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Abstract

This thesis aims to study and develop an approach for solving the motion planning

problem of a group of wheeled mobile robots in a realistic environment. Mainly we

propose a distributed mathematical programming approach associated with a receding

horizon method for the open-loop trajectory generation as well as a modified model

predictive control (MPC) for the closed-loop stabilization. In this approach, perception,

trajectory planning, and execution are interleaved and can be performed onboard each

robot independently, as they evolve through their workspace. It ensures respect of several

types of constraints, namely obstacle avoidance, bounded velocities and accelerations,

nonholonomic constraints, and inter-robot collision avoidance. The robots belonging to

the multi-robot system exchange information on their intended trajectories and converge

individually to optimal non-conflicting trajectories.

Furthermore, some work towards integrated task and motion planning by a hierarchical

method is presented. The objective was to achieve a complete framework for robust, highly

autonomous mobile robot motion.

Experiments both in simulation and with real nonholonomic unicycle-like vehicles

were conducted. They allowed us to analyze the impact of parameters on key figures such

as computation time, obstacle avoidance, inter-robot collision avoidance, and travel time.

Results also show the quality of robot motion in situations where dynamics, the uncertainties

about robot localization, and communication delays are real and meaningful.

Overall, this study indicates that the proposed approach could be used in real

systems where uncertainty about the world state, communication delays, limited onboard

computation power, strong dynamics, and other usually challenging to overcome

phenomena are all present.





Résumé

Ce travail de doctorat a été financé et réalisé au Laboratoire de Robotique Interactive de

l’Institut List du CEA, en partenariat avec l’Unité d’Informatique et d’Ingénierie des Systèmes

de l’ENSTA Paris. Cette recherche s’inscrit dans le cadre des travaux du CEA sur la navigation

précise de véhicules autonomes dans des environnements où coexistent des êtres humains

et des robots mobiles tout en bénéficiant de l’expertise de l’ENSTA Paris en matière de

navigation, de perception et de modélisation sémantique de l’environnement.

Contexte

La pertinence d’une telle recherche peut être mise en valeur par l’analyse de trois contextes

différents et leurs particularités à la fin des années 2010. D’un point de vue social, la

présence des robots et de l’IA (Intelligence Artificielle) dans l’espace de travail prend une

ampleur significative et les prédictions sur l’impact social de l’automatisation sont diverses,

mais alertent souvent sur la vulnérabilité des travailleurs à des postes qui exigent peu de

qualifications. Logiquement, avec une augmentation des tâches réalisables par des systèmes

artificiels autonomes, la vulnérabilité de ces travailleurs ne fera qu’augmenter. Par rapport à

cela, l’étude de comment générer des mouvements afin d’avoir des robots plus collaboratifs

(plus faciles à déployer et à utiliser) peut diminuer la demande de formation pour ces

travailleurs et par conséquent une atténuation de leur vulnérabilité.

D’un point de vue économique, dans le domaine particulier de la logistique, l’utilisation

de robots a connu une croissance rapide au cours des dernières années motivée par 1)

la nécessité de réduire les coûts de la chaîne d’approvisionnement et 2) l’augmentation

réglementaire de la sécurité et du confort des travailleurs. Cette thèse sur la navigation

mobile multi-robots peut avoir une utilité directe dans l’amélioration des opérations liées

aux entrepôts telles que la préparation des commandes, l’optimisation du stockage et de la

distribution des produits, tout en améliorant les paramètres de sécurité pour les travailleurs.

Finalement, d’un point de vue scientifique, une plate-forme robotique mobile est perçue

comme un système dont la capacité à changer d’état, sa capacité à soutenir les efforts et

son énergie disponible sont limitées. Des contraintes sont donc nécessaires pour générer
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des trajectoires, limitant certaines transitions entre deux configurations. Ce problème

est désigné par différents termes, les plus courants étant la planification de mouvement,

la planification de trajectoire et la planification kinodynamique. Divers critères pour la

classification des approches de planification de trajectoire existent. Les plus courants sont

les suivants :

• La qualité de la solution ou son optimalité ;

• Le coût de calcul ;

• La complétude - la garantie de trouver une solution si au moins une existe ;

• La propriété d’exécution en ligne – la planification et l’exécution sont simultanées ;

• La propriété de temps réel – l’algorithme de planification peut s’exécuter à

une fréquence suffisamment élevée et consistante pour que l’hypothèse d’un

environnement statique pendant une itération soit raisonnable.

Dans le cas de la planification pour un système composé de plusieurs robots (MRS), on

parle aussi d’approches centralisées et décentralisées. La quête d’approches qui permettent

d’équilibrer de façon satisfaisante plusieurs de ces propriétés en même temps reste un sujet

de recherche ouvert et de plus en plus étudié.

Étant donnés ces trois contextes, dans ce travail de thèse, nous nous concentrons sur

l’étude et le développement d’une approche pour résoudre le problème de planification

de mouvements d’un groupe de robots mobiles à roues différentielles en environnement

opérationnel réaliste.

Planification de trajectoire multi-robots

Nous proposons principalement une approche basée sur l’optimisation distribuée associée

à une méthode de type fenêtre glissante pour la génération de trajectoire en boucle ouverte,

ainsi qu’une loi de commande prédictive (MPC) pour la stabilisation du système en boucle

fermée. Dans cette approche, la perception, la planification de trajectoire et son exécution

sont combinées et peuvent être réalisées indépendamment par le contrôleur de chacun des

robots, au fur et à mesure qu’ils évoluent dans leur espace de travail.

Plus spécifiquement, nous modélisons la génération de trajectoire comme un problème

d’optimisation non-linéaire sous contraintes. Ce problème est définit pour un horizon de

temps fixé appelé Tp (période de planification). Cette durée Tp "glisse" selon l’évolution
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du robot d’une valeur fixée appelé Tc (période de calcul). Tc est l’intervalle pour lequel une

solution au problème d’optimisation doit être trouvée.

Les contraintes d’optimisation peuvent être des équations ou des inéquations. Les

fonctions d’objectifs sont choisies afin d’attirer les robots vers leurs configurations désirées

– la minimisation du temps de trajet ou de la distance restante vers l’objectif. L’approche

garantit le respect de plusieurs types de contraintes, à savoir l’évitement des obstacles, la

limitation des vitesses et des accélérations, les contraintes non-holonomes et l’évitement

des collisions inter-robots.

Cette optimisation se déroule en deux étapes différentes :

• Une première étape qui ignore les contraintes liées aux autres robots, appelées les

contraintes de couplage. Les contraintes liées au modèle cinématique de chaque

véhicule, leur limitation de vitesse et d’accélération, et l’évitement d’obstacles sont

néanmoins pris en compte. Cela permet aux robots de trouver une première trajectoire

qui sera alors partagée avec d’autres robots à proximité;

• La deuxième étape intègrera, en tant que contraintes de couplage, les trajectoires des

autres robot calculées dans la première étape. La trajectoire issue de l’étape numéro

deux sera celle utilisée comme trajectoire de référence par la boucle de stabilisation

du système robotique.

Ces deux étapes combinées doivent être effectuées en un temps inférieur à Tc . Et Tc doit

être suffisamment petit pour que les trajectoires des différents robots convergent vers des

solutions sans collisions d’un point de vue global.

Ainsi, les robots appartenant au système multi-robots échangent des informations sur

leurs trajectoires envisagées et convergent individuellement vers des trajectoires optimales

sans conflit.

Cette approche à fenêtre glissante est appropriée tant que les robots se retrouvent loin

du voisinage de leur configuration but. Au moment de l’arrivée à l’objectif, une formulation

particulière du problème d’optimisation est nécessaire afin de respecter les contraintes sur

la configuration finale du robot. Nous regroupons ces idées et la façon de les implémenter

sous l’acronyme DRHMP (Distributed Receding Horizon Motion Planning ou Planification

de Mouvements Distribuée sur un Horizon Glissant).

L’approche DRHMP présente des avantages par rapport à des méthodes plus classiques

grâce à sa flexibilité d’intégrer de nouvelles contraintes, son calcul en ligne et en temps

réel et son indépendence aux trajectoires pré-definies. La complétude de l’approche n’est

pas garantie, mais des actions permenttant de remédier à un échec de planification sont

discutées dans les conclusions de ce travail.
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Commande prédictive

Une fois une trajectoire de référence générée, une commande de type predictive, continue,

non-linéaire et généralisée (NCGPC) a été utilisée pour la stabilisation du système. Pour

exploiter l’intégralité de la trajectoire de référence, nous avons proposé une modification de

cette loi de commande. La nouvelle commande (appelée NCGPC-M pour NCGPC modifiée)

a été créée en remplaçant l’extrapolation de la sortie de référence utilisée dans l’approche

de base NCGPC par la prédiction de notre planificateur de mouvement DRHMP.

Nous avons comparé ces deux approches entre elles ainsi qu’avec une méthode basée

sur la transformation du modèle cinématique du robot en système chaîné et montré la

supériorité de notre approche en terme de précision de suivi de trajectoire dans les cas

fortement dynamiques.

Planification de tâches

Finalement, des travaux en vue d’une planification intégrée des tâches2 et des mouvements

par une méthode hiérarchique sont présentés. L’objectif est d’aboutir à une méthode

complète de planification de mouvements robuste et hautement autonome des robots

mobiles.

En effet, un système robotique qui vise à être utilisé dans des cas d’usage réels doit

tenir compte de deux sources d’incertitudes lors de la planification des tâches : la première

concernant l’estimation de l’état de l’environnement (incertitude liée à la perception) et

la seconde concernant les résultats des actions (incertitude liée à la prédictibilité). D’un

point de vue de la théorie de la décision, ce problème est simplement décrit comme de la

planification sous incertitude. Le problème pour lequel nous avons développé les approches

DRHMP et NCGPC-M présente une grande quantité de ces deux sources d’incertitude,

comme la plupart des scénarios réels.

Une façon possible de modéliser les problèmes de planification sous incertitude est

d’utiliser des POMDPs (Partially Observable Markov Decision Processes). Les POMDPs

modélisent un processus de décision pour lequel on suppose que les résultats des actions

sont en partie aléatoires et en partie sous le contrôle d’un décideur (un acteur), mais que

l’acteur ne peut pas observer directement l’état de l’environnement dans lequel il évolue. Il

doit plutôt maintenir une distribution de probabilités sur l’ensemble des états possibles,

en fonction d’un ensemble d’observations et de probabilités de ces observations, et du

processus de décision de Markov (PDM) sous-jacent. La résolution des POMDP dans des

2une séquence d’actions ou plan d’action
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scénarios réels est habituellement difficile, et c’est pourquoi de nombreuses approches ont

été proposées pour réduire la complexité de ces problèmes.

Dans ce travail de thèse, nous nous basons sur une approche particulière appelée HPN

pour Hierarchical Planning in the Now. Dans cette approche, on évite de chercher des

solutions optimales au POMDP en construisant une approximation déterministe de la

dynamique de l’environnement, en cherchant un plan d’action séquentiel sans ramification,

en exécutant le plan tout en observant l’état de l’environnement pour déceler les déviations

des résultats attendus et en planifiant de nouveau lorsque des écarts se produisent. En outre,

pour faire face à l’incertitude concernant l’état actuel, la planification se fait dans l’espace

de croyance.

Résultats expérimentaux

Afin d’évaluer l’ensemble de ces développements, des expériences en simulation et avec

des véhicules réels de type monocycle non-holonomes ont été menées. Elles ont permis

d’analyser l’impact des paramètres sur des critères déterminants tels que le temps de calcul,

l’évitement des obstacles, l’évitement des collisions inter-robots et le temps de déplacement.

Ces résultats démontrent également la qualité du mouvement du robot dans des situations

où la dynamique, les incertitudes sur la localisation du robot et les délais de communication

sont réels et significatifs.

Finalement, cette étude montre que l’approche proposée pourrait être utilisée sur des

systèmes réels où l’incertitude sur l’état de l’environnement, les retards de communication,

la puissance de calcul embarquée limitée, la forte dynamique et d’autres phénomènes

habituellement difficiles à surmonter sont tous présents.
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Chapter 1

Introduction

This doctoral work was funded and carried out at the Interactive Robotics Laboratory of

the CEA List Institute, conducted in partnership with the Computer Science and Systems

Engineering Unit of ENSTA Paris. This research is in line with the CEA’s work on the precise

navigation of autonomous vehicles in environments where humans and mobile robots

coexist while benefiting from the expertise of ENSTA Paris in terms of navigation, perception

and semantic modeling of the environment. The aim is to automate mobile platforms for

the efficient supply of assembly lines while guaranteeing the safety of people and property.

It concerns the autonomous and highly dynamic evolution of a fleet of mobile robots in the

presence of static obstacles (walls, shelving, stored crates, etc.) and dynamic obstacles such

as workers and autonomous or human-controlled vehicles.

1.1 Social Context

Departing from the initial desire to use robots to perform tasks that humans find too dull, too

dirty, or too dangerous (also known as the 3Ds) – which mostly affected the manufacturing

industry and agriculture – the service sector as well is starting to change due to automation.

This increase in the participation of robots in workplaces is due at least in part to recent

breakthroughs in AI and manufacturing, which are starting to enable robots to perform

more complicated tasks (soon we may talk about the 4Ds). As a natural consequence, there

has been an increase in public debate about robotics, AI, and automation, with particular

emphasis on the future of work. Putting aside the influence of sci-fi dystopia evolving robots,

public concern on this subject is founded in very objective findings and projections of how

society and people’s jobs will be affected by this growth in automation.

In that respect, this research should be seen as one step further in the direction of

increased automation in society. As the problem of motion planning for multi-robot systems
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is discussed, and solutions are proposed, we are actively tilting the scales towards a society

where robots are more common and helping to actualize some of the estimates about the

future of work.

Many different predictions about the impact of automation can be made. The one that

we find most relevant and that can provide some guidelines on how to prepare society to

the upcoming changes can be supported by two key figures: the shares of jobs at (high) risk

of automation and the amount of training received by low-skilled workers. We say those

figures are interesting because, in general, jobs that require low-skilled workers are the first

to be automated. Furthermore, low-skilled workers are those that receive the least annual

job-related training, making them more susceptible to be left behind by the fast-paced

automation.

An OECD (Organization for Economic Co-operation and Development) study [60] from

2018 presents some estimates for those figures for around 30 countries. Fig. 1.1 and 1.2

summarize their findings.

According to that study, around 14% of all jobs among the surveyed countries have a

high risk of automation (> 70% risk), with an additional 32% of jobs with risk of significant

changes (between 50−70%). Furthermore, about 40% of all interviewed workers participate

in some job-related training in a 12-month period. That training, however, amounts to

merely a few hours per year. If taking only the low-skilled workers into account, that

participation in work-related training drops to around 17% for the same period [60].
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Fig. 1.1 Shares of jobs at risk of automation
Source: OECD (2018), Survey of Adult Skills (PIAAC) 2012, 2015
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Fig. 1.2 Participation in job-related training undertaken in the 12 months prior to interviews
Source: OECD (2018), Survey of Adult Skills (PIAAC) 2012, 2015

What this indicates is that independently from the overall number of jobs, total earnings,

and unemployment rates – which will surely change with increased automation – there

is a reasonable chance that the vulnerability of workers occupying positions at risk of

automation may be exacerbated with time. The conclusion one may draw is that if we are to

prevent a gloomy scenario for the future of work, changes in education and governmental

policies concerning mandatory employee training inside companies and organizations have

to be made. Adult learning opportunities have to be widely promoted in particular among

low-skilled workers as a social response to technological evolution.

From a research and engineering perspective, studies on how to create more cooperative

autonomous machines (easier to deploy and to work with) may reduce the need for extensive

worker training. In this regard, our research concern with motion planning in dynamic

environments and in particular, in the presence of humans aims towards more natural

cooperation between humans and mobile robots in a shared space, hopefully attenuating

the vulnerability of low-skilled workers.

1.2 Economic Context

The 2020 Multi-Annual Roadmap for Robotics in Europe [79] defines seven domains that

capture all parts of the market for robotics technology. Those domains are Manufacturing,

Healthcare, Agriculture, Consumer, Civil, Commercial, and Logistics & Transport (see Fig. 1.3
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for a summary of this classification). Both laboratories at CEA and ENSTA Paris have research

projects closely related to the Logistics & Transport domain.
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Fig. 1.3 Seven domains encompassing the whole market for robots
Source: Multi-Annual Roadmap For Robotics in Europe Horizon 2020

CEA’s projects, such as the fully automated garage for buses [72] and the RATP Group

experiment meant to deploy driverless shuttles for people’s transportation in a semi-open

environment, are examples of recent works in that domain [71]. Similarly, research projects

conducted at ENSTA Paris in partnership with the automobile manufacturer Renault study

autonomous vehicle path planning in dynamic environments. A representative project

among those is the Paris-Saclay Autonomous Lab [73].

In the particular sub-domain of Logistics, the use of robots has experienced rapid

growth in past years. According to the "Gartner Supply Chain Technology User Wants

and Needs Survey" of 2019 [27], 17% of respondents are already operating mobile robots

on their companies. That survey estimates that by 2023, 30% of warehouses workers will be

supplemented with collaborative robots. Two primary drivers behind such growth are 1) the

need for a reduction in cost in the supply chain (which is inherent to our current global

economy based on profit) and 2) regulatory increase in safety and comfort for workers.

Companies such as Amazon and the IDEA Group employ mobile multi-robot systems for

autonomously processing client orders for a few years now [29]. This trend is only rising as
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indicated by the survey mentioned before, with other companies such as Clearpath, Exotec,

iFollow, MiR, Waypoint, and many others, all of which offer robotic solutions for warehouses.

The multitude of companies indicates as well the vastness of this still untapped market.

Some of those companies already offer systems with a relatively high capacity of coexisting

and collaborating with human workers.

This thesis on mobile multi-robot navigation may have a direct use in improving

operations related to warehousing such as order processing and optimizing product storage

and distribution, while at the same time, improving safety parameters for workers.

1.3 Scientific Context

This work objective is to enable a robotic system composed of multiple mobile platforms (a

mobile multi-robot system) to share the workspace among themselves and with workers by

performing efficient and secure planning and control of robot movements.

A mobile platform is a system whose ability to change state, its ability to support efforts,

and its available energy are limited. Constraints are therefore necessary for generating

trajectories, limiting certain transitions between two configurations. This problem is referred

to by different terms; the most common ones being motion planning, trajectory planning,

and kinodynamic planning.

Depending on the author, those terms may carry some information about the types of

constraints that are most relevant. In any case, the consideration of kinematic and dynamic

constraints of the real vehicle, such as compliance with speed and acceleration limits, will be

necessary for the generated sequence of movements to be achievable by the robotic system.

Furthermore, if aiming for completeness and optimality one must also take into account

constraints related to geometry, known fixed and moving elements of the environment,

and uncertainties derived ultimately from the confidence on sensors and actuators (e.g.,

unknown areas not covered by sensors, sensors data inherent noise, communication delays).

Due to the complexity of such a class of problems1, most approaches for solving it tend

to use multiple levels of planning. Fig. 1.4 attempts to represent a generic setup going from

a high-level mission or task planning down to the physical system to be controlled.

At higher levels of planning, the time-scale is typically in the order of minutes or hours.

In the case of a multi-robot system, that part is usually a centralized planner that gathers

information from all individual systems and performs task allocation using a simplified

1the motion planning problem was shown to be PSPACE-hard [31] for static known environments and
NP-hard [15] for dynamic partially known ones
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model of the world dynamics. In the context of a warehouse, for instance, this is often closely

integrated with the Warehouse Management System (WMS).

At the system level (boxes inside the Onboard Computation area) a two-degree of freedom

architecture is represented. Its design consists of a trajectory planner and a feedback

controller. The trajectory generator provides a feasible feed-forward reference trajectory

that satisfies the current set of constraints over a time-scale typically in the order seconds. A

feedback controller then stabilizes the system around the reference trajectory. The advantage

of this approach is that the system is tracking a feasible trajectory along which it can be

stabilized.
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Fig. 1.4 Planning levels

Properties of Motion Planning Approaches

A common way of classifying planning approaches is with respect to the following three

properties:

• Quality of the output, or optimality;

• Computational complexity;

• Completeness2.

Those three properties tend to trade-off with each other, and striving for an algorithm

that performs well with regard to all three is challenging.

In addition to those properties, it is common to see two other terms: online planning

and real-time planning:

• Online planning refers to planning that interleaves sensing, computation of a plan,

and action. It is the opposite of offline planning where the plan is computed at an

early moment, before any action, using the currently available information;

2to be complete or to have completeness throughout this thesis means a search algorithm that is guaranteed
to find a solution if one exists
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• Real-time planning is usually a measure of how frequently planning and replanning

can be performed. We may say that a planning algorithm is real-time if it can run at

a frequency sufficiently high for the assumption of a static environment during one

iteration to be reasonable.

We avoid, nevertheless, the overuse of those terms in this work since they can be

somewhat vague. In fact, they are better understood as emergent properties derived from

the algorithm’s computational complexity, size of the problem to be solved (number of

constrains and size of the search space), performance of the computers where they run, and

implementation techniques (e.g., exploration of concurrency and sparseness properties).

Varying those base properties may transform an offline algorithm into an online one. The

same goes for real-time planning.

An extra level of classification (and arguably a whole field of research) appears when

attempting to plan motions for a multi-robot systems (MRS). One frequent and important

way of classifying approaches to the multi-robot motion planning problem (MMP) is into

centralized and distributed (or decoupled).

Centralized approaches are formulated by considering the fleet of robots as one

composite robot, meaning they search a solution in the composite configuration space

of the whole MRS. They usually provide more guarantees regarding completeness and

optimality compared to the distributed approaches. On the other hand, computation time,

security vulnerability, and communication requirements can make centralized approaches

impracticable, especially for a significant number of robots [12].

For further information on the general state of the art on MMP readers may refer to the

comprehensive surveys [32, 59]. In our work, we focus on a distributed approach for our

local trajectory planning and feedback control, and a centralized one for the task planning

level.

1.4 Contributions and Thesis Outline

To accomplish this thesis objective, we worked on the three central levels shown in Fig. 1.4.

Each one is detailed in the following chapters in a middle-out fashion going from our

contributions on the feed-forward local trajectory planning, then to our feedback controller,

and finally to our work on integrated task and motion planning.

