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Titre : Modélisation et simulation numérique des écoulements compressibles denses et dilués Résumé (de 1700 à 4000 caractères espaces compris) Cette thèse apporte quelques contributions et voies d'amélioration dans la modélisation et la simulation numérique d'écoulements diphasiques compressibles dans les régimes denses et dilués en particules. Un nouveau modèle diphasique, hyperbolique dégénéré et thermodynamiquement consistant est construit. La nouveauté repose sur la reconsidération de l'équation sur la fraction volumique. Celle-ci implique des modifications majeures sur la propagation acoustique par rapport au modèle de Baer & Nunziato (1986) et semble plus physique par rapport à la topologie de l'écoulement. Dans le but de résoudre de manière précise ce nouveau modèle, un solveur de Riemann avec reconstruction interne des états (RSIR) est construit, basé sur la méthode de Linde (2002). D'abord développée et améliorée dans le cadre des équations d'Euler, cette méthode est étendue au modèle diphasique dense -dilué hors d'équilibre développé précédemment. Ce nouveau modèle pose de sérieuses difficultés pour la recherche d'un solveur de Riemann, étant hyperbolique dégénéré et seulement valide dans le cadre de la relaxation raide des pressions (rendant les solutions nonautosimilaires). Grâce à l'approche avec reconstruction interne, un solveur de Riemann faiblement diffusif est développé. Cette nouvelle méthode numérique (RSIR) est utilisée pour résoudre une situation complexe d'instabilité de jets de particules solide dans un milieu granulaire et montre une explication plausible du processus de formation de ces instabilités ou jets de particules. Dans la suite on s'intéresse à l'écoulement multidimensionnel qui se développe autour de quelques particules discrètes. Une méthode de type Level-Set est développée dans le but de décrire la translation de solides indéformables sur un maillage non-structuré fixe. Grâce à l'utilisation du limiteur de pente Overbee développé par Chiapolino et al. (2017) une méthode simple et robuste de couplage solide/fluide de type Ghost-Cell est construite, puis vérifiée. Cette approche, simple à développer permet une amélioration de la convergence de la méthode à l'aide de considérations également simples. La méthode est ensuite étendue en 2D et validée à l'aide de comparaisons dans le cadre d'un écoulement supersonique autour d'un objet cylindrique immobile. La méthode est ensuite étendue au cas du couplage fort, utilisé pour observer la mise en mouvement de plusieurs particules solides par onde de choc et la formation d'amas de particules.
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Introduction Générale

Cette thèse porte sur la modélisation et la simulation numérique d'écoulements hétérogènes en régime dynamique. Ces écoulements sont étudiés dans des conditions extrêmes, notamment en présence d'ondes de choc. Cette thèse traite l'aspect théorique de la modélisation avec le développement d'un modèle diphasique dense-dilué capable de traiter un très large spectre de fractions volumiques, ainsi que l'aspect numérique avec le développement d'un solveur de Riemann adapté à ce modèle. Plus précisément, on s'intéresse dans cette thèse aux processus de mise en mouvement et de formation d'amas de particules solides ou liquides par interaction avec un fluide.

Motivation et contexte de l'étude

Dès l'apparition de la simulation numérique les communautés scientifiques et industrielles se sont intéressées aux problématiques de modélisation des écoulements diphasiques. Cet engouement s'explique par la nécessité de compréhension de phénomènes complexes et la réduction des coûts de développements des systèmes industriels par rapport aux approches basées sur des expériences uniquement.

Les écoulements multiphasiques se rencontrent dans de nombreuses problématiques industrielles et académiques, telles que la combustion, le génie chimique, la production d'énergie, les phénomènes naturels (mouvements des dunes, tsunamis, éruptions volcaniques, inondations…), les études de sûreté et beaucoup d'autres domaines. De plus, la quantité croissante des ressources informatiques permet d'envisager le traitement numérique de situations de plus en plus complexes. Pour ces raisons les communautés scientifiques cherchent à approfondir les performances des modélisations et des simulations existantes pour apporter des solutions aux situations réelles.

Le travail réalisé durant cette thèse est motivé par le soin d'amélioration des modèles et méthodes numériques dans les écoulements diphasiques hors d'équilibre. Un travail de recherche portant sur la modélisation et la simulation d'écoulements diphasiques compressibles denses et dilués a été effectué.

Plus précisément, les phénomènes qui nous intéressent s'inscrivent dans le cadre des instabilités de jets diphasiques, dont quelques exemples concrets sont la fragmentation dynamique de liquides et la dispersion de particules solides.

Les problèmes d'instabilités de jets diphasiques se rencontrent dans plusieurs secteurs. Pour le secteur de la Défense, ils se rencontrent dans l'explosion de charges entourées de particules (voir Dans la limite dense, les particules sont en contact les unes avec les autres. Un modèle compressible diphasique à 7 équations comprenant 6 ondes a été développé par [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] dénoté BN pour la suite. Une version alternative du modèle de BN à 7 ondes a été développée par [START_REF] Abgrall | Discrete equations for physical and numerical compressible multiphase mixtures[END_REF], [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF]. Ce modèle est hyperbolique et respecte la seconde loi de la thermodynamique. La symétrie du modèle facilite la résolution du problème de Riemann (voir aussi [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF] ainsi que l'extension de la formulation à un nombre arbitraire de phases.

Ce modèle est utilisé pour un grand nombre de situations dans le cadre d'ondes de détonations dans les explosifs hétérogènes [START_REF] Chinnayya | Modeling detonation waves in heterogeneous energetic materials[END_REF]) ou de chocs en milieux multiphasiques [START_REF] Saurel | A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations[END_REF] ou encore la combustion de milieux granulaires [START_REF] Saurel | Symmetric model of compressible granular mixtures with permeable interfaces[END_REF]Saurel et al., 2017).

Dans la limite diluée les particules (gouttes de liquide, particules solides ou bulles de gaz) deviennent éloignées les unes des autres et ne sont plus en mesure de propager les ondes de pression (voir Figure 3). Cependant, le modèle de BN ne tient pas compte de cette particularité. 

Méthodes numériques

Beaucoup de méthodes numériques sont actuellement référencées dans la littérature. La plupart du temps pour les modèles diphasiques, ces solveurs numériques sont des extensions des solveurs développés dans le cas monophasique des équations d'Euler. Les systèmes considérés étant hyperboliques, il est alors nécessaire de résoudre le problème de Riemann sur chaque bord de maille.

Par exemple pour le modèle BN un solveur de type HLLC [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] a été développé dans Tokareva and Toro (2010), une autre version étant développée dans [START_REF] Saurel | Multiscale multiphase modeling of detonations in condensed energetic materials[END_REF].

Pour les modèles diphasiques, de nombreuses ondes caractéristiques sont présentes comme c'est le cas par exemple dans la magnétohydrodynamique (MHD).

Des différences fondamentales apparaissent cependant. En effet, dans la MHD les modèles développés sont conservatifs. La résolution du problème de Riemann peut être alors conduite par une approche type Rusanov (1961) ou HLL (Harten et al., 1983) par exemple comme cela été réalisé dans Gurski (2004) ou encore Balsara et al. (2014). Dans le cas du nouveau modèle, cinq équations sont non-conservatives : l'équation de la fraction volumique des particules, et les équations du mouvement et de l'énergie totale des deux phases. La gestion des termes non-conservatifs est alors importante, et cela représente un problème à surmonter dans le cas du nouveau modèle. Ce point est traité grâce à une formulation conservative locale.

Une autre différence fondamentale émerge entre ces deux domaines. Dans la MHD, les systèmes d'équations sont strictement hyperboliques, c'est-à-dire que les valeurs propres de la Jacobienne du système sont distinctes, ce qui permet la détermination de relations de passages au travers de ces ondes (voir Figure 6). Dans le cadre du nouveau modèle dense-dilué développé dans cette thèse, la vitesse de la phase dispersée est valeur propre multiple, ce qui rend ce modèle hyperbolique dégénéré (Figure 6). La recherche d'un solveur approché de Riemann devient alors difficile. Le diagramme (x,t) présenté en (a) est tiré de Li, S. (2005) 

Plan du manuscrit

Le manuscrit est organisé de la façon suivante. Le deuxième chapitre de cette thèse présente un solveur approché de Riemann, adapté au modèle précédemment développé. La résolution de ce modèle présente quelques difficultés :

-L'équation sur la fraction volumique des particules, ainsi que les équations de quantité de mouvement et d'énergie de chaque phase sont non-conservatives ;

-Le caractère multi-évalué de la solution [START_REF] Saurel | Two-phase flows-second-order schemes and boundary conditions[END_REF] Chapter I

Modelling compressible dense and dilute twophase flows

This chapter focuses on the building of a compressible flow model to address both dense and dilute regimes. Existing flow models of [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] and [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] 

I.1 -Introduction

It is well accepted that hyperbolic models are mandatory to deal with phenomena involving wave propagation. This is the case for multiphase flow mixtures in many situations such as in particular shocks and detonations propagation in granular explosives and in fuel suspensions, as well as liquidgas mixtures with bubbles, cavitating and flashing flows, as soon as motion is intense and governed by pressure gradients. This is thus the case of most unsteady two-phase flow situations.

Wave propagation is important as it carries pressure, density and velocity disturbances. Sound propagation is also very important as it determines critical (choked) flow conditions and associated mass flow rates. It has also fundamental importance on sonic conditions of detonation waves when the two-phase mixture is exothermically reacting [START_REF] Petitpas | Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional compuations[END_REF].

Hyperbolicity is also related to the causality principle, meaning that initial and boundary conditions are responsible of time evolution of the solution. When dealing with first-order partial differential equations it means that the Riemann problem must have a solution, and the Riemann problem is correctly posed only if the equations are hyperbolic.

However, only a few two-phase flow models are hyperbolic in the whole range of parameters. The [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] model seems to be the only formulation able to deal with such requirement.

Its symmetric extension [START_REF] Saurel | Symmetric model of compressible granular mixtures with permeable interfaces[END_REF] facilitates the Riemann problem resolution as the corresponding model involves 7 wave's speeds (instead of 6 in the original version). See also [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF] for similar conclusions.

However, in the dilute limit at least, the acoustic properties of this model seem inconsistent [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF]. Indeed with this model, the dispersed phase sound speed corresponds to the one of the pure phase, while this phase is not continuous and unable to propagate sound in reality, at least at a scale larger than particle's one. When the phase is not continuous (dispersed drops in a gas, dispersed bubbles in a liquid), the associated sound speed should vanish, such effect being absent in the formulation.

In the low particles concentration limit, the [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] model is preferred. This model corresponds to the Euler equations with source terms for the gas phase and pressureless gas dynamic equations for the particle phase (see also [START_REF] Zeldovich | Gravitational instability: An approximate theory for large density perturbations[END_REF]. This model is thermodynamically consistent and hyperbolic as well, except that the particle phase equations are hyperbolic degenerate. In this model, contrarily to the BN model, sound doesn't propagate in the particles phase, this behaviour being more physical in this limit. However, the Marble model has a limited range of validity as the volume of the dispersed phase is neglected, this assumption having sense only for low (less than per cent) condensed phase volume fraction.

There are thus fundamental differences between these two models:

-The volume occupied by the condensed phase is considered in BN while it is neglected in the dilute model, restricting its validity to low dispersed phase volume fractions.

-Condensed phase compressibility is considered in BN while incompressible particles are assumed in the dilute formulation.

-Acoustic properties of the BN model are well accepted in the dense domain but seem inappropriate in the dilute limit.

Even if these two models can be used in the entire space of two-phase flow variables without yielding computational failure (this is characteristic of thermodynamically consistent hyperbolic models) validity of their results is questionable when they are used out of their range of physical validity. This issue has been clearly understood in [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF] 

I.2 -Well-known limit models of two-phase flows

Two hyperbolic models are widely used in the two-phase flow literature and their main characteristics are recalled hereafter.

I.2.a) BN type model (1986)

The [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] model is recalled hereafter, in the absence of granular effects ('configuration' pressure and energy) as well as heat and mass transfers. Mechanical relaxation effects only are considered in addition to waves' dynamics. A variant of this model is available as well in [START_REF] Romenski | Compressible two-phase flows: two-pressure models and numerical methods[END_REF], where a conservative formulation is obtained.

The symmetric variant of [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] is presented hereafter rather than the original BN.

The evolution equations for phase 1 read,

11 I 1 2 u (p p ) tx   + =  -  11 ( ) ( u) 0 tx     +=  (I.2.1) 2 1 1 1 I 2 1 ( u) ( u p) p (u u ) t x x     +   + = +  -    ' 1 1 1 I I I 2 1 I 1 2 ( E) ( ( E p)u) p u u (u u ) p (p p ) t x x      +   + = +  -- -   
The evolution equations of the second phase are,

22 ( ) ( u) 0 tx     +=  (I.2.2) 2 2 2 2 I 2 1 ( u) ( u p) p (u u ) t x x     +   + = - -    ' 2 2 2 I I I 2 1 I 1 2 ( E) ( ( E p)u) p u u (u u ) p (p p ) t x x      +   + = - -+  -   
The following definitions and notations are used:

- k  , k  , k u , k E , k
p denote respectively the volume fraction, material density, velocity, total energy and pressure of the phase k (k=1,2).

-The total energy of the phases reads,

2 k k k 1 E e u 2
=+ .

-The pressures are given by convex equations of state of the form

k k k k p p ( , e ) = .
-The velocities relax each other to a common equilibrium one at a rate controlled by  , modelled by conventional drag force correlations and specific interfacial area.

-The pressure relax each other to a common equilibrium one at a rate controlled by  .

Estimates for this relaxation parameter are given in the references above:

I 12 A ZZ = + ,
where

I
A represents the interfacial exchange area. The specific interfacial area is given by

1 I 1 3 A R  =
if phase 1 represents the dispersed phase made of particles or bubbles of radius 1 R .

Obviously, more sophisticated models of interfacial area are possible.

-The interfacial variables are estimated by,

' 1 2 1 II 12 pp u u sgn x Z Z  -  =+  +  with 2 1 2 2 1 1 ' I Z Z u Z u Z u + + = , ' 1 1 2 I I 2 1 12 ZZ p p sgn (u u ) x Z Z   = + -  +  with ' 2 1 1 2 I 12 Z p Z p p ZZ + = + ,
where

k k k
Zc = represents the acoustic impedance of phase k.

This symmetric formulation of the BN model has some advantages:

-Its extension to more than two phases is quite easy.

-It is able to deal with contact and permeable interfaces [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF], Saurel et al., 2014).

-It involves an extra wave, not aligned with the condensed phase velocity, this property having benefits at least for numerical resolution (Ambroso et al., 2012, Furfaro and[START_REF] Furfaro | A simple HLLC-type Riemann solver for compressible non-equilibrium twophase flows[END_REF].

This system admits the following mixture entropy equation, showing non-negative production:

( ) ( ) ( ) s ( ) s ( ) u s ( ) u s t x Z Z Z 1 (p p ) sgn Z (u u ) (u u ) (p p ) T x x Z Z Z Z ZZ Z Z 1 (p p ) sgn Z (u u ) T x x ZZ   +    +  + =            -+ - +  - +  -        + +  +            + -+ - +        +   2 2 2 2 1 2 1 1 2 1 2 Z (u u ) (p p ) Z Z Z Z     - +  -   + +    
Its 7 associated wave speeds are:

I I u = , 11 u = , 2 1 1 uc  = + , 3 1 1 uc  = -, 42 u = , 5 2 2 uc  = + , 6 2 2 uc  = -.
This model is consequently hyperbolic, thermodynamically consistent and symmetric. However, the wave speeds are independent of the volume fraction, meaning that in the dilute limit, the sound speed in the condensed phase is unchanged, this behaviour being questionable as this phase is no longer continuous.

I.2.b) Dilute two-phase flow model (Marble, 1963)

As the model that follows is no longer symmetric it is necessary to precise the phases. Phase 1 is considered to be the condensed one and the gas phase is denoted by the subscript 2. The 'apparent density' of the dispersed phase is introduced as, 11 ()  =  .

In this approach, 1 0.01  and volume fraction effects are neglected in the gas phase equations. Its validity is therefore clearly restricted to flows with low concentrations of particles.

Phase 1 (dispersed)

1 1 1 u 0 tx   +=  2 1 1 1 1 21 uu (u u ) tx   + =  -  (I.2.3) 1 1 1 1 1 e e u 0 tx   +=  or alternatively 1 1 1 1 1 1 2 1 E E u u (u u ) tx   + =  -  .
Phase 2 (gas)

2 2 2 u 0 tx   +=  (I.2.4) 2 2 2 2 2 2 21 u u p (u u ) tx   + + = - -  2 2 2 2 2 2 1 2 1 E ( E p )u u (u u ) tx    + + = - - 
This system admits the following mixture entropy equation:

1 1 2 2 1 1 1 2 2 2 1 2 2 s s s u s u (u u )² t x T  +   +   - += 
Its associated wave speeds are:

11 u = , 22 u = , 3 2 2 uc  = + , 4 2 2 uc  = -.
As 11 u = is fold three times, the equations of phase 1 are hyperbolic and linearly degenerate, while the ones of the gas phase are strictly hyperbolic.

These two models are thus well posed in the sense that they are thermodynamically consistent, frame invariant and hyperbolic. Both models can be solved by Godunov type methods as the Riemann problem has been addressed for both [START_REF] Saurel | Two-phase flows-second-order schemes and boundary conditions[END_REF][START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF][START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF], Deledicque and Papalexandris, 2010[START_REF] Furfaro | A simple HLLC-type Riemann solver for compressible non-equilibrium twophase flows[END_REF]. However, well posedness is a necessary condition but not a sufficient one for physical validity. In particular, considering again the BN model, the condensed phase sound speed 1 c is well defined as a thermodynamic variable and sound disturbances propagate at the particle or grain level. But sound cannot propagate in the mixture at speed 1 c as the continuum approximation is no longer valid for the condensed phase as soon as the mixture becomes dilute enough. See also [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF]McGrath et al. (2016) for further arguments.

I.3 -Alternative volume fraction equations

The volume fraction equation of the BN model is the first equation of System (I.2.1) and can be derived from averaging methods considering the transport of a characteristic function, equal to 1 in a given phase and 0 in the other phase. See for example [START_REF] Abgrall | Discrete equations for physical and numerical compressible multiphase mixtures[END_REF], [START_REF] Drew | Theory of multicomponent fluids[END_REF].

Let us now consider another point of view as done by [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF] and consider liquid drops (or condensed phase particles) suspended in a gas. The radius R1 of a single spherical compressible liquid drop surrounded by a gas evolves, under acoustic approximation ( u p / c     ) with the following transport equation [START_REF] Chinnayya | Modeling detonation waves in heterogeneous energetic materials[END_REF],

1 1 1 2 11 d R p p dt c -   , (I.3.1)
where

1 1 d u dt t x  =+ 
denotes the Lagrangian derivative of phase 1.

Estimate of the pressure relaxation time

1  is given by the time needed for an acoustic wave to travel the particle radius,

1 1 1 R c  .
For a liquid drop of 1 mm radius suspended in air the pressure relaxation time is therefore of the order of 1 microsecond. This is very small in most practical situations compared to the other characteristic times related to drag, heat exchange, most situations of wave propagation and fluid motion.

