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Les études de l'adaptation des populations aux environnements qui changent, remontent par exemple à Lande et Shanon, 1996 [START_REF] Lande | The role of genetic variation in adaptation and population persistence in a changing environment[END_REF]. Ils décrivent comment les changements dans l'environnement affectent différemment le trait phénotypique moyen de la population, si l'environnement change de façon directionnelle, où il suit le trait optimal avec un retard, ou dans le cas d'un environnement cyclique où le trait moyen oscille avec la même période que le trait optimal, mais avec une amplitude moindre. Au cours des dernières années, une attention croissante a été portée dans la littérature biologique ainsi que mathématique aux effets des fluctuations sur l'adaptation et la démographie d'une population ( [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF][START_REF] Kopp | Rapid evolution of quantitative traits: theoretical perspectives[END_REF][START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF][START_REF] Mirrahimi | Time fluctuations in a population model of adaptive dynamics[END_REF][START_REF] Salignon | Genomics of cellular proliferation in periodic environmental fluctuations[END_REF][START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model[END_REF]).

Une motivation naturelle et d'importance croissante concerne l'étude de l'impact d'un changement climatique (Global Warming) sur la dynamique d'une espèce biologique, ( [START_REF] Parmesan | Ecological and evolutionary responses to recent climate change[END_REF][START_REF] Chevin | Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory[END_REF][START_REF] Jenouvrier | Climate change, phenological shifts, eco-evolutionary responses and population viability: Toward a unifying predictive approach[END_REF]), notamment le fait que de nombreuses populations naturelles sont sujettes à la fois à des changements directionnels de l'optimum phénotypique et à des fluctuations aléatoires de l'environnement.

Du côté medical, il est connu que des nombreux processus pharmacothérapeutiques, dans les thérapies anticancéreuses, antivirales ou antibiotiques, peuvent faillir à contrôler la prolifération, car la population cible (virus, cellule, parasite) devient résistante. L'apparition d'une résistance aux médicaments est donc un obstacle majeur au succès du traitement.

Pour pouvoir décrire l'émergence de la résistance aux médicaments il est important de considérer un environnement dépendant du temps pour prendre en compte une administration de médicaments qui varie avec le temps. Parmi des études de ce type on peut citer la comparaison d'efficacité entre l'application cyclique et le mélange des antibiotiques [START_REF] Beardmore | Antibiotic cycling and antibiotic mixing: which one best mitigates antibiotic resistance?[END_REF], ou l'étude des modèles de sélection-mutation en considérant une population structurée par des cellules saines/cancéreuses avec un niveau de résistance génique pour chaque cellule [START_REF] Lorz | Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies[END_REF][START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: An evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation[END_REF]. Un autre phénomène important à prendre en compte lors de l'étude de l'émergence de résistance notamment pour les bacteries est le transfert horizontal de gènes (transmission de matériel génétique entre deux organismes vivants, contraire à la transmission verticale d'un parent à sa progéniture) qui a un role important dans ces processus [START_REF] Billiard | Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks[END_REF][START_REF] Billiard | The effect of competition and horizontal trait inheritance on invasion, fixation, and polymorphism[END_REF].

Quelques définitions biologiques

Tout au long de cette thèse nous abordons certains concepts biologiques qui sont ensuite décrits. Nous avons enoncé précédemment le fait que l'on étudie des populations phénotypiquement structurées sous l'effet de la sélection et des mutations. Tout d'abord précisons ces terminologies. Nous avons également mentionné que l'on considère une compétition non locale au sein de la population. La compétition est une interaction négative qui se produit lorsque des organismes de la même espèce ou d'espèces différentes utilisent les mêmes ressources en même temps et que leur taux de croissance est réduit. Nous nous concentrons ici sur les interactions des individus d'une même espèce (compétitions intraspécifiques).

Principales questions abordées

Dans un premier temps on s'intéresse à l'étude de la dynamique des populations phénotypiquement structurées sous l'effet de la sélection et des mutations qui font face aux fluctuations périodiques de l'environnement. Il y a plusieurs questions que l'on peut formuler dans ce contexte : la population survivra-t-elle dans un environnement fluctuant ? Quel sera l'impact des variations de l'environnement sur la distribution phénotypique de la population ? Comment la taille de la population sera-t-elle affectée ?

Dans un second temps, nous incluons l'effet d'un changement climatique dans l'étude de la dynamique évolutive des populations structurées par un phénotype. Nous considérons ici un environnement qui varie avec une tendance linéaire par rapport au trait mais d'une façon oscillante. Nous cherchons à répondre à des questions suivantes : la population pourrait-elle suivre le changement climatique ? Existe-t-il une vitesse maximale du changement climatique à partir
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de laquelle la population ne pourra pas survivre ? Quel sera l'impact de ces changements sur la démographie et la distribution phénotypique de la population ?

Dans la dernière section nous étudions également un modèle issu du phénomène de transfert horizontal de gènes, motivé par la résistance aux antibiotiques de certaines bactéries. En effet, on aborde ce problème du point de vue numérique en faisant une comparaison entre les modèles stochastiques et déterministes qui décrivent ce phénomène.

Préliminaires sur les modèles d'évolution

Plusieurs cadres ont été utilisés pour étudier la dynamique des populations sous l'effet de la sélection et des mutations.

L'une des premières approches pour étudier la dynamique évolutive a été la Théorie des jeux [START_REF] Smith | Evolution and the Theory of Games[END_REF][START_REF] Hofbauer | The theory of evolution and dynamical systems[END_REF]. De même la Dynamique Adaptative classique basée sur la stabilité des systèmes dynamiques a permis d'étudier l'évolution sous des mutations rares [START_REF] Dieckmann | The dynamical theory of coevolution: a derivation from stochastic ecological processes[END_REF][START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF]. Par ailleurs, les outils probabilistes permettent d'étudier des populations de petite taille [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF],

et aussi de dériver des modèles déterministes dans la limite de grandes populations [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]. D'autre part, les modèles intégro-différentiels sont utilisés pour étudier la dynamique évolutive de grandes populations [START_REF] Magal | Mutation, selection, and recombination in a model of phenotype evolution[END_REF][START_REF] Calsina | Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics[END_REF][START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF].

Nous faisons ensuite un tour d'horizon sur des modèles utilisés dans la littérature pour décrire la dynamique évolutive des populations. On commence par décrire quelques modèles stochastiques de base en décrivant des populations de petite taille puis nous montrons des modèles déterministes plus pratiques utilisés dans le cas d'une population plus importante dans un environnement constant. Nous présentons ensuite quelques résultats connus pour ces modèles en utilisant une approche basée sur des équations de Hamilton-Jacobi.

Modèles Stochastiques

Les modèles stochastiques de dynamique de populations les plus simples sont les processus de naissance et de mort. Soit Nt une taille de population à l'instant t, on dit que ce nombre évoluera comme un processus de naissance et de mort si

• Nt est une chaîne de Markov à valeurs dans {0, 1, 2, ...}

• P [N t+∆t = n + i|Nt = n] =          λn∆t + o(∆t), si i = 1 µn∆t + o(∆t), si i = -1 o(∆t), si |i| > 1 1 -λn∆t -µn∆t + o(∆t), si i = 0.
• les taux de naissance λ0, λ1, λ2, ..., et de mort µ0, µ1, µ2, ... sont tels que λi ≥ 0, µi ≥ 0, et µ0 = 0.

Ces modèles peuvent s'étendre afin de prendre en compte les característiques des individus, (position, age, phenotype,...) on parle alors des modèles individu-centré (IBM pour son sigle en anglais : Individual Based Models). Ces modèles sont très utilisés par les biologistes théoriques (mais également pour faire des simulations numériques, voir par exemple [START_REF] Law | Moment approximations of individual-based models[END_REF][START_REF] Bolker | Using moment equations to understand stochastically driven spatial pattern formation in ecological systems[END_REF][START_REF] Kisdi | Evolutionary branching under asymmetric competition[END_REF][START_REF] Doebeli | Evolutionary branching and sympatric speciation caused by different types of ecological interactions[END_REF].) Plus récemment en [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], (voir aussi par exemple [START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF][START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]) une population asexuée et isolée est étudiée, où chaque individu est caractérisé par un trait phénotypique appartenant à l'espace des traits X ⊂ R d , d ≥ 1, que l'on suppose fermé. On décrit l'évolution de la population structurée par phénotype pour chaque t par la mesure ponctuelle

ν K t (dx) = 1 K N K t i=0 δ X i (t) (dx), (1) 
où le paramètre K est un paramètre d'échelle, appelé capacité de charge (carrying capacity). Il représente le nombre maximal d'individus que l'environnement est capable d'héberger (K peut représenter, par exemple, le montant des ressources disponibles). N K t = K ν K t (dx) est la taille de la population au temps t, et Xi(t) ∈ X est le trait du i-ème individu vivant à l'instant t. La démographie d'une telle population est d'abord régulée par la naissance et la mort. Un individu avec le caractère x donne naissance à un nouvel individu à un taux b(x). Le caractère y de la progéniture est distribué selon une mesure de probabilité appelée noyau de mutation. Un individu avec le trait x meurt à un taux de mortalité d(x, ν) qui prend en compte la mortalité intrinsèque et parfois l'effet de tous les individus vivants. On obtient ainsi un processus de Markov à valeurs mesure.

Ces modèles permettent être simulés numériquement de façon exacte mais ces expérimentations peuvent être couteuses notamment pour une échelle de temps et une population de grande taille. Dans ce cas, on utilisera des approximations déterministes ou stochastiques sous forme d'EDO, EDP, EDS, ( [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF][START_REF] Ferrière | Stochastic and deterministic models for age-structured populations with genetically variable traits[END_REF]).

Modèles Déterministes de sélection-mutation dans des environnements constants

Les équations déterministes de sélection-mutation décrivent l'action de ces deux phénomènes sur la composition génétique d'une population de grande taille. Parmi les premiers travaux importants l'on peut citer Crow et [START_REF] Kimura | The theory of genetics loads[END_REF], [START_REF] Kimura | The theory of genetics loads[END_REF] et [START_REF] Kimura | A stochastic model concerning the maintenance of genetic variability in quantitative characters[END_REF], [START_REF] Kimura | A stochastic model concerning the maintenance of genetic variability in quantitative characters[END_REF], qui ont introduit le modèle des allèles continus ("the continuum-of-alleles model"). Ils considèrent un modèle avec un locus1 haploïde isolé et des allèles continus, et ils introduisent le modèle suivant :

∂p(x, t) ∂t = [m(x) -m(t)] p(x, t) + µ ∞ -∞
u(x -y)p(y, t)dy -p(x, t) , [START_REF] Alfaro | The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF] où p représente la densité des effets alléliques, u est une distribution de mutation avec taux µ et m(x) une function de

fitness 2 avec m(t) =
∞ -∞ m(x)p(x, t)dx qui modélise la fitness moyenne. De cette manière le premier terme à droite décrit les changements dus à la sélection et le deuxième ceux dus aux mutations.

Le principal intérêt ici étaient les solutions stationnaires p = p(x). En considérant la fonction de fitness particulière m(x) = -sx2 , et après une transformation de type y → y + x suivi d'un développement de Taylor pour p(x + y), ils obtiennent formellement une équation en fonction des moments de la distribution de mutation u. En supposant que la moyenne est nulle et que la variance est donnée par γ 2 et les termes d'ordre supérieur sont négligeables (comme pour une gaussienne avec petite variance γ 2 ), ils arrivent alors à l'équation suivante

s x 2 - ∞ -∞ y 2 p(y)dy p(x) = 1 2 µγ 2 d 2 p(x) dx 2 . ( 3 
)
Notons que la fonction gaussienne avec moyenne zero et variance

σ 2 = µ s γ 2 2 ,
est solution de l'équation [START_REF] Alfaro | Explicit solutions for replicator-mutator equations: extinction versus acceleration[END_REF].

Ces résultats ont été ensuite développés par Lande 1975 [START_REF] Lande | The maintenance of genetic variability by mutation in a polygenic character with linked loci[END_REF], en les généralisant au cas des plusieurs loci liés ou pas, puis par Fleming 1979 [START_REF] Fleming | Equilibrium distributions of continuous polygenic traits[END_REF] qui prend en compte une version temps-discrète du modèle de Kimura et Crow et fournit des approximations d'ordre deux pour la solution.

Au cours des dernières années la dynamique évolutive des populations en milieu constant a été largement étudiée (voir par exemple [START_REF] Magal | Mutation, selection, and recombination in a model of phenotype evolution[END_REF][START_REF] Calsina | Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics[END_REF][START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] Alfaro | Explicit solutions for replicator-mutator equations: extinction versus acceleration[END_REF]). En particulier des modèles sous la forme fréquence dépendant, (comme (2) et (3)) ont
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été beaucoup étudiés, ( [START_REF] Alfaro | Explicit solutions for replicator-mutator equations: extinction versus acceleration[END_REF][START_REF] Gil | Mathematical properties of a class of integrodifferential models from population genetics[END_REF][START_REF] Alfaro | Replicator-mutator equations with quadratic fitness[END_REF][START_REF] Alfaro | Evolutionary branching via replicator-mutator equations[END_REF]). Dans certains cas des solutions explicites sont fournies ( [START_REF] Alfaro | Explicit solutions for replicator-mutator equations: extinction versus acceleration[END_REF]).

Dans le cadre de l'étude des modèles intégro-différentiels l'on peut également remarquer le développement d'un point de vue asymptotique. Cette approche a été introduite pour la première fois par O. Diekmann, P. Jabin, S. Mischler et B. Perthame dans [START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF], puis les premiers résultats rigoureux sont données dans [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]. Cette méthode, qui est bassée sur des équations de Hamilton-Jacobi, a été développée pour étudier les solutions asymptotiques des équations de sélectionmutation, en supposant un petit effet des mutations. Les solutions des modèles de sélection-mutation se concentrent en générale comme des masses de Dirac, lorsque l'effet des mutations sont petits et en temps long. Dans tous ces travaux, l'idée principale de la méthode asymptotique est de partir d'un modèle intégro-différentiel avec compétition non-locale, où les mutations sont souvent représentées par un Laplacien, et de caractériser la solution lorsque les mutations ont des petits effets. Pour cela, on considère que l'effet d'une mutation est de l'ordre d'un petit paramètre que l'on appelle ε et après une transformation logarithmique de la solution on en déduit un problème limite lorsque ε → 0. Ce problème limite est en effet une équation de Hamilton-Jacobi avec contrainte. Une étude de cette équation permet ensuite de décrire la densité phénotypique de la solution du problème original, lorsque ε → 0.

Modèles Integro-Différentiels et heuristiques sur l'approche Hamilton-Jacobi

Un modèle typique des équations intégro-différentielles peut être écrit de la manière suivante :

∂tn -σ∆n = nR(x, I(t)), I(t) = R ψ(x)n(t, x)dx, (4) 
où n(t, x) représente la densité d'individus ayant le trait x à l'instant t. Les mutations sont représentées par le terme de Laplace avec le taux σ. Le terme intégral signifie la consommation totale de ressources. Nous supposons qu'il y a un seul nutriment dans l'environnement que les individus consomment avec un taux ψ(x). De plus, le terme R(x, I) correspond au taux de croissance qui dépend du trait et de l'environnement, et prend en compte les compétitions entre les individus.

Notons que la différence principale avec le modèle de Kimura est que l'on prend en compte la démographie. Nous citons ci-dessous quelques exemples et variantes de ce modèle :

(i) On obtient un modèle simple lorsqu'on prend R = κ (r(x) -I(t)) , pour κ > 0, et r étant le taux de croissance, que l'on peut considérer constant ( [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF][START_REF] Gourley | Travelling front solutions of a nonlocal fisher equation[END_REF]) ou pas.

(ii) On peut considérer une variante du modèle précédent en prenant le terme intégral comme une convolution, c'est à dire

I(t, x) = R ψ(x -y)n(t, y)dy,
qui prend en compte une compétition plus importante pour les traits les plus proches (voir [START_REF] Gourley | Travelling front solutions of a nonlocal fisher equation[END_REF][START_REF] Berestycki | The non-local fisher-KPP equation: travelling waves and steady states[END_REF] et leurs références).

(iii) Encore une autre variante du modèle apparaît si dans l'équation (4) on considère les mutations modélisées par un noyau intégral, au lieu du laplacien, comme ci-dessous R

[n(t, x + h) -n(t, x)]K(h)dh.

(
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Pour le modèle (4) habituellement on procède à un changement d'échelle pour passer de l'échelle microscopique à l'échelle macroscopique. D'une part, on considère le cas des petites mutations : pour un petit paramètre ε > 0, on INTRODUCTION 6 substitue σ = ε 2 . Cependant, lorsque ε est petit, l'effet des mutations ne peut être observé que sur une plus grande échelle de temps. Ainsi, on rééchelle le temps avec t → t ε . Le modèle (4) alors devient ε∂tnε -ε 2 ∆nε = nεR(x, Iε(t)), Iε(t) = R d ψ(x)nε(t, x)dx. [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model[END_REF] Ensuite, le but est d'étudier le comportement de la solution lorsque ε → 0. Le résultat qualitatif intéressant est que les solutions se concentrent en masses de Dirac.

Pour obtenir ce résultat généralement, on impose les hypothèses suivantes au modèle (4) :

• Il existent des constants ψm et ψM telles que la fonction ψ vérifie

0 < ψm ≤ ψ ≤ ψM < ∞, ψ ∈ W 2,∞ (R d ).
• On choisit R ∈ C 2 , et l'on suppose qu'il existe des constantes positives IM , C1 et C2 telles que max

x∈R d R(x, IM ) = 0 = R(0, IM ), -C1 ≤ ∂R ∂I ≤ -C2,
avec IM qui vérifie également,

Iε(0) = R d ψ(x)nε(0, x)dx < IM .
La première étape dans l'approche Hamilton-Jacobi introduite dans [START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] est de considérer le changement de variable suivant nε(t, x) = e uε (t,x) ε , pour nε solution de [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model[END_REF]. Ce type de changement est appelé la transformation de Hopf-Cole, et vient du fait qu'avec un tel changement d'échelle, la solution nε aura naturellement cette forme. Alors, la fonction uε vérifie l'équation suivante

∂tuε -ε∆uε = |∇uε| 2 + R(x, Iε). ( 7 
)
En faisant tendre ε vers 0, (voir par exemple [START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]), on obtient que uε converge vers une solution de viscosité u d'une équation de Hamilton-Jacobi avec contrainte

∂tu = |∇u| 2 + R(x, I(t)), max R d u(t, x) = 0, (8) 
où I est la limite de Iε, lorsque ε tend vers 0. Notons que la contrainte peut être déduite à partir de la propriété de

saturation. C-à-d, soit ρε(t) = R d nε(t, x
)dx alors il existent des constants ρm et ρM telles que :

0 < ρm ≤ ρε(t) ≤ ρM ∀t. (9) 
Cette propriété peut être obtenue en faisant une intégration dans (6) par rapport à x après quelques calculs.

De plus nous pouvons montrer la propiété suivante, [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] :

supp n(t, x) ⊂ {(t, x)|u(t, x) = 0} ⊂ {(t, x)|R(x, I) = 0},
où n(t, x) est la limite faible de nε(t, x) lorsque ε → 0.
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Enfin, pour comprendre comment ces résultats peuvent aider à déterminer la limite de nε et obtenir le phénomène de concentration nous pouvons citer deux cas :

1. La concentration de nε peut être obtenue d'une façon simple, [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF], lorsque la dimension d est égale à 1 et que la fonction R(x, I) est monotone par rapport à x, alors pour tout t, l'ensemble de {R(x, I) = 0} a un seul point et

donc nε ρ(t)δ(x -x(t)), (10) 
avec

u(t, x(t)) = R(x(t), I(t)) = 0, (11) 
où ρ(t) = limε→0 ρε(t) et (u, I) vérifie l'équation (8).

2. Supposons en outre que R(•, I) est strictement concave, uniformément pour I borné. Ensuite, pour tout u0, condition initiale pour [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF], uniformément concave également, toute solution de (8) est strictement concave et donc l'ensemble {u = 0} a un unique point, [START_REF] Lorz | Dirac mass dynamics in multidimensional non local parabolic equations[END_REF]. On en déduit que n est une masse de Dirac :

nε n(t, x) = ρ(t)δ(x -x(t)).

Dynamique des populations phénotypiquement structurées dans des environnements variables en temps

Dans cette thèse nous nous intéressons à la dynamique évolutive des populations dans des environnements variables en temps. C'est à dire que l'on considère le taux de croissance R en (4) comme étant aussi une fonction du temps : R(t, x, I(t)), en particulier on suppose la fonction R comme étant périodique par rapport à son premier argument, pour analyser l'impact de ces fluctuations dans la distribution phénotypique de la population. Pour les modèles variables en temps l'on peut citer le travail dans [START_REF] Chisholm | Evolutionary dynamics of phenotypestructured populations: from individual-level mechanisms to population-level consequences[END_REF], où les auteurs montrent que les fluctuations environnementales peuvent amener la population à entrer dans un état épigénétique instable et fluctuant et que cela peut déclencher l'émergence d'oscillations dans la taille de la population. Par ailleurs, dans [START_REF] Mirrahimi | Time fluctuations in a population model of adaptive dynamics[END_REF], un modèle similaire au notre est étudié, en utilisant également une approche basée sur l'équation de Hamilton-Jacobi mais avec une échelle différente. Plus récemment, dans [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model[END_REF], les auteurs étudient une population mixte de cellules cancéreuses structurées par le niveau d'expression d'un gène lié à la fois au taux de prolifération cellulaire et au niveau de résistance pharmaco-cytotoxique. Ils considèrent alors une forme particulière de taux de croissance temps-dépendant R = R(x, ρ(t), u(t)) et des solutions semi-explicites sont fournies, en fonction de la taille de la population ρ(t) et la dose de médicaments u(t).

Nous étudierons également une population qui fait face à un changement climatique en plus des fluctuations périodiques R(t, x -ct, I(t)). L'intérêt ici est d'abord de déterminer des conditions sur la vitesse "c" du changement climatique qui conduit à l'extinction ou à la survie de la population. Nous étudions ensuite la distribution phénotypique et la taille de la population. Des modèles similaires, mais avec un terme de réaction locale et sans fluctuations, ont été largement étudiés (voir par exemple [START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed i -the case of the whole space, disc[END_REF][START_REF] Berestycki | Can a species keep pace with a shifting climate[END_REF][START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed iicylindrical-type domains[END_REF][START_REF] Berestycki | Forced waves of the Fisher-KPP equation in a shifting environment[END_REF]). Ces modèles sont introduits pour étudier la dynamique des populations structurées par une variable spatiale négligeant l'évolution. De plus, dans [START_REF] Alfaro | The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF], la dynamique spatiale et évolutive d'une population est étudiée dans un environnement dont l'optimum est en mouvement linéaire.

Dans ces deux types de problèmes nous utilisons une approche basée sur des équations de Hamilton-Jacobi pour étudier asymptotiquement la population lorsque l'effet des mutations est petit mais non nul. Nous présentons ci-dessous nos résultats pour les modèles de sélection-mutation dans des environnements variables en temps.

L'effet des fluctuations périodiques sur la distribution phénotypique de la population

Un premier modèle que nous étudions est le suivant

       ∂tn(t, x) -σ∆n(t, x) = n(t, x)[a(t, x) -ρ(t)], (t, x) ∈ [0, +∞) × R d , ρ(t) = R d n(t, x)dx, n(t = 0, x) = n0(x). ( 12 
)
Ce modèle est du type de celui décrit dans (4) en prenant la fonction de croissance Soit la fonction a(t, x) dans l'équation [START_REF] Beardmore | Antibiotic cycling and antibiotic mixing: which one best mitigates antibiotic resistance?[END_REF] "suffisamment petite à l'infini" qui vérifie max R d ā(x) > 0. On suppose de plus que σ est assez petit. Alors

R = R(t, x, ρ(t)) = a(t, x) - ρ(t
n(t, •) -ñ(t, •) L ∞ → 0, lorsque t → ∞,
où ñ(t, x) est la seule solution périodique du problème [START_REF] Beardmore | Antibiotic cycling and antibiotic mixing: which one best mitigates antibiotic resistance?[END_REF].
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(i) Nous avons mis entre guillemets que la fonction "a" doit être suffisamment petite, c'est-à-dire qu'elle doit prendre des valeurs négatives pour des valeurs de x grandes. Nous clarifierons cela plus tard.

(ii) La solution périodique ñ(t, x) peut s'écrire de la manière suivante

ñ(t, x) = ρ(t) p(t, x) R d p(t, x)dx , avec ρ(t) la seule solution périodique de l'EDO      dρ dt = ρ(t) R d a(t, x)p(t, x)dx R d p(t, x)dx -ρ(t) , t ∈ (0, +∞) ρ(0) = ρ(T ),
et p(t, x) la seule fonction propre périodique (sauf multiplication par un scalaire) associée à la valeur propre λ dans le problème linéaire suivant

∂tp(t, x) -σ∆p(t, x) = p(t, x)[a(t, x) -λ], (t, x) ∈ [0, +∞) × R d , 0 < p(0, x) = p(T, x), x ∈ R d .
(iii) L'unicité d'une telle paire (p, λ) solution du problème ci-dessus peut être établie à partir des résultats classiques
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pour des domaines bornés dans [START_REF] Hess | Periodic-Parabolic Boundary Value Problems and Positivity[END_REF] et en utilisant des résultats plus récents dans [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF], (voir également [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF][START_REF] Nadin | Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation[END_REF] où cette unicité est généralisée au cas périodique en temps et en espace).

Alors que l'on connait l'existence d'une seule solution périodique pour l'équation [START_REF] Beardmore | Antibiotic cycling and antibiotic mixing: which one best mitigates antibiotic resistance?[END_REF], on s'intéresse à son comportement asymptotique lorsque les mutations sont petites ou rares. Avec un changement de notation pour prendre en compte les hypothèses de la Proposition 2, on note σ = ε 2 et on s'intéresse à la solution nε(t, x) du problème périodique suivant

       ∂tnε(t, x) -ε 2 ∆nε(t, x) = nε(t, x)[a(t, x) -ρε(t)], (t, x) ∈ [0, +∞) × R d , ρε(t) = R d nε(t, x)dx, nε(0, x) = nε(T, x). ( 13 
)
Nous introduisons la transformation de Hopf-Cole en vue d'utiliser l'approche Hamilton-Jacobi pour cette étude asymptotique. On note

nε(t, x) = 1 (2πε) d/2 exp uε(t, x) ε , ( 14 
)
et nous montrons la convergence de la densité nε vers une masse de Dirac via le Théorème suivant. 

ρε(t) -˜ (t) L ∞ → 0, et nε(t, x) -˜ (t)δ(x -xm) 0, (15) 
ponctuellement en temps, faiblement en x dans le sens des mesures, avec ˜ (t) donné par 

˜ (t) = 1 -exp -
     -|∇u| 2 = 1 T T 0 (a(t, x) -˜ (t))dt, x ∈ R d , max x∈R d u(x) = u(xm) = 0. ( 17 
)
Dans le cas où x ∈ R, u est en effet une solution classique donnée par

u(x) = - x xm -a(y) + dy , ( 18 
)
où = 1 T T 0 ˜ (t)dt.
mais en utilisant dans ce cas des bornes sur la condition initiale pour obtenir des bornes pour tout le temps).

Les résultats dans le Théorème 4 peuvent être mieux compris à partir des heuristiques suivantes qui suggèrent également une approximation pour la densité phénotypique de la population nε, lorsque ε est petit mais non nul. En remplaçant uε dans [START_REF] Berestycki | Forced waves of the Fisher-KPP equation in a shifting environment[END_REF], on note que uε est solution de

1 ε ∂tuε -ε∆uε = |∇uε| 2 + a(t, x) -ρε(t), (t, x) ∈ [0, +∞) × R d . ( 19 
)
Nous écrivons alors formellement un développement asymptotique en puissances de ε avec des coefficients périodiques en temps pour uε et ρε comme ci-dessous

uε(t, x) = u(t, x) + εv(t, x) + ε 2 w(t, x) + o(ε 2 ), ρε(t) = ρ(t) + εκ(t) + o(ε). ( 20 
)
En substituant dans [START_REF] Billiard | The effect of competition and horizontal trait inheritance on invasion, fixation, and polymorphism[END_REF] on obtient

∂tu(t, x) = 0 ⇔ u(t, x) = u(x), et ∂tv(t, x) = |∇u| 2 + a(t, x) -ρ(t).
On intègre pour t ∈ [0, T ] et l'on utilise la T -périodicité de v pour obtenir :

-|∇u| 2 = 1 T T 0 (a(t, x) -ρ(t))dt. ( 21 
)
Pour les termes d'ordre ε on a :

∂tw -∆u = 2∇u • ∇v -κ(t), et en intégrant en [0, T ] à nouveau on en déduit -∆u = 2 T ∇u T 0 ∇vdt -κ, avec κ = 1 T T 0 κ(t)dt, et l'on obtient les équations suivantes pour v    ∂tv = a(t, x) -a(x) -ρ(t) + ρ, -∆u = 2 T T 0 ∇u • ∇vdt -κ. ( 22 
)
Ces développements formels peuvent être utilisés pour approcher la densité phénotypique de la population de la façon suivante :

nε(t, x) = 1 (2πε) d/2 ε u(x) ε +v(t,x)+εw(t,x) , ( 23 
)
ce qui permet d'estimer les moments de la distribution de la population (plus de détails pour les calculs ci-dessus peuvent être trouvés dans le Chapitre 1, voir aussi [START_REF] Mirrahimi | A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments[END_REF][START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF] où ces approximations ont été utilisées dans l'étude de la distribution phénotypique d'une population dans un environnement hétérogène en espace).

Application biologique

Le travail dans le Chapitre 1 a été motivé par une expérience biologique dans [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF], où une population bactérienne a été étudiée. Dans cette expérience, plusieurs populations de Serratia marcescens ont été maintenues dans des milieux à
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température constante ou fluctuante pendant plusieurs semaines. Ensuite, leurs taux de croissance ont été mesurés dans différents environnements. En particulier, on a observé qu'une population de bactéries évoluée dans des températures fluctuantes périodiquement (variation quotidienne entre 24 Nos approximations dans les equations ( 20)-( 23) permettent d'estimer, pour deux exemples de taux de croissance, les moments de la distribution phénotypique et la fitness moyenne de la population dans un environnement constant. Ces estimations permettent, en fait, de capturer le phénomène observé dans l'expérience de [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF] sous quelques conditions sur le taux de croissance choisi.

Les détails peuvent être trouvés dans le Chapitre 1.

L'impact d'un changement climatique sur la densité phénotypique de la population

On étudie ensuite le modèle suivant qui prend en compte un changement climatique

       ∂t ñ -σ∂xx ñ = ñ[a(t, x -ct) -ρ(t)], (t, x) ∈ [0, +∞) × R, ρ(t) = R ñ(t, x)dx, ñ(t = 0, x) = ñ0(x). (24) 
Cette équation modélise la dynamique d'une population qui est structurée par un trait phénotypique x ∈ R et qui doit faire face à un changement climatique. Le terme -ct a été introduit dans le taux de croissance intrinsèque d'un individu a(t, x-ct) pour considérer une variation du trait optimal avec une tendance linéaire. À nouveau, la dépendance du terme a par rapport à la première variable est supposée être périodique pour tenir compte des fluctuations de l'environnement, qui peuvent faire varier le trait optimal ou d'autres paramètres de la sélection. Le reste des termes dans le modèle ont une signification similaire au modèle [START_REF] Beardmore | Antibiotic cycling and antibiotic mixing: which one best mitigates antibiotic resistance?[END_REF]. Pour éviter le changement dans le taux de croissance a, nous introduisons n(t, x) = ñ(t, x + ct) solution de :

       ∂tn -c∂xn -σ∂xxn = n[a(t, x) -ρ(t)], (t, x) ∈ [0, +∞) × R, ρ(t) = R n(t, x)dx, n(t = 0, x) = ñ0(x), (25) 
et l'on obtient un résultat de convergence pour cette équation analogue au résultat dans la Proposition 2 en supposant la vitesse c plus petite qu'une vitesse critique que l'on appelle c * σ .

Proposition 5 (Convergence en temps long 2)

Soit n(t, x) solution de [START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF]. On suppose que la fonction a(t, x) est "suffisamment petit à l'infini" et en plus vérifie

max R ā(x) > 0. Pour σ assez petit et c < c * σ on obtient n(t, •) -n(t, •) L ∞ → 0, lorsque t → ∞,
où n(t, x) est la seule solution périodique du problème [START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF]. De plus si c ≥ c * σ la population s'éteint, plus précisément

n(t, •) L ∞ → 0, lorsque t → ∞.
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(i) La valeur de la vitesse critique dépend de σ et il s'agit en effet d'une vitesse critique du changement climatique au-dessus de laquelle la population s'éteint.

(ii) Similairement à la Remarque 3-(ii) la fonction n(t, x) peut s'écrire

n(t, x) = ρ(t) pc(t, x) R pc(t, x)dx , avec ρ(t) la seule solution périodique de l'EDO      d ρ dt = ρ(t) R a(t, x)pc(t, x)dx R pc(t, x)dx -ρ(t) , t ∈ (0, +∞), ρ(0) = ρ(T ),
et pc(t, x) la seule fonction propre périodique (sauf multiplication par un scalaire) associée à la valeur propre λc,σ dans le problème linéaire suivant

∂tpc(t, x) -c∂xpc -σ∂xxpc(t, x) = pc(t, x) a(t, x) -λc,σ , (t, x) ∈ [0, +∞) × R, 0 < pc(0, x) = pc(T, x), x ∈ R. (26) 
On s'intéresse maintenant à l'analyse asymptotique de la solution périodique lorsque les mutations sont petites. On [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF] via l'approche Hamilton-Jacobi. Pour cela on fait à nouveau un changement de Hopf-Cole comme ci-dessous

pose σ = ε 2 , c = cε, et l'on définie c * ε := c * ε 2 ε avec c * ε 2 la vitesse critique c * σ pour σ = ε 2 . On étudie la solution nε(t, x) du problème :        ∂tnε(t, x) -cε∂xnε(t, x) -ε 2 ∂xxnε(t, x) = nε(t, x)[a(t, x) -ρε(t)], (t, x) ∈ [0, +∞) × R, ρε(t) = R nε(t, x)dx, nε(0, x) = nε(T, x),
nε(t, x) = 1 √ 2πε exp ψε(t, x) ε ,
et l'on obtient le résultat suivant :

Théorème 7 (Comportement Asymptotique 2)
Soit nε(t, x) solution de [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF] et l'on suppose en plus des hypothèses de la Proposition 5 que c < lim inf

ε→0 c * ε . Alors, (i) lorsque ε → 0, on a ρε(t) -˜ (t) L ∞ → 0, avec ˜ (t) une fonction T -périodique.
(ii) Par ailleurs, lorsque ε → 0, ψε(t, x) converge localement uniformément vers une fonction ψ(x) ∈ C(R), solution au sens de viscosité de l'équation: Pour présenter notre résultat principal pour le modèle [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF], nous avons besoin de définir le problème à valeurs propres suivant :

       -∂xψ + c 2 INTRODUCTION avec ρ = T 0 ˜ (t)
∂tpcε -εc∂xpcε -ε 2 ∂xxpcε -a(t, x)pcε = pcελc,ε, (t, x) ∈ [0, +∞) × R, 0 < pcε(0, x) = pcε(T, x), x ∈ R, (29) 
où on a noté λc,ε la valeur propre principale λc,σ pour c = cε et σ = ε 2 . (iii) En outre, soit nε solution de [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF], alors

ρ ε = -λc,ε = a(xm) - c 2 4 + ε -axx(xm) + o(ε), ( 30 
)
c * ε = 2 a(xm) -ε -axx(xm)/2 + o(ε), ( 31 
)
avec ρ ε = 1
nε(t, x) -˜ (t)δ(x -x) 0, quand ε → 0, ( 33 
)
ponctuellement en temps, faiblement en x dans le sens des mesures, avec ˜ la seule solution périodique de l'équation suivante

   d dt = [a(t, x) -] , t ∈ (0, T ), (0) = (T ). ( 34 
)
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(i) L'énoncé (iii) dans le Théorème 8 implique que la solution du problème initial [START_REF] Calsina | Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics[END_REF] 

avec σ = ε 2 et c = cε vérifie ñε(t, x) -˜ (t)δ(x -x -ct) 0, quand ε → 0, ( 35 
)
ponctuellement en temps, faiblement en x dans le sens des mesures.

L'idée principale afin de prouver le résultat d'unicité est d'introduire une nouvelle fonction vérifiant une équation de Hamilton-Jacobi similaire à (28) et d'utiliser le fait que ses solutions dans un domaine borné Ω peuvent être déterminées de façon unique par ses valeurs sur les points de la frontière de Ω, et par ses valeurs aux points maximum du RHS de cette nouvelle équation. Notons également que le développement asymptotique fourni pour la vitesse critique c * ε et la taille moyenne de la population ρε est en effet lié à l'approximation de la valeur propre de Floquet et par conséquent à l'approximation harmonique de l'état fondamental de l'énergie de l'opérateur de Schrödinger ( [START_REF] Helffer | Introduction to semi-classical methods for the Schrödinger operator with magnetic field[END_REF]). Cependant, nous avons ici un opérateur parabolique, non auto-adjoint.

Les détails sur les résultats présentés dans cette sous-section peuvent être trouvés dans le Chapitre 2.

Quelques exemples biologiques et simulations numériques

La deuxième partie de cette thèse est consacrée à l'étude de quelques modèles biologiques et leurs simulations numériques. 

Dans le

Exemples des taux de croissance périodiques

Dans le Chapitre 3, nous étudions les modèles présentés dans la section précedénte pour certains exemples de taux de croissance a. Dans les modèles paraboliques étudiés dans la section précédente, où les taux de croissance sont pris périodiques en temps, on observe une convergence à long terme vers une solution périodique qui conduit en général à un phénomène de concentration autour du trait dominant lorsque l'effet des mutations est petit, tandis que la taille de la population varie périodiquement. Afin d'illustrer les résultats théoriques précédents, nous étudions d'abord deux exemples où les fluctuations agissent différemment sur le taux de croissance :

a1(t, x) = r -g(x -θ(t)) 2 , a2(t, x) = r -g(t)(x -θ) 2 .
Dans les deux exemples, r représente le taux de croissance maximal, g modélise la pression de sélection (constante pour a1 et T -périodique pour a2) et θ modélise le trait optimal qui est (contrairement à g), T -périodique pour a1 et constante pour a2. Ces taux de croissance sont considérés comme ayant des fluctuations sur le trait optimal et sur la pression de sélection respectivement.

Pour ces taux de croissance, il est possible en effet de calculer des solutions (explicite pour a1 et semi-explicite por a2) du problème périodique [START_REF] Berestycki | Forced waves of the Fisher-KPP equation in a shifting environment[END_REF]. Nous fournissons également des simulations numériques. La solution (semi-)explicite proposée a le profil d'une Gaussienne centrée autour d'un trait dominant avec une taille de population qui oscille périodiquement, ce qui est observable également à partir des simulations obtenues. Ces calculs confirment les résultats du Chapitre 1, mais permettent de plus de comprendre, pour ces exemples, ce qui se passe quand le taux de mutation croit. Par ailleurs, des exemples avec des taux de croissance en dehors des hypothèses des théorèmes enoncés précédemment sont également analysés, en particulier avec deux maximums pour ā, ce qui peut amener à des distributions dimorphes.