To be more specific, our work proposes:

• An online multi-robot trajectory planning algorithm based on mathematical

programming that solves the problem as a constrained optimization problem,

presented in Chapter 2;
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• A practical implementation of these ideas in a decentralized multi-robot system taking

into account real communication delays, also presented in Chapter 2;

• A new Nonlinear Continuous Generalized Predictive Control (NCGPC) law taking into

account the output of the previous algorithm for unicycle vehicles in order to improve

the quality of the trajectory tracking that will be presented in Chapter 3;

• First steps toward the integration of task and motion planning in partially known

environments by exploiting a hierarchical planning approach to decompose the global

planning problem into problems solvable by the previous approach, discussed in

Chapter 4.

The Chapter 5 summarizes our results and propose some perspectives for future work

based on our developments.

These contributions have been published in 3 articles:

• Mendes Filho, J. M. and Lucet, E. (2016). Multi-robot motion planning: a

modified receding horizon approach for reaching goal states. Acta Polytechnica,

56(1):10–17 [53];

• Mendes Filho, J. M., Lucet, E., and Filliat, D. (2017). Real-Time Distributed Receding

Horizon Motion Planning and Control for Mobile Multi-Robot Dynamic Systems. In

ICRA2017 - IEEE International Conference on Robotics and Automation [54];

• Mendes Filho, J. M., Lucet, E., and Filliat, D. (2018). Experimental Validation of a

Multirobot Distributed Receding Horizon Motion Planning Approach. In ICARCV 2018

- 15th International Conference on Control, Automation, Robotics and Vision [56].



Chapter 2

Mathematical Programming Approach to

Motion Planning

Under the name of motion planning (MP), we find two closely-related but different types

of problems. When trying to answer the question of how to make a system go from one

configuration to another, one may simply be interested in finding a continuous curve in

the configuration space1 connecting initial and goal configurations with no reference to the

time variable, i.e., no reference to velocities when moving along that curve or path. Another

way of addressing the problem is to try to find a trajectory – a time-parameterized curve in

the configuration space – that satisfies the equations of motion of the system in question.

The former formulation is usually called a path planning problem, whereas the latter a

complete motion planning problem (or trajectory planning problem). The line separating the

two approaches becomes hazy when one considers the possibility of decoupled trajectory

planning where first a path is devised and then the problem of finding a feasible trajectory

that remains sufficiently close to the path is dealt with.

We argue nevertheless that efficiently planning the motion of a multi-robot system

(MRS) requires finding trajectories rather than paths (or at least finding trajectories in

addition to paths) – even more so than for single robots. Simply generating paths that

guarantee the non-collision of the robots without taking time into account would imply

paths that would not, at any point, share conflicting configurations in the space. In reality,

non-conflicting trajectories can perfectly well share conflicting configurations as long as

those configurations are sufficiently distant from each other in time. Therefore, to hope to

achieve optimal coordination of the robots’ movements, one should be interested in direct

trajectory planning.

1a high-dimensional vector space where each possible configuration of a system represents a single point
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2.1 Trajectory Planning Problem Definition

In general, a trajectory is understood as a representation of one or more spatial dimensions

as function of time that is solution to the motion equations of some system. It is commonly

represented by q(t) whereas the motion equation is typically defined by a set of ordinary

differential equations written in explicit form ẋ(t ) = f (x(t ),u(t ), t ) where x is the state of the

system, u is the system’s controls and f is the vector differential equation describing either

only the kinematics (if the state is considered identical to the configuration x = q) or the

kinematics and dynamics of the system (if the state is considered as x = [qT , q̇T ]T ).

Given those elements, we can more precisely describe the direct trajectory planning

problem as finding a solution (q(t ),u(t )), t ∈ [t0, t f ] to the equation of motion that respects a

number of constraints such as collision avoidance with robots and obstacles, communication

constraints, actuators limits and that takes the system from initial state (xstart) at time t0 to the

final state (xgoal) at time t f . Moreover, among all possible solutions, one may be interested

in finding the one that minimizes some objective function J .

From a control theory perspective, the open-loop, feed-forward generated trajectory

provides a reference around which to stabilize the system [58]. Such formulation of the

problem leads directly to the field of optimal control, and subsequently, that of mathematical

programming explored in this thesis. In the literature, however, we find a large number of

other types of approaches as well, which we will quickly review in the next section.

Note that since f do not (ever) perfectly describe the motion of the system – especially if

it is only a kinematic model – we will only be interested in using the q part of the solution

and leave u to be computed by a lower-level controller. Such an approach also raises the

matter of computational time given that control inputs must be sent as quickly as possible

and solving the MP problem as an optimization problem with several constraints can take a

relatively long time.

2.2 State of the Art on Motion Planning

We are particularly interested in solving the problem of planning trajectories for a team of

nonholonomic mobile robots, in a partially known environment occupied by static obstacles,

being efficient with respect to the travel time (amount of time to go from initial to goal

configuration).

The first textbook on the subject of coordinated motion planning of multiple robots [43]

was published a bit less than three decades ago. After that first book, several other cover

this topic in details, such as [44, 17, 45]. Meanwhile, a considerable amount of scientific
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articles on the subject of motion planning for MRS was published in the past years. Through

the rest of this section, we will quickly review the related work to this subject going from

least specific (broad families of motion planning in general) to more specific (Mathematical

Programming approaches to MRS motion planning).

2.2.1 General Motion Planning Approaches

As explained at the beginning of this chapter, motion planning encompasses the problem of

path planning (spatial planning), trajectory planning (spatio-temporal planning), and all

hybrid or in-between approaches. The approaches to MP can be organized in a few groups

of methods: Configuration Space Discretization, Potential Field, Elastic Band, Dynamic

Window, Velocity Obstacles, and Mathematical Programming.

Configuration Space Discretization Methods

These methods aim at capturing the connectivity of the configuration space (C-space)

into a graph and then perform a graph search to find a path from initial to final configuration.

They can be further split into Roadmaps or Sampling-Based groups of algorithms.

Roadmaps Methods rely on the assumption that a structured C-space is available with

free (Cfree) and occupied (Cobst) C-spaces defined. They can employ different techniques for

discretizing the Cfree, the main ones being:

• Visibility graphs [7]: requires the forbidden part of the C-space to be described as

polygons and creates a roadmap by connecting all vertices of those set of polygons;

• Voronoi diagrams [82]: has the same requirement as the Visibility graphs technique

but produces a roadmap with the maximum clearance from all obstacles;

• Exact cell decomposition [35]: decomposes C-space into non-overlapping cells of

varying shapes and then constructs connectivity graph to represent adjacencies;

• Approximate cell decomposition [6]: same as exact cell decomposition but uses a fixed

predefined shape for creating the cells.

A variant called Reactive Deformation Roadmaps (RDRs) introduced in [28] extends

the roadmaps method for multi-robot motion planning by using deformable links and

dynamically retraction to capture the changing connectivity of the free space. To the best of

this author’s knowledge, this method was only tested in simulation.

Roadmaps methods have the advantage of being complete2 but can quickly become

intractable. Sampling-Based Algorithms attempts to avoid this shortcoming by trading-off

completeness against efficiency.

2with respect to the discretized C-space
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Sampling-Based Algorithms depart from the idea of directly characterizing Cfree and

Cobst and rely on a collision detection evaluation to judge if some configuration lies on the

Cfree, which is usually a computationally cheap operation.

Initial approaches of this type, such as Probabilistic Roadmaps Planner [34] was done

using a uniform random distribution for sampling the C-space. Faster algorithms suited for

specific applications and even involving kinematic and dynamic constraints were created,

such as RRT or RRTX [64].

Historically, sampling-based algorithms for a single robot have been extended to the

multi-robot case by mainly centralized approaches [76]. Distributed sampling-based

techniques for MMP exist but they are usually limited to discrete domains. Many perform

decoupled path planning first, and then search velocity profiles that avoid collisions between

robots, which is not a complete approach [78].

Given any of the discretization above, a search algorithm has to be used to find a path in

the graph-like description of the configuration space. Dijkstra’s algorithm, A*, Any Angle A*,

D*, D* Lite are widely used3.

Potential Field Methods

Initially proposed in [37], this type of approach models the vehicle as a particle under

the influence of an artificial potential field created from repulsive forces from obstacles and

attractive force from goals. The C-space is typically discretized as fixed-size grids and the

vector field is defined as a value associated with each cell. Costmaps created from occupancy

grids where an inflation method attributes values to each cell as a function of the distance

to the closest obstacle are another way of applying this same idea.

The robot controller then follows the gradient of the potential field in order to avoid

obstacle and reach the goal.

Elastic band

First presented in [70], this approach attempts to fill the gap between path planning

and control. This algorithm takes an already computed path (using, for instance, one of

the methods mentioned before) and model that path as a deforming collision-free path

or elastic band. They use the so-called bubbles to construct local subsets of Cfree and to

minimized the deforming force on the elastic band that yields a collision-free trajectory.

Dynamic Window

3Field D* was used on Mars rovers Spirit and Opportunity [16]
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Initially presented in [26], the Dynamic Window Approach (DWA) assumes the existence

of a planned path or sequence of waypoints. It constructs a velocity search space from

the reachable and admissible velocities of the robot within for time window t discarding

illegal velocities (the ones causing collisions). It uses then a heuristic navigation function

(an objective function) to search the optimal velocity for controlling the mobile platform.

Velocity Obstacles

Work presented in [22] gives a critical analysis of the most important variants of

this family of approaches, namely the classical velocity obstacle (VO), reciprocal velocity

obstacle (RVO), hybrid-reciprocal velocity obstacle (HRVO) and optimal reciprocal collision

avoidance (ORCA) approaches. This family of motion planning methods was first introduced

in [25] and its main idea is to perform a search of the reference control input in the velocity

space, based on the current positions and velocities of the robots and obstacles.

Mathematical Programming

In its most general form, a mathematical program minimizes (or maximizes) an

objective function subject to a set of constraints over continuous and discrete decision

variables. It offers flexibility to explicitly and simultaneously accommodate multiple systems

requirements. In most cases, these requirements are a subset of the following list: kinematics,

dynamics, collision avoidance, and connectivity maintenance requirements [2].

An increasingly common technique associated with Mathematical Programming for MRS

motion planning is the Receding Horizon Approach, mainly inspired by works in Distributed

MPC [49]. The approach employed in our work and detailed in the rest of this chapter fits

into this category of mathematical programming approaches.

2.2.2 Mathematical Programming Approaches to Multi-robot Motion

Planning

Through the rest of this section we will consider recent works that closely relate to ours, all

of them being distributed, with an emphasis on mathematical programming approaches.

Works presented in [20, 87, 86] formulate the trajectory planning for an MRS as an

optimization problem and use the distributed receding horizon approach for coping with

the dynamic environment and disturbances.

In [20, 87] each robot optimizes only its own trajectory at each computation/update

horizon. In order to avoid robot-to-robot collisions, neighbor robots exchange information

before performing an update. In [20] initial intended trajectories are computed by each
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robot ignoring constraints that take the other robots into account, and these trajectories

are then exchanged with the neighbor robots. Similarly, in [87], robots are required to

communicate and exchange their current and most recent states; however, that exchanged

information is used to predict robots’ trajectories assuming uniform linear motion. Then,

those predictions or intended trajectories are used to form collision avoidance constraints

in the optimization problem.

An interesting aspect of the approach in [87] is that it splits the planning horizon into two

parts: during the first part, collision avoidance and smoothness of trajectories are dealt with;

in the second part, only global target convergence is a concern. An incremental sequential

convex programming (iSCP) algorithm for solving the optimization problems is used. Only

results in simulations are shown. In [20], an SQP (Sequential Quadratic Programming)

algorithm is used for solving the optimization problem.

Differing from the two previous approaches, in [86], the MP is formulated as a single

global optimization problem and then decoupled and distributed among the robots using

the Alternating Direction Method of Multipliers (ADMM) [13]. In order to reduce the update

time and communication between the agents, an approach is proposed for which only

one ADMM iteration is performed per trajectory update. The approach requires a detailed

geometric description of the environment, but in those conditions, it was shown to work

in simulation and with real holonomic vehicles (extension to nonholonomic is said to be

possible).

Work presented in [24] proposes a Decentralized Nonlinear Model Predictive Control

(DNMPC) for addressing MRS MP where careful convergence and feasibility analysis

are provided. Formation maintenance, avoidance of static obstacles, and inter-robot

collision avoidance are verified in simulation for unicycle robots, but the approach could

be generalized for other types of systems. The method requires, though, that the robots

communicate sequentially and it is not clear how the underlying finite horizon optimization

control problems for each robot are solved. This approach as well remains to be tested in a

real experiment.

Another recent relevant work on Distributed MPC for MRS is presented in [52]. Instead

of relying on complete predictions of other robots’ trajectories, it uses occupancy grid data

aiming for a reduction in the required communication means. The approach was tested on

nonholonomic mobile platforms using an external motion capture system for providing a

ground truth localization of the mobile platforms.

Our approach closely relates to those presented in [20, 87, 86], in particular [20] from

which we based our developments. Some of [20] identified drawbacks are its dependence

on several parameters for achieving real-time performance and good solution optimality,
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the difficulty to adapt it for handling dynamic obstacles, the impossibility of bringing the

robots to a precise goal state, the limited geometric representation of obstacles, and the

fixed values used for localization and tracking errors.

Some of those drawbacks are shared by the work in [87, 86]. The main differences from

our work to theirs consist in how collision constraints are handled and how localization and

tracking errors are modeled. In [87], the problem of having non-differentiable constraints for

obstacle avoidance is addressed by transforming them into smooth nonlinear constraints.

Conversely, our work derives differentiable smooth constraints from sampled data (inflated

occupancy grids given by the perception module) by doing local interpolations around

sampled points in robots’ planned trajectories. As for localization and tracking errors, [87, 86]

assume they are always inferior to a small constant while our work uses a probabilistic model

and confidence regions to produce robust collision-free trajectories.

2.3 Mathematical Programming General Formulation as

Nonlinear Optimization Problem

We will now introduce the general formalization that is the support of our optimization-

based trajectory planning approach. The optimization problem, as stated below, gives a

general formulation for the trajectory planning problem described in section 2.1:

argmin
(t f ,q(t ),u(t ))

J (t f , q(t ),u(t )) (2.1)

subject to ẋ(t ) = f (x(t ),u(t ), t ), t ∈ [0, t f ] (2.2)

umin(x(t )) ≤ u(t ) ≤ umax(x(t )), t ∈ [0, t f ] (2.3)

h(q(t )) ≤ 0, t ∈ [0, t f ] (2.4)

x(0) = xstart, ẋ(0) = ẋstart (2.5)

x(t f ) = xgoal, ẋ(t f ) = ẋgoal (2.6)

where J (Eq. (2.1)) represent the cost to be optimized, inequation (2.4) represents constraints

on configurations, typically due to obstacle avoidance; umax and umin represent limitations

on the system’s actuators; without loss of generality, we assumed t0 = 0 in order to simplify

notations.

Note that a team of robots could be treated as a single robotic system in this formulation.

Trajectory planning would then be done in a centralized fashion where q would represent the

aggregated configuration vector of all robots in the system. However, this approach is often
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impractical because of scalability and robustness issues; centralized computation typically

represents a single point of failure for the MRS, and computational and communication

resources may be insufficient for more than a few robots. Indeed, many algorithms for

numerically solving optimization problems have a strong computational cost dependency

on the number of parameters (see annex A.1 on the numeric solving algorithms), and

therefore solving for multiple robots together becomes quickly prohibitive.

Here, we are going to consider the above optimization problem to concern only

individual robots in a system. Coupling constraints allowing the robots to coordinate

their trajectories with those of other robots in the system are going to be added later to

the optimization problem. For now, however, they can be considered as being part of the

inequality constraints in (2.4).

The set of methods for numerically solving such optimization problems are often

named Transcription Techniques. These methods work by converting a continuous problem

(equations (2.1) to (2.6)) into a non-linear programming problem that can be numerically

solved by standard algorithms. Two broad classes of transcription techniques exist: shooting

methods and simultaneous methods. For the purpose of directly computing the trajectory

q , only the latter class is relevant. Shooting methods do not directly represent the state

trajectory in the decision variables of the optimization problem, only the control input

relying then on simulation to enforce the system dynamics. For a comprehensive explanation

on the subject see [36].

In order to apply the class of simultaneous methods for transcription, the following

approximations are needed:

• Continuous-time constraints need to be approximated by a finite number of

constraints. This is usually done by uniformly sampling inside the time interval

[0, t f ];

• A finite-parameter representation of the solution needs to be used. That

representation will define the decision variables of the optimization problem. That

can be done either by:

– Parameterizing the trajectory q(t ) and finding solutions for u(t ) using (2.2);

– Parameterizing the controls u(t ) and finding solutions for q(t ) by integrating (2.2);

– Parameterizing both and evaluating (2.2) at a fixed number of points over the

interval [0, t f ] to ensure that this constraint is respected.

The second method requires integrating the motion equation, whereas the third adds

more parameters and constraints for which to solve the optimization problem. The first

method, although more promising concerning the number of computations, is not straight
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forward either. There is no unicity of parametric representation of a given trajectory as

pointed out in [68], and choosing one depends on its properties and the problem’s nature.

The choice of a parametric representation of the trajectory will have a significant impact

on the stability and efficiency of the numerical optimization [17]. Any possible parametric

representation of a curve will have very well defined properties that may or may not be

suitable for representing the trajectory of a robotic system and for approximating it through

optimization numerical solvers. Some few usually desirable properties are listed below:

• local support – changing a parameter changes its local neighborhood while leaving

the rest of the trajectory unchanged

• smoothness – the trajectory should be of class C k with k ≥ 2 so first and second

derivatives can be continuous functions;

• stability – both by avoiding oscillations between interpolated points and by being

numerically stable;

• low computational complexity.

Independently of the choice of the type of parameterization it is reasonable to assume

a vector Γ of parameters used for approximating the trajectory: q(t) ≃ q̃(t ,Γ). To keep the

notation simple, the tilde over q will be omitted. Furthermore, assuming that N evaluations

spaced by T = t f /(N − 1) intervals are performed for each continuous-time constraint

equation, we may reformulate the NLP as follows:

argmin
(t f ,Γ)

J (t f ,Γ) (2.7)

subject to umin(kT,Γ) ≤ u(kT,Γ) ≤ umax(kT,Γ), k = 0. . . N −1 (2.8)

h(q(kT,Γ)) ≤ 0, k = 0. . . N −1 (2.9)

q(0,Γ) = qstart, q̇(0,Γ) = q̇start (2.10)

q(t f ,Γ) = qgoal, q̇(t f ,Γ) = q̇goal (2.11)

Another important matter regarding the optimization problem as defined above is its

temporal scope vis-à-vis the nature of the work environment of the autonomous system. In

a known static environment, planning could be done globally for the whole task of going

from qstart to qgoal and executed afterward. However, in an unknown, dynamic environment,

solutions produced by global planning may become outdated as the environment evolves

through time. This problem leads us to propose a receding horizon approach for planning

described in the next section.
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2.4 Formulation for a Partially Known Environment

As a team of robots evolves in their work environment, they progressively perceive new

obstacles in their way to their goal configuration. Hence, trying to plan for the whole

motion from initial to goal configurations is not a satisfying approach. Planning locally and

replanning is more suitable for taking new information into account as it comes.

Naturally, planning locally leaves some multi-robot coordination problems unsolved,

such as deadlocks and livelocks. The approach of this thesis is to strive for a good

compromise between optimality, robustness, and feasibility at the trajectory planning level

and assume that other, tightly integrated layers of planning will take care of the remaining

problems. Chapter 4 on task planning will present this thesis work in that direction where

part of the proposed approach relies on efficient global path planning algorithms (namely

A*) for solving the more broad motion planning problem.

One possible way to keep the mathematical programming framework for motion

planning in a partially known, dynamic environment is to use a receding horizon approach:

planning will be performed online, locally, for finite time windows that slide forward as the

robot evolves in its workspace. This approach will provide quickly computed plans that

are partially executed and recomputed periodically to take the environment evolution into

account.

2.4.1 Interleaving Planning, Perception, and Execution by a Receding

Horizon Approach

The principle of the receding horizon approach is to have a prediction time-horizon Tp

and an implementation/computation timeslot Tc with Tc ≪ Tp . Tp is the time-horizon for

which a local solution to the motion problem will be created, and Tc is the timeslot during

which a portion of that solution is executed while the next trajectory - created for the next

time-horizon Tp - is being computed (see figure 2.1). It differs from the classical definition

of MPC since not only the first value of the optimized solution is used for computing the

system’s input.

Using the trajectory computation framework presented previously, the optimization

problem at step n | n ∈N0 (from here on denoted NLPn) becomes:
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argmin
(Γn )

J (Γn) (2.12)

subject to umin(kT +nTc ,Γn) ≤ u(kT +nTc ,Γn) ≤ umax(kT +nTc ,Γn), k = 0. . . N −1

(2.13)

h(q(kT +nTc ,Γn)) ≤ 0, k = 0. . . N −1

(2.14)

q(nTc ,Γn) = qprev, q̇(nTc ,Γn) = q̇prev (2.15)

qprev and q̇prev are defined as follows:

qprev =
{

qstart, if n = 0

q(nTc ,Γn−1), otherwise
(2.16)

q̇prev =
{

q̇start, if n = 0

q̇(nTc ,Γn−1), otherwise
(2.17)

Since the time scope of the optimization problem changes from [0, t f ] to [nTc ,nTc +Tp ],

T represents Tp /(N −1). See figure 2.1 for a visual representation of how plans would occur

with time.

state

time

Tp

Tc

robot
state

Tf

0 1 2 ... N-1

T
Tp

reference
trajectory

k

Fig. 2.1 Receding Horizon Scheme
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Before each n-th search for a solution to the above problem, an update step is performed

where the latest available information about the robot’s environment is taken into account.

In the above formulation one may notice that qgoal and q̇goal are not present. To enable

the robots to reach their goal states, the receding horizon approach has to stop near the

vicinity of the goal state and a different approach has to be used.

2.4.2 The Termination Problem

After stopping the receding horizon planning algorithm, we propose a termination planning

that considers those constraints related to the goal state. The detailed definition of the

resulting optimization problem is presented further in this chapter at subsection 2.6.5.

The criterion used to pass from the receding horizon planning to the termination

planning is based on the distance between goal and current position of the robots drem. It is

defined by the equation:

drem ≤ dmin + vmaxTc (2.18)

where vmax represents the maximum linear speed of the robot.