With this definition (I.3.1) becomes,

1 1 1 1 2 2 11 d R R p p dt c -  
Trivial transformation of the former equation implies,

2 1 1 1 1 2 1 2 1 1 1 d V R p p 4R dt c -   (I.3.2)
where

3 1 1 4 VR 3
= denotes the volume of the drop.

In absence of fragmentation and coalescence, the specific number of drops per unit volume obeys the following balance equation:

1 1 1 N N u 0 tx  +=  , (I.3.3)
where 1 N represents the specific number of drops. Multiplying (I.3.2) by 1 N yields,

1 1 1 1 1 2 2 1 1 1 u 3 p p t x c    - +=     (I.3.4) as 1 1 1 NV = .
The volume fraction equation is now in conservative form with a pressure relaxation term.

It is interesting to consider the symmetric situation of liquid containing spherical bubbles.

In this situation the bubble radius evolves according to,

2 2 2 1 11 d R p p dt c -   ,
as the acoustic impedance of the less compressible phase ( 11 c

 ) controls the interface velocity.

The specific number of bubbles per unit volume obeys the balance law,

2 2 2 N N u 0 tx  +=  ,
and the corresponding volume fraction equation now reads,

2 2 2 2 2 1 2 1 1 2 u 3 p p t x c c    - +=     (I.3.5) with 2 2 2 R c
 .

We now examine the implications of such volume fraction equations (I.3.4 and I.3.5) on the flow model. The analysis begins with a model based on (I.3.4) to start with a concrete example.

I.4 -The new model

For the sake of simplicity in the notations and compatibility with (I.2.1), Equation (I.3.4) is expressed as

1 1 1 12 u μ(p p ) tx   + = -  , (I.4.1) with 1 2 1 1 1 3 μ c  =  .
The same mass, momentum and energy equations of Systems (I.2.1)-(I.2.2) are reconsidered as,

11 ( ) ( u) 0 tx     +=  2 1 1 1 I 2 1 ( u) ( u p) p (u u ) t x x     +   + = +  -    1 1 1 I I 2 1 2 1 ( E) ( ( E p)u) p u (u u ) H(T T ) t x t      +  + = - +  -+ -    22 ( ) ( u) 0 tx     +=  (I.4.2) 2 2 2 2 I 2 1 ( u) ( u p) p (u u ) t x x     +   + = - -    2 2 1 I I 2 1 2 1 ( E) ( ( E p)u) p u (u u ) H(T T ) t x t      +  + = - -- -   
The right hand side of the phase energy equations has been modified with the presence of -Time and volume average methods [START_REF] Anderson | Fluid mechanical description of fluidized beds[END_REF]Jackson, 1967, Delhaye and[START_REF] Delhaye | On the averaging operators introduced in two-phase flow modeling[END_REF];

-Ensemble average methods [START_REF] Drew | Theory of multicomponent fluids[END_REF];

-Variational methods [START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF];

-Discrete Equations Method [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF].

System (I.4.2) obviously satisfies mixture mass, mixture momentum and mixture energy conservation, for any model of interfacial pressure I p and interfacial velocity I u . Possible estimates are for example [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF]:

2 1 1 2 I 12 Z p Z p p ZZ + = + ; 1 1 2 2 I 12 Z u Z u u ZZ + = + (I.4.3) Convective heat exchange ( 21 H(T T ) -
) has been inserted for the sake of generality where H denotes the product of the specific interfacial area and heat exchange coefficient, related to the Nusselt number.

Balance equations (I.4.2) are considered not only in the BN formulation, but in any two-phase Eulerian model when the effects of volume fraction are considered. The only point to underline is that the various pressures are distinct at this level.

Two questions arise immediately, regarding the fulfilment of the second law of thermodynamics and the hyperbolicity of (I.4.1-2). In this aim, the equations are expressed in a set of appropriate variables.

I.4.a) Physical variables formulation

System (I.4.1-2) is expressed with 'physical variables': volume fraction, density, velocity, internal energy and entropy for each phase:

1 1 1 1 1 2 du μ(p p ) dt x  +  = -  (I.4.4) 1 1 1 12 1 d μ (p p ) dt  = - -  1 1 1 I 1 1 2 1 1 1 1 d u p (p p ) (u u ) 1 dt x ( ) x ( )  -   - + = +      1 1 1 I 1 I 1 2 1 2 1 I 1 2 1 1 1 1 1 d e p p u (u u )(u u ) H(T T ) μ p (p p ) dt x ( ) ( ) -  - - - + = - -+ +       1 1 1 I 1 I 1 2 1 2 1 I 1 1 2 1 1 1 1 1 1 1 1 1 d s p p u (u u )(u u ) H(T T ) μ (p p )(p p ) dt T x T ( ) T ( ) T -  - - - + = - - -+ +       ( ) 2 2 2 1 1 1 2 2 1 2 2 2 1 2 2 2 2 d u u uu μ(p p ) dt x x x        + - +  +  = -       2 2 2 I 2 2 2 1 2 2 2 d u p p p (u u ) 1 dt x ( ) x ( )  -  - + = -      ( ) I 1 2 2 2 2 2 1 I 1 1 I 1 2 I 2 2 1 2 1 2 2 2 2 2 2 2 2 2 p u u d e p u p u μp (p p ) (u u )(u u ) H(T T ) dt x x x ( ) ( ) -     -  - - - + + + = - -             ( ) I 2 1 2 2 2 1 I 2 1 1 1 2 I 2 I 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 (p p ) u u d s (p p ) u μ(p p )(p p ) (u u )(u u ) H(T T ) dt T x T x T ( ) T ( ) T --  -   - -  - - - + + = - -          
The second equation of this system is particularly interesting. It means that phase 1 density is independent of velocity divergence. As phase 1 is dispersed, there is no reason that droplet cloud contraction (or expansion) induces density variations. In the present formulation, it varies only as a consequence of drop contraction or expansion, due to pressure differential

1 12 1 μ ( (p p ))

 --

and not to velocity divergence, as in the BN model. However, at this level, there is no chance that the entropy production of the system be non-negative in any flow condition, as the entropy equations involve space derivatives of velocities and volume fraction that have undefined sign. This ambiguity vanishes in the stiff pressure relaxation limit that follows.

I.4.b) Stiff pressure relaxation limit

Former system dramatically simplifies in the stiff pressure relaxation limit, as shown hereafter. Let us consider first-order expansions for the pressures, ( )

2 0 1 k 1 1 k k p c p p ... =  +  + (I.4.5)
Where, - is of the order of the pressure relaxation time ( Inserting these definitions in (I.3.4) it becomes,

0 1 0 1 1 1 1 1 1 1 2 2 u3 (p p p p ) tx    + = +  --   
This equation implies two relations, as  is arbitrarily small, Let us for example examine the entropy equation of the first phase that becomes, after inserting (I.4.5):

( ) ( ) ( )( ) 2 0 0 2 1 1 1 1 I 1 1 I 1 1 1 1 11 2 0 0 1 1 0 0 1 1 1 I 1 2 1 2 1 1 I 1 I 1 2 1 2 1 1 1 1 1 c p p c p p d s u u dt T x T x 3c (u u )(u u ) H(T T ) p p (p p ) p p (p p ) T ( ) T ( ) T -- + +  =   - - - - -+  - -+  - + +   
With the help of (I.4.6) simplifications appear, ( )

2 1 1 2 1 1 I 11 1 1 1 1 I 1 2 1 2 1 1I 1 1 1 1 1 1 c p p d s u 3c (u u )(u u ) H(T T ) (p p )² dt T x T ( ) T ( ) T -   - - - +  = -  - + +    .
Under the assumption of smooth solutions and as

0 +
→ , it reduces to:

1 1 I 1 2 1 2 1 1 1 1 1 d s (u u )(u u ) H(T T ) dt ( ) T ( ) T  - - - =+  
Therefore all terms involving pressure differential vanish, except those related to first-order pressure relaxation effects (quadratic pressure differential terms vanish). The resulting limit system reads,

1 1 1 1 1 2 du μ(p p ) dt x  +  = -  (I.4.9) 1 1 1 12 1 d μ (p p ) dt  = - -  1 1 1 2 1 11 d u p (u u ) 1 dt x ( )   - +=    1 1 I 1 2 1 2 1 I 1 2 1 1 1 1 d e (u u )(u u ) H(T T ) μ p (p p ) dt ( ) ( )  - - - = - -+ +     1 1 I 1 2 1 2 1 1 1 1 1 d s (u u )(u u ) H(T T ) dt ( ) T ( ) T  - - - =+   ( ) 2 2 2 1 1 1 2 2 1 2 2 2 1 2 2 2 2 d u u uu μ(p p ) dt x x x        + - +  +  = -       2 2 2 2 1 22 d u p (u u ) 1 dt x ( )   - + = -    ( ) I 1 2 2 2 2 2 1 I 1 1 I 1 2 I 2 2 1 2 1 2 2 2 2 2 2 2 2 2 p u u d e p u p u μp (p p ) (u u )(u u ) H(T T ) dt x x x ( ) ( ) -     -  - - - + + + = - -             2 2 I 2 2 1 2 1 2 2 2 2 d s (u u )(u u ) H(T T ) dt ( ) T ( ) T  - - - = - -  
With the help of interfacial variables estimates (I.4.3) the entropy equations become,

1 1 2 2 1 21 1 1 1 2 1 1 d s Z H(T T ) (u u )² dt ( ) T Z Z ( ) T -  = - +  +  2 2 1 2 1 21 2 2 1 2 2 2 d s Z H(T T ) (u u )² dt ( ) T Z Z ( ) T -  = - -  + 
Combination of these equations with the mass equations results in the following mixture entropy equation, that guarantees non-negative evolutions,

1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 1 2 s s s u s u Z Z H(T T )² (u u )² t x T T Z Z T T     +     +   -  + = + - +     +   (I.4.10)
System (I.4.9) is consequently entropy preserving.

It is interesting to note that, in the present limit, the internal energy equation of the first phase expresses in conservation form:

1 1 1 1 1 1 1 I 1 2 I 1 2 1 2 1 e e u μp (p p ) (u u )(u u ) H(T T ) tx     + = - - +  - -+ -  (I.4.11)
Another interesting remark emerges with respect to the interfacial variable estimates It is also interesting to note that in the present stiff pressure relaxation limit associated to (I.4.9) the interfacial pressure estimate for I p has no importance with respect to the entropy production.

Therefore, simple estimates such as, I 1 p = p or I2 p = p , are admissible as well.

We now check hyperbolicity of this flow model.

I.4.c) Hyperbolicity

System (I.4.9) in absence of relaxation effects, is expressed as,

WW A(W) 0 tx  +=  , with, ( ) T 1 1 2 1 1 2 2 W , s , s , , u , , u =    .
The Jacobian matrix reads,

1 2 1 1 2 11 2 11 1 1 1 1 21 1 2 2 2 2 22 2 22 2 2 2 2 u 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 u 0 0 cp 1 0 0 u 0 0 A(W) s 0 0 0 (u u ) u pc 1 0 0 0 0 u s               =         -                 . The wave speeds, solution of A I 0 - = are, 1 4 1 u - =, 52 u = , 6 2 2 uc  = -and 7 2 2 uc  = + .
(I.4.12)

All roots being real the system is unconditionally hyperbolic. The wave speeds correspond to the one of the dilute model of [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] (Systems I.2.3 -I.2.4) and not those of [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF], as expected.

The absence of sound propagation in the dispersed phase is obviously more physical, as there is no material to support sound propagation in this phase. In the BN formulation, sound propagates in the dispersed phase even in the absence of contacts, i.e. without material support, such behavior being physically questionable.

I.4.d) Model summary

The flow model thus consists in System (I.4.1-2) with the condition:

1 0 + → (I.4.13)
Alternatively it can be expressed as,

1 1 1 12 u (p p ) tx   + =  -  , with  → + 11 ( ) ( u) 0 tx     +=  , 2 1 1 1 1 1 1 1 1 1 I 2 1 u u p p (u u ) t x x     +   + = +  -    , 1 1 1 1 1 1 1 2 I 1 2 2 1 2 1 12 e u e Z p (p p ) (u u )² H(T T ) t x Z Z     + = - - +  - + -   + , 22 ( ) ( u) 0 tx     +=  , (I.4.14) 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 ( u u ) ( u ² p ) ( u ² p ) 0 tx    +      +  +   +  +=  , 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 ( E E ) u ( E p ) u ( E p ) 0 tx    +     + +   + +=  .
In this formulation there is a single non-conservative equation (the momentum one of the liquid phase) as the momentum of the second phase is deduced from the mixture momentum equation. The conservative internal energy equation for the liquid phase is a consequence of the second equation of (4.4) and stiff pressure relaxation limit. This is a nice property that simplifies shock conditions determination. Obviously, System (I.4.14) can be complemented by mass transfer.

I.4.e) Shock relations

A major issue of two-phase flow literature is addressed hereafter as most two-phase flow models being non-conservative, determination of weak solutions is challenging.

Let us denote with upper-script 0 the undisturbed state and  the shock speed. Most equations of System (I.4.14) being conservative, associated jump relations are determined easily as:

00 1 1 1 1 (u ) (u )  - =  - , 0 11  =  , 0 11 ee = , (I.4.15) 0 0 0 2 2 2 2 2 2 (u ) (u )   - =   - , 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 2 2 u (u ) u (u ) ( p p ) u (u ) u (u ) ( p p )   - +   - +  +  =   - +   - +  +  ( ) ( ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 E (u ) E (u ) u p u p E (u ) E (u ) u p u p   - +   - +  +  =   - +   - +  + 
Indeed, for any conservation law,

UF 0 tx  +=  , jump conditions are obtained as, 00 F U F U - = - .
In the undisturbed state, the mixture is in mechanical equilibrium,

0 0 0 12 u u u ==, 0 0 0 12 p p p ==,
and System (I.4.15) simplifies as,

00 1 1 1 (u ) (u )  - =  - , 0 11  =  , 0 11 ee = , (I.4.16) 0 0 0 2 2 2 2 2 (u ) (u )   - =   - , ( ) 
0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2 u (u ) u (u ) ( p p ) u (u ) p   - +   - +  +  =   +   - + ( ) ( ) 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 E (u ) E (u ) u p u p E E (u ) u p   - +   - +  +  =   +   - +
To close System (I.4.16) it is necessary to integrate the non-conservative momentum equation of the dispersed phase. This is usually a major issue with existing flow models, due to the lack of definition of the product

1 I p x  
, involving both Heaviside and Dirac functions.

Here this issue vanishes. Indeed, as (I.4.17)

The pressure of the dispersed phase is invariant across the shock. It will vary in the relaxation zone, but is constant through the discontinuity.

Consequently, assuming I1 pp = (an admissible estimate, as discussed previously) and integrating the dispersed phase momentum equation, the following result is obtained,

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 u (u ) (p p ) u (u ) (p p )   - +  - =   - +  - ,
and simplifies significantly as,

0 1 uu = (I.4.18)
The Rankine-Hugoniot system thus consists in (I.4.16) -(I.4.18). Thanks to (I.4.18) it simplifies as,

0 11  =  , 0 11  =  , 0 11 ee = , 0 1 uu = , (I.4.19) 00 2 2 2 (u ) (u )  - =  - , 0 0 0 0 2 2 2 2 2 u (u ) p u (u ) p  - + =  - + , 0 0 0 0 0 2 2 2 2 2 2 2 E (u ) u p E (u ) u p  - + =  - + .
This system means that the continuous phase (with index '2') is governed by single phase Rankine-Hugoniot conditions and clearly sees shock compression while the dispersed phase is invariant. This seems again physical, as the dilute phase being discontinuous, shocks cannot compress this phase directly. It is compressed in the relaxation zone, as a consequence of pressure differential among phases.

It is worth to mention that with (I.4.19) the so called 'piston problem' is well posed. Indeed a single shock propagates at speed  . This is very different of the jump conditions associated to the BN model, that involves two independent shocks, propagating at speeds 1  and 2  , when relaxation effects are omitted in the equations.

I.4.f) Stiff mechanical relaxation limit

We now address both stiff pressure and velocity relaxation limit to check compatibility of the model with the [START_REF] Kapila | Two-phase modeling of deflagrationto-detonation transition in granular materials: reduced equation[END_REF] one. This is important for the computation of material interfaces with capturing methods (Saurel and Pantano, 2017). Here, only pressure and velocity relaxation processes are considered. They are considered to relax at infinite rate.

The pressure evolution equations read,

2 1 1 1 1 1 1 2 1 p p c u (p p ) tx    + = -  -    22 2 2 2 2 1 1 2 2 2 2 2 1 2 22 p p c u u c u (p p ) t x x     +   + + =  -     
Taking the difference,

2 2 2 1 2 2 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1 2 p p c u u c c u u (p p ) x x x      +    - - = - +  -         .
In the stiff pressure ( 0 0 0 12 p p p ==) and velocity relaxation limits ( 0

0 0 12 u u u ==), 2 22 2 12 22 1 1 2 2 12 c u (p p ) cc x     - →   + 
Inserting this result in the volume fraction equation,

22 1 1 1 1 2 2 22 1 1 2 2 12 cc u u cc t x x    -  +=     + 
, the volume fraction equation of the [START_REF] Kapila | Two-phase modeling of deflagrationto-detonation transition in granular materials: reduced equation[END_REF] model is recovered.

The mixture sound speed at mechanical equilibrium is thus that of [START_REF] Wood | A Textbook of Sound[END_REF],

12 2 2 2 1 1 2 2 1 c c c  =+   
while for the Marble model with stiff velocity relaxation, the mechanical equilibrium sound speed is

22 2 2 cc   =   
, which is very different.

As the Kapila model is recovered in the stiff mechanical relaxation limit, it means that the present flow model is able to compute interfacial flows with the help of stiff velocity and pressure relaxation solvers. This feature is particularly important for the sake of generality of the formulation.

The present model is hyperbolic but not symmetric, as sound propagates only with the second phase.

It is therefore interesting to compute relevant test problems to examine typical solutions and particularly those where sound must propagate in the first phase, to examine robustness of the formulation outside its range of design. To do this, an appropriate flow solver is derived in Appendix I.A.

I.5 -Computed results

Several test problems are addressed, some giving relevant illustrations of model's capabilities, other serving for validation as compared to exact solutions as well as experimental data.

I.5.a) Shock tube tests

The first test corresponds to the simple transport of a volume fraction discontinuity in a flow field in uniform pressure and velocity conditions. The method of Appendix A is extended to higher order thanks to the MUSCL algorithm (see for example Toro, 1997). Present computations use the Minmod limiter. The ideal gas equation of state is used to model thermodynamics of the gas phase, while the liquid is modeled by the stiffened gas EOS. These two EOS are summarized as follows, ( ) These typical profiles are very different to those expected with BN and Marble models (without relaxation terms). For example, the pressure profiles of the phases are very different and even

k k k k k k k k p ( ,
unphysical, but the model and algorithm stay robust.

To recover acceptable pressure evolutions in the condensed phase, stiff pressure relaxation is used.

Pressure and velocity relaxation solvers are detailed in the appendixes C and D of Furfaro and Saurel (2016).

The same run as the one defined in ) is set in a cross section of the tube, with 2 cm width. The initial solid volume fraction in the particle bed is 0.65. The initial pressure is uniform initially and set at 10 5 Pa. A shock at Mach number 1.3 is created by the expansion of the high pressure gas, equivalent to a shock created by a piston moving at 151 m/s.