Plus de résultats analytiques et numériques en prenant d'autres taux de croissance sont détaillés dans le Chapitre 3. 
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Comparaison entre les modèles pour le Transfert Horizontal de Gènes

(x, y, ν) = hK (x -y, N ) = τ0 α(x -y) N/K , ( 36 
)
où N = K R d ν(dx) est le nombre d'individus, τ0 > 0 est une constante et α est, soit une fonction Heaviside, soit une fonction regulière (plus utile dans les modèles EDPs), tout en imitant la nature binaire de la fonction Heaviside, telle que pour une petite constante δ > 0,

α(z) = 0 if z < -δ 1 if z > +δ , α (0) = 1 2δ . ( 37 
)
Pour une population ν = 1 K N i=1 δx i et une fonction générique mesurable bornée F , le générateur du processus est alors donné par : 

L K F (ν) = N i=1 b(xi) R d F ν + 1 K δy -F (ν) m(xi, dy) + N i=1 d(xi) + C N K F ν - 1 K δx i -F (ν) + N i,j=1 hK (xi, xj, ν) F ν + 1 K δx i - 1 K δx j -F (ν) .
(x) = br > 0, ( 38 
)
d(x) = drx 2 , dr > 0, ( 39 
)
m(z) = 1 √ 2πσ e -z 2 2σ 2 . ( 40 
)
Notons ici, que si l'on part d'une population initiale centrée sur le maximum de m les transferts élevés convertissent d'abord les individus à des traits plus grands (à droite) et, dans le même temps, la population diminue, vu que le trait dominant devient moins adapté. À un moment donné, la taille de la population est si petite que le transfert ne joue plus aucun rôle, ce qui entraîne la résurgence d'une souche quasi-invisible, issue de quelques individus bien adaptés et présentant de petits traits (à gauche); ceux ici pouvant envahir la population résidente.

Cependant, dans un cadre de processus de sauts stochastiques, il est difficile de définir et d'étudier avec précision les phénomènes cycliques observés. Ainsi, dans le cas d'une population importante, il est plus pratique de travailler avec un modèle EDP déterministe, obtenu comme limite pour un système stochastique (voir [START_REF] Ferrière | Stochastic and deterministic models for age-structured populations with genetically variable traits[END_REF][START_REF] Billiard | The effect of competition and horizontal trait inheritance on invasion, fixation, and polymorphism[END_REF]). Nous étudions alors l'équation non linéaire integro-différentielle, donnée par : 

             ε∂tfε(t, x) = -(d(x) + Cρε(t))fε(t, x) + R d m(z)b(x + εz)fε(t, x + εz)dz + fε(t, x) R d τ (x -y) fε(t, y) ρε(t) dy, ρε(t) = R d fε(t, x)dx, fε(0, x) = f 0 ε (x) > 0, (41) 
:= τ0 [α(x -y) -α(y -x)] , (42) 
est le flux de transfert. Enfin, ρε modélise la taille totale de la population. Cette équation a été déjà normalisée avec le petit paramètre ε > 0 pour ne considérer que les mutations petites ainsi que rééchelée par rapport au temps (t → t ε ) pour tenir compte d'un temps beaucoup plus long qu'une échelle de génération.
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Ensuite, nous dérivons le problème limite lorsque ε → 0. Dans certains contextes, (comme dans les modèles précédents) la densité phénotypique se concentre, à la limite de ε → 0, comme une masse de Dirac. Dans ce cas, on peut appliquer l'approche Hamilton-Jacobi en passant par une transformation de type Hopf-Cole.

En effet, soit uε(t, x) = ε ln fε(t, x), elle vérifie

∂tuε = -(d(x) + Cρε(t)) + R d m(z)b(x + εz) exp uε(t, x + εz) -uε(t, x) ε dz + R d τ (x -y) fε(t, y) ρε(t) dy. ( 43 
)
Formellement, dans la limite ε → 0, uε converge vers une fonction continue u, solution de viscosité de l'équation de

Hamilton-Jacobi suivante

∂tu = -(d(x) + Cρ(t)) + b(x) R d m(z)e z•∇xu dz + τ (x -x(t)), ( 44 
) où limε→0 ρε(t) = ρ(t) ≥ 0 et x(t) = argmax u(t, •).
L'approche Hamilton-Jacobi est utilisée avec succès pour comprendre les phénomènes de concentration en biologie évolutive (voir par exemple [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional non local parabolic equations[END_REF][START_REF] Mirrahimi | Phénomènes de concentration dans certaines EDPs issues de la biologie[END_REF]). Nous cherchons à comprendre dans cette étude, si ce cadre est également bien adaptée pour décrire le phénomène de sauvetage évolutif qui repose essentiellement sur une description précise des petites populations. Les simulations du modèle de Hamilton-Jacobi illustrées dans la Figure 2 montrent explicitement comment le cycle apparaît dans sa solution : la croissance des individus "bien adaptés" que l'on voit dans les simulations stochastiques (voir les histogrammes dans la Figure 1) est reproduite dans ce cas par un changement du point maximum de u. 

Termes d'ordre supérieur dans l'approximation de la solution

Lorsque nous utilisons la transformation Hopf-Cole [START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed i -the case of the whole space, disc[END_REF] pour étudier asymptotiquement la solution périodique nε(t, x) du problème [START_REF] Berestycki | Forced waves of the Fisher-KPP equation in a shifting environment[END_REF] nous faisons formellement un développement asymptotique de la fonction uε(t, x) dans lequel on retrouve naturellement la fonction u = limε→0 uε, solution de viscosité de l'équation Hamilton-Jacobi [START_REF] Berestycki | The non-local fisher-KPP equation: travelling waves and steady states[END_REF] ainsi que des fonctions périodiques correspondant au termes d'ordres supérieurs en ε, notamment v(t, x) (voir [START_REF] Billiard | Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks[END_REF]). Alors une question naturelle à se poser serait si l'on pouvait prouver la convergence de uε-u ε vers une certaine fonction v pour écrire rigoureusement un développement asymptotique de uε comme suit

uε(t, x) = u(x) + εv(t, x) + o(ε).
Plus précisément, soit uε solution T -périodique de l'équation suivante

1 ε ∂tuε -ε∆uε = |∇uε| 2 + a(t, x) -ρε(t),
et u(x) solution de [START_REF] Berestycki | The non-local fisher-KPP equation: travelling waves and steady states[END_REF]. On défini vε(t, x) = 1 ε (uε(t, x) -u(x)) et l'on veut prouver que lorsque ε → 0 la fonction vε tend vers v solution du système

∂tv = a(t, x) -ā(x) -(t) - ρ -∆u = 2 T ∇u T 0 ∇v(t, x)dt -∆u(xm), où ρ = 1 T T 0 (t)dt.

Taux de croissance avec plusieurs maximums

Dans le Chapitre 3 de cette thèse on fait une étude numérique des solutions de l'équation (13) pour différents taux de croissance a(t, x). En particulier, nous allons au delà des hypothèses du Chapitre 1 et prenons des taux de croissance qui atteignent leurs maximums deux fois dans une période de deux manières différentes. En effet, dans un cas on considère que le taux de croissance est symétrique par rapport à un certain hyperplan, (c-à-d, les derivées sont égales aux points de maximum) et dans l'autre cas nous prenons un taux de croissance non-symétrique. Il est intéressant de noter que dans ce dernier exemple, lorsque ε est petit la population se concentre autour du point du maximum le plus plat de a tandis que dans le cas symétrique on obtient une population dimorphe, (voir Figure 3).

Ce phénomène est lié au fait que l'état fondamental d'un opérateur de Schrödinger se concentre sur le point de minimum global le plus plat du potentiel [START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF][START_REF] Helffer | Multiple wells in the semiclassical limit. III. Interaction through nonresonant wells[END_REF]. Dans le cas de l'environnement constant et pour le modèle de réplication-mutation, (donné dans la Section 2.2), une étude du caractère uni-modal ou multi-modal de la distribution phénotypique de la population en fonction du taux de croissance et du taux de mutation est fournie dans [START_REF] Alfaro | Evolutionary branching via replicator-mutator equations[END_REF]. Je suis intéressée par étendre ces résultats au cas d'un environnement fluctuant.

Noyau des mutations plus générales

Les variations phénotypiques peuvent également être modélisées en remplaçant l'opérateur de diffusion linéaire par un noyau intégral de la forme

R d (M (x, y)n(t, y) -M (y, x)n(t, x))dy, ( 45 
)
où le noyau M (x, y) modélise la mutation d'un phénotype y vers le phénotype x. Il est en effet plus réaliste de modéliser les mutations par un noyau intégral plutôt qu'une diffusion (voir Section 2.2 et [START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF]). Le modèle avec le noyau intégral est en effet dérivé sous des hypothèses moins restreintes.

L'approche Hamilton-Jacobi pour des modèles avec des environnements constants a été déjà développée pour étudier un terme de mutation de type [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF], [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result[END_REF]. Je suis alors intéressée par la généralisation de ces résultats au cas des environnements fluctuants. 

Dérivation rigoureuse de l'équation de

Résumé

Nous étudions le comportement à long terme d'une équation parabolique de type Lotka-Volterra en considérant un taux de croissance périodique en temps et avec une competition non locale. Une telle équation décrit la dynamique d'une population phénotypiquement structurée sous l'effet de mutations et de sélection dans un environnement fluctuant. Nous prouvons d'abord que, en longtemps, la solution converge vers la solution périodique unique du problème. Ensuite, nous décrivons cette solution périodique asymptotiquement lorsque l'effet des mutations disparaît. En utilisant une théorie basée sur les équations de Hamilton-Jacobi avec contrainte, nous prouvons que lorsque l'effet des mutations disparaît, la solution se concentre sur une seule masse de Dirac, alors que la taille de la population varie périodiquement dans le temps.

Lorsque l'effet des mutations est faible mais non nul, nous fournissons quelques approximations formelles des moments de la distribution de la population. Nous montrons ensuite, à l'aide de quelques exemples, comment ces résultats peuvent être comparés à des expériences biologiques. Les résultats dans ce chapitre ont été publiés en colaboration avec Sepideh Mirrahimi, [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF].
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CHAPTER 1

Introduction

Model and motivations

The purpose of this chapter is to study the evolutionary dynamics of a phenotypically structured population in a timeperiodic environment. While the evolutionary dynamics of populations in constant environments are widely studied (see for instance [START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] Raoul | Etude qualitative et numérique d'équations aux dérivées partielles issues des sciences de la nature[END_REF][START_REF] Mirrahimi | Phénomènes de concentration dans certaines EDPs issues de la biologie[END_REF]), the theoretical results on varying environments remain limited (see however [START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF][START_REF] Mirrahimi | Time fluctuations in a population model of adaptive dynamics[END_REF]).

The variation of the environment may for instance come from the seasonal effects or a time varying administration of medications to kill cancer cells or bacteria. Several questions arise related to the time fluctuations. Could a population survive under the fluctuating change? How the population size will be affected? Which phenotypical trait will be selected? What will be the impact of the variations of the environment on the population's phenotypical distribution?

Several frameworks have been used to study the dynamics of populations under selection and mutations. Game theory has been one of the first approaches to study evolutionary dynamics [START_REF] Hofbauer | The theory of evolution and dynamical systems[END_REF][START_REF] Smith | Evolution and the Theory of Games[END_REF]. Adaptive dynamics which is a theory based on the stability of dynamical systems allows to study evolution under rare mutations [START_REF] Dieckmann | The dynamical theory of coevolution: a derivation from stochastic ecological processes[END_REF][START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF]. Integro-differential models are used to study evolutionary dynamics of large populations (see for instance [START_REF] Calsina | Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Magal | Mutation, selection, and recombination in a model of phenotype evolution[END_REF]). Probabilistic tools allow to study populations of small size [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF] and also to derive the above models in the limit of large populations [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF].

Here, we are interested in the integro-differential approach. We study in particular the following Lotka-Volterra type model

       ∂tn(t, x) -σ∆n(t, x) = n(t, x)[a(t, x) -ρ(t)], (t, x) ∈ [0, +∞) × R d , ρ(t) = R d n(t, x)dx, n(t = 0, x) = n0(x). (1.1)
Here, n(t, x) represents the density of individuals with trait x at time t. The mutations are represented by a Laplace term with rate σ. The term a(t, x) is a time-periodic function, corresponding to the net growth rate of individuals with trait x at time t. We also consider a death term due to competition between the individuals, whatever their traits, proportional to the total population size ρ(t).

A main part of our work is based on an approach using Hamilton-Jacobi equations with constraint. This approach has been developed during the last decade to study asymptotically the dynamics of populations under selection and small mutations. There is a large literature on this approach. We refer for instance to [START_REF] Mirrahimi | Phénomènes de concentration dans certaines EDPs issues de la biologie[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] where the basis of this approach for problems coming from evolutionary biology were established. Note that related tools were already used to study the propagation phenomena for local reaction-diffusion equations [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF][START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF].

Our work follows an earlier article on the analysis of phenotype-structured populations in time-varying environments [START_REF] Mirrahimi | Time fluctuations in a population model of adaptive dynamics[END_REF]. In [START_REF] Mirrahimi | Time fluctuations in a population model of adaptive dynamics[END_REF], the authors study a similar equation to (1.1) using also the Hamilton-Jacobi approach, but with a different scaling than in this work. They indeed obtain a homogenization result by simultaneously accelerating time and letting the size of the mutations vanish. In this chapter, we study first a long time limit of this equation and next we describe asymptotically such long time solutions as the effect of the mutations vanishes. Our scaling, being motivated by biological applications (see Section 1.6), leads to a different qualitative behavior of solutions and requires a totally different mathematical analysis.

Assumptions

To introduce our assumptions, we first define

a(x) = 1 T T 0 a(t, x)dt.
We then assume that a(t, x) is a time-periodic function with period T , and C 3 with respect to x, such that

a(t, x) = a(t + T, x), ∀ (t, x) ∈ R × R d , and ∃ d0 > 0 : a(t, •) L ∞ (R d ) ≤ d0 ∀ t ∈ R. (H1)
Moreover, we suppose that there exists a unique xm which satisfies for some constant am,

0 < am = max x∈R d a(x) = a(xm). ( H2 
)
In order to guarantee that the initial condition do not explode, we make the following assumption

0 ≤ n0(x) ≤ e C 1 -C 2 |x| , ∀x ∈ R d , ( H3 
)
for some positive constants C1, C2.

Furthermore, only for the proof of Proposition 1.1 in Section 1.2, that is the case with σ = 0, we assume additionally that

H = ∂ 2 a ∂xi∂xj (xm) i,j is negative definite, (H4) 
i.e., its eigenvalues are all negative. Also, let us suppose that there exist some positive constants δ and R0 such that a(t, x) ≤ -δ, for all t ≥ 0, and |x| ≥ R0. (H5)

Finally, let M and d1 be positive constants, it is assumed again for the case of no mutations, that

n0 W 3,∞ ≤ M, a W 3,∞ ≤ d1. (H6)

Main results

We begin the qualitative study, with a simpler case, where σ = 0, which means there is no mutation. The model reads as follows

       ∂tn(t, x) = n(t, x)[a(t, x) -ρ(t)], (t, x) ∈ [0, +∞) × R d , ρ(t) = R d n(t, x)dx, n(t = 0, x) = n0(x). (1.2)
Our first result is the following. This result implies that the trait with the highest time average of the net growth rate over the time interval [0, T ], will be selected in long time, while the size of the population oscillates with environmental fluctuations.

To present our results for problem (1.1), we first introduce the following parabolic eigenvalue problems

∂tp -σ∆p -a(t, x)p = λp, in [0, +∞) × R d , 0 < p : T -periodic, (1.5)      ∂tpR -σ∆pR -a(t, x)pR = λRpR, in [0, +∞) × BR, pR = 0, on [0, +∞) × ∂BR, 0 < pR : T -periodic, (1.6) 
where BR is the ball in R d centered at the origin with radius R > 0. It is known that (see [START_REF] Hess | Periodic-Parabolic Boundary Value Problems and Positivity[END_REF]

) if a ∈ L ∞ ([0, +∞) × BR),
then there exists a unique principal eigenpair (λR, pR) for (1.6) with pR(0, •) L ∞ (B R ) = 1. Moreover, as R → +∞, λR λ and pR converges along subsequences to p, with (λ, p) solution of (1.5) (see for instance [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF]).

We next assume a variant of hypothesis (H5), that is, there exist positive constants, δ and R0 such that a(t, x) + λ ≤ -δ, for all 0 ≤ t, and R0 ≤ |x|.

Under the above additional assumption, which means that "a" takes small values at infinity, the eigenpair (λ, p) is also unique, (see Lemma 1.6).

We next define the T -periodic functions Q(t) and P (t, x) as follows

Q(t) = R d a(t, x)p(t, x)dx R d p(t, x)dx , P (t, x) = p(t, x) R d p(t, x)dx . (1.7)
We deduce from previous Proposition that if and only if T 0 Q(t) > 0, then there exists a unique positive periodic solution ρ(t) for the problem

   d ρ dt = ρ [Q(t) -ρ] , t ∈ (0, T ), ρ(0) = ρ(T ).
We can then describe the long time behavior of the solution of (1.1) Proposition 1.2 (case σ > 0, long time behavior) Assume (H1), (H2), (H3) and (H5σ). Let n be the solution of (1.1), then (i) if λ ≥ 0 then the population will go extinct, i.e. ρ(t) → 0, as t → ∞,

(ii) if λ < 0 then |ρ(t) -ρ(t)| → 0, as t → ∞. (iii) Moreover n(t, x) ρ(t) -P (t, x) L ∞ -→ 0, as t → ∞. Consequently we have, as t → ∞ n(t, •) -ρ(t)P (t, •) L ∞ → 0, if λ < 0 and n L ∞ → 0, if λ ≥ 0. (1.8)
Remark 1.3 Assuming (H2) implies that λ < 0, provided σ is small enough.

We prove this remark in Lemma 1.9.

Proposition 1.2 guarantees, when λ < 0, the convergence in L ∞ -norm of the solution n(t, x) of the equation (1.1) to the periodic function n(t, x) = ρ(t)P (t, x) and it is not difficult to verify that n is in fact a solution of (1.1).

We next describe the periodic solution n, asymptotically as the effect of mutations is small. To this end, with a change of notation, we take σ = ε 2 and study (nε, ρε), the unique periodic solution of the following equation

       ∂tnε -ε 2 ∆nε = nε[a(t, x) -ρε(t)], (t, x) ∈ [0, +∞) × R d , ρε(t) = R d nε(t, x)dx, nε(0, x) = nε(T, x).
(1.9)

We expect that nε(t, x) concentrates as a Dirac mass as ε → 0.

In order to study the limit of nε, as ε → 0, we make the Hopf-Cole transformation (ii) Moreover as ε → 0, uε converges locally uniformly to a function u(x) ∈ C(R), the unique viscosity solution to the following equation

nε = 1 (2πε) d/2 exp uε ε , ( 1 
     -|∇u| 2 = 1 T T 0 (a(t, x) -(t))dt, x ∈ R d , max x∈R d u(x) = u(xm) = 0.
(1.12)

In the case x ∈ R, u is indeed a classical solution and is given by

u(x) = - x xm -a(x ) + dx (1.13) where = 1 T T 0 (t)dt.
To prove Theorem 1.4, we first prove some regularity estimates on uε and then pass to the limit in the viscosity sense using the method of perturbed test functions. We finally show that (1.12) has a unique solution, and hence all the sequence converges. Note that in order to prove regularity estimates on uε, a difficulty comes from the fact that uε is time-periodic and one cannot use, similarly to previous related works [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional non local parabolic equations[END_REF], the bounds on the initial condition to obtain such bounds for all time and further work is required.

Some heuristics and the plan of the chapter

We next provide some heuristic computations which allow to better understand Theorem 1.4, but also suggest an approximation of the population's distribution nε, when ε is small but nonzero.

Replacing (1.10) in (1.9), we first notice that uε solves

1 ε ∂tuε -ε∆uε = |∇uε| 2 + a(t, x) -ρε(t), (t, x) ∈ [0, +∞) × R d , uε(t = 0, x) = u 0 ε (x) = ε ln n 0 ε (x).
(1.14)

We then write formally an asymptotic expansion for uε and ρε in powers of ε

uε(t, x) = u(t, x) + εv(t, x) + ε 2 w(t, x) + o(ε 2 ), ρε(t) = ρ(t) + εκ(t) + o(ε), (1.15)
where the coefficients of the developments are time-periodic.

We substitute in (1.14) and organize by powers of ε, that is

1 ε (∂tu(t, x)) + ε 0 ∂tv(t, x) -|∇u| 2 -a(t, x) + ρ(t) + ε [∂tw -∆u -2∇u • ∇v + κ(t)] + o(ε 2 ) = 0.
From here we obtain

∂tu(t, x) = 0 ⇔ u(x, t) = u(x),
and

∂tv(t, x) = |∇u| 2 + a(t, x) -ρ(t).
Integrating this latter equation in t ∈ [0, T ], we obtain that

0 = T 0 |∇u| 2 dt + T 0 a(t, x)dt - T 0 ρ(t)dt,
because of the T -periodicity of v. This implies that

-|∇u| 2 = 1 T T 0 (a(t, x) -ρ(t))dt,
which is the first equation in (1.12). Keeping next the terms of order ε we obtain that

∂tw -∆u = 2∇u • ∇v -κ(t),
and again integrating in [0, T ] we find

-∆u = 2 T ∇u T 0 ∇vdt -κ, with κ = 1 T T 0 κ(t)dt.
Evaluating the above equation at xm we obtain that ∆u(xm) = κ.

Then, using the averaged coefficients a(x) = 1 T T 0 a(t, x)dt and ρ = 1 T T 0 ρ(t)dt, we deduce, combining the above computations, that v(t, x) satisfies

   ∂tv = a(t, x) -a(x) -ρ(t) + ρ, -∆u = 2 T T 0 ∇u • ∇vdt -κ, (1.16)
which allows to determine v.

We will use these formal expansions in Section 1.5, to estimate the moments of the population's distribution using the Laplace's method of integration. Note that such approximations were already used to study the phenotypical distribution of a population in a spatially heterogeneous environment [START_REF] Mirrahimi | A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments[END_REF][START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF] (see also [START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach[END_REF] where such type of approximation was first suggested). We next show, via two examples, how such results could be interpreted biologically. In particular, our work being motivated by a biological experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF], we suggest a possible explanation for a phenomenon observed in this experiment.

The chapter is organized as follows. In Section 1. 

The case with no mutations

In this section we study the qualitative behavior of (1.2), where σ = 0, and provide the proof of Proposition 1.1.

To this end, we define N (t, x) = n(t, x)e t 0 ρ(s)ds which solves ∂tN = a(t, x)N (t, x).

From the periodicity of a and the Floquet theory we obtain that N has the following form N (t, x) = e µ(x)t p0(t, x), with p0(0, x) = p0(T, x), and µ(x) = a(x) = 1 T T 0 a(s, x)ds.

Long time behavior of ρ

In this subsection we prove Proposition 1.1 (i).

Integrating equation (1.2) with respect to x we obtain

d dt ρ(t) = R d n(t, x)a(t, x)dx -ρ(t) 2 = ρ(t) R d n(t, x)a(t, x) ρ(t) dx -ρ(t) .
(1.17)

Then we claim the following Lemma that we prove at the end of this subsection. where Σ(t) → 0 as t → ∞. In order to prove the convergence to a periodic function, we adapt a method introduced in [START_REF] Lopez | Logistic models with time-dependent coefficients and some of their applications[END_REF].

After a standard substitution κ(t) = 1/ρ(t) in order to linearize the latter equation, and integration with the help of an integrating factor, the solution ρ can be written as follows

1 ρ(t) = exp - t 0 (a(s, xm) + Σ(s))ds 1 ρ0 + t 0 exp s 0 (a(θ, xm) + Σ(θ))dθ ds .
We then write

1 ρ((k + 1)T ) as function of 1 ρ(kT )
, that is

1 ρ((k + 1)T ) = exp - (k+1)T kT (a(s, xm) + Σ(s))ds 1 ρ(kT ) + (k+1)T kT e s kT (a(θ,xm)+Σ(θ))dθ ds ,
and we obtain a recurrent sequence for ρ k = ρ(kT ) as follows

1 ρ k+1 = ξ k + η k ρ k ,
where

η k = exp - (k+1)T kT (a(s, xm) + Σ(s))ds , ξ k = η k (k+1)T kT exp s kT (a(θ, xm) + Σ(θ))dθ ds.
From the T -periodicity of a and the fact that Σ(t) → 0 we obtain easily that η k → η and ξ k → ξ as k → ∞, where

η = exp - T 0 a(t, xm)dt , ξ = η T 0 exp t 0 a(θ, xm)dθ dt.
From these convergences we have that for all > 0, there exists K such that

ξ -≤ ξ k ≤ ξ + , η -≤ η k ≤ η + , ∀ k ≥ K , which implies ξ -+ η - ρ k ≤ 1 ρ k+1 ≤ ξ + + η + ρ k . Note κ k = 1 ρ k then ξ -+ (η -)κ k ≤ κ k+1 ≤ ξ + + (η + )κ k . (1.18)
From the inequality at the right hand side of (1.18), denoting κ * = lim sup k→+∞ κ k , we obtain

κ * ≤ ξ + + (η + )κ * , ∀ > 0.
Then thanks to assumption (H2), which implies η < 1, we have

κ * ≤ ξ 1 -η .
Analogously, from the left hand side inequality in (1.18), and denoting κ * = lim inf k→+∞ κ k , we deduce that

κ * ≥ ξ 1 -η .
Since κ * ≤ κ * , we obtain

κ * = κ * = lim k→+∞ κ k = ξ 1 -η .
Going back to variable ρ k , it implies

lim k→∞ ρ k = 1 -η ξ .
Finally we can make a translation from ρ0 to obtain

(t) = lim k→∞ ρ(kT + t),
with (t) the unique periodic solution of equation (1.3) given by (2.65).

Finally we prove Lemma 1.5.

Proof. Let K = {x ∈ R d : |x| ≤ R0} for R0 as in assumption (H5) then R d n(t, x)a(t, x) ρ(t) dx = R d p0(t, x)e tµ(x)- t 0 ρ(s)ds a(t, x)dx R d p0(t, x)e tµ(x)- t 0 ρ(s)ds dx = K c p0(t, x)e tµ(x) a(t, x)dx + K p0(t, x)e tµ(x) a(t, x)dx K c p0(t, x)e tµ(x) dx + K p0(t, x)e tµ(x) dx .
Thanks to (1.2) and assumptions (H1), (H3) and (H5) we can control the integral terms taken outside the compact set

K as follows K c p0(t, x)e tµ(x) a(t, x)dx ≤ a L ∞ e -δt K c n0(x)dx ≤ Ce -δt K c e -C 2 |x| dx -→ 0, as t → ∞, (1.19) 
and an analogous inequality holds for K c p0(t, x)e tµ(x) dx. Next for the remaining terms, we use Taylor expansions around the point x = xm until third order terms, for xm given by (H2), that is,

I(t) = K p0(t, x)e tµ(x) a(t, x)dx = K a(t, xm) + ∇a(t, xm)(x -xm) + 1 2 t (x -xm)D 2 a(t, xm)(x -xm) + O(|x -xm| 3 ) • p0(t, xm) + ∇p0(t, xm)(x -xm) + 1 2 t (x -xm)D 2 a(t, xm)(x -xm) + O(|x -xm| 3 ) •exp t 2 t (x -xm)D 2 µ(xm)(x -xm) + tO(|x -xm| 3 ) dx,
where t x indicates the transpose vector of x.

We organize I(t) by powers of |x -xm| as below

I0(t) = a(t, xm)p0(t, xm) K e t 2 t (x-xm)D 2 µ(xm)(x-xm) dx, I1(t) = K [a(t, xm)∇p0(t, xm) + p0(t, xm)∇a(t, xm)] (x -xm)e t 2 t (x-xm)D 2 µ(xm)(x-xm) dx = 0, I2(t) = K t (x -xm) 1 2 a(t, xm)D 2 p0(t, xm) + t ∇a(t, xm)∇p0(t, xm) + 1 2 p0(t, xm)D 2 a(t, xm) (x -xm) • e t 2 t (x-xm)D 2 µ(xm)(x-xm) dx, I3(t) = K (1 + t)O(|x -xm| 3 )e t 2 t (x-xm)D 2 µ(xm)(x-xm) dx.
By performing a change of variables as y = √ t(x -xm) we obtain for the non null integrals

I0(t) = 1 t d/2 a(t, xm)p0(t, xm) K t e 1 2 t yD 2 µ(xm)y dy, I2(t) = 1 t d/2+1 K t t y 1 2 a(t, xm)D 2 p0(t, xm) + t ∇a(t, xm)∇p0(t, xm) + 1 2 p0(t, xm)D 2 a(t, xm) ye 1 2 t yD 2 µ(xm)y dy, I3(t) = 1 + t t d+3 2 K t O(|y| 3 )e 1 2 t yD 2 µ(xm)y dy ≈ O 1 t d+1 2 , with Kt = {x ∈ R d : |x| ≤ √ tR0}.
Note that I1(t) = 0 because it is the integral of an odd function in a symmetric interval. Moreover we obtain the approximation for I3(t) thanks to assumption (H6), which implies that the derivatives of µ and a, and consequently p0, up to order 3, are globally bounded.

Moreover, if we denote

A(t) = αij(t) i,j
the periodic matrix inside the crochets in I2(t), i.e

A(t) = 1 2 a(t, xm)D 2 p0(t, xm) + t ∇a(t, xm)∇p0(t, xm) + 1 2 p0(t, xm)D 2 a(t, xm),
we obtain, thanks to the periodicity of a and p0, that all the coefficients of A(t) are bounded as t → ∞. Moreover,

t yA(t)y = d i,j=1 αij(t)yiyj ≤ d i,j=1 |αij(t)||yi||yj| ≤ C|y| 2 , for some C > 0.
Then for I2 we have, by using (H4)

|I2(t)| ≤ C t d/2+1 K t |y| 2 e 1 2 t yD 2 µ(xm)y dy ≈ O 1 t d/2+1 as t → ∞.
By arguing in the same way we obtain for the denominator term

K p0(t, x)e tµ(x) dx = 1 t d/2 p0(t, xm) K t e 1 2 t yD 2 µ(xm)y dy + O 1 t d+1 2
, and we conclude multiplying by t d/2 and using again (H4)

R d n(t, x)a(t, x) ρ(t) dx = a(t, xm)p0(t, xm) K t e y 2 2 D 2 µ(xm) dy + O 1 √ t p0(t, xm) K t e y 2 2 D 2 µ(xm) dy + O 1 √ t = a(t, xm) + O 1 √ t ,
for t large enough.

Convergence to a Dirac mass

In this subsection we prove Proposition 1.1 (ii).

Proof. (ii)

We begin by defining

f (t, x) = n(t, x) ρ(t) = p0(t, x)e µ(x)t R d p0(t, x)e µ(x)t dx . Therefore, since R d f (t, x)dx = 1
, there exists a sub-sequence (ft k ) that converges weakly to a measure ν, i.e.

R d ft k ϕdx → R d νϕdx ∀ ϕ ∈ Cc(R d ).
We first prove

Ω c ζ n(t k , x) ρ(t k ) ϕ(x)dx -→ 0 as t k → ∞ ∀ ϕ : supp ϕ ⊂ Ω c ζ , where Ω ζ = {x ∈ R d : |x -xm| < ζ}. (1.20)
We can rewrite the above integral as below

Ω c ζ f (t, x)ϕ(x)dx = 1 I(t) Ω c ζ p0(t, x)e µ(x)t ϕ(x)dx,
where

I(t) = R d p0(t, y)e µ(y)t dy.
We estimate I(t) using the Laplace's method for integration and the assumption (H4). It follows

I(t) ∼ e tµ(xm) p0(t, xm) | det H| 2π t d/2
as t → ∞, with µ(xm) the strict maximum that is attained at a single point thanks to assumption (H2), and H given by (H4).

Since p0(t, x) is positive and periodic with respect to t, there exist positive constants K1, K2 such that

K1 e tµ(xm) t d/2 ≤ I(t) ≤ K2 e tµ(xm) t d/2 .
Next we note that

t d/2 e -tµ(xm) Ω c ζ p0(t, x)e µ(x)t ϕ(x)dx -→ 0, as t → +∞,
since µ(x) -µ(xm) ≤ -β for some β > 0, and ϕ has compact support, which immediately implies (1.20).

We deduce from (1.20) by letting ζ → 0, that as t → +∞ along subsequences

n(t, x) ρ(t) ωδ(x -xm).
We then prove that ω = 1, and hence all the sequence converges to the same limit.

Let KR = {x ∈ R d : |x| ≤ R}, for R > 0.
We can write using (1.2) that

n(t, x) = n0(x)e t 0 (a(s,x)-ρ(s))ds . (1.21)
Thanks to assumption (H3) and (H5), for R0 ≤ R, by making an analogous analysis to (1.19) we obtain

K c R n(t, x)dx → 0 as t → +∞.
Moreover, thanks to Section 1.2.1, we know that ρ converges to , a periodic and positive function. Therefore, in long time, ρ is bounded from below and above by positive constants. We deduce that

K c R f (t, x)dx = K c R n(t, x) ρ(t) dx → 0 as t → ∞.
Thanks to the above convergence and the fact that

R d f (t, x)dx = 1
, we deduce that ∀ζ > 0 there exists a compact set K and t0 > 0 such that, for all t ≥ t0

1 -ζ ≤ K f (t, x)dx.
Moreover, we know that f converges weakly to a measure ωδ(x -xm), thus choosing a smooth compactly supported

function ϕ such that ϕ(x) = 1 if x ∈ K, ϕ(x) = 0 if x ∈ (K ) c for another compact K such that K K and 0 < ϕ(x) < 1 for x ∈ K \ K, we obtain R d f (t, x)ϕ(x)dx = K f (t, x)dx + K c f (t, x)ϕ(x)dx -→ ω,
where the first term in the RHS is bigger than 1 -ζ and the second one is positive. It follows that 1 -ζ ≤ ω, for all 0 < ζ < 1 and hence ω = 1. We conclude that

n(t, x) ρ(t) δ(x -xm) as t → +∞,
which implies, using the convergence result for ρ,

n(t, x) -(t)δ(x -xm) 0 as t → +∞,
weakly in the sense of measures.

The case with mutations: long time behavior

In this section we study (1.1) with σ > 0 and provide the proof of Proposition 1.2.

To this end, we first introduce a linearized problem. Let n solve (1.1), we define m(t, x) = n(t, x)e t 0 ρ(s)ds which solves

∂tm(t, x) -σ∆m(t, x) = m(t, x)a(t, x), (t, x) ∈ [0, +∞) × R d , m(t = 0, x) = n0(x), (1.22) 
and associate to (1.22) the parabolic eigenvalue problem (1.5). In Subsection 1.3.1, we provide a convergence result for (1.22). Next, using this property, we prove Proposition 1.2 in Subsection 1.3.2.

A convergence result for the linearized problem

In this section we provide a convergence result for the linearized problem.

Lemma 1.6 Assume (H1), (H3) and (H5σ). Then, (i) there exists a unique principal eigenpair (λ, p) for the problem 

(1.5), with p ∈ L ∞ (R × R d ),
m(t, x)e λt -αp(t, x) L ∞ (R d ) → 0 as t → ∞, (1.23) 
exponentially fast.

(ii) Moreover, let δ and R0 given by (H5σ), then we have

p(t, x) ≤ p L ∞ e - δ σ (|x|-R 0 ) , ∀(t, x) ∈ [0, +∞) × R d . (1.24)
Proof. The proof of (i).

We will apply a result from [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF] to equation

∂t m -σ∆ m = m[a(t, x) + λ + δ], (t, x) ∈ R × R d , ( 1.25) 
with δ given in assumption (H5σ). This result allows to show that there exists a unique principal eigenpair for the equation (1.25), with an eigenfunction which is exponentially stable.

Consider the problem

∂t φR -σ∆ φR = φR[a + λ + δ], in R × BR, φR = 0, on R × ∂BR. (1.26)
Thanks to (H1) and (H5σ) we can choose R and δ > 0 such that there exists

d δ > 0 a(t, x) + λ + δ L ∞ ([0,+∞)×B R ) < d δ , a(t, x) + λ + δ < 0, ∀ |x| ≥ R0.
Note that φR = pRe t(δ-λ R +λ) is a positive entire solution to (1.26). Moreover, it satisfies the hypothesis (H1) of [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF],

that is φR(t, •) L ∞ (B R ) φR(s, •) L ∞ (B R ) = pR(t, •) L ∞ (B R ) pR(s, •) L ∞ (B R ) e (δ-λ R +λ)(t-s) ≥ Ce (δ-λ R +λ)(t-s) , t ≥ s, CHAPTER 1 with δ -λR + λ > 0 for R large enough.
Therefore Theorem 2.1 (and its generalization Theorem 9.1) in [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF] implies that there exists a unique positive entire solution φ for problem (1.25), which is given by

φ(t, x) = lim R→∞ φR(t, x).
Moreover, for p = φe -δt we obtain

p(t, x) = lim R→∞ pR(t, x),
and since pR is the solution of (1.6), then p is a positive periodic eigenfunction to (1.5).

Furthermore, Theorem 2.2 in [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF] implies also that

m(t, x) -α φ(t, x) L ∞ (R d ) φ(t, •) L ∞ (R d ) -→ 0, exponentially fast as t → ∞.
Noting that every solution m of problem (1.22) can be written as m = me -λt-δt , we obtain

m(t, x)e λt -αp(t, x) L ∞ (R d ) -→ 0 as t → +∞,
and this convergence is also exponentially fast.

The proof of (ii).

Next we prove (1.24) following similar arguments as in the proof of Lemma 2.4 in [START_REF] Polácik | Symmetry properties of positive solutions of parabolic equations on R N : II. Entire solutions[END_REF]. Let a(t, x) = a(t, x) + λ then p is a positive bounded solution of the following equation

∂tp -σ∆p = p a(t, x), in R × R d . (1.27)
Note that we have defined p in (-∞, 0] by periodic prolongation. Let p L ∞ (R×R d ) = M . We define

ζ(t, x) = M e -δ(t-t 0 ) + M e -ν(|x|-R 0 ) ,
where ν = δ σ and R0 is given by (H5σ). One can verify that

M ≤ ζ(t, x) if |x| = R0 or t = t0. Furthermore if |x| > R0 or t > t0 evaluating in (1.27) shows ∂tζ -σ∆ζ -ζ a(t, x) = M e -δ(t-t 0 ) (-δ -a(t, x)) + M e -ν(|x|-R 0 ) -σν 2 -a(t, x) + σν d -1 |x| ≥ 0, since a(t, x) ≤ -δ thanks to assumption (H5σ). Thus ζ is a supersolution of (1.27) on Q0 = {(t, x) ∈ (t0, ∞) × R d ; |x| > R0},
which dominates p on the parabolic boundary of Q0. Applying the maximum principle to ζ -p, we obtain

p(t, x) ≤ M e -δ(t-t 0 ) + M e -ν(|x|-R 0 ) , |x| ≥ R0, t ∈ (t0, ∞).
Taking the limit t0 → -∞ yields

p(t, x) ≤ M e -ν(|x|-R 0 ) , |x| ≥ R0, t ≤ +∞, for ν = δ σ .
We conclude that p satisfies (1.24).