This condition ensures that the termination plan will be planned starting from a position

at least dmin distance from the robot’s goal position (see figure 2.2). This minimal distance is

arbitrary, but sensibles values may be greater than the breaking distance of the robot from

maximum speed at constant maximum acceleration (v2
max/(2amax)) and not much larger

then vmaxTp .

dmin

vmaxTc+dmin

qgoal

Fig. 2.2 Representation of termination reference trajectory triggered before robot gets closer
then dmin from its goal
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Before solving the termination planning problem, new parameters for trajectory

representation and computation are calculated, taking into account the estimated remaining

distance and the typical distance traveled during Tp . This is done in order to adapt the

configuration intended for a trajectory lasting Tp to one that starts at point A and finishes at

point B where norm(A−B) is between dmin and dmin + vmaxTc .

2.5 Taking Multiple Robots into Account

In order to take potential conflict between robots’ trajectories into account and find solutions

that avoid collision between robots, we use a two-step algorithm. In the first step, each

robot solves a receding horizon optimization problem to find a trajectory regardless of being

part of an MRS. Then, if necessary, a second optimization problem that takes into account

conflicting robots’ information is solved. This approach is called Distributed Receding

Horizon Motion Planning (DRHMP).

For each receding horizon planning problem, the following steps are therefore

performed:

Step 1 Each robot in the team computes its own intended solution trajectory (denoted

(q̂(t), ˙̂q(t), ¨̂q(t))4 with q the configuration vector of the robot) by solving the previously

proposed constrained optimization problem. In that optimization problem, all constraints

are included except coupling constraints, that is, constraints that involve solving a conflict

between multiple robots such as collision or loss of communication.

Step 2 Robots involved in a potential conflict (risk of collision, loss of communication)

update their trajectories computed during Step 1 by solving a second constrained

optimization problem that additionally takes into account geometric constraints for avoiding

conflicts with other robots. This is done by using estimates of the intended trajectories of

the other robots. If a robot is not involved in any conflict, Step 2 is not executed and its final

solution trajectory is identical to the one found at Step 1.

Differently from [20], we do not consider that all robots involved in a conflict have

finished Step 1 and exchanged information when any of them starts executing Step 2. Here,

the robot estimates trajectories for the conflictual robots based on the available information

at the end of Step 1. Those estimates allow asynchronous communication between robots:

4higher order derivatives of q̂(t ) have to be guaranteed to exist by the choice of trajectory representation
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they can use different Tp and Tc , and no defined frequency for their communication is

imposed. Planning proceeds regardless of the communication frequency.

Since Step 1 and Step 2 solve different versions of NLPn (by varying the meaning of

inequation h) their respective optimization problems are denoted NLPn,1 and NLPn,2.

Likewise, optimizations problems solved after the receding horizon procedure, at the

termination stage, are denoted tNLPn,1 and tNLPn,2 for they have different constraints and

objective functions. Details about the actual implementation of these different formulations

for specific robots can be found in subsection 2.6.5.

Figure 2.3 present the global flowchart of the complete approach.

Start

Initilize

Update Θ

Vicinity of
qgoal reached?

(eq: (2.18))

Rescale
depending

on drem

Step 1, solve
NLPn,1

Step 1, solve
tNLPn,1

Wait while
t < (n +1)Tc

Is Step 2
needed?

Is Step 2
needed?

Send/retrieve
Step 1 solutions

Send/retrieve
Step 1 solutions

Step 2, solve
NLPn,2

Step 2, solve
tNLPn,2

Finish

qprev ← qstart, . . .

h ←Θ

yes

yes

no

yes

h ←C h ←C

n ← n +1

no

no

Receding Horizon Planning

Fig. 2.3 Flowchart illustrating the distributed local motion planning. Θ represents
exteroceptive observation (namely obstacles), C represents communicated information
exchanged among robots
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2.6 Implementation for Unicycle-like Mobile Vehicles

Before presenting experimental evaluations of the proposed approach, let us first

introduce some implementation choices regarding the robotics platform and the trajectory

parameterization.

We chose one of the most common types of wheeled mobile robots: differential wheeled

robots. They can be modeled by the simple unicycle system:

q̇ = f(q,u) ⇒
ẋ

ẏ

θ̇

=


v cos(θ)

v sin(θ)

w

 (2.19)

All experimental work was based on this model and its properties. Similar work using

other robotic systems such as drones can be found [58].

2.6.1 Model and Flatness Property of the System

Using the flatness property of a system [48], it is possible to be exclusively interested in

planning a trajectory for the flat output variable z provided it exists.

For the unicycle model, the flatness property holds and z = [x, y]T is the flat output

variable. The equations (2.20) and (2.21) show how the state variables and control variables

can be computed from the flat output and its first l th derivatives. Those equations may be

used whenever it is needed to retrieve the fundamental variables:

ϕ1(z(tk ), . . . , z(l−1)(tk )) =
x

y

θ

=


z1

z2

arctan(ż2/ż1)

 (2.20)

ϕ2(z(tk ), . . . , z(l )(tk )) =[
v

ω

]
=


√

ż2
1 + ż2

2
ż1z̈2 − ż2z̈1

ż2
1 + ż2

2

 (2.21)

ϕ3(z(tk ), . . . , z(l+1)(tk )) =[
v̇

ω̇

]
=

 ż1 z̈1+ż2 z̈2
∥ż∥

(z̈1 z̈2+z(3)
2 ż1−(z̈2 z̈1+z(3)

1 ż2))∥ż∥2−2(ż1 z̈2−ż2 z̈1)∥ż∥v̇

∥ż∥4

 (2.22)
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Fig. 2.4 Clamped B-spline curves followed by its first derivative along x (as function of the
parametric variable time)

Using this property, it is, therefore, sufficient to plan a [x, y]T trajectory instead of

a trajectory in the configuration space. This change of variables makes the trajectory

representation simpler.

2.6.2 Trajectory Parameterization

Many different types of trajectory or path representation have been used throughout the

history of motion planning. Work presented at [1] contains a good summary of the main

different path primitives from straight lines and circular arcs, to complex frameworks dealing

with circular arcs, clothoids, and quintic curves at the same time.

In our work, we settled for using B-splines curves (see Fig. 2.4 and their definition in

the note below) since they are extensively used in engineering for having advantageous

mathematical and algorithmic properties. More specifically, they meet the required

properties listed in section 2.3 emphasized here below:

• B-spline algorithms are fast and numerically stable;

• Curves are invariant under common geometric transformations, such as translation

and rotation;
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• B-spline gives the minimum local support;

• Derivatives are continuous up until its given degree.

We chose a B-spline representation of degree 3 to ensure a continuous second derivative.

Note

Given n + 1 control points P0, P1, . . . , Pn and a knot vector U = {u0,u1, . . . ,um}, the

B-spline curve of degree p defined by these control points and knot vector U is:

C(u) =
n∑

i=0
Ni ,p (u)Pi (2.23)

where Ni ,p (u) are B-spline basis functions of degree p.

The i-th B-spline basis function of degree p, written as Ni ,p (u), is defined recursively as

follows:

Ni ,0(u) =
{

1 if ui ≤ u < ui+1

0 otherwise

Ni ,p (u) = u−ui
ui+p−ui

Ni ,p−1(u)+ ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u)

(2.24)

If the knot vector does not have any particular structure, the begin and end of the

generated curve will not coincide with the first and last control points. This type of

B-spline curves is called open B-spline curves (see Fig. 2.5). We may want to clamp the

curve so that it is tangent to the first and the last legs at the first and last control points,

respectively, as a Bézier curve does. To do so, the first knot and the last knot must be of

multiplicity p +1. This condition will generate the so-called clamped B-spline curves

(see Fig. 2.6). Implementations of clamped B-splines are more common than open, and,

for the sake of convenience, we used the former type for representing robots trajectories

in our work. A thorough introduction to B-splines can be found in [10].

Fig. 2.5 Open B-spline Fig. 2.6 Clamped B-spline
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2.6.3 Optimization Algorithm

The need for a solver (or optimizer) that supports nonlinear equality and inequality

constraints restricts the number of numerical optimization solvers to be considered.

For our initial implementation of the motion planning algorithm, the SLSQP optimizer

stood out as a good option (a review of other numerical optimization algorithms we

considered can be found in Appendix A, section A.1). Besides being able to handle nonlinear

equality and inequality constraints, its availability in the minimization module of the open-

source scientific package Scipy [21] helps to facilitate the motion planner implementation in

python. For C++ development, the NLopt project offers the option to use that type of solver

as well.

The use of SLSQP is not without its pitfalls, however. An error was experienced using

this optimizer based on the SLSQP implemented by Dieter Kraft [38] (the one used by the

two projects mentioned before). As the cost function value becomes too high (typically for

values greater than 103), the optimization algorithm finishes with the "Positive directional

derivative for linesearch" error message. This error appears to be a numerical stability

problem experienced by other users of the NLopt library.

For working around this problem, we proposed a change in the objective functions of

the receding horizon optimization problems. This change aims to keep the evaluated cost of

the objective function around a known value when close to the optimal solution instead of

having a cost dependent on the goal configuration (which can be arbitrarily distant from the

current position).

We simply exchanged the goal position point in the cost function by a new point

computed as follows:

pnew = pgoal −p(nTc ,Γn−1)

norm(pgoal −p(nTc ,Γn−1))
αTp vmax

Where pgoal and p(nTc ,Γn−1) are the 2D positions associated with configurations qgoal

and q(nTc ,Γn−1) respectively, α | α ≥ 1,α ∈ R is a constant for controlling how far from

the current position the new point is placed, the product Tp vmax the maximum possible

distance covered by the robot during a planning horizon.

Normalization of constraints was also implemented in order to make the problem well-

conditioned.
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2.6.4 Environment Representation

Instead of a complete geometric description of obstacles in the environment, sensor data

from the mobile robots are typically converted to some discrete representation with portions

of space being marked as occupied or free. For instance, under ROS, the move_base node

(responsible for trajectory planning and control of robots - see Fig. 2.7) uses 2D costmaps.

These costmaps are based on occupancy grids generated from 2D or 3D sensor data and

user-defined inflation radius that is meant to take the robot’s footprint into account.

Receive
Sensor Data

Obstacle
Laser Scan

Receive Pose Merge Sensor &
Pose

Perform 
local planning

Output  velocity
command

Mark occupied
and clear space

W F x

yx

y F

Fig. 2.7 move_base’s internal pipeline with emphasis on costmap generation. W represents
the absolute world frame of reference, F the Frénet frame (robot frame)

If trying to fit the DRHMP algorithm on the above pipeline of Fig. 2.7, it would be placed

in the second last box. However, directly using those costmaps for computing obstacle

avoidance constraints in the DRHMP is not straightforward. The solution that worked best

can be described in two steps:

First, the occupancy grid is inflated according to a linear function that goes from the

highest possible cost value at an occupied position in the grid, to zero at a position located

at a distance equals to the radius of the robot.

Secondly, bicubic interpolations of the costmap around sample points taken along

a trajectory candidate are performed. Those interpolations provide a locally defined,

continuous, and differentiable distance function for each sample during optimization.

A representation of this approach for one sample is displayed in Fig. 2.8.

The importance of having continuously differentiable distance functions comes from

the way the SLSQP solver searches for a solution: it uses finite differences to estimate first

and second order derivatives of constraints. Without interpolations, those finite differences
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would usually evaluate to zero because the differentiation step size ℏ employed by SLSQP is

much smaller than the occupancy grid resolution.

Fig. 2.8 3D representation of the costmap and local interpolation used by the
dhrmp_local_planner. Cost values of 254 correspond to the detected surface of an obstacle

The costmap interpolation done above can work for simplified robots’ footprints (the

inflation radius should be representative of the shape of the robot, meaning that aspect ratios

far from 1 could be problematic). An advantaged of the method above is that constraints

related to obstacle avoidance do not depend on the number of obstacles, only on the number

of samples along the trajectory.

However, in our tests done in simulation, that was not the approach used. Because the

geometric definition of obstacles can be easily acquired in a simulated environment, we used

those representations for evaluating constraints for obstacle avoidance. For minimizing

the number of obstacles taken into account in a given moment, we introduced another

parameter for the system, which was the sensing reach (dsen) of the robot. At any moment,

only the obstacles with a geometric center inside the circle defined by the sensing radius

centered at the robot position were used in the optimization. Fig. 2.9 illustrates this

parameter.
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dsen

Fig. 2.9 Sensing distance. Only the 3 blue obstacles internal to the circle will be considered
as constraints

2.6.5 Definition of Optimization Problems

All throughout this chapter some notation have been used in order to remain generic

regarding the optimization problems (NLP, NLPn,1, NLPn,2, tNLPn,1, tNLPn,2). Here below

we present the specifics of each formulation for our differential drive robots.

NLP aims to solve the motion from the start to goal configuration in one single

optimization. Although it is impractical to use this formulation in reality, as discussed before,

it is interesting to see it in details to understand the other optimization formulations. A

summary of its definition is shown below first in textual form, second using the mathematical

notation from the previous sections. When detailing the optimization problems, we will use

strikethrough text to mean constraints or objective functions that are not taken into account

by a particular formulation. The objective is to make their differences more apparent.

Objective function:

• Time to reach the goal state (t f );

Decision variables:

• Control parameters of rotot’s trajectory (Γ);

• Time to reach the goal state (t f ).

Constraints:

• Kinematic model (nonholonomic constraints);

• Initial state;
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• Goal state (termination constraint);

• Bounded velocities;

• Bounded accelerations;

• Obstacle avoidance;

• Inter-robot collision.

argmin
(t f ,Γ)

t f

subject to q(0,Γ) = qstart, q̇(0,Γ) = q̇start,

q(t f ,Γ) = qgoal, q̇(t f ,Γ) = q̇goal,

v2(kT,Γ) ≤ v2
max, k = 0. . . N −1

ω2(kT,Γ) ≤ω2
max, k = 0. . . N −1

a2(kT,Γ) ≤ a2
max, k = 0. . . N −1

α2(kT,Γ) ≤α2
max, k = 0. . . N −1

d(O,kT,Γ) ≥ ϵo , k = 0. . . N −1

d(Rd ,kT,Γ) ≥ ϵr , ∀Rd ∈D, k = 0. . . N −1

Using the trajectory parametrization by B-splines and the flat output property of the

system, Γ and t f become, respectively, the control points and parametric variable of a

trajectory in the flat space. v , ω, a and α are derived from Γ and t f (omitted in some

expressions for simplicity) through Eq. (2.21) and (2.22) thus respecting the kinematic

constraints of the robot.

Distance functions are represented by d. d(O,kT,Γ) is the minimum distance between

the robot and obstacles5. d(Rd ,kT,Γ) measures the spatio-temporal distance between two

robots. Rd represents the information from another robot, namely its intended trajectory

and footprint. Robot Rd belongs to the set D, which contains all conflicting robots with

respect to the robot computing the trajectory. The criterion used for classifying a robot

as belonging to a conflicting set is based on the maximum linear velocity and planning

horizon of the robots (see Fig. 2.10). To compute these distances, we evaluate the planned

configuration of each robot at each sampled time.

ϵo and ϵr are minima clearance from obstacles and other robots, respectively. In the

experimental section 2.7 that follows, we will discuss these values more. They were kept very

5in simulation we compute the distance to all obstacles in the sensing area defined by dsen whereas in the
experiments with real robots we use the costmap interpolation
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ra+tf,avmax,a

rb+tf,bvmax,b

Fig. 2.10 Conflicting robots set. A non empty intersection between the circles means that
the robots are mutually present on their conflicting sets D

small or equal to zero during simulations where perfect knowledge of robots and obstacle’s

positions is possible. In the real experiments, those values where chosen dynamically, during

planning, as a way to account for uncertainties in localization and trajectory tracking.

NLPn,1 is the problem solved at Step 1 of the DRHMP. Its characteristics, highlighting the

ones of the full problem that are not taken into account are :

Objective function:

• Time to reach the goal state (T f );

• Euclidean distance from planned configuration at nTc +Tp to the goal configuration.

Decision variables:

• Control parameters of rotot’s trajectory (Γ);

• Time to reach the goal state (T f ).

Constraints:

• Kinematic model (nonholonomic constraints);

• Initial state;

• Goal state (termination constraint);

• Bounded velocities;

• Bounded accelerations;

• Obstacle avoidance;
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• Inter-robot collision.

argmin
(Γn )

∥∥q
(
nTc +Tp ,Γn

)−qgoal
∥∥

subject to q(nTc ,Γn) = qprev, q̇(nTc ,Γn) = q̇prev,

v2(kT +nTc ,Γn) ≤ v2
max, k = 0. . . N −1

ω2(kT +nTc ,Γn) ≤ω2
max, k = 0. . . N −1

a2(kT +nTc ,Γn) ≤ a2
max, k = 0. . . N −1

α2(kT +nTc ,Γn) ≤α2
max, k = 0. . . N −1

d(O,kT +nTc ,Γn) ≥ ϵo , k = 0. . . N −1

NLPn,2 is the problem solved at Step 2 of the DRHMP. Its characteristics are:

Objective function:

• Time to reach the goal state (T f );

• Euclidean distance from planned configuration at nTc +Tp to the goal configuration.

Decision variables:

• Control parameters of rotot’s trajectory (Γ);

• Time to reach the goal state (T f ).

Constraints:

• Kinematic model (nonholonomic constraints);

• Initial state;

• Goal state (termination constraint);

• Bounded velocities;

• Bounded accelerations;

• Obstacle avoidance;

• Inter-robot collision.
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argmin
(Γn )

∥∥q
(
nTc +Tp ,Γn

)−qgoal
∥∥

subject to q(nTc ,Γn) = qprev, q̇(nTc ,Γn) = q̇prev,

v2(kT +nTc ,Γn) ≤ v2
max, k = 0. . . N −1

ω2(kT +nTc ,Γn) ≤ω2
max, k = 0. . . N −1

a2(kT +nTc ,Γn) ≤ a2
max, k = 0. . . N −1

α2(kT +nTc ,Γn) ≤α2
max, k = 0. . . N −1

d(O,kT +nTc ,Γn) ≥ ϵo , k = 0. . . N −1

d(Rd ,kT +nTc ,Γn) ≥ ϵr , ∀Rd ∈D, k = 0. . . N −1

In the DRHMP approach the conflicting robots set D is defined at each iteration based

on the circles with radius r +Tp vmax centered at q(nTc ,Γn−1).

tNLPn,1 is the optimization problem solved in the Step 1 of the termination stage.

Objective function:

• Time to reach the goal state (T f );

• Euclidean distance from planned configuration at nTc +Tp to the goal configuration.

Decision variables:

• Control parameters of rotot’s trajectory (Γ);

• Time to reach the goal state (T f ).

Constraints:

• Kinematic model (nonholonomic constraints);

• Initial state;

• Goal state (termination constraint);

• Bounded velocities;

• Bounded accelerations;

• Obstacle avoidance;

• Inter-robot collision.
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argmin
(T f ,Γn )

T f

subject to q(nTc ,Γ) = qstart, q̇(nTc ,Γ) = q̇start,

q(nTc +T f ,Γ) = qgoal, q̇(nTc +T f ,Γ) = q̇goal,

v2(kT +nTc ,Γ) ≤ v2
max, k = 0. . . N −1

ω2(kT +nTc ,Γ) ≤ω2
max, k = 0. . . N −1

a2(kT +nTc ,Γ) ≤ a2
max, k = 0. . . N −1

α2(kT +nTc ,Γ) ≤α2
max, k = 0. . . N −1

d(O,kT +nTc ,Γ) ≥ ϵo , k = 0. . . N −1

tNLPn,2 is the optimization problem solved in the Step 2 of the termination stage.

Objective function:

• Time to reach the goal state (T f );

• Euclidean distance from planned configuration at nTc +Tp to the goal configuration.

Decision variables:

• Control parameters of rotot’s trajectory (Γ);

• Time to reach the goal state (T f ).

Constraints:

• Kinematic model (nonholonomic constraints);

• Initial state;

• Goal state (termination constraint);

• Bounded velocities;

• Bounded accelerations;

• Obstacle avoidance;

• Inter-robot collision.
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argmin
(T f ,Γn )

T f

subject to q(nTc ,Γ) = qstart, q̇(nTc ,Γ) = q̇start,

q(nTc +T f ,Γ) = qgoal, q̇(nTc +T f ,Γ) = q̇goal,

v2(kT +nTc ,Γ) ≤ v2
max, k = 0. . . N −1

ω2(kT +nTc ,Γ) ≤ω2
max, k = 0. . . N −1

a2(kT +nTc ,Γ) ≤ a2
max, k = 0. . . N −1

α2(kT +nTc ,Γ) ≤α2
max, k = 0. . . N −1

d(O,kT +nTc ,Γ) ≥ ϵo , k = 0. . . N −1

d(Rd ,kT +nTc ,Γ) ≥ ϵr , ∀Rd ∈D, k = 0. . . N −1

In order to simplify the the following sections notation, we may consider τk ≡ kT +nTc .

2.6.6 Multi-robot Communication

The wireless communication among robots is, in itself, a very challenging topic. Whatever

the network architecture and employed technology may be, the robots need to be able

to exchange information with minimum latency possible at least once every Tc interval.

Furthermore, the robots’ clocks need to be very well synchronized so that timestamps

are consistent among the whole multi-robot system. Another practical concern is about

how the middleware ROS used for the experiments handles communication among nodes

distributed across different machines over a network6.

For the simulated tests, we used distributed shared memory among different threads

to exchange information with negligible communication delays. For experiments with real

robots, different setups were tested. Concerning the network architecture, a star topology

was first tested using a standard Wifi router. Due to high latencies, we switched to an AdHoc

network where the two robots could communicate directly.

Regarding the middleware, the use of one single ROS Master instance was quickly showed

to be unpractical, and a custom communication bridge was created. Finally, for clock

synchronization, we used chrony utility [18].

6This concern may not apply to the most recent version of ROS, ROS 2 that is built on top of DDS (Data
Distribution Service)
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2.6.7 Localization and Tracking Error

Localization of vehicles used in the experiments was done by using a particle filter [83]

merging data from gyroscopes, encoders, rangefinder sensors, and static maps. As is for

any localization system, there is an inherent error associated with the robot’s estimated

configuration. That uncertainty can be characterized by the covariance matrix of the robot’s

configuration, which is known for each robot at each instant τk . Likewise, each robot can

estimate its tracking error based on the planned reference trajectory and its configuration

estimate.

Both covariance values and tracking errors were sent as part of the information

exchanged between robots, along with their estimated configuration and planned trajectory.