In this experiment pressure signals are recorded before and after the particles cloud, to examine reflected and transmitted waves through the granular media as well as its dilution and dispersion.

To account for drag effects the following correlation is used, combination of [START_REF] Ergun | Fluid flow through packed columns[END_REF] and [START_REF] Bernecker | Studies in the transition from deflagration to detonation in granular explosives-II. Transitional characteristics and mechanisms observed in 91/9 RDX/Wax[END_REF], ). The relative errors on transmitted and reflected waves are respectively 5% and 0.9%. However, the pressure evolution in the particle cloud is still perfectible. On the graph at right equation (I.3.5) has been used instead of (I.3.4). The relative errors on transmitted and reflected waves are respectively 0.9% and 1.3%, while the pressure evolution in the particle cloud seems more accurate but again still perfectible. Sound now propagates in the first phase but pressure relaxation effects restore quite correct wave dynamics in both phases.

F = r 2 d 1 C d u 2 -u 1 u 2 -u 1 ( ) with, C d = 150a 1 Re + 1.75 if a 1 ³ a cr 150a 1 Re + 1.75 (1-a cr )a 1 a 1 a 2 é ë ê ù û ú 0.45 if (1-a s ) £ a 1 £ a cr 150a 1 Re + 0.3 if a 1 £ (1-a s ) ì í ï ï ï ï î ï ï ï ï , 2 2 2 1 1 e 2 u u d R   - = 
For the sake of generality, attempt for an extended formulation is addressed hereafter.

I.6 -Towards a general formulation

The new model and its symmetric variant are embedded in a general formulation. Parameters 'a' and 'b' are defined as,

fluidization 1 1 if a 0 otherwize     =   (I.6.1) b a 1 =-
Parameter fluidization  corresponds to some fluidization limit, for example fluidization 0.5  . This parameter has been used in the various computations that will be examined later. The various tests done haven't shown clear dependence of the results to this parameter.

Therefore, in this formulation 'a' and 'b' are local constants, but they vary in space as

1 a a( ) =.
The general flow model reads,

1 1 1 2 2 12 uu a b (p p ) t x x    + + =  -    , (I.6.2) 11 ( ) ( u) 0 tx     +=  2 1 1 1 1 1 1 1 1 1 I 2 1 u u p p (u u ) t x x     +   + = +  -    1 1 1 1 1 1 1 1 1 1 1 1 2 2 I I 1 2 I 2 1 2 1 E u E u p u u p a b p (p p ) u (u u ) H(T T ) t x x x x         + + = + - - +  -+ -        22 ( ) ( u) 0 tx     +=  2 2 2 2 2 2 2 2 2 2 I 2 1 u u p p (u u ) t x x     +   + = - -    2 2 2 2 2 2 2 2 2 2 1 1 2 2 I I 1 2 I 2 1 2 1 E u E u p u u p a b p (p p ) u (u u ) H(T T ) t x x x x         + + = - + +  - - -- -       
It admits the following additional mixture entropy equation,

22 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 1 2 1 2 1 12 1 2 1 2 1 2 1 2 s s s u s u (u u ) Z Z H(T T ) 11 (p p ) t x T T Z Z T T T T       +     +   - - + =  - + +  + +       +    
guaranteeing thermodynamic consistency.

System (I.6.2) can also be written as, and, ( )

WW A(W) 0 tx  +=  , with, ( ) T 1 2 1 1 1 2 2 W s , s , , , u , , u =    ,
1 2 1 2 2 1 1 1 1 1 12 1 1 2 1 1 11 1 1 2 2 12 2 1 2 2 2 22 2 2 2 2 2 2 u 0 0 0 0 0 0 0 u 0 0 0 0 0 c 1p 0 u 0 0 0 s 0 0 b u b u u 0 b A(W) 0 0 a 0 ( au b u ) 0 b 0 0 a 0 a ( u u ) u a c 1p 0 0 0 0 u s                   - - -   =   -      -               
This matrix has a nice structure. Eigenvalues are given by det(A I) 0 - = , which results in the following polynomial,

( ) ( ) ( ) 2 2 2 1 1 2 2 1 2 1 2 1 (u )²(u )² ( au b u ) (u )²bc ( a b) u (u )²ac (b a)u 0   - - - - + - - - + -  + - =  
When a=1, b=0 it reduces to,

32 1 2 2 (u ) (u )² c 0  - - - = 
with the wave speeds of the first model. When a=0, b=-1 it reduces to, ( )

3 2 2 1 1 u (u )² c 0  - - - = 
with the wave speeds of the symmetric model.

Therefore the flow model (I.6.2) has the following wave speeds: For numerical computations, the first equation of System (I.6.2) is expressed as, ( ) ( )

11 u = , 2 1 1 uc  = + , 3 1 1 uc  = -, 42 u = , 5 
1 1 2 2 1 1 1 2 2 a u b u a u u 0 t x x   +    + - +  =    ,
It is solved with the hyperbolic solver of Appendix I.A based on the Rusanov flux. However, the wave speed estimate, ( )

k k k i 1 i S Max , + =   ,
now involves the six eigenvalues (I.6.3).

The volume fraction equation in (I.6.2) being non-conservative, appropriate scheme is needed. Similar This last test shows slight improvements in the numerical predictions regarding reflected and transmitted waves as well as particle's cloud dynamics. Possibly better agreement against experimental data could be obtained by using sophisticated drag force correlation, but this is not the scope of the present work.

Even if the BN model and the new one have the same limit model (Kapila's model) in the case of infinitely fast pressure and velocity relaxation, the transient wave dynamics between the pure gaseous shock towards a fan of compression waves has to be well captured and seems to depend on the topology of the two-phase flow. Moreover, it can be expected that the dispersive nature of a compression wave from the BN and the new models is different.

Intergranular stress [START_REF] Bdzil | Two-phase modeling of deflagrationto-detonation transition in granular materials: A critical examination of modeling issues[END_REF][START_REF] Saurel | Modelling dynamic and irreversible powder compaction[END_REF] as been investigated as well. Various estimates have been tested, from 0.1 to 0.9 without noticeable changes to the results.

I.7 -Conclusion

A new two-phase hyperbolic and thermodynamically consistent model has been built and typical solutions have been computed.

It is able to compute the same flow configurations as the BN model, i.e. interfaces separating pure fluids and non-equilibrium multiphase mixtures. Its acoustic properties sound physical. Moreover, the evolution of the two-phase topology directly influences both number and speed of waves present at a

given point of space. The flow dynamics expressed by the model is not only reflected through the change of drag coefficient between phases, through interfacial area evolution.

It is expected that two-phase shock waves structure be easier to analyze in the present frame. It is also

expected that multidimensional solutions exhibit extra differences than present one-dimensional computations, in particular regarding interface instabilities.

The present model is not supposed to be more appropriate than the BN model when dealing with packed granular beds, nor stratified and annular flows where both phases are continuous, allowing sound propagation in both phases. Also, it is not appropriate when finite rate relaxation of pressures contains important physical effects, such as pore collapse dynamics, responsible for hot spot appearance and ignition of condensed energetic materials in shock to detonation transition. The present model seems more appropriate when the phases are discontinuous and pressure relaxation stiff.

U F(U) U H U, 0 t x x     + + =      (A.1)
where, (  )

T 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 U , , u , E , , u , E =              , ( ) ( ) ( ) ( 
)

11 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 u u up F(U) u E p u up u E p             +     =   +            +         +  
and

T 1 1 1 1 1 1 I I I I U u u H U, 0,0, p , p ,0, p , p x x x x x          = - -              .
The difficulty with this hyperbolic system relies in the non-conservative term

U H U, x      .
For the sake of simplicity the [START_REF] Rusanov | The calculation of the interaction of non-stationary shock waves and obstacles[END_REF] approximate Riemann solver is considered. It uses the following estimate for the right facing wave, at a given cell boundary separating cells i and i+1:

( ) k k k i 1 i S Max , + =   .
At a given cell boundary separating left (L) and right (R) states, the approximate flux reads, ( )

* R L R L 1 F F F S U U 2 = + - -   (A.2)
The Godunov scheme for System (A.1) necessarily reads, (  )

n 1 n * * i i i 1/2 i 1/2 i t U U F F tH x + +-  = - - +   (A.3) where i H is the numerical approximation of U H U, x     
, to be determined.

To determine i H , we follow [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] where a flow in uniform mechanical equilibrium is considered:

1,i 1 1,i 1,i 1 2,i 1 2,i 2,i 1 u u u u u u u 0 - + - + = = = = = =  1,i 1 1,i 1,i 1 2,i 1 2,i 2,i 1 p p p p p p p - + - + = = = = = =
Inserting the Rusanov flux (A.2) in the Godunov method (A.3) for the mass equation of the first phase, the following result is obtained:

    n 1 n 1 1 i 1 1 i 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 i 1 u t S t ( ) ( ) ( ) ( ) ( ) 2( ) ( ) 2 x 2 x + + - + -    =   -   -  +   -  +    (A.4)
The same procedure is done for the momentum equation of the same phase:

    n1 1 1 i () n 1 n 1 1 1 i 1 1 i 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 i 1 1,i 1 1,i 1 i,u u t S t ( u ) u ( ) ( ) ( ) ( ) 2( ) ( ) 2 x 2 x t p tH 2x +  + + - + - +-     =   -   -  +   -  +        -  - +    In order that n1 1,i uu + = , the non-conservative term i,u
H must be approximated as,

** 1,i 1/2 1,i 1/2 n i,u i Hp x +-  - =  with 1,i 1 1,i * 1 1,i 2 2 + +  +  = . (A.5)
Considering the balance energy equation of the same phase the following discrete approximation is obtained:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ii i 1 i 1 ** n 1 1 1 1 1 1 1 1 1 i 1 1 1 1 i 1/2 i 1/2 i 1 i i 1 t E E u E p u E p 2x tS t E 2 E E p u u 2 x x + +- +- +-     =   -   + -  +     +   -  +   +  -  
The same analysis as before to maintain mechanical equilibrium provides the following guess:

( ) ( ) ** 1 1 1 1 n i 1/2 i 1/2 i,E i uu Hp x +-  - =  with * 1 1 i 1 1 1 i 1 1 i 1/2 ( u ) ( u ) ( u ) 2 + +  +  = (A.6)
The flow solver thus consists in (A.3) with (A.2), (A.5) and (A.6).

Appendix I.B. Derivation of the volume fraction numerical scheme

for System (I.6.2)

The volume fraction equation, ( ) ( )

1 1 2 2 1 1 1 2 2 a u b u a u u 0 t x x   +    + - +  =   
, must have a discretization compatible with the mass equation of the same system,

1 1 ( ) ( u) 0 t x     + =   .
In uniform velocity flows conditions, using the Rusanov flux (A.2) in the Godunov method (A.3), the discrete mass equation results in (A.4).

The same is done for the volume fraction equation,

    n 1 n 1 i 1 i 1 2 i 1 1 2 i 1 1 i 1 1 i 1 i 1 u t S t a ( ) ( ) (a b ) (a b ) ( ) 2( ) ( ) u t 2 x 2 x x + + - + -     =  -  +  - +  +  - +  +     (B.1) where a x   is the numerical approximation of a x  
, to be determined.

Rearranging (B.1) with

b a 1 =-and

2 1 1  = - the discrete volume fraction equation becomes,       n 1 n 1 i 1 i 1i 1 1i 1 i 1 i 1 1 i 1 1 i 1 i 1 u t u t S t a ( ) ( ) a a ( ) 2( ) ( ) u t 2 x 2 x 2 x x + + - + - + -      =  -  - - - +  - +  +      (B.2)
Let us now consider the particular case of uniform density field:

n n n 1,i 1,i 1 1,i 1 +-  =  =  .
Both velocity and density being uniform, the density at the next time step must be invariant:

n 1 n 1,i 1,i +  =  . In this context, the mass equation becomes,     n 1 n 1 1 i 1 1 i 1 i 1 1 i 1 1 i 1 1 i 1 i 1 u t S t ( ) ( ) ( ) ( ) ( ) 2( ) ( ) 2 x 2 x + + - + -       =   -  - +  - +        (B.3)
In order that (B.2) and (B.3) be compatible it is necessary that,

  i 1 i 1 u t a a a u t 0 2 x x +-   - - +  =   Therefore, i 1 i 1 aa a x 2 x + - -  =   (B.4) or, ** i 1/2 i 1/2 aa a xx +--  =  , with nn * i 1 i i 1/2 aa a 2 + + + = .
Consequently the volume fraction scheme reads,

(

) (

)

n n 1 n * * 1,i 1,i i 1/2 i 1/2 1 1 2 2 i ta F F u u t xx +  +  -   =  - - +  +    (B.5) with , ( ) ( ) ( ) nn * n n i 1/2 1 1 2 2 1 1 2 2 1,i 1 1,i i 1 i 1 F a u b u a u b u S 2  + + +  =  +  +  +  - -  and a x  
given by (B.4).

Energy equations have to be considered as well. Let us consider the one of the first phase, ( )

1 1 1 1 1 1 1 1 1 I u E p E p t t t   +    + = -    .
Using the volume fraction equation it becomes, ( ) ( ) ( )

1 1 1 1 1 1 1 2 2 1 1 1 I 1 1 2 2 u E p a u b u E a p u u t t x x   +   +      + = - - +  +        .
Discrete approximations of the non-conservative terms ( )

1 1 2 2 I a u b u p x   +   and ( ) I 1 1 2 2 a p u u x   +  
have to be determined. To be compatible with the volume fraction equation of the same system, discretization of the term a x   is given by (B.4).

The discrete approximation of ( ) First, this method is reconsidered and improved in 1D in the frame of the Euler equations.

1 1 2 2 a u b u x   +   reads, ( ) ( ) ( ) * * 1 1 1 1 2 2 1 1 2 2 i i 1 1 2 2 2 2 a u b u a u b u a u b u x x + -  +  - +    +  =   with ( ) ( ) ( ) nn * 1 1 2 2 1 1 2 2 i 1 i 1 1 1 2 2 i 2 a u b u a u b u a u b u 2 + +  +  +  +   +  = . ( B 
It is then extended to the new compressible dense and dilute two-phase flows model of the previous chapter. This model poses serious difficulties as it is weakly hyperbolic and only valid in the limit of stiff pressure relaxation, implying non-self-similar solutions. Thanks to the internal reconstruction approach, a low dissipative Riemann solver is built for the new model.

This numerical method is used to solve solid particles jet instabilities, showing possible explanation of their creation process.

Modelling context

It is well accepted that hyperbolic models are mandatory to deal with phenomena involving wave propagation. This is the case for multiphase flows in many situations such as in particular shocks and detonations propagation in granular explosives and in fuel suspensions, as well as liquid-gas mixtures with bubbles, cavitating and flashing flows, as soon as motion is intense and governed by pressure gradients. This is thus the case of most unsteady two-phase flow situations.

Wave propagation is important as it carries pressure, density and velocity disturbances. Sound propagation is also very important as it determines critical (choked) flow conditions and associated mass flow rates. It has also fundamental importance on sonic conditions of detonation waves when the two-phase mixture is exothermically reacting [START_REF] Petitpas | Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional compuations[END_REF].

Hyperbolicity is also related to the causality principle, meaning that initial and boundary conditions are responsible of time evolution of the solution. When dealing with first-order partial differential equations it means that the Riemann problem must have a solution, and the Riemann problem is correctly posed only if the equations are hyperbolic.

However, only a few two-phase flow models are hyperbolic in the whole range of parameters. The [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] model (BN) seemed the only formulation able to deal with such requirement. However, in the dilute limit at least, the acoustic properties of this model seemed inconsistent [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF]. Indeed, with this model, the dispersed phase sound speed corresponds to the one of the pure phase, while this phase is not continuous and unable to propagate sound in reality, at least at a scale larger than particle's one. When the phase is not continuous (dispersed drops in a gas, dispersed bubbles in a liquid), the associated sound speed should vanish, such effect being absent in the formulation.

In the low particle's concentration limit, the [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] model is preferred. This model corresponds to the Euler equations with source terms for the gas phase and pressureless gas dynamic equations for the particle phase (see also [START_REF] Zeldovich | Gravitational instability: An approximate theory for large density perturbations[END_REF]. This model is thermodynamically consistent and hyperbolic as well, except that the particle phase equations are weakly hyperbolic. In this model, contrarily to the BN model, sound doesn't propagate in the particles phase, this behaviour being more physical in this limit. However, the Marble model has a limited range of validity as the volume of the dispersed phase is neglected, this assumption having sense only for low (less than per cent) condensed phase volume fraction.

Recently, the gap between these two models has been filled (Saurel et al., 2017a 

Riemann solver with internal reconstruction (RSIR)

In the quest of Riemann solver with low dissipation for this flow model several issues appear:

-The flow model, as most two-phase flow models, presents non-conservative terms;

-Numerical experiments of typical initial value problems (IVPs) achieved with the Godunov-Rusanov method exhibit non self-similar solutions. Such behavior appears as a combination of non-conservative terms, acting as a drag force (in differential form), and stiff pressure relaxation, mandatory for this specific flow model.

-Governing equations of the dispersed phase are hyperbolic degenerate, as a single eigenvalue is responsible for characteristic waves propagation. Therefore, it is impossible to determine a basis of eigenvectors and associated Riemann invariants. Moreover, the solution can be multivalued, as for the Marble's model [START_REF] Saurel | Two-phase flows-second-order schemes and boundary conditions[END_REF]. It means that multiple volume fraction waves may be present in the solution, rendering the analysis and design of any Riemann solver intricate.

Several attempts for the building of approximate Riemann solver were done by the authors for this flow model on the basis of, -characteristic relations for the carrier phase and jump conditions for the dispersed one, -HLLC-type approximation based on a local conservative formulation, that will be presented later.

None of these attempts yielded efficient solver. The authors consequently move to another type of solver, based on internal reconstruction of intermediate states, computed from a simple and robust intercell state, such as Rusanov (1961) or HLL (Harten et al., 1983). This research direction has been investigated by [START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF], [START_REF] Miyoshi | A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics[END_REF] and many others, mainly in the frame of magnetohydrodynamics equations that also involve many waves in the Riemann problem. The aim is to build two intermediate states instead of one. Doing so, the method should maintain stationary discontinuities and reduce numerical diffusion during simple transport.

The underlying philosophy of this approach relies on the assumption that most of the physics is present in the two extreme waves and only one contact wave, that has to be identified. If the contact wave cannot be defined clearly, the method becomes irrelevant. But it seems that in most flow models such as the Euler equations, MHD (e.g. [START_REF] Balsara | A two-dimensinal HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flos[END_REF], compressible solid mechanics (e.g. Gavrilyuk et al., 2008), and the present two-phase model, identification of the contact wave is possible. The remaining waves, when present, are captured by the scheme during computations even if they are omitted in the RP. This is the same philosophy as the Rusanov and HLL solvers, except that an extra intermediate wave is added.

In the present work the Linde method is revisited, and extra physics is embedded to enhance robustness and accuracy. This is done to the price of generality loss, in the sense that the method becomes model dependent, as most Riemann solvers.

The [START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] method is recalled in Section II.2 in its basic version and computational examples are shown with the Euler equations. It sometimes works perfectly, but oscillations appear depending on the initial conditions. This observation motivates insertion of extra physics in the solver, resulting in significant improvements, yielding robust and accurate solutions. Similar accuracy and robustness as the HLLC solver are observed.