The proof of Proposition 1.2

To prove Proposition 1.2 we first prove the following Lemmas.

Lemma 1.7 Assume (H1) and (H3) and let C3 = σC 2 2 + d0 then the solution n(t, x) to equation (1.1) satisfies

n(t, x) ≤ exp (C1 -C2|x| + C3t) , ∀(t, x) ∈ (0, +∞) × R d . Proof. Define the function n(t, x) = exp (C1 -C2|x| + C3t).
We prove that n ≤ n. To this end we proceed by a comparison argument. One can easily verify that for C3 defined above, we have the following inequality

∂t n -σ∆ n -[a(t, x) + ρ(t)] n = e (C 1 -C 2 |x|+C 3 t) C3 -σC 2 2 + σ C2(d -1) |x| -a(t, x) + ρ(t) ≥ 0, a.e in R × R d .
Moreover, we have for t = 0, n(0, x) ≤ n(0, x) thanks to assumption (H3). We can then apply a Maximum Principle, in the class of L 2 functions, and we conclude that

n(t, x) ≤ n(t, x), ∀(t, x) ∈ (0, +∞) × R d .
Lemma 1.8 Assume (H1), (H3) and (H5σ) then

R d n(t, x)a(t, x) ρ(t) dx -Q(t) -→ 0, as t → +∞,
with Q(t) given by (1.7).

Proof. From (1.23), we obtain that

n(t, x)e t 0 ρ(s)ds+λt = αp(t, x) + Σ(t, x), with Σ(t, x) L ∞ → 0 exponentially fast, as t → ∞.
We define the compact set Kt = {x ∈ R d : |x| ≤ At}, for some A >> 1 large enough and compute

1 ρ(t) R d n(t, x)a(t, x)dx = K t αp(t, x)a(t, x)dx + K t Σ(t, x)a(t, x)dx + K c t (αp(t, x) + Σ(t, x)) a(t, x) dx K t αp(t, x)dx + K t Σ(t, x)dx + K c t (αp(t, x) + Σ(t, x)) dx .
We then notice that

K t Σ(t, x)a(t, x)dx ≤ a L ∞ Σ(t, •) L ∞ |Kt| → 0 as t → ∞, since Σ(t, •) L ∞ converges
exponentially fast to zero and the measure of Kt is at most algebraic in t. Making the same analysis for K t Σ(t, x)dx it will just remain to prove that the integral terms taken outside the compact set Kt vanish as t → +∞.

We have, trivially

K c t (αp(t, x) + Σ(t, x))a(t, x)dx ≤ a L ∞ K c t n(t, x)e t 0 (ρ(s)+λ)ds dx .
Then we use Lemma 1.7 to obtain

K c t n(t, x)e t 0 (ρ(s)+λ)ds dx ≤ K c t e C 1 -C 2 |x|+M t dx ≤ e C 1 +M t K c t e -C 2 |x| dx → 0, as t → +∞.
for A > M large enough, where M ≥ ρM + λ + C3.

Combining the last two inequalities we obtain that the integral terms taken outside the compact, vanish as t → +∞.

This concludes the proof.

Proof of Proposition 1.2

Convergence of ρ.

By integrating equation (1.1) in x, we obtain that

R d ∂tn(t, x)dx = R d n(t, x)[a(t, x) -ρ(t)]dx,
and using Lemma 1.8 we deduce that

dρ dt = ρ(t) R d n(t, x)a(t, x) ρ(t) dx -ρ(t) = ρ(t) Q(t) + Σ (t) -ρ(t) ,
where Σ (t) → 0 exponentially as t → ∞, and Q(t) is given by (1.7).

Following similar arguments as in the proof of Proposition 1.1 we obtain |ρ(t) -ρ(t)| → 0 as t → ∞, with ρ the unique solution of

   d ρ dt = ρ(t) [Q(t) -ρ(t)] , ρ(0) = ρ(T ), provided T 0 Q(t)dt > 0. Moreover if T 0 Q(t)dt ≤ 0, then ρ(t) → 0 as t → ∞. Note also that λ = - 1 T T 0 Q(t)dt. (1.28)
We consider, indeed, the eigenvalue problem (1.5) and integrate it in

x ∈ R d ∂t R d p(t, x)dx = R d a(t, x)p(t, x)dx + λ R d p(t, x)dx.
We divide by

R d p(t, x)dx and integrate now in t ∈ [0, T ], to obtain T 0 ∂t R d p(t, x)dx R d p(t, x)dx dt = T 0 Q(t)dt + λT, which implies that 0 = ln R d p(T, x)dx -ln R d p(0, x)dx = T 0 Q(t)dt + λT,
and hence (1.28).

This ends the proof of statements (i) -(ii) of Proposition 1.2.

Convergence of n ρ .

Let Kt = {x ∈ R d : |x| < At}, for A > R0, as in the proof of Lemma 1.8, we can write

n(t, x) ρ(t) = αp(t, x) + Σ(t, x) K t (αp(t, x) + Σ(t, x)) dx + K c t (αp(t, x) + Σ(t, x)) dx .
Following similar arguments as in Lemma 1.8 we obtain that

n(t, x) ρ(t) -P (t, x) L ∞ -→ 0, with P (t, x) as in (1.7).
Consequently, when λ < 0 we obtain that

n(t, •) -ρ(t)P (t, •) L ∞ -→ 0 as t → ∞,
and this concludes the proof of (iii).

Case σ << 1. Small mutations

In this section we choose σ = ε 2 and we prove that for ε small enough, the principal eigenvalue λ given in (1.5) is negative. As a consequence, thanks to Proposition 1.2, any solution of (1.9) converges to the unique periodic solution (nε, ρε). Next, we prove Theorem 1.4, which allows to characterize nε, as ε → 0.

Consider now the problem (1.9) and let (λε, pε) be the eigenelements of problem (1.5) for σ = ε 2 , then we have the following result.

Lemma 1.9 Under assumption (H2) there exists λm > 0 and ε0 > 0 such that for all ε < ε0 we have λε ≤ -λm.

Proof. We follow the proof for the case of bounded domains, given in [START_REF] Hess | Periodic-Parabolic Boundary Value Problems and Positivity[END_REF].

For R > 0 define BR := B(xm, R) and aR(t) = min x∈B R a(t, x). Then we choose R1 small enough such that

T 0 aR 1 (t)dt > 0. (1.29)
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This is possible thanks to (H2) and the continuity of a with respect to x.

We first consider the periodic-parabolic Dirichlet eigenvalue problem on [0, +∞)

× BR 1 ,      ∂tw -ε 2 ∆w -aR 1 (t)w = µεw, in [0, +∞) × BR 1 , w = 0, on [0, +∞) × ∂BR 1 , w : T -periodic in t.
(1.30)

We calculate µε by the Ansatz w(t, x) = α(t)ϕ1(x) where ϕ1 > 0 is the principal eigenfunction of

-∆ϕ1 = γ1ϕ1, in BR 1 , ϕ1 = 0, on ∂BR 1 ,
with principal eigenvalue γ1 > 0. By substituting in (1.30) we deduce that

α (t)ϕ1 + γ1ε 2 α(t)ϕ1 -aR 1 (t)α(t)ϕ1 = µεα(t)ϕ1,
and consequently

α(t) = α(0) exp t 0 aR 1 (τ )dτ -(γ1ε 2 -µε)t .
For w to be T -periodic we must have

T 0 aR 1 (τ )dτ -γ1ε 2 T + T µε = 0.
We deduce indeed that choosing

µε = γ1ε 2 - 1 T T 0 aR 1 (t)dt,
we obtain the principal eigen-pair (w, µε) for (1.30). Next we consider the periodic-parabolic eigenvalue problem

     ∂tw -ε 2 ∆w -a(t, x)w = λR 1 w, in [0, +∞) × BR 1 , w = 0, on [0, +∞) × ∂BR 1 , w : T -periodic in t.
Since aR 1 (t) ≤ a(t, x) on [0, +∞) × BR 1 we have λR 1 ≤ µε (Lemma 15.5 [START_REF] Hess | Periodic-Parabolic Boundary Value Problems and Positivity[END_REF]). By monotony of eigenvalues with respect to the domain we obtain λε ≤ λR 1 ≤ µε. Finally, thanks to (1.29) we conclude that there exist λm > 0, ε0 > 0 such that for all ε ≤ ε0, we have λε ≤ -λm.

In the following subsections we provide the proof of Theorem 1.4. In Subsection 1.4.1, we give some global bounds for ρε. Next, in Subsection 1.4.2, we prove that (uε) is locally uniformly bounded, Lipschitz with respect to x and locally equicontinuous in time. In the last subsection we conclude the proof of Theorem 1.4 letting ε goes to zero and describing the limits of uε, nε and ρε.

Uniform bounds for ρ ε

In this section we provide uniform bounds for ρε.

Lemma 1.10 Assume (H1), (H5σ). Then for every ε > 0, there exist positive constants ρm and ρM such that

0 < ρm ≤ ρε(t) ≤ ρM ∀t ≥ 0. (1.31)
Proof. From equation (1.9) integrating in x ∈ R d and using assumption (H1) we get

dρε dt = R d nε(t, x)[a(t, x) -ρε(t)dx] ≤ ρε(t)[d0 -ρε(t)]. (1.32)
This implies that

ρε(t) ≤ ρM := max(ρ 0 ε , d0).
To obtain the lower bound we recall that nε(t, x) = ρε(t)Pε(t, x), with ρε(t) the unique periodic solution of

dρε dt = ρε(t)[Qε(t) -ρε(t)],
and with Qε(t) and Pε(t, x) given by (1.7). From (2.65) we know that

ρε(t) = 1 -exp - T 0 Qε(s)ds exp - T 0 Qε(s)ds t+T t exp s t Qε(θ)dθ ds . (1.33)
From Lemma 1.9, we note that, λε = -

1 T T 0 Qε(t)dt ≤ -λm, thus exp - T 0 Qε(θ)dθ ≤ e -T λm .
Also from (H1) and (1. Combining the above inequalities with (1.33) we obtain

0 < ρm := 1 T e -d 0 T e λmT -1 ≤ ρε(t), ∀ t ≥ 0.

Regularity results for u ε

In this section we study the regularity properties of uε = ε ln (2πε) d/2 nε , where nε is the unique periodic solution of equation (1.9).

Theorem 1.11 Assume (H1), (H2) and (H5σ). Then uε is locally uniformly bounded and locally equicontinuous in time in

[0, T ] × R d . Moreover, for some D > 0, ωε = √ 2D -uε, is Lipschitz continuous with respect to x in (0, ∞) × R d and
there exists a positive constant C such that we have the following

|∇ωε| ≤ C, in [0, +∞) × R d , (1.34) ∀R > 0, sup 0≤s≤t≤T , x ∈ BR|uε(t, x) -uε(s, x)| → 0 as ε → 0. (1.35)
We prove this theorem in several steps.
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An upper bound for u ε

We recall from (1.8) that nε(t, x) = ρε(t) pε(t, x)

R d pε(t, x)dx
, where

     ∂tpε -ε 2 ∆pε -a(t, x)pε = λεpε, in R × R d , 0 < pε : T -periodic, pε(0, x) L ∞ (R d ) = 1.
(1.36)

Define qε(t, x) = pε(t, xε), which satisfies

∂tqε -∆qε = aε(t, x)qε, in R × R d , qε : T -periodic, (1.37) 
for aε(t, x) = a(t, xε) + λε. Note that aε is uniformly bounded thanks to the L ∞ -norm of a, which together with Lemma 1.9 implies that -d0 ≤ λε ≤ -λm.

Since pε(0, x) L ∞ (R d ) = 1 we can choose x0 such that pε(0, x0) = 1.
Moreover qε is a nonnegative solution of (1.37) in (0, 2T ) × B( x 0 ε , 1). Let δ0, be such that 0 < δ0 < T , then we apply the Theorem 2.5 [START_REF] Húska | Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains[END_REF] which is an elliptic-type Harnack inequality for positive solutions of (1.37) in a bounded domain, and we have

∀ t ∈ [δ0, 2T ] sup x∈B( x 0 ε ,1) qε(t, x) ≤ C inf x∈B( x 0 ε ,1) qε(t, x),
where C = C(δ0, d0). Returning to pε this implies

pε(t0, x0) ≤ sup y∈B(x 0 ,ε) pε(t0, y) ≤ Cpε(t0, x), ∀(t0, x) ∈ [δ0, 2T ] × B(x0, ε). (1.38)
Since pε is T -periodic we conclude that the last inequality is satisfied ∀ t ∈ [0, T ]. From (1.31), (1.38) and the upper bound (1.24) for pε with σ = ε 2 , we obtain nε(0, x) ≤ ρM pε(0, x)

R d pε(0, x)dx ≤ CρM pε(0, x) B(x 0 ,ε) pε(0, x0)dx ≤ ρM Cpε(0, x) |B(x0, ε)| ≤ C ε -d exp C 1 -C 2 |x| ε
, for all ε ≤ ε0, with ε0 small enough, where the constant C depends on ρM , p L ∞ (R d ) and the constant C in (1.38) and C 1 and C 2 depend on the constants of hypothesis (H5σ). Next we proceed with a Maximum Principle argument as in Lemma 1.7 to obtain for every (t,

x) ∈ [0, +∞) × R d and C3 = (C 2 ) 2 + d0, nε(t, x) ≤ C exp C 1 -C 2 |x| ε +C 3 t .
From here and the periodicity of uε, with an abuse of notation for the constants, we can write, for all ε ≤ ε0

uε(t, x) ≤ C 1 -C 2 |x|, ∀(t, x) ∈ [0, +∞) × R d .
(1.39)

A lower bound for u ε

Using the bounds for a in (H1) and for ρε in (1.31) we obtain for

C = d0 + ρM ∂tnε -ε 2 ∆nε ≥ -Cnε.
Let n * ε be the solution of the following heat equation

∂tn * ε -ε 2 ∆n * ε + Cn * ε = 0, n * ε (0, x) = n 0 ε , given explicitly by the Heat Kernel K, n * ε (t, x) = e -Ct n 0 ε * K = e -Ct ε d (4πt) d/2 R d n 0 ε (y)e - |x-y| 2 4tε 2 dy, t > 0.
By a comparison principle we have n * ε (t, x) ≤ nε(t, x). Moreover, from (1.38) and (1.24) we deduce that

ε -d C0e -C 1 ε ≤ ρm pε(0, x) R d pε(0, x)dx ≤ nε(0, x) ∀x ∈ B(x0, ε),
for some positive constants C0 and C1 depending on p L ∞ , ρm, δ, d0, d, and R0, and x0 the point where pε(0, x0) = 1.

Then

nε(t, x) ≥ C0 ε 2d (4πt) d/2 e -C 1 +ε Ct ε B(x 0 ,ε) e - |x-y| 2 4tε 2 dy ≥ C0|B(x0, ε)| ε 2d (4πt) d/2 e - 2|x| 2 +2(|x 0 |+ε) 2 4tε 2 - C 1 + Ctε ε .
This, together with the definition of uε, implies that

ε log C0|B(x0, ε)| ε 2d (4πt) d/2 - |x| 2 + (|x0| + ε) 2 2tε -( C1 + Ctε) ≤ uε(t, x), ∀t ≥ 0.
In particular, we obtain that

ε log C0|B(x0, ε)| ε 3d/2 (4πt) d/2 - |x| 2 + (|x0| + ε) 2 2t -( C1 + Ct) ≤ uε( t ε , x), ∀t ∈ [1, 1 + εT ] ,
and again, using the periodicity of uε, we obtain a quadratic lower bound for uε for all t ≥ 0; that is, there exist A1, A2 ≥ 0 and ε0 such that for all ε ≤ ε0,

-A1|x| 2 -A2 ≤ uε(t, x).
(1.40)

Lipschitz bounds

In this section we prove (1.34). To this end we use a Bernstein type method closely related to the one used in [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result[END_REF]. Let ωε = 2C 1 -uε, for C 1 given by (1.39), thus ωε satisfies

1 ε ∂tωε -ε∆ωε - ε ωε -2ωε |∇ωε| 2 = a(t, x) -ρε(t) -2ωε .
Define Wε = ∇ωε, which is also T -periodic. We differentiate the above equation with respect to x and multiply by Wε

|Wε| , i.e 1 ε ∂t|Wε| -ε∆|Wε| -2 ε ωε -2ωε Wε • ∇|Wε| + ε ω 2 ε + 2 |Wε| 3 ≤ (a(t, x) -ρε(t)) |Wε| 2ω 2 ε - ∇a • Wε 2ωε|Wε| .
From (1.39) we know that uε ≤ C 1 , which together with (1.40) implies

C 1 ≤ ωε ≤ 2C 1 + A1|x| 2 + A2. It follows that 2 ε ωε -2ωε ≤ A4|x| + C4,
for some constants A4 and C4, from where, we have for θ large enough

1 ε ∂t|Wε| -ε∆|Wε| -A4|x| + C4 Wε • ∇|Wε| + 2 (|Wε| -θ) 3 ≤ 0. (1.41)
Let TM > 2T and A5 to be chosen later, define now, for (t,

x) ∈ 0, T M ε × BR(0) W (t, x) = 1 2 √ tε + A5R 2 R 2 -|x| 2 + θ.
We next verify that W is a strict supersolution of (1.41) in 0, T M ε × BR(0). To this end we compute

∂tW = - 1 4t √ tε , ∇W = 2A5R 2 x (R 2 -|x| 2 ) 2 , ∆W = 2A5R 2 d (R 2 -|x| 2 ) 2 + 8A5R 2 |x| 2 (R 2 -|x| 2 ) 3 ,
and then replace in (1.41) to obtain

1 ε ∂tW -ε∆W -A4|x| + C4 |W ∇W | + 2 W -θ 3 = -1 4εt √ εt -ε 2A 5 R 2 d (R 2 -|x| 2 ) 2 + 8A 5 R 2 |x| 2 (R 2 -|x| 2 ) 3 -A4|x| + C4 1 2 √ εt + A 5 R 2 R 2 -|x| 2 + θ 2A 5 R 2 |x| (R 2 -|x| 2 ) 2 + 2 1 2 √ εt + A 5 R 2 R 2 -|x| 2 3 ≥ -ε 2A 5 R 2 d (R 2 -|x| 2 ) 2 + 8A 5 R 4 (R 2 -|x| 2 ) 3 -A4R + C4 1 2 √ εt + A 5 R 2 R 2 -|x| 2 + θ 2A 5 R 3 (R 2 -|x| 2 ) 2 + 3A 5 R 2 R 2 -|x| 2 1 2tε + A 5 R 2 √ εt(R 2 -|x| 2 ) + 2A 3 5 R 6 (R 2 -|x| 2 ) 3 ,
where we have used that |x| ≤ R. One can verify that the RHS of the above inequality is strictly positive for R > 1, ε ≤ 1, and A5 > C √ TM for certain constant C large enough. Therefore, W is a strict supersolution of (1.41) in 0, T M ε × BR(0) and for ε ≤ 1.

We next prove that

|Wε(t, x)| ≤ W (t, x) in 0, TM ε × BR(0).
To this end, we notice that W (t, x) goes to +∞ as |x| → R or as t → 0. Therefore, |Wε|(t, x) -W (t, x) attains its maximum at an interior point of 0, T M ε × BR(0). We choose tm ≤ T M ε the smallest time such that the maximum of |Wε|(t, x) -W (t, x) in the set (0, tm] × BR(0) is equal to 0. If such tm does not exist, we are done.

Let xm be such that |Wε|(t, x) -W (t, x) ≤ |Wε|(tm, xm) -W (tm, xm) = 0 for all (t, x) ∈ (0, tm) × BR(0). At such point, we have 0 ≤ ∂t |Wε| -W (tm, xm), 0 ≤ -∆ |Wε| -W (tm, xm), |Wε|(tm, xm)∇|Wε|(tm, xm) = W (tm, xm))∇W (tm, xm).
Combining the above properties with the facts that |Wε| and W are respectively sub and strict supersolution of (1.41), we obtain that

(|Wε|(tm, xm) -θ) 3 -(W (tm, xm) -θ) 3 < 0 ⇒ |Wε|(tm, xm) < W (tm, xm),
which is in contradiction with the choice of (tm, xm). We deduce, then that

|Wε(t, x)| ≤ 1 2 √ εt + A5R 2 R 2 -|x| 2 + θ for (t, x) ∈ 0, TM ε × BR(0), ∀ R > 1.
We note that for ε < ε0 small enough we have

T M ε > 2T ε > T ε + T > T ε . Letting R → ∞ we deduce that |Wε(t, x)| ≤ 1 2 √ εt + A5 + θ ≤ 1 2 √ T + A5 + θ for (t, x) ∈ T ε , T ε + T × R d .
Finally we use the periodicity of Wε to extend the result for all t ∈ [0, +∞) and we obtain (1.34).

Equicontinuity in time

From the above uniform bounds and continuity results we can also deduce uniform equicontinuity in time for the family uε on compact subsets of ]0, +∞] × R d and prove (1.35). We follow a method introduced in [START_REF] Barles | A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations[END_REF].

We will prove that for any η > 0, we can find constants A, B large enough such that: for any

x ∈ B(0, R/2), s ∈ [0, T ],
and for all ε < ε0 we have

uε(t, y) -uε(s, x) ≤ η + A|x -y| 2 + εB(t -s), ∀(t, y) ∈ [s, T ] × BR(0), (1.42) 
and

uε(t, y) -uε(s, x) ≥ -η -A|x -y| 2 -εB(t -s), ∀(t, y) ∈ [s, T ] × BR(0). (1.43)
We provide the proof of (1.42). One can prove (1.43) following similar arguments.

Fix (s, x) in [0, T [×B R/2 (0). Define ξ(t, y) = uε(s, x) + η + A|x -y| 2 + εB(t -s), (t, y) ∈ [s, T [×BR(0),
where A and B are constants to be determined. We prove that, for A and B large enough, ξ is a super-solution to (1.14) on [s, T ] × BR(0) and ξ(t, y) > uε(t, y) for (t, y)

∈ {s} × BR(0) ∪ [s, T ] × ∂BR(0).
According to the previous section, {uε}ε is locally uniformly bounded, so we can take a constant A such that for all

ε < ε0, 8 uε L ∞ ([0,T ]×B R (0)) R 2 ≤ A. With this choice, ξ(t, y) > uε(t, y) on [s, T ] × ∂BR(0), for all η > 0, B > 0 and x ∈ B R/2 (0).
Next we prove that, for A large enough, ξ(s, y) > uε(s, y) for all y ∈ BR(0). We argue by contradiction. Assume that there exists η > 0 such that for all constants A there exists yA,ε ∈ BR(0) such that

uε(s, y A,ε) -uε(s, x) > η + A|yA,ε -x| 2 . (1.44) This implies |yA,ε -x| ≤ 2M A -→ 0, as A → ∞.
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Here M is an uniform upper bound for uε L ∞ ([0,T ]×B R (0)) . Then for all h > 0, there exist A large enough and ε0 small enough, such that ∀ε < ε0,

|yA,ε -x| ≤ h.
Therefore, from the uniform continuity in space of uε taking h small enough, we obtain

|uε(s, yA,ε) -uε(s, x)| < η/2 ∀ε ≤ ε0,
but this is a contradiction with (1.44). Therefore ξ(s, y) > uε(s, y) for all y ∈ BR(0).

Finally, noting that R is bounded we deduce that for B large enough, ξ is a super-solution to (1.14) in [s, T ] × BR(0).

Using a comparison principle, since uε is also a solution of (1.14) we have

uε(t, y) ≤ ξ(t, y) ∀(t, y) ∈ [s, T ] × BR(0).
Thus (1.42) is satisfied for t ≥ s ≥ 0. Then we put x = y and obtain that for all η > 0 there exists ε0 > 0 such that for all ε < ε0

|uε(t, x) -uε(s, x)| ≤ η + εB(t -s),
for every 0 ≤ s ≤ t ≤ T, x ∈ BR(0). This implies that uε is locally equicontinuous in time. Moreover letting ε → 0 we obtain (1.35).

Asymptotic behavior of u ε

Using the regularity results in the previous section we can now describe the behavior of uε and ρε as ε → 0 and prove Theorem 1.4.

Step 1 (Convergence of uε and ρε) According to Section 1.4.2, {uε} is locally uniformly bounded and equicontinuous, so by the Arzela-Ascoli Theorem after extraction of a subsequence, uε(t, x) converges locally uniformly to a continuous function u(t, x). Moreover from (1.35), we obtain that u does not depend on t, i.e u(t, x) = u(x).

Moreover, from the uniform bounds on ρε we obtain using (1.32) that | dρε dt | is bounded too. Thus applying again the Arzela-Ascoli Theorem we can assure that ρε(t) converges, along subsequences, to a function ρ(t) as ε → 0.

Step 2 (max x∈R d u(x) = 0) Assume that for some x0 we have 0 < α ≤ u(x0). Since u is continuous, we have u(y) ≥ α 2 on B(x0, r) for some r > 0. Thus, using the convergence of uε there exists ε0 such that for all ε ≤ ε0 we have uε(y) ≥ α 4 on B(x0, r), which implies that

|B(x0, r)| exp α 2ε ≤ B(x 0 ,r) exp uε ε dx ≤ R d nε(t, x)dx = ρε(t).
Therefore ρε → ∞ as ε → 0. This is in contradiction with (1.31). Thus u(x) cannot be strictly greater than zero.

Next we have thanks to (1.39) that lim

ε→0 |x|>R nε(t, x)dx ≤ lim ε→0 |x|>R e C 1 -C 2 |x| ε = 0, for R large enough.
From this and Lemma (1.10) we deduce that ρm ≤ lim ε→0 |x|≤R nε(t, x)dx.

(1.45)

If u(x) < 0 for all |x| < R, then u(x) < -β for some β > 0, since we know that uε converges locally uniformly to u, then there exists ε0 small enough such that for all ε ≤ ε0, we have

uε(t, x) < -β 2 , ∀|x| < R. Therefore |x|≤R e uε (t,x) ε dx ≤ |x|≤R e -β 2ε dx = |B(x0, R)|e -β 2ε -→ 0 as ε → 0.
Note that this is in contradiction with (1.45). It follows that max x∈R u(x) = 0.

Step 3 (The equation on u) We claim that u(x) = lim ε→0 uε(t, x) is a viscosity solution of problem (1.12). Here, we prove that u is a viscosity subsolution of (1.12). One can prove, following similar arguments, that u is also a viscosity supersolution of (1.12).

Let us define the auxiliary "cell problem"

     ∂tv = a(t, x) -ρ(t) -a(x) + ρ, (t, x) ∈ [0, +∞) × R d , v(0, x) = 0, v : T -periodic. (1.46)
This equation has a unique smooth solution, that we can explicitly write

v(t, x) = -t(a(x) -ρ) + t 0 (a(t, x) -ρ(t))dt.
Let φ ∈ C ∞ be a test function and assume that u -φ has a strict local maximum at some point x0 ∈ R d , with We can now pass to the limit as ε → 0. We know from step 1 that ρε → ρ as ε → 0. Moreover v is smooth with respect to x, with locally bounded derivatives with respect to x, thanks to its definition. Using these arguments and letting ε → 0 in (1.48) we obtain (1.47) which implies that u is a viscosity sub-solution of (1.12).

u(x0) = φ(x0
Step 4 (Uniqueness and regularity of u) We first note that, for the case x ∈ R, that is d = 1, the solution given by (1.13) solves (1.12).

In general, Hamilton-Jacobi equations of type (1.12), may admit more than one viscosity solution. In this case the uniqueness is guaranteed thanks to Proposition 5.4 of Chapter 5 in [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF], which assures that, since the RHS of the first equation in (1.12) is null at just one point (x = xm), and the value of u in this point is known (u = 0), together with the fact that max x∈R d u(x) ≤ 0 the solution of (1.12) is unique and is given by

u(z) = sup u(xm) - T 0 0 ρ -a(ξ(s))ds; (T0, ξ) such that ξ(0) = xm, ξ(T0) = z, dξ ds ≤ 1, a.e in [0, T0], with ξ(t) ∈ R d , ∀t ∈ [0, T0] .
Moreover, in the case x ∈ R, one can verify that the above formula is equivalent with (1.13) and such solution u is C(R)

since a(x) ∈ C(R).
Step 5 (Convergence of nε) We deal in this step with the result for the convergence of nε. To this end we proceed as in Section 1.2.2.

Call fε(t, x) = nε(t, x) ρε(t) , then fε is uniformly bounded in L ∞ (R + , L 1 (R d ))
. Next, we fix t ≥ 0, and we follow the arguments of Section 1.2.2 to prove that fε(t, •), as function of x, converges, along subsequences, to a measure, as follows

fε(t, •) δ(• -xm) as ε → 0,
weakly in the sense of measures in x.

Indeed, from (1.13) we deduce that max

x∈R d u(x) = u(xm) = 0. Then note O = R d \ B ζ (xm), for ζ small enough and ψ ∈ Cc(O), such that supp ψ ⊂ K, for a compact set K O fε(t, x)ψ(x)dx ≤ 1 ρm O e uε(t,x) ε |ψ(x)|dx ≤ 1 ρm K e uε(t,x) ε |ψ(x)|dx.
From the locally uniform convergence of uε, since u(x) ≤ -β, ∀x ∈ K, we obtain that there exists ε0 > 0 such that ∀ε < ε0, uε(t, x) ≤ -β 2 , ∀x ∈ K, and hence

K e uε(t,x) ε |ψ(x)|dx ≤ K e -β 2ε |ψ(x)|dx → 0 as ε → 0,
since ψ is bounded in K. Therefore, thanks to the L 1 bound of fε, we obtain that fε converges weakly in the sense of measures and along subsequences to ωδ(x -xm) as ε vanishes. We can proceed as in Section 1.2.2 to prove that the convergence is in fact to δ(x -xm).

Therefore using the convergence result for ρε we deduce finally (1.11).

Step 6 (Identification of the limit of ρε) We try now to identify ρ from the explicit expression for ρε. To this end we need to compute the limit of Qε. Let pε be the periodic solution of (1.36), we know that pε(t, x) = nε(t, x) ρε(t)

R d pε(t, y)dy.
Substituting in Qε we obtain

Qε(t) = R d a(t, x)pε(t, x)dx R d pε(t, x)dx = R d a(t, x) nε(t, x) ρε(t) R d pε(t, y)dydx R d pε(t, x)dx = R d a(t, x)nε(t, x)dx ρε(t) .
From (1.11) and (H2) we deduce that

lim ε→0 Qε(t) = lim ε→0 R d fε(t, x)a(t, x)dx = a(t, xm).
Finally we can pass to the limit in the expression (1.33) for ρε, to obtain (2.65), which is in fact the unique periodic solution of the equation (1.3).

Approximation of the moments

In this section we estimate the moments of the population's distribution with a small error, in the case x ∈ R. To this end, we will use the formal arguments given in Section 1.

Using (1.13), one can compute a Taylor expansion of order 4 around the point of maximum xm

u(x) = - A 2 (x -xm) 2 + B(x -xm) 3 + C(x -xm) 4 + O(x -xm) 5 . (1.49)
Note also that one can obtain v formally from (1.16) and compute the following expansions

v(t, x) = v(t, xm) + D(t)(x -xm) + E(t)(x -xm) 2 + O(x -xm) 3 , w(t, x) = F (t) + O(x -xm) 2 .
The above approximations of u, v and w around the maximum point of u allow us to estimate the moments of the population's distribution with an error of at most order O(ε 2 ) as ε → 0.

Replacing uε by the approximation (1.15) and using the Taylor expansions of u, v and w given above, we can compute

R d (x -xm) k nε(t, x)dx = e v(t,xm) ε k 2 √ 2π R d y k e -Ay 2 2 1 + √ ε By 3 + D(t)y +ε Cy 4 + E(t)y 2 + F (t) + 1 2 (By 3 + D(t)y) 2 + o(ε) dy.
Note that, to compute the above integral, we performed a change of variable x -xm = √ ε y. Therefore each term x -xm can be considered as of order √ ε in the integration. Note also that we have used the approximation

nε(t, x) = 1 √ 2πε e u(x) ε +v(t,x)+εw(t,x) .
The above computation leads in particular to the following approximations of the population size, the phenotypical mean and the variance

             ρε = R d nε(t, x)dx = e v(t,xm) √ A 1 + ε 15B 2 2A 3 + 3(C + BD(t)) A 2 + E(t) + 0, 5D(t) 2 A + F (t) + O(ε 2 ), µε = 1 ρε(t) R d x nε(t, x)dx = xm + ε 3B A 2 + D(t) A + O(ε 2 ), σ 2 ε = 1 ρε(t) R d (x -µε) 2 nε(t, x)dx = ε A + O(ε 2 ).

Some biological examples

In this section, we present two examples where two different growth rates a(t, x) are considered. In particular, the fluctuations act on different terms in the two examples, (they act respectively on the optimal trait and on the pressure of the selection).

We are motivated by a biological experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF], where a population of bacterial pathogen Serratia marcescens was studied. In this experiment several populations of Serratia marcescens were kept in environments with constant or fluctuating temperature for several weeks. Then, their growth rates were measured in different environments. In particular, it was observed that a population of bacteria that evolved in periodically fluctuating temperature (daily variation between 24 Here, we estimate the moments of the population's distribution and the mean effective fitness of the population in a constant enviroment for our two examples. We will observe that the second example, where the fluctuations act on the pressure of selection, allows to capture the phenomenon observed in the experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF]. Our analysis shows that, in presence of the mutations and while the fluctuations act on the pressure of the selection, a fluctuating environment can select for a population with the same mean phenotypic trait but with smaller variance and in this way lead to more performant populations.

Note that our analysis is very well adapted to the mentioned experiment, since we first study the long time behavior of the phenotypical distribution and we find that it is the periodic solution of a selection-mutation equation. This distribution corresponds to the phenotypical distribution of a population evolved in a periodic environment. Next, we characterize such distribution assuming small mutations. We remark that, although our analysis provides a possible explanation for the observed experience in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF], one should go back to the biological experiment and compare the population's distribution with our results to test this interpretation.

Oscillations on the optimal trait

In this subsection we study a case where the optimal trait fluctuates periodically. We show that in this case, the population's phenotypical mean follows the optimal trait with a delay.

We choose, as periodic growth rate

a(t, x) = r -g(x -c sin bt) 2 ,
where r, g, c and b are positive constants. Here r represents the maximal growth rate, g models the selection pressure and the term c sin bt models the oscillations of the optimal trait with period 2π b and amplitude c. We compute the mean of a(t, x)

a(x) = b 2π 2π b 0 a(t, x)dt = r -g x 2 + c 2 2 ,
and we observe that the maximum of a(x) is attained at xm = 0.

From here we can also compute the mean population size ρ ε . We do not provide an explicit formula for ρε, but only for its mean value, in order to keep the simpler expression, however, for the higher order moments we give the exact value until order 1 in ε.

Let u(x) be given by (1.13), which can be rewritten in this specific example as follows

u(x) = - x 0 gy 2 dy = - √ g 2 x 2 ,
then we obtain, from (1.12) and the second equation in (1.16) We deduce that

= a(0) = r - gc 2 2 , k = ∆u(0) = - √ g.
∂xv(0, x) = -2cg b and ∂xv(t, x) = - 2cg b cos bt.
Now we are able to compute the approximations of order one with respect to ε of the population mean size ρ ε , the phenotypical mean µp and the variance σ 2 p of the population's distribution, following the computations we have done in the previous section, that is

µp(t) ≈ 2εc b √ g sin bt - π 2 , σ 2 p ≈ ε √ g , ρ ε ≈ r - gc 2 2 -ε √ g.
We observe, in fact, that the mean trait µp(t) oscillates with the same period as the optimal trait with a delay π 2b , and a small amplitude, as was suggested for instance in [START_REF] Lande | The role of genetic variation in adaptation and population persistence in a changing environment[END_REF].

We also compute Fp(τ ) the mean fitness of the population (evolved in the periodic environment), in an environment with temperature τ , and hence with growth rate a(τ, x)

Fp(τ ) = R d a(τ, x) 1 T T 0 nε(t, x) ρε(t) dtdx, (1.50)
which can be approximated for this example at τ = π b by

Fp(π/b) ≈ r -ε √ g.
Note that (1.50) is the quantity which has been measured in the experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF].

We next consider a population which has evolved in a constant environment with t = π b , (mean time), that is when the growth rate is given by a(π/b, x) = r -gx 2 . With such constant in time growth rate, the density of the population's distribution converges in long time to the unique solution of the following stationary equation

   -ε 2 ∂xxnc = nc r -gx 2 -ρc , ρc = R ncdx.
The solution of the above equation can be computed explicitly and is given by

nc = ρc g 1 4 √ 2πε exp - √ gx 2 2ε , ρc = r -ε √ g.
We can then compute the population mean size ρ c , the mean trait µc and the variance σ 2 c for such population

µc = 0, σ 2 c = ε √ g , ρ c = r -ε √ g.
Here we observe that the size of a population evolved in a constant environment ρ c is greater than the mean size of a population evolved in a fluctuating environment ρ ε .

Moreover, the mean fitness of such population, in an environment with the same temperature (t = π b ), can be computed as below

Fc = R a(π/b, x) nc(x) ρc dx = r -ε √ g.
We hence obtain that, independently of the choice of constants r, g and c, both populations (the one evolved in a constant environment and the other evolved in a fluctuating environment) have the same mean fitness at the same constant environment, up to order ε. This result does not correspond to what was observed in the experiment of [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF].

In the next subsection we consider another example where the oscillations act differently on the growth rate and where the outcome corresponds more to the experiment of [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF].

Oscillations on the pressure of the selection

In this subsection, we study an example where the fluctuations act on the pressure of the selection. We show that in this case a population evolved in a fluctuating environment (for instance with fluctuating temperature), may outperform a population evolved in a constant environment, in such constant environment.

Here, we consider the following periodic growth rate

a(t, x) = r -g(t)x 2 ,
where r > 0 is the maximal growth rate as in the previous example in Section 6.1 and g(t) is a 1-periodic function which models the oscillating pressure of selection.

Then a is given by

a(x) = r -gx 2 with g = 1 0 g(t)dt,
where again the maximum of a(x) is attained at xm = 0.

