cette base, nous définissons un système

de représentation de complétude pour fournir une modélisation compacte des partitions complètes

et manquantes dans une table de données. Une partition de données peut être n’importe quel

fragment de table obtenu par une requête de sélection. Un pattern est un tuple relationnel classique

à l’exception de la présence d’un symbole particulier ∗, qui s’ajoute au domaines de tous les attributs.

Ce symbole universel ∗ représente l’ensemble de valeurs possibles qu’un attribut peut prendre, en

fonction des valeurs des attributs restants, suivant leur présence dans la table de référence. Un
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ensemble de propriétés syntaxiques et sémantiques des patterns permet de définir le concept de la

couverture minimale de table de données. Une table de données contrainte possède une unique

couverture minimale et nous avons montré que la taille de la couverture minimale est bornée par la

taille de la table de données.

L’algèbre relationnelle standard ne suffit pas pour interroger des tables de patterns, en raison

de la sémantique particulière du symbole ∗. C’est pourquoi, nous définissions une extension

de l’algèbre relationnelle qui comporte deux nouveaux opérateurs : un opérateur de pliage .

qui permet de produire une table de patterns à partir de table de données classique (en créant

des ∗ pour représenter de façons compacte des partitions), et un opérateur de dépliage / qui

défait les symboles ∗ pour retrouver leurs instances. Cette algèbre relationnelle étendue forme un

noyau pour la définition d’opérateurs spécifiques aux tables de patterns, permettant d’exprimer

des requêtes directement applicables à ces représentations. La tâche associée aux requêtes pattern,

est la dérivation directe des couvertures minimales pour la partitions complètes et manquantes

dans les résultats de requête sur les données. L’algèbre de patterns peut être exprimée en algèbre

relationnelle, à l’exception de l’opérateur de pliage qui implique un parcours récursif de la table de

données. Hormis cet opérateur, toute expression basée sur le fragment d’algèbre de patterns R.A.+/

(sans .) peut être traduite en SQL. Cependant, cette traduction ne garantit pas la minimalité du

résultat en l’absence de l’opérateur de pliage. Une contribution importante de cette partie est la

définition d’un algorithme efficace pour l’opérateur de pliage sur des tables de données contraintes.

Une variante de cet algorithme est aussi proposée pour s’appliquer aux tables de patterns, dans le

but d’éliminer les redondances sémantiques et syntaxiques pour garantir la minimalité.

Nous évaluons notre implantation sur un jeu de données collecté par un réseau de capteurs installé

dans notre campus Jussieu. Les expériences ont permis de mesurer l’efficacité de l’algorithme de

calcul de couverture minimale et la fiabilité des requêtes de patterns pour la dérivation automatiques

des couvertures des résultats de requêtes de données. Nous avons également testé l’impact de

plusieurs propriétés des tables de données sur la compacité des tables de patterns générées pour

des jeux de données réelles et simulées. Nous avons observé que la distribution des données

manquantes était le facteur le plus important influant sur la taille des tables de patterns. Une

distribution aléatoire dans les ensembles de données synthétiques provoque une explosion du

nombre de patterns (|P | = |D| étant la limite supérieure). En revanche, dans les jeux de données

réels, où les données manquantes sont causées par des anomalies physiques, qui ne se produisent

généralement pas de manière aléatoire, la compacité reste élevée. Nous avons considéré un

ensemble de requêtes de données diverses (sélection, agrégation, jointures) pour évaluer l’efficacité

des requêtes de pattern. Les résultats obtenus montrent l’efficacité de l’utilisation des requêtes de

modèles comparés à une approche naïve.
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Imputation des résultats des requêtes d’agrégation

Les données incomplètes donnent naturellement lieu à des résultats de requêtes de mauvaise

qualité, et la réparation des données manquantes est une tâche de nettoyage courante. L’imputation

des données désigne une famille d’approches visant à réparer les données manquantes en déduisant

de nouvelles valeurs à partir des jeux de données disponibles, parfois avec une intervention

humaine. Il existe plusieurs méthodes d’imputation des données et les techniques d’imputation sont

généralement complexes et ne peuvent pas forcément s’étendre à de grands ensembles de données.

En particulier, l’imputation globale des données peut devenir inefficace pour réparer des tables

destinées à des tâches spécifiques portant sur un sous ensemble.

Le problème des données manquantes a d’abord été identifié et traité par des statisticiens. Des

études sur les distributions de données manquantes ont permis d’effectuer des tâches explicatives

et des formulations simples ont été utilisées pour réparer les données incomplètes telles que

l’imputation à la valeur moyenne ou la plus fréquente. L’imputation des données comporte deux

grandes familles d’approches, celles impliquant une participation humaine dans le processus de

réparation des données, et d’autres, dans lesquelles des algorithmes d’inférence sont conçus pour

découvrir des corrélations de données et générer des estimations fiables des valeurs manquantes.