In Section II.3 the internal reconstruction method is extended to the two-phase flow model of interest.

As before extra physics is inserted in the closure relations. The (trivial) Rankine-Hugoniot relations of the dispersed phase are used as well as jump conditions across contact wave of the dispersed phase.

Thanks to these ingredients the flow solver becomes very efficient. One-dimensional computational examples are shown in the same section.

The method is then embedded in the DALPHADT unstructured meshes code. It is used to compute fingering instability occurring during explosive dispersion of particle clouds. Such instability seems 

II.2 -Riemann solver with internal reconstruction (RSIR) for the Euler equations

The Riemann solver with internal reconstruction is a modification of the [START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] solver. The original Linde solver is recalled in the frame of the Euler equations and modifications are addressed next.

The Euler equations of compressible fluids consist in a system of conservation laws, 

( ) ( ) ( ) * * * R L HLL R M R M L L S S U S S U S S U - = - + - .
(II.2.4) Relation (II.2.4) can be expressed as,

* * * HLL R R L L U U U =  +  , with R M R R L SS SS - = - and ML L RL SS SS - = - .
The contact wave speed is given by, 

( ) ( ) ( ) ( ) ( ) ( ) R L L L R R L R M L L L R R R p p u S u u S u S S u S u - +  - - - =  - - -

II.2.a) Linde reconstruction

Linde reconstruction is based on the following relation,

(

)

** R L R L U U U U - =  - (II.2.5)
where represents a viscosity parameter, 01    . When  is taken equal to zero, the HLL approximation is recovered. When 1 = the reconstruction tends to the HLLC representation but is not equivalent, as interface conditions are ignored in this approach. It is worth to note that when 1 = , isolated density discontinuities are preserved, an important property in CFD solvers. 57 Relation (II.2.5) is then combined to Relation (II.2.4) resulting in: (  )

( ) ( ) * * L HLL R R L * * R HLL L R L U U U U U U U U  = -  -   = +   -   (II.
** R R R R R ** L L L L L F F S U U F F S U U  = + -   = + -   .
(II.2.7)

Solution sampling is achieved through,

LL * L L M * * R R M RR F if S 0 F if S 0 and S 0 F F if S 0 and S 0 F if S 0      =       .
Typical solutions obtained by this solver embedded in a Godunov-type code are shown hereafter. Let us first consider the transport of a density discontinuity in a uniform velocity and pressure flow with a gas governed by the ideal gas EOS with Accuracy of the conventional Linde method is consequently highly dependent on initial data and viscosity parameter  . It is worth mentioning that in [START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] a method is given to determine  as a parameter vector to improve the solution. But it is important to note that as soon as  is strictly less than 1, the solver loses its ability to preserve isolated stationary discontinuities. Modification of this solver is thus addressed in the next paragraph.

II.2.b) New reconstruction method (RSIR)

The reconstruction derived hereafter is based on two ingredients:

-Quasi-isentropic variations across right and left-facing waves; -Interface conditions across the contact wave. Although not strictly correct, in particular across strong shocks, thermodynamic evolutions through right and left-facing waves are approximated as isentropic. Isentropic evolutions are themselves approximated through sound speed definition and trapezoidal approximation as, (  )

* 2 * R R R p p c , = +  - (II.2.9) ( ) * 2 * L L L p p c . = +  -
Taking the difference of these two relations, the following one is obtained:

** RL R L R L 2 pp . c -  - =  - - (II.2.10)
This relation corresponds to a modification of the first relation of System (II.2.5).

To maintain flexibility of the reconstruction method, parameter  is reintroduced as, 

** LR R L R L mass 2 pp c -   - =   - + =    . ( II 
* * LR L HLL R R L 2 * * LR R HLL L R L 2 pp , c pp . c  -    =  -   - +        -     =  +    - +       (II.2.
( ) ( ) ( ) ( ) * * LR R R L M 2 L HLL * * LR L R L M 2 R HLL pp u u S , c pp u u S . c  -    =  -   - +        -     =  +    - +       (II.2.14)
Determination of the intermediate states related to the energy is now addressed. As star densities are known form (II.2.12), star pressures are determined by same approximate isentropic relations (II.2.9).

Summing the two star pressures (II.2.9) to preserve symmetry, the following relation is obtained,

** *2 L R L R L R pp pc 2 2 2  +  +   +  = + -   . (II.2.15)
The energy jump across the contact wave is approximated thanks to (II.2.12) and (II.2.15) and the EOS, 

( ) ( ) ( ) ( ) * * * * 2 L L M L * * * * 2 R R M R 1 E e p , S
     - =   + -  + =          (II.2.17)
and the intermediate energy states read, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) * * * * * 2 * * * 2 R R R M L L M L HLL * * * * * 2 * * * 2 L R R M L L M R
        =  -   + -  +                        =  +    + -  +               (II.2.18) Note that parameter  is included in * L,R
 . Note also that (II. 

** R R R R R ** L L L L L F F S U U , F F S U U .  = + -   = + -  
Intermediate states are given by (II.2.12), (II.2.14) and (II.2.18). In compact form they read, The various test problems are given in [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics. A practical introduction[END_REF]Toro ( , 2019) ) including the Colella and [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid with Strong Shocks[END_REF] blast wave test. Extreme wave speeds are approximated following (II.2.2) [START_REF] Davis | Simplified second-order Godunov-type methods[END_REF] for both solvers (RSIR and HLLC). Computed results are provided in Figures II.5-II.12. For this test series, all variables are in dimensionless units as done in [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics. A practical introduction[END_REF]Toro ( , 2019)). Note that these test problems are all severe and designed to push the methods to the limit with the exception of tests 6 and 7 that involve a stationary discontinuity and a simple advection. Those two last tests remain nonetheless essential to access the methods. Method extension to the more sophisticated flow model of Saurel et al. (2017a) is now examined. As already mentioned, this system is weakly hyperbolic. Moreover, it will be shown that solutions are not self-similar. For this flow model, the authors tried to derive a HLLC-type Riemann solver, but their attempts failed.

* * L HLL R * * R HLL L U U , U U ,  = -    = +     (II.2.

II.3 -Extension to dense-dilute two-phase flow model

1 1 1 I I 2 1 I 1 2 E p u E u p u u u μp p p t x x    +     + = +  - - -    , (II.3.1) ( ) ( ) 2 2 u 0 t x     + =   , ( ) ( ) ( ) 2 2 2 2 I 2 1 up u p u u t x x   +     + = - -    , ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 I I 2 1 I 1 2 E p u E u p u u u μp p p t x x    +     + = - - - + -    .
Same notations as for the Euler equations are used. Additionally et al. (2017a). It is important to mention that this flow model is valid only in the stiff pressure relaxation limit (  → + ). Appropriate pressure relaxation solvers are given for example in [START_REF] Lallemand | Towards the direct numerical simulation of nucleate boiling flows[END_REF]. This is not equivalent to strict pressure equilibrium models that are non-hyperbolic, or conditionally hyperbolic. Also, this is not a restrictive assumption for most two-phase flow applications, except possibly extreme situations, such as hot spots ignition in condensed energetic materials (Saurel et al., 2017b), where pressure relaxation is the driving effect for hot spot appearance.

The present model is hyperbolic with wave speeds,

1 4 1 u - =, 52 u = , 6 2 2 uc  = -and 7 2 2 uc  = + .
These waves speeds are the same as the ones of the [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] model but are significantly different from those of the [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] model. Combination of the equations of System (II.3.1) result in the following mixture entropy equation, that guarantees non-negative evolutions,

1 1 1 2 2 2 1 1 1 1 2 2 2 2 I 1 I 2 2 1 1 2 s s s u s u (u u ) (u u ) (u u ) t x T T     +     +   - - + = -  -       . (II.3.2)
Indeed, admissible estimates for the interfacial velocity are, ( )

1 I u p x  
terms are present in the righthand side of the momentum and energy equations. However, assuming I1 pp = the following Rankine-Hugoniot system is obtained (Saurel et al., 2017a):

0 11  =  , 0 11  =  , 0 11 ee = , 0 1 uu = , (II.3.3) 00 2 2 2 (u ) (u )  - =  - , 0 0 0 0 2 2 2 2 2 u (u ) p u (u ) p  - + =  - + , 0 0 0 0 0 2 2 2 2 2 2 2 E (u ) u p E (u ) u p  - + =  - +
. These relations will be used in the RSIR derivation.

Numerical resolution of System (II.3.1) has been done in Saurel et al. (2017a) with the help of a Rusanov (1961) solver. This solver being quite diffusive, the aim is now to build an improved solver.

System (II.3.1) involves however three main difficulties:

-It is non-conservative;

-The eigenvalue 1 u is multiple. Therefore System (II.3.1) admits multivalued solutions [START_REF] Forestier | Multivalued solutions to some non-linear and non-strictly hyperbolic systems[END_REF][START_REF] Saurel | Two-phase flows-second-order schemes and boundary conditions[END_REF][START_REF] Bouchut | Numerical approximations of pressureless and isothermal gas dynamics[END_REF].

-Solutions are not self-similar, as will be shown later with the help of numerical experiments.

These issues are addressed gradually in the following.

To overcome the non-conservative issue a local conservative of the System (II.3.1) is addressed, which must be tested and validated with the same numerical method as in Chapter I. As the reconstruction is based on the solution given by the local conservative formulation, extra attention is needed to ensure that the new conservative approach does not degrade the previous results obtained in Chapter I. The reconstruction of the solution is then applied on the local conservative formulation to determine solution of System (II.3.1).

II.3.a) Local conservative formulation and Rusanov-type solvers

In Saurel et al. (2017a) a Rusanov-type method was derived to determine qualitative solutions of the new flow model and validations against both exact solutions and experimental data. This method is recalled hereafter, and an improved version based on a local conservative formulation is built. The aim is to show that non-conservative terms are treated correctly through the local conservative formulation.

II.3.a.i) Basic Rusanov version

System (II.3.1) is considered in non-conservative form and in the absence of relaxation terms as, ( )

FU UU H U, 0 t x x    + + =      , (II.3.4) with, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) T 1 1 1 1 2 2 2 T 2 2 1 1 2 1 2 1 2 T 1 1 1 1 I I I I U , , u , E , , u , E F u , u , u p E p u , u , u p , E p u u u H 0, 0, p , p , 0, p , p x x x x =        =    +    +   +    +         = - -        
Let us denote by, ( )

k k k LR S Max , =   ,
the maximum wave speed separating two states L and R.

The Rusanov flux reads, ( )

* R L R L 1 F F F S U U 2 = + - -   ,
and the Godunov scheme associated to system (II.3.4) reads, (  )

n 1 n * * i i 1 1 i ii 22 t U U F F tH x + +-  = - - +   ,
where i H is an approximation of non-conservative terms.

Following Saurel et al. (2017a), based on [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] method for a slightly different flow model, approximation of these terms read;

-For the momemtum equation,

** 11 1,i 1,i n 22 i,u i Hp x +-  - =  with 1,i 1,i 1 * 1 1,i 2 2 + +  +  = .
-For the energy equations, ( ) ( )

** 11 1,i 1,i n 22 i,E i uu Hp x +-  - =  with ( ) ( ) ( ) * 1,i 1 1,i 1 1,i 2 uu u 2 + +  +  = .
These formulas are built to respect mechanical equilibrium condition. Another version is examined hereafter.

II.3.a.ii) Local conservative formulation

The interfacial pressure I p appears in the presence of non-conservative terms, such as   k I p

x . As I p has been assumed equal to the dispersed phase pressure, the following assumption is made: p is taken equal to the pressure of phase 1 when this phase is present, as summarized in (II.3.5). As it is constant during time evolution in a

1,L 1,L 1,R I 1,R 1,L 1,R p if p p if      =       . ( II 
given Riemann problem, it becomes a local constant.

As a consequence of Rankine-Hugoniot relations (II.3.3), assuming = I1 pp implies that I p becomes a local constant, as 1 p is invariant across right-and left-facing waves.

Thanks to this local constant, System (II.3.1) becomes locally conservative:

( )

11 u 0 tx   +=  , 11 ( ) ( u) 0 tx     +=  , ( ) ( ) ( ) 2 I 1 1 u p p u 0 tx   +  -   + =  , ( ) ( ) ( ) I 11 E p p u E 0 tx    + -   +=  , (II.3.6) ( ) 2 1 u 0 tx   -=  , 22 ( ) ( u) 0 tx     +=  , ( ) ( ) ( ) 2 I 2 2 u p p u 0 tx   +  -   + =  , ( ) ( ) ( ) ( ) I 1 22 E p u u p E 0 tx    + +    +=  .
In compact form it reads, ( )

U U 0 tx   +=  ,
with obvious definition for ( )

U  .
The associated Rusanov flux is immediate, 

( ) * R L R L 1 S U U 2  =  +  - - 
k,R k,L * k k,R k,L ( ) ( ) 1 2 S     -     =  +  -     . (II.3.9)
The fluxes are inserted in the same Godunov scheme as before, (  )

n 1 n * * i i 1 1 i ii 22 t U U F F tH x + +-  = - - +   ,
except that i H are now given by,

** 11 1,i 1,i n 22 i,u i Hp x +-  - =  ** 1 1 1 1 ii n 22 i,E i ( ) ( ) Hp x +-   -  = 
.

In these expressions ). Phase 2 represents the carrier phase, here air considered as ideal gas ( (1986) model in the absence of pressure relaxation. Length of the domain has been increased to 5m to avoid waves interaction with the boundaries, and the initial discontinuity is placed at 2.5m. 1 000 computational cells are used with CFL=0.5. Computations are done with the MUSCL method and Minmod limiter. The solution is self-similar and consists in two decoupled shock tube solutions, as well known.

The [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] model, solved with the HLLC-type solver of [START_REF] Furfaro | A simple HLLC-type Riemann solver for compressible non-equilibrium twophase flows[END_REF] gives self-similar solutions in absence of pressure relaxation. The same shock tube test problem is reconsidered once more with stiff pressure relaxation in the [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] These difficulties are omitted when dealing with single state Riemann solver, such as HLL or Rusanov.

From this robust solution basis, we now address internal reconstruction to reduce numerical smearing.

II.3.b) Riemann solver with internal reconstruction (RSIR) for the two-phase model

The present flow solver is not based on variations across the various waves but only on rebuilding two intermediate states to preserve isolated volume fraction discontinuities and reduce artificial smearing during transport. In this direction, the intermediate wave speed is based on the phase 1 contact wave:

( As detailed with the Euler equations the method to solve System (II.3.1) proceeds in two steps:

-Determine average state with HLL based on (II.3.6);

-Rebuild the solution.

Thanks to the local conservative formulation the first step is immediate. System (II.3.6) is expressed as, ( )

U U 0 tx   +=  ,
with I p given by (II.3.5).

The average state is obtained as, As System (II.3.12) involves two unknown variable vectors, another set of relations is needed.

Reconstruction

For the dispersed phase, the Rankine-Hugoniot relations (III.3) imply,

* 1R 1R  =  and * 1L 1L  =  .
The difference of these two relations reads,

** 1R 1L 1R 1L  - =  - .
Parameter  is introduced to control numerical diffusion, ( )

** 1R 1L 1R 1L  - =   - .
As phase 1 density has no jump across left-and right-facing waves, similar relation is obtained:

( ) ( ) ( ) ( ) ( ) ** 1R 1L 1R 1L
 - =   - .

Regarding momentum jump across the intermediate wave, the same relation is used as in the context of the Euler equations, (

** M1 1R 1L 1R 1L u u S  - =   - . ) ( ) ( ) ( ) ( ) 
The energy jump relation is based on the interface condition related to the momentum equation of phase 1:

( ) ( ) ( ) ( ) ( ) ( ) ** * * * * * * * * 1R 1R M1 1R 1R I 1L 1L M1 1L 1L I 1R 1L u u S p p u u S p p  - +  - =  - +  - .
Velocity jump conditions across left-and right-facing waves of the dispersed phase are introduced as, 

** * * * * 1R 1R M1 1R 1R I 1L 1L M1 1L 1L I 1R 1L u u S p p u u S p p  - +  - =  - +  - . ( ) ( ) ( ) ( ) ( ) ( ) 
( )

2 * * * * I 1 ,1 ** M1 1R 1L 1R 1L 1R 1L 1 ** 1L M1 1R M1 1L 1R 1L 1R 11 pp S EE 12 u S u S u u 11  +   - =  - +  -  - -- +  -  -  - .
For the first phase, these relations summarize as,

** R ,k L,k k UU = +  , k 1,.., 4 = , (II.3.13) with, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
1R 1L 1R 1L M1 1R 1L 2 ** 1L M1 1R M1 I 1 ,1 M1 1R 1L 1L 1R 1R 1L 1L 1R 1 1 1 S u S u S pp S uu 1 2 1 1     -     -     =   -    --  +    - +   - +  -    -  -  -  
For the dispersed phase, combining (II.3.12) and (II.3.13) the intermediate states are computed as,

** R ,k HLL,k L k ** L,k HLL,k R k UU UU  = +     = -    , k 1,.., 4 = . (II.3.14)
Reconstruction is now addressed for the second phase. For the sake of simplicity, let us consider that the volume fraction of the second phase is considered additionally. To preserve the saturation constraint ( (  )

** 2R 2L 2R 2L  - =   - .
Another assumption is now introduced. The density of the carrier phase is assumed uniform in the two intermediate states. In other words, ( )

* 2,HLL 2 * 2,HLL  =  .
This assumption is needed as the flow solver behaves incorrectly when the product of two discontinuous functions are present (volume fraction and density).

The assumption made at this level is similar to prolongated formulations used in Ghost Fluid Methods [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid method)[END_REF], immersed boundary methods and diffuse interface methods [START_REF] Kapila | Two-phase modeling of deflagrationto-detonation transition in granular materials: reduced equation[END_REF][START_REF] Allaire | A five-equation model for the simulation of the interfaces beween compressible fluids[END_REF][START_REF] Massoni | Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: some models and Eulerian methods for interface problems between compressible fluids with heat transfer[END_REF][START_REF] Saurel | Diffuse interface capturing methods for compressible two-phase flow[END_REF]. In diffuse interface methods, numerical diffusion of volume In this frame, apparent densities are rebuilt as, ( )

* * 2 2R 2R  =   , ( ) * * 2 2L 2L  =   . Consequently, ( ) ( ) ( ) ** 2R 2L 2 2R 2L  - =   -  .
Momentum jump across the intermediate wave is rebuilt as,

( ) ( ) ( ) ( ) ( ) * * * * 2 M 2R 2L M 2 2R 2L 2R 2L u u S S   - =  - =   -  
where the contact wave speed of the second phase is computed as, ( 

( ) ( ) ( ) ( ) ( ) ( ) ** * * * * M 2 M 2 M1 2R 2R I M 2 M 2 M1 2L 2L I 2R 2L S S S p p S S S p p  - +  - =  - +  - .
Alternatively, it reads,

( ) ( ) ( ) ( ) ** * * * * * * 2R 2R 2L 2L M 2 M 2 M1 2R 2L I 2L 2R p p S (S S ) p  - =  - - +  - .
Assuming fluid 2 governed by the stiffened gas EOS, it becomes, (

** ** * * * * 2R 2 2 2L 2 2 M 2 M 2 M1 2R 2L I 2L 2R 2R 2R 1 e p 1 e p S S S p    - - -  - - =  - - +  -         ) ( ) ( ) ( ) ( ) ( ) ( ) 
The internal energy jump thus reads, (

** ** M2 M2 M1 2R 2L I 2 ,2 2L 2R ** 2R 2L 2 S S S p p ee 1   - - +  - +   - = - . ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 
The total energy jump for phase 2 follows, ( 

2R 2L 2 M 2 2 M 2 M1 I 2 ,2 M2 2 M 2 22 1 S SS pp S S 2 1 1        =   -     - +    - +    -  -    Last, ( ) ( ) ( ) ( ) ( ) 2 
** R R R R R ** L L L L L S U U S U U   =  + -    =  + -   . (II.3.16)
Fluxes of System (II.3.1) are computed as,

** k k k F k L, R =  +  = , (II.3.17) with ( ) ( ) ( ) ( ) T * * * * k I 1k 1k 1k 1k p 0, 0, , u , 0, 1 , u  =   - - .
 * k are determined from the reconstructed states as,

( ) ( ) ** R 1L 1HLL 1R 1L ** L 1R 1HLL 1R 1L , .       =  -   -  =  +    - (II.3.18)
The associated Godunov-type scheme including non-conservative terms reads, ( )

n 1 n * * i i 1 1 i ii 22 t U U F F tH x + +-  = - - +   ,
with i H given by,

** 11 1,i 1,i n 22 i,u i Hp x +-  - =  ( ) ( ) * * 1 1 1 1 i i n 2 2 i,E i Hp x + -   -  =  . In these expressions * 1 k,i 2   and 
( )

* 11 i 2 +
 are given by (II.3.18) and (II.3.16) respectively.