We compute u and ∂xv as before and obtain

u(x) = - √ g 2 x 2 , ∂xv(t, x) = 2x tg - t 0 g(t )dt + 1 0 t 0 g(t )dt dt - g 2 .
We compute again and k, from (1.12) and (1.16), in order to approximate ρ ε , that is

= a(0) = r, k = ∆u(0) = -g.
Then from the expression of u, again with the help of the formula from the previous section we obtain

A = √ g, B = C = 0 and D(t) = 0.
We next compute the approximations of order one with respect to ε of the population mean size ρ ε , the phenotypical mean µp and the variance σ 2 p of the population's distribution which are given by

µp ≈ 0, σ 2 p ≈ ε √ g , ρ ε ≈ r -ε g.
Analogously to the previous example, we also compute Fp(τ ) the mean fitness of the population (evolved in the periodic environment), in an environment with temperature τ = 1 2 , and hence with growth rate a( 1 2 , x), which can be approximated for this example as

Fp(1/2) ≈ r -ε g(1/2) √ g .
We next consider, a population which has evolved in a constant environment with t = 1 2 , that is when the growth rate is given by a(1/2, x) = r -g(1/2)x 2 . Again, the density of the population's distribution converges in long time to the unique solution of the following stationary solution

   -ε 2 ∂xxnc = nc r -g(1/2)x 2 -ρc , ρc = R ncdx.
The explicit solution of the above equation is given by

nc = ρc g(1/2) 1 4 √ 2πε exp -g(1/2)x 2 2ε , ρc = r -ε g(1/2),
from where we obtain the following population mean size ρ c , mean µc and variance σ 2 c for such population

µc = 0, σ 2 c = ε g(1/2) , ρ c = r -ε g(1/2).
Moreover, the mean fitness of such population, in an environment with the same temperature (t = 1/2), can be computed as below

Fc = R d a(1/2, x) nc(x) ρc dx = r -ε g(1/2).
We remark that if we choose g(t) such that

1 0 g(t)dt > g (1/2), (1.51) 
then we have

ρ ε < ρ c , σ 2 p < σ 2 c
and Fc < Fp(1/2).

Here we observe that, for this choice of g satisfying (1.51), the population evolved in a periodic environment has a larger fitness, in an environment with constant temperature (τ = 1/2) than the one evolved in a constant temperature (τ = 1/2). This property corresponds indeed to what was observed in the biological experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF]. Note that both of these environments select for populations with the same phenotypic mean trait x = 0. However, the population evolved in a periodic environment has a smaller variance comparing to the one evolved in a constant environment. This makes the population evolved in the periodic environment more performant. This example shows that the phenomenon observed in the experiment of [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF] can also be observed in mathematical models. 

Introduction

Model and motivations

The goal of this chapter is to study the evolutionary dynamics of a phenotypically structured population in an environment which varies with a linear trend but in an oscillatory manner. We study the following non-local parabolic equation

       ∂t ñ -σ∂xx ñ = ñ[a(t, x -ct) -ρ(t)], (t, x) ∈ [0, +∞) × R, ρ(t) = R ñ(t, x)dx, ñ(t = 0, x) = ñ0(x).
(2.1)

This equation models the dynamics of a population which is structured by a phenotypic trait x ∈ R. Here, n corresponds to the density of individuals with trait x. We denote by a(t, x -ct) the intrinsic growth rate of an individual with trait

x at time t. The term -ct has been introduced to consider a variation of the optimal trait with a linear trend. The dependence of the term a on the first variable is assumed to be periodic to consider fluctuations of the environment, which may vary the optimal trait or other parameters of the selection as for instance the pressure of the selection. The term ρ which corresponds to the total size of the population represents a competition term. Here, we assume indeed a uniform competition between all the individuals. The diffusion term models the mutations, with σ the mutation rate.

A natural motivation to study such type of problem is the fact that many natural populations are subject both to directional change of phenotypic optimum and random fluctuations of the environment ( [START_REF] Chevin | Estimating the variation, autocorrelation, and environmental sensitivity of phenotypic selection[END_REF]). Here, we consider a deterministic growth rate that varies with a linear trend but in an oscillatory manner as a first step to study such situations. Will the population be able to adapt to the environmental change? Is there a maximum speed above which the population will get extinct? How is such maximal speed modified due to the fluctuations?

Related works

Models closely related to (2.1), but with a local reaction term and no fluctuation, have been widely studied (see for instance [START_REF] Berestycki | Can a species keep pace with a shifting climate[END_REF][START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed i -the case of the whole space, disc[END_REF][START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed iicylindrical-type domains[END_REF][START_REF] Berestycki | Forced waves of the Fisher-KPP equation in a shifting environment[END_REF]). Such models are introduced to study dynamics of populations structured by a space variable neglecting evolution. It is shown in particular that there exists a critical speed of environment change c * , such that the population survives if and only if the environment change occurs with a speed less than c * . We also refer to [START_REF] Bouhours | Climate change and integrodifference equations in a stochastic environment[END_REF] where an integro-difference model has been studied for the spatial dynamics of a population in the case of a randomly changing environment. Moreover, in [START_REF] Alfaro | The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF], both spatial and evolutionary dynamics of a population in an environment with linearly moving optimum has been studied. While in the present work, we don't include any spatial structure, we take into account oscillatory change of environment in addition to a change with linear trend.

The evolutionary dynamics of structured population under periodic fluctuations of the environment has been recently

studied by [START_REF] Mirrahimi | Time fluctuations in a population model of adaptive dynamics[END_REF][START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF][START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF][START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model[END_REF]. The works in [START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF][START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model[END_REF] are focused on the study of a particular form of growth rate a and in particular some semi-explicit solutions to such equations are provided. In [START_REF] Mirrahimi | Time fluctuations in a population model of adaptive dynamics[END_REF][START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF] some asymptotic analysis of such equations for general growth rates are provided. The present chapter is closely related to Chapter 1 (see also [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF])

where a periodically evolving environment was considered without the linear trend. The presence of such linear trend of environment change leads to new difficulties in the asymptotic analysis. Moreover, we go further than the results in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF] and provide an asymptotic expansion for the average size of the population in terms of the mutation rate. Such expansion is closely related to an asymptotic expansion of the Floquet eigenvalue for the linear problem.

In this chapter, we use an asymptotic approach based on Hamilton-Jacobi equations with constraint. This approach has been developed during the last decade to study the asymptotic solutions of selection-mutation equations, assuming small effect of the mutations. Such equations have the property that their solution concentrate as Dirac masses on the fittest traits. There is a large literature on this approach. We refer to [START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result[END_REF] for the establishment of the basis of this approach for homogeneous environments.

Mathematical assumptions

To introduce our assumptions, we first define

a(y) = 1 T T 0 a(t, y)dt.
We then assume that a ∈ L ∞ (R + , C 3 (R)) is a time-periodic function with period T , such that:

a(t, •) = a(t + T, •), ∀ t ∈ R, and ∃ d0 > 0 : a(t, •) L ∞ (R) ≤ d0 ∀ t ∈ R, (H1) 
and that the averaged function a attains its maximum and

max x∈R a(x) > 0, (H2a) 
which means that there exist at least some traits with strictly positive average growth rate.

Moreover, for our second main result (Theorem 7) we assume that this maximum is attained at a single point xm; that is

∃! xm : max x∈R a(x) = a(xm), (H2b) 
and also

∃! x ≤ xm; a(x) + c2 4σ = a(xm). ( H3 
)
Finally, we make the following assumption on the initial data:

0 ≤ ñ0(x) ≤ e C 1 -C 2 |x| , ∀x ∈ R, (H4) 
which indicates that the initial density of individuals with large traits is exponentially small.

Preliminary results

To avoid the shift in the growth rate a, we transform our problem with a change of variable. We introduce indeed n(t, x) = ñ(t, x + ct) which satisfies:

       ∂tn -c∂xn -σ∂xxn = n[a(t, x) -ρ(t)], (t, x) ∈ [0, +∞) × R, ρ(t) = R n(t, x)dx, n(t = 0, x) = ñ0(x).
(2.2)

Next, we introduce the linearized problem associated to (2.2). Let m(t, x) = n(t, x)e t 0 ρ(s)ds , for n the solution of (2.2),

then m satisfies ∂tm -c∂xm -σ∂xxm = a(t, x)m, (t, x) ∈ [0, +∞) × R, m(t = 0, x) = ñ0(x), x ∈ R. (2.3)
We also introduce the corresponding parabolic eigenvalue problem as follows

∂tpc -c∂xpc -σ∂xxpc -a(t, x)pc = λc,σpc, (t, x) ∈ [0, +∞) × R, 0 < pc; pc(t, x) = pc(t + T, x), (t, x) ∈ [0, +∞) × R. (2.4) 
For better legibility, we omit the tilde in the index of pc, while we still refer to the problem with constant c. We also define the eigenvalue problem in the bounded domain [-R, R], for some R > 0,

     ∂tpR -c∂xpR -σ∂xxpR -a(t, x)pR = λRpR, (t, x) ∈ [0, +∞) × [-R, R], pR = 0, (t, x) ∈ [0, +∞) × {-R, R}, 0 < pR; pR(t, x) = pR(t + T, x), (t, x) ∈ [0, +∞) × [-R, R].
(2.5)

It is known that problem (2.5) has a unique eigenpair (λR, pR) with pR a strictly positive eigenfunction such that [START_REF] Hess | Periodic-Parabolic Boundary Value Problems and Positivity[END_REF]). Another fundamental result (see for instance [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF]), for our purpose is that the function R → λR is decreasing and λR → λc,σ as R → +∞.

pR(0, •) L ∞ ([-R,R]) = 1, (see
To announce our first result we introduce another assumption. We assume that a takes small values at infinity in the following sense: there exist positive constants δ and R0 such that 

a(t, x) + λc,σ ≤ -δ,
pc(t, x) ≤ pc L ∞ e -ν(|x|-R 0 ) , ∀(t, x) ∈ [0, +∞) × R, (2.6 
)

for ν = -c 2σ + δ σ + 1 2 c σ 2 .
Finally, the eigenfunction pc(t, x) is exponentially stable, in the following sense; there exists α > 0 such that:

m(t, x)e tλ c,σ -αpc(t, x) L ∞ (R) → 0 exponentially fast as t → ∞. (2.7) 
The proof of this proposition is based on the results in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF].

We next define the T -periodic functions Qc(t) and Pc(t, x) as follows:

Qc(t) = R a(t, x)pc(t, x)dx R pc(t, x)dx , Pc(t, x) = pc(t, x) R pc(t, x)dx , ( 2.8) 
and we recall a result proved in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF].

Proposition 2.2 There exists a unique periodic solution ρ(t) to the problem 

   d ρ dt = ρ [Qc(t) -ρ] , t ∈ (0, T ), ρ(0) = ρ(T ), (2.9 

The main results and the plan of the chapter

We are interested, in determining conditions on the environment shift speed c which leads to extinction or survival of the population. In the case of the population survival we then try to characterize asymptotically the population density considering small effect of the mutations.

To present our result on the survival criterion, we define the "critical speed".

Definition 2.3

We define the critical speed c * σ as follows

c * σ = 2 -σλ0,σ, if λ0,σ < 0, 0, otherwise, (2.11)
where λ0,σ corresponds to the principal eigenvalue introduced by Proposition 2.1, in the case c = 0.

The next result shows that c * σ is indeed a critical speed of climate change above which the population goes extinct.

Proposition 2. [START_REF] Alfaro | Replicator-mutator equations with quadratic fitness[END_REF] Let n(t, x) be the solution of (2.2). Assume (H1), (H2a), (H4) and (Hc). Then the following statements hold: 

(i) if c ≥ c * σ ,
n(t, •) -ρ(t)Pc(t, •) L ∞ → 0, if c < c * σ and n L ∞ → 0, if c ≥ c * σ .
(2.12)

Remark 2.5 Note that if λ0,σ ≥ 0, then c * σ = 0, which means that the population goes extinct even without climate change, that is c = 0. Proposition 2.4 allows to relate extinction/survival of the population to the climatic change speed and shows that if the change goes "too fast" the population will not be able to follow the environment change and will get extinct. However, if the change speed is "moderate" the phenotypic density n converges to the periodic function nc(t, x) = ρ(t)Pc(t, x), which is in fact the unique periodic solution of (2.2).

Next, we are interested in describing this periodic solution nc, asymptotically as the effect of mutations is small. To this end, with a change of notation, we take σ = ε 2 and c = εc, and we study asymptotically the solution (nεc, ρεc) as ε vanish. Note that, in view of Proposition 2.4, to provide an asymptotic analysis considering σ = ε 2 small, a rescaling of the climate shift speed as c = εc is necessary. In order to keep the notation simpler we denote (nεc, ρcε) = (nε, ρε), which is the unique periodic solution of the problem: This change of variable comes from the fact that with such rescaling the solution nε will naturally have this form. While we expect that nε tends to a Dirac mass, as ε → 0, ψε will have a non singular limit.

       ∂tnε -εc∂xnε -ε 2 ∂xxnε = nε[a(t, x) -ρε(t)], (t, x) ∈ [0, +∞) × R, ρε(t) = R nε(t, x)dx, nε(0, x) = nε(T, x).
For better legibility, we define

c * ε := c * ε 2 ε where c * ε 2 stands for the critical speed c * σ with σ = ε 2 .
Here is our first main result: Theorem 2.6 Assume (H1), (H2a) and (Hc) and also that c < lim inf ε→0 c * ε . Then the following statements hold:

(i) As ε → 0, we have ρε(t) -(t) L ∞ → 0, with (t) a T -periodic function.
(ii) Moreover, as ε → 0, ψε(t, x) converges locally uniformly to a function ψ(x) ∈ C(R), a viscosity solution to the following equation:

       -∂xψ + c 2 2 = a(x) -ρ -c 2 4 , x ∈ R, max x∈R ψ(x) = 0, -A1|x| 2 -c 2 x -A2 ≤ ψ ≤ c1 -c2|x|, (2.15 
)

with ρ = T 0 ˜ (t)dt,
and some positive constants A1, A2, c1 and c2 = -

c 2 + δ + c 2 2 .
The above theorem is closely related to Theorem 4 in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. A new difficulty comes from the drift term. To deal with the drift term we use a Liouville transformation (see for instance [START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed i -the case of the whole space, disc[END_REF][START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed iicylindrical-type domains[END_REF]) that allows us to transform the problem to a parabolic problem without drift.

Finally, to present our last result, let us consider the eigenproblem (2.4) for σ = ε 2 and c = cε, that is:

     ∂tpcε -εc∂xpcε -ε 2 ∂xxpcε -a(t, x)pcε = pcελc,ε, (t, x) ∈ [0, +∞) × R, 0 < pcε; pcε(t, x) = pcε(t + T, x), (t, x) ∈ [0, +∞) × R. (2.16)
Here we denote λc,ε the eigenvalue λc,σ with σ = ε 2 and c = cε for better legibility. 

ρ ε = -λc,ε = a(xm) - c 2 4 -ε -axx(xm)/2 + o(ε), (2.17) c * ε = 2 a(xm) -ε -axx(xm)/2 + o(ε). ( 2 
ñε(t, x) -˜ (t)δ(x -x -ct) 0, as ε → 0, (2.22)
point wise in time, weakly in x in the sense of measures. This implies that the phenotypic density of the population concentrates on a single Dirac mass which varies linearly with time, while the total size of the population oscillates periodically.

Note that while in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF] the uniqueness of the viscosity solution to the corresponding Hamilton-Jacobi equation with constraint was immediate, here to prove such uniqueness more work is required. In particular, in order to prove such result the constraint is not enough and we use also the bounds on ψ, given in (2.15). More precisely we introduce a new

function u(x) = ψ(x) + c 2 x which solves      -|∂xu| 2 = a(x) -ρ -c 2 4 , x ∈ R, -A1|x| 2 -A2 ≤ u(x) ≤ c1 -c2|x| + c 2 x, (2.23) 
where the constants A1, A2, c1, c2 are the same as in (2.15).

The main idea comes from the fact that any viscosity solution to a Hamilton-Jacobi equation of type (2.23) but in a bounded domain Ω can be uniquely determined by its values on the boundary points of Ω and by its values at the maximum points of the RHS of the Hamilton-Jacobi equation, (see for instance [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF]).

Note also that our results in Theorem 2.7-(i) goes further than the one in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF], since we provide additionally an asymptotic expansion for the Floquet eigenvalue which leads to an asymptotic expansion for the critical speed c * ε and the average size of the population ρε. Such expansion is indeed related to the harmonic approximation of the energy of the ground state of the Schrödinger operator ( [START_REF] Helffer | Introduction to semi-classical methods for the Schrödinger operator with magnetic field[END_REF]). However, here we have a parabolic, non self-adjoint operator.

The chapter is organized as follows: in Section 2.2 we deal with the long time study of the problem and prove the preliminary results Proposition 2.1 and Proposition 2.4. Next in Section 2.3 we provide an asymptotic analysis of the problem considering small effect of mutations and we prove Theorem 2.6. In Section 2.4, we prove the uniqueness of the viscosity solutions for problem (2.15). Section 2.5 is devoted to obtain an approximation of the principal eigenvalue given in Theorem 2.7. Finally in Section 2.6 we approximate the moments of the distribution of the population by mean of formal computations and discuss the results for a particular growth rate. At the end, in Appendix A and B, we provide some technical results and computations.

The convergence in long time

In this section we provide the proofs of Proposition 2.1 and Proposition 2.4. To this end, we make a change of variable which allows us to transform the problem into a parabolic equation without the drift term.

Let m(t, x) satisfy the linearized problem (2.3), we denote P0 and Pc the linear operators associated to problem (2.3), for c = 0 and c > 0 respectively, that is: 

P0ω := ∂tω -σ∂xxω -a(t, x)ω, Pcω := ∂tω -c∂xω -σ∂xxω -a(t, x)ω. ( 2 

Liouville transformation

Here, we reduce the parabolic equation (2.2) to a parabolic problem without the drift term via a Liouville transformation (see for instance [START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed i -the case of the whole space, disc[END_REF][START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed iicylindrical-type domains[END_REF] where this transformation is used for an elliptic problem).

Let M (t, x) be given by

M (t, x) := m(t, x)e c 2σ x , (2.25) 
for m(t, x) the solution of the linearized problem (2.3), then M satisfies:

∂tM -σ∂xxM = a(t, x) - c2 4σ M.
(2.26)

We denote P the linear operator associated to the above equation, i.e.

Pω := ∂tω -σ∂xxω -ac(t, x)ω,
where ac(t, x) = a(t, x) -c2 4σ . We establish in the next lemma the relation between the principal eigenvalues associated to the operators P0, Pc and P. Lemma 2.9 Let λ(P, D) denote the principal eigenvalue of the operator P in the domain D, it holds

λc,σ = λ (Pc, R+ × R) = λ P, R+ × R . Moreover, let λ0,σ = λ(P0, R+ × R), then λc,σ = λ0,σ + c2 4σ .
Proof. The proof follows from the definition of the eigenfunction and eigenvalue and the fact that

Pω = Pc ωe -c 2σ x e c 2σ x .

Proof of Proposition 2.1

Proposition 2.1 can be proved following similar arguments as in the proof of Lemma 6 in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. Note that the argument in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF] is based on an exponential separation result for linear parabolic equations in [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF] that holds for general linear operators of the form

ωt = L(t, x)ω, in [0, +∞) × R,
with L(t, x) being any time-dependent second-order elliptic operator in non-divergence form, i.e:

L(t, x)ω = aij(t, x)∂i∂jω + Bi(t, x)∂iω + A(t, x)ω,
where the functions Bi, A ∈ L ∞ (R + × R) and aij satisfies

aij(t, x)ξiξj ≥ α0|ξ| 2 , (t, x) ∈ R + × R,
(see Section 9 in [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF] for more details).

Here, we only provide the proof of the inequality (2.6) which is also obtained by an adaption of the proof of Lemma 6

in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. Let ãc(t, x) = ac(t, x) + λc,σ then pc is a positive periodic solution of the following equation:

∂tpc -c∂xpc -σ∂xxpc = pcãc(t, x), in R × R. (2.27)
Note that we have defined pc in (-∞, 0] by periodic prolongation. We denote pc L ∞ (R×R) = Γ and define:

ζ(t, x) = Γe -δ(t-t 0 ) + Γe -ν(|x|-R 0 ) ,
for some ν to be found later and δ, R0 given in (Hc). One can verify that

Γ ≤ ζ(t, x) if |x| = R0 or t = t0.
Furthermore if |x| > R0 or t > t0 evaluating in (2.27) shows:

∂tζ -c∂xζ -σ∂xxζ -ζãc(t, x) = Γe -δ(t-t 0 ) (-δ -ãc(t, x)) + Γe -ν(|x|-R 0 ) cν x |x| -σν 2 -ãc(t, x) ≥ 0,
since ãc(t, x) + c2 4σ = a(t, x) + λc,σ ≤ -δ thanks to assumption (Hc) and choosing ν conveniently such that the inequality holds. Indeed, since -1 ≤ x |x| ≤ 1, we have:

cν x |x| -σν 2 -ãc(t, x) ≥ -cν -σν 2 + δ + c2 4σ ≥ 0 for -c - √ 4δσ + 2c 2 2σ ≤ ν ≤ -c + √ 4δσ + 2c 2 2σ .
Thus ζ is a supersolution of (2.27) on:

Q0 = {(t, x) ∈ (t0, ∞) × R ; |x| > R0},
which dominates pc on the parabolic boundary of Q0. Applying the maximum principle to ζ -pc, we obtain

pc(t, x) ≤ Γe -δ(t-t 0 ) + Γe -ν(|x|-R 0 ) , |x| ≥ R0, t ∈ (t0, ∞).
Taking the limit t0 → -∞ yields

pc(t, x) ≤ Γe -ν(|x|-R 0 ) , |x| ≥ R0, t < +∞, in particular, for ν = -c + √ 4δσ + 2c 2 2σ
. We conclude that pc satisfies (2.6).

Proof of Proposition 2.4

The proof of Proposition 2.4, is closely related to the proof of Proposition 2 in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF] but we need to verify two properties before applying the arguments in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. To this end we prove the following lemmas. The rest of the proof follows from the arguments in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. 

Lemma
n(t, x) ≤ exp (C1 -C2|x| + C3t) , ∀(t, x) ∈ (0, +∞) × R.
Proof. We argue by a comparison principle argument. Define the function n(t, x) = exp (C1 -C2|x| + C3t).

We prove that n ≤ n. One can verify that for C3 defined as in the formulation of the Lemma, we have the following inequality a.e:

∂t n -c∂x n -σ∂xx n -[a(t, x) -ρ(t)] n = e (C 1 -C 2 |x|+C 3 t) C3 -σC 2 2 + C2 cx |x| -a(t, x) + ρ(t) ≥ 0.
Moreover, we have for t = 0, n(0, x) ≤ n(0, x) thanks to assumption (H4). We can then apply a maximum principle to d(t, x) = n(t, x) -n(t, x), in the class of L 2 functions, and we conclude that:

d(t, x) ≥ 0 ⇒ n(t, x) ≤ n(t, x), ∀(t, x) ∈ (0, +∞) × R.

Regularity estimates

In this section, we prove Theorem 2.6. To this end we first provide some uniform bounds for ρε(t). Then, in Subsection 2.3.2, we prove that ψ is locally uniformly bounded, Lipschitz continuous with respect to x and locally equicontinuous in time. Finally in the last subsection we conclude the proof of Theorem 2.6 by letting ε go to zero and describing the limits of ψε and ρε.

Uniform bounds for ρ ε

We have the following result on ρε.

Proposition 2.12 Assume (H1), (Hc) and let c = εc with c < lim inf ε→0 c * ε . Then for all 0 < ε ≤ ε0, there exist positive constants ρm and ρM such that:

0 < ρm ≤ ρε(t) ≤ ρM , ∀t ≥ 0.
(2.28)

The proof of this result follows similar arguments as in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. For the convenience of the reader, we provide this proof in Appendix 2.A.

Regularity results for ψ ε

In this subsection we prove some regularity estimates on ψε which give the basis to prove the convergence of ψε and ρε as ε → 0 in Subsection 2.3.3. From the Hopf-Cole transformation (2.14) we deduce that ψε solves:

1 ε ∂tψε -ε∂xxψε = ∂xψε + c 2 2 + a(t, x) - c 2 4 -ρε(t), (t, x) ∈ [0, +∞) × R. (2.29)
We claim the following Theorem.

Theorem 2.13 Assume (H1), (H2a) and (Hc). Let ψε be a T -periodic solution to (2.29). Then the following items hold:

(i) The sequence (ψε)ε is locally uniformly bounded; i.e.

-A1|x| 2 - c 2 x -A2 ≤ ψε ≤ c1 -c2|x|, ∀(t, x) ∈ R+ × R, (2.30) 
for some positive constants A1, A2, c1 and c2 = -

c 2 + δ + c 2 2 . (ii) Moreover, the sequence (φε = √ 2c1 -ψε)ε, is uniformly Lipschitz continuous with respect to x in (0, +∞) × R.
(iii) Also, (ψε)ε is locally equicontinuous in time in [0, T ] × R and satisfies |ψε(t, x) -ψε(s, x)| → 0 as ε → 0.

(2.31)

In the next subsections we provide the proof of the lower bounds in (2.30) and the uniform Lipschitz continuity of φε.

The proof of the other properties can be obtained by an adaptation of the arguments in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. For the convenience of the reader we provide them in Appendix 2.A.

Lower bound for ψ ε

To obtain the lower bound for ψε we use the bounds for a in (H1) and for ρε in (2.28) and we obtain for

D0 = d0 + ρM ∂tnε -cε∂xnε -ε 2 ∂xxnε ≥ -D0nε.
Let n * ε be the solution of the following Cauchy problem

∂tn * ε -cε∂xn * ε -ε 2 ∂xxn * ε + D0n * ε = 0, n * ε (0, x) = n 0 ε ,
we define N * ε analogously to (2.25) by the Liouville transformation of n * ε as follows

N * ε (t, x) := n * ε (t, x)e c 2ε x .
Then, N * ε solves the heat equation

∂tN * ε -ε 2 ∂xxN * ε + D1N * ε = 0, N * ε (0, x) = n 0 ε (x)e c 2ε x , for D1 = D0 + c 2 4
. The solution to the latter equation is given explicitly by the Heat Kernel K,

N * ε (t, x) = e -D 1 t (N * ε (0, y) * K) = e -D 1 t ε √ 4πt R N * ε (0, y)e - |x-y| 2 4tε 2 dy, t > 0.
Note that N * ε (0, x) from its definition can be written as follows

N * ε (0, x) := pcε(0, x) R pcε(0, x)dx ρε(0)e c 2ε x . (2.32)
We recall that pcε is uniquely determined once pcε(0, x) L ∞ (R) = 1 is fixed. Then, one can choose xε such that pcε(0, xε) = 1. From an elliptic-type Harnack inequality in a bounded domain we can obtain

pcε(t0, xε) ≤ sup y∈B(xε,ε) pcε(t0, y) ≤ Cpcε(t0, x), ∀(t0, x) ∈ [δ0, 2T ] × B(xε, ε), (2.33)
where δ0 is such that 0 < δ0 < T and C is a positive constant depending on δ0 and d0 (we refer to Appendix 2.A-Proof of upper bound, for more details on this inequality). We then use the T -periodicity of pcε to conclude that the last

inequality is satisfied ∀ t ∈ [0, T ].
From (2.6), (2.32) and (2.33) we deduce that

ε -1 D2e -D 3 ε + c 2ε x ≤ ρm pε(0, x)e c 2ε x R pε(0, x)dx ≤ N * ε (0, x) ∀x ∈ B(xε, ε),
for some positive constants D2 and D3 depending on pε L ∞ , ρm, δ, and the constants of hypothesis (Hc). Then, for all

(t, x) ∈ (0, +∞) × R N * ε (t, x) ≥ D2 ε 2 √ 4πt e -D 3 +εD 1 t ε B(xε,ε) e c 2ε y e - |x-y| 2 4tε 2 dy ≥ D2|B(xε, ε)| ε 2 √ 4πt exp - |x| 2 + (|xε| + ε) 2 2tε 2 + c 2 xε ε -1 - D3 + D1tε ε .
By the definition of n * ε and the comparison principle we obtain that n * ε (t, x) ≤ nε(t, x) and hence

nε(t, x) ≥ D2|B(xε, ε)| ε 2 √ 4πt exp - |x| 2 + (|xε| + ε) 2 2tε 2 + c 2 xε -x ε -1 - D3 + D1tε ε .
This, together with the definition of ψε, implies that

ε log D2|B(xε, ε)| ε 2 √ 4πt - |x| 2 + (|xε| + ε) 2 2tε + c 2 (xε -x -ε) -(D3 + D1tε) ≤ ψε(t, x), ∀t ≥ 0.
In particular, we obtain that

ε log D2|B(xε, ε)| ε 3/2 √ 4πt - |x| 2 + (|xε| + ε) 2 2t + c 2 (xε -x -ε) -(D3 + D1t) ≤ ψε t ε , x , ∀t ∈ [1, 1 + εT ] .
Note that xε is uniformly bounded in ε thanks to (2.6). Then we can conclude by using the periodicity of ψε. We obtain a quadratic lower bound for ψε for all t ≥ 0; that is, there exist A1, A2 ≥ 0 and ε0 small enough such that for all ε ≤ ε0,

-A1|x| 2 - c 2 x -A2 ≤ ψε(t, x), ∀t ≥ 0.
(2.34)

Lipschitz bounds

In this section we prove the Lipschitz bounds for ψε. To this end we use a Bernstein type method closely related to the one used in [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result[END_REF][START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. Let φε = √ 2c1 -ψε, for c1 given by (2.30), then φε satisfies

1 ε ∂tφε -c∂xφε -ε∂xxφε - ε φε -2φε |∂φε| 2 = a(t, x) -ρε(t) -2φε .
Define Φε = ∂xφε, which is also T -periodic. We differentiate the above equation with respect to x and multiply by Φε |Φε| , i.e.,

1 ε ∂t|Φε| -c∂x|Φε| -ε∂xx|Φε| -2 ε φε -2φε Φε • ∂x|Φε| + ε φ 2 ε + 2 |Φε| 3 ≤ (a(t, x) -ρε(t)) |Φε| 2φ 2 ε - ∂xa • Φε 2φε|Φε| .
From (2.30) we deduce that

√ c1 ≤ φε ≤ A1|x| 2 + c 2 x + A3, ∀ t ≥ 0, x ∈ R, for A3 = A2 + 2c1. It follows that 2 ε φε -2φε ≤ A4|x| + A5,
for some positive constants A4 and A5. From here, we deduce for ϑ large enough

1 ε ∂t|Φε| -c∂x|Φε| -ε∂xx|Φε| -A4|x| + A5 Φε • ∂x|Φε| + 2 (|Φε| -ϑ) 3 ≤ 0. (2.35) 
Let TM > 2T and A6 to be chosen later, define now, for (t, x) ∈ 0,

T M ε × [-R, R] Θε(t, x) = 1 2 √ tε + A6R 2 R 2 -|x| 2 + ϑ.
We next verify that Θε is a strict supersolution of (2.35) in 0,

T M ε × [-R, R]. To this end we compute ∂tΘε = - 1 4t √ tε , ∂xΘε = 2A6R 2 x (R 2 -|x| 2 ) 2 , ∂xxΘε = 2A6R 2 (R 2 -|x| 2 ) 2 + 8A6R 2 |x| 2 (R 2 -|x| 2 ) 3 ,
and then replace in (2.35) to obtain

1 ε ∂tΘε -c∂xΘε -ε∂xxΘε -A4|x| + A5 |Θε • ∂xΘε| + 2 (Θε -ϑ) 3 = -1 4εt √ εt -2cA 6 R 2 x (R 2 -|x| 2 ) 2 -ε 2A 6 R 2 (R 2 -|x| 2 ) 2 + 8A 6 R 2 |x| 2 (R 2 -|x| 2 ) 3 -A4|x| + A5 1 2 √ εt + A 6 R 2 R 2 -|x| 2 + ϑ 2A 6 R 2 |x| (R 2 -|x| 2 ) 2 + 2 1 2 √ εt + A 6 R 2 R 2 -|x| 2 3 ≥ -ε 2A 6 R 2 d (R 2 -|x| 2 ) 2 + 8A 6 R 4 (R 2 -|x| 2 ) 3 -A4R + A5 1 2 √ εt + A 6 R 2 R 2 -|x| 2 + ϑ 2A 6 R 3 (R 2 -|x| 2 ) 2 + 3A 6 R 2 R 2 -|x| 2 1 2tε + A 6 R 2 √ εt(R 2 -|x| 2 ) + 2A 6 R 3 (R 2 -|x| 2 ) 2 A 2 6 R 3 R 2 -|x 2 | -c ,
where, for the inequality, we have used that |x| ≤ R.

One can verify that the RHS of the above inequality is strictly positive for R > 1, ε ≤ 1, and A6 >> √ TM . Therefore, Θε is a strict supersolution of (2.35) in 0, T M ε × [-R, R] and for ε ≤ 1.

We next prove that

|Φε(t, x)| ≤ Θε(t, x) in 0, TM ε × [-R, R].
To this end, we notice that Θε(t, x) goes to +∞ as |x| → R or as t → 0. Therefore, |Φε|(t, x) -Θε(t, x) attains its maximum at an interior point of 0,

T M ε × [-R, R].
We choose tmax ≤ T M ε the smallest time such that the maximum of |Φε|(t, x) -Θε(t, x) in the set (0, tmax] × [-R, R] is equal to 0. If such tmax does not exist, we are done.

Let xmax be such that |Φε|(t, x) -

Θε(t, x) ≤ |Φε|(tmax, xmax) -Θε(tmax, xmax) = 0 for all (t, x) ∈ (0, tmax) × [-R, R]. At such point, we have 0 ≤ ∂t |Φε| -Θε (tmax, xmax), 0 ≤ -∂xx |Φε| -Θε (tmax, xmax), |Φε|(tmax, xmax)∂x|Φε|(tmax, xmax) = Θε(tmax, xmax)∂xΘε(tmax, xmax).
Combining the above properties with the facts that |Φε| and Θε are respectively sub-and strict super-solution of (2.35), we obtain that

(|Φε|(tmax, xmax) -ϑ) 3 -(Θε(tmax, xmax) -ϑ) 3 < 0 ⇒ |Φε|(tmax, xmax) < Θε(tmax, xmax),
which is in contradiction with the choice of (tmax, xmax). We deduce, then that

|Φε(t, x)| ≤ 1 2 √ εt + A6R 2 R 2 -|x| 2 + ϑ for (t, x) ∈ 0, TM ε × [-R, R], ∀ R > 1.
We note that for ε < ε0 small enough we have

T M ε > 2T ε > T ε + T > T ε . Letting R → ∞ we deduce that |Φε(t, x)| ≤ 1 2 √ εt + A6 + ϑ ≤ 1 2 √ T + A6 + ϑ for (t, x) ∈ T ε , T ε + T × R.
Finally we use the periodicity of Φε to extend the result for all t ∈ [0, +∞) and rewriting the result in terms of φε we obtain for some positive constant A7

|∂xφε| ≤ A7, in [0, +∞) × R.

(2.36)

Derivation of the Hamilton-Jacobi equation with constraint

In this section we derive the Hamilton-Jacobi equation with constraint (2.15) using the regularity estimates in Theorem 2.13.

Convergence along subsequences of ψ ε and ρ ε

According to Section 2.3.2, {ψε} is locally uniformly bounded and equicontinuous, so by the Arzela-Ascoli Theorem after extraction of a subsequence, ψε(t, x) converges locally uniformly to a continuous function ψ(t, x). Moreover from (2.31), we obtain that ψ does not depend on t, i.e ψ(t, x) = ψ(x).

Furthermore, from the uniform bounds on ρε in (2.28) we obtain that | dρε dt | is also bounded. Then we apply the Arzela-Ascoli Theorem to guarantee the locally uniform convergence along subsequences of ρε(t), to a function ˜ (t) as ε → 0.

The Hamilton-Jacobi equation with constraint

Here we use a perturbed test function argument (see for instant [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF]), in order to prove that, ψ(x) = limε→0 ψ(t, x) is in fact a viscosity solution of the following Hamilton-Jacobi equation.

-∂xψ + c 2 2 = a(x) -ρ - c 2 4 , ( 2.37) 
where ρ = 1 T T 0 ˜ (t)dt. We prove that ψ is a viscosity sub-solution and one can use the same type of argument to prove that it is also a super-solution.

Let us define the auxiliary "cell problem":

     ∂tφ = a(t, x) -˜ (t) -a(x) + ρ, (t, x) ∈ [0, +∞) × R, φ(0, x) = 0, φ : T -periodic. (2.38)
This equation has a unique smooth solution, that we can explicitly write:

φ(t, x) = -t(a(x) -ρ) + t 0 (a(t, x) -˜ (t))dt.
Let ϕ ∈ C ∞ (R) be a test function and assume that ψ -ϕ has a strict local maximum at some point x0 ∈ R, with ψ(x0) = ϕ(x0). We must prove: 

-∂xϕ(x0) + c 2 2 -a(x0) + c 2 4 + ρ ≤ 0. ( 2 
-ε∂xxϕ(xε) -ε 2 ∂xxφ(tε, xε) -∂xϕ(xε) + ε∂xφ(tε, xε) + c 2 2 + (ρε -˜ )(tε) -a(xε) + ρ + c 2 4 ≤ 0. (2.40)
Next we pass to the limit as ε → 0. We know from Subsection 3.3.1 that ρε → ˜ locally uniformly as ε → 0. Moreover φ is smooth with locally bounded derivatives with respect to x, thanks to its definition. Using these arguments and letting ε → 0 in (2.40) we obtain (2.39) which implies that ψ is a viscosity sub-solution of (2.37).

Furthermore, note that ψ is also bounded from above, by taking the limit as ε → 0 in (2.30), i.e.,

ψ(x) ≤ c1 -c2|x|, ( 2.41) 
and attains its maximum. We claim that max x∈R ψ(x) = 0.

Indeed, from the upper bound for ρε in (2.28), the definition of ψε in (2.14) and the continuity of ψ, we obtain that ψ(x) ≤ 0. Moreover, from the locally uniform convergence of ψε to ψ, as ε → 0, and (2.30) we deduce that max x∈R ψ(x) < 0 implies that ψε(x) < -β, for all x ∈ R and ε ≤ ε0 and some positive constant β. This is in contradiction with the fact that ρε is bounded by below by a positive constant ρm (we refer to section 4.3 of [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF] for more details).

Uniqueness of the viscosity solution to (2.15) and explicit identification

In this section we deal with the uniqueness of the viscosity solution of equation (2.15). To this end, we first derive an equivalent Hamilton-Jacobi equation to (2.15) by mean of the Liouville transformation and prove some properties of the eigenvalue λc,ε. We then prove the uniqueness of the viscosity solution to such equivalent equation. This allows us to establish the uniqueness of the solution to (2.15) and to identify it explicitly.

Derivation of an equivalent Hamilton-Jacobi equation

In this subsection, analogously to Section 2.2.1 we make a Liouville transformation for the periodic solution nε of equation (2.13), followed by a Hopf-Cole change of variables, which lead to a modified Hamilton-Jacobi equation. That is, we call

Nε(t, x) = nε(t, x)e c 2ε
x which solves:

∂tNε -ε 2 ∂xxNε = Nε a(t, x) -c 2 4 -ρε(t) , (t, x) ∈ [0, +∞) × R, Nε(0, x) = Nε(T, x).
(2.42) Now we make a Hopf-Cole transformation for Nε, i.e:

Nε(t, x) = 1 √ 2πε e uε (t,x) ε , ( 2.43) 
and we can verify easily that uε satisfies:

1 ε ∂tuε -ε∂xxuε = |∂xuε| 2 + a(t, x) - c 2 4 -ρε(t). (2.44)
Then, by combining (2.14), (2.43) and the definition of Nε, we can write:

ψε = uε - c 2 x. (2.45)
Therefore, following the convergence result proved for ψ, we obtain a limit function u(x) such that

lim ε→0 uε(t, x) = u(x) := ψ(x) + c 2 x, ( 2.46) 
which solves the following Hamilton-Jacobi equation, also in the viscosity sense 

-|∂xu| 2 = a(x) -ρ - c 2 4 . ( 2 
-A1|x| 2 -A2 ≤ u(x) ≤ c1 -c2|x| + c 2 x, ∀ x ∈ R, (2.48) 
where the constants A1, A2, c1 and c2 are given in (2.30).