L’imputation manuelle par l’humain prend deux formes. Les plates-formes de crowdsourcing

demandent aux travailleurs de réparer manuellement les données en renseignant les observations

manquantes. D’autre part, les techniques basées sur des règles font appel à des experts pour traduire

leurs connaissances de domaine en définissant des règles logiques, qui peuvent être utilisées pour

la réparation automatique et lors de l’exécution de mises à jour de bases de données. L’imputation

automatique regroupe toutes les techniques d’apprentissage automatique et statistiques de base,

dans lesquelles des algorithmes tentent d’expliquer les distributions de données manquantes et leur

corrélation avec les observations disponibles. Les résultats d’apprentissage servent à alimenter le

mécanisme d’inférence, à créer de nouvelles valeurs.

La plupart des techniques d’imputation opèrent au niveau des données sans prendre en compte

la sémantique de la requête. Cela implique des efforts et des coûts considérables pour la réparation

des tables de données, quel que soit leur taux d’utilisation futur. L’imputation basée sur les requêtes

consiste à estimer les résultats de la requête susceptibles d’être affectés par une mauvaise qualité des

données (données manquantes). Les contributions montrent que concentrer la tâche de réparation

sur les données utilisées pour l’évaluation de la requête peut considérablement réduire les efforts

de nettoyage.

Nous traitons le problème de la réparation des résultats des requêtes d’agrégation obtenues à

partir de données incomplètes. Les données manquantes entraînent généralement des résultats
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de requête manquants, mais dans le cas des requêtes d’agrégation, elles créent également des

agrégations incorrectes.

La première contribution de cette thèse, portait sur un modèle de patterns pour identifier et

représenter les étendues de données complètes et manquantes et une algèbre permettant de déduire

des annotations pour les résultats de la requête. Notre exploitons l’opportunité d’étendre ce modèle

pour effectuer l’imputation basée sur des règles, suite à l’identification des partitions manquantes

ou incorrectes dans le résultat. Nous définissons une stratégie d’imputation globale qui permet

de réparer les résultats de requêtes moyennant des règles d’imputations à différents niveaux de

granularités.

Les règles d’imputation traduisent les connaissances des experts à différents niveaux de partitions,

correspondant à des niveaux d’agrégation variables. Les règles sémantiques supportent d’agréger

différents résultats d’imputations, grâce à une fonction d’imputation. Nous avons formalisé une

stratégie complète qui commence par l’évaluation de la complétude du résultat d’une requête. La

stratégie comprend quatre étapes : classification des partitions {correcte, manquante, incorrecte },

choix de règles d’imputations candidates, établissement de la stratégie, et enfin la génération de

requêtes d’imputation SQL.

La mise en œuvre du processus d’imputation est assurée par l’algèbre des patterns. Dans la

première étape, trois requêtes du modèle permettent de classer les résultats de la requête en

partitions correctes, incorrectes ou manquantes. Les partitions à réparer sont celles manquantes et

incorrectes, car ces dernières sont supposées de moindre qualité que le résultat d’une imputation.

Sur cette base, les règles d’imputation sont filtrées pour garder celles qui correspondent au niveau et

éventuellement aux filtres exprimés dans les partitions à réparer. Les règles d’imputation candidates

sont triés suivant la stratégie d’imputation avant d’être traduites en requêtes SQL. Nous avons

proposé une version optimisée pour l’application de requêtes d’imputation à des ensembles de

patterns au lieu d’utiliser des tables de données. Cela évite les requêtes d’agrégation sur des

ensembles de données volumineux (partitions correctes utilisées pour l’imputation).

Nous avons mené une série d’expériences sur des ensembles de données réelles et tiré parti

de notre connaissance du campus et de l’historique de la consommation dans ses localités pour

proposer des règles d’imputation pour les mesures de température. Les résultats expérimentaux

montrent que le processus d’imputation a réussi à réparer la plupart des résultats des requêtes, dans

des délais raisonnables, par rapport au temps d’exécution des requêtes. Notre analyse nous a permis

de conclure que la richesse des règles d’imputation et leur adéquation avec les caractéristiques des

données constituent une condition essentielle à la réussite de l’imputation.

Les règles d’imputation multiple sont appliquées au même résultat de requête. Dans ce travail,

nous avons choisi d’attribuer le résultat de la règle d’imputation avec la priorité la plus élevée
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pour réparer les partitions correspondantes. Une alternative intéressante pourrait envisager le

mécanisme d’imputation multiple, qui fusionne de nombreux résultats d’imputation, en utilisant la

valeur moyenne, ou d’autres formules pondérées. Cette option pourrait offrir une meilleure qualité

d’imputation mais impliquerait des coûts supplémentaires.

Récapitulation des fragments de données

La synthèse de données est une approche de recherche de base de données visant à produire des

représentations compactes pour les tables de données, afin d’optimiser les évaluations de requêtes

ou d’effectuer des tâches d’analyse.