This exchange enables a given robot R to compute a conservative "safety distance" from

robot Rc that is time-dependent and can replace the constant ϵr (Rc ) in the NLP constraints.

95% CR
qref(t≤𝜏k)
εloc(𝜏k)
εtr(𝜏k)

Fig. 2.11 Localization and tracking errors representation. The 95% Confidence Region ellipse
encompasses the central 95% of the probability mass of possible locations for a robot at
instant τk . The ellipse is dilated by the robot’s radius.

The new value is computed according to the equation:

ϵr (Rc , t ) = ϵtr(t )+ϵloc(t )+ϵtr,Rc (t )+ϵloc,Rc (t ) (2.25)

where ϵtr is simply the euclidean norm of lateral and longitudinal tracking errors and ϵloc

is a confidence value related to position estimates. ϵloc depends on the covariance matrix

given by the robots’ localization modules and its expression is given by Eq. (2.26):

ϵloc(t ) =
√
χ2

v (2)∥λ0,λ1∥∞ (2.26)

with λ0 and λ1 being the eigenvalues of the covariance matrix associated with the bivariate

normal distribution of possible locations in the XY plane of a robot at an instant τk . χ2
v (2) is

the 2 degrees of freedom chi-square value for a (1− v) confidence region (CR).7

7A 95% CR (i.e. χ2
0.05(2) = 5.991) was used in the experiments
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Similarly, ϵo in the NLP constraints can be replaced by ϵo(t ), where:

ϵo(t ) = ϵtr(t )+ϵloc(t ) (2.27)

Fig. 2.11 shows a graphical representation of errors ϵtr(t ) and ϵloc(t ) at instant τk .

2.7 Experimental Evaluation

We will now present experimental results of this framework applied to a simple multi-robot

simulation first, then to two real robots.

For performing DRHMP, a reasonable number of parameters have to be set. These

parameters can be categorized into two groups. Algorithm related parameters and the

optimization solver related ones. Among the former group, the most important ones are:

• The number of sample for time discretization (N );

• The number of internal knots for the B-spline curves (Nknots);

• The planning horizon for the sliding window (Tp );

• The computation horizon (Tc );

• The detection radius of the robot (dsen).

The latter kind depends on the numeric optimization solver adopted. However, since

most of them are iterative methods, it is common to have at least a maximum number of

iterations and a stop condition parameters. This large number of parameters makes the

search for a satisfactory set of parameters’ values a laborious task. Therefore, it is crucial to

have a better understanding of how the changes in these parameters impact performance

criteria as we will show in the remainder of this chapter.

2.7.1 Kinematic Simulation

We first applied our approach to a simple kinematic simulation that simulates multiple

robot motion among a map of polygonal obstacles in order to demonstrate the multi-robot

collision-free planning ability. Since it is a simple kinematic simulation, ϵr is considered

constant and equals to zero.

2.7.1.1 Resulting Trajectories

We first illustrate the performance of our algorithm qualitatively, using optimized parameters

whose influence will be discussed in the next section. The trajectories and velocities shown
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in Fig. 2.12 and 2.13 illustrate the motion planning solutions found by the two steps of our

approach for a team of three robots. Their motion is planned in an environment where three

static obstacles are present. Each point along the trajectory line of a robot represents the

beginning of a Tc update/computation horizon.

It is possible to see on those figures how the planner generates configuration and input

trajectories satisfying the constraints associated with the goal states that are reached by the

three robots.

Figure 2.12 presents the resulting plan computed ignoring coupling constraints (Step 2 is

not performed), and consequently, two points of collision occur. After the application of the

second step, including constraints to avoid robot collisions, a collision-free solution is found,

presented in Figure 2.13. Especially near the regions were collisions occurred, a change in

the trajectory is visible between Figure 2.12 to Figure 2.13 to avoid collision. Additionally,

changes in the robots (linear) velocities across charts in both figures can be noticed. Finally,

the bottom charts show that the collisions were indeed avoided: inter-robot distances in

Figure 2.13 are greater than or equal to zero all along the simulation.
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Fig. 2.12 Motion planning solution without collision handling
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Fig. 2.13 Motion planning solution with collision handling

2.7.1.2 Parameters’ Impact

We will now study how the algorithm related parameters and the optimization solver

related ones influence the approach performance.

Three criteria considered important for the validation of this method were studied:

• Maximum computation time during the planning over the computation horizon

(MCT/Tc ratio);

• Obstacle penetration area (P );

• Travel time (t f ).

Different parameters configuration and scenarios where tested in order to highlight how

they influence those criteria.

Maximum computation time over the computation horizon

The significance of this criterion lies in the need for assuring the real-time property of

this algorithm. In a real implementation of this approach, the computation horizon would

always have to be superior to the maximum time needed for computing a plan (MCT < Tc ).
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Table 2.1 Values for scenario definition

vmax 1.00 m/s

ωmax 5.00 rad/s

qstart [−0.05 0.00 π/2]T

qgoal [0.10 7.00 π/2]T

ustart [0.00 0.00]T

ugoal [0.00 0.00]T

O0 [0.55 1.91 0.31]

O1 [−0.08 3.65 0.32]

O2 [0.38 4.65 0.16]

Table 2.1 summarizes the parameters of the scenario studied for a single robot to analyse

this criteria.
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Fig. 2.14 Maximum computation time over computation time horizon in a three obstacles
scenario simulations

Results obtained from simulations in that scenario are presented in Figure 2.14, for

different parameters set. Each dot along the curves corresponds to the average of MCT/Tc

along different Tp ’s for a given value of (Tc /Tp , N ). The absolute values observed in the
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charts depend on the processing speed of the machine where the algorithm is run. Those

simulations were run on an Intel Xeon CPU 2.53GHz processor.

Rather than observing the absolute values, it is interesting to analyze the impact of

changes in the parameters values. In particular, an increasing number of time samples N

increases MCT/Tc for a given Tc /Tp . Similarly, an increasing of MCT/Tc as the number of

internal knots Nknots increases from charts 2.14a to 2.14c is noticed.

Further analyses of those data show that finding the solution using the SLSPQ method

requires O(N 3
knots) and O(N ) time. Although augmenting Nknots can yield to impractical

computation times, typical Nknots values did not need to exceed 10 in our simulations, which

is a sufficiently small value.
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Fig. 2.15 Increasing of detection radius and impact on a MCT/Tc ratio

Another parameter having direct impact on the MCT/Tc ratio is the detection radius of

the robot’s sensors. As the detection radius of the robot increases, more obstacles are seen at

once which, in turn, increases the number of constraints in the optimization problems. The

impact of increasing the detection radius dsen in the MCT/Tc ratio can be seen in Figure 2.15

for a scenario with seven obstacles. The computation time stops increasing as soon as the

robot sees all obstacles present in the environment.

Obstacle penetration

Obstacle penetration area P gives a metric for obstacle avoidance and, consequently, for

the solution quality. A solution where the planned trajectory does not pass through an object

at any instant of time gives P = 0. The solution quality decrease with increasing P. However,

since time sampling is performed during the optimization, P is usually greater than zero (see

Fig.2.16). A way of assuring P = 0 would be to increase the radius of the obstacle computed

by the robot’s perception system by the maximum distance that the robot can run within

the time spam Tp /N . However simple, this approach represents a loss of optimality and is

not considered in this work.
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P

r

Fig. 2.16 Penetration area illustration. r represents the obstacle plus the robot radii, the red
dots along the trajectory represent the sampled points for optimization

It is relevant then to observe the impact of the algorithm parameters in the obstacle

penetration area. Tc /Tp ratio, Nknots and dsen impact on this criteria is only significant for

degraded cases, meaning that around typical values those parameters do not change P

significantly. However, time sampling N is a relevant parameter. Figure 2.17 shows the

penetration area decreasing as the number of samples increases.
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Fig. 2.17 Obstacle penetration decreasing as sampling increases

Travel time t f

Another complementary metric for characterizing solution quality is the travel time t f .

Analyses of data from several simulations show a tendency that for given values of Nknots, N

and Tc the travel time decreases as the planning horizon Tp decreases. This can be explained

by the fact that a higher sampling density yields more optimal solutions (in terms of travel

time).

Another relevant observation is that the overall travel time is shorter for smaller N ’s. This

misleading improvement comes from the fact that the fewer the samples the greater will be

the obstacle penetration area as shown previously in Figure 2.17, and therefore the shorter

the computed path.
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Furthermore, Figure 2.18 shows travel time invariance for changes in the detection radius

far from degraded values that are too small. This fact points out that local knowledge of the

environment provides enough information for finding good solutions.
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Fig. 2.18 Increasing of detection radius and impact on t f

2.7.2 Real Robots

For the rest of this section, we present the results of experiments performed on two real

mobile robots (two Turtlebots 2).

2.7.2.1 Turtlebot 2 Mobile Platform

Turtlebot was designed in 2011 as a minimalist platform for ROS-based mobile robotics

education and prototyping. It has a small differential-drive mobile base (Fig.2.19) with

an internal battery, power regulators, and charging contacts. Atop this base is a stack of

laser-cut “shelves” that provide space to hold a netbook computer, depth camera, and lots

of open space for prototyping. To control cost, Turtlebot relies on a depth camera for range

sensing; it does not have a laser scanner. Despite this, mapping and navigation can work

quite well for indoor spaces. Turtlebots are available from several manufacturers for less

than $2,0008.

The Turtlebots were equiped with an Asus Xtion Pro Live 3D Sensor (RGBD camera, Fig.

2.20). The field of view of the camera is 58° horizontal, 45° vertical.

2.7.2.2 Experimental Setup

Experiments were carried out in order to investigate two aspects: how the DRHMP compares

to another local MP in a "single robot avoiding an obstacle" situation and how well

8More information is available at http://turtlebot.com

http://turtlebot.com
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Fig. 2.19 Kuboki mobile base used in experiments

Fig. 2.20 Asus Xtion Pro Live 3D sensor



2.7 Experimental Evaluation 45

collision avoidance between two robots running the DRHMP is performed in face of real

communication, perception and trajectory tracking issues. Across all experiments we used

vmax = 0.2 m/s, amax = 0.5 m/s2, Tp = 3.8 s, Tc = 0.3 s. A simple controller designed for

tracking a reference admissible trajectory based on the kinematic model of the system was

used [77].

2.7.2.3 Experiment 1: Single Robot Obstacle Avoidance

A testbed as shown in Fig. 2.21 was used for comparing collision avoidance with a static

obstacle using the DRHMP approach and the well known Dynamic Window approach

(DWA) [26] natively implemented in ROS. Although admittedly, each planners’ performance

can be highly impacted by the configuration of its parameters, an effort was made to set

those values so equivalent behaviors could be obtained. Velocity and acceleration limitations

were set to the same values for instance.

(a) (b)

Fig. 2.21 Experiment 1. (a) shows a representation of the testbed using the same map
information as the localization system of the real robots. (b) is an actual photo of the testbed

As indicated in Fig. 2.21, the robot located near the XY origin had to reach the "target"

point located about 2.3 m of its initial position. An obstacle of about 20 cm in diameter

not known by the robot in advance was placed in the way (the obstacle is not visible to the

robot from the starting position because of the limited camera field of view). As the robot
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senses its environment through his depth camera, the obstacle and the room are taken into

account.

Table 2.2 Experiment 1 summary

DRHMP DWA

Mean Std Mean Std

travel time (s) 12.637 0.084 18.790 0.385
average linear speed (m/s) 0.193 0.000 0.136 0.002
final position error (m) 0.014 0.004 0.092 0.013
final yaw error (rad) 0.011 0.004 0.355 0.053
min clearance from obstacles (m) 0.069 0.014 0.228 0.023

Table 2.2 summarizes the performance of each planner regarding five criteria. Mean and

standard deviation (Std) data were based on 10 trials for each algorithm. In none of the tests,

neither MP approaches failed to avoid obstacles. Compared to DWA, DRHMP can be seen

as a less conservative approach. It keeps less clearance from obstacles and can produce a

higher average linear velocity in order to minimize travel time. That behavior derives from

the type of objective function used in the NLPs.

Similarly, DWA’s behavior derives from its scoring algorithm. It is worth noticing that

DRHMP presents an inferior standard deviation compared to DWA, which suggests it is a

more stable approach. Typical paths adopted by both algorithms can be seen in Fig. 2.21a.

2.7.2.4 Experiment 2: Multi-robot Motion Planning

The second experiment consisted of having two robots going successively from one target

location in their shared workspace to another. Those targets positions were such that the

robots would execute two different triangle-shaped loops that share a common side. Along

this shared side, the two robots (if the timing was right) would have to cross each other to

reach their next target. The robots’ trajectories in Fig. 2.22 illustrate this setup.

To better evaluate the DRHMP performance in that scenario, two different sub-

experiments were set. In the first one (2a), a simplification about tracking and localization

errors was made. They were considered equal to zero by the DRHMP algorithm running in

both robots (ϵr = 0). It implied though that the physical robots had to be kept still during

planning to prevent them from colliding. As we will see, the ϵr = 0 assumption is far from

realistic, provided the platforms we worked with. The second sub-experiment (2b), on the

contrary, makes no such simplification and ϵr is based on the real information about the

physical robots executing the planned trajectories. This second case shows how even with

errors of about 50 cm the DRHMP can safely find collision-free trajectories for both physical
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robots. Everything else, especially communication, is done in the same way across both

experiments, as described in subsection 2.6.6.

(a)

(b) (c)

(d) (e)

(f)

(g) (h)

(i) (j)

Fig. 2.22 Experiment 2 results. (a) to (e) refer to sub-experiment 2a while (f) to (j) to sub-
experiment 2b. "Planned" or "P" data shows inter-root distance computed based on the
planned trajectories generated by the DRHMP approach. "Observed" or "O" data represents
the same distance but based on observed/estimated actual position of the robots. In (f) the
blue and purple error bands centered around the "Planned" line represent respectively the
safety distance of Eq. (2.25) (ϵr ) and its localization component (ϵloc,Ra +ϵloc,Rb ).

Experiment without localization error

The trajectories produced and the inter-robot distance along this entire sub-experiment

can be seen in Figs. 2.22a to 2.22e. Planned trajectories would allow both robots to avoid each

other with almost no clearance at four different moments, as indicated by the inter-robot

distance curve passing near zero in Fig. 2.22a.

Figs. 2.22b to 2.22e represent four snapshots of both robots planning processes around

the first moment of collision avoidance. The continuous green lines in front of the robots
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represent the XY points of their planned trajectory for the horizon Tp (i.e. step2-generated

trajectories). The dashed line in front of a given robot Ra represents what the other robot

Rb thinks Ra will do (i.e. Ra ’s step1-generated trajectory as known by Rb as a result of their

communication).

When collision is not an issue, dashed lines may superpose almost exactly the green

continuous ones9. In contrast, as collision becomes an issue, one can observe a greater

difference between those two trajectories. At Fig. 2.22c, Ra ’s step1-generated trajectory as

known by Rb is shown as coming straight at Rb . Ra ’s step2-generated trajectory, in green, is

quite different from that and clearly avoids a future collision. That is because Ra has already

taken into account Rb ’s step1-generated trajectory into its Step 2.

Following the time sequence and observing Fig. 2.22d, one can see that the actually

followed paths after solving the conflict reflect a smaller deviation from the otherwise

straight-line trajectory when compared to those planned green lines in Fig. 2.22c. This is due

to the Receding Horizon nature of the approach, which interleaves planning and execution

and therefore reconsiders the avoidance trajectory adapting to the changes made by the

other robot. Its implication, albeit conditioned to Tc values, is that collision avoidance

ends up being achieved with near the minimum clearance possible (zero in this case).

Furthermore, a natural compromise between robots is achieved: they both deform their

initial straight trajectories of comparable amounts.

That is precisely the behavior expected for the DRHMP in a multi-robot scenario and

observed in the simulation previously presented.

Experiment with real localization

In this sub-experiment, the physical robots did actually navigate their workspace and

the real observed information about their localization and trajectory tracking was used in

the DRHMP.

Due to imprecisions of sensors, actuators and low level controllers, ϵr becomes

meaningful in this second case, as shown by the error bands in Fig. 2.22f. They have the effect

of reducing the space of acceptable solutions in which the DRHMP searches for optimal

trajectories. If additionally, the workspace is very cluttered, there may be no acceptable

solutions left yielding optimization errors at the SLSQP algorithm level.

Nevertheless, for the studied setup, acceptable solutions were always found and the

inter-robot collisions of the physical robots were prevented at all times throughout the

experiment (as observed in the experiment video in [55]).

9communication delays may still prevent them from being identical
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From Fig. 2.22g to 2.22j, the difference between black and colored circles representing

the robots reflects the tracking error. Black circles use the mean information of robots’

localization systems while colored ones use the planned poses. As before, dashed and

continuous green lines in front of a given robot represent respectively the step1-generated

trajectory known by the other robot and its own step2-generated trajectory.

The utility of a nonconstant ϵr taking robots localization uncertainty into account can

be appreciated in Fig. 2.22f. It can be observed that when ϵr takes smaller values (such as

near time 45 s compared to time 20 s), the inter-robot distance can be reduced as well.

Table 2.3 Experiment 2 summary

Min Max Mean Std Obs

Planned IRD 0.014 - - - -

COD 0.000 0.403 0.016 0.044 370
Ra USD 0.282 1.187 0.472 0.158 370

2a URI 64.506 92.586 86.920 5.249 370

COD 0.000 0.265 0.017 0.038 323
Rb USD 0.280 0.895 0.512 0.134 323

URI 64.204 92.623 85.962 4.714 323

Planned IRD 0.376 - - - -
Observed IRD 0.253 - - - -
ϵr (m) 0.292 0.933 0.435 0.106 351

COD 0.004 0.232 0.014 0.026 355
2b Ra USD 0.073 0.973 0.408 0.103 355

URI 61.112 98.089 88.865 3.608 355

COD 0.000 0.186 0.018 0.036 351
Rb USD 0.201 0.821 0.526 0.064 351

URI 68.930 94.701 85.660 3.223 351
URI = % of the Received Information that is actually used by the DRHMP at Step 2; COD =

communication delay measured by the receiving end in seconds; USD = delay between

receiving and start using RI in DRHMP in seconds; IRD = inter-robot distance in meters

Table 2.3 summarizes statistics of experiment 2 regarding communication and inter-

robot distances. Comparing communication-related values between robots Ra and Rb and

then between sub-experiments 2a and 2b shows indeed that communication conditions

were very symmetric. The column titled "Obs" shows the number of observations and it

is roughly equal to the duration of the experiment divided by Tc (the period the robots

exchange step1-generate trajectories). Furthermore, due to the asynchronism between

robots’ planning processes and communication delays, it is common that part of the

trajectory information received by a robot concerns a time interval of no interest to that
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robot. In other words, at Step 2 of the DRHMP, the information about another robot’s

trajectory may be partially too old or planned for too far into the future. The percentage of

the information that can actually be used is referred to as URI.

Overall, despite considerable communication delays (tens of ms), low-quality

localization (main responsible for high ϵr values) and use of a simple kinematic controller

that does not take sliding and actuator response times into account, the DRHMP manages

to produce satisfying results with respect to multi-robot collision avoidance.

2.8 Conclusions

In this chapter, we presented a Distributed Receding Horizon Motion Planning (DRHMP)

approach for planning multiple robot motions in dynamic environments. At the goal

configuration neighborhood, the receding horizon approach ceases and a termination

planning problem is solved for bringing the robots to their precise final state.

Key techniques for implementing this motion planning approach exploited the system

flatness property, B-spline parameterization of trajectories, use of SLSQP optimizer,

interpolation of the discrete world representation for obtaining differentiable constraints

equations for obstacle avoidance, and online estimation of localization and tracking errors.

Experiments in simulation and on real robots show that the approach is able to work in

real-time, efficiently plan collision-free paths, and can deal with real-life communication

and localization difficulties.

A missing feature for more real applications would be the implementation of fail-safe

measures when no solution trajectory can be found by Step 1 or Step 2. The assumption that

the footprint of the vehicle can be described as a circle is a strong one as well. Further work

should try to extend the approach to more generic shapes.

This chapter relied on simple control algorithms that will be limited for highly dynamic

robots. The next chapter will introduce a new control law that exploits the computed paths

in order to improve trajectory tracking performance.



Chapter 3

Trajectory Tracking

From the previous chapter, we have shown how a motion planner can be devised to

obtain feasible reference trajectories for a set of vehicles by an association of Mathematical

Programming and Receding Horizon Approach in a method called DRHMP.

This chapter addresses the problem of tracking position and orientation given by those

reference trajectories for a system that undergoes perturbations. As pointed out in [77]

the term tracking problem is a rather loose one. Here the tracking problem is understood

as it usually is in the context of control literature. It is associated with the problem of

asymptotically stabilizing the system state around the reference trajectory. The diagram

depicted in Fig. 3.1 shows one possible architecture where the addition of a controller could

be used to that end.

So, we will investigate two ways to optimally follow the admissible reference trajectory.

The first kinematic approach that is put forward globally asymptotically stabilizes the system

around the trajectory under the condition the orientation error between the physical robot

and the reference trajectory be smaller than π/2. The second approach is a non-linear

predictive control for path tracking that takes into account lateral wheel slippage.

For these two controllers, we consider a sufficiently simple two-dimensional model in

the yaw plane.

3.1 Problem Overview

We remind here that at the discretized time kTc , k being a strictly positive integer, the

DRHMP algorithm outputs a reference trajectory for a time horizon [kTc ,kTc+Tp ], with Tc ≪
Tp . On this time horizon, only the part of the trajectory corresponding to the computation

horizon Tc is kept as a section of the final reference trajectory, the rest (Tp −Tc ) being
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DRHMP Controller System

Disturbances

u

Observer

qinit, qgoal

qr (t ), q̇r (t ), q̈r (t ) ∀ t |
t ∈ [kTc , kTc +Tp ] y

q, q̇Θ

Fig. 3.1 The planner, knowing the initial and goal configurations of the robot, takes
information about obstacles and other robots (denoted by Θ) from the observer and outputs
a reference trajectory. The controller takes a state feedback from the observer and the
reference trajectory from the planner and generates the system’s input u.

replaced by a new trajectory when the horizon [(k +1)Tc , (k +1)Tc +Tp ] is computed (see

Fig. 2.10).