Proof. From Subsection 2.3.2 we got uniform bounds for ψε in (2.30), which lead to bounds on ψ. That is

-A1|x| 2 - c 2 x -A2 ≤ ψ(x) ≤ c1 -c2|x|.
Then, the upper bound (2.48) follows directly from the definition of u(x) in (2.46).

Therefore, we conclude that the limit function u satisfies (2.23).

Some properties of the eigenvalue λ c,ε

In this subsection we begin the proof of Theorem 2.7-(i) and prove the first equality in (2.17). We also establish the convergence along subsequences of the eigenvalue λc,ε to some negative constant as ε → 0.

From the equation (2.16) we can integrate in R, divide by R pcε(t, x)dx and integrate again in t ∈ [0, T ] (in that order) and obtain

λc,ε = - 1 T T 0 Qcε(t)dt. ( 2.49) 
where Qcε(t) is defined analogously to (2.8) from the periodic eigenfunction pcε. This implies thanks to (H1) that -d0 ≤ λc,ε.

Moreover, since we are in the case c < lim inf ε→0 c * ε , there exists λm > 0 such that, λc,ε ≤ -λm < 0.

(2.50) Indeed, since c < lim inf ε→0 c * ε we can find a positive constant τ such that for every ε ≤ ε0, with ε0 small enough we have c < c * ε -τ . Then from the definition of c * ε we deduce:

c < 2 -λ 0,ε 2 -τ = 2 -λc,ε + c 2 4 -τ, which leads to λc,ε < - cτ 2 - τ 2 4 =: -λm.
Thus (λc,ε)ε is a uniformly bounded sequence. This implies that we can extract a subsequence, still called λc,ε, which converges as ε → 0 to some negative value λ1. Moreover passing to the limit as ε → 0 in assumption (Hc) we obtain, for all such limit values λ1, a(x) ≤ -δ -λ1, ∀|x| ≥ R0.

(2.51)

We next use the relationship between the solution nε to (2.13) and the eigenfunction pcε to obtain the first equality in (2.17). Indeed, from equation (2.13) after an integration in x ∈ R we obtain:

dρε(t) dt = R nε(t, x)a(t, x)dx -ρ 2 ε (t).
We divide by ρε(t) and use the relation between nε and pcε inside of the integral, that is:

ρε(t) + d dt ln ρε(t) = R pcε(t, x)a(t, x)dx R pcε(t, y)dy .
Note that the RHS is exactly Qcε. We then integrate in [0, T ] and using (2.49) and the T -periodicity of ρε we deduce that ρε = -λc,ε, (2.52)

and passing to the limit as ε → 0 along the same subsequence, we obtain that ρ = -λ1.

(2.53)

Uniqueness and explicit formula for u(x)

In this subsection we prove the uniqueness of the viscosity solution of the Hamilton-Jacobi equation (2.23). To this end we consider the Hamilton-Jacobi equation as follows

-|∂xu| 2 = h(x), x ∈ Ω, (2.54) 
where h ∈ C 1 (R). Note that this corresponds to our problem for h(x) = h(x) := a(x) -ρ -c 2 4 . We divide the proof of the uniqueness result into several steps. We first prove that, in the case where Ω is an open bounded domain and h < 0 in Ω, a viscosity solution to (2.54) can be uniquely determined from its values on the boundary of Ω. We then use this property and (2.48) to prove that in our problem it is not possible that h(x) < 0 for all x ∈ R. We prove indeed that max h(x) = 0 and this maximum is attained only at the point xm. Finally we use these properties to conclude that u is indeed uniquely determined by an explicit formula.

Step 1: If h < 0 and Ω is bounded then the viscosity solution to (2.54) is unique. Suppose that h(x) < 0, for every x ∈ Ω. For this problem we obtain uniqueness of the viscosity solution thanks to a monotone transformation of the function u. Indeed, for Ω bounded we define L(x, y) as follows

L(x, y) = sup T 0 0 --h(ξ(t))dt/(T0, ξ) such that ξ(0) = x, ξ(T0) = y, ξ(t) ∈ Ω, ∀t ∈ [0, T0], dξ dt ≤ 1 a.e in [0, T0] ,
(2.55)

and in Appendix 2.B we prove the following:

Proposition 2.15 Assume that h(x) < 0, ∀x ∈ Ω. The function u = inf y∈∂Ω [ϕ(y) + L(x, y)],
is the unique viscosity solution of

|Du| = -h(x) in Ω; u = ϕ on ∂Ω.
Step 2: max x∈R h(x) = h(x m ) = 0 and the maximum is only attained at this point. We assume in the contrary that max x∈R h(x) < 0. We consider Ω = B R = (-R , R ) for R > 0, to be chosen later. According to step 1, we can write the viscosity solution of (2.54) for h(x) as follows:

u(x) = max u(-R ) - x -R
h(y)dy ; u(R ) - We deduce that

x -R -h(y)dy ≥ δ + c 2 4 (R -R), and R x -h(y)dy ≥ δ + c 2 4 (R -R).
Next we combine the above inequalities with the second line of (2.23) to obtain

u(x) ≤ max c1 -R δ + c 2 2 -R -R δ + c 2 4 ; c1 + cR -R δ + c 2 2 -R -R δ + c 2 4 ,
for c1 given in (2.23). This implies that, taking R arbitrarily large, u(x) the limit as ε → 0 of uε(t, x) is arbitrarily small in [-R, R] which is a contradiction. Therefore the assumption on h(x) of being strictly negative in Ω is false.

We have proved that h(x) vanishes at some point x ∈ R. Note also from (2.47) that

ā(x) -ρ - c 2 4 ≤ 0,
and max x∈R h(x) is attained at the unique maximum point of ā, which is xm.

Step 3: Identification of u in R. We now prove that the solution u is uniquely determined by its value at the maximum point of h(x). That is, for all x ∈ R u(x) = - To this end we choose 0 < R, and 0 < R such that R << R and we consider the domain

B R = [-R , xm] ∪ [xm, R ]
and we prove the following inequalities for R large enough,

x xm -h(y)dy -u(xm) ≤ x -R -h(y)dy -u(-R ), ∀x ∈ [-R, xm], x xm -h(y)dy -u(xm) ≤ R x -h(y)dy -u(R ), ∀x ∈ [xm, R].
Note that h < 0 in the sets (-R , xm) and (xm, R ). We can thus apply Proposition 2.15 in these domains and use the above inequalities to obtain (2.56) for all x ∈ [-R, R]. Since R is arbitrary we thus obtain (2.56). Note that at point x = xm the latter inequalities hold trivially. Suppose that xm < x < R. We prove the second inequality (the first one follows from an analogous argument). We claim that, for R large enough 

- x xm -h(y)dy + u(xm) + R x -h(y)dy -u(R ) ≥ 0. ( 2 
u(x) ≤ c1 -c2|x| + c 2 x, ⇒ u(R ) ≤ c1 + c 2 R . (2.59)
Furthermore, it holds, following similar arguments as in the previous step that:

-h(y) ≥ δ + c 2 4
, ∀y ∈ (R0, R ).

(2.60)

Finally, putting together(2.58), (2.59) and (2.60) we obtain:

- x xm -h(y)dy + u(xm) + R x -h(y)dy -u(R ) ≥ - R xm -h(y)dy + u(xm) + (R -R0) δ + c 2 4 - c 2 R -c1 ≥ 0,
for R large enough. We conclude that the solution u is indeed determined by its value at the maximum point of ā and obtain the explicit formula (2.56).

Explicit formula for ψ

From the uniqueness of the viscosity solution to equation (2.23) for fixed ρ and the explicit representation (2.56), it follows:

u(x) = u(xm) - x xm ρ + c 2 4 -a(y)dy , ∀x ∈ R. (2.61)
This directly implies that u is in fact a classical solution for x ∈ R which attains its maximum at x = xm. Moreover from step 2 in Section 2.4.3 we have

a(xm) = ρ + c 2 4 , ( 2.62) 
and hence ρ and u are uniquely determined.

The formula (2.61) together with (2.46) also imply the uniqueness of the limit ψ, the viscosity solution to (2.15) and the following explicit representation,

ψ(x) = u(xm) - c 2 x - x xm a(xm) -a(y)dy , ∀x ∈ R.
We denote the set of maximum points of ψ by X * , i.e

X * := {x * ∈ R such that ψ(x * ) = 0}.
Let x * ∈ X * , we evaluate the above formula of ψ at x * in order to obtain an expression for u(xm). This implies

ψ(x) = c 2 (x * -x) + x * xm a(xm) -a(y)dy - x xm a(xm) -a(y)dy , ∀x ∈ R. (2.63) Moreover, ψ(xm) ≤ ψ(x * ) ⇒ c 2 (x * -xm) ≤ 0,
then necessarily x * ≤ xm. Note also from (2.15) that ā(x * ) = ρ. Thus from (2.62) and assumption (H3) it follows that

x * = x, and we can write ψ(x) explicitly as in (2.19) for every x ∈ R. This ends the proof of Theorem 2.7-(ii).

Convergence to the Dirac mass

We deal in this subsection with the result for the convergence of nε, that is Theorem 2.7-(iii).

Call fε(t, x) = nε(t, x) ρε(t) , then fε is uniformly bounded in L ∞ (R + , L 1 (R)). Next, we fix t ≥ 0, and we prove that fε(t, •), converges, along subsequences, to a measure, as follows

fε(t, •) δ(• -x) as ε → 0,
weakly in the sense of measures.

Indeed, we already know that

max x∈R ψ(x) = ψ(x) = 0 and ψ(x) ≤ c1 -c2|x|,
for x given in Theorem 2.7. This implies that for any ζ > 0, there exists β > 0 such that ψ(x) ≤ -β for every

x ∈ R \ [x -ζ, x + ζ]. We denote O = R \ [x -ζ, x + ζ] and choose χ ∈ Cc(O), such that supp χ ⊂ K, for some compact set K, then it follows that O fε(t, x)χ(x)dx ≤ 1 ρm O e ψε (t,x) ε |χ(x)|dx ≤ 1 ρm K e ψε (t,x) ε |χ(x)|dx.
From the locally uniform convergence of ψε, to ψ(x), we obtain that there exists ε0 > 0 such that ∀ε < ε0, ψε(t, x) ≤ -β 2 , ∀x ∈ K, and hence

K e ψε (t,x) ε |χ(x)|dx ≤ K e -β 2ε |χ(x)|dx → 0 as ε → 0,
since χ is bounded in K. Therefore, thanks to the uniform L 1 bound of fε, we obtain that fε converges weakly in the sense of measures and along subsequences to µδ(x -x) as ε → 0. Then to prove that in fact, µ = 1 we can proceed as in Section 4.3 in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]. Therefore using the convergence result for ρε we deduce finally (2.20) and this ends the proof of Theorem 2.7-(iii).

Identification of the limit of ρ ε

We now identify ˜ from the explicit expression for ρε, that is:

ρε(t) = 1 -exp - T 0 Qcε(s)ds exp - T 0 Qcε(s)ds t+T t exp s t Qcε(θ)dθ ds , ( 2.64) 
where Qcε is defined analogously to (2.8), using the periodic eigenfunction pcε of problem (2.16).

We then compute the limit of Qcε as ε → 0. We know that pcε(t, x) = nε(t, x) ρε(t) R pcε(t, y)dy. Substituting in Qcε we obtain

Qcε(t) = R a(t, x)pcε(t, x)dx R pcε(t, x)dx = R a(t, x) nε(t, x) ρε(t) R pcε(t, y)dydx R pcε(t, x)dx = R

a(t, x)nε(t, x)dx ρε(t) .

From the previous subsection and hypotheses (H2b) and (H3) we deduce that:

lim ε→0 Qcε(t) = lim ε→0 R fε(t, x)a(t, x)dx = a(t, x).
Finally we can pass to the limit in the expression (2.64) for ρε, to obtain the following explicit formula for ˜ (t) = 

Approximations of the eigenvalue

In this section we finish the proof of Theorem 2.7-(i) and prove the second equality in (2.17). To this end we develop an asymptotic approximation of the eigenvalue λc,ε of order ε. We also prove (2.18). Let us come back to the eigenproblem (2.16).

To obtain such asymptotic expansion we construct an approximate eigenfunction pε corresponding to an approximate eigenvalue λε which solves an equation close to (2.16). We then use Proposition 2.1 to prove that λε approximates λc,ε with an error of order ε 2 .

To construct an approximated eigenfunction, we first try to approximate wε, obtained from the Hopf-Cole transformation of pcε as follows:

pcε(t, x) = 1 √ 2πε e wε (t,x) ε . (2.66)
One can verify that wε solves:

1 ε ∂twε -ε∂xxwε = ∂xwε + c 2 2 + a(t, x) + λc,ε - c 2 4 . ( 2.67) 
We can obtain similar bounds for wε as for ψε, which guarantee the convergence along subsequences of wε to certain function w = w(x), which is in fact the limit of the whole sequence wε, and satisfies the following Hamilton-Jacobi equation in the viscosity sense [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]).

-∂xw + c 2 2 = a(x) + λ1 - c 2 4 . ( 2 
Note that ψ(x) is a solution to (2.68). We then, write (formally)

wε(t, x) = ψ(x) + εφ(t, x) + o(ε) and λc,ε = λ1 + ελ2 + o(ε),
for φ a T -periodic function and we construct the following approximated eigenpair: ψε = ψ + εφ and λε = λ1 + ελ2.

(2.69)

We then substitute this pair ( ψε, λε) into (2.67) and obtain:

∂tφ -cψx -cε∂xφ -εψxx -ε 2 ∂xxφ = |ψx + ε∂xφ| 2 + a(t, x) + λ1 + ελ2 + o(ε), (2.70)
where the notations ψx and ψxx correspond respectively to the first and second derivative of ψ.

Regrouping in powers of ε we obtain the following system for φ,

         ∂tφ = ψx + c 2 2 + a(t, x) - c 2 4 + λ1, -ψxx = [2ψx + c] 1 T T 0 ∂xφ(t, x)dt + λ2.
(2.71)

We remark that the previous system has a unique solution φ up to addition by a constant. Indeed, from the equation (2.15) we obtain ∂tφ = a(t, x) -ā(x).

Integrating in [0, t] leads to

φ(t, x) = φ(0, x) + t 0 a(τ, x)dτ -tā(x),
and the value of φ(0, x) can be obtained from the second equation in (2.71) once we fix φ(0, xm). Note that here we use the fact that 2ψx + c vanishes only at the point xm.

We now define pε(t, x) := 1 , and use the system (2.71), to obtain the equality:

Pε pε -λε pε = -ε 2 |∂xφ| 2 + ∂xxφ pε, (2.72)
for Pε the following parabolic operator

Pεp = ∂tp -cε∂xp -ε 2 ∂xxp -a(t, x)p.
We denote

λ ε + = λε + ε 2 K, and λ ε -= λε -ε 2 K, with K = |∂xφ| 2 + ∂xxφ L ∞ , ( 2.73) 
where the well definition of K is guaranteed by the next lemma which is proved in the next subsection.

Lemma 2.17 The constant K given in (2.73) is well defined. Moreover the function φ computed above solves (2.71)

with λ1 = -ā(xm) + c 2 4 and λ2 = -āxx(xm)/2.
Therefore, it holds by substitution into (2.72)

pελ ε -≤ ∂t pε -cε∂x pε -ε 2 ∂xx pε -a(t, x) pε ≤ pελ ε + ,
and we define the functions q ε (t, x) = pε(t, x)e -tλ ε -, q ε (t, x) = pε(t, x)e -tλ ε + .

One can verify that q ε and q ε are super-and sub-solution of the linear problem (2.3) with σ = ε 2 and c = cε, that is

∂tq ε -cε∂xq ε -ε 2 ∂xxq ε ≤ q ε a(t, x), ∂tq ε -cε∂xq ε -ε 2 ∂xxq ε ≥ q ε a(t, x).
We then apply a Comparison Principle and obtain that the solution qε(t, x) to the following linear problem ∂tqε -cε∂xqε -ε 2 ∂xxqε = qεa(t, x), qε(0, x) = pε(0, x), (2.74) satisfies

q ε (t, x) ≤ qε(t, x) ≤ q ε (t, x), ∀(t, x) ∈ R+ × R.
From the proof of Proposition 1 in Section 2.2 (see equation (2.7)), applied to the case σ = ε 2 and c = cε we know that qε converges exponentially fast as t → +∞ to the periodic eigenfunction in (2. [START_REF] Berestycki | Can a species keep pace with a shifting climate[END_REF]), (see also [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF]); that is, we can write for some positive constants α and β,

qεe tλc,ε -αpcε L ∞ ≤ e -βt .
(2.75)

We recall that qεe tλc,ε can indeed be written as

qεe t,λc,ε = qε,1 + qε,2, with qε,1(t, •) ∈ span{pcε(t, •)}, qε,2 → 0 exponentially fast and R qε,2(t, x)p * cε (t, x)dx = 0,
where p * cε is the principal eigenfunction to the adjoint problem

-∂tp * cε + cε∂xp * cε -ε 2 ∂xxp * cε = (a(t, x) + λc,ε)p * cε , ( 2.76) 
(see Theorem 2.2 [START_REF] Húska | Exponential separation and principal Floquet bundles for linear parabolic equations on R N[END_REF] and the proof of Lemma 6 [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]). The positivity of α is then derived from the fact that qε(0, x) and p * cε are positive functions.

On the one hand equation (2.75) implies that,

0 ≤ pεe (-λ ε + +λc,ε)t ≤ αpcε + e -βt .
Since pcε and pε are time-periodic functions, then necessarily

λc,ε -λ ε + ≤ 0,
otherwise we get a contradiction as t → +∞. Therefore

λc,ε -λε ≤ Kε 2 , (2.77)
where K is defined in (2.73).

On the other hand, from (2.75) we obtain

pεe (-λ ε -+λc,ε)t ≥ αpcε -e -βt .
Note that if λc,ε -λ ε -≤ 0 we obtain from the T -periodicity of the eigenfunctions, as t → +∞, that pcε ≤ 0, which is also a contradiction. Thus, it implies that λc,ε -λ ε -≥ 0.

Therefore we have which leads thanks to Lemma 2.17 to an approximation for the eigenvalue of order ε 2 as follows:

λc,ε -λε ≥ -Kε 2 . ( 2 
λc,ε = -a(xm) + c 2 4 + ε -āxx(xm)/2 + o(ε).
The approximation (2.18) for the critical speed c * ε can be derived from the above approximation and (2.11). Indeed, from (2.11) and the definition of c * ε we obtain

c * ε = 2 ā(xm) -ε - āxx(xm) 2 + o(ε) = 2 ā(xm) -ε - āxx(xm) 2 + o(ε).

Boundedness of K

In this subsection we prove Lemma 2.17. We provide the proof in several steps.

Step 1: Step 2: |∂ x φ| is bounded. An integration in [0, T ] of the first equation in (2.71) gives us the already known equation for ψ in (2.37) with λ1 = -ρ. Then we can substitute and proceed as follows:

λ 1 = -ā(x m )+ c 2 4 . We integrate (2.
∂tφ = a(t, x) -a(x) ⇒ ∂xφ(t, x) = ∂xφ(0, x) + t 0 ax(τ, x)dτ -tax(x),
where ax and ax denote the derivatives with respect to x of a(t, x) and a(x) respectively. This implies that in order to bound ∂xφ we just need to bound the derivative of φ at point t = 0 since a(t, x) ∈ L ∞ (R+, C 3 (R)).

Then from the second equation in (2.71) we obtain:

∂xφ(0, x) = -ψxx(x) + ψxx(xm) 2ψx(x) + c , (2.80)
if the last formula is well defined. We claim the following technical result.

Lemma 2.18

The function ψ(x) is twice differentiable for every x ∈ R and

ψxx(x) =                      - ax(x) 2 a(xm) -a(x) , x < xm, --axx(xm)/2, x = xm, ax(x) 2 a(xm) -a(x) , x > xm.
(2.81)

Proof of Lemma 2.18

Indeed, from the explicit formula (2.19) we differentiate and obtain:

ψx(x) =      -c 2 + a(xm) -a(x), x < xm, -c 2 x = xm, -c 2 -a(xm) -a(x), x > xm.
(2.82)

We next compute

lim x→x + m ψx(x) -ψx(xm) x -xm = lim x→x + m -ā(xm) -ā(x) x -xm = lim x→x + m -f (x) x -xm ,
where we have denoted f (x) = a(xm) -a(x). We write a Taylor expansion of f around x = xm, i.e.: We pursue with the proof of Lemma 2.17.

f (x) = - 1 2 āxx(xm)(x -xm) 2 - 1 6 āxxx(xm)(x -xm) 3 + o((x -xm) 3 ), since f (xm) = 0
By substituting the derivatives of ψ in (2.80) we obtain for every x = xm:

∂xφ(0, x) =            ax(x) --2axx(xm)(a(xm) -a(x)) 4(a(xm) -a(x)) , x < xm, ax(x) + -2axx(xm)(a(xm) -a(x)) 4(a(xm) -a(x)) , x > xm.
(2.83)

We can bound ∂xφ(0, x) near to x = xm. We write the limits as x → xm in (2.83) in terms of f and compute:

lim x→x ∓ m ∂xφ(0, x) = lim x→x ∓ m -f (x) ∓ 2 √ A f (x) 4f (x) = lim x→x ∓ m -2A(x -xm) -3B(x -xm) 2 + o((x -xm) 2 ) ∓ 2A|x -xm| 1 + B A (x -xm) + o(|x -xm|) 4 (A(x -xm) 2 + B(x -xm) 3 + o((x -xm) 3 )) = - B 2A ,
where A = -axx(xm)/2 and B = -axxx(xm)/6. From this last computation and formula (2.83) we deduce that ∂xφ(t, x)

is bounded for every (t, x) ∈ R+ × R.

Step 3: |∂ xx φ| is bounded. Note that far from xm this derivative exists and it is bounded because of the regularity of a(t, x). To verify the boundedness near of xm we follow the same arguments as above for the first derivative, that is, we want to compute the following limits

lim x→x ∓ m ∂xφ(0, x) -∂xφ(0, xm) x -xm = lim x→x ∓ m -f (x) ∓ 2 √ A f (x) + 2B A f (x) 4f (x)(x -xm) , (2.84)
where f (x) = ā(xm) -ā(x) as before. Using the Taylor expansion for f (x) around x = xm the above limit can be developed as follows

-f (x) = -2A(x -xm) -3B(x -xm) 2 + o((x -xm) 2 ), 2 √ A f (x) = 2A|x -xm| 1 + B A (x -xm) + o(x -xm) = 2A|x -xm| 1 + B 2A (x -xm) + o(x -xm) 2B A f (x) = 2B(x -xm) 2 + o((x -xm) 2
). We substitute into (2.84) and it holds that the terms remaining in the numerator are o((x -xm) 3 ), that is the same order of the denominator.

Step 4: λ 2 = -ā xx (x m )/2. We next evaluate the second equation in (2.71) at x = xm to obtain λ2 = -āxx(xm)/2.

An illustrating biological example

In this section we discuss the effect of the periodic fluctuations on the critical speed of survival and the dynamics for the following particular growth rate

a(t, x) = r -g(t)(x -θ(t)) 2 , (2.85)
where r is a positive constant which represents the maximal growth rate. The function g(t) is a 1-periodic function representing the oscillations on the selection pressure and the 1-periodic function θ(t) is representing the fluctuations on the optimal trait. We introduce the effect of a climate shift on the trait x as follows

a(t, x -ct) = r -g(t)(x -ct -θ(t)) 2 , (2.86)
where c > 0 is the climate speed. Note that all the computations that follow have been done with 1-periodic functions g(t) and θ(t) for simplicity but they can be generalized to every period T without a great cost.

We then substitute into (2.13) after the change of variable x = x + ct, it holds

∂tnε -cε∂xnε -ε 2 ∂xxnε = nε r -g(t)(x -θ(t)) 2 -ρε(t) ; ρε(t) = R nε(t, x)dx.
We compute the mean of a(t, x)

a(x) = 1 0 a(t, x)dt = r -x 2 ḡ + 2xg1 -g2, where ḡ = 1 0 g(t)dt, g1 = 1 0 g(t)θ(t)dt, g2 = 1 0 g(t)θ 2 (t)dt,
and we observe that the maximum of a(x) is attained at xm = g 1 ḡ , with

ā(xm) = r + g 2 1 ḡ -g2.
Moreover from the Theorem 2.7-(ii) we obtain that ψ(x) the solution of the Hamilton-Jacobi equation (2.15) attains its maximum at

x = xm - c 2 √ ḡ = g1 ḡ - c 2 √ ḡ .
Let ψ(x) be given by (2.19), then for this specific growth rate it can be written as follows

ψ(x) = c 2 xm - c 2 √ ḡ -x + xm xm-c 2 √ ḡ ḡ(y -xm) 2 dy - x xm ḡ(y -xm) 2 dy = - √ ḡ 2 x + c 2 √ ḡ - g1 ḡ 2 = - √ ḡ 2 (x -x) 2 .
The results on Theorem 2.7-(i) also implies that for small values of ε we have

ρ ε ≈ r + g 2 1 ḡ -g2 - c 2 4 -ε ḡ, c * ε ≈ 2 r + g 2 1 ḡ -g2 -ε ḡ.
Moreover by following the arguments in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]-Section 5, we can also obtain an approximation of order ε for the phenotypic mean µε and the variance σ 2 ε of the population's distribution, that is:

µε(t) ≈ g1 ḡ - c 2 √ ḡ + εD(t), σ 2 ε ≈ ε √ ḡ ,
where D(t) = ∂xφ(x, t) for φ the solution of the system (2.71). One can verify that for this growth rate we have

D(t) = -c ḡ t - 1 2 + 2 1 0 τ 0 g(s)(x -θ(s))dsdτ -2 t 0 g(s)(x -θ(s))ds.
Note that the phenotypic mean is 1-periodic since

D(0) = D(1). Moreover µε(t) = g 1 ḡ -c 2 √ ḡ since 1 0 D(t)dt = 0.
We are now interested in comparing these quantities with the case where there is no fluctuations. To do that we first consider a case where g(t) = g > 0 is constant and then a case where θ = 0 is constant.

Case 1. g(t) = g constant. Note that, in such a case g1 = g θ and g2 = g

1 0 θ 2 (t)dt with θ = 1 0 θ(t)dt. We compute ρ ε,g(t)=g ≈ r + g θ2 - 1 0 θ 2 (t)dt - c 2 4 -ε √ g, µ ε,g(t)=g (t) = θ - c 2 √ g , c * ε,g(t)=g ≈ 2 r + g θ2 - 1 0 θ 2 (t)dt -ε √ g.
We compare then, the sub-cases where θ is constant or periodic.

a) If θ(t) ≡ θ 1/2 is constant equal to its valueat t = 1/2, without lost of generality (i.e. θ 1/2 := θ(1/2)), we obtain in particular θ2 = 1 0 θ 2 (t)dt and we have

ρ ε,c ≈ r - c 2 4 -ε √ g, µε,c(t) = θ 1/2 - c 2 √ g , c * ε,c ≈ 2 √ r -ε √ g. b) If θ(t) is a 1-periodic function then, θ2 < 1 0 θ 2 (t)dt and we obtain ρ ε,p r - c 2 4 -ε √ g, µε,p(t) = θ - c 2 √ g , c * ε,p 2 √ r -ε √ g.
Thus, by keeping the pressure of selection constant, we deduce that

ρ ε,p ≤ ρ ε,c and c * ε,p ≤ c * ε,c .
This means that having an oscillating optimal trait is not beneficial for the population, in the sense that the mean total size of the population decreases with respect to the case with a constant optimal trait and the critical speed which leads the population to extinct is smaller in the periodic case.

Case 2. θ(t) = θ constant. Note that, in such a case g1 = ḡθ and g2 = ḡθ 2 . We compute

ρ ε,θ(t)=θ ≈ r - c 2 4 -ε ḡ, µ ε,θ(t)=θ (t) = θ - c 2 √ ḡ , c * ε,g(t)=g ≈ 2 √ r -ε ḡ.
We compare then, the sub-cases where g is constant or periodic.

a) If g(t) ≡ g 1/2 is constant equal to its value at t = 1/2, without lost of generality (i.e. g 1/2 := g(1/2)), we obtain

ρ ε,c ≈ r - c 2 4 -ε √ g 1/2 , µε,c(t) = θ - c 2 √ g 1/2 , c * ε,c ≈ 2 √ r -ε √ g 1/2 . b) If g(t) is a 1-periodic function then we obtain ρ ε,p ≈ r - c 2 4 -ε ḡ, µε,p(t) = θ - c 2 √ ḡ , c * ε,p ≈ 2 √ r -ε ḡ.
In this case by keeping the optimal trait constant we can deduce that if we choose an oscillating selection pressure function g(t) which satisfies:

ḡ < g(1/2), (2.87)
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then we obtain that

ρ ε,c < ρ ε,p and c * ε,c < c * ε,p .
This means that the mean total size of the population increases with respect to the case with a constant selection pressure. Moreover, the critical speed above which the population goes extinct is larger in the periodic case. This means that the periodic fluctuations can help the population to follow the environment change.

Note that the condition (2.87) imposed to g(t) is the opposite to the one imposed in Chapter 1, equation (1.51) (see also [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF]), leading to more performant populations. There, it was proved that in presence of the mutations and while the fluctuations act on the pressure of the selection (that is with a similar growth rate, however with c = 0 and under the condition ḡ > g(1/2)), a fluctuating environment can select for a population with smaller variance and in this way lead to more performant populations. What is beneficial in a (in average) constant environment may indeed be disadvantageous in a changing environment.

Note also that in the present example under condition (2.87), we have

µε,p(t) -θ > µε,c(t) -θ .
This means that even if the population can follow the climatic change in a better way by considering a fluctuating environment, this population is less well adapted.

2.A The proofs of some regularity estimates 2.A.1 Uniform bounds for ρ ε

Proof of Proposition 12.

From equation (2.13) integrating in x ∈ R and using assumption (H1) we obtain:

dρε dt = R nε(t, x)[a(t, x) -ρε(t)]dx ≤ ρε(t)[d0 -ρε(t)]. (2.88)
This implies that

ρε(t) ≤ ρM := max(ρ 0 ε , d0).
For the lower bound we use the explicit expression for ρε in (2.64), the solution of (2.9).

We come back to equation (2.49), which gives, thanks to (H1), (2.50) and (2.64) the following lower bound for ρε

0 < ρm := 1 T e -d 0 T e λmT -1 ≤ ρε(t), ∀ t ≥ 0.

2.A.2 Upper bound for ψ ε : the proof of the r.h.s of (3.3)

We prove that ψε is bounded from above using the equation for nε. From (2.6), we have for pcε: We recall that pcε is uniquely determined once pcε(0, x) L ∞ (R) = 1 is fixed. Then, one can choose xε such that pcε(0, xε) = 1. Note also that qε is a nonnegative solution of (2.90) in the bounded domain (0, 2T ) × B( xε ε , 1). Here we apply an elliptic-type Harnack inequality for positive solutions of (2.90) in a bounded domain, (see for instance Theorem 2.5 [START_REF] Húska | Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains[END_REF]). Let δ0, be such that 0 < δ0 < T , then we have:

pcε(t, x) ≤ pcε L ∞ e -1 ε -c 2 + δ+ c 2 2 (|x|-R 0 ) , ∀(t, x) ∈ [0, +∞) × R. ( 2 
sup x∈B( xε ε ,1) qcε(t, x) ≤ C inf x∈B( xε ε ,1) qcε(t, x), ∀ t ∈ [δ0, 2T ],
where C is a positive constant depending on δ0 and d0. Coming back to pcε this implies

pcε(t0, xε) ≤ sup y∈B(xε,ε) pcε(t0, y) ≤ Cpcε(t0, x), ∀(t0, x) ∈ [δ0, 2T ] × B(xε, ε). (2.92)
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And we use the T -periodicity of pcε to conclude that the last inequality is satisfied for t ∈ [0, T ].

From (2.28), (2.89) and (2.92) we obtain nε(0, x) ≤ ρM pcε(0, x)

R pcε(0, x)dx ≤ ρM Cpcε(0, x) B(xε,ε) pcε(0, xε)dx = ρM Cpcε(0, x) |B(xε, ε)| ≤ C ε -1 exp c 1 -c 2 |x| ε ,
for all ε ≤ ε0, with ε0 small enough, where the constant c1 depends on ρM , δ, R0 and c, and c2 = -c 2 + δ + c 2 2 . Next we proceed with a maximum principle argument to obtain for every (t, x)

∈ [0, +∞) × R and c3 = c2(c + c2) + d0, nε(t, x) ≤ C exp c 1 -c 2 |x| ε +c 3 t .
From the latter inequality and the periodicity of ψε, with an abuse of notation for constant c1, we deduce that:

ψε(t, x) ≤ c1 -c2|x|, ∀(t, x) ∈ [0, +∞) × R.
(2.93)

2.A.3 Equicontinuity in time for ψ ε

We will use the arguments in [START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF], which follow a method introduced in [START_REF] Barles | A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations[END_REF], in order to deduce uniform equicontinuity in time for the family ψε on compact subsets of (0, +∞) × R.

The goal will be to find for any η > 0, constants Λ1, Λ2 large enough such that: for any x ∈ B(0, R/2), s ∈ [0, T ], and for all ε < ε0 we have

ψε(t, y) -ψε(s, x) ≤ η + Λ1|x -y| 2 + εΛ2(t -s), ∀(t, y) ∈ [s, T ] × BR(0), (2.94) 
and According to Section 3.2.1, {ψε}ε is locally uniformly bounded, so we can find a constant Λ1 such that for all ε < ε0,

ψε(t, y) -ψε(s, x) ≥ -η -Λ1|x -y| 2 -εΛ2(t -s), ∀(t, y) ∈ [s, T ] × BR(0). ( 2 
8 ψε L ∞ ([0,T ]×B R (0)) R 2 ≤ Λ1.
With this choice, ξ(t, y) > ψε(t, y) on [s, T ] × ∂BR(0), for all η > 0, Λ2 > 0 and x ∈ B R/2 (0).

Next we prove that, for Λ1 large enough, ξ(s, y) > ψε(s, y) for all y ∈ BR(0). We argue by contradiction. Assume that there exists η > 0 such that for every constant Λ1 there exists

y Λ 1 ,ε ∈ BR(0) such that ψε(s, y Λ 1 ,ε) -ψε(s, x) > η + Λ1|y Λ 1 ,ε -x| 2 .
(2.96)

This implies

|y Λ 1 ,ε -x| ≤ 2ΨM Λ1 -→ 0, as Λ1 → ∞,
where we have denoted ΨM a uniform upper bound for ψε L ∞ ([0,T ]×B R (0)) . Then for all δ1 > 0, there exist Λ1 large enough and ε0 small enough, such that ∀ε < ε0,

|y Λ 1 ,ε -x| ≤ δ1.
Therefore, from the uniform continuity in space of ψε taking δ1 small enough, we obtain

|ψε(s, y Λ 1 ,ε ) -ψε(s, x)| < η/2 ∀ε ≤ ε0,
but this is a contradiction with (2.96). Therefore ξ(s, y) > ψε(s, y) for all y ∈ BR(0).

Finally, noting that R < +∞ we deduce that for Λ2 large enough, ξ is a super-solution to (2.29) in [s, T ] × BR(0).

Using a comparison principle, we have

ψε(t, y) ≤ ξ(t, y) ∀(t, y) ∈ [s, T ] × BR(0).
Thus (2.94) is satisfied for t ≥ s ≥ 0. To conclude we put x = y and obtain that for all η > 0 there exists ε0 > 0 such that for all ε < ε0

|ψε(t, x) -ψε(s, x)| ≤ η + εΛ2(t -s),
for every (t, x) ∈ [0, T ] × BR(0). This implies that ψε is locally equicontinuous in time. Moreover we obtain that

∀R > 0, sup t∈[0,T ], x∈B R |ψε(t, x) -ψε(s, x)| → 0 as ε → 0. (2.97)

2.B Proof of Proposition 2.15 2.B.1 Some preliminary results for the uniqueness in a bounded domain

To provide the proof of Proposition 2.15, we first present a result given in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF].

Theorem 2.19 Let H : Ω × R × R → R be of the form H(x, u, Du) = 0, x ∈ Ω ⊂ R. ( 2 

.98)

We assume that

∀ R > 0, H is uniformly continuous on Ω × [-R, R] × BR, (2.99) ∀ R > 0 ∃γR a positive constant such that, H(x, u, p) -H(x, v, p) ≥ γR(u -v), ∀x ∈ Ω, ∀p ∈ R, -R ≤ v ≤ u ≤ R. (2.100) Let u, v ∈ C(Ω) ∩ L ∞ (Ω)
being respectively viscosity sub-solution and super-solution of (2.98) and such that u

-v ≤ 0 on ∂Ω. Then if u, v ∈ W 1,∞ (Ω)
we have the following inequality:

(u -v) + L ∞ (Ω) ≤ (u -v) + L ∞ (∂Ω) .
(2.101)

In fact, for our problem in the bounded domain, we apply the following Corollary.

Corollary 2.20 Let H(x, t, p) ∈ C(Ω × R × R) be convex in p. In addition we assume that

∀R > 0, ∃αR : H(x, t, p) -H(x, s, p) (t -s) ≥ αR(t -s) 2 . (2.102) Let u, v ∈ W 1,∞ loc (Ω) ∩ C(Ω) satisfy H(x, u, Du) = 0, a.e in Ω H(x, v, Dv) ≤ 0, a.e in Ω.
Then if Ω is bounded we have

(u -v) + L ∞ (Ω) ≤ (u -v) + L ∞ (∂Ω) .
We provide the proof of Theorem 2.19 but we skip the proof of this corollary since it is analogous to the proof of Theorem 2.19.

Proof.

We define R = max( u ∞, v ∞) and γ = γR. The goal of the proof will be to prove that M = max Ω (u -v) is negative.

We suppose by the contrary that M > 0, since u ≤ v on ∂Ω, the maximum cannot be attained on the boundary. Since u and v are not necessary regular functions, the idea to resolve this difficulty is what is known as the variable doubling.

We introduce the "test-function":

Ψ (x, y) := u(x) -v(y) - |x -y| 2 2 .
Because of this penalization term |x-y|2 2 which imposes to the points of maximum (x, y) of ψ to verify that x ∼ y if is small, we can obtain that the maximum of Ψ denoted as M , is close to the maximum of u -v. In fact this idea is justified by the following:

Lemma 2. [START_REF] Bolker | Using moment equations to understand stochastically driven spatial pattern formation in ecological systems[END_REF] The following properties are satisfied (i) M → M as → 0.

(ii) Si (x , y ) is a maximum point of ψ , we have:

|x -y | 2 2 → 0, as → 0, u(x ) -v(y ) → M, as → 0. (iii) x , y ∈ Ω if is small enough. (iv) Moreover, if u or v is Lipschitz continuous in x, then the penalization term p = 2(x -y ) 2
, is bounded by twice the Lipschitz constant of u or v.