II.3.c) Examples and validations

Validations of the flow solver and comparisons with the former Rusanov method are addressed first.

Second computational examples are shown showing method's capabilities.

A volume fraction discontinuity at rest is considered to check method capability to maintain such Results are shown at time t=300 µs. Stiff pressure relaxation is used. With the RSIR method, significant improvements appear in the volume fraction and phase 1 density computations. Indeed, the RSIR solution lies between computed results with the Rusanov method with 100 and 500 cells.

The RSIR solver is consequently validated and improves accuracy of the Rusanov and HLL solvers. Also, it preserves volume fraction discontinuities at rest. Its capabilities are now illustrated on the computation of a challenging two-phase flow instability.

II.4 -Multi-D example: Particle jetting during radial explosion

When a spherical or cylindrical explosive charge is surrounded by a liquid layer or a granular particle bed the material dispersal occurs through particle jets having well defined size. On the example shown in the Figure II.22 a cylindrical explosive charge is initially surrounded by a liquid layer. (2018). Impulsive motion of a particle ring by a gas flow induces well defined particles fingers flowing to the center direction, oppositely to the gas flow. At later times, here at 8 ms, short wavelength instabilities also appear at the external surface. As time evolves, external surface instabilities grow and become dominant, as shown in the third picture at time 57 ms. Internal jets are thus observed at early times, followed by external ones at late times.

As reported by [START_REF] Rodriguez | Solid-particle jet formation under shock-wave acceleration[END_REF] and [START_REF] Xue | Dual hierarchical particle jetting of a particle ring undergoing radial explosion[END_REF], instabilities appear first at the inner interface and second at the outer one. Shape of these fingers is singular, in the sense that they do not qualitatively compare to the Richtmyer-Meshov instabilities or Rayleigh-Taylor ones, nor any other known instability. Indeed, mushroom type shape is observed with these two instabilities, while fingers The mesh is made of triangles and contains about 15 cells in the radial direction of the particles ring. Pa.s). Drag force is modelled through [START_REF] Clift | Motion of entrained particles in gas stream[END_REF] correlation, ( ) Although not precisely identified from the present numerical experiments, the formation mechanism of this fingering instability appears closely related to non-conservative terms. They play the role of a differential drag force, acting intensively at cloud boundaries and vanishing in the wake, when volume fraction gradients disappear.

21 D 1 d 2 2 1 1 3 F C u u u u 8R =   - - , with, ( ) 0 
At the modeling level, non-conservative terms present similar form as capillary ones (Brackbill et al., 1992, Perigaud and[START_REF] Perigaud | A compressible flow model with capillary effects[END_REF] except that curvature effects are absent in the present two-phase formulation. Another major difference is that cloud boundaries are obviously highly permeable in the present context, while interfaces are not permeable in conventional hydrodynamic instabilities, except those considering flames and phase transition, where low permeability is present.

II.5 -Conclusion

A Riemann solver with internal reconstruction (RSIR) has been built as an extension of [START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] solver. It has been first developed for the Euler equations and shown to provide similar accuracy and robustness as the HLLC solver, while being not as systematic as this one. The method has been 100 secondly extended to a two-phase non-equilibrium model developed by the authors. This model presented serious difficulties as it is weakly hyperbolic and valid only in the presence of stiff pressure relaxation, rendering solutions not self-similar. Thanks to the RSIR approach, a low dissipation solver has been developed. It has been validated against solution obtained with more conventional, but dissipative solvers. The new method has been applied in the last section to a difficult problem of fingering instability in granular media and has shown possible explanation of the formation mechanism. Extra work is still needed in this special two-phase flow topic to achieve understanding of this instability.

Regarding the Riemann solver, it seems flexible for many applications where most of the physics is governed by the two extreme waves and an intermediate one. Moreover, a parameter is present to control dissipation when flow conditions are particularly severe. In all present computations the solver appeared robust with parameter (β=1), corresponding to the minimum dissipation.

-Numerical smearing of the interface contour, that may result in solid body disappearance if the Level-Set function is resolved with insufficient accuracy ;

-Interface roughness effects due to mixed cells.

These issues become pregnant when dealing with unstructured grids as it is more difficult to control artificial smearing and roughness.

To be more precise regarding the state of the art of existing methods, it is worth to mention that accurate results can be obtained with ALE codes as well as cut-cells algorithms. In the frame of ALE methods it is possible to manage mesh deformation in the fluid with linear elasticity equations (Farhat et al., 2001, Barral and[START_REF] Barral | Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach[END_REF]. Several subtle operations are necessary to maintain a mesh of high quality. This is done to the price of code complexity and computational cost, but the interface between solid and fluid stays well defined, allowing accurate computation of boundary layers effects.

The same remarks hold for cut-cells methods [START_REF] Muralidharan | Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptative Cartesian cut-cell method[END_REF] where the mesh is not distorted, but needs special care with vanishing and emerging cells, as well as AMR [START_REF] Berger | Local adaptative mesh refinement for shock hydrodynamics[END_REF] to reduce mesh roughness effects.

With the present alternative, already investigated by [START_REF] Liu | Ghost fluid method for strong shock impacting on material interface[END_REF], [START_REF] Wang | A real ghost fluid method for the simulationof multimedium compressible flow[END_REF], [START_REF] Liu | The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation[END_REF], [START_REF] Liu | Numerical simulation of fluid structure interaction using modified ghost fluid method and Naviers equations[END_REF], [START_REF] Zeng | A systematic approach for constructing higher-order immersed boundary and ghost fluid methods for fluid-structure interaction problems[END_REF] to cite a few, the quest for simplicity dictates efforts.

With the present contribution numerical smearing effects are reduced thanks to a specific limiter, straightforward to implement. Interface roughness effects are reduced with the help of appropriate velocity extrapolation from the fluid to the solid. AMR or mesh refinement of unstructured grids [START_REF] Shewchuk | Delaunay refinement algorithms for triangular mesh generation[END_REF] can be used to reach the required level of accuracy but are not addressed in the present work.

Recently a compressive limiter was introduced to sharpen diffuse interfaces in compressible two-phase flow modelling in the frame of 'diffuse interfaces' (Chiapolino et al., 2017b, Saurel and[START_REF] Saurel | Diffuse interface capturing methods for compressible two-phase flow[END_REF].

This limiter showed enhanced capturing properties with 2-3 cells only in the interfacial zone, when used in the frame of MUSCL-type-schemes and unstructured meshes. It is thus considered in the present contribution to solve the Level-Set function to control numerical smearing. Its ability to preserve volume and maintain shapes is examined and is shown to be reasonably accurate. In the present frame, translational motion only is considered, excluding rotational one.

The coupling between solid body motion and compressible fluid flow is then examined. It is first examined in one-way, with prescribed solid velocity and action on the surrounding fluid. Three methods of coupling are examined:

-Use of local Riemann problem solution, -Sophisticated method for setting fluid state in the Ghost-Cell band.

The present approach doesn't seem more accurate than existing ones but seems conceptually simpler and easier to implement.

The paper is organized as follows. The Level-Set method and its numerical resolution are summarized in Section 2. Then, coupling methods are examined in Section 3. The compressible flow model is presented in this section and a reference solution is built to address an immersed piston set to motion impulsively. Three different coupling methods are detailed and tested against the exact solution of the immersed piston test. The method that matches best the results is then extended to multidimensions in Section 4. This section ends by validations of the coupling method in 2D with a supersonic flow. Section 5 extends to coupling method to two-way coupling through pressure force computation over each rigid body surface. Conclusions are given in Section 6. 
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With these definitions the zero level pays particular attention as it represents the solid-fluid interface.

The Level-Set function obeys the transport equation, where  ij represents the ratio of slopes between cells i and j.

This limiter was originally designed for volume fraction transport, where boundedness of this variable between 0 and 1 is mandatory, and used without modification with the Level-Set function. Thus, the signed property of this function is not used at the discrete level but used only to detect materials through Eq. (III.2.1). Efficiency of this limiter is illustrated in Figure III.3 where a comparison with Superbee is shown for the transport of a Heaviside function at prescribed velocity. Superbee was considered as the optimum bound for the design of limiters [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]. However, when dealing with Heaviside functions only this upper bound can be overpassed, resulting in significant improvements of the solution, free of robustness issues. on the one at right 1 000 cells are used. Overbee captures the discontinuity with two points only whatever the mesh resolution is.

In these computations, the gradients are computed with central approximations. Indeed, central differences correspond to the least-square approximation method that preserves accuracy and robustness in unstructured meshes codes [START_REF] Barth | The disgn and application of upwind schemes on unnstructured meshes[END_REF]). It appears that the Overbee Having now in hands a simple and efficient method to track rigid bodies, we now address coupling with the flow dynamics.

III.3 -Coupling methods

Solid-fluid coupling methods are now examined in the frame of a flow model that includes Euler and reactive Euler equations as well as multiphase mixtures in mechanical and thermal equilibrium. This formulation is particularly interesting to address phase transition at interfaces and in finely dispersed mixtures [START_REF] Saurel | Symmetric model of compressible granular mixtures with permeable interfaces[END_REF], Saurel et al., 2016). In the present analysis, phase transition is omitted and coupling methods are analyzed in 1D.

III.3.a) Flow model

The flow model, augmented by Level-Set equation reads, Each fluid is assumed to be governed by a convex equation of state (EOS). Here the stiffened-gas EOS is retained for each constituent as it represents reasonably the thermodynamics of liquids in limited ranges of temperature (typically 300-500K). It also includes the ideal gas EOS when some parameters are set to zero. For a given constituent it reads,
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where kk ,q  and k, p  are characteristic of a given constituent. A method to determine these parameters for liquid-vapor systems is given in Le Metayer et al. (2003). The stiffened-gas EOS can be improved to account for short distance repulsive effects, while remaining convex (Le Metayer and Saurel, 2016, Chiapolino andSaurel, 2018).

Under the assumption of temperature and pressure equilibrium among the phases, the following mixture EOS is obtained from the definition of mixture internal energy ( 
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) definitions [START_REF] Saurel | A general formulation for caviting, boiling and evaporating flows[END_REF]:
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This EOS is valid when the liquid phase is denoted by index 1, the other constituents being ideal gases ( k, p 0, k 1  = ). It is worth to mention that when all constituents are ideal gases, the Dalton's law of ideal gas mixtures is recovered [START_REF] Chiapolino | Extended Noble-Able-Stiffened-Gas equation of state for sub-andsupercritical liquid-gas systems far from the critical point[END_REF]. Therefore, System (III.3.1) with thermodynamic closure Eq. (III.3.3) can be used for single phase flows and two-phase liquid-gas mixtures in mechanical and thermal equilibrium. System (III.3.1) is hyperbolic with the sound speed given in Le [START_REF] Saurel | Symmetric model of compressible granular mixtures with permeable interfaces[END_REF] page 65. However this formula is quite complicated and useless, as the [START_REF] Wood | A Textbook of Sound[END_REF] sound speed is simpler and slightly greater than the thermal and mechanical equilibrium sound speed. The Wood speed of sound is consequently a better candidate for numerical computations, with respect to CFL computation as well as wave speeds computation in approximate Riemann solvers. It is given by: where
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denotes the volume fraction of phase k.

In the limit of vanishing mass and volume fractions of the liquid phase and when a single gas constituent is present the Euler equations of gas dynamics are recovered. This remark enables building of a simple 1D reference solution to assess the accuracy of the various coupling methods.

III.3.b) Reference solution

An immersed piston in a fluid, here the air considered as an ideal gas, is set to motion impulsively at The various states present in the solution are:

• (1) left state initially at rest,

• (2) expansion wave,

• (3) fully expanded fluid,

• (4) piston,

• (5) post shock state,

• (6) right state initially at rest.

The exact solution is straightforward. Knowledge of the piston velocity combined to the Rankine-Hugoniot relations determines fully state [START_REF] Rusanov | The calculation of the interaction of non-stationary shock waves and obstacles[END_REF]. The use of the Riemann invariants between state (1) and

(3) where the velocity is the one of the piston determines fully state (3) and any point of the expansion wave (2). An example of such solution is given in where the relaxation time tends to zero ( 0 + → ) and factor 1 2

+ makes this force present in the numerical diffusion zone of the solid-fluid interface, on the solid side only. Similar approach is examined in [START_REF] Abgrall | An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques[END_REF].

The modified Level-Set function  is defined as:
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This model is thermodynamically consistent as the entropy equation reads,
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In the stiff velocity relaxation limit, the production term vanishes, rendering the coupling method isentropic.

System (III.3.6) is solved by a splitting method, where the hyperbolic part is first solved with a MUSCL-type-scheme in the absence of source terms. The HLLC approximate Riemann solver of [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] is used in all computations of the paper, to solve System (III.3.6) and its multi-D extension, System (III.3.1). The same equations are solved everywhere and the initial fluid state is set in the rigid body, except regarding the velocity, set to the one of the solid body. During this step, the Overbee limiter is used for the Level-Set function and another limiter (Minmod for example) is used for the other flow variables.

Second, the following ODE system is considered:
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Rather than solving explicitly this ODE system, its asymptotic solution can be obtained easily as, Figure III.9 -Relaxation method results. The first coupling method is used to compute the immersed piston test problem with two meshes, 100 and 1000 cells respectively and CFL=0.9. The Level-Set function is updated with the MUSCL-Overbee method while Minmod is used for the other variables. Numerical results are compared to the exact ones reported here in lines. Poor accuracy is obtained with 100 cells but the method tends to converge to the exact solution under mesh refinement.

This method converges to the exact solution, but the convergence rate seems slow. Another method, closer to the Ghost-Fluid-Method of [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid method)[END_REF] is thus addressed to improve convergence and efficiency.

III.3.d) Second coupling method: Ghost-Cell-type method

In this second method, the hyperbolic step is unchanged and based on MUSCL-type-scheme with two limiters, as mentioned above. As in all computations the HLLC solver is used in the hyperbolic step.

The coupling step is based on extrapolated variables from the fluid to the solid:
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where i and j denote two neighboring cells, i being in the solid body and j in the fluid.

In Ghost-Cell (GC) methods the band of cells in which the extrapolation is done has importance.

When extrapolation is done with System (III. This issue is well known in the literature [START_REF] Liu | Ghost fluid method for strong shock impacting on material interface[END_REF][START_REF] Liu | The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation[END_REF][START_REF] Liu | Numerical simulation of fluid structure interaction using modified ghost fluid method and Naviers equations[END_REF]. Following these references the extrapolation method given by System (III.3.13) is extended to a band of two cells in the solid in the vicinity of the interface. The corrected algorithm is summarized in System (III.3.14): The left state has to be determined in order that the star velocity becomes the one of the rigid body.
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The right state (R) being known the left state (L) has to be determined in order that * piston uu = .

For the sake of simplicity in the analysis the approximate acoustic solver is considered:
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The pressure and density in the left state are assumed extrapolated from the right state, as done before with the former Ghost-Cell method. Consequently, In any case it anticipates shock or expansion appearance in the sense that it corresponds to the pressure, solution of the Riemann problem at the interface. However, there is no need to solve explicitly the Riemann problem locally. The HLLC solver (or any other flow solver) used to update the hyperbolic model will compute correctly the star pressure thanks to Eq. (III.3.15). Doing so, the present treatment provides the same solution as a multi-material or one-sided Riemann solver, without explicit consideration of such solver. Moreover, it is not limited to a specific EOS or a specific flow model.

Thanks to this correction, the extrapolation method, analogue of System (III.3.14) now reads, The modified Ghost-Cell method with piston boundary condition converges fast towards the exact solution for different times. At short times, waves' speeds are well computed and shocked state is quasi-formed. As time increases, the convergence of the solution is clear. We now address extension of this last method in multi-D on unstructured meshes.

i 0 i is 0 j i ii 0 ii ii s 0 j i j j j j j j i 0 u 2u u 0 pp 0 u 2u u 0 pp            =                               =                    - - if if (III.

III.4 -Multidimensional extension

The coupling method is now extended to multi- The normal vector to the interface is defined as,

n   =- 
where  is computed in each cell as mentioned in Section III.2 with the least-square method and extended set of neighbors. The normal vector used in the extrapolation procedure is the one computed in the mixed cell, as defined earlier.

The velocity components are extrapolated in the solid as, The rest of the primitive variable vector is copied in the solid cell.

III.4.a.iii) Extrapolation to the Ghost-Cell band

mixed-cells are used in these formulas. The third one with hatched symbols corresponds to the solid cells that are not modified by the coupling method.

To examine accuracy of the method reference results are determined, as detailed in the next subsection.

III.4.b) Validation

In order to validate the treatment done in the coupling method for multidimensional problems, two computations are considered and compare. In one case, a supersonic flow at Mach number two enters a domain where a cylinder at rest is placed, as shown in candidate, in particular when phase transition is considered [START_REF] Saurel | A general formulation for caviting, boiling and evaporating flows[END_REF]. Thermodynamic data of the various fluids are given hereafter: present, in the presence of liquid gas interfaces and solid-fluid interfaces. These computations show that vapor is produced during the impact and travel of the projectiles in the two-phase cloud. Vapor is produced at approximately 135° from the stagnation point. The related vapor volume fraction is high in this example as it reaches nearly 1 at some locations. Extra extension is now addressed with two-way coupling.

III.5 -Two-way coupling

The motion of rigid bodies is now considered as coupled to the fluid flow through the pressure force integral over the body surface. The pressure force exerted by the fluid on the solid surface is defined as, where  S denotes the surface of the rigid body.

The cell faces belonging to the rigid boundary surface are detected as:

-For a given face 'f' belonging to the entire set of faces of the overall mesh. This face belongs to two neighboring cells, say for instance cells i and j.