The generated trajectory is a cubic B-spline of degree 3, which is of class C 2, provided

that the connection nodes are all distinct. Thus, the expression of this trajectory qr (t)

and its two derivatives q̇r (t) and q̈r (t) are available at any instant inside the time window

[kTc ,kTc +Tp ].

The problem is thus to define a control law to track this reference trajectory, which is

gradually defined over a sliding time horizon. We can, therefore, consider this to be a classic

problem of pursuing non-stationary trajectories. In the case of the plane, this consists of

determining a control to asymptotically stabilize the longitudinal, lateral, and directional

errors of the robot (ex(t ),ey (t ),eψ(t )).

In his work [20], Defoort proposes a second-order sliding-mode control law with integral

action, in order to solve the problem of practical trajectory stabilization, with practical

stabilization less strong than asymptotic stabilization corresponding to stabilization within

a restricted and known domain [41]. One difficulty in implementing this method is its

setting, which requires knowing the higher-order derivatives of the slip variable. Another

more general limitation related to the theory of sliding mode controllers is the chattering

phenomenon that causes high-frequency oscillations, increasing energy consumption, and

damage to the actuators. To limit the chattering in control signals, a second-order sliding

mode controller may be investigated, as already done in [30], for instance.

We propose here to investigate a different approach, by testing two types of controllers,

with complementary benefits and objectives, described in detail in the following sections.
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3.2 Tracking a Reference Vehicle with same Kinematics

At first, let us investigate the pursuit of the reference trajectory qr (t) using a control law

based on the kinematic model of robots. This Tracking Reference Vehicle with Same

Kinematics (TRVSK) strategy, which is often sufficient, has the major advantage of being easy

to implement. It thus allows a first evaluation of the motion planning strategy developed in

the previous chapter.

Following we present the kinematic control law developed by Thuilot [84], based on the

assumption of rolling without slipping, established from Samson’s transformation into a

chained system [75].

This is an adaptive backstepping controller as proposed in various previous works

[4, 8, 42, 50, 51, 69]. Adaptive controllers have the specificity to improve their performance

by estimating unknown or varying parameters.

The one used here is model-based. It has the advantage of being designed based on a

chained form model. That way, linear systems theory is still applicable, while still considering

the actual nonlinear robot model. It is therefore not necessary to linearize it around the

equilibrium ey = eψ = 0 as it is classically done, for example in [11].

It also has the advantage of being independent of speed. As a result, speed variations do

not affect the controller’s error-correction performance. Easily deployable, its expression is

quite simple, and its implementation requires only positioning information.

For a unicycle-type robot, kinematic equations of motion with the assumption of rolling

without slipping, meaning a zero lateral speed and a longitudinal speed equal to the angular

speed of the wheels multiplied by their radius, are as follows:
ẋ

ẏ

ψ̇


︸ ︷︷ ︸

q̇

=


u1 cosψ

u1 sinψ

u2

 (3.1)

with u1 the longitudinal velocity and u2 the yaw rate inputs.

Let us consider a reference frame Fr that the robot must pursue in position and

orientation, defined by the smooth time function (xr , yr ,ψr ) which is solution to the robot’s

kinematic model for a specific reference control input ur = (u1,r ,u2,r ). Then, note (ex ,ey ,eψ)

the tracking error in position, meaning the error between the physical robot and the

reference robot.

As described in [77] by using the Lyapunov stability theorem, the following feedback

nonlinear control input is proved to asymptotically stabilize the tracking error at zero:
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{
u1 = (w1 +u1,r )/cos(eψ)

u2 = w2 cos2(eψ)+u2,r

by using the following control law {
w1 = k1i1

w2 = k2i2 +k3i3

with 
i1 =−|u1,r |(ex +ey tan(eψ))

i2 =−u1,r ey

i3 =−|u1,r | tan(eψ)

This controller is established by changing coordinates and control variables to express

the control equations as a chained system. It is valid only if the orientation error eψ remains

strictly less than π/2.

While this controller has the advantage of easy implementation, it is only effective in

application cases without slippage. Designed for slip-free movement on horizontal terrain,

it does not consider the consequences of high dynamic solicitations on the lateral behavior

of the robot. However, mobile robots can operate on floors with low grip, such as carpets.

Another sliding factor is the robot load. Depending on whether the robot is navigating

empty or carrying a large load, its adhesion conditions change. Finally, low-level control

and actuators response time can have a significant impact on the quality of path tracking.

For all these reasons, the first simulation evaluations, reported in section 3.4, were not

very conclusive. Significant tracking errors are observed which in real life situations with

real robots can lead to erratic behavior.

Under these conditions, a new control strategy that takes into account the dynamics of

the system and the information provided by the motion planning is necessary.

In the next section, based on a predictive control law [39], we will adapt it to the model

of our robot and modify it to take into account the reference trajectory information on the

prediction horizon already provided by our planner. This nonlinear controller is based on

the dynamic model of the robot. In particular, it takes into account the inertial properties of

the system.
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3.3 Modification of a Nonlinear Continuous Generalized

Predictive Control

Including a model predictive controller results in the architecture presented in Fig. 3.1 in

the introduction of this chapter for each robot.

The authors of [39] propose a Nonlinear Continuous-time Generalized Predictive Control

(NCGPC) meant for outdoor mobile robots. Following their approach, we derive a different

control law that takes advantage of our receding horizon planner. That new control law is

created by replacing the approximation for the reference output used in their approach by

the prediction of our motion planner DRHMP.

3.3.1 Extended Unicycle Model

To apply the same approach as in [39] we need an extended model for the unicycle mobile

robot that integrates the kinematic and dynamic models. Furthermore, we need to be able

to write the model in a nonlinear control-affine form as shown below in Eq. (3.2):

q̇ = f (q,u) = fa(q)+
p∑

j=1
fb, j u j (3.2)

From [19] we can write such an extended model as in Eq. (3.3):

ẋ

ẏ

ψ̇

v̇

ω̇


︸ ︷︷ ︸

q̇

=



v cosψ

v sinψ

ω
θ3
θ1
ω2 − θ4

θ1
v

−θ5
θ2

vω− θ6
θ2
ω


︸ ︷︷ ︸

fa (q)

+



0 0

0 0

0 0
1
θ1

0

0 1
θ2


︸ ︷︷ ︸

fb=[ fb,1 fb,2]

[
u1

u2

]
︸ ︷︷ ︸

u

(3.3)

where q ∈Q ⊂Rn |n = 5 is the state vector composed of the longitudinal and lateral positions,

the orientation, and the longitudinal and angular speeds. And u ∈U ⊂Rp |p = 2 is the

system input composed of u1 the desired longitudinal velocity and u2 the desired yaw rate.

This model is obtained by assuming a low-level PD velocity controller to create a relationship

between the acceleration and the desired speed. Also, the slip speed of the drive wheels and

forces on caster wheels are neglected.

The parameters vector [θ1 θ2 θ3 θ4 θ5 θ6]T = θ characterizing the dynamics of the robot

can be determined either by system identification or by the properties of the unicycle robot,

such as its mass, moment of inertia, and impedance of motors. Details on the latter method
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are provided in [19]. For our particular simulated case, an identification algorithm was used

based on the minimization of error in velocities followed by the minimization of error in

position.

This identification process was used to find θ for both simulated and real robots. First,

the position, velocity and control input of a robot were recorded during a short period of

time (less than one minute). Then, the SLSPQ optimizer was used to find the set of control

variables (θ) that minimize the errors in velocity and position. At each iteration of the

optimizer, the dynamic model based on the current values of θ was used to simulate the

velocity and position of the robot subject to the same control inputs as the real system.

Fig. 3.2 shows a comparison between the real system and the identified dynamic model after

convergence of the optimizer.
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Fig. 3.2 Given the same input values (u(t )), the blue velocities and position represent a real
turtlebot whereas the green ones are from the identified dynamic model

The discrete form with a simple integration of explicit type is given in Eq. (3.4) (the time

step tk+1 − tk needs to be small enough, otherwise an integration of implicit type would be

necessary):
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xk+1

yk+1

ψk+1

vk+1

ωk+1


︸ ︷︷ ︸

qk+1

=



vk cosψk

vk sinψk

ωk
θ3
θ1
ω2

k − θ4
θ1

vk + u1,k
θ1

−θ5
θ2

vkωk − θ6
θ2
ωk + u2,k

θ2

 (tk+1 − tk )+



xk

yk

ψk

vk

ωk


︸ ︷︷ ︸

qk

(3.4)

Written otherwise, the vector θ can then be identified from the following equation:

[ vk+1−vk
tk+1−tk

0 −ω2
k vk 0 0

0 ωk+1−ωk
tk+1−tk

0 0 vkωk ωk

]
θ =

[
u1,k

u2,k

]

3.3.2 Cost to Minimize

The objective is to synthesize a control law that minimizes the quadratic error in position

and orientation (i.e. pose) over a time-horizon ahead of the current instant t .

Since only error in pose is to be minimized, the system output can be written as follows:

z(t ) = h(q(t )) =
[

x y ψ
]T

with z ∈ Z ⊂Rm |m = 3. And the error as:

e(t ) = z(t )− zref(t )

where zref(t ) is the reference output provided by the motion planning.

The criterion to be minimized can be written as:

J =
m∑

i=1

1
2

∫ Ti

0
(ei (t +τ))2dτ

where Ti is the prediction horizon for the i th element of z(t ) and ei (t +τ) the i th element

of the prediction error at t +τ with 0 < τ≤ Ti . In this particular case, to find the control law

that minimizes J is to find u satisfying the equation:

∂J

∂u
= 0p×1

For solving the above equation, an expression for the prediction error must be defined

and the criterion rewritten in a matrix form.
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3.3.3 Predictive Error Definition

In order to obtain an equation of error e(t +τ) where the system input u is explicitly present,

we rewrite z(t +τ) using Taylor series:

zi (t +τ) =
ρi∑

k=0
z(k)

i (t )
τk

k !
+ϵ(τρi )

As explained in [39] the vector ρ = [ρ1 · · · ρm] is the relative degrees of a nonlinear MIMO

system (Multiple Input Multiple Output). It is a vector composed of possibly different values

of relative degrees ρi for each output zi . ρi is the least number of derivatives required to

make explicit in the expression of zi at least one component of the input vector u.

Furthermore, a nonlinear control-affine MIMO system (Eq. (3.2)) has a relative degree

ρ = [ρ1 · · · ρm] around q0 if:

1. L fb, j L(k)
fa

zi = 0 for all 1 ≤ j ≤ p, for all k < ρi −1, for all 1 ≤ i ≤ m and for all q in the

neighborhood of q0

2. the product DT D is non-singular, D being the decoupling matrix of dimension m ×p,

given by:

D =


L fb,1 L(ρ1−1)

fa
z1 · · · L fb,p L(ρ1−1)

fa
z1

...
. . .

...

L fb,1 L(ρm−1)
fa

zm · · · L fb,p L(ρm−1)
fa

zm

 (3.5)

Here above, the Lie derivative of the output function zi along f , in q ∈Rn is defined as

follows:

L f zi (q) =
n∑

j=1

∂zi

∂q j
(q) f j (q)

with 1 ≤ j ≤ p and 1 ≤ i ≤ m (p = 2 ; m = 3). For these values of i , we note that f1 = fa 1 and

f2 = fa 2, thus fi = fa i . Then, we use the standard geometric notation for Lie derivatives

summarized below by its recursive expression: L(0)
f zi = zi

L(k)
f zi = L f L(k−1)

f zi =
∂L(k−1)

f zi

∂q f = z(k)
i

Using this notation, L fb, j L(k)
fa

zi in condition 1) can be read as the Lie derivative of the kth

Lie derivative of zi with respect to fa with respect to fb, j .
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Rewriting the expression for zi (t +τ) in a matrix form and excluding the remainder term,

we obtain the following approximation:

zi (t +τ) ≃
[

1 τ · · · τρi

ρi !

]
︸ ︷︷ ︸

Λi

[
zi (t ) żi (t ) · · · z(ρi )

i (t )
]T

Replacing the first matrix by the more compact notation Λi and using Lie derivatives,

one can write:

zi (t +τ) ≃Λi Lzi (3.6)

where

Lzi =
[

L(0)
f zi (t ) L(1)

f zi (t ) · · · L(ρi−1)
f zi (t ) L(ρi )

f zi (t )
]T

which, assuming condition 1) above, can be simplified (all lines of Lzi except the last one) to:

Lzi =


L(0)

fa
zi (t )
...

L(ρi−1)
fa

zi (t )

L(ρi )
fa

zi (t )+L fb (L(ρi−1)
fa

zi (t ))u(t )


This last form of Lzi makes the system input u explicit in the expression of zi (t +τ).

Functions f , fa and fb come from the model in Eq. (3.2).

As for the second term in the prediction error expression, zi,ref(t +τ), it can be kept

undetermined until the expression for u, meaning the control law, is found. This is possible

because our planner can give its value for any τ | 0 < τ≤ Ti as long as Ti ≤ Tp −Tc . That last

condition over Ti is needed because zref(t +Tp −Tc ) is the further in time the planner can

output a valid reference trajectory for any given t .

3.3.4 Control Law equation

After some algebraic manipulation, we derive the final expression for the control law as

shown in Eq. (3.7).

∂J

∂u
= 0p×1

⇒ u =−(DT D)−1DT (K ss)−1(K sLz −R s) (3.7)

where D is the decoupling matrix (Eq. (3.5)), K ss and K s the gain matrices (Eq. (3.8) to (3.10)),

Lz the prediction output matrix (Eq. (3.11)) and R s the future reference output matrix
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(Eq. (3.12) and (3.13)). The detailed steps to arrive at Eq. (3.7) are showed in Appendix B.

K s = diag([K s
1 · · · K s

m])K ss = diag([K ss
1 · · · K ss

m ]) (3.8)

with K s
i the last line of the matrix Ki and K ss

i the last element of the vector K s
i .

Ki is defined as:

Ki =
∫ Ti

0
ΛT

i Λi dτ (3.9)

which gives the following expression for each element of Ki :

Ki , (a,b) =
T (a+b)+1

i

((a +b)+1)a!b!
(3.10)

with a, b ∈ [0, ρi ] ⊂Z the row and column indexes.

Lz =
[

z1 · · · L(ρ1)
fa

z1 · · · zm · · · L(ρm )
fa

zm

]T
(3.11)

R s = [
R s

1 · · · R s
m

]T (3.12)

R s
i is the last element of the row vector Ri defined as:

Ri =
∫ Ti

0
zi ,refΛi dτ (3.13)

Now that the general expression of the control input u is defined, we can specialize it for

our particular case of a unicycle robot represented by the model in Eq. (3.3).

3.3.5 Control Law Equation for a Unicycle-like Vehicle

In order to find u, matrices D , K s , K ss , Ly and R s must be determined. To do so, the vector ρ

is needed. A way of finding ρ for our particular unicycle system is by computing L fb, j L(k)
fa

yi

for k beginning at 0, and incrementing it until the conditions 1) and 2) presented before are

satisfied.

For ρ = [1 1 1], L fb, j L(0)
fa

yi = L fb, j yi = 0 for all 1 ≤ j ≤ p, for all 1 ≤ i ≤ m which does not

satisfy the second condition as shown below:
L fb,1 y1 = [1 0 0 0 0 0][0 0 0 1/θ1 0]T = 0

L fb,1 y2 = [0 1 0 0 0 0][0 0 0 1/θ1 0]T = 0

L fb,1 y3 = [0 0 1 0 0 0][0 0 0 1/θ1 0]T = 0
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Lg2 y1 = [1 0 0 0 0 0][0 0 0 0 1/θ2]T = 0

Lg2 y2 = [0 1 0 0 0 0][0 0 0 0 1/θ2]T = 0

Lg2 y3 = [0 0 1 0 0 0][0 0 0 0 1/θ2]T = 0

For computing L fb, j L(k)
fa

yi with ρ = [2 2 2] we need first L fa yi :


L fa y1 = [1 0 0 0 0 0] fa(q) = v cosψ

L fa y2 = [0 1 0 0 0 0] fa(q) = v sinψ

L fa y3 = [0 0 1 0 0 0] fa(q) =ω

Computing now L fb, j L f yi we obtain:


L fb,1 L fa y1 = [0 0 − v sinψ cosψ 0 0] fb,1(q) = cosψ/θ1

L fb,1 L fa y2 = [0 0 v cosψ sinψ 0 0] fb,1(q) = sinψ/θ1

L fb,1 L fa y3 = [0 0 0 0 0 1] fb,1(q) = 0
L fb,2 L fa y1 = [0 0 − v sinψ cosψ 0 0] fb,2(q) = 0

L fb,2 L fa y2 = [0 0 v cosψ sinψ 0 0] fb,2(q) = 0

L fb,2 L fa y3 = [0 0 0 0 0 1] fb,2(q) = 1/θ2

which gives the following decoupling matrix:

D =


cosψ
θ1

0
sinψ
θ1

0

0 1
θ2


and consequently:

DT D =
 1

θ2
1

0

0 1
θ2

2


which is non-singular for all θ1,θ2 ̸= 0. Besides, the first condition is also met:

L fb, j L(ki )
fa

yi = 0 ∀ ki < ρi −1 .

ρ = [2 2 2] is then a solution. Consequently, matrices K s , K ss and Ly can be written as

below:

K ss = diag
([

T 5
1

20
T 5

2
20

T 5
3

20

])
K s = diag

([[
T 3

1
6

T 4
1

8
T 5

1
20

]
· · ·

[
T 3

3
6

T 4
3

8
T 5

3
20

]])
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Lz =



x

v cosψ(
θ3
θ1
ω2 − θ4

θ1
v
)

cosψ− vωsinψ

y

v sinψ(
θ3
θ1
ω2 − θ4

θ1
v
)

sinψ+ vωcosψ

ψ

ω

−θ5
θ2

vω− θ6
θ2
ω


R s can be found (numerically or analytically) from the planner’s output according to the

following expression:

R s = 1

2


∫ T1

0 xref(t +τ)τ2dτ∫ T2
0 yref(t +τ)τ2dτ∫ T3
0 ψref(t +τ)τ2dτ

 (3.14)

Thus the complete expression for u becomes:

u = −10

[
θ1/T 5

1 cosψ θ1/T 5
2 sinψ 0

0 0 θ2/T 5
3

]
 1

60


20T 3

1 x +15T 4
1 v cosψ+6T 5

1

((
θ3
θ1
ω2 − θ4

θ1
v
)

cosψ− vωsinψ
)

20T 3
2 y +15T 4

2 v sinψ+6T 5
3

((
θ3
θ1
ω2 − θ4

θ1
v
)

sinψ+ vωcosψ
)

20T 3
3ψ+15T 4

3ω+6T 5
3

(
−θ5
θ2

vω− θ6
θ2
ω

)


−


∫ T1

0 xref(t +τ)τ2dτ∫ T2
0 yref(t +τ)τ2dτ∫ T3
0 ψref(t +τ)τ2dτ




(3.15)

3.3.6 Desired Trajectory Definition from DRHMP Solution

Because the equation for u2 (angular velocity control input) does not show any terms using

the error in position (x, y), the input cannot correct errors in position if no error in velocity

nor orientation is present.

To solve that problem, we derive new desired input values xdesired, ydesired, ψdesired and

use them instead of xref, yref, ψref in Eq. (3.15). The desired values are chosen so lateral

position error can be corrected and the vehicle stabilized around the planner’s trajectory

even when only that kind of error is present. The position error is as follows: eXY = [xref −
x, yref − y]T .
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That error in the vehicles frame of reference is then l⃗ = R(−ψ)eXY and the lateral error is

the second element of l⃗ , l1. R(−ψ) represents the 2D rotation matrix of the vehicle’s negative

yaw (−ψ).

Two approaches were then considered:

1. Use xdesired, ydesired, ψdesired equals xref, yref, ψref +arctan(αl1) with

α= c

(
1− arctan(s (2τ/T3 −1))+arctan(s)

2arctan(s)

)

where c is a positive value behaving as a gain (a convergence factor), giving the span

of α (α ∈ [0,c]). Constant s is defined over [0,∞[, and it is a shape factor; the smaller

it is, the closer to a straight line α is, conversely, the bigger the s, the closer to a step

function. τ is the time variable used for computing R s .

α is inspired by sigmoid functions such as the error function (erf) and can be seen as a

model for predicting how the lateral error will decrease with time.

Fig. 3.3 shows curves α(η)/c | η= τ/T3 for different s constants to help visualize the

type of curve used.

0.0 0.2 0.4 0.6 0.8 1.0
/T3

0.0

0.2

0.4

0.6

0.8

1.0

/c

s = 0.1
s = 2
s = 4
s = 8
s = 16
s = 32

Fig. 3.3 Representation of α(τ) fuction for different values of s

2. Change the B-spline control points defining the reference trajectory generating then

the desired values input values. The new control points would be generated as

explained below:

Ĉi =Ci −αi eXY
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αi = c

(
1− arctan(s (2di /D −1))+arctan(s)

2arctan(s)

)
with D equals the B-spline control polygon length and di the sum of distances between

successive control points from C0 to Ci . s, c are analogous to the previous case.
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Fig. 3.4 Simulation of the NCGPC-M controller without (a) and with (b) desired reference
correction based on the correction approach (1) using s = 2 and c = 1

In our experiments, we used the first approach for generating the desired values. Fig. 3.4

shows a simulation where the problem of applying the reference trajectory directly is present.

The result when the correction from approach (1) is applied is shown as well in Fig. 3.4b.

On Fig. 3.4, the red xy paths (on the two top plots) represent the controlled system position,

while the blue path is the reference xy path. Similarly, blue linear and angular velocities on

plots in the bottom are the reference values, red is the actual system’s velocities and green is

the NCGPC-M output (the system control input).

Given the satisfactory performance of the approach (1), the second approach, based on

changing the control points, has not been tested.

3.4 Experimental Evaluation

We compared the different control approaches using dynamic simulations with XDE. XDE is

a simulation engine developed at CEA [57]. Its visual environment can be seen in Fig. 3.5.

The simulated robots were set to weigh 55 Kg, an overall shape similar to that of an Adept

Lynx mobile platform [63], the two drive wheels were placed inline with the geometric center
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Fig. 3.5 XDE 3D visual environment where 3 robots navigate among 7 obstacles

of the robot and the track length was around 20 cm. They had a radius of near 10 cm and

had material properties close to rubber. Four caster wheels were added to each corner of

the robot.