We refer to Lemma 2.3 in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] for proof of this technical Lemma.

We use the statement (iii) assuming that is small. Note that (x , y ) is a maximum point of the function:

x → u(x) -ϕ 1 (x),
where

ϕ 1 (x) = v(y ) + |x -y | 2 2 .
Since u is a viscosity sub-solution of (2.98) and x ∈ Ω, then:

H(x , u(x ), Dϕ 1 (x )) = H x , u(x ), 2(x -y )
Analogously, y is a maximum point of the function:

y → v(y) -ϕ 2 (y),
where

ϕ 2 (y) = u(x ) + |x -y| 2 2 ;
thus y is a minimum point of the function v -ϕ 2 ; therefore v is a viscosity super-solution of (2.98) and y ∈ Ω, then:

H(y , v(y ), Dϕ 2 (y )) = H y , v(y ), 2(x -y ) 2 ≥ 0.
We subtract then both viscosity inequalities:

H x , u(x ), 2(x -y ) 2 -H y , v(y ), 2(x -y ) 2 ≤ 0.
We add and subtract H (x , v(y ), p ), then the inequality reads:

H (x , u(x ), p ) -H (x , v(y ), p ) ≤ H (y , v(y ), p ) -H (x , v(y ), p ) . ( 2 

.103)

Now we use the statement about p in Lemma 2.21(ii), to write

|p | ≤ Du ∞, (2.104) 
for Du ∞ the Lipschitz constant of u.

We then conclude easily by applying hypothesis (2.100) to the LHS in (2.103) and by using the convergence to zero of the term in the RHS, as a consequence of the uniform continuity of H on a compact set, in assumption (2.99). That is,

γ(u(x ) -v(y )) ≤ O(ε),
and this implies, after letting → 0 γM ≤ 0, which is a contradiction and the proof of uniqueness is complete.

Note that the above uniqueness result is proved under assumption (2.100).

In order to apply this theorem to the Hamiltonian in (2.54) we use a transformation suggested in the proof of Theorem 3.1 in [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF].

We provide the proof of the uniqueness in the case h(x) > α > 0 in Ω, with α a positive constant. The case with h(x) > 0 in Ω can be derived easily from this result.

2.B.2 Monotone transformation in a bounded domain

Let u solve

H(Dxu) = h(x),
in the viscosity sense, we make the following transformation 

v = 1 γ e γum -
(u1 -u2) + L ∞ (B R ) ≤ (u1 -u2) + L ∞ (∂B R ) .
This concludes the proof of the uniqueness of a viscosity solution of (2.54) in a bounded domain. 
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Introduction

In this chapter we are interested in the analytical and numerical resolution of the following equation

       ∂tnε(t, x) -ε 2 ∂xxnε(t, x) = nε(t, x)[a(t, x) -ρε(t)], (t, x) ∈ [0, +∞) × R, ρε(t) = R nε(t, x)dx, n(0, x) = n(T, x), (3.1)
for some particular choices of the periodic growth rate a. Here nε(t, x) represents the density of a phenotypically structured population in an environment which varies periodically in time with a period T . The biological meaning of the other quantities in the above model (3.1) are given below:

• a(t, x) is a time-periodic function, corresponding to the net growth rate of individuals;

• ε > 0 is an effective size of the mutations;

• ρε(t) is the total population size, whose product with nε(t, x) represents the death term due to the competition of the individuals.

We study several examples for particular growth rates a, construct explicit or semi-explicit solutions of (3.1), and illustrate the numerical solution of (3.1) considering different choices of ε. The existence and uniqueness of a periodic solution of (3.1) is guaranteed by Chapter 1. In each case, we first present an analytic study of an explicit or semiexplicit solution, obtained following the arguments in [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model[END_REF], (see also [START_REF] Chisholm | Evolutionary dynamics of phenotypestructured populations: from individual-level mechanisms to population-level consequences[END_REF] and [START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: An evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation[END_REF]) and then compute the moments of the population distribution to compare them with our approximations in Chapter 1. We next solve numerically (

for different choices of a and different values of the mutation parameter ε. By the numerical resolution we confirm the results in Chapter 1 for the small values of ε, where the solution nε concentrates around a single Dirac mass while the population total size ρε oscillates periodically in time. Moreover we illustrate the solution for these growth rates when the effect of mutations increases. Being motivated by the biological experience in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF] we also investigate in which situations a population evolved in a periodic environment outperfoms a population evolved in a constant environment when both populations are placed in the same constant enviroment. Finally, we study numerically the case where the function a attains its maximum twice in a period of time. Note that in this case the hypothesis in Chapter 1 are not valid anymore. We observe that, if the averaged growth rate takes two global maxima we can have dimorphic population, i.e, a phenotypic distribution with two peaks.

The plan of the chapter is as follows: In Section 3.1 we study a growth rate a where the oscillations act on the optimal trait, first by constructing an explicit solution and then numerically when the effect of mutations changes from small to larger values. Next in Section 3.2 we study the model with the function a having the oscillations on the pressure of selection, where in this case we construct a semi-explicit solution and then resolve numerically the problem, again for different values of the mutation rate ε. Finally, in Section 3.3 we study numerically the problem when the averaged growth rate takes more than one maximum in a period of time, first with these maxima being "symmetric", (in the sense that the second derivatives have the same behavior around both maximum points) and next in the case of "non-symmetric" maxima.

Oscillations on the optimal trait

In this section we study a particular growth rate a for the problem (3.1) where the oscillations act on the optimal trait and propose an explicit solution to the problem. In particular, we study the problem both analytically and numerically for two values of the mutation rate small and large.

Analytic study of the explicit solution

Let us consider the following growth rate:

a1(t, x) = r -g(x -c sin bt) 2 . (3.2)
Here r represents the maximal growth rate, g models the selection pressure and the term c sin bt models the oscillations of the optimal trait with period 2π b and amplitude c. We substitute into (3.1) and obtain:

∂tnε(t, x) -ε 2 ∆nε(t, x) = nε(t, x)[r -g(x -c sin bt) 2 -ρε(t)]. (3.3) 
We will show that the unique periodic solution of the above equation has the following form

N (t, x) = ρ(t) 2πσ 2 (t) exp - (x -µ(t)) 2 2σ 2 (t) , ( 3.4) 
with

ρ(t) = R N (t, x)dx, µ(t) = 1 ρ(t) R xN (t, x)dx, σ 2 (t) = 1 ρ(t) R (x -µ(t)) 2 N (t, x)dx. ( 3.5) 
From the results in Chapter 1 we know that problem (3.1) has a unique periodic solution, so it is enough to find a solution of the form (3.4). In fact we can prove that for this choice of a we have:

ρ(t) = exp (I(t)) K2 + t 0 exp (I(z)) dz -1 , µ(t) = 2cε √ g 4ε 2 g + b 2 (2ε √ g sin bt -b cos bt) , σ 2 (t) = ε √ g , (3.6) 
where K2 is a positive constant and

I(t) = (r -ε √ g)t - gc 2 b 2 (4gε 2 + b 2 ) 2 b 2 2 t - sin 2bt 2b + 2gε 2 t + sin 2bt 2b + ε √ g (1 -cos 2bt) .
Moreover the mean fitness of this population (at value τ = π b ) is given by

F (τ ) = r -ε √ g - 2ε 2 g 2 c 2 4ε 2 g + b 2 . ( 3.7) 
Note that, from this formula, the mean fitness decreases when the mutations have more important effect, that is, when the value of ε increases. The details of the computations for these expressions above are given in the last subsection of this section, namely sub-section 3.1.3.

It is interesting to compare these analytic results obtained from the explicit solution (3.4) with the analytic expressions given in Chapter 1 coming from an approximation of the solution of (3.1), as follows

nε(t, x) = 1 √ 2πε e u(x) ε +v(t,x)+εw(t,x) ,
for certain functions u(x), v(t, x) and w(t, x) computed in Chapter 1.

In Chapter 1, we approximate the following analytic formula for the moments and the mean fitness:

CHAPTER 3                      ρε(t) = R d nε(t, x)dx, ρε = 1 T T 0 ρε(t)dt, µε(t) = 1 ρε(t) R d x nε(t, x)dx, σ 2 ε (t) = 1 ρε(t) R d (x -µε) 2 nε(t, x)dx, Fε(τ ) = R d a(τ, x) 1 T T 0 nε(t, x) ρε(t) dtdx, (3.8) 
where ρε(t) denotes the total population size and ρε its mean in a period of time, µε(t), the mean phenotypic trait, σ 2 ε (t), the variance and Fε(τ ) the mean fitness computed in a constant environment. The following expressions were found coming from an approximation using the Hamilton-Jacobi approach ρε,approx(t) ≈ r -

gc 2 2 -ε √ g, µapprox(t) ≈ 2εc b √ g sin bt - π 2 , σ 2 approx ≈ ε √ g , Fapprox(τ ) ≈ r -ε √ g. ( 3.9) 
Note that, our approximations in (3.9) match until order ε with the phenotypic mean µ and the mean fitness F obtained from the explicit solution, and the same variance σ 2 is obtained in both cases.

We are in particular motivated by a biological experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF]. There the authors study the dynamics of a population of bacterial pathogen evolved in different environments with constant or fluctuating temperature and after several weeks they compare their growth rates at the same conditions. An interesiting outcome of the experiment was that a population evolved in periodically fluctuating temperature (daily variation between 24 • C and 38 • C, mean 31 • C) was more performant that the strains evolved in constant temperature (31 • C), when both strains were placed in a constant environment with temperature 31 • C. This phenomenon is interesting since one could expect that the population evolved in a constant environment would select for the best trait in such environment. In Chapter 1 a well adapted analysis to the mentioned experiment was done and this phenomenon was analytically captured under some condition on the growth rate and considering small effect of mutations. Here we are interested in providing a numerical comparison between the moments and the mean fitness of two population evolved either in a periodic environment or in a constant one to illustrate the analytical results and to investigate the outcome for larger effect of the mutations.

To this end we first recall the expressions for the phenotypic density nc and the total size ρc of a population which has evolved in a constant environment with t = π b , (mean time), that is when the growth rate is given by a(π/b, x) = r -gx 2 . These quantities can be computed explicitly and it holds that nc = ρc g

1 4 √ 2πε exp - √ gx 2 2ε
, ρc = r -ε √ g, (see Chapter 1 for more details).

Moreover, the mean trait µc, the variance σ 2 c and the mean fitness Fc of such population, in an environment with the same temperature (t = π b ) are given below

µc = 0, σ 2 c = ε √ g , Fc = r -ε √ g.
Here we observe that, independently of the choice of the constants r, g and c, both populations (the one evolved in a constant environment and the other evolved under periodic fluctuations) have the same mean fitness at the same constant environment, up to order ε. Indeed, we remark that for larger values of ε the mean fitness of a population evolved in a periodic environment F (τ ) given in (3.7) is smaller than the mean fitness of the population evolved in a constant regime Fc.

Numerical simulations

In this subsection we consider again the growth rate a1 in (3.2). For the numerical computations we consider r = 2, g = c = 1 and b = 2π; this implies that a1 is a 1-periodic function. Note that in order to obtain the numerical solution of (3.1) we consider an initial value problem whose solution converges to the unique periodic solution of (3.1) (see the appendix for more details). The initialization values for such a Cauchy problem are (n0, ρ0) as follows:

n0(x) = e -|x-x 0 | 2 , ρ0 = 1, (3.10) 
for some x0 in the considered numerical domain. Along the whole section we use the notations µapprox, σ 2 approx and F approx to denote our analytic approximations in (3.9) and µε, σ 2 ε and Fε the respective quantities numerically computed from (3.8). We illustrate the results in two subsections for ε = 10 -2 and ε = 1.

Small effect of mutations

We first consider the case when the mutations are rare (that is, for ε = 10 -2 ), in order to compare the numerical results with those obtained analytically in Chapter 1, as the rate of mutations vanish.

The population's density and size

We illustrate in Figure 3.1 the density of the population and next in Figure 3.2 the dynamics of the total population size.

We observe, as it was analytically proved in Chapter 1, that when the mutations are small, the solution concentrates on a single point with small oscillations, while the size of the population varies periodically in time. 

The moments and the fitness

Here we compare the numerical approximations for the moments of the population's distribution and the mean fitness in (3.8) with the analytic formula provided in (3.9).

Note that the analytical results in Chapter 1 provide an approximation of such moments with an error of order ε Note that the curves look well approximated but in order to capture with more precision the order of the error, we compute explicitly in Table 3.1 the difference between the analytical and the numerical values. We observe that the error is in fact of order ε 2 = 10 -4 as expected from the analytic study. We remark that in Table 3.1 the third column correspond to the analytic difference between the expressions in (3.6)-(3.7) and the approximations in (3.9) for the values of the parameters given, while the fourth column refers to the difference between the same approximated values in (3.9)

and the numerical computations of the formula (3.8).

Furthermore from the simulations we are able to observe a delay between the mean phenotypic trait µε(t) and the Error Formula Analytic Value Numeric Value Mean Phenotypical Trait max

t∈[0,T ] (|µ ε (t) -µ approx (t)|) 1.0132 * 10 -5 1.1234 * 10 -4
Variance max

t∈[0,T ] (|σ 2 ε (t) -σ 2 approx (t)|) 0 5.639 * 10 -5
Mean Fitness | F ε -F approx | 5.0660 * 10 -6 6.3555 * 10 -5

Table 3.1 -Errors in the approximation of the moments of the population's distribution and the mean Fitness.

The approximations are of order ε 2 and the numerical error corresponds to this order. Parameters: ε = 10 -2 and a = a 1 is given in (3.2), with r = 2, c = g = 1, b = 2π.

optimal trait θ(t) = c sin bt (Figure 3.4). This phenomenon is well known in the biological litterature, the mean phenotypic trait oscillates with the same period as the optimal trait θ(t) but with a certain delay (see for instance [START_REF] Lande | The role of genetic variation in adaptation and population persistence in a changing environment[END_REF][START_REF] Burger | Evolution and extinction in a changing environment: A quantitative-genetic analysis[END_REF]). In this example the numerical delay corresponds to 0.24 which is close to the the analytic value π 2b , for b = 2π, found in Chapter 1. .4 -Comparison between the numerical approximation of µ ε (t) and the optimal trait θ(t). The time for which the population attains its optimal trait (that is sin bt = 1) is t ≈ 0.25 while the mean phenotypic trait attains this maximum value at time t ≈ 0.25 + 0.24, which leads to an approximate delay of 0.24. Note that the amplitude of the oscillations of the mean phenotypic trait (blue) is smaller than the one of the optimal trait (red). Here we have re-normalized the optimal trait by multiplying by ε to keep similar scaling. Parameters:

ε = 10 -2 and a(t, x) is given in (3.2), with r = 2, c = g = 1, b = 2π.
Following our motivation from the biological experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF], we compare the behavior of two populations evolved in different environments. We show in Table 3.2 the numerical values of the moments and the mean fitness of both cases: a population evolved in a constant environment and another one evolved under periodic fluctuations. Analogously to the results in Chapter 1, for this choice of the growth rate, the variance and the mean fitness do not change significantly from one environment to the other, but we remark that the averaged total population is smaller for the population evolved in a periodic environment, which is also consistent with our analytic computations (ρc -ρ ε ≈ gc 2 2 ) given in Chapter 1. Note that for the numerical values of the mean phenotypic trait and the variance in the periodic environment shown in Table 3.2 we compute the maximum values over a period since they are periodic functions of t as shown in Figure 3.3.

Again the notations µε, σ 2

ε and ρε in Table 3.2 correspond to the numerical value of the quantities in (3.8), while the variables with sub-index c represent the similar quantities for a population evolved in the constant environment.

Values

Periodic environment Constant environment Averaged Total Size [0, T ] ρε = 1, 4893

ρ c = 1, 9900 Mean Phenotypic Trait max t∈[0,T ] µ ε = 0, 00318 µ c ≈ 10 -19
Mean Variance max

t∈[0,T ] σ 2 ε = 0, 01 σ 2 c = 0, 0100 Mean Fitness 1, 9901 1, 9900
Table 3.2 -Comparison between the moments of the population's distribution and mean fitness for populations evolved in periodic and constant environments. Parameters: ε = 10 -2 and a = a 1 given in (3.2), with r = 2, c = g = 1, b = 2π.

Large effect of Mutations

In order to observe the behavior of the population under a larger rate of mutations, we now consider a different value for the parameter ε, and keep the same growth function a1.

Since we expect to have extinction for large values of ε we first compute the mean total size of the population as a function of the mutations rate, that is ε → ρ ε , to capture the maximum value of ε which avoids extinction. In Figure 3.5 we plot both the numerical value of the mean size ρε in (3.8) and the approximated mean total size ρε,approx computed in (3.9). Note that, for the choice of the parameters (r, b, c, g) given in Figure 3.5 it is sufficient to take the rate of mutations smaller than εmax = 1.3 to avoid the extinction of the population. Note also that the approximation given in (3.9) is better for the smaller values of ε which is coherent.

For the simulations in this subsection we consider ε = 1, to keep an acceptable total population size.

The population's density and size

In Figure 3.6 we first plot the distribution density of the population nε(t, x) along two periods (Figure 3.6a) and then for three fixed times in one period, i.e. nε(ti, x), i ∈ {1, 2, 3} (Figure 3.6b), similarly as we have done in the previous subsection. We observe that the solution has a distribution around the optimal trait, but this distribution is much less concentrated comparing to the case with ε small. In fact the maximum value of n(t fix , x), for t fix a fixed value of time in a period, is attained nearly to but not exactly at the optimal trait x = 0 = max a1. This is due to the effect of mutations.

This distribution still has a time-periodic behavior as expected and the periodic oscillations are more remarkable for this larger ε. Indeed in Figure 3.7 we illustrate the dynamics of the periodic total population size along two periods of time.

(a) 

The moments and the fitness

We next compare the numerical approximations obtained for the moments of the population's phenotypic distribution with their analytic expression provided in (3.9) with ε = 1, (see Figure 3.8). We observe that the variance (in red) is still well approximated by a constant, which is not surprising since our approximation in (3.9) coincides with the exact value in (3.6). However, in the plot of the phenotypic means (in blue) we observe a larger error between both curves which comes from the fact that increasing ε leads to a larger difference between the values of µ(t) in (3.6) and (3.9). Analogously as we have done in the previous subsection, we show in Table 3.3 the error in the approximations by taking the difference between the values of the analytic formula and the approximated values. The notations are similar as in the previous subsection. Again, note that the third column corresponds to the analytic difference between the expressions in (3.6) and the approximated values (3.9) for the values of the parameters given, while the fourth column refers to the difference of the same approximated values in (3.9) with the numerical computations of the formula in (3.8). It is interesting to point out that these errors are of order less than ε 2 = 1. In particular, we observe that these approximations are consistent with the explicit expressions in (3.6) and (3.7).

Error Formula Analytic value Numeric Value Mean Phenotypic Trait max Furthermore, for this value of ε we are able to catch "better" (without rescaling the optimal trait), the phenomenon of the delay that experiments the mean phenotypic trait of the population with respect to the optimal trait (Figure 3.9). In this case we obtain a delay of around 0.2 which is smaller than the one in the previous case (delay = 0.24 for ε = 10 -2 ).

t∈[0,T ] (|µ ε (t) -µ approx (t)|) 0.0920 0.1093 Variance max t∈[0,T ] (|σ 2 ε (t) -σ 2 approx (t)|) 0 6.25 * 10 -4 Fitness | F ε (t) -F approx (t)| 0.0460 0.0409 Table 3.3 -
This shows that the mutations may help the population to follow the environmental changes. Figure 3.9 -Comparison between the numerical approximation of µ ε (t) with the optimal trait θ(t). The time for which the population attains its optimal trait (that is sin bt = 1) is t ≈ 0.25 while the mean phenotypic trait attains this maximum value at time t ≈ 0.25 + 0.2, which leads to an approximate delay of 0.2. Parameters:

ε = 1 and a = a 1 given in (3.2), with r = 2, c = g = 1, b = 2π.
Again we compare the behavior of two populations evolved in different environments. We show in Table 3.4 the numerical values of the moments and the mean fitness for two populations: one evolved in a constant environment and the other evolved under periodic oscillations. The notations are similar to the Table 3.2.

Values Periodic environment

Constant environment Averaged Total Size [0, T ] ρε = 0, 5406

ρ c = 1 Mean Phenotypic Trait max t∈[0,T ] µ ε = 0, 3043 µ c ≈ 10 -17
Mean Variance max Note that in contrast with the case for ε = 10 -2 , here the mean fitness of the population evolved in a periodic environment is smaller than the mean fitness of the population evolved in a constant environment. Larger rate of mutations increases indeed the cost of fluctuations.

t∈[0,T ] σ 2 ε = 0, 9999 σ 2 c = 0,

Derivation of the explicit solution N (t, x) and the moments of the distribution

We now present the arguments to obtain the given expression for ρ, µ and σ in (3.6). Here, for the simplicity in the forward notations we introduce the function

f (t) = ε σ 2 (t) 2
such that the anzats in (3.4) read as follows

N (t, x) = ρ(t) √ π f (t) 4ε 2 1/4 exp - f (t) 4ε 2 1/2 (x -µ(t)) 2 , ( 3.11) 
and from here we compute 2 .

log(N ) = log(ρ(t)) + 1 4 log f (t) 4ε 2 - f (t) 4ε 2 1/2 (x -µ(t)) 2 + cst, 1 N ∂N ∂t = ρ (t) ρ(t) + 1 4 
f (t) f (t) - 1 4 
f (t) (ε 2 f (t)) 1/2 (x -µ(t)) 2 + f (t) ε 2 1/2 (x -µ(t))µ (t), 1 N ∂N ∂x = - f (t) ε 2 1/2 (x -µ(t)), 1 N ∂ 2 N ∂x 2 = - f (t) ε 2 1/2 + f (t) ε 2 (x -µ(t))
We now substitute the above formula of N and its derivatives into (3.3), and find

ρ (t) ρ(t) + 1 4 
f (t) f (t) - 1 4 
f (t) εf (t) 1/2 (x -µ(t)) 2 + f (t) 1/2 ε (x -µ(t))µ (t) = ε 2 - f (t) 1/2 ε + f (t) ε 2 (x -µ(t)) 2 + r -g(x -c sin bt) 2 -ρ(t) .
We then obtain the following ODE system by a factorization in powers of x:

                 f (t) = 4εf (t) 1/2 (g -f (t)), µ (t) = 2gε f (t) 1/2 (c sin bt -µ(t)), ρ (t) = (Q(t) -ρ(t)) ρ(t), (3.12) 
where

Q(t) = r -g(c sin bt -µ(t)) 2 -g ε f (t) 1/2 .
Note that, the above system, is "uncoupled" in the sense that we can find the solution f (t) from its own equation (Ricatti type equation with constant coefficients) and then substitute it in the equation for µ(t), which has also an explicit known solution. Finally we can substitute f (t) and µ(t) in the expression of Q(t) which allows us to obtain an explicit formula for ρ(t). We will do this in the following paragraphs.

Solving equation for f (t)

From the first equation in (3.12) we make the change of variables h(t) = (f (t)) 1/2 and obtain the following Ricatti type equation:

h (t) = 2ε(g -h 2 (t)).
Since g > 0 this equation can be analytically solved by the method of separable variables and we obtain the following solution:

h(t) = √ g 1 + Ke -4tε √ g 1 -Ke -4tε √ g , where K is the integrating constant.
We recall that we are looking for periodic solutions of the parabolic system. The periodicity condition implies that h(0) = h(T ) since f has to be T -periodic. It holds that

h(T ) = √ g 1 + Ke -4T ε √ g 1 -Ke -4T ε √ g = √ g 1 + K 1 -K = h(0) ⇒ K = 0,
since g, ε, T > 0. Thus the T -periodicity condition leads to f (t) = g. This implies also that the variance is constant,

σ 2 (t) = ε √ g .

Solving equation for µ(t)

We first substitute the solution f (t) = g into the second equation of (3.12), it gives:

µ (t) = 2ε √ g(c sin bt -µ(t)).
This equation can be solved by integrating factor method. The solution can be expressed as follows

µ(t) = 2cε √ g 4ε 2 g + b 2 (2ε √ g sin bt -b cos bt) + K1e -2εt √ g ,
where K1 is the integrating constant. Since we look for solutions with the same period of the optimal trait, it holds that K1 = 0 in order to have µ(0) = µ(2π/b). This gives for µ(t) the expression in (3.9).

Solving equation for ρ(t)

After a standard substitution κ(t) = 1/ρ(t) in order to linearize the third equation in (3.12), we can integrate it and the function κ can be written as follows:

κ(t) = exp - t 0 Q(s)ds K2 + t 0 exp s 0 Q(θ)dθ ds ,
where K2 can be computed by using the T -peridicity of κ(t) and we obtain:

K2 = T 0 exp t 0 Q(s)ds dt exp T 0 Q(s)ds -1 .
This gives, after substitution of the expression for f (t) and µ(t), the following formula for ρ(t):

ρ(t) = exp (I(t)) K2 + t 0 exp (I(z)) dz -1 , ( 3.13) 
where 

I(t) = (r -ε √ g)t - gc 2 b 2 (4gε 2 + b 2 ) 2 b 2 2 t - sin 2bt 2b + 2gε 2 t + sin 2bt 2b + ε √ g (1 -cos 2bt) ,

The computation of the mean fitness

With these results we are able to compute also the mean fitness for the phenotypic density N (t, x). Indeed we compute

F (τ ) = R a1(τ, x) 1 T T 0 N (t, x) ρ(t) dtdx.
We consider the mean value τ = π b since the function a1 is 2π b -periodic. We compute then

F π b = R (r -gx 2 ) b 2π 2π/b 0 ρ(t) √ 2πε f (t) 1/4 exp -f (t) 1/2 2ε (x -µ(t)) 2 ρ(t) dtdx.

CHAPTER 3

After a simplification and a substitution of the known expressions for f (t) and µ(t) we obtain:

F π b = b 4 √ g (2π) 3/2 ε 1/2 2π/b 0 R (r -gx 2 ) exp - √ g 2ε (x -µ(t)) 2 dtdx,
which is an analytically integrable function giving (3.7).

Oscillations on the pressure of selection

In this section we study another particular growth rate a for the problem (3.1) where the oscillations act on the pressure of selection and obtain a semi-explicit solution to the problem. Again, we study the problem both analytically and numerically for two values of the mutation rate small and large. In particular, with this analysis we arrive to capture the phenomenon observed in the biological experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF].

Analytic study of the semi-explicit solution

Let us consider now a growth rate function as follows:

a2(t, x) = r -g(t)x 2 . (3.14)
In this example r represents again the maximal growth rate and g(t) the pressure of selection, which we consider not constant anymore as in the previous example but a positive 1-periodic function. Note that the optimal trait in this example is constant equal to 0. We substitute into (3.1) and obtain:

∂tnε(t, x) -ε 2 ∆nε(t, x) = nε(t, x)[r -g(t)x 2 -ρε(t)]. (3.15)
We show that the unique solution to (3.15) has the following form, analogous to the first example, i.e.,

N (t, x) = ρ(t) 2πσ 2 (t) exp - (x -µ(t)) 2 2σ 2 (t) , ( 3.16) 
with ρ(t), µ(t) and σ 2 (t) as in (3.5). Again from the results in Chapter 1 we know that problem (3.1) has a unique periodic solution, so it is enough to find a solution in this form. We also prove that for this choice of a we have:

ρ(t) = exp (I2(t)) K3 + t 0 exp (I2(z)) dz -1 , µ(t) = 0, σ 2 (t) = ε f (t) (3.17) 
with

I2(t) = rt -ε t 0 g(s) f (s) 1/2 ds, ( 3.18) 
and f the solution to the following equation ent environments: constant versus periodic. We show in Table 3.6 this comparison. Note that again the mean total size of the population evolved in a periodic environment is smaller than the one evolved in a constant regime.

df dt = 4ε f (t)(g(t) -f (t)). ( 3 
Moreover, these results show that the population evolved in a periodic environment has a larger fitness than the one evolved in a constant environment, when they are both placed in a constant environment (with t = 1/2). This is consistent with our analytic results in Chapter 1. Note indeed that, with the pressure of the selection g(t)

given in (3.14), we have

1 0 g(t)dt = 1, 5 > 0, 5 = g(1/2).
This satisfies the necessary condition g > g(T /2) given in the analytic study, (see Chapter 1) which implies that the population evolved in a periodic environment outperforms the population evolved in a constant environment. Note that both of these environments select for populations with the same phenotypic mean trait x = 0. However, the population evolved in a periodic environment has a smaller variance comparing to the one evolved in a constant environment. This makes the population evolved in the periodic environment more performant. 

Error

Large effect of Mutations

In this subsection we study the behavior of the phenotypic density of a population with the same growth rate (3.14) under larger effect of mutations. First, it is convenient to know the maximum value of ε that we can consider such that the population does not get extinct. We plot ε → ρ ε in Figure 3.13. Analogously as for the previous growth rate, in We observe in Figure 3.13 that, with this choice of the parameters (r, b) it is enough to take a rate of mutations to be smaller than εmax = 1.5 which is the threshold above which the population goes extinct. Moreover, the approximation remains better for smaller values of ε as for the previous example.

Again we will consider ε = 1, to keep an acceptable total population size.

The population's density and size

In Figure 3. It is not surprising that the population is distributed around the optimal trait, but as in the previous example the population distribution is less concentrated than in the case with ε = 10 -2 . As well, it is worth noticing that the time-periodicity of nε is more observable for this value of ε than for the smaller value ε = 10 -2 in Figure 3.10.

Next in Figure 3.15 we show the periodic oscillations of the total size of the population.

The moments and the fitness

Next we compare again the analytic expressions of the moments of the population's distribution in (3.21) with the numerical approximations of (3.8), this time for larger effect of mutations, (see Figure 3.16).

We observe that, the mean phenotypic trait (in blue) is still well approximated by a constant which is in accordance with the analytic results in (3.17). The variance (in red) however has important oscillations when the mutations are frequent (ε = 1). Such oscillations were not captured in our first order approximations for ε small. Such second order oscillations were however predicted by (3.17 We follow the structure in the previous subsections, and show in Table 3.7 the error in the approximations by taking the difference between the analytical and the numerical values. Note that the order of the error in these approximations is smaller than ε 2 = 1 as expected.

We next, compare the behavior of two populations evolved either in a constant environment or under periodic oscillations. We show in Table 3.8 the numerical values of the moments and the mean fitness for these two populations. The notations are similar to Table 3.4.

Note that, the conclusion here is analogous to the one for the smaller effect of mutations, that is, the population evolved in a periodic environment has a larger fitness, than the one evolved in a constant temperature. Again the environment select for a population with the same phenotypic mean and a smaller variance. Note indeed that the difference between the mean fitness of the two populations is more important comparing to the case with ε = 10 -2 (Table 3.6).

Larger effect of mutations is in this case more favorable to the population evolved in a periodic environment. We deduce in particular that the phenomenon observed in the experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF] can occur in a case where the fluctuations act on the pressure of selection and with large or small effect of the mutations.

Derivation of the explicit solution N (t, x) and the moments of the distribution

In this section we present the arguments to obtain the expressions in (3.17). Again for simplicity in the forward notations we introduce f (t) = ε σ 2 (t) 2 so that the anzats (3.16), reads as in (3.11). After a substitution into (3.15) we obtain an ODE system similar to (3.12). It reads as follows: (3.22) where

               f (t) = 4εf (t) 1/2 (g(t) -f (t)), µ (t) = 2εf (t) -1/2 (1 -µ(t))g(t), ρ (t) = [Q2(t) -ρ(t)]ρ(t),
Q2(t) = r -g(t)(1 -µ(t)) 2 -εg(t)f (t) -1/2 .
We remark that, on the contrary to the previous example, in this case we cannot resolve analytically the whole above system, the equation for f (t) being a Ricatti type differential equation, with variable coefficients. However we can still obtain some information from the last ODE system.

Solving equation for f (t)

By analogous arguments for solving the equation satisfied by f in (3.12) we obtain the following Ricatti equation for

h(t) = f (t) 1/2 : h (t) = 2ε(g(t) -h 2 (t)).
We integrate in [0, T ] and use the periodicity of h; it holds

T 0 f (t)dt = T 0 g(t)dt,
which implies that the function f has the same mean in one period of time that the given T -periodic function g(t).

Note that this does not imply that f (t) = g(t); indeed this latter equality is satisfied if and only if g(t) = g constant.

Solving equation for µ(t)

From the second equation in (3.22) we obtain

µ(t) = µ(0) exp -2ε t 0 g(s) (f (s)) 1/2 ds .
The T -periodicity of µ leads to the only possible solution µ(t) = 0.

Solving equation for ρ(t)

Finally from the explicit formula computed for ρ(t) in the previous example (3.23), we obtain after substituting the value of µ that:

ρ(t) = exp (I2(t)) K3 + t 0 exp (I2(z)) -1 , ( 3.23) 
where I2 is given in (3.18) and

K3(t) = exp T 0 I2(s)ds exp (I2(T )) -1 .

The computation of the mean fitness

We consider the mean value τ = 1 2 since the function a1 is 1-periodic and compute the mean fitness at this point; that is

F (1/2) = R r -g(1/2)x 2 1 0 ρ(t) √ 2πε f (t) 1/4 exp -f (t) 1/2 x 2 2ε ρ(t) dtdx,
which gives after a simplification and integration

F (1/2) = r -εg(1/2) 1 0 f (t) -1/2 dt.

Numerical examples with several maxima for ā

In the analytic study in Chapter 1, we have assumed that there exists a single maximum point for the averaged growth rate ā(x) = 1 T T 0 a(t, x)dt. However, in order to go further, in this subsection we consider the averaged growth rate, having two maximum points, and study numerically the behavior of the solution.

Our first example consists in an averaged growth rate having two "symmetric" maxima, i.e. the second derivatives at these points are the same. Next we go further and consider another function with "non symmetric" maxima.

We follow the structure of the previous subsections and study the numerical solutions for both values of ε = 10 -2 and ε = 1.

Symmetric maxima

We consider here the following growth rate

aS(t, x) = 1 -(x -x1) 2 (x -x2) 2 (1 -x), if t ∈ [0, 1/2], 1 -(x -x1) 2 (x -x2) 2 x, if t ∈ (1/2, 1], (3.24) 
where x1 and x2 are real numbers. Note that the second derivatives of ā(x) at maximum points are equals, indeed:

ā S (x) = -2(x -x1) 2 -2(x -x2) 2 ) -8(x -x1)(x -x2), which implies that ā S (x1) = ā S (x2) = -2(x1 -x2).
For the numerical computations we vary the values of x1 and x2.

Small effect of mutations

In Figure 3.17 we show different behaviors of the population density depending on the position of the maximum points of a considering a small effect of mutation ε = 10 -2 .

We split the graphics into three groups depending on the distance between x1 and x2. Along the three sub-figures (Figure 3.17 Moreover, in the three cases the total population size oscillates periodically in time. Note that as we are considering a non regular growth rate we obtain a population size function which is also non regular.

Large effect of mutations

In order to study the situation with a large effect of mutations, we first compute the maximum value of ε, such that the population does not get extinct. We show in Figure 3.18 the plot ε → ρ ε .

We note in Figure 3.18 that for ε < 1.7 the population does not get extinct. However we observe, contrarily to the previous examples that the dependence of the mean total size on ε is not monotonous and the maximal population size is given for the intermediate values of ε. Here, we consider ε = 1, and maximum points x1 = 0.1 and x2 = 0.9. Note that for this value of ε the plots have more or less the same behavior and do not depend significantly on the values of x1, x2. We show in Figure 3.19 the phenotypic density as a function of time and trait over two periods of time (3.19a) and at three fixed times within one period (3.19b); and the total population size is illustrated in (3.19c).

We illustrate the periodic oscillations of the dominant trait around the maximum points of aS. Note that, the dominant traits are not exactly located at x1, x2; in fact we observe as the effect of mutations increases, that the dominant traits (oscillating between x ≈ -0.26 and x ≈ 0.75)) are further from these optimal traits. Moreover the total population size oscillates periodically with a different non-regular behaviour in each case.

Non Symmetric maxima

Finally, in this example we consider a growth rate with two maximum points which are non symmetric in the sense that the behaviors around the maxima are not analogous, that is, the second derivatives are not the same. We consider the following function In this example we have chosen aNS such that:

aNS(t, x) = 1 -(x -1) 4 (x + 1) 2 (1 -x), if t ∈ [0, 1/2], 1 -(x -1) 4 (x + 1) 2 x, if t ∈ (1/2, 1]. ( 3 
ā N S = 12(x -1) 2 (x + 1) 2 + 8(x -1) 3 (x + 1) + 8(x -1) 3 (x + 1) 2 + 2(x -1) 4 , which implies that the second derivatives of āNS at maximum points (x1 = 1, x2 = -1) are different, in fact ā N S (1) = 0 = 32 = ā N S (-1).

For the numerical simulations, we make also both analysis for ε = 10 -2 and ε = 1.

Small effect of mutations

For the growth rate aNS we illustrate in Figure 3.20 that the maximum point x0 = 1 is selected as point of concentration of the population; in fact the numerical value of the dominant trait is always x ≈ 0.99. The total size of population is still periodically oscillating, with a non-regular behaviour since the function aNS is also non regular. Note that in this case we do not take several values of maximum points since the behavior remains the same. It is worth noticing that in this example the population concentrates around the flatter maximum point of a. This phenomenon is related to the fact that the ground state of a Schrödinger operator concentrates on the flattest global minimum point of the potential [START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF][START_REF] Helffer | Multiple wells in the semiclassical limit. III. Interaction through nonresonant wells[END_REF]. Note also that in [START_REF] Alfaro | Evolutionary branching via replicator-mutator equations[END_REF] a related model of replicator-mutator type in the case of a constant environment has been studied where the authors investigate the uni-modal or multi-modal nature of the phenotypic distribution of the population as a function of both the growth rate and the mutation rate.

Large effect of mutations

We compute one more time the critical ε which leads the population to extinction (see Figure 3.21) and according to this graph we consider again ε = 1 which allows to keep a reasonable population size. We plot in Figure 3.22 the numerical solution of (3.1) with growth rate a = aNS for ε = 1. We illustrate, as before, the phenotypic density nε(t, x) (Figures 3.22a and 3.22b) and the total population size ρε(t) (Figure 3.22c). The first thing to note is that we do not have anymore a real concentration around a unique maximum point but a periodically oscillation between several traits. Furthermore we observe, analogously to the symmetric case for this large value of ε, that the dominant traits are not exactly located at x1 = -1, x2 = 1; as the effect of mutations increases, the dominant traits are further from these optimal traits. We obtain, in particular, that the dominant traits oscillate in the interval [-0.5, 0.7]. Finally, the total population size is periodically oscillating with non-regular behavior, analogously to the previous case for a = aS. 

Appendix: Numerical scheme

In this section we present the numerical scheme used to resolve the periodic problem (3.1). To this end we first resolve the following Cauchy problem

       ∂tn(t, x) -ε 2 ∂xxn(t, x) = n(t, x)[a(t, x) -ρ(t)], (t, x) ∈ [0, +∞) × R, ρ(t) = R n(t, x)dx, n(t = 0, x) = n0(x), (3.26) 
where we consider the initial condition given in (3.10).