-If the product of the Level-Set functions As the rigid body velocity is time dependent but independent of space, the Level-Set function still obeys the conservation law, Eq. (III.2.3). The overall algorithm described in Sections III.3 and III.4 is thus unchanged.

The method is now illustrated on various flow configurations. An array of 6 cylindrical particles of radius r = 5 mm is considered and set to motion under shock wave interaction. The mass of each particle is arbitrarily set to M=0.8 g and are initially settled in air at atmospheric conditions. Each particle is tracked by its own Level-Set function, different for each particle. At the left boundary of the domain, piston conditions are adopted corresponding to a shock wave emitted to the gas at Mach At each interaction with a particles layer a reflected shock is emitted. Indeed, after the passage of the first particles layer, the shock reforms very quickly and interacts with the second layer, resulting in both transmitted and reflected shock waves. The transmitted shock reforms quickly to a discontinuous wave, while the reflected one stays a train of shock waves during the physical time observed.

It is interesting to note the very good symmetry of the computations while achieved on unstructured grids, this observation giving confidence to the coupling method. Qualitative evolution regarding wave's dynamics as well as particle's motion is observed for any mesh resolution. Computed results on the last three meshes are very close, showing mesh independent behavior to form particle's cluster, at least in the present flow configuration and related initial data.

III.6 -Conclusion

A Level-Set type method has been developed to track rigid bodies on unstructured meshes. Thanks to the Overbee limiter of Chiapolino et al. (2017b) the method doesn't need reinitialization, nor interface reconstruction. A solid fluid coupling method has been built and compared to other 

Perspectives

Les travaux réalisés durant cette thèse représentent une piste de réflexion pour la modélisation et la simulation d'écoulements denses et dilués. Cependant, certains points restent à traiter afin de parfaire la modélisation et la résolution de ces écoulements. Quatre perspectives principales se dégagent de la présente étude :

• Le nouveau modèle est capable de considérer une gamme plus grande de fractions volumique que les modèles de Baer & Nunziato (1986) ou Marble . Cela représente déjà une amélioration des modèles existants notamment en termes de propagation d'ondes de pression. Cependant, une faiblesse apparait dans la limite des écoulements compacts ou stratifiés. En effet, la nouvelle équation conservative sur la fraction volumique devrait tendre vers l'équation de transport sur la fraction volumique du modèle de Baer & Nunziato (1986). Ce point reste à étudier afin de construire un modèle susceptible de traiter toutes les configurations de fractions volumiques.

• • Dans certaines applications il est nécessaire de considérer un nombre arbitraire de constituants, ou phases. Le modèle et la méthode RSIR nécessitent alors des extensions nontriviales.

• L'étude fine du mécanisme de formation de jets de particules reste à réaliser. Il a été attribué ici aux termes non-conservatifs des équations du mouvement mais une étude plus détaillée s'impose.

Entre autres, ces perspectives encouragent à poursuivre les études sur la modélisation des écoulements diphasiques denses et dilués afin d'analyser et de comprendre la physique mise en jeu dans ces situations.
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 1 Figure1), pour la conception par exemple de charges à effet de souffle renforcé mais également pour la prédiction des zones de concentration en agents nocifs dans les engins improvisés, et dans la destruction par ondes de choc d'amas liquides.

Figure 1 -

 1 Figure 1 -Observation du phénomène de dispersion de particules sous forme de « doigts » dans le cas d'explosions sous-marines. Cas (a) : dispersion de gouttes d'eau liquide lors d'une explosion sous-marine. Cas (b) : dispersion d'un mélange de particules de cendre et de gouttes d'eau liquide lors d'une éruption volcanique sous-marine.

Figure 2 -

 2 Figure 2 -Deux exemples de géométries de systèmes d'injection pour moteurs thermiques, utilisés dans l'industrie. L'écoulement en sortie de l'injecteur est un jet de combustible (dans un milieu confiné) qui se fragmente en s'éloignant de la source d'injection.

Figure 3 -

 3 Figure 3 -Schématisation de la propagation des ondes dans deux mélanges diphasiques. Dans le mélange présenté en (a) les deux phases, liquide et gazeuse sont continues. Ainsi, les deux phases propagent les ondes de pressions. Dans le mélange présenté en (b) des gouttes de liquides sont dispersée au sein du gaz. Ainsi, le gaz propage les ondes de pressions mais le liquide ne peut pas les propager. En termes de modélisation, cela signifie que le modèle de BN est utilisable dans le cas (a) mais n'est plus adapté pour résoudre une situation telle que schématisée dans (b).

Figure 4 -

 4 Figure 4 -Schématisation des différents régimes du mélange diphasique liquide-gaz rencontrés lors de l'atomisation d'un jet de liquide.

Figure 5 -

 5 Figure 5 -Schématisation des différents états du nuage de particules au cours d'une explosion. A l'instant initial, la configuration est celle d'un « tube à choc cylindrique ». A t=0s, le gaz va se mettre en mouvement et entrainer les particules dans des zones préférentielles et on observe l'apparition de doigts ou jets de particules. Au fur et à mesure que l'instabilité s'installe, le nuage se fragmente et des doigts de particules remplis de gaz sont formés. Afin de pouvoir observer au moins qualitativement les phénomènes ayant lieux dans ces problèmes d'instabilités de jets diphasiques, la modélisation est importante, tout comme la méthode numérique. Un schéma numérique adapté au nouveau modèle dense-dilué doit être développé.

Figure 6 -

 6 Figure 6 -Représentation en diagramme (x,t) des configurations d'ondes dans le problème de Riemann dans le cas d'un problème de MHD (a) et dans le cas du nouveau modèle dense-dilué (b).

  Un modèle englobant les deux cas limites est alors construit, la bascule étant basée sur une « limite de fluidisation ». Ce modèle contient 6 ondes mais en comporte seulement 4 en un point donné de l'espace.La validation du modèle est réalisée à l'aide de cas tests 1D : transport d'une discontinuité, tube à chocs quasi-monophasiques, tube à chocs diphasique et résultats expérimentaux deRogue et al., (1998) pour la mise en mouvement d'un lit de particules par onde de choc. Ces simulations sont réalisées à l'aide d'un solveur de Riemann rudimentaire qui est celuide Rusanov. 

  work, present in (I.2.1-2) differently. The new model just consists in (I.4.1), derived in Section I.3 and System (I.4.2), that doesn't need extra derivation. It represents balance equations of mass, momentum and energy of each phase. These equations are present in almost any Eulerian two-phase flow models, derived with various methods, all giving the same result:

1

   ), tending to zero in most situations( the dimensionless pressures at leading and first-order of the Taylor expansion.

  two phase flow literature. Such strict equality results in non-hyperbolic models (see for example Guidaglia et al., 2001). Equation (I.4.7) means that pressure fluctuations are still present in the flow model, each time the relaxation coefficient μ appears in factor of the pressure differential 12 (p p ) -.

  state and associated parameters are used in all test problems of the present section. A volume fraction discontinuity separating two mixtures is transported at 100 m/s in a uniform pressure flow field of 0.1 MPa. The initial discontinuity is located at 0.5 m initially and computed results are compared to the exact solution at time 1 ms in the Figure I.1.

Figure I. 1 -

 1 Figure I.1 -Volume fraction transport in uniform pressure and velocity fields. The mesh involves 500 cells and the time step is computed with CFL=0.5. The Minmod flux limiter is used in the MUSCL method. Initial velocities are set to 100m/s and pressures are constant and equal to 10 5 Pa. The volume fraction discontinuity is initially set at 0.5 m. The numerical solution is plotted at 1ms. The exact solution for the volume fraction is presented in dot symbols showing perfect agreement. Flow variables of phase 1 only are shown and are oscillation free. The same observation holds for the second phase, not shown for the sake of space restriction.

Figure

  Figure I.2 -"Smooth shock tube test case". Computations are made in the absence of relaxation terms, with 500 cells and CFL=0.5. Results are shown at time 350μs. The Minmod flux limiter is used in the MUSCL method. Four waves are visible, in spite of the simplified Riemann solver that considers two only. It is interesting to note the discontinuous profile of pressure in the phase 1: nopressure wave is present in this phase. Phase 1 shows slight velocity creation (compared to the velocity of the gas phase) even in absence of drag, the pressure term in the momentum equation being responsible for that. These results also show the absence of volume fraction, density and velocity jumps across the shock, in agreement with shock relations (I.4.19), not explicitly used in the

  Figure I.2 is reconsidered hereafter with pressure relaxation. Results are shown in Figure I.3.

Figure I. 3 -

 3 Figure I.3 -Smooth shock tube computations in the absence of velocity relaxation but with stiff pressure relaxation. Computations made with 500 cells and CFL=0.5. Computed results are shown at time 350μs. The Minmod flux limiter is used in the MUSCL method. All pressures are now equal, modifying significantly the phase 1 velocity profile.

Figure I. 4 -

 4 Figure I.4 -Shock tube with gas-liquid interface: High pressure gas at left and low pressure liquid at right. Computations done with 500 cells and CFL=0.5. Computed results shown at time 150μs. The Minmod flux limiter is used in the MUSCL method. Both velocities and pressure are relaxed, making the interface condition of equal pressures and velocities fulfilled.

Figure I. 5 -

 5 Figure I.5 -Shock tube with liquid-gas interface: high pressure liquid at left and low pressure gas at right. Computations done with 500 cells and CFL=0.5. Computed results shown at time 250μs. The Minmod flux limiter is used in the MUSCL method. Both velocities and pressure are relaxed, making the interface condition of equal pressures and velocities fulfilled.

Figure I. 6 -

 6 Figure I.6 -Rogue et al. (1998) fluidization shock tube test. A shock tube is filled with gas at density 1.2 kg/m 3 . A dense cloud of nylon particles ( 3 0 1050kg / m =

  Figure I.7.

Figure I. 7 -

 7 Figure I.7 -Experimental pressures signals of Rogue (1998): 1 denotes the incident shock wave, 2 denotes the transmitted shock wave/fan of compression waves, 3 denotes the reflected shock wave on the particles cloud, 4 corresponds to the arrival of the cloud upper front at the pressure gauge location.

  Figure I.9 -Comparison of computed results of cloud fronts trajectories with the various models (lines) versus experimental data (symbols) for the Rogue test problem. Computations are done with 1000 cells and CFL=0.5. The Minmod flux limiter is used in the MUSCL method. Both Marble and BN models present large deviations regarding cloud front trajectories while the new model, with its two variants, produces results in better agreement. On the figure at left, computations are done with the new model with the volume fraction equation (I.3.4) while on the graph at right equation (I.3.5) has been used instead.

Figure

  Figure I.8 shows computed results with both equations (I.3.4) and (I.3.5) as alternatives for the volume fraction equation. When (I.3.4) is replaced by (I.3.5), in the same set of balance equations (I.4.2) the resulting wave's speeds dramatically change as,

  wave speeds are not present at any point of space. They change when the volume fraction crosses the fluidization limit ( fluidization  ) somewhere in the domain. In nearly all computational examples considered previously, such instance happens.Let us mention that other guesses have been considered for parameters'a' and 'b'

  analysis as the one described in Section V is reused. Details are given in Appendix I.B. Let us examine typical solutions of the general model on some test problems, as those considered previously. A shock tube test case with liquid at left and gas at right is considered, in the same conditions as the test in Figure 5. Computed results are compared against exact solution in Figure I.10.

Figure I. 10 -

 10 Figure I.10 -Liquid -gas shock tube test solved with the general model with stiff pressure and velocity relaxation. Computations are done with 500 cells, CFL=0.5 and Minmod limiter in the MUSCL method. Results are shown at time 250μs. The numerical solution tends to the exact one and converges better, compared to the original model (Figure I.5).

  has been considered as a possible effect to improve the computations of Figure I.11. These effects have been added to the present formulation and coded, but no noticeable improvement appeared. The effects of the fluidization limit switch fluidization 

  for compressible single-phase and nonequilibrium two-phase flows Numerical resolution of the new model is addressed in this chapter through a new Riemann solver with internal reconstruction (RSIR), based on the Linde (2002) method.

  misunderstood and not reproduced by existing flow models. Intensive experimental and numerical studies were done in this area recently, as for example in Rodriguez et al. (2013), McGrath et al. (2018), Osnes et al. (2018) and Xue et al. (2018). Thanks to the new model and present numerical method, the formation stage of this instability seems correctly predicted at least qualitatively. Computational examples are shown in Section II.4. Conclusions are given in Section II.5.

  . The pressure p is given by a convex equation of state (EOS), as a function for example of internal energy e and density  :p p( , e)= . The stiffened gas (SG) EOS will be used frequently in the present contribution as,p( , e) ( 1) e p   =  - - ,where  and p  are typical constants for a given fluid. This system is strictly hyperbolic with wave's speeds methods considered in the present paper are based on HLL(Harten et al., 1983) approximate solution, or its simplified version byRusanov (1961). In the HLL solver, the extreme waves only are used, and their speeds are estimated as[START_REF] Davis | Simplified second-order Godunov-type methods[END_REF], and R denote the left and right states in the initial data of the Riemann problem. The intermediate HLL state is a consequence of the Rankine-Hugoniot relations of System (II.2.1) applied across the left and right facing waves propagating at speeds , the aim is now to reconstruct two intermediate states, as illustrated in Figure II.1 and linked through Relation (II.2.4):

  , an extra relation is needed.[START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] postulate is considered first.

Figure II. 1 -

 1 Figure II.1 -Schematic representation of the two intermediate states * L U and * R U rebuilt from

  are shown in Figure II.2.

Figure II. 2 -=.

 2 Figure II.2 -Computed results with the original Linde solver for the transport of a density discontinuity in a uniform pressure and velocity flow. The first-order Godunov scheme is used with 100 computational cells and CFL 0.9 = . Results are shown at time t=6 ms. The density discontinuity is correctly transported, and mechanical equilibrium is maintained.

Figure II. 3 -

 3 Figure II.3 -Computed results with the original Linde solver for a shock tube test case. The firstorder Godunov scheme is used with 100 computational cells and CFL 0.9 = . Results are shown at time t=300 µs. The various waves and states are computed correctly.

Figure II. 4 -

 4 Figure II.4 -Computed results with the original Linde solver for a double expansion test case. The first-order Godunov scheme is used with 100 computational cells and CFL=0.9. Results are shown at time t=850 µs. Oscillations appear when β=1.

  System (II.2.8) becomes,

  the various fluxes are computed through the Rankine-Hugoniot relations, according to the sign of

Figure II. 5 -

 5 Figure II.5 -Test 1 of Toro (2009) page 334 (shock tube test). Comparison of the RSIR, HLLC and exact solutions. The computational domain involves 100 cells and the first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=0.2. The initial discontinuity is at position 0 x 0.3. = Both methods show comparable accuracy.

Figure II. 6 -

 6 Figure II.6 -Test 2 of Toro (2009) page 334 (double expansion test). Comparison of the RSIR, HLLC and exact solutions. The computational domain involves 100 cells and the first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=0.15. The initial discontinuity is at position 0 x 0.5. = Both methods produce unphysical overheating at the center of the domain. HLLC results are less inaccurate than RSIR when 1 = while RSIR yields less inaccurate results than those of HLLC when 0 = .

Figure II. 8 -

 8 Figure II.8 -Test 4 of Toro (2009) page 334 (double shock test). Comparison of the RSIR, HLLC and exact solutions. The computational domain involves 100 cells and the first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=0.035. The initial discontinuity is at position 0 x 0.4. = Both methods show comparable accuracy.

Figure II. 9 -

 9 Figure II.9 -Test 5 of Toro (2009) page 334 (strong shock tube test of Test 3 with non-zero initial velocity. Comparison of the RSIR, HLLC and exact solutions. The computational domain involves 100 cells and the first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=0.012. The initial discontinuity is at position 0 x 0.8. = Both methods show comparable accuracy.

Figure II. 10 -

 10 Figure II.10 -Test 6 of Toro (2009) page 334 (stationary contact discontinuity). Comparison of the RSIR, HLLC and exact solutions. The computational domain involves 100 cells and the first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=2. The initial discontinuity is at position 0 x 0.5. = Both methods show comparable accuracy.

Figure II. 11 -

 11 Figure II.11 -Test 7 of Toro (2009) page 334 (moving contact discontinuity). Comparison of the RSIR, HLLC and exact solutions. The computational domain involves 100 cells and first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=2. The initial discontinuity is at position 0 x 0.5. = Both methods show comparable accuracy.

Figure II. 12 -

 12 Figure II.12 -Woodward and Colella (1984) blast wave test (provided in Toro 2009 page 612). Comparison of the RSIR and HLLC solutions. The computational domain involves 100 cells and the first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=0.038. Both methods show comparable accuracy. This problem does not have exact solution. Results with the HLLC solver and 3000 cells are shown nonetheless as a reference solution.

k

  represent the volume fraction of phase k, index I is related to interfacial variables and relaxation parameters are denoted by  and  , with respect to velocity and pressure relaxation. Appropriate relations are given for example in Saurel

  .3.5) It means that I p is taken equal to the pressure of phase 1 when this phase is present. Possible situations are schematized in Figure II.13.

Figure II. 13 -

 13 Figure II.13 -Schematic representation of the estimate for I p . As a consequence of jump conditions (II.3.3) both volume fraction and pressure of phase 1 are invariant across the extreme waves 22 ucand 22 uc + in the Riemann problem solution. Therefore, Ip is taken equal to the pressure of phase 1 when this phase is present, as summarized in (II.3.5). As it is constant during time evolution in agiven Riemann problem, it becomes a local constant.

  Figure II.14 -Comparison of the two Rusanov solvers on a two-phase shock tube test. Phase 1 corresponds to the dispersed fluid, considered here as liquid water, with SG EOS parameters ( 1 4.4 = and 8 1 p 6 10 Pa  =

  pressure relaxation is used at any time. The computational domain involves 100 cells and the first-order Godunov scheme is used with CFL 0.9 = . Results are shown at t=300 µs. Both results are perfectly merged validating the approach based on the local conservative formulation.Extra tests have been done, such as double expansion and double shock tests, always showing the same agreement. The local conservative formulation (II.3.6) with local constant (II.3.5) is consequently robust enough to be considered with the reconstruction method (RSIR).II.3.a.iii) Non self-similar solutionsAnother difficulty is highlighted hereafter. The same shock tube test case as before is reconsidered and the solution obtained by the previous solver is shown at various times in FigureII.15. 

Figure II. 15 -

 15 Figure II.15 -Shock tube test problem of Figure II.14 considered at various times. Length of the domain has been increased to 5 m to avoid interaction with the boundaries, and the initial discontinuity is placed at 2.5 m. Stiff pressure relaxation is used at any time. 1 000 computational cells are used with CFL=0.5. Computations are done with the MUSCL method and Minmod limiter and the local conservative Rusanov approximate Riemann solver. Solutions for the carrier phase (2)appear self-similar but solutions of the dilute phase 1 are not, regarding volume fraction and velocity. Volume fraction of the dilute phase keeps increasing without converging towards a constant state. The same tendency is observed in the velocity of the dilute phase. These observations are mesh and solver independent.