In order to analyze the controller performance, three different control laws were

compared: NCGPC (Non-linear Continuous-time Generalized Predictive Control) is the

initial control law presented in [39]; NCGPC-M (NCGPC-Modified) is the control law

presented in the previous section 3.3; TRVSK (Tracking Reference Vehicle with Same

Kinematics) introduced in [77] is discussed in previous section 3.2 and, differently from the

other two control laws, it is not predictive.

NCGPC-M and NCGPC differ on how they take xdesired, ydesired, ψdesired into account.

NCGPC equation for the control input u results from an extrapolation of the reference output

at instant τ, forward in time. Meanwhile NCGPC-M, by avoiding that extrapolation, has the

matrix R s in its expression for u which integrates xdesired(t ), ydesired(t ), ψdesired(t ) over time.

Table 3.1 Comparison of control laws

TRVSK NCGPC NCGPC-M

RMS(∥[xerr yerr]∥) (cm) 6.93 1.17 0.44

max(∥[xerr yerr]∥) (cm) 31.28 4.26 1.92

RMS(ψerr) (deg) 2.78 0.75 0.34

max(ψerr) (deg) 16.29 4.84 1.28

Fig. 3.6 shows the result of three identical simulations (same reference trajectory, robot,

obstacles) except for the control law adopted to follow the reference trajectory. 6 obstacles
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Fig. 3.6 Control laws comparison. (a) General configuration of the simulation. (b) Zoom on
the robots’ paths stressing the non-coincidence of the planned path and the three executed
paths for each control law. Travel time is around 48 s.

were placed in the simulated area as well as 4 waypoints to which the robot passed by

before reaching its goal near point (−4,−5). Motion planning main parameters, Tp and Tc ,

were set to 1.2 s and 0.3 s respectively1. The three different paths for each simulation and

the reference trajectory are overlapped, and their non-coincidence can better be seen in

Fig. 3.6b. Table 3.1 shows a comparison of the three control laws based on the results of the

three simulations described in Fig. 3.6. Additionally, Fig. 3.7 shows the pose error during the

first 20 seconds of the simulations, which is nearly the first half of the robot’s path2.

From Table 3.1 and Fig. 3.7, we can see that NCGPC-M shows the smaller root mean

square (RMS) and smaller maximum values for both position and orientation errors. This

indicates that the NCGPC-M is the control law that performs the best among the three

studied with regard to error minimization.

Table 3.2 shows the mean and standard deviation of 4778 measurements of elapsed

time for each of the four routines: the output evaluation routine in the planner and

the three different control routines. All controllers were coded in C++03 STL language

and compiled using Visual C++ 10.0 compiler. They were run on an Intel i7-5600U CPU.

TRVSK and NCGPC approaches were implemented having constant time complexity while

1For some discussion about choosing values for Tp and Tc see [53]
2in the second half of the path, some high differences between errors make difficult to appreciate the graph
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Fig. 3.7 Errors in position and orientation for the first 20 seconds of the simulation shown in
Fig. 3.6.

NCGPC-M implementation was O(n) on the number of samples used for integration when

approximating matrix R s (Eq. (3.14)). If an analytical solution for R s would be provided,

NCGPC-M could also have constant complexity, but it would not necessarily be quicker than

the current implementation for a relatively small number of samples.

Table 3.2 Performance of planning and control implementations on an Intel i7-5600U CPU

TRVSK NCGPC NCGPC-M

Mean elapsed time (µs) 1.79 1.89 33.86

Standard deviation (µs) 1.12 0.59 6.09

The NCGPC-M control, which had the best performance for minimizing the position and

orientation errors, presents the highest computational cost of the three controllers, which

is expected since it computes a numerical integration the others do not. In Fig. 3.8 we see

a histogram based on the same 4778 calls to the NCGPC-M controller. For 95.44% of the

calls the elapsed time was inferior to 35 µs (~29 kHz) and in no case the elapsed time was

bigger than 140 µs (~7 kHz). These performances therefore makes this controller suitable

for a realtime implementation.



68 Trajectory Tracking

0 10 20 30 40 50 60 70 80 90 100110120130140

elapsed time (¹s)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

fr
e
q

u
e
n

cy
95.44% of the cases t < 35 ¹s

Fig. 3.8 Histogram of controller frequency. Plot based on 4778 calls to the NCGPC-M
controller

3.5 Conclusions

We generalized a Nonlinear Continuous Generalized Predictive Control (NCGPC) for taking

complete parameterized trajectories instead of estimating the future reference output by

extrapolating its current value, thus taking advantage of our trajectory planning approach

and improving the controller performance.

The simulated results suggest that this approach allows a system of multiple unicycle-like

robots to navigate collision-free with errors from planned position below 2 cm. Furthermore,

the results indicate a response frequency for the planner and controller higher than 2 kHz

what would allow for their use in a real-time system.



Chapter 4

Integrated Task and Motion Planning

4.1 Introduction

In the previous chapters, we have proposed a local receding horizon planning algorithm and

a control law able to take dynamics effects into account. In an efficient multi-robot system,

there remains the problem of allocating tasks to different robots and deriving sequence

of actions (plans) that can carry out those tasks. This problem is particularly difficult in a

partially known environment.

A robotic system for real-life applications needs to address two sources of uncertainties

when planning tasks: the first one about the world state (sensing uncertainty) and the second

about the outcome of actions (predictability uncertainty). From a decision-theoretic point of

view, this problem is simply described as planning under uncertainty. The typical scientific

and industrial use cases for which we developed the approaches in chapters 2 and 3 of this

work present great amounts of both sources of uncertainties as most real scenarios do.

A possible way of modeling planning under uncertainty problems is by using Partially

Observable Markov Decision Processes (POMDPs). POMDP models a decision process

in which it is assumed that outcomes of actions are partly random and partly under the

control of a decision maker (an agent), but the agent cannot directly observe the underlying

world state. Instead, it must maintain a probability distribution over the set of possible

states, based on a set of observations and observation probabilities, and the underlying

Markov Decision Process (MDP). Solving POMDPs in real scenarios is usually intractable as

discussed in [40], thus many approaches have been proposed to reduce the complexity of

the problem.

Hierarchical approaches to planning, introduced more than 40 years ago [74], have

been considered for trying to solve these difficult problems by exploiting some hierarchical

knowledge about the planning domain. Among the five works on task planning considered
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in the rest of this section, three can be considered to fit this category [5, 47, 33]. Work

presented in [80] is a generic framework that could in theory apply different techniques for

task planning, including hierarchical ones. Only work in [66] avoids completely hierarchical

knowledge by planning in a higher abstraction level with planning blocks called skills.

In particular, work presented in [5] uses a variant of decentralized POMDPs

(DecPOMDPs) called MacDecPOMDPs to generate off-line policies in a warehouse domain

for 3 robots. MacDecPOMDPs employs macro-actions: temporally extended actions which

may require different amounts of time to execute to perform planning. Its planner is capable

of generating cooperative behavior for complex multi-robot domains with task allocation,

direct communication, and signaling behavior emerging automatically as properties of

the solution. However, the time required for such an approach is still prohibitively high;

computation of the policies for 3 robots takes around 1 hour.

Authors of [47] transform the POMDP into MDP by rolling the observation uncertainty

into the transition model. However, solving MDPs for real case scenario remains usually

untractable. The problem is overcome using techniques for extending the MDP to

hierarchical tasks. They combine MAX-Q (from reinforcement learning literature) and

Monte-Carlo Tree Search “intelligently” in order to solve planning in the NAMO (Navigation

Among Movable Obstacles) domain. Theoretical and empirical (using simulations) analysis

show that their approach is linear in the number of obstacles.

The Hierarchical Planning in the Now (HPN) approach [33] integrates task and motion

planning and the same time addresses uncertainty directly. This work shares much in

common with other works done for similar domains but seems to be the one better suited

and most systematic for solving complex, abstract tasks in long time horizons, taking into

account uncertainties and enabling information-gathering actions. They avoid trying

to find optimal solutions to the underlying POMDP (which is intractable) by, broadly

speaking, constructing a deterministic approximation of the dynamics, build a sequential

non-branching plan, execute the plan while observing the world for changes of the expected

outcomes and replan when deviations occur. Furthermore, to address the uncertainty

about the current state, planning must be done in the belief space, which is the probability

distributions over world states.

Work in [66] defines robots’ skills as the building blocks that make up a plan. Skills are

defined in a STRIPS-like manner. World model is parsed into PDDL (Planning Domain

Definition Language). It overcomes uncertainties by execution monitoring and replanning.

The necessary motion planning and geometric condition checks are performed within the

skills, so the skills are not constrained by a specific higher-level component, thus little gain

would come from a hybrid (motion and task) planning. Implementation of general robot
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skills is an open problem (picking skill, for instance). Only one skill can be executed at a

time (multi-threaded skill execution could potentially enable the approach to be used for

multi-robot systems).

In [80], a generic algorithm for combining task and motion planning with no assumptions

about their implementation is presented. It validates a high-level plan if an error-free motion

plan can be found. Otherwise, the high-level state is updated with information from the

partially error-free motion plan. A new task plan is generated for the updated state.

Table 4.1 Qualitative comparison between different task planning approaches

Multi-robot Uncertainties Domain-independent Scalable

Amato [5] ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆

Kaelbling [33] ⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆

Levihn [47] ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆

Pedersen [66] ⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆⋆

Srivastava [80] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆

As presented in the table 4.1, a qualitative comparison of the reviewed approach seems

to present the HPN approach as one of the most promising regarding the management

of uncertainty, its generalization, and scalability potential, but with a weakness on the

management of multi-robot systems. We decided to study and work on this approach

aiming to integrate it with the motion planning and control described in the previous

chapters.

4.2 Basic Hierarchical Planning in the Now

As presented in the introduction, the work done in [33] proposes a promising methodology to

enable real mobile robots to carry out complex tasks in real environments where uncertainty

about outcomes of actions and the current state of the world are non-negligible. Their

approach aims to integrate task an motion planning through a hierarchical planning

architecture, and we decided to apply this method to our task planning problem, extending

it for multi-robot planning and exploiting our planning algorithm at the lower level.

They address future-state uncertainty by planning in approximate deterministic models,

performing execution monitoring, and replanning when necessary. On the other hand,

current-state uncertainty is handled by planning in belief space: the space of probability

distributions over possible underlying world states. Modeling the robot’s inability to know



72 Integrated Task and Motion Planning

precisely the world state and its dynamics enables planning to combine actions that may

change the world state like moving an object or collecting information such as sensing the

position of an object.

We will first describe the HPN approach on an instructive example. Consider a domain

as shown in figure 4.1 where the robot (constituted of a mobile base and a manipulator arm)

has the goal of having object a cleaned by going to the washer and then stored in the storage

in place of object b.

The HPN recursive process of planning and execution starts from the goal represented as

Plan 1 at the top of Fig. 4.2 and decomposes it in subgoals, leading to a sequence of primitive

actions represented in red color in the same figure. The plan is made backward, starting

from the top-level goal. This is called goal regression or pre-image backchaining.

A

B

storage

washer

Fig. 4.1 Washing domain, in which the robot must move object a to the washing area, wash
it, and put it in the storage area.

The HPN algorithm finds out a plan to achieve this specific top-level goal based on

two abstract operations (run the washer with object a inside and then place it in the

storage). These operations are then recursively planned and executed. If the operation

is a primitive action, it is executed directly (see red nodes in Fig. 4.2), otherwise, a subgoal

is built consisting of the conditions to guarantee that the other operations in the high-

level plan will succeed. Abstract operations are created by postponing preconditions, e.g.,

the operation at the abstraction level 0 "run the washer with a inside" represented by A0:

Wash(a) ignores the precondition that the object a has to be placed inside the washer if it is

somewhere else in the domain.

Notice that with this approach, the built plan is such that object b has to be moved and

placed somewhere else in order to object a to be placed in the storage. It is not optimal
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Plan 1:
In(a, storage)

Clean(a)

A0: Wash(a)
A0: Place(a,

storage)

Plan 2:
Clean(a)

Plan 6:
Clean(a)

In(a, storage)

A0: Place(a,
washer)

A1: Wash(a) A1: Pick(a, aX)
A1: Place(a,

storage)

Plan 3:
In(a, washer)

Wash

Plan 7:
Clean(a)

Holding() = a

Plan 8:
Clean(a)

In(a, storage)

A1: Pick(a,
aStart)

A1: Pick(a,
washer)

A2: Pick(a, aX)
A0:

ClearX(sweptaX,
(a))

A2: Place(a,
storage)

Plan 4:
Holding() = a

Plan 5:
In(a, washer)

Pick(a, aX)

Plan 9:
Clean(a)

Holding() = a
ClearX(sweptaX,

(a)

Place(a, storage)

A2: Pick(a,
aStart)

A2: Place(a,
washer)

A0: Remove(b,
sweptaX)

Pick(a, aStart) Place(a, washer)

Plan 10:
Clean(a)

Holding() = a
Overlaps(b,

sweptaX) = False

A2: Place(a, aX)
A2: Pick(b,

bStart)
A2: Place(b, *) A2: Pick(a, aX)

Place(a) Pick(b, bStart) Place(*) Pick(a, aX)

Fig. 4.2 Planning and execution tree for washing and storing an object. The wildcard
character * replaces any free space where an object could be placed
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though, we see that the plan goes in a way that the robot first picks up the washed object a

before "realizing" that b has to be moved.

The great advantage of this approach (as for other HTN approaches) is to keep planning

feasible by decomposing in time the problem of achieving a goal.

Algorithm 1 Hierarchical planning in the now

1: function HPN(snow,γ,O ,α,world)
2: if holds(γ, snow) then
3: return TRUE

4: else
5: p ←PLAN(snow,γ,O ,α)
6: for (oi , gi ) ∈ p do
7: if ISPRIM(oi ) then
8: snow ← world.EXECUTE(oi )
9: else

10: HPN(snow, gi ,O ,NEXTLEVEL(α,oi ),world)
11: end if
12: end for
13: end if
14: end function

Algorithm 1 summarizes what was just described. γ represents the high level goal state

for which we are planning, α is the level of abstraction of the plan which is used for relaxing

preconditions of actions and creating abstract operators, snow is the current world state, O

represents the set of operators available for planning, and oi represents the i th operator of a

plan with gi being the associated pre-image (an intermediate state or sub-goal).

4.3 Dealing with Uncertainty

As said before, in a real system, planning tasks and motions have to consider the uncertainty

of outcomes of actions and the current state of the world. This does not invalidate the use

of the hierarchical planning algorithm briefly presented above, but the approach needs to

be extended. The next subsection shows how to adapt this planning method for handling

uncertainties.

4.3.1 Modeling the Process

In order to take into account future-state uncertainty, the authors of [33] construct an

approximated deterministic model of the dynamics that can be seen as a problem of finding

a minimum cost path in a graph with positive weights.
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Starting from the the definition of a Markov decision process (definition 1) the authors

generalize it as a stochastic shortest-path problem (SSPP) (definition 2).

Definition 1 A Markov decision process (MDP) is a tuple 〈S, A,T,R〉 where S is a set of world

states, A is a set of actions, T is a probabilistic Markov transition model, with T (s, a, s′) =
Pr(St+1 = s′ | St = s, At = a), and R is a reward function where R(s, a) is the immediate value

of taking action a in state s.

Definition 2 A stochastic shortest-path problem (SSPP) 〈S, A,T,C ,G〉 is an MDP in which all

rewards are negative, there is a set G ⊂ S of goal states, and the objective is to minimize the

total expected cost (negative reward) incurred before reaching a state in G and terminating.

We define cost function C (s, a) in the SSPP to be −R(s, a) in the original MDP, so that all costs

are strictly positive.

Then, they introduce the idea that choices are made by an agent and convert the SSPP into

its deterministic version (DSSPP) (definition 3) in which there is a directed arc connecting

two world states.

Definition 3 A determinized SSPP is a tuple 〈S, A′,W,G〉 where: 〈S, A,T,C ,G〉 is a SSPP; S is a

set of states which are nodes in a graph; A is a set of actions (a, s′), so that (s, a, s′) ∈ S × A×S

is a directed arc from node s to node s′; and W is a weight function, so that W (s, a, s) is the

weight on arc (s, a, s′), which may be infinite.

Following, in order to have paths in graph that are likely to reach a desired goal and

also minimize transition cost, they define an α-cost-likelihood DSSPP (CLDSSPP) where the

weight of going from a state s to s′ taking the action a is as in definition 4.

Definition 4 An α-cost-likelihood DSSPP (CLDSSPP) is a DSSPP where

W (s, a, s) =αC (s, a)− l og T (s, a, s).

A representation of a probabilistic search tree for an SSPP and the derived deterministic

model CLDSSPP is shown in Fig. 4.3.

Finally, in order to fit the model into the regression search nature of the HPN algorithm

(plan from goal to initial state), they convert a CLDSSPP into a regression cost problem as

presented in definition 5.

Definition 5 A regression cost problem (RCP) is a tuple 〈N , A,W ′〉 derived from a DSSPP

〈S, A,W,G〉: N is a set of pre-images as defined below, A is as in the DSSPP and W ′ are the

weights for transitions among pre-images.
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s1

a1
	c	=	5	

0.10.9

s1s2

0.60.4

a2
	c	=	1	

s3s2

(a) Search tree of stochastic shortest path
problem.

a1s1
	w	=	7.3	

a1s2
	w	=	5.1	

a2s2
	w	=	1.9	

a2s3
	w	=	1.5	

s1

s1s2 s3s2

(b) Search tree for derived deterministic model
(CLDSSPP), in which there is an outgoing arc
for each action/outcome pair with associated
weight equal to c − log p

Fig. 4.3 Probabilistic search tree and its deterministic approximation

Define the weight-w pre-image of n ∈ 2S under action a ∈ A to be the set of states that have

a weight w arc leading to some state s′ in n via action a:

I (n, a, w) = {s|∃s′ ∈ n. W (s, a, s′) = w}.

The set N of pre-images is defined recursively starting from the goal set G of the original DSSPP:

• G is an element of N;

• For any n ∈ N , a ∈ A, and w such that I (n, a, w) is non-empty, I (n, a, w) is an element

of N , and W ′(I (n, a, w), a,n) = w.

4.3.2 MHPN: Markov HPN

The execution of the HPN algorithm extension presented before is done by monitoring the

effects of actions to ensure that the action being currently selected is the first step in a plan

that has a positive probability of achieving the goal. This can be translated to the condition

that the current state stays in the envelope (Eq. (4.1)) of the plan which is the union of the

pre-images of all the steps of the plan.

envelope(p) =
n−1⋃
i=0

gi (p) (4.1)

The Markov HPN routine is described in Algorithm 2. It will plan, execute the plan and

replan when the current state is leaving the plan envelope until the goal is reached.
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Algorithm 2 Markov HPN

1: function MHPN(snow ,γ,α,world)
2: p ←PLAN(snow ,γ,α)
3: while snow ∈ envelope(p) do
4: i ← argmaxi snow ∈ gi (p)
5: if ISPRIM(ωi (p)) then
6: snow ← world.EXECUTE(ωi (p))
7: else
8: snow ← MHPN(snow , gi (p),NEXTLEVEL(α,ωi (p)),world)
9: end if

10: end while
11: return snow

12: end function
13:

14: function MHPNTOP(snow ,γ,world)
15: while snow ∉ γ do
16: snow ← MHPN(snow ,γ,α0,world)
17: end while
18: end function

4.3.3 HPN in Belief Space

We now turn to the problem of sensing uncertainty. The problem of planning while having

uncertainty associated to the current state of the world can be thought of as the problem

of mapping current belief states (e.g. set of states satisfying "robot at position l0 with

probability greater than 0.8") into actions that drive the robot into another belief state that

contains the goal state (e.g. "robot at position l1 with probability greater than 0.95"). For

that, the robot must be capable of realizing that an action such as moving its mobile base

will probably scatter the probability mass around the believed localization while a sensing

action will tend to concentrate the probability mass around the true state thanks to the

information gathered. Planning explicitly in the belief space can enable this behavior where

a convenient combination of actions (e.g., moving and sensing) are found in order to drive

the belief state into the goal set.

In [33], the authors affirm that the belief state dynamics can be described as a continuous-

state MDP. It is possible then to apply the same steps to convert a MDP over world states into

a regression cost problem to the MDP over belief states. The result is then a regression cost

problem where the nodes are sets of belief states. The planning and execution algorithm

in the belief space is almost identical to the one presented before except that instead of s

representing the world state we have b standing for belief state and one more statement
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where the update of the belief is done based on the action and the observation obtained

after the action. Algorithm 3 describes this modified algorithm.

Algorithm 3 HPN in belief space

1: function BHPN(bnow ,γ,α, wor l d)
2: p ←PLAN(bnow ,γ,α)
3: while bnow ∈ envelope(p) do
4: i ← argmaxi snow ∈ gi (p)
5: if ISPRIM(ωi (p)) then
6: obs ← wor l d .EXECUTE(ωi (p))
7: bnow ← bnow .UPDATE(ωi (p),obs)
8: else
9: bnow ← BHPN(bnow , gi (p),NEXTLEVEL(α,ωi (p)), wor l d)

10: end if
11: end while
12: return bnow

13: end function
14:

15: function BHPNTOP(bnow ,γ, wor l d)
16: while bnow ∉ γ do
17: bnow ← BHPN(bnow ,γ,α0, wor l d)
18: end while
19: end function

4.4 Logical Characterization of Beliefs for Planning

In the approach described above, goals, when planning in the belief space, are sets of belief

states. Their pre-images generated by the pre-image backchaining are also sets of belief

states, and it is therefore required to have a representation of the process dynamics that

modifies a belief state given an action a. The problem is then to find a way to represent

belief states sets (goals and pre-images) and the belief process dynamics.

The authors of [33] use logical assertions to characterize sets of beliefs states, and

symbolic operators descriptions to describe the dynamics. They do so by introducing the

concept of fluents which is a logical predicate applied to a list of arguments. They are defined

by means of a test, τ f : {args,b} → {true, false}, where f is the fluent with arguments args, b is

the belief state and f (args) is set to "hold in the belief state b" if and only if τ f (args,b) = true

(cf. Algorithm 1 line 2). Two examples for illustrating fluents definitions in a discrete-domain

with n states are shown below:



4.5 Implementation 79

• MLLoc(l ): location l is the most likely location (among the n possibilities) of an object

and can be defined by the following test:

τMLLoc((l ),b) :=∀l ′ Prb(S = l ) ≥ Prb(S = l ′)

• BLoc(l ,ϵ): the object is believed to be located in location l with probability at least 1-ϵ

and can be defined by the following test:

τBLoc((l ,ϵ),b) := Prb(S = l ) ≥ 1−ϵ

In [33], a generalization of these fluents for a domain with continuous quantities based

on the concept of the probability near mode (PNM) of the distribution is presented.