We use the results of Chapter 1 which provides the convergence of the solution of (3.26) to the unique periodic solution of (3.1). Then we study the numerical solution of (3.26) in long time when it becomes periodic.

We describe below the numerical scheme used to resolve (3.26). We discretize n(t, x) around the mesh x = {xi} and t = {t k }, where:

• we assume a bounded numerical space domain, denoted by Ω = (-L, L). The number of nodes is denoted Nx, so that we have the space step ∆x = 2L Nx-1 . We write {xi} 1≤i≤Nx for the nodes coordinates, • the time step is denoted ∆t and defined by ∆t =

T f inal N t
where T f inal is the final time and Nt is the number of iterations Nt. We write {t k } 1≤k≤N t for the time discretization,

• the discretized solution of the problem (3.26) writes now

{(n k i , ρ k )} 1≤k≤N t , 1≤i≤Nx , with n k i = n(t k , xi) and ρ k = ρ(t k ).

CHAPTER 3

The initial density ρ 0 is a given value (ρ 0 = 1) and we initialize the solution in t = 0 as follows

n 0 = ρ0n0(xi) ∆x Nx i=1 n0(xi) , ( 3.27) 
for n0(xi) defined in (3.10).

We use a classical Euler scheme, which reads for the main equation (for nodes away from the boundary, i.e. k ≥ 1 and

1 ≤ i ≤ Nx -1)              n k+1 i -n k i ∆t - ε 2 n k+1 i+1 -2n k+1 i + n k+1 i-1 ∆x 2 = n k+1 i a-(t k+1 , xi) + n k i a+(t k , xi) -ρ k , ρ k = Nx i=1 n k i ∆x, (3.28) 
where a-= min{a, 0} and a-= max{a, 0}.

Since we expect the solution to concentrate as a Dirac mass, following the analytic results, we consider the Dirichlet boundary conditions; that is:

n(t, -L) = n(t, L) = 0 ∀t ∈ R + .
This is an implicit scheme for n where the only explicit terms are coming from the positive part of a and the population density ρ. 

Chapter

Motivations and state of the art

The mathematical description of the transmission of pathogens, or antibiotic resistance of bacteria is an open question in biology and medicine. This is directly linked to the ability of the bacteria population to mutate and exchange genetic material either vertically (from parents to offspring), or horizontally (from the interaction between non-parental individuals). This resistance occurs when one bacterial cell becomes resistant to an antibiotic due to mutation, and then transfers resistance genes to other species of bacteria. This latter phenomenon is known as Horizontal Transfer (HT). Some artificial applications of the HT include forms of genetic engineering which are particularly useful in some experimental procedure that may help treat or prevent genetic disorders and some types of cancer. The primary goal of this work is to describe the mechanism of the transfer itself and the different models which characterize it, stochastic and deterministic. We then provide a numerical comparison between those models in order to know which one is better to catch the biological phenomenon.

Several mathematical models for describing the impact of HT on ecological dynamics were proposed in literature with two different types of models. A first class of models is referred to the 1970's and is attributed to Anderson and May on host-pathogen population dynamics [START_REF] Anderson | Population biology of infectious diseases: Part i[END_REF] where the authors investigate whether and how a pathogen might drive its host to extinction. The models constructed using the May-Anderson's framework (e.g. [START_REF] Stewart | The population biology of bacterial plasmids: A priori conditions for the existence of conjugationally transmitted factors[END_REF][START_REF] Lili | The persistence of parasitic plasmids[END_REF]) are deterministic and make highly simplified ecological assumptions, in particular the competition between hosts is often completely ignored.

A second class of models was developed within the framework of population genetics [START_REF] Baumdicker | The infinitely many genes model with horizontal gene transfer[END_REF] to address the question of the effect of HT on the emergence of beneficial mutations ( [START_REF] Novozhilov | Mathematical Modeling of Evolution of Horizontally Transferred Genes[END_REF]). However, these models also make strong simplifying assumptions, again on the competition between individuals but also by keeping the size of the population constant.

More recently in [START_REF] Billiard | Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks[END_REF][START_REF] Billiard | The effect of competition and horizontal trait inheritance on invasion, fixation, and polymorphism[END_REF] the authors develop a mathematically rigorous stochastic model of population dynamics by relaxing most of the previous limitations, and consider both vertical transmission and HT of traits. This model describes the dynamics of reproduction, competition, and exchange of genetic material between individuals in a population. The phenotype of each individual is described by a numerical parameter, called trait. Numerical experiments show that the effect of a unilateral horizontal gene transfer may lead to a cyclic behavior of the population. That is, while HT drives individuals towards a non-fit phenotype and, consequently, to extinction, very few not affected by transfer fit individuals may eventually repopulate the environment, before being driven again to deleterious phenotypes. This phenomenon is called an evolutionary rescue of a small population.

However, within a framework of stochastic jump processes, it is hard to define and study the observed cycling phenomena accurately. The second drawback of the stochastic system is that it is costly to compute, especially for a large time scale and population size. Thus, in the case of a large population, it is more practical to work with a deterministic PDE model, obtained as the limit of a stochastic system [START_REF] Billiard | The effect of competition and horizontal trait inheritance on invasion, fixation, and polymorphism[END_REF][START_REF] Ferrière | Stochastic and deterministic models for age-structured populations with genetically variable traits[END_REF]. In certain settings, the population dynamics involve concentration phenomena (i.e., the convergence of the population density to singular solutions, such as Dirac masses, see for instance [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional non local parabolic equations[END_REF]). In that case, the PDE formulation is not suitable. Thus, applying a limiting procedure for small mutations and time rescaling to the PDE model, one can pass to a Hamilton-Jacobi type equation (see also [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result[END_REF][START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach[END_REF][START_REF] Figueroa Iglesias | Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments[END_REF] where a rigorous analysis on this limit procedure is done).

The goal and the plan of the chapter

The primary goal of our work is thus to conduct a numerical analysis of the population dynamics on a macroscopic individual-based model and to compare it with the deterministic system which is obtained as a limit for a large population.

We are especially interested in determining to which extent the limiting Hamilton-Jacobi equation can grasp qualitative properties of the stochastic model. This framework has already been successfully used to understand the concentration phenomena, and the location of the dominant trait. We aim to understand if the Hamilton-Jacobi approach is also well suited to describe the evolutionary rescue phenomena which crucially rely on an accurate description of the small populations.

On this step, the choice of an approximation scheme for simulating solutions of the PDE model is of tremendous importance. As we further explain in Section 4.4, classical explicit schemes do not preserve the asymptotic behavior of the solution if the time rescaling step goes to 0. From a numerical point of view, it involves operations with exponentially big values, which lead to non-negligible errors for explicit numerical schemes. We address this question by proposing an asymptotic preserving scheme for a Hamilton-Jacobi equation, adapting an approach proposed in [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]. More generally, the numerical approximation problem for solutions of Hamilton-Jacobi equations is treated in [START_REF] Achdou | Hamilton-Jacobi equations: approximations, numerical analysis and applications[END_REF].

This chapter is structured as follows: in Section 4.2 we introduce the models both in a stochastic and deterministic setting, and formally derive the limiting Hamilton-Jacobi equation. Then, we simulate a jump process, describing the bacteria population, and study its properties for different values of parameters. Numerical experiments are gathered in Section 4.4. We aim to numerically determine the critical HT rate, which leads to an almost sure extinction of the whole population. On the next step, we conduct the same analysis for a Hamilton-Jacobi equation with the help of an asymptotic preserving scheme and compare it with the stochastic model on an appropriate timescale, and explain why the classical scheme fails to work. We end our study with conclusions and discussion of yet unsolved numerical and theoretical questions.

Presentation of the models

We split this section into three subsection where we first introduce the stochastic model describing the bacteria population, and then the PDE model for a limit of large population. Finally in the last subsection we formally derive the limiting Hamilton-Jacobi equation.

Stochastic model

We consider a stochastic model describing the evolution of a population structured by phenotype, which is described at each time t by the point measure

ν K t (dx) = 1 K N K t i=0 δ X i (t) (dx), (4.1) 
where parameter K is a scaling parameter, referred to as the carrying capacity. It stands for the maximal number of individuals that the underlying environment is able to host (K can represent, for example, the amount of available resources). Finally, an individual with trait x can induce a unilateral Horizontal Transfer to an individual with trait y at rate hK (x, y, ν), such that the pair (x, y) becomes (x, x). This kind of transfer is sometimes referred to as conjugation in the biological literature. For simplicity, we assume hK (x, y, ν) to be in the particular form

N K t = K ν K t (dx)
hK (x, y, ν) = hK (x -y, N ) = τ0 α(x -y) N/K , ( 4.2) 
where N = K R n ν(dx) is the number of individuals, τ0 > 0 is a constant and α is either a Heaviside, or a smooth bounded function, such that for a small δ > 0:

α(z) = 0 if z < -δ 1 if z > +δ , α (0) = 1 2δ , ( 4.3) 
where δ is the stiffness parameter. We introduce δ to have the advantage of working with smooth function (which will be useful in the following parts), while mimicking the binary nature of the Heaviside function.

For a population ν = 1 K N i=1 δx i and a generic measurable bounded function F , the generator of the process is then given by:

L K F (ν) = N i=1 b(xi) R n F ν + 1 K δy -F (ν) m(xi, dy) + N i=1 d(xi) + C N K F ν - 1 K δx i -F (ν) + N i,j=1 hK (xi, xj, ν) F ν + 1 K δx i - 1 K δx j -F (ν) .
It is standard to construct the measure-valued process ν K as the solution of a stochastic differential equation driven by Poisson point measures and to derive moment and martingale properties (see for instance [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]).

The PDE model

It is proven (see, in particular [START_REF] Billiard | Stochastic dynamics for adaptation and evolution of microorganisms[END_REF][START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF]) that for K → +∞ the stochastic process defined by a sequence of point measures given by (4.1) converges in probability to a non-linear integro-differential equation, whose solution exists and is unique.

This equation is given by:

             ∂tf (t, x) = -(d(x) + Cρ1(t))f (t, x) + R n m(x -y)b(y)f (t, y)dy + f (t, x) R n τ (x -y) f (t, y) ρ1(t) dy, in R+ × R n , ρ1(t) = R n f (t, x)dx, f (0, x) = f 0 (x) > 0,
where f (t, x) is the macroscopic density of the population with trait x at time t and, accordingly to the previous section, b(x), d(x) and C are the birth, death and competition rate respectively, m is the mutation kernel, and

τ (y -x) := τ0 [α(x -y) -α(y -x)] (4.4)
is the horizontal transfer flux, with τ0 and α defined as in (4.2)-(4.3). Now our goal is to pass from micro-to a macroscopic scale with the help of a rescaling. On the one hand, we consider the case of small mutations: for a small parameter ε > 0 we define

mε(x -y) = 1 ε n m x -y ε .
With a change of variable z = x-y ε we can rewrite the mutation term at (t, x) as

R n mε(x -y)b(y)f (t, y)dy = R n m(z)b(x + εz)f (t, x + εz)dz.
On the other hand, when ε is small, the effect of mutations can only be observed in a larger time scale. Thus, we rescale time with t → t ε . We end up with the following system, for ε > 0, and (t,

x) ∈ R+ × R n :              ε∂tfε(t, x) = -(d(x) + Cρε(t))fε(t, x) + R n m(z)b(x + εz)fε(t, x + εz)dz + fε(t, x) R n τ (x -y) fε(t, y) ρε(t) dy, ρε(t) = R n fε(t, x)dx, fε(0, x) = f 0 ε (x) > 0.
(4.5)

The Hamilton-Jacobi limit

We now derive the limiting problem (4.5) when ε → 0. As we will see, the limiting problem allows us to give a rigorous mathematical framework and to perform useful formal calculations.

Equations in the form of (4.5) often give rise to concentration phenomena, i.e the convergence of fε towards a Dirac mass when ε → 0 (see [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Dieckmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF]). The usual way to deal with these asymptotics is to perform a Hopf-Cole transformation (or WKB ansatz), i.e to consider uε(t, x) := ε ln(fε(t, x)). (4.6) This change of variable comes from the fact that with such rescaling the solution fε will naturally have this form.

Accordingly, we expect uε to have a non singular limit when ε → 0. Incidentally, this substitution also gives insights on the convenient scheme to use for numerical simulations, as we will see in the following section. Now, let us explain how to identify and derive some properties about the asymptotics of uε when ε → 0, which will be used for discussions in the sequel. The following computations are only formal, since rigorous proofs are often intricate in this context and it is not our goal in this chapter. Substituting (4.6) into (4.5) we deduce that uε satisfies:

∂tuε = -(d(x) + Cρε(t)) + R n m(z)b(x + εz) exp uε(t, x + εz) -uε(t, x) ε dz + R n τ (x -y) fε(t, y) ρε(t) dy. (4.7)
Formally, at the limit ε → 0, uε converges to a continuous function u which satisfies the following Hamilton-Jacobi equation in the "viscosity" sense:

∂tu = -(d(x) + Cρ(t)) + b(x) R n m(z)e z•∇xu dz + τ (x -x(t)), ( 4.8) 
where ρ(t) ≥ 0 is the weak limit of ρε(t) and x(t) = argmax u(t, •). (4.9)

We formally assume here and in the following that the definition of x(t) is unambiguous, i.e that u reaches its maximum on a single point. Note that the limiting function u is not expected to be C 1 for all time. We thus need to deal with a generalized notion of solutions, namely viscosity solution (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]).

Formal analysis on the Hamilton-Jacobi equation

Hamilton-Jacobi equations are particularly known in mathematical biology to be a good model to describe how a population concentrates around the dominant trait(s) when the mutations are small. However, here we are interested to use this model to describe a phenomenon of evolutionary rescue. Here, we make some formal analysis on the equation.

We point out that the calculations are only formal, since rigorous proofs are intricate and beyond the scope of this paper.

Generality

From an integration of (4. Note that our model allows the population to get extinct, thus we cannot expect ρ to be positive at all times. As a byproduct, we derive the concentration property, i.e the formal weak convergence of measures fε(t, x) ρ(t)δ x(t) (dx), when ε → 0, where δ x(t) denotes, as usually, the Dirac measure centered in x(t). From (4.10), it is possible to formally derive a formula for ρ. Indeed, either ρ(t) = 0 or ρ(t) > 0 and ∂tu(t, x(t)) = 0, which implies

ρ(t) = b(x(t)) -d(x(t)) + τ (0) C = b(x(t)) -d(x(t)) C , ( 4.11) 
for τ defined in (4.4).

Having above definitions in hand, we can now perform a formal analysis on the dynamics of x(t), defined below in (4.15). Our aim is to show how the behaviour of the system can be analyzed within the framework of a Hamilton-Jacobi equation (4.8). To fix ideas, we fix all constants but τ0 and we assume (4.12)-(4.14) as follows:

b(x) = br > 0, (4.12) Finally we assume that the initial condition f 0 is a given function of x which reads 

d(x) = drx 2 , dr > 0, (4.13) m(z) = 1 √ 2πσ e -z 2 2σ 2 , ( 4 
f 0 ε (x) = 1 √ ε e -x 2 2ε . ( 4 

Proof.

Under the above assumptions we can derive the dynamics of x(t), referred to as the canonical equation in the literature (see for instance [START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach[END_REF]). Indeed, starting from ∇xu(t, x(t)) = 0, a differentiation with respect to t gives (4.17).

Equation (4.17) has a unique singular point x , which satisfies r (x ) + τ (0) = 0, with τ defined in (4.2) and r in (4.18). We find

x = τ0 2drδ . ( 4 

.19)

Note that t → x(t) is increasing when x(t) < x and decreasing when x(t) > x . Besides, from the initial condition (4.16),

we have x(0) = 0, and consequently 0 ≤ x(t) ≤ x for all t.

Evolutionary rescue

In general, the canonical equation (4.17 and on another point x. Then x = 0 and x(t) will jump towards 0 at time T , i.e x(T + ) = 0.

Proof.

From assumption (4.15), we have for all t ∈ [0, T ] that u(t, •) is concave non-degenerate on [x(t) ± θ], with θ > 0. For simplicity, we further assume δ ≤ θ, where δ is defined in (4.3).

First, let us show that x = 0. We define the fitness function of trait x in a population concentrated in x:

Fx(x) := r(x) + τ (xx), (4.20) where r and τ are respectively defined in (4.18) and (4.4). Note that we have ∂tu(t, x) = F x(t) (x) -Cρ(t), for t < T .

But x ∈ [x(t) ± δ] and the choice of parameters (4.12)-(4.13)-(4.3) implies x must maximize F x(T -) (•), hence x = 0.

The second step is to prove that there will be an actual jump towards 0, i.e x(T + ) = 0. First, note that there exists a small η > 0 such that ∀t ∈ (T -η, T ), u(t, x(t)) = 0 and u(t, 0) < 0. Let us fix t ∈ (T -η, T ). We have F x(t) (0) ≥ F x(t) (x(t)), and we claim that the inequality is strict. Indeed, since t → x(t) is increasing, F x(t) (x(t)) is decreasing, whereas F x(t) (0) is constant (as long as η is small enough such that x(T -η) > δ). We end up with F x(t) (0) > F x(t) (x(t)). (4.21)

The above inequality expresses the fact that 0 is fitter than x(t) in a population with trait x(t). In general, this does not allow to conclude that 0 will invade and become the new dominant trait (i.e., that the jump will occur) because it does not imply that 0 will remain fitter during all the process of invasion. But the particular form of our problem, especially the fact that τ is an odd function, implies F0(0) > F0(x(t)). (

Indeed we have from the definition of Fx(x) that F0(0) -F0(x(t)) = r(0) -r(x(t)) + τ (xx) -τ (0) = dr x(t) 2 > 0.

Consequently that for all λ ∈ [0, 1] λF0(0) + (1 -λ)F x(t) (0) > λF0(x(t)) + (1 -λ)F x(t) (x(t)).

It shows that 0 remains the fittest trait during all the process of invasion, and therefore that 0 will actually invade, i.e that x(t) will actually jump towards 0 at time T + .

Threshold for cycles

In the previous subsection, we described the possible evolutionary rescue, i.e the possible jumps in the dynamics of x(t) towards x = 0. When a jump occurs, a new cycle begins: it leads to a periodical behavior of x(t), hence the cycling phenomena.

We recall that a jump corresponds to a rescue of the population concentrated at x(t) by the small population with trait x = 0. It is possible only if x(t) > δ and if 0 is fitter than x(t) during a sufficiently large interval of time (which is Algorithm 1: Population dynamics on time interval [0, T ] Random initialization of a population X 0 := N (x 0 mean , σ 0 ) × N 0 ; while i∆ ≤ T do X i = X i-1 , N i-1 = size(X i-1 ); for ∀x ∈ X y∈X i h K (x-y,N i-1 ) ; remove individual with trait x and add individual with trait y; end if T d ≤ ∆ then remove the individual with trait x from X i end end return X i end around the optimal trait, which is close to 0.1 (with stochastic fluctuations). Note that in this case, the mean trait is shifted in comparison to the optimal trait without HT (which is x = 0). The approximations of the solution f of (4.5) at (tn, xi), and of its density ρ at tn are denoted f n i and ρ n respectively.

We recall that the initial condition f 0 is a smooth function of x given in (4.16) and the initial density ρ 0 is computed using a left-point quadrature rule for f 0 as follows:

ρ 0 = ∆x Nx-1 i=0 f 0 (xi).
The scheme is written with an explicit Euler scheme, in which the integrals are computed with a left-point quadrature rule. For n ≥ 1 and 0 ≤ i ≤ Nx -1, it reads

ε f n+1 i -f n i ∆t = (d(xi) + Cρ n ) f n i + [m * (bf )] n i + f n i ∆x Nx-1 j=0 τ (xi -xj) f n j ρ n . (4.30)
In (4.30), the convolution product [m * (bf )] n i is computed with a left-point quadrature rule, as well of the other integrals. To do so, a grid in the z variable is defined as for the x variable. Let Zmin and Zmax, and the number Nz of discretization points be given. The grid in z is defined as

∀0 ≤ k ≤ Nz -1, z k = Zmin + k∆z,
where ∆z = (Zmax -Zmin) / (Nz -1). This leads to two possibles cases: xi + εz k ∈ [Xmin, Xmax] or not. We proceed in each case as follows:

• When xi + εz k ∈ [Xmin, Xmax], the value of f (tn, xi + εz k ) is approximated by linear interpolation of the (f n i ) 0≤i≤Nx-1 .

• When xi + εz k < Xmin, or xi + εz k > Xmax, it is computed with a linear extrapolation of the (f n i ) 0≤i≤Nx-1 , using the slope at the corresponding end of the X domain. 

Case ε = 1: comparison with stochastic model

First thing that we are interested in is whether under identical parameters and initial conditions we may reproduce the same behavior as in the stochastic model. Thus, we conduct several experiments, fixing parameter ε to 1 (thus, we do not rescale time, nor mutation rate), leaving all the other parameters fixed to the same values as in stochastic simulation case.

As we may see on Figure 4.3, simulations in overall correspond to those of the stochastic model. Indeed, when the HT rate τ0 is small enough the population rapidly stabilizes around its equilibrium state (see Figure 4.3a), as in the stochastic simulations. Further similarity between two models is that in both cases the optimal trait is shifted a bit above 0. It is caused by HT phenomena.

For larger values of τ0, where we would expect to have distinguishable cycles, we observe indeed damped oscillations, see Figure 4.3b. Again, we stress out that for the stochastic model it is not the case, see -------→ S h 0 that should be understood as follows: when the parameter ε > 0 is fixed, the scheme S h ε is consistent with the ε-dependent problem Pε. When ε goes to 0, the solution of Pε converges to the solution of the limit problem P0. The AP scheme S h ε is stable along the transition to the asymptotic regime. It means that, when ε goes to 0 with fixed discretization parameters h, the scheme becomes a limit scheme S h 0 , which is consistent with the limit problem P0. As an AP scheme is required to enjoy stability properties when ε is going to 0, one has to ensure that all the quantities that have to be computed enjoy this property. In the case we are considering, the main concerns are the computation of the integral containing the birth term, the computation of the integral containing the transfer term and the computation of ρ. If all of them are correctly defined, the scheme proposed reads Here, we used the notations and discretization grids defined in the beginning of Section 4.4.2, and the dependences in ε are omitted to simplify the notations. In what follows, we present how T n i , B n i and ρ n+1 can be computed in a way that ensures they are consistent with their definition for fixed ε, that they can be computed with a constant computational cost with respect to ε, and that their asymptotic behavior when ε goes to 0 is meeting the continuous one (4.8).

u n+1 i -u n i ∆t =
• Computation of T n i . The direct approximation of (4.33) with a quadrature rule is consistent for ε ∼ 1. However, since f is expected to concentrate when ε → 0, it lacks precision in the asymptotic regime. Especially, the convergence of f /ρ to a Dirac is not ensured when the integral is approximated directly. Remarking that fε(t n , y) ρε(t n ) = e uε(t n ,y)/ε R e uε(t n ,z)/ε dz = e

(uε(t n ,y)-max For fixed ε, (4.34) is consistent with (4.33). Since all the arguments of the exponentials are nonpositive, the limit of (4.34) for small ε can be read on that expression. Denoting j0 the index such that

u n j 0 = max l u n l ,
and supposing that there exists a unique such j0, the limit of (4.34) for small ε is

τ (xi -xj 0 ).
This is consistent with the last term in the limit Hamilton-Jacobi equation (4.8).

• Computation of B n i . Once again, the numerical approximation of (4.32) is done with a quadrature in the integral. Using the notations of Section 4.4.2, a grid in z is defined. The functions m and b are respectively evaluated at z k and xi + εz k , but the interpolation of u n at xi + εz k has to be done with special care to make the scheme enjoy the expected asymptotic behavior. Using a left-point quadrature rule, (4.32) ∆x .

as a consequence, we define:

∇ ε,small n,i,k =            u n i+1 -u n i ∆x , if 0 < εz k ≤ ∆x u n i -u n i-1 ∆x , if -∆x ≤ εz k < 0 0, if z k = 0.
This definition of B n i is consistent with (4.32). Moreover, when ε goes to 0 with fixed numerical parameters, such as Zmin and Zmax, the expression ∇ ε,large n,i,k

is not used at all, and (4.36)

• Computation of ρ n+1 . In (4.31), ρ n+1 is considered in an implicit way, to make the limit scheme be consistent where A n i denotes u n i + ∆t (-d(xi) + B n i + T n i ) to simplify the notations. Eventually, ρ n+1 is solution of h(y) = 0, with h(y) = ye ∆ty/ε -∆xe

A n i 0 /ε Nx-1 i=0 e (A n i -A n i 0 )/ε , ( 4.38) 
where A n i 0 = max To find ρ n+1 , a Newton's method is applied on expression (4.38) or on (4.39). Both expressions are smooth convex functions of ρ, and are equivalent. Hence, the Newton's method converges whatever is used. Nevertheless, it must be chosen with care. Indeed, because of numerical phenomena, i.e. the continuous accumulation of error, (4.38) is to be chosen when ρ n+1 is close to 0, whereas (4.39) is more adapted when ρ n+1 is not small. In the effective implementation of the method, either one formulation or the other is chosen, depending on the values reached during the iterations of the algorithm. Eventually, to ensure the stability of the numerical resolution of (4.37)

when ε → 0, the inverse of the derivatives of h and g are analytically computed and implemented as 1 h (y) = ε ε + ∆t e -∆ty/ε , 1 g (y)

= -y ε + ∆t .

Since y > 0, these two expressions are uniformly bounded with respect to ε when ∆t is fixed. As a consequence, the cost of the numerical resolution of (4.37) does not increase with ε.

When ε > 0 is fixed, the scheme (4.31) is consistent with (4.7), since only quadrature formula and interpolation methods have been used to write it. The way all the terms are computed, as well as the numerical resolution of the non-linear equation (4.37), ensures the stability of the numerical computations in the small ε regime. Hence, when ε → 0 costly from computational point of view.

To finish with, let us give some flavor on the computational cost of the simulations for each type. In Table 4 

Formal computations

In this section, we propose some formal computations on the stochastic model, based on the analysis of the Hamilton-Jacobi equation performed in the previous section. To fix ideas, we assume n = 1 and (4.3)-(4.12)-(4.13), and we fix all constants but τ0, as in the previous section. However, we choose the function α as a Heaviside function (this is what has been used in the simulations), which is not a smooth function, and thus will lead to minor modifications compared to the previous section.

We make a strong formal assumption: taking K 1, we assume that the population behaves like a normally distributed random variable all the time, i.e

ν K t (dx) = ρ(t) 1 √ 2πs(t) e - |x-x(t)| 2 2s(t) 2
dx, (

for some standard deviation s(t) and for x(t) defined in (4.9). We expect s(t) to be of the same order as σ, but giving a general estimate for s(t) in function of x(t) seems intricate. The normalized size of the population ρ(t) := where s is an unknown corresponding to the standard deviation of the population at equilibrium concentrated at x = x .

Note that it corresponds to (4.19) with δ := s π/2.

We now try to estimate s . Formally, s should be such that u (x) := -(x-x ) 2 2s 2 is a stationary solution of (4.8).

Differentiating twice, and applying at x = x we find 0 = brσ 2 u (x ) 2 -2dr, (with the reasonable assumption τ (0) = 0), which gives s = σ br 2dr .

Numerically, we find s = 0.12. We end up with the following formula: 

x = τ0 √ 2πσdr

Threshold for cycles

Since equation (4.23) remains unchanged, we obtain the following threshold for cycles (corresponding to (4.25)):

τcyc = 2πdrσ br 2dr . ( 4.46) 
With our choice of parameters, we obtain τcyc = 0.09. This threshold corresponds to the numerical simulations (however, characterizing precisely whether cycles occurs or not on the numerical simulations is not easy when τ0 is close to the threshold).

Threshold for extinction

Using (4.26), we can also find a threshold for extinction:

τext := 2πbrdrσ 4 br 2dr .

For our choice of parameters, we obtain τext = 0.30.

We now compare this formula with numerical experiments on individual-based model. They are organized as follows:

we fix the birth br or the death rate dr, and save the first value of τ0 under which the extinction occurs. Then, we increase the rate and save the next HT rate under which we have an extinction. Resulting curve for the birth rate is saved on Figure 4.5a (for death rate: The numerical results, in particular, justify at the first glance surprising fact that the extinction threshold depends on the birth and death rate in the same manner. It seems logical to assume that while the higher birth rate contributes to a bigger survival probability even with a relatively big horizontal transfer rate, higher death rate must have an opposite effect. However, in conditions of a very "harsh" environment individuals with non-fit traits die out before they manage 

Discussion

First achievement of the study consists in an accurate numerical study conducted on the stochastic model given by a point measure (4.1). To the best of our knowledge, in-depth analysis of the influence of the HT rate on the evolutionary dynamics has not been yet attempted. Along with its accuracy, the stochastic model reveals its limitation: an accurate theoretical description of what actually happens in each observed scenario from a mathematical point of view seems to be out of reach.

On the next step, in a numerical comparative study between the stochastic (individual based) and the PDE (density) model both models exhibit the same behavior for a given set of parameters, which justifies theoretical results from [START_REF] Billiard | Stochastic dynamics for adaptation and evolution of microorganisms[END_REF][START_REF] Billiard | Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks[END_REF].

Minor differences -in particular, presence of damping oscillations -can be explained by a choice of a numerical scheme.

However, further analysis shows that the classical PDE model defined by (4.2.2) leads to instabilities if we try to pass to an asymptotic setting under the small mutation assumption. Those instabilities are then resolved by a transformation of an initial model to a Hamilton-Jacobi type equation and using an asymptotic-preserving scheme. Further advantage of this approach is that the resulting equation (4.7) makes an easier subject of a theoretical analysis.

Finally, in a Hamilton-Jacobi setting we manage to numerically replicate the evolutionary rescue of a small population which we observe in the stochastic model. This phenomena is illustrated for stochastic, PDE and HJ simulation on 
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  Par ailleurs, lorsque ε → 0, uε converge localement uniformément vers une fonction u(x) ∈ C(R d ), la seule solution de viscosité de l'équation suivante :

0

  ρε(t)dt. (ii) Par ailleurs la solution de viscosité de (28) est unique et elle est (en effet) une solution au sens classique donnée par ψ(x) = c 2 (x -x) + xm x a(xm) -a(y)dy -x xm a(xm) -a(y)dy , (32) où x < xm.

  Chapitre 3 nous étudions d'un point de vue numérique les modèles étudiés dans le Chapitre 1 pour quelques exemples de taux de croissance. Dans le Chapitre 4, nous proposons une étude numérique du phénomène du Transfert Horizontal de Gènes où notre objectif est de comprendre dans quelle mesure le modèle de Hamilton-Jacobi reproduit le comportement qualitatif du modèle stochastique et en particulier le phénomène du sauvetage évolutif.

Figure 1 -

 1 Figure 1 -Histogrammes pour des valeurs de t différentes montrant le sauvetage évolutif dans le modèle stochastique qui modélise le HGT. De (a) à (c) on observe une petite population non affectée pour le HGT qui devient importante avec le temps et qui repeuple l'environnement.

Figure 2 -

 2 Figure 2 -Solution de l'équation de Hamilton-Jacobi modélisant le HGT pour des valeurs différentes de t. De (a) à (c) on observe le changement du point maximum.

Figure 3 -

 3 Figure 3 -Densité phénotypique n ε (t, x) de la population pour t fixé : (a) pour un taux de croissance avec deux maximums symétriques ; (b) pour un taux de croissance avec deux maximums non symétriques. Dans la figure (a) la solution est dimorphe et oscille périodiquement autour des traits dominants alors que dans la figure (b) la population est monomorphe et le trait sélectioné est celui autour du quel ā est le plus plat, (ε = 10 -2 ).

  Hamilton-Jacobi pour le modèle de Transfert Horizontal de Gènes : existence, unicité et périodicité de la solution L'équation (43) obtenue à partir de la transformation Hopf-Cole de fε solution de (41) converge formellement vers l'équation (44) lorsque ε → 0. Dans le Chapitre 4, la dérivation formelle de cette équation limite permet en effet d'effectuer les analyses numériques. Cependant la dérivation rigoureuse de cette convergence reste à établir.Par ailleurs, dans les simulations numériques on observe une certaine "périodicité" (phénomène cyclique décrivant le sauvetage évolutif) en fonction du taux de transfert τ0. Il est intéressant de vérifier si la solution de l'équation[START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF], est en effet périodique pour certains valeurs de τ0 et dans ce cas déterminer les conditions sur τ0 pour avoir ce type de comportement.Les espèces qui survivent ne sont pas les espèces les plus fortes, ni les plus intelligentes, mais celles qui s'adaptent le mieux aux changements-Charles DARWIN

e

  d 0 T ds = T e d 0 T .

  On the other hand, by substituting u(x) in (1.49) we find A = √ g, B = C = 0, and also by substitution in (1.16) we obtain 2π b 0 ∂xv(t, x)dt = 0, ∂t∂xv = 2gc sin bt.

  Sélection et mutation dans un environnement avec changement à la fois directionel et fluctuant *** Dans un environnement qui change, il n'y a pas de plus grand risque que de rester immobile-Jacques CHIRAC Résumé Nous étudions la dynamique évolutive d'une population phénotypiquement structurée dans un environnement changeant, où les conditions environnementales varient avec une tendance linéaire mais de manière oscillatoire. De tels phénomènes peuvent être décrits par des équations paraboliques de type Lotka-Volterra avec une competition non locale et un taux de croissance dépendant du temps. Nous étudions d'abord le comportement à long terme de la solution à ce problème. Ensuite, en utilisant une approche basée sur les équations de Hamilton-Jacobi, nous étudions asymptotiquement ces solutions à long terme lorsque les effets des mutations sont petits. Nous prouvons que lorsque l'effet des mutations tend vers zero, la densité phénotypique de la population se concentre sur un seul trait qui varie linéairement dans le temps, tandis que la taille de la population oscille périodiquement. Contrairement au cas d'un environnement sans déplacement linéaire, ce trait dominant n'a pas le taux de croissance maximal dans l'environnement moyenné et il y a un coût sur le taux de croissance en raison du déplacement climatique. Nous fournissons également des développements asymptotiques pour la taille moyenne de la population et la vitesse critique au delà de laquelle la population s'éteint, ce qui est étroitement lié à la dérivation d'un développement asymptotique de la valeur propre du Floquet en termes du taux de diffusion. Ces développements permettent de montrer, à l'aide d'un exemple biologique que les fluctuations dans l'environnement peuvent aider la population à mieux suivre l'environnement. Les résultats dans ce chapitre feront l'objet d'une publication conjointe avec Sepideh Mirrahimi.
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Proposition 2 . 1

 21 ∀t ≥ 0 and |x| ≥ R0. (Hc) Assume (H1), (H4) and (Hc). Then for problem (2.4) there exists a unique generalized principal eigenfunction pc associated to λc,σ, with pc(0, •) L ∞ (R) = 1. Moreover, we have pc = lim R→∞ pR and

( 2 . 13 )

 213 To study asymptotically this problem we perform a Hopf-Cole transformation (or WKB ansatz), i.e we consider

Theorem 2 . 7

 27 Let λc,ε be the principal eigenvalue of problem(2.16) and assume (H1), (H2b), (H3) and (Hc). Assume in addition that c < lim inf ε→0 c * ε , then the following statements hold:(i) Let ρ ε = 1T T 0 ρε(t)dt, the following asymptotic expansions hold

-+ c 2 4 ≤

 4 h(y)dy . Then, let R > R0 and choose R such that R << R and take x ∈ BR = [-R, R]. Thanks to (2.51) and (2.53), we obtain that δ -h(y), ∀|y| ≥ R0.

  y)dy + u(xm).(2.56) 

  71) with respect to t in [0, T ] and use the fact that ux(xm) = ψx(xm)+ c 2 to obtain the result.

  and xm is a maximum point. It implies that: xm) -ā(x) = --axx(xm)/2. Note that xm being a maximum point, a(xm) ≥ a(x), ∀x ∈ R and axx(xm) ≤ 0. Following similar arguments one can xm) -ā(x) = --axx(xm)/2.

  temps; exemples de taux de croissance et simulations numériques *** ...dans la vie réelle, les erreurs sont susceptibles d'être irréversibles. La simulation par ordinateur, cependant, rend économiquement pratique de faire des erreurs à dessein-John H. Mcleod Résumé Nous étudions plusieurs exemples de taux de croissance périodique en temps pour les équations paraboliques de Lotka-Volterra avec une compétition non locale. Ces équations modélisent la dynamique évolutive d'une population phénotypiquement structurée sous sélection et mutations dans un environnement changeant. Nous nous intéressons à la solution périodique qui peut être obtenue comme la limite en long temps d'un problème de Cauchy. Nous étudions d'abord deux taux de croissance dont les moyennes sur une période de temps prennent un seul maximum et fournissons des solutions analytiques ou semi-analytiques au modèle parabolique et calculons les moments de la distribution phénotypique de la population. Nous illustrons ensuite la solution lorsque les effets des mutations varient de petites à grandes valeurs. Nous montrons que, lorsque l'effet des mutations est petit, la densité phénotypique de la population se concentre sur un seul trait, alors que la taille de la population oscille périodiquement. De plus, étant motivés par une expérience biologique, nous comparons deux populations évoluées dans des environnements différents (constants ou périodiques). Ces résultats permettent d'une part de confirmer les résultats du Chapitre 1, et d'une autre part d'illustrer pour ces exemples, comment le comportement de la solution est modifié pour les taux de mutation grands. Enfin, nous étudions numériquement le cas où le taux de croissance moyen atteint son maximum deux fois dans une période de deux manières différentes (symétriques ou non) et montrons que dans un tel cas nous pouvons avoir une population dimorphe.

Figure 3 . 1 -

 31 Figure 3.1 -The phenotypic density n ε (t, x) of the population: (a) as a function of time and trait over two periods of time; (b) at three fixed times within one period. We observe that the population concentrates around a dominant trait which oscillates periodically in time with small amplitude. The dominant trait is x = 0, which is the maximum point of a 1 . Parameters: ε = 10 -2 and a = a 1 is given by (3.2), with r = 2, c = g = 1, b = 2π.
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 3233 Figure 3.2 -The dynamics of the periodic total population size ρ ε (t) along two periods of time of n ε . Parameters: ε = 10 -2 and a = a 1 is given by (3.2), with r = 2, c = g = 1, b = 2π.