Figure II. 16 -

 16 Figure II.16 -Two-phase shock tube problem of Figure II.14 computed with the Baer and Nunziato(1986) model in the absence of pressure relaxation. Length of the domain has been increased to 5m to avoid waves interaction with the boundaries, and the initial discontinuity is placed at 2.5m. 1 000 computational cells are used with CFL=0.5. Computations are done with the MUSCL method and Minmod limiter. The solution is self-similar and consists in two decoupled shock tube solutions, as well known.

  model. Corresponding results are shown in Figure II.17.

Figure II. 17 -

 17 Figure II.17 -Two-phase shock tube problem of Figure II.14 computed with the Baer and Nunziato(1986) model in the presence of stiff pressure relaxation. Length of the domain has been increased to 5m to avoid waves interaction with the boundaries, and the initial discontinuity is placed at 2.5m. 1 000 computational cells are used with CFL=0.5. Computations are done with the MUSCL method and Minmod limiter. The solution is not self-similar. This is not surprising as source terms related to pressure relaxation are present.

Figure II. 18 -

 18 Figure II.18 -Schematic representation of the multivalued phase 1 velocity. Differences in the right and left star velocities of the dispersed phase may result in particle agglomeration as time evolves.This effect is present in the computations of Figure II.15 and II.17.

U

  given by(II.3.11) in the context of System (II.3.6) and same wave speed estimates as before.

  consists in the approximation of states L* and R*. Knowledge of the intermediate wave speed M1 S from (II.3.10) enables following decomposition of the average state,

  the contact wave consequently reads,

  = ) the jump relation across the intermediate wave reads,

  determine total energy jump of the second phase. At this level no distinction is made between the left and right velocities of that phase: As before, the energy jump relation is based on the interface condition related to the momentum equation of phase 2:

  relations (II.3.14) and (II.3.15) are used to compute *

  stationary wave. Corresponding results are shown in Figure II.19.

Figure II. 19 -

 19 Figure II.19 -Results obtained by the new solver (β=1) for the computation of a contact discontinuity at rest. The computational domain involves 100 cells and first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=6 ms. The volume fraction discontinuity is well preserved and spurious pressure and velocity oscillations are absent.

Figure II. 20 -

 20 Figure II.20 -Results obtained by the new solver (β=1) for the computation of volume fraction discontinuity transport in a uniform pressure and velocity flow. The computational domain involves 100 cells and first-order Godunov scheme is used with CFL=0.9. Results are shown at time t=6 ms.

Figure II. 21 -

 21 Figure II.21 -Comparison of the results obtained by the new solver (β=1) and the local conservative solver of Rusanov, both embedded in the first-order Godunov scheme with CFL=0.9 for the computation of the shock tube presented in Figure II.14. 100 computational cells are used.Results are shown at time t=300 µs. Stiff pressure relaxation is used. With the RSIR method, significant improvements appear in the volume fraction and phase 1 density computations. Indeed, the RSIR solution lies between computed results with the Rusanov method with 100 and 500 cells.

Figure

  Figure II.22 -A cylindrical explosive charge is initially surrounded by a liquid layer. When the charge explodes the liquid layer transforms to a cloud of droplets forming highly dynamical particle jets.

Figure II. 23 -

 23 Figure II.23 -Typical interfacial instabilities reported in Rodriguez thesis and papers, as well as in[START_REF] Xue | Dual hierarchical particle jetting of a particle ring undergoing radial explosion[END_REF]. Impulsive motion of a particle ring by a gas flow induces well defined particles fingers flowing to the center direction, oppositely to the gas flow. At later times, here at 8 ms, short wavelength instabilities also appear at the external surface. As time evolves, external surface instabilities grow and become dominant, as shown in the third picture at time 57 ms. Internal jets are thus observed at early times, followed by external ones at late times.

  are observed in the present context With the help of the new model and present RIRS solver attempt is done to reproduce at least qualitatively these instabilities. Former attempts by the authors were based on Marble (1963) model and fail to reproduce any, inner or outer, instability. In the present attempt computations are based on flow model (II.3.1) extended to 2D and resolved numerically in the DALPHADT code on triangular cells. Compared to the Marble model, the present one has a fundamental difference. Nonconservative terms are present in the momentum and energy equations. These non-conservative terms are often called 'nozzeling terms' in reference to the Euler equations with variable cross section. We prefer howether to interpret them as 'differential drag force'. As shown for example in Figure II.21, phase 1 is set to motion as a result of these terms, in the absence of conventional drag force. Indeed, drag parameter  is set to zero in these computations. As shown later, it seems that non-conservative terms are responsible for appearance of these instabilities and size selection. Considered computational domain and initial data are reported in Figure II.24.

Figure II. 24 -

 24 Figure II.24 -Computational domain and initial data. The portion represents 1/16 of the complete disc with angle θ = π/8. The domain denoted A corresponds to the high-pressure chamber, filled with gas only. The domain denoted B represents the initial particles ring of 4cm width. The domain denoted C corresponds to the low-pressure chamber at atmospheric conditions.

Figure II. 25 -

 25 Figure II.25 -Representation of the mesh size used in the particle jetting computations. In the entire domain 361 222 computational cells are used.

F

  is inserted in the right-hand side of the momentum equation of phase 1 and its opposite in phase 2. The power of this force D1 F .u is inserted similarly in associated energy equations.In the absence of drag effects internal particles jets selection is observed as well but quantitative differences appear at later times. It is worth to mention that particle volume fraction is initially uniform in the cloud. No arbitrary wavelength is introduced in the initial data. Computed results at early times are shown in Figure II.26. (a) (b) Figure II.26 -Volume fraction contours of the dispersed phase for the particle jetting simulation, focused on the particles cloud at early times: (a) t=0.6 ms and (b) t=0.75 ms. 361 222 cells are used with CFL=0.5. Results are obtained with the RSIR (β=1) solver embedded in the MUSCL scheme (a) (b) Figure II.28 -Volume fraction contours of the dispersed phase for the particle jetting simulation, focused on the particles cloud at later times: (a) t=3 ms and (b) t=3.75 ms. Same computational parameters as those of Figure II.26 and II.27 are used. External front instabilities are now created and develop. Dilution of the internal jets happens while external jets develop as a consequence of particles 'dense' zones created at intermediate times. External jets amplitude grows as visible by comparing results of graphs (a) and (b). In Figure II.28 external front instabilities are created and develop while internal ones tend to vanish. It is also interesting to note that the number of external fingers varies between graphs (a) and (b) as reported by Rodriguez et al. (2013) regarding experimental observations. In graph (b) about 10 leading fingers emerge while in (a) they are about 14. We now address same type of configuration in 3D. The geometry used to solve particles jet instabilities is presented in Figure II.29, as well as the 3D mesh used in the cloud. Initial data are the same as those of Figure II.24. and 3D computed results are shown in Figure II.30.

Figure II. 29 -

 29 Figure II.29 -Computational domain for the 3D jetting particles test and representation of the mesh focused on the particles initial cloud. The domain is an extrusion of the domain presented in Figure II.24 with angle θ = π/8. The mesh is coarser than the 2D one as it is obtained by coarsening the mesh of Figure II.24 from 361 222 to 90 358 cells and then extruding this mesh with angle θ = π/8.

  Motion of rigid bodies Rigid bodies are tracked through the Level-Set function denoted by  , that is in the present approach aimed to model a Heaviside function. Let us consider a domain  having a subdomain f  occupied by the fluid and another sub-domain S  occupied by the solid body, as schematized in Figure III.1.

Figure III. 1 -

 1 Figure III.1 -Schematic representation of the solid and fluid sub-domains

Figure

  Figure III.2 -First-order and second-order TVD regions. The upper bounds of these regions correspond respectively to the Overbee and Superbee limiters.

Figure III. 3 -

 3 Figure III.3 -Comparison of the Overbee and Superbee limiters for the transport of a Heaviside function, here a Level-Set-type function. The advection speed is 100 m/s. The dashed lines represent the initial condition. The full line represents the exact solution. Gradients of the Heaviside function are computed with the least-squares method, corresponding in the one-dimensional case to central approximations. Final time: t=4 ms, CFL=0.8. On the graph at left 100 cells are used while

  limiter handles discontinuities in two points only for any mesh refinement and any method of gradient computation (central differencing as well as upwind-downwind). Its capabilities in multi-D are excellent as well, as shown in Figure III.4 where a Zalesak (1979) disc is transported at prescribed velocity (10 m/s) on an unstructured grid made of 16 156 triangles.

Figure III. 4 -

 4 Figure III.4 -Transport of the Zalesak disc on an unstructured grid. The initial data and dimensions are shown on the upper graph. Contours of the Level-Set function and its zero level are shown in the graphs at the middle, at time 1s, before exiting the right boundary of the domain. The graph at

Figure III. 5 -

 5 Figure III.5 -Transport of the Zalesak disc on an unstructured grid at times 0s, 1s, 2s and 3s with the MUSCL-Overbee scheme. The upper left graph corresponds to the initial shape of the Zalesak disc. The upper right graph represents the shape of the rigid body at time 1s. The bottom graphs represent respectively the Zalesak disc at time 2s at left and at time 3s at right. All computations use least-square methods for the gradients computation, with an extended set of neighbors as defined in Figure III.6. The average cell size is about 0.05 m. The time step is computed to fulfil CFL restriction of 0.9.

Figure III. 6 -

 6 Figure III.6 -Definition of the two stencils: direct and extended neighbors.

  3.1) In these notations index k represents a given fluid constituent (liquid or gas).  denotes the mixture density, u and S u represent the velocity vector of the fluid and the solid respectively, k Y represent the mass fraction constituent k and E the total energy of the fluid mixture (

  time t=0. The impulsive motion to the right induces propagation of a right facing shock wave and a left facing expansion wave. A schematic (x,t) diagram is shown in Figure III.7 as well as qualitative profiles of velocity, pressure and density at a given time. This test problem is reminiscent of the exact Riemann problem solution except that the velocity between the two extreme waves is prescribed.

Figure III. 7 -

 7 Figure III.7 -Immersed piston test problem. Schematic representation of the (x,t) diagram and associated velocity, pressure and density profiles.

Figure-

  Initial data for the immersed piston test problem. The air thermodynamics is modeled through EOS (III.3.2) with following data: solution is shown in Figure III.7. These results will serve as reference for the three coupling methods that are considered hereafter.

Figure III. 8 -

 8 Figure III.8 -Exact solution for the immersed piston test problem moving in an ideal gas associated to initial data of Table III.1.

  the superscript '0' denotes the variables determined at the end of the hyperbolic step. Update of the total energy only requires specific attention.Manipulating the equations of System (III.3.10), the internal energy equation is obtained as, expansion of the source terms shows immediately, as for the entropy equation, that, 0 ee = .But as the velocity has been reset to the rigid body one, as expressed by Eq. (III.3.11), the total energy has to be corrected as, thus consists in the reset of the velocity and the total energy with the help of Eqs.(III.3.11) and (III.3.12) in zones where 0  . This method is consequently particularly simple.It is tested inFigure III.9 on the immersed piston test case of Figures. III.8-III.7.

  3.13), interfacial cells only are corrected. But at the next time step the interface may leave the cell and enter another cell occupied formerly by the solid. This 118 cell must consequently be filled with a consistent set of variables. This issue is illustrated in the Figure III.10. Let us denote by W the set of primitive variables used during the extrapolation T W ( , u, p) = and U the associated set of conservative variables. The extrapolation is done in the solid cell on the graph on top at left. No precise state is prescribed in cell i+2. Then the Riemann problem is solved everywhere (graph at bottom) and during the time step, the interface changes cell. At the end of the time step cell i+1 is now a fluid cell but the state it contains is wrong, as the Riemann problem solution between cells i+1 and i+2 is wrong too. Therefore, at the next time step, when extrapolation is done from cell i+1 to cell i+2, a wrong state is copied and the solution diverges.

Figure III. 10 -

 10 Figure III.10 -Schematic representation of the numerical pollution occurring when the extrapolation is done in a too narrow band of cells.

Figure III. 11 -

 11 Figure III.11 -Illustration of the numerical pollution effect when a too narrow band of Ghost cellsis used for extrapolation. The piston velocity is transmitted to the fluid on the right side but the expansion wave on the left side is wrong. This issue persists when the mesh is refined.

  3.14)where i denotes the first solid cell in contact with the fluid cell j and ii the second solid cell, neighboring cell i. With this correction the immersed piston test is rerun and the results of Figure III.12 are obtained.

Figure

  Figure III.12 -Ghost-Cell method with extended band of cells -Results for the immersed piston test. Two meshes are used with 100 and 1000 points respectively. The time step fulfills CFL = 0.9. The MUSCL scheme with Overbee is used for the Level-Set transport and Minmod is used for the other flow variables. The method converges to the exact solution shown in full lines under mesh refinement. With 100 cells, the accuracy is better than with the former relaxation method.

Figure

  Figure III.13 -Schematic representation of the 'inverse' Riemann problem solved at the interface.The left state has to be determined in order that the star velocity becomes the one of the rigid body.

  expansion depending on the sign of the velocity difference.

  3.16) As before, i denotes the first solid cell in contact with the fluid cell j and ii the second solid cell, neighboring cell i. The immersed piston test problem is now rerun with this modification. Corresponding results are shown in Figure III.14.

Figure

  Figure III.14 -Ghost-Cell method with extended band of cells and modified boundary conditions -Results for the immersed piston test. Two meshes are used with 100 and 1000 points respectively.The time step fulfills CFL = 0.9. The MUSCL scheme with Overbee is used for the Level-Set transport and Minmod is used for the other flow variables. The method converges to the exact solution shown in full lines under mesh refinement. With 100 cells, the shock position is now correct.

Figure III. 15 -

 15 Figure III.15 -Comparison of the various coupling methods with 100 cells against the exact solution. The modified Ghost-Cell method with piston boundary condition improves the results.

Figure

  Figure III.16 -Efficiency of the coupling method at various times. Computations are done with 100 cells and compare to the exact immersed piston solution. The modified Ghost-Cell method with piston boundary condition is used in all computations. From the left to the right solutions have been plotted at times 0.1ms, 0.5ms and 1ms. It corresponds to 7, 28 and 53 time steps respectively. The coupling method matches the exact solution, even at short times with similar efficiency as simple phase Euler computations, needing 5 to 10 time steps to build shocks and expansion waves.

  D. Transport of the Level-Set function in multi-D follows the lines of Chiapolino et al. (2017b) regarding the volume fraction transport of their diffuse interface flow model. Therefore, it is not detailed anymore. III.4.a) Solid-fluid coupling method Mixed cells have to be defined and to do this solid cells have to be defined first. As already mentioned a cell is considered solid when the Level-Set function  is positive at the cell center and fluid otherwise. It becomes a mixed cell when one of its direct neighbors has  with opposite sign, as shown in Figure III.17. It is worth mentioning that none of the fluid cells ( 0  ) are considered as mixed and are solved with the hyperbolic solver routinely. Thus mixed cells are defined as solid one ( 0  ) that share an edge with at least one fluid cell ( 0  ).

Figure

  Figure III.17 -Schematic representation of the interface and mixed cells.

Figure III. 18 -

 18 Figure III.18 -Schematic representation of construction of the velocity in the Ghost-Cell G when two mesh points have a common edge and Level-Set function changes sign. The normal velocity component in the Ghost-Cell is computed with both fluid and solid velocities contributions. The tangential component of the velocity at point G is taking equal to the tangential component of the fluid velocity, to mimic slip condition. Velocity at point G is determined following Eq. (III.4.3).

  and tangential directions respectively.

  Figure III.20(a). The results of this test are compared to the case where the cylinder moves at the same velocity as the inlet flow in a fluid at rest, as shown in Figure III.20(b). Results are compared at two different times. The flow model (III.3.1) is used in the single phase limit, corresponding to the Euler equations, with polytropic coefficient Figure III.20 -Configurations considered for validation of the coupling method in 2D. (a): A body fitted mesh is used around a cylinder at rest with a supersonic inflow at Mach number two. (b): The same cylinder moves at supersonic speed in a gas flow at rest. The mesh density is taken with an average space size of 3 cm and Minmod limiter is used for the various flow variables in the MUSCL scheme. Comparison of computed results is shown in Figure III.21 at times 2ms and 4ms respectively.

Figure III. 21 -

 21 Figure III.21 -Comparison of the results with body at rest (left column) and moving body (right column) related to the configurations depicted in Figure III.20. The Minmod limiter is used in the MUSCL scheme. Upper graphs represent density contours at time 2ms while the lower graphs correspond to the solution at time 4ms. Good agreement is observed between the body-fitted approach and the coupling one.

Figure III. 22 -

 22 Figure III.22 -Comparison of the variables profiles along the Ox axis related to the computation of Figure III.21, at time 2ms. The range of X-axis has been modified in the moving body computations to compare the results with those related to body at rest. The velocity has been modified to represent relative velocity, for the same reason. Good agreement is observed.

  Phase transition is considered through local thermodynamic equilibrium. Simple and fast thermochemical relaxation solver has been developed in Chiapolino et al. (2017a) and is used in the present computations. Initial and boundary conditions are given in the Figure III.24 as well as geometrical data.

Figure III. 24 -

 24 Figure III.24 -Projectiles impact at high velocity onto a water tank in the air. Geometrical data and initial and boundary conditions. The upper projectile has initial velocity components (400, -10) while the lower one has (400 , +10) in m/s units.

Figure

  Figure III.25 illustrates method's capabilities where two-phase effects with phase transition are

  ij .0   , then the face belongs to the set of faces of S  .Consequently the discrete analogue of Eq. (5.1) becomes, of pressure force exerted on the rigid body its velocity is updated thanks to the Newton's law:

  number 1.24. The various initial and boundary conditions are given in Figure III.26. In the first run, the particles are aligned.

Figure III. 26 -

 26 Figure III.26 -Two-way coupling illustration 1 -Shock interaction with an array or aligned particles. Initial data and boundary conditions.

  The same type of initial configuration with staggered particles is considered for a second run, as shown in Figure III.28.

Figure

  Figure III.28 -Two-way coupling illustration 2 -Shock interaction with an array or staggered particles. Initial data and boundary conditions.

Figure III. 30 -

 30 Figure III.30 -Mesh sensitivity analysis related to the computations of Figure III.29. Three meshes are considered: coarse with 40 222 cells, intermediate with 158 680 cells, fine with 616 454 cells and a very fine with 2 424 922 cells. The results are shown at time 0.336ms. The same qualitative evolution for the particle's dynamics is observed, in the direction of cluster formation.

  Un travail supplémentaire sur ce nouveau modèle est cependant nécessaire pour atteindre une compréhension totale de ces phénomènes d'instabilités lors de l'explosion d'une charge entourée de particules.Concernant le solveur RSIR qui a été développé, il semble approprié pour beaucoup d'applications et systèmes hyperboliques où la physique du phénomène observé est gouvernée par les deux ondes extrêmes et l'onde intermédiaire. De plus, un paramètre est présent dans la formulation afin de contrôler la diffusion numérique du solveur de Riemann. Tous les calculs utilisant ce solveur dans cette thèse ont été réalisés avec β=1, correspondant au minimum de diffusion de la méthode, sans problème de robustesse.Dans le Chapitre III on s'est intéressé à l'écoulement multidimensionnel qui se développe autour de quelques particules discrètes. Une méthode de type Level-Set a été développée dans le but de décrire la translation de solides indéformables sur un maillage non-structuré fixe. Grâce à l'utilisation du limiteur de pente Overbee développé parChiapolino et al. (2017b) cette méthode ne nécessite pas d'étape de réinitialisation ou de reconstruction d'interface. Ainsi, une méthode simple de couplage solide/fluide a été construite et vérifiée à l'aide de comparaisons avec d'autres approches : basée sur une relaxation raide des vitesses, ou encore basée sur l'extrapolation Ghost-Cell. Cette approche, simple à développer permet une amélioration de la convergence de la méthode à l'aide de considérations également simples.La méthode a été ensuite étendue en 2D et a été validée à l'aide de comparaisons dans le cadre d'un écoulement supersonique autour d'un objet cylindrique immobile. La méthode la plus précise a été ensuite étendue au cas du couplage fort, utilisé pour observer la mise en mouvement de plusieurs particules solides par onde de choc et la formation d'amas de particules.