Now that there is a compact way of representing sets of belief states, it is possible to

construct symbolic operators representation, which may express the belief space dynamics.

Taking as an example the action of moving an object from location li to l j , [33] constructs a

suitable operator description for their planning algorithm such as shown below:

MOVE(li , l j )

effect: BLoc(l j ,ϵ)

choose: li ∈ Locations\{l j }

pre: ϵ≥ p f ai l

BLoc(li ,moveReg r ess(ϵ))

prim: MOVEPRIMITIVE(li , l j )

cost: 1

Note that effects (effect clause) and preconditions (pre clause) use one of the fluents

shown before. The choose clause represents a generator for the initial pose li which is not

binded to any specific value but can be chosen among possible locations excluding l j . The

cost here is a fixed value but could dependent on li and l j .

4.5 Implementation

We developed an implementation of the approach proposed above adapted to our use case.

The HPN approach requires modeling the dynamics of the world by means of fluents and

operators. This process is the most challenging step when considering applying this method
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for a physical system. Part of this step deals with the choice of probabilistic distributions

that represent well the physical variables (such as pose in space, weigh of the object, etc.).

A secondary interesting implementation concern (at least in the particular case of our

work) is the adaptation of the HPN algorithm into a non-recursive version that allows for a

more decentralized and modular software architecture. We consider that it is useful for the

reader to see more details about the algorithmic changes and software architecture because

1) they correspond to a meaningful part of this work 2) implementation in many cases has

great bearings on the experimental side of research.

Finally, even though the hierarchical part of this approach reduces the branching factor,

the pre-image backchaining process must rely on some heuristics for guiding the search of a

complete plan from goal to current belief state for efficiency reasons.

4.5.1 Service-compatible, Recursion-free BHPN Algorithm

For achieving a modular, more decentralized software architecture where planning,

execution, and observation can all be run inside different processes and even different

computers we adapted the base BHPN algorithm. Our goal is to be able to run this algorithm

as a service in the definition of the ROS middleware. It should, therefore, be launched by

receiving a request message containing a goal and the current world state, and it should

respond with the next action to be performed by the robot.

For that purpose, an iterative version of the otherwise recursive BHPN algorithm (IBHPN)

was developed (see Algorithm 4). An initial call to the IBHPN routine begins the processes

of planning. The procedure builds the hierarchical plans for reaching the goal and stores

them in a planning stack. As soon as the first primitive operator is found, it returns the

information about the action to execute to the caller (Algorithm 4 line 27). Assuming first

that the caller will acts on the world (execution stage) and in turn, update its representation

of it (observation stage), a second call to IBHPN will take place. Provide that the agent’s goal

remains the same, the procedure IBHPN evaluates the relevance of the previously computed

planning stack and finds and returns the next appropriated action. As discussed before, in

case bnow gets out of the envelope of the plan, new planning is triggered. This goes on until

the agent receives a "goal achieved" return from the planner (Algorithm 4 line 5).

The proposed IBHPN fits well within the modular, decentralized software architecture

needed for robust robotics. A diagram with the complete software architecture intended

by our work can be seen in Fig. 4.4. The organization is a very classical way of representing

the different layers of planning for autonomous robots. We highlight on this diagram where

the algorithms presented in the thesis would be integrated. Besides, all the code necessary
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Algorithm 4 Iterative BHPN

1: pstack ←∅
2: γfinal ←∅
3: function IBHPN(bnow,γ)
4: if γ holds in bnow then
5: return {GoalAchieved, ∅}
6: end if
7: while true do
8: if pstack is empty then
9: γfinal ← γ

10: p ←PLAN(bnow,γ,0)
11: if p is empty then
12: return {Fail, ∅}
13: end if
14: pstack.PUSHBACK({p,γ,0})
15: end if
16: if γ is not equal to γfinal then
17: return {Fail, ∅}
18: end if
19: while pstack is not empty do
20: p,γinter,α← pstack.POPBACK()
21: if p is empty or γinter holds in bnow or bnow ∉ENVELOPE(p) then
22: continue
23: end if
24: i ← argmaxi bnow ∈ gi (p)
25: if ISPRIM(ωi (p)) then
26: pstack.PUSHBACK({p,γinter,α})
27: return {ValidActionFound, ωi (p)}
28: else
29: pstack.PUSHBACK({p,γinter,α})
30: γnew ←NEXTGOAL(i , p,γinter)
31: αnew ←NEXTLEVEL(α,ωi (p))
32: p ←PLAN(bnow,γnew,αnew)
33: pstack.PUSHBACK({p,γnew,αnew})
34: end if
35: end while
36: end while
37: end function
38: function NEXTGOAL(i , p,γinter)
39: if i +1 ≥ p.LENGTH() then
40: return γinter

41: else
42: return gi+1(p)
43: end if
44: end function
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resp:	action	plan

req:	action	plan
req:	robot	state

Agent

	goal	Execution	Server
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global	planner
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NCGPC-M

	global	path	
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World

resp:	bnow Observer	Server
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IHPNFluents

Tools

Onboard	components

γ

Fig. 4.4 Complete software architecture for planning and actions execution on a mobile
robot using ROS.

for interfacing the different components was implemented. A connection to Gazebo for

simulating the "world" part of the diagram was made for initial testing and experimenting.

Unfortunately, due to lack of time, these integration tests were not completed during

the time of this research. The missing components are shown in the diagram by blocks with

fading colors (Execution server and Observer server). Nevertheless, the components that

were developed enabled us to start some simple planning experiments presented in the

remainder of this chapter by mocking some components, namely the world, execution, and

observation parts.

4.5.2 Probability Distributions Underlying the Belief States

For representing probability distribution of poses two different distributions were used:

for positions, x and y were represented as two independent random variables distributed

normally
(
X ∼N

(
µ,σ2

))
; for orientation we used the von Mises distribution (also called

wrapped normal distribution)
(
Ψ∼ vMises

(
µ,κ

))
.
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Note

The von Mises distribution can be

represented as follows:

f (x|µ,κ) = eκcos(x−µ)

2πI0(κ)
(4.2)

with I0(κ) being the modified Bessel

function of order 0 [3]. A graphical

representation of the distribution can be

seeing in Figure 4.5. The parameters µ and

1/κ are analogous to µ and σ2 (the mode

and variance) in the normal distribution.
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Fig. 4.5 Probability density function of von
Mises distribution for different κ. Support
is [−π, π] and µ = 0

4.5.3 Fluents

Seven different fluents were devised in order to solve simple task planning problems

representative of logistics scenario where a number of objects have to be moved in order

to reach a goal configuration. We added support for the notion that some entities in this

simplified world can be controlled (moved between locations and ordered to pick another

entity).

In the definitions detailed below, we used several functions for querying values from

the belief state (σ∗,∗(b), µ∗,∗(b), region∗,∗(b), held∗(b), pickable∗(b), controllable∗(b)). We

assume that whatever the belief representation may be, it can provide this information

about objects in the world.

The seven fluents are briefly explained below:

• PSWD(A,δ,ϵ)

PSWD stands for "Precisely Somewhere Within Delta". This logical predicate models

precision about random variables defining a pose in space (it does not model accuracy).

Its test evaluates to true if the probability mass of a random variable within δ from its

mode is greater or equal to (1−ϵ). In other words, the smaller the ϵ, the more precise

the current belief about the variable’s value has to be in order for the testing of PSWD

to be verified true.
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For a 2D pose of an entity A, we can apply this idea to three independent random

variables representing a pose and the PSWD fluent can be defined as follows:

τPSWD((A,δ,ϵ),b) := PNVN
(
δx ,σx,A(b),0

)≥ 1−ϵx ∧
PNVN

(
δy ,σy,A(b),0

)≥ 1−ϵy ∧
PNVVM

(
δψ,σψ,A(b),0

)≥ 1−ϵψ
where the wedge symbol ∧ represents the logical operator and and PNVN (or

"Probability Near Value for Normal distribution") and PNVVM (or "Probability Near

Value for Von Mises distribution") are defined as follows

PNVN(δ,σ,µ) = P
(
µ−δ< X ≤µ+δ)=ΦX (µ+δ)−ΦX (µ−δ) | X ∼N

(
µ,σ2

)
,

PNVVM(δ,σ,µ) = P
(
µ−δ<Ψ≤µ+δ)=ΦΨ(µ+δ)−ΦΨ(µ−δ) |Ψ∼ vMises

(
µ,κ

)
with Φ being the cumulative distribution function (CDF) of variables X and Ψ.

• TWD(A,δ, q)

TWD (or "There Within Delta") models knowledge about accuracy (not precision).

Its test evaluates to true if the realization of a random variable is within δ from its

believed mode q . For the 2D case we can write:

τTWD((A,δ, q),b) := ∥qx −µx,A(b)∥ ≤ δx ∧
∥qy −µx,A(b)∥ ≤ δy ∧
∥qψ−µψ,A(b)∥ ≤ δψ

• RPC(R, {A,B , ...},ϵ)

RPC (or "Region Probably Clear") models knowledge of a region being cleared (with

given certainty) of all entities (represented by the set E ) except the ones explicitly

specified:

τRPC((R, {A,B , ...},ϵ),b) := R
⋂

regionE ,ϵ(b) =∅ ∀E ∈ E \{A,B , ...}

• PICKED(A)

It models knowledge about an entity A (e.g. object) being held by any other entity (e.g.

robotic arm):

τPICKED((A),b) := heldA(b)
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• HOLDS(A,B)

It models knowledge about an entity A (e.g. robotic arm) holding another entity B (e.g.

object):

τHOLDS((A,B),b) := heldB (b) ∧
regionB ,1(b)

⋂
regionA,1(b) = regionB ,1(b)

The information that the entity B is held by A in particular and not some other entity

is conveyed by testing if the region occupied by B is encompassed by A’s region.

• PICKABLE(A)

It models knowledge about an entity being "pickable" by another entity:

τPICKABLE((A),b) := pickableA(b)

• CONTROLLABLE(A)

It models the property of being an agent/robot (controllable entities):

τCONTROLLABLE((A),b) := controllableA(b)

Fluents also have intrinsic methods for defining if they entail or contradict other fluents.

These methods are fundamental for generating pre-images from operators during the

process of growing the search tree.

Another important observation is that we allowed ourselves to mix fluents that model

uncertainty as well as fluents that do not. This was done in order to simplify how transitions

after some actions would occur, but a more complete solution would rewrite some of those

fluents.

4.5.4 Operators

Operators are, generally speaking, actions that can be performed by the planning agent.

Some are very close to actual physical actions, and others are more logical actions

meant to translate one pre-image into another (as if they were reasoning actions such

as inference/deduction).

An operator is defined by its pre-requirements, effects, generators, primitive operation

and cost. We rely on several auxiliary functions for defining these fluents: swept(A, p) defines
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the area swept by the object A while moving along the path p, PICKINGPOSEFOR(l ) returns a

position from which a robot can pick an object at location l .

Operators used in this work are described below:

• MOVE(A, qi , q f ,δ,ϵ): this operator will move an object A from position qi to position

q f

effect: TWD(A,δ, q f ) ∧ PSWD(A,δ,ϵ)

choose: qi ∈ Locations\{q f }

p ∈ paths(A, qi , q f , gi ,b)

pre: RPC
(
swept(A, p), {A},ϵr

) ∧ TWD
(

A,δ, q f
) ∧

PSWD(A,δ,ϵr )∧ CONTROLLABLE(A)

prim: MOVEPRIMITIVE(A, qi , q f ,δ,ϵ)

cost ∝ length(p)

• CLEAR(R,P ,ϵ): this operator will clear a region R from any entity that do not belong

to the set of entities P

effect: RPC(R,P ,ϵ)

choose: qE ∈ Locations ∀ E ∈ E \P | regionE ,ϵ(qE )
⋂

R =∅

pre: TWD
(
E ,δ, qE

) ∧ PSWD(E ,δ,ϵr ) ∀ E ∈ E \P

prim: CLEARPRIMITIVE(R,P ,ϵ)

cost: 0

• PICK(A,B ,δ,ϵ): this operator will make entity A pick entity B

effect: PICKED(B) ∧ HOLDS(A, B) ∧ PSWD(B ,δ,ϵ) ∧ TWD(B ,δ, qA)

choose: qi ←PICKINGPOSEFOR(µB (b))

pre: PSWD(A,δ,ϵ) ∧ TWD(A,δ, qi )

prim: PICKPRIMITIVE(A,B)

cost ∝ Adim +Bdim

• PLACE(A,B , q f ,δ,ϵ): this operator will make entity A place entity B at position q f

effect: TWD(B ,δ, q f ) ∧ PSWD(B ,δ,ϵ) ∧ ¬PICKED(B)

choose: E ∈ Locations\{l j }

qi ←PICKINGPOSEFOR(q f )
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pre: PICKED(B) ∧ PICKABLE(B) ∧ RPC(regionB ,ϵ(q f ),B ,ϵ) ∧
PSWD(A,δ,ϵ) ∧ TWD(A, qi ,δ) ∧ HOLDS(A,B)

prim: PLACEPRIMITIVE(A,B)

cost ∝ Adim +Bdim

Adim is the characteristic dimension of the entity, notably the diameter of the circle

containing the regionA,1. The symbol ¬ represents the logical operator not.

4.6 Preliminary Experimental Results

With the implementation of the IBHPN, Agent, Tools, Fluents, and Operators represented

in Fig. 4.4 and discussed before, some planning tests were possible using simplified use-

cases. At first, a complete symbolic example case was studied were few operators (around 4)

existed and were able to cause transitions from states represented by single letters. Then a

second more interesting scenario where simple 2D geometric rules exist (loosely inspired by

tetris-like games).

4.6.1 Planning in a Simplified 2D World

For this experiment, we simplified the set of fluents and actions. Only Move and Clear are

used, and all entities can be controlled (if they can move).

The goal for this example can be defined simply by 2 two fluents:

γ=
{

PSWD(A,δA,ϵA)∧
TWD(A,δA, q = [0.14,0.14,0.0])

0.0 0.2

0.0

0.2

obj_A

Fig. 4.6 Representation of goal belief
state γ

Constants δA and ϵA where chosen to be equals to [0.05,0.05,0.05] both.

The initial belief state was defined as the set of all entities, their attributes, and the

current value of those attributes. A given entity had the following list of attributes in its

representation: mode of its pose in 2D space (q), standard deviation of that pose as if

each dimension was an independent random variable (σ), type of footprint (or type of

shape), footprint values, color and lastly the movable attribute. An image summarizing the
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description of the initial belief state bs0 can be seen in Fig. 4.7a. Object tagged Immov was

the only immovable one. In order to simplify the plan, we set the initial uncertainties to very

low values (0.0003).

4.6.2 Planning in a Simplified 2D World with a Robot

In this second experiment, all defined fluents and operators were available. The objective

was to have a single robot able to move objects, some unmovable objects, and a single object

to be moved from initial to final position. As before, no execution error was allowed, thus no

replanning was triggered yielding a single initial plan that is perfectly executed. Again, since

all operations are primitive actions, no abstraction level besides the first (zero) is exploited.

Fig. 4.10 shows the resulting sequence of actions for archiving the goal of having object

A at its goal location. Fig. 4.11 and 4.12 help to illustrate the obtained plan. For more details

about the plans, refer to Appendix C.

4.7 Conclusions

The benefits of close integration of logical and geometric planning has long been

recognized [61]. It is a crucial element for building truly autonomous robots that can

execute high-level tasks in real environments.

The work done on this subject in this thesis was very preliminary. The HPN approach

was shown to have some interesting properties, and a recursion-free implementation was

realized and applied to simplified use cases. However, the most useful capabilities, namely

its hierarchical structure, were barely exploited in the performed experiments.

Further work in this subject should exploit postponing preconditions of actions to create

abstraction levels for hierarchical planning, and better models for modifying the belief states

upon actions.
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(f) Final configuration when goal is reached

Fig. 4.7 First geometric case
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Plan 1:
PSWD(A,ϵ,δ)
TWD(A,ϵ,δ)

Move(C ,δ,ϵ,c,p) Move(B ,δ,ϵ,c,p) Move(D,δ,ϵ,c,p) Clear(sweptA) Move(A,δ,ϵ,c,p)

Move(C ,δ,ϵ,c,p) Move(B ,δ,ϵ,c,p) Move(D,δ,ϵ,c,p) Clear(sweptA) Move(A,δ,ϵ,c,p)

Fig. 4.8 Planning and execution for the first geometric case experiment

Goal

Move(A,δ,ϵ,c,p)

g1

Clear(sweptA)

g2

Move(C ,δ,ϵ,c,p) Move(B ,δ,ϵ,c,p) Move(D,δ,ϵ,c,p)

g3 g4 g5

Move(C ,δ,ϵ,c,p) Move(B ,δ,ϵ,c,p)

g6 g7

Move(C ,δ,ϵ,c,p)

g8

bnow

in

Fig. 4.9 Plan 1 for the first geometric case showing pre-images
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Move(R,δ,ϵ,c,p) Pick(R,A) Move(R,δ,ϵ,c,p) Place(R,A,q ,δ,ϵ)

Move(R,δ,ϵ,c,p) Pick(R,A) Move(R,δ,ϵ,c,p) Place(R,A,q ,δ,ϵ)

Plan 1:
¬PICKED(A)
PSWD(A,ϵ,δ)
TWD(A,ϵ,δ)

Fig. 4.11 Planning and execution for the second geometric case experiment

Goal

Place(R,A,q ,δ,ϵ)

g1

Move(R,δ,ϵ,c,p)

g2

Pick(R,A) Move(R,δ,ϵ,c,p)

g3 g4

Move(R,δ,ϵ,c,p)

g5

bnow

in

Fig. 4.12 Plan 1 for the second geometric case showing pre-images



Chapter 5

General Conclusions and Perspectives

5.1 Summary and Discussions

Throughout the previous chapters, the subject of planning for a multi-robot system was

discussed. The main points exploited were threefold: a local distributed multi-robot

trajectory planning, a feedback model predictive controller, and (albeit in a more superficial

manner) the integration of a hierarchical task planner with the rest of the work.

Our approach to trajectory planning consisted of an online, distributed, multi-robot

algorithm based on mathematical programming and receding horizon techniques called

DRHMP. The distributed coordination of the robots was achieved by a two-step process

where first trajectories are generated by ignoring coupling constraints between robots, and

second, by exchanging those first solutions, the robots finally incorporate the coupling

constraints to find the final, non-conflicting trajectories.

Given that the DRHMP solutions cover a future time horizon Tp from the start of each

planning stage, we proposed a new Nonlinear Continuous Generalized Predictive Control

(NCGPC-M) to take full advantage of that information. The final control law equations

are based on a direct dynamic model of unicycle-like vehicles. NCGPC-M was capable of

improving the quality of the trajectory tracking of the mobile robots compared to two other

control laws, especially in the presence of high dynamics (meaningful inertial mass and

accelerations).

The third part of this work, studied an approach called HPN (Hierarchical Planning in

the Now) for task planning. In this approach planning is performed in a mixed logical and

geometric belief space allowing for robustness against uncertainty. Its integration with

the rest of the work was roughly theorized in a schematics presented in Fig. 4.4. The HPN

algorithm, which is naturally expressed in a recursive form, was rewritten in an iterative one,

adapted for the integration with the other components of this work. A few domain-specific
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actions used as input by the HPN were designed to support our use-case of mobile wheeled

vehicles.

In order to evaluate those approaches, we have performed a few experiments. We have

shown results of the DRHMP operating in simulation with three robots, and in real world

with two vehicles. In order to the optimizer underlying the DRHMP approach to converge to

locally optimal, kinematically feasible, collision-free trajectories the period of the planner

(given by Tc ) was set to 0.3 s (while running on an Intel Xeon CPU 2.53GHz processor).

When testing the NCGPC-M controller, in those same real world conditions, it presented

an RMS position tracking error of 0.44 cm and angular tracking error of 0.34◦ (compared to

the 1.17 cm and 0.75◦ with the previous existing NCGPC).

Some of the strong hypotheses made by this work are listed below:

• nonholonomic unicycle-like robots;

• circular footprint;

• known direct dynamic model of the vehicles;

• communication delays many times smaller than the computation time window Tc ;

• environment dynamics (excluding the robots) that can be considered static during Tc ;

• stable numeric differentiation of constraints (equations and inequations) and

objective function;

5.2 Perspectives

Our work leads to several improvement ideas summarized below.

5.2.1 Avoiding Numerical Differentiation

Many optimizers, such as the SLSQP algorithm used for optimizing trajectories in Chapter 2,

are gradient-based, meaning they require the derivatives of objective functions and

constraints to find a solution. Throughout our work, we used numerical differentiation to

approximate gradients whenever it was needed. This approach has the advantage of being

generic and fast to compute, however, round-off errors are inherent to it, and those errors

may represent a problem to the optimizers. Indeed, we observed some instabilities of the

SLSQP algorithm that may correlate to the round-off errors from numerical differentiation.

A possible alternative to that approach is the use of either symbolic differentiation [81] or

automatic differentiation (AD) [9]. We attempted to use symbolic differentiation software

(Matlab) for finding the exact expressions for the Jacobian and Hessian matrices1. For at least

1matrices formed from the first and second-order partial derivatives, respectively
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part of the constraints, that approach was successful, but the complexity of the functions

was high enough to make them useless as the running time grew considerably.

Automatic differentiation remains to be tested. It could potentially solve the problem

of round-off errors and inefficiency present on the two other approaches. If C++17 is the

programming language being used, a prominent library for automatic differentiation can be

found in [46]. Many other libraries for virtually all programming languages exist; the website

in [14] lists 67 AD tools for 21 different languages in addition to a publication database on

AD of 1528 items.

5.2.2 Conversion from Sensor Data to Geometric Objects

The local interpolation of the occupancy grid for generating continuously differentiable

equations for obstacle avoidance, although used with success in real experiments, has

its limitations. The approach does not generalize well for complex environments with

non-convex obstacles and robot’s footprints with aspect ratio far from one.

Work presented in [23, 65] on Density-based spatial clustering of applications with noise

(DBSCAN) and Random sample consensus (RANSAC) can be used to convert occupancy grid

information or even point cloud data from lasers or cameras into a geometric description of

the environment. This approach might be a viable alternative to describe the environment

and accomplish obstacle avoidance in our planning approach. Fig. 5.1 shows an image from

an existing project that uses the mentioned techniques to accomplish the generation of

convex polygons from occupancy grids.