Figure 3

 3 Figure 3.4 -Comparison between the numerical approximation of µ ε (t) and the optimal trait θ(t). The time for which the population attains its optimal trait (that is sin bt = 1) is t ≈ 0.25 while the mean phenotypic trait attains this maximum value at time t ≈ 0.25 + 0.24, which leads to an approximate delay of 0.24. Note that the amplitude of the oscillations of the mean phenotypic trait (blue) is smaller than the one of the optimal trait (red). Here we have re-normalized the optimal trait by multiplying by ε to keep similar scaling. Parameters: ε = 10 -2 and a(t, x) is given in (3.2), with r = 2, c = g = 1, b = 2π.
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 35 Figure 3.5 -Mean Total size of the population for different values of the mutation rate ε ∈ [10 -2 , 2]. The red dashed line corresponds to the approximated value of ρε,approx in (3.9) and the discontinuous blue points correspond to the numerical value of ρε in (3.8) from the solution of (3.1) with the growth rate a = a 1 given in (3.2), for the parameter values r = 2, c = g = 1, b = 2π.
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 3637 Figure 3.6 -The phenotypic density n ε (t, x) of the population: (a) as a function of time and trait over two periods of time; (b) at three fixed times within one period. The population is distributed around a dominant trait which evolves periodically in time. Parameters: ε = 1 and a = a 1 given in (3.2), with r = 2, c = g = 1, b = 2π.
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 38 Figure 3.8 -Comparison of the moments of the population's distribution (variances in red and phenotypic means in blue). The numeric approximation in dashed lines Vs the analytic results in continuous lines. Parameters: ε = 1 and a = a 1 given in (3.2), with r = 2, c = g = 1, b = 2π.

  Errors in the approximation of the moments of the population's distribution and mean Fitness. Parameters: ε = 1 and a = a 1 given in (3.2), with r = 2, c = g = 1, b = 2π.

4 -

 4 Comparison between the moments of the population's distribution and mean fitness for populations evolved in periodic and constant environments. Parameters: ε = 1 and a = a 1 given in (3.2), with r = 2, c = g = 1, b = 2π.

  s)ds exp (I(T )) -1 .
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 311 Figure 3.11 -The dynamics of the periodic total population size ρ ε (t) along two periods of time of n ε . Parameters: ε = 10 -2 and a = a 2 in (3.14), with r = 2, b = 2π.
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 312 Figure 3.12 -Comparison of the moments of the population's distribution (phenotypic means in (a) and variances in (b)). The numerical approximations of the moments are in dashed lines and the analytical approximations, given by (3.21), are in continuous lines. Parameters: ε = 10 -2 and a = a 2 in (3.14), with r = 2, b = 2π.
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 6356 ε (t) -F approx (t)| 3, 2302 * 10 -Errors in the approximation of the moments of the population's distribution and mean Fitness. Parameters: ε = 10 -2 and a = a 2 given in (3.14), with r = 2, b = 2π. Comparison between the moments of the population's distribution and mean Fitness for populations evolved in periodic and constant environments. Parameters: ε = 10 -2 and a = a 2 given in (3.14), with r = 2, b = 2π.
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 3313 Figure 3.13 we plot both the numerical value of the mean size ρε in (3.8) and the approximated mean total size ρε,approx computed in (3.21).
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 314 Figure 3.14 -The phenotypic density n ε (t, x) of the population: (a) as a function of time and trait over two periods of time; (b) at three fixed times within one period. The population is distributed around a fixed dominant trait, while the variance and the amplitude of the population distribution varies periodically in time. Parameters: ε = 1 and a = a 2 given in (3.14), with r = 2, b = 2π.
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 315316 Figure 3.15 -The dynamics of the periodic total population size ρ ε (t) along two periods of time of n ε . Parameters: ε = 1 and a = a 2 given in (3.14), with r = 2, b = 2π.

  (a)-(b)-(c)) we show at the left and center column the density of the population nε(t, x) respectively as function of trait and time along two periods of time and at three fixed time within one period. Then the right column illustrates the oscillations of the total population size. In sub-figure 3.17a we consider that x1, x2 take the closer values, next in 3.17b we consider them fairly close and finally in 3.17c they are illustrated for the relatively far values. Along this figures we can observe a transition from a unimodal trait distribution into a bimodal one. The dominant trait in the first case (Figure 3.17a ) is around x ≈ 0.5 = (x1 + x2)/2. For the next maximum points considered (x1 = 0.2 and x2 = 0.8 in Figure 3.17b) the population oscillates between two dominant traits: x ≈ 0.35 and x ≈ 0.65. Finally in the dimorphic picture (Figure 3.17c) the population distribution has two peaks at x ≈ 0.15 and at x ≈ 0.85.
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 317 Figure3.17 -The phenotypic density n ε (t, x) and the total size ρ ε (t) of the population for different values of the maximum points of āS with ε = 10 -2 . From left to right the density function n ε (t, x) is plotted in the first column as a function of time and trait over two periods of time and in the second column at three fixed times within one period; in the last column the function ρ ε (t) is illustrated along two periods of time. The population evolves periodically in time and it is concentrated around the mean of the maximum points if they are near enough but when they become distant the phenotypic density concentrates periodically on two dominant traits. Moreover the total population size oscillates periodically with a different non-regular behaviour in each case.
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 318 Figure 3.18 -Mean Total size of the population for different values of mutations rate ε ∈ [10 -2 , 2]. Parameters: a = a S in (3.24) with x 1 = 0.1 and x 2 = 0.9.
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 319 Figure 3.19 -The phenotypic density of population n ε (t, x) and the total population size ρ ε (t). In (a) the phenotypic density n ε (t, x) is plotted as a function of time and trait over two periods of time and in (b) at three fixed times within one period. The function ρ ε (t) is illustrated in (c) along two periods of time. The population density evolves periodically in time with an oscillating dominant trait. Moreover the total population size oscillates periodically. Parameters: ε = 1, a = a S given in (3.24) with x 1 = 0.1 and x 2 = 0.9.
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 320 Figure 3.20 -The phenotypic density of population n ε (t, x) and the total population size ρ ε (t). In (a) the density function n ε (t, x) is plotted as a function of time and trait over two periods of time and in (b) at three fixed times within one period. The function ρ ε (t) is illustrated in (c) along two periods of time. The population evolves periodically in time and it is distributed around the flatter maximum. Moreover the total population size oscillates periodically. Parameters: ε = 10 -2 , a = a N S in (3.25).
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 321 Figure 3.21 -Mean Total size of the population for different values of mutations rate ε ∈ [10 -2 , 2]. Parameters: a = a N S in (3.25).
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 322 Figure 3.22 -The phenotypic density of population n ε (t, x) and the total population size ρ ε (t). In (a) the density function n ε (t, x) is plotted as a function of time and trait over two periods of time and in (b) at three fixed times within one period. The function ρ ε (t) is illustrated in (c) along two periods of time. The population evolves periodically in time while the total population size oscillates periodically. Parameters: ε = 1, a = a N S in (3.25).

  Le début de la santé est de connaître la maladieproverbe espagnol Résumé Nous faisons ici une étude numérique comparative entre les équations stochastiques et déterministes modelisant le transfert horizontal de gènes (HT). Le HT est défini comme la transmission de matériel génétique entre deux organismes vivants, contrairement à la transmission verticale qui désigne le transfert d'ADN d'un parent à sa progéniture. Ce phénomène joue un rôle important dans l'évolution de certaines bactéries, notamment pour le développement d'une résistance aux antibiotiques. Nous considérons ici un processus stochastique à saut individu-centré, et l'équation intégrodifferentielle non linéaire obtenue comme limite pour une population de grande taille. En supposant que les mutations sont petites, après un changement de variable et un passage à la limite, nous obtenons une équation d'Hamilton-Jacobi. La comparaison de ces différents modèles à l'aide de simulations numériques permet de prouver que l'équation d'Hamilton-Jacobi parvient à mieux capturer les phénomènes qualitatifs du modèle stochastique par rapport au modèle en EDP, notamment le sauvetage évolutif. Le travail dans ce chapitre à été realisé en colaboration avec Anna Melnykova, Samuel Nordmann, Hélène Hivert, Vincent Calvez et Sylvie Méléard dans le cadre de CEMRACS'18, et a été soumis pour future publication au journal ESAIM: Proceedings and Surveys, 2018.

  is the size of the population at time t, and Xi(t) ∈ R n is the trait of i-th individual living at time t, which summarizes all the informations on phenotype. The demography of the population is regulated, first of all, by birth and death. An individual with trait x gives birth to a new individual with rate b(x). The trait y of the offspring is chosen from a probability distribution m(x -y)dy, referred to as the mutation kernel. An individual with trait x dies according to an intrinsic death rate d(x) plus an additional death rate C N K t K (independent of x) which stands for the competition between individuals.

  ) does not hold in every point of time. Indeed, a new maximum of u can arise in finite time, which would cause a "jump" in the dynamics of x(t): this is what we call an evolutionary rescue. Formally, this is what happens (periodically in time) in the case of cycles, see Figure4.4b. We thus expect x(t) to possibly jump periodically, and to follow (4.17) between two jumps. We now try to characterize the possible jumps. For T > 0, we denote x(T -) := lim t→T t<T x(t), x(T + ) := lim t→T t>T x(t).

Statement 4 . 2

 42 We assume that (4.12)-(4.15) hold until a time T > 0, such that u(T, •) reaches its maximum on x(T -)

  i do R b := b(x), R d := d(x)+CN i-1 , R HT := y∈X i h K (x -y, N i-1 ); T b := λ(R b ), T d := λ(R d ), T HT := λ(R HT ),where λ denotes an exponential random law; if T b ≤ ∆ then pick up a new trait z from N (x, σ); add a new individual with trait z to X i ; end if T HT ≤ ∆ then pick a trait y ∈ X i-1 according to the law h K (x-y,N i-1 )

  Second option, for intermediate values of τ0, is the cycling behavior (Figure4.1b). Since the transfer rate is sufficiently large, the population is driven towards a deleterious trait, which is eventually less fit than the trait x = 0. If the drift is not too strong, the very few individuals which were not affected by HT and remained fit (with x close to 0) manage to regrow and eventually repopulate the environment, which launches the cycle again.The last possibility, for large values of the horizontal transfer rate τ0, is extinction of the population (Figure4.1c). It occurs because too many individuals were affected by deleterious traits of their neighbors, so that they die faster than is needed for replicating the population.

  (a) Stabilization: τ0 = 0.02 (b) Cycles: τ0 = 0.4 (c) Extinction: τ0 = 0.9

Figure 4 . 1 -

 41 Figure 4.1 -Behavior of the population dynamics as the mutation rate τ 0 is changing, (b r = d r = 1, σ = 10 -2 , K = 10 4 , σ 0 = 10 -2 , x 0 mean = 0, N 0 = 10 4 ).

  Using the notation f n (xi + εz k ) for the approximation of f (tn, xi + εz k ), we then approximated the convolution productm(z)b(x + εz)f (x + εz)dz by [m * (bf )] n i = ∆z Nz -1 k=0 m(z k )b(xi + εz k )f n (xi + εz k ).

Figure 4 .-

 4 1b. The way we understand the damping in the oscillations is that the PDE model and the numerical algorithm that we use are not (AP) property is proposed here. Such schemes have been introduced in[START_REF] Klar | An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit[END_REF][START_REF] Klar | An asymptotic preserving numerical scheme for kinetic equations in the low mach number limit[END_REF][START_REF] Jin | Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF], their properties are often summarized by the following diagram Pε ε→0

x( 4 . 33 )

 433 uε(t n ,x))/ε R e (uε(t n ,z)-max x uε(t n ,x))/ε dz, is computed with a left-point quadrature rule in the integrals of the previous expression. It reads

with the limit equation ( 4

 4 on ρ n+1 can be deduced from(4.31). Indeed, (4.31) yieldse u n+1 i /ε = e -∆tρ n+1 /ε e (u n i +∆t[-d(x i )+B n i +T n i ])/ε ,and soρ n+1 = ∆x e -∆tρ n+1 /ε Nx-1 i=0e A n i /ε , (4.37)

  taken apart to get an uniform estimate with respect to ε on the remaining sum. It is also solution of the equivalent equation g(y) = 0, with g(y) = -ε ln(y) -∆ty + ε ln(∆x) + A n i 0 + ε ln

  .0005, tau=1.2 (d) Full extinction: τ0 = 1.2

Figure 4 . 4 -

 44 Figure 4.4 -Behavior of the population dynamics described by a PDE model for ε = 0.01 as the mutation rate τ is changing, (b r = d r = 1, σ = 1).

Table 4 . 1 -

 41 .1 we give a short overview of the elapsed time for the same values of parameters, but for different schemes. As expected, individual-based model is the most expensive to compute. All the computations were performed in numpy library of Python on MacBook Pro (Intel Core i5 processor, 2,7GHz). ∆ = 0.1, T = 10 ∆ = 0.01, Elapsed time for simulation of population dynamics for different models (other parameters are fixed to values used throughout all the other simulations, τ = 0.5).

4. 5

 5 Comparison between the theoretical analysis of the Hamilton-Jacobi equation and the numerical simulations of the stochastic model 4.5.

Stabilization

  We run a numerical test on the stochastic model corresponding to stabilization, for τ0 = 0.02, and the other parameters as in Figure(4.1a). In this case, x correspond to the mean trait of the population for large time. From, (4.45) we find x = 0.067, and from (4.42), we obtain ρ = 1.99, which corresponds to what we can see on Figure(4.1a).

Figure 4 .

 4 5b). Non-concerned parameters remain fixed as in Subsection 4.4.1.

  to transfer their genetic information to the other individuals. As a consequence, value of the critical τ increases as the value of the birth (or death) rate constant increase. (a) Birth dependency (b) Death dependency

Figure 4 . 5 -

 45 Figure 4.5 -Dependency on the threshold for extinction τ ext with respect to the birth rate b r and death rate d r

Figure 4 . 6 .

 46 Figure 4.6. On Figures 4.6a-4.6c we trace the moment of the regrowth for different models.Figure 4.6a show the state

- 4 .

 4 Figure 4.6. On Figures 4.6a-4.6c we trace the moment of the regrowth for different models.Figure 4.6a show the state

Figure 4 .

 4 Figure 4.6. On Figures 4.6a-4.6c we trace the moment of the regrowth for different models.Figure 4.6a show the state of the population at certain moment of time: we see how the individuals are centered around a mean trait. For PDE and HJ model (red and green line respectively) we simply plot the density function, and on the first (blue) plot we approximate a histogram which describes ratio N tK sorted by traits in stochastic model. Stochastic simulations show the evolutionary rescue in more distinct manner: we see how the very small number of non-mutated individuals rescues the whole population from extinction (transition from 4.6b to 4.6c). On the contrary, the transition on the PDE model is dumped, and the regrowth is not clearly visible. It is due to, again, numerical instability of the PDE scheme for small values of the density function. Finally, HJ explicitly shows how the cycle occurs: the regrow of the "fit" individuals we

  

INTRODUCTION 1

 1 Motivation biologique et état de l'art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Préliminaires sur les modèles d'évolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Modèles Stochastiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Modèles Déterministes de sélection-mutation dans des environnements constants . . . . . . . . . . 2.2.1 Modèles Integro-Différentiels et heuristiques sur l'approche Hamilton-Jacobi . . . . . . . 3 Environnements variables en temps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  ). Dans ce modèle le terme intégral ρ correspond à la taille totale de la population et sa présence dans l'équation représente la compétition non-locale des individus. La densité initiale des individus n0(x) présentant de grands traits est exponentiellement petite. Par ailleurs, la fonction a est supposée T -périodique en temps et l'on condidère que la

	fonction moyennée	
	ā(x) =	1 T

T 0 a(t, x)dt, atteint son maximum et celui-ci est positif, ce qui signifie qu'ils existent au moins quelques traits avec un taux de croissance moyen strictement positif. Concernant le comportement en temps long de la population, le premier résultat à noter est le suivant Proposition 2 ([F.I., Mirrahimi, 2018]. Convergence en temps long 1)

  • C et 38 • C, moyenne 31 • C) est plus performante que les souches qui ont évolué dans des températures constantes (31 • C), lorsque les deux populations sont placées dans un environnement constant avec la température 31 • C. Il est à noter que cet effet est surprenant, car on s'attend à ce que la population évoluée dans un environnement constant aurait déjà sélectionné le meilleur trait dans un tel environnement.

  Le transfert horizontal de génes (HGT pour son sigle en anglais : Horizontal Gene Transfer) est la transmission de matériel génétique entre deux organismes vivants, contrairement à la transmission verticale qui désigne le transfert d'ADN d'un parent à sa progéniture. Il est connu que ce phénomène joue un rôle important dans l'évolution de certaines bactéries, notamment pour le développement d'une résistance aux antibiotiques. Plusieurs modèles mathématiques ont été proposés dans la littérature pour décrire l'impact du HGT sur la dynamique écologique avec deux types de modèles

	différents (stochastiques ou déterministes) [71, 59, 52, 19]. Des expériences numériques montrent que l'effet d'un HGT
	peut conduire à un comportement cyclique de la population [20]. C'est-à-dire que si l'HGT pousse les individus vers
	un phénotype non adapté et, par conséquent, vers l'extinction, très peu d'individus non affectés par l'adaptation au
	transfert peuvent éventuellement repeupler l'environnement. C'est ce qu'on appelle le "sauvetage évolutif d'une petite
	population" (voir Figure 1).

Nous considérons d'abord un modèle stochastique du type individu-centré, décrivant l'évolution d'une population structurée par phénotype, qui est écrit à chaque instant t par la mesure ponctuelle décrite dans (1). Comme on a déjà enoncé dans la section 2.1, la démographie d'une telle population est d'abord régulée par la naissance et la mort. Un individu avec le trait x donne naissance à un nouvel individu avec le taux b(x). Avec la probabilité 1 -pK , le nouvel individu porte le trait x et avec la probabilité pK , il y a une mutation sur le trait. Le trait z du nouvel individu est choisi selon une distribution de probabilité m(x, dz) appelée le noyau de mutation. La mortalité est modélisée par un taux de mortalité intrinsèque d(x) pour un individu de trait x plus un taux de mortalité représentant la compétition C N K t K . Enfin, un individu avec le trait x peut induire un transfert horizontal unilatéral à un individu avec le trait y au taux hK (x, y, ν), de sorte que la paire (x, y) devient (x, x). Pour simplifier, nous supposons que hK (x, y, ν) est sous la forme particulière hK

  • C and 38 • C, mean 31 • C) outperforms the strains that evolved in constant temperature (31 • C), when both strains are allowed to compete in a constant environment with temperature 31 • C. Note that this is a surprising effect, since one expects that the population evolved in a constant environment would select for the best trait in such environment.

  .18) (ii) Moreover the viscosity solution of (2.15) is unique and it is indeed a classical solution given by

	ψ(x) =	c 2	(x -x) +	x	xm	a(xm) -a(y)dy -	x xm	a(xm) -a(y)dy .	(2.19)
	where x < xm is given in (H3).						
	(iii) Furthermore, let nε solve (2.13), then						
			nε(t, x) -˜ (t)δ(x -x)	0, as ε → 0,	(2.20)
	point wise in time, weakly in x in the sense of measures, with ˜ the unique periodic solution of the following
	equation								
			 	d dt	= [a(t, x) -] , t ∈ (0, T ),	(2.21)
				(0) = (T ).		

Remark 2.

[START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] 

The statement (iii) in Theorem 2.7 implies for the solution ñε to the initial problem (2.1) with σ = ε 2 and c = cε that

  .24) In Subsection 2.2.1, we introduce the Liouville transformation and provide a relation between P0 and Pc which allows us to obtain a relationship between c and λc,σ. Next in Subsection (2.2.2) and (2.2.3) we provide the proofs of Proposition 2.1 and Proposition 2.4 respectively.

  2.10Let λc,σ be the principal eigenvalue of problem (2.4). Then, λc,σ < 0 if and only if c < c *

σ . Proof. Follows directly from the definition of c * σ . Lemma 2.11 Assume (H1) and (H4) and let C3 = C2(σC2 + c) + d0 then the solution n(t, x) to equation (2.2) satisfies:

  .68) 

	Remark 2.16 Note that in order to obtain the limit equation (2.68) we can argue exactly as for ψε in Section 2.3.3.2,
	by a "perturbed test function" argument, (see also

  e -γu ,(2.105) where γ > 0 and um = max u L ∞ (Ω) + 1, which is well defined since Ω is bounded and u ∈ C(Ω). Then it follows that = (e γum -γt)H p(e γum -γt) -1 -(e γum -γt)h(x), Note that v1, v2 lie in some [α, β], 0 < α < β < ∞ and for t ∈ [α, β], H(x, t, p) is convex in p and

	v solves
	(e γum -γv)H Dv(e γum -γv) -1 = (e γum -γv)h(x),
	in the viscosity sense, since v is a monotone transformation, (see for instance Corollary 2.1 (iii) [8]).
	Therefore, if u1, u2 are two viscosity solutions for the Hamiltonian (2.54) it holds that v1, v2, defined from u1 and u2 as
	in (2.105) are two viscosity solutions for the Hamiltonian
	H(x, t, p)

∂ H ∂t = -γH p(e γum -γt) -1 + γ p e γum -γt • H p(e γum -γt) -1 + γh(x).

Note that for S = p e γum -γt , we have H(S) -SH (S) ≤ 0 since H is convex and H(0) = 0. This implies

∂ H ∂t ≥ γh(x) > α > 0, ∀x ∈ Ω. Then it follows that H(x, t, p) -H(x, s, p) (t -s) ≥ α(t -s) 2 , ∀x ∈ Ω.

Now we apply Corollary 2.20 to H, to obtain for every two solutions u1 and u2 of equation (2.47) that

  2 .
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 3 7 -Errors in the approximation of the moments of the population's distribution and mean Fitness. Parameters: ε = 1 and a = a 2 given in (3.14), with r = 2, b = 2π.

	Values	Periodic environment	Constant environment
	Averaged Total Size [0, T ]	ρε = 0, 3937	ρc = 0, 5857
	Mean Phenotypic Trait	max t∈[0,T ]	µ ε ≈ 10 -7	µ c ≈ 10 -17
	Mean Variance	max t∈[0,T ]	σ 2 ε = 1, 0424	σ 2 c = 1, 4000
	Mean Fitness	1, 5788	1, 2984

Table 3 .

 3 8 -Comparison between the moments of the population's distribution and mean fitness for populations evolved in periodic and constant environments. Parameters: ε = 1 and a = a 2 given in (3.14), with r = 2, b = 2π.

  [START_REF] Alfaro | Evolutionary branching via replicator-mutator equations[END_REF] with respect to x and classical computations (under the assumptions of bounded functions for the birth, death and transfer rates), we deduce that our model satisfies a saturation property, i.e. ρε(t) is bounded from above, uniformly in t ≥ 0 and ε > 0.

	From this, and ρε(t) =	R n e	uε(t,x) ε	x∈R n dx, we deduce that for all t > 0, sup	u(t, x) ≤ 0 and the following constraint holds:
				sup	u(t, x) = 0 when ρ(t) > 0.	(4.10)
				x∈R n	

  -(d(xi) + Cρ n+1 ) + B n

					i + T n i ,	(4.31)
	where B n i stands for an approximation of					
	and T n i is for	R	τ (xi -y)	f (t n , y) ρ(t n )	dy.	(4.33)

R m(z)b(xi + εz)e (uε(t n ,x i +εz)-uε(t n ,x i ))/ε dz,

(4.32)

  is approximated by∆z (z k )b(xi + εz k )eIn both cases, it is computed with a linear interpolation of the values u n i . Hence, ∇ ε,large is computed as the linear interpolation of (u n i ) 1≤i≤Nx at xi +εz k . If xi +εz k < Xmin or xi +εz k > Xmax, the extrapolation is done linearly using the slope at the first or last point of the interval. Since εz k > ∆x, no stability issue is faced in this computation. Still using a linear interpolation, when 0 < εz k ≤ ∆x, it is worth

	Nz -1	z k ∇ ε,small n,i,k	+ ∆z	Nz -1	m(z k )b(xi + εz k )e z k ∇ ε,large n,i,k	,	(4.35)
	k=0					k=0
	ε|z k |≤dx					ε|z|>dx
	where ∇ ε n,i,k stands for an approximation of						
	u n,i,k	is given by
		∇ ε,large n,i,k	=	ũn i,k -u n i εz k	,
	where ũn i,k noticing that	ũn i,k -u n i εz k	=	u n i+1 -u n i ∆z	,
	and when 0 > εz k ≥ -∆x,	ũn i,k -u n i εz k	=	u n i -u n i-1

mε (t n , xi + εz k ) -u ε (t n , xi) εz k .

  recalling that the weak derivative of a Heaviside is a Dirac mass at 0, τ (0) in(4.19) has to be replaced

							N K t K is
	approximately given by (see (4.11))	ρ(t) =		1 C	r(x(t)),	(4.42)
	where r is defined in (4.18).					
		R	τ (x -y)	ν K t (dy) ρ(t)	,	(4.43)
	and accordingly, by					
	R	τ (x(t) -y)	ν(dy) ρ(t)	=	2τ0 2πs(t) √	.
	We find					
		x =	τ0 2πs dr √	,	(4.44)

We now formally compute the evolutionary singular state x . But as α is a Heaviside function (which formally corresponds to the case when δ → 0 in (4.19)), our derivations must be slightly adapted. In particular, τ (xx(t)) in (4.8) has to be replaced by

Emplacement précis d'un gène sur le chromosome qui le porte.

La fitness, dans un contexte biologique, aussi appelée la "fitness darwinienne" est liée à la théorie évolutionniste de Charles Darwin sur la sélection naturelle. La fitness darwinienne décrit à quel point un organisme a réussi à transmettre ses gènes. Plus un individu a de chances de survivre et de vivre plus longtemps pour se reproduire, plus sa fitness est élevée.

x -A2 ≤ ψ ≤ c1 -c2|x|,[START_REF] Chevin | Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory[END_REF] 

≤ 0.

Remerciements

***

Moreover the mean fitness of this population (at value 1/2) is given by

It is interesting to compare these analytic results obtained from the explicit solution (3.16) with the analytic expressions given in Chapter 1 coming from an approximation using the Hamilton-Jacobi approach, that is: Note that our approximations in (3.21) are coherent, in the sense that, once we know the function f then the expressions for the variance and the mean fitness coincide until order ε with the values given in (3.17) and (3.20). Note also, that the phenotypic mean remains constant equal to one for any value of ε. This is not surprising since all the environmental states select for the trait x = 0.

Following our motivation from the biological experiment, we consider again a population evolved in a constant environment with t = 1 2 , (mean time) and recall the phenotypic density nc and the total size ρc. That is when the growth rate is given by a(1/2, x) = r -g(1/2)x 2 the solution can be computed explicitly and is given by nc = ρc g(1/2)

from where we obtain the following phenotypic mean µc, variance σ 2 c and mean fitness Fc of such population, in an environment with the same temperature (t = 1/2)

Note from here that, as was analytically proved if we choose g such that its average in one period is smaller than its mean value, i.e, g(1/2) √ ḡ < 1, then the mean fitness of the population evolved under periodic fluctuations is larger than the one of the population evolved in a constant environment. This is also observed from the semi-explicit formula in (3.20)

Numerical simulations

In this subsection, for the numerical resolution of (3.1) we consider the growth rate in (3.14), that is the optimal trait is constant equal to 0.

We take g(t) the following positive 1-periodic function

for b = 2π. For the numerical computations we take the same values of the algorithm's parameters (ρ0, n0) as in the previous section, and the parameter r = 2. Again, we develop the numerical analysis for both values of the mutations rate ε = 10 -2 and ε = 1.

CHAPTER 3

Small effect of Mutations

We first study the case when the mutations are rare (that is, ε = 10 -2 ) and resolve numerically the equation (3.1) for a given in (3.14).

The population's density and size

In Figure 3.10, we illustrate the phenotypic density nε(t, x), first along two periods of time (Figure 3.10a) and then for three different fixed times in one period nε(ti, x) (Figure 3.10b). Note that for this small value of the mutations rate, the solution concentrates on a single point (x = 0), as expected from the analytic results. We remark that, while the time-periodic behavior of nε is not observable because the oscillations are quite small, in 

The moments and the fitness

We follow the structure in the previous section and we compare the analytic approximations obtained for the moments of the population's distribution and the mean fitness in (3.21), with the numerical computation of the exact value in (3.17)- (3.20), in order to compute the error of approximation (see Figure 3.12).

To be more precise, we next compute, the approximate values for the errors, shown in Table 3.5. Again we point out that these errors are less than order ε 2 = 10 -4 . The notations in Table 3.5 are similar to those in Table 3.1. We remark that, on the contrary that for Table 3.1 we only show the difference between the approximated values in (3.21) and the numerical computations of the formula (3.8), since we do not have the explicit expressions of the variance and the mean fitness in (3.17)- (3.20).

Analogously to the previous example, we follow the motivation coming from the biological experiment in [START_REF] Ketola | Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments[END_REF] to compare the values of the moments of the distribution and the mean Fitness of two populations evolving in differ-the time needed for the small population at x = 0 to regrow). Note that 0 is fitter than x(t) if and only if We point out that, surprisingly enough, τext is an increasing function of the death rate dr, meaning that under a higher death rate, the population can survive to a higher HT rate. The interpretation we propose is that if dr is high, the population driven outward x = 0 dies rapidly, thus the population that remained closer to 0 undergoes a milder HT, which makes the overall population more resistant to a high HT rate.

Let us now focus on the case where the cycling phenomenon occurs, i.e when τ0 > τcyc. In this case, x(t) will follow (4.17) and will periodically jump to x = 0. First, note that if x < xext, x(t) remains below xext for all t and the population does not get extinct:

The most intricate case is when x > xext, which contains case of extinction and non-extinction, depending on whether the jump of x(t) towards 0 happens before or after x(t) has passed beyond xext. In other words, extinction can be avoided if the evolutionary rescue happens before the dominant trait is led to extinction, i.e if x(T -) ≤ xext, where T is the time where the jump of x(t) towards 0 occurs. However, we are not able to give a satisfactory formula or estimate on T .

Besides, when the jump of x(t) occurs, it can happen that the trait x = 0 is not fit enough to avoid extinction: in this case the evolutionary rescue does not manage to sustain the population. It corresponds to the case xresc > xext.

We have the following threshold: the evolutionary rescue is able to sustain the population iff r(0) + τ0 > 0, which is If τ ≥ τsus, the population eventually gets extinct. If τ < τsus, the population is effectively rescued by the evolutionary rescue, even in the case where it passed through an episode of extinction during the previous cycle: in some cases the population is able to regrow after being extinct, which can be seen on Figure 4.4c. We think this is an interesting feature that the Hamilton-Jacobi approach is able to grasp. Regarding the stochastic model, an episode of extinction on Hamilton-Jacobi corresponds to an interval of time where the population reaches extremely small values (of order e -1 ε , with ε the variance of the mutation kernel), and thus on which there is a nonzero probability that every individual dies. • if τ0 ≤ τext, the population never gets extinct.

• the evolutionary rescue effectively manages to sustain the population if and only if τ0 < τsus := br.

Numerical tests

In this section we perform several numerical tests for the presented models considering different values of the parameters, replicating different scenarios: stabilization around an optimal value, cycles (occurring through the evolutionary rescue phenomena) and the extinction. We then compare the numerical results obtained for the stochastic and deterministic approaches, using in particular an asymptotic-preserving scheme which allows us to observe the population dynamics on the passage from the integro-differential equation (4.5) to a limit (4.7). Throughout this section we define the birth, death rates and the mutation kernel to those given in (4.12)-(4.14) respectively, with the parameters fixed throughout all the experiments to b ≡ 1, dr ≡ 1, C ≡ 0.5 respectively (unless otherwise stated).

The algorithm and the simulation for the Stochastic model

Our aim is to simulate the population dynamics over a fixed interval [0, T ]. We begin by simulating an initial population of size N 0 . We assume that the population is normally distributed around a mean trait x 0 mean with a standard deviation σ 0 so that the resulting vector X 0 ∈ R N 0 . We know that in a time step ∆, an individual can die, give birth, or be a subject to HT. Each event happens according to a certain probability that we compute from the rates. More detailed description of the simulations is provided in Algorithm 1.

Note that in our setting it is possible that 1, 2 or 3 events happen within the time step. Keeping a discretization time step small helps us to keep a biological sense in our simulation: even if the event of horizontal transfer with an "already dead" individual is possible in our setting (if T d ≤ THT ≤ ∆), this event is extremely rare. We simulate the population of initial size N0 = 10000 up to time T = 1000 with ∆ = 0.01, with the parameters being defined at the beginning of the section, and α -a Heaviside function. Even if a Heaviside function is not the most easy to analyze when we pass to the deterministic limit of the system (see Subsections 4.2.2 and 4.2.3), we use it for the stochastic simulation, since it is the most straightforward model for HT in biological context, and is much faster to compute that a smooth function.

We fix all constants but τ0, which regulates the Horizontal Transfer, and study how it affects the dynamics.

Then we plot the density of the population at each moment of time (left side of each Figure ): brighter colors on plot mean that there is a big amount of individuals with very similar traits. On the right top and right bottom we plot the normalized population size (ratio between the actual size and the carrying capacity of the system), and the mean trait.

Depending on the parameters we may observe three types of behavior, (see Figure 4.1). First possibility, for small values of τ0, is the stabilization (Figure 4.1a). In this case the population rapidly reaches the equilibrium and concentrates

CHAPTER 4

To understand better this phenomenon, we have to give a precise definition of what do we actually refer to, when we say "the critical value" of the transfer rate? In stochastic setting the answer is not trivial, and that is where the individual-based model reaches its limit. What we observe experimentally is the following when we change the value of HT rate starting from zero, the cycles in the population dynamics become more clearly visible, the fluctuations of the mean trait and the population size become more ample, until at some point the probability of extinction overweights the probability of survival and, finally, at the value of τ0, which we call "critical" we obtain an almost sure extinction.

But since we are working with a point process, giving a strict definition of "critical value for an extinction" in terms of probability measures seems to be out of reach. Even in the experimental setting this notion is ambiguous: when the value of τ0 is getting closer to a "critical" (numerically we observe an almost sure extinction at τ0 = 0.49), in different repetitions of the same experiment we may observe different types of behavior: either cycles, or extinction, which occurs after several cycles. It is illustrated on Figure 4.2, where the computations are launched with exactly the same set of parameters give very different results. Furthermore, it is not always clear how to differentiate between the stabilization and cycles, especially when the variance of the mutation kernel is large. To the best of our knowledge, there is no straightforward way to analytically measure the probability of each outcome under given initial conditions, which makes it difficult to analyse. This constraint of an individual-based model naturally leads us to studying a limiting system described in Subsection 

Numerical scheme and simulation for the PDE model

In this subsection, a numerical scheme for (4.5) is presented, and its properties are numerically investigated. For the discretization of ( 4 designed to have a precise grasp on the exponential small values of f , on which the cycling phenomenon relies. This limitation suggests to perform the change of variable (4.6), and to write a numerical scheme which converges uniformly when ε → 0. This is what the next section is devoted to.

On Figure 4.3c, we observe that as τ0 becomes larger the population gets extinct, and then, surprisingly enough, "reborns" after a period of extinction. This scenario can only be reproduced on density-based models, since in individualbased model any extinction is definitive. On Figure 4.3d we observe a full extinction of the population without report.

We will give further insights on those two cases in the next section.

The scheme for the Hamilton-Jacobi equation

Case ε → 0: description of the numerical scheme

As the rescaling parameter ε goes to 0, the model given by (4.7) gets closer to its limiting state (4.8). However, numerical approximation of the (4.5) for ε << 1 is not a trivial task. Indeed, for small ε, the solution fε of (4.5), is expected to concentrate at a dominant trait. To be able to catch its stiffness numerically, one then has to refine the grid in x, to ensure enough precision in the computation of f . As a consequence, the computational cost of the numerical simulations increases when ε → 0, and reaching the asymptotic regime with this scheme is not possible. In this part, we present a numerical scheme for (4.5) which enjoys stability properties in the limit ε → 0.

To avoid the increase of computational cost when reaching the asymptotics, and to ensure the scheme approaches the limit Hamilton-Jacobi equation for small ε, a scheme for the solution uε of (4.7) which enjoys the Asymptotic Preserving CHAPTER 4

with fixed discretization parameters, the scheme (4.31) becomes

where j0 is such that u n j 0 = max i u n i , and B n,0 i has been defined in (4.36).

We do not give a strict proof of consistency of this scheme with respect to the limiting Hamilton-Jacobi equation (4.8), since it is out of scope of the chapter. However, we draw the attention to few important points which need to be taken into account while working with the scheme. In particular, the behaviour of the quantity ρ(t) is not well understood in the case of an extinction. The problem is that intuitively, ρ(t) must represent the density of the population -so that when it goes to zero, we expect an extinction. However, in a Hamilton-Jacobi case even when the ρ(t) reaches zero, the population can still regrow after some time. This can be explained by the fact that after two limiting procedures (passing first to infinite system size, and then to the infinite time horizon), the "size" of the population can not be described straightforwardly. Accurate link between the quantities obtained as a result of stochastic and PDE simulation is also a question which requires further investigation when ρ(t) << 1.

Case ε → 0: the numerical results

In this subsection we simulate the dynamics of the population by considering a small value of ε and discuss the obtained results in order to compare them with previous simulations. Note that, in order to compare both, the stochastic and the Hamilton-Jacobi behaviours, the first thing to do is to obtain the simulations for the stochastic model also in the case where the HT rate is a smooth function as we do for the Hamilton-Jacobi case. We recall that, in Subsection 4.4.1 simulations for stochastic model are done with a Heaviside function as HT rate since it is a more natural choice for simulation of a jump process.

On Figure 4.4 we simulate the population dynamics for ε = 0.01. Upon rescaling time (for chosen ε time scale T = 10 correspond, in fact, to T ε = 1000 in previous simulations) and the variance parameter, we see the same patterns, with few differences.

On Figure 4.4a, we observe a stabilization of the mean trait, as in Figure 4.1a. Similarly, on Figure 4.4b, we observe cycles, but on the contrary to PDE model, oscillations are not damped. Moreover, it is worth pointing out that the duration of a cycle here corresponds to what we observe in the corresponding stochastic plot (on Figure 4.1b) multiplied by ε = 0.01. On Figure 4.4c, we also observe a cycling behavior, but the population goes periodically extinct (i.e the population reaches exponentially small value, of order e 1/ε ), and then reborn. On the stochastic model, it corresponds to what is illustrated in Figure 4.2. It is not surprising that this behavior is difficult to observe on the stochastic model, since very small populations are likely to go extinct. On Figure 4.4d, we can see that the population goes completely extinct. The most interesting case to comment is probably "partial" extinction seen on 4.4c. Note that despite the fact that ρ remains at 0 for some time, the population regrows. The point is that, as it was already mentioned above, this numerical parameter has no 1:1 correspondence to the population size parameter N t K used in stochastic model. Also note that similar behaviour of stochastic and HJ model are reproduced under a bit different values of parameters. It is caused by the rescaled time and mutation kernel, so that the rigorous link between two models is still to be developed.

Another interesting thing to comment is that on Figure 4.4b we may notice that due to the fact that the system is deterministic and we see no stochasticity on curves, describing the mean trait and the density of the population, it is easy to estimate the periods of the system, computing distances between local maxima on each curve. For the stochastic system this task is more difficult, especially for a small population, because it includes filtering problem of a noisy signal.

To get more accurate results in stochastic model we have to increase the time scale and number of individuals, which is see in stochastic plot is reproduced by a change of the maximum point (see again 4.6b to 4.6c). We highlight again that in order to compare the models on a more applied level, we have to give a formal definition of a quantity represented by ρ in a Hamilton-Jacobian case. Even though establishing a rigorous mathematical link between the behavior observed in the individual-based model and the Hamilton-Jacobi equation is out of scope of this thesis, the obtained analytical results already give a flavor of how the analysis of the evolutionary dynamics can be simplified in the future.