  

  

  

  

  

Table III

 III .1 -Initial data for the immersed piston test problem. .....................................................Figure III.8 -Exact solution for the immersed piston test problem moving in an ideal gas associated to initial data of Table III.1. ...............................................................................................

Figure III.9 -Relaxation method results .............................................................................................

  : les ondes indicées « a », « r » et « l » correspondent respectivement à des ondes de Alfvèn, des ondes magnéto-acoustiques rapides et lentes. Dans ce problème de MHD, toutes les vitesses d'ondes sont distinctes. Dans le cas du nouveau modèle dense-dilué, la vitesse d'onde uP est valeur propre multiple.

	La vitesse des particules étant valeur propre multiple, la détermination d'un ensemble de relations
	permettant la détermination des états intermédiaires du problème de Riemann n'est pas possible. Cette
	difficulté est amplifiée par la présence d'un terme de relaxation des pressions raide, indispensable à la
	validité du modèle, et conduisant à des solutions non-autosimilaires. Ce problème est important et
	reste à surmonter.

Les tentatives d'écriture d'un solveur adapté au nouveau modèle dense-dilué basées sur une méthode de type HLLC ont échoués pour les raisons décrites ci-dessus. La recherche d'une méthode numérique s'est alors orientée vers une méthode à « reconstruction interne » des états. Le but de cette démarche est de créer deux états intermédiaires dans le problème de Riemann au lieu d'un seul. Un exemple d'un tel solveur est celui de Linde (2002) basant la reconstruction de deux états intermédiaires à partir de l'approximation HLL pour les équations d'Euler. Ce solveur est reconsidéré et amélioré dans le cas des équations d'Euler. Il est ensuite étendu au modèle diphasique à l'aide de considérations physiques.

  Les valeurs propres de la Jacobienne du nouveau système sont identiques à celles de la

	Jacobienne du système de Marble : 1 4 → 	=	p u ;	5  =	g u ;	6  = - = + g g 7 g u c ; u c , g	et très différentes
	de celles du système BN qui en comprend 7.
			En considérant la situation inverse de bulles de gaz dispersées dans un liquide un modèle
	symétrique est également obtenu avec une autre équation sur la fraction volumique :
	t  	g	( ) gg u +   .	=	0 .
	Pour le modèle symétrique, la Jacobienne du système a également 4 valeurs propres, mais différentes
	du premier : 1 4		g u ;	5	p u ;	6	p u c ; p	7	p u c . p
	t  	p	pp u . +  =	0	.		
	Dans le cadre du nouveau modèle cette équation devient conservative :
	t  	p	( ) pp u +   .	=	0	.

Le premier chapitre présente la construction d'un nouveau système d'équation pouvant être considéré comme une variante du modèle BN, du fait de la reconsidération de l'équation sur la fraction volumique. Dans le modèle BN, l'équation sur la fraction volumique est une équation de transport : Ce changement mineur, justifié dans ce chapitre, a des conséquences majeures sur la considération de la propagation des ondes acoustiques. Un premier modèle est ainsi obtenu. Ce modèle est hyperbolique dégénéré et thermodynamiquement consistant dans la limite de la relaxation raide des pressions.
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  calculé (par exemple par HLL ou Rusanov) puis cette solution est reconstruite à l'aide d'une paramétrisation effectuée sur chaque variable conservative. Des travaux dans ce sens ont été entrepris par[START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] et[START_REF] Miyoshi | A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics[END_REF]. Dans le cas des équations d'Euler, un solveur est développé et montre des résultats similaires à ceux obtenus avec HLLC. Cette approche est donc poursuivie pour le nouveau modèle diphasique. Testé sur de nombreux cas 1D, ce solveur dénoté RSIR (Riemann Solver with Internal Reconstruction) présente des résultats satisfaisants. En effet, le solveur est maintenant capable de préserver une discontinuité de fraction volumique immobile, ce qui n'est pas possible avec un solveur de type Rusanov ou HLL. Ce nouveau solveur permet notamment d'étudier et de résoudre des problèmes de formation de doigts de particules (Figure1). En effet, beaucoup de résultats expérimentaux ont été obtenus montrant le

	solveur RSIR dans le code non structuré DALPHADT de la société RS2N permet de résoudre des
	cas d'explosions sphériques en milieux granulaires et d'obtenir les premiers résultats numériques de Saurel, R., Chinnayya, A. & Carmouze, Q. (2017) Modelling compressible
	formation de doigts de particules, qualitativement en accord avec les résultats expérimentaux. dense and dilute two-phase flows. Physics of Fluids, 29(6), 063301
	Le troisième chapitre de cette thèse présente une approche discrète du problème de dispersion de Carmouze, Q., Fraysse, F., Saurel, R. & Nkonga, B. (2018) Coupling rigid
	particules solides dans un mélange multiphasique, afin de caractériser la formation de cluster de bodies motion with single phase and two-phase compressible flows on
	particules. Le modèle résolu dans cette partie est le modèle d'Euler multi-constituant (appelé UPT car unstructured meshes . Journal of Computational Physics, 375, 1314-1338
	en équilibre de vitesses, de pressions et de températures).
	Dans cette approche, une particule solide est modélisée et suivie à l'aide d'une fonction Level-Set. Carmouze, Q., Saurel, R., Chiapolino, A. & Lapebie, E. (2019) Riemann
	Cette étude traite principalement du couplage hydrodynamique ayant lieu à l'interface solide/fluide. solver with internal reconstruction (RSIR) for compressible single-phase
	Utilisant une approche de type Ghost-Cell développée par Fedkiw et al., (1999), une méthode simple and non-equilibrium two-phase flows. Journal of Computational Physics (minor
	robuste et précise de couplage solide/fluide est développée sur des maillages non-structurés. Cette revisions)
	méthode est validée en 1D à l'aide de cas tests élémentaires dont les résultats numériques ont été
	comparés aux solutions exactes. L'extension de cette méthode en 2D est également étudiée,
	nécessitant des considérations supplémentaires dans la direction tangentielle à l'interface notamment.
	La méthode permet de considérer des cas tests de mise en mouvement d'un ensemble de particules
	solides par onde de choc et d'observer qualitativement la formation de clusters due à la mise en
	mouvement des particules discrètes.

rend la détermination des états intermédiaires problématique ; -La présence des termes de relaxation raide des pressions, nécessaires à la validité du modèle implique des solutions dépendantes du temps, non-autosimilaires. Ces problèmes représentent des difficultés majeures pour la recherche d'un solveur de Riemann approché de type HLLC. Le caractère non-conservatif des équations est contourné au moyen d'une formulation conservative locale. Plusieurs tentatives d'écriture d'un solveur ont été entreprises, en se basant d'abord sur les relations de passage de la phase dense, les conditions de sauts de la phase dispersée et aussi sur l'approximation HLLC, sans donner de résultats concluants. La recherche du solveur de Riemann est alors conduite vers une approche avec reconstruction interne : un état intermédiaire moyennée est processus de formation des instabilités dans les jets diphasiques : Rodriguez et al., (2013), McGrath et al., (2018), Osnes et al., (2018) et Xue et al., (2018) parmi tant d'autres. L'implémentation en 2D du

  The model is hyperbolic with same 4 wave speeds as Marble's one and is thermodynamically consistent in the stiff pressure relaxation limit. Moreover, in the stiff velocity relaxation limit, the[START_REF] Kapila | Two-phase modeling of deflagrationto-detonation transition in granular materials: reduced equation[END_REF] model, important for diffuse interface computations[START_REF] Saurel | Diffuse interface capturing methods for compressible two-phase flow[END_REF] 

	is recovered.
	Saurel et al. (2017a) model has been solved in the same reference with a Godunov type scheme based
	on Rusanov (1961) solver. However, as well known, this solver is quite diffusive for stationary
	discontinuities and linearly degenerate fields, such as in the present context, volume fraction
	discontinuities and contact waves. This is precisely the motivation of the present work, focused on
	the building of a Riemann solver with enhanced accuracy.

). Modifying the volume fraction equation in the BN model resulted in a flow model where sound propagates only in the carrier phase.

  12)Determination of the intermediate states related to the momentum is now addressed.From (II.2.11) 

	similar relation is deduced for momentum jump across the contact wave. As ** L R u u S M ==	, (II.2.11)
	implies,						
	** R L ( u) ( u)  -	LR 2 pp c - R L =   - +  	M S	= 	momentum	.	(II.2.13)
	Combining (II.2.6) and (II.2.13) the intermediate momentum states are obtained as,	

  A l'aide du nouveau solveur de Riemann avec reconstruction interne (RSIR), la méthode numérique est capable de préserver des discontinuités immobiles. Cependant, ce solveur de Riemann n'a été développé seulement que dans le cadre du modèle où la phase 1 est diluée et la phase 2 est continue. Cette méthode numérique doit être étendue au « modèle global », c'està-dire au modèle pouvant considérer la phase 1 comme diluée ou continue. Ce travail demande une attention particulière car le modèle global contient une équation non conservative supplémentaire.
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Appendix I.A. Hyperbolic solver

We address derivation of a Godunov type method for System (I.4.1-I.4.2). In the absence of source terms, it expresses in compact form as,

Abstract

A new Riemann solver is built to address numerical resolution of complex flow models. The research direction is closely linked to a variant of the [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] model developed in Saurel et al. (2017a). This recent model provides a link between the [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] model for two-phase dilute suspensions and dense mixtures. As in the Marble model, Saurel et al. system is weakly hyperbolic with the same 4 characteristic waves, while the system involves 7 partial differential equations. It poses serious theoretical and practical issues to built simple and accurate flow solver. To overcome related difficulties the Riemann solver of [START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] is revisited. The method is first examined in the simplified context of compressible Euler equations. Physical considerations are introduced in the solver improving robustness and accuracy of the Linde method. With these modifications the flow solver appears as accurate as the HLLC solver of [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF]. Second the two-phase flow model is considered. A locally conservative formulation is built and validated removing issues related to nonconservative terms. However, two extra major issues appear from numerical experiments: The solution appears not self-similar and multiple contact waves appear in the dispersed phase. Building HLLC-type or any other solver appears consequently challenging. The modified [START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] method is thus examined for the considered flow model. Some basic properties of the equations are used, such as shock relations of the dispersed phase and jump conditions across the contact wave. Thanks to these ingredients the new Riemann solver with internal reconstruction (RSIR), modification of the Linde method, handles stationary volume fraction discontinuities, presents low dissipation for transport waves and handles shocks and expansion waves accurately. It is validated on various test problems showing method's accuracy and versatility for complex flow models. Its capabilities are illustrated on a difficult two-phase flow instability problem, unresolved before.

II.1 -Introduction

The present contribution addresses building of a robust Riemann solver with limited dissipation for complex flow models. The reconstruction method of [START_REF] Linde | A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws[END_REF] is revisited and improved in terms of accuracy and robustness. This effort is mainly motivated by the numerical approximation of a twophase non-equilibrium flow model developed by the authors that involves a series of theoretical challenges, presented in the following. In the present introduction the modelling context is recalled first, and the numerical approach is introduced secondly.

The two-phase flow model of Saurel et al. (2017a), considering a dispersed phase 1 in a carrier fluid 2 is recalled hereafter. Pressure and velocity relaxation terms only are considered as interaction effects: ( ) ( )

Assuming fluid 1 governed by the stiffened gas EOS, it becomes,

The internal energy jump thus reads,

The total energy jump for phase 1 follows,

with Superbee limiter. A compaction zone appears first in the cloud in red color. Particles jets develop at the inner interface and direct to the center domain. Their growth is visible by comparing their length in graphs (a) and (b). They qualitatively look like the instabilities observed in Figure II.23 (a) and (b). Another front appears at the outer surface but appears more like a diffusion zone rather than the short wavelength instabilities visible in Figure II.23 (b). This is possibly due to insufficient special resolution of the present computations.

In 

Chapter III

Coupling rigid bodies motion with single-phase and two-phase compressible flows on unstructured meshes

In this chapter multidimensional flow around some discrete particles is studied. A Level-Set type method is developed to describe the translation of a rigid body on unstructured meshes. Thanks to the Overbee limiter developed by Chiapolino et al. (2017) a simple and robust solid/fluid coupling method is built. This method is then extended to 2D and validated through comparisons in the frame of a supersonic flow around a static blunt body. Two-way coupling is then addressed to observe motion of particles induced by shocks and creation of clusters.

Abstract

A simple method is developed to couple accurately translational motion of rigid bodies to compressible fluid flows. Solid rigid bodies are tracked through a Level-Set function. Numerical diffusion is controlled thanks to a compressive limiter (Overbee) in the frame of MUSCL-typescheme, giving an excellent compromise between accuracy and efficiency on unstructured meshes (Chiapolino et al., 2017b). The method requires low resolution to preserve solid bodies' volume.

Several coupling methods are then addressed to couple rigid body motion to fluid flow dynamics: a method based on stiff relaxation and two methods based on Ghost cells [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid method)[END_REF] and immersed boundaries. Their accuracy and convergence rates are compared against an immersed piston problem in 1D having exact solution. The second Ghost cell method is shown to be the most efficient.

It is then extended to multidimensional computations on unstructured meshes and its accuracy is checked against flow computations around cylindrical bodies. Reference results are obtained when the flow evolves around a rigid body at rest. The same rigid body is then considered with prescribed velocity moving in a flow at rest. Computed results involving wave dynamics match very well. The method is then extended to two-way coupling and illustrated to several examples involving shock wave interaction with solid particles as well as phase transition induced by projectiles motion in liquidgas mixtures.

III.1 -Introduction

In fluid mechanics two approaches are used to address the relative motion between a rigid body and a fluid. The first one is also the most commonly used and consists in considering a fluid moving around a body at rest. Setting appropriate boundary conditions at inflows, outflows and walls this method gives reliable results. A fundamental difficulty emerges rapidly as soon as two (or more) rigid bodies are present. For instance, a moving body in the presence of a distant wall at rest is problematic.

In the present approach rigid bodies are tracked on a fixed mesh with the help of Level-Set-type functions (Osher and Fedkiw, 2001). This function enables detection of fluids, solids and mixed cells.

There are several advantages:

-The method allows solid body motion on fixed meshes and thus eliminates issues related to Lagrangian and ALE methods [START_REF] Baum | A new ALE adaptative unstructured methodology for the simulation of the moving bodies[END_REF][START_REF] Nkonga | Godunov type method on non-structured meshes for three-dimensional moving boundary problems[END_REF][START_REF] Nkonga | On the conservative and accurate CFD approximations for moving meshes and moving boundaries[END_REF];

-Surfaces are defined implicitly rather than explicitly as in the frame of Front Tracking [START_REF] Glimm | Three-dimensional front tracking[END_REF] and Interface Reconstruction methods [START_REF] Youngs | An interface tracking method for a 3D Eulerian hydrodynamics code[END_REF].

There are obviously drawbacks such as:

-The first one is also the simplest and considers stiff velocity relaxation between the fluid and solid.

-The second one considers Ghost cells in the solid where specific fluid state is prescribed in a given band of cells closed to the interface.

-The third one consists in an improvement of the former to improve its convergence. The Ghost state is modified to improve the surface pressure computation, improving shock and rarefaction waves formation in the fluid during impulsive motion.

Comparison of the various coupling methods is done in 1D with the help of an exact solution of an immersed piston set to impulsive motion, quite similar to the exact shock tube solution.

The coupling method is then extended to multi-D, posing extra difficulties as sliding effects between solid and fluid have to be considered in a context where the interface is arbitrarily rough, as a consequence of unstructured mesh.

The coupling method when the solid is moving in a fluid at rest is validated by comparing computational results when the solid is at rest and the fluid is moving through appropriate boundary conditions, as done in most CFD computation. It is then extended to two-way coupling, through the computation of pressure force integral over the solid surface. It enables update of the solid body velocity which in turn affects the fluid flow. Computational examples of shock -solid particles interaction are shown to illustrate method's capability.

In the area of solid-fluid coupling with Level-Set type methods, many contributions have to be mentioned such as for example, [START_REF] Liu | Ghost fluid method for strong shock impacting on material interface[END_REF], [START_REF] Wang | A real ghost fluid method for the simulationof multimedium compressible flow[END_REF], [START_REF] Liu | The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation[END_REF], [START_REF] Liu | Numerical simulation of fluid structure interaction using modified ghost fluid method and Naviers equations[END_REF], [START_REF] Zeng | A systematic approach for constructing higher-order immersed boundary and ghost fluid methods for fluid-structure interaction problems[END_REF] this list being certainly not exhaustive. However it seems that important differences appear with the present contribution. First, Cartesian grids are considered instead of unstructured ones. Second, exact or approximate local Riemann problem solution is set in mixture cells to enforce interface conditions. In the present contribution, such ingredient is not used, this detail being important when dealing with sophisticated flow models, such as multiphase flow ones. Last, Ghost Cells in multi-D computations are filled with fluid state normal to the interface in a band (or layer) of cells of finite size. Determination of these cells in the normal direction to the interface may be challenging when dealing with unstructured grids. In the present contribution this issue is replaced by a simple averaging method.

Fluid-fluid and solid-fluid coupling with Level-Set methods have been addressed in the frame of unstructured meshes by [START_REF] Farhat | A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosion[END_REF][START_REF] Farhat | FIVER: A finite volume method based on exact two-phase Riemann problems and sparse grids for multi-material flows with large density jumps[END_REF], [START_REF] Wang | Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems[END_REF] (III.2.1)), a re-initialization procedure is able to restore the correct function profile (Osher and Fedkiw, 2001).

-When it is aimed to model a Heaviside function, as in the present work, the interface can be sharpened with the help of artificial compressibility terms [START_REF] Olsson | A conservative level set method for two phase flow II[END_REF][START_REF] Shukla | An interface capturing method for the simulation of multi-phase compressible flows[END_REF]. However these procedures require efforts, in particular in unstructured meshes and are consuming in computer resources.

For the sake of simplicity we adopt the method developed in Chiapolino et al. (2017b) in the frame of diffuse interface modelling. This method was precisely designed to lower the numerical diffusion of so called 'diffuse interfaces' through a specific limiter, used to sharpen volume fraction profiles.

This limiter (Overbee) is used in MUSCL-type-schemes [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF] Grâce à l'approche avec reconstruction interne, un solveur de Riemann faiblement diffusif a été développé. Il a été validé à l'aide de comparaisons avec d'autres solveurs de Riemann, plus diffusifs.

Cette nouvelle méthode numérique, RSIR, a été utilisée pour résoudre une situation complexe d'instabilité de jets de particules solide dans un milieu granulaire et a montré une explication plausible du processus de formation de ces instabilités ou jets de particules.