Fig. 5.1 Example of costmap conversion to convex polygons (red edges close to yellow cells)
Source: ROS Wiki page on costmap converter (http://wiki.ros.org/costmap_converter)

http://wiki.ros.org/costmap_converter
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5.2.3 Alternative Optimization Solver

An alternative to the use of SLSQP optimizer is the CFSQP [85] (Contraint Feasible Sequential

Quadratic Programming) algorithm used, for instance, in work presented in [20]. CFSQP

approach guarantees that every iteration of the optimization process generates a set of

control variables that respects the constraints.

The advantage of such an alternative over the SLSQP in our DRHMP approach is that,

in cases where Tc (computation time reserved for finding a solution) elapses before the

convergence of the optimizer, the solution from the last iteration could still be safely

used, since it is guaranteed to respect the NLP constraints. For more information about

optimization solvers refer to Appendix A, section A.1.

5.2.4 Integrating Task and Motion Planning

Regarding the preliminary work done on the HPN approach, the exploration of hierarchical

knowledge about the actions presented in Chapter 4 would be the natural course of

development, followed by a better understating and formulation of the probability

distributions regressions under those actions.

Fig. 5.2 Non-circular footrprint example
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5.2.5 Future Work

Follow up work on these subjects, especially the DRHMP trajectory planning approach,

and the NCGPC-M controller, are being conducted both at CEA Sacaly under Eric Lucet’s

supervision and at iFollow SAS (a startup robotics company based in Paris region where the

author of this thesis is currently working).

In particular, a generalization of the DRHMP regarding the robot’s footprint was tested by

using two different levels of footprints; first a high fidelity level using a n-sides polygon and

second an approximated level using conjunction of simpler geometric primitives (circles

and segments of lines). Fig. 5.2 gives an overview of a planning test similar to the one

reprensented in Fig. 2.22 for a polygon footrprint of 8 sides with aspect ratio close to 1.8.
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Appendix A

Mathematical programming

A.1 Numerical Optimizers

There is a variety of numerical optimization packages implemented in many different

programming languages available for solving optimization problems [67]. Each of them

may have their own way of defining the optimization problem and may or may not support

specific kinds of constraints (equations, inequations or boundaries).

For the implementation of the DRHMP algorithm made in C++ for using within the

physics simulation environment XDE, several libraries were considered.

OPT++ is a library that uses whether OptNIPS, a free nonlinear interior-point algorithm

or NPSOL, a licensed sequential quadratic programming algorithm. Both require the user to

implement Hessian matrix.

IPOPT (Interior Point OPTimizer) is a software package for large-scale nonlinear

optimization. IPOPT implements an interior-point algorithm for continuous, nonlinear,

nonconvex, constrained optimization problems. It is meant to be a general purpose

nonlinear programming (NLP) solver. However, it is mainly written for large-scale problems

with up to million of variables and constraints. IPOPT presents a reasonably easy to use C++

interface but, like the previous library, it requires the implementation of gradients, Jacobians

and Hessians for the objective function and constraints. However, a good example code is

available on their website that shows how to use the ADOL-C (Automatic Differentiation by

OverLoading in C++) package in order to facilitate the evaluation of those first and higher

derivatives.

NLopt is a free/open-source library for nonlinear optimization, providing a common

interface for a number of different free optimization routines available online as well as

original implementations of various other algorithms. Within the NLopt library three

methods were applicable to our NLPs:
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• ISRES (a global optimizer) that combined with the augmented Lagrangian method

could handle nonlinear constraints

• COBYLA which is a local, derivative-free optimizer and as such does not need

computation of gradients, Jacobians nor Hessians

• SLSQP a SQP method. SQP methods attempt to solve a nonlinearly constrained

optimization problem where the object function and the constraints are twice

continuously differentiable. They do so by modeling the object function (min f (x))

at the current iterate xk by a quadratic programming subproblem and using the

minimizer of this subproblem to define a new iterate xk+1 [62]. In particular, SLSQP

uses the Han–Powell quasi–Newton method with a BFGS update of the B–matrix

and an L1–test function in the step–length algorithm. The optimizer uses a slightly

modified version of Lawson and Hanson’s NNLS nonlinear least-squares solver. It

requires derivatives.

RobOptim is a C++ Library for Numerical Optimization applied to Robotics that provides

a single interface for various state-of-the-art solvers including IPOPT, NLopt.

Important values for optimization were set as follows:

parameter meaning value

opt_objective_func_abs_tol Abs. tolerance on objective function value 10−9

opt_objective_func_rel_tol Rel. tolerance on objective function value 0

opt_param_rel_tol Rel. tolerance on optimization parameters 0

opt_param_abs_tol Abs. tolerance on optimization parameters 0

opt_equetions_abs_tol Abs. tolerance on equations constraints 0

opt_inequetions_tol_abs_tol Abs. tolerance on inequations constraints 0

num_dif_eps Numerical diff step equals ϵ10value 5
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NCGPC-M

B.1 Law Synthesis

Let us detail the intermediate steps for arriving at the expression of u as showed in Eq. 3.7.

As a reminder, we rewrite it here below:

∂J

∂u
= 0p×1

⇒ u =−(DT D)−1DT (K ss)−1(K sLy −R s)

First, we need to develop the expression of the cost function J (by rewriting Ji ):

Ji = 1

2

∫ Ti
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2dτ

= 1

2

∫ Ti
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y2
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Now we replace Ji in the expression ∂J/∂u and develop it aiming to isolate u:

∂J

∂u
=

m∑
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= K ssDu +K sLy −R s = 0 ⇒
⇒ u =−(DT D)−1DT (K ss)−1(K sLy −R s)
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c. 1 refers to the first condition for nonlinear control-affine MIMO system from

section 3.3.3.

B.2 Running the Controller in Real-time

For achieving desired performance it is important to exploit the real-time features of

processes under Linux. We installed a real-time kernel and run our controller with correct

priority and affinity settings.
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HPN

bs0 =



objA =



µ= [−0.14, −0.14, 0.0],

σ= [0.0003, 0.0003, 0.0003],

shape = "rectangle",

dimension = [0.14, 0.17],

color = "#41f4b8",

movable = True

objB =



µ= [0.14, −0.14, 0.0],

σ= [0.0003, 0.0003, 0.0003],

shape = "rectangle",

dimension = [0.14, 0.17],

color = "#41f4b8",

movable = True

objC =



µ= [0.14, 0.14, 0.0],

σ= [0.0003, 0.0003, 0.0003],

shape = "rectangle",

dimension = [0.14, 0.17],

color = "#f48042",

movable = True

objD =



µ= [−0.14, 0.14, 0.0],

σ= [0.0003, 0.0003, 0.0003],

shape = "rectangle",

dimension = [0.14, 0.17],

color = "#e8d75c",

movable = True

immov =



µ= [0.0, 0.35, 0.0],

σ= [0.0003, 0.0003, 0.0003],

shape = "rectangle",

dimension = [0.6, 0.1],

color = "#282828",

movable = False
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(region=S
w

eptS
urf(obj_C

, [0.14, 0.14, 0.0], [0.347240902918124, 0.05213921283007174, 0.0]), allow
edO

bjs=['obj_C
'], eps=0.1)^

TW
D

(pose=[0.14, 0.14, 0.0], objID
=obj_C

, delta=[0.005, 0.005, 0.005])

 M
ove_0(pose=[0.347240902918124, 0.05213921283007174, 0.0],

        eps=[0.1, 0.1, 0.1],
        cost=0.241489488181,
        objID

=obj_C
,

        delta=[0.005, 0.005, 0.005],
        initP

ose=[0.14, 0.14, 0.0])

N
ode ID

: 7
Father ID

: 5
TW

D
(pose=[-0.14, -0.14, 0.0], objID

=obj_A
, delta=[0.05, 0.05, 0.05])^

TW
D

(pose=[0.347240902918124, 0.05213921283007174, 0.0], objID
=obj_C

, delta=[0.005, 0.005, 0.005])^
R

P
C

(region=S
w

eptS
urf(obj_D

, [-0.14, 0.14, 0.0], [-0.14906522292166582, 0.1694540749381484, 0.0]), allow
edO

bjs=['obj_D
'], eps=0.1)^

TW
D

(pose=[-0.14, 0.14, 0.0], objID
=obj_D

, delta=[0.005, 0.005, 0.005])^
R

P
C

(region=S
w

eptS
urf(obj_B

, [0.14, -0.14, 0.0], [0.0726318934133976, -0.24588740444641663, 0.0]), allow
edO

bjs=['obj_B
'], eps=0.1)^

TW
D

(pose=[0.14, -0.14, 0.0], objID
=obj_B

, delta=[0.005, 0.005, 0.005])

 M
ove_0(pose=[0.0726318934133976, -0.24588740444641663, 0.0],

        eps=[0.1, 0.1, 0.1],
        cost=0.147073593244,
        objID

=obj_B
,

        delta=[0.005, 0.005, 0.005],
        initP

ose=[0.14, -0.14, 0.0])

N
ode ID

: 8
Father ID

: 7
TW

D
(pose=[-0.14, -0.14, 0.0], objID

=obj_A
, delta=[0.05, 0.05, 0.05])^

R
P

C
(region=S

w
eptS

urf(obj_D
, [-0.14, 0.14, 0.0], [-0.14906522292166582, 0.1694540749381484, 0.0]), allow

edO
bjs=['obj_D

'], eps=0.1)^
TW

D
(pose=[-0.14, 0.14, 0.0], objID

=obj_D
, delta=[0.005, 0.005, 0.005])^

R
P

C
(region=S

w
eptS

urf(obj_B
, [0.14, -0.14, 0.0], [0.0726318934133976, -0.24588740444641663, 0.0]), allow

edO
bjs=['obj_B

'], eps=0.1)^
TW

D
(pose=[0.14, -0.14, 0.0], objID

=obj_B
, delta=[0.005, 0.005, 0.005])^

R
P

C
(region=S

w
eptS

urf(obj_C
, [0.14, 0.14, 0.0], [0.347240902918124, 0.05213921283007174, 0.0]), allow

edO
bjs=['obj_C

'], eps=0.1)^
TW

D
(pose=[0.14, 0.14, 0.0], objID

=obj_C
, delta=[0.005, 0.005, 0.005]) M

ove_0(pose=[0.347240902918124, 0.05213921283007174, 0.0],
        eps=[0.1, 0.1, 0.1],
        cost=0.251244623663,
        objID

=obj_C
,

        delta=[0.005, 0.005, 0.005],
        initP

ose=[0.14, 0.14, 0.0])

b = obj_C
:{'m

odes': [0.14, 0.14, 0.0], 'color': '#f48042', 'm
ovable': True, 'shape': 'rectangle', 'dim

ension': [0.14, 0.17], 'sigm
as': [0.0003, 0.0003, 0.0003]},

       obj_B
:{'m

odes': [0.14, -0.14, 0.0], 'color': '#429ef4', 'm
ovable': True, 'shape': 'rectangle', 'dim

ension': [0.14, 0.17], 'sigm
as': [0.0003, 0.0003, 0.0003]},

       obj_A
:{'m

odes': [-0.14, -0.14, 0.0], 'color': '#41f4b8', 'm
ovable': True, 'shape': 'rectangle', 'dim

ension': [0.14, 0.17], 'sigm
as': [0.0003, 0.0003, 0.0003]},

       im
m

ov:{'m
odes': [0.0, 0.35, 0.0], 'color': '#282828', 'm

ovable': False, 'shape': 'rectangle', 'dim
ension': [0.6, 0.1], 'sigm

as': [0.0003, 0.0003, 0.0003]},
       obj_D

:{'m
odes': [-0.14, 0.14, 0.0], 'color': '#e8d75c', 'm

ovable': True, 'shape': 'rectangle', 'dim
ension': [0.14, 0.17], 'sigm

as': [0.0003, 0.0003, 0.0003]}

 in
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2

1

0

GOAL
!PICKED(objID=oA)
PSWD(delta=[0.0500, 0.0500, 0.0500], eps=[0.5000, 0.5000, 0.5000], objID=oA)
TWD(delta=[0.0500, 0.0500, 0.0500], objID=oA, pose=[0.7500, 0.3500, -1.5708])

Node ID: 1  |  Father ID: 0  |  CCost: 0.180710678119  |  Repeated Node? False
HOLDS(holderID=rA, objID=oA)
PICKABLE(objID=oA)
PICKED(objID=oA)
RPC(allowedObjs=[oA], eps=0.1, region=Reg(oA, [0.7500, 0.3500, -1.5708], [0.2000, 0.2000]))
TWD(delta=[0.0500, 0.0500, 0.0500], objID=rA, pose=[0.7500, 0.7114, -1.5708])

 Place_0 (cost=0.1807,
        delta=[0.0500, 0.0500, 0.0500],
        eps=[0.5000, 0.5000, 0.5000],
        objID=oA,
        placerID=rA,
        pose=[0.7500, 0.3500, -1.5708])

Node ID: 2  |  Father ID: 1  |  CCost: 3.46264493653  |  Repeated Node? False
CONTROLLABLE(objID=rA)
HOLDS(holderID=rA, objID=oA)
PICKABLE(objID=oA)
PICKED(objID=oA)
RPC(allowedObjs=[oA], eps=0.1, region=Reg(oA, [0.7500, 0.3500, -1.5708], [0.2000, 0.2000]))
RPC(allowedObjs=[rA, oA], eps=0.1, region=SSurf(rA, [0.7500, -0.6114], [0.7500, 0.7114]))
TWD(delta=[0.0500, 0.0500, 0.0500], objID=rA, pose=[0.7500, -0.6114, 1.5708])

 Move_0 (cost=3.2819,
        delta=[0.0500, 0.0500, 0.0500],
        eps=[0.5000, 0.5000, 0.5000],
        initPose=[0.7500, -0.6114, 1.5708],
        objID=rA,
        pose=[0.7500, 0.7114, -1.5708])

Node ID: 3  |  Father ID: 2  |  CCost: 3.64335561465  |  Repeated Node? False
CONTROLLABLE(objID=rA)
PICKABLE(objID=oA)
!PICKED(objID=oA)
RPC(allowedObjs=[oA], eps=0.1, region=Reg(oA, [0.7500, 0.3500, -1.5708], [0.2000, 0.2000]))
RPC(allowedObjs=[rA, oA], eps=0.1, region=SSurf(rA, [0.7500, -0.6114], [0.7500, 0.7114]))
TWD(delta=[0.0500, 0.0500, 0.0500], objID=rA, pose=[0.7500, -0.6114, 1.5708])
TWD(delta=[0.0500, 0.0500, 0.0500], objID=oA, pose=[0.7500, -0.2500, 1.5708])

 Pick_0 (cost=0.1807,
        delta=[0.0500, 0.0500, 0.0500],
        eps=[0.5000, 0.5000, 0.5000],
        holderID=rA,
        objID=oA,
        pose=[0.7500, -0.6114, 1.5708])

Node ID: 4  |  Father ID: 2  |  CCost: 5.98195866971  |  Repeated Node? False
CONTROLLABLE(objID=rA)
HOLDS(holderID=rA, objID=oA)
PICKABLE(objID=oA)
PICKED(objID=oA)
RPC(allowedObjs=[oA], eps=0.1, region=Reg(oA, [0.7500, 0.3500, -1.5708], [0.2000, 0.2000]))
RPC(allowedObjs=[rA, oA], eps=0.1, region=SSurf(rA, [0.7500, -0.6114], [0.7500, 0.7114]))
RPC(allowedObjs=[rA, oA], eps=0.1, region=SSurf(rA, [-1.0000, 0.0000], [0.7500, -0.6114]))
TWD(delta=[0.0500, 0.0500, 0.0500], objID=rA, pose=[-1.0000, 0.0000, 0.0000])

 Move_0 (cost=2.5193,
        delta=[0.0500, 0.0500, 0.0500],
        eps=[0.5000, 0.5000, 0.5000],
        initPose=[-1.0000, 0.0000, 0.0000],
        objID=rA,
        pose=[0.7500, -0.6114, 1.5708])

Node ID: 5  |  Father ID: 3  |  CCost: 6.16266934783  |  Repeated Node? False
CONTROLLABLE(objID=rA)
PICKABLE(objID=oA)
!PICKED(objID=oA)
RPC(allowedObjs=[oA], eps=0.1, region=Reg(oA, [0.7500, 0.3500, -1.5708], [0.2000, 0.2000]))
RPC(allowedObjs=[rA, oA], eps=0.1, region=SSurf(rA, [0.7500, -0.6114], [0.7500, 0.7114]))
RPC(allowedObjs=[rA], eps=0.1, region=SSurf(rA, [-1.0000, 0.0000], [0.7500, -0.6114]))
TWD(delta=[0.0500, 0.0500, 0.0500], objID=oA, pose=[0.7500, -0.2500, 1.5708])
TWD(delta=[0.0500, 0.0500, 0.0500], objID=rA, pose=[-1.0000, 0.0000, 0.0000])

 Move_0 (cost=2.5193,
        delta=[0.0500, 0.0500, 0.0500],
        eps=[0.5000, 0.5000, 0.5000],
        initPose=[-1.0000, 0.0000, 0.0000],
        objID=rA,
        pose=[0.7500, -0.6114, 1.5708])

b = wF: {controllable: False, modes: [1.051, 0.41, 1.5707963267948966], picked: False, pickable: False, type: object, sigmas: [0.0003, 0.0003, 0.0003]},
       wE: {controllable: False, modes: [0.449, 0.41, 1.5707963267948966], picked: False, pickable: False, type: object, sigmas: [0.0003, 0.0003, 0.0003]},
       wD: {controllable: False, modes: [0.75, 0.1, 0.0], picked: False, pickable: False, type: object, sigmas: [0.0003, 0.0003, 0.0003]},
       wC: {controllable: False, modes: [1.051, -0.31, 1.5707963267948966], picked: False, pickable: False, type: object, sigmas: [0.0003, 0.0003, 0.0003]},
       wB: {controllable: False, modes: [0.449, -0.31, 1.5707963267948966], picked: False, pickable: False, type: object, sigmas: [0.0003, 0.0003, 0.0003]},
       wA: {controllable: False, modes: [0.75, 0.0, 0.0], picked: False, pickable: False, type: object, sigmas: [0.0003, 0.0003, 0.0003]},
       oA: {controllable: False, modes: [0.75, -0.25, 1.5707963267948966], picked: False, pickable: True, type: object, sigmas: [0.0003, 0.0003, 0.0003]},
       rA: {controllable: True, modes: [-1.0, 0.0, 0.0], picked: False, pickable: False, type: AGV, sigmas: [0.0003, 0.0003, 0.0003]}

 in

Fig. C.2 Detailed version of Fig. 4.12
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Résumé :
L’objectif de cette thèse est d’étudier et de développer une

approche pour résoudre le problème de planification de

mouvements d’un groupe de robots mobiles à roues en

environnement opérationnel réaliste. Nous proposons

principalement une approche basée sur l’optimisation

distribuée associée à une méthode de type fenêtre

glissante pour la génération de trajectoire en boucle

ouverte ainsi qu’une loi de commande prédictive (MPC)

pour la stabilisation du système en boucle fermée.

Dans cette approche, la perception, la planification de

trajectoire et son exécution sont combinées et peuvent

être réalisées par le contrôleur de chacun des robots

indépendamment, au fur et à mesure qu’ils évoluent dans

leur espace de travail. L’approche garantit le respect de

plusieurs types de contraintes, à savoir l’évitement des

obstacles, la limitation des vitesses et des accélérations, les

contraintes non-holonomes et l’évitement des collisions

inter-robots. Les robots appartenant au système multi-

robots échangent des informations sur leurs trajectoires

envisagées et convergent individuellement vers des

trajectoires optimales sans conflit.

En outre, des travaux en vue d’une planification intégrée

des tâches et des mouvements par une méthode

hiérarchique sont présentés. L’objectif étant d’aboutir

à une méthode complète de planification de mouvements

robuste et hautement autonome des robots mobiles.

Des expériences en simulation et avec des véhicules

réels de type monocycle non-holonomes ont été menées.

Elles ont permis d’analyser l’impact des paramètres sur

des critères déterminants tels que le temps de calcul,

l’évitement des obstacles, l’évitement des collisions

inter-robots et le temps de déplacement. Ces résultats

démontrent également la qualité du mouvement du robot

dans des situations où la dynamique, les incertitudes sur

la localisation du robot et les délais de communication

sont réels et significatifs.

Finalement, cette étude montre que l’approche proposée

pourrait être utilisée dans des systèmes réels où

l’incertitude sur l’état de l’environment, les retards

de communication, la puissance de calcul embarquée

limitée, la forte dynamique et d’autres phénomènes

habituellement difficiles à surmonter sont tous présents.

Title: Online Distributed Motion Planning for Mobile Multi-robot Systems

Keywords: Mobile Robots, Multi-robot Systems, Trajectory Planning, Mathematical Programming

Abstract:
This thesis aims to study and develop an approach for

solving the motion planning problem of a group of

wheeled mobile robots in a realistic environment. Mainly

we propose a distributed mathematical programming

approach associated with a receding horizon method

for the open-loop trajectory generation as well as a

modified model predictive control (MPC) for the closed-

loop stabilization. In this approach, perception, trajectory

planning, and execution are interleaved and can be

performed onboard each robot independently, as they

evolve through their workspace. It ensures respect of

several types of constraints, namely obstacle avoidance,

bounded velocities and accelerations, nonholonomic

constraints, and inter-robot collision avoidance. The

robots belonging to the multi-robot system exchange

information on their intended trajectories and converge

individually to optimal non-conflicting trajectories.

Furthermore, some work towards integrated task and

motion planning by a hierarchical method is presented.

The objective was to achieve a complete framework for

robust, highly autonomous mobile robot motion.

Experiments both in simulation and with real

nonholonomic unicycle-like vehicles were conducted.

They allowed us to analyze the impact of parameters on

key figures such as computation time, obstacle avoidance,

inter-robot collision avoidance, and travel time. Results

also show the quality of robot motion in situations where

dynamics, the uncertainties about robot localization, and

communication delays are real and meaningful.

Overall, this study indicates that the proposed approach

could be used in real systems where uncertainty about

the world state, communication delays, limited onboard

computation power, strong dynamics, and other usually

challenging to overcome phenomena are all present.
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