Nous explorons l’opportunité de généraliser notre modèle de patterns pour obtenir des résumés

divers au-delà des représentations des informations complètes ou manquantes. Dans le modèle de

patterns d’origine, deux fragments de données sont considérés, construits suivant les valeurs d’un

seul attribut. Les partitions de données ayant une valeur nulle pour cet attribut appartiennent au

fragment de partitions manquant, alors que les partitions avec des valeurs constantes constituent

le fragment de partitions complet. Nous étendons ce modèle pour couvrir davantage de types de

fragments générés en filtrant les données par de plus riches conditions de sélection. La synthèse

vise ensuite à fournir des fragments avec des descriptions exhaustives pour réaliser des tâches

d’analyse. Contrairement aux contributions de synthèse classiques, nous ne considérons pas la

compacité comme une ligne directrice, mais nous nous efforçons de produire des résumés complets.

L’avantage d’avoir accès à des résumés complets est la possibilité d’interroger des ensembles de

synthèse, à des fins d’analyse, mais aussi d’exploiter des règles de raisonnement pour les tâches

d’explication et de prédiction.

Le processus de généralisation a conduit à considérer les tables de données qui n’incluent pas

de clé primaire, impliquant la notion particulière de fragment indiscernable. Cette configuration a

nécessité l’adaptation du modèle de patterns pour proposer des résumés respectant les propriétés

de couverture minimales. Ces ensembles sont par définition des ensembles de patterns réduits,

couvrant entièrement le fragment de données, sans redondance et sont disjoints.

Un module de raisonnement formel permet de déduire des connaissances sur des patterns ou des

données qui n’appartiennent pas aux résumés de fragments. Grâce aux propriétés syntaxiques et

sémantiques du pattern (spécialisation, généralisation, satisfaction), le modèle garantit l’exhaustivité

du processus d’inférence ; nous pouvons décider, pour tout tuple de pattern, s’il appartient à un

fragment particulier ou à l’ensemble de motifs non distinguables.

Pour notre expérience, nous utilisons l’ensemble de données public pour adultes afin d’évaluer

notre modèle de résumés de fragments. Nous avons exécuté le calcul des résumés de fragments
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dans trois jeux de données avec des schémas variables, afin de vérifier la variabilité des résumés en

fonction du nombre d’attributs. Nous avons également redimensionné les catégories de données en

utilisant un jeu de données avec l’attribut age dans un domaine catégorique, au lieu d’un nombre,

pour montrer l’influence de la longueur du domaine sur le fragment non discernable. En variant

le nombre d’attributs, on a montré que 1 - le fragment non distinguable est plus significatif avec

moins d’attributs, car moins d’éléments permettent de distinguer la classe de revenu, 2 - plus nous

considérons d’attributs, moins un résumé est compact, car la redondance des tuples diminue. Les

expériences ont permis de vérifier l’efficacité de notre modèle, compte tenu de la sémantique des

couvertures générées correspondant à nos observations, ainsi que des résultats de contributions

similaires sur cet ensemble de données.
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Abstract

Information incompleteness is a major data quality issue which is amplified by the increasing

amount of data collected from unreliable sources. Assessing the completeness of data is crucial for

determining the quality of the data itself, but also for verifying the validity of query answers over

incomplete data. While there exists an important amount of work on modeling data completeness,

deriving this completeness information has not received much attention. In this work, we tackle the

issue of extracting and reasoning about complete and missing information under relative information

completeness setting. Under this setting, the completeness of a dataset is assessed with respect to

a complete reference dataset. Few works have been dedicated to representing data completeness

under this setting, and we advance the field by proposing two contributions: a pattern model for

providing minimal covers summarizing the extent of complete and missing data partitions and a

pattern algebra for deriving minimal pattern covers for query answers to analyze their validity.

The completeness pattern framework presents an intriguing opportunity to achieve many appli-

cations, particularly those aiming at improving the quality of tasks impacted by missing data. In

our work, we address the problem of repairing query results obtained from incomplete data. Data

imputation is a well-known technique for repairing missing data values but can incur a prohibitive

cost when applied to large data sets. Query-driven imputation offers a better alternative as it

allows for fixing only the data that is relevant for a query. We adopt a rule-based query rewriting

technique for imputing the answers of analytic queries that are missing or suffer from incorrectness

due to data incompleteness. We present a novel query rewriting mechanism that is guided by the

completeness pattern model and algebra. Our solution strives to infer the broadest possible set of

missing answers while improving the precision of incorrect ones.

In the last contribution, we investigate the generalization of our pattern model for summarizing

any data fragments. The generalized pattern model can be used to produce pattern summaries of

data fragments over any subset of attributes and these summaries can be queried to analyze and

compare data fragments in a synthetic and flexible way.

Keywords: Relative Information, Completeness Assessment, Pattern model, Pattern Algebra,

Imputation, Summarization
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